1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 173 APInt SplatVal; 174 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 175 } 176 177 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 178 179 unsigned i = 0, e = N->getNumOperands(); 180 181 // Skip over all of the undef values. 182 while (i != e && N->getOperand(i).isUndef()) 183 ++i; 184 185 // Do not accept an all-undef vector. 186 if (i == e) return false; 187 188 // Do not accept build_vectors that aren't all constants or which have non-~0 189 // elements. We have to be a bit careful here, as the type of the constant 190 // may not be the same as the type of the vector elements due to type 191 // legalization (the elements are promoted to a legal type for the target and 192 // a vector of a type may be legal when the base element type is not). 193 // We only want to check enough bits to cover the vector elements, because 194 // we care if the resultant vector is all ones, not whether the individual 195 // constants are. 196 SDValue NotZero = N->getOperand(i); 197 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 198 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 199 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 200 return false; 201 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 202 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 203 return false; 204 } else 205 return false; 206 207 // Okay, we have at least one ~0 value, check to see if the rest match or are 208 // undefs. Even with the above element type twiddling, this should be OK, as 209 // the same type legalization should have applied to all the elements. 210 for (++i; i != e; ++i) 211 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 212 return false; 213 return true; 214 } 215 216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 217 // Look through a bit convert. 218 while (N->getOpcode() == ISD::BITCAST) 219 N = N->getOperand(0).getNode(); 220 221 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 222 APInt SplatVal; 223 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 224 } 225 226 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 227 228 bool IsAllUndef = true; 229 for (const SDValue &Op : N->op_values()) { 230 if (Op.isUndef()) 231 continue; 232 IsAllUndef = false; 233 // Do not accept build_vectors that aren't all constants or which have non-0 234 // elements. We have to be a bit careful here, as the type of the constant 235 // may not be the same as the type of the vector elements due to type 236 // legalization (the elements are promoted to a legal type for the target 237 // and a vector of a type may be legal when the base element type is not). 238 // We only want to check enough bits to cover the vector elements, because 239 // we care if the resultant vector is all zeros, not whether the individual 240 // constants are. 241 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 242 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 243 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 244 return false; 245 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 246 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 247 return false; 248 } else 249 return false; 250 } 251 252 // Do not accept an all-undef vector. 253 if (IsAllUndef) 254 return false; 255 return true; 256 } 257 258 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 259 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 260 } 261 262 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 263 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 267 if (N->getOpcode() != ISD::BUILD_VECTOR) 268 return false; 269 270 for (const SDValue &Op : N->op_values()) { 271 if (Op.isUndef()) 272 continue; 273 if (!isa<ConstantSDNode>(Op)) 274 return false; 275 } 276 return true; 277 } 278 279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 280 if (N->getOpcode() != ISD::BUILD_VECTOR) 281 return false; 282 283 for (const SDValue &Op : N->op_values()) { 284 if (Op.isUndef()) 285 continue; 286 if (!isa<ConstantFPSDNode>(Op)) 287 return false; 288 } 289 return true; 290 } 291 292 bool ISD::allOperandsUndef(const SDNode *N) { 293 // Return false if the node has no operands. 294 // This is "logically inconsistent" with the definition of "all" but 295 // is probably the desired behavior. 296 if (N->getNumOperands() == 0) 297 return false; 298 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 299 } 300 301 bool ISD::matchUnaryPredicate(SDValue Op, 302 std::function<bool(ConstantSDNode *)> Match, 303 bool AllowUndefs) { 304 // FIXME: Add support for scalar UNDEF cases? 305 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 306 return Match(Cst); 307 308 // FIXME: Add support for vector UNDEF cases? 309 if (ISD::BUILD_VECTOR != Op.getOpcode() && 310 ISD::SPLAT_VECTOR != Op.getOpcode()) 311 return false; 312 313 EVT SVT = Op.getValueType().getScalarType(); 314 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 315 if (AllowUndefs && Op.getOperand(i).isUndef()) { 316 if (!Match(nullptr)) 317 return false; 318 continue; 319 } 320 321 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 322 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 323 return false; 324 } 325 return true; 326 } 327 328 bool ISD::matchBinaryPredicate( 329 SDValue LHS, SDValue RHS, 330 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 331 bool AllowUndefs, bool AllowTypeMismatch) { 332 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 333 return false; 334 335 // TODO: Add support for scalar UNDEF cases? 336 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 337 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 338 return Match(LHSCst, RHSCst); 339 340 // TODO: Add support for vector UNDEF cases? 341 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 342 ISD::BUILD_VECTOR != RHS.getOpcode()) 343 return false; 344 345 EVT SVT = LHS.getValueType().getScalarType(); 346 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 347 SDValue LHSOp = LHS.getOperand(i); 348 SDValue RHSOp = RHS.getOperand(i); 349 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 350 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 351 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 352 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 353 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 354 return false; 355 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 356 LHSOp.getValueType() != RHSOp.getValueType())) 357 return false; 358 if (!Match(LHSCst, RHSCst)) 359 return false; 360 } 361 return true; 362 } 363 364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 365 switch (VecReduceOpcode) { 366 default: 367 llvm_unreachable("Expected VECREDUCE opcode"); 368 case ISD::VECREDUCE_FADD: 369 case ISD::VECREDUCE_SEQ_FADD: 370 return ISD::FADD; 371 case ISD::VECREDUCE_FMUL: 372 case ISD::VECREDUCE_SEQ_FMUL: 373 return ISD::FMUL; 374 case ISD::VECREDUCE_ADD: 375 return ISD::ADD; 376 case ISD::VECREDUCE_MUL: 377 return ISD::MUL; 378 case ISD::VECREDUCE_AND: 379 return ISD::AND; 380 case ISD::VECREDUCE_OR: 381 return ISD::OR; 382 case ISD::VECREDUCE_XOR: 383 return ISD::XOR; 384 case ISD::VECREDUCE_SMAX: 385 return ISD::SMAX; 386 case ISD::VECREDUCE_SMIN: 387 return ISD::SMIN; 388 case ISD::VECREDUCE_UMAX: 389 return ISD::UMAX; 390 case ISD::VECREDUCE_UMIN: 391 return ISD::UMIN; 392 case ISD::VECREDUCE_FMAX: 393 return ISD::FMAXNUM; 394 case ISD::VECREDUCE_FMIN: 395 return ISD::FMINNUM; 396 } 397 } 398 399 bool ISD::isVPOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: 402 return false; 403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 404 case ISD::SDOPC: \ 405 return true; 406 #include "llvm/IR/VPIntrinsics.def" 407 } 408 } 409 410 /// The operand position of the vector mask. 411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 412 switch (Opcode) { 413 default: 414 return None; 415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 416 case ISD::SDOPC: \ 417 return MASKPOS; 418 #include "llvm/IR/VPIntrinsics.def" 419 } 420 } 421 422 /// The operand position of the explicit vector length parameter. 423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 424 switch (Opcode) { 425 default: 426 return None; 427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 428 case ISD::SDOPC: \ 429 return EVLPOS; 430 #include "llvm/IR/VPIntrinsics.def" 431 } 432 } 433 434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 435 switch (ExtType) { 436 case ISD::EXTLOAD: 437 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 438 case ISD::SEXTLOAD: 439 return ISD::SIGN_EXTEND; 440 case ISD::ZEXTLOAD: 441 return ISD::ZERO_EXTEND; 442 default: 443 break; 444 } 445 446 llvm_unreachable("Invalid LoadExtType"); 447 } 448 449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 450 // To perform this operation, we just need to swap the L and G bits of the 451 // operation. 452 unsigned OldL = (Operation >> 2) & 1; 453 unsigned OldG = (Operation >> 1) & 1; 454 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 455 (OldL << 1) | // New G bit 456 (OldG << 2)); // New L bit. 457 } 458 459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 460 unsigned Operation = Op; 461 if (isIntegerLike) 462 Operation ^= 7; // Flip L, G, E bits, but not U. 463 else 464 Operation ^= 15; // Flip all of the condition bits. 465 466 if (Operation > ISD::SETTRUE2) 467 Operation &= ~8; // Don't let N and U bits get set. 468 469 return ISD::CondCode(Operation); 470 } 471 472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 473 return getSetCCInverseImpl(Op, Type.isInteger()); 474 } 475 476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 477 bool isIntegerLike) { 478 return getSetCCInverseImpl(Op, isIntegerLike); 479 } 480 481 /// For an integer comparison, return 1 if the comparison is a signed operation 482 /// and 2 if the result is an unsigned comparison. Return zero if the operation 483 /// does not depend on the sign of the input (setne and seteq). 484 static int isSignedOp(ISD::CondCode Opcode) { 485 switch (Opcode) { 486 default: llvm_unreachable("Illegal integer setcc operation!"); 487 case ISD::SETEQ: 488 case ISD::SETNE: return 0; 489 case ISD::SETLT: 490 case ISD::SETLE: 491 case ISD::SETGT: 492 case ISD::SETGE: return 1; 493 case ISD::SETULT: 494 case ISD::SETULE: 495 case ISD::SETUGT: 496 case ISD::SETUGE: return 2; 497 } 498 } 499 500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 501 EVT Type) { 502 bool IsInteger = Type.isInteger(); 503 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 504 // Cannot fold a signed integer setcc with an unsigned integer setcc. 505 return ISD::SETCC_INVALID; 506 507 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 508 509 // If the N and U bits get set, then the resultant comparison DOES suddenly 510 // care about orderedness, and it is true when ordered. 511 if (Op > ISD::SETTRUE2) 512 Op &= ~16; // Clear the U bit if the N bit is set. 513 514 // Canonicalize illegal integer setcc's. 515 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 516 Op = ISD::SETNE; 517 518 return ISD::CondCode(Op); 519 } 520 521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 522 EVT Type) { 523 bool IsInteger = Type.isInteger(); 524 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 525 // Cannot fold a signed setcc with an unsigned setcc. 526 return ISD::SETCC_INVALID; 527 528 // Combine all of the condition bits. 529 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 530 531 // Canonicalize illegal integer setcc's. 532 if (IsInteger) { 533 switch (Result) { 534 default: break; 535 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 536 case ISD::SETOEQ: // SETEQ & SETU[LG]E 537 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 538 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 539 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 540 } 541 } 542 543 return Result; 544 } 545 546 //===----------------------------------------------------------------------===// 547 // SDNode Profile Support 548 //===----------------------------------------------------------------------===// 549 550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 552 ID.AddInteger(OpC); 553 } 554 555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 556 /// solely with their pointer. 557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 558 ID.AddPointer(VTList.VTs); 559 } 560 561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 562 static void AddNodeIDOperands(FoldingSetNodeID &ID, 563 ArrayRef<SDValue> Ops) { 564 for (auto& Op : Ops) { 565 ID.AddPointer(Op.getNode()); 566 ID.AddInteger(Op.getResNo()); 567 } 568 } 569 570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 571 static void AddNodeIDOperands(FoldingSetNodeID &ID, 572 ArrayRef<SDUse> Ops) { 573 for (auto& Op : Ops) { 574 ID.AddPointer(Op.getNode()); 575 ID.AddInteger(Op.getResNo()); 576 } 577 } 578 579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 580 SDVTList VTList, ArrayRef<SDValue> OpList) { 581 AddNodeIDOpcode(ID, OpC); 582 AddNodeIDValueTypes(ID, VTList); 583 AddNodeIDOperands(ID, OpList); 584 } 585 586 /// If this is an SDNode with special info, add this info to the NodeID data. 587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 588 switch (N->getOpcode()) { 589 case ISD::TargetExternalSymbol: 590 case ISD::ExternalSymbol: 591 case ISD::MCSymbol: 592 llvm_unreachable("Should only be used on nodes with operands"); 593 default: break; // Normal nodes don't need extra info. 594 case ISD::TargetConstant: 595 case ISD::Constant: { 596 const ConstantSDNode *C = cast<ConstantSDNode>(N); 597 ID.AddPointer(C->getConstantIntValue()); 598 ID.AddBoolean(C->isOpaque()); 599 break; 600 } 601 case ISD::TargetConstantFP: 602 case ISD::ConstantFP: 603 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 604 break; 605 case ISD::TargetGlobalAddress: 606 case ISD::GlobalAddress: 607 case ISD::TargetGlobalTLSAddress: 608 case ISD::GlobalTLSAddress: { 609 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 610 ID.AddPointer(GA->getGlobal()); 611 ID.AddInteger(GA->getOffset()); 612 ID.AddInteger(GA->getTargetFlags()); 613 break; 614 } 615 case ISD::BasicBlock: 616 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 617 break; 618 case ISD::Register: 619 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 620 break; 621 case ISD::RegisterMask: 622 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 623 break; 624 case ISD::SRCVALUE: 625 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 626 break; 627 case ISD::FrameIndex: 628 case ISD::TargetFrameIndex: 629 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 630 break; 631 case ISD::LIFETIME_START: 632 case ISD::LIFETIME_END: 633 if (cast<LifetimeSDNode>(N)->hasOffset()) { 634 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 635 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 636 } 637 break; 638 case ISD::PSEUDO_PROBE: 639 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 640 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 641 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 642 break; 643 case ISD::JumpTable: 644 case ISD::TargetJumpTable: 645 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 647 break; 648 case ISD::ConstantPool: 649 case ISD::TargetConstantPool: { 650 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 651 ID.AddInteger(CP->getAlign().value()); 652 ID.AddInteger(CP->getOffset()); 653 if (CP->isMachineConstantPoolEntry()) 654 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 655 else 656 ID.AddPointer(CP->getConstVal()); 657 ID.AddInteger(CP->getTargetFlags()); 658 break; 659 } 660 case ISD::TargetIndex: { 661 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 662 ID.AddInteger(TI->getIndex()); 663 ID.AddInteger(TI->getOffset()); 664 ID.AddInteger(TI->getTargetFlags()); 665 break; 666 } 667 case ISD::LOAD: { 668 const LoadSDNode *LD = cast<LoadSDNode>(N); 669 ID.AddInteger(LD->getMemoryVT().getRawBits()); 670 ID.AddInteger(LD->getRawSubclassData()); 671 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 672 break; 673 } 674 case ISD::STORE: { 675 const StoreSDNode *ST = cast<StoreSDNode>(N); 676 ID.AddInteger(ST->getMemoryVT().getRawBits()); 677 ID.AddInteger(ST->getRawSubclassData()); 678 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 679 break; 680 } 681 case ISD::MLOAD: { 682 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 683 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 684 ID.AddInteger(MLD->getRawSubclassData()); 685 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 686 break; 687 } 688 case ISD::MSTORE: { 689 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 690 ID.AddInteger(MST->getMemoryVT().getRawBits()); 691 ID.AddInteger(MST->getRawSubclassData()); 692 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 693 break; 694 } 695 case ISD::MGATHER: { 696 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 697 ID.AddInteger(MG->getMemoryVT().getRawBits()); 698 ID.AddInteger(MG->getRawSubclassData()); 699 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::MSCATTER: { 703 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 704 ID.AddInteger(MS->getMemoryVT().getRawBits()); 705 ID.AddInteger(MS->getRawSubclassData()); 706 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::ATOMIC_CMP_SWAP: 710 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 711 case ISD::ATOMIC_SWAP: 712 case ISD::ATOMIC_LOAD_ADD: 713 case ISD::ATOMIC_LOAD_SUB: 714 case ISD::ATOMIC_LOAD_AND: 715 case ISD::ATOMIC_LOAD_CLR: 716 case ISD::ATOMIC_LOAD_OR: 717 case ISD::ATOMIC_LOAD_XOR: 718 case ISD::ATOMIC_LOAD_NAND: 719 case ISD::ATOMIC_LOAD_MIN: 720 case ISD::ATOMIC_LOAD_MAX: 721 case ISD::ATOMIC_LOAD_UMIN: 722 case ISD::ATOMIC_LOAD_UMAX: 723 case ISD::ATOMIC_LOAD: 724 case ISD::ATOMIC_STORE: { 725 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 726 ID.AddInteger(AT->getMemoryVT().getRawBits()); 727 ID.AddInteger(AT->getRawSubclassData()); 728 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 729 break; 730 } 731 case ISD::PREFETCH: { 732 const MemSDNode *PF = cast<MemSDNode>(N); 733 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 734 break; 735 } 736 case ISD::VECTOR_SHUFFLE: { 737 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 738 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 739 i != e; ++i) 740 ID.AddInteger(SVN->getMaskElt(i)); 741 break; 742 } 743 case ISD::TargetBlockAddress: 744 case ISD::BlockAddress: { 745 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 746 ID.AddPointer(BA->getBlockAddress()); 747 ID.AddInteger(BA->getOffset()); 748 ID.AddInteger(BA->getTargetFlags()); 749 break; 750 } 751 } // end switch (N->getOpcode()) 752 753 // Target specific memory nodes could also have address spaces to check. 754 if (N->isTargetMemoryOpcode()) 755 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 756 } 757 758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 759 /// data. 760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 761 AddNodeIDOpcode(ID, N->getOpcode()); 762 // Add the return value info. 763 AddNodeIDValueTypes(ID, N->getVTList()); 764 // Add the operand info. 765 AddNodeIDOperands(ID, N->ops()); 766 767 // Handle SDNode leafs with special info. 768 AddNodeIDCustom(ID, N); 769 } 770 771 //===----------------------------------------------------------------------===// 772 // SelectionDAG Class 773 //===----------------------------------------------------------------------===// 774 775 /// doNotCSE - Return true if CSE should not be performed for this node. 776 static bool doNotCSE(SDNode *N) { 777 if (N->getValueType(0) == MVT::Glue) 778 return true; // Never CSE anything that produces a flag. 779 780 switch (N->getOpcode()) { 781 default: break; 782 case ISD::HANDLENODE: 783 case ISD::EH_LABEL: 784 return true; // Never CSE these nodes. 785 } 786 787 // Check that remaining values produced are not flags. 788 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 789 if (N->getValueType(i) == MVT::Glue) 790 return true; // Never CSE anything that produces a flag. 791 792 return false; 793 } 794 795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 796 /// SelectionDAG. 797 void SelectionDAG::RemoveDeadNodes() { 798 // Create a dummy node (which is not added to allnodes), that adds a reference 799 // to the root node, preventing it from being deleted. 800 HandleSDNode Dummy(getRoot()); 801 802 SmallVector<SDNode*, 128> DeadNodes; 803 804 // Add all obviously-dead nodes to the DeadNodes worklist. 805 for (SDNode &Node : allnodes()) 806 if (Node.use_empty()) 807 DeadNodes.push_back(&Node); 808 809 RemoveDeadNodes(DeadNodes); 810 811 // If the root changed (e.g. it was a dead load, update the root). 812 setRoot(Dummy.getValue()); 813 } 814 815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 816 /// given list, and any nodes that become unreachable as a result. 817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 818 819 // Process the worklist, deleting the nodes and adding their uses to the 820 // worklist. 821 while (!DeadNodes.empty()) { 822 SDNode *N = DeadNodes.pop_back_val(); 823 // Skip to next node if we've already managed to delete the node. This could 824 // happen if replacing a node causes a node previously added to the node to 825 // be deleted. 826 if (N->getOpcode() == ISD::DELETED_NODE) 827 continue; 828 829 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 830 DUL->NodeDeleted(N, nullptr); 831 832 // Take the node out of the appropriate CSE map. 833 RemoveNodeFromCSEMaps(N); 834 835 // Next, brutally remove the operand list. This is safe to do, as there are 836 // no cycles in the graph. 837 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 838 SDUse &Use = *I++; 839 SDNode *Operand = Use.getNode(); 840 Use.set(SDValue()); 841 842 // Now that we removed this operand, see if there are no uses of it left. 843 if (Operand->use_empty()) 844 DeadNodes.push_back(Operand); 845 } 846 847 DeallocateNode(N); 848 } 849 } 850 851 void SelectionDAG::RemoveDeadNode(SDNode *N){ 852 SmallVector<SDNode*, 16> DeadNodes(1, N); 853 854 // Create a dummy node that adds a reference to the root node, preventing 855 // it from being deleted. (This matters if the root is an operand of the 856 // dead node.) 857 HandleSDNode Dummy(getRoot()); 858 859 RemoveDeadNodes(DeadNodes); 860 } 861 862 void SelectionDAG::DeleteNode(SDNode *N) { 863 // First take this out of the appropriate CSE map. 864 RemoveNodeFromCSEMaps(N); 865 866 // Finally, remove uses due to operands of this node, remove from the 867 // AllNodes list, and delete the node. 868 DeleteNodeNotInCSEMaps(N); 869 } 870 871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 872 assert(N->getIterator() != AllNodes.begin() && 873 "Cannot delete the entry node!"); 874 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 875 876 // Drop all of the operands and decrement used node's use counts. 877 N->DropOperands(); 878 879 DeallocateNode(N); 880 } 881 882 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 883 assert(!(V->isVariadic() && isParameter)); 884 if (isParameter) 885 ByvalParmDbgValues.push_back(V); 886 else 887 DbgValues.push_back(V); 888 for (const SDNode *Node : V->getSDNodes()) 889 if (Node) 890 DbgValMap[Node].push_back(V); 891 } 892 893 void SDDbgInfo::erase(const SDNode *Node) { 894 DbgValMapType::iterator I = DbgValMap.find(Node); 895 if (I == DbgValMap.end()) 896 return; 897 for (auto &Val: I->second) 898 Val->setIsInvalidated(); 899 DbgValMap.erase(I); 900 } 901 902 void SelectionDAG::DeallocateNode(SDNode *N) { 903 // If we have operands, deallocate them. 904 removeOperands(N); 905 906 NodeAllocator.Deallocate(AllNodes.remove(N)); 907 908 // Set the opcode to DELETED_NODE to help catch bugs when node 909 // memory is reallocated. 910 // FIXME: There are places in SDag that have grown a dependency on the opcode 911 // value in the released node. 912 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 913 N->NodeType = ISD::DELETED_NODE; 914 915 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 916 // them and forget about that node. 917 DbgInfo->erase(N); 918 } 919 920 #ifndef NDEBUG 921 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 922 static void VerifySDNode(SDNode *N) { 923 switch (N->getOpcode()) { 924 default: 925 break; 926 case ISD::BUILD_PAIR: { 927 EVT VT = N->getValueType(0); 928 assert(N->getNumValues() == 1 && "Too many results!"); 929 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 930 "Wrong return type!"); 931 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 932 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 933 "Mismatched operand types!"); 934 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 935 "Wrong operand type!"); 936 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 937 "Wrong return type size"); 938 break; 939 } 940 case ISD::BUILD_VECTOR: { 941 assert(N->getNumValues() == 1 && "Too many results!"); 942 assert(N->getValueType(0).isVector() && "Wrong return type!"); 943 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 944 "Wrong number of operands!"); 945 EVT EltVT = N->getValueType(0).getVectorElementType(); 946 for (const SDUse &Op : N->ops()) { 947 assert((Op.getValueType() == EltVT || 948 (EltVT.isInteger() && Op.getValueType().isInteger() && 949 EltVT.bitsLE(Op.getValueType()))) && 950 "Wrong operand type!"); 951 assert(Op.getValueType() == N->getOperand(0).getValueType() && 952 "Operands must all have the same type"); 953 } 954 break; 955 } 956 } 957 } 958 #endif // NDEBUG 959 960 /// Insert a newly allocated node into the DAG. 961 /// 962 /// Handles insertion into the all nodes list and CSE map, as well as 963 /// verification and other common operations when a new node is allocated. 964 void SelectionDAG::InsertNode(SDNode *N) { 965 AllNodes.push_back(N); 966 #ifndef NDEBUG 967 N->PersistentId = NextPersistentId++; 968 VerifySDNode(N); 969 #endif 970 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 971 DUL->NodeInserted(N); 972 } 973 974 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 975 /// correspond to it. This is useful when we're about to delete or repurpose 976 /// the node. We don't want future request for structurally identical nodes 977 /// to return N anymore. 978 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 979 bool Erased = false; 980 switch (N->getOpcode()) { 981 case ISD::HANDLENODE: return false; // noop. 982 case ISD::CONDCODE: 983 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 984 "Cond code doesn't exist!"); 985 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 986 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 987 break; 988 case ISD::ExternalSymbol: 989 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 990 break; 991 case ISD::TargetExternalSymbol: { 992 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 993 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 994 ESN->getSymbol(), ESN->getTargetFlags())); 995 break; 996 } 997 case ISD::MCSymbol: { 998 auto *MCSN = cast<MCSymbolSDNode>(N); 999 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1000 break; 1001 } 1002 case ISD::VALUETYPE: { 1003 EVT VT = cast<VTSDNode>(N)->getVT(); 1004 if (VT.isExtended()) { 1005 Erased = ExtendedValueTypeNodes.erase(VT); 1006 } else { 1007 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1008 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1009 } 1010 break; 1011 } 1012 default: 1013 // Remove it from the CSE Map. 1014 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1015 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1016 Erased = CSEMap.RemoveNode(N); 1017 break; 1018 } 1019 #ifndef NDEBUG 1020 // Verify that the node was actually in one of the CSE maps, unless it has a 1021 // flag result (which cannot be CSE'd) or is one of the special cases that are 1022 // not subject to CSE. 1023 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1024 !N->isMachineOpcode() && !doNotCSE(N)) { 1025 N->dump(this); 1026 dbgs() << "\n"; 1027 llvm_unreachable("Node is not in map!"); 1028 } 1029 #endif 1030 return Erased; 1031 } 1032 1033 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1034 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1035 /// node already exists, in which case transfer all its users to the existing 1036 /// node. This transfer can potentially trigger recursive merging. 1037 void 1038 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1039 // For node types that aren't CSE'd, just act as if no identical node 1040 // already exists. 1041 if (!doNotCSE(N)) { 1042 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1043 if (Existing != N) { 1044 // If there was already an existing matching node, use ReplaceAllUsesWith 1045 // to replace the dead one with the existing one. This can cause 1046 // recursive merging of other unrelated nodes down the line. 1047 ReplaceAllUsesWith(N, Existing); 1048 1049 // N is now dead. Inform the listeners and delete it. 1050 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1051 DUL->NodeDeleted(N, Existing); 1052 DeleteNodeNotInCSEMaps(N); 1053 return; 1054 } 1055 } 1056 1057 // If the node doesn't already exist, we updated it. Inform listeners. 1058 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1059 DUL->NodeUpdated(N); 1060 } 1061 1062 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1063 /// were replaced with those specified. If this node is never memoized, 1064 /// return null, otherwise return a pointer to the slot it would take. If a 1065 /// node already exists with these operands, the slot will be non-null. 1066 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1067 void *&InsertPos) { 1068 if (doNotCSE(N)) 1069 return nullptr; 1070 1071 SDValue Ops[] = { Op }; 1072 FoldingSetNodeID ID; 1073 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1074 AddNodeIDCustom(ID, N); 1075 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1076 if (Node) 1077 Node->intersectFlagsWith(N->getFlags()); 1078 return Node; 1079 } 1080 1081 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1082 /// were replaced with those specified. If this node is never memoized, 1083 /// return null, otherwise return a pointer to the slot it would take. If a 1084 /// node already exists with these operands, the slot will be non-null. 1085 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1086 SDValue Op1, SDValue Op2, 1087 void *&InsertPos) { 1088 if (doNotCSE(N)) 1089 return nullptr; 1090 1091 SDValue Ops[] = { Op1, Op2 }; 1092 FoldingSetNodeID ID; 1093 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1094 AddNodeIDCustom(ID, N); 1095 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1096 if (Node) 1097 Node->intersectFlagsWith(N->getFlags()); 1098 return Node; 1099 } 1100 1101 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1102 /// were replaced with those specified. If this node is never memoized, 1103 /// return null, otherwise return a pointer to the slot it would take. If a 1104 /// node already exists with these operands, the slot will be non-null. 1105 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1106 void *&InsertPos) { 1107 if (doNotCSE(N)) 1108 return nullptr; 1109 1110 FoldingSetNodeID ID; 1111 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1112 AddNodeIDCustom(ID, N); 1113 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1114 if (Node) 1115 Node->intersectFlagsWith(N->getFlags()); 1116 return Node; 1117 } 1118 1119 Align SelectionDAG::getEVTAlign(EVT VT) const { 1120 Type *Ty = VT == MVT::iPTR ? 1121 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1122 VT.getTypeForEVT(*getContext()); 1123 1124 return getDataLayout().getABITypeAlign(Ty); 1125 } 1126 1127 // EntryNode could meaningfully have debug info if we can find it... 1128 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1129 : TM(tm), OptLevel(OL), 1130 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1131 Root(getEntryNode()) { 1132 InsertNode(&EntryNode); 1133 DbgInfo = new SDDbgInfo(); 1134 } 1135 1136 void SelectionDAG::init(MachineFunction &NewMF, 1137 OptimizationRemarkEmitter &NewORE, 1138 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1139 LegacyDivergenceAnalysis * Divergence, 1140 ProfileSummaryInfo *PSIin, 1141 BlockFrequencyInfo *BFIin) { 1142 MF = &NewMF; 1143 SDAGISelPass = PassPtr; 1144 ORE = &NewORE; 1145 TLI = getSubtarget().getTargetLowering(); 1146 TSI = getSubtarget().getSelectionDAGInfo(); 1147 LibInfo = LibraryInfo; 1148 Context = &MF->getFunction().getContext(); 1149 DA = Divergence; 1150 PSI = PSIin; 1151 BFI = BFIin; 1152 } 1153 1154 SelectionDAG::~SelectionDAG() { 1155 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1156 allnodes_clear(); 1157 OperandRecycler.clear(OperandAllocator); 1158 delete DbgInfo; 1159 } 1160 1161 bool SelectionDAG::shouldOptForSize() const { 1162 return MF->getFunction().hasOptSize() || 1163 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1164 } 1165 1166 void SelectionDAG::allnodes_clear() { 1167 assert(&*AllNodes.begin() == &EntryNode); 1168 AllNodes.remove(AllNodes.begin()); 1169 while (!AllNodes.empty()) 1170 DeallocateNode(&AllNodes.front()); 1171 #ifndef NDEBUG 1172 NextPersistentId = 0; 1173 #endif 1174 } 1175 1176 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1177 void *&InsertPos) { 1178 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1179 if (N) { 1180 switch (N->getOpcode()) { 1181 default: break; 1182 case ISD::Constant: 1183 case ISD::ConstantFP: 1184 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1185 "debug location. Use another overload."); 1186 } 1187 } 1188 return N; 1189 } 1190 1191 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1192 const SDLoc &DL, void *&InsertPos) { 1193 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1194 if (N) { 1195 switch (N->getOpcode()) { 1196 case ISD::Constant: 1197 case ISD::ConstantFP: 1198 // Erase debug location from the node if the node is used at several 1199 // different places. Do not propagate one location to all uses as it 1200 // will cause a worse single stepping debugging experience. 1201 if (N->getDebugLoc() != DL.getDebugLoc()) 1202 N->setDebugLoc(DebugLoc()); 1203 break; 1204 default: 1205 // When the node's point of use is located earlier in the instruction 1206 // sequence than its prior point of use, update its debug info to the 1207 // earlier location. 1208 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1209 N->setDebugLoc(DL.getDebugLoc()); 1210 break; 1211 } 1212 } 1213 return N; 1214 } 1215 1216 void SelectionDAG::clear() { 1217 allnodes_clear(); 1218 OperandRecycler.clear(OperandAllocator); 1219 OperandAllocator.Reset(); 1220 CSEMap.clear(); 1221 1222 ExtendedValueTypeNodes.clear(); 1223 ExternalSymbols.clear(); 1224 TargetExternalSymbols.clear(); 1225 MCSymbols.clear(); 1226 SDCallSiteDbgInfo.clear(); 1227 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1228 static_cast<CondCodeSDNode*>(nullptr)); 1229 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1230 static_cast<SDNode*>(nullptr)); 1231 1232 EntryNode.UseList = nullptr; 1233 InsertNode(&EntryNode); 1234 Root = getEntryNode(); 1235 DbgInfo->clear(); 1236 } 1237 1238 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1239 return VT.bitsGT(Op.getValueType()) 1240 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1241 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1242 } 1243 1244 std::pair<SDValue, SDValue> 1245 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1246 const SDLoc &DL, EVT VT) { 1247 assert(!VT.bitsEq(Op.getValueType()) && 1248 "Strict no-op FP extend/round not allowed."); 1249 SDValue Res = 1250 VT.bitsGT(Op.getValueType()) 1251 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1252 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1253 {Chain, Op, getIntPtrConstant(0, DL)}); 1254 1255 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1256 } 1257 1258 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1259 return VT.bitsGT(Op.getValueType()) ? 1260 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1261 getNode(ISD::TRUNCATE, DL, VT, Op); 1262 } 1263 1264 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1265 return VT.bitsGT(Op.getValueType()) ? 1266 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1267 getNode(ISD::TRUNCATE, DL, VT, Op); 1268 } 1269 1270 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1271 return VT.bitsGT(Op.getValueType()) ? 1272 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1273 getNode(ISD::TRUNCATE, DL, VT, Op); 1274 } 1275 1276 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1277 EVT OpVT) { 1278 if (VT.bitsLE(Op.getValueType())) 1279 return getNode(ISD::TRUNCATE, SL, VT, Op); 1280 1281 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1282 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1283 } 1284 1285 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1286 EVT OpVT = Op.getValueType(); 1287 assert(VT.isInteger() && OpVT.isInteger() && 1288 "Cannot getZeroExtendInReg FP types"); 1289 assert(VT.isVector() == OpVT.isVector() && 1290 "getZeroExtendInReg type should be vector iff the operand " 1291 "type is vector!"); 1292 assert((!VT.isVector() || 1293 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1294 "Vector element counts must match in getZeroExtendInReg"); 1295 assert(VT.bitsLE(OpVT) && "Not extending!"); 1296 if (OpVT == VT) 1297 return Op; 1298 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1299 VT.getScalarSizeInBits()); 1300 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1301 } 1302 1303 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1304 // Only unsigned pointer semantics are supported right now. In the future this 1305 // might delegate to TLI to check pointer signedness. 1306 return getZExtOrTrunc(Op, DL, VT); 1307 } 1308 1309 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1310 // Only unsigned pointer semantics are supported right now. In the future this 1311 // might delegate to TLI to check pointer signedness. 1312 return getZeroExtendInReg(Op, DL, VT); 1313 } 1314 1315 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1316 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1317 EVT EltVT = VT.getScalarType(); 1318 SDValue NegOne = 1319 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1320 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1321 } 1322 1323 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1324 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1325 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1326 } 1327 1328 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1329 EVT OpVT) { 1330 if (!V) 1331 return getConstant(0, DL, VT); 1332 1333 switch (TLI->getBooleanContents(OpVT)) { 1334 case TargetLowering::ZeroOrOneBooleanContent: 1335 case TargetLowering::UndefinedBooleanContent: 1336 return getConstant(1, DL, VT); 1337 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1338 return getAllOnesConstant(DL, VT); 1339 } 1340 llvm_unreachable("Unexpected boolean content enum!"); 1341 } 1342 1343 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1344 bool isT, bool isO) { 1345 EVT EltVT = VT.getScalarType(); 1346 assert((EltVT.getSizeInBits() >= 64 || 1347 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1348 "getConstant with a uint64_t value that doesn't fit in the type!"); 1349 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1350 } 1351 1352 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1353 bool isT, bool isO) { 1354 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1355 } 1356 1357 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1358 EVT VT, bool isT, bool isO) { 1359 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 const ConstantInt *Elt = &Val; 1363 1364 // In some cases the vector type is legal but the element type is illegal and 1365 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1366 // inserted value (the type does not need to match the vector element type). 1367 // Any extra bits introduced will be truncated away. 1368 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1369 TargetLowering::TypePromoteInteger) { 1370 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1371 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1372 Elt = ConstantInt::get(*getContext(), NewVal); 1373 } 1374 // In other cases the element type is illegal and needs to be expanded, for 1375 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1376 // the value into n parts and use a vector type with n-times the elements. 1377 // Then bitcast to the type requested. 1378 // Legalizing constants too early makes the DAGCombiner's job harder so we 1379 // only legalize if the DAG tells us we must produce legal types. 1380 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1381 TLI->getTypeAction(*getContext(), EltVT) == 1382 TargetLowering::TypeExpandInteger) { 1383 const APInt &NewVal = Elt->getValue(); 1384 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1385 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1386 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1387 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1388 1389 // Check the temporary vector is the correct size. If this fails then 1390 // getTypeToTransformTo() probably returned a type whose size (in bits) 1391 // isn't a power-of-2 factor of the requested type size. 1392 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1393 1394 SmallVector<SDValue, 2> EltParts; 1395 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1396 EltParts.push_back(getConstant( 1397 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1398 ViaEltVT, isT, isO)); 1399 } 1400 1401 // EltParts is currently in little endian order. If we actually want 1402 // big-endian order then reverse it now. 1403 if (getDataLayout().isBigEndian()) 1404 std::reverse(EltParts.begin(), EltParts.end()); 1405 1406 // The elements must be reversed when the element order is different 1407 // to the endianness of the elements (because the BITCAST is itself a 1408 // vector shuffle in this situation). However, we do not need any code to 1409 // perform this reversal because getConstant() is producing a vector 1410 // splat. 1411 // This situation occurs in MIPS MSA. 1412 1413 SmallVector<SDValue, 8> Ops; 1414 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1415 llvm::append_range(Ops, EltParts); 1416 1417 SDValue V = 1418 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1419 return V; 1420 } 1421 1422 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1423 "APInt size does not match type size!"); 1424 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1425 FoldingSetNodeID ID; 1426 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1427 ID.AddPointer(Elt); 1428 ID.AddBoolean(isO); 1429 void *IP = nullptr; 1430 SDNode *N = nullptr; 1431 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1432 if (!VT.isVector()) 1433 return SDValue(N, 0); 1434 1435 if (!N) { 1436 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1437 CSEMap.InsertNode(N, IP); 1438 InsertNode(N); 1439 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1440 } 1441 1442 SDValue Result(N, 0); 1443 if (VT.isScalableVector()) 1444 Result = getSplatVector(VT, DL, Result); 1445 else if (VT.isVector()) 1446 Result = getSplatBuildVector(VT, DL, Result); 1447 1448 return Result; 1449 } 1450 1451 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1452 bool isTarget) { 1453 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1454 } 1455 1456 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1457 const SDLoc &DL, bool LegalTypes) { 1458 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1459 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1460 return getConstant(Val, DL, ShiftVT); 1461 } 1462 1463 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1464 bool isTarget) { 1465 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1466 } 1467 1468 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1469 bool isTarget) { 1470 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1471 } 1472 1473 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1474 EVT VT, bool isTarget) { 1475 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1476 1477 EVT EltVT = VT.getScalarType(); 1478 1479 // Do the map lookup using the actual bit pattern for the floating point 1480 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1481 // we don't have issues with SNANs. 1482 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1483 FoldingSetNodeID ID; 1484 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1485 ID.AddPointer(&V); 1486 void *IP = nullptr; 1487 SDNode *N = nullptr; 1488 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1489 if (!VT.isVector()) 1490 return SDValue(N, 0); 1491 1492 if (!N) { 1493 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1494 CSEMap.InsertNode(N, IP); 1495 InsertNode(N); 1496 } 1497 1498 SDValue Result(N, 0); 1499 if (VT.isScalableVector()) 1500 Result = getSplatVector(VT, DL, Result); 1501 else if (VT.isVector()) 1502 Result = getSplatBuildVector(VT, DL, Result); 1503 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1504 return Result; 1505 } 1506 1507 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1508 bool isTarget) { 1509 EVT EltVT = VT.getScalarType(); 1510 if (EltVT == MVT::f32) 1511 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1512 else if (EltVT == MVT::f64) 1513 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1514 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1515 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1516 bool Ignored; 1517 APFloat APF = APFloat(Val); 1518 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1519 &Ignored); 1520 return getConstantFP(APF, DL, VT, isTarget); 1521 } else 1522 llvm_unreachable("Unsupported type in getConstantFP"); 1523 } 1524 1525 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1526 EVT VT, int64_t Offset, bool isTargetGA, 1527 unsigned TargetFlags) { 1528 assert((TargetFlags == 0 || isTargetGA) && 1529 "Cannot set target flags on target-independent globals"); 1530 1531 // Truncate (with sign-extension) the offset value to the pointer size. 1532 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1533 if (BitWidth < 64) 1534 Offset = SignExtend64(Offset, BitWidth); 1535 1536 unsigned Opc; 1537 if (GV->isThreadLocal()) 1538 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1539 else 1540 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1541 1542 FoldingSetNodeID ID; 1543 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1544 ID.AddPointer(GV); 1545 ID.AddInteger(Offset); 1546 ID.AddInteger(TargetFlags); 1547 void *IP = nullptr; 1548 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1549 return SDValue(E, 0); 1550 1551 auto *N = newSDNode<GlobalAddressSDNode>( 1552 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1553 CSEMap.InsertNode(N, IP); 1554 InsertNode(N); 1555 return SDValue(N, 0); 1556 } 1557 1558 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1559 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1560 FoldingSetNodeID ID; 1561 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1562 ID.AddInteger(FI); 1563 void *IP = nullptr; 1564 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1565 return SDValue(E, 0); 1566 1567 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1568 CSEMap.InsertNode(N, IP); 1569 InsertNode(N); 1570 return SDValue(N, 0); 1571 } 1572 1573 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1574 unsigned TargetFlags) { 1575 assert((TargetFlags == 0 || isTarget) && 1576 "Cannot set target flags on target-independent jump tables"); 1577 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1578 FoldingSetNodeID ID; 1579 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1580 ID.AddInteger(JTI); 1581 ID.AddInteger(TargetFlags); 1582 void *IP = nullptr; 1583 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1584 return SDValue(E, 0); 1585 1586 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1587 CSEMap.InsertNode(N, IP); 1588 InsertNode(N); 1589 return SDValue(N, 0); 1590 } 1591 1592 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1593 MaybeAlign Alignment, int Offset, 1594 bool isTarget, unsigned TargetFlags) { 1595 assert((TargetFlags == 0 || isTarget) && 1596 "Cannot set target flags on target-independent globals"); 1597 if (!Alignment) 1598 Alignment = shouldOptForSize() 1599 ? getDataLayout().getABITypeAlign(C->getType()) 1600 : getDataLayout().getPrefTypeAlign(C->getType()); 1601 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1602 FoldingSetNodeID ID; 1603 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1604 ID.AddInteger(Alignment->value()); 1605 ID.AddInteger(Offset); 1606 ID.AddPointer(C); 1607 ID.AddInteger(TargetFlags); 1608 void *IP = nullptr; 1609 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1610 return SDValue(E, 0); 1611 1612 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1613 TargetFlags); 1614 CSEMap.InsertNode(N, IP); 1615 InsertNode(N); 1616 SDValue V = SDValue(N, 0); 1617 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1618 return V; 1619 } 1620 1621 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1622 MaybeAlign Alignment, int Offset, 1623 bool isTarget, unsigned TargetFlags) { 1624 assert((TargetFlags == 0 || isTarget) && 1625 "Cannot set target flags on target-independent globals"); 1626 if (!Alignment) 1627 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1628 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1629 FoldingSetNodeID ID; 1630 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1631 ID.AddInteger(Alignment->value()); 1632 ID.AddInteger(Offset); 1633 C->addSelectionDAGCSEId(ID); 1634 ID.AddInteger(TargetFlags); 1635 void *IP = nullptr; 1636 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1637 return SDValue(E, 0); 1638 1639 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1640 TargetFlags); 1641 CSEMap.InsertNode(N, IP); 1642 InsertNode(N); 1643 return SDValue(N, 0); 1644 } 1645 1646 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1647 unsigned TargetFlags) { 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1650 ID.AddInteger(Index); 1651 ID.AddInteger(Offset); 1652 ID.AddInteger(TargetFlags); 1653 void *IP = nullptr; 1654 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1655 return SDValue(E, 0); 1656 1657 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1658 CSEMap.InsertNode(N, IP); 1659 InsertNode(N); 1660 return SDValue(N, 0); 1661 } 1662 1663 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1664 FoldingSetNodeID ID; 1665 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1666 ID.AddPointer(MBB); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1672 CSEMap.InsertNode(N, IP); 1673 InsertNode(N); 1674 return SDValue(N, 0); 1675 } 1676 1677 SDValue SelectionDAG::getValueType(EVT VT) { 1678 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1679 ValueTypeNodes.size()) 1680 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1681 1682 SDNode *&N = VT.isExtended() ? 1683 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1684 1685 if (N) return SDValue(N, 0); 1686 N = newSDNode<VTSDNode>(VT); 1687 InsertNode(N); 1688 return SDValue(N, 0); 1689 } 1690 1691 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1692 SDNode *&N = ExternalSymbols[Sym]; 1693 if (N) return SDValue(N, 0); 1694 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1695 InsertNode(N); 1696 return SDValue(N, 0); 1697 } 1698 1699 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1700 SDNode *&N = MCSymbols[Sym]; 1701 if (N) 1702 return SDValue(N, 0); 1703 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1704 InsertNode(N); 1705 return SDValue(N, 0); 1706 } 1707 1708 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1709 unsigned TargetFlags) { 1710 SDNode *&N = 1711 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1712 if (N) return SDValue(N, 0); 1713 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1714 InsertNode(N); 1715 return SDValue(N, 0); 1716 } 1717 1718 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1719 if ((unsigned)Cond >= CondCodeNodes.size()) 1720 CondCodeNodes.resize(Cond+1); 1721 1722 if (!CondCodeNodes[Cond]) { 1723 auto *N = newSDNode<CondCodeSDNode>(Cond); 1724 CondCodeNodes[Cond] = N; 1725 InsertNode(N); 1726 } 1727 1728 return SDValue(CondCodeNodes[Cond], 0); 1729 } 1730 1731 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1732 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1733 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1734 std::swap(N1, N2); 1735 ShuffleVectorSDNode::commuteMask(M); 1736 } 1737 1738 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1739 SDValue N2, ArrayRef<int> Mask) { 1740 assert(VT.getVectorNumElements() == Mask.size() && 1741 "Must have the same number of vector elements as mask elements!"); 1742 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1743 "Invalid VECTOR_SHUFFLE"); 1744 1745 // Canonicalize shuffle undef, undef -> undef 1746 if (N1.isUndef() && N2.isUndef()) 1747 return getUNDEF(VT); 1748 1749 // Validate that all indices in Mask are within the range of the elements 1750 // input to the shuffle. 1751 int NElts = Mask.size(); 1752 assert(llvm::all_of(Mask, 1753 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1754 "Index out of range"); 1755 1756 // Copy the mask so we can do any needed cleanup. 1757 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1758 1759 // Canonicalize shuffle v, v -> v, undef 1760 if (N1 == N2) { 1761 N2 = getUNDEF(VT); 1762 for (int i = 0; i != NElts; ++i) 1763 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1764 } 1765 1766 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1767 if (N1.isUndef()) 1768 commuteShuffle(N1, N2, MaskVec); 1769 1770 if (TLI->hasVectorBlend()) { 1771 // If shuffling a splat, try to blend the splat instead. We do this here so 1772 // that even when this arises during lowering we don't have to re-handle it. 1773 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1774 BitVector UndefElements; 1775 SDValue Splat = BV->getSplatValue(&UndefElements); 1776 if (!Splat) 1777 return; 1778 1779 for (int i = 0; i < NElts; ++i) { 1780 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1781 continue; 1782 1783 // If this input comes from undef, mark it as such. 1784 if (UndefElements[MaskVec[i] - Offset]) { 1785 MaskVec[i] = -1; 1786 continue; 1787 } 1788 1789 // If we can blend a non-undef lane, use that instead. 1790 if (!UndefElements[i]) 1791 MaskVec[i] = i + Offset; 1792 } 1793 }; 1794 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1795 BlendSplat(N1BV, 0); 1796 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1797 BlendSplat(N2BV, NElts); 1798 } 1799 1800 // Canonicalize all index into lhs, -> shuffle lhs, undef 1801 // Canonicalize all index into rhs, -> shuffle rhs, undef 1802 bool AllLHS = true, AllRHS = true; 1803 bool N2Undef = N2.isUndef(); 1804 for (int i = 0; i != NElts; ++i) { 1805 if (MaskVec[i] >= NElts) { 1806 if (N2Undef) 1807 MaskVec[i] = -1; 1808 else 1809 AllLHS = false; 1810 } else if (MaskVec[i] >= 0) { 1811 AllRHS = false; 1812 } 1813 } 1814 if (AllLHS && AllRHS) 1815 return getUNDEF(VT); 1816 if (AllLHS && !N2Undef) 1817 N2 = getUNDEF(VT); 1818 if (AllRHS) { 1819 N1 = getUNDEF(VT); 1820 commuteShuffle(N1, N2, MaskVec); 1821 } 1822 // Reset our undef status after accounting for the mask. 1823 N2Undef = N2.isUndef(); 1824 // Re-check whether both sides ended up undef. 1825 if (N1.isUndef() && N2Undef) 1826 return getUNDEF(VT); 1827 1828 // If Identity shuffle return that node. 1829 bool Identity = true, AllSame = true; 1830 for (int i = 0; i != NElts; ++i) { 1831 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1832 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1833 } 1834 if (Identity && NElts) 1835 return N1; 1836 1837 // Shuffling a constant splat doesn't change the result. 1838 if (N2Undef) { 1839 SDValue V = N1; 1840 1841 // Look through any bitcasts. We check that these don't change the number 1842 // (and size) of elements and just changes their types. 1843 while (V.getOpcode() == ISD::BITCAST) 1844 V = V->getOperand(0); 1845 1846 // A splat should always show up as a build vector node. 1847 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1848 BitVector UndefElements; 1849 SDValue Splat = BV->getSplatValue(&UndefElements); 1850 // If this is a splat of an undef, shuffling it is also undef. 1851 if (Splat && Splat.isUndef()) 1852 return getUNDEF(VT); 1853 1854 bool SameNumElts = 1855 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1856 1857 // We only have a splat which can skip shuffles if there is a splatted 1858 // value and no undef lanes rearranged by the shuffle. 1859 if (Splat && UndefElements.none()) { 1860 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1861 // number of elements match or the value splatted is a zero constant. 1862 if (SameNumElts) 1863 return N1; 1864 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1865 if (C->isNullValue()) 1866 return N1; 1867 } 1868 1869 // If the shuffle itself creates a splat, build the vector directly. 1870 if (AllSame && SameNumElts) { 1871 EVT BuildVT = BV->getValueType(0); 1872 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1873 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1874 1875 // We may have jumped through bitcasts, so the type of the 1876 // BUILD_VECTOR may not match the type of the shuffle. 1877 if (BuildVT != VT) 1878 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1879 return NewBV; 1880 } 1881 } 1882 } 1883 1884 FoldingSetNodeID ID; 1885 SDValue Ops[2] = { N1, N2 }; 1886 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1887 for (int i = 0; i != NElts; ++i) 1888 ID.AddInteger(MaskVec[i]); 1889 1890 void* IP = nullptr; 1891 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1892 return SDValue(E, 0); 1893 1894 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1895 // SDNode doesn't have access to it. This memory will be "leaked" when 1896 // the node is deallocated, but recovered when the NodeAllocator is released. 1897 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1898 llvm::copy(MaskVec, MaskAlloc); 1899 1900 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1901 dl.getDebugLoc(), MaskAlloc); 1902 createOperands(N, Ops); 1903 1904 CSEMap.InsertNode(N, IP); 1905 InsertNode(N); 1906 SDValue V = SDValue(N, 0); 1907 NewSDValueDbgMsg(V, "Creating new node: ", this); 1908 return V; 1909 } 1910 1911 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1912 EVT VT = SV.getValueType(0); 1913 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1914 ShuffleVectorSDNode::commuteMask(MaskVec); 1915 1916 SDValue Op0 = SV.getOperand(0); 1917 SDValue Op1 = SV.getOperand(1); 1918 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1919 } 1920 1921 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1922 FoldingSetNodeID ID; 1923 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1924 ID.AddInteger(RegNo); 1925 void *IP = nullptr; 1926 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1927 return SDValue(E, 0); 1928 1929 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1930 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1931 CSEMap.InsertNode(N, IP); 1932 InsertNode(N); 1933 return SDValue(N, 0); 1934 } 1935 1936 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1937 FoldingSetNodeID ID; 1938 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1939 ID.AddPointer(RegMask); 1940 void *IP = nullptr; 1941 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1942 return SDValue(E, 0); 1943 1944 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1945 CSEMap.InsertNode(N, IP); 1946 InsertNode(N); 1947 return SDValue(N, 0); 1948 } 1949 1950 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1951 MCSymbol *Label) { 1952 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1953 } 1954 1955 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1956 SDValue Root, MCSymbol *Label) { 1957 FoldingSetNodeID ID; 1958 SDValue Ops[] = { Root }; 1959 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1960 ID.AddPointer(Label); 1961 void *IP = nullptr; 1962 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1963 return SDValue(E, 0); 1964 1965 auto *N = 1966 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1967 createOperands(N, Ops); 1968 1969 CSEMap.InsertNode(N, IP); 1970 InsertNode(N); 1971 return SDValue(N, 0); 1972 } 1973 1974 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1975 int64_t Offset, bool isTarget, 1976 unsigned TargetFlags) { 1977 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1978 1979 FoldingSetNodeID ID; 1980 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1981 ID.AddPointer(BA); 1982 ID.AddInteger(Offset); 1983 ID.AddInteger(TargetFlags); 1984 void *IP = nullptr; 1985 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1986 return SDValue(E, 0); 1987 1988 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1989 CSEMap.InsertNode(N, IP); 1990 InsertNode(N); 1991 return SDValue(N, 0); 1992 } 1993 1994 SDValue SelectionDAG::getSrcValue(const Value *V) { 1995 FoldingSetNodeID ID; 1996 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1997 ID.AddPointer(V); 1998 1999 void *IP = nullptr; 2000 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2001 return SDValue(E, 0); 2002 2003 auto *N = newSDNode<SrcValueSDNode>(V); 2004 CSEMap.InsertNode(N, IP); 2005 InsertNode(N); 2006 return SDValue(N, 0); 2007 } 2008 2009 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2010 FoldingSetNodeID ID; 2011 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2012 ID.AddPointer(MD); 2013 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<MDNodeSDNode>(MD); 2019 CSEMap.InsertNode(N, IP); 2020 InsertNode(N); 2021 return SDValue(N, 0); 2022 } 2023 2024 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2025 if (VT == V.getValueType()) 2026 return V; 2027 2028 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2029 } 2030 2031 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2032 unsigned SrcAS, unsigned DestAS) { 2033 SDValue Ops[] = {Ptr}; 2034 FoldingSetNodeID ID; 2035 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2036 ID.AddInteger(SrcAS); 2037 ID.AddInteger(DestAS); 2038 2039 void *IP = nullptr; 2040 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2041 return SDValue(E, 0); 2042 2043 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2044 VT, SrcAS, DestAS); 2045 createOperands(N, Ops); 2046 2047 CSEMap.InsertNode(N, IP); 2048 InsertNode(N); 2049 return SDValue(N, 0); 2050 } 2051 2052 SDValue SelectionDAG::getFreeze(SDValue V) { 2053 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2054 } 2055 2056 /// getShiftAmountOperand - Return the specified value casted to 2057 /// the target's desired shift amount type. 2058 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2059 EVT OpTy = Op.getValueType(); 2060 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2061 if (OpTy == ShTy || OpTy.isVector()) return Op; 2062 2063 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2064 } 2065 2066 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2067 SDLoc dl(Node); 2068 const TargetLowering &TLI = getTargetLoweringInfo(); 2069 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2070 EVT VT = Node->getValueType(0); 2071 SDValue Tmp1 = Node->getOperand(0); 2072 SDValue Tmp2 = Node->getOperand(1); 2073 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2074 2075 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2076 Tmp2, MachinePointerInfo(V)); 2077 SDValue VAList = VAListLoad; 2078 2079 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2080 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2081 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2082 2083 VAList = 2084 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2085 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2086 } 2087 2088 // Increment the pointer, VAList, to the next vaarg 2089 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2090 getConstant(getDataLayout().getTypeAllocSize( 2091 VT.getTypeForEVT(*getContext())), 2092 dl, VAList.getValueType())); 2093 // Store the incremented VAList to the legalized pointer 2094 Tmp1 = 2095 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2096 // Load the actual argument out of the pointer VAList 2097 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2098 } 2099 2100 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2101 SDLoc dl(Node); 2102 const TargetLowering &TLI = getTargetLoweringInfo(); 2103 // This defaults to loading a pointer from the input and storing it to the 2104 // output, returning the chain. 2105 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2106 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2107 SDValue Tmp1 = 2108 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2109 Node->getOperand(2), MachinePointerInfo(VS)); 2110 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2111 MachinePointerInfo(VD)); 2112 } 2113 2114 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2115 const DataLayout &DL = getDataLayout(); 2116 Type *Ty = VT.getTypeForEVT(*getContext()); 2117 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2118 2119 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2120 return RedAlign; 2121 2122 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2123 const Align StackAlign = TFI->getStackAlign(); 2124 2125 // See if we can choose a smaller ABI alignment in cases where it's an 2126 // illegal vector type that will get broken down. 2127 if (RedAlign > StackAlign) { 2128 EVT IntermediateVT; 2129 MVT RegisterVT; 2130 unsigned NumIntermediates; 2131 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2132 NumIntermediates, RegisterVT); 2133 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2134 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2135 if (RedAlign2 < RedAlign) 2136 RedAlign = RedAlign2; 2137 } 2138 2139 return RedAlign; 2140 } 2141 2142 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2143 MachineFrameInfo &MFI = MF->getFrameInfo(); 2144 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2145 int StackID = 0; 2146 if (Bytes.isScalable()) 2147 StackID = TFI->getStackIDForScalableVectors(); 2148 // The stack id gives an indication of whether the object is scalable or 2149 // not, so it's safe to pass in the minimum size here. 2150 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2151 false, nullptr, StackID); 2152 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2153 } 2154 2155 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2156 Type *Ty = VT.getTypeForEVT(*getContext()); 2157 Align StackAlign = 2158 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2159 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2160 } 2161 2162 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2163 TypeSize VT1Size = VT1.getStoreSize(); 2164 TypeSize VT2Size = VT2.getStoreSize(); 2165 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2166 "Don't know how to choose the maximum size when creating a stack " 2167 "temporary"); 2168 TypeSize Bytes = 2169 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2170 2171 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2172 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2173 const DataLayout &DL = getDataLayout(); 2174 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2175 return CreateStackTemporary(Bytes, Align); 2176 } 2177 2178 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2179 ISD::CondCode Cond, const SDLoc &dl) { 2180 EVT OpVT = N1.getValueType(); 2181 2182 // These setcc operations always fold. 2183 switch (Cond) { 2184 default: break; 2185 case ISD::SETFALSE: 2186 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2187 case ISD::SETTRUE: 2188 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2189 2190 case ISD::SETOEQ: 2191 case ISD::SETOGT: 2192 case ISD::SETOGE: 2193 case ISD::SETOLT: 2194 case ISD::SETOLE: 2195 case ISD::SETONE: 2196 case ISD::SETO: 2197 case ISD::SETUO: 2198 case ISD::SETUEQ: 2199 case ISD::SETUNE: 2200 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2201 break; 2202 } 2203 2204 if (OpVT.isInteger()) { 2205 // For EQ and NE, we can always pick a value for the undef to make the 2206 // predicate pass or fail, so we can return undef. 2207 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2208 // icmp eq/ne X, undef -> undef. 2209 if ((N1.isUndef() || N2.isUndef()) && 2210 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2211 return getUNDEF(VT); 2212 2213 // If both operands are undef, we can return undef for int comparison. 2214 // icmp undef, undef -> undef. 2215 if (N1.isUndef() && N2.isUndef()) 2216 return getUNDEF(VT); 2217 2218 // icmp X, X -> true/false 2219 // icmp X, undef -> true/false because undef could be X. 2220 if (N1 == N2) 2221 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2222 } 2223 2224 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2225 const APInt &C2 = N2C->getAPIntValue(); 2226 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2227 const APInt &C1 = N1C->getAPIntValue(); 2228 2229 switch (Cond) { 2230 default: llvm_unreachable("Unknown integer setcc!"); 2231 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2232 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2233 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2234 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2235 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2236 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2237 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2238 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2239 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2240 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2241 } 2242 } 2243 } 2244 2245 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2246 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2247 2248 if (N1CFP && N2CFP) { 2249 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2250 switch (Cond) { 2251 default: break; 2252 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2253 return getUNDEF(VT); 2254 LLVM_FALLTHROUGH; 2255 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2256 OpVT); 2257 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2258 return getUNDEF(VT); 2259 LLVM_FALLTHROUGH; 2260 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2261 R==APFloat::cmpLessThan, dl, VT, 2262 OpVT); 2263 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2264 return getUNDEF(VT); 2265 LLVM_FALLTHROUGH; 2266 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2267 OpVT); 2268 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2269 return getUNDEF(VT); 2270 LLVM_FALLTHROUGH; 2271 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2272 VT, OpVT); 2273 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2274 return getUNDEF(VT); 2275 LLVM_FALLTHROUGH; 2276 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2277 R==APFloat::cmpEqual, dl, VT, 2278 OpVT); 2279 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2280 return getUNDEF(VT); 2281 LLVM_FALLTHROUGH; 2282 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2283 R==APFloat::cmpEqual, dl, VT, OpVT); 2284 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2285 OpVT); 2286 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2287 OpVT); 2288 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2289 R==APFloat::cmpEqual, dl, VT, 2290 OpVT); 2291 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2292 OpVT); 2293 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2294 R==APFloat::cmpLessThan, dl, VT, 2295 OpVT); 2296 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2297 R==APFloat::cmpUnordered, dl, VT, 2298 OpVT); 2299 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2300 VT, OpVT); 2301 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2302 OpVT); 2303 } 2304 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2305 // Ensure that the constant occurs on the RHS. 2306 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2307 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2308 return SDValue(); 2309 return getSetCC(dl, VT, N2, N1, SwappedCond); 2310 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2311 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2312 // If an operand is known to be a nan (or undef that could be a nan), we can 2313 // fold it. 2314 // Choosing NaN for the undef will always make unordered comparison succeed 2315 // and ordered comparison fails. 2316 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2317 switch (ISD::getUnorderedFlavor(Cond)) { 2318 default: 2319 llvm_unreachable("Unknown flavor!"); 2320 case 0: // Known false. 2321 return getBoolConstant(false, dl, VT, OpVT); 2322 case 1: // Known true. 2323 return getBoolConstant(true, dl, VT, OpVT); 2324 case 2: // Undefined. 2325 return getUNDEF(VT); 2326 } 2327 } 2328 2329 // Could not fold it. 2330 return SDValue(); 2331 } 2332 2333 /// See if the specified operand can be simplified with the knowledge that only 2334 /// the bits specified by DemandedBits are used. 2335 /// TODO: really we should be making this into the DAG equivalent of 2336 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2337 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2338 EVT VT = V.getValueType(); 2339 2340 if (VT.isScalableVector()) 2341 return SDValue(); 2342 2343 APInt DemandedElts = VT.isVector() 2344 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2345 : APInt(1, 1); 2346 return GetDemandedBits(V, DemandedBits, DemandedElts); 2347 } 2348 2349 /// See if the specified operand can be simplified with the knowledge that only 2350 /// the bits specified by DemandedBits are used in the elements specified by 2351 /// DemandedElts. 2352 /// TODO: really we should be making this into the DAG equivalent of 2353 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2354 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2355 const APInt &DemandedElts) { 2356 switch (V.getOpcode()) { 2357 default: 2358 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2359 *this, 0); 2360 case ISD::Constant: { 2361 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2362 APInt NewVal = CVal & DemandedBits; 2363 if (NewVal != CVal) 2364 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2365 break; 2366 } 2367 case ISD::SRL: 2368 // Only look at single-use SRLs. 2369 if (!V.getNode()->hasOneUse()) 2370 break; 2371 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2372 // See if we can recursively simplify the LHS. 2373 unsigned Amt = RHSC->getZExtValue(); 2374 2375 // Watch out for shift count overflow though. 2376 if (Amt >= DemandedBits.getBitWidth()) 2377 break; 2378 APInt SrcDemandedBits = DemandedBits << Amt; 2379 if (SDValue SimplifyLHS = 2380 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2381 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2382 V.getOperand(1)); 2383 } 2384 break; 2385 } 2386 return SDValue(); 2387 } 2388 2389 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2390 /// use this predicate to simplify operations downstream. 2391 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2392 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2393 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2394 } 2395 2396 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2397 /// this predicate to simplify operations downstream. Mask is known to be zero 2398 /// for bits that V cannot have. 2399 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2400 unsigned Depth) const { 2401 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2402 } 2403 2404 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2405 /// DemandedElts. We use this predicate to simplify operations downstream. 2406 /// Mask is known to be zero for bits that V cannot have. 2407 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2408 const APInt &DemandedElts, 2409 unsigned Depth) const { 2410 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2411 } 2412 2413 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2414 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2415 unsigned Depth) const { 2416 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2417 } 2418 2419 /// isSplatValue - Return true if the vector V has the same value 2420 /// across all DemandedElts. For scalable vectors it does not make 2421 /// sense to specify which elements are demanded or undefined, therefore 2422 /// they are simply ignored. 2423 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2424 APInt &UndefElts, unsigned Depth) { 2425 EVT VT = V.getValueType(); 2426 assert(VT.isVector() && "Vector type expected"); 2427 2428 if (!VT.isScalableVector() && !DemandedElts) 2429 return false; // No demanded elts, better to assume we don't know anything. 2430 2431 if (Depth >= MaxRecursionDepth) 2432 return false; // Limit search depth. 2433 2434 // Deal with some common cases here that work for both fixed and scalable 2435 // vector types. 2436 switch (V.getOpcode()) { 2437 case ISD::SPLAT_VECTOR: 2438 UndefElts = V.getOperand(0).isUndef() 2439 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2440 : APInt(DemandedElts.getBitWidth(), 0); 2441 return true; 2442 case ISD::ADD: 2443 case ISD::SUB: 2444 case ISD::AND: 2445 case ISD::XOR: 2446 case ISD::OR: { 2447 APInt UndefLHS, UndefRHS; 2448 SDValue LHS = V.getOperand(0); 2449 SDValue RHS = V.getOperand(1); 2450 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2451 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2452 UndefElts = UndefLHS | UndefRHS; 2453 return true; 2454 } 2455 break; 2456 } 2457 case ISD::TRUNCATE: 2458 case ISD::SIGN_EXTEND: 2459 case ISD::ZERO_EXTEND: 2460 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2461 } 2462 2463 // We don't support other cases than those above for scalable vectors at 2464 // the moment. 2465 if (VT.isScalableVector()) 2466 return false; 2467 2468 unsigned NumElts = VT.getVectorNumElements(); 2469 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2470 UndefElts = APInt::getNullValue(NumElts); 2471 2472 switch (V.getOpcode()) { 2473 case ISD::BUILD_VECTOR: { 2474 SDValue Scl; 2475 for (unsigned i = 0; i != NumElts; ++i) { 2476 SDValue Op = V.getOperand(i); 2477 if (Op.isUndef()) { 2478 UndefElts.setBit(i); 2479 continue; 2480 } 2481 if (!DemandedElts[i]) 2482 continue; 2483 if (Scl && Scl != Op) 2484 return false; 2485 Scl = Op; 2486 } 2487 return true; 2488 } 2489 case ISD::VECTOR_SHUFFLE: { 2490 // Check if this is a shuffle node doing a splat. 2491 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2492 int SplatIndex = -1; 2493 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2494 for (int i = 0; i != (int)NumElts; ++i) { 2495 int M = Mask[i]; 2496 if (M < 0) { 2497 UndefElts.setBit(i); 2498 continue; 2499 } 2500 if (!DemandedElts[i]) 2501 continue; 2502 if (0 <= SplatIndex && SplatIndex != M) 2503 return false; 2504 SplatIndex = M; 2505 } 2506 return true; 2507 } 2508 case ISD::EXTRACT_SUBVECTOR: { 2509 // Offset the demanded elts by the subvector index. 2510 SDValue Src = V.getOperand(0); 2511 uint64_t Idx = V.getConstantOperandVal(1); 2512 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2513 APInt UndefSrcElts; 2514 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2515 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2516 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2517 return true; 2518 } 2519 break; 2520 } 2521 } 2522 2523 return false; 2524 } 2525 2526 /// Helper wrapper to main isSplatValue function. 2527 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2528 EVT VT = V.getValueType(); 2529 assert(VT.isVector() && "Vector type expected"); 2530 2531 APInt UndefElts; 2532 APInt DemandedElts; 2533 2534 // For now we don't support this with scalable vectors. 2535 if (!VT.isScalableVector()) 2536 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2537 return isSplatValue(V, DemandedElts, UndefElts) && 2538 (AllowUndefs || !UndefElts); 2539 } 2540 2541 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2542 V = peekThroughExtractSubvectors(V); 2543 2544 EVT VT = V.getValueType(); 2545 unsigned Opcode = V.getOpcode(); 2546 switch (Opcode) { 2547 default: { 2548 APInt UndefElts; 2549 APInt DemandedElts; 2550 2551 if (!VT.isScalableVector()) 2552 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2553 2554 if (isSplatValue(V, DemandedElts, UndefElts)) { 2555 if (VT.isScalableVector()) { 2556 // DemandedElts and UndefElts are ignored for scalable vectors, since 2557 // the only supported cases are SPLAT_VECTOR nodes. 2558 SplatIdx = 0; 2559 } else { 2560 // Handle case where all demanded elements are UNDEF. 2561 if (DemandedElts.isSubsetOf(UndefElts)) { 2562 SplatIdx = 0; 2563 return getUNDEF(VT); 2564 } 2565 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2566 } 2567 return V; 2568 } 2569 break; 2570 } 2571 case ISD::SPLAT_VECTOR: 2572 SplatIdx = 0; 2573 return V; 2574 case ISD::VECTOR_SHUFFLE: { 2575 if (VT.isScalableVector()) 2576 return SDValue(); 2577 2578 // Check if this is a shuffle node doing a splat. 2579 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2580 // getTargetVShiftNode currently struggles without the splat source. 2581 auto *SVN = cast<ShuffleVectorSDNode>(V); 2582 if (!SVN->isSplat()) 2583 break; 2584 int Idx = SVN->getSplatIndex(); 2585 int NumElts = V.getValueType().getVectorNumElements(); 2586 SplatIdx = Idx % NumElts; 2587 return V.getOperand(Idx / NumElts); 2588 } 2589 } 2590 2591 return SDValue(); 2592 } 2593 2594 SDValue SelectionDAG::getSplatValue(SDValue V) { 2595 int SplatIdx; 2596 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2597 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2598 SrcVector.getValueType().getScalarType(), SrcVector, 2599 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2600 return SDValue(); 2601 } 2602 2603 const APInt * 2604 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2605 const APInt &DemandedElts) const { 2606 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2607 V.getOpcode() == ISD::SRA) && 2608 "Unknown shift node"); 2609 unsigned BitWidth = V.getScalarValueSizeInBits(); 2610 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2611 // Shifting more than the bitwidth is not valid. 2612 const APInt &ShAmt = SA->getAPIntValue(); 2613 if (ShAmt.ult(BitWidth)) 2614 return &ShAmt; 2615 } 2616 return nullptr; 2617 } 2618 2619 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2620 SDValue V, const APInt &DemandedElts) const { 2621 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2622 V.getOpcode() == ISD::SRA) && 2623 "Unknown shift node"); 2624 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2625 return ValidAmt; 2626 unsigned BitWidth = V.getScalarValueSizeInBits(); 2627 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2628 if (!BV) 2629 return nullptr; 2630 const APInt *MinShAmt = nullptr; 2631 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2632 if (!DemandedElts[i]) 2633 continue; 2634 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2635 if (!SA) 2636 return nullptr; 2637 // Shifting more than the bitwidth is not valid. 2638 const APInt &ShAmt = SA->getAPIntValue(); 2639 if (ShAmt.uge(BitWidth)) 2640 return nullptr; 2641 if (MinShAmt && MinShAmt->ule(ShAmt)) 2642 continue; 2643 MinShAmt = &ShAmt; 2644 } 2645 return MinShAmt; 2646 } 2647 2648 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2649 SDValue V, const APInt &DemandedElts) const { 2650 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2651 V.getOpcode() == ISD::SRA) && 2652 "Unknown shift node"); 2653 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2654 return ValidAmt; 2655 unsigned BitWidth = V.getScalarValueSizeInBits(); 2656 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2657 if (!BV) 2658 return nullptr; 2659 const APInt *MaxShAmt = nullptr; 2660 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2661 if (!DemandedElts[i]) 2662 continue; 2663 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2664 if (!SA) 2665 return nullptr; 2666 // Shifting more than the bitwidth is not valid. 2667 const APInt &ShAmt = SA->getAPIntValue(); 2668 if (ShAmt.uge(BitWidth)) 2669 return nullptr; 2670 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2671 continue; 2672 MaxShAmt = &ShAmt; 2673 } 2674 return MaxShAmt; 2675 } 2676 2677 /// Determine which bits of Op are known to be either zero or one and return 2678 /// them in Known. For vectors, the known bits are those that are shared by 2679 /// every vector element. 2680 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2681 EVT VT = Op.getValueType(); 2682 2683 // TOOD: Until we have a plan for how to represent demanded elements for 2684 // scalable vectors, we can just bail out for now. 2685 if (Op.getValueType().isScalableVector()) { 2686 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2687 return KnownBits(BitWidth); 2688 } 2689 2690 APInt DemandedElts = VT.isVector() 2691 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2692 : APInt(1, 1); 2693 return computeKnownBits(Op, DemandedElts, Depth); 2694 } 2695 2696 /// Determine which bits of Op are known to be either zero or one and return 2697 /// them in Known. The DemandedElts argument allows us to only collect the known 2698 /// bits that are shared by the requested vector elements. 2699 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2700 unsigned Depth) const { 2701 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2702 2703 KnownBits Known(BitWidth); // Don't know anything. 2704 2705 // TOOD: Until we have a plan for how to represent demanded elements for 2706 // scalable vectors, we can just bail out for now. 2707 if (Op.getValueType().isScalableVector()) 2708 return Known; 2709 2710 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2711 // We know all of the bits for a constant! 2712 return KnownBits::makeConstant(C->getAPIntValue()); 2713 } 2714 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2715 // We know all of the bits for a constant fp! 2716 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2717 } 2718 2719 if (Depth >= MaxRecursionDepth) 2720 return Known; // Limit search depth. 2721 2722 KnownBits Known2; 2723 unsigned NumElts = DemandedElts.getBitWidth(); 2724 assert((!Op.getValueType().isVector() || 2725 NumElts == Op.getValueType().getVectorNumElements()) && 2726 "Unexpected vector size"); 2727 2728 if (!DemandedElts) 2729 return Known; // No demanded elts, better to assume we don't know anything. 2730 2731 unsigned Opcode = Op.getOpcode(); 2732 switch (Opcode) { 2733 case ISD::BUILD_VECTOR: 2734 // Collect the known bits that are shared by every demanded vector element. 2735 Known.Zero.setAllBits(); Known.One.setAllBits(); 2736 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2737 if (!DemandedElts[i]) 2738 continue; 2739 2740 SDValue SrcOp = Op.getOperand(i); 2741 Known2 = computeKnownBits(SrcOp, Depth + 1); 2742 2743 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2744 if (SrcOp.getValueSizeInBits() != BitWidth) { 2745 assert(SrcOp.getValueSizeInBits() > BitWidth && 2746 "Expected BUILD_VECTOR implicit truncation"); 2747 Known2 = Known2.trunc(BitWidth); 2748 } 2749 2750 // Known bits are the values that are shared by every demanded element. 2751 Known = KnownBits::commonBits(Known, Known2); 2752 2753 // If we don't know any bits, early out. 2754 if (Known.isUnknown()) 2755 break; 2756 } 2757 break; 2758 case ISD::VECTOR_SHUFFLE: { 2759 // Collect the known bits that are shared by every vector element referenced 2760 // by the shuffle. 2761 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2762 Known.Zero.setAllBits(); Known.One.setAllBits(); 2763 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2764 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2765 for (unsigned i = 0; i != NumElts; ++i) { 2766 if (!DemandedElts[i]) 2767 continue; 2768 2769 int M = SVN->getMaskElt(i); 2770 if (M < 0) { 2771 // For UNDEF elements, we don't know anything about the common state of 2772 // the shuffle result. 2773 Known.resetAll(); 2774 DemandedLHS.clearAllBits(); 2775 DemandedRHS.clearAllBits(); 2776 break; 2777 } 2778 2779 if ((unsigned)M < NumElts) 2780 DemandedLHS.setBit((unsigned)M % NumElts); 2781 else 2782 DemandedRHS.setBit((unsigned)M % NumElts); 2783 } 2784 // Known bits are the values that are shared by every demanded element. 2785 if (!!DemandedLHS) { 2786 SDValue LHS = Op.getOperand(0); 2787 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2788 Known = KnownBits::commonBits(Known, Known2); 2789 } 2790 // If we don't know any bits, early out. 2791 if (Known.isUnknown()) 2792 break; 2793 if (!!DemandedRHS) { 2794 SDValue RHS = Op.getOperand(1); 2795 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2796 Known = KnownBits::commonBits(Known, Known2); 2797 } 2798 break; 2799 } 2800 case ISD::CONCAT_VECTORS: { 2801 // Split DemandedElts and test each of the demanded subvectors. 2802 Known.Zero.setAllBits(); Known.One.setAllBits(); 2803 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2804 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2805 unsigned NumSubVectors = Op.getNumOperands(); 2806 for (unsigned i = 0; i != NumSubVectors; ++i) { 2807 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2808 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2809 if (!!DemandedSub) { 2810 SDValue Sub = Op.getOperand(i); 2811 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2812 Known = KnownBits::commonBits(Known, Known2); 2813 } 2814 // If we don't know any bits, early out. 2815 if (Known.isUnknown()) 2816 break; 2817 } 2818 break; 2819 } 2820 case ISD::INSERT_SUBVECTOR: { 2821 // Demand any elements from the subvector and the remainder from the src its 2822 // inserted into. 2823 SDValue Src = Op.getOperand(0); 2824 SDValue Sub = Op.getOperand(1); 2825 uint64_t Idx = Op.getConstantOperandVal(2); 2826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2827 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2828 APInt DemandedSrcElts = DemandedElts; 2829 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2830 2831 Known.One.setAllBits(); 2832 Known.Zero.setAllBits(); 2833 if (!!DemandedSubElts) { 2834 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2835 if (Known.isUnknown()) 2836 break; // early-out. 2837 } 2838 if (!!DemandedSrcElts) { 2839 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2840 Known = KnownBits::commonBits(Known, Known2); 2841 } 2842 break; 2843 } 2844 case ISD::EXTRACT_SUBVECTOR: { 2845 // Offset the demanded elts by the subvector index. 2846 SDValue Src = Op.getOperand(0); 2847 // Bail until we can represent demanded elements for scalable vectors. 2848 if (Src.getValueType().isScalableVector()) 2849 break; 2850 uint64_t Idx = Op.getConstantOperandVal(1); 2851 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2852 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2853 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2854 break; 2855 } 2856 case ISD::SCALAR_TO_VECTOR: { 2857 // We know about scalar_to_vector as much as we know about it source, 2858 // which becomes the first element of otherwise unknown vector. 2859 if (DemandedElts != 1) 2860 break; 2861 2862 SDValue N0 = Op.getOperand(0); 2863 Known = computeKnownBits(N0, Depth + 1); 2864 if (N0.getValueSizeInBits() != BitWidth) 2865 Known = Known.trunc(BitWidth); 2866 2867 break; 2868 } 2869 case ISD::BITCAST: { 2870 SDValue N0 = Op.getOperand(0); 2871 EVT SubVT = N0.getValueType(); 2872 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2873 2874 // Ignore bitcasts from unsupported types. 2875 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2876 break; 2877 2878 // Fast handling of 'identity' bitcasts. 2879 if (BitWidth == SubBitWidth) { 2880 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2881 break; 2882 } 2883 2884 bool IsLE = getDataLayout().isLittleEndian(); 2885 2886 // Bitcast 'small element' vector to 'large element' scalar/vector. 2887 if ((BitWidth % SubBitWidth) == 0) { 2888 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2889 2890 // Collect known bits for the (larger) output by collecting the known 2891 // bits from each set of sub elements and shift these into place. 2892 // We need to separately call computeKnownBits for each set of 2893 // sub elements as the knownbits for each is likely to be different. 2894 unsigned SubScale = BitWidth / SubBitWidth; 2895 APInt SubDemandedElts(NumElts * SubScale, 0); 2896 for (unsigned i = 0; i != NumElts; ++i) 2897 if (DemandedElts[i]) 2898 SubDemandedElts.setBit(i * SubScale); 2899 2900 for (unsigned i = 0; i != SubScale; ++i) { 2901 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2902 Depth + 1); 2903 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2904 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2905 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2906 } 2907 } 2908 2909 // Bitcast 'large element' scalar/vector to 'small element' vector. 2910 if ((SubBitWidth % BitWidth) == 0) { 2911 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2912 2913 // Collect known bits for the (smaller) output by collecting the known 2914 // bits from the overlapping larger input elements and extracting the 2915 // sub sections we actually care about. 2916 unsigned SubScale = SubBitWidth / BitWidth; 2917 APInt SubDemandedElts(NumElts / SubScale, 0); 2918 for (unsigned i = 0; i != NumElts; ++i) 2919 if (DemandedElts[i]) 2920 SubDemandedElts.setBit(i / SubScale); 2921 2922 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2923 2924 Known.Zero.setAllBits(); Known.One.setAllBits(); 2925 for (unsigned i = 0; i != NumElts; ++i) 2926 if (DemandedElts[i]) { 2927 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2928 unsigned Offset = (Shifts % SubScale) * BitWidth; 2929 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2930 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2931 // If we don't know any bits, early out. 2932 if (Known.isUnknown()) 2933 break; 2934 } 2935 } 2936 break; 2937 } 2938 case ISD::AND: 2939 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2940 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2941 2942 Known &= Known2; 2943 break; 2944 case ISD::OR: 2945 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2946 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2947 2948 Known |= Known2; 2949 break; 2950 case ISD::XOR: 2951 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2952 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2953 2954 Known ^= Known2; 2955 break; 2956 case ISD::MUL: { 2957 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2958 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2959 Known = KnownBits::computeForMul(Known, Known2); 2960 break; 2961 } 2962 case ISD::UDIV: { 2963 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2964 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2965 Known = KnownBits::udiv(Known, Known2); 2966 break; 2967 } 2968 case ISD::SELECT: 2969 case ISD::VSELECT: 2970 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2971 // If we don't know any bits, early out. 2972 if (Known.isUnknown()) 2973 break; 2974 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2975 2976 // Only known if known in both the LHS and RHS. 2977 Known = KnownBits::commonBits(Known, Known2); 2978 break; 2979 case ISD::SELECT_CC: 2980 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2981 // If we don't know any bits, early out. 2982 if (Known.isUnknown()) 2983 break; 2984 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2985 2986 // Only known if known in both the LHS and RHS. 2987 Known = KnownBits::commonBits(Known, Known2); 2988 break; 2989 case ISD::SMULO: 2990 case ISD::UMULO: 2991 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2992 if (Op.getResNo() != 1) 2993 break; 2994 // The boolean result conforms to getBooleanContents. 2995 // If we know the result of a setcc has the top bits zero, use this info. 2996 // We know that we have an integer-based boolean since these operations 2997 // are only available for integer. 2998 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2999 TargetLowering::ZeroOrOneBooleanContent && 3000 BitWidth > 1) 3001 Known.Zero.setBitsFrom(1); 3002 break; 3003 case ISD::SETCC: 3004 case ISD::STRICT_FSETCC: 3005 case ISD::STRICT_FSETCCS: { 3006 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3007 // If we know the result of a setcc has the top bits zero, use this info. 3008 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3009 TargetLowering::ZeroOrOneBooleanContent && 3010 BitWidth > 1) 3011 Known.Zero.setBitsFrom(1); 3012 break; 3013 } 3014 case ISD::SHL: 3015 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3016 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3017 Known = KnownBits::shl(Known, Known2); 3018 3019 // Minimum shift low bits are known zero. 3020 if (const APInt *ShMinAmt = 3021 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3022 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3023 break; 3024 case ISD::SRL: 3025 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3026 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3027 Known = KnownBits::lshr(Known, Known2); 3028 3029 // Minimum shift high bits are known zero. 3030 if (const APInt *ShMinAmt = 3031 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3032 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3033 break; 3034 case ISD::SRA: 3035 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3036 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3037 Known = KnownBits::ashr(Known, Known2); 3038 // TODO: Add minimum shift high known sign bits. 3039 break; 3040 case ISD::FSHL: 3041 case ISD::FSHR: 3042 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3043 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3044 3045 // For fshl, 0-shift returns the 1st arg. 3046 // For fshr, 0-shift returns the 2nd arg. 3047 if (Amt == 0) { 3048 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3049 DemandedElts, Depth + 1); 3050 break; 3051 } 3052 3053 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3054 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3055 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3057 if (Opcode == ISD::FSHL) { 3058 Known.One <<= Amt; 3059 Known.Zero <<= Amt; 3060 Known2.One.lshrInPlace(BitWidth - Amt); 3061 Known2.Zero.lshrInPlace(BitWidth - Amt); 3062 } else { 3063 Known.One <<= BitWidth - Amt; 3064 Known.Zero <<= BitWidth - Amt; 3065 Known2.One.lshrInPlace(Amt); 3066 Known2.Zero.lshrInPlace(Amt); 3067 } 3068 Known.One |= Known2.One; 3069 Known.Zero |= Known2.Zero; 3070 } 3071 break; 3072 case ISD::SIGN_EXTEND_INREG: { 3073 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3074 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3075 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3076 break; 3077 } 3078 case ISD::CTTZ: 3079 case ISD::CTTZ_ZERO_UNDEF: { 3080 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 // If we have a known 1, its position is our upper bound. 3082 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3083 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3084 Known.Zero.setBitsFrom(LowBits); 3085 break; 3086 } 3087 case ISD::CTLZ: 3088 case ISD::CTLZ_ZERO_UNDEF: { 3089 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3090 // If we have a known 1, its position is our upper bound. 3091 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3092 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3093 Known.Zero.setBitsFrom(LowBits); 3094 break; 3095 } 3096 case ISD::CTPOP: { 3097 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3098 // If we know some of the bits are zero, they can't be one. 3099 unsigned PossibleOnes = Known2.countMaxPopulation(); 3100 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3101 break; 3102 } 3103 case ISD::PARITY: { 3104 // Parity returns 0 everywhere but the LSB. 3105 Known.Zero.setBitsFrom(1); 3106 break; 3107 } 3108 case ISD::LOAD: { 3109 LoadSDNode *LD = cast<LoadSDNode>(Op); 3110 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3111 if (ISD::isNON_EXTLoad(LD) && Cst) { 3112 // Determine any common known bits from the loaded constant pool value. 3113 Type *CstTy = Cst->getType(); 3114 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3115 // If its a vector splat, then we can (quickly) reuse the scalar path. 3116 // NOTE: We assume all elements match and none are UNDEF. 3117 if (CstTy->isVectorTy()) { 3118 if (const Constant *Splat = Cst->getSplatValue()) { 3119 Cst = Splat; 3120 CstTy = Cst->getType(); 3121 } 3122 } 3123 // TODO - do we need to handle different bitwidths? 3124 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3125 // Iterate across all vector elements finding common known bits. 3126 Known.One.setAllBits(); 3127 Known.Zero.setAllBits(); 3128 for (unsigned i = 0; i != NumElts; ++i) { 3129 if (!DemandedElts[i]) 3130 continue; 3131 if (Constant *Elt = Cst->getAggregateElement(i)) { 3132 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3133 const APInt &Value = CInt->getValue(); 3134 Known.One &= Value; 3135 Known.Zero &= ~Value; 3136 continue; 3137 } 3138 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3139 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3140 Known.One &= Value; 3141 Known.Zero &= ~Value; 3142 continue; 3143 } 3144 } 3145 Known.One.clearAllBits(); 3146 Known.Zero.clearAllBits(); 3147 break; 3148 } 3149 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3150 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3151 Known = KnownBits::makeConstant(CInt->getValue()); 3152 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3153 Known = 3154 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3155 } 3156 } 3157 } 3158 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3159 // If this is a ZEXTLoad and we are looking at the loaded value. 3160 EVT VT = LD->getMemoryVT(); 3161 unsigned MemBits = VT.getScalarSizeInBits(); 3162 Known.Zero.setBitsFrom(MemBits); 3163 } else if (const MDNode *Ranges = LD->getRanges()) { 3164 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3165 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3166 } 3167 break; 3168 } 3169 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3170 EVT InVT = Op.getOperand(0).getValueType(); 3171 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3172 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3173 Known = Known.zext(BitWidth); 3174 break; 3175 } 3176 case ISD::ZERO_EXTEND: { 3177 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3178 Known = Known.zext(BitWidth); 3179 break; 3180 } 3181 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3182 EVT InVT = Op.getOperand(0).getValueType(); 3183 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3184 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3185 // If the sign bit is known to be zero or one, then sext will extend 3186 // it to the top bits, else it will just zext. 3187 Known = Known.sext(BitWidth); 3188 break; 3189 } 3190 case ISD::SIGN_EXTEND: { 3191 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3192 // If the sign bit is known to be zero or one, then sext will extend 3193 // it to the top bits, else it will just zext. 3194 Known = Known.sext(BitWidth); 3195 break; 3196 } 3197 case ISD::ANY_EXTEND_VECTOR_INREG: { 3198 EVT InVT = Op.getOperand(0).getValueType(); 3199 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3200 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3201 Known = Known.anyext(BitWidth); 3202 break; 3203 } 3204 case ISD::ANY_EXTEND: { 3205 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3206 Known = Known.anyext(BitWidth); 3207 break; 3208 } 3209 case ISD::TRUNCATE: { 3210 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3211 Known = Known.trunc(BitWidth); 3212 break; 3213 } 3214 case ISD::AssertZext: { 3215 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3216 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3217 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3218 Known.Zero |= (~InMask); 3219 Known.One &= (~Known.Zero); 3220 break; 3221 } 3222 case ISD::AssertAlign: { 3223 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3224 assert(LogOfAlign != 0); 3225 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3226 // well as clearing one bits. 3227 Known.Zero.setLowBits(LogOfAlign); 3228 Known.One.clearLowBits(LogOfAlign); 3229 break; 3230 } 3231 case ISD::FGETSIGN: 3232 // All bits are zero except the low bit. 3233 Known.Zero.setBitsFrom(1); 3234 break; 3235 case ISD::USUBO: 3236 case ISD::SSUBO: 3237 if (Op.getResNo() == 1) { 3238 // If we know the result of a setcc has the top bits zero, use this info. 3239 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3240 TargetLowering::ZeroOrOneBooleanContent && 3241 BitWidth > 1) 3242 Known.Zero.setBitsFrom(1); 3243 break; 3244 } 3245 LLVM_FALLTHROUGH; 3246 case ISD::SUB: 3247 case ISD::SUBC: { 3248 assert(Op.getResNo() == 0 && 3249 "We only compute knownbits for the difference here."); 3250 3251 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3252 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3253 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3254 Known, Known2); 3255 break; 3256 } 3257 case ISD::UADDO: 3258 case ISD::SADDO: 3259 case ISD::ADDCARRY: 3260 if (Op.getResNo() == 1) { 3261 // If we know the result of a setcc has the top bits zero, use this info. 3262 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3263 TargetLowering::ZeroOrOneBooleanContent && 3264 BitWidth > 1) 3265 Known.Zero.setBitsFrom(1); 3266 break; 3267 } 3268 LLVM_FALLTHROUGH; 3269 case ISD::ADD: 3270 case ISD::ADDC: 3271 case ISD::ADDE: { 3272 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3273 3274 // With ADDE and ADDCARRY, a carry bit may be added in. 3275 KnownBits Carry(1); 3276 if (Opcode == ISD::ADDE) 3277 // Can't track carry from glue, set carry to unknown. 3278 Carry.resetAll(); 3279 else if (Opcode == ISD::ADDCARRY) 3280 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3281 // the trouble (how often will we find a known carry bit). And I haven't 3282 // tested this very much yet, but something like this might work: 3283 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3284 // Carry = Carry.zextOrTrunc(1, false); 3285 Carry.resetAll(); 3286 else 3287 Carry.setAllZero(); 3288 3289 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3290 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3291 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3292 break; 3293 } 3294 case ISD::SREM: { 3295 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3296 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3297 Known = KnownBits::srem(Known, Known2); 3298 break; 3299 } 3300 case ISD::UREM: { 3301 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3302 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3303 Known = KnownBits::urem(Known, Known2); 3304 break; 3305 } 3306 case ISD::EXTRACT_ELEMENT: { 3307 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3308 const unsigned Index = Op.getConstantOperandVal(1); 3309 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3310 3311 // Remove low part of known bits mask 3312 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3313 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3314 3315 // Remove high part of known bit mask 3316 Known = Known.trunc(EltBitWidth); 3317 break; 3318 } 3319 case ISD::EXTRACT_VECTOR_ELT: { 3320 SDValue InVec = Op.getOperand(0); 3321 SDValue EltNo = Op.getOperand(1); 3322 EVT VecVT = InVec.getValueType(); 3323 // computeKnownBits not yet implemented for scalable vectors. 3324 if (VecVT.isScalableVector()) 3325 break; 3326 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3327 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3328 3329 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3330 // anything about the extended bits. 3331 if (BitWidth > EltBitWidth) 3332 Known = Known.trunc(EltBitWidth); 3333 3334 // If we know the element index, just demand that vector element, else for 3335 // an unknown element index, ignore DemandedElts and demand them all. 3336 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3337 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3338 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3339 DemandedSrcElts = 3340 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3341 3342 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3343 if (BitWidth > EltBitWidth) 3344 Known = Known.anyext(BitWidth); 3345 break; 3346 } 3347 case ISD::INSERT_VECTOR_ELT: { 3348 // If we know the element index, split the demand between the 3349 // source vector and the inserted element, otherwise assume we need 3350 // the original demanded vector elements and the value. 3351 SDValue InVec = Op.getOperand(0); 3352 SDValue InVal = Op.getOperand(1); 3353 SDValue EltNo = Op.getOperand(2); 3354 bool DemandedVal = true; 3355 APInt DemandedVecElts = DemandedElts; 3356 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3357 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3358 unsigned EltIdx = CEltNo->getZExtValue(); 3359 DemandedVal = !!DemandedElts[EltIdx]; 3360 DemandedVecElts.clearBit(EltIdx); 3361 } 3362 Known.One.setAllBits(); 3363 Known.Zero.setAllBits(); 3364 if (DemandedVal) { 3365 Known2 = computeKnownBits(InVal, Depth + 1); 3366 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3367 } 3368 if (!!DemandedVecElts) { 3369 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3370 Known = KnownBits::commonBits(Known, Known2); 3371 } 3372 break; 3373 } 3374 case ISD::BITREVERSE: { 3375 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3376 Known = Known2.reverseBits(); 3377 break; 3378 } 3379 case ISD::BSWAP: { 3380 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3381 Known = Known2.byteSwap(); 3382 break; 3383 } 3384 case ISD::ABS: { 3385 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3386 Known = Known2.abs(); 3387 break; 3388 } 3389 case ISD::USUBSAT: { 3390 // The result of usubsat will never be larger than the LHS. 3391 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3392 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3393 break; 3394 } 3395 case ISD::UMIN: { 3396 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3397 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3398 Known = KnownBits::umin(Known, Known2); 3399 break; 3400 } 3401 case ISD::UMAX: { 3402 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3403 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3404 Known = KnownBits::umax(Known, Known2); 3405 break; 3406 } 3407 case ISD::SMIN: 3408 case ISD::SMAX: { 3409 // If we have a clamp pattern, we know that the number of sign bits will be 3410 // the minimum of the clamp min/max range. 3411 bool IsMax = (Opcode == ISD::SMAX); 3412 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3413 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3414 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3415 CstHigh = 3416 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3417 if (CstLow && CstHigh) { 3418 if (!IsMax) 3419 std::swap(CstLow, CstHigh); 3420 3421 const APInt &ValueLow = CstLow->getAPIntValue(); 3422 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3423 if (ValueLow.sle(ValueHigh)) { 3424 unsigned LowSignBits = ValueLow.getNumSignBits(); 3425 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3426 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3427 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3428 Known.One.setHighBits(MinSignBits); 3429 break; 3430 } 3431 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3432 Known.Zero.setHighBits(MinSignBits); 3433 break; 3434 } 3435 } 3436 } 3437 3438 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3439 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3440 if (IsMax) 3441 Known = KnownBits::smax(Known, Known2); 3442 else 3443 Known = KnownBits::smin(Known, Known2); 3444 break; 3445 } 3446 case ISD::FrameIndex: 3447 case ISD::TargetFrameIndex: 3448 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3449 Known, getMachineFunction()); 3450 break; 3451 3452 default: 3453 if (Opcode < ISD::BUILTIN_OP_END) 3454 break; 3455 LLVM_FALLTHROUGH; 3456 case ISD::INTRINSIC_WO_CHAIN: 3457 case ISD::INTRINSIC_W_CHAIN: 3458 case ISD::INTRINSIC_VOID: 3459 // Allow the target to implement this method for its nodes. 3460 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3461 break; 3462 } 3463 3464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3465 return Known; 3466 } 3467 3468 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3469 SDValue N1) const { 3470 // X + 0 never overflow 3471 if (isNullConstant(N1)) 3472 return OFK_Never; 3473 3474 KnownBits N1Known = computeKnownBits(N1); 3475 if (N1Known.Zero.getBoolValue()) { 3476 KnownBits N0Known = computeKnownBits(N0); 3477 3478 bool overflow; 3479 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3480 if (!overflow) 3481 return OFK_Never; 3482 } 3483 3484 // mulhi + 1 never overflow 3485 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3486 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3487 return OFK_Never; 3488 3489 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3490 KnownBits N0Known = computeKnownBits(N0); 3491 3492 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3493 return OFK_Never; 3494 } 3495 3496 return OFK_Sometime; 3497 } 3498 3499 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3500 EVT OpVT = Val.getValueType(); 3501 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3502 3503 // Is the constant a known power of 2? 3504 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3505 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3506 3507 // A left-shift of a constant one will have exactly one bit set because 3508 // shifting the bit off the end is undefined. 3509 if (Val.getOpcode() == ISD::SHL) { 3510 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3511 if (C && C->getAPIntValue() == 1) 3512 return true; 3513 } 3514 3515 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3516 // one bit set. 3517 if (Val.getOpcode() == ISD::SRL) { 3518 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3519 if (C && C->getAPIntValue().isSignMask()) 3520 return true; 3521 } 3522 3523 // Are all operands of a build vector constant powers of two? 3524 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3525 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3526 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3527 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3528 return false; 3529 })) 3530 return true; 3531 3532 // More could be done here, though the above checks are enough 3533 // to handle some common cases. 3534 3535 // Fall back to computeKnownBits to catch other known cases. 3536 KnownBits Known = computeKnownBits(Val); 3537 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3538 } 3539 3540 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3541 EVT VT = Op.getValueType(); 3542 3543 // TODO: Assume we don't know anything for now. 3544 if (VT.isScalableVector()) 3545 return 1; 3546 3547 APInt DemandedElts = VT.isVector() 3548 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3549 : APInt(1, 1); 3550 return ComputeNumSignBits(Op, DemandedElts, Depth); 3551 } 3552 3553 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3554 unsigned Depth) const { 3555 EVT VT = Op.getValueType(); 3556 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3557 unsigned VTBits = VT.getScalarSizeInBits(); 3558 unsigned NumElts = DemandedElts.getBitWidth(); 3559 unsigned Tmp, Tmp2; 3560 unsigned FirstAnswer = 1; 3561 3562 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3563 const APInt &Val = C->getAPIntValue(); 3564 return Val.getNumSignBits(); 3565 } 3566 3567 if (Depth >= MaxRecursionDepth) 3568 return 1; // Limit search depth. 3569 3570 if (!DemandedElts || VT.isScalableVector()) 3571 return 1; // No demanded elts, better to assume we don't know anything. 3572 3573 unsigned Opcode = Op.getOpcode(); 3574 switch (Opcode) { 3575 default: break; 3576 case ISD::AssertSext: 3577 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3578 return VTBits-Tmp+1; 3579 case ISD::AssertZext: 3580 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3581 return VTBits-Tmp; 3582 3583 case ISD::BUILD_VECTOR: 3584 Tmp = VTBits; 3585 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3586 if (!DemandedElts[i]) 3587 continue; 3588 3589 SDValue SrcOp = Op.getOperand(i); 3590 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3591 3592 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3593 if (SrcOp.getValueSizeInBits() != VTBits) { 3594 assert(SrcOp.getValueSizeInBits() > VTBits && 3595 "Expected BUILD_VECTOR implicit truncation"); 3596 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3597 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3598 } 3599 Tmp = std::min(Tmp, Tmp2); 3600 } 3601 return Tmp; 3602 3603 case ISD::VECTOR_SHUFFLE: { 3604 // Collect the minimum number of sign bits that are shared by every vector 3605 // element referenced by the shuffle. 3606 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3607 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3608 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3609 for (unsigned i = 0; i != NumElts; ++i) { 3610 int M = SVN->getMaskElt(i); 3611 if (!DemandedElts[i]) 3612 continue; 3613 // For UNDEF elements, we don't know anything about the common state of 3614 // the shuffle result. 3615 if (M < 0) 3616 return 1; 3617 if ((unsigned)M < NumElts) 3618 DemandedLHS.setBit((unsigned)M % NumElts); 3619 else 3620 DemandedRHS.setBit((unsigned)M % NumElts); 3621 } 3622 Tmp = std::numeric_limits<unsigned>::max(); 3623 if (!!DemandedLHS) 3624 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3625 if (!!DemandedRHS) { 3626 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3627 Tmp = std::min(Tmp, Tmp2); 3628 } 3629 // If we don't know anything, early out and try computeKnownBits fall-back. 3630 if (Tmp == 1) 3631 break; 3632 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3633 return Tmp; 3634 } 3635 3636 case ISD::BITCAST: { 3637 SDValue N0 = Op.getOperand(0); 3638 EVT SrcVT = N0.getValueType(); 3639 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3640 3641 // Ignore bitcasts from unsupported types.. 3642 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3643 break; 3644 3645 // Fast handling of 'identity' bitcasts. 3646 if (VTBits == SrcBits) 3647 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3648 3649 bool IsLE = getDataLayout().isLittleEndian(); 3650 3651 // Bitcast 'large element' scalar/vector to 'small element' vector. 3652 if ((SrcBits % VTBits) == 0) { 3653 assert(VT.isVector() && "Expected bitcast to vector"); 3654 3655 unsigned Scale = SrcBits / VTBits; 3656 APInt SrcDemandedElts(NumElts / Scale, 0); 3657 for (unsigned i = 0; i != NumElts; ++i) 3658 if (DemandedElts[i]) 3659 SrcDemandedElts.setBit(i / Scale); 3660 3661 // Fast case - sign splat can be simply split across the small elements. 3662 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3663 if (Tmp == SrcBits) 3664 return VTBits; 3665 3666 // Slow case - determine how far the sign extends into each sub-element. 3667 Tmp2 = VTBits; 3668 for (unsigned i = 0; i != NumElts; ++i) 3669 if (DemandedElts[i]) { 3670 unsigned SubOffset = i % Scale; 3671 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3672 SubOffset = SubOffset * VTBits; 3673 if (Tmp <= SubOffset) 3674 return 1; 3675 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3676 } 3677 return Tmp2; 3678 } 3679 break; 3680 } 3681 3682 case ISD::SIGN_EXTEND: 3683 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3684 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3685 case ISD::SIGN_EXTEND_INREG: 3686 // Max of the input and what this extends. 3687 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3688 Tmp = VTBits-Tmp+1; 3689 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3690 return std::max(Tmp, Tmp2); 3691 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3692 SDValue Src = Op.getOperand(0); 3693 EVT SrcVT = Src.getValueType(); 3694 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3695 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3696 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3697 } 3698 case ISD::SRA: 3699 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3700 // SRA X, C -> adds C sign bits. 3701 if (const APInt *ShAmt = 3702 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3703 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3704 return Tmp; 3705 case ISD::SHL: 3706 if (const APInt *ShAmt = 3707 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3708 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3709 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3710 if (ShAmt->ult(Tmp)) 3711 return Tmp - ShAmt->getZExtValue(); 3712 } 3713 break; 3714 case ISD::AND: 3715 case ISD::OR: 3716 case ISD::XOR: // NOT is handled here. 3717 // Logical binary ops preserve the number of sign bits at the worst. 3718 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3719 if (Tmp != 1) { 3720 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3721 FirstAnswer = std::min(Tmp, Tmp2); 3722 // We computed what we know about the sign bits as our first 3723 // answer. Now proceed to the generic code that uses 3724 // computeKnownBits, and pick whichever answer is better. 3725 } 3726 break; 3727 3728 case ISD::SELECT: 3729 case ISD::VSELECT: 3730 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3731 if (Tmp == 1) return 1; // Early out. 3732 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3733 return std::min(Tmp, Tmp2); 3734 case ISD::SELECT_CC: 3735 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3736 if (Tmp == 1) return 1; // Early out. 3737 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3738 return std::min(Tmp, Tmp2); 3739 3740 case ISD::SMIN: 3741 case ISD::SMAX: { 3742 // If we have a clamp pattern, we know that the number of sign bits will be 3743 // the minimum of the clamp min/max range. 3744 bool IsMax = (Opcode == ISD::SMAX); 3745 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3746 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3747 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3748 CstHigh = 3749 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3750 if (CstLow && CstHigh) { 3751 if (!IsMax) 3752 std::swap(CstLow, CstHigh); 3753 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3754 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3755 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3756 return std::min(Tmp, Tmp2); 3757 } 3758 } 3759 3760 // Fallback - just get the minimum number of sign bits of the operands. 3761 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3762 if (Tmp == 1) 3763 return 1; // Early out. 3764 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3765 return std::min(Tmp, Tmp2); 3766 } 3767 case ISD::UMIN: 3768 case ISD::UMAX: 3769 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3770 if (Tmp == 1) 3771 return 1; // Early out. 3772 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3773 return std::min(Tmp, Tmp2); 3774 case ISD::SADDO: 3775 case ISD::UADDO: 3776 case ISD::SSUBO: 3777 case ISD::USUBO: 3778 case ISD::SMULO: 3779 case ISD::UMULO: 3780 if (Op.getResNo() != 1) 3781 break; 3782 // The boolean result conforms to getBooleanContents. Fall through. 3783 // If setcc returns 0/-1, all bits are sign bits. 3784 // We know that we have an integer-based boolean since these operations 3785 // are only available for integer. 3786 if (TLI->getBooleanContents(VT.isVector(), false) == 3787 TargetLowering::ZeroOrNegativeOneBooleanContent) 3788 return VTBits; 3789 break; 3790 case ISD::SETCC: 3791 case ISD::STRICT_FSETCC: 3792 case ISD::STRICT_FSETCCS: { 3793 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3794 // If setcc returns 0/-1, all bits are sign bits. 3795 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3796 TargetLowering::ZeroOrNegativeOneBooleanContent) 3797 return VTBits; 3798 break; 3799 } 3800 case ISD::ROTL: 3801 case ISD::ROTR: 3802 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3803 3804 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3805 if (Tmp == VTBits) 3806 return VTBits; 3807 3808 if (ConstantSDNode *C = 3809 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3810 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3811 3812 // Handle rotate right by N like a rotate left by 32-N. 3813 if (Opcode == ISD::ROTR) 3814 RotAmt = (VTBits - RotAmt) % VTBits; 3815 3816 // If we aren't rotating out all of the known-in sign bits, return the 3817 // number that are left. This handles rotl(sext(x), 1) for example. 3818 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3819 } 3820 break; 3821 case ISD::ADD: 3822 case ISD::ADDC: 3823 // Add can have at most one carry bit. Thus we know that the output 3824 // is, at worst, one more bit than the inputs. 3825 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3826 if (Tmp == 1) return 1; // Early out. 3827 3828 // Special case decrementing a value (ADD X, -1): 3829 if (ConstantSDNode *CRHS = 3830 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3831 if (CRHS->isAllOnesValue()) { 3832 KnownBits Known = 3833 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3834 3835 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3836 // sign bits set. 3837 if ((Known.Zero | 1).isAllOnesValue()) 3838 return VTBits; 3839 3840 // If we are subtracting one from a positive number, there is no carry 3841 // out of the result. 3842 if (Known.isNonNegative()) 3843 return Tmp; 3844 } 3845 3846 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3847 if (Tmp2 == 1) return 1; // Early out. 3848 return std::min(Tmp, Tmp2) - 1; 3849 case ISD::SUB: 3850 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3851 if (Tmp2 == 1) return 1; // Early out. 3852 3853 // Handle NEG. 3854 if (ConstantSDNode *CLHS = 3855 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3856 if (CLHS->isNullValue()) { 3857 KnownBits Known = 3858 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3859 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3860 // sign bits set. 3861 if ((Known.Zero | 1).isAllOnesValue()) 3862 return VTBits; 3863 3864 // If the input is known to be positive (the sign bit is known clear), 3865 // the output of the NEG has the same number of sign bits as the input. 3866 if (Known.isNonNegative()) 3867 return Tmp2; 3868 3869 // Otherwise, we treat this like a SUB. 3870 } 3871 3872 // Sub can have at most one carry bit. Thus we know that the output 3873 // is, at worst, one more bit than the inputs. 3874 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3875 if (Tmp == 1) return 1; // Early out. 3876 return std::min(Tmp, Tmp2) - 1; 3877 case ISD::MUL: { 3878 // The output of the Mul can be at most twice the valid bits in the inputs. 3879 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3880 if (SignBitsOp0 == 1) 3881 break; 3882 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3883 if (SignBitsOp1 == 1) 3884 break; 3885 unsigned OutValidBits = 3886 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3887 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3888 } 3889 case ISD::SREM: 3890 // The sign bit is the LHS's sign bit, except when the result of the 3891 // remainder is zero. The magnitude of the result should be less than or 3892 // equal to the magnitude of the LHS. Therefore, the result should have 3893 // at least as many sign bits as the left hand side. 3894 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3895 case ISD::TRUNCATE: { 3896 // Check if the sign bits of source go down as far as the truncated value. 3897 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3898 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3899 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3900 return NumSrcSignBits - (NumSrcBits - VTBits); 3901 break; 3902 } 3903 case ISD::EXTRACT_ELEMENT: { 3904 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3905 const int BitWidth = Op.getValueSizeInBits(); 3906 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3907 3908 // Get reverse index (starting from 1), Op1 value indexes elements from 3909 // little end. Sign starts at big end. 3910 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3911 3912 // If the sign portion ends in our element the subtraction gives correct 3913 // result. Otherwise it gives either negative or > bitwidth result 3914 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3915 } 3916 case ISD::INSERT_VECTOR_ELT: { 3917 // If we know the element index, split the demand between the 3918 // source vector and the inserted element, otherwise assume we need 3919 // the original demanded vector elements and the value. 3920 SDValue InVec = Op.getOperand(0); 3921 SDValue InVal = Op.getOperand(1); 3922 SDValue EltNo = Op.getOperand(2); 3923 bool DemandedVal = true; 3924 APInt DemandedVecElts = DemandedElts; 3925 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3926 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3927 unsigned EltIdx = CEltNo->getZExtValue(); 3928 DemandedVal = !!DemandedElts[EltIdx]; 3929 DemandedVecElts.clearBit(EltIdx); 3930 } 3931 Tmp = std::numeric_limits<unsigned>::max(); 3932 if (DemandedVal) { 3933 // TODO - handle implicit truncation of inserted elements. 3934 if (InVal.getScalarValueSizeInBits() != VTBits) 3935 break; 3936 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3937 Tmp = std::min(Tmp, Tmp2); 3938 } 3939 if (!!DemandedVecElts) { 3940 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3941 Tmp = std::min(Tmp, Tmp2); 3942 } 3943 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3944 return Tmp; 3945 } 3946 case ISD::EXTRACT_VECTOR_ELT: { 3947 SDValue InVec = Op.getOperand(0); 3948 SDValue EltNo = Op.getOperand(1); 3949 EVT VecVT = InVec.getValueType(); 3950 // ComputeNumSignBits not yet implemented for scalable vectors. 3951 if (VecVT.isScalableVector()) 3952 break; 3953 const unsigned BitWidth = Op.getValueSizeInBits(); 3954 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3955 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3956 3957 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3958 // anything about sign bits. But if the sizes match we can derive knowledge 3959 // about sign bits from the vector operand. 3960 if (BitWidth != EltBitWidth) 3961 break; 3962 3963 // If we know the element index, just demand that vector element, else for 3964 // an unknown element index, ignore DemandedElts and demand them all. 3965 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3966 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3967 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3968 DemandedSrcElts = 3969 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3970 3971 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3972 } 3973 case ISD::EXTRACT_SUBVECTOR: { 3974 // Offset the demanded elts by the subvector index. 3975 SDValue Src = Op.getOperand(0); 3976 // Bail until we can represent demanded elements for scalable vectors. 3977 if (Src.getValueType().isScalableVector()) 3978 break; 3979 uint64_t Idx = Op.getConstantOperandVal(1); 3980 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3981 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3982 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3983 } 3984 case ISD::CONCAT_VECTORS: { 3985 // Determine the minimum number of sign bits across all demanded 3986 // elts of the input vectors. Early out if the result is already 1. 3987 Tmp = std::numeric_limits<unsigned>::max(); 3988 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3989 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3990 unsigned NumSubVectors = Op.getNumOperands(); 3991 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3992 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3993 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3994 if (!DemandedSub) 3995 continue; 3996 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3997 Tmp = std::min(Tmp, Tmp2); 3998 } 3999 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4000 return Tmp; 4001 } 4002 case ISD::INSERT_SUBVECTOR: { 4003 // Demand any elements from the subvector and the remainder from the src its 4004 // inserted into. 4005 SDValue Src = Op.getOperand(0); 4006 SDValue Sub = Op.getOperand(1); 4007 uint64_t Idx = Op.getConstantOperandVal(2); 4008 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4009 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4010 APInt DemandedSrcElts = DemandedElts; 4011 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4012 4013 Tmp = std::numeric_limits<unsigned>::max(); 4014 if (!!DemandedSubElts) { 4015 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4016 if (Tmp == 1) 4017 return 1; // early-out 4018 } 4019 if (!!DemandedSrcElts) { 4020 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4021 Tmp = std::min(Tmp, Tmp2); 4022 } 4023 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4024 return Tmp; 4025 } 4026 } 4027 4028 // If we are looking at the loaded value of the SDNode. 4029 if (Op.getResNo() == 0) { 4030 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4031 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4032 unsigned ExtType = LD->getExtensionType(); 4033 switch (ExtType) { 4034 default: break; 4035 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4036 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4037 return VTBits - Tmp + 1; 4038 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4039 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4040 return VTBits - Tmp; 4041 case ISD::NON_EXTLOAD: 4042 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4043 // We only need to handle vectors - computeKnownBits should handle 4044 // scalar cases. 4045 Type *CstTy = Cst->getType(); 4046 if (CstTy->isVectorTy() && 4047 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4048 Tmp = VTBits; 4049 for (unsigned i = 0; i != NumElts; ++i) { 4050 if (!DemandedElts[i]) 4051 continue; 4052 if (Constant *Elt = Cst->getAggregateElement(i)) { 4053 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4054 const APInt &Value = CInt->getValue(); 4055 Tmp = std::min(Tmp, Value.getNumSignBits()); 4056 continue; 4057 } 4058 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4059 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4060 Tmp = std::min(Tmp, Value.getNumSignBits()); 4061 continue; 4062 } 4063 } 4064 // Unknown type. Conservatively assume no bits match sign bit. 4065 return 1; 4066 } 4067 return Tmp; 4068 } 4069 } 4070 break; 4071 } 4072 } 4073 } 4074 4075 // Allow the target to implement this method for its nodes. 4076 if (Opcode >= ISD::BUILTIN_OP_END || 4077 Opcode == ISD::INTRINSIC_WO_CHAIN || 4078 Opcode == ISD::INTRINSIC_W_CHAIN || 4079 Opcode == ISD::INTRINSIC_VOID) { 4080 unsigned NumBits = 4081 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4082 if (NumBits > 1) 4083 FirstAnswer = std::max(FirstAnswer, NumBits); 4084 } 4085 4086 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4087 // use this information. 4088 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4089 4090 APInt Mask; 4091 if (Known.isNonNegative()) { // sign bit is 0 4092 Mask = Known.Zero; 4093 } else if (Known.isNegative()) { // sign bit is 1; 4094 Mask = Known.One; 4095 } else { 4096 // Nothing known. 4097 return FirstAnswer; 4098 } 4099 4100 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4101 // the number of identical bits in the top of the input value. 4102 Mask <<= Mask.getBitWidth()-VTBits; 4103 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4104 } 4105 4106 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4107 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4108 !isa<ConstantSDNode>(Op.getOperand(1))) 4109 return false; 4110 4111 if (Op.getOpcode() == ISD::OR && 4112 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4113 return false; 4114 4115 return true; 4116 } 4117 4118 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4119 // If we're told that NaNs won't happen, assume they won't. 4120 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4121 return true; 4122 4123 if (Depth >= MaxRecursionDepth) 4124 return false; // Limit search depth. 4125 4126 // TODO: Handle vectors. 4127 // If the value is a constant, we can obviously see if it is a NaN or not. 4128 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4129 return !C->getValueAPF().isNaN() || 4130 (SNaN && !C->getValueAPF().isSignaling()); 4131 } 4132 4133 unsigned Opcode = Op.getOpcode(); 4134 switch (Opcode) { 4135 case ISD::FADD: 4136 case ISD::FSUB: 4137 case ISD::FMUL: 4138 case ISD::FDIV: 4139 case ISD::FREM: 4140 case ISD::FSIN: 4141 case ISD::FCOS: { 4142 if (SNaN) 4143 return true; 4144 // TODO: Need isKnownNeverInfinity 4145 return false; 4146 } 4147 case ISD::FCANONICALIZE: 4148 case ISD::FEXP: 4149 case ISD::FEXP2: 4150 case ISD::FTRUNC: 4151 case ISD::FFLOOR: 4152 case ISD::FCEIL: 4153 case ISD::FROUND: 4154 case ISD::FROUNDEVEN: 4155 case ISD::FRINT: 4156 case ISD::FNEARBYINT: { 4157 if (SNaN) 4158 return true; 4159 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4160 } 4161 case ISD::FABS: 4162 case ISD::FNEG: 4163 case ISD::FCOPYSIGN: { 4164 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4165 } 4166 case ISD::SELECT: 4167 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4168 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4169 case ISD::FP_EXTEND: 4170 case ISD::FP_ROUND: { 4171 if (SNaN) 4172 return true; 4173 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4174 } 4175 case ISD::SINT_TO_FP: 4176 case ISD::UINT_TO_FP: 4177 return true; 4178 case ISD::FMA: 4179 case ISD::FMAD: { 4180 if (SNaN) 4181 return true; 4182 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4183 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4184 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4185 } 4186 case ISD::FSQRT: // Need is known positive 4187 case ISD::FLOG: 4188 case ISD::FLOG2: 4189 case ISD::FLOG10: 4190 case ISD::FPOWI: 4191 case ISD::FPOW: { 4192 if (SNaN) 4193 return true; 4194 // TODO: Refine on operand 4195 return false; 4196 } 4197 case ISD::FMINNUM: 4198 case ISD::FMAXNUM: { 4199 // Only one needs to be known not-nan, since it will be returned if the 4200 // other ends up being one. 4201 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4202 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4203 } 4204 case ISD::FMINNUM_IEEE: 4205 case ISD::FMAXNUM_IEEE: { 4206 if (SNaN) 4207 return true; 4208 // This can return a NaN if either operand is an sNaN, or if both operands 4209 // are NaN. 4210 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4211 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4212 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4213 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4214 } 4215 case ISD::FMINIMUM: 4216 case ISD::FMAXIMUM: { 4217 // TODO: Does this quiet or return the origina NaN as-is? 4218 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4219 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4220 } 4221 case ISD::EXTRACT_VECTOR_ELT: { 4222 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4223 } 4224 default: 4225 if (Opcode >= ISD::BUILTIN_OP_END || 4226 Opcode == ISD::INTRINSIC_WO_CHAIN || 4227 Opcode == ISD::INTRINSIC_W_CHAIN || 4228 Opcode == ISD::INTRINSIC_VOID) { 4229 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4230 } 4231 4232 return false; 4233 } 4234 } 4235 4236 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4237 assert(Op.getValueType().isFloatingPoint() && 4238 "Floating point type expected"); 4239 4240 // If the value is a constant, we can obviously see if it is a zero or not. 4241 // TODO: Add BuildVector support. 4242 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4243 return !C->isZero(); 4244 return false; 4245 } 4246 4247 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4248 assert(!Op.getValueType().isFloatingPoint() && 4249 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4250 4251 // If the value is a constant, we can obviously see if it is a zero or not. 4252 if (ISD::matchUnaryPredicate( 4253 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4254 return true; 4255 4256 // TODO: Recognize more cases here. 4257 switch (Op.getOpcode()) { 4258 default: break; 4259 case ISD::OR: 4260 if (isKnownNeverZero(Op.getOperand(1)) || 4261 isKnownNeverZero(Op.getOperand(0))) 4262 return true; 4263 break; 4264 } 4265 4266 return false; 4267 } 4268 4269 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4270 // Check the obvious case. 4271 if (A == B) return true; 4272 4273 // For for negative and positive zero. 4274 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4275 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4276 if (CA->isZero() && CB->isZero()) return true; 4277 4278 // Otherwise they may not be equal. 4279 return false; 4280 } 4281 4282 // FIXME: unify with llvm::haveNoCommonBitsSet. 4283 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4284 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4285 assert(A.getValueType() == B.getValueType() && 4286 "Values must have the same type"); 4287 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4288 } 4289 4290 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4291 ArrayRef<SDValue> Ops, 4292 SelectionDAG &DAG) { 4293 int NumOps = Ops.size(); 4294 assert(NumOps != 0 && "Can't build an empty vector!"); 4295 assert(!VT.isScalableVector() && 4296 "BUILD_VECTOR cannot be used with scalable types"); 4297 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4298 "Incorrect element count in BUILD_VECTOR!"); 4299 4300 // BUILD_VECTOR of UNDEFs is UNDEF. 4301 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4302 return DAG.getUNDEF(VT); 4303 4304 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4305 SDValue IdentitySrc; 4306 bool IsIdentity = true; 4307 for (int i = 0; i != NumOps; ++i) { 4308 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4309 Ops[i].getOperand(0).getValueType() != VT || 4310 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4311 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4312 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4313 IsIdentity = false; 4314 break; 4315 } 4316 IdentitySrc = Ops[i].getOperand(0); 4317 } 4318 if (IsIdentity) 4319 return IdentitySrc; 4320 4321 return SDValue(); 4322 } 4323 4324 /// Try to simplify vector concatenation to an input value, undef, or build 4325 /// vector. 4326 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4327 ArrayRef<SDValue> Ops, 4328 SelectionDAG &DAG) { 4329 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4330 assert(llvm::all_of(Ops, 4331 [Ops](SDValue Op) { 4332 return Ops[0].getValueType() == Op.getValueType(); 4333 }) && 4334 "Concatenation of vectors with inconsistent value types!"); 4335 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4336 VT.getVectorElementCount() && 4337 "Incorrect element count in vector concatenation!"); 4338 4339 if (Ops.size() == 1) 4340 return Ops[0]; 4341 4342 // Concat of UNDEFs is UNDEF. 4343 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4344 return DAG.getUNDEF(VT); 4345 4346 // Scan the operands and look for extract operations from a single source 4347 // that correspond to insertion at the same location via this concatenation: 4348 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4349 SDValue IdentitySrc; 4350 bool IsIdentity = true; 4351 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4352 SDValue Op = Ops[i]; 4353 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4354 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4355 Op.getOperand(0).getValueType() != VT || 4356 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4357 Op.getConstantOperandVal(1) != IdentityIndex) { 4358 IsIdentity = false; 4359 break; 4360 } 4361 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4362 "Unexpected identity source vector for concat of extracts"); 4363 IdentitySrc = Op.getOperand(0); 4364 } 4365 if (IsIdentity) { 4366 assert(IdentitySrc && "Failed to set source vector of extracts"); 4367 return IdentitySrc; 4368 } 4369 4370 // The code below this point is only designed to work for fixed width 4371 // vectors, so we bail out for now. 4372 if (VT.isScalableVector()) 4373 return SDValue(); 4374 4375 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4376 // simplified to one big BUILD_VECTOR. 4377 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4378 EVT SVT = VT.getScalarType(); 4379 SmallVector<SDValue, 16> Elts; 4380 for (SDValue Op : Ops) { 4381 EVT OpVT = Op.getValueType(); 4382 if (Op.isUndef()) 4383 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4384 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4385 Elts.append(Op->op_begin(), Op->op_end()); 4386 else 4387 return SDValue(); 4388 } 4389 4390 // BUILD_VECTOR requires all inputs to be of the same type, find the 4391 // maximum type and extend them all. 4392 for (SDValue Op : Elts) 4393 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4394 4395 if (SVT.bitsGT(VT.getScalarType())) { 4396 for (SDValue &Op : Elts) { 4397 if (Op.isUndef()) 4398 Op = DAG.getUNDEF(SVT); 4399 else 4400 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4401 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4402 : DAG.getSExtOrTrunc(Op, DL, SVT); 4403 } 4404 } 4405 4406 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4407 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4408 return V; 4409 } 4410 4411 /// Gets or creates the specified node. 4412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4413 FoldingSetNodeID ID; 4414 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4415 void *IP = nullptr; 4416 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4417 return SDValue(E, 0); 4418 4419 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4420 getVTList(VT)); 4421 CSEMap.InsertNode(N, IP); 4422 4423 InsertNode(N); 4424 SDValue V = SDValue(N, 0); 4425 NewSDValueDbgMsg(V, "Creating new node: ", this); 4426 return V; 4427 } 4428 4429 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4430 SDValue Operand) { 4431 SDNodeFlags Flags; 4432 if (Inserter) 4433 Flags = Inserter->getFlags(); 4434 return getNode(Opcode, DL, VT, Operand, Flags); 4435 } 4436 4437 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4438 SDValue Operand, const SDNodeFlags Flags) { 4439 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4440 "Operand is DELETED_NODE!"); 4441 // Constant fold unary operations with an integer constant operand. Even 4442 // opaque constant will be folded, because the folding of unary operations 4443 // doesn't create new constants with different values. Nevertheless, the 4444 // opaque flag is preserved during folding to prevent future folding with 4445 // other constants. 4446 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4447 const APInt &Val = C->getAPIntValue(); 4448 switch (Opcode) { 4449 default: break; 4450 case ISD::SIGN_EXTEND: 4451 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4452 C->isTargetOpcode(), C->isOpaque()); 4453 case ISD::TRUNCATE: 4454 if (C->isOpaque()) 4455 break; 4456 LLVM_FALLTHROUGH; 4457 case ISD::ANY_EXTEND: 4458 case ISD::ZERO_EXTEND: 4459 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4460 C->isTargetOpcode(), C->isOpaque()); 4461 case ISD::UINT_TO_FP: 4462 case ISD::SINT_TO_FP: { 4463 APFloat apf(EVTToAPFloatSemantics(VT), 4464 APInt::getNullValue(VT.getSizeInBits())); 4465 (void)apf.convertFromAPInt(Val, 4466 Opcode==ISD::SINT_TO_FP, 4467 APFloat::rmNearestTiesToEven); 4468 return getConstantFP(apf, DL, VT); 4469 } 4470 case ISD::BITCAST: 4471 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4472 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4473 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4474 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4475 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4476 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4477 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4478 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4479 break; 4480 case ISD::ABS: 4481 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4482 C->isOpaque()); 4483 case ISD::BITREVERSE: 4484 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4485 C->isOpaque()); 4486 case ISD::BSWAP: 4487 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4488 C->isOpaque()); 4489 case ISD::CTPOP: 4490 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4491 C->isOpaque()); 4492 case ISD::CTLZ: 4493 case ISD::CTLZ_ZERO_UNDEF: 4494 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4495 C->isOpaque()); 4496 case ISD::CTTZ: 4497 case ISD::CTTZ_ZERO_UNDEF: 4498 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4499 C->isOpaque()); 4500 case ISD::FP16_TO_FP: { 4501 bool Ignored; 4502 APFloat FPV(APFloat::IEEEhalf(), 4503 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4504 4505 // This can return overflow, underflow, or inexact; we don't care. 4506 // FIXME need to be more flexible about rounding mode. 4507 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4508 APFloat::rmNearestTiesToEven, &Ignored); 4509 return getConstantFP(FPV, DL, VT); 4510 } 4511 } 4512 } 4513 4514 // Constant fold unary operations with a floating point constant operand. 4515 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4516 APFloat V = C->getValueAPF(); // make copy 4517 switch (Opcode) { 4518 case ISD::FNEG: 4519 V.changeSign(); 4520 return getConstantFP(V, DL, VT); 4521 case ISD::FABS: 4522 V.clearSign(); 4523 return getConstantFP(V, DL, VT); 4524 case ISD::FCEIL: { 4525 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4526 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4527 return getConstantFP(V, DL, VT); 4528 break; 4529 } 4530 case ISD::FTRUNC: { 4531 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4532 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4533 return getConstantFP(V, DL, VT); 4534 break; 4535 } 4536 case ISD::FFLOOR: { 4537 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4538 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4539 return getConstantFP(V, DL, VT); 4540 break; 4541 } 4542 case ISD::FP_EXTEND: { 4543 bool ignored; 4544 // This can return overflow, underflow, or inexact; we don't care. 4545 // FIXME need to be more flexible about rounding mode. 4546 (void)V.convert(EVTToAPFloatSemantics(VT), 4547 APFloat::rmNearestTiesToEven, &ignored); 4548 return getConstantFP(V, DL, VT); 4549 } 4550 case ISD::FP_TO_SINT: 4551 case ISD::FP_TO_UINT: { 4552 bool ignored; 4553 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4554 // FIXME need to be more flexible about rounding mode. 4555 APFloat::opStatus s = 4556 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4557 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4558 break; 4559 return getConstant(IntVal, DL, VT); 4560 } 4561 case ISD::BITCAST: 4562 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4563 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4564 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4565 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4566 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4567 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4568 break; 4569 case ISD::FP_TO_FP16: { 4570 bool Ignored; 4571 // This can return overflow, underflow, or inexact; we don't care. 4572 // FIXME need to be more flexible about rounding mode. 4573 (void)V.convert(APFloat::IEEEhalf(), 4574 APFloat::rmNearestTiesToEven, &Ignored); 4575 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4576 } 4577 } 4578 } 4579 4580 // Constant fold unary operations with a vector integer or float operand. 4581 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4582 if (BV->isConstant()) { 4583 switch (Opcode) { 4584 default: 4585 // FIXME: Entirely reasonable to perform folding of other unary 4586 // operations here as the need arises. 4587 break; 4588 case ISD::FNEG: 4589 case ISD::FABS: 4590 case ISD::FCEIL: 4591 case ISD::FTRUNC: 4592 case ISD::FFLOOR: 4593 case ISD::FP_EXTEND: 4594 case ISD::FP_TO_SINT: 4595 case ISD::FP_TO_UINT: 4596 case ISD::TRUNCATE: 4597 case ISD::ANY_EXTEND: 4598 case ISD::ZERO_EXTEND: 4599 case ISD::SIGN_EXTEND: 4600 case ISD::UINT_TO_FP: 4601 case ISD::SINT_TO_FP: 4602 case ISD::ABS: 4603 case ISD::BITREVERSE: 4604 case ISD::BSWAP: 4605 case ISD::CTLZ: 4606 case ISD::CTLZ_ZERO_UNDEF: 4607 case ISD::CTTZ: 4608 case ISD::CTTZ_ZERO_UNDEF: 4609 case ISD::CTPOP: { 4610 SDValue Ops = { Operand }; 4611 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4612 return Fold; 4613 } 4614 } 4615 } 4616 } 4617 4618 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4619 switch (Opcode) { 4620 case ISD::FREEZE: 4621 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4622 break; 4623 case ISD::TokenFactor: 4624 case ISD::MERGE_VALUES: 4625 case ISD::CONCAT_VECTORS: 4626 return Operand; // Factor, merge or concat of one node? No need. 4627 case ISD::BUILD_VECTOR: { 4628 // Attempt to simplify BUILD_VECTOR. 4629 SDValue Ops[] = {Operand}; 4630 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4631 return V; 4632 break; 4633 } 4634 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4635 case ISD::FP_EXTEND: 4636 assert(VT.isFloatingPoint() && 4637 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4638 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4639 assert((!VT.isVector() || 4640 VT.getVectorElementCount() == 4641 Operand.getValueType().getVectorElementCount()) && 4642 "Vector element count mismatch!"); 4643 assert(Operand.getValueType().bitsLT(VT) && 4644 "Invalid fpext node, dst < src!"); 4645 if (Operand.isUndef()) 4646 return getUNDEF(VT); 4647 break; 4648 case ISD::FP_TO_SINT: 4649 case ISD::FP_TO_UINT: 4650 if (Operand.isUndef()) 4651 return getUNDEF(VT); 4652 break; 4653 case ISD::SINT_TO_FP: 4654 case ISD::UINT_TO_FP: 4655 // [us]itofp(undef) = 0, because the result value is bounded. 4656 if (Operand.isUndef()) 4657 return getConstantFP(0.0, DL, VT); 4658 break; 4659 case ISD::SIGN_EXTEND: 4660 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4661 "Invalid SIGN_EXTEND!"); 4662 assert(VT.isVector() == Operand.getValueType().isVector() && 4663 "SIGN_EXTEND result type type should be vector iff the operand " 4664 "type is vector!"); 4665 if (Operand.getValueType() == VT) return Operand; // noop extension 4666 assert((!VT.isVector() || 4667 VT.getVectorElementCount() == 4668 Operand.getValueType().getVectorElementCount()) && 4669 "Vector element count mismatch!"); 4670 assert(Operand.getValueType().bitsLT(VT) && 4671 "Invalid sext node, dst < src!"); 4672 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4673 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4674 else if (OpOpcode == ISD::UNDEF) 4675 // sext(undef) = 0, because the top bits will all be the same. 4676 return getConstant(0, DL, VT); 4677 break; 4678 case ISD::ZERO_EXTEND: 4679 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4680 "Invalid ZERO_EXTEND!"); 4681 assert(VT.isVector() == Operand.getValueType().isVector() && 4682 "ZERO_EXTEND result type type should be vector iff the operand " 4683 "type is vector!"); 4684 if (Operand.getValueType() == VT) return Operand; // noop extension 4685 assert((!VT.isVector() || 4686 VT.getVectorElementCount() == 4687 Operand.getValueType().getVectorElementCount()) && 4688 "Vector element count mismatch!"); 4689 assert(Operand.getValueType().bitsLT(VT) && 4690 "Invalid zext node, dst < src!"); 4691 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4692 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4693 else if (OpOpcode == ISD::UNDEF) 4694 // zext(undef) = 0, because the top bits will be zero. 4695 return getConstant(0, DL, VT); 4696 break; 4697 case ISD::ANY_EXTEND: 4698 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4699 "Invalid ANY_EXTEND!"); 4700 assert(VT.isVector() == Operand.getValueType().isVector() && 4701 "ANY_EXTEND result type type should be vector iff the operand " 4702 "type is vector!"); 4703 if (Operand.getValueType() == VT) return Operand; // noop extension 4704 assert((!VT.isVector() || 4705 VT.getVectorElementCount() == 4706 Operand.getValueType().getVectorElementCount()) && 4707 "Vector element count mismatch!"); 4708 assert(Operand.getValueType().bitsLT(VT) && 4709 "Invalid anyext node, dst < src!"); 4710 4711 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4712 OpOpcode == ISD::ANY_EXTEND) 4713 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4714 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4715 else if (OpOpcode == ISD::UNDEF) 4716 return getUNDEF(VT); 4717 4718 // (ext (trunc x)) -> x 4719 if (OpOpcode == ISD::TRUNCATE) { 4720 SDValue OpOp = Operand.getOperand(0); 4721 if (OpOp.getValueType() == VT) { 4722 transferDbgValues(Operand, OpOp); 4723 return OpOp; 4724 } 4725 } 4726 break; 4727 case ISD::TRUNCATE: 4728 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4729 "Invalid TRUNCATE!"); 4730 assert(VT.isVector() == Operand.getValueType().isVector() && 4731 "TRUNCATE result type type should be vector iff the operand " 4732 "type is vector!"); 4733 if (Operand.getValueType() == VT) return Operand; // noop truncate 4734 assert((!VT.isVector() || 4735 VT.getVectorElementCount() == 4736 Operand.getValueType().getVectorElementCount()) && 4737 "Vector element count mismatch!"); 4738 assert(Operand.getValueType().bitsGT(VT) && 4739 "Invalid truncate node, src < dst!"); 4740 if (OpOpcode == ISD::TRUNCATE) 4741 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4742 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4743 OpOpcode == ISD::ANY_EXTEND) { 4744 // If the source is smaller than the dest, we still need an extend. 4745 if (Operand.getOperand(0).getValueType().getScalarType() 4746 .bitsLT(VT.getScalarType())) 4747 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4748 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4749 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4750 return Operand.getOperand(0); 4751 } 4752 if (OpOpcode == ISD::UNDEF) 4753 return getUNDEF(VT); 4754 break; 4755 case ISD::ANY_EXTEND_VECTOR_INREG: 4756 case ISD::ZERO_EXTEND_VECTOR_INREG: 4757 case ISD::SIGN_EXTEND_VECTOR_INREG: 4758 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4759 assert(Operand.getValueType().bitsLE(VT) && 4760 "The input must be the same size or smaller than the result."); 4761 assert(VT.getVectorNumElements() < 4762 Operand.getValueType().getVectorNumElements() && 4763 "The destination vector type must have fewer lanes than the input."); 4764 break; 4765 case ISD::ABS: 4766 assert(VT.isInteger() && VT == Operand.getValueType() && 4767 "Invalid ABS!"); 4768 if (OpOpcode == ISD::UNDEF) 4769 return getUNDEF(VT); 4770 break; 4771 case ISD::BSWAP: 4772 assert(VT.isInteger() && VT == Operand.getValueType() && 4773 "Invalid BSWAP!"); 4774 assert((VT.getScalarSizeInBits() % 16 == 0) && 4775 "BSWAP types must be a multiple of 16 bits!"); 4776 if (OpOpcode == ISD::UNDEF) 4777 return getUNDEF(VT); 4778 break; 4779 case ISD::BITREVERSE: 4780 assert(VT.isInteger() && VT == Operand.getValueType() && 4781 "Invalid BITREVERSE!"); 4782 if (OpOpcode == ISD::UNDEF) 4783 return getUNDEF(VT); 4784 break; 4785 case ISD::BITCAST: 4786 // Basic sanity checking. 4787 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4788 "Cannot BITCAST between types of different sizes!"); 4789 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4790 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4791 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4792 if (OpOpcode == ISD::UNDEF) 4793 return getUNDEF(VT); 4794 break; 4795 case ISD::SCALAR_TO_VECTOR: 4796 assert(VT.isVector() && !Operand.getValueType().isVector() && 4797 (VT.getVectorElementType() == Operand.getValueType() || 4798 (VT.getVectorElementType().isInteger() && 4799 Operand.getValueType().isInteger() && 4800 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4801 "Illegal SCALAR_TO_VECTOR node!"); 4802 if (OpOpcode == ISD::UNDEF) 4803 return getUNDEF(VT); 4804 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4805 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4806 isa<ConstantSDNode>(Operand.getOperand(1)) && 4807 Operand.getConstantOperandVal(1) == 0 && 4808 Operand.getOperand(0).getValueType() == VT) 4809 return Operand.getOperand(0); 4810 break; 4811 case ISD::FNEG: 4812 // Negation of an unknown bag of bits is still completely undefined. 4813 if (OpOpcode == ISD::UNDEF) 4814 return getUNDEF(VT); 4815 4816 if (OpOpcode == ISD::FNEG) // --X -> X 4817 return Operand.getOperand(0); 4818 break; 4819 case ISD::FABS: 4820 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4821 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4822 break; 4823 case ISD::VSCALE: 4824 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4825 break; 4826 case ISD::CTPOP: 4827 if (Operand.getValueType().getScalarType() == MVT::i1) 4828 return Operand; 4829 break; 4830 case ISD::CTLZ: 4831 case ISD::CTTZ: 4832 if (Operand.getValueType().getScalarType() == MVT::i1) 4833 return getNOT(DL, Operand, Operand.getValueType()); 4834 break; 4835 case ISD::VECREDUCE_SMIN: 4836 case ISD::VECREDUCE_UMAX: 4837 if (Operand.getValueType().getScalarType() == MVT::i1) 4838 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4839 break; 4840 case ISD::VECREDUCE_SMAX: 4841 case ISD::VECREDUCE_UMIN: 4842 if (Operand.getValueType().getScalarType() == MVT::i1) 4843 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4844 break; 4845 } 4846 4847 SDNode *N; 4848 SDVTList VTs = getVTList(VT); 4849 SDValue Ops[] = {Operand}; 4850 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4851 FoldingSetNodeID ID; 4852 AddNodeIDNode(ID, Opcode, VTs, Ops); 4853 void *IP = nullptr; 4854 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4855 E->intersectFlagsWith(Flags); 4856 return SDValue(E, 0); 4857 } 4858 4859 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4860 N->setFlags(Flags); 4861 createOperands(N, Ops); 4862 CSEMap.InsertNode(N, IP); 4863 } else { 4864 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4865 createOperands(N, Ops); 4866 } 4867 4868 InsertNode(N); 4869 SDValue V = SDValue(N, 0); 4870 NewSDValueDbgMsg(V, "Creating new node: ", this); 4871 return V; 4872 } 4873 4874 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4875 const APInt &C2) { 4876 switch (Opcode) { 4877 case ISD::ADD: return C1 + C2; 4878 case ISD::SUB: return C1 - C2; 4879 case ISD::MUL: return C1 * C2; 4880 case ISD::AND: return C1 & C2; 4881 case ISD::OR: return C1 | C2; 4882 case ISD::XOR: return C1 ^ C2; 4883 case ISD::SHL: return C1 << C2; 4884 case ISD::SRL: return C1.lshr(C2); 4885 case ISD::SRA: return C1.ashr(C2); 4886 case ISD::ROTL: return C1.rotl(C2); 4887 case ISD::ROTR: return C1.rotr(C2); 4888 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4889 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4890 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4891 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4892 case ISD::SADDSAT: return C1.sadd_sat(C2); 4893 case ISD::UADDSAT: return C1.uadd_sat(C2); 4894 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4895 case ISD::USUBSAT: return C1.usub_sat(C2); 4896 case ISD::UDIV: 4897 if (!C2.getBoolValue()) 4898 break; 4899 return C1.udiv(C2); 4900 case ISD::UREM: 4901 if (!C2.getBoolValue()) 4902 break; 4903 return C1.urem(C2); 4904 case ISD::SDIV: 4905 if (!C2.getBoolValue()) 4906 break; 4907 return C1.sdiv(C2); 4908 case ISD::SREM: 4909 if (!C2.getBoolValue()) 4910 break; 4911 return C1.srem(C2); 4912 } 4913 return llvm::None; 4914 } 4915 4916 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4917 const GlobalAddressSDNode *GA, 4918 const SDNode *N2) { 4919 if (GA->getOpcode() != ISD::GlobalAddress) 4920 return SDValue(); 4921 if (!TLI->isOffsetFoldingLegal(GA)) 4922 return SDValue(); 4923 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4924 if (!C2) 4925 return SDValue(); 4926 int64_t Offset = C2->getSExtValue(); 4927 switch (Opcode) { 4928 case ISD::ADD: break; 4929 case ISD::SUB: Offset = -uint64_t(Offset); break; 4930 default: return SDValue(); 4931 } 4932 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4933 GA->getOffset() + uint64_t(Offset)); 4934 } 4935 4936 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4937 switch (Opcode) { 4938 case ISD::SDIV: 4939 case ISD::UDIV: 4940 case ISD::SREM: 4941 case ISD::UREM: { 4942 // If a divisor is zero/undef or any element of a divisor vector is 4943 // zero/undef, the whole op is undef. 4944 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4945 SDValue Divisor = Ops[1]; 4946 if (Divisor.isUndef() || isNullConstant(Divisor)) 4947 return true; 4948 4949 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4950 llvm::any_of(Divisor->op_values(), 4951 [](SDValue V) { return V.isUndef() || 4952 isNullConstant(V); }); 4953 // TODO: Handle signed overflow. 4954 } 4955 // TODO: Handle oversized shifts. 4956 default: 4957 return false; 4958 } 4959 } 4960 4961 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4962 EVT VT, ArrayRef<SDValue> Ops) { 4963 // If the opcode is a target-specific ISD node, there's nothing we can 4964 // do here and the operand rules may not line up with the below, so 4965 // bail early. 4966 if (Opcode >= ISD::BUILTIN_OP_END) 4967 return SDValue(); 4968 4969 // For now, the array Ops should only contain two values. 4970 // This enforcement will be removed once this function is merged with 4971 // FoldConstantVectorArithmetic 4972 if (Ops.size() != 2) 4973 return SDValue(); 4974 4975 if (isUndef(Opcode, Ops)) 4976 return getUNDEF(VT); 4977 4978 SDNode *N1 = Ops[0].getNode(); 4979 SDNode *N2 = Ops[1].getNode(); 4980 4981 // Handle the case of two scalars. 4982 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4983 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4984 if (C1->isOpaque() || C2->isOpaque()) 4985 return SDValue(); 4986 4987 Optional<APInt> FoldAttempt = 4988 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4989 if (!FoldAttempt) 4990 return SDValue(); 4991 4992 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4993 assert((!Folded || !VT.isVector()) && 4994 "Can't fold vectors ops with scalar operands"); 4995 return Folded; 4996 } 4997 } 4998 4999 // fold (add Sym, c) -> Sym+c 5000 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5001 return FoldSymbolOffset(Opcode, VT, GA, N2); 5002 if (TLI->isCommutativeBinOp(Opcode)) 5003 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5004 return FoldSymbolOffset(Opcode, VT, GA, N1); 5005 5006 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5007 // vector width, however we should be able to do constant folds involving 5008 // splat vector nodes too. 5009 if (VT.isScalableVector()) 5010 return SDValue(); 5011 5012 // For fixed width vectors, extract each constant element and fold them 5013 // individually. Either input may be an undef value. 5014 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5015 if (!BV1 && !N1->isUndef()) 5016 return SDValue(); 5017 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5018 if (!BV2 && !N2->isUndef()) 5019 return SDValue(); 5020 // If both operands are undef, that's handled the same way as scalars. 5021 if (!BV1 && !BV2) 5022 return SDValue(); 5023 5024 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 5025 "Vector binop with different number of elements in operands?"); 5026 5027 EVT SVT = VT.getScalarType(); 5028 EVT LegalSVT = SVT; 5029 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5030 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5031 if (LegalSVT.bitsLT(SVT)) 5032 return SDValue(); 5033 } 5034 SmallVector<SDValue, 4> Outputs; 5035 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5036 for (unsigned I = 0; I != NumOps; ++I) { 5037 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5038 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5039 if (SVT.isInteger()) { 5040 if (V1->getValueType(0).bitsGT(SVT)) 5041 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5042 if (V2->getValueType(0).bitsGT(SVT)) 5043 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5044 } 5045 5046 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5047 return SDValue(); 5048 5049 // Fold one vector element. 5050 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5051 if (LegalSVT != SVT) 5052 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5053 5054 // Scalar folding only succeeded if the result is a constant or UNDEF. 5055 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5056 ScalarResult.getOpcode() != ISD::ConstantFP) 5057 return SDValue(); 5058 Outputs.push_back(ScalarResult); 5059 } 5060 5061 assert(VT.getVectorNumElements() == Outputs.size() && 5062 "Vector size mismatch!"); 5063 5064 // We may have a vector type but a scalar result. Create a splat. 5065 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5066 5067 // Build a big vector out of the scalar elements we generated. 5068 return getBuildVector(VT, SDLoc(), Outputs); 5069 } 5070 5071 // TODO: Merge with FoldConstantArithmetic 5072 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5073 const SDLoc &DL, EVT VT, 5074 ArrayRef<SDValue> Ops, 5075 const SDNodeFlags Flags) { 5076 // If the opcode is a target-specific ISD node, there's nothing we can 5077 // do here and the operand rules may not line up with the below, so 5078 // bail early. 5079 if (Opcode >= ISD::BUILTIN_OP_END) 5080 return SDValue(); 5081 5082 if (isUndef(Opcode, Ops)) 5083 return getUNDEF(VT); 5084 5085 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5086 if (!VT.isVector()) 5087 return SDValue(); 5088 5089 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5090 // vector width, however we should be able to do constant folds involving 5091 // splat vector nodes too. 5092 if (VT.isScalableVector()) 5093 return SDValue(); 5094 5095 // From this point onwards all vectors are assumed to be fixed width. 5096 unsigned NumElts = VT.getVectorNumElements(); 5097 5098 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5099 return !Op.getValueType().isVector() || 5100 Op.getValueType().getVectorNumElements() == NumElts; 5101 }; 5102 5103 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5104 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5105 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5106 (BV && BV->isConstant()); 5107 }; 5108 5109 // All operands must be vector types with the same number of elements as 5110 // the result type and must be either UNDEF or a build vector of constant 5111 // or UNDEF scalars. 5112 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5113 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5114 return SDValue(); 5115 5116 // If we are comparing vectors, then the result needs to be a i1 boolean 5117 // that is then sign-extended back to the legal result type. 5118 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5119 5120 // Find legal integer scalar type for constant promotion and 5121 // ensure that its scalar size is at least as large as source. 5122 EVT LegalSVT = VT.getScalarType(); 5123 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5124 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5125 if (LegalSVT.bitsLT(VT.getScalarType())) 5126 return SDValue(); 5127 } 5128 5129 // Constant fold each scalar lane separately. 5130 SmallVector<SDValue, 4> ScalarResults; 5131 for (unsigned i = 0; i != NumElts; i++) { 5132 SmallVector<SDValue, 4> ScalarOps; 5133 for (SDValue Op : Ops) { 5134 EVT InSVT = Op.getValueType().getScalarType(); 5135 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5136 if (!InBV) { 5137 // We've checked that this is UNDEF or a constant of some kind. 5138 if (Op.isUndef()) 5139 ScalarOps.push_back(getUNDEF(InSVT)); 5140 else 5141 ScalarOps.push_back(Op); 5142 continue; 5143 } 5144 5145 SDValue ScalarOp = InBV->getOperand(i); 5146 EVT ScalarVT = ScalarOp.getValueType(); 5147 5148 // Build vector (integer) scalar operands may need implicit 5149 // truncation - do this before constant folding. 5150 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5151 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5152 5153 ScalarOps.push_back(ScalarOp); 5154 } 5155 5156 // Constant fold the scalar operands. 5157 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5158 5159 // Legalize the (integer) scalar constant if necessary. 5160 if (LegalSVT != SVT) 5161 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5162 5163 // Scalar folding only succeeded if the result is a constant or UNDEF. 5164 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5165 ScalarResult.getOpcode() != ISD::ConstantFP) 5166 return SDValue(); 5167 ScalarResults.push_back(ScalarResult); 5168 } 5169 5170 SDValue V = getBuildVector(VT, DL, ScalarResults); 5171 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5172 return V; 5173 } 5174 5175 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5176 EVT VT, SDValue N1, SDValue N2) { 5177 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5178 // should. That will require dealing with a potentially non-default 5179 // rounding mode, checking the "opStatus" return value from the APFloat 5180 // math calculations, and possibly other variations. 5181 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5182 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5183 if (N1CFP && N2CFP) { 5184 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5185 switch (Opcode) { 5186 case ISD::FADD: 5187 C1.add(C2, APFloat::rmNearestTiesToEven); 5188 return getConstantFP(C1, DL, VT); 5189 case ISD::FSUB: 5190 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5191 return getConstantFP(C1, DL, VT); 5192 case ISD::FMUL: 5193 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5194 return getConstantFP(C1, DL, VT); 5195 case ISD::FDIV: 5196 C1.divide(C2, APFloat::rmNearestTiesToEven); 5197 return getConstantFP(C1, DL, VT); 5198 case ISD::FREM: 5199 C1.mod(C2); 5200 return getConstantFP(C1, DL, VT); 5201 case ISD::FCOPYSIGN: 5202 C1.copySign(C2); 5203 return getConstantFP(C1, DL, VT); 5204 default: break; 5205 } 5206 } 5207 if (N1CFP && Opcode == ISD::FP_ROUND) { 5208 APFloat C1 = N1CFP->getValueAPF(); // make copy 5209 bool Unused; 5210 // This can return overflow, underflow, or inexact; we don't care. 5211 // FIXME need to be more flexible about rounding mode. 5212 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5213 &Unused); 5214 return getConstantFP(C1, DL, VT); 5215 } 5216 5217 switch (Opcode) { 5218 case ISD::FSUB: 5219 // -0.0 - undef --> undef (consistent with "fneg undef") 5220 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5221 return getUNDEF(VT); 5222 LLVM_FALLTHROUGH; 5223 5224 case ISD::FADD: 5225 case ISD::FMUL: 5226 case ISD::FDIV: 5227 case ISD::FREM: 5228 // If both operands are undef, the result is undef. If 1 operand is undef, 5229 // the result is NaN. This should match the behavior of the IR optimizer. 5230 if (N1.isUndef() && N2.isUndef()) 5231 return getUNDEF(VT); 5232 if (N1.isUndef() || N2.isUndef()) 5233 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5234 } 5235 return SDValue(); 5236 } 5237 5238 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5239 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5240 5241 // There's no need to assert on a byte-aligned pointer. All pointers are at 5242 // least byte aligned. 5243 if (A == Align(1)) 5244 return Val; 5245 5246 FoldingSetNodeID ID; 5247 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5248 ID.AddInteger(A.value()); 5249 5250 void *IP = nullptr; 5251 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5252 return SDValue(E, 0); 5253 5254 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5255 Val.getValueType(), A); 5256 createOperands(N, {Val}); 5257 5258 CSEMap.InsertNode(N, IP); 5259 InsertNode(N); 5260 5261 SDValue V(N, 0); 5262 NewSDValueDbgMsg(V, "Creating new node: ", this); 5263 return V; 5264 } 5265 5266 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5267 SDValue N1, SDValue N2) { 5268 SDNodeFlags Flags; 5269 if (Inserter) 5270 Flags = Inserter->getFlags(); 5271 return getNode(Opcode, DL, VT, N1, N2, Flags); 5272 } 5273 5274 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5275 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5276 assert(N1.getOpcode() != ISD::DELETED_NODE && 5277 N2.getOpcode() != ISD::DELETED_NODE && 5278 "Operand is DELETED_NODE!"); 5279 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5280 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5281 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5282 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5283 5284 // Canonicalize constant to RHS if commutative. 5285 if (TLI->isCommutativeBinOp(Opcode)) { 5286 if (N1C && !N2C) { 5287 std::swap(N1C, N2C); 5288 std::swap(N1, N2); 5289 } else if (N1CFP && !N2CFP) { 5290 std::swap(N1CFP, N2CFP); 5291 std::swap(N1, N2); 5292 } 5293 } 5294 5295 switch (Opcode) { 5296 default: break; 5297 case ISD::TokenFactor: 5298 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5299 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5300 // Fold trivial token factors. 5301 if (N1.getOpcode() == ISD::EntryToken) return N2; 5302 if (N2.getOpcode() == ISD::EntryToken) return N1; 5303 if (N1 == N2) return N1; 5304 break; 5305 case ISD::BUILD_VECTOR: { 5306 // Attempt to simplify BUILD_VECTOR. 5307 SDValue Ops[] = {N1, N2}; 5308 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5309 return V; 5310 break; 5311 } 5312 case ISD::CONCAT_VECTORS: { 5313 SDValue Ops[] = {N1, N2}; 5314 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5315 return V; 5316 break; 5317 } 5318 case ISD::AND: 5319 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5320 assert(N1.getValueType() == N2.getValueType() && 5321 N1.getValueType() == VT && "Binary operator types must match!"); 5322 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5323 // worth handling here. 5324 if (N2C && N2C->isNullValue()) 5325 return N2; 5326 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5327 return N1; 5328 break; 5329 case ISD::OR: 5330 case ISD::XOR: 5331 case ISD::ADD: 5332 case ISD::SUB: 5333 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5334 assert(N1.getValueType() == N2.getValueType() && 5335 N1.getValueType() == VT && "Binary operator types must match!"); 5336 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5337 // it's worth handling here. 5338 if (N2C && N2C->isNullValue()) 5339 return N1; 5340 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5341 VT.getVectorElementType() == MVT::i1) 5342 return getNode(ISD::XOR, DL, VT, N1, N2); 5343 break; 5344 case ISD::MUL: 5345 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5346 assert(N1.getValueType() == N2.getValueType() && 5347 N1.getValueType() == VT && "Binary operator types must match!"); 5348 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5349 return getNode(ISD::AND, DL, VT, N1, N2); 5350 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5351 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5352 const APInt &N2CImm = N2C->getAPIntValue(); 5353 return getVScale(DL, VT, MulImm * N2CImm); 5354 } 5355 break; 5356 case ISD::UDIV: 5357 case ISD::UREM: 5358 case ISD::MULHU: 5359 case ISD::MULHS: 5360 case ISD::SDIV: 5361 case ISD::SREM: 5362 case ISD::SADDSAT: 5363 case ISD::SSUBSAT: 5364 case ISD::UADDSAT: 5365 case ISD::USUBSAT: 5366 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5367 assert(N1.getValueType() == N2.getValueType() && 5368 N1.getValueType() == VT && "Binary operator types must match!"); 5369 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5370 // fold (add_sat x, y) -> (or x, y) for bool types. 5371 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5372 return getNode(ISD::OR, DL, VT, N1, N2); 5373 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5374 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5375 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5376 } 5377 break; 5378 case ISD::SMIN: 5379 case ISD::UMAX: 5380 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5381 assert(N1.getValueType() == N2.getValueType() && 5382 N1.getValueType() == VT && "Binary operator types must match!"); 5383 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5384 return getNode(ISD::OR, DL, VT, N1, N2); 5385 break; 5386 case ISD::SMAX: 5387 case ISD::UMIN: 5388 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5389 assert(N1.getValueType() == N2.getValueType() && 5390 N1.getValueType() == VT && "Binary operator types must match!"); 5391 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5392 return getNode(ISD::AND, DL, VT, N1, N2); 5393 break; 5394 case ISD::FADD: 5395 case ISD::FSUB: 5396 case ISD::FMUL: 5397 case ISD::FDIV: 5398 case ISD::FREM: 5399 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5400 assert(N1.getValueType() == N2.getValueType() && 5401 N1.getValueType() == VT && "Binary operator types must match!"); 5402 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5403 return V; 5404 break; 5405 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5406 assert(N1.getValueType() == VT && 5407 N1.getValueType().isFloatingPoint() && 5408 N2.getValueType().isFloatingPoint() && 5409 "Invalid FCOPYSIGN!"); 5410 break; 5411 case ISD::SHL: 5412 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5413 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5414 const APInt &ShiftImm = N2C->getAPIntValue(); 5415 return getVScale(DL, VT, MulImm << ShiftImm); 5416 } 5417 LLVM_FALLTHROUGH; 5418 case ISD::SRA: 5419 case ISD::SRL: 5420 if (SDValue V = simplifyShift(N1, N2)) 5421 return V; 5422 LLVM_FALLTHROUGH; 5423 case ISD::ROTL: 5424 case ISD::ROTR: 5425 assert(VT == N1.getValueType() && 5426 "Shift operators return type must be the same as their first arg"); 5427 assert(VT.isInteger() && N2.getValueType().isInteger() && 5428 "Shifts only work on integers"); 5429 assert((!VT.isVector() || VT == N2.getValueType()) && 5430 "Vector shift amounts must be in the same as their first arg"); 5431 // Verify that the shift amount VT is big enough to hold valid shift 5432 // amounts. This catches things like trying to shift an i1024 value by an 5433 // i8, which is easy to fall into in generic code that uses 5434 // TLI.getShiftAmount(). 5435 assert(N2.getValueType().getScalarSizeInBits() >= 5436 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5437 "Invalid use of small shift amount with oversized value!"); 5438 5439 // Always fold shifts of i1 values so the code generator doesn't need to 5440 // handle them. Since we know the size of the shift has to be less than the 5441 // size of the value, the shift/rotate count is guaranteed to be zero. 5442 if (VT == MVT::i1) 5443 return N1; 5444 if (N2C && N2C->isNullValue()) 5445 return N1; 5446 break; 5447 case ISD::FP_ROUND: 5448 assert(VT.isFloatingPoint() && 5449 N1.getValueType().isFloatingPoint() && 5450 VT.bitsLE(N1.getValueType()) && 5451 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5452 "Invalid FP_ROUND!"); 5453 if (N1.getValueType() == VT) return N1; // noop conversion. 5454 break; 5455 case ISD::AssertSext: 5456 case ISD::AssertZext: { 5457 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5458 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5459 assert(VT.isInteger() && EVT.isInteger() && 5460 "Cannot *_EXTEND_INREG FP types"); 5461 assert(!EVT.isVector() && 5462 "AssertSExt/AssertZExt type should be the vector element type " 5463 "rather than the vector type!"); 5464 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5465 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5466 break; 5467 } 5468 case ISD::SIGN_EXTEND_INREG: { 5469 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5470 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5471 assert(VT.isInteger() && EVT.isInteger() && 5472 "Cannot *_EXTEND_INREG FP types"); 5473 assert(EVT.isVector() == VT.isVector() && 5474 "SIGN_EXTEND_INREG type should be vector iff the operand " 5475 "type is vector!"); 5476 assert((!EVT.isVector() || 5477 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5478 "Vector element counts must match in SIGN_EXTEND_INREG"); 5479 assert(EVT.bitsLE(VT) && "Not extending!"); 5480 if (EVT == VT) return N1; // Not actually extending 5481 5482 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5483 unsigned FromBits = EVT.getScalarSizeInBits(); 5484 Val <<= Val.getBitWidth() - FromBits; 5485 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5486 return getConstant(Val, DL, ConstantVT); 5487 }; 5488 5489 if (N1C) { 5490 const APInt &Val = N1C->getAPIntValue(); 5491 return SignExtendInReg(Val, VT); 5492 } 5493 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5494 SmallVector<SDValue, 8> Ops; 5495 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5496 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5497 SDValue Op = N1.getOperand(i); 5498 if (Op.isUndef()) { 5499 Ops.push_back(getUNDEF(OpVT)); 5500 continue; 5501 } 5502 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5503 APInt Val = C->getAPIntValue(); 5504 Ops.push_back(SignExtendInReg(Val, OpVT)); 5505 } 5506 return getBuildVector(VT, DL, Ops); 5507 } 5508 break; 5509 } 5510 case ISD::EXTRACT_VECTOR_ELT: 5511 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5512 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5513 element type of the vector."); 5514 5515 // Extract from an undefined value or using an undefined index is undefined. 5516 if (N1.isUndef() || N2.isUndef()) 5517 return getUNDEF(VT); 5518 5519 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5520 // vectors. For scalable vectors we will provide appropriate support for 5521 // dealing with arbitrary indices. 5522 if (N2C && N1.getValueType().isFixedLengthVector() && 5523 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5524 return getUNDEF(VT); 5525 5526 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5527 // expanding copies of large vectors from registers. This only works for 5528 // fixed length vectors, since we need to know the exact number of 5529 // elements. 5530 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5531 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5532 unsigned Factor = 5533 N1.getOperand(0).getValueType().getVectorNumElements(); 5534 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5535 N1.getOperand(N2C->getZExtValue() / Factor), 5536 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5537 } 5538 5539 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5540 // lowering is expanding large vector constants. 5541 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5542 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5543 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5544 N1.getValueType().isFixedLengthVector()) && 5545 "BUILD_VECTOR used for scalable vectors"); 5546 unsigned Index = 5547 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5548 SDValue Elt = N1.getOperand(Index); 5549 5550 if (VT != Elt.getValueType()) 5551 // If the vector element type is not legal, the BUILD_VECTOR operands 5552 // are promoted and implicitly truncated, and the result implicitly 5553 // extended. Make that explicit here. 5554 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5555 5556 return Elt; 5557 } 5558 5559 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5560 // operations are lowered to scalars. 5561 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5562 // If the indices are the same, return the inserted element else 5563 // if the indices are known different, extract the element from 5564 // the original vector. 5565 SDValue N1Op2 = N1.getOperand(2); 5566 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5567 5568 if (N1Op2C && N2C) { 5569 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5570 if (VT == N1.getOperand(1).getValueType()) 5571 return N1.getOperand(1); 5572 else 5573 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5574 } 5575 5576 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5577 } 5578 } 5579 5580 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5581 // when vector types are scalarized and v1iX is legal. 5582 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5583 // Here we are completely ignoring the extract element index (N2), 5584 // which is fine for fixed width vectors, since any index other than 0 5585 // is undefined anyway. However, this cannot be ignored for scalable 5586 // vectors - in theory we could support this, but we don't want to do this 5587 // without a profitability check. 5588 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5589 N1.getValueType().isFixedLengthVector() && 5590 N1.getValueType().getVectorNumElements() == 1) { 5591 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5592 N1.getOperand(1)); 5593 } 5594 break; 5595 case ISD::EXTRACT_ELEMENT: 5596 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5597 assert(!N1.getValueType().isVector() && !VT.isVector() && 5598 (N1.getValueType().isInteger() == VT.isInteger()) && 5599 N1.getValueType() != VT && 5600 "Wrong types for EXTRACT_ELEMENT!"); 5601 5602 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5603 // 64-bit integers into 32-bit parts. Instead of building the extract of 5604 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5605 if (N1.getOpcode() == ISD::BUILD_PAIR) 5606 return N1.getOperand(N2C->getZExtValue()); 5607 5608 // EXTRACT_ELEMENT of a constant int is also very common. 5609 if (N1C) { 5610 unsigned ElementSize = VT.getSizeInBits(); 5611 unsigned Shift = ElementSize * N2C->getZExtValue(); 5612 const APInt &Val = N1C->getAPIntValue(); 5613 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5614 } 5615 break; 5616 case ISD::EXTRACT_SUBVECTOR: 5617 EVT N1VT = N1.getValueType(); 5618 assert(VT.isVector() && N1VT.isVector() && 5619 "Extract subvector VTs must be vectors!"); 5620 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5621 "Extract subvector VTs must have the same element type!"); 5622 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5623 "Cannot extract a scalable vector from a fixed length vector!"); 5624 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5625 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5626 "Extract subvector must be from larger vector to smaller vector!"); 5627 assert(N2C && "Extract subvector index must be a constant"); 5628 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5629 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5630 N1VT.getVectorMinNumElements()) && 5631 "Extract subvector overflow!"); 5632 assert(N2C->getAPIntValue().getBitWidth() == 5633 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5634 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5635 5636 // Trivial extraction. 5637 if (VT == N1VT) 5638 return N1; 5639 5640 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5641 if (N1.isUndef()) 5642 return getUNDEF(VT); 5643 5644 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5645 // the concat have the same type as the extract. 5646 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5647 VT == N1.getOperand(0).getValueType()) { 5648 unsigned Factor = VT.getVectorMinNumElements(); 5649 return N1.getOperand(N2C->getZExtValue() / Factor); 5650 } 5651 5652 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5653 // during shuffle legalization. 5654 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5655 VT == N1.getOperand(1).getValueType()) 5656 return N1.getOperand(1); 5657 break; 5658 } 5659 5660 // Perform trivial constant folding. 5661 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5662 return SV; 5663 5664 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5665 return V; 5666 5667 // Canonicalize an UNDEF to the RHS, even over a constant. 5668 if (N1.isUndef()) { 5669 if (TLI->isCommutativeBinOp(Opcode)) { 5670 std::swap(N1, N2); 5671 } else { 5672 switch (Opcode) { 5673 case ISD::SIGN_EXTEND_INREG: 5674 case ISD::SUB: 5675 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5676 case ISD::UDIV: 5677 case ISD::SDIV: 5678 case ISD::UREM: 5679 case ISD::SREM: 5680 case ISD::SSUBSAT: 5681 case ISD::USUBSAT: 5682 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5683 } 5684 } 5685 } 5686 5687 // Fold a bunch of operators when the RHS is undef. 5688 if (N2.isUndef()) { 5689 switch (Opcode) { 5690 case ISD::XOR: 5691 if (N1.isUndef()) 5692 // Handle undef ^ undef -> 0 special case. This is a common 5693 // idiom (misuse). 5694 return getConstant(0, DL, VT); 5695 LLVM_FALLTHROUGH; 5696 case ISD::ADD: 5697 case ISD::SUB: 5698 case ISD::UDIV: 5699 case ISD::SDIV: 5700 case ISD::UREM: 5701 case ISD::SREM: 5702 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5703 case ISD::MUL: 5704 case ISD::AND: 5705 case ISD::SSUBSAT: 5706 case ISD::USUBSAT: 5707 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5708 case ISD::OR: 5709 case ISD::SADDSAT: 5710 case ISD::UADDSAT: 5711 return getAllOnesConstant(DL, VT); 5712 } 5713 } 5714 5715 // Memoize this node if possible. 5716 SDNode *N; 5717 SDVTList VTs = getVTList(VT); 5718 SDValue Ops[] = {N1, N2}; 5719 if (VT != MVT::Glue) { 5720 FoldingSetNodeID ID; 5721 AddNodeIDNode(ID, Opcode, VTs, Ops); 5722 void *IP = nullptr; 5723 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5724 E->intersectFlagsWith(Flags); 5725 return SDValue(E, 0); 5726 } 5727 5728 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5729 N->setFlags(Flags); 5730 createOperands(N, Ops); 5731 CSEMap.InsertNode(N, IP); 5732 } else { 5733 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5734 createOperands(N, Ops); 5735 } 5736 5737 InsertNode(N); 5738 SDValue V = SDValue(N, 0); 5739 NewSDValueDbgMsg(V, "Creating new node: ", this); 5740 return V; 5741 } 5742 5743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5744 SDValue N1, SDValue N2, SDValue N3) { 5745 SDNodeFlags Flags; 5746 if (Inserter) 5747 Flags = Inserter->getFlags(); 5748 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5749 } 5750 5751 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5752 SDValue N1, SDValue N2, SDValue N3, 5753 const SDNodeFlags Flags) { 5754 assert(N1.getOpcode() != ISD::DELETED_NODE && 5755 N2.getOpcode() != ISD::DELETED_NODE && 5756 N3.getOpcode() != ISD::DELETED_NODE && 5757 "Operand is DELETED_NODE!"); 5758 // Perform various simplifications. 5759 switch (Opcode) { 5760 case ISD::FMA: { 5761 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5762 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5763 N3.getValueType() == VT && "FMA types must match!"); 5764 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5765 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5766 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5767 if (N1CFP && N2CFP && N3CFP) { 5768 APFloat V1 = N1CFP->getValueAPF(); 5769 const APFloat &V2 = N2CFP->getValueAPF(); 5770 const APFloat &V3 = N3CFP->getValueAPF(); 5771 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5772 return getConstantFP(V1, DL, VT); 5773 } 5774 break; 5775 } 5776 case ISD::BUILD_VECTOR: { 5777 // Attempt to simplify BUILD_VECTOR. 5778 SDValue Ops[] = {N1, N2, N3}; 5779 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5780 return V; 5781 break; 5782 } 5783 case ISD::CONCAT_VECTORS: { 5784 SDValue Ops[] = {N1, N2, N3}; 5785 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5786 return V; 5787 break; 5788 } 5789 case ISD::SETCC: { 5790 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5791 assert(N1.getValueType() == N2.getValueType() && 5792 "SETCC operands must have the same type!"); 5793 assert(VT.isVector() == N1.getValueType().isVector() && 5794 "SETCC type should be vector iff the operand type is vector!"); 5795 assert((!VT.isVector() || VT.getVectorElementCount() == 5796 N1.getValueType().getVectorElementCount()) && 5797 "SETCC vector element counts must match!"); 5798 // Use FoldSetCC to simplify SETCC's. 5799 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5800 return V; 5801 // Vector constant folding. 5802 SDValue Ops[] = {N1, N2, N3}; 5803 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5804 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5805 return V; 5806 } 5807 break; 5808 } 5809 case ISD::SELECT: 5810 case ISD::VSELECT: 5811 if (SDValue V = simplifySelect(N1, N2, N3)) 5812 return V; 5813 break; 5814 case ISD::VECTOR_SHUFFLE: 5815 llvm_unreachable("should use getVectorShuffle constructor!"); 5816 case ISD::INSERT_VECTOR_ELT: { 5817 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5818 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5819 // for scalable vectors where we will generate appropriate code to 5820 // deal with out-of-bounds cases correctly. 5821 if (N3C && N1.getValueType().isFixedLengthVector() && 5822 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5823 return getUNDEF(VT); 5824 5825 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5826 if (N3.isUndef()) 5827 return getUNDEF(VT); 5828 5829 // If the inserted element is an UNDEF, just use the input vector. 5830 if (N2.isUndef()) 5831 return N1; 5832 5833 break; 5834 } 5835 case ISD::INSERT_SUBVECTOR: { 5836 // Inserting undef into undef is still undef. 5837 if (N1.isUndef() && N2.isUndef()) 5838 return getUNDEF(VT); 5839 5840 EVT N2VT = N2.getValueType(); 5841 assert(VT == N1.getValueType() && 5842 "Dest and insert subvector source types must match!"); 5843 assert(VT.isVector() && N2VT.isVector() && 5844 "Insert subvector VTs must be vectors!"); 5845 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5846 "Cannot insert a scalable vector into a fixed length vector!"); 5847 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5848 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5849 "Insert subvector must be from smaller vector to larger vector!"); 5850 assert(isa<ConstantSDNode>(N3) && 5851 "Insert subvector index must be constant"); 5852 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5853 (N2VT.getVectorMinNumElements() + 5854 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5855 VT.getVectorMinNumElements()) && 5856 "Insert subvector overflow!"); 5857 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 5858 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5859 "Constant index for INSERT_SUBVECTOR has an invalid size"); 5860 5861 // Trivial insertion. 5862 if (VT == N2VT) 5863 return N2; 5864 5865 // If this is an insert of an extracted vector into an undef vector, we 5866 // can just use the input to the extract. 5867 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5868 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5869 return N2.getOperand(0); 5870 break; 5871 } 5872 case ISD::BITCAST: 5873 // Fold bit_convert nodes from a type to themselves. 5874 if (N1.getValueType() == VT) 5875 return N1; 5876 break; 5877 } 5878 5879 // Memoize node if it doesn't produce a flag. 5880 SDNode *N; 5881 SDVTList VTs = getVTList(VT); 5882 SDValue Ops[] = {N1, N2, N3}; 5883 if (VT != MVT::Glue) { 5884 FoldingSetNodeID ID; 5885 AddNodeIDNode(ID, Opcode, VTs, Ops); 5886 void *IP = nullptr; 5887 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5888 E->intersectFlagsWith(Flags); 5889 return SDValue(E, 0); 5890 } 5891 5892 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5893 N->setFlags(Flags); 5894 createOperands(N, Ops); 5895 CSEMap.InsertNode(N, IP); 5896 } else { 5897 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5898 createOperands(N, Ops); 5899 } 5900 5901 InsertNode(N); 5902 SDValue V = SDValue(N, 0); 5903 NewSDValueDbgMsg(V, "Creating new node: ", this); 5904 return V; 5905 } 5906 5907 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5908 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5909 SDValue Ops[] = { N1, N2, N3, N4 }; 5910 return getNode(Opcode, DL, VT, Ops); 5911 } 5912 5913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5914 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5915 SDValue N5) { 5916 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5917 return getNode(Opcode, DL, VT, Ops); 5918 } 5919 5920 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5921 /// the incoming stack arguments to be loaded from the stack. 5922 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5923 SmallVector<SDValue, 8> ArgChains; 5924 5925 // Include the original chain at the beginning of the list. When this is 5926 // used by target LowerCall hooks, this helps legalize find the 5927 // CALLSEQ_BEGIN node. 5928 ArgChains.push_back(Chain); 5929 5930 // Add a chain value for each stack argument. 5931 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5932 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5933 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5934 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5935 if (FI->getIndex() < 0) 5936 ArgChains.push_back(SDValue(L, 1)); 5937 5938 // Build a tokenfactor for all the chains. 5939 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5940 } 5941 5942 /// getMemsetValue - Vectorized representation of the memset value 5943 /// operand. 5944 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5945 const SDLoc &dl) { 5946 assert(!Value.isUndef()); 5947 5948 unsigned NumBits = VT.getScalarSizeInBits(); 5949 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5950 assert(C->getAPIntValue().getBitWidth() == 8); 5951 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5952 if (VT.isInteger()) { 5953 bool IsOpaque = VT.getSizeInBits() > 64 || 5954 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5955 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5956 } 5957 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5958 VT); 5959 } 5960 5961 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5962 EVT IntVT = VT.getScalarType(); 5963 if (!IntVT.isInteger()) 5964 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5965 5966 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5967 if (NumBits > 8) { 5968 // Use a multiplication with 0x010101... to extend the input to the 5969 // required length. 5970 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5971 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5972 DAG.getConstant(Magic, dl, IntVT)); 5973 } 5974 5975 if (VT != Value.getValueType() && !VT.isInteger()) 5976 Value = DAG.getBitcast(VT.getScalarType(), Value); 5977 if (VT != Value.getValueType()) 5978 Value = DAG.getSplatBuildVector(VT, dl, Value); 5979 5980 return Value; 5981 } 5982 5983 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5984 /// used when a memcpy is turned into a memset when the source is a constant 5985 /// string ptr. 5986 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5987 const TargetLowering &TLI, 5988 const ConstantDataArraySlice &Slice) { 5989 // Handle vector with all elements zero. 5990 if (Slice.Array == nullptr) { 5991 if (VT.isInteger()) 5992 return DAG.getConstant(0, dl, VT); 5993 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5994 return DAG.getConstantFP(0.0, dl, VT); 5995 else if (VT.isVector()) { 5996 unsigned NumElts = VT.getVectorNumElements(); 5997 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5998 return DAG.getNode(ISD::BITCAST, dl, VT, 5999 DAG.getConstant(0, dl, 6000 EVT::getVectorVT(*DAG.getContext(), 6001 EltVT, NumElts))); 6002 } else 6003 llvm_unreachable("Expected type!"); 6004 } 6005 6006 assert(!VT.isVector() && "Can't handle vector type here!"); 6007 unsigned NumVTBits = VT.getSizeInBits(); 6008 unsigned NumVTBytes = NumVTBits / 8; 6009 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6010 6011 APInt Val(NumVTBits, 0); 6012 if (DAG.getDataLayout().isLittleEndian()) { 6013 for (unsigned i = 0; i != NumBytes; ++i) 6014 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6015 } else { 6016 for (unsigned i = 0; i != NumBytes; ++i) 6017 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6018 } 6019 6020 // If the "cost" of materializing the integer immediate is less than the cost 6021 // of a load, then it is cost effective to turn the load into the immediate. 6022 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6023 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6024 return DAG.getConstant(Val, dl, VT); 6025 return SDValue(nullptr, 0); 6026 } 6027 6028 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6029 const SDLoc &DL, 6030 const SDNodeFlags Flags) { 6031 EVT VT = Base.getValueType(); 6032 SDValue Index; 6033 6034 if (Offset.isScalable()) 6035 Index = getVScale(DL, Base.getValueType(), 6036 APInt(Base.getValueSizeInBits().getFixedSize(), 6037 Offset.getKnownMinSize())); 6038 else 6039 Index = getConstant(Offset.getFixedSize(), DL, VT); 6040 6041 return getMemBasePlusOffset(Base, Index, DL, Flags); 6042 } 6043 6044 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6045 const SDLoc &DL, 6046 const SDNodeFlags Flags) { 6047 assert(Offset.getValueType().isInteger()); 6048 EVT BasePtrVT = Ptr.getValueType(); 6049 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6050 } 6051 6052 /// Returns true if memcpy source is constant data. 6053 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6054 uint64_t SrcDelta = 0; 6055 GlobalAddressSDNode *G = nullptr; 6056 if (Src.getOpcode() == ISD::GlobalAddress) 6057 G = cast<GlobalAddressSDNode>(Src); 6058 else if (Src.getOpcode() == ISD::ADD && 6059 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6060 Src.getOperand(1).getOpcode() == ISD::Constant) { 6061 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6062 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6063 } 6064 if (!G) 6065 return false; 6066 6067 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6068 SrcDelta + G->getOffset()); 6069 } 6070 6071 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6072 SelectionDAG &DAG) { 6073 // On Darwin, -Os means optimize for size without hurting performance, so 6074 // only really optimize for size when -Oz (MinSize) is used. 6075 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6076 return MF.getFunction().hasMinSize(); 6077 return DAG.shouldOptForSize(); 6078 } 6079 6080 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6081 SmallVector<SDValue, 32> &OutChains, unsigned From, 6082 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6083 SmallVector<SDValue, 16> &OutStoreChains) { 6084 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6085 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6086 SmallVector<SDValue, 16> GluedLoadChains; 6087 for (unsigned i = From; i < To; ++i) { 6088 OutChains.push_back(OutLoadChains[i]); 6089 GluedLoadChains.push_back(OutLoadChains[i]); 6090 } 6091 6092 // Chain for all loads. 6093 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6094 GluedLoadChains); 6095 6096 for (unsigned i = From; i < To; ++i) { 6097 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6098 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6099 ST->getBasePtr(), ST->getMemoryVT(), 6100 ST->getMemOperand()); 6101 OutChains.push_back(NewStore); 6102 } 6103 } 6104 6105 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6106 SDValue Chain, SDValue Dst, SDValue Src, 6107 uint64_t Size, Align Alignment, 6108 bool isVol, bool AlwaysInline, 6109 MachinePointerInfo DstPtrInfo, 6110 MachinePointerInfo SrcPtrInfo) { 6111 // Turn a memcpy of undef to nop. 6112 // FIXME: We need to honor volatile even is Src is undef. 6113 if (Src.isUndef()) 6114 return Chain; 6115 6116 // Expand memcpy to a series of load and store ops if the size operand falls 6117 // below a certain threshold. 6118 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6119 // rather than maybe a humongous number of loads and stores. 6120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6121 const DataLayout &DL = DAG.getDataLayout(); 6122 LLVMContext &C = *DAG.getContext(); 6123 std::vector<EVT> MemOps; 6124 bool DstAlignCanChange = false; 6125 MachineFunction &MF = DAG.getMachineFunction(); 6126 MachineFrameInfo &MFI = MF.getFrameInfo(); 6127 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6128 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6129 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6130 DstAlignCanChange = true; 6131 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6132 if (!SrcAlign || Alignment > *SrcAlign) 6133 SrcAlign = Alignment; 6134 assert(SrcAlign && "SrcAlign must be set"); 6135 ConstantDataArraySlice Slice; 6136 // If marked as volatile, perform a copy even when marked as constant. 6137 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6138 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6139 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6140 const MemOp Op = isZeroConstant 6141 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6142 /*IsZeroMemset*/ true, isVol) 6143 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6144 *SrcAlign, isVol, CopyFromConstant); 6145 if (!TLI.findOptimalMemOpLowering( 6146 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6147 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6148 return SDValue(); 6149 6150 if (DstAlignCanChange) { 6151 Type *Ty = MemOps[0].getTypeForEVT(C); 6152 Align NewAlign = DL.getABITypeAlign(Ty); 6153 6154 // Don't promote to an alignment that would require dynamic stack 6155 // realignment. 6156 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6157 if (!TRI->needsStackRealignment(MF)) 6158 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6159 NewAlign = NewAlign / 2; 6160 6161 if (NewAlign > Alignment) { 6162 // Give the stack frame object a larger alignment if needed. 6163 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6164 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6165 Alignment = NewAlign; 6166 } 6167 } 6168 6169 MachineMemOperand::Flags MMOFlags = 6170 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6171 SmallVector<SDValue, 16> OutLoadChains; 6172 SmallVector<SDValue, 16> OutStoreChains; 6173 SmallVector<SDValue, 32> OutChains; 6174 unsigned NumMemOps = MemOps.size(); 6175 uint64_t SrcOff = 0, DstOff = 0; 6176 for (unsigned i = 0; i != NumMemOps; ++i) { 6177 EVT VT = MemOps[i]; 6178 unsigned VTSize = VT.getSizeInBits() / 8; 6179 SDValue Value, Store; 6180 6181 if (VTSize > Size) { 6182 // Issuing an unaligned load / store pair that overlaps with the previous 6183 // pair. Adjust the offset accordingly. 6184 assert(i == NumMemOps-1 && i != 0); 6185 SrcOff -= VTSize - Size; 6186 DstOff -= VTSize - Size; 6187 } 6188 6189 if (CopyFromConstant && 6190 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6191 // It's unlikely a store of a vector immediate can be done in a single 6192 // instruction. It would require a load from a constantpool first. 6193 // We only handle zero vectors here. 6194 // FIXME: Handle other cases where store of vector immediate is done in 6195 // a single instruction. 6196 ConstantDataArraySlice SubSlice; 6197 if (SrcOff < Slice.Length) { 6198 SubSlice = Slice; 6199 SubSlice.move(SrcOff); 6200 } else { 6201 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6202 SubSlice.Array = nullptr; 6203 SubSlice.Offset = 0; 6204 SubSlice.Length = VTSize; 6205 } 6206 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6207 if (Value.getNode()) { 6208 Store = DAG.getStore( 6209 Chain, dl, Value, 6210 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6211 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6212 OutChains.push_back(Store); 6213 } 6214 } 6215 6216 if (!Store.getNode()) { 6217 // The type might not be legal for the target. This should only happen 6218 // if the type is smaller than a legal type, as on PPC, so the right 6219 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6220 // to Load/Store if NVT==VT. 6221 // FIXME does the case above also need this? 6222 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6223 assert(NVT.bitsGE(VT)); 6224 6225 bool isDereferenceable = 6226 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6227 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6228 if (isDereferenceable) 6229 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6230 6231 Value = DAG.getExtLoad( 6232 ISD::EXTLOAD, dl, NVT, Chain, 6233 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6234 SrcPtrInfo.getWithOffset(SrcOff), VT, 6235 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6236 OutLoadChains.push_back(Value.getValue(1)); 6237 6238 Store = DAG.getTruncStore( 6239 Chain, dl, Value, 6240 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6241 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6242 OutStoreChains.push_back(Store); 6243 } 6244 SrcOff += VTSize; 6245 DstOff += VTSize; 6246 Size -= VTSize; 6247 } 6248 6249 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6250 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6251 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6252 6253 if (NumLdStInMemcpy) { 6254 // It may be that memcpy might be converted to memset if it's memcpy 6255 // of constants. In such a case, we won't have loads and stores, but 6256 // just stores. In the absence of loads, there is nothing to gang up. 6257 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6258 // If target does not care, just leave as it. 6259 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6260 OutChains.push_back(OutLoadChains[i]); 6261 OutChains.push_back(OutStoreChains[i]); 6262 } 6263 } else { 6264 // Ld/St less than/equal limit set by target. 6265 if (NumLdStInMemcpy <= GluedLdStLimit) { 6266 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6267 NumLdStInMemcpy, OutLoadChains, 6268 OutStoreChains); 6269 } else { 6270 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6271 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6272 unsigned GlueIter = 0; 6273 6274 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6275 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6276 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6277 6278 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6279 OutLoadChains, OutStoreChains); 6280 GlueIter += GluedLdStLimit; 6281 } 6282 6283 // Residual ld/st. 6284 if (RemainingLdStInMemcpy) { 6285 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6286 RemainingLdStInMemcpy, OutLoadChains, 6287 OutStoreChains); 6288 } 6289 } 6290 } 6291 } 6292 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6293 } 6294 6295 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6296 SDValue Chain, SDValue Dst, SDValue Src, 6297 uint64_t Size, Align Alignment, 6298 bool isVol, bool AlwaysInline, 6299 MachinePointerInfo DstPtrInfo, 6300 MachinePointerInfo SrcPtrInfo) { 6301 // Turn a memmove of undef to nop. 6302 // FIXME: We need to honor volatile even is Src is undef. 6303 if (Src.isUndef()) 6304 return Chain; 6305 6306 // Expand memmove to a series of load and store ops if the size operand falls 6307 // below a certain threshold. 6308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6309 const DataLayout &DL = DAG.getDataLayout(); 6310 LLVMContext &C = *DAG.getContext(); 6311 std::vector<EVT> MemOps; 6312 bool DstAlignCanChange = false; 6313 MachineFunction &MF = DAG.getMachineFunction(); 6314 MachineFrameInfo &MFI = MF.getFrameInfo(); 6315 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6316 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6317 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6318 DstAlignCanChange = true; 6319 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6320 if (!SrcAlign || Alignment > *SrcAlign) 6321 SrcAlign = Alignment; 6322 assert(SrcAlign && "SrcAlign must be set"); 6323 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6324 if (!TLI.findOptimalMemOpLowering( 6325 MemOps, Limit, 6326 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6327 /*IsVolatile*/ true), 6328 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6329 MF.getFunction().getAttributes())) 6330 return SDValue(); 6331 6332 if (DstAlignCanChange) { 6333 Type *Ty = MemOps[0].getTypeForEVT(C); 6334 Align NewAlign = DL.getABITypeAlign(Ty); 6335 if (NewAlign > Alignment) { 6336 // Give the stack frame object a larger alignment if needed. 6337 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6338 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6339 Alignment = NewAlign; 6340 } 6341 } 6342 6343 MachineMemOperand::Flags MMOFlags = 6344 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6345 uint64_t SrcOff = 0, DstOff = 0; 6346 SmallVector<SDValue, 8> LoadValues; 6347 SmallVector<SDValue, 8> LoadChains; 6348 SmallVector<SDValue, 8> OutChains; 6349 unsigned NumMemOps = MemOps.size(); 6350 for (unsigned i = 0; i < NumMemOps; i++) { 6351 EVT VT = MemOps[i]; 6352 unsigned VTSize = VT.getSizeInBits() / 8; 6353 SDValue Value; 6354 6355 bool isDereferenceable = 6356 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6357 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6358 if (isDereferenceable) 6359 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6360 6361 Value = 6362 DAG.getLoad(VT, dl, Chain, 6363 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6364 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6365 LoadValues.push_back(Value); 6366 LoadChains.push_back(Value.getValue(1)); 6367 SrcOff += VTSize; 6368 } 6369 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6370 OutChains.clear(); 6371 for (unsigned i = 0; i < NumMemOps; i++) { 6372 EVT VT = MemOps[i]; 6373 unsigned VTSize = VT.getSizeInBits() / 8; 6374 SDValue Store; 6375 6376 Store = 6377 DAG.getStore(Chain, dl, LoadValues[i], 6378 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6379 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6380 OutChains.push_back(Store); 6381 DstOff += VTSize; 6382 } 6383 6384 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6385 } 6386 6387 /// Lower the call to 'memset' intrinsic function into a series of store 6388 /// operations. 6389 /// 6390 /// \param DAG Selection DAG where lowered code is placed. 6391 /// \param dl Link to corresponding IR location. 6392 /// \param Chain Control flow dependency. 6393 /// \param Dst Pointer to destination memory location. 6394 /// \param Src Value of byte to write into the memory. 6395 /// \param Size Number of bytes to write. 6396 /// \param Alignment Alignment of the destination in bytes. 6397 /// \param isVol True if destination is volatile. 6398 /// \param DstPtrInfo IR information on the memory pointer. 6399 /// \returns New head in the control flow, if lowering was successful, empty 6400 /// SDValue otherwise. 6401 /// 6402 /// The function tries to replace 'llvm.memset' intrinsic with several store 6403 /// operations and value calculation code. This is usually profitable for small 6404 /// memory size. 6405 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6406 SDValue Chain, SDValue Dst, SDValue Src, 6407 uint64_t Size, Align Alignment, bool isVol, 6408 MachinePointerInfo DstPtrInfo) { 6409 // Turn a memset of undef to nop. 6410 // FIXME: We need to honor volatile even is Src is undef. 6411 if (Src.isUndef()) 6412 return Chain; 6413 6414 // Expand memset to a series of load/store ops if the size operand 6415 // falls below a certain threshold. 6416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6417 std::vector<EVT> MemOps; 6418 bool DstAlignCanChange = false; 6419 MachineFunction &MF = DAG.getMachineFunction(); 6420 MachineFrameInfo &MFI = MF.getFrameInfo(); 6421 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6422 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6423 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6424 DstAlignCanChange = true; 6425 bool IsZeroVal = 6426 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6427 if (!TLI.findOptimalMemOpLowering( 6428 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6429 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6430 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6431 return SDValue(); 6432 6433 if (DstAlignCanChange) { 6434 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6435 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6436 if (NewAlign > Alignment) { 6437 // Give the stack frame object a larger alignment if needed. 6438 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6439 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6440 Alignment = NewAlign; 6441 } 6442 } 6443 6444 SmallVector<SDValue, 8> OutChains; 6445 uint64_t DstOff = 0; 6446 unsigned NumMemOps = MemOps.size(); 6447 6448 // Find the largest store and generate the bit pattern for it. 6449 EVT LargestVT = MemOps[0]; 6450 for (unsigned i = 1; i < NumMemOps; i++) 6451 if (MemOps[i].bitsGT(LargestVT)) 6452 LargestVT = MemOps[i]; 6453 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6454 6455 for (unsigned i = 0; i < NumMemOps; i++) { 6456 EVT VT = MemOps[i]; 6457 unsigned VTSize = VT.getSizeInBits() / 8; 6458 if (VTSize > Size) { 6459 // Issuing an unaligned load / store pair that overlaps with the previous 6460 // pair. Adjust the offset accordingly. 6461 assert(i == NumMemOps-1 && i != 0); 6462 DstOff -= VTSize - Size; 6463 } 6464 6465 // If this store is smaller than the largest store see whether we can get 6466 // the smaller value for free with a truncate. 6467 SDValue Value = MemSetValue; 6468 if (VT.bitsLT(LargestVT)) { 6469 if (!LargestVT.isVector() && !VT.isVector() && 6470 TLI.isTruncateFree(LargestVT, VT)) 6471 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6472 else 6473 Value = getMemsetValue(Src, VT, DAG, dl); 6474 } 6475 assert(Value.getValueType() == VT && "Value with wrong type."); 6476 SDValue Store = DAG.getStore( 6477 Chain, dl, Value, 6478 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6479 DstPtrInfo.getWithOffset(DstOff), Alignment, 6480 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6481 OutChains.push_back(Store); 6482 DstOff += VT.getSizeInBits() / 8; 6483 Size -= VTSize; 6484 } 6485 6486 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6487 } 6488 6489 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6490 unsigned AS) { 6491 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6492 // pointer operands can be losslessly bitcasted to pointers of address space 0 6493 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6494 report_fatal_error("cannot lower memory intrinsic in address space " + 6495 Twine(AS)); 6496 } 6497 } 6498 6499 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6500 SDValue Src, SDValue Size, Align Alignment, 6501 bool isVol, bool AlwaysInline, bool isTailCall, 6502 MachinePointerInfo DstPtrInfo, 6503 MachinePointerInfo SrcPtrInfo) { 6504 // Check to see if we should lower the memcpy to loads and stores first. 6505 // For cases within the target-specified limits, this is the best choice. 6506 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6507 if (ConstantSize) { 6508 // Memcpy with size zero? Just return the original chain. 6509 if (ConstantSize->isNullValue()) 6510 return Chain; 6511 6512 SDValue Result = getMemcpyLoadsAndStores( 6513 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6514 isVol, false, DstPtrInfo, SrcPtrInfo); 6515 if (Result.getNode()) 6516 return Result; 6517 } 6518 6519 // Then check to see if we should lower the memcpy with target-specific 6520 // code. If the target chooses to do this, this is the next best. 6521 if (TSI) { 6522 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6523 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6524 DstPtrInfo, SrcPtrInfo); 6525 if (Result.getNode()) 6526 return Result; 6527 } 6528 6529 // If we really need inline code and the target declined to provide it, 6530 // use a (potentially long) sequence of loads and stores. 6531 if (AlwaysInline) { 6532 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6533 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6534 ConstantSize->getZExtValue(), Alignment, 6535 isVol, true, DstPtrInfo, SrcPtrInfo); 6536 } 6537 6538 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6539 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6540 6541 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6542 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6543 // respect volatile, so they may do things like read or write memory 6544 // beyond the given memory regions. But fixing this isn't easy, and most 6545 // people don't care. 6546 6547 // Emit a library call. 6548 TargetLowering::ArgListTy Args; 6549 TargetLowering::ArgListEntry Entry; 6550 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6551 Entry.Node = Dst; Args.push_back(Entry); 6552 Entry.Node = Src; Args.push_back(Entry); 6553 6554 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6555 Entry.Node = Size; Args.push_back(Entry); 6556 // FIXME: pass in SDLoc 6557 TargetLowering::CallLoweringInfo CLI(*this); 6558 CLI.setDebugLoc(dl) 6559 .setChain(Chain) 6560 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6561 Dst.getValueType().getTypeForEVT(*getContext()), 6562 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6563 TLI->getPointerTy(getDataLayout())), 6564 std::move(Args)) 6565 .setDiscardResult() 6566 .setTailCall(isTailCall); 6567 6568 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6569 return CallResult.second; 6570 } 6571 6572 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6573 SDValue Dst, unsigned DstAlign, 6574 SDValue Src, unsigned SrcAlign, 6575 SDValue Size, Type *SizeTy, 6576 unsigned ElemSz, bool isTailCall, 6577 MachinePointerInfo DstPtrInfo, 6578 MachinePointerInfo SrcPtrInfo) { 6579 // Emit a library call. 6580 TargetLowering::ArgListTy Args; 6581 TargetLowering::ArgListEntry Entry; 6582 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6583 Entry.Node = Dst; 6584 Args.push_back(Entry); 6585 6586 Entry.Node = Src; 6587 Args.push_back(Entry); 6588 6589 Entry.Ty = SizeTy; 6590 Entry.Node = Size; 6591 Args.push_back(Entry); 6592 6593 RTLIB::Libcall LibraryCall = 6594 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6595 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6596 report_fatal_error("Unsupported element size"); 6597 6598 TargetLowering::CallLoweringInfo CLI(*this); 6599 CLI.setDebugLoc(dl) 6600 .setChain(Chain) 6601 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6602 Type::getVoidTy(*getContext()), 6603 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6604 TLI->getPointerTy(getDataLayout())), 6605 std::move(Args)) 6606 .setDiscardResult() 6607 .setTailCall(isTailCall); 6608 6609 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6610 return CallResult.second; 6611 } 6612 6613 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6614 SDValue Src, SDValue Size, Align Alignment, 6615 bool isVol, bool isTailCall, 6616 MachinePointerInfo DstPtrInfo, 6617 MachinePointerInfo SrcPtrInfo) { 6618 // Check to see if we should lower the memmove to loads and stores first. 6619 // For cases within the target-specified limits, this is the best choice. 6620 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6621 if (ConstantSize) { 6622 // Memmove with size zero? Just return the original chain. 6623 if (ConstantSize->isNullValue()) 6624 return Chain; 6625 6626 SDValue Result = getMemmoveLoadsAndStores( 6627 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6628 isVol, false, DstPtrInfo, SrcPtrInfo); 6629 if (Result.getNode()) 6630 return Result; 6631 } 6632 6633 // Then check to see if we should lower the memmove with target-specific 6634 // code. If the target chooses to do this, this is the next best. 6635 if (TSI) { 6636 SDValue Result = 6637 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6638 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6639 if (Result.getNode()) 6640 return Result; 6641 } 6642 6643 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6644 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6645 6646 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6647 // not be safe. See memcpy above for more details. 6648 6649 // Emit a library call. 6650 TargetLowering::ArgListTy Args; 6651 TargetLowering::ArgListEntry Entry; 6652 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6653 Entry.Node = Dst; Args.push_back(Entry); 6654 Entry.Node = Src; Args.push_back(Entry); 6655 6656 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6657 Entry.Node = Size; Args.push_back(Entry); 6658 // FIXME: pass in SDLoc 6659 TargetLowering::CallLoweringInfo CLI(*this); 6660 CLI.setDebugLoc(dl) 6661 .setChain(Chain) 6662 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6663 Dst.getValueType().getTypeForEVT(*getContext()), 6664 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6665 TLI->getPointerTy(getDataLayout())), 6666 std::move(Args)) 6667 .setDiscardResult() 6668 .setTailCall(isTailCall); 6669 6670 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6671 return CallResult.second; 6672 } 6673 6674 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6675 SDValue Dst, unsigned DstAlign, 6676 SDValue Src, unsigned SrcAlign, 6677 SDValue Size, Type *SizeTy, 6678 unsigned ElemSz, bool isTailCall, 6679 MachinePointerInfo DstPtrInfo, 6680 MachinePointerInfo SrcPtrInfo) { 6681 // Emit a library call. 6682 TargetLowering::ArgListTy Args; 6683 TargetLowering::ArgListEntry Entry; 6684 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6685 Entry.Node = Dst; 6686 Args.push_back(Entry); 6687 6688 Entry.Node = Src; 6689 Args.push_back(Entry); 6690 6691 Entry.Ty = SizeTy; 6692 Entry.Node = Size; 6693 Args.push_back(Entry); 6694 6695 RTLIB::Libcall LibraryCall = 6696 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6697 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6698 report_fatal_error("Unsupported element size"); 6699 6700 TargetLowering::CallLoweringInfo CLI(*this); 6701 CLI.setDebugLoc(dl) 6702 .setChain(Chain) 6703 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6704 Type::getVoidTy(*getContext()), 6705 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6706 TLI->getPointerTy(getDataLayout())), 6707 std::move(Args)) 6708 .setDiscardResult() 6709 .setTailCall(isTailCall); 6710 6711 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6712 return CallResult.second; 6713 } 6714 6715 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6716 SDValue Src, SDValue Size, Align Alignment, 6717 bool isVol, bool isTailCall, 6718 MachinePointerInfo DstPtrInfo) { 6719 // Check to see if we should lower the memset to stores first. 6720 // For cases within the target-specified limits, this is the best choice. 6721 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6722 if (ConstantSize) { 6723 // Memset with size zero? Just return the original chain. 6724 if (ConstantSize->isNullValue()) 6725 return Chain; 6726 6727 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6728 ConstantSize->getZExtValue(), Alignment, 6729 isVol, DstPtrInfo); 6730 6731 if (Result.getNode()) 6732 return Result; 6733 } 6734 6735 // Then check to see if we should lower the memset with target-specific 6736 // code. If the target chooses to do this, this is the next best. 6737 if (TSI) { 6738 SDValue Result = TSI->EmitTargetCodeForMemset( 6739 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6740 if (Result.getNode()) 6741 return Result; 6742 } 6743 6744 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6745 6746 // Emit a library call. 6747 TargetLowering::ArgListTy Args; 6748 TargetLowering::ArgListEntry Entry; 6749 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6750 Args.push_back(Entry); 6751 Entry.Node = Src; 6752 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6753 Args.push_back(Entry); 6754 Entry.Node = Size; 6755 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6756 Args.push_back(Entry); 6757 6758 // FIXME: pass in SDLoc 6759 TargetLowering::CallLoweringInfo CLI(*this); 6760 CLI.setDebugLoc(dl) 6761 .setChain(Chain) 6762 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6763 Dst.getValueType().getTypeForEVT(*getContext()), 6764 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6765 TLI->getPointerTy(getDataLayout())), 6766 std::move(Args)) 6767 .setDiscardResult() 6768 .setTailCall(isTailCall); 6769 6770 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6771 return CallResult.second; 6772 } 6773 6774 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6775 SDValue Dst, unsigned DstAlign, 6776 SDValue Value, SDValue Size, Type *SizeTy, 6777 unsigned ElemSz, bool isTailCall, 6778 MachinePointerInfo DstPtrInfo) { 6779 // Emit a library call. 6780 TargetLowering::ArgListTy Args; 6781 TargetLowering::ArgListEntry Entry; 6782 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6783 Entry.Node = Dst; 6784 Args.push_back(Entry); 6785 6786 Entry.Ty = Type::getInt8Ty(*getContext()); 6787 Entry.Node = Value; 6788 Args.push_back(Entry); 6789 6790 Entry.Ty = SizeTy; 6791 Entry.Node = Size; 6792 Args.push_back(Entry); 6793 6794 RTLIB::Libcall LibraryCall = 6795 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6796 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6797 report_fatal_error("Unsupported element size"); 6798 6799 TargetLowering::CallLoweringInfo CLI(*this); 6800 CLI.setDebugLoc(dl) 6801 .setChain(Chain) 6802 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6803 Type::getVoidTy(*getContext()), 6804 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6805 TLI->getPointerTy(getDataLayout())), 6806 std::move(Args)) 6807 .setDiscardResult() 6808 .setTailCall(isTailCall); 6809 6810 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6811 return CallResult.second; 6812 } 6813 6814 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6815 SDVTList VTList, ArrayRef<SDValue> Ops, 6816 MachineMemOperand *MMO) { 6817 FoldingSetNodeID ID; 6818 ID.AddInteger(MemVT.getRawBits()); 6819 AddNodeIDNode(ID, Opcode, VTList, Ops); 6820 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6821 void* IP = nullptr; 6822 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6823 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6824 return SDValue(E, 0); 6825 } 6826 6827 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6828 VTList, MemVT, MMO); 6829 createOperands(N, Ops); 6830 6831 CSEMap.InsertNode(N, IP); 6832 InsertNode(N); 6833 return SDValue(N, 0); 6834 } 6835 6836 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6837 EVT MemVT, SDVTList VTs, SDValue Chain, 6838 SDValue Ptr, SDValue Cmp, SDValue Swp, 6839 MachineMemOperand *MMO) { 6840 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6841 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6842 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6843 6844 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6845 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6846 } 6847 6848 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6849 SDValue Chain, SDValue Ptr, SDValue Val, 6850 MachineMemOperand *MMO) { 6851 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6852 Opcode == ISD::ATOMIC_LOAD_SUB || 6853 Opcode == ISD::ATOMIC_LOAD_AND || 6854 Opcode == ISD::ATOMIC_LOAD_CLR || 6855 Opcode == ISD::ATOMIC_LOAD_OR || 6856 Opcode == ISD::ATOMIC_LOAD_XOR || 6857 Opcode == ISD::ATOMIC_LOAD_NAND || 6858 Opcode == ISD::ATOMIC_LOAD_MIN || 6859 Opcode == ISD::ATOMIC_LOAD_MAX || 6860 Opcode == ISD::ATOMIC_LOAD_UMIN || 6861 Opcode == ISD::ATOMIC_LOAD_UMAX || 6862 Opcode == ISD::ATOMIC_LOAD_FADD || 6863 Opcode == ISD::ATOMIC_LOAD_FSUB || 6864 Opcode == ISD::ATOMIC_SWAP || 6865 Opcode == ISD::ATOMIC_STORE) && 6866 "Invalid Atomic Op"); 6867 6868 EVT VT = Val.getValueType(); 6869 6870 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6871 getVTList(VT, MVT::Other); 6872 SDValue Ops[] = {Chain, Ptr, Val}; 6873 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6874 } 6875 6876 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6877 EVT VT, SDValue Chain, SDValue Ptr, 6878 MachineMemOperand *MMO) { 6879 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6880 6881 SDVTList VTs = getVTList(VT, MVT::Other); 6882 SDValue Ops[] = {Chain, Ptr}; 6883 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6884 } 6885 6886 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6887 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6888 if (Ops.size() == 1) 6889 return Ops[0]; 6890 6891 SmallVector<EVT, 4> VTs; 6892 VTs.reserve(Ops.size()); 6893 for (const SDValue &Op : Ops) 6894 VTs.push_back(Op.getValueType()); 6895 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6896 } 6897 6898 SDValue SelectionDAG::getMemIntrinsicNode( 6899 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6900 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6901 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6902 if (!Size && MemVT.isScalableVector()) 6903 Size = MemoryLocation::UnknownSize; 6904 else if (!Size) 6905 Size = MemVT.getStoreSize(); 6906 6907 MachineFunction &MF = getMachineFunction(); 6908 MachineMemOperand *MMO = 6909 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6910 6911 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6912 } 6913 6914 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6915 SDVTList VTList, 6916 ArrayRef<SDValue> Ops, EVT MemVT, 6917 MachineMemOperand *MMO) { 6918 assert((Opcode == ISD::INTRINSIC_VOID || 6919 Opcode == ISD::INTRINSIC_W_CHAIN || 6920 Opcode == ISD::PREFETCH || 6921 ((int)Opcode <= std::numeric_limits<int>::max() && 6922 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6923 "Opcode is not a memory-accessing opcode!"); 6924 6925 // Memoize the node unless it returns a flag. 6926 MemIntrinsicSDNode *N; 6927 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6928 FoldingSetNodeID ID; 6929 AddNodeIDNode(ID, Opcode, VTList, Ops); 6930 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6931 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6932 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6933 void *IP = nullptr; 6934 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6935 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6936 return SDValue(E, 0); 6937 } 6938 6939 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6940 VTList, MemVT, MMO); 6941 createOperands(N, Ops); 6942 6943 CSEMap.InsertNode(N, IP); 6944 } else { 6945 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6946 VTList, MemVT, MMO); 6947 createOperands(N, Ops); 6948 } 6949 InsertNode(N); 6950 SDValue V(N, 0); 6951 NewSDValueDbgMsg(V, "Creating new node: ", this); 6952 return V; 6953 } 6954 6955 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6956 SDValue Chain, int FrameIndex, 6957 int64_t Size, int64_t Offset) { 6958 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6959 const auto VTs = getVTList(MVT::Other); 6960 SDValue Ops[2] = { 6961 Chain, 6962 getFrameIndex(FrameIndex, 6963 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6964 true)}; 6965 6966 FoldingSetNodeID ID; 6967 AddNodeIDNode(ID, Opcode, VTs, Ops); 6968 ID.AddInteger(FrameIndex); 6969 ID.AddInteger(Size); 6970 ID.AddInteger(Offset); 6971 void *IP = nullptr; 6972 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6973 return SDValue(E, 0); 6974 6975 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6976 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6977 createOperands(N, Ops); 6978 CSEMap.InsertNode(N, IP); 6979 InsertNode(N); 6980 SDValue V(N, 0); 6981 NewSDValueDbgMsg(V, "Creating new node: ", this); 6982 return V; 6983 } 6984 6985 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6986 uint64_t Guid, uint64_t Index, 6987 uint32_t Attr) { 6988 const unsigned Opcode = ISD::PSEUDO_PROBE; 6989 const auto VTs = getVTList(MVT::Other); 6990 SDValue Ops[] = {Chain}; 6991 FoldingSetNodeID ID; 6992 AddNodeIDNode(ID, Opcode, VTs, Ops); 6993 ID.AddInteger(Guid); 6994 ID.AddInteger(Index); 6995 void *IP = nullptr; 6996 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6997 return SDValue(E, 0); 6998 6999 auto *N = newSDNode<PseudoProbeSDNode>( 7000 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7001 createOperands(N, Ops); 7002 CSEMap.InsertNode(N, IP); 7003 InsertNode(N); 7004 SDValue V(N, 0); 7005 NewSDValueDbgMsg(V, "Creating new node: ", this); 7006 return V; 7007 } 7008 7009 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7010 /// MachinePointerInfo record from it. This is particularly useful because the 7011 /// code generator has many cases where it doesn't bother passing in a 7012 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7013 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7014 SelectionDAG &DAG, SDValue Ptr, 7015 int64_t Offset = 0) { 7016 // If this is FI+Offset, we can model it. 7017 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7018 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7019 FI->getIndex(), Offset); 7020 7021 // If this is (FI+Offset1)+Offset2, we can model it. 7022 if (Ptr.getOpcode() != ISD::ADD || 7023 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7024 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7025 return Info; 7026 7027 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7028 return MachinePointerInfo::getFixedStack( 7029 DAG.getMachineFunction(), FI, 7030 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7031 } 7032 7033 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7034 /// MachinePointerInfo record from it. This is particularly useful because the 7035 /// code generator has many cases where it doesn't bother passing in a 7036 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7037 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7038 SelectionDAG &DAG, SDValue Ptr, 7039 SDValue OffsetOp) { 7040 // If the 'Offset' value isn't a constant, we can't handle this. 7041 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7042 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7043 if (OffsetOp.isUndef()) 7044 return InferPointerInfo(Info, DAG, Ptr); 7045 return Info; 7046 } 7047 7048 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7049 EVT VT, const SDLoc &dl, SDValue Chain, 7050 SDValue Ptr, SDValue Offset, 7051 MachinePointerInfo PtrInfo, EVT MemVT, 7052 Align Alignment, 7053 MachineMemOperand::Flags MMOFlags, 7054 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7055 assert(Chain.getValueType() == MVT::Other && 7056 "Invalid chain type"); 7057 7058 MMOFlags |= MachineMemOperand::MOLoad; 7059 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7060 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7061 // clients. 7062 if (PtrInfo.V.isNull()) 7063 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7064 7065 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7066 MachineFunction &MF = getMachineFunction(); 7067 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7068 Alignment, AAInfo, Ranges); 7069 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7070 } 7071 7072 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7073 EVT VT, const SDLoc &dl, SDValue Chain, 7074 SDValue Ptr, SDValue Offset, EVT MemVT, 7075 MachineMemOperand *MMO) { 7076 if (VT == MemVT) { 7077 ExtType = ISD::NON_EXTLOAD; 7078 } else if (ExtType == ISD::NON_EXTLOAD) { 7079 assert(VT == MemVT && "Non-extending load from different memory type!"); 7080 } else { 7081 // Extending load. 7082 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7083 "Should only be an extending load, not truncating!"); 7084 assert(VT.isInteger() == MemVT.isInteger() && 7085 "Cannot convert from FP to Int or Int -> FP!"); 7086 assert(VT.isVector() == MemVT.isVector() && 7087 "Cannot use an ext load to convert to or from a vector!"); 7088 assert((!VT.isVector() || 7089 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7090 "Cannot use an ext load to change the number of vector elements!"); 7091 } 7092 7093 bool Indexed = AM != ISD::UNINDEXED; 7094 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7095 7096 SDVTList VTs = Indexed ? 7097 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7098 SDValue Ops[] = { Chain, Ptr, Offset }; 7099 FoldingSetNodeID ID; 7100 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7101 ID.AddInteger(MemVT.getRawBits()); 7102 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7103 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7104 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7105 void *IP = nullptr; 7106 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7107 cast<LoadSDNode>(E)->refineAlignment(MMO); 7108 return SDValue(E, 0); 7109 } 7110 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7111 ExtType, MemVT, MMO); 7112 createOperands(N, Ops); 7113 7114 CSEMap.InsertNode(N, IP); 7115 InsertNode(N); 7116 SDValue V(N, 0); 7117 NewSDValueDbgMsg(V, "Creating new node: ", this); 7118 return V; 7119 } 7120 7121 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7122 SDValue Ptr, MachinePointerInfo PtrInfo, 7123 MaybeAlign Alignment, 7124 MachineMemOperand::Flags MMOFlags, 7125 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7126 SDValue Undef = getUNDEF(Ptr.getValueType()); 7127 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7128 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7129 } 7130 7131 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7132 SDValue Ptr, MachineMemOperand *MMO) { 7133 SDValue Undef = getUNDEF(Ptr.getValueType()); 7134 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7135 VT, MMO); 7136 } 7137 7138 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7139 EVT VT, SDValue Chain, SDValue Ptr, 7140 MachinePointerInfo PtrInfo, EVT MemVT, 7141 MaybeAlign Alignment, 7142 MachineMemOperand::Flags MMOFlags, 7143 const AAMDNodes &AAInfo) { 7144 SDValue Undef = getUNDEF(Ptr.getValueType()); 7145 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7146 MemVT, Alignment, MMOFlags, AAInfo); 7147 } 7148 7149 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7150 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7151 MachineMemOperand *MMO) { 7152 SDValue Undef = getUNDEF(Ptr.getValueType()); 7153 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7154 MemVT, MMO); 7155 } 7156 7157 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7158 SDValue Base, SDValue Offset, 7159 ISD::MemIndexedMode AM) { 7160 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7161 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7162 // Don't propagate the invariant or dereferenceable flags. 7163 auto MMOFlags = 7164 LD->getMemOperand()->getFlags() & 7165 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7166 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7167 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7168 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7169 } 7170 7171 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7172 SDValue Ptr, MachinePointerInfo PtrInfo, 7173 Align Alignment, 7174 MachineMemOperand::Flags MMOFlags, 7175 const AAMDNodes &AAInfo) { 7176 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7177 7178 MMOFlags |= MachineMemOperand::MOStore; 7179 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7180 7181 if (PtrInfo.V.isNull()) 7182 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7183 7184 MachineFunction &MF = getMachineFunction(); 7185 uint64_t Size = 7186 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7187 MachineMemOperand *MMO = 7188 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7189 return getStore(Chain, dl, Val, Ptr, MMO); 7190 } 7191 7192 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7193 SDValue Ptr, MachineMemOperand *MMO) { 7194 assert(Chain.getValueType() == MVT::Other && 7195 "Invalid chain type"); 7196 EVT VT = Val.getValueType(); 7197 SDVTList VTs = getVTList(MVT::Other); 7198 SDValue Undef = getUNDEF(Ptr.getValueType()); 7199 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7200 FoldingSetNodeID ID; 7201 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7202 ID.AddInteger(VT.getRawBits()); 7203 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7204 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7205 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7206 void *IP = nullptr; 7207 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7208 cast<StoreSDNode>(E)->refineAlignment(MMO); 7209 return SDValue(E, 0); 7210 } 7211 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7212 ISD::UNINDEXED, false, VT, MMO); 7213 createOperands(N, Ops); 7214 7215 CSEMap.InsertNode(N, IP); 7216 InsertNode(N); 7217 SDValue V(N, 0); 7218 NewSDValueDbgMsg(V, "Creating new node: ", this); 7219 return V; 7220 } 7221 7222 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7223 SDValue Ptr, MachinePointerInfo PtrInfo, 7224 EVT SVT, Align Alignment, 7225 MachineMemOperand::Flags MMOFlags, 7226 const AAMDNodes &AAInfo) { 7227 assert(Chain.getValueType() == MVT::Other && 7228 "Invalid chain type"); 7229 7230 MMOFlags |= MachineMemOperand::MOStore; 7231 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7232 7233 if (PtrInfo.V.isNull()) 7234 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7235 7236 MachineFunction &MF = getMachineFunction(); 7237 MachineMemOperand *MMO = MF.getMachineMemOperand( 7238 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7239 Alignment, AAInfo); 7240 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7241 } 7242 7243 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7244 SDValue Ptr, EVT SVT, 7245 MachineMemOperand *MMO) { 7246 EVT VT = Val.getValueType(); 7247 7248 assert(Chain.getValueType() == MVT::Other && 7249 "Invalid chain type"); 7250 if (VT == SVT) 7251 return getStore(Chain, dl, Val, Ptr, MMO); 7252 7253 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7254 "Should only be a truncating store, not extending!"); 7255 assert(VT.isInteger() == SVT.isInteger() && 7256 "Can't do FP-INT conversion!"); 7257 assert(VT.isVector() == SVT.isVector() && 7258 "Cannot use trunc store to convert to or from a vector!"); 7259 assert((!VT.isVector() || 7260 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7261 "Cannot use trunc store to change the number of vector elements!"); 7262 7263 SDVTList VTs = getVTList(MVT::Other); 7264 SDValue Undef = getUNDEF(Ptr.getValueType()); 7265 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7266 FoldingSetNodeID ID; 7267 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7268 ID.AddInteger(SVT.getRawBits()); 7269 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7270 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7271 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7272 void *IP = nullptr; 7273 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7274 cast<StoreSDNode>(E)->refineAlignment(MMO); 7275 return SDValue(E, 0); 7276 } 7277 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7278 ISD::UNINDEXED, true, SVT, MMO); 7279 createOperands(N, Ops); 7280 7281 CSEMap.InsertNode(N, IP); 7282 InsertNode(N); 7283 SDValue V(N, 0); 7284 NewSDValueDbgMsg(V, "Creating new node: ", this); 7285 return V; 7286 } 7287 7288 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7289 SDValue Base, SDValue Offset, 7290 ISD::MemIndexedMode AM) { 7291 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7292 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7293 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7294 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7295 FoldingSetNodeID ID; 7296 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7297 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7298 ID.AddInteger(ST->getRawSubclassData()); 7299 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7300 void *IP = nullptr; 7301 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7302 return SDValue(E, 0); 7303 7304 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7305 ST->isTruncatingStore(), ST->getMemoryVT(), 7306 ST->getMemOperand()); 7307 createOperands(N, Ops); 7308 7309 CSEMap.InsertNode(N, IP); 7310 InsertNode(N); 7311 SDValue V(N, 0); 7312 NewSDValueDbgMsg(V, "Creating new node: ", this); 7313 return V; 7314 } 7315 7316 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7317 SDValue Base, SDValue Offset, SDValue Mask, 7318 SDValue PassThru, EVT MemVT, 7319 MachineMemOperand *MMO, 7320 ISD::MemIndexedMode AM, 7321 ISD::LoadExtType ExtTy, bool isExpanding) { 7322 bool Indexed = AM != ISD::UNINDEXED; 7323 assert((Indexed || Offset.isUndef()) && 7324 "Unindexed masked load with an offset!"); 7325 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7326 : getVTList(VT, MVT::Other); 7327 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7328 FoldingSetNodeID ID; 7329 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7330 ID.AddInteger(MemVT.getRawBits()); 7331 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7332 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7333 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7334 void *IP = nullptr; 7335 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7336 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7337 return SDValue(E, 0); 7338 } 7339 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7340 AM, ExtTy, isExpanding, MemVT, MMO); 7341 createOperands(N, Ops); 7342 7343 CSEMap.InsertNode(N, IP); 7344 InsertNode(N); 7345 SDValue V(N, 0); 7346 NewSDValueDbgMsg(V, "Creating new node: ", this); 7347 return V; 7348 } 7349 7350 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7351 SDValue Base, SDValue Offset, 7352 ISD::MemIndexedMode AM) { 7353 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7354 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7355 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7356 Offset, LD->getMask(), LD->getPassThru(), 7357 LD->getMemoryVT(), LD->getMemOperand(), AM, 7358 LD->getExtensionType(), LD->isExpandingLoad()); 7359 } 7360 7361 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7362 SDValue Val, SDValue Base, SDValue Offset, 7363 SDValue Mask, EVT MemVT, 7364 MachineMemOperand *MMO, 7365 ISD::MemIndexedMode AM, bool IsTruncating, 7366 bool IsCompressing) { 7367 assert(Chain.getValueType() == MVT::Other && 7368 "Invalid chain type"); 7369 bool Indexed = AM != ISD::UNINDEXED; 7370 assert((Indexed || Offset.isUndef()) && 7371 "Unindexed masked store with an offset!"); 7372 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7373 : getVTList(MVT::Other); 7374 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7375 FoldingSetNodeID ID; 7376 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7377 ID.AddInteger(MemVT.getRawBits()); 7378 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7379 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7380 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7381 void *IP = nullptr; 7382 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7383 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7384 return SDValue(E, 0); 7385 } 7386 auto *N = 7387 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7388 IsTruncating, IsCompressing, MemVT, MMO); 7389 createOperands(N, Ops); 7390 7391 CSEMap.InsertNode(N, IP); 7392 InsertNode(N); 7393 SDValue V(N, 0); 7394 NewSDValueDbgMsg(V, "Creating new node: ", this); 7395 return V; 7396 } 7397 7398 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7399 SDValue Base, SDValue Offset, 7400 ISD::MemIndexedMode AM) { 7401 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7402 assert(ST->getOffset().isUndef() && 7403 "Masked store is already a indexed store!"); 7404 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7405 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7406 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7407 } 7408 7409 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7410 ArrayRef<SDValue> Ops, 7411 MachineMemOperand *MMO, 7412 ISD::MemIndexType IndexType, 7413 ISD::LoadExtType ExtTy) { 7414 assert(Ops.size() == 6 && "Incompatible number of operands"); 7415 7416 FoldingSetNodeID ID; 7417 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7418 ID.AddInteger(VT.getRawBits()); 7419 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7420 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7421 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7422 void *IP = nullptr; 7423 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7424 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7425 return SDValue(E, 0); 7426 } 7427 7428 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7429 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7430 VTs, VT, MMO, IndexType, ExtTy); 7431 createOperands(N, Ops); 7432 7433 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7434 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7435 assert(N->getMask().getValueType().getVectorElementCount() == 7436 N->getValueType(0).getVectorElementCount() && 7437 "Vector width mismatch between mask and data"); 7438 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7439 N->getValueType(0).getVectorElementCount().isScalable() && 7440 "Scalable flags of index and data do not match"); 7441 assert(ElementCount::isKnownGE( 7442 N->getIndex().getValueType().getVectorElementCount(), 7443 N->getValueType(0).getVectorElementCount()) && 7444 "Vector width mismatch between index and data"); 7445 assert(isa<ConstantSDNode>(N->getScale()) && 7446 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7447 "Scale should be a constant power of 2"); 7448 7449 CSEMap.InsertNode(N, IP); 7450 InsertNode(N); 7451 SDValue V(N, 0); 7452 NewSDValueDbgMsg(V, "Creating new node: ", this); 7453 return V; 7454 } 7455 7456 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7457 ArrayRef<SDValue> Ops, 7458 MachineMemOperand *MMO, 7459 ISD::MemIndexType IndexType, 7460 bool IsTrunc) { 7461 assert(Ops.size() == 6 && "Incompatible number of operands"); 7462 7463 FoldingSetNodeID ID; 7464 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7465 ID.AddInteger(VT.getRawBits()); 7466 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7467 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7468 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7469 void *IP = nullptr; 7470 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7471 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7472 return SDValue(E, 0); 7473 } 7474 7475 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7476 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7477 VTs, VT, MMO, IndexType, IsTrunc); 7478 createOperands(N, Ops); 7479 7480 assert(N->getMask().getValueType().getVectorElementCount() == 7481 N->getValue().getValueType().getVectorElementCount() && 7482 "Vector width mismatch between mask and data"); 7483 assert( 7484 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7485 N->getValue().getValueType().getVectorElementCount().isScalable() && 7486 "Scalable flags of index and data do not match"); 7487 assert(ElementCount::isKnownGE( 7488 N->getIndex().getValueType().getVectorElementCount(), 7489 N->getValue().getValueType().getVectorElementCount()) && 7490 "Vector width mismatch between index and data"); 7491 assert(isa<ConstantSDNode>(N->getScale()) && 7492 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7493 "Scale should be a constant power of 2"); 7494 7495 CSEMap.InsertNode(N, IP); 7496 InsertNode(N); 7497 SDValue V(N, 0); 7498 NewSDValueDbgMsg(V, "Creating new node: ", this); 7499 return V; 7500 } 7501 7502 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7503 // select undef, T, F --> T (if T is a constant), otherwise F 7504 // select, ?, undef, F --> F 7505 // select, ?, T, undef --> T 7506 if (Cond.isUndef()) 7507 return isConstantValueOfAnyType(T) ? T : F; 7508 if (T.isUndef()) 7509 return F; 7510 if (F.isUndef()) 7511 return T; 7512 7513 // select true, T, F --> T 7514 // select false, T, F --> F 7515 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7516 return CondC->isNullValue() ? F : T; 7517 7518 // TODO: This should simplify VSELECT with constant condition using something 7519 // like this (but check boolean contents to be complete?): 7520 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7521 // return T; 7522 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7523 // return F; 7524 7525 // select ?, T, T --> T 7526 if (T == F) 7527 return T; 7528 7529 return SDValue(); 7530 } 7531 7532 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7533 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7534 if (X.isUndef()) 7535 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7536 // shift X, undef --> undef (because it may shift by the bitwidth) 7537 if (Y.isUndef()) 7538 return getUNDEF(X.getValueType()); 7539 7540 // shift 0, Y --> 0 7541 // shift X, 0 --> X 7542 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7543 return X; 7544 7545 // shift X, C >= bitwidth(X) --> undef 7546 // All vector elements must be too big (or undef) to avoid partial undefs. 7547 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7548 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7549 }; 7550 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7551 return getUNDEF(X.getValueType()); 7552 7553 return SDValue(); 7554 } 7555 7556 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7557 SDNodeFlags Flags) { 7558 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7559 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7560 // operation is poison. That result can be relaxed to undef. 7561 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7562 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7563 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7564 (YC && YC->getValueAPF().isNaN()); 7565 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7566 (YC && YC->getValueAPF().isInfinity()); 7567 7568 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7569 return getUNDEF(X.getValueType()); 7570 7571 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7572 return getUNDEF(X.getValueType()); 7573 7574 if (!YC) 7575 return SDValue(); 7576 7577 // X + -0.0 --> X 7578 if (Opcode == ISD::FADD) 7579 if (YC->getValueAPF().isNegZero()) 7580 return X; 7581 7582 // X - +0.0 --> X 7583 if (Opcode == ISD::FSUB) 7584 if (YC->getValueAPF().isPosZero()) 7585 return X; 7586 7587 // X * 1.0 --> X 7588 // X / 1.0 --> X 7589 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7590 if (YC->getValueAPF().isExactlyValue(1.0)) 7591 return X; 7592 7593 // X * 0.0 --> 0.0 7594 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7595 if (YC->getValueAPF().isZero()) 7596 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7597 7598 return SDValue(); 7599 } 7600 7601 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7602 SDValue Ptr, SDValue SV, unsigned Align) { 7603 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7604 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7605 } 7606 7607 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7608 ArrayRef<SDUse> Ops) { 7609 switch (Ops.size()) { 7610 case 0: return getNode(Opcode, DL, VT); 7611 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7612 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7613 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7614 default: break; 7615 } 7616 7617 // Copy from an SDUse array into an SDValue array for use with 7618 // the regular getNode logic. 7619 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7620 return getNode(Opcode, DL, VT, NewOps); 7621 } 7622 7623 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7624 ArrayRef<SDValue> Ops) { 7625 SDNodeFlags Flags; 7626 if (Inserter) 7627 Flags = Inserter->getFlags(); 7628 return getNode(Opcode, DL, VT, Ops, Flags); 7629 } 7630 7631 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7632 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7633 unsigned NumOps = Ops.size(); 7634 switch (NumOps) { 7635 case 0: return getNode(Opcode, DL, VT); 7636 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7637 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7638 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7639 default: break; 7640 } 7641 7642 #ifndef NDEBUG 7643 for (auto &Op : Ops) 7644 assert(Op.getOpcode() != ISD::DELETED_NODE && 7645 "Operand is DELETED_NODE!"); 7646 #endif 7647 7648 switch (Opcode) { 7649 default: break; 7650 case ISD::BUILD_VECTOR: 7651 // Attempt to simplify BUILD_VECTOR. 7652 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7653 return V; 7654 break; 7655 case ISD::CONCAT_VECTORS: 7656 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7657 return V; 7658 break; 7659 case ISD::SELECT_CC: 7660 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7661 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7662 "LHS and RHS of condition must have same type!"); 7663 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7664 "True and False arms of SelectCC must have same type!"); 7665 assert(Ops[2].getValueType() == VT && 7666 "select_cc node must be of same type as true and false value!"); 7667 break; 7668 case ISD::BR_CC: 7669 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7670 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7671 "LHS/RHS of comparison should match types!"); 7672 break; 7673 } 7674 7675 // Memoize nodes. 7676 SDNode *N; 7677 SDVTList VTs = getVTList(VT); 7678 7679 if (VT != MVT::Glue) { 7680 FoldingSetNodeID ID; 7681 AddNodeIDNode(ID, Opcode, VTs, Ops); 7682 void *IP = nullptr; 7683 7684 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7685 return SDValue(E, 0); 7686 7687 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7688 createOperands(N, Ops); 7689 7690 CSEMap.InsertNode(N, IP); 7691 } else { 7692 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7693 createOperands(N, Ops); 7694 } 7695 7696 N->setFlags(Flags); 7697 InsertNode(N); 7698 SDValue V(N, 0); 7699 NewSDValueDbgMsg(V, "Creating new node: ", this); 7700 return V; 7701 } 7702 7703 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7704 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7705 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7706 } 7707 7708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7709 ArrayRef<SDValue> Ops) { 7710 SDNodeFlags Flags; 7711 if (Inserter) 7712 Flags = Inserter->getFlags(); 7713 return getNode(Opcode, DL, VTList, Ops, Flags); 7714 } 7715 7716 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7717 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7718 if (VTList.NumVTs == 1) 7719 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7720 7721 #ifndef NDEBUG 7722 for (auto &Op : Ops) 7723 assert(Op.getOpcode() != ISD::DELETED_NODE && 7724 "Operand is DELETED_NODE!"); 7725 #endif 7726 7727 switch (Opcode) { 7728 case ISD::STRICT_FP_EXTEND: 7729 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7730 "Invalid STRICT_FP_EXTEND!"); 7731 assert(VTList.VTs[0].isFloatingPoint() && 7732 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7733 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7734 "STRICT_FP_EXTEND result type should be vector iff the operand " 7735 "type is vector!"); 7736 assert((!VTList.VTs[0].isVector() || 7737 VTList.VTs[0].getVectorNumElements() == 7738 Ops[1].getValueType().getVectorNumElements()) && 7739 "Vector element count mismatch!"); 7740 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7741 "Invalid fpext node, dst <= src!"); 7742 break; 7743 case ISD::STRICT_FP_ROUND: 7744 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7745 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7746 "STRICT_FP_ROUND result type should be vector iff the operand " 7747 "type is vector!"); 7748 assert((!VTList.VTs[0].isVector() || 7749 VTList.VTs[0].getVectorNumElements() == 7750 Ops[1].getValueType().getVectorNumElements()) && 7751 "Vector element count mismatch!"); 7752 assert(VTList.VTs[0].isFloatingPoint() && 7753 Ops[1].getValueType().isFloatingPoint() && 7754 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7755 isa<ConstantSDNode>(Ops[2]) && 7756 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7757 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7758 "Invalid STRICT_FP_ROUND!"); 7759 break; 7760 #if 0 7761 // FIXME: figure out how to safely handle things like 7762 // int foo(int x) { return 1 << (x & 255); } 7763 // int bar() { return foo(256); } 7764 case ISD::SRA_PARTS: 7765 case ISD::SRL_PARTS: 7766 case ISD::SHL_PARTS: 7767 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7768 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7769 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7770 else if (N3.getOpcode() == ISD::AND) 7771 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7772 // If the and is only masking out bits that cannot effect the shift, 7773 // eliminate the and. 7774 unsigned NumBits = VT.getScalarSizeInBits()*2; 7775 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7776 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7777 } 7778 break; 7779 #endif 7780 } 7781 7782 // Memoize the node unless it returns a flag. 7783 SDNode *N; 7784 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7785 FoldingSetNodeID ID; 7786 AddNodeIDNode(ID, Opcode, VTList, Ops); 7787 void *IP = nullptr; 7788 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7789 return SDValue(E, 0); 7790 7791 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7792 createOperands(N, Ops); 7793 CSEMap.InsertNode(N, IP); 7794 } else { 7795 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7796 createOperands(N, Ops); 7797 } 7798 7799 N->setFlags(Flags); 7800 InsertNode(N); 7801 SDValue V(N, 0); 7802 NewSDValueDbgMsg(V, "Creating new node: ", this); 7803 return V; 7804 } 7805 7806 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7807 SDVTList VTList) { 7808 return getNode(Opcode, DL, VTList, None); 7809 } 7810 7811 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7812 SDValue N1) { 7813 SDValue Ops[] = { N1 }; 7814 return getNode(Opcode, DL, VTList, Ops); 7815 } 7816 7817 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7818 SDValue N1, SDValue N2) { 7819 SDValue Ops[] = { N1, N2 }; 7820 return getNode(Opcode, DL, VTList, Ops); 7821 } 7822 7823 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7824 SDValue N1, SDValue N2, SDValue N3) { 7825 SDValue Ops[] = { N1, N2, N3 }; 7826 return getNode(Opcode, DL, VTList, Ops); 7827 } 7828 7829 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7830 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7831 SDValue Ops[] = { N1, N2, N3, N4 }; 7832 return getNode(Opcode, DL, VTList, Ops); 7833 } 7834 7835 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7836 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7837 SDValue N5) { 7838 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7839 return getNode(Opcode, DL, VTList, Ops); 7840 } 7841 7842 SDVTList SelectionDAG::getVTList(EVT VT) { 7843 return makeVTList(SDNode::getValueTypeList(VT), 1); 7844 } 7845 7846 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7847 FoldingSetNodeID ID; 7848 ID.AddInteger(2U); 7849 ID.AddInteger(VT1.getRawBits()); 7850 ID.AddInteger(VT2.getRawBits()); 7851 7852 void *IP = nullptr; 7853 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7854 if (!Result) { 7855 EVT *Array = Allocator.Allocate<EVT>(2); 7856 Array[0] = VT1; 7857 Array[1] = VT2; 7858 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7859 VTListMap.InsertNode(Result, IP); 7860 } 7861 return Result->getSDVTList(); 7862 } 7863 7864 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7865 FoldingSetNodeID ID; 7866 ID.AddInteger(3U); 7867 ID.AddInteger(VT1.getRawBits()); 7868 ID.AddInteger(VT2.getRawBits()); 7869 ID.AddInteger(VT3.getRawBits()); 7870 7871 void *IP = nullptr; 7872 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7873 if (!Result) { 7874 EVT *Array = Allocator.Allocate<EVT>(3); 7875 Array[0] = VT1; 7876 Array[1] = VT2; 7877 Array[2] = VT3; 7878 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7879 VTListMap.InsertNode(Result, IP); 7880 } 7881 return Result->getSDVTList(); 7882 } 7883 7884 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7885 FoldingSetNodeID ID; 7886 ID.AddInteger(4U); 7887 ID.AddInteger(VT1.getRawBits()); 7888 ID.AddInteger(VT2.getRawBits()); 7889 ID.AddInteger(VT3.getRawBits()); 7890 ID.AddInteger(VT4.getRawBits()); 7891 7892 void *IP = nullptr; 7893 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7894 if (!Result) { 7895 EVT *Array = Allocator.Allocate<EVT>(4); 7896 Array[0] = VT1; 7897 Array[1] = VT2; 7898 Array[2] = VT3; 7899 Array[3] = VT4; 7900 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7901 VTListMap.InsertNode(Result, IP); 7902 } 7903 return Result->getSDVTList(); 7904 } 7905 7906 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7907 unsigned NumVTs = VTs.size(); 7908 FoldingSetNodeID ID; 7909 ID.AddInteger(NumVTs); 7910 for (unsigned index = 0; index < NumVTs; index++) { 7911 ID.AddInteger(VTs[index].getRawBits()); 7912 } 7913 7914 void *IP = nullptr; 7915 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7916 if (!Result) { 7917 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7918 llvm::copy(VTs, Array); 7919 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7920 VTListMap.InsertNode(Result, IP); 7921 } 7922 return Result->getSDVTList(); 7923 } 7924 7925 7926 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7927 /// specified operands. If the resultant node already exists in the DAG, 7928 /// this does not modify the specified node, instead it returns the node that 7929 /// already exists. If the resultant node does not exist in the DAG, the 7930 /// input node is returned. As a degenerate case, if you specify the same 7931 /// input operands as the node already has, the input node is returned. 7932 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7933 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7934 7935 // Check to see if there is no change. 7936 if (Op == N->getOperand(0)) return N; 7937 7938 // See if the modified node already exists. 7939 void *InsertPos = nullptr; 7940 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7941 return Existing; 7942 7943 // Nope it doesn't. Remove the node from its current place in the maps. 7944 if (InsertPos) 7945 if (!RemoveNodeFromCSEMaps(N)) 7946 InsertPos = nullptr; 7947 7948 // Now we update the operands. 7949 N->OperandList[0].set(Op); 7950 7951 updateDivergence(N); 7952 // If this gets put into a CSE map, add it. 7953 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7954 return N; 7955 } 7956 7957 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7958 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7959 7960 // Check to see if there is no change. 7961 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7962 return N; // No operands changed, just return the input node. 7963 7964 // See if the modified node already exists. 7965 void *InsertPos = nullptr; 7966 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7967 return Existing; 7968 7969 // Nope it doesn't. Remove the node from its current place in the maps. 7970 if (InsertPos) 7971 if (!RemoveNodeFromCSEMaps(N)) 7972 InsertPos = nullptr; 7973 7974 // Now we update the operands. 7975 if (N->OperandList[0] != Op1) 7976 N->OperandList[0].set(Op1); 7977 if (N->OperandList[1] != Op2) 7978 N->OperandList[1].set(Op2); 7979 7980 updateDivergence(N); 7981 // If this gets put into a CSE map, add it. 7982 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7983 return N; 7984 } 7985 7986 SDNode *SelectionDAG:: 7987 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7988 SDValue Ops[] = { Op1, Op2, Op3 }; 7989 return UpdateNodeOperands(N, Ops); 7990 } 7991 7992 SDNode *SelectionDAG:: 7993 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7994 SDValue Op3, SDValue Op4) { 7995 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7996 return UpdateNodeOperands(N, Ops); 7997 } 7998 7999 SDNode *SelectionDAG:: 8000 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8001 SDValue Op3, SDValue Op4, SDValue Op5) { 8002 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8003 return UpdateNodeOperands(N, Ops); 8004 } 8005 8006 SDNode *SelectionDAG:: 8007 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8008 unsigned NumOps = Ops.size(); 8009 assert(N->getNumOperands() == NumOps && 8010 "Update with wrong number of operands"); 8011 8012 // If no operands changed just return the input node. 8013 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8014 return N; 8015 8016 // See if the modified node already exists. 8017 void *InsertPos = nullptr; 8018 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8019 return Existing; 8020 8021 // Nope it doesn't. Remove the node from its current place in the maps. 8022 if (InsertPos) 8023 if (!RemoveNodeFromCSEMaps(N)) 8024 InsertPos = nullptr; 8025 8026 // Now we update the operands. 8027 for (unsigned i = 0; i != NumOps; ++i) 8028 if (N->OperandList[i] != Ops[i]) 8029 N->OperandList[i].set(Ops[i]); 8030 8031 updateDivergence(N); 8032 // If this gets put into a CSE map, add it. 8033 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8034 return N; 8035 } 8036 8037 /// DropOperands - Release the operands and set this node to have 8038 /// zero operands. 8039 void SDNode::DropOperands() { 8040 // Unlike the code in MorphNodeTo that does this, we don't need to 8041 // watch for dead nodes here. 8042 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8043 SDUse &Use = *I++; 8044 Use.set(SDValue()); 8045 } 8046 } 8047 8048 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8049 ArrayRef<MachineMemOperand *> NewMemRefs) { 8050 if (NewMemRefs.empty()) { 8051 N->clearMemRefs(); 8052 return; 8053 } 8054 8055 // Check if we can avoid allocating by storing a single reference directly. 8056 if (NewMemRefs.size() == 1) { 8057 N->MemRefs = NewMemRefs[0]; 8058 N->NumMemRefs = 1; 8059 return; 8060 } 8061 8062 MachineMemOperand **MemRefsBuffer = 8063 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8064 llvm::copy(NewMemRefs, MemRefsBuffer); 8065 N->MemRefs = MemRefsBuffer; 8066 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8067 } 8068 8069 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8070 /// machine opcode. 8071 /// 8072 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8073 EVT VT) { 8074 SDVTList VTs = getVTList(VT); 8075 return SelectNodeTo(N, MachineOpc, VTs, None); 8076 } 8077 8078 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8079 EVT VT, SDValue Op1) { 8080 SDVTList VTs = getVTList(VT); 8081 SDValue Ops[] = { Op1 }; 8082 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8083 } 8084 8085 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8086 EVT VT, SDValue Op1, 8087 SDValue Op2) { 8088 SDVTList VTs = getVTList(VT); 8089 SDValue Ops[] = { Op1, Op2 }; 8090 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8091 } 8092 8093 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8094 EVT VT, SDValue Op1, 8095 SDValue Op2, SDValue Op3) { 8096 SDVTList VTs = getVTList(VT); 8097 SDValue Ops[] = { Op1, Op2, Op3 }; 8098 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8099 } 8100 8101 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8102 EVT VT, ArrayRef<SDValue> Ops) { 8103 SDVTList VTs = getVTList(VT); 8104 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8105 } 8106 8107 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8108 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8109 SDVTList VTs = getVTList(VT1, VT2); 8110 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8111 } 8112 8113 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8114 EVT VT1, EVT VT2) { 8115 SDVTList VTs = getVTList(VT1, VT2); 8116 return SelectNodeTo(N, MachineOpc, VTs, None); 8117 } 8118 8119 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8120 EVT VT1, EVT VT2, EVT VT3, 8121 ArrayRef<SDValue> Ops) { 8122 SDVTList VTs = getVTList(VT1, VT2, VT3); 8123 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8124 } 8125 8126 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8127 EVT VT1, EVT VT2, 8128 SDValue Op1, SDValue Op2) { 8129 SDVTList VTs = getVTList(VT1, VT2); 8130 SDValue Ops[] = { Op1, Op2 }; 8131 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8132 } 8133 8134 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8135 SDVTList VTs,ArrayRef<SDValue> Ops) { 8136 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8137 // Reset the NodeID to -1. 8138 New->setNodeId(-1); 8139 if (New != N) { 8140 ReplaceAllUsesWith(N, New); 8141 RemoveDeadNode(N); 8142 } 8143 return New; 8144 } 8145 8146 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8147 /// the line number information on the merged node since it is not possible to 8148 /// preserve the information that operation is associated with multiple lines. 8149 /// This will make the debugger working better at -O0, were there is a higher 8150 /// probability having other instructions associated with that line. 8151 /// 8152 /// For IROrder, we keep the smaller of the two 8153 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8154 DebugLoc NLoc = N->getDebugLoc(); 8155 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8156 N->setDebugLoc(DebugLoc()); 8157 } 8158 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8159 N->setIROrder(Order); 8160 return N; 8161 } 8162 8163 /// MorphNodeTo - This *mutates* the specified node to have the specified 8164 /// return type, opcode, and operands. 8165 /// 8166 /// Note that MorphNodeTo returns the resultant node. If there is already a 8167 /// node of the specified opcode and operands, it returns that node instead of 8168 /// the current one. Note that the SDLoc need not be the same. 8169 /// 8170 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8171 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8172 /// node, and because it doesn't require CSE recalculation for any of 8173 /// the node's users. 8174 /// 8175 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8176 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8177 /// the legalizer which maintain worklists that would need to be updated when 8178 /// deleting things. 8179 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8180 SDVTList VTs, ArrayRef<SDValue> Ops) { 8181 // If an identical node already exists, use it. 8182 void *IP = nullptr; 8183 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8184 FoldingSetNodeID ID; 8185 AddNodeIDNode(ID, Opc, VTs, Ops); 8186 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8187 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8188 } 8189 8190 if (!RemoveNodeFromCSEMaps(N)) 8191 IP = nullptr; 8192 8193 // Start the morphing. 8194 N->NodeType = Opc; 8195 N->ValueList = VTs.VTs; 8196 N->NumValues = VTs.NumVTs; 8197 8198 // Clear the operands list, updating used nodes to remove this from their 8199 // use list. Keep track of any operands that become dead as a result. 8200 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8201 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8202 SDUse &Use = *I++; 8203 SDNode *Used = Use.getNode(); 8204 Use.set(SDValue()); 8205 if (Used->use_empty()) 8206 DeadNodeSet.insert(Used); 8207 } 8208 8209 // For MachineNode, initialize the memory references information. 8210 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8211 MN->clearMemRefs(); 8212 8213 // Swap for an appropriately sized array from the recycler. 8214 removeOperands(N); 8215 createOperands(N, Ops); 8216 8217 // Delete any nodes that are still dead after adding the uses for the 8218 // new operands. 8219 if (!DeadNodeSet.empty()) { 8220 SmallVector<SDNode *, 16> DeadNodes; 8221 for (SDNode *N : DeadNodeSet) 8222 if (N->use_empty()) 8223 DeadNodes.push_back(N); 8224 RemoveDeadNodes(DeadNodes); 8225 } 8226 8227 if (IP) 8228 CSEMap.InsertNode(N, IP); // Memoize the new node. 8229 return N; 8230 } 8231 8232 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8233 unsigned OrigOpc = Node->getOpcode(); 8234 unsigned NewOpc; 8235 switch (OrigOpc) { 8236 default: 8237 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8238 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8239 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8240 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8241 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8242 #include "llvm/IR/ConstrainedOps.def" 8243 } 8244 8245 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8246 8247 // We're taking this node out of the chain, so we need to re-link things. 8248 SDValue InputChain = Node->getOperand(0); 8249 SDValue OutputChain = SDValue(Node, 1); 8250 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8251 8252 SmallVector<SDValue, 3> Ops; 8253 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8254 Ops.push_back(Node->getOperand(i)); 8255 8256 SDVTList VTs = getVTList(Node->getValueType(0)); 8257 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8258 8259 // MorphNodeTo can operate in two ways: if an existing node with the 8260 // specified operands exists, it can just return it. Otherwise, it 8261 // updates the node in place to have the requested operands. 8262 if (Res == Node) { 8263 // If we updated the node in place, reset the node ID. To the isel, 8264 // this should be just like a newly allocated machine node. 8265 Res->setNodeId(-1); 8266 } else { 8267 ReplaceAllUsesWith(Node, Res); 8268 RemoveDeadNode(Node); 8269 } 8270 8271 return Res; 8272 } 8273 8274 /// getMachineNode - These are used for target selectors to create a new node 8275 /// with specified return type(s), MachineInstr opcode, and operands. 8276 /// 8277 /// Note that getMachineNode returns the resultant node. If there is already a 8278 /// node of the specified opcode and operands, it returns that node instead of 8279 /// the current one. 8280 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8281 EVT VT) { 8282 SDVTList VTs = getVTList(VT); 8283 return getMachineNode(Opcode, dl, VTs, None); 8284 } 8285 8286 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8287 EVT VT, SDValue Op1) { 8288 SDVTList VTs = getVTList(VT); 8289 SDValue Ops[] = { Op1 }; 8290 return getMachineNode(Opcode, dl, VTs, Ops); 8291 } 8292 8293 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8294 EVT VT, SDValue Op1, SDValue Op2) { 8295 SDVTList VTs = getVTList(VT); 8296 SDValue Ops[] = { Op1, Op2 }; 8297 return getMachineNode(Opcode, dl, VTs, Ops); 8298 } 8299 8300 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8301 EVT VT, SDValue Op1, SDValue Op2, 8302 SDValue Op3) { 8303 SDVTList VTs = getVTList(VT); 8304 SDValue Ops[] = { Op1, Op2, Op3 }; 8305 return getMachineNode(Opcode, dl, VTs, Ops); 8306 } 8307 8308 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8309 EVT VT, ArrayRef<SDValue> Ops) { 8310 SDVTList VTs = getVTList(VT); 8311 return getMachineNode(Opcode, dl, VTs, Ops); 8312 } 8313 8314 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8315 EVT VT1, EVT VT2, SDValue Op1, 8316 SDValue Op2) { 8317 SDVTList VTs = getVTList(VT1, VT2); 8318 SDValue Ops[] = { Op1, Op2 }; 8319 return getMachineNode(Opcode, dl, VTs, Ops); 8320 } 8321 8322 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8323 EVT VT1, EVT VT2, SDValue Op1, 8324 SDValue Op2, SDValue Op3) { 8325 SDVTList VTs = getVTList(VT1, VT2); 8326 SDValue Ops[] = { Op1, Op2, Op3 }; 8327 return getMachineNode(Opcode, dl, VTs, Ops); 8328 } 8329 8330 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8331 EVT VT1, EVT VT2, 8332 ArrayRef<SDValue> Ops) { 8333 SDVTList VTs = getVTList(VT1, VT2); 8334 return getMachineNode(Opcode, dl, VTs, Ops); 8335 } 8336 8337 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8338 EVT VT1, EVT VT2, EVT VT3, 8339 SDValue Op1, SDValue Op2) { 8340 SDVTList VTs = getVTList(VT1, VT2, VT3); 8341 SDValue Ops[] = { Op1, Op2 }; 8342 return getMachineNode(Opcode, dl, VTs, Ops); 8343 } 8344 8345 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8346 EVT VT1, EVT VT2, EVT VT3, 8347 SDValue Op1, SDValue Op2, 8348 SDValue Op3) { 8349 SDVTList VTs = getVTList(VT1, VT2, VT3); 8350 SDValue Ops[] = { Op1, Op2, Op3 }; 8351 return getMachineNode(Opcode, dl, VTs, Ops); 8352 } 8353 8354 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8355 EVT VT1, EVT VT2, EVT VT3, 8356 ArrayRef<SDValue> Ops) { 8357 SDVTList VTs = getVTList(VT1, VT2, VT3); 8358 return getMachineNode(Opcode, dl, VTs, Ops); 8359 } 8360 8361 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8362 ArrayRef<EVT> ResultTys, 8363 ArrayRef<SDValue> Ops) { 8364 SDVTList VTs = getVTList(ResultTys); 8365 return getMachineNode(Opcode, dl, VTs, Ops); 8366 } 8367 8368 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8369 SDVTList VTs, 8370 ArrayRef<SDValue> Ops) { 8371 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8372 MachineSDNode *N; 8373 void *IP = nullptr; 8374 8375 if (DoCSE) { 8376 FoldingSetNodeID ID; 8377 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8378 IP = nullptr; 8379 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8380 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8381 } 8382 } 8383 8384 // Allocate a new MachineSDNode. 8385 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8386 createOperands(N, Ops); 8387 8388 if (DoCSE) 8389 CSEMap.InsertNode(N, IP); 8390 8391 InsertNode(N); 8392 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8393 return N; 8394 } 8395 8396 /// getTargetExtractSubreg - A convenience function for creating 8397 /// TargetOpcode::EXTRACT_SUBREG nodes. 8398 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8399 SDValue Operand) { 8400 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8401 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8402 VT, Operand, SRIdxVal); 8403 return SDValue(Subreg, 0); 8404 } 8405 8406 /// getTargetInsertSubreg - A convenience function for creating 8407 /// TargetOpcode::INSERT_SUBREG nodes. 8408 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8409 SDValue Operand, SDValue Subreg) { 8410 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8411 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8412 VT, Operand, Subreg, SRIdxVal); 8413 return SDValue(Result, 0); 8414 } 8415 8416 /// getNodeIfExists - Get the specified node if it's already available, or 8417 /// else return NULL. 8418 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8419 ArrayRef<SDValue> Ops) { 8420 SDNodeFlags Flags; 8421 if (Inserter) 8422 Flags = Inserter->getFlags(); 8423 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8424 } 8425 8426 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8427 ArrayRef<SDValue> Ops, 8428 const SDNodeFlags Flags) { 8429 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8430 FoldingSetNodeID ID; 8431 AddNodeIDNode(ID, Opcode, VTList, Ops); 8432 void *IP = nullptr; 8433 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8434 E->intersectFlagsWith(Flags); 8435 return E; 8436 } 8437 } 8438 return nullptr; 8439 } 8440 8441 /// doesNodeExist - Check if a node exists without modifying its flags. 8442 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8443 ArrayRef<SDValue> Ops) { 8444 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8445 FoldingSetNodeID ID; 8446 AddNodeIDNode(ID, Opcode, VTList, Ops); 8447 void *IP = nullptr; 8448 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8449 return true; 8450 } 8451 return false; 8452 } 8453 8454 /// getDbgValue - Creates a SDDbgValue node. 8455 /// 8456 /// SDNode 8457 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8458 SDNode *N, unsigned R, bool IsIndirect, 8459 const DebugLoc &DL, unsigned O) { 8460 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8461 "Expected inlined-at fields to agree"); 8462 return new (DbgInfo->getAlloc()) 8463 SDDbgValue(Var, Expr, SDDbgOperand::fromNode(N, R), N, IsIndirect, DL, O, 8464 /*IsVariadic=*/false); 8465 } 8466 8467 /// Constant 8468 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8469 DIExpression *Expr, 8470 const Value *C, 8471 const DebugLoc &DL, unsigned O) { 8472 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8473 "Expected inlined-at fields to agree"); 8474 return new (DbgInfo->getAlloc()) SDDbgValue( 8475 Var, Expr, SDDbgOperand::fromConst(C), {}, /*IsIndirect=*/false, DL, O, 8476 /*IsVariadic=*/false); 8477 } 8478 8479 /// FrameIndex 8480 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8481 DIExpression *Expr, unsigned FI, 8482 bool IsIndirect, 8483 const DebugLoc &DL, 8484 unsigned O) { 8485 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8486 "Expected inlined-at fields to agree"); 8487 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8488 } 8489 8490 /// FrameIndex with dependencies 8491 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8492 DIExpression *Expr, unsigned FI, 8493 ArrayRef<SDNode *> Dependencies, 8494 bool IsIndirect, 8495 const DebugLoc &DL, 8496 unsigned O) { 8497 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8498 "Expected inlined-at fields to agree"); 8499 return new (DbgInfo->getAlloc()) 8500 SDDbgValue(Var, Expr, SDDbgOperand::fromFrameIdx(FI), Dependencies, 8501 IsIndirect, DL, O, 8502 /*IsVariadic=*/false); 8503 } 8504 8505 /// VReg 8506 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8507 unsigned VReg, bool IsIndirect, 8508 const DebugLoc &DL, unsigned O) { 8509 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8510 "Expected inlined-at fields to agree"); 8511 return new (DbgInfo->getAlloc()) 8512 SDDbgValue(Var, Expr, SDDbgOperand::fromVReg(VReg), {}, IsIndirect, DL, O, 8513 /*IsVariadic=*/false); 8514 } 8515 8516 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8517 ArrayRef<SDDbgOperand> Locs, 8518 ArrayRef<SDNode *> Dependencies, 8519 bool IsIndirect, const DebugLoc &DL, 8520 unsigned O, bool IsVariadic) { 8521 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8522 "Expected inlined-at fields to agree"); 8523 return new (DbgInfo->getAlloc()) 8524 SDDbgValue(Var, Expr, Locs, Dependencies, IsIndirect, DL, O, IsVariadic); 8525 } 8526 8527 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8528 unsigned OffsetInBits, unsigned SizeInBits, 8529 bool InvalidateDbg) { 8530 SDNode *FromNode = From.getNode(); 8531 SDNode *ToNode = To.getNode(); 8532 assert(FromNode && ToNode && "Can't modify dbg values"); 8533 8534 // PR35338 8535 // TODO: assert(From != To && "Redundant dbg value transfer"); 8536 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8537 if (From == To || FromNode == ToNode) 8538 return; 8539 8540 if (!FromNode->getHasDebugValue()) 8541 return; 8542 8543 SDDbgOperand FromLocOp = 8544 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8545 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8546 8547 SmallVector<SDDbgValue *, 2> ClonedDVs; 8548 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8549 if (Dbg->isInvalidated()) 8550 continue; 8551 8552 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8553 8554 // Create a new location ops vector that is equal to the old vector, but 8555 // with each instance of FromLocOp replaced with ToLocOp. 8556 bool Changed = false; 8557 auto NewLocOps = Dbg->copyLocationOps(); 8558 std::replace_if( 8559 NewLocOps.begin(), NewLocOps.end(), 8560 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8561 bool Match = Op == FromLocOp; 8562 Changed |= Match; 8563 return Match; 8564 }, 8565 ToLocOp); 8566 // Ignore this SDDbgValue if we didn't find a matching location. 8567 if (!Changed) 8568 continue; 8569 8570 DIVariable *Var = Dbg->getVariable(); 8571 auto *Expr = Dbg->getExpression(); 8572 // If a fragment is requested, update the expression. 8573 if (SizeInBits) { 8574 // When splitting a larger (e.g., sign-extended) value whose 8575 // lower bits are described with an SDDbgValue, do not attempt 8576 // to transfer the SDDbgValue to the upper bits. 8577 if (auto FI = Expr->getFragmentInfo()) 8578 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8579 continue; 8580 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8581 SizeInBits); 8582 if (!Fragment) 8583 continue; 8584 Expr = *Fragment; 8585 } 8586 8587 auto NewDependencies = Dbg->copySDNodes(); 8588 std::replace(NewDependencies.begin(), NewDependencies.end(), FromNode, 8589 ToNode); 8590 // Clone the SDDbgValue and move it to To. 8591 SDDbgValue *Clone = getDbgValueList( 8592 Var, Expr, NewLocOps, NewDependencies, Dbg->isIndirect(), 8593 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8594 Dbg->isVariadic()); 8595 ClonedDVs.push_back(Clone); 8596 8597 if (InvalidateDbg) { 8598 // Invalidate value and indicate the SDDbgValue should not be emitted. 8599 Dbg->setIsInvalidated(); 8600 Dbg->setIsEmitted(); 8601 } 8602 } 8603 8604 for (SDDbgValue *Dbg : ClonedDVs) { 8605 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8606 "Transferred DbgValues should depend on the new SDNode"); 8607 AddDbgValue(Dbg, false); 8608 } 8609 } 8610 8611 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8612 if (!N.getHasDebugValue()) 8613 return; 8614 8615 SmallVector<SDDbgValue *, 2> ClonedDVs; 8616 for (auto DV : GetDbgValues(&N)) { 8617 if (DV->isInvalidated()) 8618 continue; 8619 switch (N.getOpcode()) { 8620 default: 8621 break; 8622 case ISD::ADD: 8623 SDValue N0 = N.getOperand(0); 8624 SDValue N1 = N.getOperand(1); 8625 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8626 isConstantIntBuildVectorOrConstantInt(N1)) { 8627 uint64_t Offset = N.getConstantOperandVal(1); 8628 8629 // Rewrite an ADD constant node into a DIExpression. Since we are 8630 // performing arithmetic to compute the variable's *value* in the 8631 // DIExpression, we need to mark the expression with a 8632 // DW_OP_stack_value. 8633 auto *DIExpr = DV->getExpression(); 8634 auto NewLocOps = DV->copyLocationOps(); 8635 bool Changed = false; 8636 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8637 // We're not given a ResNo to compare against because the whole 8638 // node is going away. We know that any ISD::ADD only has one 8639 // result, so we can assume any node match is using the result. 8640 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8641 NewLocOps[i].getSDNode() != &N) 8642 continue; 8643 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8644 SmallVector<uint64_t, 3> ExprOps; 8645 DIExpression::appendOffset(ExprOps, Offset); 8646 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8647 Changed = true; 8648 } 8649 (void)Changed; 8650 assert(Changed && "Salvage target doesn't use N"); 8651 8652 auto NewDependencies = DV->copySDNodes(); 8653 std::replace(NewDependencies.begin(), NewDependencies.end(), &N, 8654 N0.getNode()); 8655 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8656 NewLocOps, NewDependencies, 8657 DV->isIndirect(), DV->getDebugLoc(), 8658 DV->getOrder(), DV->isVariadic()); 8659 ClonedDVs.push_back(Clone); 8660 DV->setIsInvalidated(); 8661 DV->setIsEmitted(); 8662 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8663 N0.getNode()->dumprFull(this); 8664 dbgs() << " into " << *DIExpr << '\n'); 8665 } 8666 } 8667 } 8668 8669 for (SDDbgValue *Dbg : ClonedDVs) { 8670 assert(!Dbg->getSDNodes().empty() && 8671 "Salvaged DbgValue should depend on a new SDNode"); 8672 AddDbgValue(Dbg, false); 8673 } 8674 } 8675 8676 /// Creates a SDDbgLabel node. 8677 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8678 const DebugLoc &DL, unsigned O) { 8679 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8680 "Expected inlined-at fields to agree"); 8681 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8682 } 8683 8684 namespace { 8685 8686 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8687 /// pointed to by a use iterator is deleted, increment the use iterator 8688 /// so that it doesn't dangle. 8689 /// 8690 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8691 SDNode::use_iterator &UI; 8692 SDNode::use_iterator &UE; 8693 8694 void NodeDeleted(SDNode *N, SDNode *E) override { 8695 // Increment the iterator as needed. 8696 while (UI != UE && N == *UI) 8697 ++UI; 8698 } 8699 8700 public: 8701 RAUWUpdateListener(SelectionDAG &d, 8702 SDNode::use_iterator &ui, 8703 SDNode::use_iterator &ue) 8704 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8705 }; 8706 8707 } // end anonymous namespace 8708 8709 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8710 /// This can cause recursive merging of nodes in the DAG. 8711 /// 8712 /// This version assumes From has a single result value. 8713 /// 8714 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8715 SDNode *From = FromN.getNode(); 8716 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8717 "Cannot replace with this method!"); 8718 assert(From != To.getNode() && "Cannot replace uses of with self"); 8719 8720 // Preserve Debug Values 8721 transferDbgValues(FromN, To); 8722 8723 // Iterate over all the existing uses of From. New uses will be added 8724 // to the beginning of the use list, which we avoid visiting. 8725 // This specifically avoids visiting uses of From that arise while the 8726 // replacement is happening, because any such uses would be the result 8727 // of CSE: If an existing node looks like From after one of its operands 8728 // is replaced by To, we don't want to replace of all its users with To 8729 // too. See PR3018 for more info. 8730 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8731 RAUWUpdateListener Listener(*this, UI, UE); 8732 while (UI != UE) { 8733 SDNode *User = *UI; 8734 8735 // This node is about to morph, remove its old self from the CSE maps. 8736 RemoveNodeFromCSEMaps(User); 8737 8738 // A user can appear in a use list multiple times, and when this 8739 // happens the uses are usually next to each other in the list. 8740 // To help reduce the number of CSE recomputations, process all 8741 // the uses of this user that we can find this way. 8742 do { 8743 SDUse &Use = UI.getUse(); 8744 ++UI; 8745 Use.set(To); 8746 if (To->isDivergent() != From->isDivergent()) 8747 updateDivergence(User); 8748 } while (UI != UE && *UI == User); 8749 // Now that we have modified User, add it back to the CSE maps. If it 8750 // already exists there, recursively merge the results together. 8751 AddModifiedNodeToCSEMaps(User); 8752 } 8753 8754 // If we just RAUW'd the root, take note. 8755 if (FromN == getRoot()) 8756 setRoot(To); 8757 } 8758 8759 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8760 /// This can cause recursive merging of nodes in the DAG. 8761 /// 8762 /// This version assumes that for each value of From, there is a 8763 /// corresponding value in To in the same position with the same type. 8764 /// 8765 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8766 #ifndef NDEBUG 8767 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8768 assert((!From->hasAnyUseOfValue(i) || 8769 From->getValueType(i) == To->getValueType(i)) && 8770 "Cannot use this version of ReplaceAllUsesWith!"); 8771 #endif 8772 8773 // Handle the trivial case. 8774 if (From == To) 8775 return; 8776 8777 // Preserve Debug Info. Only do this if there's a use. 8778 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8779 if (From->hasAnyUseOfValue(i)) { 8780 assert((i < To->getNumValues()) && "Invalid To location"); 8781 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8782 } 8783 8784 // Iterate over just the existing users of From. See the comments in 8785 // the ReplaceAllUsesWith above. 8786 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8787 RAUWUpdateListener Listener(*this, UI, UE); 8788 while (UI != UE) { 8789 SDNode *User = *UI; 8790 8791 // This node is about to morph, remove its old self from the CSE maps. 8792 RemoveNodeFromCSEMaps(User); 8793 8794 // A user can appear in a use list multiple times, and when this 8795 // happens the uses are usually next to each other in the list. 8796 // To help reduce the number of CSE recomputations, process all 8797 // the uses of this user that we can find this way. 8798 do { 8799 SDUse &Use = UI.getUse(); 8800 ++UI; 8801 Use.setNode(To); 8802 if (To->isDivergent() != From->isDivergent()) 8803 updateDivergence(User); 8804 } while (UI != UE && *UI == User); 8805 8806 // Now that we have modified User, add it back to the CSE maps. If it 8807 // already exists there, recursively merge the results together. 8808 AddModifiedNodeToCSEMaps(User); 8809 } 8810 8811 // If we just RAUW'd the root, take note. 8812 if (From == getRoot().getNode()) 8813 setRoot(SDValue(To, getRoot().getResNo())); 8814 } 8815 8816 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8817 /// This can cause recursive merging of nodes in the DAG. 8818 /// 8819 /// This version can replace From with any result values. To must match the 8820 /// number and types of values returned by From. 8821 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8822 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8823 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8824 8825 // Preserve Debug Info. 8826 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8827 transferDbgValues(SDValue(From, i), To[i]); 8828 8829 // Iterate over just the existing users of From. See the comments in 8830 // the ReplaceAllUsesWith above. 8831 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8832 RAUWUpdateListener Listener(*this, UI, UE); 8833 while (UI != UE) { 8834 SDNode *User = *UI; 8835 8836 // This node is about to morph, remove its old self from the CSE maps. 8837 RemoveNodeFromCSEMaps(User); 8838 8839 // A user can appear in a use list multiple times, and when this happens the 8840 // uses are usually next to each other in the list. To help reduce the 8841 // number of CSE and divergence recomputations, process all the uses of this 8842 // user that we can find this way. 8843 bool To_IsDivergent = false; 8844 do { 8845 SDUse &Use = UI.getUse(); 8846 const SDValue &ToOp = To[Use.getResNo()]; 8847 ++UI; 8848 Use.set(ToOp); 8849 To_IsDivergent |= ToOp->isDivergent(); 8850 } while (UI != UE && *UI == User); 8851 8852 if (To_IsDivergent != From->isDivergent()) 8853 updateDivergence(User); 8854 8855 // Now that we have modified User, add it back to the CSE maps. If it 8856 // already exists there, recursively merge the results together. 8857 AddModifiedNodeToCSEMaps(User); 8858 } 8859 8860 // If we just RAUW'd the root, take note. 8861 if (From == getRoot().getNode()) 8862 setRoot(SDValue(To[getRoot().getResNo()])); 8863 } 8864 8865 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8866 /// uses of other values produced by From.getNode() alone. The Deleted 8867 /// vector is handled the same way as for ReplaceAllUsesWith. 8868 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8869 // Handle the really simple, really trivial case efficiently. 8870 if (From == To) return; 8871 8872 // Handle the simple, trivial, case efficiently. 8873 if (From.getNode()->getNumValues() == 1) { 8874 ReplaceAllUsesWith(From, To); 8875 return; 8876 } 8877 8878 // Preserve Debug Info. 8879 transferDbgValues(From, To); 8880 8881 // Iterate over just the existing users of From. See the comments in 8882 // the ReplaceAllUsesWith above. 8883 SDNode::use_iterator UI = From.getNode()->use_begin(), 8884 UE = From.getNode()->use_end(); 8885 RAUWUpdateListener Listener(*this, UI, UE); 8886 while (UI != UE) { 8887 SDNode *User = *UI; 8888 bool UserRemovedFromCSEMaps = false; 8889 8890 // A user can appear in a use list multiple times, and when this 8891 // happens the uses are usually next to each other in the list. 8892 // To help reduce the number of CSE recomputations, process all 8893 // the uses of this user that we can find this way. 8894 do { 8895 SDUse &Use = UI.getUse(); 8896 8897 // Skip uses of different values from the same node. 8898 if (Use.getResNo() != From.getResNo()) { 8899 ++UI; 8900 continue; 8901 } 8902 8903 // If this node hasn't been modified yet, it's still in the CSE maps, 8904 // so remove its old self from the CSE maps. 8905 if (!UserRemovedFromCSEMaps) { 8906 RemoveNodeFromCSEMaps(User); 8907 UserRemovedFromCSEMaps = true; 8908 } 8909 8910 ++UI; 8911 Use.set(To); 8912 if (To->isDivergent() != From->isDivergent()) 8913 updateDivergence(User); 8914 } while (UI != UE && *UI == User); 8915 // We are iterating over all uses of the From node, so if a use 8916 // doesn't use the specific value, no changes are made. 8917 if (!UserRemovedFromCSEMaps) 8918 continue; 8919 8920 // Now that we have modified User, add it back to the CSE maps. If it 8921 // already exists there, recursively merge the results together. 8922 AddModifiedNodeToCSEMaps(User); 8923 } 8924 8925 // If we just RAUW'd the root, take note. 8926 if (From == getRoot()) 8927 setRoot(To); 8928 } 8929 8930 namespace { 8931 8932 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8933 /// to record information about a use. 8934 struct UseMemo { 8935 SDNode *User; 8936 unsigned Index; 8937 SDUse *Use; 8938 }; 8939 8940 /// operator< - Sort Memos by User. 8941 bool operator<(const UseMemo &L, const UseMemo &R) { 8942 return (intptr_t)L.User < (intptr_t)R.User; 8943 } 8944 8945 } // end anonymous namespace 8946 8947 bool SelectionDAG::calculateDivergence(SDNode *N) { 8948 if (TLI->isSDNodeAlwaysUniform(N)) { 8949 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8950 "Conflicting divergence information!"); 8951 return false; 8952 } 8953 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8954 return true; 8955 for (auto &Op : N->ops()) { 8956 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8957 return true; 8958 } 8959 return false; 8960 } 8961 8962 void SelectionDAG::updateDivergence(SDNode *N) { 8963 SmallVector<SDNode *, 16> Worklist(1, N); 8964 do { 8965 N = Worklist.pop_back_val(); 8966 bool IsDivergent = calculateDivergence(N); 8967 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8968 N->SDNodeBits.IsDivergent = IsDivergent; 8969 llvm::append_range(Worklist, N->uses()); 8970 } 8971 } while (!Worklist.empty()); 8972 } 8973 8974 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8975 DenseMap<SDNode *, unsigned> Degree; 8976 Order.reserve(AllNodes.size()); 8977 for (auto &N : allnodes()) { 8978 unsigned NOps = N.getNumOperands(); 8979 Degree[&N] = NOps; 8980 if (0 == NOps) 8981 Order.push_back(&N); 8982 } 8983 for (size_t I = 0; I != Order.size(); ++I) { 8984 SDNode *N = Order[I]; 8985 for (auto U : N->uses()) { 8986 unsigned &UnsortedOps = Degree[U]; 8987 if (0 == --UnsortedOps) 8988 Order.push_back(U); 8989 } 8990 } 8991 } 8992 8993 #ifndef NDEBUG 8994 void SelectionDAG::VerifyDAGDiverence() { 8995 std::vector<SDNode *> TopoOrder; 8996 CreateTopologicalOrder(TopoOrder); 8997 for (auto *N : TopoOrder) { 8998 assert(calculateDivergence(N) == N->isDivergent() && 8999 "Divergence bit inconsistency detected"); 9000 } 9001 } 9002 #endif 9003 9004 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9005 /// uses of other values produced by From.getNode() alone. The same value 9006 /// may appear in both the From and To list. The Deleted vector is 9007 /// handled the same way as for ReplaceAllUsesWith. 9008 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9009 const SDValue *To, 9010 unsigned Num){ 9011 // Handle the simple, trivial case efficiently. 9012 if (Num == 1) 9013 return ReplaceAllUsesOfValueWith(*From, *To); 9014 9015 transferDbgValues(*From, *To); 9016 9017 // Read up all the uses and make records of them. This helps 9018 // processing new uses that are introduced during the 9019 // replacement process. 9020 SmallVector<UseMemo, 4> Uses; 9021 for (unsigned i = 0; i != Num; ++i) { 9022 unsigned FromResNo = From[i].getResNo(); 9023 SDNode *FromNode = From[i].getNode(); 9024 for (SDNode::use_iterator UI = FromNode->use_begin(), 9025 E = FromNode->use_end(); UI != E; ++UI) { 9026 SDUse &Use = UI.getUse(); 9027 if (Use.getResNo() == FromResNo) { 9028 UseMemo Memo = { *UI, i, &Use }; 9029 Uses.push_back(Memo); 9030 } 9031 } 9032 } 9033 9034 // Sort the uses, so that all the uses from a given User are together. 9035 llvm::sort(Uses); 9036 9037 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9038 UseIndex != UseIndexEnd; ) { 9039 // We know that this user uses some value of From. If it is the right 9040 // value, update it. 9041 SDNode *User = Uses[UseIndex].User; 9042 9043 // This node is about to morph, remove its old self from the CSE maps. 9044 RemoveNodeFromCSEMaps(User); 9045 9046 // The Uses array is sorted, so all the uses for a given User 9047 // are next to each other in the list. 9048 // To help reduce the number of CSE recomputations, process all 9049 // the uses of this user that we can find this way. 9050 do { 9051 unsigned i = Uses[UseIndex].Index; 9052 SDUse &Use = *Uses[UseIndex].Use; 9053 ++UseIndex; 9054 9055 Use.set(To[i]); 9056 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9057 9058 // Now that we have modified User, add it back to the CSE maps. If it 9059 // already exists there, recursively merge the results together. 9060 AddModifiedNodeToCSEMaps(User); 9061 } 9062 } 9063 9064 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9065 /// based on their topological order. It returns the maximum id and a vector 9066 /// of the SDNodes* in assigned order by reference. 9067 unsigned SelectionDAG::AssignTopologicalOrder() { 9068 unsigned DAGSize = 0; 9069 9070 // SortedPos tracks the progress of the algorithm. Nodes before it are 9071 // sorted, nodes after it are unsorted. When the algorithm completes 9072 // it is at the end of the list. 9073 allnodes_iterator SortedPos = allnodes_begin(); 9074 9075 // Visit all the nodes. Move nodes with no operands to the front of 9076 // the list immediately. Annotate nodes that do have operands with their 9077 // operand count. Before we do this, the Node Id fields of the nodes 9078 // may contain arbitrary values. After, the Node Id fields for nodes 9079 // before SortedPos will contain the topological sort index, and the 9080 // Node Id fields for nodes At SortedPos and after will contain the 9081 // count of outstanding operands. 9082 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9083 SDNode *N = &*I++; 9084 checkForCycles(N, this); 9085 unsigned Degree = N->getNumOperands(); 9086 if (Degree == 0) { 9087 // A node with no uses, add it to the result array immediately. 9088 N->setNodeId(DAGSize++); 9089 allnodes_iterator Q(N); 9090 if (Q != SortedPos) 9091 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9092 assert(SortedPos != AllNodes.end() && "Overran node list"); 9093 ++SortedPos; 9094 } else { 9095 // Temporarily use the Node Id as scratch space for the degree count. 9096 N->setNodeId(Degree); 9097 } 9098 } 9099 9100 // Visit all the nodes. As we iterate, move nodes into sorted order, 9101 // such that by the time the end is reached all nodes will be sorted. 9102 for (SDNode &Node : allnodes()) { 9103 SDNode *N = &Node; 9104 checkForCycles(N, this); 9105 // N is in sorted position, so all its uses have one less operand 9106 // that needs to be sorted. 9107 for (SDNode *P : N->uses()) { 9108 unsigned Degree = P->getNodeId(); 9109 assert(Degree != 0 && "Invalid node degree"); 9110 --Degree; 9111 if (Degree == 0) { 9112 // All of P's operands are sorted, so P may sorted now. 9113 P->setNodeId(DAGSize++); 9114 if (P->getIterator() != SortedPos) 9115 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9116 assert(SortedPos != AllNodes.end() && "Overran node list"); 9117 ++SortedPos; 9118 } else { 9119 // Update P's outstanding operand count. 9120 P->setNodeId(Degree); 9121 } 9122 } 9123 if (Node.getIterator() == SortedPos) { 9124 #ifndef NDEBUG 9125 allnodes_iterator I(N); 9126 SDNode *S = &*++I; 9127 dbgs() << "Overran sorted position:\n"; 9128 S->dumprFull(this); dbgs() << "\n"; 9129 dbgs() << "Checking if this is due to cycles\n"; 9130 checkForCycles(this, true); 9131 #endif 9132 llvm_unreachable(nullptr); 9133 } 9134 } 9135 9136 assert(SortedPos == AllNodes.end() && 9137 "Topological sort incomplete!"); 9138 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9139 "First node in topological sort is not the entry token!"); 9140 assert(AllNodes.front().getNodeId() == 0 && 9141 "First node in topological sort has non-zero id!"); 9142 assert(AllNodes.front().getNumOperands() == 0 && 9143 "First node in topological sort has operands!"); 9144 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9145 "Last node in topologic sort has unexpected id!"); 9146 assert(AllNodes.back().use_empty() && 9147 "Last node in topologic sort has users!"); 9148 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9149 return DAGSize; 9150 } 9151 9152 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9153 /// value is produced by SD. 9154 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9155 for (SDNode *SD : DB->getSDNodes()) { 9156 if (!SD) 9157 continue; 9158 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9159 SD->setHasDebugValue(true); 9160 } 9161 DbgInfo->add(DB, isParameter); 9162 } 9163 9164 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9165 9166 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9167 SDValue NewMemOpChain) { 9168 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9169 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9170 // The new memory operation must have the same position as the old load in 9171 // terms of memory dependency. Create a TokenFactor for the old load and new 9172 // memory operation and update uses of the old load's output chain to use that 9173 // TokenFactor. 9174 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9175 return NewMemOpChain; 9176 9177 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9178 OldChain, NewMemOpChain); 9179 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9180 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9181 return TokenFactor; 9182 } 9183 9184 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9185 SDValue NewMemOp) { 9186 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9187 SDValue OldChain = SDValue(OldLoad, 1); 9188 SDValue NewMemOpChain = NewMemOp.getValue(1); 9189 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9190 } 9191 9192 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9193 Function **OutFunction) { 9194 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9195 9196 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9197 auto *Module = MF->getFunction().getParent(); 9198 auto *Function = Module->getFunction(Symbol); 9199 9200 if (OutFunction != nullptr) 9201 *OutFunction = Function; 9202 9203 if (Function != nullptr) { 9204 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9205 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9206 } 9207 9208 std::string ErrorStr; 9209 raw_string_ostream ErrorFormatter(ErrorStr); 9210 9211 ErrorFormatter << "Undefined external symbol "; 9212 ErrorFormatter << '"' << Symbol << '"'; 9213 ErrorFormatter.flush(); 9214 9215 report_fatal_error(ErrorStr); 9216 } 9217 9218 //===----------------------------------------------------------------------===// 9219 // SDNode Class 9220 //===----------------------------------------------------------------------===// 9221 9222 bool llvm::isNullConstant(SDValue V) { 9223 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9224 return Const != nullptr && Const->isNullValue(); 9225 } 9226 9227 bool llvm::isNullFPConstant(SDValue V) { 9228 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9229 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9230 } 9231 9232 bool llvm::isAllOnesConstant(SDValue V) { 9233 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9234 return Const != nullptr && Const->isAllOnesValue(); 9235 } 9236 9237 bool llvm::isOneConstant(SDValue V) { 9238 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9239 return Const != nullptr && Const->isOne(); 9240 } 9241 9242 SDValue llvm::peekThroughBitcasts(SDValue V) { 9243 while (V.getOpcode() == ISD::BITCAST) 9244 V = V.getOperand(0); 9245 return V; 9246 } 9247 9248 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9249 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9250 V = V.getOperand(0); 9251 return V; 9252 } 9253 9254 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9255 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9256 V = V.getOperand(0); 9257 return V; 9258 } 9259 9260 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9261 if (V.getOpcode() != ISD::XOR) 9262 return false; 9263 V = peekThroughBitcasts(V.getOperand(1)); 9264 unsigned NumBits = V.getScalarValueSizeInBits(); 9265 ConstantSDNode *C = 9266 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9267 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9268 } 9269 9270 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9271 bool AllowTruncation) { 9272 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9273 return CN; 9274 9275 // SplatVectors can truncate their operands. Ignore that case here unless 9276 // AllowTruncation is set. 9277 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9278 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9279 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9280 EVT CVT = CN->getValueType(0); 9281 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9282 if (AllowTruncation || CVT == VecEltVT) 9283 return CN; 9284 } 9285 } 9286 9287 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9288 BitVector UndefElements; 9289 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9290 9291 // BuildVectors can truncate their operands. Ignore that case here unless 9292 // AllowTruncation is set. 9293 if (CN && (UndefElements.none() || AllowUndefs)) { 9294 EVT CVT = CN->getValueType(0); 9295 EVT NSVT = N.getValueType().getScalarType(); 9296 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9297 if (AllowTruncation || (CVT == NSVT)) 9298 return CN; 9299 } 9300 } 9301 9302 return nullptr; 9303 } 9304 9305 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9306 bool AllowUndefs, 9307 bool AllowTruncation) { 9308 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9309 return CN; 9310 9311 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9312 BitVector UndefElements; 9313 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9314 9315 // BuildVectors can truncate their operands. Ignore that case here unless 9316 // AllowTruncation is set. 9317 if (CN && (UndefElements.none() || AllowUndefs)) { 9318 EVT CVT = CN->getValueType(0); 9319 EVT NSVT = N.getValueType().getScalarType(); 9320 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9321 if (AllowTruncation || (CVT == NSVT)) 9322 return CN; 9323 } 9324 } 9325 9326 return nullptr; 9327 } 9328 9329 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9330 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9331 return CN; 9332 9333 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9334 BitVector UndefElements; 9335 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9336 if (CN && (UndefElements.none() || AllowUndefs)) 9337 return CN; 9338 } 9339 9340 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9341 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9342 return CN; 9343 9344 return nullptr; 9345 } 9346 9347 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9348 const APInt &DemandedElts, 9349 bool AllowUndefs) { 9350 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9351 return CN; 9352 9353 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9354 BitVector UndefElements; 9355 ConstantFPSDNode *CN = 9356 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9357 if (CN && (UndefElements.none() || AllowUndefs)) 9358 return CN; 9359 } 9360 9361 return nullptr; 9362 } 9363 9364 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9365 // TODO: may want to use peekThroughBitcast() here. 9366 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9367 return C && C->isNullValue(); 9368 } 9369 9370 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9371 // TODO: may want to use peekThroughBitcast() here. 9372 unsigned BitWidth = N.getScalarValueSizeInBits(); 9373 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9374 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9375 } 9376 9377 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9378 N = peekThroughBitcasts(N); 9379 unsigned BitWidth = N.getScalarValueSizeInBits(); 9380 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9381 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9382 } 9383 9384 HandleSDNode::~HandleSDNode() { 9385 DropOperands(); 9386 } 9387 9388 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9389 const DebugLoc &DL, 9390 const GlobalValue *GA, EVT VT, 9391 int64_t o, unsigned TF) 9392 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9393 TheGlobal = GA; 9394 } 9395 9396 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9397 EVT VT, unsigned SrcAS, 9398 unsigned DestAS) 9399 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9400 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9401 9402 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9403 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9404 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9405 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9406 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9407 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9408 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9409 9410 // We check here that the size of the memory operand fits within the size of 9411 // the MMO. This is because the MMO might indicate only a possible address 9412 // range instead of specifying the affected memory addresses precisely. 9413 // TODO: Make MachineMemOperands aware of scalable vectors. 9414 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9415 "Size mismatch!"); 9416 } 9417 9418 /// Profile - Gather unique data for the node. 9419 /// 9420 void SDNode::Profile(FoldingSetNodeID &ID) const { 9421 AddNodeIDNode(ID, this); 9422 } 9423 9424 namespace { 9425 9426 struct EVTArray { 9427 std::vector<EVT> VTs; 9428 9429 EVTArray() { 9430 VTs.reserve(MVT::LAST_VALUETYPE); 9431 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9432 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9433 } 9434 }; 9435 9436 } // end anonymous namespace 9437 9438 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9439 static ManagedStatic<EVTArray> SimpleVTArray; 9440 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9441 9442 /// getValueTypeList - Return a pointer to the specified value type. 9443 /// 9444 const EVT *SDNode::getValueTypeList(EVT VT) { 9445 if (VT.isExtended()) { 9446 sys::SmartScopedLock<true> Lock(*VTMutex); 9447 return &(*EVTs->insert(VT).first); 9448 } else { 9449 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9450 "Value type out of range!"); 9451 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9452 } 9453 } 9454 9455 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9456 /// indicated value. This method ignores uses of other values defined by this 9457 /// operation. 9458 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9459 assert(Value < getNumValues() && "Bad value!"); 9460 9461 // TODO: Only iterate over uses of a given value of the node 9462 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9463 if (UI.getUse().getResNo() == Value) { 9464 if (NUses == 0) 9465 return false; 9466 --NUses; 9467 } 9468 } 9469 9470 // Found exactly the right number of uses? 9471 return NUses == 0; 9472 } 9473 9474 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9475 /// value. This method ignores uses of other values defined by this operation. 9476 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9477 assert(Value < getNumValues() && "Bad value!"); 9478 9479 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9480 if (UI.getUse().getResNo() == Value) 9481 return true; 9482 9483 return false; 9484 } 9485 9486 /// isOnlyUserOf - Return true if this node is the only use of N. 9487 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9488 bool Seen = false; 9489 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9490 SDNode *User = *I; 9491 if (User == this) 9492 Seen = true; 9493 else 9494 return false; 9495 } 9496 9497 return Seen; 9498 } 9499 9500 /// Return true if the only users of N are contained in Nodes. 9501 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9502 bool Seen = false; 9503 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9504 SDNode *User = *I; 9505 if (llvm::is_contained(Nodes, User)) 9506 Seen = true; 9507 else 9508 return false; 9509 } 9510 9511 return Seen; 9512 } 9513 9514 /// isOperand - Return true if this node is an operand of N. 9515 bool SDValue::isOperandOf(const SDNode *N) const { 9516 return is_contained(N->op_values(), *this); 9517 } 9518 9519 bool SDNode::isOperandOf(const SDNode *N) const { 9520 return any_of(N->op_values(), 9521 [this](SDValue Op) { return this == Op.getNode(); }); 9522 } 9523 9524 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9525 /// be a chain) reaches the specified operand without crossing any 9526 /// side-effecting instructions on any chain path. In practice, this looks 9527 /// through token factors and non-volatile loads. In order to remain efficient, 9528 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9529 /// 9530 /// Note that we only need to examine chains when we're searching for 9531 /// side-effects; SelectionDAG requires that all side-effects are represented 9532 /// by chains, even if another operand would force a specific ordering. This 9533 /// constraint is necessary to allow transformations like splitting loads. 9534 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9535 unsigned Depth) const { 9536 if (*this == Dest) return true; 9537 9538 // Don't search too deeply, we just want to be able to see through 9539 // TokenFactor's etc. 9540 if (Depth == 0) return false; 9541 9542 // If this is a token factor, all inputs to the TF happen in parallel. 9543 if (getOpcode() == ISD::TokenFactor) { 9544 // First, try a shallow search. 9545 if (is_contained((*this)->ops(), Dest)) { 9546 // We found the chain we want as an operand of this TokenFactor. 9547 // Essentially, we reach the chain without side-effects if we could 9548 // serialize the TokenFactor into a simple chain of operations with 9549 // Dest as the last operation. This is automatically true if the 9550 // chain has one use: there are no other ordering constraints. 9551 // If the chain has more than one use, we give up: some other 9552 // use of Dest might force a side-effect between Dest and the current 9553 // node. 9554 if (Dest.hasOneUse()) 9555 return true; 9556 } 9557 // Next, try a deep search: check whether every operand of the TokenFactor 9558 // reaches Dest. 9559 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9560 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9561 }); 9562 } 9563 9564 // Loads don't have side effects, look through them. 9565 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9566 if (Ld->isUnordered()) 9567 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9568 } 9569 return false; 9570 } 9571 9572 bool SDNode::hasPredecessor(const SDNode *N) const { 9573 SmallPtrSet<const SDNode *, 32> Visited; 9574 SmallVector<const SDNode *, 16> Worklist; 9575 Worklist.push_back(this); 9576 return hasPredecessorHelper(N, Visited, Worklist); 9577 } 9578 9579 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9580 this->Flags.intersectWith(Flags); 9581 } 9582 9583 SDValue 9584 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9585 ArrayRef<ISD::NodeType> CandidateBinOps, 9586 bool AllowPartials) { 9587 // The pattern must end in an extract from index 0. 9588 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9589 !isNullConstant(Extract->getOperand(1))) 9590 return SDValue(); 9591 9592 // Match against one of the candidate binary ops. 9593 SDValue Op = Extract->getOperand(0); 9594 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9595 return Op.getOpcode() == unsigned(BinOp); 9596 })) 9597 return SDValue(); 9598 9599 // Floating-point reductions may require relaxed constraints on the final step 9600 // of the reduction because they may reorder intermediate operations. 9601 unsigned CandidateBinOp = Op.getOpcode(); 9602 if (Op.getValueType().isFloatingPoint()) { 9603 SDNodeFlags Flags = Op->getFlags(); 9604 switch (CandidateBinOp) { 9605 case ISD::FADD: 9606 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9607 return SDValue(); 9608 break; 9609 default: 9610 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9611 } 9612 } 9613 9614 // Matching failed - attempt to see if we did enough stages that a partial 9615 // reduction from a subvector is possible. 9616 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9617 if (!AllowPartials || !Op) 9618 return SDValue(); 9619 EVT OpVT = Op.getValueType(); 9620 EVT OpSVT = OpVT.getScalarType(); 9621 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9622 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9623 return SDValue(); 9624 BinOp = (ISD::NodeType)CandidateBinOp; 9625 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9626 getVectorIdxConstant(0, SDLoc(Op))); 9627 }; 9628 9629 // At each stage, we're looking for something that looks like: 9630 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9631 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9632 // i32 undef, i32 undef, i32 undef, i32 undef> 9633 // %a = binop <8 x i32> %op, %s 9634 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9635 // we expect something like: 9636 // <4,5,6,7,u,u,u,u> 9637 // <2,3,u,u,u,u,u,u> 9638 // <1,u,u,u,u,u,u,u> 9639 // While a partial reduction match would be: 9640 // <2,3,u,u,u,u,u,u> 9641 // <1,u,u,u,u,u,u,u> 9642 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9643 SDValue PrevOp; 9644 for (unsigned i = 0; i < Stages; ++i) { 9645 unsigned MaskEnd = (1 << i); 9646 9647 if (Op.getOpcode() != CandidateBinOp) 9648 return PartialReduction(PrevOp, MaskEnd); 9649 9650 SDValue Op0 = Op.getOperand(0); 9651 SDValue Op1 = Op.getOperand(1); 9652 9653 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9654 if (Shuffle) { 9655 Op = Op1; 9656 } else { 9657 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9658 Op = Op0; 9659 } 9660 9661 // The first operand of the shuffle should be the same as the other operand 9662 // of the binop. 9663 if (!Shuffle || Shuffle->getOperand(0) != Op) 9664 return PartialReduction(PrevOp, MaskEnd); 9665 9666 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9667 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9668 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9669 return PartialReduction(PrevOp, MaskEnd); 9670 9671 PrevOp = Op; 9672 } 9673 9674 // Handle subvector reductions, which tend to appear after the shuffle 9675 // reduction stages. 9676 while (Op.getOpcode() == CandidateBinOp) { 9677 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9678 SDValue Op0 = Op.getOperand(0); 9679 SDValue Op1 = Op.getOperand(1); 9680 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9681 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9682 Op0.getOperand(0) != Op1.getOperand(0)) 9683 break; 9684 SDValue Src = Op0.getOperand(0); 9685 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9686 if (NumSrcElts != (2 * NumElts)) 9687 break; 9688 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9689 Op1.getConstantOperandAPInt(1) == NumElts) && 9690 !(Op1.getConstantOperandAPInt(1) == 0 && 9691 Op0.getConstantOperandAPInt(1) == NumElts)) 9692 break; 9693 Op = Src; 9694 } 9695 9696 BinOp = (ISD::NodeType)CandidateBinOp; 9697 return Op; 9698 } 9699 9700 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9701 assert(N->getNumValues() == 1 && 9702 "Can't unroll a vector with multiple results!"); 9703 9704 EVT VT = N->getValueType(0); 9705 unsigned NE = VT.getVectorNumElements(); 9706 EVT EltVT = VT.getVectorElementType(); 9707 SDLoc dl(N); 9708 9709 SmallVector<SDValue, 8> Scalars; 9710 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9711 9712 // If ResNE is 0, fully unroll the vector op. 9713 if (ResNE == 0) 9714 ResNE = NE; 9715 else if (NE > ResNE) 9716 NE = ResNE; 9717 9718 unsigned i; 9719 for (i= 0; i != NE; ++i) { 9720 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9721 SDValue Operand = N->getOperand(j); 9722 EVT OperandVT = Operand.getValueType(); 9723 if (OperandVT.isVector()) { 9724 // A vector operand; extract a single element. 9725 EVT OperandEltVT = OperandVT.getVectorElementType(); 9726 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9727 Operand, getVectorIdxConstant(i, dl)); 9728 } else { 9729 // A scalar operand; just use it as is. 9730 Operands[j] = Operand; 9731 } 9732 } 9733 9734 switch (N->getOpcode()) { 9735 default: { 9736 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9737 N->getFlags())); 9738 break; 9739 } 9740 case ISD::VSELECT: 9741 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9742 break; 9743 case ISD::SHL: 9744 case ISD::SRA: 9745 case ISD::SRL: 9746 case ISD::ROTL: 9747 case ISD::ROTR: 9748 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9749 getShiftAmountOperand(Operands[0].getValueType(), 9750 Operands[1]))); 9751 break; 9752 case ISD::SIGN_EXTEND_INREG: { 9753 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9754 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9755 Operands[0], 9756 getValueType(ExtVT))); 9757 } 9758 } 9759 } 9760 9761 for (; i < ResNE; ++i) 9762 Scalars.push_back(getUNDEF(EltVT)); 9763 9764 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9765 return getBuildVector(VecVT, dl, Scalars); 9766 } 9767 9768 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9769 SDNode *N, unsigned ResNE) { 9770 unsigned Opcode = N->getOpcode(); 9771 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9772 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9773 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9774 "Expected an overflow opcode"); 9775 9776 EVT ResVT = N->getValueType(0); 9777 EVT OvVT = N->getValueType(1); 9778 EVT ResEltVT = ResVT.getVectorElementType(); 9779 EVT OvEltVT = OvVT.getVectorElementType(); 9780 SDLoc dl(N); 9781 9782 // If ResNE is 0, fully unroll the vector op. 9783 unsigned NE = ResVT.getVectorNumElements(); 9784 if (ResNE == 0) 9785 ResNE = NE; 9786 else if (NE > ResNE) 9787 NE = ResNE; 9788 9789 SmallVector<SDValue, 8> LHSScalars; 9790 SmallVector<SDValue, 8> RHSScalars; 9791 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9792 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9793 9794 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9795 SDVTList VTs = getVTList(ResEltVT, SVT); 9796 SmallVector<SDValue, 8> ResScalars; 9797 SmallVector<SDValue, 8> OvScalars; 9798 for (unsigned i = 0; i < NE; ++i) { 9799 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9800 SDValue Ov = 9801 getSelect(dl, OvEltVT, Res.getValue(1), 9802 getBoolConstant(true, dl, OvEltVT, ResVT), 9803 getConstant(0, dl, OvEltVT)); 9804 9805 ResScalars.push_back(Res); 9806 OvScalars.push_back(Ov); 9807 } 9808 9809 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9810 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9811 9812 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9813 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9814 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9815 getBuildVector(NewOvVT, dl, OvScalars)); 9816 } 9817 9818 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9819 LoadSDNode *Base, 9820 unsigned Bytes, 9821 int Dist) const { 9822 if (LD->isVolatile() || Base->isVolatile()) 9823 return false; 9824 // TODO: probably too restrictive for atomics, revisit 9825 if (!LD->isSimple()) 9826 return false; 9827 if (LD->isIndexed() || Base->isIndexed()) 9828 return false; 9829 if (LD->getChain() != Base->getChain()) 9830 return false; 9831 EVT VT = LD->getValueType(0); 9832 if (VT.getSizeInBits() / 8 != Bytes) 9833 return false; 9834 9835 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9836 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9837 9838 int64_t Offset = 0; 9839 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9840 return (Dist * Bytes == Offset); 9841 return false; 9842 } 9843 9844 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9845 /// if it cannot be inferred. 9846 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9847 // If this is a GlobalAddress + cst, return the alignment. 9848 const GlobalValue *GV = nullptr; 9849 int64_t GVOffset = 0; 9850 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9851 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9852 KnownBits Known(PtrWidth); 9853 llvm::computeKnownBits(GV, Known, getDataLayout()); 9854 unsigned AlignBits = Known.countMinTrailingZeros(); 9855 if (AlignBits) 9856 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9857 } 9858 9859 // If this is a direct reference to a stack slot, use information about the 9860 // stack slot's alignment. 9861 int FrameIdx = INT_MIN; 9862 int64_t FrameOffset = 0; 9863 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9864 FrameIdx = FI->getIndex(); 9865 } else if (isBaseWithConstantOffset(Ptr) && 9866 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9867 // Handle FI+Cst 9868 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9869 FrameOffset = Ptr.getConstantOperandVal(1); 9870 } 9871 9872 if (FrameIdx != INT_MIN) { 9873 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9874 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9875 } 9876 9877 return None; 9878 } 9879 9880 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9881 /// which is split (or expanded) into two not necessarily identical pieces. 9882 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9883 // Currently all types are split in half. 9884 EVT LoVT, HiVT; 9885 if (!VT.isVector()) 9886 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9887 else 9888 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9889 9890 return std::make_pair(LoVT, HiVT); 9891 } 9892 9893 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9894 /// type, dependent on an enveloping VT that has been split into two identical 9895 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9896 std::pair<EVT, EVT> 9897 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9898 bool *HiIsEmpty) const { 9899 EVT EltTp = VT.getVectorElementType(); 9900 // Examples: 9901 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9902 // custom VL=9 with enveloping VL=8/8 yields 8/1 9903 // custom VL=10 with enveloping VL=8/8 yields 8/2 9904 // etc. 9905 ElementCount VTNumElts = VT.getVectorElementCount(); 9906 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9907 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9908 "Mixing fixed width and scalable vectors when enveloping a type"); 9909 EVT LoVT, HiVT; 9910 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9911 LoVT = EnvVT; 9912 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9913 *HiIsEmpty = false; 9914 } else { 9915 // Flag that hi type has zero storage size, but return split envelop type 9916 // (this would be easier if vector types with zero elements were allowed). 9917 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9918 HiVT = EnvVT; 9919 *HiIsEmpty = true; 9920 } 9921 return std::make_pair(LoVT, HiVT); 9922 } 9923 9924 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9925 /// low/high part. 9926 std::pair<SDValue, SDValue> 9927 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9928 const EVT &HiVT) { 9929 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9930 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9931 "Splitting vector with an invalid mixture of fixed and scalable " 9932 "vector types"); 9933 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9934 N.getValueType().getVectorMinNumElements() && 9935 "More vector elements requested than available!"); 9936 SDValue Lo, Hi; 9937 Lo = 9938 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9939 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9940 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9941 // IDX with the runtime scaling factor of the result vector type. For 9942 // fixed-width result vectors, that runtime scaling factor is 1. 9943 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9944 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9945 return std::make_pair(Lo, Hi); 9946 } 9947 9948 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9949 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9950 EVT VT = N.getValueType(); 9951 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9952 NextPowerOf2(VT.getVectorNumElements())); 9953 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9954 getVectorIdxConstant(0, DL)); 9955 } 9956 9957 void SelectionDAG::ExtractVectorElements(SDValue Op, 9958 SmallVectorImpl<SDValue> &Args, 9959 unsigned Start, unsigned Count, 9960 EVT EltVT) { 9961 EVT VT = Op.getValueType(); 9962 if (Count == 0) 9963 Count = VT.getVectorNumElements(); 9964 if (EltVT == EVT()) 9965 EltVT = VT.getVectorElementType(); 9966 SDLoc SL(Op); 9967 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9968 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9969 getVectorIdxConstant(i, SL))); 9970 } 9971 } 9972 9973 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9974 unsigned GlobalAddressSDNode::getAddressSpace() const { 9975 return getGlobal()->getType()->getAddressSpace(); 9976 } 9977 9978 Type *ConstantPoolSDNode::getType() const { 9979 if (isMachineConstantPoolEntry()) 9980 return Val.MachineCPVal->getType(); 9981 return Val.ConstVal->getType(); 9982 } 9983 9984 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9985 unsigned &SplatBitSize, 9986 bool &HasAnyUndefs, 9987 unsigned MinSplatBits, 9988 bool IsBigEndian) const { 9989 EVT VT = getValueType(0); 9990 assert(VT.isVector() && "Expected a vector type"); 9991 unsigned VecWidth = VT.getSizeInBits(); 9992 if (MinSplatBits > VecWidth) 9993 return false; 9994 9995 // FIXME: The widths are based on this node's type, but build vectors can 9996 // truncate their operands. 9997 SplatValue = APInt(VecWidth, 0); 9998 SplatUndef = APInt(VecWidth, 0); 9999 10000 // Get the bits. Bits with undefined values (when the corresponding element 10001 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10002 // in SplatValue. If any of the values are not constant, give up and return 10003 // false. 10004 unsigned int NumOps = getNumOperands(); 10005 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10006 unsigned EltWidth = VT.getScalarSizeInBits(); 10007 10008 for (unsigned j = 0; j < NumOps; ++j) { 10009 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10010 SDValue OpVal = getOperand(i); 10011 unsigned BitPos = j * EltWidth; 10012 10013 if (OpVal.isUndef()) 10014 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10015 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10016 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10017 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10018 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10019 else 10020 return false; 10021 } 10022 10023 // The build_vector is all constants or undefs. Find the smallest element 10024 // size that splats the vector. 10025 HasAnyUndefs = (SplatUndef != 0); 10026 10027 // FIXME: This does not work for vectors with elements less than 8 bits. 10028 while (VecWidth > 8) { 10029 unsigned HalfSize = VecWidth / 2; 10030 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 10031 APInt LowValue = SplatValue.trunc(HalfSize); 10032 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 10033 APInt LowUndef = SplatUndef.trunc(HalfSize); 10034 10035 // If the two halves do not match (ignoring undef bits), stop here. 10036 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10037 MinSplatBits > HalfSize) 10038 break; 10039 10040 SplatValue = HighValue | LowValue; 10041 SplatUndef = HighUndef & LowUndef; 10042 10043 VecWidth = HalfSize; 10044 } 10045 10046 SplatBitSize = VecWidth; 10047 return true; 10048 } 10049 10050 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10051 BitVector *UndefElements) const { 10052 unsigned NumOps = getNumOperands(); 10053 if (UndefElements) { 10054 UndefElements->clear(); 10055 UndefElements->resize(NumOps); 10056 } 10057 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10058 if (!DemandedElts) 10059 return SDValue(); 10060 SDValue Splatted; 10061 for (unsigned i = 0; i != NumOps; ++i) { 10062 if (!DemandedElts[i]) 10063 continue; 10064 SDValue Op = getOperand(i); 10065 if (Op.isUndef()) { 10066 if (UndefElements) 10067 (*UndefElements)[i] = true; 10068 } else if (!Splatted) { 10069 Splatted = Op; 10070 } else if (Splatted != Op) { 10071 return SDValue(); 10072 } 10073 } 10074 10075 if (!Splatted) { 10076 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10077 assert(getOperand(FirstDemandedIdx).isUndef() && 10078 "Can only have a splat without a constant for all undefs."); 10079 return getOperand(FirstDemandedIdx); 10080 } 10081 10082 return Splatted; 10083 } 10084 10085 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10086 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10087 return getSplatValue(DemandedElts, UndefElements); 10088 } 10089 10090 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10091 SmallVectorImpl<SDValue> &Sequence, 10092 BitVector *UndefElements) const { 10093 unsigned NumOps = getNumOperands(); 10094 Sequence.clear(); 10095 if (UndefElements) { 10096 UndefElements->clear(); 10097 UndefElements->resize(NumOps); 10098 } 10099 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10100 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10101 return false; 10102 10103 // Set the undefs even if we don't find a sequence (like getSplatValue). 10104 if (UndefElements) 10105 for (unsigned I = 0; I != NumOps; ++I) 10106 if (DemandedElts[I] && getOperand(I).isUndef()) 10107 (*UndefElements)[I] = true; 10108 10109 // Iteratively widen the sequence length looking for repetitions. 10110 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10111 Sequence.append(SeqLen, SDValue()); 10112 for (unsigned I = 0; I != NumOps; ++I) { 10113 if (!DemandedElts[I]) 10114 continue; 10115 SDValue &SeqOp = Sequence[I % SeqLen]; 10116 SDValue Op = getOperand(I); 10117 if (Op.isUndef()) { 10118 if (!SeqOp) 10119 SeqOp = Op; 10120 continue; 10121 } 10122 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10123 Sequence.clear(); 10124 break; 10125 } 10126 SeqOp = Op; 10127 } 10128 if (!Sequence.empty()) 10129 return true; 10130 } 10131 10132 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10133 return false; 10134 } 10135 10136 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10137 BitVector *UndefElements) const { 10138 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10139 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10140 } 10141 10142 ConstantSDNode * 10143 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10144 BitVector *UndefElements) const { 10145 return dyn_cast_or_null<ConstantSDNode>( 10146 getSplatValue(DemandedElts, UndefElements)); 10147 } 10148 10149 ConstantSDNode * 10150 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10151 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10152 } 10153 10154 ConstantFPSDNode * 10155 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10156 BitVector *UndefElements) const { 10157 return dyn_cast_or_null<ConstantFPSDNode>( 10158 getSplatValue(DemandedElts, UndefElements)); 10159 } 10160 10161 ConstantFPSDNode * 10162 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10163 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10164 } 10165 10166 int32_t 10167 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10168 uint32_t BitWidth) const { 10169 if (ConstantFPSDNode *CN = 10170 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10171 bool IsExact; 10172 APSInt IntVal(BitWidth); 10173 const APFloat &APF = CN->getValueAPF(); 10174 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10175 APFloat::opOK || 10176 !IsExact) 10177 return -1; 10178 10179 return IntVal.exactLogBase2(); 10180 } 10181 return -1; 10182 } 10183 10184 bool BuildVectorSDNode::isConstant() const { 10185 for (const SDValue &Op : op_values()) { 10186 unsigned Opc = Op.getOpcode(); 10187 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10188 return false; 10189 } 10190 return true; 10191 } 10192 10193 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10194 // Find the first non-undef value in the shuffle mask. 10195 unsigned i, e; 10196 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10197 /* search */; 10198 10199 // If all elements are undefined, this shuffle can be considered a splat 10200 // (although it should eventually get simplified away completely). 10201 if (i == e) 10202 return true; 10203 10204 // Make sure all remaining elements are either undef or the same as the first 10205 // non-undef value. 10206 for (int Idx = Mask[i]; i != e; ++i) 10207 if (Mask[i] >= 0 && Mask[i] != Idx) 10208 return false; 10209 return true; 10210 } 10211 10212 // Returns the SDNode if it is a constant integer BuildVector 10213 // or constant integer. 10214 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10215 if (isa<ConstantSDNode>(N)) 10216 return N.getNode(); 10217 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10218 return N.getNode(); 10219 // Treat a GlobalAddress supporting constant offset folding as a 10220 // constant integer. 10221 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10222 if (GA->getOpcode() == ISD::GlobalAddress && 10223 TLI->isOffsetFoldingLegal(GA)) 10224 return GA; 10225 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10226 isa<ConstantSDNode>(N.getOperand(0))) 10227 return N.getNode(); 10228 return nullptr; 10229 } 10230 10231 // Returns the SDNode if it is a constant float BuildVector 10232 // or constant float. 10233 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10234 if (isa<ConstantFPSDNode>(N)) 10235 return N.getNode(); 10236 10237 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10238 return N.getNode(); 10239 10240 return nullptr; 10241 } 10242 10243 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10244 assert(!Node->OperandList && "Node already has operands"); 10245 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10246 "too many operands to fit into SDNode"); 10247 SDUse *Ops = OperandRecycler.allocate( 10248 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10249 10250 bool IsDivergent = false; 10251 for (unsigned I = 0; I != Vals.size(); ++I) { 10252 Ops[I].setUser(Node); 10253 Ops[I].setInitial(Vals[I]); 10254 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10255 IsDivergent |= Ops[I].getNode()->isDivergent(); 10256 } 10257 Node->NumOperands = Vals.size(); 10258 Node->OperandList = Ops; 10259 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10260 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10261 Node->SDNodeBits.IsDivergent = IsDivergent; 10262 } 10263 checkForCycles(Node); 10264 } 10265 10266 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10267 SmallVectorImpl<SDValue> &Vals) { 10268 size_t Limit = SDNode::getMaxNumOperands(); 10269 while (Vals.size() > Limit) { 10270 unsigned SliceIdx = Vals.size() - Limit; 10271 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10272 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10273 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10274 Vals.emplace_back(NewTF); 10275 } 10276 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10277 } 10278 10279 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10280 EVT VT, SDNodeFlags Flags) { 10281 switch (Opcode) { 10282 default: 10283 return SDValue(); 10284 case ISD::ADD: 10285 case ISD::OR: 10286 case ISD::XOR: 10287 case ISD::UMAX: 10288 return getConstant(0, DL, VT); 10289 case ISD::MUL: 10290 return getConstant(1, DL, VT); 10291 case ISD::AND: 10292 case ISD::UMIN: 10293 return getAllOnesConstant(DL, VT); 10294 case ISD::SMAX: 10295 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10296 case ISD::SMIN: 10297 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10298 case ISD::FADD: 10299 return getConstantFP(-0.0, DL, VT); 10300 case ISD::FMUL: 10301 return getConstantFP(1.0, DL, VT); 10302 case ISD::FMINNUM: 10303 case ISD::FMAXNUM: { 10304 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10305 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10306 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10307 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10308 APFloat::getLargest(Semantics); 10309 if (Opcode == ISD::FMAXNUM) 10310 NeutralAF.changeSign(); 10311 10312 return getConstantFP(NeutralAF, DL, VT); 10313 } 10314 } 10315 } 10316 10317 #ifndef NDEBUG 10318 static void checkForCyclesHelper(const SDNode *N, 10319 SmallPtrSetImpl<const SDNode*> &Visited, 10320 SmallPtrSetImpl<const SDNode*> &Checked, 10321 const llvm::SelectionDAG *DAG) { 10322 // If this node has already been checked, don't check it again. 10323 if (Checked.count(N)) 10324 return; 10325 10326 // If a node has already been visited on this depth-first walk, reject it as 10327 // a cycle. 10328 if (!Visited.insert(N).second) { 10329 errs() << "Detected cycle in SelectionDAG\n"; 10330 dbgs() << "Offending node:\n"; 10331 N->dumprFull(DAG); dbgs() << "\n"; 10332 abort(); 10333 } 10334 10335 for (const SDValue &Op : N->op_values()) 10336 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10337 10338 Checked.insert(N); 10339 Visited.erase(N); 10340 } 10341 #endif 10342 10343 void llvm::checkForCycles(const llvm::SDNode *N, 10344 const llvm::SelectionDAG *DAG, 10345 bool force) { 10346 #ifndef NDEBUG 10347 bool check = force; 10348 #ifdef EXPENSIVE_CHECKS 10349 check = true; 10350 #endif // EXPENSIVE_CHECKS 10351 if (check) { 10352 assert(N && "Checking nonexistent SDNode"); 10353 SmallPtrSet<const SDNode*, 32> visited; 10354 SmallPtrSet<const SDNode*, 32> checked; 10355 checkForCyclesHelper(N, visited, checked, DAG); 10356 } 10357 #endif // !NDEBUG 10358 } 10359 10360 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10361 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10362 } 10363