1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
266 }
267 
268 bool ISD::matchUnaryPredicate(SDValue Op,
269                               std::function<bool(ConstantSDNode *)> Match,
270                               bool AllowUndefs) {
271   // FIXME: Add support for scalar UNDEF cases?
272   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273     return Match(Cst);
274 
275   // FIXME: Add support for vector UNDEF cases?
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     if (AllowUndefs && Op.getOperand(i).isUndef()) {
282       if (!Match(nullptr))
283         return false;
284       continue;
285     }
286 
287     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::matchBinaryPredicate(
295     SDValue LHS, SDValue RHS,
296     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297     bool AllowUndefs, bool AllowTypeMismatch) {
298   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
299     return false;
300 
301   // TODO: Add support for scalar UNDEF cases?
302   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304       return Match(LHSCst, RHSCst);
305 
306   // TODO: Add support for vector UNDEF cases?
307   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308       ISD::BUILD_VECTOR != RHS.getOpcode())
309     return false;
310 
311   EVT SVT = LHS.getValueType().getScalarType();
312   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313     SDValue LHSOp = LHS.getOperand(i);
314     SDValue RHSOp = RHS.getOperand(i);
315     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320       return false;
321     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
322                                LHSOp.getValueType() != RHSOp.getValueType()))
323       return false;
324     if (!Match(LHSCst, RHSCst))
325       return false;
326   }
327   return true;
328 }
329 
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331   switch (ExtType) {
332   case ISD::EXTLOAD:
333     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334   case ISD::SEXTLOAD:
335     return ISD::SIGN_EXTEND;
336   case ISD::ZEXTLOAD:
337     return ISD::ZERO_EXTEND;
338   default:
339     break;
340   }
341 
342   llvm_unreachable("Invalid LoadExtType");
343 }
344 
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346   // To perform this operation, we just need to swap the L and G bits of the
347   // operation.
348   unsigned OldL = (Operation >> 2) & 1;
349   unsigned OldG = (Operation >> 1) & 1;
350   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
351                        (OldL << 1) |       // New G bit
352                        (OldG << 2));       // New L bit.
353 }
354 
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356   unsigned Operation = Op;
357   if (isInteger)
358     Operation ^= 7;   // Flip L, G, E bits, but not U.
359   else
360     Operation ^= 15;  // Flip all of the condition bits.
361 
362   if (Operation > ISD::SETTRUE2)
363     Operation &= ~8;  // Don't let N and U bits get set.
364 
365   return ISD::CondCode(Operation);
366 }
367 
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372   switch (Opcode) {
373   default: llvm_unreachable("Illegal integer setcc operation!");
374   case ISD::SETEQ:
375   case ISD::SETNE: return 0;
376   case ISD::SETLT:
377   case ISD::SETLE:
378   case ISD::SETGT:
379   case ISD::SETGE: return 1;
380   case ISD::SETULT:
381   case ISD::SETULE:
382   case ISD::SETUGT:
383   case ISD::SETUGE: return 2;
384   }
385 }
386 
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388                                        bool IsInteger) {
389   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390     // Cannot fold a signed integer setcc with an unsigned integer setcc.
391     return ISD::SETCC_INVALID;
392 
393   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
394 
395   // If the N and U bits get set, then the resultant comparison DOES suddenly
396   // care about orderedness, and it is true when ordered.
397   if (Op > ISD::SETTRUE2)
398     Op &= ~16;     // Clear the U bit if the N bit is set.
399 
400   // Canonicalize illegal integer setcc's.
401   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
402     Op = ISD::SETNE;
403 
404   return ISD::CondCode(Op);
405 }
406 
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408                                         bool IsInteger) {
409   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410     // Cannot fold a signed setcc with an unsigned setcc.
411     return ISD::SETCC_INVALID;
412 
413   // Combine all of the condition bits.
414   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger) {
418     switch (Result) {
419     default: break;
420     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
421     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
422     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
423     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
424     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
425     }
426   }
427 
428   return Result;
429 }
430 
431 //===----------------------------------------------------------------------===//
432 //                           SDNode Profile Support
433 //===----------------------------------------------------------------------===//
434 
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
437   ID.AddInteger(OpC);
438 }
439 
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443   ID.AddPointer(VTList.VTs);
444 }
445 
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448                               ArrayRef<SDValue> Ops) {
449   for (auto& Op : Ops) {
450     ID.AddPointer(Op.getNode());
451     ID.AddInteger(Op.getResNo());
452   }
453 }
454 
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457                               ArrayRef<SDUse> Ops) {
458   for (auto& Op : Ops) {
459     ID.AddPointer(Op.getNode());
460     ID.AddInteger(Op.getResNo());
461   }
462 }
463 
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465                           SDVTList VTList, ArrayRef<SDValue> OpList) {
466   AddNodeIDOpcode(ID, OpC);
467   AddNodeIDValueTypes(ID, VTList);
468   AddNodeIDOperands(ID, OpList);
469 }
470 
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473   switch (N->getOpcode()) {
474   case ISD::TargetExternalSymbol:
475   case ISD::ExternalSymbol:
476   case ISD::MCSymbol:
477     llvm_unreachable("Should only be used on nodes with operands");
478   default: break;  // Normal nodes don't need extra info.
479   case ISD::TargetConstant:
480   case ISD::Constant: {
481     const ConstantSDNode *C = cast<ConstantSDNode>(N);
482     ID.AddPointer(C->getConstantIntValue());
483     ID.AddBoolean(C->isOpaque());
484     break;
485   }
486   case ISD::TargetConstantFP:
487   case ISD::ConstantFP:
488     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489     break;
490   case ISD::TargetGlobalAddress:
491   case ISD::GlobalAddress:
492   case ISD::TargetGlobalTLSAddress:
493   case ISD::GlobalTLSAddress: {
494     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495     ID.AddPointer(GA->getGlobal());
496     ID.AddInteger(GA->getOffset());
497     ID.AddInteger(GA->getTargetFlags());
498     break;
499   }
500   case ISD::BasicBlock:
501     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502     break;
503   case ISD::Register:
504     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505     break;
506   case ISD::RegisterMask:
507     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508     break;
509   case ISD::SRCVALUE:
510     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511     break;
512   case ISD::FrameIndex:
513   case ISD::TargetFrameIndex:
514     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515     break;
516   case ISD::LIFETIME_START:
517   case ISD::LIFETIME_END:
518     if (cast<LifetimeSDNode>(N)->hasOffset()) {
519       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
521     }
522     break;
523   case ISD::JumpTable:
524   case ISD::TargetJumpTable:
525     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527     break;
528   case ISD::ConstantPool:
529   case ISD::TargetConstantPool: {
530     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531     ID.AddInteger(CP->getAlignment());
532     ID.AddInteger(CP->getOffset());
533     if (CP->isMachineConstantPoolEntry())
534       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535     else
536       ID.AddPointer(CP->getConstVal());
537     ID.AddInteger(CP->getTargetFlags());
538     break;
539   }
540   case ISD::TargetIndex: {
541     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542     ID.AddInteger(TI->getIndex());
543     ID.AddInteger(TI->getOffset());
544     ID.AddInteger(TI->getTargetFlags());
545     break;
546   }
547   case ISD::LOAD: {
548     const LoadSDNode *LD = cast<LoadSDNode>(N);
549     ID.AddInteger(LD->getMemoryVT().getRawBits());
550     ID.AddInteger(LD->getRawSubclassData());
551     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552     break;
553   }
554   case ISD::STORE: {
555     const StoreSDNode *ST = cast<StoreSDNode>(N);
556     ID.AddInteger(ST->getMemoryVT().getRawBits());
557     ID.AddInteger(ST->getRawSubclassData());
558     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559     break;
560   }
561   case ISD::MLOAD: {
562     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563     ID.AddInteger(MLD->getMemoryVT().getRawBits());
564     ID.AddInteger(MLD->getRawSubclassData());
565     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::MSTORE: {
569     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570     ID.AddInteger(MST->getMemoryVT().getRawBits());
571     ID.AddInteger(MST->getRawSubclassData());
572     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573     break;
574   }
575   case ISD::MGATHER: {
576     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577     ID.AddInteger(MG->getMemoryVT().getRawBits());
578     ID.AddInteger(MG->getRawSubclassData());
579     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580     break;
581   }
582   case ISD::MSCATTER: {
583     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584     ID.AddInteger(MS->getMemoryVT().getRawBits());
585     ID.AddInteger(MS->getRawSubclassData());
586     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587     break;
588   }
589   case ISD::ATOMIC_CMP_SWAP:
590   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591   case ISD::ATOMIC_SWAP:
592   case ISD::ATOMIC_LOAD_ADD:
593   case ISD::ATOMIC_LOAD_SUB:
594   case ISD::ATOMIC_LOAD_AND:
595   case ISD::ATOMIC_LOAD_CLR:
596   case ISD::ATOMIC_LOAD_OR:
597   case ISD::ATOMIC_LOAD_XOR:
598   case ISD::ATOMIC_LOAD_NAND:
599   case ISD::ATOMIC_LOAD_MIN:
600   case ISD::ATOMIC_LOAD_MAX:
601   case ISD::ATOMIC_LOAD_UMIN:
602   case ISD::ATOMIC_LOAD_UMAX:
603   case ISD::ATOMIC_LOAD:
604   case ISD::ATOMIC_STORE: {
605     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606     ID.AddInteger(AT->getMemoryVT().getRawBits());
607     ID.AddInteger(AT->getRawSubclassData());
608     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::PREFETCH: {
612     const MemSDNode *PF = cast<MemSDNode>(N);
613     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619          i != e; ++i)
620       ID.AddInteger(SVN->getMaskElt(i));
621     break;
622   }
623   case ISD::TargetBlockAddress:
624   case ISD::BlockAddress: {
625     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626     ID.AddPointer(BA->getBlockAddress());
627     ID.AddInteger(BA->getOffset());
628     ID.AddInteger(BA->getTargetFlags());
629     break;
630   }
631   } // end switch (N->getOpcode())
632 
633   // Target specific memory nodes could also have address spaces to check.
634   if (N->isTargetMemoryOpcode())
635     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
636 }
637 
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641   AddNodeIDOpcode(ID, N->getOpcode());
642   // Add the return value info.
643   AddNodeIDValueTypes(ID, N->getVTList());
644   // Add the operand info.
645   AddNodeIDOperands(ID, N->ops());
646 
647   // Handle SDNode leafs with special info.
648   AddNodeIDCustom(ID, N);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //                              SelectionDAG Class
653 //===----------------------------------------------------------------------===//
654 
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657   if (N->getValueType(0) == MVT::Glue)
658     return true; // Never CSE anything that produces a flag.
659 
660   switch (N->getOpcode()) {
661   default: break;
662   case ISD::HANDLENODE:
663   case ISD::EH_LABEL:
664     return true;   // Never CSE these nodes.
665   }
666 
667   // Check that remaining values produced are not flags.
668   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669     if (N->getValueType(i) == MVT::Glue)
670       return true; // Never CSE anything that produces a flag.
671 
672   return false;
673 }
674 
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678   // Create a dummy node (which is not added to allnodes), that adds a reference
679   // to the root node, preventing it from being deleted.
680   HandleSDNode Dummy(getRoot());
681 
682   SmallVector<SDNode*, 128> DeadNodes;
683 
684   // Add all obviously-dead nodes to the DeadNodes worklist.
685   for (SDNode &Node : allnodes())
686     if (Node.use_empty())
687       DeadNodes.push_back(&Node);
688 
689   RemoveDeadNodes(DeadNodes);
690 
691   // If the root changed (e.g. it was a dead load, update the root).
692   setRoot(Dummy.getValue());
693 }
694 
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
698 
699   // Process the worklist, deleting the nodes and adding their uses to the
700   // worklist.
701   while (!DeadNodes.empty()) {
702     SDNode *N = DeadNodes.pop_back_val();
703     // Skip to next node if we've already managed to delete the node. This could
704     // happen if replacing a node causes a node previously added to the node to
705     // be deleted.
706     if (N->getOpcode() == ISD::DELETED_NODE)
707       continue;
708 
709     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710       DUL->NodeDeleted(N, nullptr);
711 
712     // Take the node out of the appropriate CSE map.
713     RemoveNodeFromCSEMaps(N);
714 
715     // Next, brutally remove the operand list.  This is safe to do, as there are
716     // no cycles in the graph.
717     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718       SDUse &Use = *I++;
719       SDNode *Operand = Use.getNode();
720       Use.set(SDValue());
721 
722       // Now that we removed this operand, see if there are no uses of it left.
723       if (Operand->use_empty())
724         DeadNodes.push_back(Operand);
725     }
726 
727     DeallocateNode(N);
728   }
729 }
730 
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732   SmallVector<SDNode*, 16> DeadNodes(1, N);
733 
734   // Create a dummy node that adds a reference to the root node, preventing
735   // it from being deleted.  (This matters if the root is an operand of the
736   // dead node.)
737   HandleSDNode Dummy(getRoot());
738 
739   RemoveDeadNodes(DeadNodes);
740 }
741 
742 void SelectionDAG::DeleteNode(SDNode *N) {
743   // First take this out of the appropriate CSE map.
744   RemoveNodeFromCSEMaps(N);
745 
746   // Finally, remove uses due to operands of this node, remove from the
747   // AllNodes list, and delete the node.
748   DeleteNodeNotInCSEMaps(N);
749 }
750 
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752   assert(N->getIterator() != AllNodes.begin() &&
753          "Cannot delete the entry node!");
754   assert(N->use_empty() && "Cannot delete a node that is not dead!");
755 
756   // Drop all of the operands and decrement used node's use counts.
757   N->DropOperands();
758 
759   DeallocateNode(N);
760 }
761 
762 void SDDbgInfo::erase(const SDNode *Node) {
763   DbgValMapType::iterator I = DbgValMap.find(Node);
764   if (I == DbgValMap.end())
765     return;
766   for (auto &Val: I->second)
767     Val->setIsInvalidated();
768   DbgValMap.erase(I);
769 }
770 
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772   // If we have operands, deallocate them.
773   removeOperands(N);
774 
775   NodeAllocator.Deallocate(AllNodes.remove(N));
776 
777   // Set the opcode to DELETED_NODE to help catch bugs when node
778   // memory is reallocated.
779   // FIXME: There are places in SDag that have grown a dependency on the opcode
780   // value in the released node.
781   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782   N->NodeType = ISD::DELETED_NODE;
783 
784   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785   // them and forget about that node.
786   DbgInfo->erase(N);
787 }
788 
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792   switch (N->getOpcode()) {
793   default:
794     break;
795   case ISD::BUILD_PAIR: {
796     EVT VT = N->getValueType(0);
797     assert(N->getNumValues() == 1 && "Too many results!");
798     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799            "Wrong return type!");
800     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802            "Mismatched operand types!");
803     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804            "Wrong operand type!");
805     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806            "Wrong return type size");
807     break;
808   }
809   case ISD::BUILD_VECTOR: {
810     assert(N->getNumValues() == 1 && "Too many results!");
811     assert(N->getValueType(0).isVector() && "Wrong return type!");
812     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813            "Wrong number of operands!");
814     EVT EltVT = N->getValueType(0).getVectorElementType();
815     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816       assert((I->getValueType() == EltVT ||
817              (EltVT.isInteger() && I->getValueType().isInteger() &&
818               EltVT.bitsLE(I->getValueType()))) &&
819             "Wrong operand type!");
820       assert(I->getValueType() == N->getOperand(0).getValueType() &&
821              "Operands must all have the same type");
822     }
823     break;
824   }
825   }
826 }
827 #endif // NDEBUG
828 
829 /// Insert a newly allocated node into the DAG.
830 ///
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834   AllNodes.push_back(N);
835 #ifndef NDEBUG
836   N->PersistentId = NextPersistentId++;
837   VerifySDNode(N);
838 #endif
839   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840     DUL->NodeInserted(N);
841 }
842 
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it.  This is useful when we're about to delete or repurpose
845 /// the node.  We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848   bool Erased = false;
849   switch (N->getOpcode()) {
850   case ISD::HANDLENODE: return false;  // noop.
851   case ISD::CONDCODE:
852     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853            "Cond code doesn't exist!");
854     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856     break;
857   case ISD::ExternalSymbol:
858     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859     break;
860   case ISD::TargetExternalSymbol: {
861     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
863         ESN->getSymbol(), ESN->getTargetFlags()));
864     break;
865   }
866   case ISD::MCSymbol: {
867     auto *MCSN = cast<MCSymbolSDNode>(N);
868     Erased = MCSymbols.erase(MCSN->getMCSymbol());
869     break;
870   }
871   case ISD::VALUETYPE: {
872     EVT VT = cast<VTSDNode>(N)->getVT();
873     if (VT.isExtended()) {
874       Erased = ExtendedValueTypeNodes.erase(VT);
875     } else {
876       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
877       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
878     }
879     break;
880   }
881   default:
882     // Remove it from the CSE Map.
883     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
884     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
885     Erased = CSEMap.RemoveNode(N);
886     break;
887   }
888 #ifndef NDEBUG
889   // Verify that the node was actually in one of the CSE maps, unless it has a
890   // flag result (which cannot be CSE'd) or is one of the special cases that are
891   // not subject to CSE.
892   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
893       !N->isMachineOpcode() && !doNotCSE(N)) {
894     N->dump(this);
895     dbgs() << "\n";
896     llvm_unreachable("Node is not in map!");
897   }
898 #endif
899   return Erased;
900 }
901 
902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
903 /// maps and modified in place. Add it back to the CSE maps, unless an identical
904 /// node already exists, in which case transfer all its users to the existing
905 /// node. This transfer can potentially trigger recursive merging.
906 void
907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
908   // For node types that aren't CSE'd, just act as if no identical node
909   // already exists.
910   if (!doNotCSE(N)) {
911     SDNode *Existing = CSEMap.GetOrInsertNode(N);
912     if (Existing != N) {
913       // If there was already an existing matching node, use ReplaceAllUsesWith
914       // to replace the dead one with the existing one.  This can cause
915       // recursive merging of other unrelated nodes down the line.
916       ReplaceAllUsesWith(N, Existing);
917 
918       // N is now dead. Inform the listeners and delete it.
919       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
920         DUL->NodeDeleted(N, Existing);
921       DeleteNodeNotInCSEMaps(N);
922       return;
923     }
924   }
925 
926   // If the node doesn't already exist, we updated it.  Inform listeners.
927   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
928     DUL->NodeUpdated(N);
929 }
930 
931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
932 /// were replaced with those specified.  If this node is never memoized,
933 /// return null, otherwise return a pointer to the slot it would take.  If a
934 /// node already exists with these operands, the slot will be non-null.
935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
936                                            void *&InsertPos) {
937   if (doNotCSE(N))
938     return nullptr;
939 
940   SDValue Ops[] = { Op };
941   FoldingSetNodeID ID;
942   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
943   AddNodeIDCustom(ID, N);
944   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
945   if (Node)
946     Node->intersectFlagsWith(N->getFlags());
947   return Node;
948 }
949 
950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
951 /// were replaced with those specified.  If this node is never memoized,
952 /// return null, otherwise return a pointer to the slot it would take.  If a
953 /// node already exists with these operands, the slot will be non-null.
954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
955                                            SDValue Op1, SDValue Op2,
956                                            void *&InsertPos) {
957   if (doNotCSE(N))
958     return nullptr;
959 
960   SDValue Ops[] = { Op1, Op2 };
961   FoldingSetNodeID ID;
962   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
963   AddNodeIDCustom(ID, N);
964   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
965   if (Node)
966     Node->intersectFlagsWith(N->getFlags());
967   return Node;
968 }
969 
970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
971 /// were replaced with those specified.  If this node is never memoized,
972 /// return null, otherwise return a pointer to the slot it would take.  If a
973 /// node already exists with these operands, the slot will be non-null.
974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
975                                            void *&InsertPos) {
976   if (doNotCSE(N))
977     return nullptr;
978 
979   FoldingSetNodeID ID;
980   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
981   AddNodeIDCustom(ID, N);
982   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
983   if (Node)
984     Node->intersectFlagsWith(N->getFlags());
985   return Node;
986 }
987 
988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
989   Type *Ty = VT == MVT::iPTR ?
990                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
991                    VT.getTypeForEVT(*getContext());
992 
993   return getDataLayout().getABITypeAlignment(Ty);
994 }
995 
996 // EntryNode could meaningfully have debug info if we can find it...
997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
998     : TM(tm), OptLevel(OL),
999       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1000       Root(getEntryNode()) {
1001   InsertNode(&EntryNode);
1002   DbgInfo = new SDDbgInfo();
1003 }
1004 
1005 void SelectionDAG::init(MachineFunction &NewMF,
1006                         OptimizationRemarkEmitter &NewORE,
1007                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1008                         LegacyDivergenceAnalysis * Divergence) {
1009   MF = &NewMF;
1010   SDAGISelPass = PassPtr;
1011   ORE = &NewORE;
1012   TLI = getSubtarget().getTargetLowering();
1013   TSI = getSubtarget().getSelectionDAGInfo();
1014   LibInfo = LibraryInfo;
1015   Context = &MF->getFunction().getContext();
1016   DA = Divergence;
1017 }
1018 
1019 SelectionDAG::~SelectionDAG() {
1020   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1021   allnodes_clear();
1022   OperandRecycler.clear(OperandAllocator);
1023   delete DbgInfo;
1024 }
1025 
1026 void SelectionDAG::allnodes_clear() {
1027   assert(&*AllNodes.begin() == &EntryNode);
1028   AllNodes.remove(AllNodes.begin());
1029   while (!AllNodes.empty())
1030     DeallocateNode(&AllNodes.front());
1031 #ifndef NDEBUG
1032   NextPersistentId = 0;
1033 #endif
1034 }
1035 
1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1037                                           void *&InsertPos) {
1038   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1039   if (N) {
1040     switch (N->getOpcode()) {
1041     default: break;
1042     case ISD::Constant:
1043     case ISD::ConstantFP:
1044       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1045                        "debug location.  Use another overload.");
1046     }
1047   }
1048   return N;
1049 }
1050 
1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1052                                           const SDLoc &DL, void *&InsertPos) {
1053   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1054   if (N) {
1055     switch (N->getOpcode()) {
1056     case ISD::Constant:
1057     case ISD::ConstantFP:
1058       // Erase debug location from the node if the node is used at several
1059       // different places. Do not propagate one location to all uses as it
1060       // will cause a worse single stepping debugging experience.
1061       if (N->getDebugLoc() != DL.getDebugLoc())
1062         N->setDebugLoc(DebugLoc());
1063       break;
1064     default:
1065       // When the node's point of use is located earlier in the instruction
1066       // sequence than its prior point of use, update its debug info to the
1067       // earlier location.
1068       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1069         N->setDebugLoc(DL.getDebugLoc());
1070       break;
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 void SelectionDAG::clear() {
1077   allnodes_clear();
1078   OperandRecycler.clear(OperandAllocator);
1079   OperandAllocator.Reset();
1080   CSEMap.clear();
1081 
1082   ExtendedValueTypeNodes.clear();
1083   ExternalSymbols.clear();
1084   TargetExternalSymbols.clear();
1085   MCSymbols.clear();
1086   SDCallSiteDbgInfo.clear();
1087   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1088             static_cast<CondCodeSDNode*>(nullptr));
1089   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1090             static_cast<SDNode*>(nullptr));
1091 
1092   EntryNode.UseList = nullptr;
1093   InsertNode(&EntryNode);
1094   Root = getEntryNode();
1095   DbgInfo->clear();
1096 }
1097 
1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1099   return VT.bitsGT(Op.getValueType())
1100              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1101              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1102 }
1103 
1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1105   return VT.bitsGT(Op.getValueType()) ?
1106     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1107     getNode(ISD::TRUNCATE, DL, VT, Op);
1108 }
1109 
1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1111   return VT.bitsGT(Op.getValueType()) ?
1112     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1113     getNode(ISD::TRUNCATE, DL, VT, Op);
1114 }
1115 
1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1117   return VT.bitsGT(Op.getValueType()) ?
1118     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1119     getNode(ISD::TRUNCATE, DL, VT, Op);
1120 }
1121 
1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1123                                         EVT OpVT) {
1124   if (VT.bitsLE(Op.getValueType()))
1125     return getNode(ISD::TRUNCATE, SL, VT, Op);
1126 
1127   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1128   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1129 }
1130 
1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1132   assert(!VT.isVector() &&
1133          "getZeroExtendInReg should use the vector element type instead of "
1134          "the vector type!");
1135   if (Op.getValueType().getScalarType() == VT) return Op;
1136   unsigned BitWidth = Op.getScalarValueSizeInBits();
1137   APInt Imm = APInt::getLowBitsSet(BitWidth,
1138                                    VT.getSizeInBits());
1139   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1140                  getConstant(Imm, DL, Op.getValueType()));
1141 }
1142 
1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   // Only unsigned pointer semantics are supported right now. In the future this
1145   // might delegate to TLI to check pointer signedness.
1146   return getZExtOrTrunc(Op, DL, VT);
1147 }
1148 
1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1150   // Only unsigned pointer semantics are supported right now. In the future this
1151   // might delegate to TLI to check pointer signedness.
1152   return getZeroExtendInReg(Op, DL, VT);
1153 }
1154 
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157   EVT EltVT = VT.getScalarType();
1158   SDValue NegOne =
1159     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1160   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1161 }
1162 
1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1164   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1165   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1166 }
1167 
1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1169                                       EVT OpVT) {
1170   if (!V)
1171     return getConstant(0, DL, VT);
1172 
1173   switch (TLI->getBooleanContents(OpVT)) {
1174   case TargetLowering::ZeroOrOneBooleanContent:
1175   case TargetLowering::UndefinedBooleanContent:
1176     return getConstant(1, DL, VT);
1177   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1178     return getAllOnesConstant(DL, VT);
1179   }
1180   llvm_unreachable("Unexpected boolean content enum!");
1181 }
1182 
1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1184                                   bool isT, bool isO) {
1185   EVT EltVT = VT.getScalarType();
1186   assert((EltVT.getSizeInBits() >= 64 ||
1187          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1188          "getConstant with a uint64_t value that doesn't fit in the type!");
1189   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1190 }
1191 
1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1193                                   bool isT, bool isO) {
1194   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1195 }
1196 
1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1198                                   EVT VT, bool isT, bool isO) {
1199   assert(VT.isInteger() && "Cannot create FP integer constant!");
1200 
1201   EVT EltVT = VT.getScalarType();
1202   const ConstantInt *Elt = &Val;
1203 
1204   // In some cases the vector type is legal but the element type is illegal and
1205   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1206   // inserted value (the type does not need to match the vector element type).
1207   // Any extra bits introduced will be truncated away.
1208   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1209       TargetLowering::TypePromoteInteger) {
1210    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1211    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1212    Elt = ConstantInt::get(*getContext(), NewVal);
1213   }
1214   // In other cases the element type is illegal and needs to be expanded, for
1215   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216   // the value into n parts and use a vector type with n-times the elements.
1217   // Then bitcast to the type requested.
1218   // Legalizing constants too early makes the DAGCombiner's job harder so we
1219   // only legalize if the DAG tells us we must produce legal types.
1220   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1221            TLI->getTypeAction(*getContext(), EltVT) ==
1222            TargetLowering::TypeExpandInteger) {
1223     const APInt &NewVal = Elt->getValue();
1224     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1225     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1226     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1227     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1228 
1229     // Check the temporary vector is the correct size. If this fails then
1230     // getTypeToTransformTo() probably returned a type whose size (in bits)
1231     // isn't a power-of-2 factor of the requested type size.
1232     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1233 
1234     SmallVector<SDValue, 2> EltParts;
1235     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1236       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1237                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1238                                      ViaEltVT, isT, isO));
1239     }
1240 
1241     // EltParts is currently in little endian order. If we actually want
1242     // big-endian order then reverse it now.
1243     if (getDataLayout().isBigEndian())
1244       std::reverse(EltParts.begin(), EltParts.end());
1245 
1246     // The elements must be reversed when the element order is different
1247     // to the endianness of the elements (because the BITCAST is itself a
1248     // vector shuffle in this situation). However, we do not need any code to
1249     // perform this reversal because getConstant() is producing a vector
1250     // splat.
1251     // This situation occurs in MIPS MSA.
1252 
1253     SmallVector<SDValue, 8> Ops;
1254     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1255       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1256 
1257     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1258     return V;
1259   }
1260 
1261   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1262          "APInt size does not match type size!");
1263   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1264   FoldingSetNodeID ID;
1265   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1266   ID.AddPointer(Elt);
1267   ID.AddBoolean(isO);
1268   void *IP = nullptr;
1269   SDNode *N = nullptr;
1270   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1271     if (!VT.isVector())
1272       return SDValue(N, 0);
1273 
1274   if (!N) {
1275     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1276     CSEMap.InsertNode(N, IP);
1277     InsertNode(N);
1278     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1279   }
1280 
1281   SDValue Result(N, 0);
1282   if (VT.isVector())
1283     Result = getSplatBuildVector(VT, DL, Result);
1284 
1285   return Result;
1286 }
1287 
1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1289                                         bool isTarget) {
1290   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1291 }
1292 
1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1294                                              const SDLoc &DL, bool LegalTypes) {
1295   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1296   return getConstant(Val, DL, ShiftVT);
1297 }
1298 
1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1300                                     bool isTarget) {
1301   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1302 }
1303 
1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1305                                     EVT VT, bool isTarget) {
1306   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1307 
1308   EVT EltVT = VT.getScalarType();
1309 
1310   // Do the map lookup using the actual bit pattern for the floating point
1311   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1312   // we don't have issues with SNANs.
1313   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1316   ID.AddPointer(&V);
1317   void *IP = nullptr;
1318   SDNode *N = nullptr;
1319   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1320     if (!VT.isVector())
1321       return SDValue(N, 0);
1322 
1323   if (!N) {
1324     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1325     CSEMap.InsertNode(N, IP);
1326     InsertNode(N);
1327   }
1328 
1329   SDValue Result(N, 0);
1330   if (VT.isVector())
1331     Result = getSplatBuildVector(VT, DL, Result);
1332   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1333   return Result;
1334 }
1335 
1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1337                                     bool isTarget) {
1338   EVT EltVT = VT.getScalarType();
1339   if (EltVT == MVT::f32)
1340     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1341   else if (EltVT == MVT::f64)
1342     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1343   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1344            EltVT == MVT::f16) {
1345     bool Ignored;
1346     APFloat APF = APFloat(Val);
1347     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1348                 &Ignored);
1349     return getConstantFP(APF, DL, VT, isTarget);
1350   } else
1351     llvm_unreachable("Unsupported type in getConstantFP");
1352 }
1353 
1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1355                                        EVT VT, int64_t Offset, bool isTargetGA,
1356                                        unsigned TargetFlags) {
1357   assert((TargetFlags == 0 || isTargetGA) &&
1358          "Cannot set target flags on target-independent globals");
1359 
1360   // Truncate (with sign-extension) the offset value to the pointer size.
1361   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1362   if (BitWidth < 64)
1363     Offset = SignExtend64(Offset, BitWidth);
1364 
1365   unsigned Opc;
1366   if (GV->isThreadLocal())
1367     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1368   else
1369     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1370 
1371   FoldingSetNodeID ID;
1372   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1373   ID.AddPointer(GV);
1374   ID.AddInteger(Offset);
1375   ID.AddInteger(TargetFlags);
1376   void *IP = nullptr;
1377   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1378     return SDValue(E, 0);
1379 
1380   auto *N = newSDNode<GlobalAddressSDNode>(
1381       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1382   CSEMap.InsertNode(N, IP);
1383     InsertNode(N);
1384   return SDValue(N, 0);
1385 }
1386 
1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1388   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1389   FoldingSetNodeID ID;
1390   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1391   ID.AddInteger(FI);
1392   void *IP = nullptr;
1393   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1394     return SDValue(E, 0);
1395 
1396   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1397   CSEMap.InsertNode(N, IP);
1398   InsertNode(N);
1399   return SDValue(N, 0);
1400 }
1401 
1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1403                                    unsigned TargetFlags) {
1404   assert((TargetFlags == 0 || isTarget) &&
1405          "Cannot set target flags on target-independent jump tables");
1406   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1407   FoldingSetNodeID ID;
1408   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1409   ID.AddInteger(JTI);
1410   ID.AddInteger(TargetFlags);
1411   void *IP = nullptr;
1412   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1413     return SDValue(E, 0);
1414 
1415   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1416   CSEMap.InsertNode(N, IP);
1417   InsertNode(N);
1418   return SDValue(N, 0);
1419 }
1420 
1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1422                                       unsigned Alignment, int Offset,
1423                                       bool isTarget,
1424                                       unsigned TargetFlags) {
1425   assert((TargetFlags == 0 || isTarget) &&
1426          "Cannot set target flags on target-independent globals");
1427   if (Alignment == 0)
1428     Alignment = MF->getFunction().hasOptSize()
1429                     ? getDataLayout().getABITypeAlignment(C->getType())
1430                     : getDataLayout().getPrefTypeAlignment(C->getType());
1431   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1432   FoldingSetNodeID ID;
1433   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1434   ID.AddInteger(Alignment);
1435   ID.AddInteger(Offset);
1436   ID.AddPointer(C);
1437   ID.AddInteger(TargetFlags);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1443                                           TargetFlags);
1444   CSEMap.InsertNode(N, IP);
1445   InsertNode(N);
1446   return SDValue(N, 0);
1447 }
1448 
1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1450                                       unsigned Alignment, int Offset,
1451                                       bool isTarget,
1452                                       unsigned TargetFlags) {
1453   assert((TargetFlags == 0 || isTarget) &&
1454          "Cannot set target flags on target-independent globals");
1455   if (Alignment == 0)
1456     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1457   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1458   FoldingSetNodeID ID;
1459   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1460   ID.AddInteger(Alignment);
1461   ID.AddInteger(Offset);
1462   C->addSelectionDAGCSEId(ID);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1469                                           TargetFlags);
1470   CSEMap.InsertNode(N, IP);
1471   InsertNode(N);
1472   return SDValue(N, 0);
1473 }
1474 
1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1476                                      unsigned TargetFlags) {
1477   FoldingSetNodeID ID;
1478   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1479   ID.AddInteger(Index);
1480   ID.AddInteger(Offset);
1481   ID.AddInteger(TargetFlags);
1482   void *IP = nullptr;
1483   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1484     return SDValue(E, 0);
1485 
1486   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1487   CSEMap.InsertNode(N, IP);
1488   InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1493   FoldingSetNodeID ID;
1494   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1495   ID.AddPointer(MBB);
1496   void *IP = nullptr;
1497   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1498     return SDValue(E, 0);
1499 
1500   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1501   CSEMap.InsertNode(N, IP);
1502   InsertNode(N);
1503   return SDValue(N, 0);
1504 }
1505 
1506 SDValue SelectionDAG::getValueType(EVT VT) {
1507   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1508       ValueTypeNodes.size())
1509     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1510 
1511   SDNode *&N = VT.isExtended() ?
1512     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1513 
1514   if (N) return SDValue(N, 0);
1515   N = newSDNode<VTSDNode>(VT);
1516   InsertNode(N);
1517   return SDValue(N, 0);
1518 }
1519 
1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1521   SDNode *&N = ExternalSymbols[Sym];
1522   if (N) return SDValue(N, 0);
1523   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1529   SDNode *&N = MCSymbols[Sym];
1530   if (N)
1531     return SDValue(N, 0);
1532   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1533   InsertNode(N);
1534   return SDValue(N, 0);
1535 }
1536 
1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1538                                               unsigned TargetFlags) {
1539   SDNode *&N =
1540       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1541   if (N) return SDValue(N, 0);
1542   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1543   InsertNode(N);
1544   return SDValue(N, 0);
1545 }
1546 
1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1548   if ((unsigned)Cond >= CondCodeNodes.size())
1549     CondCodeNodes.resize(Cond+1);
1550 
1551   if (!CondCodeNodes[Cond]) {
1552     auto *N = newSDNode<CondCodeSDNode>(Cond);
1553     CondCodeNodes[Cond] = N;
1554     InsertNode(N);
1555   }
1556 
1557   return SDValue(CondCodeNodes[Cond], 0);
1558 }
1559 
1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1563   std::swap(N1, N2);
1564   ShuffleVectorSDNode::commuteMask(M);
1565 }
1566 
1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1568                                        SDValue N2, ArrayRef<int> Mask) {
1569   assert(VT.getVectorNumElements() == Mask.size() &&
1570            "Must have the same number of vector elements as mask elements!");
1571   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1572          "Invalid VECTOR_SHUFFLE");
1573 
1574   // Canonicalize shuffle undef, undef -> undef
1575   if (N1.isUndef() && N2.isUndef())
1576     return getUNDEF(VT);
1577 
1578   // Validate that all indices in Mask are within the range of the elements
1579   // input to the shuffle.
1580   int NElts = Mask.size();
1581   assert(llvm::all_of(Mask,
1582                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1583          "Index out of range");
1584 
1585   // Copy the mask so we can do any needed cleanup.
1586   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1587 
1588   // Canonicalize shuffle v, v -> v, undef
1589   if (N1 == N2) {
1590     N2 = getUNDEF(VT);
1591     for (int i = 0; i != NElts; ++i)
1592       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1593   }
1594 
1595   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1596   if (N1.isUndef())
1597     commuteShuffle(N1, N2, MaskVec);
1598 
1599   if (TLI->hasVectorBlend()) {
1600     // If shuffling a splat, try to blend the splat instead. We do this here so
1601     // that even when this arises during lowering we don't have to re-handle it.
1602     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1603       BitVector UndefElements;
1604       SDValue Splat = BV->getSplatValue(&UndefElements);
1605       if (!Splat)
1606         return;
1607 
1608       for (int i = 0; i < NElts; ++i) {
1609         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1610           continue;
1611 
1612         // If this input comes from undef, mark it as such.
1613         if (UndefElements[MaskVec[i] - Offset]) {
1614           MaskVec[i] = -1;
1615           continue;
1616         }
1617 
1618         // If we can blend a non-undef lane, use that instead.
1619         if (!UndefElements[i])
1620           MaskVec[i] = i + Offset;
1621       }
1622     };
1623     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1624       BlendSplat(N1BV, 0);
1625     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1626       BlendSplat(N2BV, NElts);
1627   }
1628 
1629   // Canonicalize all index into lhs, -> shuffle lhs, undef
1630   // Canonicalize all index into rhs, -> shuffle rhs, undef
1631   bool AllLHS = true, AllRHS = true;
1632   bool N2Undef = N2.isUndef();
1633   for (int i = 0; i != NElts; ++i) {
1634     if (MaskVec[i] >= NElts) {
1635       if (N2Undef)
1636         MaskVec[i] = -1;
1637       else
1638         AllLHS = false;
1639     } else if (MaskVec[i] >= 0) {
1640       AllRHS = false;
1641     }
1642   }
1643   if (AllLHS && AllRHS)
1644     return getUNDEF(VT);
1645   if (AllLHS && !N2Undef)
1646     N2 = getUNDEF(VT);
1647   if (AllRHS) {
1648     N1 = getUNDEF(VT);
1649     commuteShuffle(N1, N2, MaskVec);
1650   }
1651   // Reset our undef status after accounting for the mask.
1652   N2Undef = N2.isUndef();
1653   // Re-check whether both sides ended up undef.
1654   if (N1.isUndef() && N2Undef)
1655     return getUNDEF(VT);
1656 
1657   // If Identity shuffle return that node.
1658   bool Identity = true, AllSame = true;
1659   for (int i = 0; i != NElts; ++i) {
1660     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1661     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1662   }
1663   if (Identity && NElts)
1664     return N1;
1665 
1666   // Shuffling a constant splat doesn't change the result.
1667   if (N2Undef) {
1668     SDValue V = N1;
1669 
1670     // Look through any bitcasts. We check that these don't change the number
1671     // (and size) of elements and just changes their types.
1672     while (V.getOpcode() == ISD::BITCAST)
1673       V = V->getOperand(0);
1674 
1675     // A splat should always show up as a build vector node.
1676     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1677       BitVector UndefElements;
1678       SDValue Splat = BV->getSplatValue(&UndefElements);
1679       // If this is a splat of an undef, shuffling it is also undef.
1680       if (Splat && Splat.isUndef())
1681         return getUNDEF(VT);
1682 
1683       bool SameNumElts =
1684           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1685 
1686       // We only have a splat which can skip shuffles if there is a splatted
1687       // value and no undef lanes rearranged by the shuffle.
1688       if (Splat && UndefElements.none()) {
1689         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1690         // number of elements match or the value splatted is a zero constant.
1691         if (SameNumElts)
1692           return N1;
1693         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1694           if (C->isNullValue())
1695             return N1;
1696       }
1697 
1698       // If the shuffle itself creates a splat, build the vector directly.
1699       if (AllSame && SameNumElts) {
1700         EVT BuildVT = BV->getValueType(0);
1701         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1702         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1703 
1704         // We may have jumped through bitcasts, so the type of the
1705         // BUILD_VECTOR may not match the type of the shuffle.
1706         if (BuildVT != VT)
1707           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1708         return NewBV;
1709       }
1710     }
1711   }
1712 
1713   FoldingSetNodeID ID;
1714   SDValue Ops[2] = { N1, N2 };
1715   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1716   for (int i = 0; i != NElts; ++i)
1717     ID.AddInteger(MaskVec[i]);
1718 
1719   void* IP = nullptr;
1720   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1721     return SDValue(E, 0);
1722 
1723   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1724   // SDNode doesn't have access to it.  This memory will be "leaked" when
1725   // the node is deallocated, but recovered when the NodeAllocator is released.
1726   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1727   llvm::copy(MaskVec, MaskAlloc);
1728 
1729   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1730                                            dl.getDebugLoc(), MaskAlloc);
1731   createOperands(N, Ops);
1732 
1733   CSEMap.InsertNode(N, IP);
1734   InsertNode(N);
1735   SDValue V = SDValue(N, 0);
1736   NewSDValueDbgMsg(V, "Creating new node: ", this);
1737   return V;
1738 }
1739 
1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1741   EVT VT = SV.getValueType(0);
1742   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1743   ShuffleVectorSDNode::commuteMask(MaskVec);
1744 
1745   SDValue Op0 = SV.getOperand(0);
1746   SDValue Op1 = SV.getOperand(1);
1747   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1748 }
1749 
1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1751   FoldingSetNodeID ID;
1752   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1753   ID.AddInteger(RegNo);
1754   void *IP = nullptr;
1755   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1756     return SDValue(E, 0);
1757 
1758   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1759   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1760   CSEMap.InsertNode(N, IP);
1761   InsertNode(N);
1762   return SDValue(N, 0);
1763 }
1764 
1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1766   FoldingSetNodeID ID;
1767   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1768   ID.AddPointer(RegMask);
1769   void *IP = nullptr;
1770   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1771     return SDValue(E, 0);
1772 
1773   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1774   CSEMap.InsertNode(N, IP);
1775   InsertNode(N);
1776   return SDValue(N, 0);
1777 }
1778 
1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1780                                  MCSymbol *Label) {
1781   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1782 }
1783 
1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1785                                    SDValue Root, MCSymbol *Label) {
1786   FoldingSetNodeID ID;
1787   SDValue Ops[] = { Root };
1788   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1789   ID.AddPointer(Label);
1790   void *IP = nullptr;
1791   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1792     return SDValue(E, 0);
1793 
1794   auto *N =
1795       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1796   createOperands(N, Ops);
1797 
1798   CSEMap.InsertNode(N, IP);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1804                                       int64_t Offset, bool isTarget,
1805                                       unsigned TargetFlags) {
1806   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1807 
1808   FoldingSetNodeID ID;
1809   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1810   ID.AddPointer(BA);
1811   ID.AddInteger(Offset);
1812   ID.AddInteger(TargetFlags);
1813   void *IP = nullptr;
1814   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1815     return SDValue(E, 0);
1816 
1817   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1818   CSEMap.InsertNode(N, IP);
1819   InsertNode(N);
1820   return SDValue(N, 0);
1821 }
1822 
1823 SDValue SelectionDAG::getSrcValue(const Value *V) {
1824   assert((!V || V->getType()->isPointerTy()) &&
1825          "SrcValue is not a pointer?");
1826 
1827   FoldingSetNodeID ID;
1828   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1829   ID.AddPointer(V);
1830 
1831   void *IP = nullptr;
1832   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1833     return SDValue(E, 0);
1834 
1835   auto *N = newSDNode<SrcValueSDNode>(V);
1836   CSEMap.InsertNode(N, IP);
1837   InsertNode(N);
1838   return SDValue(N, 0);
1839 }
1840 
1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1842   FoldingSetNodeID ID;
1843   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1844   ID.AddPointer(MD);
1845 
1846   void *IP = nullptr;
1847   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1848     return SDValue(E, 0);
1849 
1850   auto *N = newSDNode<MDNodeSDNode>(MD);
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1857   if (VT == V.getValueType())
1858     return V;
1859 
1860   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1861 }
1862 
1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1864                                        unsigned SrcAS, unsigned DestAS) {
1865   SDValue Ops[] = {Ptr};
1866   FoldingSetNodeID ID;
1867   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1868   ID.AddInteger(SrcAS);
1869   ID.AddInteger(DestAS);
1870 
1871   void *IP = nullptr;
1872   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1873     return SDValue(E, 0);
1874 
1875   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1876                                            VT, SrcAS, DestAS);
1877   createOperands(N, Ops);
1878 
1879   CSEMap.InsertNode(N, IP);
1880   InsertNode(N);
1881   return SDValue(N, 0);
1882 }
1883 
1884 /// getShiftAmountOperand - Return the specified value casted to
1885 /// the target's desired shift amount type.
1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1887   EVT OpTy = Op.getValueType();
1888   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1889   if (OpTy == ShTy || OpTy.isVector()) return Op;
1890 
1891   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1892 }
1893 
1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1895   SDLoc dl(Node);
1896   const TargetLowering &TLI = getTargetLoweringInfo();
1897   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1898   EVT VT = Node->getValueType(0);
1899   SDValue Tmp1 = Node->getOperand(0);
1900   SDValue Tmp2 = Node->getOperand(1);
1901   unsigned Align = Node->getConstantOperandVal(3);
1902 
1903   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1904                                Tmp2, MachinePointerInfo(V));
1905   SDValue VAList = VAListLoad;
1906 
1907   if (Align > TLI.getMinStackArgumentAlignment()) {
1908     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1909 
1910     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1911                      getConstant(Align - 1, dl, VAList.getValueType()));
1912 
1913     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1914                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1915   }
1916 
1917   // Increment the pointer, VAList, to the next vaarg
1918   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1919                  getConstant(getDataLayout().getTypeAllocSize(
1920                                                VT.getTypeForEVT(*getContext())),
1921                              dl, VAList.getValueType()));
1922   // Store the incremented VAList to the legalized pointer
1923   Tmp1 =
1924       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1925   // Load the actual argument out of the pointer VAList
1926   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1927 }
1928 
1929 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1930   SDLoc dl(Node);
1931   const TargetLowering &TLI = getTargetLoweringInfo();
1932   // This defaults to loading a pointer from the input and storing it to the
1933   // output, returning the chain.
1934   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1935   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1936   SDValue Tmp1 =
1937       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1938               Node->getOperand(2), MachinePointerInfo(VS));
1939   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1940                   MachinePointerInfo(VD));
1941 }
1942 
1943 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1944   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1945   unsigned ByteSize = VT.getStoreSize();
1946   Type *Ty = VT.getTypeForEVT(*getContext());
1947   unsigned StackAlign =
1948       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1949 
1950   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1951   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1952 }
1953 
1954 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1955   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1956   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1957   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1958   const DataLayout &DL = getDataLayout();
1959   unsigned Align =
1960       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1961 
1962   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1963   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1964   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1965 }
1966 
1967 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1968                                 ISD::CondCode Cond, const SDLoc &dl) {
1969   EVT OpVT = N1.getValueType();
1970 
1971   // These setcc operations always fold.
1972   switch (Cond) {
1973   default: break;
1974   case ISD::SETFALSE:
1975   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1976   case ISD::SETTRUE:
1977   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1978 
1979   case ISD::SETOEQ:
1980   case ISD::SETOGT:
1981   case ISD::SETOGE:
1982   case ISD::SETOLT:
1983   case ISD::SETOLE:
1984   case ISD::SETONE:
1985   case ISD::SETO:
1986   case ISD::SETUO:
1987   case ISD::SETUEQ:
1988   case ISD::SETUNE:
1989     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1990     break;
1991   }
1992 
1993   if (OpVT.isInteger()) {
1994     // For EQ and NE, we can always pick a value for the undef to make the
1995     // predicate pass or fail, so we can return undef.
1996     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1997     // icmp eq/ne X, undef -> undef.
1998     if ((N1.isUndef() || N2.isUndef()) &&
1999         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2000       return getUNDEF(VT);
2001 
2002     // If both operands are undef, we can return undef for int comparison.
2003     // icmp undef, undef -> undef.
2004     if (N1.isUndef() && N2.isUndef())
2005       return getUNDEF(VT);
2006 
2007     // icmp X, X -> true/false
2008     // icmp X, undef -> true/false because undef could be X.
2009     if (N1 == N2)
2010       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2011   }
2012 
2013   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2014     const APInt &C2 = N2C->getAPIntValue();
2015     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2016       const APInt &C1 = N1C->getAPIntValue();
2017 
2018       switch (Cond) {
2019       default: llvm_unreachable("Unknown integer setcc!");
2020       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2021       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2022       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2023       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2024       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2025       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2026       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2027       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2028       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2029       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2030       }
2031     }
2032   }
2033 
2034   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2035   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2036 
2037   if (N1CFP && N2CFP) {
2038     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2039     switch (Cond) {
2040     default: break;
2041     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2042                         return getUNDEF(VT);
2043                       LLVM_FALLTHROUGH;
2044     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2045                                              OpVT);
2046     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2047                         return getUNDEF(VT);
2048                       LLVM_FALLTHROUGH;
2049     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2050                                              R==APFloat::cmpLessThan, dl, VT,
2051                                              OpVT);
2052     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2053                         return getUNDEF(VT);
2054                       LLVM_FALLTHROUGH;
2055     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2056                                              OpVT);
2057     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2058                         return getUNDEF(VT);
2059                       LLVM_FALLTHROUGH;
2060     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2061                                              VT, OpVT);
2062     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2063                         return getUNDEF(VT);
2064                       LLVM_FALLTHROUGH;
2065     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2066                                              R==APFloat::cmpEqual, dl, VT,
2067                                              OpVT);
2068     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2069                         return getUNDEF(VT);
2070                       LLVM_FALLTHROUGH;
2071     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2072                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2073     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2074                                              OpVT);
2075     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2076                                              OpVT);
2077     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2078                                              R==APFloat::cmpEqual, dl, VT,
2079                                              OpVT);
2080     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2081                                              OpVT);
2082     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2083                                              R==APFloat::cmpLessThan, dl, VT,
2084                                              OpVT);
2085     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2086                                              R==APFloat::cmpUnordered, dl, VT,
2087                                              OpVT);
2088     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2089                                              VT, OpVT);
2090     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2091                                              OpVT);
2092     }
2093   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2094     // Ensure that the constant occurs on the RHS.
2095     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2096     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2097       return SDValue();
2098     return getSetCC(dl, VT, N2, N1, SwappedCond);
2099   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2100              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2101     // If an operand is known to be a nan (or undef that could be a nan), we can
2102     // fold it.
2103     // Choosing NaN for the undef will always make unordered comparison succeed
2104     // and ordered comparison fails.
2105     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2106     switch (ISD::getUnorderedFlavor(Cond)) {
2107     default:
2108       llvm_unreachable("Unknown flavor!");
2109     case 0: // Known false.
2110       return getBoolConstant(false, dl, VT, OpVT);
2111     case 1: // Known true.
2112       return getBoolConstant(true, dl, VT, OpVT);
2113     case 2: // Undefined.
2114       return getUNDEF(VT);
2115     }
2116   }
2117 
2118   // Could not fold it.
2119   return SDValue();
2120 }
2121 
2122 /// See if the specified operand can be simplified with the knowledge that only
2123 /// the bits specified by DemandedBits are used.
2124 /// TODO: really we should be making this into the DAG equivalent of
2125 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2126 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2127   EVT VT = V.getValueType();
2128   APInt DemandedElts = VT.isVector()
2129                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2130                            : APInt(1, 1);
2131   return GetDemandedBits(V, DemandedBits, DemandedElts);
2132 }
2133 
2134 /// See if the specified operand can be simplified with the knowledge that only
2135 /// the bits specified by DemandedBits are used in the elements specified by
2136 /// DemandedElts.
2137 /// TODO: really we should be making this into the DAG equivalent of
2138 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2139 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2140                                       const APInt &DemandedElts) {
2141   switch (V.getOpcode()) {
2142   default:
2143     break;
2144   case ISD::Constant: {
2145     auto *CV = cast<ConstantSDNode>(V.getNode());
2146     assert(CV && "Const value should be ConstSDNode.");
2147     const APInt &CVal = CV->getAPIntValue();
2148     APInt NewVal = CVal & DemandedBits;
2149     if (NewVal != CVal)
2150       return getConstant(NewVal, SDLoc(V), V.getValueType());
2151     break;
2152   }
2153   case ISD::OR:
2154   case ISD::XOR:
2155   case ISD::SIGN_EXTEND_INREG:
2156     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2157                                                 *this, 0);
2158   case ISD::SRL:
2159     // Only look at single-use SRLs.
2160     if (!V.getNode()->hasOneUse())
2161       break;
2162     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2163       // See if we can recursively simplify the LHS.
2164       unsigned Amt = RHSC->getZExtValue();
2165 
2166       // Watch out for shift count overflow though.
2167       if (Amt >= DemandedBits.getBitWidth())
2168         break;
2169       APInt SrcDemandedBits = DemandedBits << Amt;
2170       if (SDValue SimplifyLHS =
2171               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2172         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2173                        V.getOperand(1));
2174     }
2175     break;
2176   case ISD::AND: {
2177     // X & -1 -> X (ignoring bits which aren't demanded).
2178     // Also handle the case where masked out bits in X are known to be zero.
2179     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2180       const APInt &AndVal = RHSC->getAPIntValue();
2181       if (DemandedBits.isSubsetOf(AndVal) ||
2182           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2183                                   AndVal))
2184         return V.getOperand(0);
2185     }
2186     break;
2187   }
2188   case ISD::ANY_EXTEND: {
2189     SDValue Src = V.getOperand(0);
2190     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2191     // Being conservative here - only peek through if we only demand bits in the
2192     // non-extended source (even though the extended bits are technically
2193     // undef).
2194     if (DemandedBits.getActiveBits() > SrcBitWidth)
2195       break;
2196     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2197     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2198       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2199     break;
2200   }
2201   }
2202   return SDValue();
2203 }
2204 
2205 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2206 /// use this predicate to simplify operations downstream.
2207 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2208   unsigned BitWidth = Op.getScalarValueSizeInBits();
2209   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2210 }
2211 
2212 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2213 /// this predicate to simplify operations downstream.  Mask is known to be zero
2214 /// for bits that V cannot have.
2215 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2216                                      unsigned Depth) const {
2217   EVT VT = V.getValueType();
2218   APInt DemandedElts = VT.isVector()
2219                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2220                            : APInt(1, 1);
2221   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2222 }
2223 
2224 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2225 /// DemandedElts.  We use this predicate to simplify operations downstream.
2226 /// Mask is known to be zero for bits that V cannot have.
2227 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2228                                      const APInt &DemandedElts,
2229                                      unsigned Depth) const {
2230   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2231 }
2232 
2233 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2234 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2235                                         unsigned Depth) const {
2236   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2237 }
2238 
2239 /// isSplatValue - Return true if the vector V has the same value
2240 /// across all DemandedElts.
2241 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2242                                 APInt &UndefElts) {
2243   if (!DemandedElts)
2244     return false; // No demanded elts, better to assume we don't know anything.
2245 
2246   EVT VT = V.getValueType();
2247   assert(VT.isVector() && "Vector type expected");
2248 
2249   unsigned NumElts = VT.getVectorNumElements();
2250   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2251   UndefElts = APInt::getNullValue(NumElts);
2252 
2253   switch (V.getOpcode()) {
2254   case ISD::BUILD_VECTOR: {
2255     SDValue Scl;
2256     for (unsigned i = 0; i != NumElts; ++i) {
2257       SDValue Op = V.getOperand(i);
2258       if (Op.isUndef()) {
2259         UndefElts.setBit(i);
2260         continue;
2261       }
2262       if (!DemandedElts[i])
2263         continue;
2264       if (Scl && Scl != Op)
2265         return false;
2266       Scl = Op;
2267     }
2268     return true;
2269   }
2270   case ISD::VECTOR_SHUFFLE: {
2271     // Check if this is a shuffle node doing a splat.
2272     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2273     int SplatIndex = -1;
2274     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2275     for (int i = 0; i != (int)NumElts; ++i) {
2276       int M = Mask[i];
2277       if (M < 0) {
2278         UndefElts.setBit(i);
2279         continue;
2280       }
2281       if (!DemandedElts[i])
2282         continue;
2283       if (0 <= SplatIndex && SplatIndex != M)
2284         return false;
2285       SplatIndex = M;
2286     }
2287     return true;
2288   }
2289   case ISD::EXTRACT_SUBVECTOR: {
2290     SDValue Src = V.getOperand(0);
2291     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2292     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2293     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2294       // Offset the demanded elts by the subvector index.
2295       uint64_t Idx = SubIdx->getZExtValue();
2296       APInt UndefSrcElts;
2297       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2298       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2299         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2300         return true;
2301       }
2302     }
2303     break;
2304   }
2305   case ISD::ADD:
2306   case ISD::SUB:
2307   case ISD::AND: {
2308     APInt UndefLHS, UndefRHS;
2309     SDValue LHS = V.getOperand(0);
2310     SDValue RHS = V.getOperand(1);
2311     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2312         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2313       UndefElts = UndefLHS | UndefRHS;
2314       return true;
2315     }
2316     break;
2317   }
2318   }
2319 
2320   return false;
2321 }
2322 
2323 /// Helper wrapper to main isSplatValue function.
2324 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2325   EVT VT = V.getValueType();
2326   assert(VT.isVector() && "Vector type expected");
2327   unsigned NumElts = VT.getVectorNumElements();
2328 
2329   APInt UndefElts;
2330   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2331   return isSplatValue(V, DemandedElts, UndefElts) &&
2332          (AllowUndefs || !UndefElts);
2333 }
2334 
2335 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2336   V = peekThroughExtractSubvectors(V);
2337 
2338   EVT VT = V.getValueType();
2339   unsigned Opcode = V.getOpcode();
2340   switch (Opcode) {
2341   default: {
2342     APInt UndefElts;
2343     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2344     if (isSplatValue(V, DemandedElts, UndefElts)) {
2345       // Handle case where all demanded elements are UNDEF.
2346       if (DemandedElts.isSubsetOf(UndefElts)) {
2347         SplatIdx = 0;
2348         return getUNDEF(VT);
2349       }
2350       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2351       return V;
2352     }
2353     break;
2354   }
2355   case ISD::VECTOR_SHUFFLE: {
2356     // Check if this is a shuffle node doing a splat.
2357     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2358     // getTargetVShiftNode currently struggles without the splat source.
2359     auto *SVN = cast<ShuffleVectorSDNode>(V);
2360     if (!SVN->isSplat())
2361       break;
2362     int Idx = SVN->getSplatIndex();
2363     int NumElts = V.getValueType().getVectorNumElements();
2364     SplatIdx = Idx % NumElts;
2365     return V.getOperand(Idx / NumElts);
2366   }
2367   }
2368 
2369   return SDValue();
2370 }
2371 
2372 SDValue SelectionDAG::getSplatValue(SDValue V) {
2373   int SplatIdx;
2374   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2375     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2376                    SrcVector.getValueType().getScalarType(), SrcVector,
2377                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2378   return SDValue();
2379 }
2380 
2381 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2382 /// is less than the element bit-width of the shift node, return it.
2383 static const APInt *getValidShiftAmountConstant(SDValue V) {
2384   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2385     // Shifting more than the bitwidth is not valid.
2386     const APInt &ShAmt = SA->getAPIntValue();
2387     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2388       return &ShAmt;
2389   }
2390   return nullptr;
2391 }
2392 
2393 /// Determine which bits of Op are known to be either zero or one and return
2394 /// them in Known. For vectors, the known bits are those that are shared by
2395 /// every vector element.
2396 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2397   EVT VT = Op.getValueType();
2398   APInt DemandedElts = VT.isVector()
2399                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2400                            : APInt(1, 1);
2401   return computeKnownBits(Op, DemandedElts, Depth);
2402 }
2403 
2404 /// Determine which bits of Op are known to be either zero or one and return
2405 /// them in Known. The DemandedElts argument allows us to only collect the known
2406 /// bits that are shared by the requested vector elements.
2407 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2408                                          unsigned Depth) const {
2409   unsigned BitWidth = Op.getScalarValueSizeInBits();
2410 
2411   KnownBits Known(BitWidth);   // Don't know anything.
2412 
2413   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2414     // We know all of the bits for a constant!
2415     Known.One = C->getAPIntValue();
2416     Known.Zero = ~Known.One;
2417     return Known;
2418   }
2419   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2420     // We know all of the bits for a constant fp!
2421     Known.One = C->getValueAPF().bitcastToAPInt();
2422     Known.Zero = ~Known.One;
2423     return Known;
2424   }
2425 
2426   if (Depth >= 6)
2427     return Known;  // Limit search depth.
2428 
2429   KnownBits Known2;
2430   unsigned NumElts = DemandedElts.getBitWidth();
2431   assert((!Op.getValueType().isVector() ||
2432           NumElts == Op.getValueType().getVectorNumElements()) &&
2433          "Unexpected vector size");
2434 
2435   if (!DemandedElts)
2436     return Known;  // No demanded elts, better to assume we don't know anything.
2437 
2438   unsigned Opcode = Op.getOpcode();
2439   switch (Opcode) {
2440   case ISD::BUILD_VECTOR:
2441     // Collect the known bits that are shared by every demanded vector element.
2442     Known.Zero.setAllBits(); Known.One.setAllBits();
2443     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2444       if (!DemandedElts[i])
2445         continue;
2446 
2447       SDValue SrcOp = Op.getOperand(i);
2448       Known2 = computeKnownBits(SrcOp, Depth + 1);
2449 
2450       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2451       if (SrcOp.getValueSizeInBits() != BitWidth) {
2452         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2453                "Expected BUILD_VECTOR implicit truncation");
2454         Known2 = Known2.trunc(BitWidth);
2455       }
2456 
2457       // Known bits are the values that are shared by every demanded element.
2458       Known.One &= Known2.One;
2459       Known.Zero &= Known2.Zero;
2460 
2461       // If we don't know any bits, early out.
2462       if (Known.isUnknown())
2463         break;
2464     }
2465     break;
2466   case ISD::VECTOR_SHUFFLE: {
2467     // Collect the known bits that are shared by every vector element referenced
2468     // by the shuffle.
2469     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2470     Known.Zero.setAllBits(); Known.One.setAllBits();
2471     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2472     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2473     for (unsigned i = 0; i != NumElts; ++i) {
2474       if (!DemandedElts[i])
2475         continue;
2476 
2477       int M = SVN->getMaskElt(i);
2478       if (M < 0) {
2479         // For UNDEF elements, we don't know anything about the common state of
2480         // the shuffle result.
2481         Known.resetAll();
2482         DemandedLHS.clearAllBits();
2483         DemandedRHS.clearAllBits();
2484         break;
2485       }
2486 
2487       if ((unsigned)M < NumElts)
2488         DemandedLHS.setBit((unsigned)M % NumElts);
2489       else
2490         DemandedRHS.setBit((unsigned)M % NumElts);
2491     }
2492     // Known bits are the values that are shared by every demanded element.
2493     if (!!DemandedLHS) {
2494       SDValue LHS = Op.getOperand(0);
2495       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2496       Known.One &= Known2.One;
2497       Known.Zero &= Known2.Zero;
2498     }
2499     // If we don't know any bits, early out.
2500     if (Known.isUnknown())
2501       break;
2502     if (!!DemandedRHS) {
2503       SDValue RHS = Op.getOperand(1);
2504       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2505       Known.One &= Known2.One;
2506       Known.Zero &= Known2.Zero;
2507     }
2508     break;
2509   }
2510   case ISD::CONCAT_VECTORS: {
2511     // Split DemandedElts and test each of the demanded subvectors.
2512     Known.Zero.setAllBits(); Known.One.setAllBits();
2513     EVT SubVectorVT = Op.getOperand(0).getValueType();
2514     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2515     unsigned NumSubVectors = Op.getNumOperands();
2516     for (unsigned i = 0; i != NumSubVectors; ++i) {
2517       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2518       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2519       if (!!DemandedSub) {
2520         SDValue Sub = Op.getOperand(i);
2521         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2522         Known.One &= Known2.One;
2523         Known.Zero &= Known2.Zero;
2524       }
2525       // If we don't know any bits, early out.
2526       if (Known.isUnknown())
2527         break;
2528     }
2529     break;
2530   }
2531   case ISD::INSERT_SUBVECTOR: {
2532     // If we know the element index, demand any elements from the subvector and
2533     // the remainder from the src its inserted into, otherwise demand them all.
2534     SDValue Src = Op.getOperand(0);
2535     SDValue Sub = Op.getOperand(1);
2536     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2537     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2538     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2539       Known.One.setAllBits();
2540       Known.Zero.setAllBits();
2541       uint64_t Idx = SubIdx->getZExtValue();
2542       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2543       if (!!DemandedSubElts) {
2544         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2545         if (Known.isUnknown())
2546           break; // early-out.
2547       }
2548       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2549       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2550       if (!!DemandedSrcElts) {
2551         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2552         Known.One &= Known2.One;
2553         Known.Zero &= Known2.Zero;
2554       }
2555     } else {
2556       Known = computeKnownBits(Sub, Depth + 1);
2557       if (Known.isUnknown())
2558         break; // early-out.
2559       Known2 = computeKnownBits(Src, Depth + 1);
2560       Known.One &= Known2.One;
2561       Known.Zero &= Known2.Zero;
2562     }
2563     break;
2564   }
2565   case ISD::EXTRACT_SUBVECTOR: {
2566     // If we know the element index, just demand that subvector elements,
2567     // otherwise demand them all.
2568     SDValue Src = Op.getOperand(0);
2569     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2570     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2571     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2572       // Offset the demanded elts by the subvector index.
2573       uint64_t Idx = SubIdx->getZExtValue();
2574       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2575       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2576     } else {
2577       Known = computeKnownBits(Src, Depth + 1);
2578     }
2579     break;
2580   }
2581   case ISD::SCALAR_TO_VECTOR: {
2582     // We know about scalar_to_vector as much as we know about it source,
2583     // which becomes the first element of otherwise unknown vector.
2584     if (DemandedElts != 1)
2585       break;
2586 
2587     SDValue N0 = Op.getOperand(0);
2588     Known = computeKnownBits(N0, Depth + 1);
2589     if (N0.getValueSizeInBits() != BitWidth)
2590       Known = Known.trunc(BitWidth);
2591 
2592     break;
2593   }
2594   case ISD::BITCAST: {
2595     SDValue N0 = Op.getOperand(0);
2596     EVT SubVT = N0.getValueType();
2597     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2598 
2599     // Ignore bitcasts from unsupported types.
2600     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2601       break;
2602 
2603     // Fast handling of 'identity' bitcasts.
2604     if (BitWidth == SubBitWidth) {
2605       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2606       break;
2607     }
2608 
2609     bool IsLE = getDataLayout().isLittleEndian();
2610 
2611     // Bitcast 'small element' vector to 'large element' scalar/vector.
2612     if ((BitWidth % SubBitWidth) == 0) {
2613       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2614 
2615       // Collect known bits for the (larger) output by collecting the known
2616       // bits from each set of sub elements and shift these into place.
2617       // We need to separately call computeKnownBits for each set of
2618       // sub elements as the knownbits for each is likely to be different.
2619       unsigned SubScale = BitWidth / SubBitWidth;
2620       APInt SubDemandedElts(NumElts * SubScale, 0);
2621       for (unsigned i = 0; i != NumElts; ++i)
2622         if (DemandedElts[i])
2623           SubDemandedElts.setBit(i * SubScale);
2624 
2625       for (unsigned i = 0; i != SubScale; ++i) {
2626         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2627                          Depth + 1);
2628         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2629         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2630         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2631       }
2632     }
2633 
2634     // Bitcast 'large element' scalar/vector to 'small element' vector.
2635     if ((SubBitWidth % BitWidth) == 0) {
2636       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2637 
2638       // Collect known bits for the (smaller) output by collecting the known
2639       // bits from the overlapping larger input elements and extracting the
2640       // sub sections we actually care about.
2641       unsigned SubScale = SubBitWidth / BitWidth;
2642       APInt SubDemandedElts(NumElts / SubScale, 0);
2643       for (unsigned i = 0; i != NumElts; ++i)
2644         if (DemandedElts[i])
2645           SubDemandedElts.setBit(i / SubScale);
2646 
2647       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2648 
2649       Known.Zero.setAllBits(); Known.One.setAllBits();
2650       for (unsigned i = 0; i != NumElts; ++i)
2651         if (DemandedElts[i]) {
2652           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2653           unsigned Offset = (Shifts % SubScale) * BitWidth;
2654           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2655           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2656           // If we don't know any bits, early out.
2657           if (Known.isUnknown())
2658             break;
2659         }
2660     }
2661     break;
2662   }
2663   case ISD::AND:
2664     // If either the LHS or the RHS are Zero, the result is zero.
2665     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2666     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2667 
2668     // Output known-1 bits are only known if set in both the LHS & RHS.
2669     Known.One &= Known2.One;
2670     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2671     Known.Zero |= Known2.Zero;
2672     break;
2673   case ISD::OR:
2674     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2675     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2676 
2677     // Output known-0 bits are only known if clear in both the LHS & RHS.
2678     Known.Zero &= Known2.Zero;
2679     // Output known-1 are known to be set if set in either the LHS | RHS.
2680     Known.One |= Known2.One;
2681     break;
2682   case ISD::XOR: {
2683     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2684     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2685 
2686     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2687     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2688     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2689     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2690     Known.Zero = KnownZeroOut;
2691     break;
2692   }
2693   case ISD::MUL: {
2694     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2695     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2696 
2697     // If low bits are zero in either operand, output low known-0 bits.
2698     // Also compute a conservative estimate for high known-0 bits.
2699     // More trickiness is possible, but this is sufficient for the
2700     // interesting case of alignment computation.
2701     unsigned TrailZ = Known.countMinTrailingZeros() +
2702                       Known2.countMinTrailingZeros();
2703     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2704                                Known2.countMinLeadingZeros(),
2705                                BitWidth) - BitWidth;
2706 
2707     Known.resetAll();
2708     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2709     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2710     break;
2711   }
2712   case ISD::UDIV: {
2713     // For the purposes of computing leading zeros we can conservatively
2714     // treat a udiv as a logical right shift by the power of 2 known to
2715     // be less than the denominator.
2716     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2717     unsigned LeadZ = Known2.countMinLeadingZeros();
2718 
2719     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2720     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2721     if (RHSMaxLeadingZeros != BitWidth)
2722       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2723 
2724     Known.Zero.setHighBits(LeadZ);
2725     break;
2726   }
2727   case ISD::SELECT:
2728   case ISD::VSELECT:
2729     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2730     // If we don't know any bits, early out.
2731     if (Known.isUnknown())
2732       break;
2733     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2734 
2735     // Only known if known in both the LHS and RHS.
2736     Known.One &= Known2.One;
2737     Known.Zero &= Known2.Zero;
2738     break;
2739   case ISD::SELECT_CC:
2740     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2741     // If we don't know any bits, early out.
2742     if (Known.isUnknown())
2743       break;
2744     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2745 
2746     // Only known if known in both the LHS and RHS.
2747     Known.One &= Known2.One;
2748     Known.Zero &= Known2.Zero;
2749     break;
2750   case ISD::SMULO:
2751   case ISD::UMULO:
2752   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2753     if (Op.getResNo() != 1)
2754       break;
2755     // The boolean result conforms to getBooleanContents.
2756     // If we know the result of a setcc has the top bits zero, use this info.
2757     // We know that we have an integer-based boolean since these operations
2758     // are only available for integer.
2759     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2760             TargetLowering::ZeroOrOneBooleanContent &&
2761         BitWidth > 1)
2762       Known.Zero.setBitsFrom(1);
2763     break;
2764   case ISD::SETCC:
2765     // If we know the result of a setcc has the top bits zero, use this info.
2766     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2767             TargetLowering::ZeroOrOneBooleanContent &&
2768         BitWidth > 1)
2769       Known.Zero.setBitsFrom(1);
2770     break;
2771   case ISD::SHL:
2772     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2773       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2774       unsigned Shift = ShAmt->getZExtValue();
2775       Known.Zero <<= Shift;
2776       Known.One <<= Shift;
2777       // Low bits are known zero.
2778       Known.Zero.setLowBits(Shift);
2779     }
2780     break;
2781   case ISD::SRL:
2782     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2783       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2784       unsigned Shift = ShAmt->getZExtValue();
2785       Known.Zero.lshrInPlace(Shift);
2786       Known.One.lshrInPlace(Shift);
2787       // High bits are known zero.
2788       Known.Zero.setHighBits(Shift);
2789     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2790       // If the shift amount is a vector of constants see if we can bound
2791       // the number of upper zero bits.
2792       unsigned ShiftAmountMin = BitWidth;
2793       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2794         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2795           const APInt &ShAmt = C->getAPIntValue();
2796           if (ShAmt.ult(BitWidth)) {
2797             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2798                                                 ShAmt.getZExtValue());
2799             continue;
2800           }
2801         }
2802         // Don't know anything.
2803         ShiftAmountMin = 0;
2804         break;
2805       }
2806 
2807       Known.Zero.setHighBits(ShiftAmountMin);
2808     }
2809     break;
2810   case ISD::SRA:
2811     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2812       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2813       unsigned Shift = ShAmt->getZExtValue();
2814       // Sign extend known zero/one bit (else is unknown).
2815       Known.Zero.ashrInPlace(Shift);
2816       Known.One.ashrInPlace(Shift);
2817     }
2818     break;
2819   case ISD::FSHL:
2820   case ISD::FSHR:
2821     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2822       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2823 
2824       // For fshl, 0-shift returns the 1st arg.
2825       // For fshr, 0-shift returns the 2nd arg.
2826       if (Amt == 0) {
2827         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2828                                  DemandedElts, Depth + 1);
2829         break;
2830       }
2831 
2832       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2833       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2834       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2835       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2836       if (Opcode == ISD::FSHL) {
2837         Known.One <<= Amt;
2838         Known.Zero <<= Amt;
2839         Known2.One.lshrInPlace(BitWidth - Amt);
2840         Known2.Zero.lshrInPlace(BitWidth - Amt);
2841       } else {
2842         Known.One <<= BitWidth - Amt;
2843         Known.Zero <<= BitWidth - Amt;
2844         Known2.One.lshrInPlace(Amt);
2845         Known2.Zero.lshrInPlace(Amt);
2846       }
2847       Known.One |= Known2.One;
2848       Known.Zero |= Known2.Zero;
2849     }
2850     break;
2851   case ISD::SIGN_EXTEND_INREG: {
2852     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2853     unsigned EBits = EVT.getScalarSizeInBits();
2854 
2855     // Sign extension.  Compute the demanded bits in the result that are not
2856     // present in the input.
2857     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2858 
2859     APInt InSignMask = APInt::getSignMask(EBits);
2860     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2861 
2862     // If the sign extended bits are demanded, we know that the sign
2863     // bit is demanded.
2864     InSignMask = InSignMask.zext(BitWidth);
2865     if (NewBits.getBoolValue())
2866       InputDemandedBits |= InSignMask;
2867 
2868     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2869     Known.One &= InputDemandedBits;
2870     Known.Zero &= InputDemandedBits;
2871 
2872     // If the sign bit of the input is known set or clear, then we know the
2873     // top bits of the result.
2874     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2875       Known.Zero |= NewBits;
2876       Known.One  &= ~NewBits;
2877     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2878       Known.One  |= NewBits;
2879       Known.Zero &= ~NewBits;
2880     } else {                              // Input sign bit unknown
2881       Known.Zero &= ~NewBits;
2882       Known.One  &= ~NewBits;
2883     }
2884     break;
2885   }
2886   case ISD::CTTZ:
2887   case ISD::CTTZ_ZERO_UNDEF: {
2888     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2889     // If we have a known 1, its position is our upper bound.
2890     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2891     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2892     Known.Zero.setBitsFrom(LowBits);
2893     break;
2894   }
2895   case ISD::CTLZ:
2896   case ISD::CTLZ_ZERO_UNDEF: {
2897     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2898     // If we have a known 1, its position is our upper bound.
2899     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2900     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2901     Known.Zero.setBitsFrom(LowBits);
2902     break;
2903   }
2904   case ISD::CTPOP: {
2905     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2906     // If we know some of the bits are zero, they can't be one.
2907     unsigned PossibleOnes = Known2.countMaxPopulation();
2908     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2909     break;
2910   }
2911   case ISD::LOAD: {
2912     LoadSDNode *LD = cast<LoadSDNode>(Op);
2913     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2914     if (ISD::isNON_EXTLoad(LD) && Cst) {
2915       // Determine any common known bits from the loaded constant pool value.
2916       Type *CstTy = Cst->getType();
2917       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
2918         // If its a vector splat, then we can (quickly) reuse the scalar path.
2919         // NOTE: We assume all elements match and none are UNDEF.
2920         if (CstTy->isVectorTy()) {
2921           if (const Constant *Splat = Cst->getSplatValue()) {
2922             Cst = Splat;
2923             CstTy = Cst->getType();
2924           }
2925         }
2926         // TODO - do we need to handle different bitwidths?
2927         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
2928           // Iterate across all vector elements finding common known bits.
2929           Known.One.setAllBits();
2930           Known.Zero.setAllBits();
2931           for (unsigned i = 0; i != NumElts; ++i) {
2932             if (!DemandedElts[i])
2933               continue;
2934             if (Constant *Elt = Cst->getAggregateElement(i)) {
2935               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
2936                 const APInt &Value = CInt->getValue();
2937                 Known.One &= Value;
2938                 Known.Zero &= ~Value;
2939                 continue;
2940               }
2941               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
2942                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
2943                 Known.One &= Value;
2944                 Known.Zero &= ~Value;
2945                 continue;
2946               }
2947             }
2948             Known.One.clearAllBits();
2949             Known.Zero.clearAllBits();
2950             break;
2951           }
2952         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
2953           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
2954             const APInt &Value = CInt->getValue();
2955             Known.One = Value;
2956             Known.Zero = ~Value;
2957           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
2958             APInt Value = CFP->getValueAPF().bitcastToAPInt();
2959             Known.One = Value;
2960             Known.Zero = ~Value;
2961           }
2962         }
2963       }
2964     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2965       // If this is a ZEXTLoad and we are looking at the loaded value.
2966       EVT VT = LD->getMemoryVT();
2967       unsigned MemBits = VT.getScalarSizeInBits();
2968       Known.Zero.setBitsFrom(MemBits);
2969     } else if (const MDNode *Ranges = LD->getRanges()) {
2970       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2971         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2972     }
2973     break;
2974   }
2975   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2976     EVT InVT = Op.getOperand(0).getValueType();
2977     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2978     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2979     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2980     break;
2981   }
2982   case ISD::ZERO_EXTEND: {
2983     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2984     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2985     break;
2986   }
2987   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2988     EVT InVT = Op.getOperand(0).getValueType();
2989     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2990     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2991     // If the sign bit is known to be zero or one, then sext will extend
2992     // it to the top bits, else it will just zext.
2993     Known = Known.sext(BitWidth);
2994     break;
2995   }
2996   case ISD::SIGN_EXTEND: {
2997     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998     // If the sign bit is known to be zero or one, then sext will extend
2999     // it to the top bits, else it will just zext.
3000     Known = Known.sext(BitWidth);
3001     break;
3002   }
3003   case ISD::ANY_EXTEND: {
3004     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3005     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3006     break;
3007   }
3008   case ISD::TRUNCATE: {
3009     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known = Known.trunc(BitWidth);
3011     break;
3012   }
3013   case ISD::AssertZext: {
3014     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3015     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3016     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3017     Known.Zero |= (~InMask);
3018     Known.One  &= (~Known.Zero);
3019     break;
3020   }
3021   case ISD::FGETSIGN:
3022     // All bits are zero except the low bit.
3023     Known.Zero.setBitsFrom(1);
3024     break;
3025   case ISD::USUBO:
3026   case ISD::SSUBO:
3027     if (Op.getResNo() == 1) {
3028       // If we know the result of a setcc has the top bits zero, use this info.
3029       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3030               TargetLowering::ZeroOrOneBooleanContent &&
3031           BitWidth > 1)
3032         Known.Zero.setBitsFrom(1);
3033       break;
3034     }
3035     LLVM_FALLTHROUGH;
3036   case ISD::SUB:
3037   case ISD::SUBC: {
3038     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3039     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3040     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3041                                         Known, Known2);
3042     break;
3043   }
3044   case ISD::UADDO:
3045   case ISD::SADDO:
3046   case ISD::ADDCARRY:
3047     if (Op.getResNo() == 1) {
3048       // If we know the result of a setcc has the top bits zero, use this info.
3049       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3050               TargetLowering::ZeroOrOneBooleanContent &&
3051           BitWidth > 1)
3052         Known.Zero.setBitsFrom(1);
3053       break;
3054     }
3055     LLVM_FALLTHROUGH;
3056   case ISD::ADD:
3057   case ISD::ADDC:
3058   case ISD::ADDE: {
3059     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3060 
3061     // With ADDE and ADDCARRY, a carry bit may be added in.
3062     KnownBits Carry(1);
3063     if (Opcode == ISD::ADDE)
3064       // Can't track carry from glue, set carry to unknown.
3065       Carry.resetAll();
3066     else if (Opcode == ISD::ADDCARRY)
3067       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3068       // the trouble (how often will we find a known carry bit). And I haven't
3069       // tested this very much yet, but something like this might work:
3070       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3071       //   Carry = Carry.zextOrTrunc(1, false);
3072       Carry.resetAll();
3073     else
3074       Carry.setAllZero();
3075 
3076     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3078     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3079     break;
3080   }
3081   case ISD::SREM:
3082     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3083       const APInt &RA = Rem->getAPIntValue().abs();
3084       if (RA.isPowerOf2()) {
3085         APInt LowBits = RA - 1;
3086         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3087 
3088         // The low bits of the first operand are unchanged by the srem.
3089         Known.Zero = Known2.Zero & LowBits;
3090         Known.One = Known2.One & LowBits;
3091 
3092         // If the first operand is non-negative or has all low bits zero, then
3093         // the upper bits are all zero.
3094         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3095           Known.Zero |= ~LowBits;
3096 
3097         // If the first operand is negative and not all low bits are zero, then
3098         // the upper bits are all one.
3099         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3100           Known.One |= ~LowBits;
3101         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3102       }
3103     }
3104     break;
3105   case ISD::UREM: {
3106     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3107       const APInt &RA = Rem->getAPIntValue();
3108       if (RA.isPowerOf2()) {
3109         APInt LowBits = (RA - 1);
3110         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3111 
3112         // The upper bits are all zero, the lower ones are unchanged.
3113         Known.Zero = Known2.Zero | ~LowBits;
3114         Known.One = Known2.One & LowBits;
3115         break;
3116       }
3117     }
3118 
3119     // Since the result is less than or equal to either operand, any leading
3120     // zero bits in either operand must also exist in the result.
3121     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3122     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3123 
3124     uint32_t Leaders =
3125         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3126     Known.resetAll();
3127     Known.Zero.setHighBits(Leaders);
3128     break;
3129   }
3130   case ISD::EXTRACT_ELEMENT: {
3131     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3132     const unsigned Index = Op.getConstantOperandVal(1);
3133     const unsigned EltBitWidth = Op.getValueSizeInBits();
3134 
3135     // Remove low part of known bits mask
3136     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3137     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3138 
3139     // Remove high part of known bit mask
3140     Known = Known.trunc(EltBitWidth);
3141     break;
3142   }
3143   case ISD::EXTRACT_VECTOR_ELT: {
3144     SDValue InVec = Op.getOperand(0);
3145     SDValue EltNo = Op.getOperand(1);
3146     EVT VecVT = InVec.getValueType();
3147     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3148     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3149     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3150     // anything about the extended bits.
3151     if (BitWidth > EltBitWidth)
3152       Known = Known.trunc(EltBitWidth);
3153     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3154     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3155       // If we know the element index, just demand that vector element.
3156       unsigned Idx = ConstEltNo->getZExtValue();
3157       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3158       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3159     } else {
3160       // Unknown element index, so ignore DemandedElts and demand them all.
3161       Known = computeKnownBits(InVec, Depth + 1);
3162     }
3163     if (BitWidth > EltBitWidth)
3164       Known = Known.zext(BitWidth, false /* => any extend */);
3165     break;
3166   }
3167   case ISD::INSERT_VECTOR_ELT: {
3168     SDValue InVec = Op.getOperand(0);
3169     SDValue InVal = Op.getOperand(1);
3170     SDValue EltNo = Op.getOperand(2);
3171 
3172     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3173     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3174       // If we know the element index, split the demand between the
3175       // source vector and the inserted element.
3176       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3177       unsigned EltIdx = CEltNo->getZExtValue();
3178 
3179       // If we demand the inserted element then add its common known bits.
3180       if (DemandedElts[EltIdx]) {
3181         Known2 = computeKnownBits(InVal, Depth + 1);
3182         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3183         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3184       }
3185 
3186       // If we demand the source vector then add its common known bits, ensuring
3187       // that we don't demand the inserted element.
3188       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3189       if (!!VectorElts) {
3190         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3191         Known.One &= Known2.One;
3192         Known.Zero &= Known2.Zero;
3193       }
3194     } else {
3195       // Unknown element index, so ignore DemandedElts and demand them all.
3196       Known = computeKnownBits(InVec, Depth + 1);
3197       Known2 = computeKnownBits(InVal, Depth + 1);
3198       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3199       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3200     }
3201     break;
3202   }
3203   case ISD::BITREVERSE: {
3204     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3205     Known.Zero = Known2.Zero.reverseBits();
3206     Known.One = Known2.One.reverseBits();
3207     break;
3208   }
3209   case ISD::BSWAP: {
3210     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3211     Known.Zero = Known2.Zero.byteSwap();
3212     Known.One = Known2.One.byteSwap();
3213     break;
3214   }
3215   case ISD::ABS: {
3216     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3217 
3218     // If the source's MSB is zero then we know the rest of the bits already.
3219     if (Known2.isNonNegative()) {
3220       Known.Zero = Known2.Zero;
3221       Known.One = Known2.One;
3222       break;
3223     }
3224 
3225     // We only know that the absolute values's MSB will be zero iff there is
3226     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3227     Known2.One.clearSignBit();
3228     if (Known2.One.getBoolValue()) {
3229       Known.Zero = APInt::getSignMask(BitWidth);
3230       break;
3231     }
3232     break;
3233   }
3234   case ISD::UMIN: {
3235     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3236     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3237 
3238     // UMIN - we know that the result will have the maximum of the
3239     // known zero leading bits of the inputs.
3240     unsigned LeadZero = Known.countMinLeadingZeros();
3241     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3242 
3243     Known.Zero &= Known2.Zero;
3244     Known.One &= Known2.One;
3245     Known.Zero.setHighBits(LeadZero);
3246     break;
3247   }
3248   case ISD::UMAX: {
3249     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3250     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3251 
3252     // UMAX - we know that the result will have the maximum of the
3253     // known one leading bits of the inputs.
3254     unsigned LeadOne = Known.countMinLeadingOnes();
3255     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3256 
3257     Known.Zero &= Known2.Zero;
3258     Known.One &= Known2.One;
3259     Known.One.setHighBits(LeadOne);
3260     break;
3261   }
3262   case ISD::SMIN:
3263   case ISD::SMAX: {
3264     // If we have a clamp pattern, we know that the number of sign bits will be
3265     // the minimum of the clamp min/max range.
3266     bool IsMax = (Opcode == ISD::SMAX);
3267     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3268     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3269       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3270         CstHigh =
3271             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3272     if (CstLow && CstHigh) {
3273       if (!IsMax)
3274         std::swap(CstLow, CstHigh);
3275 
3276       const APInt &ValueLow = CstLow->getAPIntValue();
3277       const APInt &ValueHigh = CstHigh->getAPIntValue();
3278       if (ValueLow.sle(ValueHigh)) {
3279         unsigned LowSignBits = ValueLow.getNumSignBits();
3280         unsigned HighSignBits = ValueHigh.getNumSignBits();
3281         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3282         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3283           Known.One.setHighBits(MinSignBits);
3284           break;
3285         }
3286         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3287           Known.Zero.setHighBits(MinSignBits);
3288           break;
3289         }
3290       }
3291     }
3292 
3293     // Fallback - just get the shared known bits of the operands.
3294     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3295     if (Known.isUnknown()) break; // Early-out
3296     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3297     Known.Zero &= Known2.Zero;
3298     Known.One &= Known2.One;
3299     break;
3300   }
3301   case ISD::FrameIndex:
3302   case ISD::TargetFrameIndex:
3303     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3304     break;
3305 
3306   default:
3307     if (Opcode < ISD::BUILTIN_OP_END)
3308       break;
3309     LLVM_FALLTHROUGH;
3310   case ISD::INTRINSIC_WO_CHAIN:
3311   case ISD::INTRINSIC_W_CHAIN:
3312   case ISD::INTRINSIC_VOID:
3313     // Allow the target to implement this method for its nodes.
3314     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3315     break;
3316   }
3317 
3318   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3319   return Known;
3320 }
3321 
3322 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3323                                                              SDValue N1) const {
3324   // X + 0 never overflow
3325   if (isNullConstant(N1))
3326     return OFK_Never;
3327 
3328   KnownBits N1Known = computeKnownBits(N1);
3329   if (N1Known.Zero.getBoolValue()) {
3330     KnownBits N0Known = computeKnownBits(N0);
3331 
3332     bool overflow;
3333     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3334     if (!overflow)
3335       return OFK_Never;
3336   }
3337 
3338   // mulhi + 1 never overflow
3339   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3340       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3341     return OFK_Never;
3342 
3343   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3344     KnownBits N0Known = computeKnownBits(N0);
3345 
3346     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3347       return OFK_Never;
3348   }
3349 
3350   return OFK_Sometime;
3351 }
3352 
3353 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3354   EVT OpVT = Val.getValueType();
3355   unsigned BitWidth = OpVT.getScalarSizeInBits();
3356 
3357   // Is the constant a known power of 2?
3358   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3359     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3360 
3361   // A left-shift of a constant one will have exactly one bit set because
3362   // shifting the bit off the end is undefined.
3363   if (Val.getOpcode() == ISD::SHL) {
3364     auto *C = isConstOrConstSplat(Val.getOperand(0));
3365     if (C && C->getAPIntValue() == 1)
3366       return true;
3367   }
3368 
3369   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3370   // one bit set.
3371   if (Val.getOpcode() == ISD::SRL) {
3372     auto *C = isConstOrConstSplat(Val.getOperand(0));
3373     if (C && C->getAPIntValue().isSignMask())
3374       return true;
3375   }
3376 
3377   // Are all operands of a build vector constant powers of two?
3378   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3379     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3380           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3381             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3382           return false;
3383         }))
3384       return true;
3385 
3386   // More could be done here, though the above checks are enough
3387   // to handle some common cases.
3388 
3389   // Fall back to computeKnownBits to catch other known cases.
3390   KnownBits Known = computeKnownBits(Val);
3391   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3392 }
3393 
3394 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3395   EVT VT = Op.getValueType();
3396   APInt DemandedElts = VT.isVector()
3397                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3398                            : APInt(1, 1);
3399   return ComputeNumSignBits(Op, DemandedElts, Depth);
3400 }
3401 
3402 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3403                                           unsigned Depth) const {
3404   EVT VT = Op.getValueType();
3405   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3406   unsigned VTBits = VT.getScalarSizeInBits();
3407   unsigned NumElts = DemandedElts.getBitWidth();
3408   unsigned Tmp, Tmp2;
3409   unsigned FirstAnswer = 1;
3410 
3411   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3412     const APInt &Val = C->getAPIntValue();
3413     return Val.getNumSignBits();
3414   }
3415 
3416   if (Depth >= 6)
3417     return 1;  // Limit search depth.
3418 
3419   if (!DemandedElts)
3420     return 1;  // No demanded elts, better to assume we don't know anything.
3421 
3422   unsigned Opcode = Op.getOpcode();
3423   switch (Opcode) {
3424   default: break;
3425   case ISD::AssertSext:
3426     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3427     return VTBits-Tmp+1;
3428   case ISD::AssertZext:
3429     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3430     return VTBits-Tmp;
3431 
3432   case ISD::BUILD_VECTOR:
3433     Tmp = VTBits;
3434     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3435       if (!DemandedElts[i])
3436         continue;
3437 
3438       SDValue SrcOp = Op.getOperand(i);
3439       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3440 
3441       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3442       if (SrcOp.getValueSizeInBits() != VTBits) {
3443         assert(SrcOp.getValueSizeInBits() > VTBits &&
3444                "Expected BUILD_VECTOR implicit truncation");
3445         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3446         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3447       }
3448       Tmp = std::min(Tmp, Tmp2);
3449     }
3450     return Tmp;
3451 
3452   case ISD::VECTOR_SHUFFLE: {
3453     // Collect the minimum number of sign bits that are shared by every vector
3454     // element referenced by the shuffle.
3455     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3456     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3457     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3458     for (unsigned i = 0; i != NumElts; ++i) {
3459       int M = SVN->getMaskElt(i);
3460       if (!DemandedElts[i])
3461         continue;
3462       // For UNDEF elements, we don't know anything about the common state of
3463       // the shuffle result.
3464       if (M < 0)
3465         return 1;
3466       if ((unsigned)M < NumElts)
3467         DemandedLHS.setBit((unsigned)M % NumElts);
3468       else
3469         DemandedRHS.setBit((unsigned)M % NumElts);
3470     }
3471     Tmp = std::numeric_limits<unsigned>::max();
3472     if (!!DemandedLHS)
3473       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3474     if (!!DemandedRHS) {
3475       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3476       Tmp = std::min(Tmp, Tmp2);
3477     }
3478     // If we don't know anything, early out and try computeKnownBits fall-back.
3479     if (Tmp == 1)
3480       break;
3481     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3482     return Tmp;
3483   }
3484 
3485   case ISD::BITCAST: {
3486     SDValue N0 = Op.getOperand(0);
3487     EVT SrcVT = N0.getValueType();
3488     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3489 
3490     // Ignore bitcasts from unsupported types..
3491     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3492       break;
3493 
3494     // Fast handling of 'identity' bitcasts.
3495     if (VTBits == SrcBits)
3496       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3497 
3498     bool IsLE = getDataLayout().isLittleEndian();
3499 
3500     // Bitcast 'large element' scalar/vector to 'small element' vector.
3501     if ((SrcBits % VTBits) == 0) {
3502       assert(VT.isVector() && "Expected bitcast to vector");
3503 
3504       unsigned Scale = SrcBits / VTBits;
3505       APInt SrcDemandedElts(NumElts / Scale, 0);
3506       for (unsigned i = 0; i != NumElts; ++i)
3507         if (DemandedElts[i])
3508           SrcDemandedElts.setBit(i / Scale);
3509 
3510       // Fast case - sign splat can be simply split across the small elements.
3511       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3512       if (Tmp == SrcBits)
3513         return VTBits;
3514 
3515       // Slow case - determine how far the sign extends into each sub-element.
3516       Tmp2 = VTBits;
3517       for (unsigned i = 0; i != NumElts; ++i)
3518         if (DemandedElts[i]) {
3519           unsigned SubOffset = i % Scale;
3520           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3521           SubOffset = SubOffset * VTBits;
3522           if (Tmp <= SubOffset)
3523             return 1;
3524           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3525         }
3526       return Tmp2;
3527     }
3528     break;
3529   }
3530 
3531   case ISD::SIGN_EXTEND:
3532     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3533     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3534   case ISD::SIGN_EXTEND_INREG:
3535     // Max of the input and what this extends.
3536     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3537     Tmp = VTBits-Tmp+1;
3538     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3539     return std::max(Tmp, Tmp2);
3540   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3541     SDValue Src = Op.getOperand(0);
3542     EVT SrcVT = Src.getValueType();
3543     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3544     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3545     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3546   }
3547 
3548   case ISD::SRA:
3549     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3550     // SRA X, C   -> adds C sign bits.
3551     if (ConstantSDNode *C =
3552             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3553       APInt ShiftVal = C->getAPIntValue();
3554       ShiftVal += Tmp;
3555       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3556     }
3557     return Tmp;
3558   case ISD::SHL:
3559     if (ConstantSDNode *C =
3560             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3561       // shl destroys sign bits.
3562       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3563       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3564           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3565       return Tmp - C->getZExtValue();
3566     }
3567     break;
3568   case ISD::AND:
3569   case ISD::OR:
3570   case ISD::XOR:    // NOT is handled here.
3571     // Logical binary ops preserve the number of sign bits at the worst.
3572     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3573     if (Tmp != 1) {
3574       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3575       FirstAnswer = std::min(Tmp, Tmp2);
3576       // We computed what we know about the sign bits as our first
3577       // answer. Now proceed to the generic code that uses
3578       // computeKnownBits, and pick whichever answer is better.
3579     }
3580     break;
3581 
3582   case ISD::SELECT:
3583   case ISD::VSELECT:
3584     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3585     if (Tmp == 1) return 1;  // Early out.
3586     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3587     return std::min(Tmp, Tmp2);
3588   case ISD::SELECT_CC:
3589     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3590     if (Tmp == 1) return 1;  // Early out.
3591     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3592     return std::min(Tmp, Tmp2);
3593 
3594   case ISD::SMIN:
3595   case ISD::SMAX: {
3596     // If we have a clamp pattern, we know that the number of sign bits will be
3597     // the minimum of the clamp min/max range.
3598     bool IsMax = (Opcode == ISD::SMAX);
3599     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3600     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3601       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3602         CstHigh =
3603             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3604     if (CstLow && CstHigh) {
3605       if (!IsMax)
3606         std::swap(CstLow, CstHigh);
3607       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3608         Tmp = CstLow->getAPIntValue().getNumSignBits();
3609         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3610         return std::min(Tmp, Tmp2);
3611       }
3612     }
3613 
3614     // Fallback - just get the minimum number of sign bits of the operands.
3615     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3616     if (Tmp == 1)
3617       return 1;  // Early out.
3618     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3619     return std::min(Tmp, Tmp2);
3620   }
3621   case ISD::UMIN:
3622   case ISD::UMAX:
3623     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3624     if (Tmp == 1)
3625       return 1;  // Early out.
3626     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3627     return std::min(Tmp, Tmp2);
3628   case ISD::SADDO:
3629   case ISD::UADDO:
3630   case ISD::SSUBO:
3631   case ISD::USUBO:
3632   case ISD::SMULO:
3633   case ISD::UMULO:
3634     if (Op.getResNo() != 1)
3635       break;
3636     // The boolean result conforms to getBooleanContents.  Fall through.
3637     // If setcc returns 0/-1, all bits are sign bits.
3638     // We know that we have an integer-based boolean since these operations
3639     // are only available for integer.
3640     if (TLI->getBooleanContents(VT.isVector(), false) ==
3641         TargetLowering::ZeroOrNegativeOneBooleanContent)
3642       return VTBits;
3643     break;
3644   case ISD::SETCC:
3645     // If setcc returns 0/-1, all bits are sign bits.
3646     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3647         TargetLowering::ZeroOrNegativeOneBooleanContent)
3648       return VTBits;
3649     break;
3650   case ISD::ROTL:
3651   case ISD::ROTR:
3652     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3653       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3654 
3655       // Handle rotate right by N like a rotate left by 32-N.
3656       if (Opcode == ISD::ROTR)
3657         RotAmt = (VTBits - RotAmt) % VTBits;
3658 
3659       // If we aren't rotating out all of the known-in sign bits, return the
3660       // number that are left.  This handles rotl(sext(x), 1) for example.
3661       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3662       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3663     }
3664     break;
3665   case ISD::ADD:
3666   case ISD::ADDC:
3667     // Add can have at most one carry bit.  Thus we know that the output
3668     // is, at worst, one more bit than the inputs.
3669     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3670     if (Tmp == 1) return 1;  // Early out.
3671 
3672     // Special case decrementing a value (ADD X, -1):
3673     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3674       if (CRHS->isAllOnesValue()) {
3675         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3676 
3677         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3678         // sign bits set.
3679         if ((Known.Zero | 1).isAllOnesValue())
3680           return VTBits;
3681 
3682         // If we are subtracting one from a positive number, there is no carry
3683         // out of the result.
3684         if (Known.isNonNegative())
3685           return Tmp;
3686       }
3687 
3688     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3689     if (Tmp2 == 1) return 1;
3690     return std::min(Tmp, Tmp2)-1;
3691 
3692   case ISD::SUB:
3693     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3694     if (Tmp2 == 1) return 1;
3695 
3696     // Handle NEG.
3697     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3698       if (CLHS->isNullValue()) {
3699         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3700         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3701         // sign bits set.
3702         if ((Known.Zero | 1).isAllOnesValue())
3703           return VTBits;
3704 
3705         // If the input is known to be positive (the sign bit is known clear),
3706         // the output of the NEG has the same number of sign bits as the input.
3707         if (Known.isNonNegative())
3708           return Tmp2;
3709 
3710         // Otherwise, we treat this like a SUB.
3711       }
3712 
3713     // Sub can have at most one carry bit.  Thus we know that the output
3714     // is, at worst, one more bit than the inputs.
3715     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3716     if (Tmp == 1) return 1;  // Early out.
3717     return std::min(Tmp, Tmp2)-1;
3718   case ISD::MUL: {
3719     // The output of the Mul can be at most twice the valid bits in the inputs.
3720     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3721     if (SignBitsOp0 == 1)
3722       break;
3723     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3724     if (SignBitsOp1 == 1)
3725       break;
3726     unsigned OutValidBits =
3727         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3728     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3729   }
3730   case ISD::TRUNCATE: {
3731     // Check if the sign bits of source go down as far as the truncated value.
3732     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3733     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3734     if (NumSrcSignBits > (NumSrcBits - VTBits))
3735       return NumSrcSignBits - (NumSrcBits - VTBits);
3736     break;
3737   }
3738   case ISD::EXTRACT_ELEMENT: {
3739     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3740     const int BitWidth = Op.getValueSizeInBits();
3741     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3742 
3743     // Get reverse index (starting from 1), Op1 value indexes elements from
3744     // little end. Sign starts at big end.
3745     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3746 
3747     // If the sign portion ends in our element the subtraction gives correct
3748     // result. Otherwise it gives either negative or > bitwidth result
3749     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3750   }
3751   case ISD::INSERT_VECTOR_ELT: {
3752     SDValue InVec = Op.getOperand(0);
3753     SDValue InVal = Op.getOperand(1);
3754     SDValue EltNo = Op.getOperand(2);
3755 
3756     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3757     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3758       // If we know the element index, split the demand between the
3759       // source vector and the inserted element.
3760       unsigned EltIdx = CEltNo->getZExtValue();
3761 
3762       // If we demand the inserted element then get its sign bits.
3763       Tmp = std::numeric_limits<unsigned>::max();
3764       if (DemandedElts[EltIdx]) {
3765         // TODO - handle implicit truncation of inserted elements.
3766         if (InVal.getScalarValueSizeInBits() != VTBits)
3767           break;
3768         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3769       }
3770 
3771       // If we demand the source vector then get its sign bits, and determine
3772       // the minimum.
3773       APInt VectorElts = DemandedElts;
3774       VectorElts.clearBit(EltIdx);
3775       if (!!VectorElts) {
3776         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3777         Tmp = std::min(Tmp, Tmp2);
3778       }
3779     } else {
3780       // Unknown element index, so ignore DemandedElts and demand them all.
3781       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3782       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3783       Tmp = std::min(Tmp, Tmp2);
3784     }
3785     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3786     return Tmp;
3787   }
3788   case ISD::EXTRACT_VECTOR_ELT: {
3789     SDValue InVec = Op.getOperand(0);
3790     SDValue EltNo = Op.getOperand(1);
3791     EVT VecVT = InVec.getValueType();
3792     const unsigned BitWidth = Op.getValueSizeInBits();
3793     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3794     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3795 
3796     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3797     // anything about sign bits. But if the sizes match we can derive knowledge
3798     // about sign bits from the vector operand.
3799     if (BitWidth != EltBitWidth)
3800       break;
3801 
3802     // If we know the element index, just demand that vector element, else for
3803     // an unknown element index, ignore DemandedElts and demand them all.
3804     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3805     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3806     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3807       DemandedSrcElts =
3808           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3809 
3810     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3811   }
3812   case ISD::EXTRACT_SUBVECTOR: {
3813     // If we know the element index, just demand that subvector elements,
3814     // otherwise demand them all.
3815     SDValue Src = Op.getOperand(0);
3816     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3817     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3818     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3819       // Offset the demanded elts by the subvector index.
3820       uint64_t Idx = SubIdx->getZExtValue();
3821       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3822       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3823     }
3824     return ComputeNumSignBits(Src, Depth + 1);
3825   }
3826   case ISD::CONCAT_VECTORS: {
3827     // Determine the minimum number of sign bits across all demanded
3828     // elts of the input vectors. Early out if the result is already 1.
3829     Tmp = std::numeric_limits<unsigned>::max();
3830     EVT SubVectorVT = Op.getOperand(0).getValueType();
3831     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3832     unsigned NumSubVectors = Op.getNumOperands();
3833     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3834       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3835       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3836       if (!DemandedSub)
3837         continue;
3838       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3839       Tmp = std::min(Tmp, Tmp2);
3840     }
3841     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3842     return Tmp;
3843   }
3844   case ISD::INSERT_SUBVECTOR: {
3845     // If we know the element index, demand any elements from the subvector and
3846     // the remainder from the src its inserted into, otherwise demand them all.
3847     SDValue Src = Op.getOperand(0);
3848     SDValue Sub = Op.getOperand(1);
3849     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3850     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3851     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3852       Tmp = std::numeric_limits<unsigned>::max();
3853       uint64_t Idx = SubIdx->getZExtValue();
3854       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3855       if (!!DemandedSubElts) {
3856         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3857         if (Tmp == 1) return 1; // early-out
3858       }
3859       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3860       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3861       if (!!DemandedSrcElts) {
3862         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3863         Tmp = std::min(Tmp, Tmp2);
3864       }
3865       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3866       return Tmp;
3867     }
3868 
3869     // Not able to determine the index so just assume worst case.
3870     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3871     if (Tmp == 1) return 1; // early-out
3872     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3873     Tmp = std::min(Tmp, Tmp2);
3874     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3875     return Tmp;
3876   }
3877   }
3878 
3879   // If we are looking at the loaded value of the SDNode.
3880   if (Op.getResNo() == 0) {
3881     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3882     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3883       unsigned ExtType = LD->getExtensionType();
3884       switch (ExtType) {
3885       default: break;
3886       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3887         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3888         return VTBits - Tmp + 1;
3889       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3890         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3891         return VTBits - Tmp;
3892       case ISD::NON_EXTLOAD:
3893         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3894           // We only need to handle vectors - computeKnownBits should handle
3895           // scalar cases.
3896           Type *CstTy = Cst->getType();
3897           if (CstTy->isVectorTy() &&
3898               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3899             Tmp = VTBits;
3900             for (unsigned i = 0; i != NumElts; ++i) {
3901               if (!DemandedElts[i])
3902                 continue;
3903               if (Constant *Elt = Cst->getAggregateElement(i)) {
3904                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3905                   const APInt &Value = CInt->getValue();
3906                   Tmp = std::min(Tmp, Value.getNumSignBits());
3907                   continue;
3908                 }
3909                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3910                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3911                   Tmp = std::min(Tmp, Value.getNumSignBits());
3912                   continue;
3913                 }
3914               }
3915               // Unknown type. Conservatively assume no bits match sign bit.
3916               return 1;
3917             }
3918             return Tmp;
3919           }
3920         }
3921         break;
3922       }
3923     }
3924   }
3925 
3926   // Allow the target to implement this method for its nodes.
3927   if (Opcode >= ISD::BUILTIN_OP_END ||
3928       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3929       Opcode == ISD::INTRINSIC_W_CHAIN ||
3930       Opcode == ISD::INTRINSIC_VOID) {
3931     unsigned NumBits =
3932         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3933     if (NumBits > 1)
3934       FirstAnswer = std::max(FirstAnswer, NumBits);
3935   }
3936 
3937   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3938   // use this information.
3939   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3940 
3941   APInt Mask;
3942   if (Known.isNonNegative()) {        // sign bit is 0
3943     Mask = Known.Zero;
3944   } else if (Known.isNegative()) {  // sign bit is 1;
3945     Mask = Known.One;
3946   } else {
3947     // Nothing known.
3948     return FirstAnswer;
3949   }
3950 
3951   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3952   // the number of identical bits in the top of the input value.
3953   Mask = ~Mask;
3954   Mask <<= Mask.getBitWidth()-VTBits;
3955   // Return # leading zeros.  We use 'min' here in case Val was zero before
3956   // shifting.  We don't want to return '64' as for an i32 "0".
3957   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3958 }
3959 
3960 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3961   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3962       !isa<ConstantSDNode>(Op.getOperand(1)))
3963     return false;
3964 
3965   if (Op.getOpcode() == ISD::OR &&
3966       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3967     return false;
3968 
3969   return true;
3970 }
3971 
3972 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3973   // If we're told that NaNs won't happen, assume they won't.
3974   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3975     return true;
3976 
3977   if (Depth >= 6)
3978     return false; // Limit search depth.
3979 
3980   // TODO: Handle vectors.
3981   // If the value is a constant, we can obviously see if it is a NaN or not.
3982   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3983     return !C->getValueAPF().isNaN() ||
3984            (SNaN && !C->getValueAPF().isSignaling());
3985   }
3986 
3987   unsigned Opcode = Op.getOpcode();
3988   switch (Opcode) {
3989   case ISD::FADD:
3990   case ISD::FSUB:
3991   case ISD::FMUL:
3992   case ISD::FDIV:
3993   case ISD::FREM:
3994   case ISD::FSIN:
3995   case ISD::FCOS: {
3996     if (SNaN)
3997       return true;
3998     // TODO: Need isKnownNeverInfinity
3999     return false;
4000   }
4001   case ISD::FCANONICALIZE:
4002   case ISD::FEXP:
4003   case ISD::FEXP2:
4004   case ISD::FTRUNC:
4005   case ISD::FFLOOR:
4006   case ISD::FCEIL:
4007   case ISD::FROUND:
4008   case ISD::FRINT:
4009   case ISD::FNEARBYINT: {
4010     if (SNaN)
4011       return true;
4012     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4013   }
4014   case ISD::FABS:
4015   case ISD::FNEG:
4016   case ISD::FCOPYSIGN: {
4017     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4018   }
4019   case ISD::SELECT:
4020     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4021            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4022   case ISD::FP_EXTEND:
4023   case ISD::FP_ROUND: {
4024     if (SNaN)
4025       return true;
4026     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4027   }
4028   case ISD::SINT_TO_FP:
4029   case ISD::UINT_TO_FP:
4030     return true;
4031   case ISD::FMA:
4032   case ISD::FMAD: {
4033     if (SNaN)
4034       return true;
4035     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4036            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4037            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4038   }
4039   case ISD::FSQRT: // Need is known positive
4040   case ISD::FLOG:
4041   case ISD::FLOG2:
4042   case ISD::FLOG10:
4043   case ISD::FPOWI:
4044   case ISD::FPOW: {
4045     if (SNaN)
4046       return true;
4047     // TODO: Refine on operand
4048     return false;
4049   }
4050   case ISD::FMINNUM:
4051   case ISD::FMAXNUM: {
4052     // Only one needs to be known not-nan, since it will be returned if the
4053     // other ends up being one.
4054     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4055            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4056   }
4057   case ISD::FMINNUM_IEEE:
4058   case ISD::FMAXNUM_IEEE: {
4059     if (SNaN)
4060       return true;
4061     // This can return a NaN if either operand is an sNaN, or if both operands
4062     // are NaN.
4063     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4064             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4065            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4066             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4067   }
4068   case ISD::FMINIMUM:
4069   case ISD::FMAXIMUM: {
4070     // TODO: Does this quiet or return the origina NaN as-is?
4071     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4072            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4073   }
4074   case ISD::EXTRACT_VECTOR_ELT: {
4075     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4076   }
4077   default:
4078     if (Opcode >= ISD::BUILTIN_OP_END ||
4079         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4080         Opcode == ISD::INTRINSIC_W_CHAIN ||
4081         Opcode == ISD::INTRINSIC_VOID) {
4082       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4083     }
4084 
4085     return false;
4086   }
4087 }
4088 
4089 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4090   assert(Op.getValueType().isFloatingPoint() &&
4091          "Floating point type expected");
4092 
4093   // If the value is a constant, we can obviously see if it is a zero or not.
4094   // TODO: Add BuildVector support.
4095   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4096     return !C->isZero();
4097   return false;
4098 }
4099 
4100 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4101   assert(!Op.getValueType().isFloatingPoint() &&
4102          "Floating point types unsupported - use isKnownNeverZeroFloat");
4103 
4104   // If the value is a constant, we can obviously see if it is a zero or not.
4105   if (ISD::matchUnaryPredicate(
4106           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4107     return true;
4108 
4109   // TODO: Recognize more cases here.
4110   switch (Op.getOpcode()) {
4111   default: break;
4112   case ISD::OR:
4113     if (isKnownNeverZero(Op.getOperand(1)) ||
4114         isKnownNeverZero(Op.getOperand(0)))
4115       return true;
4116     break;
4117   }
4118 
4119   return false;
4120 }
4121 
4122 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4123   // Check the obvious case.
4124   if (A == B) return true;
4125 
4126   // For for negative and positive zero.
4127   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4128     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4129       if (CA->isZero() && CB->isZero()) return true;
4130 
4131   // Otherwise they may not be equal.
4132   return false;
4133 }
4134 
4135 // FIXME: unify with llvm::haveNoCommonBitsSet.
4136 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4137 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4138   assert(A.getValueType() == B.getValueType() &&
4139          "Values must have the same type");
4140   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4141 }
4142 
4143 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4144                                 ArrayRef<SDValue> Ops,
4145                                 SelectionDAG &DAG) {
4146   int NumOps = Ops.size();
4147   assert(NumOps != 0 && "Can't build an empty vector!");
4148   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4149          "Incorrect element count in BUILD_VECTOR!");
4150 
4151   // BUILD_VECTOR of UNDEFs is UNDEF.
4152   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4153     return DAG.getUNDEF(VT);
4154 
4155   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4156   SDValue IdentitySrc;
4157   bool IsIdentity = true;
4158   for (int i = 0; i != NumOps; ++i) {
4159     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4160         Ops[i].getOperand(0).getValueType() != VT ||
4161         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4162         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4163         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4164       IsIdentity = false;
4165       break;
4166     }
4167     IdentitySrc = Ops[i].getOperand(0);
4168   }
4169   if (IsIdentity)
4170     return IdentitySrc;
4171 
4172   return SDValue();
4173 }
4174 
4175 /// Try to simplify vector concatenation to an input value, undef, or build
4176 /// vector.
4177 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4178                                   ArrayRef<SDValue> Ops,
4179                                   SelectionDAG &DAG) {
4180   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4181   assert(llvm::all_of(Ops,
4182                       [Ops](SDValue Op) {
4183                         return Ops[0].getValueType() == Op.getValueType();
4184                       }) &&
4185          "Concatenation of vectors with inconsistent value types!");
4186   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4187              VT.getVectorNumElements() &&
4188          "Incorrect element count in vector concatenation!");
4189 
4190   if (Ops.size() == 1)
4191     return Ops[0];
4192 
4193   // Concat of UNDEFs is UNDEF.
4194   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4195     return DAG.getUNDEF(VT);
4196 
4197   // Scan the operands and look for extract operations from a single source
4198   // that correspond to insertion at the same location via this concatenation:
4199   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4200   SDValue IdentitySrc;
4201   bool IsIdentity = true;
4202   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4203     SDValue Op = Ops[i];
4204     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4205     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4206         Op.getOperand(0).getValueType() != VT ||
4207         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4208         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4209         Op.getConstantOperandVal(1) != IdentityIndex) {
4210       IsIdentity = false;
4211       break;
4212     }
4213     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4214            "Unexpected identity source vector for concat of extracts");
4215     IdentitySrc = Op.getOperand(0);
4216   }
4217   if (IsIdentity) {
4218     assert(IdentitySrc && "Failed to set source vector of extracts");
4219     return IdentitySrc;
4220   }
4221 
4222   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4223   // simplified to one big BUILD_VECTOR.
4224   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4225   EVT SVT = VT.getScalarType();
4226   SmallVector<SDValue, 16> Elts;
4227   for (SDValue Op : Ops) {
4228     EVT OpVT = Op.getValueType();
4229     if (Op.isUndef())
4230       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4231     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4232       Elts.append(Op->op_begin(), Op->op_end());
4233     else
4234       return SDValue();
4235   }
4236 
4237   // BUILD_VECTOR requires all inputs to be of the same type, find the
4238   // maximum type and extend them all.
4239   for (SDValue Op : Elts)
4240     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4241 
4242   if (SVT.bitsGT(VT.getScalarType()))
4243     for (SDValue &Op : Elts)
4244       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4245                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4246                : DAG.getSExtOrTrunc(Op, DL, SVT);
4247 
4248   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4249   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4250   return V;
4251 }
4252 
4253 /// Gets or creates the specified node.
4254 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4255   FoldingSetNodeID ID;
4256   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4257   void *IP = nullptr;
4258   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4259     return SDValue(E, 0);
4260 
4261   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4262                               getVTList(VT));
4263   CSEMap.InsertNode(N, IP);
4264 
4265   InsertNode(N);
4266   SDValue V = SDValue(N, 0);
4267   NewSDValueDbgMsg(V, "Creating new node: ", this);
4268   return V;
4269 }
4270 
4271 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4272                               SDValue Operand, const SDNodeFlags Flags) {
4273   // Constant fold unary operations with an integer constant operand. Even
4274   // opaque constant will be folded, because the folding of unary operations
4275   // doesn't create new constants with different values. Nevertheless, the
4276   // opaque flag is preserved during folding to prevent future folding with
4277   // other constants.
4278   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4279     const APInt &Val = C->getAPIntValue();
4280     switch (Opcode) {
4281     default: break;
4282     case ISD::SIGN_EXTEND:
4283       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4284                          C->isTargetOpcode(), C->isOpaque());
4285     case ISD::TRUNCATE:
4286       if (C->isOpaque())
4287         break;
4288       LLVM_FALLTHROUGH;
4289     case ISD::ANY_EXTEND:
4290     case ISD::ZERO_EXTEND:
4291       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4292                          C->isTargetOpcode(), C->isOpaque());
4293     case ISD::UINT_TO_FP:
4294     case ISD::SINT_TO_FP: {
4295       APFloat apf(EVTToAPFloatSemantics(VT),
4296                   APInt::getNullValue(VT.getSizeInBits()));
4297       (void)apf.convertFromAPInt(Val,
4298                                  Opcode==ISD::SINT_TO_FP,
4299                                  APFloat::rmNearestTiesToEven);
4300       return getConstantFP(apf, DL, VT);
4301     }
4302     case ISD::BITCAST:
4303       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4304         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4305       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4306         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4307       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4308         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4309       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4310         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4311       break;
4312     case ISD::ABS:
4313       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4314                          C->isOpaque());
4315     case ISD::BITREVERSE:
4316       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4317                          C->isOpaque());
4318     case ISD::BSWAP:
4319       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4320                          C->isOpaque());
4321     case ISD::CTPOP:
4322       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4323                          C->isOpaque());
4324     case ISD::CTLZ:
4325     case ISD::CTLZ_ZERO_UNDEF:
4326       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4327                          C->isOpaque());
4328     case ISD::CTTZ:
4329     case ISD::CTTZ_ZERO_UNDEF:
4330       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4331                          C->isOpaque());
4332     case ISD::FP16_TO_FP: {
4333       bool Ignored;
4334       APFloat FPV(APFloat::IEEEhalf(),
4335                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4336 
4337       // This can return overflow, underflow, or inexact; we don't care.
4338       // FIXME need to be more flexible about rounding mode.
4339       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4340                         APFloat::rmNearestTiesToEven, &Ignored);
4341       return getConstantFP(FPV, DL, VT);
4342     }
4343     }
4344   }
4345 
4346   // Constant fold unary operations with a floating point constant operand.
4347   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4348     APFloat V = C->getValueAPF();    // make copy
4349     switch (Opcode) {
4350     case ISD::FNEG:
4351       V.changeSign();
4352       return getConstantFP(V, DL, VT);
4353     case ISD::FABS:
4354       V.clearSign();
4355       return getConstantFP(V, DL, VT);
4356     case ISD::FCEIL: {
4357       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4358       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4359         return getConstantFP(V, DL, VT);
4360       break;
4361     }
4362     case ISD::FTRUNC: {
4363       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4364       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4365         return getConstantFP(V, DL, VT);
4366       break;
4367     }
4368     case ISD::FFLOOR: {
4369       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4370       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4371         return getConstantFP(V, DL, VT);
4372       break;
4373     }
4374     case ISD::FP_EXTEND: {
4375       bool ignored;
4376       // This can return overflow, underflow, or inexact; we don't care.
4377       // FIXME need to be more flexible about rounding mode.
4378       (void)V.convert(EVTToAPFloatSemantics(VT),
4379                       APFloat::rmNearestTiesToEven, &ignored);
4380       return getConstantFP(V, DL, VT);
4381     }
4382     case ISD::FP_TO_SINT:
4383     case ISD::FP_TO_UINT: {
4384       bool ignored;
4385       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4386       // FIXME need to be more flexible about rounding mode.
4387       APFloat::opStatus s =
4388           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4389       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4390         break;
4391       return getConstant(IntVal, DL, VT);
4392     }
4393     case ISD::BITCAST:
4394       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4395         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4396       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4397         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4398       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4399         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4400       break;
4401     case ISD::FP_TO_FP16: {
4402       bool Ignored;
4403       // This can return overflow, underflow, or inexact; we don't care.
4404       // FIXME need to be more flexible about rounding mode.
4405       (void)V.convert(APFloat::IEEEhalf(),
4406                       APFloat::rmNearestTiesToEven, &Ignored);
4407       return getConstant(V.bitcastToAPInt(), DL, VT);
4408     }
4409     }
4410   }
4411 
4412   // Constant fold unary operations with a vector integer or float operand.
4413   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4414     if (BV->isConstant()) {
4415       switch (Opcode) {
4416       default:
4417         // FIXME: Entirely reasonable to perform folding of other unary
4418         // operations here as the need arises.
4419         break;
4420       case ISD::FNEG:
4421       case ISD::FABS:
4422       case ISD::FCEIL:
4423       case ISD::FTRUNC:
4424       case ISD::FFLOOR:
4425       case ISD::FP_EXTEND:
4426       case ISD::FP_TO_SINT:
4427       case ISD::FP_TO_UINT:
4428       case ISD::TRUNCATE:
4429       case ISD::ANY_EXTEND:
4430       case ISD::ZERO_EXTEND:
4431       case ISD::SIGN_EXTEND:
4432       case ISD::UINT_TO_FP:
4433       case ISD::SINT_TO_FP:
4434       case ISD::ABS:
4435       case ISD::BITREVERSE:
4436       case ISD::BSWAP:
4437       case ISD::CTLZ:
4438       case ISD::CTLZ_ZERO_UNDEF:
4439       case ISD::CTTZ:
4440       case ISD::CTTZ_ZERO_UNDEF:
4441       case ISD::CTPOP: {
4442         SDValue Ops = { Operand };
4443         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4444           return Fold;
4445       }
4446       }
4447     }
4448   }
4449 
4450   unsigned OpOpcode = Operand.getNode()->getOpcode();
4451   switch (Opcode) {
4452   case ISD::TokenFactor:
4453   case ISD::MERGE_VALUES:
4454   case ISD::CONCAT_VECTORS:
4455     return Operand;         // Factor, merge or concat of one node?  No need.
4456   case ISD::BUILD_VECTOR: {
4457     // Attempt to simplify BUILD_VECTOR.
4458     SDValue Ops[] = {Operand};
4459     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4460       return V;
4461     break;
4462   }
4463   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4464   case ISD::FP_EXTEND:
4465     assert(VT.isFloatingPoint() &&
4466            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4467     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4468     assert((!VT.isVector() ||
4469             VT.getVectorNumElements() ==
4470             Operand.getValueType().getVectorNumElements()) &&
4471            "Vector element count mismatch!");
4472     assert(Operand.getValueType().bitsLT(VT) &&
4473            "Invalid fpext node, dst < src!");
4474     if (Operand.isUndef())
4475       return getUNDEF(VT);
4476     break;
4477   case ISD::FP_TO_SINT:
4478   case ISD::FP_TO_UINT:
4479     if (Operand.isUndef())
4480       return getUNDEF(VT);
4481     break;
4482   case ISD::SINT_TO_FP:
4483   case ISD::UINT_TO_FP:
4484     // [us]itofp(undef) = 0, because the result value is bounded.
4485     if (Operand.isUndef())
4486       return getConstantFP(0.0, DL, VT);
4487     break;
4488   case ISD::SIGN_EXTEND:
4489     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4490            "Invalid SIGN_EXTEND!");
4491     assert(VT.isVector() == Operand.getValueType().isVector() &&
4492            "SIGN_EXTEND result type type should be vector iff the operand "
4493            "type is vector!");
4494     if (Operand.getValueType() == VT) return Operand;   // noop extension
4495     assert((!VT.isVector() ||
4496             VT.getVectorNumElements() ==
4497             Operand.getValueType().getVectorNumElements()) &&
4498            "Vector element count mismatch!");
4499     assert(Operand.getValueType().bitsLT(VT) &&
4500            "Invalid sext node, dst < src!");
4501     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4502       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4503     else if (OpOpcode == ISD::UNDEF)
4504       // sext(undef) = 0, because the top bits will all be the same.
4505       return getConstant(0, DL, VT);
4506     break;
4507   case ISD::ZERO_EXTEND:
4508     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4509            "Invalid ZERO_EXTEND!");
4510     assert(VT.isVector() == Operand.getValueType().isVector() &&
4511            "ZERO_EXTEND result type type should be vector iff the operand "
4512            "type is vector!");
4513     if (Operand.getValueType() == VT) return Operand;   // noop extension
4514     assert((!VT.isVector() ||
4515             VT.getVectorNumElements() ==
4516             Operand.getValueType().getVectorNumElements()) &&
4517            "Vector element count mismatch!");
4518     assert(Operand.getValueType().bitsLT(VT) &&
4519            "Invalid zext node, dst < src!");
4520     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4521       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4522     else if (OpOpcode == ISD::UNDEF)
4523       // zext(undef) = 0, because the top bits will be zero.
4524       return getConstant(0, DL, VT);
4525     break;
4526   case ISD::ANY_EXTEND:
4527     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4528            "Invalid ANY_EXTEND!");
4529     assert(VT.isVector() == Operand.getValueType().isVector() &&
4530            "ANY_EXTEND result type type should be vector iff the operand "
4531            "type is vector!");
4532     if (Operand.getValueType() == VT) return Operand;   // noop extension
4533     assert((!VT.isVector() ||
4534             VT.getVectorNumElements() ==
4535             Operand.getValueType().getVectorNumElements()) &&
4536            "Vector element count mismatch!");
4537     assert(Operand.getValueType().bitsLT(VT) &&
4538            "Invalid anyext node, dst < src!");
4539 
4540     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4541         OpOpcode == ISD::ANY_EXTEND)
4542       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4543       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4544     else if (OpOpcode == ISD::UNDEF)
4545       return getUNDEF(VT);
4546 
4547     // (ext (trunc x)) -> x
4548     if (OpOpcode == ISD::TRUNCATE) {
4549       SDValue OpOp = Operand.getOperand(0);
4550       if (OpOp.getValueType() == VT) {
4551         transferDbgValues(Operand, OpOp);
4552         return OpOp;
4553       }
4554     }
4555     break;
4556   case ISD::TRUNCATE:
4557     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4558            "Invalid TRUNCATE!");
4559     assert(VT.isVector() == Operand.getValueType().isVector() &&
4560            "TRUNCATE result type type should be vector iff the operand "
4561            "type is vector!");
4562     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4563     assert((!VT.isVector() ||
4564             VT.getVectorNumElements() ==
4565             Operand.getValueType().getVectorNumElements()) &&
4566            "Vector element count mismatch!");
4567     assert(Operand.getValueType().bitsGT(VT) &&
4568            "Invalid truncate node, src < dst!");
4569     if (OpOpcode == ISD::TRUNCATE)
4570       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4571     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4572         OpOpcode == ISD::ANY_EXTEND) {
4573       // If the source is smaller than the dest, we still need an extend.
4574       if (Operand.getOperand(0).getValueType().getScalarType()
4575             .bitsLT(VT.getScalarType()))
4576         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4577       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4578         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4579       return Operand.getOperand(0);
4580     }
4581     if (OpOpcode == ISD::UNDEF)
4582       return getUNDEF(VT);
4583     break;
4584   case ISD::ANY_EXTEND_VECTOR_INREG:
4585   case ISD::ZERO_EXTEND_VECTOR_INREG:
4586   case ISD::SIGN_EXTEND_VECTOR_INREG:
4587     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4588     assert(Operand.getValueType().bitsLE(VT) &&
4589            "The input must be the same size or smaller than the result.");
4590     assert(VT.getVectorNumElements() <
4591              Operand.getValueType().getVectorNumElements() &&
4592            "The destination vector type must have fewer lanes than the input.");
4593     break;
4594   case ISD::ABS:
4595     assert(VT.isInteger() && VT == Operand.getValueType() &&
4596            "Invalid ABS!");
4597     if (OpOpcode == ISD::UNDEF)
4598       return getUNDEF(VT);
4599     break;
4600   case ISD::BSWAP:
4601     assert(VT.isInteger() && VT == Operand.getValueType() &&
4602            "Invalid BSWAP!");
4603     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4604            "BSWAP types must be a multiple of 16 bits!");
4605     if (OpOpcode == ISD::UNDEF)
4606       return getUNDEF(VT);
4607     break;
4608   case ISD::BITREVERSE:
4609     assert(VT.isInteger() && VT == Operand.getValueType() &&
4610            "Invalid BITREVERSE!");
4611     if (OpOpcode == ISD::UNDEF)
4612       return getUNDEF(VT);
4613     break;
4614   case ISD::BITCAST:
4615     // Basic sanity checking.
4616     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4617            "Cannot BITCAST between types of different sizes!");
4618     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4619     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4620       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4621     if (OpOpcode == ISD::UNDEF)
4622       return getUNDEF(VT);
4623     break;
4624   case ISD::SCALAR_TO_VECTOR:
4625     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4626            (VT.getVectorElementType() == Operand.getValueType() ||
4627             (VT.getVectorElementType().isInteger() &&
4628              Operand.getValueType().isInteger() &&
4629              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4630            "Illegal SCALAR_TO_VECTOR node!");
4631     if (OpOpcode == ISD::UNDEF)
4632       return getUNDEF(VT);
4633     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4634     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4635         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4636         Operand.getConstantOperandVal(1) == 0 &&
4637         Operand.getOperand(0).getValueType() == VT)
4638       return Operand.getOperand(0);
4639     break;
4640   case ISD::FNEG:
4641     // Negation of an unknown bag of bits is still completely undefined.
4642     if (OpOpcode == ISD::UNDEF)
4643       return getUNDEF(VT);
4644 
4645     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4646     if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
4647         OpOpcode == ISD::FSUB)
4648       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4649                      Operand.getOperand(0), Flags);
4650     if (OpOpcode == ISD::FNEG)  // --X -> X
4651       return Operand.getOperand(0);
4652     break;
4653   case ISD::FABS:
4654     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4655       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4656     break;
4657   }
4658 
4659   SDNode *N;
4660   SDVTList VTs = getVTList(VT);
4661   SDValue Ops[] = {Operand};
4662   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4663     FoldingSetNodeID ID;
4664     AddNodeIDNode(ID, Opcode, VTs, Ops);
4665     void *IP = nullptr;
4666     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4667       E->intersectFlagsWith(Flags);
4668       return SDValue(E, 0);
4669     }
4670 
4671     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4672     N->setFlags(Flags);
4673     createOperands(N, Ops);
4674     CSEMap.InsertNode(N, IP);
4675   } else {
4676     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4677     createOperands(N, Ops);
4678   }
4679 
4680   InsertNode(N);
4681   SDValue V = SDValue(N, 0);
4682   NewSDValueDbgMsg(V, "Creating new node: ", this);
4683   return V;
4684 }
4685 
4686 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4687                                         const APInt &C2) {
4688   switch (Opcode) {
4689   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4690   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4691   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4692   case ISD::AND:  return std::make_pair(C1 & C2, true);
4693   case ISD::OR:   return std::make_pair(C1 | C2, true);
4694   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4695   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4696   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4697   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4698   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4699   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4700   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4701   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4702   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4703   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4704   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4705   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4706   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4707   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4708   case ISD::UDIV:
4709     if (!C2.getBoolValue())
4710       break;
4711     return std::make_pair(C1.udiv(C2), true);
4712   case ISD::UREM:
4713     if (!C2.getBoolValue())
4714       break;
4715     return std::make_pair(C1.urem(C2), true);
4716   case ISD::SDIV:
4717     if (!C2.getBoolValue())
4718       break;
4719     return std::make_pair(C1.sdiv(C2), true);
4720   case ISD::SREM:
4721     if (!C2.getBoolValue())
4722       break;
4723     return std::make_pair(C1.srem(C2), true);
4724   }
4725   return std::make_pair(APInt(1, 0), false);
4726 }
4727 
4728 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4729                                              EVT VT, const ConstantSDNode *C1,
4730                                              const ConstantSDNode *C2) {
4731   if (C1->isOpaque() || C2->isOpaque())
4732     return SDValue();
4733 
4734   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4735                                             C2->getAPIntValue());
4736   if (!Folded.second)
4737     return SDValue();
4738   return getConstant(Folded.first, DL, VT);
4739 }
4740 
4741 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4742                                        const GlobalAddressSDNode *GA,
4743                                        const SDNode *N2) {
4744   if (GA->getOpcode() != ISD::GlobalAddress)
4745     return SDValue();
4746   if (!TLI->isOffsetFoldingLegal(GA))
4747     return SDValue();
4748   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4749   if (!C2)
4750     return SDValue();
4751   int64_t Offset = C2->getSExtValue();
4752   switch (Opcode) {
4753   case ISD::ADD: break;
4754   case ISD::SUB: Offset = -uint64_t(Offset); break;
4755   default: return SDValue();
4756   }
4757   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4758                           GA->getOffset() + uint64_t(Offset));
4759 }
4760 
4761 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4762   switch (Opcode) {
4763   case ISD::SDIV:
4764   case ISD::UDIV:
4765   case ISD::SREM:
4766   case ISD::UREM: {
4767     // If a divisor is zero/undef or any element of a divisor vector is
4768     // zero/undef, the whole op is undef.
4769     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4770     SDValue Divisor = Ops[1];
4771     if (Divisor.isUndef() || isNullConstant(Divisor))
4772       return true;
4773 
4774     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4775            llvm::any_of(Divisor->op_values(),
4776                         [](SDValue V) { return V.isUndef() ||
4777                                         isNullConstant(V); });
4778     // TODO: Handle signed overflow.
4779   }
4780   // TODO: Handle oversized shifts.
4781   default:
4782     return false;
4783   }
4784 }
4785 
4786 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4787                                              EVT VT, SDNode *N1, SDNode *N2) {
4788   // If the opcode is a target-specific ISD node, there's nothing we can
4789   // do here and the operand rules may not line up with the below, so
4790   // bail early.
4791   if (Opcode >= ISD::BUILTIN_OP_END)
4792     return SDValue();
4793 
4794   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4795     return getUNDEF(VT);
4796 
4797   // Handle the case of two scalars.
4798   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4799     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4800       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4801       assert((!Folded || !VT.isVector()) &&
4802              "Can't fold vectors ops with scalar operands");
4803       return Folded;
4804     }
4805   }
4806 
4807   // fold (add Sym, c) -> Sym+c
4808   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4809     return FoldSymbolOffset(Opcode, VT, GA, N2);
4810   if (TLI->isCommutativeBinOp(Opcode))
4811     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4812       return FoldSymbolOffset(Opcode, VT, GA, N1);
4813 
4814   // For vectors, extract each constant element and fold them individually.
4815   // Either input may be an undef value.
4816   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4817   if (!BV1 && !N1->isUndef())
4818     return SDValue();
4819   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4820   if (!BV2 && !N2->isUndef())
4821     return SDValue();
4822   // If both operands are undef, that's handled the same way as scalars.
4823   if (!BV1 && !BV2)
4824     return SDValue();
4825 
4826   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4827          "Vector binop with different number of elements in operands?");
4828 
4829   EVT SVT = VT.getScalarType();
4830   EVT LegalSVT = SVT;
4831   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4832     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4833     if (LegalSVT.bitsLT(SVT))
4834       return SDValue();
4835   }
4836   SmallVector<SDValue, 4> Outputs;
4837   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4838   for (unsigned I = 0; I != NumOps; ++I) {
4839     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4840     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4841     if (SVT.isInteger()) {
4842       if (V1->getValueType(0).bitsGT(SVT))
4843         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4844       if (V2->getValueType(0).bitsGT(SVT))
4845         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4846     }
4847 
4848     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4849       return SDValue();
4850 
4851     // Fold one vector element.
4852     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4853     if (LegalSVT != SVT)
4854       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4855 
4856     // Scalar folding only succeeded if the result is a constant or UNDEF.
4857     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4858         ScalarResult.getOpcode() != ISD::ConstantFP)
4859       return SDValue();
4860     Outputs.push_back(ScalarResult);
4861   }
4862 
4863   assert(VT.getVectorNumElements() == Outputs.size() &&
4864          "Vector size mismatch!");
4865 
4866   // We may have a vector type but a scalar result. Create a splat.
4867   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4868 
4869   // Build a big vector out of the scalar elements we generated.
4870   return getBuildVector(VT, SDLoc(), Outputs);
4871 }
4872 
4873 // TODO: Merge with FoldConstantArithmetic
4874 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4875                                                    const SDLoc &DL, EVT VT,
4876                                                    ArrayRef<SDValue> Ops,
4877                                                    const SDNodeFlags Flags) {
4878   // If the opcode is a target-specific ISD node, there's nothing we can
4879   // do here and the operand rules may not line up with the below, so
4880   // bail early.
4881   if (Opcode >= ISD::BUILTIN_OP_END)
4882     return SDValue();
4883 
4884   if (isUndef(Opcode, Ops))
4885     return getUNDEF(VT);
4886 
4887   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4888   if (!VT.isVector())
4889     return SDValue();
4890 
4891   unsigned NumElts = VT.getVectorNumElements();
4892 
4893   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4894     return !Op.getValueType().isVector() ||
4895            Op.getValueType().getVectorNumElements() == NumElts;
4896   };
4897 
4898   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4899     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4900     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4901            (BV && BV->isConstant());
4902   };
4903 
4904   // All operands must be vector types with the same number of elements as
4905   // the result type and must be either UNDEF or a build vector of constant
4906   // or UNDEF scalars.
4907   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4908       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4909     return SDValue();
4910 
4911   // If we are comparing vectors, then the result needs to be a i1 boolean
4912   // that is then sign-extended back to the legal result type.
4913   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4914 
4915   // Find legal integer scalar type for constant promotion and
4916   // ensure that its scalar size is at least as large as source.
4917   EVT LegalSVT = VT.getScalarType();
4918   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4919     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4920     if (LegalSVT.bitsLT(VT.getScalarType()))
4921       return SDValue();
4922   }
4923 
4924   // Constant fold each scalar lane separately.
4925   SmallVector<SDValue, 4> ScalarResults;
4926   for (unsigned i = 0; i != NumElts; i++) {
4927     SmallVector<SDValue, 4> ScalarOps;
4928     for (SDValue Op : Ops) {
4929       EVT InSVT = Op.getValueType().getScalarType();
4930       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4931       if (!InBV) {
4932         // We've checked that this is UNDEF or a constant of some kind.
4933         if (Op.isUndef())
4934           ScalarOps.push_back(getUNDEF(InSVT));
4935         else
4936           ScalarOps.push_back(Op);
4937         continue;
4938       }
4939 
4940       SDValue ScalarOp = InBV->getOperand(i);
4941       EVT ScalarVT = ScalarOp.getValueType();
4942 
4943       // Build vector (integer) scalar operands may need implicit
4944       // truncation - do this before constant folding.
4945       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4946         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4947 
4948       ScalarOps.push_back(ScalarOp);
4949     }
4950 
4951     // Constant fold the scalar operands.
4952     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4953 
4954     // Legalize the (integer) scalar constant if necessary.
4955     if (LegalSVT != SVT)
4956       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4957 
4958     // Scalar folding only succeeded if the result is a constant or UNDEF.
4959     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4960         ScalarResult.getOpcode() != ISD::ConstantFP)
4961       return SDValue();
4962     ScalarResults.push_back(ScalarResult);
4963   }
4964 
4965   SDValue V = getBuildVector(VT, DL, ScalarResults);
4966   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4967   return V;
4968 }
4969 
4970 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4971                                          EVT VT, SDValue N1, SDValue N2) {
4972   // TODO: We don't do any constant folding for strict FP opcodes here, but we
4973   //       should. That will require dealing with a potentially non-default
4974   //       rounding mode, checking the "opStatus" return value from the APFloat
4975   //       math calculations, and possibly other variations.
4976   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4977   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4978   if (N1CFP && N2CFP) {
4979     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4980     switch (Opcode) {
4981     case ISD::FADD:
4982       C1.add(C2, APFloat::rmNearestTiesToEven);
4983       return getConstantFP(C1, DL, VT);
4984     case ISD::FSUB:
4985       C1.subtract(C2, APFloat::rmNearestTiesToEven);
4986       return getConstantFP(C1, DL, VT);
4987     case ISD::FMUL:
4988       C1.multiply(C2, APFloat::rmNearestTiesToEven);
4989       return getConstantFP(C1, DL, VT);
4990     case ISD::FDIV:
4991       C1.divide(C2, APFloat::rmNearestTiesToEven);
4992       return getConstantFP(C1, DL, VT);
4993     case ISD::FREM:
4994       C1.mod(C2);
4995       return getConstantFP(C1, DL, VT);
4996     case ISD::FCOPYSIGN:
4997       C1.copySign(C2);
4998       return getConstantFP(C1, DL, VT);
4999     default: break;
5000     }
5001   }
5002   if (N1CFP && Opcode == ISD::FP_ROUND) {
5003     APFloat C1 = N1CFP->getValueAPF();    // make copy
5004     bool Unused;
5005     // This can return overflow, underflow, or inexact; we don't care.
5006     // FIXME need to be more flexible about rounding mode.
5007     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5008                       &Unused);
5009     return getConstantFP(C1, DL, VT);
5010   }
5011 
5012   switch (Opcode) {
5013   case ISD::FADD:
5014   case ISD::FSUB:
5015   case ISD::FMUL:
5016   case ISD::FDIV:
5017   case ISD::FREM:
5018     // If both operands are undef, the result is undef. If 1 operand is undef,
5019     // the result is NaN. This should match the behavior of the IR optimizer.
5020     if (N1.isUndef() && N2.isUndef())
5021       return getUNDEF(VT);
5022     if (N1.isUndef() || N2.isUndef())
5023       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5024   }
5025   return SDValue();
5026 }
5027 
5028 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5029                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5030   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5031   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5032   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5033   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5034 
5035   // Canonicalize constant to RHS if commutative.
5036   if (TLI->isCommutativeBinOp(Opcode)) {
5037     if (N1C && !N2C) {
5038       std::swap(N1C, N2C);
5039       std::swap(N1, N2);
5040     } else if (N1CFP && !N2CFP) {
5041       std::swap(N1CFP, N2CFP);
5042       std::swap(N1, N2);
5043     }
5044   }
5045 
5046   switch (Opcode) {
5047   default: break;
5048   case ISD::TokenFactor:
5049     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5050            N2.getValueType() == MVT::Other && "Invalid token factor!");
5051     // Fold trivial token factors.
5052     if (N1.getOpcode() == ISD::EntryToken) return N2;
5053     if (N2.getOpcode() == ISD::EntryToken) return N1;
5054     if (N1 == N2) return N1;
5055     break;
5056   case ISD::BUILD_VECTOR: {
5057     // Attempt to simplify BUILD_VECTOR.
5058     SDValue Ops[] = {N1, N2};
5059     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5060       return V;
5061     break;
5062   }
5063   case ISD::CONCAT_VECTORS: {
5064     SDValue Ops[] = {N1, N2};
5065     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5066       return V;
5067     break;
5068   }
5069   case ISD::AND:
5070     assert(VT.isInteger() && "This operator does not apply to FP types!");
5071     assert(N1.getValueType() == N2.getValueType() &&
5072            N1.getValueType() == VT && "Binary operator types must match!");
5073     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5074     // worth handling here.
5075     if (N2C && N2C->isNullValue())
5076       return N2;
5077     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5078       return N1;
5079     break;
5080   case ISD::OR:
5081   case ISD::XOR:
5082   case ISD::ADD:
5083   case ISD::SUB:
5084     assert(VT.isInteger() && "This operator does not apply to FP types!");
5085     assert(N1.getValueType() == N2.getValueType() &&
5086            N1.getValueType() == VT && "Binary operator types must match!");
5087     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5088     // it's worth handling here.
5089     if (N2C && N2C->isNullValue())
5090       return N1;
5091     break;
5092   case ISD::UDIV:
5093   case ISD::UREM:
5094   case ISD::MULHU:
5095   case ISD::MULHS:
5096   case ISD::MUL:
5097   case ISD::SDIV:
5098   case ISD::SREM:
5099   case ISD::SMIN:
5100   case ISD::SMAX:
5101   case ISD::UMIN:
5102   case ISD::UMAX:
5103   case ISD::SADDSAT:
5104   case ISD::SSUBSAT:
5105   case ISD::UADDSAT:
5106   case ISD::USUBSAT:
5107     assert(VT.isInteger() && "This operator does not apply to FP types!");
5108     assert(N1.getValueType() == N2.getValueType() &&
5109            N1.getValueType() == VT && "Binary operator types must match!");
5110     break;
5111   case ISD::FADD:
5112   case ISD::FSUB:
5113   case ISD::FMUL:
5114   case ISD::FDIV:
5115   case ISD::FREM:
5116     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5117     assert(N1.getValueType() == N2.getValueType() &&
5118            N1.getValueType() == VT && "Binary operator types must match!");
5119     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5120       return V;
5121     break;
5122   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5123     assert(N1.getValueType() == VT &&
5124            N1.getValueType().isFloatingPoint() &&
5125            N2.getValueType().isFloatingPoint() &&
5126            "Invalid FCOPYSIGN!");
5127     break;
5128   case ISD::SHL:
5129   case ISD::SRA:
5130   case ISD::SRL:
5131     if (SDValue V = simplifyShift(N1, N2))
5132       return V;
5133     LLVM_FALLTHROUGH;
5134   case ISD::ROTL:
5135   case ISD::ROTR:
5136     assert(VT == N1.getValueType() &&
5137            "Shift operators return type must be the same as their first arg");
5138     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5139            "Shifts only work on integers");
5140     assert((!VT.isVector() || VT == N2.getValueType()) &&
5141            "Vector shift amounts must be in the same as their first arg");
5142     // Verify that the shift amount VT is big enough to hold valid shift
5143     // amounts.  This catches things like trying to shift an i1024 value by an
5144     // i8, which is easy to fall into in generic code that uses
5145     // TLI.getShiftAmount().
5146     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5147            "Invalid use of small shift amount with oversized value!");
5148 
5149     // Always fold shifts of i1 values so the code generator doesn't need to
5150     // handle them.  Since we know the size of the shift has to be less than the
5151     // size of the value, the shift/rotate count is guaranteed to be zero.
5152     if (VT == MVT::i1)
5153       return N1;
5154     if (N2C && N2C->isNullValue())
5155       return N1;
5156     break;
5157   case ISD::FP_ROUND:
5158     assert(VT.isFloatingPoint() &&
5159            N1.getValueType().isFloatingPoint() &&
5160            VT.bitsLE(N1.getValueType()) &&
5161            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5162            "Invalid FP_ROUND!");
5163     if (N1.getValueType() == VT) return N1;  // noop conversion.
5164     break;
5165   case ISD::AssertSext:
5166   case ISD::AssertZext: {
5167     EVT EVT = cast<VTSDNode>(N2)->getVT();
5168     assert(VT == N1.getValueType() && "Not an inreg extend!");
5169     assert(VT.isInteger() && EVT.isInteger() &&
5170            "Cannot *_EXTEND_INREG FP types");
5171     assert(!EVT.isVector() &&
5172            "AssertSExt/AssertZExt type should be the vector element type "
5173            "rather than the vector type!");
5174     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5175     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5176     break;
5177   }
5178   case ISD::SIGN_EXTEND_INREG: {
5179     EVT EVT = cast<VTSDNode>(N2)->getVT();
5180     assert(VT == N1.getValueType() && "Not an inreg extend!");
5181     assert(VT.isInteger() && EVT.isInteger() &&
5182            "Cannot *_EXTEND_INREG FP types");
5183     assert(EVT.isVector() == VT.isVector() &&
5184            "SIGN_EXTEND_INREG type should be vector iff the operand "
5185            "type is vector!");
5186     assert((!EVT.isVector() ||
5187             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5188            "Vector element counts must match in SIGN_EXTEND_INREG");
5189     assert(EVT.bitsLE(VT) && "Not extending!");
5190     if (EVT == VT) return N1;  // Not actually extending
5191 
5192     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5193       unsigned FromBits = EVT.getScalarSizeInBits();
5194       Val <<= Val.getBitWidth() - FromBits;
5195       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5196       return getConstant(Val, DL, ConstantVT);
5197     };
5198 
5199     if (N1C) {
5200       const APInt &Val = N1C->getAPIntValue();
5201       return SignExtendInReg(Val, VT);
5202     }
5203     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5204       SmallVector<SDValue, 8> Ops;
5205       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5206       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5207         SDValue Op = N1.getOperand(i);
5208         if (Op.isUndef()) {
5209           Ops.push_back(getUNDEF(OpVT));
5210           continue;
5211         }
5212         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5213         APInt Val = C->getAPIntValue();
5214         Ops.push_back(SignExtendInReg(Val, OpVT));
5215       }
5216       return getBuildVector(VT, DL, Ops);
5217     }
5218     break;
5219   }
5220   case ISD::EXTRACT_VECTOR_ELT:
5221     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5222            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5223              element type of the vector.");
5224 
5225     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5226     if (N1.isUndef())
5227       return getUNDEF(VT);
5228 
5229     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5230     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5231       return getUNDEF(VT);
5232 
5233     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5234     // expanding copies of large vectors from registers.
5235     if (N2C &&
5236         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5237         N1.getNumOperands() > 0) {
5238       unsigned Factor =
5239         N1.getOperand(0).getValueType().getVectorNumElements();
5240       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5241                      N1.getOperand(N2C->getZExtValue() / Factor),
5242                      getConstant(N2C->getZExtValue() % Factor, DL,
5243                                  N2.getValueType()));
5244     }
5245 
5246     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5247     // expanding large vector constants.
5248     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5249       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5250 
5251       if (VT != Elt.getValueType())
5252         // If the vector element type is not legal, the BUILD_VECTOR operands
5253         // are promoted and implicitly truncated, and the result implicitly
5254         // extended. Make that explicit here.
5255         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5256 
5257       return Elt;
5258     }
5259 
5260     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5261     // operations are lowered to scalars.
5262     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5263       // If the indices are the same, return the inserted element else
5264       // if the indices are known different, extract the element from
5265       // the original vector.
5266       SDValue N1Op2 = N1.getOperand(2);
5267       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5268 
5269       if (N1Op2C && N2C) {
5270         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5271           if (VT == N1.getOperand(1).getValueType())
5272             return N1.getOperand(1);
5273           else
5274             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5275         }
5276 
5277         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5278       }
5279     }
5280 
5281     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5282     // when vector types are scalarized and v1iX is legal.
5283     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5284     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5285         N1.getValueType().getVectorNumElements() == 1) {
5286       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5287                      N1.getOperand(1));
5288     }
5289     break;
5290   case ISD::EXTRACT_ELEMENT:
5291     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5292     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5293            (N1.getValueType().isInteger() == VT.isInteger()) &&
5294            N1.getValueType() != VT &&
5295            "Wrong types for EXTRACT_ELEMENT!");
5296 
5297     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5298     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5299     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5300     if (N1.getOpcode() == ISD::BUILD_PAIR)
5301       return N1.getOperand(N2C->getZExtValue());
5302 
5303     // EXTRACT_ELEMENT of a constant int is also very common.
5304     if (N1C) {
5305       unsigned ElementSize = VT.getSizeInBits();
5306       unsigned Shift = ElementSize * N2C->getZExtValue();
5307       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5308       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5309     }
5310     break;
5311   case ISD::EXTRACT_SUBVECTOR:
5312     if (VT.isSimple() && N1.getValueType().isSimple()) {
5313       assert(VT.isVector() && N1.getValueType().isVector() &&
5314              "Extract subvector VTs must be a vectors!");
5315       assert(VT.getVectorElementType() ==
5316              N1.getValueType().getVectorElementType() &&
5317              "Extract subvector VTs must have the same element type!");
5318       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5319              "Extract subvector must be from larger vector to smaller vector!");
5320 
5321       if (N2C) {
5322         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5323                 <= N1.getValueType().getVectorNumElements())
5324                && "Extract subvector overflow!");
5325       }
5326 
5327       // Trivial extraction.
5328       if (VT.getSimpleVT() == N1.getSimpleValueType())
5329         return N1;
5330 
5331       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5332       if (N1.isUndef())
5333         return getUNDEF(VT);
5334 
5335       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5336       // the concat have the same type as the extract.
5337       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5338           N1.getNumOperands() > 0 &&
5339           VT == N1.getOperand(0).getValueType()) {
5340         unsigned Factor = VT.getVectorNumElements();
5341         return N1.getOperand(N2C->getZExtValue() / Factor);
5342       }
5343 
5344       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5345       // during shuffle legalization.
5346       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5347           VT == N1.getOperand(1).getValueType())
5348         return N1.getOperand(1);
5349     }
5350     break;
5351   }
5352 
5353   // Perform trivial constant folding.
5354   if (SDValue SV =
5355           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5356     return SV;
5357 
5358   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5359     return V;
5360 
5361   // Canonicalize an UNDEF to the RHS, even over a constant.
5362   if (N1.isUndef()) {
5363     if (TLI->isCommutativeBinOp(Opcode)) {
5364       std::swap(N1, N2);
5365     } else {
5366       switch (Opcode) {
5367       case ISD::SIGN_EXTEND_INREG:
5368       case ISD::SUB:
5369         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5370       case ISD::UDIV:
5371       case ISD::SDIV:
5372       case ISD::UREM:
5373       case ISD::SREM:
5374       case ISD::SSUBSAT:
5375       case ISD::USUBSAT:
5376         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5377       }
5378     }
5379   }
5380 
5381   // Fold a bunch of operators when the RHS is undef.
5382   if (N2.isUndef()) {
5383     switch (Opcode) {
5384     case ISD::XOR:
5385       if (N1.isUndef())
5386         // Handle undef ^ undef -> 0 special case. This is a common
5387         // idiom (misuse).
5388         return getConstant(0, DL, VT);
5389       LLVM_FALLTHROUGH;
5390     case ISD::ADD:
5391     case ISD::SUB:
5392     case ISD::UDIV:
5393     case ISD::SDIV:
5394     case ISD::UREM:
5395     case ISD::SREM:
5396       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5397     case ISD::MUL:
5398     case ISD::AND:
5399     case ISD::SSUBSAT:
5400     case ISD::USUBSAT:
5401       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5402     case ISD::OR:
5403     case ISD::SADDSAT:
5404     case ISD::UADDSAT:
5405       return getAllOnesConstant(DL, VT);
5406     }
5407   }
5408 
5409   // Memoize this node if possible.
5410   SDNode *N;
5411   SDVTList VTs = getVTList(VT);
5412   SDValue Ops[] = {N1, N2};
5413   if (VT != MVT::Glue) {
5414     FoldingSetNodeID ID;
5415     AddNodeIDNode(ID, Opcode, VTs, Ops);
5416     void *IP = nullptr;
5417     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5418       E->intersectFlagsWith(Flags);
5419       return SDValue(E, 0);
5420     }
5421 
5422     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5423     N->setFlags(Flags);
5424     createOperands(N, Ops);
5425     CSEMap.InsertNode(N, IP);
5426   } else {
5427     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5428     createOperands(N, Ops);
5429   }
5430 
5431   InsertNode(N);
5432   SDValue V = SDValue(N, 0);
5433   NewSDValueDbgMsg(V, "Creating new node: ", this);
5434   return V;
5435 }
5436 
5437 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5438                               SDValue N1, SDValue N2, SDValue N3,
5439                               const SDNodeFlags Flags) {
5440   // Perform various simplifications.
5441   switch (Opcode) {
5442   case ISD::FMA: {
5443     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5444     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5445            N3.getValueType() == VT && "FMA types must match!");
5446     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5447     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5448     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5449     if (N1CFP && N2CFP && N3CFP) {
5450       APFloat  V1 = N1CFP->getValueAPF();
5451       const APFloat &V2 = N2CFP->getValueAPF();
5452       const APFloat &V3 = N3CFP->getValueAPF();
5453       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5454       return getConstantFP(V1, DL, VT);
5455     }
5456     break;
5457   }
5458   case ISD::BUILD_VECTOR: {
5459     // Attempt to simplify BUILD_VECTOR.
5460     SDValue Ops[] = {N1, N2, N3};
5461     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5462       return V;
5463     break;
5464   }
5465   case ISD::CONCAT_VECTORS: {
5466     SDValue Ops[] = {N1, N2, N3};
5467     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5468       return V;
5469     break;
5470   }
5471   case ISD::SETCC: {
5472     assert(VT.isInteger() && "SETCC result type must be an integer!");
5473     assert(N1.getValueType() == N2.getValueType() &&
5474            "SETCC operands must have the same type!");
5475     assert(VT.isVector() == N1.getValueType().isVector() &&
5476            "SETCC type should be vector iff the operand type is vector!");
5477     assert((!VT.isVector() ||
5478             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5479            "SETCC vector element counts must match!");
5480     // Use FoldSetCC to simplify SETCC's.
5481     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5482       return V;
5483     // Vector constant folding.
5484     SDValue Ops[] = {N1, N2, N3};
5485     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5486       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5487       return V;
5488     }
5489     break;
5490   }
5491   case ISD::SELECT:
5492   case ISD::VSELECT:
5493     if (SDValue V = simplifySelect(N1, N2, N3))
5494       return V;
5495     break;
5496   case ISD::VECTOR_SHUFFLE:
5497     llvm_unreachable("should use getVectorShuffle constructor!");
5498   case ISD::INSERT_VECTOR_ELT: {
5499     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5500     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5501     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5502       return getUNDEF(VT);
5503     break;
5504   }
5505   case ISD::INSERT_SUBVECTOR: {
5506     // Inserting undef into undef is still undef.
5507     if (N1.isUndef() && N2.isUndef())
5508       return getUNDEF(VT);
5509     SDValue Index = N3;
5510     if (VT.isSimple() && N1.getValueType().isSimple()
5511         && N2.getValueType().isSimple()) {
5512       assert(VT.isVector() && N1.getValueType().isVector() &&
5513              N2.getValueType().isVector() &&
5514              "Insert subvector VTs must be a vectors");
5515       assert(VT == N1.getValueType() &&
5516              "Dest and insert subvector source types must match!");
5517       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5518              "Insert subvector must be from smaller vector to larger vector!");
5519       if (isa<ConstantSDNode>(Index)) {
5520         assert((N2.getValueType().getVectorNumElements() +
5521                 cast<ConstantSDNode>(Index)->getZExtValue()
5522                 <= VT.getVectorNumElements())
5523                && "Insert subvector overflow!");
5524       }
5525 
5526       // Trivial insertion.
5527       if (VT.getSimpleVT() == N2.getSimpleValueType())
5528         return N2;
5529 
5530       // If this is an insert of an extracted vector into an undef vector, we
5531       // can just use the input to the extract.
5532       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5533           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5534         return N2.getOperand(0);
5535     }
5536     break;
5537   }
5538   case ISD::BITCAST:
5539     // Fold bit_convert nodes from a type to themselves.
5540     if (N1.getValueType() == VT)
5541       return N1;
5542     break;
5543   }
5544 
5545   // Memoize node if it doesn't produce a flag.
5546   SDNode *N;
5547   SDVTList VTs = getVTList(VT);
5548   SDValue Ops[] = {N1, N2, N3};
5549   if (VT != MVT::Glue) {
5550     FoldingSetNodeID ID;
5551     AddNodeIDNode(ID, Opcode, VTs, Ops);
5552     void *IP = nullptr;
5553     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5554       E->intersectFlagsWith(Flags);
5555       return SDValue(E, 0);
5556     }
5557 
5558     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5559     N->setFlags(Flags);
5560     createOperands(N, Ops);
5561     CSEMap.InsertNode(N, IP);
5562   } else {
5563     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5564     createOperands(N, Ops);
5565   }
5566 
5567   InsertNode(N);
5568   SDValue V = SDValue(N, 0);
5569   NewSDValueDbgMsg(V, "Creating new node: ", this);
5570   return V;
5571 }
5572 
5573 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5574                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5575   SDValue Ops[] = { N1, N2, N3, N4 };
5576   return getNode(Opcode, DL, VT, Ops);
5577 }
5578 
5579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5580                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5581                               SDValue N5) {
5582   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5583   return getNode(Opcode, DL, VT, Ops);
5584 }
5585 
5586 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5587 /// the incoming stack arguments to be loaded from the stack.
5588 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5589   SmallVector<SDValue, 8> ArgChains;
5590 
5591   // Include the original chain at the beginning of the list. When this is
5592   // used by target LowerCall hooks, this helps legalize find the
5593   // CALLSEQ_BEGIN node.
5594   ArgChains.push_back(Chain);
5595 
5596   // Add a chain value for each stack argument.
5597   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5598        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5599     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5600       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5601         if (FI->getIndex() < 0)
5602           ArgChains.push_back(SDValue(L, 1));
5603 
5604   // Build a tokenfactor for all the chains.
5605   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5606 }
5607 
5608 /// getMemsetValue - Vectorized representation of the memset value
5609 /// operand.
5610 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5611                               const SDLoc &dl) {
5612   assert(!Value.isUndef());
5613 
5614   unsigned NumBits = VT.getScalarSizeInBits();
5615   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5616     assert(C->getAPIntValue().getBitWidth() == 8);
5617     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5618     if (VT.isInteger()) {
5619       bool IsOpaque = VT.getSizeInBits() > 64 ||
5620           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5621       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5622     }
5623     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5624                              VT);
5625   }
5626 
5627   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5628   EVT IntVT = VT.getScalarType();
5629   if (!IntVT.isInteger())
5630     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5631 
5632   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5633   if (NumBits > 8) {
5634     // Use a multiplication with 0x010101... to extend the input to the
5635     // required length.
5636     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5637     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5638                         DAG.getConstant(Magic, dl, IntVT));
5639   }
5640 
5641   if (VT != Value.getValueType() && !VT.isInteger())
5642     Value = DAG.getBitcast(VT.getScalarType(), Value);
5643   if (VT != Value.getValueType())
5644     Value = DAG.getSplatBuildVector(VT, dl, Value);
5645 
5646   return Value;
5647 }
5648 
5649 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5650 /// used when a memcpy is turned into a memset when the source is a constant
5651 /// string ptr.
5652 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5653                                   const TargetLowering &TLI,
5654                                   const ConstantDataArraySlice &Slice) {
5655   // Handle vector with all elements zero.
5656   if (Slice.Array == nullptr) {
5657     if (VT.isInteger())
5658       return DAG.getConstant(0, dl, VT);
5659     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5660       return DAG.getConstantFP(0.0, dl, VT);
5661     else if (VT.isVector()) {
5662       unsigned NumElts = VT.getVectorNumElements();
5663       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5664       return DAG.getNode(ISD::BITCAST, dl, VT,
5665                          DAG.getConstant(0, dl,
5666                                          EVT::getVectorVT(*DAG.getContext(),
5667                                                           EltVT, NumElts)));
5668     } else
5669       llvm_unreachable("Expected type!");
5670   }
5671 
5672   assert(!VT.isVector() && "Can't handle vector type here!");
5673   unsigned NumVTBits = VT.getSizeInBits();
5674   unsigned NumVTBytes = NumVTBits / 8;
5675   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5676 
5677   APInt Val(NumVTBits, 0);
5678   if (DAG.getDataLayout().isLittleEndian()) {
5679     for (unsigned i = 0; i != NumBytes; ++i)
5680       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5681   } else {
5682     for (unsigned i = 0; i != NumBytes; ++i)
5683       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5684   }
5685 
5686   // If the "cost" of materializing the integer immediate is less than the cost
5687   // of a load, then it is cost effective to turn the load into the immediate.
5688   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5689   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5690     return DAG.getConstant(Val, dl, VT);
5691   return SDValue(nullptr, 0);
5692 }
5693 
5694 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5695                                            const SDLoc &DL) {
5696   EVT VT = Base.getValueType();
5697   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5698 }
5699 
5700 /// Returns true if memcpy source is constant data.
5701 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5702   uint64_t SrcDelta = 0;
5703   GlobalAddressSDNode *G = nullptr;
5704   if (Src.getOpcode() == ISD::GlobalAddress)
5705     G = cast<GlobalAddressSDNode>(Src);
5706   else if (Src.getOpcode() == ISD::ADD &&
5707            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5708            Src.getOperand(1).getOpcode() == ISD::Constant) {
5709     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5710     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5711   }
5712   if (!G)
5713     return false;
5714 
5715   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5716                                   SrcDelta + G->getOffset());
5717 }
5718 
5719 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5720   // On Darwin, -Os means optimize for size without hurting performance, so
5721   // only really optimize for size when -Oz (MinSize) is used.
5722   if (MF.getTarget().getTargetTriple().isOSDarwin())
5723     return MF.getFunction().hasMinSize();
5724   return MF.getFunction().hasOptSize();
5725 }
5726 
5727 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5728                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5729                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5730                           SmallVector<SDValue, 16> &OutStoreChains) {
5731   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5732   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5733   SmallVector<SDValue, 16> GluedLoadChains;
5734   for (unsigned i = From; i < To; ++i) {
5735     OutChains.push_back(OutLoadChains[i]);
5736     GluedLoadChains.push_back(OutLoadChains[i]);
5737   }
5738 
5739   // Chain for all loads.
5740   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5741                                   GluedLoadChains);
5742 
5743   for (unsigned i = From; i < To; ++i) {
5744     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5745     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5746                                   ST->getBasePtr(), ST->getMemoryVT(),
5747                                   ST->getMemOperand());
5748     OutChains.push_back(NewStore);
5749   }
5750 }
5751 
5752 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5753                                        SDValue Chain, SDValue Dst, SDValue Src,
5754                                        uint64_t Size, unsigned Align,
5755                                        bool isVol, bool AlwaysInline,
5756                                        MachinePointerInfo DstPtrInfo,
5757                                        MachinePointerInfo SrcPtrInfo) {
5758   // Turn a memcpy of undef to nop.
5759   // FIXME: We need to honor volatile even is Src is undef.
5760   if (Src.isUndef())
5761     return Chain;
5762 
5763   // Expand memcpy to a series of load and store ops if the size operand falls
5764   // below a certain threshold.
5765   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5766   // rather than maybe a humongous number of loads and stores.
5767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5768   const DataLayout &DL = DAG.getDataLayout();
5769   LLVMContext &C = *DAG.getContext();
5770   std::vector<EVT> MemOps;
5771   bool DstAlignCanChange = false;
5772   MachineFunction &MF = DAG.getMachineFunction();
5773   MachineFrameInfo &MFI = MF.getFrameInfo();
5774   bool OptSize = shouldLowerMemFuncForSize(MF);
5775   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5776   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5777     DstAlignCanChange = true;
5778   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5779   if (Align > SrcAlign)
5780     SrcAlign = Align;
5781   ConstantDataArraySlice Slice;
5782   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5783   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5784   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5785 
5786   if (!TLI.findOptimalMemOpLowering(
5787           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align),
5788           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5789           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5790           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5791           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5792     return SDValue();
5793 
5794   if (DstAlignCanChange) {
5795     Type *Ty = MemOps[0].getTypeForEVT(C);
5796     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5797 
5798     // Don't promote to an alignment that would require dynamic stack
5799     // realignment.
5800     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5801     if (!TRI->needsStackRealignment(MF))
5802       while (NewAlign > Align &&
5803              DL.exceedsNaturalStackAlignment(llvm::Align(NewAlign)))
5804           NewAlign /= 2;
5805 
5806     if (NewAlign > Align) {
5807       // Give the stack frame object a larger alignment if needed.
5808       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5809         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5810       Align = NewAlign;
5811     }
5812   }
5813 
5814   MachineMemOperand::Flags MMOFlags =
5815       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5816   SmallVector<SDValue, 16> OutLoadChains;
5817   SmallVector<SDValue, 16> OutStoreChains;
5818   SmallVector<SDValue, 32> OutChains;
5819   unsigned NumMemOps = MemOps.size();
5820   uint64_t SrcOff = 0, DstOff = 0;
5821   for (unsigned i = 0; i != NumMemOps; ++i) {
5822     EVT VT = MemOps[i];
5823     unsigned VTSize = VT.getSizeInBits() / 8;
5824     SDValue Value, Store;
5825 
5826     if (VTSize > Size) {
5827       // Issuing an unaligned load / store pair  that overlaps with the previous
5828       // pair. Adjust the offset accordingly.
5829       assert(i == NumMemOps-1 && i != 0);
5830       SrcOff -= VTSize - Size;
5831       DstOff -= VTSize - Size;
5832     }
5833 
5834     if (CopyFromConstant &&
5835         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5836       // It's unlikely a store of a vector immediate can be done in a single
5837       // instruction. It would require a load from a constantpool first.
5838       // We only handle zero vectors here.
5839       // FIXME: Handle other cases where store of vector immediate is done in
5840       // a single instruction.
5841       ConstantDataArraySlice SubSlice;
5842       if (SrcOff < Slice.Length) {
5843         SubSlice = Slice;
5844         SubSlice.move(SrcOff);
5845       } else {
5846         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5847         SubSlice.Array = nullptr;
5848         SubSlice.Offset = 0;
5849         SubSlice.Length = VTSize;
5850       }
5851       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5852       if (Value.getNode()) {
5853         Store = DAG.getStore(Chain, dl, Value,
5854                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5855                              DstPtrInfo.getWithOffset(DstOff), Align,
5856                              MMOFlags);
5857         OutChains.push_back(Store);
5858       }
5859     }
5860 
5861     if (!Store.getNode()) {
5862       // The type might not be legal for the target.  This should only happen
5863       // if the type is smaller than a legal type, as on PPC, so the right
5864       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5865       // to Load/Store if NVT==VT.
5866       // FIXME does the case above also need this?
5867       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5868       assert(NVT.bitsGE(VT));
5869 
5870       bool isDereferenceable =
5871         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5872       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5873       if (isDereferenceable)
5874         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5875 
5876       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5877                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5878                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5879                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5880       OutLoadChains.push_back(Value.getValue(1));
5881 
5882       Store = DAG.getTruncStore(
5883           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5884           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5885       OutStoreChains.push_back(Store);
5886     }
5887     SrcOff += VTSize;
5888     DstOff += VTSize;
5889     Size -= VTSize;
5890   }
5891 
5892   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5893                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5894   unsigned NumLdStInMemcpy = OutStoreChains.size();
5895 
5896   if (NumLdStInMemcpy) {
5897     // It may be that memcpy might be converted to memset if it's memcpy
5898     // of constants. In such a case, we won't have loads and stores, but
5899     // just stores. In the absence of loads, there is nothing to gang up.
5900     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5901       // If target does not care, just leave as it.
5902       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5903         OutChains.push_back(OutLoadChains[i]);
5904         OutChains.push_back(OutStoreChains[i]);
5905       }
5906     } else {
5907       // Ld/St less than/equal limit set by target.
5908       if (NumLdStInMemcpy <= GluedLdStLimit) {
5909           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5910                                         NumLdStInMemcpy, OutLoadChains,
5911                                         OutStoreChains);
5912       } else {
5913         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5914         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5915         unsigned GlueIter = 0;
5916 
5917         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5918           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5919           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5920 
5921           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5922                                        OutLoadChains, OutStoreChains);
5923           GlueIter += GluedLdStLimit;
5924         }
5925 
5926         // Residual ld/st.
5927         if (RemainingLdStInMemcpy) {
5928           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5929                                         RemainingLdStInMemcpy, OutLoadChains,
5930                                         OutStoreChains);
5931         }
5932       }
5933     }
5934   }
5935   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5936 }
5937 
5938 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5939                                         SDValue Chain, SDValue Dst, SDValue Src,
5940                                         uint64_t Size, unsigned Align,
5941                                         bool isVol, bool AlwaysInline,
5942                                         MachinePointerInfo DstPtrInfo,
5943                                         MachinePointerInfo SrcPtrInfo) {
5944   // Turn a memmove of undef to nop.
5945   // FIXME: We need to honor volatile even is Src is undef.
5946   if (Src.isUndef())
5947     return Chain;
5948 
5949   // Expand memmove to a series of load and store ops if the size operand falls
5950   // below a certain threshold.
5951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5952   const DataLayout &DL = DAG.getDataLayout();
5953   LLVMContext &C = *DAG.getContext();
5954   std::vector<EVT> MemOps;
5955   bool DstAlignCanChange = false;
5956   MachineFunction &MF = DAG.getMachineFunction();
5957   MachineFrameInfo &MFI = MF.getFrameInfo();
5958   bool OptSize = shouldLowerMemFuncForSize(MF);
5959   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5960   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5961     DstAlignCanChange = true;
5962   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5963   if (Align > SrcAlign)
5964     SrcAlign = Align;
5965   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5966   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
5967   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
5968   // correct code.
5969   bool AllowOverlap = false;
5970   if (!TLI.findOptimalMemOpLowering(
5971           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
5972           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
5973           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
5974           MF.getFunction().getAttributes()))
5975     return SDValue();
5976 
5977   if (DstAlignCanChange) {
5978     Type *Ty = MemOps[0].getTypeForEVT(C);
5979     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5980     if (NewAlign > Align) {
5981       // Give the stack frame object a larger alignment if needed.
5982       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5983         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5984       Align = NewAlign;
5985     }
5986   }
5987 
5988   MachineMemOperand::Flags MMOFlags =
5989       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5990   uint64_t SrcOff = 0, DstOff = 0;
5991   SmallVector<SDValue, 8> LoadValues;
5992   SmallVector<SDValue, 8> LoadChains;
5993   SmallVector<SDValue, 8> OutChains;
5994   unsigned NumMemOps = MemOps.size();
5995   for (unsigned i = 0; i < NumMemOps; i++) {
5996     EVT VT = MemOps[i];
5997     unsigned VTSize = VT.getSizeInBits() / 8;
5998     SDValue Value;
5999 
6000     bool isDereferenceable =
6001       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6002     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6003     if (isDereferenceable)
6004       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6005 
6006     Value =
6007         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6008                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6009     LoadValues.push_back(Value);
6010     LoadChains.push_back(Value.getValue(1));
6011     SrcOff += VTSize;
6012   }
6013   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6014   OutChains.clear();
6015   for (unsigned i = 0; i < NumMemOps; i++) {
6016     EVT VT = MemOps[i];
6017     unsigned VTSize = VT.getSizeInBits() / 8;
6018     SDValue Store;
6019 
6020     Store = DAG.getStore(Chain, dl, LoadValues[i],
6021                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6022                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6023     OutChains.push_back(Store);
6024     DstOff += VTSize;
6025   }
6026 
6027   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6028 }
6029 
6030 /// Lower the call to 'memset' intrinsic function into a series of store
6031 /// operations.
6032 ///
6033 /// \param DAG Selection DAG where lowered code is placed.
6034 /// \param dl Link to corresponding IR location.
6035 /// \param Chain Control flow dependency.
6036 /// \param Dst Pointer to destination memory location.
6037 /// \param Src Value of byte to write into the memory.
6038 /// \param Size Number of bytes to write.
6039 /// \param Align Alignment of the destination in bytes.
6040 /// \param isVol True if destination is volatile.
6041 /// \param DstPtrInfo IR information on the memory pointer.
6042 /// \returns New head in the control flow, if lowering was successful, empty
6043 /// SDValue otherwise.
6044 ///
6045 /// The function tries to replace 'llvm.memset' intrinsic with several store
6046 /// operations and value calculation code. This is usually profitable for small
6047 /// memory size.
6048 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6049                                SDValue Chain, SDValue Dst, SDValue Src,
6050                                uint64_t Size, unsigned Align, bool isVol,
6051                                MachinePointerInfo DstPtrInfo) {
6052   // Turn a memset of undef to nop.
6053   // FIXME: We need to honor volatile even is Src is undef.
6054   if (Src.isUndef())
6055     return Chain;
6056 
6057   // Expand memset to a series of load/store ops if the size operand
6058   // falls below a certain threshold.
6059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6060   std::vector<EVT> MemOps;
6061   bool DstAlignCanChange = false;
6062   MachineFunction &MF = DAG.getMachineFunction();
6063   MachineFrameInfo &MFI = MF.getFrameInfo();
6064   bool OptSize = shouldLowerMemFuncForSize(MF);
6065   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6066   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6067     DstAlignCanChange = true;
6068   bool IsZeroVal =
6069     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6070   if (!TLI.findOptimalMemOpLowering(
6071           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6072           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6073           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6074           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6075           MF.getFunction().getAttributes()))
6076     return SDValue();
6077 
6078   if (DstAlignCanChange) {
6079     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6080     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6081     if (NewAlign > Align) {
6082       // Give the stack frame object a larger alignment if needed.
6083       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6084         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6085       Align = NewAlign;
6086     }
6087   }
6088 
6089   SmallVector<SDValue, 8> OutChains;
6090   uint64_t DstOff = 0;
6091   unsigned NumMemOps = MemOps.size();
6092 
6093   // Find the largest store and generate the bit pattern for it.
6094   EVT LargestVT = MemOps[0];
6095   for (unsigned i = 1; i < NumMemOps; i++)
6096     if (MemOps[i].bitsGT(LargestVT))
6097       LargestVT = MemOps[i];
6098   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6099 
6100   for (unsigned i = 0; i < NumMemOps; i++) {
6101     EVT VT = MemOps[i];
6102     unsigned VTSize = VT.getSizeInBits() / 8;
6103     if (VTSize > Size) {
6104       // Issuing an unaligned load / store pair  that overlaps with the previous
6105       // pair. Adjust the offset accordingly.
6106       assert(i == NumMemOps-1 && i != 0);
6107       DstOff -= VTSize - Size;
6108     }
6109 
6110     // If this store is smaller than the largest store see whether we can get
6111     // the smaller value for free with a truncate.
6112     SDValue Value = MemSetValue;
6113     if (VT.bitsLT(LargestVT)) {
6114       if (!LargestVT.isVector() && !VT.isVector() &&
6115           TLI.isTruncateFree(LargestVT, VT))
6116         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6117       else
6118         Value = getMemsetValue(Src, VT, DAG, dl);
6119     }
6120     assert(Value.getValueType() == VT && "Value with wrong type.");
6121     SDValue Store = DAG.getStore(
6122         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6123         DstPtrInfo.getWithOffset(DstOff), Align,
6124         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6125     OutChains.push_back(Store);
6126     DstOff += VT.getSizeInBits() / 8;
6127     Size -= VTSize;
6128   }
6129 
6130   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6131 }
6132 
6133 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6134                                             unsigned AS) {
6135   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6136   // pointer operands can be losslessly bitcasted to pointers of address space 0
6137   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6138     report_fatal_error("cannot lower memory intrinsic in address space " +
6139                        Twine(AS));
6140   }
6141 }
6142 
6143 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6144                                 SDValue Src, SDValue Size, unsigned Align,
6145                                 bool isVol, bool AlwaysInline, bool isTailCall,
6146                                 MachinePointerInfo DstPtrInfo,
6147                                 MachinePointerInfo SrcPtrInfo) {
6148   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6149 
6150   // Check to see if we should lower the memcpy to loads and stores first.
6151   // For cases within the target-specified limits, this is the best choice.
6152   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6153   if (ConstantSize) {
6154     // Memcpy with size zero? Just return the original chain.
6155     if (ConstantSize->isNullValue())
6156       return Chain;
6157 
6158     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6159                                              ConstantSize->getZExtValue(),Align,
6160                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6161     if (Result.getNode())
6162       return Result;
6163   }
6164 
6165   // Then check to see if we should lower the memcpy with target-specific
6166   // code. If the target chooses to do this, this is the next best.
6167   if (TSI) {
6168     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6169         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6170         DstPtrInfo, SrcPtrInfo);
6171     if (Result.getNode())
6172       return Result;
6173   }
6174 
6175   // If we really need inline code and the target declined to provide it,
6176   // use a (potentially long) sequence of loads and stores.
6177   if (AlwaysInline) {
6178     assert(ConstantSize && "AlwaysInline requires a constant size!");
6179     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6180                                    ConstantSize->getZExtValue(), Align, isVol,
6181                                    true, DstPtrInfo, SrcPtrInfo);
6182   }
6183 
6184   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6185   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6186 
6187   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6188   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6189   // respect volatile, so they may do things like read or write memory
6190   // beyond the given memory regions. But fixing this isn't easy, and most
6191   // people don't care.
6192 
6193   // Emit a library call.
6194   TargetLowering::ArgListTy Args;
6195   TargetLowering::ArgListEntry Entry;
6196   Entry.Ty = Type::getInt8PtrTy(*getContext());
6197   Entry.Node = Dst; Args.push_back(Entry);
6198   Entry.Node = Src; Args.push_back(Entry);
6199 
6200   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6201   Entry.Node = Size; Args.push_back(Entry);
6202   // FIXME: pass in SDLoc
6203   TargetLowering::CallLoweringInfo CLI(*this);
6204   CLI.setDebugLoc(dl)
6205       .setChain(Chain)
6206       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6207                     Dst.getValueType().getTypeForEVT(*getContext()),
6208                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6209                                       TLI->getPointerTy(getDataLayout())),
6210                     std::move(Args))
6211       .setDiscardResult()
6212       .setTailCall(isTailCall);
6213 
6214   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6215   return CallResult.second;
6216 }
6217 
6218 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6219                                       SDValue Dst, unsigned DstAlign,
6220                                       SDValue Src, unsigned SrcAlign,
6221                                       SDValue Size, Type *SizeTy,
6222                                       unsigned ElemSz, bool isTailCall,
6223                                       MachinePointerInfo DstPtrInfo,
6224                                       MachinePointerInfo SrcPtrInfo) {
6225   // Emit a library call.
6226   TargetLowering::ArgListTy Args;
6227   TargetLowering::ArgListEntry Entry;
6228   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6229   Entry.Node = Dst;
6230   Args.push_back(Entry);
6231 
6232   Entry.Node = Src;
6233   Args.push_back(Entry);
6234 
6235   Entry.Ty = SizeTy;
6236   Entry.Node = Size;
6237   Args.push_back(Entry);
6238 
6239   RTLIB::Libcall LibraryCall =
6240       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6241   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6242     report_fatal_error("Unsupported element size");
6243 
6244   TargetLowering::CallLoweringInfo CLI(*this);
6245   CLI.setDebugLoc(dl)
6246       .setChain(Chain)
6247       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6248                     Type::getVoidTy(*getContext()),
6249                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6250                                       TLI->getPointerTy(getDataLayout())),
6251                     std::move(Args))
6252       .setDiscardResult()
6253       .setTailCall(isTailCall);
6254 
6255   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6256   return CallResult.second;
6257 }
6258 
6259 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6260                                  SDValue Src, SDValue Size, unsigned Align,
6261                                  bool isVol, bool isTailCall,
6262                                  MachinePointerInfo DstPtrInfo,
6263                                  MachinePointerInfo SrcPtrInfo) {
6264   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6265 
6266   // Check to see if we should lower the memmove to loads and stores first.
6267   // For cases within the target-specified limits, this is the best choice.
6268   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6269   if (ConstantSize) {
6270     // Memmove with size zero? Just return the original chain.
6271     if (ConstantSize->isNullValue())
6272       return Chain;
6273 
6274     SDValue Result =
6275       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6276                                ConstantSize->getZExtValue(), Align, isVol,
6277                                false, DstPtrInfo, SrcPtrInfo);
6278     if (Result.getNode())
6279       return Result;
6280   }
6281 
6282   // Then check to see if we should lower the memmove with target-specific
6283   // code. If the target chooses to do this, this is the next best.
6284   if (TSI) {
6285     SDValue Result = TSI->EmitTargetCodeForMemmove(
6286         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6287     if (Result.getNode())
6288       return Result;
6289   }
6290 
6291   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6292   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6293 
6294   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6295   // not be safe.  See memcpy above for more details.
6296 
6297   // Emit a library call.
6298   TargetLowering::ArgListTy Args;
6299   TargetLowering::ArgListEntry Entry;
6300   Entry.Ty = Type::getInt8PtrTy(*getContext());
6301   Entry.Node = Dst; Args.push_back(Entry);
6302   Entry.Node = Src; Args.push_back(Entry);
6303 
6304   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6305   Entry.Node = Size; Args.push_back(Entry);
6306   // FIXME:  pass in SDLoc
6307   TargetLowering::CallLoweringInfo CLI(*this);
6308   CLI.setDebugLoc(dl)
6309       .setChain(Chain)
6310       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6311                     Dst.getValueType().getTypeForEVT(*getContext()),
6312                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6313                                       TLI->getPointerTy(getDataLayout())),
6314                     std::move(Args))
6315       .setDiscardResult()
6316       .setTailCall(isTailCall);
6317 
6318   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6319   return CallResult.second;
6320 }
6321 
6322 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6323                                        SDValue Dst, unsigned DstAlign,
6324                                        SDValue Src, unsigned SrcAlign,
6325                                        SDValue Size, Type *SizeTy,
6326                                        unsigned ElemSz, bool isTailCall,
6327                                        MachinePointerInfo DstPtrInfo,
6328                                        MachinePointerInfo SrcPtrInfo) {
6329   // Emit a library call.
6330   TargetLowering::ArgListTy Args;
6331   TargetLowering::ArgListEntry Entry;
6332   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6333   Entry.Node = Dst;
6334   Args.push_back(Entry);
6335 
6336   Entry.Node = Src;
6337   Args.push_back(Entry);
6338 
6339   Entry.Ty = SizeTy;
6340   Entry.Node = Size;
6341   Args.push_back(Entry);
6342 
6343   RTLIB::Libcall LibraryCall =
6344       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6345   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6346     report_fatal_error("Unsupported element size");
6347 
6348   TargetLowering::CallLoweringInfo CLI(*this);
6349   CLI.setDebugLoc(dl)
6350       .setChain(Chain)
6351       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6352                     Type::getVoidTy(*getContext()),
6353                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6354                                       TLI->getPointerTy(getDataLayout())),
6355                     std::move(Args))
6356       .setDiscardResult()
6357       .setTailCall(isTailCall);
6358 
6359   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6360   return CallResult.second;
6361 }
6362 
6363 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6364                                 SDValue Src, SDValue Size, unsigned Align,
6365                                 bool isVol, bool isTailCall,
6366                                 MachinePointerInfo DstPtrInfo) {
6367   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6368 
6369   // Check to see if we should lower the memset to stores first.
6370   // For cases within the target-specified limits, this is the best choice.
6371   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6372   if (ConstantSize) {
6373     // Memset with size zero? Just return the original chain.
6374     if (ConstantSize->isNullValue())
6375       return Chain;
6376 
6377     SDValue Result =
6378       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6379                       Align, isVol, DstPtrInfo);
6380 
6381     if (Result.getNode())
6382       return Result;
6383   }
6384 
6385   // Then check to see if we should lower the memset with target-specific
6386   // code. If the target chooses to do this, this is the next best.
6387   if (TSI) {
6388     SDValue Result = TSI->EmitTargetCodeForMemset(
6389         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6390     if (Result.getNode())
6391       return Result;
6392   }
6393 
6394   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6395 
6396   // Emit a library call.
6397   TargetLowering::ArgListTy Args;
6398   TargetLowering::ArgListEntry Entry;
6399   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6400   Args.push_back(Entry);
6401   Entry.Node = Src;
6402   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6403   Args.push_back(Entry);
6404   Entry.Node = Size;
6405   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6406   Args.push_back(Entry);
6407 
6408   // FIXME: pass in SDLoc
6409   TargetLowering::CallLoweringInfo CLI(*this);
6410   CLI.setDebugLoc(dl)
6411       .setChain(Chain)
6412       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6413                     Dst.getValueType().getTypeForEVT(*getContext()),
6414                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6415                                       TLI->getPointerTy(getDataLayout())),
6416                     std::move(Args))
6417       .setDiscardResult()
6418       .setTailCall(isTailCall);
6419 
6420   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6421   return CallResult.second;
6422 }
6423 
6424 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6425                                       SDValue Dst, unsigned DstAlign,
6426                                       SDValue Value, SDValue Size, Type *SizeTy,
6427                                       unsigned ElemSz, bool isTailCall,
6428                                       MachinePointerInfo DstPtrInfo) {
6429   // Emit a library call.
6430   TargetLowering::ArgListTy Args;
6431   TargetLowering::ArgListEntry Entry;
6432   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6433   Entry.Node = Dst;
6434   Args.push_back(Entry);
6435 
6436   Entry.Ty = Type::getInt8Ty(*getContext());
6437   Entry.Node = Value;
6438   Args.push_back(Entry);
6439 
6440   Entry.Ty = SizeTy;
6441   Entry.Node = Size;
6442   Args.push_back(Entry);
6443 
6444   RTLIB::Libcall LibraryCall =
6445       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6446   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6447     report_fatal_error("Unsupported element size");
6448 
6449   TargetLowering::CallLoweringInfo CLI(*this);
6450   CLI.setDebugLoc(dl)
6451       .setChain(Chain)
6452       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6453                     Type::getVoidTy(*getContext()),
6454                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6455                                       TLI->getPointerTy(getDataLayout())),
6456                     std::move(Args))
6457       .setDiscardResult()
6458       .setTailCall(isTailCall);
6459 
6460   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6461   return CallResult.second;
6462 }
6463 
6464 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6465                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6466                                 MachineMemOperand *MMO) {
6467   FoldingSetNodeID ID;
6468   ID.AddInteger(MemVT.getRawBits());
6469   AddNodeIDNode(ID, Opcode, VTList, Ops);
6470   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6471   void* IP = nullptr;
6472   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6473     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6474     return SDValue(E, 0);
6475   }
6476 
6477   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6478                                     VTList, MemVT, MMO);
6479   createOperands(N, Ops);
6480 
6481   CSEMap.InsertNode(N, IP);
6482   InsertNode(N);
6483   return SDValue(N, 0);
6484 }
6485 
6486 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6487                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6488                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6489                                        MachineMemOperand *MMO) {
6490   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6491          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6492   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6493 
6494   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6495   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6496 }
6497 
6498 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6499                                 SDValue Chain, SDValue Ptr, SDValue Val,
6500                                 MachineMemOperand *MMO) {
6501   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6502           Opcode == ISD::ATOMIC_LOAD_SUB ||
6503           Opcode == ISD::ATOMIC_LOAD_AND ||
6504           Opcode == ISD::ATOMIC_LOAD_CLR ||
6505           Opcode == ISD::ATOMIC_LOAD_OR ||
6506           Opcode == ISD::ATOMIC_LOAD_XOR ||
6507           Opcode == ISD::ATOMIC_LOAD_NAND ||
6508           Opcode == ISD::ATOMIC_LOAD_MIN ||
6509           Opcode == ISD::ATOMIC_LOAD_MAX ||
6510           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6511           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6512           Opcode == ISD::ATOMIC_LOAD_FADD ||
6513           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6514           Opcode == ISD::ATOMIC_SWAP ||
6515           Opcode == ISD::ATOMIC_STORE) &&
6516          "Invalid Atomic Op");
6517 
6518   EVT VT = Val.getValueType();
6519 
6520   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6521                                                getVTList(VT, MVT::Other);
6522   SDValue Ops[] = {Chain, Ptr, Val};
6523   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6524 }
6525 
6526 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6527                                 EVT VT, SDValue Chain, SDValue Ptr,
6528                                 MachineMemOperand *MMO) {
6529   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6530 
6531   SDVTList VTs = getVTList(VT, MVT::Other);
6532   SDValue Ops[] = {Chain, Ptr};
6533   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6534 }
6535 
6536 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6537 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6538   if (Ops.size() == 1)
6539     return Ops[0];
6540 
6541   SmallVector<EVT, 4> VTs;
6542   VTs.reserve(Ops.size());
6543   for (unsigned i = 0; i < Ops.size(); ++i)
6544     VTs.push_back(Ops[i].getValueType());
6545   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6546 }
6547 
6548 SDValue SelectionDAG::getMemIntrinsicNode(
6549     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6550     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6551     MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) {
6552   if (Align == 0)  // Ensure that codegen never sees alignment 0
6553     Align = getEVTAlignment(MemVT);
6554 
6555   if (!Size)
6556     Size = MemVT.getStoreSize();
6557 
6558   MachineFunction &MF = getMachineFunction();
6559   MachineMemOperand *MMO =
6560       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6561 
6562   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6563 }
6564 
6565 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6566                                           SDVTList VTList,
6567                                           ArrayRef<SDValue> Ops, EVT MemVT,
6568                                           MachineMemOperand *MMO) {
6569   assert((Opcode == ISD::INTRINSIC_VOID ||
6570           Opcode == ISD::INTRINSIC_W_CHAIN ||
6571           Opcode == ISD::PREFETCH ||
6572           Opcode == ISD::LIFETIME_START ||
6573           Opcode == ISD::LIFETIME_END ||
6574           ((int)Opcode <= std::numeric_limits<int>::max() &&
6575            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6576          "Opcode is not a memory-accessing opcode!");
6577 
6578   // Memoize the node unless it returns a flag.
6579   MemIntrinsicSDNode *N;
6580   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6581     FoldingSetNodeID ID;
6582     AddNodeIDNode(ID, Opcode, VTList, Ops);
6583     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6584         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6585     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6586     void *IP = nullptr;
6587     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6588       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6589       return SDValue(E, 0);
6590     }
6591 
6592     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6593                                       VTList, MemVT, MMO);
6594     createOperands(N, Ops);
6595 
6596   CSEMap.InsertNode(N, IP);
6597   } else {
6598     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6599                                       VTList, MemVT, MMO);
6600     createOperands(N, Ops);
6601   }
6602   InsertNode(N);
6603   SDValue V(N, 0);
6604   NewSDValueDbgMsg(V, "Creating new node: ", this);
6605   return V;
6606 }
6607 
6608 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6609                                       SDValue Chain, int FrameIndex,
6610                                       int64_t Size, int64_t Offset) {
6611   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6612   const auto VTs = getVTList(MVT::Other);
6613   SDValue Ops[2] = {
6614       Chain,
6615       getFrameIndex(FrameIndex,
6616                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6617                     true)};
6618 
6619   FoldingSetNodeID ID;
6620   AddNodeIDNode(ID, Opcode, VTs, Ops);
6621   ID.AddInteger(FrameIndex);
6622   ID.AddInteger(Size);
6623   ID.AddInteger(Offset);
6624   void *IP = nullptr;
6625   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6626     return SDValue(E, 0);
6627 
6628   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6629       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6630   createOperands(N, Ops);
6631   CSEMap.InsertNode(N, IP);
6632   InsertNode(N);
6633   SDValue V(N, 0);
6634   NewSDValueDbgMsg(V, "Creating new node: ", this);
6635   return V;
6636 }
6637 
6638 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6639 /// MachinePointerInfo record from it.  This is particularly useful because the
6640 /// code generator has many cases where it doesn't bother passing in a
6641 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6642 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6643                                            SelectionDAG &DAG, SDValue Ptr,
6644                                            int64_t Offset = 0) {
6645   // If this is FI+Offset, we can model it.
6646   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6647     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6648                                              FI->getIndex(), Offset);
6649 
6650   // If this is (FI+Offset1)+Offset2, we can model it.
6651   if (Ptr.getOpcode() != ISD::ADD ||
6652       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6653       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6654     return Info;
6655 
6656   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6657   return MachinePointerInfo::getFixedStack(
6658       DAG.getMachineFunction(), FI,
6659       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6660 }
6661 
6662 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6663 /// MachinePointerInfo record from it.  This is particularly useful because the
6664 /// code generator has many cases where it doesn't bother passing in a
6665 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6666 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6667                                            SelectionDAG &DAG, SDValue Ptr,
6668                                            SDValue OffsetOp) {
6669   // If the 'Offset' value isn't a constant, we can't handle this.
6670   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6671     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6672   if (OffsetOp.isUndef())
6673     return InferPointerInfo(Info, DAG, Ptr);
6674   return Info;
6675 }
6676 
6677 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6678                               EVT VT, const SDLoc &dl, SDValue Chain,
6679                               SDValue Ptr, SDValue Offset,
6680                               MachinePointerInfo PtrInfo, EVT MemVT,
6681                               unsigned Alignment,
6682                               MachineMemOperand::Flags MMOFlags,
6683                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6684   assert(Chain.getValueType() == MVT::Other &&
6685         "Invalid chain type");
6686   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6687     Alignment = getEVTAlignment(MemVT);
6688 
6689   MMOFlags |= MachineMemOperand::MOLoad;
6690   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6691   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6692   // clients.
6693   if (PtrInfo.V.isNull())
6694     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6695 
6696   MachineFunction &MF = getMachineFunction();
6697   MachineMemOperand *MMO = MF.getMachineMemOperand(
6698       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6699   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6700 }
6701 
6702 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6703                               EVT VT, const SDLoc &dl, SDValue Chain,
6704                               SDValue Ptr, SDValue Offset, EVT MemVT,
6705                               MachineMemOperand *MMO) {
6706   if (VT == MemVT) {
6707     ExtType = ISD::NON_EXTLOAD;
6708   } else if (ExtType == ISD::NON_EXTLOAD) {
6709     assert(VT == MemVT && "Non-extending load from different memory type!");
6710   } else {
6711     // Extending load.
6712     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6713            "Should only be an extending load, not truncating!");
6714     assert(VT.isInteger() == MemVT.isInteger() &&
6715            "Cannot convert from FP to Int or Int -> FP!");
6716     assert(VT.isVector() == MemVT.isVector() &&
6717            "Cannot use an ext load to convert to or from a vector!");
6718     assert((!VT.isVector() ||
6719             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6720            "Cannot use an ext load to change the number of vector elements!");
6721   }
6722 
6723   bool Indexed = AM != ISD::UNINDEXED;
6724   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6725 
6726   SDVTList VTs = Indexed ?
6727     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6728   SDValue Ops[] = { Chain, Ptr, Offset };
6729   FoldingSetNodeID ID;
6730   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6731   ID.AddInteger(MemVT.getRawBits());
6732   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6733       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6734   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6735   void *IP = nullptr;
6736   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6737     cast<LoadSDNode>(E)->refineAlignment(MMO);
6738     return SDValue(E, 0);
6739   }
6740   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6741                                   ExtType, MemVT, MMO);
6742   createOperands(N, Ops);
6743 
6744   CSEMap.InsertNode(N, IP);
6745   InsertNode(N);
6746   SDValue V(N, 0);
6747   NewSDValueDbgMsg(V, "Creating new node: ", this);
6748   return V;
6749 }
6750 
6751 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6752                               SDValue Ptr, MachinePointerInfo PtrInfo,
6753                               unsigned Alignment,
6754                               MachineMemOperand::Flags MMOFlags,
6755                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6756   SDValue Undef = getUNDEF(Ptr.getValueType());
6757   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6758                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6759 }
6760 
6761 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6762                               SDValue Ptr, MachineMemOperand *MMO) {
6763   SDValue Undef = getUNDEF(Ptr.getValueType());
6764   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6765                  VT, MMO);
6766 }
6767 
6768 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6769                                  EVT VT, SDValue Chain, SDValue Ptr,
6770                                  MachinePointerInfo PtrInfo, EVT MemVT,
6771                                  unsigned Alignment,
6772                                  MachineMemOperand::Flags MMOFlags,
6773                                  const AAMDNodes &AAInfo) {
6774   SDValue Undef = getUNDEF(Ptr.getValueType());
6775   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6776                  MemVT, Alignment, MMOFlags, AAInfo);
6777 }
6778 
6779 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6780                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6781                                  MachineMemOperand *MMO) {
6782   SDValue Undef = getUNDEF(Ptr.getValueType());
6783   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6784                  MemVT, MMO);
6785 }
6786 
6787 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6788                                      SDValue Base, SDValue Offset,
6789                                      ISD::MemIndexedMode AM) {
6790   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6791   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6792   // Don't propagate the invariant or dereferenceable flags.
6793   auto MMOFlags =
6794       LD->getMemOperand()->getFlags() &
6795       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6796   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6797                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6798                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6799                  LD->getAAInfo());
6800 }
6801 
6802 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6803                                SDValue Ptr, MachinePointerInfo PtrInfo,
6804                                unsigned Alignment,
6805                                MachineMemOperand::Flags MMOFlags,
6806                                const AAMDNodes &AAInfo) {
6807   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6808   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6809     Alignment = getEVTAlignment(Val.getValueType());
6810 
6811   MMOFlags |= MachineMemOperand::MOStore;
6812   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6813 
6814   if (PtrInfo.V.isNull())
6815     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6816 
6817   MachineFunction &MF = getMachineFunction();
6818   MachineMemOperand *MMO = MF.getMachineMemOperand(
6819       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6820   return getStore(Chain, dl, Val, Ptr, MMO);
6821 }
6822 
6823 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6824                                SDValue Ptr, MachineMemOperand *MMO) {
6825   assert(Chain.getValueType() == MVT::Other &&
6826         "Invalid chain type");
6827   EVT VT = Val.getValueType();
6828   SDVTList VTs = getVTList(MVT::Other);
6829   SDValue Undef = getUNDEF(Ptr.getValueType());
6830   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6831   FoldingSetNodeID ID;
6832   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6833   ID.AddInteger(VT.getRawBits());
6834   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6835       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6836   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6837   void *IP = nullptr;
6838   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6839     cast<StoreSDNode>(E)->refineAlignment(MMO);
6840     return SDValue(E, 0);
6841   }
6842   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6843                                    ISD::UNINDEXED, false, VT, MMO);
6844   createOperands(N, Ops);
6845 
6846   CSEMap.InsertNode(N, IP);
6847   InsertNode(N);
6848   SDValue V(N, 0);
6849   NewSDValueDbgMsg(V, "Creating new node: ", this);
6850   return V;
6851 }
6852 
6853 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6854                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6855                                     EVT SVT, unsigned Alignment,
6856                                     MachineMemOperand::Flags MMOFlags,
6857                                     const AAMDNodes &AAInfo) {
6858   assert(Chain.getValueType() == MVT::Other &&
6859         "Invalid chain type");
6860   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6861     Alignment = getEVTAlignment(SVT);
6862 
6863   MMOFlags |= MachineMemOperand::MOStore;
6864   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6865 
6866   if (PtrInfo.V.isNull())
6867     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6868 
6869   MachineFunction &MF = getMachineFunction();
6870   MachineMemOperand *MMO = MF.getMachineMemOperand(
6871       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6872   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6873 }
6874 
6875 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6876                                     SDValue Ptr, EVT SVT,
6877                                     MachineMemOperand *MMO) {
6878   EVT VT = Val.getValueType();
6879 
6880   assert(Chain.getValueType() == MVT::Other &&
6881         "Invalid chain type");
6882   if (VT == SVT)
6883     return getStore(Chain, dl, Val, Ptr, MMO);
6884 
6885   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6886          "Should only be a truncating store, not extending!");
6887   assert(VT.isInteger() == SVT.isInteger() &&
6888          "Can't do FP-INT conversion!");
6889   assert(VT.isVector() == SVT.isVector() &&
6890          "Cannot use trunc store to convert to or from a vector!");
6891   assert((!VT.isVector() ||
6892           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6893          "Cannot use trunc store to change the number of vector elements!");
6894 
6895   SDVTList VTs = getVTList(MVT::Other);
6896   SDValue Undef = getUNDEF(Ptr.getValueType());
6897   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6898   FoldingSetNodeID ID;
6899   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6900   ID.AddInteger(SVT.getRawBits());
6901   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6902       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6903   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6904   void *IP = nullptr;
6905   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6906     cast<StoreSDNode>(E)->refineAlignment(MMO);
6907     return SDValue(E, 0);
6908   }
6909   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6910                                    ISD::UNINDEXED, true, SVT, MMO);
6911   createOperands(N, Ops);
6912 
6913   CSEMap.InsertNode(N, IP);
6914   InsertNode(N);
6915   SDValue V(N, 0);
6916   NewSDValueDbgMsg(V, "Creating new node: ", this);
6917   return V;
6918 }
6919 
6920 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6921                                       SDValue Base, SDValue Offset,
6922                                       ISD::MemIndexedMode AM) {
6923   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6924   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6925   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6926   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6927   FoldingSetNodeID ID;
6928   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6929   ID.AddInteger(ST->getMemoryVT().getRawBits());
6930   ID.AddInteger(ST->getRawSubclassData());
6931   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6932   void *IP = nullptr;
6933   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6934     return SDValue(E, 0);
6935 
6936   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6937                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6938                                    ST->getMemOperand());
6939   createOperands(N, Ops);
6940 
6941   CSEMap.InsertNode(N, IP);
6942   InsertNode(N);
6943   SDValue V(N, 0);
6944   NewSDValueDbgMsg(V, "Creating new node: ", this);
6945   return V;
6946 }
6947 
6948 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6949                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6950                                     EVT MemVT, MachineMemOperand *MMO,
6951                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6952   SDVTList VTs = getVTList(VT, MVT::Other);
6953   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6954   FoldingSetNodeID ID;
6955   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6956   ID.AddInteger(MemVT.getRawBits());
6957   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6958       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6959   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6960   void *IP = nullptr;
6961   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6962     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6963     return SDValue(E, 0);
6964   }
6965   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6966                                         ExtTy, isExpanding, MemVT, MMO);
6967   createOperands(N, Ops);
6968 
6969   CSEMap.InsertNode(N, IP);
6970   InsertNode(N);
6971   SDValue V(N, 0);
6972   NewSDValueDbgMsg(V, "Creating new node: ", this);
6973   return V;
6974 }
6975 
6976 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6977                                      SDValue Val, SDValue Ptr, SDValue Mask,
6978                                      EVT MemVT, MachineMemOperand *MMO,
6979                                      bool IsTruncating, bool IsCompressing) {
6980   assert(Chain.getValueType() == MVT::Other &&
6981         "Invalid chain type");
6982   SDVTList VTs = getVTList(MVT::Other);
6983   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6984   FoldingSetNodeID ID;
6985   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6986   ID.AddInteger(MemVT.getRawBits());
6987   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6988       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6989   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6990   void *IP = nullptr;
6991   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6992     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6993     return SDValue(E, 0);
6994   }
6995   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6996                                          IsTruncating, IsCompressing, MemVT, MMO);
6997   createOperands(N, Ops);
6998 
6999   CSEMap.InsertNode(N, IP);
7000   InsertNode(N);
7001   SDValue V(N, 0);
7002   NewSDValueDbgMsg(V, "Creating new node: ", this);
7003   return V;
7004 }
7005 
7006 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7007                                       ArrayRef<SDValue> Ops,
7008                                       MachineMemOperand *MMO,
7009                                       ISD::MemIndexType IndexType) {
7010   assert(Ops.size() == 6 && "Incompatible number of operands");
7011 
7012   FoldingSetNodeID ID;
7013   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7014   ID.AddInteger(VT.getRawBits());
7015   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7016       dl.getIROrder(), VTs, VT, MMO, IndexType));
7017   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7018   void *IP = nullptr;
7019   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7020     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7021     return SDValue(E, 0);
7022   }
7023 
7024   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7025                                           VTs, VT, MMO, IndexType);
7026   createOperands(N, Ops);
7027 
7028   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7029          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7030   assert(N->getMask().getValueType().getVectorNumElements() ==
7031              N->getValueType(0).getVectorNumElements() &&
7032          "Vector width mismatch between mask and data");
7033   assert(N->getIndex().getValueType().getVectorNumElements() >=
7034              N->getValueType(0).getVectorNumElements() &&
7035          "Vector width mismatch between index and data");
7036   assert(isa<ConstantSDNode>(N->getScale()) &&
7037          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7038          "Scale should be a constant power of 2");
7039 
7040   CSEMap.InsertNode(N, IP);
7041   InsertNode(N);
7042   SDValue V(N, 0);
7043   NewSDValueDbgMsg(V, "Creating new node: ", this);
7044   return V;
7045 }
7046 
7047 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7048                                        ArrayRef<SDValue> Ops,
7049                                        MachineMemOperand *MMO,
7050                                        ISD::MemIndexType IndexType) {
7051   assert(Ops.size() == 6 && "Incompatible number of operands");
7052 
7053   FoldingSetNodeID ID;
7054   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7055   ID.AddInteger(VT.getRawBits());
7056   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7057       dl.getIROrder(), VTs, VT, MMO, IndexType));
7058   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7059   void *IP = nullptr;
7060   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7061     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7062     return SDValue(E, 0);
7063   }
7064   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7065                                            VTs, VT, MMO, IndexType);
7066   createOperands(N, Ops);
7067 
7068   assert(N->getMask().getValueType().getVectorNumElements() ==
7069              N->getValue().getValueType().getVectorNumElements() &&
7070          "Vector width mismatch between mask and data");
7071   assert(N->getIndex().getValueType().getVectorNumElements() >=
7072              N->getValue().getValueType().getVectorNumElements() &&
7073          "Vector width mismatch between index and data");
7074   assert(isa<ConstantSDNode>(N->getScale()) &&
7075          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7076          "Scale should be a constant power of 2");
7077 
7078   CSEMap.InsertNode(N, IP);
7079   InsertNode(N);
7080   SDValue V(N, 0);
7081   NewSDValueDbgMsg(V, "Creating new node: ", this);
7082   return V;
7083 }
7084 
7085 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7086   // select undef, T, F --> T (if T is a constant), otherwise F
7087   // select, ?, undef, F --> F
7088   // select, ?, T, undef --> T
7089   if (Cond.isUndef())
7090     return isConstantValueOfAnyType(T) ? T : F;
7091   if (T.isUndef())
7092     return F;
7093   if (F.isUndef())
7094     return T;
7095 
7096   // select true, T, F --> T
7097   // select false, T, F --> F
7098   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7099     return CondC->isNullValue() ? F : T;
7100 
7101   // TODO: This should simplify VSELECT with constant condition using something
7102   // like this (but check boolean contents to be complete?):
7103   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7104   //    return T;
7105   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7106   //    return F;
7107 
7108   // select ?, T, T --> T
7109   if (T == F)
7110     return T;
7111 
7112   return SDValue();
7113 }
7114 
7115 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7116   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7117   if (X.isUndef())
7118     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7119   // shift X, undef --> undef (because it may shift by the bitwidth)
7120   if (Y.isUndef())
7121     return getUNDEF(X.getValueType());
7122 
7123   // shift 0, Y --> 0
7124   // shift X, 0 --> X
7125   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7126     return X;
7127 
7128   // shift X, C >= bitwidth(X) --> undef
7129   // All vector elements must be too big (or undef) to avoid partial undefs.
7130   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7131     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7132   };
7133   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7134     return getUNDEF(X.getValueType());
7135 
7136   return SDValue();
7137 }
7138 
7139 // TODO: Use fast-math-flags to enable more simplifications.
7140 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7141   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7142   if (!YC)
7143     return SDValue();
7144 
7145   // X + -0.0 --> X
7146   if (Opcode == ISD::FADD)
7147     if (YC->getValueAPF().isNegZero())
7148       return X;
7149 
7150   // X - +0.0 --> X
7151   if (Opcode == ISD::FSUB)
7152     if (YC->getValueAPF().isPosZero())
7153       return X;
7154 
7155   // X * 1.0 --> X
7156   // X / 1.0 --> X
7157   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7158     if (YC->getValueAPF().isExactlyValue(1.0))
7159       return X;
7160 
7161   return SDValue();
7162 }
7163 
7164 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7165                                SDValue Ptr, SDValue SV, unsigned Align) {
7166   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7167   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7168 }
7169 
7170 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7171                               ArrayRef<SDUse> Ops) {
7172   switch (Ops.size()) {
7173   case 0: return getNode(Opcode, DL, VT);
7174   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7175   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7176   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7177   default: break;
7178   }
7179 
7180   // Copy from an SDUse array into an SDValue array for use with
7181   // the regular getNode logic.
7182   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7183   return getNode(Opcode, DL, VT, NewOps);
7184 }
7185 
7186 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7187                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7188   unsigned NumOps = Ops.size();
7189   switch (NumOps) {
7190   case 0: return getNode(Opcode, DL, VT);
7191   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7192   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7193   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7194   default: break;
7195   }
7196 
7197   switch (Opcode) {
7198   default: break;
7199   case ISD::BUILD_VECTOR:
7200     // Attempt to simplify BUILD_VECTOR.
7201     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7202       return V;
7203     break;
7204   case ISD::CONCAT_VECTORS:
7205     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7206       return V;
7207     break;
7208   case ISD::SELECT_CC:
7209     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7210     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7211            "LHS and RHS of condition must have same type!");
7212     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7213            "True and False arms of SelectCC must have same type!");
7214     assert(Ops[2].getValueType() == VT &&
7215            "select_cc node must be of same type as true and false value!");
7216     break;
7217   case ISD::BR_CC:
7218     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7219     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7220            "LHS/RHS of comparison should match types!");
7221     break;
7222   }
7223 
7224   // Memoize nodes.
7225   SDNode *N;
7226   SDVTList VTs = getVTList(VT);
7227 
7228   if (VT != MVT::Glue) {
7229     FoldingSetNodeID ID;
7230     AddNodeIDNode(ID, Opcode, VTs, Ops);
7231     void *IP = nullptr;
7232 
7233     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7234       return SDValue(E, 0);
7235 
7236     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7237     createOperands(N, Ops);
7238 
7239     CSEMap.InsertNode(N, IP);
7240   } else {
7241     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7242     createOperands(N, Ops);
7243   }
7244 
7245   InsertNode(N);
7246   SDValue V(N, 0);
7247   NewSDValueDbgMsg(V, "Creating new node: ", this);
7248   return V;
7249 }
7250 
7251 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7252                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7253   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7254 }
7255 
7256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7257                               ArrayRef<SDValue> Ops) {
7258   if (VTList.NumVTs == 1)
7259     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7260 
7261 #if 0
7262   switch (Opcode) {
7263   // FIXME: figure out how to safely handle things like
7264   // int foo(int x) { return 1 << (x & 255); }
7265   // int bar() { return foo(256); }
7266   case ISD::SRA_PARTS:
7267   case ISD::SRL_PARTS:
7268   case ISD::SHL_PARTS:
7269     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7270         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7271       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7272     else if (N3.getOpcode() == ISD::AND)
7273       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7274         // If the and is only masking out bits that cannot effect the shift,
7275         // eliminate the and.
7276         unsigned NumBits = VT.getScalarSizeInBits()*2;
7277         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7278           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7279       }
7280     break;
7281   }
7282 #endif
7283 
7284   // Memoize the node unless it returns a flag.
7285   SDNode *N;
7286   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7287     FoldingSetNodeID ID;
7288     AddNodeIDNode(ID, Opcode, VTList, Ops);
7289     void *IP = nullptr;
7290     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7291       return SDValue(E, 0);
7292 
7293     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7294     createOperands(N, Ops);
7295     CSEMap.InsertNode(N, IP);
7296   } else {
7297     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7298     createOperands(N, Ops);
7299   }
7300   InsertNode(N);
7301   SDValue V(N, 0);
7302   NewSDValueDbgMsg(V, "Creating new node: ", this);
7303   return V;
7304 }
7305 
7306 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7307                               SDVTList VTList) {
7308   return getNode(Opcode, DL, VTList, None);
7309 }
7310 
7311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7312                               SDValue N1) {
7313   SDValue Ops[] = { N1 };
7314   return getNode(Opcode, DL, VTList, Ops);
7315 }
7316 
7317 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7318                               SDValue N1, SDValue N2) {
7319   SDValue Ops[] = { N1, N2 };
7320   return getNode(Opcode, DL, VTList, Ops);
7321 }
7322 
7323 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7324                               SDValue N1, SDValue N2, SDValue N3) {
7325   SDValue Ops[] = { N1, N2, N3 };
7326   return getNode(Opcode, DL, VTList, Ops);
7327 }
7328 
7329 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7330                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7331   SDValue Ops[] = { N1, N2, N3, N4 };
7332   return getNode(Opcode, DL, VTList, Ops);
7333 }
7334 
7335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7336                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7337                               SDValue N5) {
7338   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7339   return getNode(Opcode, DL, VTList, Ops);
7340 }
7341 
7342 SDVTList SelectionDAG::getVTList(EVT VT) {
7343   return makeVTList(SDNode::getValueTypeList(VT), 1);
7344 }
7345 
7346 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7347   FoldingSetNodeID ID;
7348   ID.AddInteger(2U);
7349   ID.AddInteger(VT1.getRawBits());
7350   ID.AddInteger(VT2.getRawBits());
7351 
7352   void *IP = nullptr;
7353   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7354   if (!Result) {
7355     EVT *Array = Allocator.Allocate<EVT>(2);
7356     Array[0] = VT1;
7357     Array[1] = VT2;
7358     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7359     VTListMap.InsertNode(Result, IP);
7360   }
7361   return Result->getSDVTList();
7362 }
7363 
7364 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7365   FoldingSetNodeID ID;
7366   ID.AddInteger(3U);
7367   ID.AddInteger(VT1.getRawBits());
7368   ID.AddInteger(VT2.getRawBits());
7369   ID.AddInteger(VT3.getRawBits());
7370 
7371   void *IP = nullptr;
7372   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7373   if (!Result) {
7374     EVT *Array = Allocator.Allocate<EVT>(3);
7375     Array[0] = VT1;
7376     Array[1] = VT2;
7377     Array[2] = VT3;
7378     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7379     VTListMap.InsertNode(Result, IP);
7380   }
7381   return Result->getSDVTList();
7382 }
7383 
7384 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7385   FoldingSetNodeID ID;
7386   ID.AddInteger(4U);
7387   ID.AddInteger(VT1.getRawBits());
7388   ID.AddInteger(VT2.getRawBits());
7389   ID.AddInteger(VT3.getRawBits());
7390   ID.AddInteger(VT4.getRawBits());
7391 
7392   void *IP = nullptr;
7393   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7394   if (!Result) {
7395     EVT *Array = Allocator.Allocate<EVT>(4);
7396     Array[0] = VT1;
7397     Array[1] = VT2;
7398     Array[2] = VT3;
7399     Array[3] = VT4;
7400     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7401     VTListMap.InsertNode(Result, IP);
7402   }
7403   return Result->getSDVTList();
7404 }
7405 
7406 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7407   unsigned NumVTs = VTs.size();
7408   FoldingSetNodeID ID;
7409   ID.AddInteger(NumVTs);
7410   for (unsigned index = 0; index < NumVTs; index++) {
7411     ID.AddInteger(VTs[index].getRawBits());
7412   }
7413 
7414   void *IP = nullptr;
7415   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7416   if (!Result) {
7417     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7418     llvm::copy(VTs, Array);
7419     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7420     VTListMap.InsertNode(Result, IP);
7421   }
7422   return Result->getSDVTList();
7423 }
7424 
7425 
7426 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7427 /// specified operands.  If the resultant node already exists in the DAG,
7428 /// this does not modify the specified node, instead it returns the node that
7429 /// already exists.  If the resultant node does not exist in the DAG, the
7430 /// input node is returned.  As a degenerate case, if you specify the same
7431 /// input operands as the node already has, the input node is returned.
7432 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7433   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7434 
7435   // Check to see if there is no change.
7436   if (Op == N->getOperand(0)) return N;
7437 
7438   // See if the modified node already exists.
7439   void *InsertPos = nullptr;
7440   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7441     return Existing;
7442 
7443   // Nope it doesn't.  Remove the node from its current place in the maps.
7444   if (InsertPos)
7445     if (!RemoveNodeFromCSEMaps(N))
7446       InsertPos = nullptr;
7447 
7448   // Now we update the operands.
7449   N->OperandList[0].set(Op);
7450 
7451   updateDivergence(N);
7452   // If this gets put into a CSE map, add it.
7453   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7454   return N;
7455 }
7456 
7457 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7458   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7459 
7460   // Check to see if there is no change.
7461   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7462     return N;   // No operands changed, just return the input node.
7463 
7464   // See if the modified node already exists.
7465   void *InsertPos = nullptr;
7466   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7467     return Existing;
7468 
7469   // Nope it doesn't.  Remove the node from its current place in the maps.
7470   if (InsertPos)
7471     if (!RemoveNodeFromCSEMaps(N))
7472       InsertPos = nullptr;
7473 
7474   // Now we update the operands.
7475   if (N->OperandList[0] != Op1)
7476     N->OperandList[0].set(Op1);
7477   if (N->OperandList[1] != Op2)
7478     N->OperandList[1].set(Op2);
7479 
7480   updateDivergence(N);
7481   // If this gets put into a CSE map, add it.
7482   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7483   return N;
7484 }
7485 
7486 SDNode *SelectionDAG::
7487 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7488   SDValue Ops[] = { Op1, Op2, Op3 };
7489   return UpdateNodeOperands(N, Ops);
7490 }
7491 
7492 SDNode *SelectionDAG::
7493 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7494                    SDValue Op3, SDValue Op4) {
7495   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7496   return UpdateNodeOperands(N, Ops);
7497 }
7498 
7499 SDNode *SelectionDAG::
7500 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7501                    SDValue Op3, SDValue Op4, SDValue Op5) {
7502   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7503   return UpdateNodeOperands(N, Ops);
7504 }
7505 
7506 SDNode *SelectionDAG::
7507 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7508   unsigned NumOps = Ops.size();
7509   assert(N->getNumOperands() == NumOps &&
7510          "Update with wrong number of operands");
7511 
7512   // If no operands changed just return the input node.
7513   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7514     return N;
7515 
7516   // See if the modified node already exists.
7517   void *InsertPos = nullptr;
7518   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7519     return Existing;
7520 
7521   // Nope it doesn't.  Remove the node from its current place in the maps.
7522   if (InsertPos)
7523     if (!RemoveNodeFromCSEMaps(N))
7524       InsertPos = nullptr;
7525 
7526   // Now we update the operands.
7527   for (unsigned i = 0; i != NumOps; ++i)
7528     if (N->OperandList[i] != Ops[i])
7529       N->OperandList[i].set(Ops[i]);
7530 
7531   updateDivergence(N);
7532   // If this gets put into a CSE map, add it.
7533   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7534   return N;
7535 }
7536 
7537 /// DropOperands - Release the operands and set this node to have
7538 /// zero operands.
7539 void SDNode::DropOperands() {
7540   // Unlike the code in MorphNodeTo that does this, we don't need to
7541   // watch for dead nodes here.
7542   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7543     SDUse &Use = *I++;
7544     Use.set(SDValue());
7545   }
7546 }
7547 
7548 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7549                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7550   if (NewMemRefs.empty()) {
7551     N->clearMemRefs();
7552     return;
7553   }
7554 
7555   // Check if we can avoid allocating by storing a single reference directly.
7556   if (NewMemRefs.size() == 1) {
7557     N->MemRefs = NewMemRefs[0];
7558     N->NumMemRefs = 1;
7559     return;
7560   }
7561 
7562   MachineMemOperand **MemRefsBuffer =
7563       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7564   llvm::copy(NewMemRefs, MemRefsBuffer);
7565   N->MemRefs = MemRefsBuffer;
7566   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7567 }
7568 
7569 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7570 /// machine opcode.
7571 ///
7572 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7573                                    EVT VT) {
7574   SDVTList VTs = getVTList(VT);
7575   return SelectNodeTo(N, MachineOpc, VTs, None);
7576 }
7577 
7578 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7579                                    EVT VT, SDValue Op1) {
7580   SDVTList VTs = getVTList(VT);
7581   SDValue Ops[] = { Op1 };
7582   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7583 }
7584 
7585 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7586                                    EVT VT, SDValue Op1,
7587                                    SDValue Op2) {
7588   SDVTList VTs = getVTList(VT);
7589   SDValue Ops[] = { Op1, Op2 };
7590   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7591 }
7592 
7593 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7594                                    EVT VT, SDValue Op1,
7595                                    SDValue Op2, SDValue Op3) {
7596   SDVTList VTs = getVTList(VT);
7597   SDValue Ops[] = { Op1, Op2, Op3 };
7598   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7599 }
7600 
7601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7602                                    EVT VT, ArrayRef<SDValue> Ops) {
7603   SDVTList VTs = getVTList(VT);
7604   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7605 }
7606 
7607 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7608                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7609   SDVTList VTs = getVTList(VT1, VT2);
7610   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7611 }
7612 
7613 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7614                                    EVT VT1, EVT VT2) {
7615   SDVTList VTs = getVTList(VT1, VT2);
7616   return SelectNodeTo(N, MachineOpc, VTs, None);
7617 }
7618 
7619 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7620                                    EVT VT1, EVT VT2, EVT VT3,
7621                                    ArrayRef<SDValue> Ops) {
7622   SDVTList VTs = getVTList(VT1, VT2, VT3);
7623   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7624 }
7625 
7626 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7627                                    EVT VT1, EVT VT2,
7628                                    SDValue Op1, SDValue Op2) {
7629   SDVTList VTs = getVTList(VT1, VT2);
7630   SDValue Ops[] = { Op1, Op2 };
7631   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7632 }
7633 
7634 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7635                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7636   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7637   // Reset the NodeID to -1.
7638   New->setNodeId(-1);
7639   if (New != N) {
7640     ReplaceAllUsesWith(N, New);
7641     RemoveDeadNode(N);
7642   }
7643   return New;
7644 }
7645 
7646 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7647 /// the line number information on the merged node since it is not possible to
7648 /// preserve the information that operation is associated with multiple lines.
7649 /// This will make the debugger working better at -O0, were there is a higher
7650 /// probability having other instructions associated with that line.
7651 ///
7652 /// For IROrder, we keep the smaller of the two
7653 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7654   DebugLoc NLoc = N->getDebugLoc();
7655   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7656     N->setDebugLoc(DebugLoc());
7657   }
7658   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7659   N->setIROrder(Order);
7660   return N;
7661 }
7662 
7663 /// MorphNodeTo - This *mutates* the specified node to have the specified
7664 /// return type, opcode, and operands.
7665 ///
7666 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7667 /// node of the specified opcode and operands, it returns that node instead of
7668 /// the current one.  Note that the SDLoc need not be the same.
7669 ///
7670 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7671 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7672 /// node, and because it doesn't require CSE recalculation for any of
7673 /// the node's users.
7674 ///
7675 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7676 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7677 /// the legalizer which maintain worklists that would need to be updated when
7678 /// deleting things.
7679 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7680                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7681   // If an identical node already exists, use it.
7682   void *IP = nullptr;
7683   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7684     FoldingSetNodeID ID;
7685     AddNodeIDNode(ID, Opc, VTs, Ops);
7686     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7687       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7688   }
7689 
7690   if (!RemoveNodeFromCSEMaps(N))
7691     IP = nullptr;
7692 
7693   // Start the morphing.
7694   N->NodeType = Opc;
7695   N->ValueList = VTs.VTs;
7696   N->NumValues = VTs.NumVTs;
7697 
7698   // Clear the operands list, updating used nodes to remove this from their
7699   // use list.  Keep track of any operands that become dead as a result.
7700   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7701   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7702     SDUse &Use = *I++;
7703     SDNode *Used = Use.getNode();
7704     Use.set(SDValue());
7705     if (Used->use_empty())
7706       DeadNodeSet.insert(Used);
7707   }
7708 
7709   // For MachineNode, initialize the memory references information.
7710   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7711     MN->clearMemRefs();
7712 
7713   // Swap for an appropriately sized array from the recycler.
7714   removeOperands(N);
7715   createOperands(N, Ops);
7716 
7717   // Delete any nodes that are still dead after adding the uses for the
7718   // new operands.
7719   if (!DeadNodeSet.empty()) {
7720     SmallVector<SDNode *, 16> DeadNodes;
7721     for (SDNode *N : DeadNodeSet)
7722       if (N->use_empty())
7723         DeadNodes.push_back(N);
7724     RemoveDeadNodes(DeadNodes);
7725   }
7726 
7727   if (IP)
7728     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7729   return N;
7730 }
7731 
7732 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7733   unsigned OrigOpc = Node->getOpcode();
7734   unsigned NewOpc;
7735   switch (OrigOpc) {
7736   default:
7737     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7738   case ISD::STRICT_FADD:       NewOpc = ISD::FADD;       break;
7739   case ISD::STRICT_FSUB:       NewOpc = ISD::FSUB;       break;
7740   case ISD::STRICT_FMUL:       NewOpc = ISD::FMUL;       break;
7741   case ISD::STRICT_FDIV:       NewOpc = ISD::FDIV;       break;
7742   case ISD::STRICT_FREM:       NewOpc = ISD::FREM;       break;
7743   case ISD::STRICT_FMA:        NewOpc = ISD::FMA;        break;
7744   case ISD::STRICT_FSQRT:      NewOpc = ISD::FSQRT;      break;
7745   case ISD::STRICT_FPOW:       NewOpc = ISD::FPOW;       break;
7746   case ISD::STRICT_FPOWI:      NewOpc = ISD::FPOWI;      break;
7747   case ISD::STRICT_FSIN:       NewOpc = ISD::FSIN;       break;
7748   case ISD::STRICT_FCOS:       NewOpc = ISD::FCOS;       break;
7749   case ISD::STRICT_FEXP:       NewOpc = ISD::FEXP;       break;
7750   case ISD::STRICT_FEXP2:      NewOpc = ISD::FEXP2;      break;
7751   case ISD::STRICT_FLOG:       NewOpc = ISD::FLOG;       break;
7752   case ISD::STRICT_FLOG10:     NewOpc = ISD::FLOG10;     break;
7753   case ISD::STRICT_FLOG2:      NewOpc = ISD::FLOG2;      break;
7754   case ISD::STRICT_FRINT:      NewOpc = ISD::FRINT;      break;
7755   case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break;
7756   case ISD::STRICT_FMAXNUM:    NewOpc = ISD::FMAXNUM;    break;
7757   case ISD::STRICT_FMINNUM:    NewOpc = ISD::FMINNUM;    break;
7758   case ISD::STRICT_FCEIL:      NewOpc = ISD::FCEIL;      break;
7759   case ISD::STRICT_FFLOOR:     NewOpc = ISD::FFLOOR;     break;
7760   case ISD::STRICT_FROUND:     NewOpc = ISD::FROUND;     break;
7761   case ISD::STRICT_FTRUNC:     NewOpc = ISD::FTRUNC;     break;
7762   case ISD::STRICT_FP_ROUND:   NewOpc = ISD::FP_ROUND;   break;
7763   case ISD::STRICT_FP_EXTEND:  NewOpc = ISD::FP_EXTEND;  break;
7764   case ISD::STRICT_FP_TO_SINT: NewOpc = ISD::FP_TO_SINT; break;
7765   case ISD::STRICT_FP_TO_UINT: NewOpc = ISD::FP_TO_UINT; break;
7766   }
7767 
7768   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7769 
7770   // We're taking this node out of the chain, so we need to re-link things.
7771   SDValue InputChain = Node->getOperand(0);
7772   SDValue OutputChain = SDValue(Node, 1);
7773   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7774 
7775   SmallVector<SDValue, 3> Ops;
7776   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7777     Ops.push_back(Node->getOperand(i));
7778 
7779   SDVTList VTs = getVTList(Node->getValueType(0));
7780   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7781 
7782   // MorphNodeTo can operate in two ways: if an existing node with the
7783   // specified operands exists, it can just return it.  Otherwise, it
7784   // updates the node in place to have the requested operands.
7785   if (Res == Node) {
7786     // If we updated the node in place, reset the node ID.  To the isel,
7787     // this should be just like a newly allocated machine node.
7788     Res->setNodeId(-1);
7789   } else {
7790     ReplaceAllUsesWith(Node, Res);
7791     RemoveDeadNode(Node);
7792   }
7793 
7794   return Res;
7795 }
7796 
7797 /// getMachineNode - These are used for target selectors to create a new node
7798 /// with specified return type(s), MachineInstr opcode, and operands.
7799 ///
7800 /// Note that getMachineNode returns the resultant node.  If there is already a
7801 /// node of the specified opcode and operands, it returns that node instead of
7802 /// the current one.
7803 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7804                                             EVT VT) {
7805   SDVTList VTs = getVTList(VT);
7806   return getMachineNode(Opcode, dl, VTs, None);
7807 }
7808 
7809 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7810                                             EVT VT, SDValue Op1) {
7811   SDVTList VTs = getVTList(VT);
7812   SDValue Ops[] = { Op1 };
7813   return getMachineNode(Opcode, dl, VTs, Ops);
7814 }
7815 
7816 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7817                                             EVT VT, SDValue Op1, SDValue Op2) {
7818   SDVTList VTs = getVTList(VT);
7819   SDValue Ops[] = { Op1, Op2 };
7820   return getMachineNode(Opcode, dl, VTs, Ops);
7821 }
7822 
7823 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7824                                             EVT VT, SDValue Op1, SDValue Op2,
7825                                             SDValue Op3) {
7826   SDVTList VTs = getVTList(VT);
7827   SDValue Ops[] = { Op1, Op2, Op3 };
7828   return getMachineNode(Opcode, dl, VTs, Ops);
7829 }
7830 
7831 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7832                                             EVT VT, ArrayRef<SDValue> Ops) {
7833   SDVTList VTs = getVTList(VT);
7834   return getMachineNode(Opcode, dl, VTs, Ops);
7835 }
7836 
7837 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7838                                             EVT VT1, EVT VT2, SDValue Op1,
7839                                             SDValue Op2) {
7840   SDVTList VTs = getVTList(VT1, VT2);
7841   SDValue Ops[] = { Op1, Op2 };
7842   return getMachineNode(Opcode, dl, VTs, Ops);
7843 }
7844 
7845 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7846                                             EVT VT1, EVT VT2, SDValue Op1,
7847                                             SDValue Op2, SDValue Op3) {
7848   SDVTList VTs = getVTList(VT1, VT2);
7849   SDValue Ops[] = { Op1, Op2, Op3 };
7850   return getMachineNode(Opcode, dl, VTs, Ops);
7851 }
7852 
7853 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7854                                             EVT VT1, EVT VT2,
7855                                             ArrayRef<SDValue> Ops) {
7856   SDVTList VTs = getVTList(VT1, VT2);
7857   return getMachineNode(Opcode, dl, VTs, Ops);
7858 }
7859 
7860 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7861                                             EVT VT1, EVT VT2, EVT VT3,
7862                                             SDValue Op1, SDValue Op2) {
7863   SDVTList VTs = getVTList(VT1, VT2, VT3);
7864   SDValue Ops[] = { Op1, Op2 };
7865   return getMachineNode(Opcode, dl, VTs, Ops);
7866 }
7867 
7868 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7869                                             EVT VT1, EVT VT2, EVT VT3,
7870                                             SDValue Op1, SDValue Op2,
7871                                             SDValue Op3) {
7872   SDVTList VTs = getVTList(VT1, VT2, VT3);
7873   SDValue Ops[] = { Op1, Op2, Op3 };
7874   return getMachineNode(Opcode, dl, VTs, Ops);
7875 }
7876 
7877 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7878                                             EVT VT1, EVT VT2, EVT VT3,
7879                                             ArrayRef<SDValue> Ops) {
7880   SDVTList VTs = getVTList(VT1, VT2, VT3);
7881   return getMachineNode(Opcode, dl, VTs, Ops);
7882 }
7883 
7884 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7885                                             ArrayRef<EVT> ResultTys,
7886                                             ArrayRef<SDValue> Ops) {
7887   SDVTList VTs = getVTList(ResultTys);
7888   return getMachineNode(Opcode, dl, VTs, Ops);
7889 }
7890 
7891 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7892                                             SDVTList VTs,
7893                                             ArrayRef<SDValue> Ops) {
7894   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7895   MachineSDNode *N;
7896   void *IP = nullptr;
7897 
7898   if (DoCSE) {
7899     FoldingSetNodeID ID;
7900     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7901     IP = nullptr;
7902     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7903       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7904     }
7905   }
7906 
7907   // Allocate a new MachineSDNode.
7908   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7909   createOperands(N, Ops);
7910 
7911   if (DoCSE)
7912     CSEMap.InsertNode(N, IP);
7913 
7914   InsertNode(N);
7915   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
7916   return N;
7917 }
7918 
7919 /// getTargetExtractSubreg - A convenience function for creating
7920 /// TargetOpcode::EXTRACT_SUBREG nodes.
7921 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7922                                              SDValue Operand) {
7923   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7924   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7925                                   VT, Operand, SRIdxVal);
7926   return SDValue(Subreg, 0);
7927 }
7928 
7929 /// getTargetInsertSubreg - A convenience function for creating
7930 /// TargetOpcode::INSERT_SUBREG nodes.
7931 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7932                                             SDValue Operand, SDValue Subreg) {
7933   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7934   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7935                                   VT, Operand, Subreg, SRIdxVal);
7936   return SDValue(Result, 0);
7937 }
7938 
7939 /// getNodeIfExists - Get the specified node if it's already available, or
7940 /// else return NULL.
7941 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7942                                       ArrayRef<SDValue> Ops,
7943                                       const SDNodeFlags Flags) {
7944   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7945     FoldingSetNodeID ID;
7946     AddNodeIDNode(ID, Opcode, VTList, Ops);
7947     void *IP = nullptr;
7948     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7949       E->intersectFlagsWith(Flags);
7950       return E;
7951     }
7952   }
7953   return nullptr;
7954 }
7955 
7956 /// getDbgValue - Creates a SDDbgValue node.
7957 ///
7958 /// SDNode
7959 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7960                                       SDNode *N, unsigned R, bool IsIndirect,
7961                                       const DebugLoc &DL, unsigned O) {
7962   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7963          "Expected inlined-at fields to agree");
7964   return new (DbgInfo->getAlloc())
7965       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7966 }
7967 
7968 /// Constant
7969 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7970                                               DIExpression *Expr,
7971                                               const Value *C,
7972                                               const DebugLoc &DL, unsigned O) {
7973   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7974          "Expected inlined-at fields to agree");
7975   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7976 }
7977 
7978 /// FrameIndex
7979 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7980                                                 DIExpression *Expr, unsigned FI,
7981                                                 bool IsIndirect,
7982                                                 const DebugLoc &DL,
7983                                                 unsigned O) {
7984   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7985          "Expected inlined-at fields to agree");
7986   return new (DbgInfo->getAlloc())
7987       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7988 }
7989 
7990 /// VReg
7991 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7992                                           DIExpression *Expr,
7993                                           unsigned VReg, bool IsIndirect,
7994                                           const DebugLoc &DL, unsigned O) {
7995   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7996          "Expected inlined-at fields to agree");
7997   return new (DbgInfo->getAlloc())
7998       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7999 }
8000 
8001 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8002                                      unsigned OffsetInBits, unsigned SizeInBits,
8003                                      bool InvalidateDbg) {
8004   SDNode *FromNode = From.getNode();
8005   SDNode *ToNode = To.getNode();
8006   assert(FromNode && ToNode && "Can't modify dbg values");
8007 
8008   // PR35338
8009   // TODO: assert(From != To && "Redundant dbg value transfer");
8010   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8011   if (From == To || FromNode == ToNode)
8012     return;
8013 
8014   if (!FromNode->getHasDebugValue())
8015     return;
8016 
8017   SmallVector<SDDbgValue *, 2> ClonedDVs;
8018   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8019     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8020       continue;
8021 
8022     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8023 
8024     // Just transfer the dbg value attached to From.
8025     if (Dbg->getResNo() != From.getResNo())
8026       continue;
8027 
8028     DIVariable *Var = Dbg->getVariable();
8029     auto *Expr = Dbg->getExpression();
8030     // If a fragment is requested, update the expression.
8031     if (SizeInBits) {
8032       // When splitting a larger (e.g., sign-extended) value whose
8033       // lower bits are described with an SDDbgValue, do not attempt
8034       // to transfer the SDDbgValue to the upper bits.
8035       if (auto FI = Expr->getFragmentInfo())
8036         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8037           continue;
8038       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8039                                                              SizeInBits);
8040       if (!Fragment)
8041         continue;
8042       Expr = *Fragment;
8043     }
8044     // Clone the SDDbgValue and move it to To.
8045     SDDbgValue *Clone =
8046         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
8047                     Dbg->getDebugLoc(), Dbg->getOrder());
8048     ClonedDVs.push_back(Clone);
8049 
8050     if (InvalidateDbg) {
8051       // Invalidate value and indicate the SDDbgValue should not be emitted.
8052       Dbg->setIsInvalidated();
8053       Dbg->setIsEmitted();
8054     }
8055   }
8056 
8057   for (SDDbgValue *Dbg : ClonedDVs)
8058     AddDbgValue(Dbg, ToNode, false);
8059 }
8060 
8061 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8062   if (!N.getHasDebugValue())
8063     return;
8064 
8065   SmallVector<SDDbgValue *, 2> ClonedDVs;
8066   for (auto DV : GetDbgValues(&N)) {
8067     if (DV->isInvalidated())
8068       continue;
8069     switch (N.getOpcode()) {
8070     default:
8071       break;
8072     case ISD::ADD:
8073       SDValue N0 = N.getOperand(0);
8074       SDValue N1 = N.getOperand(1);
8075       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8076           isConstantIntBuildVectorOrConstantInt(N1)) {
8077         uint64_t Offset = N.getConstantOperandVal(1);
8078         // Rewrite an ADD constant node into a DIExpression. Since we are
8079         // performing arithmetic to compute the variable's *value* in the
8080         // DIExpression, we need to mark the expression with a
8081         // DW_OP_stack_value.
8082         auto *DIExpr = DV->getExpression();
8083         DIExpr =
8084             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8085         SDDbgValue *Clone =
8086             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8087                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8088         ClonedDVs.push_back(Clone);
8089         DV->setIsInvalidated();
8090         DV->setIsEmitted();
8091         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8092                    N0.getNode()->dumprFull(this);
8093                    dbgs() << " into " << *DIExpr << '\n');
8094       }
8095     }
8096   }
8097 
8098   for (SDDbgValue *Dbg : ClonedDVs)
8099     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8100 }
8101 
8102 /// Creates a SDDbgLabel node.
8103 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8104                                       const DebugLoc &DL, unsigned O) {
8105   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8106          "Expected inlined-at fields to agree");
8107   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8108 }
8109 
8110 namespace {
8111 
8112 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8113 /// pointed to by a use iterator is deleted, increment the use iterator
8114 /// so that it doesn't dangle.
8115 ///
8116 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8117   SDNode::use_iterator &UI;
8118   SDNode::use_iterator &UE;
8119 
8120   void NodeDeleted(SDNode *N, SDNode *E) override {
8121     // Increment the iterator as needed.
8122     while (UI != UE && N == *UI)
8123       ++UI;
8124   }
8125 
8126 public:
8127   RAUWUpdateListener(SelectionDAG &d,
8128                      SDNode::use_iterator &ui,
8129                      SDNode::use_iterator &ue)
8130     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8131 };
8132 
8133 } // end anonymous namespace
8134 
8135 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8136 /// This can cause recursive merging of nodes in the DAG.
8137 ///
8138 /// This version assumes From has a single result value.
8139 ///
8140 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8141   SDNode *From = FromN.getNode();
8142   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8143          "Cannot replace with this method!");
8144   assert(From != To.getNode() && "Cannot replace uses of with self");
8145 
8146   // Preserve Debug Values
8147   transferDbgValues(FromN, To);
8148 
8149   // Iterate over all the existing uses of From. New uses will be added
8150   // to the beginning of the use list, which we avoid visiting.
8151   // This specifically avoids visiting uses of From that arise while the
8152   // replacement is happening, because any such uses would be the result
8153   // of CSE: If an existing node looks like From after one of its operands
8154   // is replaced by To, we don't want to replace of all its users with To
8155   // too. See PR3018 for more info.
8156   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8157   RAUWUpdateListener Listener(*this, UI, UE);
8158   while (UI != UE) {
8159     SDNode *User = *UI;
8160 
8161     // This node is about to morph, remove its old self from the CSE maps.
8162     RemoveNodeFromCSEMaps(User);
8163 
8164     // A user can appear in a use list multiple times, and when this
8165     // happens the uses are usually next to each other in the list.
8166     // To help reduce the number of CSE recomputations, process all
8167     // the uses of this user that we can find this way.
8168     do {
8169       SDUse &Use = UI.getUse();
8170       ++UI;
8171       Use.set(To);
8172       if (To->isDivergent() != From->isDivergent())
8173         updateDivergence(User);
8174     } while (UI != UE && *UI == User);
8175     // Now that we have modified User, add it back to the CSE maps.  If it
8176     // already exists there, recursively merge the results together.
8177     AddModifiedNodeToCSEMaps(User);
8178   }
8179 
8180   // If we just RAUW'd the root, take note.
8181   if (FromN == getRoot())
8182     setRoot(To);
8183 }
8184 
8185 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8186 /// This can cause recursive merging of nodes in the DAG.
8187 ///
8188 /// This version assumes that for each value of From, there is a
8189 /// corresponding value in To in the same position with the same type.
8190 ///
8191 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8192 #ifndef NDEBUG
8193   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8194     assert((!From->hasAnyUseOfValue(i) ||
8195             From->getValueType(i) == To->getValueType(i)) &&
8196            "Cannot use this version of ReplaceAllUsesWith!");
8197 #endif
8198 
8199   // Handle the trivial case.
8200   if (From == To)
8201     return;
8202 
8203   // Preserve Debug Info. Only do this if there's a use.
8204   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8205     if (From->hasAnyUseOfValue(i)) {
8206       assert((i < To->getNumValues()) && "Invalid To location");
8207       transferDbgValues(SDValue(From, i), SDValue(To, i));
8208     }
8209 
8210   // Iterate over just the existing users of From. See the comments in
8211   // the ReplaceAllUsesWith above.
8212   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8213   RAUWUpdateListener Listener(*this, UI, UE);
8214   while (UI != UE) {
8215     SDNode *User = *UI;
8216 
8217     // This node is about to morph, remove its old self from the CSE maps.
8218     RemoveNodeFromCSEMaps(User);
8219 
8220     // A user can appear in a use list multiple times, and when this
8221     // happens the uses are usually next to each other in the list.
8222     // To help reduce the number of CSE recomputations, process all
8223     // the uses of this user that we can find this way.
8224     do {
8225       SDUse &Use = UI.getUse();
8226       ++UI;
8227       Use.setNode(To);
8228       if (To->isDivergent() != From->isDivergent())
8229         updateDivergence(User);
8230     } while (UI != UE && *UI == User);
8231 
8232     // Now that we have modified User, add it back to the CSE maps.  If it
8233     // already exists there, recursively merge the results together.
8234     AddModifiedNodeToCSEMaps(User);
8235   }
8236 
8237   // If we just RAUW'd the root, take note.
8238   if (From == getRoot().getNode())
8239     setRoot(SDValue(To, getRoot().getResNo()));
8240 }
8241 
8242 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8243 /// This can cause recursive merging of nodes in the DAG.
8244 ///
8245 /// This version can replace From with any result values.  To must match the
8246 /// number and types of values returned by From.
8247 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8248   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8249     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8250 
8251   // Preserve Debug Info.
8252   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8253     transferDbgValues(SDValue(From, i), To[i]);
8254 
8255   // Iterate over just the existing users of From. See the comments in
8256   // the ReplaceAllUsesWith above.
8257   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8258   RAUWUpdateListener Listener(*this, UI, UE);
8259   while (UI != UE) {
8260     SDNode *User = *UI;
8261 
8262     // This node is about to morph, remove its old self from the CSE maps.
8263     RemoveNodeFromCSEMaps(User);
8264 
8265     // A user can appear in a use list multiple times, and when this happens the
8266     // uses are usually next to each other in the list.  To help reduce the
8267     // number of CSE and divergence recomputations, process all the uses of this
8268     // user that we can find this way.
8269     bool To_IsDivergent = false;
8270     do {
8271       SDUse &Use = UI.getUse();
8272       const SDValue &ToOp = To[Use.getResNo()];
8273       ++UI;
8274       Use.set(ToOp);
8275       To_IsDivergent |= ToOp->isDivergent();
8276     } while (UI != UE && *UI == User);
8277 
8278     if (To_IsDivergent != From->isDivergent())
8279       updateDivergence(User);
8280 
8281     // Now that we have modified User, add it back to the CSE maps.  If it
8282     // already exists there, recursively merge the results together.
8283     AddModifiedNodeToCSEMaps(User);
8284   }
8285 
8286   // If we just RAUW'd the root, take note.
8287   if (From == getRoot().getNode())
8288     setRoot(SDValue(To[getRoot().getResNo()]));
8289 }
8290 
8291 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8292 /// uses of other values produced by From.getNode() alone.  The Deleted
8293 /// vector is handled the same way as for ReplaceAllUsesWith.
8294 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8295   // Handle the really simple, really trivial case efficiently.
8296   if (From == To) return;
8297 
8298   // Handle the simple, trivial, case efficiently.
8299   if (From.getNode()->getNumValues() == 1) {
8300     ReplaceAllUsesWith(From, To);
8301     return;
8302   }
8303 
8304   // Preserve Debug Info.
8305   transferDbgValues(From, To);
8306 
8307   // Iterate over just the existing users of From. See the comments in
8308   // the ReplaceAllUsesWith above.
8309   SDNode::use_iterator UI = From.getNode()->use_begin(),
8310                        UE = From.getNode()->use_end();
8311   RAUWUpdateListener Listener(*this, UI, UE);
8312   while (UI != UE) {
8313     SDNode *User = *UI;
8314     bool UserRemovedFromCSEMaps = false;
8315 
8316     // A user can appear in a use list multiple times, and when this
8317     // happens the uses are usually next to each other in the list.
8318     // To help reduce the number of CSE recomputations, process all
8319     // the uses of this user that we can find this way.
8320     do {
8321       SDUse &Use = UI.getUse();
8322 
8323       // Skip uses of different values from the same node.
8324       if (Use.getResNo() != From.getResNo()) {
8325         ++UI;
8326         continue;
8327       }
8328 
8329       // If this node hasn't been modified yet, it's still in the CSE maps,
8330       // so remove its old self from the CSE maps.
8331       if (!UserRemovedFromCSEMaps) {
8332         RemoveNodeFromCSEMaps(User);
8333         UserRemovedFromCSEMaps = true;
8334       }
8335 
8336       ++UI;
8337       Use.set(To);
8338       if (To->isDivergent() != From->isDivergent())
8339         updateDivergence(User);
8340     } while (UI != UE && *UI == User);
8341     // We are iterating over all uses of the From node, so if a use
8342     // doesn't use the specific value, no changes are made.
8343     if (!UserRemovedFromCSEMaps)
8344       continue;
8345 
8346     // Now that we have modified User, add it back to the CSE maps.  If it
8347     // already exists there, recursively merge the results together.
8348     AddModifiedNodeToCSEMaps(User);
8349   }
8350 
8351   // If we just RAUW'd the root, take note.
8352   if (From == getRoot())
8353     setRoot(To);
8354 }
8355 
8356 namespace {
8357 
8358   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8359   /// to record information about a use.
8360   struct UseMemo {
8361     SDNode *User;
8362     unsigned Index;
8363     SDUse *Use;
8364   };
8365 
8366   /// operator< - Sort Memos by User.
8367   bool operator<(const UseMemo &L, const UseMemo &R) {
8368     return (intptr_t)L.User < (intptr_t)R.User;
8369   }
8370 
8371 } // end anonymous namespace
8372 
8373 void SelectionDAG::updateDivergence(SDNode * N)
8374 {
8375   if (TLI->isSDNodeAlwaysUniform(N))
8376     return;
8377   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8378   for (auto &Op : N->ops()) {
8379     if (Op.Val.getValueType() != MVT::Other)
8380       IsDivergent |= Op.getNode()->isDivergent();
8381   }
8382   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8383     N->SDNodeBits.IsDivergent = IsDivergent;
8384     for (auto U : N->uses()) {
8385       updateDivergence(U);
8386     }
8387   }
8388 }
8389 
8390 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8391   DenseMap<SDNode *, unsigned> Degree;
8392   Order.reserve(AllNodes.size());
8393   for (auto &N : allnodes()) {
8394     unsigned NOps = N.getNumOperands();
8395     Degree[&N] = NOps;
8396     if (0 == NOps)
8397       Order.push_back(&N);
8398   }
8399   for (size_t I = 0; I != Order.size(); ++I) {
8400     SDNode *N = Order[I];
8401     for (auto U : N->uses()) {
8402       unsigned &UnsortedOps = Degree[U];
8403       if (0 == --UnsortedOps)
8404         Order.push_back(U);
8405     }
8406   }
8407 }
8408 
8409 #ifndef NDEBUG
8410 void SelectionDAG::VerifyDAGDiverence() {
8411   std::vector<SDNode *> TopoOrder;
8412   CreateTopologicalOrder(TopoOrder);
8413   const TargetLowering &TLI = getTargetLoweringInfo();
8414   DenseMap<const SDNode *, bool> DivergenceMap;
8415   for (auto &N : allnodes()) {
8416     DivergenceMap[&N] = false;
8417   }
8418   for (auto N : TopoOrder) {
8419     bool IsDivergent = DivergenceMap[N];
8420     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8421     for (auto &Op : N->ops()) {
8422       if (Op.Val.getValueType() != MVT::Other)
8423         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8424     }
8425     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8426       DivergenceMap[N] = true;
8427     }
8428   }
8429   for (auto &N : allnodes()) {
8430     (void)N;
8431     assert(DivergenceMap[&N] == N.isDivergent() &&
8432            "Divergence bit inconsistency detected\n");
8433   }
8434 }
8435 #endif
8436 
8437 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8438 /// uses of other values produced by From.getNode() alone.  The same value
8439 /// may appear in both the From and To list.  The Deleted vector is
8440 /// handled the same way as for ReplaceAllUsesWith.
8441 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8442                                               const SDValue *To,
8443                                               unsigned Num){
8444   // Handle the simple, trivial case efficiently.
8445   if (Num == 1)
8446     return ReplaceAllUsesOfValueWith(*From, *To);
8447 
8448   transferDbgValues(*From, *To);
8449 
8450   // Read up all the uses and make records of them. This helps
8451   // processing new uses that are introduced during the
8452   // replacement process.
8453   SmallVector<UseMemo, 4> Uses;
8454   for (unsigned i = 0; i != Num; ++i) {
8455     unsigned FromResNo = From[i].getResNo();
8456     SDNode *FromNode = From[i].getNode();
8457     for (SDNode::use_iterator UI = FromNode->use_begin(),
8458          E = FromNode->use_end(); UI != E; ++UI) {
8459       SDUse &Use = UI.getUse();
8460       if (Use.getResNo() == FromResNo) {
8461         UseMemo Memo = { *UI, i, &Use };
8462         Uses.push_back(Memo);
8463       }
8464     }
8465   }
8466 
8467   // Sort the uses, so that all the uses from a given User are together.
8468   llvm::sort(Uses);
8469 
8470   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8471        UseIndex != UseIndexEnd; ) {
8472     // We know that this user uses some value of From.  If it is the right
8473     // value, update it.
8474     SDNode *User = Uses[UseIndex].User;
8475 
8476     // This node is about to morph, remove its old self from the CSE maps.
8477     RemoveNodeFromCSEMaps(User);
8478 
8479     // The Uses array is sorted, so all the uses for a given User
8480     // are next to each other in the list.
8481     // To help reduce the number of CSE recomputations, process all
8482     // the uses of this user that we can find this way.
8483     do {
8484       unsigned i = Uses[UseIndex].Index;
8485       SDUse &Use = *Uses[UseIndex].Use;
8486       ++UseIndex;
8487 
8488       Use.set(To[i]);
8489     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8490 
8491     // Now that we have modified User, add it back to the CSE maps.  If it
8492     // already exists there, recursively merge the results together.
8493     AddModifiedNodeToCSEMaps(User);
8494   }
8495 }
8496 
8497 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8498 /// based on their topological order. It returns the maximum id and a vector
8499 /// of the SDNodes* in assigned order by reference.
8500 unsigned SelectionDAG::AssignTopologicalOrder() {
8501   unsigned DAGSize = 0;
8502 
8503   // SortedPos tracks the progress of the algorithm. Nodes before it are
8504   // sorted, nodes after it are unsorted. When the algorithm completes
8505   // it is at the end of the list.
8506   allnodes_iterator SortedPos = allnodes_begin();
8507 
8508   // Visit all the nodes. Move nodes with no operands to the front of
8509   // the list immediately. Annotate nodes that do have operands with their
8510   // operand count. Before we do this, the Node Id fields of the nodes
8511   // may contain arbitrary values. After, the Node Id fields for nodes
8512   // before SortedPos will contain the topological sort index, and the
8513   // Node Id fields for nodes At SortedPos and after will contain the
8514   // count of outstanding operands.
8515   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8516     SDNode *N = &*I++;
8517     checkForCycles(N, this);
8518     unsigned Degree = N->getNumOperands();
8519     if (Degree == 0) {
8520       // A node with no uses, add it to the result array immediately.
8521       N->setNodeId(DAGSize++);
8522       allnodes_iterator Q(N);
8523       if (Q != SortedPos)
8524         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8525       assert(SortedPos != AllNodes.end() && "Overran node list");
8526       ++SortedPos;
8527     } else {
8528       // Temporarily use the Node Id as scratch space for the degree count.
8529       N->setNodeId(Degree);
8530     }
8531   }
8532 
8533   // Visit all the nodes. As we iterate, move nodes into sorted order,
8534   // such that by the time the end is reached all nodes will be sorted.
8535   for (SDNode &Node : allnodes()) {
8536     SDNode *N = &Node;
8537     checkForCycles(N, this);
8538     // N is in sorted position, so all its uses have one less operand
8539     // that needs to be sorted.
8540     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8541          UI != UE; ++UI) {
8542       SDNode *P = *UI;
8543       unsigned Degree = P->getNodeId();
8544       assert(Degree != 0 && "Invalid node degree");
8545       --Degree;
8546       if (Degree == 0) {
8547         // All of P's operands are sorted, so P may sorted now.
8548         P->setNodeId(DAGSize++);
8549         if (P->getIterator() != SortedPos)
8550           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8551         assert(SortedPos != AllNodes.end() && "Overran node list");
8552         ++SortedPos;
8553       } else {
8554         // Update P's outstanding operand count.
8555         P->setNodeId(Degree);
8556       }
8557     }
8558     if (Node.getIterator() == SortedPos) {
8559 #ifndef NDEBUG
8560       allnodes_iterator I(N);
8561       SDNode *S = &*++I;
8562       dbgs() << "Overran sorted position:\n";
8563       S->dumprFull(this); dbgs() << "\n";
8564       dbgs() << "Checking if this is due to cycles\n";
8565       checkForCycles(this, true);
8566 #endif
8567       llvm_unreachable(nullptr);
8568     }
8569   }
8570 
8571   assert(SortedPos == AllNodes.end() &&
8572          "Topological sort incomplete!");
8573   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8574          "First node in topological sort is not the entry token!");
8575   assert(AllNodes.front().getNodeId() == 0 &&
8576          "First node in topological sort has non-zero id!");
8577   assert(AllNodes.front().getNumOperands() == 0 &&
8578          "First node in topological sort has operands!");
8579   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8580          "Last node in topologic sort has unexpected id!");
8581   assert(AllNodes.back().use_empty() &&
8582          "Last node in topologic sort has users!");
8583   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8584   return DAGSize;
8585 }
8586 
8587 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8588 /// value is produced by SD.
8589 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8590   if (SD) {
8591     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8592     SD->setHasDebugValue(true);
8593   }
8594   DbgInfo->add(DB, SD, isParameter);
8595 }
8596 
8597 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8598   DbgInfo->add(DB);
8599 }
8600 
8601 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8602                                                    SDValue NewMemOp) {
8603   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8604   // The new memory operation must have the same position as the old load in
8605   // terms of memory dependency. Create a TokenFactor for the old load and new
8606   // memory operation and update uses of the old load's output chain to use that
8607   // TokenFactor.
8608   SDValue OldChain = SDValue(OldLoad, 1);
8609   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8610   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8611     return NewChain;
8612 
8613   SDValue TokenFactor =
8614       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8615   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8616   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8617   return TokenFactor;
8618 }
8619 
8620 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8621                                                      Function **OutFunction) {
8622   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8623 
8624   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8625   auto *Module = MF->getFunction().getParent();
8626   auto *Function = Module->getFunction(Symbol);
8627 
8628   if (OutFunction != nullptr)
8629       *OutFunction = Function;
8630 
8631   if (Function != nullptr) {
8632     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8633     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8634   }
8635 
8636   std::string ErrorStr;
8637   raw_string_ostream ErrorFormatter(ErrorStr);
8638 
8639   ErrorFormatter << "Undefined external symbol ";
8640   ErrorFormatter << '"' << Symbol << '"';
8641   ErrorFormatter.flush();
8642 
8643   report_fatal_error(ErrorStr);
8644 }
8645 
8646 //===----------------------------------------------------------------------===//
8647 //                              SDNode Class
8648 //===----------------------------------------------------------------------===//
8649 
8650 bool llvm::isNullConstant(SDValue V) {
8651   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8652   return Const != nullptr && Const->isNullValue();
8653 }
8654 
8655 bool llvm::isNullFPConstant(SDValue V) {
8656   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8657   return Const != nullptr && Const->isZero() && !Const->isNegative();
8658 }
8659 
8660 bool llvm::isAllOnesConstant(SDValue V) {
8661   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8662   return Const != nullptr && Const->isAllOnesValue();
8663 }
8664 
8665 bool llvm::isOneConstant(SDValue V) {
8666   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8667   return Const != nullptr && Const->isOne();
8668 }
8669 
8670 SDValue llvm::peekThroughBitcasts(SDValue V) {
8671   while (V.getOpcode() == ISD::BITCAST)
8672     V = V.getOperand(0);
8673   return V;
8674 }
8675 
8676 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8677   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8678     V = V.getOperand(0);
8679   return V;
8680 }
8681 
8682 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8683   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8684     V = V.getOperand(0);
8685   return V;
8686 }
8687 
8688 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8689   if (V.getOpcode() != ISD::XOR)
8690     return false;
8691   V = peekThroughBitcasts(V.getOperand(1));
8692   unsigned NumBits = V.getScalarValueSizeInBits();
8693   ConstantSDNode *C =
8694       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8695   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8696 }
8697 
8698 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8699                                           bool AllowTruncation) {
8700   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8701     return CN;
8702 
8703   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8704     BitVector UndefElements;
8705     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8706 
8707     // BuildVectors can truncate their operands. Ignore that case here unless
8708     // AllowTruncation is set.
8709     if (CN && (UndefElements.none() || AllowUndefs)) {
8710       EVT CVT = CN->getValueType(0);
8711       EVT NSVT = N.getValueType().getScalarType();
8712       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8713       if (AllowTruncation || (CVT == NSVT))
8714         return CN;
8715     }
8716   }
8717 
8718   return nullptr;
8719 }
8720 
8721 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8722                                           bool AllowUndefs,
8723                                           bool AllowTruncation) {
8724   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8725     return CN;
8726 
8727   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8728     BitVector UndefElements;
8729     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8730 
8731     // BuildVectors can truncate their operands. Ignore that case here unless
8732     // AllowTruncation is set.
8733     if (CN && (UndefElements.none() || AllowUndefs)) {
8734       EVT CVT = CN->getValueType(0);
8735       EVT NSVT = N.getValueType().getScalarType();
8736       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8737       if (AllowTruncation || (CVT == NSVT))
8738         return CN;
8739     }
8740   }
8741 
8742   return nullptr;
8743 }
8744 
8745 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8746   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8747     return CN;
8748 
8749   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8750     BitVector UndefElements;
8751     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8752     if (CN && (UndefElements.none() || AllowUndefs))
8753       return CN;
8754   }
8755 
8756   return nullptr;
8757 }
8758 
8759 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8760                                               const APInt &DemandedElts,
8761                                               bool AllowUndefs) {
8762   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8763     return CN;
8764 
8765   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8766     BitVector UndefElements;
8767     ConstantFPSDNode *CN =
8768         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8769     if (CN && (UndefElements.none() || AllowUndefs))
8770       return CN;
8771   }
8772 
8773   return nullptr;
8774 }
8775 
8776 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8777   // TODO: may want to use peekThroughBitcast() here.
8778   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8779   return C && C->isNullValue();
8780 }
8781 
8782 bool llvm::isOneOrOneSplat(SDValue N) {
8783   // TODO: may want to use peekThroughBitcast() here.
8784   unsigned BitWidth = N.getScalarValueSizeInBits();
8785   ConstantSDNode *C = isConstOrConstSplat(N);
8786   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8787 }
8788 
8789 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8790   N = peekThroughBitcasts(N);
8791   unsigned BitWidth = N.getScalarValueSizeInBits();
8792   ConstantSDNode *C = isConstOrConstSplat(N);
8793   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8794 }
8795 
8796 HandleSDNode::~HandleSDNode() {
8797   DropOperands();
8798 }
8799 
8800 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8801                                          const DebugLoc &DL,
8802                                          const GlobalValue *GA, EVT VT,
8803                                          int64_t o, unsigned TF)
8804     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8805   TheGlobal = GA;
8806 }
8807 
8808 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8809                                          EVT VT, unsigned SrcAS,
8810                                          unsigned DestAS)
8811     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8812       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8813 
8814 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8815                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8816     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8817   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8818   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8819   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8820   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8821 
8822   // We check here that the size of the memory operand fits within the size of
8823   // the MMO. This is because the MMO might indicate only a possible address
8824   // range instead of specifying the affected memory addresses precisely.
8825   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8826 }
8827 
8828 /// Profile - Gather unique data for the node.
8829 ///
8830 void SDNode::Profile(FoldingSetNodeID &ID) const {
8831   AddNodeIDNode(ID, this);
8832 }
8833 
8834 namespace {
8835 
8836   struct EVTArray {
8837     std::vector<EVT> VTs;
8838 
8839     EVTArray() {
8840       VTs.reserve(MVT::LAST_VALUETYPE);
8841       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8842         VTs.push_back(MVT((MVT::SimpleValueType)i));
8843     }
8844   };
8845 
8846 } // end anonymous namespace
8847 
8848 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8849 static ManagedStatic<EVTArray> SimpleVTArray;
8850 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8851 
8852 /// getValueTypeList - Return a pointer to the specified value type.
8853 ///
8854 const EVT *SDNode::getValueTypeList(EVT VT) {
8855   if (VT.isExtended()) {
8856     sys::SmartScopedLock<true> Lock(*VTMutex);
8857     return &(*EVTs->insert(VT).first);
8858   } else {
8859     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8860            "Value type out of range!");
8861     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8862   }
8863 }
8864 
8865 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8866 /// indicated value.  This method ignores uses of other values defined by this
8867 /// operation.
8868 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8869   assert(Value < getNumValues() && "Bad value!");
8870 
8871   // TODO: Only iterate over uses of a given value of the node
8872   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8873     if (UI.getUse().getResNo() == Value) {
8874       if (NUses == 0)
8875         return false;
8876       --NUses;
8877     }
8878   }
8879 
8880   // Found exactly the right number of uses?
8881   return NUses == 0;
8882 }
8883 
8884 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8885 /// value. This method ignores uses of other values defined by this operation.
8886 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8887   assert(Value < getNumValues() && "Bad value!");
8888 
8889   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8890     if (UI.getUse().getResNo() == Value)
8891       return true;
8892 
8893   return false;
8894 }
8895 
8896 /// isOnlyUserOf - Return true if this node is the only use of N.
8897 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8898   bool Seen = false;
8899   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8900     SDNode *User = *I;
8901     if (User == this)
8902       Seen = true;
8903     else
8904       return false;
8905   }
8906 
8907   return Seen;
8908 }
8909 
8910 /// Return true if the only users of N are contained in Nodes.
8911 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8912   bool Seen = false;
8913   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8914     SDNode *User = *I;
8915     if (llvm::any_of(Nodes,
8916                      [&User](const SDNode *Node) { return User == Node; }))
8917       Seen = true;
8918     else
8919       return false;
8920   }
8921 
8922   return Seen;
8923 }
8924 
8925 /// isOperand - Return true if this node is an operand of N.
8926 bool SDValue::isOperandOf(const SDNode *N) const {
8927   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8928 }
8929 
8930 bool SDNode::isOperandOf(const SDNode *N) const {
8931   return any_of(N->op_values(),
8932                 [this](SDValue Op) { return this == Op.getNode(); });
8933 }
8934 
8935 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8936 /// be a chain) reaches the specified operand without crossing any
8937 /// side-effecting instructions on any chain path.  In practice, this looks
8938 /// through token factors and non-volatile loads.  In order to remain efficient,
8939 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8940 ///
8941 /// Note that we only need to examine chains when we're searching for
8942 /// side-effects; SelectionDAG requires that all side-effects are represented
8943 /// by chains, even if another operand would force a specific ordering. This
8944 /// constraint is necessary to allow transformations like splitting loads.
8945 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8946                                              unsigned Depth) const {
8947   if (*this == Dest) return true;
8948 
8949   // Don't search too deeply, we just want to be able to see through
8950   // TokenFactor's etc.
8951   if (Depth == 0) return false;
8952 
8953   // If this is a token factor, all inputs to the TF happen in parallel.
8954   if (getOpcode() == ISD::TokenFactor) {
8955     // First, try a shallow search.
8956     if (is_contained((*this)->ops(), Dest)) {
8957       // We found the chain we want as an operand of this TokenFactor.
8958       // Essentially, we reach the chain without side-effects if we could
8959       // serialize the TokenFactor into a simple chain of operations with
8960       // Dest as the last operation. This is automatically true if the
8961       // chain has one use: there are no other ordering constraints.
8962       // If the chain has more than one use, we give up: some other
8963       // use of Dest might force a side-effect between Dest and the current
8964       // node.
8965       if (Dest.hasOneUse())
8966         return true;
8967     }
8968     // Next, try a deep search: check whether every operand of the TokenFactor
8969     // reaches Dest.
8970     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8971       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8972     });
8973   }
8974 
8975   // Loads don't have side effects, look through them.
8976   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8977     if (!Ld->isVolatile())
8978       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8979   }
8980   return false;
8981 }
8982 
8983 bool SDNode::hasPredecessor(const SDNode *N) const {
8984   SmallPtrSet<const SDNode *, 32> Visited;
8985   SmallVector<const SDNode *, 16> Worklist;
8986   Worklist.push_back(this);
8987   return hasPredecessorHelper(N, Visited, Worklist);
8988 }
8989 
8990 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8991   this->Flags.intersectWith(Flags);
8992 }
8993 
8994 SDValue
8995 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8996                                   ArrayRef<ISD::NodeType> CandidateBinOps,
8997                                   bool AllowPartials) {
8998   // The pattern must end in an extract from index 0.
8999   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9000       !isNullConstant(Extract->getOperand(1)))
9001     return SDValue();
9002 
9003   // Match against one of the candidate binary ops.
9004   SDValue Op = Extract->getOperand(0);
9005   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9006         return Op.getOpcode() == unsigned(BinOp);
9007       }))
9008     return SDValue();
9009 
9010   // Floating-point reductions may require relaxed constraints on the final step
9011   // of the reduction because they may reorder intermediate operations.
9012   unsigned CandidateBinOp = Op.getOpcode();
9013   if (Op.getValueType().isFloatingPoint()) {
9014     SDNodeFlags Flags = Op->getFlags();
9015     switch (CandidateBinOp) {
9016     case ISD::FADD:
9017       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9018         return SDValue();
9019       break;
9020     default:
9021       llvm_unreachable("Unhandled FP opcode for binop reduction");
9022     }
9023   }
9024 
9025   // Matching failed - attempt to see if we did enough stages that a partial
9026   // reduction from a subvector is possible.
9027   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9028     if (!AllowPartials || !Op)
9029       return SDValue();
9030     EVT OpVT = Op.getValueType();
9031     EVT OpSVT = OpVT.getScalarType();
9032     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9033     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9034       return SDValue();
9035     BinOp = (ISD::NodeType)CandidateBinOp;
9036     return getNode(
9037         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9038         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9039   };
9040 
9041   // At each stage, we're looking for something that looks like:
9042   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9043   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9044   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9045   // %a = binop <8 x i32> %op, %s
9046   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9047   // we expect something like:
9048   // <4,5,6,7,u,u,u,u>
9049   // <2,3,u,u,u,u,u,u>
9050   // <1,u,u,u,u,u,u,u>
9051   // While a partial reduction match would be:
9052   // <2,3,u,u,u,u,u,u>
9053   // <1,u,u,u,u,u,u,u>
9054   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9055   SDValue PrevOp;
9056   for (unsigned i = 0; i < Stages; ++i) {
9057     unsigned MaskEnd = (1 << i);
9058 
9059     if (Op.getOpcode() != CandidateBinOp)
9060       return PartialReduction(PrevOp, MaskEnd);
9061 
9062     SDValue Op0 = Op.getOperand(0);
9063     SDValue Op1 = Op.getOperand(1);
9064 
9065     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9066     if (Shuffle) {
9067       Op = Op1;
9068     } else {
9069       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9070       Op = Op0;
9071     }
9072 
9073     // The first operand of the shuffle should be the same as the other operand
9074     // of the binop.
9075     if (!Shuffle || Shuffle->getOperand(0) != Op)
9076       return PartialReduction(PrevOp, MaskEnd);
9077 
9078     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9079     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9080       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9081         return PartialReduction(PrevOp, MaskEnd);
9082 
9083     PrevOp = Op;
9084   }
9085 
9086   BinOp = (ISD::NodeType)CandidateBinOp;
9087   return Op;
9088 }
9089 
9090 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9091   assert(N->getNumValues() == 1 &&
9092          "Can't unroll a vector with multiple results!");
9093 
9094   EVT VT = N->getValueType(0);
9095   unsigned NE = VT.getVectorNumElements();
9096   EVT EltVT = VT.getVectorElementType();
9097   SDLoc dl(N);
9098 
9099   SmallVector<SDValue, 8> Scalars;
9100   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9101 
9102   // If ResNE is 0, fully unroll the vector op.
9103   if (ResNE == 0)
9104     ResNE = NE;
9105   else if (NE > ResNE)
9106     NE = ResNE;
9107 
9108   unsigned i;
9109   for (i= 0; i != NE; ++i) {
9110     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9111       SDValue Operand = N->getOperand(j);
9112       EVT OperandVT = Operand.getValueType();
9113       if (OperandVT.isVector()) {
9114         // A vector operand; extract a single element.
9115         EVT OperandEltVT = OperandVT.getVectorElementType();
9116         Operands[j] =
9117             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9118                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9119       } else {
9120         // A scalar operand; just use it as is.
9121         Operands[j] = Operand;
9122       }
9123     }
9124 
9125     switch (N->getOpcode()) {
9126     default: {
9127       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9128                                 N->getFlags()));
9129       break;
9130     }
9131     case ISD::VSELECT:
9132       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9133       break;
9134     case ISD::SHL:
9135     case ISD::SRA:
9136     case ISD::SRL:
9137     case ISD::ROTL:
9138     case ISD::ROTR:
9139       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9140                                getShiftAmountOperand(Operands[0].getValueType(),
9141                                                      Operands[1])));
9142       break;
9143     case ISD::SIGN_EXTEND_INREG: {
9144       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9145       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9146                                 Operands[0],
9147                                 getValueType(ExtVT)));
9148     }
9149     }
9150   }
9151 
9152   for (; i < ResNE; ++i)
9153     Scalars.push_back(getUNDEF(EltVT));
9154 
9155   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9156   return getBuildVector(VecVT, dl, Scalars);
9157 }
9158 
9159 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9160     SDNode *N, unsigned ResNE) {
9161   unsigned Opcode = N->getOpcode();
9162   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9163           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9164           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9165          "Expected an overflow opcode");
9166 
9167   EVT ResVT = N->getValueType(0);
9168   EVT OvVT = N->getValueType(1);
9169   EVT ResEltVT = ResVT.getVectorElementType();
9170   EVT OvEltVT = OvVT.getVectorElementType();
9171   SDLoc dl(N);
9172 
9173   // If ResNE is 0, fully unroll the vector op.
9174   unsigned NE = ResVT.getVectorNumElements();
9175   if (ResNE == 0)
9176     ResNE = NE;
9177   else if (NE > ResNE)
9178     NE = ResNE;
9179 
9180   SmallVector<SDValue, 8> LHSScalars;
9181   SmallVector<SDValue, 8> RHSScalars;
9182   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9183   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9184 
9185   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9186   SDVTList VTs = getVTList(ResEltVT, SVT);
9187   SmallVector<SDValue, 8> ResScalars;
9188   SmallVector<SDValue, 8> OvScalars;
9189   for (unsigned i = 0; i < NE; ++i) {
9190     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9191     SDValue Ov =
9192         getSelect(dl, OvEltVT, Res.getValue(1),
9193                   getBoolConstant(true, dl, OvEltVT, ResVT),
9194                   getConstant(0, dl, OvEltVT));
9195 
9196     ResScalars.push_back(Res);
9197     OvScalars.push_back(Ov);
9198   }
9199 
9200   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9201   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9202 
9203   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9204   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9205   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9206                         getBuildVector(NewOvVT, dl, OvScalars));
9207 }
9208 
9209 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9210                                                   LoadSDNode *Base,
9211                                                   unsigned Bytes,
9212                                                   int Dist) const {
9213   if (LD->isVolatile() || Base->isVolatile())
9214     return false;
9215   if (LD->isIndexed() || Base->isIndexed())
9216     return false;
9217   if (LD->getChain() != Base->getChain())
9218     return false;
9219   EVT VT = LD->getValueType(0);
9220   if (VT.getSizeInBits() / 8 != Bytes)
9221     return false;
9222 
9223   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9224   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9225 
9226   int64_t Offset = 0;
9227   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9228     return (Dist * Bytes == Offset);
9229   return false;
9230 }
9231 
9232 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9233 /// it cannot be inferred.
9234 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9235   // If this is a GlobalAddress + cst, return the alignment.
9236   const GlobalValue *GV;
9237   int64_t GVOffset = 0;
9238   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9239     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9240     KnownBits Known(IdxWidth);
9241     llvm::computeKnownBits(GV, Known, getDataLayout());
9242     unsigned AlignBits = Known.countMinTrailingZeros();
9243     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9244     if (Align)
9245       return MinAlign(Align, GVOffset);
9246   }
9247 
9248   // If this is a direct reference to a stack slot, use information about the
9249   // stack slot's alignment.
9250   int FrameIdx = INT_MIN;
9251   int64_t FrameOffset = 0;
9252   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9253     FrameIdx = FI->getIndex();
9254   } else if (isBaseWithConstantOffset(Ptr) &&
9255              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9256     // Handle FI+Cst
9257     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9258     FrameOffset = Ptr.getConstantOperandVal(1);
9259   }
9260 
9261   if (FrameIdx != INT_MIN) {
9262     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9263     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9264                                     FrameOffset);
9265     return FIInfoAlign;
9266   }
9267 
9268   return 0;
9269 }
9270 
9271 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9272 /// which is split (or expanded) into two not necessarily identical pieces.
9273 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9274   // Currently all types are split in half.
9275   EVT LoVT, HiVT;
9276   if (!VT.isVector())
9277     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9278   else
9279     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9280 
9281   return std::make_pair(LoVT, HiVT);
9282 }
9283 
9284 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9285 /// low/high part.
9286 std::pair<SDValue, SDValue>
9287 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9288                           const EVT &HiVT) {
9289   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9290          N.getValueType().getVectorNumElements() &&
9291          "More vector elements requested than available!");
9292   SDValue Lo, Hi;
9293   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9294                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9295   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9296                getConstant(LoVT.getVectorNumElements(), DL,
9297                            TLI->getVectorIdxTy(getDataLayout())));
9298   return std::make_pair(Lo, Hi);
9299 }
9300 
9301 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9302 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9303   EVT VT = N.getValueType();
9304   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9305                                 NextPowerOf2(VT.getVectorNumElements()));
9306   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9307                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9308 }
9309 
9310 void SelectionDAG::ExtractVectorElements(SDValue Op,
9311                                          SmallVectorImpl<SDValue> &Args,
9312                                          unsigned Start, unsigned Count) {
9313   EVT VT = Op.getValueType();
9314   if (Count == 0)
9315     Count = VT.getVectorNumElements();
9316 
9317   EVT EltVT = VT.getVectorElementType();
9318   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9319   SDLoc SL(Op);
9320   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9321     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9322                            Op, getConstant(i, SL, IdxTy)));
9323   }
9324 }
9325 
9326 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9327 unsigned GlobalAddressSDNode::getAddressSpace() const {
9328   return getGlobal()->getType()->getAddressSpace();
9329 }
9330 
9331 Type *ConstantPoolSDNode::getType() const {
9332   if (isMachineConstantPoolEntry())
9333     return Val.MachineCPVal->getType();
9334   return Val.ConstVal->getType();
9335 }
9336 
9337 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9338                                         unsigned &SplatBitSize,
9339                                         bool &HasAnyUndefs,
9340                                         unsigned MinSplatBits,
9341                                         bool IsBigEndian) const {
9342   EVT VT = getValueType(0);
9343   assert(VT.isVector() && "Expected a vector type");
9344   unsigned VecWidth = VT.getSizeInBits();
9345   if (MinSplatBits > VecWidth)
9346     return false;
9347 
9348   // FIXME: The widths are based on this node's type, but build vectors can
9349   // truncate their operands.
9350   SplatValue = APInt(VecWidth, 0);
9351   SplatUndef = APInt(VecWidth, 0);
9352 
9353   // Get the bits. Bits with undefined values (when the corresponding element
9354   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9355   // in SplatValue. If any of the values are not constant, give up and return
9356   // false.
9357   unsigned int NumOps = getNumOperands();
9358   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9359   unsigned EltWidth = VT.getScalarSizeInBits();
9360 
9361   for (unsigned j = 0; j < NumOps; ++j) {
9362     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9363     SDValue OpVal = getOperand(i);
9364     unsigned BitPos = j * EltWidth;
9365 
9366     if (OpVal.isUndef())
9367       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9368     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9369       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9370     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9371       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9372     else
9373       return false;
9374   }
9375 
9376   // The build_vector is all constants or undefs. Find the smallest element
9377   // size that splats the vector.
9378   HasAnyUndefs = (SplatUndef != 0);
9379 
9380   // FIXME: This does not work for vectors with elements less than 8 bits.
9381   while (VecWidth > 8) {
9382     unsigned HalfSize = VecWidth / 2;
9383     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9384     APInt LowValue = SplatValue.trunc(HalfSize);
9385     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9386     APInt LowUndef = SplatUndef.trunc(HalfSize);
9387 
9388     // If the two halves do not match (ignoring undef bits), stop here.
9389     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9390         MinSplatBits > HalfSize)
9391       break;
9392 
9393     SplatValue = HighValue | LowValue;
9394     SplatUndef = HighUndef & LowUndef;
9395 
9396     VecWidth = HalfSize;
9397   }
9398 
9399   SplatBitSize = VecWidth;
9400   return true;
9401 }
9402 
9403 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9404                                          BitVector *UndefElements) const {
9405   if (UndefElements) {
9406     UndefElements->clear();
9407     UndefElements->resize(getNumOperands());
9408   }
9409   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9410          "Unexpected vector size");
9411   if (!DemandedElts)
9412     return SDValue();
9413   SDValue Splatted;
9414   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9415     if (!DemandedElts[i])
9416       continue;
9417     SDValue Op = getOperand(i);
9418     if (Op.isUndef()) {
9419       if (UndefElements)
9420         (*UndefElements)[i] = true;
9421     } else if (!Splatted) {
9422       Splatted = Op;
9423     } else if (Splatted != Op) {
9424       return SDValue();
9425     }
9426   }
9427 
9428   if (!Splatted) {
9429     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9430     assert(getOperand(FirstDemandedIdx).isUndef() &&
9431            "Can only have a splat without a constant for all undefs.");
9432     return getOperand(FirstDemandedIdx);
9433   }
9434 
9435   return Splatted;
9436 }
9437 
9438 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9439   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9440   return getSplatValue(DemandedElts, UndefElements);
9441 }
9442 
9443 ConstantSDNode *
9444 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9445                                         BitVector *UndefElements) const {
9446   return dyn_cast_or_null<ConstantSDNode>(
9447       getSplatValue(DemandedElts, UndefElements));
9448 }
9449 
9450 ConstantSDNode *
9451 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9452   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9453 }
9454 
9455 ConstantFPSDNode *
9456 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9457                                           BitVector *UndefElements) const {
9458   return dyn_cast_or_null<ConstantFPSDNode>(
9459       getSplatValue(DemandedElts, UndefElements));
9460 }
9461 
9462 ConstantFPSDNode *
9463 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9464   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9465 }
9466 
9467 int32_t
9468 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9469                                                    uint32_t BitWidth) const {
9470   if (ConstantFPSDNode *CN =
9471           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9472     bool IsExact;
9473     APSInt IntVal(BitWidth);
9474     const APFloat &APF = CN->getValueAPF();
9475     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9476             APFloat::opOK ||
9477         !IsExact)
9478       return -1;
9479 
9480     return IntVal.exactLogBase2();
9481   }
9482   return -1;
9483 }
9484 
9485 bool BuildVectorSDNode::isConstant() const {
9486   for (const SDValue &Op : op_values()) {
9487     unsigned Opc = Op.getOpcode();
9488     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9489       return false;
9490   }
9491   return true;
9492 }
9493 
9494 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9495   // Find the first non-undef value in the shuffle mask.
9496   unsigned i, e;
9497   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9498     /* search */;
9499 
9500   // If all elements are undefined, this shuffle can be considered a splat
9501   // (although it should eventually get simplified away completely).
9502   if (i == e)
9503     return true;
9504 
9505   // Make sure all remaining elements are either undef or the same as the first
9506   // non-undef value.
9507   for (int Idx = Mask[i]; i != e; ++i)
9508     if (Mask[i] >= 0 && Mask[i] != Idx)
9509       return false;
9510   return true;
9511 }
9512 
9513 // Returns the SDNode if it is a constant integer BuildVector
9514 // or constant integer.
9515 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9516   if (isa<ConstantSDNode>(N))
9517     return N.getNode();
9518   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9519     return N.getNode();
9520   // Treat a GlobalAddress supporting constant offset folding as a
9521   // constant integer.
9522   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9523     if (GA->getOpcode() == ISD::GlobalAddress &&
9524         TLI->isOffsetFoldingLegal(GA))
9525       return GA;
9526   return nullptr;
9527 }
9528 
9529 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9530   if (isa<ConstantFPSDNode>(N))
9531     return N.getNode();
9532 
9533   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9534     return N.getNode();
9535 
9536   return nullptr;
9537 }
9538 
9539 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9540   assert(!Node->OperandList && "Node already has operands");
9541   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9542          "too many operands to fit into SDNode");
9543   SDUse *Ops = OperandRecycler.allocate(
9544       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9545 
9546   bool IsDivergent = false;
9547   for (unsigned I = 0; I != Vals.size(); ++I) {
9548     Ops[I].setUser(Node);
9549     Ops[I].setInitial(Vals[I]);
9550     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9551       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9552   }
9553   Node->NumOperands = Vals.size();
9554   Node->OperandList = Ops;
9555   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9556   if (!TLI->isSDNodeAlwaysUniform(Node))
9557     Node->SDNodeBits.IsDivergent = IsDivergent;
9558   checkForCycles(Node);
9559 }
9560 
9561 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9562                                      SmallVectorImpl<SDValue> &Vals) {
9563   size_t Limit = SDNode::getMaxNumOperands();
9564   while (Vals.size() > Limit) {
9565     unsigned SliceIdx = Vals.size() - Limit;
9566     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9567     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9568     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9569     Vals.emplace_back(NewTF);
9570   }
9571   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9572 }
9573 
9574 #ifndef NDEBUG
9575 static void checkForCyclesHelper(const SDNode *N,
9576                                  SmallPtrSetImpl<const SDNode*> &Visited,
9577                                  SmallPtrSetImpl<const SDNode*> &Checked,
9578                                  const llvm::SelectionDAG *DAG) {
9579   // If this node has already been checked, don't check it again.
9580   if (Checked.count(N))
9581     return;
9582 
9583   // If a node has already been visited on this depth-first walk, reject it as
9584   // a cycle.
9585   if (!Visited.insert(N).second) {
9586     errs() << "Detected cycle in SelectionDAG\n";
9587     dbgs() << "Offending node:\n";
9588     N->dumprFull(DAG); dbgs() << "\n";
9589     abort();
9590   }
9591 
9592   for (const SDValue &Op : N->op_values())
9593     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9594 
9595   Checked.insert(N);
9596   Visited.erase(N);
9597 }
9598 #endif
9599 
9600 void llvm::checkForCycles(const llvm::SDNode *N,
9601                           const llvm::SelectionDAG *DAG,
9602                           bool force) {
9603 #ifndef NDEBUG
9604   bool check = force;
9605 #ifdef EXPENSIVE_CHECKS
9606   check = true;
9607 #endif  // EXPENSIVE_CHECKS
9608   if (check) {
9609     assert(N && "Checking nonexistent SDNode");
9610     SmallPtrSet<const SDNode*, 32> visited;
9611     SmallPtrSet<const SDNode*, 32> checked;
9612     checkForCyclesHelper(N, visited, checked, DAG);
9613   }
9614 #endif  // !NDEBUG
9615 }
9616 
9617 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9618   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9619 }
9620