1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/CodeGen/ISDOpcodes.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/RuntimeLibcalls.h" 35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CodeGen.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/KnownBits.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/ManagedStatic.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/Mutex.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <cstdlib> 70 #include <limits> 71 #include <set> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 /// makeVTList - Return an instance of the SDVTList struct initialized with the 79 /// specified members. 80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 81 SDVTList Res = {VTs, NumVTs}; 82 return Res; 83 } 84 85 // Default null implementations of the callbacks. 86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 89 90 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 91 92 #define DEBUG_TYPE "selectiondag" 93 94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 95 cl::Hidden, cl::init(true), 96 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 97 98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 99 cl::desc("Number limit for gluing ld/st of memcpy."), 100 cl::Hidden, cl::init(0)); 101 102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // ConstantFPSDNode Class 108 //===----------------------------------------------------------------------===// 109 110 /// isExactlyValue - We don't rely on operator== working on double values, as 111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 112 /// As such, this method can be used to do an exact bit-for-bit comparison of 113 /// two floating point values. 114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 115 return getValueAPF().bitwiseIsEqual(V); 116 } 117 118 bool ConstantFPSDNode::isValueValidForType(EVT VT, 119 const APFloat& Val) { 120 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 121 122 // convert modifies in place, so make a copy. 123 APFloat Val2 = APFloat(Val); 124 bool losesInfo; 125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 126 APFloat::rmNearestTiesToEven, 127 &losesInfo); 128 return !losesInfo; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // ISD Namespace 133 //===----------------------------------------------------------------------===// 134 135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 136 auto *BV = dyn_cast<BuildVectorSDNode>(N); 137 if (!BV) 138 return false; 139 140 APInt SplatUndef; 141 unsigned SplatBitSize; 142 bool HasUndefs; 143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 145 EltSize) && 146 EltSize == SplatBitSize; 147 } 148 149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 150 // specializations of the more general isConstantSplatVector()? 151 152 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 153 // Look through a bit convert. 154 while (N->getOpcode() == ISD::BITCAST) 155 N = N->getOperand(0).getNode(); 156 157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 158 159 unsigned i = 0, e = N->getNumOperands(); 160 161 // Skip over all of the undef values. 162 while (i != e && N->getOperand(i).isUndef()) 163 ++i; 164 165 // Do not accept an all-undef vector. 166 if (i == e) return false; 167 168 // Do not accept build_vectors that aren't all constants or which have non-~0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target and 172 // a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all ones, not whether the individual 175 // constants are. 176 SDValue NotZero = N->getOperand(i); 177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 179 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 180 return false; 181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 183 return false; 184 } else 185 return false; 186 187 // Okay, we have at least one ~0 value, check to see if the rest match or are 188 // undefs. Even with the above element type twiddling, this should be OK, as 189 // the same type legalization should have applied to all the elements. 190 for (++i; i != e; ++i) 191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 192 return false; 193 return true; 194 } 195 196 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 197 // Look through a bit convert. 198 while (N->getOpcode() == ISD::BITCAST) 199 N = N->getOperand(0).getNode(); 200 201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 202 203 bool IsAllUndef = true; 204 for (const SDValue &Op : N->op_values()) { 205 if (Op.isUndef()) 206 continue; 207 IsAllUndef = false; 208 // Do not accept build_vectors that aren't all constants or which have non-0 209 // elements. We have to be a bit careful here, as the type of the constant 210 // may not be the same as the type of the vector elements due to type 211 // legalization (the elements are promoted to a legal type for the target 212 // and a vector of a type may be legal when the base element type is not). 213 // We only want to check enough bits to cover the vector elements, because 214 // we care if the resultant vector is all zeros, not whether the individual 215 // constants are. 216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 218 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 219 return false; 220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 222 return false; 223 } else 224 return false; 225 } 226 227 // Do not accept an all-undef vector. 228 if (IsAllUndef) 229 return false; 230 return true; 231 } 232 233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 234 if (N->getOpcode() != ISD::BUILD_VECTOR) 235 return false; 236 237 for (const SDValue &Op : N->op_values()) { 238 if (Op.isUndef()) 239 continue; 240 if (!isa<ConstantSDNode>(Op)) 241 return false; 242 } 243 return true; 244 } 245 246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 247 if (N->getOpcode() != ISD::BUILD_VECTOR) 248 return false; 249 250 for (const SDValue &Op : N->op_values()) { 251 if (Op.isUndef()) 252 continue; 253 if (!isa<ConstantFPSDNode>(Op)) 254 return false; 255 } 256 return true; 257 } 258 259 bool ISD::allOperandsUndef(const SDNode *N) { 260 // Return false if the node has no operands. 261 // This is "logically inconsistent" with the definition of "all" but 262 // is probably the desired behavior. 263 if (N->getNumOperands() == 0) 264 return false; 265 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 266 } 267 268 bool ISD::matchUnaryPredicate(SDValue Op, 269 std::function<bool(ConstantSDNode *)> Match, 270 bool AllowUndefs) { 271 // FIXME: Add support for scalar UNDEF cases? 272 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 273 return Match(Cst); 274 275 // FIXME: Add support for vector UNDEF cases? 276 if (ISD::BUILD_VECTOR != Op.getOpcode()) 277 return false; 278 279 EVT SVT = Op.getValueType().getScalarType(); 280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 281 if (AllowUndefs && Op.getOperand(i).isUndef()) { 282 if (!Match(nullptr)) 283 return false; 284 continue; 285 } 286 287 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 288 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::matchBinaryPredicate( 295 SDValue LHS, SDValue RHS, 296 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 297 bool AllowUndefs, bool AllowTypeMismatch) { 298 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 299 return false; 300 301 // TODO: Add support for scalar UNDEF cases? 302 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 303 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 304 return Match(LHSCst, RHSCst); 305 306 // TODO: Add support for vector UNDEF cases? 307 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 308 ISD::BUILD_VECTOR != RHS.getOpcode()) 309 return false; 310 311 EVT SVT = LHS.getValueType().getScalarType(); 312 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 313 SDValue LHSOp = LHS.getOperand(i); 314 SDValue RHSOp = RHS.getOperand(i); 315 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 316 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 317 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 318 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 319 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 320 return false; 321 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 322 LHSOp.getValueType() != RHSOp.getValueType())) 323 return false; 324 if (!Match(LHSCst, RHSCst)) 325 return false; 326 } 327 return true; 328 } 329 330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 331 switch (ExtType) { 332 case ISD::EXTLOAD: 333 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 334 case ISD::SEXTLOAD: 335 return ISD::SIGN_EXTEND; 336 case ISD::ZEXTLOAD: 337 return ISD::ZERO_EXTEND; 338 default: 339 break; 340 } 341 342 llvm_unreachable("Invalid LoadExtType"); 343 } 344 345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 346 // To perform this operation, we just need to swap the L and G bits of the 347 // operation. 348 unsigned OldL = (Operation >> 2) & 1; 349 unsigned OldG = (Operation >> 1) & 1; 350 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 351 (OldL << 1) | // New G bit 352 (OldG << 2)); // New L bit. 353 } 354 355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 356 unsigned Operation = Op; 357 if (isInteger) 358 Operation ^= 7; // Flip L, G, E bits, but not U. 359 else 360 Operation ^= 15; // Flip all of the condition bits. 361 362 if (Operation > ISD::SETTRUE2) 363 Operation &= ~8; // Don't let N and U bits get set. 364 365 return ISD::CondCode(Operation); 366 } 367 368 /// For an integer comparison, return 1 if the comparison is a signed operation 369 /// and 2 if the result is an unsigned comparison. Return zero if the operation 370 /// does not depend on the sign of the input (setne and seteq). 371 static int isSignedOp(ISD::CondCode Opcode) { 372 switch (Opcode) { 373 default: llvm_unreachable("Illegal integer setcc operation!"); 374 case ISD::SETEQ: 375 case ISD::SETNE: return 0; 376 case ISD::SETLT: 377 case ISD::SETLE: 378 case ISD::SETGT: 379 case ISD::SETGE: return 1; 380 case ISD::SETULT: 381 case ISD::SETULE: 382 case ISD::SETUGT: 383 case ISD::SETUGE: return 2; 384 } 385 } 386 387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 388 bool IsInteger) { 389 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 390 // Cannot fold a signed integer setcc with an unsigned integer setcc. 391 return ISD::SETCC_INVALID; 392 393 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 394 395 // If the N and U bits get set, then the resultant comparison DOES suddenly 396 // care about orderedness, and it is true when ordered. 397 if (Op > ISD::SETTRUE2) 398 Op &= ~16; // Clear the U bit if the N bit is set. 399 400 // Canonicalize illegal integer setcc's. 401 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 402 Op = ISD::SETNE; 403 404 return ISD::CondCode(Op); 405 } 406 407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 408 bool IsInteger) { 409 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 410 // Cannot fold a signed setcc with an unsigned setcc. 411 return ISD::SETCC_INVALID; 412 413 // Combine all of the condition bits. 414 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger) { 418 switch (Result) { 419 default: break; 420 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 421 case ISD::SETOEQ: // SETEQ & SETU[LG]E 422 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 423 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 424 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 425 } 426 } 427 428 return Result; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // SDNode Profile Support 433 //===----------------------------------------------------------------------===// 434 435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 437 ID.AddInteger(OpC); 438 } 439 440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 441 /// solely with their pointer. 442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 443 ID.AddPointer(VTList.VTs); 444 } 445 446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 447 static void AddNodeIDOperands(FoldingSetNodeID &ID, 448 ArrayRef<SDValue> Ops) { 449 for (auto& Op : Ops) { 450 ID.AddPointer(Op.getNode()); 451 ID.AddInteger(Op.getResNo()); 452 } 453 } 454 455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 456 static void AddNodeIDOperands(FoldingSetNodeID &ID, 457 ArrayRef<SDUse> Ops) { 458 for (auto& Op : Ops) { 459 ID.AddPointer(Op.getNode()); 460 ID.AddInteger(Op.getResNo()); 461 } 462 } 463 464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 465 SDVTList VTList, ArrayRef<SDValue> OpList) { 466 AddNodeIDOpcode(ID, OpC); 467 AddNodeIDValueTypes(ID, VTList); 468 AddNodeIDOperands(ID, OpList); 469 } 470 471 /// If this is an SDNode with special info, add this info to the NodeID data. 472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 473 switch (N->getOpcode()) { 474 case ISD::TargetExternalSymbol: 475 case ISD::ExternalSymbol: 476 case ISD::MCSymbol: 477 llvm_unreachable("Should only be used on nodes with operands"); 478 default: break; // Normal nodes don't need extra info. 479 case ISD::TargetConstant: 480 case ISD::Constant: { 481 const ConstantSDNode *C = cast<ConstantSDNode>(N); 482 ID.AddPointer(C->getConstantIntValue()); 483 ID.AddBoolean(C->isOpaque()); 484 break; 485 } 486 case ISD::TargetConstantFP: 487 case ISD::ConstantFP: 488 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 489 break; 490 case ISD::TargetGlobalAddress: 491 case ISD::GlobalAddress: 492 case ISD::TargetGlobalTLSAddress: 493 case ISD::GlobalTLSAddress: { 494 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 495 ID.AddPointer(GA->getGlobal()); 496 ID.AddInteger(GA->getOffset()); 497 ID.AddInteger(GA->getTargetFlags()); 498 break; 499 } 500 case ISD::BasicBlock: 501 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 502 break; 503 case ISD::Register: 504 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 505 break; 506 case ISD::RegisterMask: 507 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 508 break; 509 case ISD::SRCVALUE: 510 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 511 break; 512 case ISD::FrameIndex: 513 case ISD::TargetFrameIndex: 514 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 515 break; 516 case ISD::LIFETIME_START: 517 case ISD::LIFETIME_END: 518 if (cast<LifetimeSDNode>(N)->hasOffset()) { 519 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 520 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 521 } 522 break; 523 case ISD::JumpTable: 524 case ISD::TargetJumpTable: 525 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 526 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 527 break; 528 case ISD::ConstantPool: 529 case ISD::TargetConstantPool: { 530 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 531 ID.AddInteger(CP->getAlignment()); 532 ID.AddInteger(CP->getOffset()); 533 if (CP->isMachineConstantPoolEntry()) 534 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 535 else 536 ID.AddPointer(CP->getConstVal()); 537 ID.AddInteger(CP->getTargetFlags()); 538 break; 539 } 540 case ISD::TargetIndex: { 541 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 542 ID.AddInteger(TI->getIndex()); 543 ID.AddInteger(TI->getOffset()); 544 ID.AddInteger(TI->getTargetFlags()); 545 break; 546 } 547 case ISD::LOAD: { 548 const LoadSDNode *LD = cast<LoadSDNode>(N); 549 ID.AddInteger(LD->getMemoryVT().getRawBits()); 550 ID.AddInteger(LD->getRawSubclassData()); 551 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 552 break; 553 } 554 case ISD::STORE: { 555 const StoreSDNode *ST = cast<StoreSDNode>(N); 556 ID.AddInteger(ST->getMemoryVT().getRawBits()); 557 ID.AddInteger(ST->getRawSubclassData()); 558 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 559 break; 560 } 561 case ISD::MLOAD: { 562 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 563 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 564 ID.AddInteger(MLD->getRawSubclassData()); 565 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 566 break; 567 } 568 case ISD::MSTORE: { 569 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 570 ID.AddInteger(MST->getMemoryVT().getRawBits()); 571 ID.AddInteger(MST->getRawSubclassData()); 572 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 573 break; 574 } 575 case ISD::MGATHER: { 576 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 577 ID.AddInteger(MG->getMemoryVT().getRawBits()); 578 ID.AddInteger(MG->getRawSubclassData()); 579 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 580 break; 581 } 582 case ISD::MSCATTER: { 583 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 584 ID.AddInteger(MS->getMemoryVT().getRawBits()); 585 ID.AddInteger(MS->getRawSubclassData()); 586 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 587 break; 588 } 589 case ISD::ATOMIC_CMP_SWAP: 590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 591 case ISD::ATOMIC_SWAP: 592 case ISD::ATOMIC_LOAD_ADD: 593 case ISD::ATOMIC_LOAD_SUB: 594 case ISD::ATOMIC_LOAD_AND: 595 case ISD::ATOMIC_LOAD_CLR: 596 case ISD::ATOMIC_LOAD_OR: 597 case ISD::ATOMIC_LOAD_XOR: 598 case ISD::ATOMIC_LOAD_NAND: 599 case ISD::ATOMIC_LOAD_MIN: 600 case ISD::ATOMIC_LOAD_MAX: 601 case ISD::ATOMIC_LOAD_UMIN: 602 case ISD::ATOMIC_LOAD_UMAX: 603 case ISD::ATOMIC_LOAD: 604 case ISD::ATOMIC_STORE: { 605 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 606 ID.AddInteger(AT->getMemoryVT().getRawBits()); 607 ID.AddInteger(AT->getRawSubclassData()); 608 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 609 break; 610 } 611 case ISD::PREFETCH: { 612 const MemSDNode *PF = cast<MemSDNode>(N); 613 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 614 break; 615 } 616 case ISD::VECTOR_SHUFFLE: { 617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 618 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 619 i != e; ++i) 620 ID.AddInteger(SVN->getMaskElt(i)); 621 break; 622 } 623 case ISD::TargetBlockAddress: 624 case ISD::BlockAddress: { 625 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 626 ID.AddPointer(BA->getBlockAddress()); 627 ID.AddInteger(BA->getOffset()); 628 ID.AddInteger(BA->getTargetFlags()); 629 break; 630 } 631 } // end switch (N->getOpcode()) 632 633 // Target specific memory nodes could also have address spaces to check. 634 if (N->isTargetMemoryOpcode()) 635 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 636 } 637 638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 639 /// data. 640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 641 AddNodeIDOpcode(ID, N->getOpcode()); 642 // Add the return value info. 643 AddNodeIDValueTypes(ID, N->getVTList()); 644 // Add the operand info. 645 AddNodeIDOperands(ID, N->ops()); 646 647 // Handle SDNode leafs with special info. 648 AddNodeIDCustom(ID, N); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // SelectionDAG Class 653 //===----------------------------------------------------------------------===// 654 655 /// doNotCSE - Return true if CSE should not be performed for this node. 656 static bool doNotCSE(SDNode *N) { 657 if (N->getValueType(0) == MVT::Glue) 658 return true; // Never CSE anything that produces a flag. 659 660 switch (N->getOpcode()) { 661 default: break; 662 case ISD::HANDLENODE: 663 case ISD::EH_LABEL: 664 return true; // Never CSE these nodes. 665 } 666 667 // Check that remaining values produced are not flags. 668 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 669 if (N->getValueType(i) == MVT::Glue) 670 return true; // Never CSE anything that produces a flag. 671 672 return false; 673 } 674 675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 676 /// SelectionDAG. 677 void SelectionDAG::RemoveDeadNodes() { 678 // Create a dummy node (which is not added to allnodes), that adds a reference 679 // to the root node, preventing it from being deleted. 680 HandleSDNode Dummy(getRoot()); 681 682 SmallVector<SDNode*, 128> DeadNodes; 683 684 // Add all obviously-dead nodes to the DeadNodes worklist. 685 for (SDNode &Node : allnodes()) 686 if (Node.use_empty()) 687 DeadNodes.push_back(&Node); 688 689 RemoveDeadNodes(DeadNodes); 690 691 // If the root changed (e.g. it was a dead load, update the root). 692 setRoot(Dummy.getValue()); 693 } 694 695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 696 /// given list, and any nodes that become unreachable as a result. 697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 698 699 // Process the worklist, deleting the nodes and adding their uses to the 700 // worklist. 701 while (!DeadNodes.empty()) { 702 SDNode *N = DeadNodes.pop_back_val(); 703 // Skip to next node if we've already managed to delete the node. This could 704 // happen if replacing a node causes a node previously added to the node to 705 // be deleted. 706 if (N->getOpcode() == ISD::DELETED_NODE) 707 continue; 708 709 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 710 DUL->NodeDeleted(N, nullptr); 711 712 // Take the node out of the appropriate CSE map. 713 RemoveNodeFromCSEMaps(N); 714 715 // Next, brutally remove the operand list. This is safe to do, as there are 716 // no cycles in the graph. 717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 718 SDUse &Use = *I++; 719 SDNode *Operand = Use.getNode(); 720 Use.set(SDValue()); 721 722 // Now that we removed this operand, see if there are no uses of it left. 723 if (Operand->use_empty()) 724 DeadNodes.push_back(Operand); 725 } 726 727 DeallocateNode(N); 728 } 729 } 730 731 void SelectionDAG::RemoveDeadNode(SDNode *N){ 732 SmallVector<SDNode*, 16> DeadNodes(1, N); 733 734 // Create a dummy node that adds a reference to the root node, preventing 735 // it from being deleted. (This matters if the root is an operand of the 736 // dead node.) 737 HandleSDNode Dummy(getRoot()); 738 739 RemoveDeadNodes(DeadNodes); 740 } 741 742 void SelectionDAG::DeleteNode(SDNode *N) { 743 // First take this out of the appropriate CSE map. 744 RemoveNodeFromCSEMaps(N); 745 746 // Finally, remove uses due to operands of this node, remove from the 747 // AllNodes list, and delete the node. 748 DeleteNodeNotInCSEMaps(N); 749 } 750 751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 752 assert(N->getIterator() != AllNodes.begin() && 753 "Cannot delete the entry node!"); 754 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 755 756 // Drop all of the operands and decrement used node's use counts. 757 N->DropOperands(); 758 759 DeallocateNode(N); 760 } 761 762 void SDDbgInfo::erase(const SDNode *Node) { 763 DbgValMapType::iterator I = DbgValMap.find(Node); 764 if (I == DbgValMap.end()) 765 return; 766 for (auto &Val: I->second) 767 Val->setIsInvalidated(); 768 DbgValMap.erase(I); 769 } 770 771 void SelectionDAG::DeallocateNode(SDNode *N) { 772 // If we have operands, deallocate them. 773 removeOperands(N); 774 775 NodeAllocator.Deallocate(AllNodes.remove(N)); 776 777 // Set the opcode to DELETED_NODE to help catch bugs when node 778 // memory is reallocated. 779 // FIXME: There are places in SDag that have grown a dependency on the opcode 780 // value in the released node. 781 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 782 N->NodeType = ISD::DELETED_NODE; 783 784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 785 // them and forget about that node. 786 DbgInfo->erase(N); 787 } 788 789 #ifndef NDEBUG 790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 791 static void VerifySDNode(SDNode *N) { 792 switch (N->getOpcode()) { 793 default: 794 break; 795 case ISD::BUILD_PAIR: { 796 EVT VT = N->getValueType(0); 797 assert(N->getNumValues() == 1 && "Too many results!"); 798 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 799 "Wrong return type!"); 800 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 801 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 802 "Mismatched operand types!"); 803 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 804 "Wrong operand type!"); 805 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 806 "Wrong return type size"); 807 break; 808 } 809 case ISD::BUILD_VECTOR: { 810 assert(N->getNumValues() == 1 && "Too many results!"); 811 assert(N->getValueType(0).isVector() && "Wrong return type!"); 812 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 813 "Wrong number of operands!"); 814 EVT EltVT = N->getValueType(0).getVectorElementType(); 815 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 816 assert((I->getValueType() == EltVT || 817 (EltVT.isInteger() && I->getValueType().isInteger() && 818 EltVT.bitsLE(I->getValueType()))) && 819 "Wrong operand type!"); 820 assert(I->getValueType() == N->getOperand(0).getValueType() && 821 "Operands must all have the same type"); 822 } 823 break; 824 } 825 } 826 } 827 #endif // NDEBUG 828 829 /// Insert a newly allocated node into the DAG. 830 /// 831 /// Handles insertion into the all nodes list and CSE map, as well as 832 /// verification and other common operations when a new node is allocated. 833 void SelectionDAG::InsertNode(SDNode *N) { 834 AllNodes.push_back(N); 835 #ifndef NDEBUG 836 N->PersistentId = NextPersistentId++; 837 VerifySDNode(N); 838 #endif 839 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 840 DUL->NodeInserted(N); 841 } 842 843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 844 /// correspond to it. This is useful when we're about to delete or repurpose 845 /// the node. We don't want future request for structurally identical nodes 846 /// to return N anymore. 847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 848 bool Erased = false; 849 switch (N->getOpcode()) { 850 case ISD::HANDLENODE: return false; // noop. 851 case ISD::CONDCODE: 852 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 853 "Cond code doesn't exist!"); 854 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 855 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 856 break; 857 case ISD::ExternalSymbol: 858 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 859 break; 860 case ISD::TargetExternalSymbol: { 861 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 862 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 863 ESN->getSymbol(), ESN->getTargetFlags())); 864 break; 865 } 866 case ISD::MCSymbol: { 867 auto *MCSN = cast<MCSymbolSDNode>(N); 868 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 869 break; 870 } 871 case ISD::VALUETYPE: { 872 EVT VT = cast<VTSDNode>(N)->getVT(); 873 if (VT.isExtended()) { 874 Erased = ExtendedValueTypeNodes.erase(VT); 875 } else { 876 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 877 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 878 } 879 break; 880 } 881 default: 882 // Remove it from the CSE Map. 883 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 884 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 885 Erased = CSEMap.RemoveNode(N); 886 break; 887 } 888 #ifndef NDEBUG 889 // Verify that the node was actually in one of the CSE maps, unless it has a 890 // flag result (which cannot be CSE'd) or is one of the special cases that are 891 // not subject to CSE. 892 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 893 !N->isMachineOpcode() && !doNotCSE(N)) { 894 N->dump(this); 895 dbgs() << "\n"; 896 llvm_unreachable("Node is not in map!"); 897 } 898 #endif 899 return Erased; 900 } 901 902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 903 /// maps and modified in place. Add it back to the CSE maps, unless an identical 904 /// node already exists, in which case transfer all its users to the existing 905 /// node. This transfer can potentially trigger recursive merging. 906 void 907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 908 // For node types that aren't CSE'd, just act as if no identical node 909 // already exists. 910 if (!doNotCSE(N)) { 911 SDNode *Existing = CSEMap.GetOrInsertNode(N); 912 if (Existing != N) { 913 // If there was already an existing matching node, use ReplaceAllUsesWith 914 // to replace the dead one with the existing one. This can cause 915 // recursive merging of other unrelated nodes down the line. 916 ReplaceAllUsesWith(N, Existing); 917 918 // N is now dead. Inform the listeners and delete it. 919 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 920 DUL->NodeDeleted(N, Existing); 921 DeleteNodeNotInCSEMaps(N); 922 return; 923 } 924 } 925 926 // If the node doesn't already exist, we updated it. Inform listeners. 927 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 928 DUL->NodeUpdated(N); 929 } 930 931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 932 /// were replaced with those specified. If this node is never memoized, 933 /// return null, otherwise return a pointer to the slot it would take. If a 934 /// node already exists with these operands, the slot will be non-null. 935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 936 void *&InsertPos) { 937 if (doNotCSE(N)) 938 return nullptr; 939 940 SDValue Ops[] = { Op }; 941 FoldingSetNodeID ID; 942 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 943 AddNodeIDCustom(ID, N); 944 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 945 if (Node) 946 Node->intersectFlagsWith(N->getFlags()); 947 return Node; 948 } 949 950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 951 /// were replaced with those specified. If this node is never memoized, 952 /// return null, otherwise return a pointer to the slot it would take. If a 953 /// node already exists with these operands, the slot will be non-null. 954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 955 SDValue Op1, SDValue Op2, 956 void *&InsertPos) { 957 if (doNotCSE(N)) 958 return nullptr; 959 960 SDValue Ops[] = { Op1, Op2 }; 961 FoldingSetNodeID ID; 962 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 963 AddNodeIDCustom(ID, N); 964 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 965 if (Node) 966 Node->intersectFlagsWith(N->getFlags()); 967 return Node; 968 } 969 970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 971 /// were replaced with those specified. If this node is never memoized, 972 /// return null, otherwise return a pointer to the slot it would take. If a 973 /// node already exists with these operands, the slot will be non-null. 974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 975 void *&InsertPos) { 976 if (doNotCSE(N)) 977 return nullptr; 978 979 FoldingSetNodeID ID; 980 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 981 AddNodeIDCustom(ID, N); 982 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 983 if (Node) 984 Node->intersectFlagsWith(N->getFlags()); 985 return Node; 986 } 987 988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 989 Type *Ty = VT == MVT::iPTR ? 990 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 991 VT.getTypeForEVT(*getContext()); 992 993 return getDataLayout().getABITypeAlignment(Ty); 994 } 995 996 // EntryNode could meaningfully have debug info if we can find it... 997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 998 : TM(tm), OptLevel(OL), 999 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1000 Root(getEntryNode()) { 1001 InsertNode(&EntryNode); 1002 DbgInfo = new SDDbgInfo(); 1003 } 1004 1005 void SelectionDAG::init(MachineFunction &NewMF, 1006 OptimizationRemarkEmitter &NewORE, 1007 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1008 LegacyDivergenceAnalysis * Divergence) { 1009 MF = &NewMF; 1010 SDAGISelPass = PassPtr; 1011 ORE = &NewORE; 1012 TLI = getSubtarget().getTargetLowering(); 1013 TSI = getSubtarget().getSelectionDAGInfo(); 1014 LibInfo = LibraryInfo; 1015 Context = &MF->getFunction().getContext(); 1016 DA = Divergence; 1017 } 1018 1019 SelectionDAG::~SelectionDAG() { 1020 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1021 allnodes_clear(); 1022 OperandRecycler.clear(OperandAllocator); 1023 delete DbgInfo; 1024 } 1025 1026 void SelectionDAG::allnodes_clear() { 1027 assert(&*AllNodes.begin() == &EntryNode); 1028 AllNodes.remove(AllNodes.begin()); 1029 while (!AllNodes.empty()) 1030 DeallocateNode(&AllNodes.front()); 1031 #ifndef NDEBUG 1032 NextPersistentId = 0; 1033 #endif 1034 } 1035 1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1037 void *&InsertPos) { 1038 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1039 if (N) { 1040 switch (N->getOpcode()) { 1041 default: break; 1042 case ISD::Constant: 1043 case ISD::ConstantFP: 1044 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1045 "debug location. Use another overload."); 1046 } 1047 } 1048 return N; 1049 } 1050 1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1052 const SDLoc &DL, void *&InsertPos) { 1053 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1054 if (N) { 1055 switch (N->getOpcode()) { 1056 case ISD::Constant: 1057 case ISD::ConstantFP: 1058 // Erase debug location from the node if the node is used at several 1059 // different places. Do not propagate one location to all uses as it 1060 // will cause a worse single stepping debugging experience. 1061 if (N->getDebugLoc() != DL.getDebugLoc()) 1062 N->setDebugLoc(DebugLoc()); 1063 break; 1064 default: 1065 // When the node's point of use is located earlier in the instruction 1066 // sequence than its prior point of use, update its debug info to the 1067 // earlier location. 1068 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1069 N->setDebugLoc(DL.getDebugLoc()); 1070 break; 1071 } 1072 } 1073 return N; 1074 } 1075 1076 void SelectionDAG::clear() { 1077 allnodes_clear(); 1078 OperandRecycler.clear(OperandAllocator); 1079 OperandAllocator.Reset(); 1080 CSEMap.clear(); 1081 1082 ExtendedValueTypeNodes.clear(); 1083 ExternalSymbols.clear(); 1084 TargetExternalSymbols.clear(); 1085 MCSymbols.clear(); 1086 SDCallSiteDbgInfo.clear(); 1087 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1088 static_cast<CondCodeSDNode*>(nullptr)); 1089 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1090 static_cast<SDNode*>(nullptr)); 1091 1092 EntryNode.UseList = nullptr; 1093 InsertNode(&EntryNode); 1094 Root = getEntryNode(); 1095 DbgInfo->clear(); 1096 } 1097 1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1099 return VT.bitsGT(Op.getValueType()) 1100 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1101 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1102 } 1103 1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1105 return VT.bitsGT(Op.getValueType()) ? 1106 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1107 getNode(ISD::TRUNCATE, DL, VT, Op); 1108 } 1109 1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) ? 1112 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1113 getNode(ISD::TRUNCATE, DL, VT, Op); 1114 } 1115 1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1117 return VT.bitsGT(Op.getValueType()) ? 1118 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1119 getNode(ISD::TRUNCATE, DL, VT, Op); 1120 } 1121 1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1123 EVT OpVT) { 1124 if (VT.bitsLE(Op.getValueType())) 1125 return getNode(ISD::TRUNCATE, SL, VT, Op); 1126 1127 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1128 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1129 } 1130 1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1132 assert(!VT.isVector() && 1133 "getZeroExtendInReg should use the vector element type instead of " 1134 "the vector type!"); 1135 if (Op.getValueType().getScalarType() == VT) return Op; 1136 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1137 APInt Imm = APInt::getLowBitsSet(BitWidth, 1138 VT.getSizeInBits()); 1139 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1140 getConstant(Imm, DL, Op.getValueType())); 1141 } 1142 1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 // Only unsigned pointer semantics are supported right now. In the future this 1145 // might delegate to TLI to check pointer signedness. 1146 return getZExtOrTrunc(Op, DL, VT); 1147 } 1148 1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1150 // Only unsigned pointer semantics are supported right now. In the future this 1151 // might delegate to TLI to check pointer signedness. 1152 return getZeroExtendInReg(Op, DL, VT); 1153 } 1154 1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1157 EVT EltVT = VT.getScalarType(); 1158 SDValue NegOne = 1159 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1160 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1161 } 1162 1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1164 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1165 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1166 } 1167 1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1169 EVT OpVT) { 1170 if (!V) 1171 return getConstant(0, DL, VT); 1172 1173 switch (TLI->getBooleanContents(OpVT)) { 1174 case TargetLowering::ZeroOrOneBooleanContent: 1175 case TargetLowering::UndefinedBooleanContent: 1176 return getConstant(1, DL, VT); 1177 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1178 return getAllOnesConstant(DL, VT); 1179 } 1180 llvm_unreachable("Unexpected boolean content enum!"); 1181 } 1182 1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1184 bool isT, bool isO) { 1185 EVT EltVT = VT.getScalarType(); 1186 assert((EltVT.getSizeInBits() >= 64 || 1187 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1188 "getConstant with a uint64_t value that doesn't fit in the type!"); 1189 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1190 } 1191 1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1193 bool isT, bool isO) { 1194 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1195 } 1196 1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1198 EVT VT, bool isT, bool isO) { 1199 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1200 1201 EVT EltVT = VT.getScalarType(); 1202 const ConstantInt *Elt = &Val; 1203 1204 // In some cases the vector type is legal but the element type is illegal and 1205 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1206 // inserted value (the type does not need to match the vector element type). 1207 // Any extra bits introduced will be truncated away. 1208 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1209 TargetLowering::TypePromoteInteger) { 1210 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1211 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1212 Elt = ConstantInt::get(*getContext(), NewVal); 1213 } 1214 // In other cases the element type is illegal and needs to be expanded, for 1215 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1216 // the value into n parts and use a vector type with n-times the elements. 1217 // Then bitcast to the type requested. 1218 // Legalizing constants too early makes the DAGCombiner's job harder so we 1219 // only legalize if the DAG tells us we must produce legal types. 1220 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1221 TLI->getTypeAction(*getContext(), EltVT) == 1222 TargetLowering::TypeExpandInteger) { 1223 const APInt &NewVal = Elt->getValue(); 1224 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1225 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1226 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1227 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1228 1229 // Check the temporary vector is the correct size. If this fails then 1230 // getTypeToTransformTo() probably returned a type whose size (in bits) 1231 // isn't a power-of-2 factor of the requested type size. 1232 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1233 1234 SmallVector<SDValue, 2> EltParts; 1235 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1236 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1237 .zextOrTrunc(ViaEltSizeInBits), DL, 1238 ViaEltVT, isT, isO)); 1239 } 1240 1241 // EltParts is currently in little endian order. If we actually want 1242 // big-endian order then reverse it now. 1243 if (getDataLayout().isBigEndian()) 1244 std::reverse(EltParts.begin(), EltParts.end()); 1245 1246 // The elements must be reversed when the element order is different 1247 // to the endianness of the elements (because the BITCAST is itself a 1248 // vector shuffle in this situation). However, we do not need any code to 1249 // perform this reversal because getConstant() is producing a vector 1250 // splat. 1251 // This situation occurs in MIPS MSA. 1252 1253 SmallVector<SDValue, 8> Ops; 1254 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1255 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1256 1257 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1258 return V; 1259 } 1260 1261 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1262 "APInt size does not match type size!"); 1263 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1264 FoldingSetNodeID ID; 1265 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1266 ID.AddPointer(Elt); 1267 ID.AddBoolean(isO); 1268 void *IP = nullptr; 1269 SDNode *N = nullptr; 1270 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1271 if (!VT.isVector()) 1272 return SDValue(N, 0); 1273 1274 if (!N) { 1275 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1276 CSEMap.InsertNode(N, IP); 1277 InsertNode(N); 1278 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1279 } 1280 1281 SDValue Result(N, 0); 1282 if (VT.isVector()) 1283 Result = getSplatBuildVector(VT, DL, Result); 1284 1285 return Result; 1286 } 1287 1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1289 bool isTarget) { 1290 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1291 } 1292 1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1294 const SDLoc &DL, bool LegalTypes) { 1295 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1296 return getConstant(Val, DL, ShiftVT); 1297 } 1298 1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1300 bool isTarget) { 1301 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1302 } 1303 1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1305 EVT VT, bool isTarget) { 1306 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1307 1308 EVT EltVT = VT.getScalarType(); 1309 1310 // Do the map lookup using the actual bit pattern for the floating point 1311 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1312 // we don't have issues with SNANs. 1313 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1316 ID.AddPointer(&V); 1317 void *IP = nullptr; 1318 SDNode *N = nullptr; 1319 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1320 if (!VT.isVector()) 1321 return SDValue(N, 0); 1322 1323 if (!N) { 1324 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1325 CSEMap.InsertNode(N, IP); 1326 InsertNode(N); 1327 } 1328 1329 SDValue Result(N, 0); 1330 if (VT.isVector()) 1331 Result = getSplatBuildVector(VT, DL, Result); 1332 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1333 return Result; 1334 } 1335 1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1337 bool isTarget) { 1338 EVT EltVT = VT.getScalarType(); 1339 if (EltVT == MVT::f32) 1340 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1341 else if (EltVT == MVT::f64) 1342 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1343 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1344 EltVT == MVT::f16) { 1345 bool Ignored; 1346 APFloat APF = APFloat(Val); 1347 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1348 &Ignored); 1349 return getConstantFP(APF, DL, VT, isTarget); 1350 } else 1351 llvm_unreachable("Unsupported type in getConstantFP"); 1352 } 1353 1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1355 EVT VT, int64_t Offset, bool isTargetGA, 1356 unsigned TargetFlags) { 1357 assert((TargetFlags == 0 || isTargetGA) && 1358 "Cannot set target flags on target-independent globals"); 1359 1360 // Truncate (with sign-extension) the offset value to the pointer size. 1361 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1362 if (BitWidth < 64) 1363 Offset = SignExtend64(Offset, BitWidth); 1364 1365 unsigned Opc; 1366 if (GV->isThreadLocal()) 1367 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1368 else 1369 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1370 1371 FoldingSetNodeID ID; 1372 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1373 ID.AddPointer(GV); 1374 ID.AddInteger(Offset); 1375 ID.AddInteger(TargetFlags); 1376 void *IP = nullptr; 1377 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1378 return SDValue(E, 0); 1379 1380 auto *N = newSDNode<GlobalAddressSDNode>( 1381 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1382 CSEMap.InsertNode(N, IP); 1383 InsertNode(N); 1384 return SDValue(N, 0); 1385 } 1386 1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1388 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1389 FoldingSetNodeID ID; 1390 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1391 ID.AddInteger(FI); 1392 void *IP = nullptr; 1393 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1394 return SDValue(E, 0); 1395 1396 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1397 CSEMap.InsertNode(N, IP); 1398 InsertNode(N); 1399 return SDValue(N, 0); 1400 } 1401 1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1403 unsigned TargetFlags) { 1404 assert((TargetFlags == 0 || isTarget) && 1405 "Cannot set target flags on target-independent jump tables"); 1406 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1407 FoldingSetNodeID ID; 1408 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1409 ID.AddInteger(JTI); 1410 ID.AddInteger(TargetFlags); 1411 void *IP = nullptr; 1412 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1413 return SDValue(E, 0); 1414 1415 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1416 CSEMap.InsertNode(N, IP); 1417 InsertNode(N); 1418 return SDValue(N, 0); 1419 } 1420 1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1422 unsigned Alignment, int Offset, 1423 bool isTarget, 1424 unsigned TargetFlags) { 1425 assert((TargetFlags == 0 || isTarget) && 1426 "Cannot set target flags on target-independent globals"); 1427 if (Alignment == 0) 1428 Alignment = MF->getFunction().hasOptSize() 1429 ? getDataLayout().getABITypeAlignment(C->getType()) 1430 : getDataLayout().getPrefTypeAlignment(C->getType()); 1431 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1432 FoldingSetNodeID ID; 1433 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1434 ID.AddInteger(Alignment); 1435 ID.AddInteger(Offset); 1436 ID.AddPointer(C); 1437 ID.AddInteger(TargetFlags); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1443 TargetFlags); 1444 CSEMap.InsertNode(N, IP); 1445 InsertNode(N); 1446 return SDValue(N, 0); 1447 } 1448 1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1450 unsigned Alignment, int Offset, 1451 bool isTarget, 1452 unsigned TargetFlags) { 1453 assert((TargetFlags == 0 || isTarget) && 1454 "Cannot set target flags on target-independent globals"); 1455 if (Alignment == 0) 1456 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1457 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1458 FoldingSetNodeID ID; 1459 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1460 ID.AddInteger(Alignment); 1461 ID.AddInteger(Offset); 1462 C->addSelectionDAGCSEId(ID); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1469 TargetFlags); 1470 CSEMap.InsertNode(N, IP); 1471 InsertNode(N); 1472 return SDValue(N, 0); 1473 } 1474 1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1476 unsigned TargetFlags) { 1477 FoldingSetNodeID ID; 1478 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1479 ID.AddInteger(Index); 1480 ID.AddInteger(Offset); 1481 ID.AddInteger(TargetFlags); 1482 void *IP = nullptr; 1483 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1484 return SDValue(E, 0); 1485 1486 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1487 CSEMap.InsertNode(N, IP); 1488 InsertNode(N); 1489 return SDValue(N, 0); 1490 } 1491 1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1495 ID.AddPointer(MBB); 1496 void *IP = nullptr; 1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1498 return SDValue(E, 0); 1499 1500 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1501 CSEMap.InsertNode(N, IP); 1502 InsertNode(N); 1503 return SDValue(N, 0); 1504 } 1505 1506 SDValue SelectionDAG::getValueType(EVT VT) { 1507 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1508 ValueTypeNodes.size()) 1509 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1510 1511 SDNode *&N = VT.isExtended() ? 1512 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1513 1514 if (N) return SDValue(N, 0); 1515 N = newSDNode<VTSDNode>(VT); 1516 InsertNode(N); 1517 return SDValue(N, 0); 1518 } 1519 1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1521 SDNode *&N = ExternalSymbols[Sym]; 1522 if (N) return SDValue(N, 0); 1523 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1529 SDNode *&N = MCSymbols[Sym]; 1530 if (N) 1531 return SDValue(N, 0); 1532 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1533 InsertNode(N); 1534 return SDValue(N, 0); 1535 } 1536 1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1538 unsigned TargetFlags) { 1539 SDNode *&N = 1540 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1541 if (N) return SDValue(N, 0); 1542 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1548 if ((unsigned)Cond >= CondCodeNodes.size()) 1549 CondCodeNodes.resize(Cond+1); 1550 1551 if (!CondCodeNodes[Cond]) { 1552 auto *N = newSDNode<CondCodeSDNode>(Cond); 1553 CondCodeNodes[Cond] = N; 1554 InsertNode(N); 1555 } 1556 1557 return SDValue(CondCodeNodes[Cond], 0); 1558 } 1559 1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1563 std::swap(N1, N2); 1564 ShuffleVectorSDNode::commuteMask(M); 1565 } 1566 1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1568 SDValue N2, ArrayRef<int> Mask) { 1569 assert(VT.getVectorNumElements() == Mask.size() && 1570 "Must have the same number of vector elements as mask elements!"); 1571 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1572 "Invalid VECTOR_SHUFFLE"); 1573 1574 // Canonicalize shuffle undef, undef -> undef 1575 if (N1.isUndef() && N2.isUndef()) 1576 return getUNDEF(VT); 1577 1578 // Validate that all indices in Mask are within the range of the elements 1579 // input to the shuffle. 1580 int NElts = Mask.size(); 1581 assert(llvm::all_of(Mask, 1582 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1583 "Index out of range"); 1584 1585 // Copy the mask so we can do any needed cleanup. 1586 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1587 1588 // Canonicalize shuffle v, v -> v, undef 1589 if (N1 == N2) { 1590 N2 = getUNDEF(VT); 1591 for (int i = 0; i != NElts; ++i) 1592 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1593 } 1594 1595 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1596 if (N1.isUndef()) 1597 commuteShuffle(N1, N2, MaskVec); 1598 1599 if (TLI->hasVectorBlend()) { 1600 // If shuffling a splat, try to blend the splat instead. We do this here so 1601 // that even when this arises during lowering we don't have to re-handle it. 1602 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1603 BitVector UndefElements; 1604 SDValue Splat = BV->getSplatValue(&UndefElements); 1605 if (!Splat) 1606 return; 1607 1608 for (int i = 0; i < NElts; ++i) { 1609 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1610 continue; 1611 1612 // If this input comes from undef, mark it as such. 1613 if (UndefElements[MaskVec[i] - Offset]) { 1614 MaskVec[i] = -1; 1615 continue; 1616 } 1617 1618 // If we can blend a non-undef lane, use that instead. 1619 if (!UndefElements[i]) 1620 MaskVec[i] = i + Offset; 1621 } 1622 }; 1623 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1624 BlendSplat(N1BV, 0); 1625 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1626 BlendSplat(N2BV, NElts); 1627 } 1628 1629 // Canonicalize all index into lhs, -> shuffle lhs, undef 1630 // Canonicalize all index into rhs, -> shuffle rhs, undef 1631 bool AllLHS = true, AllRHS = true; 1632 bool N2Undef = N2.isUndef(); 1633 for (int i = 0; i != NElts; ++i) { 1634 if (MaskVec[i] >= NElts) { 1635 if (N2Undef) 1636 MaskVec[i] = -1; 1637 else 1638 AllLHS = false; 1639 } else if (MaskVec[i] >= 0) { 1640 AllRHS = false; 1641 } 1642 } 1643 if (AllLHS && AllRHS) 1644 return getUNDEF(VT); 1645 if (AllLHS && !N2Undef) 1646 N2 = getUNDEF(VT); 1647 if (AllRHS) { 1648 N1 = getUNDEF(VT); 1649 commuteShuffle(N1, N2, MaskVec); 1650 } 1651 // Reset our undef status after accounting for the mask. 1652 N2Undef = N2.isUndef(); 1653 // Re-check whether both sides ended up undef. 1654 if (N1.isUndef() && N2Undef) 1655 return getUNDEF(VT); 1656 1657 // If Identity shuffle return that node. 1658 bool Identity = true, AllSame = true; 1659 for (int i = 0; i != NElts; ++i) { 1660 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1661 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1662 } 1663 if (Identity && NElts) 1664 return N1; 1665 1666 // Shuffling a constant splat doesn't change the result. 1667 if (N2Undef) { 1668 SDValue V = N1; 1669 1670 // Look through any bitcasts. We check that these don't change the number 1671 // (and size) of elements and just changes their types. 1672 while (V.getOpcode() == ISD::BITCAST) 1673 V = V->getOperand(0); 1674 1675 // A splat should always show up as a build vector node. 1676 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1677 BitVector UndefElements; 1678 SDValue Splat = BV->getSplatValue(&UndefElements); 1679 // If this is a splat of an undef, shuffling it is also undef. 1680 if (Splat && Splat.isUndef()) 1681 return getUNDEF(VT); 1682 1683 bool SameNumElts = 1684 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1685 1686 // We only have a splat which can skip shuffles if there is a splatted 1687 // value and no undef lanes rearranged by the shuffle. 1688 if (Splat && UndefElements.none()) { 1689 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1690 // number of elements match or the value splatted is a zero constant. 1691 if (SameNumElts) 1692 return N1; 1693 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1694 if (C->isNullValue()) 1695 return N1; 1696 } 1697 1698 // If the shuffle itself creates a splat, build the vector directly. 1699 if (AllSame && SameNumElts) { 1700 EVT BuildVT = BV->getValueType(0); 1701 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1702 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1703 1704 // We may have jumped through bitcasts, so the type of the 1705 // BUILD_VECTOR may not match the type of the shuffle. 1706 if (BuildVT != VT) 1707 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1708 return NewBV; 1709 } 1710 } 1711 } 1712 1713 FoldingSetNodeID ID; 1714 SDValue Ops[2] = { N1, N2 }; 1715 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1716 for (int i = 0; i != NElts; ++i) 1717 ID.AddInteger(MaskVec[i]); 1718 1719 void* IP = nullptr; 1720 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1721 return SDValue(E, 0); 1722 1723 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1724 // SDNode doesn't have access to it. This memory will be "leaked" when 1725 // the node is deallocated, but recovered when the NodeAllocator is released. 1726 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1727 llvm::copy(MaskVec, MaskAlloc); 1728 1729 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1730 dl.getDebugLoc(), MaskAlloc); 1731 createOperands(N, Ops); 1732 1733 CSEMap.InsertNode(N, IP); 1734 InsertNode(N); 1735 SDValue V = SDValue(N, 0); 1736 NewSDValueDbgMsg(V, "Creating new node: ", this); 1737 return V; 1738 } 1739 1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1741 EVT VT = SV.getValueType(0); 1742 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1743 ShuffleVectorSDNode::commuteMask(MaskVec); 1744 1745 SDValue Op0 = SV.getOperand(0); 1746 SDValue Op1 = SV.getOperand(1); 1747 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1748 } 1749 1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1751 FoldingSetNodeID ID; 1752 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1753 ID.AddInteger(RegNo); 1754 void *IP = nullptr; 1755 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1756 return SDValue(E, 0); 1757 1758 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1759 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1760 CSEMap.InsertNode(N, IP); 1761 InsertNode(N); 1762 return SDValue(N, 0); 1763 } 1764 1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1766 FoldingSetNodeID ID; 1767 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1768 ID.AddPointer(RegMask); 1769 void *IP = nullptr; 1770 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1771 return SDValue(E, 0); 1772 1773 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1774 CSEMap.InsertNode(N, IP); 1775 InsertNode(N); 1776 return SDValue(N, 0); 1777 } 1778 1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1780 MCSymbol *Label) { 1781 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1782 } 1783 1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1785 SDValue Root, MCSymbol *Label) { 1786 FoldingSetNodeID ID; 1787 SDValue Ops[] = { Root }; 1788 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1789 ID.AddPointer(Label); 1790 void *IP = nullptr; 1791 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1792 return SDValue(E, 0); 1793 1794 auto *N = 1795 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1796 createOperands(N, Ops); 1797 1798 CSEMap.InsertNode(N, IP); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1804 int64_t Offset, bool isTarget, 1805 unsigned TargetFlags) { 1806 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1807 1808 FoldingSetNodeID ID; 1809 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1810 ID.AddPointer(BA); 1811 ID.AddInteger(Offset); 1812 ID.AddInteger(TargetFlags); 1813 void *IP = nullptr; 1814 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1815 return SDValue(E, 0); 1816 1817 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1818 CSEMap.InsertNode(N, IP); 1819 InsertNode(N); 1820 return SDValue(N, 0); 1821 } 1822 1823 SDValue SelectionDAG::getSrcValue(const Value *V) { 1824 assert((!V || V->getType()->isPointerTy()) && 1825 "SrcValue is not a pointer?"); 1826 1827 FoldingSetNodeID ID; 1828 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1829 ID.AddPointer(V); 1830 1831 void *IP = nullptr; 1832 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1833 return SDValue(E, 0); 1834 1835 auto *N = newSDNode<SrcValueSDNode>(V); 1836 CSEMap.InsertNode(N, IP); 1837 InsertNode(N); 1838 return SDValue(N, 0); 1839 } 1840 1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1842 FoldingSetNodeID ID; 1843 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1844 ID.AddPointer(MD); 1845 1846 void *IP = nullptr; 1847 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1848 return SDValue(E, 0); 1849 1850 auto *N = newSDNode<MDNodeSDNode>(MD); 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1857 if (VT == V.getValueType()) 1858 return V; 1859 1860 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1861 } 1862 1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1864 unsigned SrcAS, unsigned DestAS) { 1865 SDValue Ops[] = {Ptr}; 1866 FoldingSetNodeID ID; 1867 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1868 ID.AddInteger(SrcAS); 1869 ID.AddInteger(DestAS); 1870 1871 void *IP = nullptr; 1872 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1873 return SDValue(E, 0); 1874 1875 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1876 VT, SrcAS, DestAS); 1877 createOperands(N, Ops); 1878 1879 CSEMap.InsertNode(N, IP); 1880 InsertNode(N); 1881 return SDValue(N, 0); 1882 } 1883 1884 /// getShiftAmountOperand - Return the specified value casted to 1885 /// the target's desired shift amount type. 1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1887 EVT OpTy = Op.getValueType(); 1888 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1889 if (OpTy == ShTy || OpTy.isVector()) return Op; 1890 1891 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1892 } 1893 1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1895 SDLoc dl(Node); 1896 const TargetLowering &TLI = getTargetLoweringInfo(); 1897 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1898 EVT VT = Node->getValueType(0); 1899 SDValue Tmp1 = Node->getOperand(0); 1900 SDValue Tmp2 = Node->getOperand(1); 1901 unsigned Align = Node->getConstantOperandVal(3); 1902 1903 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1904 Tmp2, MachinePointerInfo(V)); 1905 SDValue VAList = VAListLoad; 1906 1907 if (Align > TLI.getMinStackArgumentAlignment()) { 1908 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1909 1910 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1911 getConstant(Align - 1, dl, VAList.getValueType())); 1912 1913 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1914 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1915 } 1916 1917 // Increment the pointer, VAList, to the next vaarg 1918 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1919 getConstant(getDataLayout().getTypeAllocSize( 1920 VT.getTypeForEVT(*getContext())), 1921 dl, VAList.getValueType())); 1922 // Store the incremented VAList to the legalized pointer 1923 Tmp1 = 1924 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1925 // Load the actual argument out of the pointer VAList 1926 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1927 } 1928 1929 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1930 SDLoc dl(Node); 1931 const TargetLowering &TLI = getTargetLoweringInfo(); 1932 // This defaults to loading a pointer from the input and storing it to the 1933 // output, returning the chain. 1934 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1935 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1936 SDValue Tmp1 = 1937 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1938 Node->getOperand(2), MachinePointerInfo(VS)); 1939 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1940 MachinePointerInfo(VD)); 1941 } 1942 1943 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1944 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1945 unsigned ByteSize = VT.getStoreSize(); 1946 Type *Ty = VT.getTypeForEVT(*getContext()); 1947 unsigned StackAlign = 1948 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1949 1950 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1951 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1952 } 1953 1954 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1955 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1956 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1957 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1958 const DataLayout &DL = getDataLayout(); 1959 unsigned Align = 1960 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1961 1962 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1963 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1964 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1965 } 1966 1967 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1968 ISD::CondCode Cond, const SDLoc &dl) { 1969 EVT OpVT = N1.getValueType(); 1970 1971 // These setcc operations always fold. 1972 switch (Cond) { 1973 default: break; 1974 case ISD::SETFALSE: 1975 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1976 case ISD::SETTRUE: 1977 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1978 1979 case ISD::SETOEQ: 1980 case ISD::SETOGT: 1981 case ISD::SETOGE: 1982 case ISD::SETOLT: 1983 case ISD::SETOLE: 1984 case ISD::SETONE: 1985 case ISD::SETO: 1986 case ISD::SETUO: 1987 case ISD::SETUEQ: 1988 case ISD::SETUNE: 1989 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 1990 break; 1991 } 1992 1993 if (OpVT.isInteger()) { 1994 // For EQ and NE, we can always pick a value for the undef to make the 1995 // predicate pass or fail, so we can return undef. 1996 // Matches behavior in llvm::ConstantFoldCompareInstruction. 1997 // icmp eq/ne X, undef -> undef. 1998 if ((N1.isUndef() || N2.isUndef()) && 1999 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2000 return getUNDEF(VT); 2001 2002 // If both operands are undef, we can return undef for int comparison. 2003 // icmp undef, undef -> undef. 2004 if (N1.isUndef() && N2.isUndef()) 2005 return getUNDEF(VT); 2006 2007 // icmp X, X -> true/false 2008 // icmp X, undef -> true/false because undef could be X. 2009 if (N1 == N2) 2010 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2011 } 2012 2013 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2014 const APInt &C2 = N2C->getAPIntValue(); 2015 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2016 const APInt &C1 = N1C->getAPIntValue(); 2017 2018 switch (Cond) { 2019 default: llvm_unreachable("Unknown integer setcc!"); 2020 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2021 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2022 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2023 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2024 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2025 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2026 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2027 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2028 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2029 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2030 } 2031 } 2032 } 2033 2034 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2035 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2036 2037 if (N1CFP && N2CFP) { 2038 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2039 switch (Cond) { 2040 default: break; 2041 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2042 return getUNDEF(VT); 2043 LLVM_FALLTHROUGH; 2044 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2045 OpVT); 2046 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2047 return getUNDEF(VT); 2048 LLVM_FALLTHROUGH; 2049 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2050 R==APFloat::cmpLessThan, dl, VT, 2051 OpVT); 2052 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2053 return getUNDEF(VT); 2054 LLVM_FALLTHROUGH; 2055 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2056 OpVT); 2057 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2058 return getUNDEF(VT); 2059 LLVM_FALLTHROUGH; 2060 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2061 VT, OpVT); 2062 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2063 return getUNDEF(VT); 2064 LLVM_FALLTHROUGH; 2065 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2066 R==APFloat::cmpEqual, dl, VT, 2067 OpVT); 2068 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2069 return getUNDEF(VT); 2070 LLVM_FALLTHROUGH; 2071 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2072 R==APFloat::cmpEqual, dl, VT, OpVT); 2073 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2074 OpVT); 2075 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2076 OpVT); 2077 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2078 R==APFloat::cmpEqual, dl, VT, 2079 OpVT); 2080 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2081 OpVT); 2082 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2083 R==APFloat::cmpLessThan, dl, VT, 2084 OpVT); 2085 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2086 R==APFloat::cmpUnordered, dl, VT, 2087 OpVT); 2088 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2089 VT, OpVT); 2090 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2091 OpVT); 2092 } 2093 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2094 // Ensure that the constant occurs on the RHS. 2095 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2096 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2097 return SDValue(); 2098 return getSetCC(dl, VT, N2, N1, SwappedCond); 2099 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2100 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2101 // If an operand is known to be a nan (or undef that could be a nan), we can 2102 // fold it. 2103 // Choosing NaN for the undef will always make unordered comparison succeed 2104 // and ordered comparison fails. 2105 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2106 switch (ISD::getUnorderedFlavor(Cond)) { 2107 default: 2108 llvm_unreachable("Unknown flavor!"); 2109 case 0: // Known false. 2110 return getBoolConstant(false, dl, VT, OpVT); 2111 case 1: // Known true. 2112 return getBoolConstant(true, dl, VT, OpVT); 2113 case 2: // Undefined. 2114 return getUNDEF(VT); 2115 } 2116 } 2117 2118 // Could not fold it. 2119 return SDValue(); 2120 } 2121 2122 /// See if the specified operand can be simplified with the knowledge that only 2123 /// the bits specified by DemandedBits are used. 2124 /// TODO: really we should be making this into the DAG equivalent of 2125 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2126 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2127 EVT VT = V.getValueType(); 2128 APInt DemandedElts = VT.isVector() 2129 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2130 : APInt(1, 1); 2131 return GetDemandedBits(V, DemandedBits, DemandedElts); 2132 } 2133 2134 /// See if the specified operand can be simplified with the knowledge that only 2135 /// the bits specified by DemandedBits are used in the elements specified by 2136 /// DemandedElts. 2137 /// TODO: really we should be making this into the DAG equivalent of 2138 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2139 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2140 const APInt &DemandedElts) { 2141 switch (V.getOpcode()) { 2142 default: 2143 break; 2144 case ISD::Constant: { 2145 auto *CV = cast<ConstantSDNode>(V.getNode()); 2146 assert(CV && "Const value should be ConstSDNode."); 2147 const APInt &CVal = CV->getAPIntValue(); 2148 APInt NewVal = CVal & DemandedBits; 2149 if (NewVal != CVal) 2150 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2151 break; 2152 } 2153 case ISD::OR: 2154 case ISD::XOR: 2155 case ISD::SIGN_EXTEND_INREG: 2156 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2157 *this, 0); 2158 case ISD::SRL: 2159 // Only look at single-use SRLs. 2160 if (!V.getNode()->hasOneUse()) 2161 break; 2162 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2163 // See if we can recursively simplify the LHS. 2164 unsigned Amt = RHSC->getZExtValue(); 2165 2166 // Watch out for shift count overflow though. 2167 if (Amt >= DemandedBits.getBitWidth()) 2168 break; 2169 APInt SrcDemandedBits = DemandedBits << Amt; 2170 if (SDValue SimplifyLHS = 2171 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2172 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2173 V.getOperand(1)); 2174 } 2175 break; 2176 case ISD::AND: { 2177 // X & -1 -> X (ignoring bits which aren't demanded). 2178 // Also handle the case where masked out bits in X are known to be zero. 2179 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2180 const APInt &AndVal = RHSC->getAPIntValue(); 2181 if (DemandedBits.isSubsetOf(AndVal) || 2182 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2183 AndVal)) 2184 return V.getOperand(0); 2185 } 2186 break; 2187 } 2188 case ISD::ANY_EXTEND: { 2189 SDValue Src = V.getOperand(0); 2190 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2191 // Being conservative here - only peek through if we only demand bits in the 2192 // non-extended source (even though the extended bits are technically 2193 // undef). 2194 if (DemandedBits.getActiveBits() > SrcBitWidth) 2195 break; 2196 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2197 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2198 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2199 break; 2200 } 2201 } 2202 return SDValue(); 2203 } 2204 2205 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2206 /// use this predicate to simplify operations downstream. 2207 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2208 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2209 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2210 } 2211 2212 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2213 /// this predicate to simplify operations downstream. Mask is known to be zero 2214 /// for bits that V cannot have. 2215 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2216 unsigned Depth) const { 2217 EVT VT = V.getValueType(); 2218 APInt DemandedElts = VT.isVector() 2219 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2220 : APInt(1, 1); 2221 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2222 } 2223 2224 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2225 /// DemandedElts. We use this predicate to simplify operations downstream. 2226 /// Mask is known to be zero for bits that V cannot have. 2227 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2228 const APInt &DemandedElts, 2229 unsigned Depth) const { 2230 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2231 } 2232 2233 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2234 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2235 unsigned Depth) const { 2236 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2237 } 2238 2239 /// isSplatValue - Return true if the vector V has the same value 2240 /// across all DemandedElts. 2241 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2242 APInt &UndefElts) { 2243 if (!DemandedElts) 2244 return false; // No demanded elts, better to assume we don't know anything. 2245 2246 EVT VT = V.getValueType(); 2247 assert(VT.isVector() && "Vector type expected"); 2248 2249 unsigned NumElts = VT.getVectorNumElements(); 2250 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2251 UndefElts = APInt::getNullValue(NumElts); 2252 2253 switch (V.getOpcode()) { 2254 case ISD::BUILD_VECTOR: { 2255 SDValue Scl; 2256 for (unsigned i = 0; i != NumElts; ++i) { 2257 SDValue Op = V.getOperand(i); 2258 if (Op.isUndef()) { 2259 UndefElts.setBit(i); 2260 continue; 2261 } 2262 if (!DemandedElts[i]) 2263 continue; 2264 if (Scl && Scl != Op) 2265 return false; 2266 Scl = Op; 2267 } 2268 return true; 2269 } 2270 case ISD::VECTOR_SHUFFLE: { 2271 // Check if this is a shuffle node doing a splat. 2272 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2273 int SplatIndex = -1; 2274 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2275 for (int i = 0; i != (int)NumElts; ++i) { 2276 int M = Mask[i]; 2277 if (M < 0) { 2278 UndefElts.setBit(i); 2279 continue; 2280 } 2281 if (!DemandedElts[i]) 2282 continue; 2283 if (0 <= SplatIndex && SplatIndex != M) 2284 return false; 2285 SplatIndex = M; 2286 } 2287 return true; 2288 } 2289 case ISD::EXTRACT_SUBVECTOR: { 2290 SDValue Src = V.getOperand(0); 2291 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2292 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2293 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2294 // Offset the demanded elts by the subvector index. 2295 uint64_t Idx = SubIdx->getZExtValue(); 2296 APInt UndefSrcElts; 2297 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2298 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2299 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2300 return true; 2301 } 2302 } 2303 break; 2304 } 2305 case ISD::ADD: 2306 case ISD::SUB: 2307 case ISD::AND: { 2308 APInt UndefLHS, UndefRHS; 2309 SDValue LHS = V.getOperand(0); 2310 SDValue RHS = V.getOperand(1); 2311 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2312 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2313 UndefElts = UndefLHS | UndefRHS; 2314 return true; 2315 } 2316 break; 2317 } 2318 } 2319 2320 return false; 2321 } 2322 2323 /// Helper wrapper to main isSplatValue function. 2324 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2325 EVT VT = V.getValueType(); 2326 assert(VT.isVector() && "Vector type expected"); 2327 unsigned NumElts = VT.getVectorNumElements(); 2328 2329 APInt UndefElts; 2330 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2331 return isSplatValue(V, DemandedElts, UndefElts) && 2332 (AllowUndefs || !UndefElts); 2333 } 2334 2335 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2336 V = peekThroughExtractSubvectors(V); 2337 2338 EVT VT = V.getValueType(); 2339 unsigned Opcode = V.getOpcode(); 2340 switch (Opcode) { 2341 default: { 2342 APInt UndefElts; 2343 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2344 if (isSplatValue(V, DemandedElts, UndefElts)) { 2345 // Handle case where all demanded elements are UNDEF. 2346 if (DemandedElts.isSubsetOf(UndefElts)) { 2347 SplatIdx = 0; 2348 return getUNDEF(VT); 2349 } 2350 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2351 return V; 2352 } 2353 break; 2354 } 2355 case ISD::VECTOR_SHUFFLE: { 2356 // Check if this is a shuffle node doing a splat. 2357 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2358 // getTargetVShiftNode currently struggles without the splat source. 2359 auto *SVN = cast<ShuffleVectorSDNode>(V); 2360 if (!SVN->isSplat()) 2361 break; 2362 int Idx = SVN->getSplatIndex(); 2363 int NumElts = V.getValueType().getVectorNumElements(); 2364 SplatIdx = Idx % NumElts; 2365 return V.getOperand(Idx / NumElts); 2366 } 2367 } 2368 2369 return SDValue(); 2370 } 2371 2372 SDValue SelectionDAG::getSplatValue(SDValue V) { 2373 int SplatIdx; 2374 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2375 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2376 SrcVector.getValueType().getScalarType(), SrcVector, 2377 getIntPtrConstant(SplatIdx, SDLoc(V))); 2378 return SDValue(); 2379 } 2380 2381 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2382 /// is less than the element bit-width of the shift node, return it. 2383 static const APInt *getValidShiftAmountConstant(SDValue V) { 2384 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2385 // Shifting more than the bitwidth is not valid. 2386 const APInt &ShAmt = SA->getAPIntValue(); 2387 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2388 return &ShAmt; 2389 } 2390 return nullptr; 2391 } 2392 2393 /// Determine which bits of Op are known to be either zero or one and return 2394 /// them in Known. For vectors, the known bits are those that are shared by 2395 /// every vector element. 2396 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2397 EVT VT = Op.getValueType(); 2398 APInt DemandedElts = VT.isVector() 2399 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2400 : APInt(1, 1); 2401 return computeKnownBits(Op, DemandedElts, Depth); 2402 } 2403 2404 /// Determine which bits of Op are known to be either zero or one and return 2405 /// them in Known. The DemandedElts argument allows us to only collect the known 2406 /// bits that are shared by the requested vector elements. 2407 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2408 unsigned Depth) const { 2409 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2410 2411 KnownBits Known(BitWidth); // Don't know anything. 2412 2413 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2414 // We know all of the bits for a constant! 2415 Known.One = C->getAPIntValue(); 2416 Known.Zero = ~Known.One; 2417 return Known; 2418 } 2419 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2420 // We know all of the bits for a constant fp! 2421 Known.One = C->getValueAPF().bitcastToAPInt(); 2422 Known.Zero = ~Known.One; 2423 return Known; 2424 } 2425 2426 if (Depth >= 6) 2427 return Known; // Limit search depth. 2428 2429 KnownBits Known2; 2430 unsigned NumElts = DemandedElts.getBitWidth(); 2431 assert((!Op.getValueType().isVector() || 2432 NumElts == Op.getValueType().getVectorNumElements()) && 2433 "Unexpected vector size"); 2434 2435 if (!DemandedElts) 2436 return Known; // No demanded elts, better to assume we don't know anything. 2437 2438 unsigned Opcode = Op.getOpcode(); 2439 switch (Opcode) { 2440 case ISD::BUILD_VECTOR: 2441 // Collect the known bits that are shared by every demanded vector element. 2442 Known.Zero.setAllBits(); Known.One.setAllBits(); 2443 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2444 if (!DemandedElts[i]) 2445 continue; 2446 2447 SDValue SrcOp = Op.getOperand(i); 2448 Known2 = computeKnownBits(SrcOp, Depth + 1); 2449 2450 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2451 if (SrcOp.getValueSizeInBits() != BitWidth) { 2452 assert(SrcOp.getValueSizeInBits() > BitWidth && 2453 "Expected BUILD_VECTOR implicit truncation"); 2454 Known2 = Known2.trunc(BitWidth); 2455 } 2456 2457 // Known bits are the values that are shared by every demanded element. 2458 Known.One &= Known2.One; 2459 Known.Zero &= Known2.Zero; 2460 2461 // If we don't know any bits, early out. 2462 if (Known.isUnknown()) 2463 break; 2464 } 2465 break; 2466 case ISD::VECTOR_SHUFFLE: { 2467 // Collect the known bits that are shared by every vector element referenced 2468 // by the shuffle. 2469 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2470 Known.Zero.setAllBits(); Known.One.setAllBits(); 2471 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2472 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2473 for (unsigned i = 0; i != NumElts; ++i) { 2474 if (!DemandedElts[i]) 2475 continue; 2476 2477 int M = SVN->getMaskElt(i); 2478 if (M < 0) { 2479 // For UNDEF elements, we don't know anything about the common state of 2480 // the shuffle result. 2481 Known.resetAll(); 2482 DemandedLHS.clearAllBits(); 2483 DemandedRHS.clearAllBits(); 2484 break; 2485 } 2486 2487 if ((unsigned)M < NumElts) 2488 DemandedLHS.setBit((unsigned)M % NumElts); 2489 else 2490 DemandedRHS.setBit((unsigned)M % NumElts); 2491 } 2492 // Known bits are the values that are shared by every demanded element. 2493 if (!!DemandedLHS) { 2494 SDValue LHS = Op.getOperand(0); 2495 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2496 Known.One &= Known2.One; 2497 Known.Zero &= Known2.Zero; 2498 } 2499 // If we don't know any bits, early out. 2500 if (Known.isUnknown()) 2501 break; 2502 if (!!DemandedRHS) { 2503 SDValue RHS = Op.getOperand(1); 2504 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2505 Known.One &= Known2.One; 2506 Known.Zero &= Known2.Zero; 2507 } 2508 break; 2509 } 2510 case ISD::CONCAT_VECTORS: { 2511 // Split DemandedElts and test each of the demanded subvectors. 2512 Known.Zero.setAllBits(); Known.One.setAllBits(); 2513 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2514 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2515 unsigned NumSubVectors = Op.getNumOperands(); 2516 for (unsigned i = 0; i != NumSubVectors; ++i) { 2517 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2518 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2519 if (!!DemandedSub) { 2520 SDValue Sub = Op.getOperand(i); 2521 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2522 Known.One &= Known2.One; 2523 Known.Zero &= Known2.Zero; 2524 } 2525 // If we don't know any bits, early out. 2526 if (Known.isUnknown()) 2527 break; 2528 } 2529 break; 2530 } 2531 case ISD::INSERT_SUBVECTOR: { 2532 // If we know the element index, demand any elements from the subvector and 2533 // the remainder from the src its inserted into, otherwise demand them all. 2534 SDValue Src = Op.getOperand(0); 2535 SDValue Sub = Op.getOperand(1); 2536 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2537 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2538 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2539 Known.One.setAllBits(); 2540 Known.Zero.setAllBits(); 2541 uint64_t Idx = SubIdx->getZExtValue(); 2542 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2543 if (!!DemandedSubElts) { 2544 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2545 if (Known.isUnknown()) 2546 break; // early-out. 2547 } 2548 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2549 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2550 if (!!DemandedSrcElts) { 2551 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2552 Known.One &= Known2.One; 2553 Known.Zero &= Known2.Zero; 2554 } 2555 } else { 2556 Known = computeKnownBits(Sub, Depth + 1); 2557 if (Known.isUnknown()) 2558 break; // early-out. 2559 Known2 = computeKnownBits(Src, Depth + 1); 2560 Known.One &= Known2.One; 2561 Known.Zero &= Known2.Zero; 2562 } 2563 break; 2564 } 2565 case ISD::EXTRACT_SUBVECTOR: { 2566 // If we know the element index, just demand that subvector elements, 2567 // otherwise demand them all. 2568 SDValue Src = Op.getOperand(0); 2569 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2570 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2571 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2572 // Offset the demanded elts by the subvector index. 2573 uint64_t Idx = SubIdx->getZExtValue(); 2574 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2575 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2576 } else { 2577 Known = computeKnownBits(Src, Depth + 1); 2578 } 2579 break; 2580 } 2581 case ISD::SCALAR_TO_VECTOR: { 2582 // We know about scalar_to_vector as much as we know about it source, 2583 // which becomes the first element of otherwise unknown vector. 2584 if (DemandedElts != 1) 2585 break; 2586 2587 SDValue N0 = Op.getOperand(0); 2588 Known = computeKnownBits(N0, Depth + 1); 2589 if (N0.getValueSizeInBits() != BitWidth) 2590 Known = Known.trunc(BitWidth); 2591 2592 break; 2593 } 2594 case ISD::BITCAST: { 2595 SDValue N0 = Op.getOperand(0); 2596 EVT SubVT = N0.getValueType(); 2597 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2598 2599 // Ignore bitcasts from unsupported types. 2600 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2601 break; 2602 2603 // Fast handling of 'identity' bitcasts. 2604 if (BitWidth == SubBitWidth) { 2605 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2606 break; 2607 } 2608 2609 bool IsLE = getDataLayout().isLittleEndian(); 2610 2611 // Bitcast 'small element' vector to 'large element' scalar/vector. 2612 if ((BitWidth % SubBitWidth) == 0) { 2613 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2614 2615 // Collect known bits for the (larger) output by collecting the known 2616 // bits from each set of sub elements and shift these into place. 2617 // We need to separately call computeKnownBits for each set of 2618 // sub elements as the knownbits for each is likely to be different. 2619 unsigned SubScale = BitWidth / SubBitWidth; 2620 APInt SubDemandedElts(NumElts * SubScale, 0); 2621 for (unsigned i = 0; i != NumElts; ++i) 2622 if (DemandedElts[i]) 2623 SubDemandedElts.setBit(i * SubScale); 2624 2625 for (unsigned i = 0; i != SubScale; ++i) { 2626 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2627 Depth + 1); 2628 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2629 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2630 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2631 } 2632 } 2633 2634 // Bitcast 'large element' scalar/vector to 'small element' vector. 2635 if ((SubBitWidth % BitWidth) == 0) { 2636 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2637 2638 // Collect known bits for the (smaller) output by collecting the known 2639 // bits from the overlapping larger input elements and extracting the 2640 // sub sections we actually care about. 2641 unsigned SubScale = SubBitWidth / BitWidth; 2642 APInt SubDemandedElts(NumElts / SubScale, 0); 2643 for (unsigned i = 0; i != NumElts; ++i) 2644 if (DemandedElts[i]) 2645 SubDemandedElts.setBit(i / SubScale); 2646 2647 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2648 2649 Known.Zero.setAllBits(); Known.One.setAllBits(); 2650 for (unsigned i = 0; i != NumElts; ++i) 2651 if (DemandedElts[i]) { 2652 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2653 unsigned Offset = (Shifts % SubScale) * BitWidth; 2654 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2655 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2656 // If we don't know any bits, early out. 2657 if (Known.isUnknown()) 2658 break; 2659 } 2660 } 2661 break; 2662 } 2663 case ISD::AND: 2664 // If either the LHS or the RHS are Zero, the result is zero. 2665 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2666 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2667 2668 // Output known-1 bits are only known if set in both the LHS & RHS. 2669 Known.One &= Known2.One; 2670 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2671 Known.Zero |= Known2.Zero; 2672 break; 2673 case ISD::OR: 2674 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2675 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2676 2677 // Output known-0 bits are only known if clear in both the LHS & RHS. 2678 Known.Zero &= Known2.Zero; 2679 // Output known-1 are known to be set if set in either the LHS | RHS. 2680 Known.One |= Known2.One; 2681 break; 2682 case ISD::XOR: { 2683 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2684 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2685 2686 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2687 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2688 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2689 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2690 Known.Zero = KnownZeroOut; 2691 break; 2692 } 2693 case ISD::MUL: { 2694 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2695 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2696 2697 // If low bits are zero in either operand, output low known-0 bits. 2698 // Also compute a conservative estimate for high known-0 bits. 2699 // More trickiness is possible, but this is sufficient for the 2700 // interesting case of alignment computation. 2701 unsigned TrailZ = Known.countMinTrailingZeros() + 2702 Known2.countMinTrailingZeros(); 2703 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2704 Known2.countMinLeadingZeros(), 2705 BitWidth) - BitWidth; 2706 2707 Known.resetAll(); 2708 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2709 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2710 break; 2711 } 2712 case ISD::UDIV: { 2713 // For the purposes of computing leading zeros we can conservatively 2714 // treat a udiv as a logical right shift by the power of 2 known to 2715 // be less than the denominator. 2716 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2717 unsigned LeadZ = Known2.countMinLeadingZeros(); 2718 2719 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2720 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2721 if (RHSMaxLeadingZeros != BitWidth) 2722 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2723 2724 Known.Zero.setHighBits(LeadZ); 2725 break; 2726 } 2727 case ISD::SELECT: 2728 case ISD::VSELECT: 2729 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2730 // If we don't know any bits, early out. 2731 if (Known.isUnknown()) 2732 break; 2733 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2734 2735 // Only known if known in both the LHS and RHS. 2736 Known.One &= Known2.One; 2737 Known.Zero &= Known2.Zero; 2738 break; 2739 case ISD::SELECT_CC: 2740 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2741 // If we don't know any bits, early out. 2742 if (Known.isUnknown()) 2743 break; 2744 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2745 2746 // Only known if known in both the LHS and RHS. 2747 Known.One &= Known2.One; 2748 Known.Zero &= Known2.Zero; 2749 break; 2750 case ISD::SMULO: 2751 case ISD::UMULO: 2752 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2753 if (Op.getResNo() != 1) 2754 break; 2755 // The boolean result conforms to getBooleanContents. 2756 // If we know the result of a setcc has the top bits zero, use this info. 2757 // We know that we have an integer-based boolean since these operations 2758 // are only available for integer. 2759 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2760 TargetLowering::ZeroOrOneBooleanContent && 2761 BitWidth > 1) 2762 Known.Zero.setBitsFrom(1); 2763 break; 2764 case ISD::SETCC: 2765 // If we know the result of a setcc has the top bits zero, use this info. 2766 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2767 TargetLowering::ZeroOrOneBooleanContent && 2768 BitWidth > 1) 2769 Known.Zero.setBitsFrom(1); 2770 break; 2771 case ISD::SHL: 2772 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2773 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2774 unsigned Shift = ShAmt->getZExtValue(); 2775 Known.Zero <<= Shift; 2776 Known.One <<= Shift; 2777 // Low bits are known zero. 2778 Known.Zero.setLowBits(Shift); 2779 } 2780 break; 2781 case ISD::SRL: 2782 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2783 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2784 unsigned Shift = ShAmt->getZExtValue(); 2785 Known.Zero.lshrInPlace(Shift); 2786 Known.One.lshrInPlace(Shift); 2787 // High bits are known zero. 2788 Known.Zero.setHighBits(Shift); 2789 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2790 // If the shift amount is a vector of constants see if we can bound 2791 // the number of upper zero bits. 2792 unsigned ShiftAmountMin = BitWidth; 2793 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2794 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2795 const APInt &ShAmt = C->getAPIntValue(); 2796 if (ShAmt.ult(BitWidth)) { 2797 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2798 ShAmt.getZExtValue()); 2799 continue; 2800 } 2801 } 2802 // Don't know anything. 2803 ShiftAmountMin = 0; 2804 break; 2805 } 2806 2807 Known.Zero.setHighBits(ShiftAmountMin); 2808 } 2809 break; 2810 case ISD::SRA: 2811 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2812 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2813 unsigned Shift = ShAmt->getZExtValue(); 2814 // Sign extend known zero/one bit (else is unknown). 2815 Known.Zero.ashrInPlace(Shift); 2816 Known.One.ashrInPlace(Shift); 2817 } 2818 break; 2819 case ISD::FSHL: 2820 case ISD::FSHR: 2821 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2822 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2823 2824 // For fshl, 0-shift returns the 1st arg. 2825 // For fshr, 0-shift returns the 2nd arg. 2826 if (Amt == 0) { 2827 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2828 DemandedElts, Depth + 1); 2829 break; 2830 } 2831 2832 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2833 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2834 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2835 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2836 if (Opcode == ISD::FSHL) { 2837 Known.One <<= Amt; 2838 Known.Zero <<= Amt; 2839 Known2.One.lshrInPlace(BitWidth - Amt); 2840 Known2.Zero.lshrInPlace(BitWidth - Amt); 2841 } else { 2842 Known.One <<= BitWidth - Amt; 2843 Known.Zero <<= BitWidth - Amt; 2844 Known2.One.lshrInPlace(Amt); 2845 Known2.Zero.lshrInPlace(Amt); 2846 } 2847 Known.One |= Known2.One; 2848 Known.Zero |= Known2.Zero; 2849 } 2850 break; 2851 case ISD::SIGN_EXTEND_INREG: { 2852 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2853 unsigned EBits = EVT.getScalarSizeInBits(); 2854 2855 // Sign extension. Compute the demanded bits in the result that are not 2856 // present in the input. 2857 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2858 2859 APInt InSignMask = APInt::getSignMask(EBits); 2860 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2861 2862 // If the sign extended bits are demanded, we know that the sign 2863 // bit is demanded. 2864 InSignMask = InSignMask.zext(BitWidth); 2865 if (NewBits.getBoolValue()) 2866 InputDemandedBits |= InSignMask; 2867 2868 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2869 Known.One &= InputDemandedBits; 2870 Known.Zero &= InputDemandedBits; 2871 2872 // If the sign bit of the input is known set or clear, then we know the 2873 // top bits of the result. 2874 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2875 Known.Zero |= NewBits; 2876 Known.One &= ~NewBits; 2877 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2878 Known.One |= NewBits; 2879 Known.Zero &= ~NewBits; 2880 } else { // Input sign bit unknown 2881 Known.Zero &= ~NewBits; 2882 Known.One &= ~NewBits; 2883 } 2884 break; 2885 } 2886 case ISD::CTTZ: 2887 case ISD::CTTZ_ZERO_UNDEF: { 2888 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2889 // If we have a known 1, its position is our upper bound. 2890 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2891 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2892 Known.Zero.setBitsFrom(LowBits); 2893 break; 2894 } 2895 case ISD::CTLZ: 2896 case ISD::CTLZ_ZERO_UNDEF: { 2897 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2898 // If we have a known 1, its position is our upper bound. 2899 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2900 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2901 Known.Zero.setBitsFrom(LowBits); 2902 break; 2903 } 2904 case ISD::CTPOP: { 2905 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2906 // If we know some of the bits are zero, they can't be one. 2907 unsigned PossibleOnes = Known2.countMaxPopulation(); 2908 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2909 break; 2910 } 2911 case ISD::LOAD: { 2912 LoadSDNode *LD = cast<LoadSDNode>(Op); 2913 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 2914 if (ISD::isNON_EXTLoad(LD) && Cst) { 2915 // Determine any common known bits from the loaded constant pool value. 2916 Type *CstTy = Cst->getType(); 2917 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 2918 // If its a vector splat, then we can (quickly) reuse the scalar path. 2919 // NOTE: We assume all elements match and none are UNDEF. 2920 if (CstTy->isVectorTy()) { 2921 if (const Constant *Splat = Cst->getSplatValue()) { 2922 Cst = Splat; 2923 CstTy = Cst->getType(); 2924 } 2925 } 2926 // TODO - do we need to handle different bitwidths? 2927 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 2928 // Iterate across all vector elements finding common known bits. 2929 Known.One.setAllBits(); 2930 Known.Zero.setAllBits(); 2931 for (unsigned i = 0; i != NumElts; ++i) { 2932 if (!DemandedElts[i]) 2933 continue; 2934 if (Constant *Elt = Cst->getAggregateElement(i)) { 2935 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 2936 const APInt &Value = CInt->getValue(); 2937 Known.One &= Value; 2938 Known.Zero &= ~Value; 2939 continue; 2940 } 2941 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 2942 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2943 Known.One &= Value; 2944 Known.Zero &= ~Value; 2945 continue; 2946 } 2947 } 2948 Known.One.clearAllBits(); 2949 Known.Zero.clearAllBits(); 2950 break; 2951 } 2952 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 2953 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 2954 const APInt &Value = CInt->getValue(); 2955 Known.One = Value; 2956 Known.Zero = ~Value; 2957 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 2958 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2959 Known.One = Value; 2960 Known.Zero = ~Value; 2961 } 2962 } 2963 } 2964 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2965 // If this is a ZEXTLoad and we are looking at the loaded value. 2966 EVT VT = LD->getMemoryVT(); 2967 unsigned MemBits = VT.getScalarSizeInBits(); 2968 Known.Zero.setBitsFrom(MemBits); 2969 } else if (const MDNode *Ranges = LD->getRanges()) { 2970 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2971 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2972 } 2973 break; 2974 } 2975 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2976 EVT InVT = Op.getOperand(0).getValueType(); 2977 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2978 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2979 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2980 break; 2981 } 2982 case ISD::ZERO_EXTEND: { 2983 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2984 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2985 break; 2986 } 2987 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2988 EVT InVT = Op.getOperand(0).getValueType(); 2989 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2990 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2991 // If the sign bit is known to be zero or one, then sext will extend 2992 // it to the top bits, else it will just zext. 2993 Known = Known.sext(BitWidth); 2994 break; 2995 } 2996 case ISD::SIGN_EXTEND: { 2997 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2998 // If the sign bit is known to be zero or one, then sext will extend 2999 // it to the top bits, else it will just zext. 3000 Known = Known.sext(BitWidth); 3001 break; 3002 } 3003 case ISD::ANY_EXTEND: { 3004 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3005 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3006 break; 3007 } 3008 case ISD::TRUNCATE: { 3009 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known = Known.trunc(BitWidth); 3011 break; 3012 } 3013 case ISD::AssertZext: { 3014 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3015 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3016 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3017 Known.Zero |= (~InMask); 3018 Known.One &= (~Known.Zero); 3019 break; 3020 } 3021 case ISD::FGETSIGN: 3022 // All bits are zero except the low bit. 3023 Known.Zero.setBitsFrom(1); 3024 break; 3025 case ISD::USUBO: 3026 case ISD::SSUBO: 3027 if (Op.getResNo() == 1) { 3028 // If we know the result of a setcc has the top bits zero, use this info. 3029 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3030 TargetLowering::ZeroOrOneBooleanContent && 3031 BitWidth > 1) 3032 Known.Zero.setBitsFrom(1); 3033 break; 3034 } 3035 LLVM_FALLTHROUGH; 3036 case ISD::SUB: 3037 case ISD::SUBC: { 3038 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3040 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3041 Known, Known2); 3042 break; 3043 } 3044 case ISD::UADDO: 3045 case ISD::SADDO: 3046 case ISD::ADDCARRY: 3047 if (Op.getResNo() == 1) { 3048 // If we know the result of a setcc has the top bits zero, use this info. 3049 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3050 TargetLowering::ZeroOrOneBooleanContent && 3051 BitWidth > 1) 3052 Known.Zero.setBitsFrom(1); 3053 break; 3054 } 3055 LLVM_FALLTHROUGH; 3056 case ISD::ADD: 3057 case ISD::ADDC: 3058 case ISD::ADDE: { 3059 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3060 3061 // With ADDE and ADDCARRY, a carry bit may be added in. 3062 KnownBits Carry(1); 3063 if (Opcode == ISD::ADDE) 3064 // Can't track carry from glue, set carry to unknown. 3065 Carry.resetAll(); 3066 else if (Opcode == ISD::ADDCARRY) 3067 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3068 // the trouble (how often will we find a known carry bit). And I haven't 3069 // tested this very much yet, but something like this might work: 3070 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3071 // Carry = Carry.zextOrTrunc(1, false); 3072 Carry.resetAll(); 3073 else 3074 Carry.setAllZero(); 3075 3076 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3077 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3078 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3079 break; 3080 } 3081 case ISD::SREM: 3082 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3083 const APInt &RA = Rem->getAPIntValue().abs(); 3084 if (RA.isPowerOf2()) { 3085 APInt LowBits = RA - 1; 3086 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3087 3088 // The low bits of the first operand are unchanged by the srem. 3089 Known.Zero = Known2.Zero & LowBits; 3090 Known.One = Known2.One & LowBits; 3091 3092 // If the first operand is non-negative or has all low bits zero, then 3093 // the upper bits are all zero. 3094 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3095 Known.Zero |= ~LowBits; 3096 3097 // If the first operand is negative and not all low bits are zero, then 3098 // the upper bits are all one. 3099 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3100 Known.One |= ~LowBits; 3101 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3102 } 3103 } 3104 break; 3105 case ISD::UREM: { 3106 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3107 const APInt &RA = Rem->getAPIntValue(); 3108 if (RA.isPowerOf2()) { 3109 APInt LowBits = (RA - 1); 3110 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3111 3112 // The upper bits are all zero, the lower ones are unchanged. 3113 Known.Zero = Known2.Zero | ~LowBits; 3114 Known.One = Known2.One & LowBits; 3115 break; 3116 } 3117 } 3118 3119 // Since the result is less than or equal to either operand, any leading 3120 // zero bits in either operand must also exist in the result. 3121 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3122 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3123 3124 uint32_t Leaders = 3125 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3126 Known.resetAll(); 3127 Known.Zero.setHighBits(Leaders); 3128 break; 3129 } 3130 case ISD::EXTRACT_ELEMENT: { 3131 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3132 const unsigned Index = Op.getConstantOperandVal(1); 3133 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3134 3135 // Remove low part of known bits mask 3136 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3137 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3138 3139 // Remove high part of known bit mask 3140 Known = Known.trunc(EltBitWidth); 3141 break; 3142 } 3143 case ISD::EXTRACT_VECTOR_ELT: { 3144 SDValue InVec = Op.getOperand(0); 3145 SDValue EltNo = Op.getOperand(1); 3146 EVT VecVT = InVec.getValueType(); 3147 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3148 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3149 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3150 // anything about the extended bits. 3151 if (BitWidth > EltBitWidth) 3152 Known = Known.trunc(EltBitWidth); 3153 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3154 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3155 // If we know the element index, just demand that vector element. 3156 unsigned Idx = ConstEltNo->getZExtValue(); 3157 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3158 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3159 } else { 3160 // Unknown element index, so ignore DemandedElts and demand them all. 3161 Known = computeKnownBits(InVec, Depth + 1); 3162 } 3163 if (BitWidth > EltBitWidth) 3164 Known = Known.zext(BitWidth, false /* => any extend */); 3165 break; 3166 } 3167 case ISD::INSERT_VECTOR_ELT: { 3168 SDValue InVec = Op.getOperand(0); 3169 SDValue InVal = Op.getOperand(1); 3170 SDValue EltNo = Op.getOperand(2); 3171 3172 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3173 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3174 // If we know the element index, split the demand between the 3175 // source vector and the inserted element. 3176 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3177 unsigned EltIdx = CEltNo->getZExtValue(); 3178 3179 // If we demand the inserted element then add its common known bits. 3180 if (DemandedElts[EltIdx]) { 3181 Known2 = computeKnownBits(InVal, Depth + 1); 3182 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3183 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3184 } 3185 3186 // If we demand the source vector then add its common known bits, ensuring 3187 // that we don't demand the inserted element. 3188 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3189 if (!!VectorElts) { 3190 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3191 Known.One &= Known2.One; 3192 Known.Zero &= Known2.Zero; 3193 } 3194 } else { 3195 // Unknown element index, so ignore DemandedElts and demand them all. 3196 Known = computeKnownBits(InVec, Depth + 1); 3197 Known2 = computeKnownBits(InVal, Depth + 1); 3198 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3199 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3200 } 3201 break; 3202 } 3203 case ISD::BITREVERSE: { 3204 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3205 Known.Zero = Known2.Zero.reverseBits(); 3206 Known.One = Known2.One.reverseBits(); 3207 break; 3208 } 3209 case ISD::BSWAP: { 3210 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3211 Known.Zero = Known2.Zero.byteSwap(); 3212 Known.One = Known2.One.byteSwap(); 3213 break; 3214 } 3215 case ISD::ABS: { 3216 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3217 3218 // If the source's MSB is zero then we know the rest of the bits already. 3219 if (Known2.isNonNegative()) { 3220 Known.Zero = Known2.Zero; 3221 Known.One = Known2.One; 3222 break; 3223 } 3224 3225 // We only know that the absolute values's MSB will be zero iff there is 3226 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3227 Known2.One.clearSignBit(); 3228 if (Known2.One.getBoolValue()) { 3229 Known.Zero = APInt::getSignMask(BitWidth); 3230 break; 3231 } 3232 break; 3233 } 3234 case ISD::UMIN: { 3235 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3236 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3237 3238 // UMIN - we know that the result will have the maximum of the 3239 // known zero leading bits of the inputs. 3240 unsigned LeadZero = Known.countMinLeadingZeros(); 3241 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3242 3243 Known.Zero &= Known2.Zero; 3244 Known.One &= Known2.One; 3245 Known.Zero.setHighBits(LeadZero); 3246 break; 3247 } 3248 case ISD::UMAX: { 3249 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3250 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3251 3252 // UMAX - we know that the result will have the maximum of the 3253 // known one leading bits of the inputs. 3254 unsigned LeadOne = Known.countMinLeadingOnes(); 3255 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3256 3257 Known.Zero &= Known2.Zero; 3258 Known.One &= Known2.One; 3259 Known.One.setHighBits(LeadOne); 3260 break; 3261 } 3262 case ISD::SMIN: 3263 case ISD::SMAX: { 3264 // If we have a clamp pattern, we know that the number of sign bits will be 3265 // the minimum of the clamp min/max range. 3266 bool IsMax = (Opcode == ISD::SMAX); 3267 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3268 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3269 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3270 CstHigh = 3271 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3272 if (CstLow && CstHigh) { 3273 if (!IsMax) 3274 std::swap(CstLow, CstHigh); 3275 3276 const APInt &ValueLow = CstLow->getAPIntValue(); 3277 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3278 if (ValueLow.sle(ValueHigh)) { 3279 unsigned LowSignBits = ValueLow.getNumSignBits(); 3280 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3281 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3282 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3283 Known.One.setHighBits(MinSignBits); 3284 break; 3285 } 3286 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3287 Known.Zero.setHighBits(MinSignBits); 3288 break; 3289 } 3290 } 3291 } 3292 3293 // Fallback - just get the shared known bits of the operands. 3294 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3295 if (Known.isUnknown()) break; // Early-out 3296 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3297 Known.Zero &= Known2.Zero; 3298 Known.One &= Known2.One; 3299 break; 3300 } 3301 case ISD::FrameIndex: 3302 case ISD::TargetFrameIndex: 3303 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3304 break; 3305 3306 default: 3307 if (Opcode < ISD::BUILTIN_OP_END) 3308 break; 3309 LLVM_FALLTHROUGH; 3310 case ISD::INTRINSIC_WO_CHAIN: 3311 case ISD::INTRINSIC_W_CHAIN: 3312 case ISD::INTRINSIC_VOID: 3313 // Allow the target to implement this method for its nodes. 3314 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3315 break; 3316 } 3317 3318 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3319 return Known; 3320 } 3321 3322 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3323 SDValue N1) const { 3324 // X + 0 never overflow 3325 if (isNullConstant(N1)) 3326 return OFK_Never; 3327 3328 KnownBits N1Known = computeKnownBits(N1); 3329 if (N1Known.Zero.getBoolValue()) { 3330 KnownBits N0Known = computeKnownBits(N0); 3331 3332 bool overflow; 3333 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3334 if (!overflow) 3335 return OFK_Never; 3336 } 3337 3338 // mulhi + 1 never overflow 3339 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3340 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3341 return OFK_Never; 3342 3343 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3344 KnownBits N0Known = computeKnownBits(N0); 3345 3346 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3347 return OFK_Never; 3348 } 3349 3350 return OFK_Sometime; 3351 } 3352 3353 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3354 EVT OpVT = Val.getValueType(); 3355 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3356 3357 // Is the constant a known power of 2? 3358 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3359 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3360 3361 // A left-shift of a constant one will have exactly one bit set because 3362 // shifting the bit off the end is undefined. 3363 if (Val.getOpcode() == ISD::SHL) { 3364 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3365 if (C && C->getAPIntValue() == 1) 3366 return true; 3367 } 3368 3369 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3370 // one bit set. 3371 if (Val.getOpcode() == ISD::SRL) { 3372 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3373 if (C && C->getAPIntValue().isSignMask()) 3374 return true; 3375 } 3376 3377 // Are all operands of a build vector constant powers of two? 3378 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3379 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3380 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3381 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3382 return false; 3383 })) 3384 return true; 3385 3386 // More could be done here, though the above checks are enough 3387 // to handle some common cases. 3388 3389 // Fall back to computeKnownBits to catch other known cases. 3390 KnownBits Known = computeKnownBits(Val); 3391 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3392 } 3393 3394 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3395 EVT VT = Op.getValueType(); 3396 APInt DemandedElts = VT.isVector() 3397 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3398 : APInt(1, 1); 3399 return ComputeNumSignBits(Op, DemandedElts, Depth); 3400 } 3401 3402 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3403 unsigned Depth) const { 3404 EVT VT = Op.getValueType(); 3405 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3406 unsigned VTBits = VT.getScalarSizeInBits(); 3407 unsigned NumElts = DemandedElts.getBitWidth(); 3408 unsigned Tmp, Tmp2; 3409 unsigned FirstAnswer = 1; 3410 3411 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3412 const APInt &Val = C->getAPIntValue(); 3413 return Val.getNumSignBits(); 3414 } 3415 3416 if (Depth >= 6) 3417 return 1; // Limit search depth. 3418 3419 if (!DemandedElts) 3420 return 1; // No demanded elts, better to assume we don't know anything. 3421 3422 unsigned Opcode = Op.getOpcode(); 3423 switch (Opcode) { 3424 default: break; 3425 case ISD::AssertSext: 3426 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3427 return VTBits-Tmp+1; 3428 case ISD::AssertZext: 3429 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3430 return VTBits-Tmp; 3431 3432 case ISD::BUILD_VECTOR: 3433 Tmp = VTBits; 3434 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3435 if (!DemandedElts[i]) 3436 continue; 3437 3438 SDValue SrcOp = Op.getOperand(i); 3439 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3440 3441 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3442 if (SrcOp.getValueSizeInBits() != VTBits) { 3443 assert(SrcOp.getValueSizeInBits() > VTBits && 3444 "Expected BUILD_VECTOR implicit truncation"); 3445 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3446 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3447 } 3448 Tmp = std::min(Tmp, Tmp2); 3449 } 3450 return Tmp; 3451 3452 case ISD::VECTOR_SHUFFLE: { 3453 // Collect the minimum number of sign bits that are shared by every vector 3454 // element referenced by the shuffle. 3455 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3456 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3457 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3458 for (unsigned i = 0; i != NumElts; ++i) { 3459 int M = SVN->getMaskElt(i); 3460 if (!DemandedElts[i]) 3461 continue; 3462 // For UNDEF elements, we don't know anything about the common state of 3463 // the shuffle result. 3464 if (M < 0) 3465 return 1; 3466 if ((unsigned)M < NumElts) 3467 DemandedLHS.setBit((unsigned)M % NumElts); 3468 else 3469 DemandedRHS.setBit((unsigned)M % NumElts); 3470 } 3471 Tmp = std::numeric_limits<unsigned>::max(); 3472 if (!!DemandedLHS) 3473 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3474 if (!!DemandedRHS) { 3475 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3476 Tmp = std::min(Tmp, Tmp2); 3477 } 3478 // If we don't know anything, early out and try computeKnownBits fall-back. 3479 if (Tmp == 1) 3480 break; 3481 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3482 return Tmp; 3483 } 3484 3485 case ISD::BITCAST: { 3486 SDValue N0 = Op.getOperand(0); 3487 EVT SrcVT = N0.getValueType(); 3488 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3489 3490 // Ignore bitcasts from unsupported types.. 3491 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3492 break; 3493 3494 // Fast handling of 'identity' bitcasts. 3495 if (VTBits == SrcBits) 3496 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3497 3498 bool IsLE = getDataLayout().isLittleEndian(); 3499 3500 // Bitcast 'large element' scalar/vector to 'small element' vector. 3501 if ((SrcBits % VTBits) == 0) { 3502 assert(VT.isVector() && "Expected bitcast to vector"); 3503 3504 unsigned Scale = SrcBits / VTBits; 3505 APInt SrcDemandedElts(NumElts / Scale, 0); 3506 for (unsigned i = 0; i != NumElts; ++i) 3507 if (DemandedElts[i]) 3508 SrcDemandedElts.setBit(i / Scale); 3509 3510 // Fast case - sign splat can be simply split across the small elements. 3511 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3512 if (Tmp == SrcBits) 3513 return VTBits; 3514 3515 // Slow case - determine how far the sign extends into each sub-element. 3516 Tmp2 = VTBits; 3517 for (unsigned i = 0; i != NumElts; ++i) 3518 if (DemandedElts[i]) { 3519 unsigned SubOffset = i % Scale; 3520 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3521 SubOffset = SubOffset * VTBits; 3522 if (Tmp <= SubOffset) 3523 return 1; 3524 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3525 } 3526 return Tmp2; 3527 } 3528 break; 3529 } 3530 3531 case ISD::SIGN_EXTEND: 3532 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3533 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3534 case ISD::SIGN_EXTEND_INREG: 3535 // Max of the input and what this extends. 3536 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3537 Tmp = VTBits-Tmp+1; 3538 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3539 return std::max(Tmp, Tmp2); 3540 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3541 SDValue Src = Op.getOperand(0); 3542 EVT SrcVT = Src.getValueType(); 3543 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3544 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3545 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3546 } 3547 3548 case ISD::SRA: 3549 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3550 // SRA X, C -> adds C sign bits. 3551 if (ConstantSDNode *C = 3552 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3553 APInt ShiftVal = C->getAPIntValue(); 3554 ShiftVal += Tmp; 3555 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3556 } 3557 return Tmp; 3558 case ISD::SHL: 3559 if (ConstantSDNode *C = 3560 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3561 // shl destroys sign bits. 3562 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3563 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3564 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3565 return Tmp - C->getZExtValue(); 3566 } 3567 break; 3568 case ISD::AND: 3569 case ISD::OR: 3570 case ISD::XOR: // NOT is handled here. 3571 // Logical binary ops preserve the number of sign bits at the worst. 3572 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3573 if (Tmp != 1) { 3574 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3575 FirstAnswer = std::min(Tmp, Tmp2); 3576 // We computed what we know about the sign bits as our first 3577 // answer. Now proceed to the generic code that uses 3578 // computeKnownBits, and pick whichever answer is better. 3579 } 3580 break; 3581 3582 case ISD::SELECT: 3583 case ISD::VSELECT: 3584 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3585 if (Tmp == 1) return 1; // Early out. 3586 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3587 return std::min(Tmp, Tmp2); 3588 case ISD::SELECT_CC: 3589 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3590 if (Tmp == 1) return 1; // Early out. 3591 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3592 return std::min(Tmp, Tmp2); 3593 3594 case ISD::SMIN: 3595 case ISD::SMAX: { 3596 // If we have a clamp pattern, we know that the number of sign bits will be 3597 // the minimum of the clamp min/max range. 3598 bool IsMax = (Opcode == ISD::SMAX); 3599 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3600 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3601 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3602 CstHigh = 3603 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3604 if (CstLow && CstHigh) { 3605 if (!IsMax) 3606 std::swap(CstLow, CstHigh); 3607 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3608 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3609 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3610 return std::min(Tmp, Tmp2); 3611 } 3612 } 3613 3614 // Fallback - just get the minimum number of sign bits of the operands. 3615 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3616 if (Tmp == 1) 3617 return 1; // Early out. 3618 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3619 return std::min(Tmp, Tmp2); 3620 } 3621 case ISD::UMIN: 3622 case ISD::UMAX: 3623 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3624 if (Tmp == 1) 3625 return 1; // Early out. 3626 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3627 return std::min(Tmp, Tmp2); 3628 case ISD::SADDO: 3629 case ISD::UADDO: 3630 case ISD::SSUBO: 3631 case ISD::USUBO: 3632 case ISD::SMULO: 3633 case ISD::UMULO: 3634 if (Op.getResNo() != 1) 3635 break; 3636 // The boolean result conforms to getBooleanContents. Fall through. 3637 // If setcc returns 0/-1, all bits are sign bits. 3638 // We know that we have an integer-based boolean since these operations 3639 // are only available for integer. 3640 if (TLI->getBooleanContents(VT.isVector(), false) == 3641 TargetLowering::ZeroOrNegativeOneBooleanContent) 3642 return VTBits; 3643 break; 3644 case ISD::SETCC: 3645 // If setcc returns 0/-1, all bits are sign bits. 3646 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3647 TargetLowering::ZeroOrNegativeOneBooleanContent) 3648 return VTBits; 3649 break; 3650 case ISD::ROTL: 3651 case ISD::ROTR: 3652 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3653 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3654 3655 // Handle rotate right by N like a rotate left by 32-N. 3656 if (Opcode == ISD::ROTR) 3657 RotAmt = (VTBits - RotAmt) % VTBits; 3658 3659 // If we aren't rotating out all of the known-in sign bits, return the 3660 // number that are left. This handles rotl(sext(x), 1) for example. 3661 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3662 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3663 } 3664 break; 3665 case ISD::ADD: 3666 case ISD::ADDC: 3667 // Add can have at most one carry bit. Thus we know that the output 3668 // is, at worst, one more bit than the inputs. 3669 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3670 if (Tmp == 1) return 1; // Early out. 3671 3672 // Special case decrementing a value (ADD X, -1): 3673 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3674 if (CRHS->isAllOnesValue()) { 3675 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3676 3677 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3678 // sign bits set. 3679 if ((Known.Zero | 1).isAllOnesValue()) 3680 return VTBits; 3681 3682 // If we are subtracting one from a positive number, there is no carry 3683 // out of the result. 3684 if (Known.isNonNegative()) 3685 return Tmp; 3686 } 3687 3688 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3689 if (Tmp2 == 1) return 1; 3690 return std::min(Tmp, Tmp2)-1; 3691 3692 case ISD::SUB: 3693 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3694 if (Tmp2 == 1) return 1; 3695 3696 // Handle NEG. 3697 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3698 if (CLHS->isNullValue()) { 3699 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3700 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3701 // sign bits set. 3702 if ((Known.Zero | 1).isAllOnesValue()) 3703 return VTBits; 3704 3705 // If the input is known to be positive (the sign bit is known clear), 3706 // the output of the NEG has the same number of sign bits as the input. 3707 if (Known.isNonNegative()) 3708 return Tmp2; 3709 3710 // Otherwise, we treat this like a SUB. 3711 } 3712 3713 // Sub can have at most one carry bit. Thus we know that the output 3714 // is, at worst, one more bit than the inputs. 3715 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3716 if (Tmp == 1) return 1; // Early out. 3717 return std::min(Tmp, Tmp2)-1; 3718 case ISD::MUL: { 3719 // The output of the Mul can be at most twice the valid bits in the inputs. 3720 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3721 if (SignBitsOp0 == 1) 3722 break; 3723 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3724 if (SignBitsOp1 == 1) 3725 break; 3726 unsigned OutValidBits = 3727 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3728 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3729 } 3730 case ISD::TRUNCATE: { 3731 // Check if the sign bits of source go down as far as the truncated value. 3732 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3733 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3734 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3735 return NumSrcSignBits - (NumSrcBits - VTBits); 3736 break; 3737 } 3738 case ISD::EXTRACT_ELEMENT: { 3739 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3740 const int BitWidth = Op.getValueSizeInBits(); 3741 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3742 3743 // Get reverse index (starting from 1), Op1 value indexes elements from 3744 // little end. Sign starts at big end. 3745 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3746 3747 // If the sign portion ends in our element the subtraction gives correct 3748 // result. Otherwise it gives either negative or > bitwidth result 3749 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3750 } 3751 case ISD::INSERT_VECTOR_ELT: { 3752 SDValue InVec = Op.getOperand(0); 3753 SDValue InVal = Op.getOperand(1); 3754 SDValue EltNo = Op.getOperand(2); 3755 3756 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3757 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3758 // If we know the element index, split the demand between the 3759 // source vector and the inserted element. 3760 unsigned EltIdx = CEltNo->getZExtValue(); 3761 3762 // If we demand the inserted element then get its sign bits. 3763 Tmp = std::numeric_limits<unsigned>::max(); 3764 if (DemandedElts[EltIdx]) { 3765 // TODO - handle implicit truncation of inserted elements. 3766 if (InVal.getScalarValueSizeInBits() != VTBits) 3767 break; 3768 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3769 } 3770 3771 // If we demand the source vector then get its sign bits, and determine 3772 // the minimum. 3773 APInt VectorElts = DemandedElts; 3774 VectorElts.clearBit(EltIdx); 3775 if (!!VectorElts) { 3776 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3777 Tmp = std::min(Tmp, Tmp2); 3778 } 3779 } else { 3780 // Unknown element index, so ignore DemandedElts and demand them all. 3781 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3782 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3783 Tmp = std::min(Tmp, Tmp2); 3784 } 3785 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3786 return Tmp; 3787 } 3788 case ISD::EXTRACT_VECTOR_ELT: { 3789 SDValue InVec = Op.getOperand(0); 3790 SDValue EltNo = Op.getOperand(1); 3791 EVT VecVT = InVec.getValueType(); 3792 const unsigned BitWidth = Op.getValueSizeInBits(); 3793 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3794 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3795 3796 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3797 // anything about sign bits. But if the sizes match we can derive knowledge 3798 // about sign bits from the vector operand. 3799 if (BitWidth != EltBitWidth) 3800 break; 3801 3802 // If we know the element index, just demand that vector element, else for 3803 // an unknown element index, ignore DemandedElts and demand them all. 3804 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3805 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3806 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3807 DemandedSrcElts = 3808 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3809 3810 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3811 } 3812 case ISD::EXTRACT_SUBVECTOR: { 3813 // If we know the element index, just demand that subvector elements, 3814 // otherwise demand them all. 3815 SDValue Src = Op.getOperand(0); 3816 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3817 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3818 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3819 // Offset the demanded elts by the subvector index. 3820 uint64_t Idx = SubIdx->getZExtValue(); 3821 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3822 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3823 } 3824 return ComputeNumSignBits(Src, Depth + 1); 3825 } 3826 case ISD::CONCAT_VECTORS: { 3827 // Determine the minimum number of sign bits across all demanded 3828 // elts of the input vectors. Early out if the result is already 1. 3829 Tmp = std::numeric_limits<unsigned>::max(); 3830 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3831 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3832 unsigned NumSubVectors = Op.getNumOperands(); 3833 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3834 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3835 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3836 if (!DemandedSub) 3837 continue; 3838 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3839 Tmp = std::min(Tmp, Tmp2); 3840 } 3841 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3842 return Tmp; 3843 } 3844 case ISD::INSERT_SUBVECTOR: { 3845 // If we know the element index, demand any elements from the subvector and 3846 // the remainder from the src its inserted into, otherwise demand them all. 3847 SDValue Src = Op.getOperand(0); 3848 SDValue Sub = Op.getOperand(1); 3849 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3850 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3851 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3852 Tmp = std::numeric_limits<unsigned>::max(); 3853 uint64_t Idx = SubIdx->getZExtValue(); 3854 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3855 if (!!DemandedSubElts) { 3856 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3857 if (Tmp == 1) return 1; // early-out 3858 } 3859 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3860 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3861 if (!!DemandedSrcElts) { 3862 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3863 Tmp = std::min(Tmp, Tmp2); 3864 } 3865 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3866 return Tmp; 3867 } 3868 3869 // Not able to determine the index so just assume worst case. 3870 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3871 if (Tmp == 1) return 1; // early-out 3872 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3873 Tmp = std::min(Tmp, Tmp2); 3874 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3875 return Tmp; 3876 } 3877 } 3878 3879 // If we are looking at the loaded value of the SDNode. 3880 if (Op.getResNo() == 0) { 3881 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3882 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3883 unsigned ExtType = LD->getExtensionType(); 3884 switch (ExtType) { 3885 default: break; 3886 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3887 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3888 return VTBits - Tmp + 1; 3889 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3890 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3891 return VTBits - Tmp; 3892 case ISD::NON_EXTLOAD: 3893 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3894 // We only need to handle vectors - computeKnownBits should handle 3895 // scalar cases. 3896 Type *CstTy = Cst->getType(); 3897 if (CstTy->isVectorTy() && 3898 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3899 Tmp = VTBits; 3900 for (unsigned i = 0; i != NumElts; ++i) { 3901 if (!DemandedElts[i]) 3902 continue; 3903 if (Constant *Elt = Cst->getAggregateElement(i)) { 3904 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3905 const APInt &Value = CInt->getValue(); 3906 Tmp = std::min(Tmp, Value.getNumSignBits()); 3907 continue; 3908 } 3909 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3910 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3911 Tmp = std::min(Tmp, Value.getNumSignBits()); 3912 continue; 3913 } 3914 } 3915 // Unknown type. Conservatively assume no bits match sign bit. 3916 return 1; 3917 } 3918 return Tmp; 3919 } 3920 } 3921 break; 3922 } 3923 } 3924 } 3925 3926 // Allow the target to implement this method for its nodes. 3927 if (Opcode >= ISD::BUILTIN_OP_END || 3928 Opcode == ISD::INTRINSIC_WO_CHAIN || 3929 Opcode == ISD::INTRINSIC_W_CHAIN || 3930 Opcode == ISD::INTRINSIC_VOID) { 3931 unsigned NumBits = 3932 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3933 if (NumBits > 1) 3934 FirstAnswer = std::max(FirstAnswer, NumBits); 3935 } 3936 3937 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3938 // use this information. 3939 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3940 3941 APInt Mask; 3942 if (Known.isNonNegative()) { // sign bit is 0 3943 Mask = Known.Zero; 3944 } else if (Known.isNegative()) { // sign bit is 1; 3945 Mask = Known.One; 3946 } else { 3947 // Nothing known. 3948 return FirstAnswer; 3949 } 3950 3951 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3952 // the number of identical bits in the top of the input value. 3953 Mask = ~Mask; 3954 Mask <<= Mask.getBitWidth()-VTBits; 3955 // Return # leading zeros. We use 'min' here in case Val was zero before 3956 // shifting. We don't want to return '64' as for an i32 "0". 3957 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3958 } 3959 3960 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3961 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3962 !isa<ConstantSDNode>(Op.getOperand(1))) 3963 return false; 3964 3965 if (Op.getOpcode() == ISD::OR && 3966 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3967 return false; 3968 3969 return true; 3970 } 3971 3972 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3973 // If we're told that NaNs won't happen, assume they won't. 3974 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3975 return true; 3976 3977 if (Depth >= 6) 3978 return false; // Limit search depth. 3979 3980 // TODO: Handle vectors. 3981 // If the value is a constant, we can obviously see if it is a NaN or not. 3982 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3983 return !C->getValueAPF().isNaN() || 3984 (SNaN && !C->getValueAPF().isSignaling()); 3985 } 3986 3987 unsigned Opcode = Op.getOpcode(); 3988 switch (Opcode) { 3989 case ISD::FADD: 3990 case ISD::FSUB: 3991 case ISD::FMUL: 3992 case ISD::FDIV: 3993 case ISD::FREM: 3994 case ISD::FSIN: 3995 case ISD::FCOS: { 3996 if (SNaN) 3997 return true; 3998 // TODO: Need isKnownNeverInfinity 3999 return false; 4000 } 4001 case ISD::FCANONICALIZE: 4002 case ISD::FEXP: 4003 case ISD::FEXP2: 4004 case ISD::FTRUNC: 4005 case ISD::FFLOOR: 4006 case ISD::FCEIL: 4007 case ISD::FROUND: 4008 case ISD::FRINT: 4009 case ISD::FNEARBYINT: { 4010 if (SNaN) 4011 return true; 4012 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4013 } 4014 case ISD::FABS: 4015 case ISD::FNEG: 4016 case ISD::FCOPYSIGN: { 4017 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4018 } 4019 case ISD::SELECT: 4020 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4021 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4022 case ISD::FP_EXTEND: 4023 case ISD::FP_ROUND: { 4024 if (SNaN) 4025 return true; 4026 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4027 } 4028 case ISD::SINT_TO_FP: 4029 case ISD::UINT_TO_FP: 4030 return true; 4031 case ISD::FMA: 4032 case ISD::FMAD: { 4033 if (SNaN) 4034 return true; 4035 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4036 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4037 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4038 } 4039 case ISD::FSQRT: // Need is known positive 4040 case ISD::FLOG: 4041 case ISD::FLOG2: 4042 case ISD::FLOG10: 4043 case ISD::FPOWI: 4044 case ISD::FPOW: { 4045 if (SNaN) 4046 return true; 4047 // TODO: Refine on operand 4048 return false; 4049 } 4050 case ISD::FMINNUM: 4051 case ISD::FMAXNUM: { 4052 // Only one needs to be known not-nan, since it will be returned if the 4053 // other ends up being one. 4054 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4055 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4056 } 4057 case ISD::FMINNUM_IEEE: 4058 case ISD::FMAXNUM_IEEE: { 4059 if (SNaN) 4060 return true; 4061 // This can return a NaN if either operand is an sNaN, or if both operands 4062 // are NaN. 4063 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4064 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4065 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4066 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4067 } 4068 case ISD::FMINIMUM: 4069 case ISD::FMAXIMUM: { 4070 // TODO: Does this quiet or return the origina NaN as-is? 4071 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4072 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4073 } 4074 case ISD::EXTRACT_VECTOR_ELT: { 4075 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4076 } 4077 default: 4078 if (Opcode >= ISD::BUILTIN_OP_END || 4079 Opcode == ISD::INTRINSIC_WO_CHAIN || 4080 Opcode == ISD::INTRINSIC_W_CHAIN || 4081 Opcode == ISD::INTRINSIC_VOID) { 4082 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4083 } 4084 4085 return false; 4086 } 4087 } 4088 4089 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4090 assert(Op.getValueType().isFloatingPoint() && 4091 "Floating point type expected"); 4092 4093 // If the value is a constant, we can obviously see if it is a zero or not. 4094 // TODO: Add BuildVector support. 4095 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4096 return !C->isZero(); 4097 return false; 4098 } 4099 4100 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4101 assert(!Op.getValueType().isFloatingPoint() && 4102 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4103 4104 // If the value is a constant, we can obviously see if it is a zero or not. 4105 if (ISD::matchUnaryPredicate( 4106 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4107 return true; 4108 4109 // TODO: Recognize more cases here. 4110 switch (Op.getOpcode()) { 4111 default: break; 4112 case ISD::OR: 4113 if (isKnownNeverZero(Op.getOperand(1)) || 4114 isKnownNeverZero(Op.getOperand(0))) 4115 return true; 4116 break; 4117 } 4118 4119 return false; 4120 } 4121 4122 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4123 // Check the obvious case. 4124 if (A == B) return true; 4125 4126 // For for negative and positive zero. 4127 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4128 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4129 if (CA->isZero() && CB->isZero()) return true; 4130 4131 // Otherwise they may not be equal. 4132 return false; 4133 } 4134 4135 // FIXME: unify with llvm::haveNoCommonBitsSet. 4136 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4137 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4138 assert(A.getValueType() == B.getValueType() && 4139 "Values must have the same type"); 4140 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4141 } 4142 4143 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4144 ArrayRef<SDValue> Ops, 4145 SelectionDAG &DAG) { 4146 int NumOps = Ops.size(); 4147 assert(NumOps != 0 && "Can't build an empty vector!"); 4148 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4149 "Incorrect element count in BUILD_VECTOR!"); 4150 4151 // BUILD_VECTOR of UNDEFs is UNDEF. 4152 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4153 return DAG.getUNDEF(VT); 4154 4155 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4156 SDValue IdentitySrc; 4157 bool IsIdentity = true; 4158 for (int i = 0; i != NumOps; ++i) { 4159 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4160 Ops[i].getOperand(0).getValueType() != VT || 4161 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4162 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4163 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4164 IsIdentity = false; 4165 break; 4166 } 4167 IdentitySrc = Ops[i].getOperand(0); 4168 } 4169 if (IsIdentity) 4170 return IdentitySrc; 4171 4172 return SDValue(); 4173 } 4174 4175 /// Try to simplify vector concatenation to an input value, undef, or build 4176 /// vector. 4177 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4178 ArrayRef<SDValue> Ops, 4179 SelectionDAG &DAG) { 4180 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4181 assert(llvm::all_of(Ops, 4182 [Ops](SDValue Op) { 4183 return Ops[0].getValueType() == Op.getValueType(); 4184 }) && 4185 "Concatenation of vectors with inconsistent value types!"); 4186 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4187 VT.getVectorNumElements() && 4188 "Incorrect element count in vector concatenation!"); 4189 4190 if (Ops.size() == 1) 4191 return Ops[0]; 4192 4193 // Concat of UNDEFs is UNDEF. 4194 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4195 return DAG.getUNDEF(VT); 4196 4197 // Scan the operands and look for extract operations from a single source 4198 // that correspond to insertion at the same location via this concatenation: 4199 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4200 SDValue IdentitySrc; 4201 bool IsIdentity = true; 4202 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4203 SDValue Op = Ops[i]; 4204 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4205 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4206 Op.getOperand(0).getValueType() != VT || 4207 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4208 !isa<ConstantSDNode>(Op.getOperand(1)) || 4209 Op.getConstantOperandVal(1) != IdentityIndex) { 4210 IsIdentity = false; 4211 break; 4212 } 4213 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4214 "Unexpected identity source vector for concat of extracts"); 4215 IdentitySrc = Op.getOperand(0); 4216 } 4217 if (IsIdentity) { 4218 assert(IdentitySrc && "Failed to set source vector of extracts"); 4219 return IdentitySrc; 4220 } 4221 4222 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4223 // simplified to one big BUILD_VECTOR. 4224 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4225 EVT SVT = VT.getScalarType(); 4226 SmallVector<SDValue, 16> Elts; 4227 for (SDValue Op : Ops) { 4228 EVT OpVT = Op.getValueType(); 4229 if (Op.isUndef()) 4230 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4231 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4232 Elts.append(Op->op_begin(), Op->op_end()); 4233 else 4234 return SDValue(); 4235 } 4236 4237 // BUILD_VECTOR requires all inputs to be of the same type, find the 4238 // maximum type and extend them all. 4239 for (SDValue Op : Elts) 4240 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4241 4242 if (SVT.bitsGT(VT.getScalarType())) 4243 for (SDValue &Op : Elts) 4244 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4245 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4246 : DAG.getSExtOrTrunc(Op, DL, SVT); 4247 4248 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4249 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4250 return V; 4251 } 4252 4253 /// Gets or creates the specified node. 4254 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4255 FoldingSetNodeID ID; 4256 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4257 void *IP = nullptr; 4258 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4259 return SDValue(E, 0); 4260 4261 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4262 getVTList(VT)); 4263 CSEMap.InsertNode(N, IP); 4264 4265 InsertNode(N); 4266 SDValue V = SDValue(N, 0); 4267 NewSDValueDbgMsg(V, "Creating new node: ", this); 4268 return V; 4269 } 4270 4271 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4272 SDValue Operand, const SDNodeFlags Flags) { 4273 // Constant fold unary operations with an integer constant operand. Even 4274 // opaque constant will be folded, because the folding of unary operations 4275 // doesn't create new constants with different values. Nevertheless, the 4276 // opaque flag is preserved during folding to prevent future folding with 4277 // other constants. 4278 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4279 const APInt &Val = C->getAPIntValue(); 4280 switch (Opcode) { 4281 default: break; 4282 case ISD::SIGN_EXTEND: 4283 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4284 C->isTargetOpcode(), C->isOpaque()); 4285 case ISD::TRUNCATE: 4286 if (C->isOpaque()) 4287 break; 4288 LLVM_FALLTHROUGH; 4289 case ISD::ANY_EXTEND: 4290 case ISD::ZERO_EXTEND: 4291 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4292 C->isTargetOpcode(), C->isOpaque()); 4293 case ISD::UINT_TO_FP: 4294 case ISD::SINT_TO_FP: { 4295 APFloat apf(EVTToAPFloatSemantics(VT), 4296 APInt::getNullValue(VT.getSizeInBits())); 4297 (void)apf.convertFromAPInt(Val, 4298 Opcode==ISD::SINT_TO_FP, 4299 APFloat::rmNearestTiesToEven); 4300 return getConstantFP(apf, DL, VT); 4301 } 4302 case ISD::BITCAST: 4303 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4304 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4305 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4306 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4307 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4308 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4309 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4310 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4311 break; 4312 case ISD::ABS: 4313 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4314 C->isOpaque()); 4315 case ISD::BITREVERSE: 4316 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4317 C->isOpaque()); 4318 case ISD::BSWAP: 4319 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4320 C->isOpaque()); 4321 case ISD::CTPOP: 4322 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4323 C->isOpaque()); 4324 case ISD::CTLZ: 4325 case ISD::CTLZ_ZERO_UNDEF: 4326 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4327 C->isOpaque()); 4328 case ISD::CTTZ: 4329 case ISD::CTTZ_ZERO_UNDEF: 4330 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4331 C->isOpaque()); 4332 case ISD::FP16_TO_FP: { 4333 bool Ignored; 4334 APFloat FPV(APFloat::IEEEhalf(), 4335 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4336 4337 // This can return overflow, underflow, or inexact; we don't care. 4338 // FIXME need to be more flexible about rounding mode. 4339 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4340 APFloat::rmNearestTiesToEven, &Ignored); 4341 return getConstantFP(FPV, DL, VT); 4342 } 4343 } 4344 } 4345 4346 // Constant fold unary operations with a floating point constant operand. 4347 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4348 APFloat V = C->getValueAPF(); // make copy 4349 switch (Opcode) { 4350 case ISD::FNEG: 4351 V.changeSign(); 4352 return getConstantFP(V, DL, VT); 4353 case ISD::FABS: 4354 V.clearSign(); 4355 return getConstantFP(V, DL, VT); 4356 case ISD::FCEIL: { 4357 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4358 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4359 return getConstantFP(V, DL, VT); 4360 break; 4361 } 4362 case ISD::FTRUNC: { 4363 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4364 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4365 return getConstantFP(V, DL, VT); 4366 break; 4367 } 4368 case ISD::FFLOOR: { 4369 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4370 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4371 return getConstantFP(V, DL, VT); 4372 break; 4373 } 4374 case ISD::FP_EXTEND: { 4375 bool ignored; 4376 // This can return overflow, underflow, or inexact; we don't care. 4377 // FIXME need to be more flexible about rounding mode. 4378 (void)V.convert(EVTToAPFloatSemantics(VT), 4379 APFloat::rmNearestTiesToEven, &ignored); 4380 return getConstantFP(V, DL, VT); 4381 } 4382 case ISD::FP_TO_SINT: 4383 case ISD::FP_TO_UINT: { 4384 bool ignored; 4385 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4386 // FIXME need to be more flexible about rounding mode. 4387 APFloat::opStatus s = 4388 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4389 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4390 break; 4391 return getConstant(IntVal, DL, VT); 4392 } 4393 case ISD::BITCAST: 4394 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4395 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4396 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4397 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4398 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4399 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4400 break; 4401 case ISD::FP_TO_FP16: { 4402 bool Ignored; 4403 // This can return overflow, underflow, or inexact; we don't care. 4404 // FIXME need to be more flexible about rounding mode. 4405 (void)V.convert(APFloat::IEEEhalf(), 4406 APFloat::rmNearestTiesToEven, &Ignored); 4407 return getConstant(V.bitcastToAPInt(), DL, VT); 4408 } 4409 } 4410 } 4411 4412 // Constant fold unary operations with a vector integer or float operand. 4413 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4414 if (BV->isConstant()) { 4415 switch (Opcode) { 4416 default: 4417 // FIXME: Entirely reasonable to perform folding of other unary 4418 // operations here as the need arises. 4419 break; 4420 case ISD::FNEG: 4421 case ISD::FABS: 4422 case ISD::FCEIL: 4423 case ISD::FTRUNC: 4424 case ISD::FFLOOR: 4425 case ISD::FP_EXTEND: 4426 case ISD::FP_TO_SINT: 4427 case ISD::FP_TO_UINT: 4428 case ISD::TRUNCATE: 4429 case ISD::ANY_EXTEND: 4430 case ISD::ZERO_EXTEND: 4431 case ISD::SIGN_EXTEND: 4432 case ISD::UINT_TO_FP: 4433 case ISD::SINT_TO_FP: 4434 case ISD::ABS: 4435 case ISD::BITREVERSE: 4436 case ISD::BSWAP: 4437 case ISD::CTLZ: 4438 case ISD::CTLZ_ZERO_UNDEF: 4439 case ISD::CTTZ: 4440 case ISD::CTTZ_ZERO_UNDEF: 4441 case ISD::CTPOP: { 4442 SDValue Ops = { Operand }; 4443 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4444 return Fold; 4445 } 4446 } 4447 } 4448 } 4449 4450 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4451 switch (Opcode) { 4452 case ISD::TokenFactor: 4453 case ISD::MERGE_VALUES: 4454 case ISD::CONCAT_VECTORS: 4455 return Operand; // Factor, merge or concat of one node? No need. 4456 case ISD::BUILD_VECTOR: { 4457 // Attempt to simplify BUILD_VECTOR. 4458 SDValue Ops[] = {Operand}; 4459 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4460 return V; 4461 break; 4462 } 4463 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4464 case ISD::FP_EXTEND: 4465 assert(VT.isFloatingPoint() && 4466 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4467 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4468 assert((!VT.isVector() || 4469 VT.getVectorNumElements() == 4470 Operand.getValueType().getVectorNumElements()) && 4471 "Vector element count mismatch!"); 4472 assert(Operand.getValueType().bitsLT(VT) && 4473 "Invalid fpext node, dst < src!"); 4474 if (Operand.isUndef()) 4475 return getUNDEF(VT); 4476 break; 4477 case ISD::FP_TO_SINT: 4478 case ISD::FP_TO_UINT: 4479 if (Operand.isUndef()) 4480 return getUNDEF(VT); 4481 break; 4482 case ISD::SINT_TO_FP: 4483 case ISD::UINT_TO_FP: 4484 // [us]itofp(undef) = 0, because the result value is bounded. 4485 if (Operand.isUndef()) 4486 return getConstantFP(0.0, DL, VT); 4487 break; 4488 case ISD::SIGN_EXTEND: 4489 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4490 "Invalid SIGN_EXTEND!"); 4491 assert(VT.isVector() == Operand.getValueType().isVector() && 4492 "SIGN_EXTEND result type type should be vector iff the operand " 4493 "type is vector!"); 4494 if (Operand.getValueType() == VT) return Operand; // noop extension 4495 assert((!VT.isVector() || 4496 VT.getVectorNumElements() == 4497 Operand.getValueType().getVectorNumElements()) && 4498 "Vector element count mismatch!"); 4499 assert(Operand.getValueType().bitsLT(VT) && 4500 "Invalid sext node, dst < src!"); 4501 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4502 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4503 else if (OpOpcode == ISD::UNDEF) 4504 // sext(undef) = 0, because the top bits will all be the same. 4505 return getConstant(0, DL, VT); 4506 break; 4507 case ISD::ZERO_EXTEND: 4508 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4509 "Invalid ZERO_EXTEND!"); 4510 assert(VT.isVector() == Operand.getValueType().isVector() && 4511 "ZERO_EXTEND result type type should be vector iff the operand " 4512 "type is vector!"); 4513 if (Operand.getValueType() == VT) return Operand; // noop extension 4514 assert((!VT.isVector() || 4515 VT.getVectorNumElements() == 4516 Operand.getValueType().getVectorNumElements()) && 4517 "Vector element count mismatch!"); 4518 assert(Operand.getValueType().bitsLT(VT) && 4519 "Invalid zext node, dst < src!"); 4520 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4521 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4522 else if (OpOpcode == ISD::UNDEF) 4523 // zext(undef) = 0, because the top bits will be zero. 4524 return getConstant(0, DL, VT); 4525 break; 4526 case ISD::ANY_EXTEND: 4527 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4528 "Invalid ANY_EXTEND!"); 4529 assert(VT.isVector() == Operand.getValueType().isVector() && 4530 "ANY_EXTEND result type type should be vector iff the operand " 4531 "type is vector!"); 4532 if (Operand.getValueType() == VT) return Operand; // noop extension 4533 assert((!VT.isVector() || 4534 VT.getVectorNumElements() == 4535 Operand.getValueType().getVectorNumElements()) && 4536 "Vector element count mismatch!"); 4537 assert(Operand.getValueType().bitsLT(VT) && 4538 "Invalid anyext node, dst < src!"); 4539 4540 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4541 OpOpcode == ISD::ANY_EXTEND) 4542 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4543 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4544 else if (OpOpcode == ISD::UNDEF) 4545 return getUNDEF(VT); 4546 4547 // (ext (trunc x)) -> x 4548 if (OpOpcode == ISD::TRUNCATE) { 4549 SDValue OpOp = Operand.getOperand(0); 4550 if (OpOp.getValueType() == VT) { 4551 transferDbgValues(Operand, OpOp); 4552 return OpOp; 4553 } 4554 } 4555 break; 4556 case ISD::TRUNCATE: 4557 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4558 "Invalid TRUNCATE!"); 4559 assert(VT.isVector() == Operand.getValueType().isVector() && 4560 "TRUNCATE result type type should be vector iff the operand " 4561 "type is vector!"); 4562 if (Operand.getValueType() == VT) return Operand; // noop truncate 4563 assert((!VT.isVector() || 4564 VT.getVectorNumElements() == 4565 Operand.getValueType().getVectorNumElements()) && 4566 "Vector element count mismatch!"); 4567 assert(Operand.getValueType().bitsGT(VT) && 4568 "Invalid truncate node, src < dst!"); 4569 if (OpOpcode == ISD::TRUNCATE) 4570 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4571 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4572 OpOpcode == ISD::ANY_EXTEND) { 4573 // If the source is smaller than the dest, we still need an extend. 4574 if (Operand.getOperand(0).getValueType().getScalarType() 4575 .bitsLT(VT.getScalarType())) 4576 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4577 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4578 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4579 return Operand.getOperand(0); 4580 } 4581 if (OpOpcode == ISD::UNDEF) 4582 return getUNDEF(VT); 4583 break; 4584 case ISD::ANY_EXTEND_VECTOR_INREG: 4585 case ISD::ZERO_EXTEND_VECTOR_INREG: 4586 case ISD::SIGN_EXTEND_VECTOR_INREG: 4587 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4588 assert(Operand.getValueType().bitsLE(VT) && 4589 "The input must be the same size or smaller than the result."); 4590 assert(VT.getVectorNumElements() < 4591 Operand.getValueType().getVectorNumElements() && 4592 "The destination vector type must have fewer lanes than the input."); 4593 break; 4594 case ISD::ABS: 4595 assert(VT.isInteger() && VT == Operand.getValueType() && 4596 "Invalid ABS!"); 4597 if (OpOpcode == ISD::UNDEF) 4598 return getUNDEF(VT); 4599 break; 4600 case ISD::BSWAP: 4601 assert(VT.isInteger() && VT == Operand.getValueType() && 4602 "Invalid BSWAP!"); 4603 assert((VT.getScalarSizeInBits() % 16 == 0) && 4604 "BSWAP types must be a multiple of 16 bits!"); 4605 if (OpOpcode == ISD::UNDEF) 4606 return getUNDEF(VT); 4607 break; 4608 case ISD::BITREVERSE: 4609 assert(VT.isInteger() && VT == Operand.getValueType() && 4610 "Invalid BITREVERSE!"); 4611 if (OpOpcode == ISD::UNDEF) 4612 return getUNDEF(VT); 4613 break; 4614 case ISD::BITCAST: 4615 // Basic sanity checking. 4616 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4617 "Cannot BITCAST between types of different sizes!"); 4618 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4619 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4620 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4621 if (OpOpcode == ISD::UNDEF) 4622 return getUNDEF(VT); 4623 break; 4624 case ISD::SCALAR_TO_VECTOR: 4625 assert(VT.isVector() && !Operand.getValueType().isVector() && 4626 (VT.getVectorElementType() == Operand.getValueType() || 4627 (VT.getVectorElementType().isInteger() && 4628 Operand.getValueType().isInteger() && 4629 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4630 "Illegal SCALAR_TO_VECTOR node!"); 4631 if (OpOpcode == ISD::UNDEF) 4632 return getUNDEF(VT); 4633 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4634 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4635 isa<ConstantSDNode>(Operand.getOperand(1)) && 4636 Operand.getConstantOperandVal(1) == 0 && 4637 Operand.getOperand(0).getValueType() == VT) 4638 return Operand.getOperand(0); 4639 break; 4640 case ISD::FNEG: 4641 // Negation of an unknown bag of bits is still completely undefined. 4642 if (OpOpcode == ISD::UNDEF) 4643 return getUNDEF(VT); 4644 4645 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4646 if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 4647 OpOpcode == ISD::FSUB) 4648 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4649 Operand.getOperand(0), Flags); 4650 if (OpOpcode == ISD::FNEG) // --X -> X 4651 return Operand.getOperand(0); 4652 break; 4653 case ISD::FABS: 4654 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4655 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4656 break; 4657 } 4658 4659 SDNode *N; 4660 SDVTList VTs = getVTList(VT); 4661 SDValue Ops[] = {Operand}; 4662 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4663 FoldingSetNodeID ID; 4664 AddNodeIDNode(ID, Opcode, VTs, Ops); 4665 void *IP = nullptr; 4666 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4667 E->intersectFlagsWith(Flags); 4668 return SDValue(E, 0); 4669 } 4670 4671 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4672 N->setFlags(Flags); 4673 createOperands(N, Ops); 4674 CSEMap.InsertNode(N, IP); 4675 } else { 4676 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4677 createOperands(N, Ops); 4678 } 4679 4680 InsertNode(N); 4681 SDValue V = SDValue(N, 0); 4682 NewSDValueDbgMsg(V, "Creating new node: ", this); 4683 return V; 4684 } 4685 4686 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4687 const APInt &C2) { 4688 switch (Opcode) { 4689 case ISD::ADD: return std::make_pair(C1 + C2, true); 4690 case ISD::SUB: return std::make_pair(C1 - C2, true); 4691 case ISD::MUL: return std::make_pair(C1 * C2, true); 4692 case ISD::AND: return std::make_pair(C1 & C2, true); 4693 case ISD::OR: return std::make_pair(C1 | C2, true); 4694 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4695 case ISD::SHL: return std::make_pair(C1 << C2, true); 4696 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4697 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4698 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4699 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4700 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4701 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4702 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4703 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4704 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4705 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4706 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4707 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4708 case ISD::UDIV: 4709 if (!C2.getBoolValue()) 4710 break; 4711 return std::make_pair(C1.udiv(C2), true); 4712 case ISD::UREM: 4713 if (!C2.getBoolValue()) 4714 break; 4715 return std::make_pair(C1.urem(C2), true); 4716 case ISD::SDIV: 4717 if (!C2.getBoolValue()) 4718 break; 4719 return std::make_pair(C1.sdiv(C2), true); 4720 case ISD::SREM: 4721 if (!C2.getBoolValue()) 4722 break; 4723 return std::make_pair(C1.srem(C2), true); 4724 } 4725 return std::make_pair(APInt(1, 0), false); 4726 } 4727 4728 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4729 EVT VT, const ConstantSDNode *C1, 4730 const ConstantSDNode *C2) { 4731 if (C1->isOpaque() || C2->isOpaque()) 4732 return SDValue(); 4733 4734 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4735 C2->getAPIntValue()); 4736 if (!Folded.second) 4737 return SDValue(); 4738 return getConstant(Folded.first, DL, VT); 4739 } 4740 4741 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4742 const GlobalAddressSDNode *GA, 4743 const SDNode *N2) { 4744 if (GA->getOpcode() != ISD::GlobalAddress) 4745 return SDValue(); 4746 if (!TLI->isOffsetFoldingLegal(GA)) 4747 return SDValue(); 4748 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4749 if (!C2) 4750 return SDValue(); 4751 int64_t Offset = C2->getSExtValue(); 4752 switch (Opcode) { 4753 case ISD::ADD: break; 4754 case ISD::SUB: Offset = -uint64_t(Offset); break; 4755 default: return SDValue(); 4756 } 4757 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4758 GA->getOffset() + uint64_t(Offset)); 4759 } 4760 4761 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4762 switch (Opcode) { 4763 case ISD::SDIV: 4764 case ISD::UDIV: 4765 case ISD::SREM: 4766 case ISD::UREM: { 4767 // If a divisor is zero/undef or any element of a divisor vector is 4768 // zero/undef, the whole op is undef. 4769 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4770 SDValue Divisor = Ops[1]; 4771 if (Divisor.isUndef() || isNullConstant(Divisor)) 4772 return true; 4773 4774 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4775 llvm::any_of(Divisor->op_values(), 4776 [](SDValue V) { return V.isUndef() || 4777 isNullConstant(V); }); 4778 // TODO: Handle signed overflow. 4779 } 4780 // TODO: Handle oversized shifts. 4781 default: 4782 return false; 4783 } 4784 } 4785 4786 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4787 EVT VT, SDNode *N1, SDNode *N2) { 4788 // If the opcode is a target-specific ISD node, there's nothing we can 4789 // do here and the operand rules may not line up with the below, so 4790 // bail early. 4791 if (Opcode >= ISD::BUILTIN_OP_END) 4792 return SDValue(); 4793 4794 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4795 return getUNDEF(VT); 4796 4797 // Handle the case of two scalars. 4798 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4799 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4800 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4801 assert((!Folded || !VT.isVector()) && 4802 "Can't fold vectors ops with scalar operands"); 4803 return Folded; 4804 } 4805 } 4806 4807 // fold (add Sym, c) -> Sym+c 4808 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4809 return FoldSymbolOffset(Opcode, VT, GA, N2); 4810 if (TLI->isCommutativeBinOp(Opcode)) 4811 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4812 return FoldSymbolOffset(Opcode, VT, GA, N1); 4813 4814 // For vectors, extract each constant element and fold them individually. 4815 // Either input may be an undef value. 4816 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4817 if (!BV1 && !N1->isUndef()) 4818 return SDValue(); 4819 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4820 if (!BV2 && !N2->isUndef()) 4821 return SDValue(); 4822 // If both operands are undef, that's handled the same way as scalars. 4823 if (!BV1 && !BV2) 4824 return SDValue(); 4825 4826 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4827 "Vector binop with different number of elements in operands?"); 4828 4829 EVT SVT = VT.getScalarType(); 4830 EVT LegalSVT = SVT; 4831 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4832 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4833 if (LegalSVT.bitsLT(SVT)) 4834 return SDValue(); 4835 } 4836 SmallVector<SDValue, 4> Outputs; 4837 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4838 for (unsigned I = 0; I != NumOps; ++I) { 4839 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4840 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4841 if (SVT.isInteger()) { 4842 if (V1->getValueType(0).bitsGT(SVT)) 4843 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4844 if (V2->getValueType(0).bitsGT(SVT)) 4845 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4846 } 4847 4848 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4849 return SDValue(); 4850 4851 // Fold one vector element. 4852 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4853 if (LegalSVT != SVT) 4854 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4855 4856 // Scalar folding only succeeded if the result is a constant or UNDEF. 4857 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4858 ScalarResult.getOpcode() != ISD::ConstantFP) 4859 return SDValue(); 4860 Outputs.push_back(ScalarResult); 4861 } 4862 4863 assert(VT.getVectorNumElements() == Outputs.size() && 4864 "Vector size mismatch!"); 4865 4866 // We may have a vector type but a scalar result. Create a splat. 4867 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4868 4869 // Build a big vector out of the scalar elements we generated. 4870 return getBuildVector(VT, SDLoc(), Outputs); 4871 } 4872 4873 // TODO: Merge with FoldConstantArithmetic 4874 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4875 const SDLoc &DL, EVT VT, 4876 ArrayRef<SDValue> Ops, 4877 const SDNodeFlags Flags) { 4878 // If the opcode is a target-specific ISD node, there's nothing we can 4879 // do here and the operand rules may not line up with the below, so 4880 // bail early. 4881 if (Opcode >= ISD::BUILTIN_OP_END) 4882 return SDValue(); 4883 4884 if (isUndef(Opcode, Ops)) 4885 return getUNDEF(VT); 4886 4887 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4888 if (!VT.isVector()) 4889 return SDValue(); 4890 4891 unsigned NumElts = VT.getVectorNumElements(); 4892 4893 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4894 return !Op.getValueType().isVector() || 4895 Op.getValueType().getVectorNumElements() == NumElts; 4896 }; 4897 4898 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4899 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4900 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4901 (BV && BV->isConstant()); 4902 }; 4903 4904 // All operands must be vector types with the same number of elements as 4905 // the result type and must be either UNDEF or a build vector of constant 4906 // or UNDEF scalars. 4907 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4908 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4909 return SDValue(); 4910 4911 // If we are comparing vectors, then the result needs to be a i1 boolean 4912 // that is then sign-extended back to the legal result type. 4913 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4914 4915 // Find legal integer scalar type for constant promotion and 4916 // ensure that its scalar size is at least as large as source. 4917 EVT LegalSVT = VT.getScalarType(); 4918 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4919 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4920 if (LegalSVT.bitsLT(VT.getScalarType())) 4921 return SDValue(); 4922 } 4923 4924 // Constant fold each scalar lane separately. 4925 SmallVector<SDValue, 4> ScalarResults; 4926 for (unsigned i = 0; i != NumElts; i++) { 4927 SmallVector<SDValue, 4> ScalarOps; 4928 for (SDValue Op : Ops) { 4929 EVT InSVT = Op.getValueType().getScalarType(); 4930 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4931 if (!InBV) { 4932 // We've checked that this is UNDEF or a constant of some kind. 4933 if (Op.isUndef()) 4934 ScalarOps.push_back(getUNDEF(InSVT)); 4935 else 4936 ScalarOps.push_back(Op); 4937 continue; 4938 } 4939 4940 SDValue ScalarOp = InBV->getOperand(i); 4941 EVT ScalarVT = ScalarOp.getValueType(); 4942 4943 // Build vector (integer) scalar operands may need implicit 4944 // truncation - do this before constant folding. 4945 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4946 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4947 4948 ScalarOps.push_back(ScalarOp); 4949 } 4950 4951 // Constant fold the scalar operands. 4952 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4953 4954 // Legalize the (integer) scalar constant if necessary. 4955 if (LegalSVT != SVT) 4956 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4957 4958 // Scalar folding only succeeded if the result is a constant or UNDEF. 4959 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4960 ScalarResult.getOpcode() != ISD::ConstantFP) 4961 return SDValue(); 4962 ScalarResults.push_back(ScalarResult); 4963 } 4964 4965 SDValue V = getBuildVector(VT, DL, ScalarResults); 4966 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4967 return V; 4968 } 4969 4970 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4971 EVT VT, SDValue N1, SDValue N2) { 4972 // TODO: We don't do any constant folding for strict FP opcodes here, but we 4973 // should. That will require dealing with a potentially non-default 4974 // rounding mode, checking the "opStatus" return value from the APFloat 4975 // math calculations, and possibly other variations. 4976 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4977 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4978 if (N1CFP && N2CFP) { 4979 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 4980 switch (Opcode) { 4981 case ISD::FADD: 4982 C1.add(C2, APFloat::rmNearestTiesToEven); 4983 return getConstantFP(C1, DL, VT); 4984 case ISD::FSUB: 4985 C1.subtract(C2, APFloat::rmNearestTiesToEven); 4986 return getConstantFP(C1, DL, VT); 4987 case ISD::FMUL: 4988 C1.multiply(C2, APFloat::rmNearestTiesToEven); 4989 return getConstantFP(C1, DL, VT); 4990 case ISD::FDIV: 4991 C1.divide(C2, APFloat::rmNearestTiesToEven); 4992 return getConstantFP(C1, DL, VT); 4993 case ISD::FREM: 4994 C1.mod(C2); 4995 return getConstantFP(C1, DL, VT); 4996 case ISD::FCOPYSIGN: 4997 C1.copySign(C2); 4998 return getConstantFP(C1, DL, VT); 4999 default: break; 5000 } 5001 } 5002 if (N1CFP && Opcode == ISD::FP_ROUND) { 5003 APFloat C1 = N1CFP->getValueAPF(); // make copy 5004 bool Unused; 5005 // This can return overflow, underflow, or inexact; we don't care. 5006 // FIXME need to be more flexible about rounding mode. 5007 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5008 &Unused); 5009 return getConstantFP(C1, DL, VT); 5010 } 5011 5012 switch (Opcode) { 5013 case ISD::FADD: 5014 case ISD::FSUB: 5015 case ISD::FMUL: 5016 case ISD::FDIV: 5017 case ISD::FREM: 5018 // If both operands are undef, the result is undef. If 1 operand is undef, 5019 // the result is NaN. This should match the behavior of the IR optimizer. 5020 if (N1.isUndef() && N2.isUndef()) 5021 return getUNDEF(VT); 5022 if (N1.isUndef() || N2.isUndef()) 5023 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5024 } 5025 return SDValue(); 5026 } 5027 5028 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5029 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5030 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5031 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5032 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5033 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5034 5035 // Canonicalize constant to RHS if commutative. 5036 if (TLI->isCommutativeBinOp(Opcode)) { 5037 if (N1C && !N2C) { 5038 std::swap(N1C, N2C); 5039 std::swap(N1, N2); 5040 } else if (N1CFP && !N2CFP) { 5041 std::swap(N1CFP, N2CFP); 5042 std::swap(N1, N2); 5043 } 5044 } 5045 5046 switch (Opcode) { 5047 default: break; 5048 case ISD::TokenFactor: 5049 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5050 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5051 // Fold trivial token factors. 5052 if (N1.getOpcode() == ISD::EntryToken) return N2; 5053 if (N2.getOpcode() == ISD::EntryToken) return N1; 5054 if (N1 == N2) return N1; 5055 break; 5056 case ISD::BUILD_VECTOR: { 5057 // Attempt to simplify BUILD_VECTOR. 5058 SDValue Ops[] = {N1, N2}; 5059 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5060 return V; 5061 break; 5062 } 5063 case ISD::CONCAT_VECTORS: { 5064 SDValue Ops[] = {N1, N2}; 5065 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5066 return V; 5067 break; 5068 } 5069 case ISD::AND: 5070 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5071 assert(N1.getValueType() == N2.getValueType() && 5072 N1.getValueType() == VT && "Binary operator types must match!"); 5073 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5074 // worth handling here. 5075 if (N2C && N2C->isNullValue()) 5076 return N2; 5077 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5078 return N1; 5079 break; 5080 case ISD::OR: 5081 case ISD::XOR: 5082 case ISD::ADD: 5083 case ISD::SUB: 5084 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5085 assert(N1.getValueType() == N2.getValueType() && 5086 N1.getValueType() == VT && "Binary operator types must match!"); 5087 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5088 // it's worth handling here. 5089 if (N2C && N2C->isNullValue()) 5090 return N1; 5091 break; 5092 case ISD::UDIV: 5093 case ISD::UREM: 5094 case ISD::MULHU: 5095 case ISD::MULHS: 5096 case ISD::MUL: 5097 case ISD::SDIV: 5098 case ISD::SREM: 5099 case ISD::SMIN: 5100 case ISD::SMAX: 5101 case ISD::UMIN: 5102 case ISD::UMAX: 5103 case ISD::SADDSAT: 5104 case ISD::SSUBSAT: 5105 case ISD::UADDSAT: 5106 case ISD::USUBSAT: 5107 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5108 assert(N1.getValueType() == N2.getValueType() && 5109 N1.getValueType() == VT && "Binary operator types must match!"); 5110 break; 5111 case ISD::FADD: 5112 case ISD::FSUB: 5113 case ISD::FMUL: 5114 case ISD::FDIV: 5115 case ISD::FREM: 5116 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5117 assert(N1.getValueType() == N2.getValueType() && 5118 N1.getValueType() == VT && "Binary operator types must match!"); 5119 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5120 return V; 5121 break; 5122 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5123 assert(N1.getValueType() == VT && 5124 N1.getValueType().isFloatingPoint() && 5125 N2.getValueType().isFloatingPoint() && 5126 "Invalid FCOPYSIGN!"); 5127 break; 5128 case ISD::SHL: 5129 case ISD::SRA: 5130 case ISD::SRL: 5131 if (SDValue V = simplifyShift(N1, N2)) 5132 return V; 5133 LLVM_FALLTHROUGH; 5134 case ISD::ROTL: 5135 case ISD::ROTR: 5136 assert(VT == N1.getValueType() && 5137 "Shift operators return type must be the same as their first arg"); 5138 assert(VT.isInteger() && N2.getValueType().isInteger() && 5139 "Shifts only work on integers"); 5140 assert((!VT.isVector() || VT == N2.getValueType()) && 5141 "Vector shift amounts must be in the same as their first arg"); 5142 // Verify that the shift amount VT is big enough to hold valid shift 5143 // amounts. This catches things like trying to shift an i1024 value by an 5144 // i8, which is easy to fall into in generic code that uses 5145 // TLI.getShiftAmount(). 5146 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5147 "Invalid use of small shift amount with oversized value!"); 5148 5149 // Always fold shifts of i1 values so the code generator doesn't need to 5150 // handle them. Since we know the size of the shift has to be less than the 5151 // size of the value, the shift/rotate count is guaranteed to be zero. 5152 if (VT == MVT::i1) 5153 return N1; 5154 if (N2C && N2C->isNullValue()) 5155 return N1; 5156 break; 5157 case ISD::FP_ROUND: 5158 assert(VT.isFloatingPoint() && 5159 N1.getValueType().isFloatingPoint() && 5160 VT.bitsLE(N1.getValueType()) && 5161 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5162 "Invalid FP_ROUND!"); 5163 if (N1.getValueType() == VT) return N1; // noop conversion. 5164 break; 5165 case ISD::AssertSext: 5166 case ISD::AssertZext: { 5167 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5168 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5169 assert(VT.isInteger() && EVT.isInteger() && 5170 "Cannot *_EXTEND_INREG FP types"); 5171 assert(!EVT.isVector() && 5172 "AssertSExt/AssertZExt type should be the vector element type " 5173 "rather than the vector type!"); 5174 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5175 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5176 break; 5177 } 5178 case ISD::SIGN_EXTEND_INREG: { 5179 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5180 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5181 assert(VT.isInteger() && EVT.isInteger() && 5182 "Cannot *_EXTEND_INREG FP types"); 5183 assert(EVT.isVector() == VT.isVector() && 5184 "SIGN_EXTEND_INREG type should be vector iff the operand " 5185 "type is vector!"); 5186 assert((!EVT.isVector() || 5187 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5188 "Vector element counts must match in SIGN_EXTEND_INREG"); 5189 assert(EVT.bitsLE(VT) && "Not extending!"); 5190 if (EVT == VT) return N1; // Not actually extending 5191 5192 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5193 unsigned FromBits = EVT.getScalarSizeInBits(); 5194 Val <<= Val.getBitWidth() - FromBits; 5195 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5196 return getConstant(Val, DL, ConstantVT); 5197 }; 5198 5199 if (N1C) { 5200 const APInt &Val = N1C->getAPIntValue(); 5201 return SignExtendInReg(Val, VT); 5202 } 5203 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5204 SmallVector<SDValue, 8> Ops; 5205 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5206 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5207 SDValue Op = N1.getOperand(i); 5208 if (Op.isUndef()) { 5209 Ops.push_back(getUNDEF(OpVT)); 5210 continue; 5211 } 5212 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5213 APInt Val = C->getAPIntValue(); 5214 Ops.push_back(SignExtendInReg(Val, OpVT)); 5215 } 5216 return getBuildVector(VT, DL, Ops); 5217 } 5218 break; 5219 } 5220 case ISD::EXTRACT_VECTOR_ELT: 5221 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5222 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5223 element type of the vector."); 5224 5225 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 5226 if (N1.isUndef()) 5227 return getUNDEF(VT); 5228 5229 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5230 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5231 return getUNDEF(VT); 5232 5233 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5234 // expanding copies of large vectors from registers. 5235 if (N2C && 5236 N1.getOpcode() == ISD::CONCAT_VECTORS && 5237 N1.getNumOperands() > 0) { 5238 unsigned Factor = 5239 N1.getOperand(0).getValueType().getVectorNumElements(); 5240 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5241 N1.getOperand(N2C->getZExtValue() / Factor), 5242 getConstant(N2C->getZExtValue() % Factor, DL, 5243 N2.getValueType())); 5244 } 5245 5246 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5247 // expanding large vector constants. 5248 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5249 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5250 5251 if (VT != Elt.getValueType()) 5252 // If the vector element type is not legal, the BUILD_VECTOR operands 5253 // are promoted and implicitly truncated, and the result implicitly 5254 // extended. Make that explicit here. 5255 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5256 5257 return Elt; 5258 } 5259 5260 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5261 // operations are lowered to scalars. 5262 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5263 // If the indices are the same, return the inserted element else 5264 // if the indices are known different, extract the element from 5265 // the original vector. 5266 SDValue N1Op2 = N1.getOperand(2); 5267 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5268 5269 if (N1Op2C && N2C) { 5270 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5271 if (VT == N1.getOperand(1).getValueType()) 5272 return N1.getOperand(1); 5273 else 5274 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5275 } 5276 5277 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5278 } 5279 } 5280 5281 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5282 // when vector types are scalarized and v1iX is legal. 5283 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5284 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5285 N1.getValueType().getVectorNumElements() == 1) { 5286 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5287 N1.getOperand(1)); 5288 } 5289 break; 5290 case ISD::EXTRACT_ELEMENT: 5291 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5292 assert(!N1.getValueType().isVector() && !VT.isVector() && 5293 (N1.getValueType().isInteger() == VT.isInteger()) && 5294 N1.getValueType() != VT && 5295 "Wrong types for EXTRACT_ELEMENT!"); 5296 5297 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5298 // 64-bit integers into 32-bit parts. Instead of building the extract of 5299 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5300 if (N1.getOpcode() == ISD::BUILD_PAIR) 5301 return N1.getOperand(N2C->getZExtValue()); 5302 5303 // EXTRACT_ELEMENT of a constant int is also very common. 5304 if (N1C) { 5305 unsigned ElementSize = VT.getSizeInBits(); 5306 unsigned Shift = ElementSize * N2C->getZExtValue(); 5307 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5308 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5309 } 5310 break; 5311 case ISD::EXTRACT_SUBVECTOR: 5312 if (VT.isSimple() && N1.getValueType().isSimple()) { 5313 assert(VT.isVector() && N1.getValueType().isVector() && 5314 "Extract subvector VTs must be a vectors!"); 5315 assert(VT.getVectorElementType() == 5316 N1.getValueType().getVectorElementType() && 5317 "Extract subvector VTs must have the same element type!"); 5318 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5319 "Extract subvector must be from larger vector to smaller vector!"); 5320 5321 if (N2C) { 5322 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5323 <= N1.getValueType().getVectorNumElements()) 5324 && "Extract subvector overflow!"); 5325 } 5326 5327 // Trivial extraction. 5328 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5329 return N1; 5330 5331 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5332 if (N1.isUndef()) 5333 return getUNDEF(VT); 5334 5335 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5336 // the concat have the same type as the extract. 5337 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5338 N1.getNumOperands() > 0 && 5339 VT == N1.getOperand(0).getValueType()) { 5340 unsigned Factor = VT.getVectorNumElements(); 5341 return N1.getOperand(N2C->getZExtValue() / Factor); 5342 } 5343 5344 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5345 // during shuffle legalization. 5346 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5347 VT == N1.getOperand(1).getValueType()) 5348 return N1.getOperand(1); 5349 } 5350 break; 5351 } 5352 5353 // Perform trivial constant folding. 5354 if (SDValue SV = 5355 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5356 return SV; 5357 5358 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5359 return V; 5360 5361 // Canonicalize an UNDEF to the RHS, even over a constant. 5362 if (N1.isUndef()) { 5363 if (TLI->isCommutativeBinOp(Opcode)) { 5364 std::swap(N1, N2); 5365 } else { 5366 switch (Opcode) { 5367 case ISD::SIGN_EXTEND_INREG: 5368 case ISD::SUB: 5369 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5370 case ISD::UDIV: 5371 case ISD::SDIV: 5372 case ISD::UREM: 5373 case ISD::SREM: 5374 case ISD::SSUBSAT: 5375 case ISD::USUBSAT: 5376 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5377 } 5378 } 5379 } 5380 5381 // Fold a bunch of operators when the RHS is undef. 5382 if (N2.isUndef()) { 5383 switch (Opcode) { 5384 case ISD::XOR: 5385 if (N1.isUndef()) 5386 // Handle undef ^ undef -> 0 special case. This is a common 5387 // idiom (misuse). 5388 return getConstant(0, DL, VT); 5389 LLVM_FALLTHROUGH; 5390 case ISD::ADD: 5391 case ISD::SUB: 5392 case ISD::UDIV: 5393 case ISD::SDIV: 5394 case ISD::UREM: 5395 case ISD::SREM: 5396 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5397 case ISD::MUL: 5398 case ISD::AND: 5399 case ISD::SSUBSAT: 5400 case ISD::USUBSAT: 5401 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5402 case ISD::OR: 5403 case ISD::SADDSAT: 5404 case ISD::UADDSAT: 5405 return getAllOnesConstant(DL, VT); 5406 } 5407 } 5408 5409 // Memoize this node if possible. 5410 SDNode *N; 5411 SDVTList VTs = getVTList(VT); 5412 SDValue Ops[] = {N1, N2}; 5413 if (VT != MVT::Glue) { 5414 FoldingSetNodeID ID; 5415 AddNodeIDNode(ID, Opcode, VTs, Ops); 5416 void *IP = nullptr; 5417 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5418 E->intersectFlagsWith(Flags); 5419 return SDValue(E, 0); 5420 } 5421 5422 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5423 N->setFlags(Flags); 5424 createOperands(N, Ops); 5425 CSEMap.InsertNode(N, IP); 5426 } else { 5427 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5428 createOperands(N, Ops); 5429 } 5430 5431 InsertNode(N); 5432 SDValue V = SDValue(N, 0); 5433 NewSDValueDbgMsg(V, "Creating new node: ", this); 5434 return V; 5435 } 5436 5437 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5438 SDValue N1, SDValue N2, SDValue N3, 5439 const SDNodeFlags Flags) { 5440 // Perform various simplifications. 5441 switch (Opcode) { 5442 case ISD::FMA: { 5443 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5444 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5445 N3.getValueType() == VT && "FMA types must match!"); 5446 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5447 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5448 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5449 if (N1CFP && N2CFP && N3CFP) { 5450 APFloat V1 = N1CFP->getValueAPF(); 5451 const APFloat &V2 = N2CFP->getValueAPF(); 5452 const APFloat &V3 = N3CFP->getValueAPF(); 5453 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5454 return getConstantFP(V1, DL, VT); 5455 } 5456 break; 5457 } 5458 case ISD::BUILD_VECTOR: { 5459 // Attempt to simplify BUILD_VECTOR. 5460 SDValue Ops[] = {N1, N2, N3}; 5461 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5462 return V; 5463 break; 5464 } 5465 case ISD::CONCAT_VECTORS: { 5466 SDValue Ops[] = {N1, N2, N3}; 5467 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5468 return V; 5469 break; 5470 } 5471 case ISD::SETCC: { 5472 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5473 assert(N1.getValueType() == N2.getValueType() && 5474 "SETCC operands must have the same type!"); 5475 assert(VT.isVector() == N1.getValueType().isVector() && 5476 "SETCC type should be vector iff the operand type is vector!"); 5477 assert((!VT.isVector() || 5478 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5479 "SETCC vector element counts must match!"); 5480 // Use FoldSetCC to simplify SETCC's. 5481 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5482 return V; 5483 // Vector constant folding. 5484 SDValue Ops[] = {N1, N2, N3}; 5485 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5486 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5487 return V; 5488 } 5489 break; 5490 } 5491 case ISD::SELECT: 5492 case ISD::VSELECT: 5493 if (SDValue V = simplifySelect(N1, N2, N3)) 5494 return V; 5495 break; 5496 case ISD::VECTOR_SHUFFLE: 5497 llvm_unreachable("should use getVectorShuffle constructor!"); 5498 case ISD::INSERT_VECTOR_ELT: { 5499 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5500 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5501 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5502 return getUNDEF(VT); 5503 break; 5504 } 5505 case ISD::INSERT_SUBVECTOR: { 5506 // Inserting undef into undef is still undef. 5507 if (N1.isUndef() && N2.isUndef()) 5508 return getUNDEF(VT); 5509 SDValue Index = N3; 5510 if (VT.isSimple() && N1.getValueType().isSimple() 5511 && N2.getValueType().isSimple()) { 5512 assert(VT.isVector() && N1.getValueType().isVector() && 5513 N2.getValueType().isVector() && 5514 "Insert subvector VTs must be a vectors"); 5515 assert(VT == N1.getValueType() && 5516 "Dest and insert subvector source types must match!"); 5517 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5518 "Insert subvector must be from smaller vector to larger vector!"); 5519 if (isa<ConstantSDNode>(Index)) { 5520 assert((N2.getValueType().getVectorNumElements() + 5521 cast<ConstantSDNode>(Index)->getZExtValue() 5522 <= VT.getVectorNumElements()) 5523 && "Insert subvector overflow!"); 5524 } 5525 5526 // Trivial insertion. 5527 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5528 return N2; 5529 5530 // If this is an insert of an extracted vector into an undef vector, we 5531 // can just use the input to the extract. 5532 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5533 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5534 return N2.getOperand(0); 5535 } 5536 break; 5537 } 5538 case ISD::BITCAST: 5539 // Fold bit_convert nodes from a type to themselves. 5540 if (N1.getValueType() == VT) 5541 return N1; 5542 break; 5543 } 5544 5545 // Memoize node if it doesn't produce a flag. 5546 SDNode *N; 5547 SDVTList VTs = getVTList(VT); 5548 SDValue Ops[] = {N1, N2, N3}; 5549 if (VT != MVT::Glue) { 5550 FoldingSetNodeID ID; 5551 AddNodeIDNode(ID, Opcode, VTs, Ops); 5552 void *IP = nullptr; 5553 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5554 E->intersectFlagsWith(Flags); 5555 return SDValue(E, 0); 5556 } 5557 5558 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5559 N->setFlags(Flags); 5560 createOperands(N, Ops); 5561 CSEMap.InsertNode(N, IP); 5562 } else { 5563 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5564 createOperands(N, Ops); 5565 } 5566 5567 InsertNode(N); 5568 SDValue V = SDValue(N, 0); 5569 NewSDValueDbgMsg(V, "Creating new node: ", this); 5570 return V; 5571 } 5572 5573 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5574 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5575 SDValue Ops[] = { N1, N2, N3, N4 }; 5576 return getNode(Opcode, DL, VT, Ops); 5577 } 5578 5579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5580 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5581 SDValue N5) { 5582 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5583 return getNode(Opcode, DL, VT, Ops); 5584 } 5585 5586 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5587 /// the incoming stack arguments to be loaded from the stack. 5588 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5589 SmallVector<SDValue, 8> ArgChains; 5590 5591 // Include the original chain at the beginning of the list. When this is 5592 // used by target LowerCall hooks, this helps legalize find the 5593 // CALLSEQ_BEGIN node. 5594 ArgChains.push_back(Chain); 5595 5596 // Add a chain value for each stack argument. 5597 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5598 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5599 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5600 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5601 if (FI->getIndex() < 0) 5602 ArgChains.push_back(SDValue(L, 1)); 5603 5604 // Build a tokenfactor for all the chains. 5605 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5606 } 5607 5608 /// getMemsetValue - Vectorized representation of the memset value 5609 /// operand. 5610 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5611 const SDLoc &dl) { 5612 assert(!Value.isUndef()); 5613 5614 unsigned NumBits = VT.getScalarSizeInBits(); 5615 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5616 assert(C->getAPIntValue().getBitWidth() == 8); 5617 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5618 if (VT.isInteger()) { 5619 bool IsOpaque = VT.getSizeInBits() > 64 || 5620 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5621 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5622 } 5623 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5624 VT); 5625 } 5626 5627 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5628 EVT IntVT = VT.getScalarType(); 5629 if (!IntVT.isInteger()) 5630 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5631 5632 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5633 if (NumBits > 8) { 5634 // Use a multiplication with 0x010101... to extend the input to the 5635 // required length. 5636 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5637 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5638 DAG.getConstant(Magic, dl, IntVT)); 5639 } 5640 5641 if (VT != Value.getValueType() && !VT.isInteger()) 5642 Value = DAG.getBitcast(VT.getScalarType(), Value); 5643 if (VT != Value.getValueType()) 5644 Value = DAG.getSplatBuildVector(VT, dl, Value); 5645 5646 return Value; 5647 } 5648 5649 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5650 /// used when a memcpy is turned into a memset when the source is a constant 5651 /// string ptr. 5652 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5653 const TargetLowering &TLI, 5654 const ConstantDataArraySlice &Slice) { 5655 // Handle vector with all elements zero. 5656 if (Slice.Array == nullptr) { 5657 if (VT.isInteger()) 5658 return DAG.getConstant(0, dl, VT); 5659 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5660 return DAG.getConstantFP(0.0, dl, VT); 5661 else if (VT.isVector()) { 5662 unsigned NumElts = VT.getVectorNumElements(); 5663 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5664 return DAG.getNode(ISD::BITCAST, dl, VT, 5665 DAG.getConstant(0, dl, 5666 EVT::getVectorVT(*DAG.getContext(), 5667 EltVT, NumElts))); 5668 } else 5669 llvm_unreachable("Expected type!"); 5670 } 5671 5672 assert(!VT.isVector() && "Can't handle vector type here!"); 5673 unsigned NumVTBits = VT.getSizeInBits(); 5674 unsigned NumVTBytes = NumVTBits / 8; 5675 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5676 5677 APInt Val(NumVTBits, 0); 5678 if (DAG.getDataLayout().isLittleEndian()) { 5679 for (unsigned i = 0; i != NumBytes; ++i) 5680 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5681 } else { 5682 for (unsigned i = 0; i != NumBytes; ++i) 5683 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5684 } 5685 5686 // If the "cost" of materializing the integer immediate is less than the cost 5687 // of a load, then it is cost effective to turn the load into the immediate. 5688 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5689 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5690 return DAG.getConstant(Val, dl, VT); 5691 return SDValue(nullptr, 0); 5692 } 5693 5694 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5695 const SDLoc &DL) { 5696 EVT VT = Base.getValueType(); 5697 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5698 } 5699 5700 /// Returns true if memcpy source is constant data. 5701 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5702 uint64_t SrcDelta = 0; 5703 GlobalAddressSDNode *G = nullptr; 5704 if (Src.getOpcode() == ISD::GlobalAddress) 5705 G = cast<GlobalAddressSDNode>(Src); 5706 else if (Src.getOpcode() == ISD::ADD && 5707 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5708 Src.getOperand(1).getOpcode() == ISD::Constant) { 5709 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5710 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5711 } 5712 if (!G) 5713 return false; 5714 5715 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5716 SrcDelta + G->getOffset()); 5717 } 5718 5719 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5720 // On Darwin, -Os means optimize for size without hurting performance, so 5721 // only really optimize for size when -Oz (MinSize) is used. 5722 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5723 return MF.getFunction().hasMinSize(); 5724 return MF.getFunction().hasOptSize(); 5725 } 5726 5727 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5728 SmallVector<SDValue, 32> &OutChains, unsigned From, 5729 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5730 SmallVector<SDValue, 16> &OutStoreChains) { 5731 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5732 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5733 SmallVector<SDValue, 16> GluedLoadChains; 5734 for (unsigned i = From; i < To; ++i) { 5735 OutChains.push_back(OutLoadChains[i]); 5736 GluedLoadChains.push_back(OutLoadChains[i]); 5737 } 5738 5739 // Chain for all loads. 5740 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5741 GluedLoadChains); 5742 5743 for (unsigned i = From; i < To; ++i) { 5744 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5745 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5746 ST->getBasePtr(), ST->getMemoryVT(), 5747 ST->getMemOperand()); 5748 OutChains.push_back(NewStore); 5749 } 5750 } 5751 5752 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5753 SDValue Chain, SDValue Dst, SDValue Src, 5754 uint64_t Size, unsigned Align, 5755 bool isVol, bool AlwaysInline, 5756 MachinePointerInfo DstPtrInfo, 5757 MachinePointerInfo SrcPtrInfo) { 5758 // Turn a memcpy of undef to nop. 5759 // FIXME: We need to honor volatile even is Src is undef. 5760 if (Src.isUndef()) 5761 return Chain; 5762 5763 // Expand memcpy to a series of load and store ops if the size operand falls 5764 // below a certain threshold. 5765 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5766 // rather than maybe a humongous number of loads and stores. 5767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5768 const DataLayout &DL = DAG.getDataLayout(); 5769 LLVMContext &C = *DAG.getContext(); 5770 std::vector<EVT> MemOps; 5771 bool DstAlignCanChange = false; 5772 MachineFunction &MF = DAG.getMachineFunction(); 5773 MachineFrameInfo &MFI = MF.getFrameInfo(); 5774 bool OptSize = shouldLowerMemFuncForSize(MF); 5775 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5776 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5777 DstAlignCanChange = true; 5778 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5779 if (Align > SrcAlign) 5780 SrcAlign = Align; 5781 ConstantDataArraySlice Slice; 5782 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5783 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5784 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5785 5786 if (!TLI.findOptimalMemOpLowering( 5787 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), 5788 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5789 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5790 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5791 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5792 return SDValue(); 5793 5794 if (DstAlignCanChange) { 5795 Type *Ty = MemOps[0].getTypeForEVT(C); 5796 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5797 5798 // Don't promote to an alignment that would require dynamic stack 5799 // realignment. 5800 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5801 if (!TRI->needsStackRealignment(MF)) 5802 while (NewAlign > Align && 5803 DL.exceedsNaturalStackAlignment(llvm::Align(NewAlign))) 5804 NewAlign /= 2; 5805 5806 if (NewAlign > Align) { 5807 // Give the stack frame object a larger alignment if needed. 5808 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5809 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5810 Align = NewAlign; 5811 } 5812 } 5813 5814 MachineMemOperand::Flags MMOFlags = 5815 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5816 SmallVector<SDValue, 16> OutLoadChains; 5817 SmallVector<SDValue, 16> OutStoreChains; 5818 SmallVector<SDValue, 32> OutChains; 5819 unsigned NumMemOps = MemOps.size(); 5820 uint64_t SrcOff = 0, DstOff = 0; 5821 for (unsigned i = 0; i != NumMemOps; ++i) { 5822 EVT VT = MemOps[i]; 5823 unsigned VTSize = VT.getSizeInBits() / 8; 5824 SDValue Value, Store; 5825 5826 if (VTSize > Size) { 5827 // Issuing an unaligned load / store pair that overlaps with the previous 5828 // pair. Adjust the offset accordingly. 5829 assert(i == NumMemOps-1 && i != 0); 5830 SrcOff -= VTSize - Size; 5831 DstOff -= VTSize - Size; 5832 } 5833 5834 if (CopyFromConstant && 5835 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5836 // It's unlikely a store of a vector immediate can be done in a single 5837 // instruction. It would require a load from a constantpool first. 5838 // We only handle zero vectors here. 5839 // FIXME: Handle other cases where store of vector immediate is done in 5840 // a single instruction. 5841 ConstantDataArraySlice SubSlice; 5842 if (SrcOff < Slice.Length) { 5843 SubSlice = Slice; 5844 SubSlice.move(SrcOff); 5845 } else { 5846 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5847 SubSlice.Array = nullptr; 5848 SubSlice.Offset = 0; 5849 SubSlice.Length = VTSize; 5850 } 5851 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5852 if (Value.getNode()) { 5853 Store = DAG.getStore(Chain, dl, Value, 5854 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5855 DstPtrInfo.getWithOffset(DstOff), Align, 5856 MMOFlags); 5857 OutChains.push_back(Store); 5858 } 5859 } 5860 5861 if (!Store.getNode()) { 5862 // The type might not be legal for the target. This should only happen 5863 // if the type is smaller than a legal type, as on PPC, so the right 5864 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5865 // to Load/Store if NVT==VT. 5866 // FIXME does the case above also need this? 5867 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5868 assert(NVT.bitsGE(VT)); 5869 5870 bool isDereferenceable = 5871 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5872 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5873 if (isDereferenceable) 5874 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5875 5876 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5877 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5878 SrcPtrInfo.getWithOffset(SrcOff), VT, 5879 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5880 OutLoadChains.push_back(Value.getValue(1)); 5881 5882 Store = DAG.getTruncStore( 5883 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5884 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5885 OutStoreChains.push_back(Store); 5886 } 5887 SrcOff += VTSize; 5888 DstOff += VTSize; 5889 Size -= VTSize; 5890 } 5891 5892 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5893 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5894 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5895 5896 if (NumLdStInMemcpy) { 5897 // It may be that memcpy might be converted to memset if it's memcpy 5898 // of constants. In such a case, we won't have loads and stores, but 5899 // just stores. In the absence of loads, there is nothing to gang up. 5900 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5901 // If target does not care, just leave as it. 5902 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5903 OutChains.push_back(OutLoadChains[i]); 5904 OutChains.push_back(OutStoreChains[i]); 5905 } 5906 } else { 5907 // Ld/St less than/equal limit set by target. 5908 if (NumLdStInMemcpy <= GluedLdStLimit) { 5909 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5910 NumLdStInMemcpy, OutLoadChains, 5911 OutStoreChains); 5912 } else { 5913 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5914 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5915 unsigned GlueIter = 0; 5916 5917 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5918 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5919 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5920 5921 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5922 OutLoadChains, OutStoreChains); 5923 GlueIter += GluedLdStLimit; 5924 } 5925 5926 // Residual ld/st. 5927 if (RemainingLdStInMemcpy) { 5928 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5929 RemainingLdStInMemcpy, OutLoadChains, 5930 OutStoreChains); 5931 } 5932 } 5933 } 5934 } 5935 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5936 } 5937 5938 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5939 SDValue Chain, SDValue Dst, SDValue Src, 5940 uint64_t Size, unsigned Align, 5941 bool isVol, bool AlwaysInline, 5942 MachinePointerInfo DstPtrInfo, 5943 MachinePointerInfo SrcPtrInfo) { 5944 // Turn a memmove of undef to nop. 5945 // FIXME: We need to honor volatile even is Src is undef. 5946 if (Src.isUndef()) 5947 return Chain; 5948 5949 // Expand memmove to a series of load and store ops if the size operand falls 5950 // below a certain threshold. 5951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5952 const DataLayout &DL = DAG.getDataLayout(); 5953 LLVMContext &C = *DAG.getContext(); 5954 std::vector<EVT> MemOps; 5955 bool DstAlignCanChange = false; 5956 MachineFunction &MF = DAG.getMachineFunction(); 5957 MachineFrameInfo &MFI = MF.getFrameInfo(); 5958 bool OptSize = shouldLowerMemFuncForSize(MF); 5959 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5960 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5961 DstAlignCanChange = true; 5962 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5963 if (Align > SrcAlign) 5964 SrcAlign = Align; 5965 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5966 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 5967 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 5968 // correct code. 5969 bool AllowOverlap = false; 5970 if (!TLI.findOptimalMemOpLowering( 5971 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 5972 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 5973 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 5974 MF.getFunction().getAttributes())) 5975 return SDValue(); 5976 5977 if (DstAlignCanChange) { 5978 Type *Ty = MemOps[0].getTypeForEVT(C); 5979 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5980 if (NewAlign > Align) { 5981 // Give the stack frame object a larger alignment if needed. 5982 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5983 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5984 Align = NewAlign; 5985 } 5986 } 5987 5988 MachineMemOperand::Flags MMOFlags = 5989 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5990 uint64_t SrcOff = 0, DstOff = 0; 5991 SmallVector<SDValue, 8> LoadValues; 5992 SmallVector<SDValue, 8> LoadChains; 5993 SmallVector<SDValue, 8> OutChains; 5994 unsigned NumMemOps = MemOps.size(); 5995 for (unsigned i = 0; i < NumMemOps; i++) { 5996 EVT VT = MemOps[i]; 5997 unsigned VTSize = VT.getSizeInBits() / 8; 5998 SDValue Value; 5999 6000 bool isDereferenceable = 6001 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6002 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6003 if (isDereferenceable) 6004 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6005 6006 Value = 6007 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6008 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6009 LoadValues.push_back(Value); 6010 LoadChains.push_back(Value.getValue(1)); 6011 SrcOff += VTSize; 6012 } 6013 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6014 OutChains.clear(); 6015 for (unsigned i = 0; i < NumMemOps; i++) { 6016 EVT VT = MemOps[i]; 6017 unsigned VTSize = VT.getSizeInBits() / 8; 6018 SDValue Store; 6019 6020 Store = DAG.getStore(Chain, dl, LoadValues[i], 6021 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6022 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6023 OutChains.push_back(Store); 6024 DstOff += VTSize; 6025 } 6026 6027 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6028 } 6029 6030 /// Lower the call to 'memset' intrinsic function into a series of store 6031 /// operations. 6032 /// 6033 /// \param DAG Selection DAG where lowered code is placed. 6034 /// \param dl Link to corresponding IR location. 6035 /// \param Chain Control flow dependency. 6036 /// \param Dst Pointer to destination memory location. 6037 /// \param Src Value of byte to write into the memory. 6038 /// \param Size Number of bytes to write. 6039 /// \param Align Alignment of the destination in bytes. 6040 /// \param isVol True if destination is volatile. 6041 /// \param DstPtrInfo IR information on the memory pointer. 6042 /// \returns New head in the control flow, if lowering was successful, empty 6043 /// SDValue otherwise. 6044 /// 6045 /// The function tries to replace 'llvm.memset' intrinsic with several store 6046 /// operations and value calculation code. This is usually profitable for small 6047 /// memory size. 6048 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6049 SDValue Chain, SDValue Dst, SDValue Src, 6050 uint64_t Size, unsigned Align, bool isVol, 6051 MachinePointerInfo DstPtrInfo) { 6052 // Turn a memset of undef to nop. 6053 // FIXME: We need to honor volatile even is Src is undef. 6054 if (Src.isUndef()) 6055 return Chain; 6056 6057 // Expand memset to a series of load/store ops if the size operand 6058 // falls below a certain threshold. 6059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6060 std::vector<EVT> MemOps; 6061 bool DstAlignCanChange = false; 6062 MachineFunction &MF = DAG.getMachineFunction(); 6063 MachineFrameInfo &MFI = MF.getFrameInfo(); 6064 bool OptSize = shouldLowerMemFuncForSize(MF); 6065 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6066 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6067 DstAlignCanChange = true; 6068 bool IsZeroVal = 6069 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6070 if (!TLI.findOptimalMemOpLowering( 6071 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6072 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6073 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6074 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6075 MF.getFunction().getAttributes())) 6076 return SDValue(); 6077 6078 if (DstAlignCanChange) { 6079 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6080 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6081 if (NewAlign > Align) { 6082 // Give the stack frame object a larger alignment if needed. 6083 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6084 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6085 Align = NewAlign; 6086 } 6087 } 6088 6089 SmallVector<SDValue, 8> OutChains; 6090 uint64_t DstOff = 0; 6091 unsigned NumMemOps = MemOps.size(); 6092 6093 // Find the largest store and generate the bit pattern for it. 6094 EVT LargestVT = MemOps[0]; 6095 for (unsigned i = 1; i < NumMemOps; i++) 6096 if (MemOps[i].bitsGT(LargestVT)) 6097 LargestVT = MemOps[i]; 6098 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6099 6100 for (unsigned i = 0; i < NumMemOps; i++) { 6101 EVT VT = MemOps[i]; 6102 unsigned VTSize = VT.getSizeInBits() / 8; 6103 if (VTSize > Size) { 6104 // Issuing an unaligned load / store pair that overlaps with the previous 6105 // pair. Adjust the offset accordingly. 6106 assert(i == NumMemOps-1 && i != 0); 6107 DstOff -= VTSize - Size; 6108 } 6109 6110 // If this store is smaller than the largest store see whether we can get 6111 // the smaller value for free with a truncate. 6112 SDValue Value = MemSetValue; 6113 if (VT.bitsLT(LargestVT)) { 6114 if (!LargestVT.isVector() && !VT.isVector() && 6115 TLI.isTruncateFree(LargestVT, VT)) 6116 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6117 else 6118 Value = getMemsetValue(Src, VT, DAG, dl); 6119 } 6120 assert(Value.getValueType() == VT && "Value with wrong type."); 6121 SDValue Store = DAG.getStore( 6122 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6123 DstPtrInfo.getWithOffset(DstOff), Align, 6124 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6125 OutChains.push_back(Store); 6126 DstOff += VT.getSizeInBits() / 8; 6127 Size -= VTSize; 6128 } 6129 6130 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6131 } 6132 6133 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6134 unsigned AS) { 6135 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6136 // pointer operands can be losslessly bitcasted to pointers of address space 0 6137 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6138 report_fatal_error("cannot lower memory intrinsic in address space " + 6139 Twine(AS)); 6140 } 6141 } 6142 6143 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6144 SDValue Src, SDValue Size, unsigned Align, 6145 bool isVol, bool AlwaysInline, bool isTailCall, 6146 MachinePointerInfo DstPtrInfo, 6147 MachinePointerInfo SrcPtrInfo) { 6148 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6149 6150 // Check to see if we should lower the memcpy to loads and stores first. 6151 // For cases within the target-specified limits, this is the best choice. 6152 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6153 if (ConstantSize) { 6154 // Memcpy with size zero? Just return the original chain. 6155 if (ConstantSize->isNullValue()) 6156 return Chain; 6157 6158 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6159 ConstantSize->getZExtValue(),Align, 6160 isVol, false, DstPtrInfo, SrcPtrInfo); 6161 if (Result.getNode()) 6162 return Result; 6163 } 6164 6165 // Then check to see if we should lower the memcpy with target-specific 6166 // code. If the target chooses to do this, this is the next best. 6167 if (TSI) { 6168 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6169 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6170 DstPtrInfo, SrcPtrInfo); 6171 if (Result.getNode()) 6172 return Result; 6173 } 6174 6175 // If we really need inline code and the target declined to provide it, 6176 // use a (potentially long) sequence of loads and stores. 6177 if (AlwaysInline) { 6178 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6179 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6180 ConstantSize->getZExtValue(), Align, isVol, 6181 true, DstPtrInfo, SrcPtrInfo); 6182 } 6183 6184 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6185 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6186 6187 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6188 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6189 // respect volatile, so they may do things like read or write memory 6190 // beyond the given memory regions. But fixing this isn't easy, and most 6191 // people don't care. 6192 6193 // Emit a library call. 6194 TargetLowering::ArgListTy Args; 6195 TargetLowering::ArgListEntry Entry; 6196 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6197 Entry.Node = Dst; Args.push_back(Entry); 6198 Entry.Node = Src; Args.push_back(Entry); 6199 6200 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6201 Entry.Node = Size; Args.push_back(Entry); 6202 // FIXME: pass in SDLoc 6203 TargetLowering::CallLoweringInfo CLI(*this); 6204 CLI.setDebugLoc(dl) 6205 .setChain(Chain) 6206 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6207 Dst.getValueType().getTypeForEVT(*getContext()), 6208 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6209 TLI->getPointerTy(getDataLayout())), 6210 std::move(Args)) 6211 .setDiscardResult() 6212 .setTailCall(isTailCall); 6213 6214 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6215 return CallResult.second; 6216 } 6217 6218 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6219 SDValue Dst, unsigned DstAlign, 6220 SDValue Src, unsigned SrcAlign, 6221 SDValue Size, Type *SizeTy, 6222 unsigned ElemSz, bool isTailCall, 6223 MachinePointerInfo DstPtrInfo, 6224 MachinePointerInfo SrcPtrInfo) { 6225 // Emit a library call. 6226 TargetLowering::ArgListTy Args; 6227 TargetLowering::ArgListEntry Entry; 6228 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6229 Entry.Node = Dst; 6230 Args.push_back(Entry); 6231 6232 Entry.Node = Src; 6233 Args.push_back(Entry); 6234 6235 Entry.Ty = SizeTy; 6236 Entry.Node = Size; 6237 Args.push_back(Entry); 6238 6239 RTLIB::Libcall LibraryCall = 6240 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6241 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6242 report_fatal_error("Unsupported element size"); 6243 6244 TargetLowering::CallLoweringInfo CLI(*this); 6245 CLI.setDebugLoc(dl) 6246 .setChain(Chain) 6247 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6248 Type::getVoidTy(*getContext()), 6249 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6250 TLI->getPointerTy(getDataLayout())), 6251 std::move(Args)) 6252 .setDiscardResult() 6253 .setTailCall(isTailCall); 6254 6255 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6256 return CallResult.second; 6257 } 6258 6259 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6260 SDValue Src, SDValue Size, unsigned Align, 6261 bool isVol, bool isTailCall, 6262 MachinePointerInfo DstPtrInfo, 6263 MachinePointerInfo SrcPtrInfo) { 6264 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6265 6266 // Check to see if we should lower the memmove to loads and stores first. 6267 // For cases within the target-specified limits, this is the best choice. 6268 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6269 if (ConstantSize) { 6270 // Memmove with size zero? Just return the original chain. 6271 if (ConstantSize->isNullValue()) 6272 return Chain; 6273 6274 SDValue Result = 6275 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6276 ConstantSize->getZExtValue(), Align, isVol, 6277 false, DstPtrInfo, SrcPtrInfo); 6278 if (Result.getNode()) 6279 return Result; 6280 } 6281 6282 // Then check to see if we should lower the memmove with target-specific 6283 // code. If the target chooses to do this, this is the next best. 6284 if (TSI) { 6285 SDValue Result = TSI->EmitTargetCodeForMemmove( 6286 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6287 if (Result.getNode()) 6288 return Result; 6289 } 6290 6291 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6292 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6293 6294 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6295 // not be safe. See memcpy above for more details. 6296 6297 // Emit a library call. 6298 TargetLowering::ArgListTy Args; 6299 TargetLowering::ArgListEntry Entry; 6300 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6301 Entry.Node = Dst; Args.push_back(Entry); 6302 Entry.Node = Src; Args.push_back(Entry); 6303 6304 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6305 Entry.Node = Size; Args.push_back(Entry); 6306 // FIXME: pass in SDLoc 6307 TargetLowering::CallLoweringInfo CLI(*this); 6308 CLI.setDebugLoc(dl) 6309 .setChain(Chain) 6310 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6311 Dst.getValueType().getTypeForEVT(*getContext()), 6312 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6313 TLI->getPointerTy(getDataLayout())), 6314 std::move(Args)) 6315 .setDiscardResult() 6316 .setTailCall(isTailCall); 6317 6318 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6319 return CallResult.second; 6320 } 6321 6322 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6323 SDValue Dst, unsigned DstAlign, 6324 SDValue Src, unsigned SrcAlign, 6325 SDValue Size, Type *SizeTy, 6326 unsigned ElemSz, bool isTailCall, 6327 MachinePointerInfo DstPtrInfo, 6328 MachinePointerInfo SrcPtrInfo) { 6329 // Emit a library call. 6330 TargetLowering::ArgListTy Args; 6331 TargetLowering::ArgListEntry Entry; 6332 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6333 Entry.Node = Dst; 6334 Args.push_back(Entry); 6335 6336 Entry.Node = Src; 6337 Args.push_back(Entry); 6338 6339 Entry.Ty = SizeTy; 6340 Entry.Node = Size; 6341 Args.push_back(Entry); 6342 6343 RTLIB::Libcall LibraryCall = 6344 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6345 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6346 report_fatal_error("Unsupported element size"); 6347 6348 TargetLowering::CallLoweringInfo CLI(*this); 6349 CLI.setDebugLoc(dl) 6350 .setChain(Chain) 6351 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6352 Type::getVoidTy(*getContext()), 6353 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6354 TLI->getPointerTy(getDataLayout())), 6355 std::move(Args)) 6356 .setDiscardResult() 6357 .setTailCall(isTailCall); 6358 6359 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6360 return CallResult.second; 6361 } 6362 6363 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6364 SDValue Src, SDValue Size, unsigned Align, 6365 bool isVol, bool isTailCall, 6366 MachinePointerInfo DstPtrInfo) { 6367 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6368 6369 // Check to see if we should lower the memset to stores first. 6370 // For cases within the target-specified limits, this is the best choice. 6371 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6372 if (ConstantSize) { 6373 // Memset with size zero? Just return the original chain. 6374 if (ConstantSize->isNullValue()) 6375 return Chain; 6376 6377 SDValue Result = 6378 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6379 Align, isVol, DstPtrInfo); 6380 6381 if (Result.getNode()) 6382 return Result; 6383 } 6384 6385 // Then check to see if we should lower the memset with target-specific 6386 // code. If the target chooses to do this, this is the next best. 6387 if (TSI) { 6388 SDValue Result = TSI->EmitTargetCodeForMemset( 6389 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6390 if (Result.getNode()) 6391 return Result; 6392 } 6393 6394 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6395 6396 // Emit a library call. 6397 TargetLowering::ArgListTy Args; 6398 TargetLowering::ArgListEntry Entry; 6399 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6400 Args.push_back(Entry); 6401 Entry.Node = Src; 6402 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6403 Args.push_back(Entry); 6404 Entry.Node = Size; 6405 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6406 Args.push_back(Entry); 6407 6408 // FIXME: pass in SDLoc 6409 TargetLowering::CallLoweringInfo CLI(*this); 6410 CLI.setDebugLoc(dl) 6411 .setChain(Chain) 6412 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6413 Dst.getValueType().getTypeForEVT(*getContext()), 6414 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6415 TLI->getPointerTy(getDataLayout())), 6416 std::move(Args)) 6417 .setDiscardResult() 6418 .setTailCall(isTailCall); 6419 6420 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6421 return CallResult.second; 6422 } 6423 6424 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6425 SDValue Dst, unsigned DstAlign, 6426 SDValue Value, SDValue Size, Type *SizeTy, 6427 unsigned ElemSz, bool isTailCall, 6428 MachinePointerInfo DstPtrInfo) { 6429 // Emit a library call. 6430 TargetLowering::ArgListTy Args; 6431 TargetLowering::ArgListEntry Entry; 6432 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6433 Entry.Node = Dst; 6434 Args.push_back(Entry); 6435 6436 Entry.Ty = Type::getInt8Ty(*getContext()); 6437 Entry.Node = Value; 6438 Args.push_back(Entry); 6439 6440 Entry.Ty = SizeTy; 6441 Entry.Node = Size; 6442 Args.push_back(Entry); 6443 6444 RTLIB::Libcall LibraryCall = 6445 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6446 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6447 report_fatal_error("Unsupported element size"); 6448 6449 TargetLowering::CallLoweringInfo CLI(*this); 6450 CLI.setDebugLoc(dl) 6451 .setChain(Chain) 6452 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6453 Type::getVoidTy(*getContext()), 6454 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6455 TLI->getPointerTy(getDataLayout())), 6456 std::move(Args)) 6457 .setDiscardResult() 6458 .setTailCall(isTailCall); 6459 6460 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6461 return CallResult.second; 6462 } 6463 6464 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6465 SDVTList VTList, ArrayRef<SDValue> Ops, 6466 MachineMemOperand *MMO) { 6467 FoldingSetNodeID ID; 6468 ID.AddInteger(MemVT.getRawBits()); 6469 AddNodeIDNode(ID, Opcode, VTList, Ops); 6470 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6471 void* IP = nullptr; 6472 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6473 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6474 return SDValue(E, 0); 6475 } 6476 6477 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6478 VTList, MemVT, MMO); 6479 createOperands(N, Ops); 6480 6481 CSEMap.InsertNode(N, IP); 6482 InsertNode(N); 6483 return SDValue(N, 0); 6484 } 6485 6486 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6487 EVT MemVT, SDVTList VTs, SDValue Chain, 6488 SDValue Ptr, SDValue Cmp, SDValue Swp, 6489 MachineMemOperand *MMO) { 6490 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6491 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6492 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6493 6494 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6495 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6496 } 6497 6498 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6499 SDValue Chain, SDValue Ptr, SDValue Val, 6500 MachineMemOperand *MMO) { 6501 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6502 Opcode == ISD::ATOMIC_LOAD_SUB || 6503 Opcode == ISD::ATOMIC_LOAD_AND || 6504 Opcode == ISD::ATOMIC_LOAD_CLR || 6505 Opcode == ISD::ATOMIC_LOAD_OR || 6506 Opcode == ISD::ATOMIC_LOAD_XOR || 6507 Opcode == ISD::ATOMIC_LOAD_NAND || 6508 Opcode == ISD::ATOMIC_LOAD_MIN || 6509 Opcode == ISD::ATOMIC_LOAD_MAX || 6510 Opcode == ISD::ATOMIC_LOAD_UMIN || 6511 Opcode == ISD::ATOMIC_LOAD_UMAX || 6512 Opcode == ISD::ATOMIC_LOAD_FADD || 6513 Opcode == ISD::ATOMIC_LOAD_FSUB || 6514 Opcode == ISD::ATOMIC_SWAP || 6515 Opcode == ISD::ATOMIC_STORE) && 6516 "Invalid Atomic Op"); 6517 6518 EVT VT = Val.getValueType(); 6519 6520 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6521 getVTList(VT, MVT::Other); 6522 SDValue Ops[] = {Chain, Ptr, Val}; 6523 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6524 } 6525 6526 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6527 EVT VT, SDValue Chain, SDValue Ptr, 6528 MachineMemOperand *MMO) { 6529 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6530 6531 SDVTList VTs = getVTList(VT, MVT::Other); 6532 SDValue Ops[] = {Chain, Ptr}; 6533 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6534 } 6535 6536 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6537 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6538 if (Ops.size() == 1) 6539 return Ops[0]; 6540 6541 SmallVector<EVT, 4> VTs; 6542 VTs.reserve(Ops.size()); 6543 for (unsigned i = 0; i < Ops.size(); ++i) 6544 VTs.push_back(Ops[i].getValueType()); 6545 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6546 } 6547 6548 SDValue SelectionDAG::getMemIntrinsicNode( 6549 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6550 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6551 MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) { 6552 if (Align == 0) // Ensure that codegen never sees alignment 0 6553 Align = getEVTAlignment(MemVT); 6554 6555 if (!Size) 6556 Size = MemVT.getStoreSize(); 6557 6558 MachineFunction &MF = getMachineFunction(); 6559 MachineMemOperand *MMO = 6560 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6561 6562 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6563 } 6564 6565 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6566 SDVTList VTList, 6567 ArrayRef<SDValue> Ops, EVT MemVT, 6568 MachineMemOperand *MMO) { 6569 assert((Opcode == ISD::INTRINSIC_VOID || 6570 Opcode == ISD::INTRINSIC_W_CHAIN || 6571 Opcode == ISD::PREFETCH || 6572 Opcode == ISD::LIFETIME_START || 6573 Opcode == ISD::LIFETIME_END || 6574 ((int)Opcode <= std::numeric_limits<int>::max() && 6575 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6576 "Opcode is not a memory-accessing opcode!"); 6577 6578 // Memoize the node unless it returns a flag. 6579 MemIntrinsicSDNode *N; 6580 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6581 FoldingSetNodeID ID; 6582 AddNodeIDNode(ID, Opcode, VTList, Ops); 6583 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6584 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6585 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6586 void *IP = nullptr; 6587 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6588 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6589 return SDValue(E, 0); 6590 } 6591 6592 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6593 VTList, MemVT, MMO); 6594 createOperands(N, Ops); 6595 6596 CSEMap.InsertNode(N, IP); 6597 } else { 6598 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6599 VTList, MemVT, MMO); 6600 createOperands(N, Ops); 6601 } 6602 InsertNode(N); 6603 SDValue V(N, 0); 6604 NewSDValueDbgMsg(V, "Creating new node: ", this); 6605 return V; 6606 } 6607 6608 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6609 SDValue Chain, int FrameIndex, 6610 int64_t Size, int64_t Offset) { 6611 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6612 const auto VTs = getVTList(MVT::Other); 6613 SDValue Ops[2] = { 6614 Chain, 6615 getFrameIndex(FrameIndex, 6616 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6617 true)}; 6618 6619 FoldingSetNodeID ID; 6620 AddNodeIDNode(ID, Opcode, VTs, Ops); 6621 ID.AddInteger(FrameIndex); 6622 ID.AddInteger(Size); 6623 ID.AddInteger(Offset); 6624 void *IP = nullptr; 6625 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6626 return SDValue(E, 0); 6627 6628 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6629 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6630 createOperands(N, Ops); 6631 CSEMap.InsertNode(N, IP); 6632 InsertNode(N); 6633 SDValue V(N, 0); 6634 NewSDValueDbgMsg(V, "Creating new node: ", this); 6635 return V; 6636 } 6637 6638 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6639 /// MachinePointerInfo record from it. This is particularly useful because the 6640 /// code generator has many cases where it doesn't bother passing in a 6641 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6642 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6643 SelectionDAG &DAG, SDValue Ptr, 6644 int64_t Offset = 0) { 6645 // If this is FI+Offset, we can model it. 6646 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6647 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6648 FI->getIndex(), Offset); 6649 6650 // If this is (FI+Offset1)+Offset2, we can model it. 6651 if (Ptr.getOpcode() != ISD::ADD || 6652 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6653 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6654 return Info; 6655 6656 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6657 return MachinePointerInfo::getFixedStack( 6658 DAG.getMachineFunction(), FI, 6659 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6660 } 6661 6662 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6663 /// MachinePointerInfo record from it. This is particularly useful because the 6664 /// code generator has many cases where it doesn't bother passing in a 6665 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6666 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6667 SelectionDAG &DAG, SDValue Ptr, 6668 SDValue OffsetOp) { 6669 // If the 'Offset' value isn't a constant, we can't handle this. 6670 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6671 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6672 if (OffsetOp.isUndef()) 6673 return InferPointerInfo(Info, DAG, Ptr); 6674 return Info; 6675 } 6676 6677 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6678 EVT VT, const SDLoc &dl, SDValue Chain, 6679 SDValue Ptr, SDValue Offset, 6680 MachinePointerInfo PtrInfo, EVT MemVT, 6681 unsigned Alignment, 6682 MachineMemOperand::Flags MMOFlags, 6683 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6684 assert(Chain.getValueType() == MVT::Other && 6685 "Invalid chain type"); 6686 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6687 Alignment = getEVTAlignment(MemVT); 6688 6689 MMOFlags |= MachineMemOperand::MOLoad; 6690 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6691 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6692 // clients. 6693 if (PtrInfo.V.isNull()) 6694 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6695 6696 MachineFunction &MF = getMachineFunction(); 6697 MachineMemOperand *MMO = MF.getMachineMemOperand( 6698 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6699 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6700 } 6701 6702 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6703 EVT VT, const SDLoc &dl, SDValue Chain, 6704 SDValue Ptr, SDValue Offset, EVT MemVT, 6705 MachineMemOperand *MMO) { 6706 if (VT == MemVT) { 6707 ExtType = ISD::NON_EXTLOAD; 6708 } else if (ExtType == ISD::NON_EXTLOAD) { 6709 assert(VT == MemVT && "Non-extending load from different memory type!"); 6710 } else { 6711 // Extending load. 6712 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6713 "Should only be an extending load, not truncating!"); 6714 assert(VT.isInteger() == MemVT.isInteger() && 6715 "Cannot convert from FP to Int or Int -> FP!"); 6716 assert(VT.isVector() == MemVT.isVector() && 6717 "Cannot use an ext load to convert to or from a vector!"); 6718 assert((!VT.isVector() || 6719 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6720 "Cannot use an ext load to change the number of vector elements!"); 6721 } 6722 6723 bool Indexed = AM != ISD::UNINDEXED; 6724 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6725 6726 SDVTList VTs = Indexed ? 6727 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6728 SDValue Ops[] = { Chain, Ptr, Offset }; 6729 FoldingSetNodeID ID; 6730 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6731 ID.AddInteger(MemVT.getRawBits()); 6732 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6733 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6734 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6735 void *IP = nullptr; 6736 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6737 cast<LoadSDNode>(E)->refineAlignment(MMO); 6738 return SDValue(E, 0); 6739 } 6740 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6741 ExtType, MemVT, MMO); 6742 createOperands(N, Ops); 6743 6744 CSEMap.InsertNode(N, IP); 6745 InsertNode(N); 6746 SDValue V(N, 0); 6747 NewSDValueDbgMsg(V, "Creating new node: ", this); 6748 return V; 6749 } 6750 6751 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6752 SDValue Ptr, MachinePointerInfo PtrInfo, 6753 unsigned Alignment, 6754 MachineMemOperand::Flags MMOFlags, 6755 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6756 SDValue Undef = getUNDEF(Ptr.getValueType()); 6757 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6758 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6759 } 6760 6761 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6762 SDValue Ptr, MachineMemOperand *MMO) { 6763 SDValue Undef = getUNDEF(Ptr.getValueType()); 6764 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6765 VT, MMO); 6766 } 6767 6768 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6769 EVT VT, SDValue Chain, SDValue Ptr, 6770 MachinePointerInfo PtrInfo, EVT MemVT, 6771 unsigned Alignment, 6772 MachineMemOperand::Flags MMOFlags, 6773 const AAMDNodes &AAInfo) { 6774 SDValue Undef = getUNDEF(Ptr.getValueType()); 6775 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6776 MemVT, Alignment, MMOFlags, AAInfo); 6777 } 6778 6779 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6780 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6781 MachineMemOperand *MMO) { 6782 SDValue Undef = getUNDEF(Ptr.getValueType()); 6783 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6784 MemVT, MMO); 6785 } 6786 6787 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6788 SDValue Base, SDValue Offset, 6789 ISD::MemIndexedMode AM) { 6790 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6791 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6792 // Don't propagate the invariant or dereferenceable flags. 6793 auto MMOFlags = 6794 LD->getMemOperand()->getFlags() & 6795 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6796 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6797 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6798 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6799 LD->getAAInfo()); 6800 } 6801 6802 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6803 SDValue Ptr, MachinePointerInfo PtrInfo, 6804 unsigned Alignment, 6805 MachineMemOperand::Flags MMOFlags, 6806 const AAMDNodes &AAInfo) { 6807 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6808 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6809 Alignment = getEVTAlignment(Val.getValueType()); 6810 6811 MMOFlags |= MachineMemOperand::MOStore; 6812 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6813 6814 if (PtrInfo.V.isNull()) 6815 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6816 6817 MachineFunction &MF = getMachineFunction(); 6818 MachineMemOperand *MMO = MF.getMachineMemOperand( 6819 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6820 return getStore(Chain, dl, Val, Ptr, MMO); 6821 } 6822 6823 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6824 SDValue Ptr, MachineMemOperand *MMO) { 6825 assert(Chain.getValueType() == MVT::Other && 6826 "Invalid chain type"); 6827 EVT VT = Val.getValueType(); 6828 SDVTList VTs = getVTList(MVT::Other); 6829 SDValue Undef = getUNDEF(Ptr.getValueType()); 6830 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6831 FoldingSetNodeID ID; 6832 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6833 ID.AddInteger(VT.getRawBits()); 6834 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6835 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6836 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6837 void *IP = nullptr; 6838 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6839 cast<StoreSDNode>(E)->refineAlignment(MMO); 6840 return SDValue(E, 0); 6841 } 6842 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6843 ISD::UNINDEXED, false, VT, MMO); 6844 createOperands(N, Ops); 6845 6846 CSEMap.InsertNode(N, IP); 6847 InsertNode(N); 6848 SDValue V(N, 0); 6849 NewSDValueDbgMsg(V, "Creating new node: ", this); 6850 return V; 6851 } 6852 6853 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6854 SDValue Ptr, MachinePointerInfo PtrInfo, 6855 EVT SVT, unsigned Alignment, 6856 MachineMemOperand::Flags MMOFlags, 6857 const AAMDNodes &AAInfo) { 6858 assert(Chain.getValueType() == MVT::Other && 6859 "Invalid chain type"); 6860 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6861 Alignment = getEVTAlignment(SVT); 6862 6863 MMOFlags |= MachineMemOperand::MOStore; 6864 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6865 6866 if (PtrInfo.V.isNull()) 6867 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6868 6869 MachineFunction &MF = getMachineFunction(); 6870 MachineMemOperand *MMO = MF.getMachineMemOperand( 6871 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6872 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6873 } 6874 6875 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6876 SDValue Ptr, EVT SVT, 6877 MachineMemOperand *MMO) { 6878 EVT VT = Val.getValueType(); 6879 6880 assert(Chain.getValueType() == MVT::Other && 6881 "Invalid chain type"); 6882 if (VT == SVT) 6883 return getStore(Chain, dl, Val, Ptr, MMO); 6884 6885 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6886 "Should only be a truncating store, not extending!"); 6887 assert(VT.isInteger() == SVT.isInteger() && 6888 "Can't do FP-INT conversion!"); 6889 assert(VT.isVector() == SVT.isVector() && 6890 "Cannot use trunc store to convert to or from a vector!"); 6891 assert((!VT.isVector() || 6892 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6893 "Cannot use trunc store to change the number of vector elements!"); 6894 6895 SDVTList VTs = getVTList(MVT::Other); 6896 SDValue Undef = getUNDEF(Ptr.getValueType()); 6897 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6898 FoldingSetNodeID ID; 6899 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6900 ID.AddInteger(SVT.getRawBits()); 6901 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6902 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6903 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6904 void *IP = nullptr; 6905 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6906 cast<StoreSDNode>(E)->refineAlignment(MMO); 6907 return SDValue(E, 0); 6908 } 6909 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6910 ISD::UNINDEXED, true, SVT, MMO); 6911 createOperands(N, Ops); 6912 6913 CSEMap.InsertNode(N, IP); 6914 InsertNode(N); 6915 SDValue V(N, 0); 6916 NewSDValueDbgMsg(V, "Creating new node: ", this); 6917 return V; 6918 } 6919 6920 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6921 SDValue Base, SDValue Offset, 6922 ISD::MemIndexedMode AM) { 6923 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6924 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6925 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6926 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6927 FoldingSetNodeID ID; 6928 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6929 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6930 ID.AddInteger(ST->getRawSubclassData()); 6931 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6932 void *IP = nullptr; 6933 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6934 return SDValue(E, 0); 6935 6936 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6937 ST->isTruncatingStore(), ST->getMemoryVT(), 6938 ST->getMemOperand()); 6939 createOperands(N, Ops); 6940 6941 CSEMap.InsertNode(N, IP); 6942 InsertNode(N); 6943 SDValue V(N, 0); 6944 NewSDValueDbgMsg(V, "Creating new node: ", this); 6945 return V; 6946 } 6947 6948 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6949 SDValue Ptr, SDValue Mask, SDValue PassThru, 6950 EVT MemVT, MachineMemOperand *MMO, 6951 ISD::LoadExtType ExtTy, bool isExpanding) { 6952 SDVTList VTs = getVTList(VT, MVT::Other); 6953 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6954 FoldingSetNodeID ID; 6955 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6956 ID.AddInteger(MemVT.getRawBits()); 6957 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6958 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6959 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6960 void *IP = nullptr; 6961 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6962 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6963 return SDValue(E, 0); 6964 } 6965 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6966 ExtTy, isExpanding, MemVT, MMO); 6967 createOperands(N, Ops); 6968 6969 CSEMap.InsertNode(N, IP); 6970 InsertNode(N); 6971 SDValue V(N, 0); 6972 NewSDValueDbgMsg(V, "Creating new node: ", this); 6973 return V; 6974 } 6975 6976 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6977 SDValue Val, SDValue Ptr, SDValue Mask, 6978 EVT MemVT, MachineMemOperand *MMO, 6979 bool IsTruncating, bool IsCompressing) { 6980 assert(Chain.getValueType() == MVT::Other && 6981 "Invalid chain type"); 6982 SDVTList VTs = getVTList(MVT::Other); 6983 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6984 FoldingSetNodeID ID; 6985 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6986 ID.AddInteger(MemVT.getRawBits()); 6987 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6988 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6989 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6990 void *IP = nullptr; 6991 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6992 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6993 return SDValue(E, 0); 6994 } 6995 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6996 IsTruncating, IsCompressing, MemVT, MMO); 6997 createOperands(N, Ops); 6998 6999 CSEMap.InsertNode(N, IP); 7000 InsertNode(N); 7001 SDValue V(N, 0); 7002 NewSDValueDbgMsg(V, "Creating new node: ", this); 7003 return V; 7004 } 7005 7006 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7007 ArrayRef<SDValue> Ops, 7008 MachineMemOperand *MMO, 7009 ISD::MemIndexType IndexType) { 7010 assert(Ops.size() == 6 && "Incompatible number of operands"); 7011 7012 FoldingSetNodeID ID; 7013 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7014 ID.AddInteger(VT.getRawBits()); 7015 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7016 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7017 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7018 void *IP = nullptr; 7019 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7020 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7021 return SDValue(E, 0); 7022 } 7023 7024 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7025 VTs, VT, MMO, IndexType); 7026 createOperands(N, Ops); 7027 7028 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7029 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7030 assert(N->getMask().getValueType().getVectorNumElements() == 7031 N->getValueType(0).getVectorNumElements() && 7032 "Vector width mismatch between mask and data"); 7033 assert(N->getIndex().getValueType().getVectorNumElements() >= 7034 N->getValueType(0).getVectorNumElements() && 7035 "Vector width mismatch between index and data"); 7036 assert(isa<ConstantSDNode>(N->getScale()) && 7037 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7038 "Scale should be a constant power of 2"); 7039 7040 CSEMap.InsertNode(N, IP); 7041 InsertNode(N); 7042 SDValue V(N, 0); 7043 NewSDValueDbgMsg(V, "Creating new node: ", this); 7044 return V; 7045 } 7046 7047 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7048 ArrayRef<SDValue> Ops, 7049 MachineMemOperand *MMO, 7050 ISD::MemIndexType IndexType) { 7051 assert(Ops.size() == 6 && "Incompatible number of operands"); 7052 7053 FoldingSetNodeID ID; 7054 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7055 ID.AddInteger(VT.getRawBits()); 7056 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7057 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7058 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7059 void *IP = nullptr; 7060 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7061 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7062 return SDValue(E, 0); 7063 } 7064 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7065 VTs, VT, MMO, IndexType); 7066 createOperands(N, Ops); 7067 7068 assert(N->getMask().getValueType().getVectorNumElements() == 7069 N->getValue().getValueType().getVectorNumElements() && 7070 "Vector width mismatch between mask and data"); 7071 assert(N->getIndex().getValueType().getVectorNumElements() >= 7072 N->getValue().getValueType().getVectorNumElements() && 7073 "Vector width mismatch between index and data"); 7074 assert(isa<ConstantSDNode>(N->getScale()) && 7075 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7076 "Scale should be a constant power of 2"); 7077 7078 CSEMap.InsertNode(N, IP); 7079 InsertNode(N); 7080 SDValue V(N, 0); 7081 NewSDValueDbgMsg(V, "Creating new node: ", this); 7082 return V; 7083 } 7084 7085 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7086 // select undef, T, F --> T (if T is a constant), otherwise F 7087 // select, ?, undef, F --> F 7088 // select, ?, T, undef --> T 7089 if (Cond.isUndef()) 7090 return isConstantValueOfAnyType(T) ? T : F; 7091 if (T.isUndef()) 7092 return F; 7093 if (F.isUndef()) 7094 return T; 7095 7096 // select true, T, F --> T 7097 // select false, T, F --> F 7098 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7099 return CondC->isNullValue() ? F : T; 7100 7101 // TODO: This should simplify VSELECT with constant condition using something 7102 // like this (but check boolean contents to be complete?): 7103 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7104 // return T; 7105 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7106 // return F; 7107 7108 // select ?, T, T --> T 7109 if (T == F) 7110 return T; 7111 7112 return SDValue(); 7113 } 7114 7115 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7116 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7117 if (X.isUndef()) 7118 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7119 // shift X, undef --> undef (because it may shift by the bitwidth) 7120 if (Y.isUndef()) 7121 return getUNDEF(X.getValueType()); 7122 7123 // shift 0, Y --> 0 7124 // shift X, 0 --> X 7125 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7126 return X; 7127 7128 // shift X, C >= bitwidth(X) --> undef 7129 // All vector elements must be too big (or undef) to avoid partial undefs. 7130 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7131 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7132 }; 7133 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7134 return getUNDEF(X.getValueType()); 7135 7136 return SDValue(); 7137 } 7138 7139 // TODO: Use fast-math-flags to enable more simplifications. 7140 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7141 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7142 if (!YC) 7143 return SDValue(); 7144 7145 // X + -0.0 --> X 7146 if (Opcode == ISD::FADD) 7147 if (YC->getValueAPF().isNegZero()) 7148 return X; 7149 7150 // X - +0.0 --> X 7151 if (Opcode == ISD::FSUB) 7152 if (YC->getValueAPF().isPosZero()) 7153 return X; 7154 7155 // X * 1.0 --> X 7156 // X / 1.0 --> X 7157 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7158 if (YC->getValueAPF().isExactlyValue(1.0)) 7159 return X; 7160 7161 return SDValue(); 7162 } 7163 7164 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7165 SDValue Ptr, SDValue SV, unsigned Align) { 7166 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7167 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7168 } 7169 7170 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7171 ArrayRef<SDUse> Ops) { 7172 switch (Ops.size()) { 7173 case 0: return getNode(Opcode, DL, VT); 7174 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7175 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7176 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7177 default: break; 7178 } 7179 7180 // Copy from an SDUse array into an SDValue array for use with 7181 // the regular getNode logic. 7182 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7183 return getNode(Opcode, DL, VT, NewOps); 7184 } 7185 7186 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7187 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7188 unsigned NumOps = Ops.size(); 7189 switch (NumOps) { 7190 case 0: return getNode(Opcode, DL, VT); 7191 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7192 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7193 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7194 default: break; 7195 } 7196 7197 switch (Opcode) { 7198 default: break; 7199 case ISD::BUILD_VECTOR: 7200 // Attempt to simplify BUILD_VECTOR. 7201 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7202 return V; 7203 break; 7204 case ISD::CONCAT_VECTORS: 7205 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7206 return V; 7207 break; 7208 case ISD::SELECT_CC: 7209 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7210 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7211 "LHS and RHS of condition must have same type!"); 7212 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7213 "True and False arms of SelectCC must have same type!"); 7214 assert(Ops[2].getValueType() == VT && 7215 "select_cc node must be of same type as true and false value!"); 7216 break; 7217 case ISD::BR_CC: 7218 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7219 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7220 "LHS/RHS of comparison should match types!"); 7221 break; 7222 } 7223 7224 // Memoize nodes. 7225 SDNode *N; 7226 SDVTList VTs = getVTList(VT); 7227 7228 if (VT != MVT::Glue) { 7229 FoldingSetNodeID ID; 7230 AddNodeIDNode(ID, Opcode, VTs, Ops); 7231 void *IP = nullptr; 7232 7233 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7234 return SDValue(E, 0); 7235 7236 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7237 createOperands(N, Ops); 7238 7239 CSEMap.InsertNode(N, IP); 7240 } else { 7241 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7242 createOperands(N, Ops); 7243 } 7244 7245 InsertNode(N); 7246 SDValue V(N, 0); 7247 NewSDValueDbgMsg(V, "Creating new node: ", this); 7248 return V; 7249 } 7250 7251 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7252 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7253 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7254 } 7255 7256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7257 ArrayRef<SDValue> Ops) { 7258 if (VTList.NumVTs == 1) 7259 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7260 7261 #if 0 7262 switch (Opcode) { 7263 // FIXME: figure out how to safely handle things like 7264 // int foo(int x) { return 1 << (x & 255); } 7265 // int bar() { return foo(256); } 7266 case ISD::SRA_PARTS: 7267 case ISD::SRL_PARTS: 7268 case ISD::SHL_PARTS: 7269 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7270 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7271 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7272 else if (N3.getOpcode() == ISD::AND) 7273 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7274 // If the and is only masking out bits that cannot effect the shift, 7275 // eliminate the and. 7276 unsigned NumBits = VT.getScalarSizeInBits()*2; 7277 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7278 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7279 } 7280 break; 7281 } 7282 #endif 7283 7284 // Memoize the node unless it returns a flag. 7285 SDNode *N; 7286 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7287 FoldingSetNodeID ID; 7288 AddNodeIDNode(ID, Opcode, VTList, Ops); 7289 void *IP = nullptr; 7290 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7291 return SDValue(E, 0); 7292 7293 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7294 createOperands(N, Ops); 7295 CSEMap.InsertNode(N, IP); 7296 } else { 7297 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7298 createOperands(N, Ops); 7299 } 7300 InsertNode(N); 7301 SDValue V(N, 0); 7302 NewSDValueDbgMsg(V, "Creating new node: ", this); 7303 return V; 7304 } 7305 7306 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7307 SDVTList VTList) { 7308 return getNode(Opcode, DL, VTList, None); 7309 } 7310 7311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7312 SDValue N1) { 7313 SDValue Ops[] = { N1 }; 7314 return getNode(Opcode, DL, VTList, Ops); 7315 } 7316 7317 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7318 SDValue N1, SDValue N2) { 7319 SDValue Ops[] = { N1, N2 }; 7320 return getNode(Opcode, DL, VTList, Ops); 7321 } 7322 7323 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7324 SDValue N1, SDValue N2, SDValue N3) { 7325 SDValue Ops[] = { N1, N2, N3 }; 7326 return getNode(Opcode, DL, VTList, Ops); 7327 } 7328 7329 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7330 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7331 SDValue Ops[] = { N1, N2, N3, N4 }; 7332 return getNode(Opcode, DL, VTList, Ops); 7333 } 7334 7335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7336 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7337 SDValue N5) { 7338 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7339 return getNode(Opcode, DL, VTList, Ops); 7340 } 7341 7342 SDVTList SelectionDAG::getVTList(EVT VT) { 7343 return makeVTList(SDNode::getValueTypeList(VT), 1); 7344 } 7345 7346 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7347 FoldingSetNodeID ID; 7348 ID.AddInteger(2U); 7349 ID.AddInteger(VT1.getRawBits()); 7350 ID.AddInteger(VT2.getRawBits()); 7351 7352 void *IP = nullptr; 7353 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7354 if (!Result) { 7355 EVT *Array = Allocator.Allocate<EVT>(2); 7356 Array[0] = VT1; 7357 Array[1] = VT2; 7358 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7359 VTListMap.InsertNode(Result, IP); 7360 } 7361 return Result->getSDVTList(); 7362 } 7363 7364 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7365 FoldingSetNodeID ID; 7366 ID.AddInteger(3U); 7367 ID.AddInteger(VT1.getRawBits()); 7368 ID.AddInteger(VT2.getRawBits()); 7369 ID.AddInteger(VT3.getRawBits()); 7370 7371 void *IP = nullptr; 7372 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7373 if (!Result) { 7374 EVT *Array = Allocator.Allocate<EVT>(3); 7375 Array[0] = VT1; 7376 Array[1] = VT2; 7377 Array[2] = VT3; 7378 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7379 VTListMap.InsertNode(Result, IP); 7380 } 7381 return Result->getSDVTList(); 7382 } 7383 7384 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7385 FoldingSetNodeID ID; 7386 ID.AddInteger(4U); 7387 ID.AddInteger(VT1.getRawBits()); 7388 ID.AddInteger(VT2.getRawBits()); 7389 ID.AddInteger(VT3.getRawBits()); 7390 ID.AddInteger(VT4.getRawBits()); 7391 7392 void *IP = nullptr; 7393 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7394 if (!Result) { 7395 EVT *Array = Allocator.Allocate<EVT>(4); 7396 Array[0] = VT1; 7397 Array[1] = VT2; 7398 Array[2] = VT3; 7399 Array[3] = VT4; 7400 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7401 VTListMap.InsertNode(Result, IP); 7402 } 7403 return Result->getSDVTList(); 7404 } 7405 7406 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7407 unsigned NumVTs = VTs.size(); 7408 FoldingSetNodeID ID; 7409 ID.AddInteger(NumVTs); 7410 for (unsigned index = 0; index < NumVTs; index++) { 7411 ID.AddInteger(VTs[index].getRawBits()); 7412 } 7413 7414 void *IP = nullptr; 7415 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7416 if (!Result) { 7417 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7418 llvm::copy(VTs, Array); 7419 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7420 VTListMap.InsertNode(Result, IP); 7421 } 7422 return Result->getSDVTList(); 7423 } 7424 7425 7426 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7427 /// specified operands. If the resultant node already exists in the DAG, 7428 /// this does not modify the specified node, instead it returns the node that 7429 /// already exists. If the resultant node does not exist in the DAG, the 7430 /// input node is returned. As a degenerate case, if you specify the same 7431 /// input operands as the node already has, the input node is returned. 7432 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7433 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7434 7435 // Check to see if there is no change. 7436 if (Op == N->getOperand(0)) return N; 7437 7438 // See if the modified node already exists. 7439 void *InsertPos = nullptr; 7440 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7441 return Existing; 7442 7443 // Nope it doesn't. Remove the node from its current place in the maps. 7444 if (InsertPos) 7445 if (!RemoveNodeFromCSEMaps(N)) 7446 InsertPos = nullptr; 7447 7448 // Now we update the operands. 7449 N->OperandList[0].set(Op); 7450 7451 updateDivergence(N); 7452 // If this gets put into a CSE map, add it. 7453 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7454 return N; 7455 } 7456 7457 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7458 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7459 7460 // Check to see if there is no change. 7461 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7462 return N; // No operands changed, just return the input node. 7463 7464 // See if the modified node already exists. 7465 void *InsertPos = nullptr; 7466 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7467 return Existing; 7468 7469 // Nope it doesn't. Remove the node from its current place in the maps. 7470 if (InsertPos) 7471 if (!RemoveNodeFromCSEMaps(N)) 7472 InsertPos = nullptr; 7473 7474 // Now we update the operands. 7475 if (N->OperandList[0] != Op1) 7476 N->OperandList[0].set(Op1); 7477 if (N->OperandList[1] != Op2) 7478 N->OperandList[1].set(Op2); 7479 7480 updateDivergence(N); 7481 // If this gets put into a CSE map, add it. 7482 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7483 return N; 7484 } 7485 7486 SDNode *SelectionDAG:: 7487 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7488 SDValue Ops[] = { Op1, Op2, Op3 }; 7489 return UpdateNodeOperands(N, Ops); 7490 } 7491 7492 SDNode *SelectionDAG:: 7493 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7494 SDValue Op3, SDValue Op4) { 7495 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7496 return UpdateNodeOperands(N, Ops); 7497 } 7498 7499 SDNode *SelectionDAG:: 7500 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7501 SDValue Op3, SDValue Op4, SDValue Op5) { 7502 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7503 return UpdateNodeOperands(N, Ops); 7504 } 7505 7506 SDNode *SelectionDAG:: 7507 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7508 unsigned NumOps = Ops.size(); 7509 assert(N->getNumOperands() == NumOps && 7510 "Update with wrong number of operands"); 7511 7512 // If no operands changed just return the input node. 7513 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7514 return N; 7515 7516 // See if the modified node already exists. 7517 void *InsertPos = nullptr; 7518 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7519 return Existing; 7520 7521 // Nope it doesn't. Remove the node from its current place in the maps. 7522 if (InsertPos) 7523 if (!RemoveNodeFromCSEMaps(N)) 7524 InsertPos = nullptr; 7525 7526 // Now we update the operands. 7527 for (unsigned i = 0; i != NumOps; ++i) 7528 if (N->OperandList[i] != Ops[i]) 7529 N->OperandList[i].set(Ops[i]); 7530 7531 updateDivergence(N); 7532 // If this gets put into a CSE map, add it. 7533 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7534 return N; 7535 } 7536 7537 /// DropOperands - Release the operands and set this node to have 7538 /// zero operands. 7539 void SDNode::DropOperands() { 7540 // Unlike the code in MorphNodeTo that does this, we don't need to 7541 // watch for dead nodes here. 7542 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7543 SDUse &Use = *I++; 7544 Use.set(SDValue()); 7545 } 7546 } 7547 7548 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7549 ArrayRef<MachineMemOperand *> NewMemRefs) { 7550 if (NewMemRefs.empty()) { 7551 N->clearMemRefs(); 7552 return; 7553 } 7554 7555 // Check if we can avoid allocating by storing a single reference directly. 7556 if (NewMemRefs.size() == 1) { 7557 N->MemRefs = NewMemRefs[0]; 7558 N->NumMemRefs = 1; 7559 return; 7560 } 7561 7562 MachineMemOperand **MemRefsBuffer = 7563 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7564 llvm::copy(NewMemRefs, MemRefsBuffer); 7565 N->MemRefs = MemRefsBuffer; 7566 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7567 } 7568 7569 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7570 /// machine opcode. 7571 /// 7572 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7573 EVT VT) { 7574 SDVTList VTs = getVTList(VT); 7575 return SelectNodeTo(N, MachineOpc, VTs, None); 7576 } 7577 7578 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7579 EVT VT, SDValue Op1) { 7580 SDVTList VTs = getVTList(VT); 7581 SDValue Ops[] = { Op1 }; 7582 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7583 } 7584 7585 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7586 EVT VT, SDValue Op1, 7587 SDValue Op2) { 7588 SDVTList VTs = getVTList(VT); 7589 SDValue Ops[] = { Op1, Op2 }; 7590 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7591 } 7592 7593 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7594 EVT VT, SDValue Op1, 7595 SDValue Op2, SDValue Op3) { 7596 SDVTList VTs = getVTList(VT); 7597 SDValue Ops[] = { Op1, Op2, Op3 }; 7598 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7599 } 7600 7601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7602 EVT VT, ArrayRef<SDValue> Ops) { 7603 SDVTList VTs = getVTList(VT); 7604 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7605 } 7606 7607 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7608 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7609 SDVTList VTs = getVTList(VT1, VT2); 7610 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7611 } 7612 7613 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7614 EVT VT1, EVT VT2) { 7615 SDVTList VTs = getVTList(VT1, VT2); 7616 return SelectNodeTo(N, MachineOpc, VTs, None); 7617 } 7618 7619 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7620 EVT VT1, EVT VT2, EVT VT3, 7621 ArrayRef<SDValue> Ops) { 7622 SDVTList VTs = getVTList(VT1, VT2, VT3); 7623 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7624 } 7625 7626 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7627 EVT VT1, EVT VT2, 7628 SDValue Op1, SDValue Op2) { 7629 SDVTList VTs = getVTList(VT1, VT2); 7630 SDValue Ops[] = { Op1, Op2 }; 7631 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7632 } 7633 7634 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7635 SDVTList VTs,ArrayRef<SDValue> Ops) { 7636 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7637 // Reset the NodeID to -1. 7638 New->setNodeId(-1); 7639 if (New != N) { 7640 ReplaceAllUsesWith(N, New); 7641 RemoveDeadNode(N); 7642 } 7643 return New; 7644 } 7645 7646 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7647 /// the line number information on the merged node since it is not possible to 7648 /// preserve the information that operation is associated with multiple lines. 7649 /// This will make the debugger working better at -O0, were there is a higher 7650 /// probability having other instructions associated with that line. 7651 /// 7652 /// For IROrder, we keep the smaller of the two 7653 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7654 DebugLoc NLoc = N->getDebugLoc(); 7655 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7656 N->setDebugLoc(DebugLoc()); 7657 } 7658 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7659 N->setIROrder(Order); 7660 return N; 7661 } 7662 7663 /// MorphNodeTo - This *mutates* the specified node to have the specified 7664 /// return type, opcode, and operands. 7665 /// 7666 /// Note that MorphNodeTo returns the resultant node. If there is already a 7667 /// node of the specified opcode and operands, it returns that node instead of 7668 /// the current one. Note that the SDLoc need not be the same. 7669 /// 7670 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7671 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7672 /// node, and because it doesn't require CSE recalculation for any of 7673 /// the node's users. 7674 /// 7675 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7676 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7677 /// the legalizer which maintain worklists that would need to be updated when 7678 /// deleting things. 7679 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7680 SDVTList VTs, ArrayRef<SDValue> Ops) { 7681 // If an identical node already exists, use it. 7682 void *IP = nullptr; 7683 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7684 FoldingSetNodeID ID; 7685 AddNodeIDNode(ID, Opc, VTs, Ops); 7686 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7687 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7688 } 7689 7690 if (!RemoveNodeFromCSEMaps(N)) 7691 IP = nullptr; 7692 7693 // Start the morphing. 7694 N->NodeType = Opc; 7695 N->ValueList = VTs.VTs; 7696 N->NumValues = VTs.NumVTs; 7697 7698 // Clear the operands list, updating used nodes to remove this from their 7699 // use list. Keep track of any operands that become dead as a result. 7700 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7701 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7702 SDUse &Use = *I++; 7703 SDNode *Used = Use.getNode(); 7704 Use.set(SDValue()); 7705 if (Used->use_empty()) 7706 DeadNodeSet.insert(Used); 7707 } 7708 7709 // For MachineNode, initialize the memory references information. 7710 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7711 MN->clearMemRefs(); 7712 7713 // Swap for an appropriately sized array from the recycler. 7714 removeOperands(N); 7715 createOperands(N, Ops); 7716 7717 // Delete any nodes that are still dead after adding the uses for the 7718 // new operands. 7719 if (!DeadNodeSet.empty()) { 7720 SmallVector<SDNode *, 16> DeadNodes; 7721 for (SDNode *N : DeadNodeSet) 7722 if (N->use_empty()) 7723 DeadNodes.push_back(N); 7724 RemoveDeadNodes(DeadNodes); 7725 } 7726 7727 if (IP) 7728 CSEMap.InsertNode(N, IP); // Memoize the new node. 7729 return N; 7730 } 7731 7732 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7733 unsigned OrigOpc = Node->getOpcode(); 7734 unsigned NewOpc; 7735 switch (OrigOpc) { 7736 default: 7737 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7738 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7739 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7740 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7741 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7742 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7743 case ISD::STRICT_FMA: NewOpc = ISD::FMA; break; 7744 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; break; 7745 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7746 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7747 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; break; 7748 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; break; 7749 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; break; 7750 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; break; 7751 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; break; 7752 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; break; 7753 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; break; 7754 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; break; 7755 case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break; 7756 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7757 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7758 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; break; 7759 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; break; 7760 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; break; 7761 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; break; 7762 case ISD::STRICT_FP_ROUND: NewOpc = ISD::FP_ROUND; break; 7763 case ISD::STRICT_FP_EXTEND: NewOpc = ISD::FP_EXTEND; break; 7764 case ISD::STRICT_FP_TO_SINT: NewOpc = ISD::FP_TO_SINT; break; 7765 case ISD::STRICT_FP_TO_UINT: NewOpc = ISD::FP_TO_UINT; break; 7766 } 7767 7768 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7769 7770 // We're taking this node out of the chain, so we need to re-link things. 7771 SDValue InputChain = Node->getOperand(0); 7772 SDValue OutputChain = SDValue(Node, 1); 7773 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7774 7775 SmallVector<SDValue, 3> Ops; 7776 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7777 Ops.push_back(Node->getOperand(i)); 7778 7779 SDVTList VTs = getVTList(Node->getValueType(0)); 7780 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7781 7782 // MorphNodeTo can operate in two ways: if an existing node with the 7783 // specified operands exists, it can just return it. Otherwise, it 7784 // updates the node in place to have the requested operands. 7785 if (Res == Node) { 7786 // If we updated the node in place, reset the node ID. To the isel, 7787 // this should be just like a newly allocated machine node. 7788 Res->setNodeId(-1); 7789 } else { 7790 ReplaceAllUsesWith(Node, Res); 7791 RemoveDeadNode(Node); 7792 } 7793 7794 return Res; 7795 } 7796 7797 /// getMachineNode - These are used for target selectors to create a new node 7798 /// with specified return type(s), MachineInstr opcode, and operands. 7799 /// 7800 /// Note that getMachineNode returns the resultant node. If there is already a 7801 /// node of the specified opcode and operands, it returns that node instead of 7802 /// the current one. 7803 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7804 EVT VT) { 7805 SDVTList VTs = getVTList(VT); 7806 return getMachineNode(Opcode, dl, VTs, None); 7807 } 7808 7809 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7810 EVT VT, SDValue Op1) { 7811 SDVTList VTs = getVTList(VT); 7812 SDValue Ops[] = { Op1 }; 7813 return getMachineNode(Opcode, dl, VTs, Ops); 7814 } 7815 7816 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7817 EVT VT, SDValue Op1, SDValue Op2) { 7818 SDVTList VTs = getVTList(VT); 7819 SDValue Ops[] = { Op1, Op2 }; 7820 return getMachineNode(Opcode, dl, VTs, Ops); 7821 } 7822 7823 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7824 EVT VT, SDValue Op1, SDValue Op2, 7825 SDValue Op3) { 7826 SDVTList VTs = getVTList(VT); 7827 SDValue Ops[] = { Op1, Op2, Op3 }; 7828 return getMachineNode(Opcode, dl, VTs, Ops); 7829 } 7830 7831 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7832 EVT VT, ArrayRef<SDValue> Ops) { 7833 SDVTList VTs = getVTList(VT); 7834 return getMachineNode(Opcode, dl, VTs, Ops); 7835 } 7836 7837 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7838 EVT VT1, EVT VT2, SDValue Op1, 7839 SDValue Op2) { 7840 SDVTList VTs = getVTList(VT1, VT2); 7841 SDValue Ops[] = { Op1, Op2 }; 7842 return getMachineNode(Opcode, dl, VTs, Ops); 7843 } 7844 7845 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7846 EVT VT1, EVT VT2, SDValue Op1, 7847 SDValue Op2, SDValue Op3) { 7848 SDVTList VTs = getVTList(VT1, VT2); 7849 SDValue Ops[] = { Op1, Op2, Op3 }; 7850 return getMachineNode(Opcode, dl, VTs, Ops); 7851 } 7852 7853 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7854 EVT VT1, EVT VT2, 7855 ArrayRef<SDValue> Ops) { 7856 SDVTList VTs = getVTList(VT1, VT2); 7857 return getMachineNode(Opcode, dl, VTs, Ops); 7858 } 7859 7860 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7861 EVT VT1, EVT VT2, EVT VT3, 7862 SDValue Op1, SDValue Op2) { 7863 SDVTList VTs = getVTList(VT1, VT2, VT3); 7864 SDValue Ops[] = { Op1, Op2 }; 7865 return getMachineNode(Opcode, dl, VTs, Ops); 7866 } 7867 7868 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7869 EVT VT1, EVT VT2, EVT VT3, 7870 SDValue Op1, SDValue Op2, 7871 SDValue Op3) { 7872 SDVTList VTs = getVTList(VT1, VT2, VT3); 7873 SDValue Ops[] = { Op1, Op2, Op3 }; 7874 return getMachineNode(Opcode, dl, VTs, Ops); 7875 } 7876 7877 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7878 EVT VT1, EVT VT2, EVT VT3, 7879 ArrayRef<SDValue> Ops) { 7880 SDVTList VTs = getVTList(VT1, VT2, VT3); 7881 return getMachineNode(Opcode, dl, VTs, Ops); 7882 } 7883 7884 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7885 ArrayRef<EVT> ResultTys, 7886 ArrayRef<SDValue> Ops) { 7887 SDVTList VTs = getVTList(ResultTys); 7888 return getMachineNode(Opcode, dl, VTs, Ops); 7889 } 7890 7891 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7892 SDVTList VTs, 7893 ArrayRef<SDValue> Ops) { 7894 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7895 MachineSDNode *N; 7896 void *IP = nullptr; 7897 7898 if (DoCSE) { 7899 FoldingSetNodeID ID; 7900 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7901 IP = nullptr; 7902 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7903 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7904 } 7905 } 7906 7907 // Allocate a new MachineSDNode. 7908 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7909 createOperands(N, Ops); 7910 7911 if (DoCSE) 7912 CSEMap.InsertNode(N, IP); 7913 7914 InsertNode(N); 7915 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 7916 return N; 7917 } 7918 7919 /// getTargetExtractSubreg - A convenience function for creating 7920 /// TargetOpcode::EXTRACT_SUBREG nodes. 7921 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7922 SDValue Operand) { 7923 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7924 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7925 VT, Operand, SRIdxVal); 7926 return SDValue(Subreg, 0); 7927 } 7928 7929 /// getTargetInsertSubreg - A convenience function for creating 7930 /// TargetOpcode::INSERT_SUBREG nodes. 7931 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7932 SDValue Operand, SDValue Subreg) { 7933 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7934 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7935 VT, Operand, Subreg, SRIdxVal); 7936 return SDValue(Result, 0); 7937 } 7938 7939 /// getNodeIfExists - Get the specified node if it's already available, or 7940 /// else return NULL. 7941 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7942 ArrayRef<SDValue> Ops, 7943 const SDNodeFlags Flags) { 7944 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7945 FoldingSetNodeID ID; 7946 AddNodeIDNode(ID, Opcode, VTList, Ops); 7947 void *IP = nullptr; 7948 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7949 E->intersectFlagsWith(Flags); 7950 return E; 7951 } 7952 } 7953 return nullptr; 7954 } 7955 7956 /// getDbgValue - Creates a SDDbgValue node. 7957 /// 7958 /// SDNode 7959 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7960 SDNode *N, unsigned R, bool IsIndirect, 7961 const DebugLoc &DL, unsigned O) { 7962 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7963 "Expected inlined-at fields to agree"); 7964 return new (DbgInfo->getAlloc()) 7965 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7966 } 7967 7968 /// Constant 7969 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7970 DIExpression *Expr, 7971 const Value *C, 7972 const DebugLoc &DL, unsigned O) { 7973 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7974 "Expected inlined-at fields to agree"); 7975 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7976 } 7977 7978 /// FrameIndex 7979 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7980 DIExpression *Expr, unsigned FI, 7981 bool IsIndirect, 7982 const DebugLoc &DL, 7983 unsigned O) { 7984 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7985 "Expected inlined-at fields to agree"); 7986 return new (DbgInfo->getAlloc()) 7987 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7988 } 7989 7990 /// VReg 7991 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7992 DIExpression *Expr, 7993 unsigned VReg, bool IsIndirect, 7994 const DebugLoc &DL, unsigned O) { 7995 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7996 "Expected inlined-at fields to agree"); 7997 return new (DbgInfo->getAlloc()) 7998 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 7999 } 8000 8001 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8002 unsigned OffsetInBits, unsigned SizeInBits, 8003 bool InvalidateDbg) { 8004 SDNode *FromNode = From.getNode(); 8005 SDNode *ToNode = To.getNode(); 8006 assert(FromNode && ToNode && "Can't modify dbg values"); 8007 8008 // PR35338 8009 // TODO: assert(From != To && "Redundant dbg value transfer"); 8010 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8011 if (From == To || FromNode == ToNode) 8012 return; 8013 8014 if (!FromNode->getHasDebugValue()) 8015 return; 8016 8017 SmallVector<SDDbgValue *, 2> ClonedDVs; 8018 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8019 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8020 continue; 8021 8022 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8023 8024 // Just transfer the dbg value attached to From. 8025 if (Dbg->getResNo() != From.getResNo()) 8026 continue; 8027 8028 DIVariable *Var = Dbg->getVariable(); 8029 auto *Expr = Dbg->getExpression(); 8030 // If a fragment is requested, update the expression. 8031 if (SizeInBits) { 8032 // When splitting a larger (e.g., sign-extended) value whose 8033 // lower bits are described with an SDDbgValue, do not attempt 8034 // to transfer the SDDbgValue to the upper bits. 8035 if (auto FI = Expr->getFragmentInfo()) 8036 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8037 continue; 8038 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8039 SizeInBits); 8040 if (!Fragment) 8041 continue; 8042 Expr = *Fragment; 8043 } 8044 // Clone the SDDbgValue and move it to To. 8045 SDDbgValue *Clone = 8046 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 8047 Dbg->getDebugLoc(), Dbg->getOrder()); 8048 ClonedDVs.push_back(Clone); 8049 8050 if (InvalidateDbg) { 8051 // Invalidate value and indicate the SDDbgValue should not be emitted. 8052 Dbg->setIsInvalidated(); 8053 Dbg->setIsEmitted(); 8054 } 8055 } 8056 8057 for (SDDbgValue *Dbg : ClonedDVs) 8058 AddDbgValue(Dbg, ToNode, false); 8059 } 8060 8061 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8062 if (!N.getHasDebugValue()) 8063 return; 8064 8065 SmallVector<SDDbgValue *, 2> ClonedDVs; 8066 for (auto DV : GetDbgValues(&N)) { 8067 if (DV->isInvalidated()) 8068 continue; 8069 switch (N.getOpcode()) { 8070 default: 8071 break; 8072 case ISD::ADD: 8073 SDValue N0 = N.getOperand(0); 8074 SDValue N1 = N.getOperand(1); 8075 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8076 isConstantIntBuildVectorOrConstantInt(N1)) { 8077 uint64_t Offset = N.getConstantOperandVal(1); 8078 // Rewrite an ADD constant node into a DIExpression. Since we are 8079 // performing arithmetic to compute the variable's *value* in the 8080 // DIExpression, we need to mark the expression with a 8081 // DW_OP_stack_value. 8082 auto *DIExpr = DV->getExpression(); 8083 DIExpr = 8084 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8085 SDDbgValue *Clone = 8086 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8087 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8088 ClonedDVs.push_back(Clone); 8089 DV->setIsInvalidated(); 8090 DV->setIsEmitted(); 8091 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8092 N0.getNode()->dumprFull(this); 8093 dbgs() << " into " << *DIExpr << '\n'); 8094 } 8095 } 8096 } 8097 8098 for (SDDbgValue *Dbg : ClonedDVs) 8099 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8100 } 8101 8102 /// Creates a SDDbgLabel node. 8103 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8104 const DebugLoc &DL, unsigned O) { 8105 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8106 "Expected inlined-at fields to agree"); 8107 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8108 } 8109 8110 namespace { 8111 8112 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8113 /// pointed to by a use iterator is deleted, increment the use iterator 8114 /// so that it doesn't dangle. 8115 /// 8116 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8117 SDNode::use_iterator &UI; 8118 SDNode::use_iterator &UE; 8119 8120 void NodeDeleted(SDNode *N, SDNode *E) override { 8121 // Increment the iterator as needed. 8122 while (UI != UE && N == *UI) 8123 ++UI; 8124 } 8125 8126 public: 8127 RAUWUpdateListener(SelectionDAG &d, 8128 SDNode::use_iterator &ui, 8129 SDNode::use_iterator &ue) 8130 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8131 }; 8132 8133 } // end anonymous namespace 8134 8135 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8136 /// This can cause recursive merging of nodes in the DAG. 8137 /// 8138 /// This version assumes From has a single result value. 8139 /// 8140 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8141 SDNode *From = FromN.getNode(); 8142 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8143 "Cannot replace with this method!"); 8144 assert(From != To.getNode() && "Cannot replace uses of with self"); 8145 8146 // Preserve Debug Values 8147 transferDbgValues(FromN, To); 8148 8149 // Iterate over all the existing uses of From. New uses will be added 8150 // to the beginning of the use list, which we avoid visiting. 8151 // This specifically avoids visiting uses of From that arise while the 8152 // replacement is happening, because any such uses would be the result 8153 // of CSE: If an existing node looks like From after one of its operands 8154 // is replaced by To, we don't want to replace of all its users with To 8155 // too. See PR3018 for more info. 8156 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8157 RAUWUpdateListener Listener(*this, UI, UE); 8158 while (UI != UE) { 8159 SDNode *User = *UI; 8160 8161 // This node is about to morph, remove its old self from the CSE maps. 8162 RemoveNodeFromCSEMaps(User); 8163 8164 // A user can appear in a use list multiple times, and when this 8165 // happens the uses are usually next to each other in the list. 8166 // To help reduce the number of CSE recomputations, process all 8167 // the uses of this user that we can find this way. 8168 do { 8169 SDUse &Use = UI.getUse(); 8170 ++UI; 8171 Use.set(To); 8172 if (To->isDivergent() != From->isDivergent()) 8173 updateDivergence(User); 8174 } while (UI != UE && *UI == User); 8175 // Now that we have modified User, add it back to the CSE maps. If it 8176 // already exists there, recursively merge the results together. 8177 AddModifiedNodeToCSEMaps(User); 8178 } 8179 8180 // If we just RAUW'd the root, take note. 8181 if (FromN == getRoot()) 8182 setRoot(To); 8183 } 8184 8185 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8186 /// This can cause recursive merging of nodes in the DAG. 8187 /// 8188 /// This version assumes that for each value of From, there is a 8189 /// corresponding value in To in the same position with the same type. 8190 /// 8191 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8192 #ifndef NDEBUG 8193 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8194 assert((!From->hasAnyUseOfValue(i) || 8195 From->getValueType(i) == To->getValueType(i)) && 8196 "Cannot use this version of ReplaceAllUsesWith!"); 8197 #endif 8198 8199 // Handle the trivial case. 8200 if (From == To) 8201 return; 8202 8203 // Preserve Debug Info. Only do this if there's a use. 8204 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8205 if (From->hasAnyUseOfValue(i)) { 8206 assert((i < To->getNumValues()) && "Invalid To location"); 8207 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8208 } 8209 8210 // Iterate over just the existing users of From. See the comments in 8211 // the ReplaceAllUsesWith above. 8212 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8213 RAUWUpdateListener Listener(*this, UI, UE); 8214 while (UI != UE) { 8215 SDNode *User = *UI; 8216 8217 // This node is about to morph, remove its old self from the CSE maps. 8218 RemoveNodeFromCSEMaps(User); 8219 8220 // A user can appear in a use list multiple times, and when this 8221 // happens the uses are usually next to each other in the list. 8222 // To help reduce the number of CSE recomputations, process all 8223 // the uses of this user that we can find this way. 8224 do { 8225 SDUse &Use = UI.getUse(); 8226 ++UI; 8227 Use.setNode(To); 8228 if (To->isDivergent() != From->isDivergent()) 8229 updateDivergence(User); 8230 } while (UI != UE && *UI == User); 8231 8232 // Now that we have modified User, add it back to the CSE maps. If it 8233 // already exists there, recursively merge the results together. 8234 AddModifiedNodeToCSEMaps(User); 8235 } 8236 8237 // If we just RAUW'd the root, take note. 8238 if (From == getRoot().getNode()) 8239 setRoot(SDValue(To, getRoot().getResNo())); 8240 } 8241 8242 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8243 /// This can cause recursive merging of nodes in the DAG. 8244 /// 8245 /// This version can replace From with any result values. To must match the 8246 /// number and types of values returned by From. 8247 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8248 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8249 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8250 8251 // Preserve Debug Info. 8252 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8253 transferDbgValues(SDValue(From, i), To[i]); 8254 8255 // Iterate over just the existing users of From. See the comments in 8256 // the ReplaceAllUsesWith above. 8257 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8258 RAUWUpdateListener Listener(*this, UI, UE); 8259 while (UI != UE) { 8260 SDNode *User = *UI; 8261 8262 // This node is about to morph, remove its old self from the CSE maps. 8263 RemoveNodeFromCSEMaps(User); 8264 8265 // A user can appear in a use list multiple times, and when this happens the 8266 // uses are usually next to each other in the list. To help reduce the 8267 // number of CSE and divergence recomputations, process all the uses of this 8268 // user that we can find this way. 8269 bool To_IsDivergent = false; 8270 do { 8271 SDUse &Use = UI.getUse(); 8272 const SDValue &ToOp = To[Use.getResNo()]; 8273 ++UI; 8274 Use.set(ToOp); 8275 To_IsDivergent |= ToOp->isDivergent(); 8276 } while (UI != UE && *UI == User); 8277 8278 if (To_IsDivergent != From->isDivergent()) 8279 updateDivergence(User); 8280 8281 // Now that we have modified User, add it back to the CSE maps. If it 8282 // already exists there, recursively merge the results together. 8283 AddModifiedNodeToCSEMaps(User); 8284 } 8285 8286 // If we just RAUW'd the root, take note. 8287 if (From == getRoot().getNode()) 8288 setRoot(SDValue(To[getRoot().getResNo()])); 8289 } 8290 8291 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8292 /// uses of other values produced by From.getNode() alone. The Deleted 8293 /// vector is handled the same way as for ReplaceAllUsesWith. 8294 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8295 // Handle the really simple, really trivial case efficiently. 8296 if (From == To) return; 8297 8298 // Handle the simple, trivial, case efficiently. 8299 if (From.getNode()->getNumValues() == 1) { 8300 ReplaceAllUsesWith(From, To); 8301 return; 8302 } 8303 8304 // Preserve Debug Info. 8305 transferDbgValues(From, To); 8306 8307 // Iterate over just the existing users of From. See the comments in 8308 // the ReplaceAllUsesWith above. 8309 SDNode::use_iterator UI = From.getNode()->use_begin(), 8310 UE = From.getNode()->use_end(); 8311 RAUWUpdateListener Listener(*this, UI, UE); 8312 while (UI != UE) { 8313 SDNode *User = *UI; 8314 bool UserRemovedFromCSEMaps = false; 8315 8316 // A user can appear in a use list multiple times, and when this 8317 // happens the uses are usually next to each other in the list. 8318 // To help reduce the number of CSE recomputations, process all 8319 // the uses of this user that we can find this way. 8320 do { 8321 SDUse &Use = UI.getUse(); 8322 8323 // Skip uses of different values from the same node. 8324 if (Use.getResNo() != From.getResNo()) { 8325 ++UI; 8326 continue; 8327 } 8328 8329 // If this node hasn't been modified yet, it's still in the CSE maps, 8330 // so remove its old self from the CSE maps. 8331 if (!UserRemovedFromCSEMaps) { 8332 RemoveNodeFromCSEMaps(User); 8333 UserRemovedFromCSEMaps = true; 8334 } 8335 8336 ++UI; 8337 Use.set(To); 8338 if (To->isDivergent() != From->isDivergent()) 8339 updateDivergence(User); 8340 } while (UI != UE && *UI == User); 8341 // We are iterating over all uses of the From node, so if a use 8342 // doesn't use the specific value, no changes are made. 8343 if (!UserRemovedFromCSEMaps) 8344 continue; 8345 8346 // Now that we have modified User, add it back to the CSE maps. If it 8347 // already exists there, recursively merge the results together. 8348 AddModifiedNodeToCSEMaps(User); 8349 } 8350 8351 // If we just RAUW'd the root, take note. 8352 if (From == getRoot()) 8353 setRoot(To); 8354 } 8355 8356 namespace { 8357 8358 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8359 /// to record information about a use. 8360 struct UseMemo { 8361 SDNode *User; 8362 unsigned Index; 8363 SDUse *Use; 8364 }; 8365 8366 /// operator< - Sort Memos by User. 8367 bool operator<(const UseMemo &L, const UseMemo &R) { 8368 return (intptr_t)L.User < (intptr_t)R.User; 8369 } 8370 8371 } // end anonymous namespace 8372 8373 void SelectionDAG::updateDivergence(SDNode * N) 8374 { 8375 if (TLI->isSDNodeAlwaysUniform(N)) 8376 return; 8377 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8378 for (auto &Op : N->ops()) { 8379 if (Op.Val.getValueType() != MVT::Other) 8380 IsDivergent |= Op.getNode()->isDivergent(); 8381 } 8382 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8383 N->SDNodeBits.IsDivergent = IsDivergent; 8384 for (auto U : N->uses()) { 8385 updateDivergence(U); 8386 } 8387 } 8388 } 8389 8390 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8391 DenseMap<SDNode *, unsigned> Degree; 8392 Order.reserve(AllNodes.size()); 8393 for (auto &N : allnodes()) { 8394 unsigned NOps = N.getNumOperands(); 8395 Degree[&N] = NOps; 8396 if (0 == NOps) 8397 Order.push_back(&N); 8398 } 8399 for (size_t I = 0; I != Order.size(); ++I) { 8400 SDNode *N = Order[I]; 8401 for (auto U : N->uses()) { 8402 unsigned &UnsortedOps = Degree[U]; 8403 if (0 == --UnsortedOps) 8404 Order.push_back(U); 8405 } 8406 } 8407 } 8408 8409 #ifndef NDEBUG 8410 void SelectionDAG::VerifyDAGDiverence() { 8411 std::vector<SDNode *> TopoOrder; 8412 CreateTopologicalOrder(TopoOrder); 8413 const TargetLowering &TLI = getTargetLoweringInfo(); 8414 DenseMap<const SDNode *, bool> DivergenceMap; 8415 for (auto &N : allnodes()) { 8416 DivergenceMap[&N] = false; 8417 } 8418 for (auto N : TopoOrder) { 8419 bool IsDivergent = DivergenceMap[N]; 8420 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8421 for (auto &Op : N->ops()) { 8422 if (Op.Val.getValueType() != MVT::Other) 8423 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8424 } 8425 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8426 DivergenceMap[N] = true; 8427 } 8428 } 8429 for (auto &N : allnodes()) { 8430 (void)N; 8431 assert(DivergenceMap[&N] == N.isDivergent() && 8432 "Divergence bit inconsistency detected\n"); 8433 } 8434 } 8435 #endif 8436 8437 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8438 /// uses of other values produced by From.getNode() alone. The same value 8439 /// may appear in both the From and To list. The Deleted vector is 8440 /// handled the same way as for ReplaceAllUsesWith. 8441 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8442 const SDValue *To, 8443 unsigned Num){ 8444 // Handle the simple, trivial case efficiently. 8445 if (Num == 1) 8446 return ReplaceAllUsesOfValueWith(*From, *To); 8447 8448 transferDbgValues(*From, *To); 8449 8450 // Read up all the uses and make records of them. This helps 8451 // processing new uses that are introduced during the 8452 // replacement process. 8453 SmallVector<UseMemo, 4> Uses; 8454 for (unsigned i = 0; i != Num; ++i) { 8455 unsigned FromResNo = From[i].getResNo(); 8456 SDNode *FromNode = From[i].getNode(); 8457 for (SDNode::use_iterator UI = FromNode->use_begin(), 8458 E = FromNode->use_end(); UI != E; ++UI) { 8459 SDUse &Use = UI.getUse(); 8460 if (Use.getResNo() == FromResNo) { 8461 UseMemo Memo = { *UI, i, &Use }; 8462 Uses.push_back(Memo); 8463 } 8464 } 8465 } 8466 8467 // Sort the uses, so that all the uses from a given User are together. 8468 llvm::sort(Uses); 8469 8470 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8471 UseIndex != UseIndexEnd; ) { 8472 // We know that this user uses some value of From. If it is the right 8473 // value, update it. 8474 SDNode *User = Uses[UseIndex].User; 8475 8476 // This node is about to morph, remove its old self from the CSE maps. 8477 RemoveNodeFromCSEMaps(User); 8478 8479 // The Uses array is sorted, so all the uses for a given User 8480 // are next to each other in the list. 8481 // To help reduce the number of CSE recomputations, process all 8482 // the uses of this user that we can find this way. 8483 do { 8484 unsigned i = Uses[UseIndex].Index; 8485 SDUse &Use = *Uses[UseIndex].Use; 8486 ++UseIndex; 8487 8488 Use.set(To[i]); 8489 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8490 8491 // Now that we have modified User, add it back to the CSE maps. If it 8492 // already exists there, recursively merge the results together. 8493 AddModifiedNodeToCSEMaps(User); 8494 } 8495 } 8496 8497 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8498 /// based on their topological order. It returns the maximum id and a vector 8499 /// of the SDNodes* in assigned order by reference. 8500 unsigned SelectionDAG::AssignTopologicalOrder() { 8501 unsigned DAGSize = 0; 8502 8503 // SortedPos tracks the progress of the algorithm. Nodes before it are 8504 // sorted, nodes after it are unsorted. When the algorithm completes 8505 // it is at the end of the list. 8506 allnodes_iterator SortedPos = allnodes_begin(); 8507 8508 // Visit all the nodes. Move nodes with no operands to the front of 8509 // the list immediately. Annotate nodes that do have operands with their 8510 // operand count. Before we do this, the Node Id fields of the nodes 8511 // may contain arbitrary values. After, the Node Id fields for nodes 8512 // before SortedPos will contain the topological sort index, and the 8513 // Node Id fields for nodes At SortedPos and after will contain the 8514 // count of outstanding operands. 8515 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8516 SDNode *N = &*I++; 8517 checkForCycles(N, this); 8518 unsigned Degree = N->getNumOperands(); 8519 if (Degree == 0) { 8520 // A node with no uses, add it to the result array immediately. 8521 N->setNodeId(DAGSize++); 8522 allnodes_iterator Q(N); 8523 if (Q != SortedPos) 8524 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8525 assert(SortedPos != AllNodes.end() && "Overran node list"); 8526 ++SortedPos; 8527 } else { 8528 // Temporarily use the Node Id as scratch space for the degree count. 8529 N->setNodeId(Degree); 8530 } 8531 } 8532 8533 // Visit all the nodes. As we iterate, move nodes into sorted order, 8534 // such that by the time the end is reached all nodes will be sorted. 8535 for (SDNode &Node : allnodes()) { 8536 SDNode *N = &Node; 8537 checkForCycles(N, this); 8538 // N is in sorted position, so all its uses have one less operand 8539 // that needs to be sorted. 8540 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8541 UI != UE; ++UI) { 8542 SDNode *P = *UI; 8543 unsigned Degree = P->getNodeId(); 8544 assert(Degree != 0 && "Invalid node degree"); 8545 --Degree; 8546 if (Degree == 0) { 8547 // All of P's operands are sorted, so P may sorted now. 8548 P->setNodeId(DAGSize++); 8549 if (P->getIterator() != SortedPos) 8550 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8551 assert(SortedPos != AllNodes.end() && "Overran node list"); 8552 ++SortedPos; 8553 } else { 8554 // Update P's outstanding operand count. 8555 P->setNodeId(Degree); 8556 } 8557 } 8558 if (Node.getIterator() == SortedPos) { 8559 #ifndef NDEBUG 8560 allnodes_iterator I(N); 8561 SDNode *S = &*++I; 8562 dbgs() << "Overran sorted position:\n"; 8563 S->dumprFull(this); dbgs() << "\n"; 8564 dbgs() << "Checking if this is due to cycles\n"; 8565 checkForCycles(this, true); 8566 #endif 8567 llvm_unreachable(nullptr); 8568 } 8569 } 8570 8571 assert(SortedPos == AllNodes.end() && 8572 "Topological sort incomplete!"); 8573 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8574 "First node in topological sort is not the entry token!"); 8575 assert(AllNodes.front().getNodeId() == 0 && 8576 "First node in topological sort has non-zero id!"); 8577 assert(AllNodes.front().getNumOperands() == 0 && 8578 "First node in topological sort has operands!"); 8579 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8580 "Last node in topologic sort has unexpected id!"); 8581 assert(AllNodes.back().use_empty() && 8582 "Last node in topologic sort has users!"); 8583 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8584 return DAGSize; 8585 } 8586 8587 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8588 /// value is produced by SD. 8589 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8590 if (SD) { 8591 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8592 SD->setHasDebugValue(true); 8593 } 8594 DbgInfo->add(DB, SD, isParameter); 8595 } 8596 8597 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8598 DbgInfo->add(DB); 8599 } 8600 8601 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8602 SDValue NewMemOp) { 8603 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8604 // The new memory operation must have the same position as the old load in 8605 // terms of memory dependency. Create a TokenFactor for the old load and new 8606 // memory operation and update uses of the old load's output chain to use that 8607 // TokenFactor. 8608 SDValue OldChain = SDValue(OldLoad, 1); 8609 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8610 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8611 return NewChain; 8612 8613 SDValue TokenFactor = 8614 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8615 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8616 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8617 return TokenFactor; 8618 } 8619 8620 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8621 Function **OutFunction) { 8622 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8623 8624 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8625 auto *Module = MF->getFunction().getParent(); 8626 auto *Function = Module->getFunction(Symbol); 8627 8628 if (OutFunction != nullptr) 8629 *OutFunction = Function; 8630 8631 if (Function != nullptr) { 8632 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8633 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8634 } 8635 8636 std::string ErrorStr; 8637 raw_string_ostream ErrorFormatter(ErrorStr); 8638 8639 ErrorFormatter << "Undefined external symbol "; 8640 ErrorFormatter << '"' << Symbol << '"'; 8641 ErrorFormatter.flush(); 8642 8643 report_fatal_error(ErrorStr); 8644 } 8645 8646 //===----------------------------------------------------------------------===// 8647 // SDNode Class 8648 //===----------------------------------------------------------------------===// 8649 8650 bool llvm::isNullConstant(SDValue V) { 8651 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8652 return Const != nullptr && Const->isNullValue(); 8653 } 8654 8655 bool llvm::isNullFPConstant(SDValue V) { 8656 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8657 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8658 } 8659 8660 bool llvm::isAllOnesConstant(SDValue V) { 8661 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8662 return Const != nullptr && Const->isAllOnesValue(); 8663 } 8664 8665 bool llvm::isOneConstant(SDValue V) { 8666 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8667 return Const != nullptr && Const->isOne(); 8668 } 8669 8670 SDValue llvm::peekThroughBitcasts(SDValue V) { 8671 while (V.getOpcode() == ISD::BITCAST) 8672 V = V.getOperand(0); 8673 return V; 8674 } 8675 8676 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8677 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8678 V = V.getOperand(0); 8679 return V; 8680 } 8681 8682 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8683 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8684 V = V.getOperand(0); 8685 return V; 8686 } 8687 8688 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8689 if (V.getOpcode() != ISD::XOR) 8690 return false; 8691 V = peekThroughBitcasts(V.getOperand(1)); 8692 unsigned NumBits = V.getScalarValueSizeInBits(); 8693 ConstantSDNode *C = 8694 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8695 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8696 } 8697 8698 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8699 bool AllowTruncation) { 8700 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8701 return CN; 8702 8703 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8704 BitVector UndefElements; 8705 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8706 8707 // BuildVectors can truncate their operands. Ignore that case here unless 8708 // AllowTruncation is set. 8709 if (CN && (UndefElements.none() || AllowUndefs)) { 8710 EVT CVT = CN->getValueType(0); 8711 EVT NSVT = N.getValueType().getScalarType(); 8712 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8713 if (AllowTruncation || (CVT == NSVT)) 8714 return CN; 8715 } 8716 } 8717 8718 return nullptr; 8719 } 8720 8721 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8722 bool AllowUndefs, 8723 bool AllowTruncation) { 8724 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8725 return CN; 8726 8727 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8728 BitVector UndefElements; 8729 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8730 8731 // BuildVectors can truncate their operands. Ignore that case here unless 8732 // AllowTruncation is set. 8733 if (CN && (UndefElements.none() || AllowUndefs)) { 8734 EVT CVT = CN->getValueType(0); 8735 EVT NSVT = N.getValueType().getScalarType(); 8736 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8737 if (AllowTruncation || (CVT == NSVT)) 8738 return CN; 8739 } 8740 } 8741 8742 return nullptr; 8743 } 8744 8745 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8746 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8747 return CN; 8748 8749 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8750 BitVector UndefElements; 8751 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8752 if (CN && (UndefElements.none() || AllowUndefs)) 8753 return CN; 8754 } 8755 8756 return nullptr; 8757 } 8758 8759 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8760 const APInt &DemandedElts, 8761 bool AllowUndefs) { 8762 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8763 return CN; 8764 8765 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8766 BitVector UndefElements; 8767 ConstantFPSDNode *CN = 8768 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8769 if (CN && (UndefElements.none() || AllowUndefs)) 8770 return CN; 8771 } 8772 8773 return nullptr; 8774 } 8775 8776 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8777 // TODO: may want to use peekThroughBitcast() here. 8778 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8779 return C && C->isNullValue(); 8780 } 8781 8782 bool llvm::isOneOrOneSplat(SDValue N) { 8783 // TODO: may want to use peekThroughBitcast() here. 8784 unsigned BitWidth = N.getScalarValueSizeInBits(); 8785 ConstantSDNode *C = isConstOrConstSplat(N); 8786 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8787 } 8788 8789 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8790 N = peekThroughBitcasts(N); 8791 unsigned BitWidth = N.getScalarValueSizeInBits(); 8792 ConstantSDNode *C = isConstOrConstSplat(N); 8793 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8794 } 8795 8796 HandleSDNode::~HandleSDNode() { 8797 DropOperands(); 8798 } 8799 8800 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8801 const DebugLoc &DL, 8802 const GlobalValue *GA, EVT VT, 8803 int64_t o, unsigned TF) 8804 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8805 TheGlobal = GA; 8806 } 8807 8808 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8809 EVT VT, unsigned SrcAS, 8810 unsigned DestAS) 8811 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8812 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8813 8814 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8815 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8816 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8817 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8818 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8819 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8820 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8821 8822 // We check here that the size of the memory operand fits within the size of 8823 // the MMO. This is because the MMO might indicate only a possible address 8824 // range instead of specifying the affected memory addresses precisely. 8825 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8826 } 8827 8828 /// Profile - Gather unique data for the node. 8829 /// 8830 void SDNode::Profile(FoldingSetNodeID &ID) const { 8831 AddNodeIDNode(ID, this); 8832 } 8833 8834 namespace { 8835 8836 struct EVTArray { 8837 std::vector<EVT> VTs; 8838 8839 EVTArray() { 8840 VTs.reserve(MVT::LAST_VALUETYPE); 8841 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8842 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8843 } 8844 }; 8845 8846 } // end anonymous namespace 8847 8848 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8849 static ManagedStatic<EVTArray> SimpleVTArray; 8850 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8851 8852 /// getValueTypeList - Return a pointer to the specified value type. 8853 /// 8854 const EVT *SDNode::getValueTypeList(EVT VT) { 8855 if (VT.isExtended()) { 8856 sys::SmartScopedLock<true> Lock(*VTMutex); 8857 return &(*EVTs->insert(VT).first); 8858 } else { 8859 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8860 "Value type out of range!"); 8861 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8862 } 8863 } 8864 8865 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8866 /// indicated value. This method ignores uses of other values defined by this 8867 /// operation. 8868 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8869 assert(Value < getNumValues() && "Bad value!"); 8870 8871 // TODO: Only iterate over uses of a given value of the node 8872 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8873 if (UI.getUse().getResNo() == Value) { 8874 if (NUses == 0) 8875 return false; 8876 --NUses; 8877 } 8878 } 8879 8880 // Found exactly the right number of uses? 8881 return NUses == 0; 8882 } 8883 8884 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8885 /// value. This method ignores uses of other values defined by this operation. 8886 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8887 assert(Value < getNumValues() && "Bad value!"); 8888 8889 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8890 if (UI.getUse().getResNo() == Value) 8891 return true; 8892 8893 return false; 8894 } 8895 8896 /// isOnlyUserOf - Return true if this node is the only use of N. 8897 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8898 bool Seen = false; 8899 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8900 SDNode *User = *I; 8901 if (User == this) 8902 Seen = true; 8903 else 8904 return false; 8905 } 8906 8907 return Seen; 8908 } 8909 8910 /// Return true if the only users of N are contained in Nodes. 8911 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8912 bool Seen = false; 8913 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8914 SDNode *User = *I; 8915 if (llvm::any_of(Nodes, 8916 [&User](const SDNode *Node) { return User == Node; })) 8917 Seen = true; 8918 else 8919 return false; 8920 } 8921 8922 return Seen; 8923 } 8924 8925 /// isOperand - Return true if this node is an operand of N. 8926 bool SDValue::isOperandOf(const SDNode *N) const { 8927 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 8928 } 8929 8930 bool SDNode::isOperandOf(const SDNode *N) const { 8931 return any_of(N->op_values(), 8932 [this](SDValue Op) { return this == Op.getNode(); }); 8933 } 8934 8935 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8936 /// be a chain) reaches the specified operand without crossing any 8937 /// side-effecting instructions on any chain path. In practice, this looks 8938 /// through token factors and non-volatile loads. In order to remain efficient, 8939 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8940 /// 8941 /// Note that we only need to examine chains when we're searching for 8942 /// side-effects; SelectionDAG requires that all side-effects are represented 8943 /// by chains, even if another operand would force a specific ordering. This 8944 /// constraint is necessary to allow transformations like splitting loads. 8945 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8946 unsigned Depth) const { 8947 if (*this == Dest) return true; 8948 8949 // Don't search too deeply, we just want to be able to see through 8950 // TokenFactor's etc. 8951 if (Depth == 0) return false; 8952 8953 // If this is a token factor, all inputs to the TF happen in parallel. 8954 if (getOpcode() == ISD::TokenFactor) { 8955 // First, try a shallow search. 8956 if (is_contained((*this)->ops(), Dest)) { 8957 // We found the chain we want as an operand of this TokenFactor. 8958 // Essentially, we reach the chain without side-effects if we could 8959 // serialize the TokenFactor into a simple chain of operations with 8960 // Dest as the last operation. This is automatically true if the 8961 // chain has one use: there are no other ordering constraints. 8962 // If the chain has more than one use, we give up: some other 8963 // use of Dest might force a side-effect between Dest and the current 8964 // node. 8965 if (Dest.hasOneUse()) 8966 return true; 8967 } 8968 // Next, try a deep search: check whether every operand of the TokenFactor 8969 // reaches Dest. 8970 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8971 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8972 }); 8973 } 8974 8975 // Loads don't have side effects, look through them. 8976 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8977 if (!Ld->isVolatile()) 8978 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8979 } 8980 return false; 8981 } 8982 8983 bool SDNode::hasPredecessor(const SDNode *N) const { 8984 SmallPtrSet<const SDNode *, 32> Visited; 8985 SmallVector<const SDNode *, 16> Worklist; 8986 Worklist.push_back(this); 8987 return hasPredecessorHelper(N, Visited, Worklist); 8988 } 8989 8990 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8991 this->Flags.intersectWith(Flags); 8992 } 8993 8994 SDValue 8995 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 8996 ArrayRef<ISD::NodeType> CandidateBinOps, 8997 bool AllowPartials) { 8998 // The pattern must end in an extract from index 0. 8999 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9000 !isNullConstant(Extract->getOperand(1))) 9001 return SDValue(); 9002 9003 // Match against one of the candidate binary ops. 9004 SDValue Op = Extract->getOperand(0); 9005 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9006 return Op.getOpcode() == unsigned(BinOp); 9007 })) 9008 return SDValue(); 9009 9010 // Floating-point reductions may require relaxed constraints on the final step 9011 // of the reduction because they may reorder intermediate operations. 9012 unsigned CandidateBinOp = Op.getOpcode(); 9013 if (Op.getValueType().isFloatingPoint()) { 9014 SDNodeFlags Flags = Op->getFlags(); 9015 switch (CandidateBinOp) { 9016 case ISD::FADD: 9017 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9018 return SDValue(); 9019 break; 9020 default: 9021 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9022 } 9023 } 9024 9025 // Matching failed - attempt to see if we did enough stages that a partial 9026 // reduction from a subvector is possible. 9027 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9028 if (!AllowPartials || !Op) 9029 return SDValue(); 9030 EVT OpVT = Op.getValueType(); 9031 EVT OpSVT = OpVT.getScalarType(); 9032 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9033 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9034 return SDValue(); 9035 BinOp = (ISD::NodeType)CandidateBinOp; 9036 return getNode( 9037 ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9038 getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout()))); 9039 }; 9040 9041 // At each stage, we're looking for something that looks like: 9042 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9043 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9044 // i32 undef, i32 undef, i32 undef, i32 undef> 9045 // %a = binop <8 x i32> %op, %s 9046 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9047 // we expect something like: 9048 // <4,5,6,7,u,u,u,u> 9049 // <2,3,u,u,u,u,u,u> 9050 // <1,u,u,u,u,u,u,u> 9051 // While a partial reduction match would be: 9052 // <2,3,u,u,u,u,u,u> 9053 // <1,u,u,u,u,u,u,u> 9054 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9055 SDValue PrevOp; 9056 for (unsigned i = 0; i < Stages; ++i) { 9057 unsigned MaskEnd = (1 << i); 9058 9059 if (Op.getOpcode() != CandidateBinOp) 9060 return PartialReduction(PrevOp, MaskEnd); 9061 9062 SDValue Op0 = Op.getOperand(0); 9063 SDValue Op1 = Op.getOperand(1); 9064 9065 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9066 if (Shuffle) { 9067 Op = Op1; 9068 } else { 9069 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9070 Op = Op0; 9071 } 9072 9073 // The first operand of the shuffle should be the same as the other operand 9074 // of the binop. 9075 if (!Shuffle || Shuffle->getOperand(0) != Op) 9076 return PartialReduction(PrevOp, MaskEnd); 9077 9078 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9079 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9080 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9081 return PartialReduction(PrevOp, MaskEnd); 9082 9083 PrevOp = Op; 9084 } 9085 9086 BinOp = (ISD::NodeType)CandidateBinOp; 9087 return Op; 9088 } 9089 9090 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9091 assert(N->getNumValues() == 1 && 9092 "Can't unroll a vector with multiple results!"); 9093 9094 EVT VT = N->getValueType(0); 9095 unsigned NE = VT.getVectorNumElements(); 9096 EVT EltVT = VT.getVectorElementType(); 9097 SDLoc dl(N); 9098 9099 SmallVector<SDValue, 8> Scalars; 9100 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9101 9102 // If ResNE is 0, fully unroll the vector op. 9103 if (ResNE == 0) 9104 ResNE = NE; 9105 else if (NE > ResNE) 9106 NE = ResNE; 9107 9108 unsigned i; 9109 for (i= 0; i != NE; ++i) { 9110 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9111 SDValue Operand = N->getOperand(j); 9112 EVT OperandVT = Operand.getValueType(); 9113 if (OperandVT.isVector()) { 9114 // A vector operand; extract a single element. 9115 EVT OperandEltVT = OperandVT.getVectorElementType(); 9116 Operands[j] = 9117 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9118 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9119 } else { 9120 // A scalar operand; just use it as is. 9121 Operands[j] = Operand; 9122 } 9123 } 9124 9125 switch (N->getOpcode()) { 9126 default: { 9127 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9128 N->getFlags())); 9129 break; 9130 } 9131 case ISD::VSELECT: 9132 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9133 break; 9134 case ISD::SHL: 9135 case ISD::SRA: 9136 case ISD::SRL: 9137 case ISD::ROTL: 9138 case ISD::ROTR: 9139 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9140 getShiftAmountOperand(Operands[0].getValueType(), 9141 Operands[1]))); 9142 break; 9143 case ISD::SIGN_EXTEND_INREG: { 9144 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9145 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9146 Operands[0], 9147 getValueType(ExtVT))); 9148 } 9149 } 9150 } 9151 9152 for (; i < ResNE; ++i) 9153 Scalars.push_back(getUNDEF(EltVT)); 9154 9155 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9156 return getBuildVector(VecVT, dl, Scalars); 9157 } 9158 9159 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9160 SDNode *N, unsigned ResNE) { 9161 unsigned Opcode = N->getOpcode(); 9162 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9163 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9164 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9165 "Expected an overflow opcode"); 9166 9167 EVT ResVT = N->getValueType(0); 9168 EVT OvVT = N->getValueType(1); 9169 EVT ResEltVT = ResVT.getVectorElementType(); 9170 EVT OvEltVT = OvVT.getVectorElementType(); 9171 SDLoc dl(N); 9172 9173 // If ResNE is 0, fully unroll the vector op. 9174 unsigned NE = ResVT.getVectorNumElements(); 9175 if (ResNE == 0) 9176 ResNE = NE; 9177 else if (NE > ResNE) 9178 NE = ResNE; 9179 9180 SmallVector<SDValue, 8> LHSScalars; 9181 SmallVector<SDValue, 8> RHSScalars; 9182 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9183 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9184 9185 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9186 SDVTList VTs = getVTList(ResEltVT, SVT); 9187 SmallVector<SDValue, 8> ResScalars; 9188 SmallVector<SDValue, 8> OvScalars; 9189 for (unsigned i = 0; i < NE; ++i) { 9190 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9191 SDValue Ov = 9192 getSelect(dl, OvEltVT, Res.getValue(1), 9193 getBoolConstant(true, dl, OvEltVT, ResVT), 9194 getConstant(0, dl, OvEltVT)); 9195 9196 ResScalars.push_back(Res); 9197 OvScalars.push_back(Ov); 9198 } 9199 9200 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9201 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9202 9203 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9204 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9205 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9206 getBuildVector(NewOvVT, dl, OvScalars)); 9207 } 9208 9209 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9210 LoadSDNode *Base, 9211 unsigned Bytes, 9212 int Dist) const { 9213 if (LD->isVolatile() || Base->isVolatile()) 9214 return false; 9215 if (LD->isIndexed() || Base->isIndexed()) 9216 return false; 9217 if (LD->getChain() != Base->getChain()) 9218 return false; 9219 EVT VT = LD->getValueType(0); 9220 if (VT.getSizeInBits() / 8 != Bytes) 9221 return false; 9222 9223 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9224 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9225 9226 int64_t Offset = 0; 9227 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9228 return (Dist * Bytes == Offset); 9229 return false; 9230 } 9231 9232 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9233 /// it cannot be inferred. 9234 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9235 // If this is a GlobalAddress + cst, return the alignment. 9236 const GlobalValue *GV; 9237 int64_t GVOffset = 0; 9238 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9239 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9240 KnownBits Known(IdxWidth); 9241 llvm::computeKnownBits(GV, Known, getDataLayout()); 9242 unsigned AlignBits = Known.countMinTrailingZeros(); 9243 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9244 if (Align) 9245 return MinAlign(Align, GVOffset); 9246 } 9247 9248 // If this is a direct reference to a stack slot, use information about the 9249 // stack slot's alignment. 9250 int FrameIdx = INT_MIN; 9251 int64_t FrameOffset = 0; 9252 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9253 FrameIdx = FI->getIndex(); 9254 } else if (isBaseWithConstantOffset(Ptr) && 9255 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9256 // Handle FI+Cst 9257 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9258 FrameOffset = Ptr.getConstantOperandVal(1); 9259 } 9260 9261 if (FrameIdx != INT_MIN) { 9262 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9263 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9264 FrameOffset); 9265 return FIInfoAlign; 9266 } 9267 9268 return 0; 9269 } 9270 9271 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9272 /// which is split (or expanded) into two not necessarily identical pieces. 9273 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9274 // Currently all types are split in half. 9275 EVT LoVT, HiVT; 9276 if (!VT.isVector()) 9277 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9278 else 9279 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9280 9281 return std::make_pair(LoVT, HiVT); 9282 } 9283 9284 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9285 /// low/high part. 9286 std::pair<SDValue, SDValue> 9287 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9288 const EVT &HiVT) { 9289 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9290 N.getValueType().getVectorNumElements() && 9291 "More vector elements requested than available!"); 9292 SDValue Lo, Hi; 9293 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9294 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9295 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9296 getConstant(LoVT.getVectorNumElements(), DL, 9297 TLI->getVectorIdxTy(getDataLayout()))); 9298 return std::make_pair(Lo, Hi); 9299 } 9300 9301 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9302 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9303 EVT VT = N.getValueType(); 9304 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9305 NextPowerOf2(VT.getVectorNumElements())); 9306 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9307 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9308 } 9309 9310 void SelectionDAG::ExtractVectorElements(SDValue Op, 9311 SmallVectorImpl<SDValue> &Args, 9312 unsigned Start, unsigned Count) { 9313 EVT VT = Op.getValueType(); 9314 if (Count == 0) 9315 Count = VT.getVectorNumElements(); 9316 9317 EVT EltVT = VT.getVectorElementType(); 9318 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9319 SDLoc SL(Op); 9320 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9321 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9322 Op, getConstant(i, SL, IdxTy))); 9323 } 9324 } 9325 9326 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9327 unsigned GlobalAddressSDNode::getAddressSpace() const { 9328 return getGlobal()->getType()->getAddressSpace(); 9329 } 9330 9331 Type *ConstantPoolSDNode::getType() const { 9332 if (isMachineConstantPoolEntry()) 9333 return Val.MachineCPVal->getType(); 9334 return Val.ConstVal->getType(); 9335 } 9336 9337 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9338 unsigned &SplatBitSize, 9339 bool &HasAnyUndefs, 9340 unsigned MinSplatBits, 9341 bool IsBigEndian) const { 9342 EVT VT = getValueType(0); 9343 assert(VT.isVector() && "Expected a vector type"); 9344 unsigned VecWidth = VT.getSizeInBits(); 9345 if (MinSplatBits > VecWidth) 9346 return false; 9347 9348 // FIXME: The widths are based on this node's type, but build vectors can 9349 // truncate their operands. 9350 SplatValue = APInt(VecWidth, 0); 9351 SplatUndef = APInt(VecWidth, 0); 9352 9353 // Get the bits. Bits with undefined values (when the corresponding element 9354 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9355 // in SplatValue. If any of the values are not constant, give up and return 9356 // false. 9357 unsigned int NumOps = getNumOperands(); 9358 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9359 unsigned EltWidth = VT.getScalarSizeInBits(); 9360 9361 for (unsigned j = 0; j < NumOps; ++j) { 9362 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9363 SDValue OpVal = getOperand(i); 9364 unsigned BitPos = j * EltWidth; 9365 9366 if (OpVal.isUndef()) 9367 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9368 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9369 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9370 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9371 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9372 else 9373 return false; 9374 } 9375 9376 // The build_vector is all constants or undefs. Find the smallest element 9377 // size that splats the vector. 9378 HasAnyUndefs = (SplatUndef != 0); 9379 9380 // FIXME: This does not work for vectors with elements less than 8 bits. 9381 while (VecWidth > 8) { 9382 unsigned HalfSize = VecWidth / 2; 9383 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9384 APInt LowValue = SplatValue.trunc(HalfSize); 9385 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9386 APInt LowUndef = SplatUndef.trunc(HalfSize); 9387 9388 // If the two halves do not match (ignoring undef bits), stop here. 9389 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9390 MinSplatBits > HalfSize) 9391 break; 9392 9393 SplatValue = HighValue | LowValue; 9394 SplatUndef = HighUndef & LowUndef; 9395 9396 VecWidth = HalfSize; 9397 } 9398 9399 SplatBitSize = VecWidth; 9400 return true; 9401 } 9402 9403 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9404 BitVector *UndefElements) const { 9405 if (UndefElements) { 9406 UndefElements->clear(); 9407 UndefElements->resize(getNumOperands()); 9408 } 9409 assert(getNumOperands() == DemandedElts.getBitWidth() && 9410 "Unexpected vector size"); 9411 if (!DemandedElts) 9412 return SDValue(); 9413 SDValue Splatted; 9414 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9415 if (!DemandedElts[i]) 9416 continue; 9417 SDValue Op = getOperand(i); 9418 if (Op.isUndef()) { 9419 if (UndefElements) 9420 (*UndefElements)[i] = true; 9421 } else if (!Splatted) { 9422 Splatted = Op; 9423 } else if (Splatted != Op) { 9424 return SDValue(); 9425 } 9426 } 9427 9428 if (!Splatted) { 9429 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9430 assert(getOperand(FirstDemandedIdx).isUndef() && 9431 "Can only have a splat without a constant for all undefs."); 9432 return getOperand(FirstDemandedIdx); 9433 } 9434 9435 return Splatted; 9436 } 9437 9438 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9439 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9440 return getSplatValue(DemandedElts, UndefElements); 9441 } 9442 9443 ConstantSDNode * 9444 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9445 BitVector *UndefElements) const { 9446 return dyn_cast_or_null<ConstantSDNode>( 9447 getSplatValue(DemandedElts, UndefElements)); 9448 } 9449 9450 ConstantSDNode * 9451 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9452 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9453 } 9454 9455 ConstantFPSDNode * 9456 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9457 BitVector *UndefElements) const { 9458 return dyn_cast_or_null<ConstantFPSDNode>( 9459 getSplatValue(DemandedElts, UndefElements)); 9460 } 9461 9462 ConstantFPSDNode * 9463 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9464 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9465 } 9466 9467 int32_t 9468 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9469 uint32_t BitWidth) const { 9470 if (ConstantFPSDNode *CN = 9471 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9472 bool IsExact; 9473 APSInt IntVal(BitWidth); 9474 const APFloat &APF = CN->getValueAPF(); 9475 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9476 APFloat::opOK || 9477 !IsExact) 9478 return -1; 9479 9480 return IntVal.exactLogBase2(); 9481 } 9482 return -1; 9483 } 9484 9485 bool BuildVectorSDNode::isConstant() const { 9486 for (const SDValue &Op : op_values()) { 9487 unsigned Opc = Op.getOpcode(); 9488 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9489 return false; 9490 } 9491 return true; 9492 } 9493 9494 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9495 // Find the first non-undef value in the shuffle mask. 9496 unsigned i, e; 9497 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9498 /* search */; 9499 9500 // If all elements are undefined, this shuffle can be considered a splat 9501 // (although it should eventually get simplified away completely). 9502 if (i == e) 9503 return true; 9504 9505 // Make sure all remaining elements are either undef or the same as the first 9506 // non-undef value. 9507 for (int Idx = Mask[i]; i != e; ++i) 9508 if (Mask[i] >= 0 && Mask[i] != Idx) 9509 return false; 9510 return true; 9511 } 9512 9513 // Returns the SDNode if it is a constant integer BuildVector 9514 // or constant integer. 9515 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9516 if (isa<ConstantSDNode>(N)) 9517 return N.getNode(); 9518 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9519 return N.getNode(); 9520 // Treat a GlobalAddress supporting constant offset folding as a 9521 // constant integer. 9522 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9523 if (GA->getOpcode() == ISD::GlobalAddress && 9524 TLI->isOffsetFoldingLegal(GA)) 9525 return GA; 9526 return nullptr; 9527 } 9528 9529 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9530 if (isa<ConstantFPSDNode>(N)) 9531 return N.getNode(); 9532 9533 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9534 return N.getNode(); 9535 9536 return nullptr; 9537 } 9538 9539 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9540 assert(!Node->OperandList && "Node already has operands"); 9541 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9542 "too many operands to fit into SDNode"); 9543 SDUse *Ops = OperandRecycler.allocate( 9544 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9545 9546 bool IsDivergent = false; 9547 for (unsigned I = 0; I != Vals.size(); ++I) { 9548 Ops[I].setUser(Node); 9549 Ops[I].setInitial(Vals[I]); 9550 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9551 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9552 } 9553 Node->NumOperands = Vals.size(); 9554 Node->OperandList = Ops; 9555 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9556 if (!TLI->isSDNodeAlwaysUniform(Node)) 9557 Node->SDNodeBits.IsDivergent = IsDivergent; 9558 checkForCycles(Node); 9559 } 9560 9561 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9562 SmallVectorImpl<SDValue> &Vals) { 9563 size_t Limit = SDNode::getMaxNumOperands(); 9564 while (Vals.size() > Limit) { 9565 unsigned SliceIdx = Vals.size() - Limit; 9566 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9567 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9568 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9569 Vals.emplace_back(NewTF); 9570 } 9571 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9572 } 9573 9574 #ifndef NDEBUG 9575 static void checkForCyclesHelper(const SDNode *N, 9576 SmallPtrSetImpl<const SDNode*> &Visited, 9577 SmallPtrSetImpl<const SDNode*> &Checked, 9578 const llvm::SelectionDAG *DAG) { 9579 // If this node has already been checked, don't check it again. 9580 if (Checked.count(N)) 9581 return; 9582 9583 // If a node has already been visited on this depth-first walk, reject it as 9584 // a cycle. 9585 if (!Visited.insert(N).second) { 9586 errs() << "Detected cycle in SelectionDAG\n"; 9587 dbgs() << "Offending node:\n"; 9588 N->dumprFull(DAG); dbgs() << "\n"; 9589 abort(); 9590 } 9591 9592 for (const SDValue &Op : N->op_values()) 9593 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9594 9595 Checked.insert(N); 9596 Visited.erase(N); 9597 } 9598 #endif 9599 9600 void llvm::checkForCycles(const llvm::SDNode *N, 9601 const llvm::SelectionDAG *DAG, 9602 bool force) { 9603 #ifndef NDEBUG 9604 bool check = force; 9605 #ifdef EXPENSIVE_CHECKS 9606 check = true; 9607 #endif // EXPENSIVE_CHECKS 9608 if (check) { 9609 assert(N && "Checking nonexistent SDNode"); 9610 SmallPtrSet<const SDNode*, 32> visited; 9611 SmallPtrSet<const SDNode*, 32> checked; 9612 checkForCyclesHelper(N, visited, checked, DAG); 9613 } 9614 #endif // !NDEBUG 9615 } 9616 9617 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9618 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9619 } 9620