1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
266 }
267 
268 bool ISD::matchUnaryPredicate(SDValue Op,
269                               std::function<bool(ConstantSDNode *)> Match,
270                               bool AllowUndefs) {
271   // FIXME: Add support for scalar UNDEF cases?
272   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273     return Match(Cst);
274 
275   // FIXME: Add support for vector UNDEF cases?
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     if (AllowUndefs && Op.getOperand(i).isUndef()) {
282       if (!Match(nullptr))
283         return false;
284       continue;
285     }
286 
287     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::matchBinaryPredicate(
295     SDValue LHS, SDValue RHS,
296     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297     bool AllowUndefs, bool AllowTypeMismatch) {
298   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
299     return false;
300 
301   // TODO: Add support for scalar UNDEF cases?
302   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304       return Match(LHSCst, RHSCst);
305 
306   // TODO: Add support for vector UNDEF cases?
307   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308       ISD::BUILD_VECTOR != RHS.getOpcode())
309     return false;
310 
311   EVT SVT = LHS.getValueType().getScalarType();
312   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313     SDValue LHSOp = LHS.getOperand(i);
314     SDValue RHSOp = RHS.getOperand(i);
315     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320       return false;
321     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
322                                LHSOp.getValueType() != RHSOp.getValueType()))
323       return false;
324     if (!Match(LHSCst, RHSCst))
325       return false;
326   }
327   return true;
328 }
329 
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331   switch (ExtType) {
332   case ISD::EXTLOAD:
333     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334   case ISD::SEXTLOAD:
335     return ISD::SIGN_EXTEND;
336   case ISD::ZEXTLOAD:
337     return ISD::ZERO_EXTEND;
338   default:
339     break;
340   }
341 
342   llvm_unreachable("Invalid LoadExtType");
343 }
344 
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346   // To perform this operation, we just need to swap the L and G bits of the
347   // operation.
348   unsigned OldL = (Operation >> 2) & 1;
349   unsigned OldG = (Operation >> 1) & 1;
350   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
351                        (OldL << 1) |       // New G bit
352                        (OldG << 2));       // New L bit.
353 }
354 
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356   unsigned Operation = Op;
357   if (isInteger)
358     Operation ^= 7;   // Flip L, G, E bits, but not U.
359   else
360     Operation ^= 15;  // Flip all of the condition bits.
361 
362   if (Operation > ISD::SETTRUE2)
363     Operation &= ~8;  // Don't let N and U bits get set.
364 
365   return ISD::CondCode(Operation);
366 }
367 
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372   switch (Opcode) {
373   default: llvm_unreachable("Illegal integer setcc operation!");
374   case ISD::SETEQ:
375   case ISD::SETNE: return 0;
376   case ISD::SETLT:
377   case ISD::SETLE:
378   case ISD::SETGT:
379   case ISD::SETGE: return 1;
380   case ISD::SETULT:
381   case ISD::SETULE:
382   case ISD::SETUGT:
383   case ISD::SETUGE: return 2;
384   }
385 }
386 
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388                                        bool IsInteger) {
389   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390     // Cannot fold a signed integer setcc with an unsigned integer setcc.
391     return ISD::SETCC_INVALID;
392 
393   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
394 
395   // If the N and U bits get set, then the resultant comparison DOES suddenly
396   // care about orderedness, and it is true when ordered.
397   if (Op > ISD::SETTRUE2)
398     Op &= ~16;     // Clear the U bit if the N bit is set.
399 
400   // Canonicalize illegal integer setcc's.
401   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
402     Op = ISD::SETNE;
403 
404   return ISD::CondCode(Op);
405 }
406 
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408                                         bool IsInteger) {
409   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410     // Cannot fold a signed setcc with an unsigned setcc.
411     return ISD::SETCC_INVALID;
412 
413   // Combine all of the condition bits.
414   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger) {
418     switch (Result) {
419     default: break;
420     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
421     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
422     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
423     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
424     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
425     }
426   }
427 
428   return Result;
429 }
430 
431 //===----------------------------------------------------------------------===//
432 //                           SDNode Profile Support
433 //===----------------------------------------------------------------------===//
434 
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
437   ID.AddInteger(OpC);
438 }
439 
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443   ID.AddPointer(VTList.VTs);
444 }
445 
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448                               ArrayRef<SDValue> Ops) {
449   for (auto& Op : Ops) {
450     ID.AddPointer(Op.getNode());
451     ID.AddInteger(Op.getResNo());
452   }
453 }
454 
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457                               ArrayRef<SDUse> Ops) {
458   for (auto& Op : Ops) {
459     ID.AddPointer(Op.getNode());
460     ID.AddInteger(Op.getResNo());
461   }
462 }
463 
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465                           SDVTList VTList, ArrayRef<SDValue> OpList) {
466   AddNodeIDOpcode(ID, OpC);
467   AddNodeIDValueTypes(ID, VTList);
468   AddNodeIDOperands(ID, OpList);
469 }
470 
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473   switch (N->getOpcode()) {
474   case ISD::TargetExternalSymbol:
475   case ISD::ExternalSymbol:
476   case ISD::MCSymbol:
477     llvm_unreachable("Should only be used on nodes with operands");
478   default: break;  // Normal nodes don't need extra info.
479   case ISD::TargetConstant:
480   case ISD::Constant: {
481     const ConstantSDNode *C = cast<ConstantSDNode>(N);
482     ID.AddPointer(C->getConstantIntValue());
483     ID.AddBoolean(C->isOpaque());
484     break;
485   }
486   case ISD::TargetConstantFP:
487   case ISD::ConstantFP:
488     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489     break;
490   case ISD::TargetGlobalAddress:
491   case ISD::GlobalAddress:
492   case ISD::TargetGlobalTLSAddress:
493   case ISD::GlobalTLSAddress: {
494     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495     ID.AddPointer(GA->getGlobal());
496     ID.AddInteger(GA->getOffset());
497     ID.AddInteger(GA->getTargetFlags());
498     break;
499   }
500   case ISD::BasicBlock:
501     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502     break;
503   case ISD::Register:
504     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505     break;
506   case ISD::RegisterMask:
507     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508     break;
509   case ISD::SRCVALUE:
510     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511     break;
512   case ISD::FrameIndex:
513   case ISD::TargetFrameIndex:
514     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515     break;
516   case ISD::LIFETIME_START:
517   case ISD::LIFETIME_END:
518     if (cast<LifetimeSDNode>(N)->hasOffset()) {
519       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
521     }
522     break;
523   case ISD::JumpTable:
524   case ISD::TargetJumpTable:
525     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527     break;
528   case ISD::ConstantPool:
529   case ISD::TargetConstantPool: {
530     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531     ID.AddInteger(CP->getAlignment());
532     ID.AddInteger(CP->getOffset());
533     if (CP->isMachineConstantPoolEntry())
534       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535     else
536       ID.AddPointer(CP->getConstVal());
537     ID.AddInteger(CP->getTargetFlags());
538     break;
539   }
540   case ISD::TargetIndex: {
541     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542     ID.AddInteger(TI->getIndex());
543     ID.AddInteger(TI->getOffset());
544     ID.AddInteger(TI->getTargetFlags());
545     break;
546   }
547   case ISD::LOAD: {
548     const LoadSDNode *LD = cast<LoadSDNode>(N);
549     ID.AddInteger(LD->getMemoryVT().getRawBits());
550     ID.AddInteger(LD->getRawSubclassData());
551     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552     break;
553   }
554   case ISD::STORE: {
555     const StoreSDNode *ST = cast<StoreSDNode>(N);
556     ID.AddInteger(ST->getMemoryVT().getRawBits());
557     ID.AddInteger(ST->getRawSubclassData());
558     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559     break;
560   }
561   case ISD::MLOAD: {
562     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563     ID.AddInteger(MLD->getMemoryVT().getRawBits());
564     ID.AddInteger(MLD->getRawSubclassData());
565     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::MSTORE: {
569     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570     ID.AddInteger(MST->getMemoryVT().getRawBits());
571     ID.AddInteger(MST->getRawSubclassData());
572     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573     break;
574   }
575   case ISD::MGATHER: {
576     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577     ID.AddInteger(MG->getMemoryVT().getRawBits());
578     ID.AddInteger(MG->getRawSubclassData());
579     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580     break;
581   }
582   case ISD::MSCATTER: {
583     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584     ID.AddInteger(MS->getMemoryVT().getRawBits());
585     ID.AddInteger(MS->getRawSubclassData());
586     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587     break;
588   }
589   case ISD::ATOMIC_CMP_SWAP:
590   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591   case ISD::ATOMIC_SWAP:
592   case ISD::ATOMIC_LOAD_ADD:
593   case ISD::ATOMIC_LOAD_SUB:
594   case ISD::ATOMIC_LOAD_AND:
595   case ISD::ATOMIC_LOAD_CLR:
596   case ISD::ATOMIC_LOAD_OR:
597   case ISD::ATOMIC_LOAD_XOR:
598   case ISD::ATOMIC_LOAD_NAND:
599   case ISD::ATOMIC_LOAD_MIN:
600   case ISD::ATOMIC_LOAD_MAX:
601   case ISD::ATOMIC_LOAD_UMIN:
602   case ISD::ATOMIC_LOAD_UMAX:
603   case ISD::ATOMIC_LOAD:
604   case ISD::ATOMIC_STORE: {
605     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606     ID.AddInteger(AT->getMemoryVT().getRawBits());
607     ID.AddInteger(AT->getRawSubclassData());
608     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::PREFETCH: {
612     const MemSDNode *PF = cast<MemSDNode>(N);
613     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619          i != e; ++i)
620       ID.AddInteger(SVN->getMaskElt(i));
621     break;
622   }
623   case ISD::TargetBlockAddress:
624   case ISD::BlockAddress: {
625     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626     ID.AddPointer(BA->getBlockAddress());
627     ID.AddInteger(BA->getOffset());
628     ID.AddInteger(BA->getTargetFlags());
629     break;
630   }
631   } // end switch (N->getOpcode())
632 
633   // Target specific memory nodes could also have address spaces to check.
634   if (N->isTargetMemoryOpcode())
635     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
636 }
637 
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641   AddNodeIDOpcode(ID, N->getOpcode());
642   // Add the return value info.
643   AddNodeIDValueTypes(ID, N->getVTList());
644   // Add the operand info.
645   AddNodeIDOperands(ID, N->ops());
646 
647   // Handle SDNode leafs with special info.
648   AddNodeIDCustom(ID, N);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //                              SelectionDAG Class
653 //===----------------------------------------------------------------------===//
654 
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657   if (N->getValueType(0) == MVT::Glue)
658     return true; // Never CSE anything that produces a flag.
659 
660   switch (N->getOpcode()) {
661   default: break;
662   case ISD::HANDLENODE:
663   case ISD::EH_LABEL:
664     return true;   // Never CSE these nodes.
665   }
666 
667   // Check that remaining values produced are not flags.
668   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669     if (N->getValueType(i) == MVT::Glue)
670       return true; // Never CSE anything that produces a flag.
671 
672   return false;
673 }
674 
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678   // Create a dummy node (which is not added to allnodes), that adds a reference
679   // to the root node, preventing it from being deleted.
680   HandleSDNode Dummy(getRoot());
681 
682   SmallVector<SDNode*, 128> DeadNodes;
683 
684   // Add all obviously-dead nodes to the DeadNodes worklist.
685   for (SDNode &Node : allnodes())
686     if (Node.use_empty())
687       DeadNodes.push_back(&Node);
688 
689   RemoveDeadNodes(DeadNodes);
690 
691   // If the root changed (e.g. it was a dead load, update the root).
692   setRoot(Dummy.getValue());
693 }
694 
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
698 
699   // Process the worklist, deleting the nodes and adding their uses to the
700   // worklist.
701   while (!DeadNodes.empty()) {
702     SDNode *N = DeadNodes.pop_back_val();
703     // Skip to next node if we've already managed to delete the node. This could
704     // happen if replacing a node causes a node previously added to the node to
705     // be deleted.
706     if (N->getOpcode() == ISD::DELETED_NODE)
707       continue;
708 
709     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710       DUL->NodeDeleted(N, nullptr);
711 
712     // Take the node out of the appropriate CSE map.
713     RemoveNodeFromCSEMaps(N);
714 
715     // Next, brutally remove the operand list.  This is safe to do, as there are
716     // no cycles in the graph.
717     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718       SDUse &Use = *I++;
719       SDNode *Operand = Use.getNode();
720       Use.set(SDValue());
721 
722       // Now that we removed this operand, see if there are no uses of it left.
723       if (Operand->use_empty())
724         DeadNodes.push_back(Operand);
725     }
726 
727     DeallocateNode(N);
728   }
729 }
730 
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732   SmallVector<SDNode*, 16> DeadNodes(1, N);
733 
734   // Create a dummy node that adds a reference to the root node, preventing
735   // it from being deleted.  (This matters if the root is an operand of the
736   // dead node.)
737   HandleSDNode Dummy(getRoot());
738 
739   RemoveDeadNodes(DeadNodes);
740 }
741 
742 void SelectionDAG::DeleteNode(SDNode *N) {
743   // First take this out of the appropriate CSE map.
744   RemoveNodeFromCSEMaps(N);
745 
746   // Finally, remove uses due to operands of this node, remove from the
747   // AllNodes list, and delete the node.
748   DeleteNodeNotInCSEMaps(N);
749 }
750 
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752   assert(N->getIterator() != AllNodes.begin() &&
753          "Cannot delete the entry node!");
754   assert(N->use_empty() && "Cannot delete a node that is not dead!");
755 
756   // Drop all of the operands and decrement used node's use counts.
757   N->DropOperands();
758 
759   DeallocateNode(N);
760 }
761 
762 void SDDbgInfo::erase(const SDNode *Node) {
763   DbgValMapType::iterator I = DbgValMap.find(Node);
764   if (I == DbgValMap.end())
765     return;
766   for (auto &Val: I->second)
767     Val->setIsInvalidated();
768   DbgValMap.erase(I);
769 }
770 
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772   // If we have operands, deallocate them.
773   removeOperands(N);
774 
775   NodeAllocator.Deallocate(AllNodes.remove(N));
776 
777   // Set the opcode to DELETED_NODE to help catch bugs when node
778   // memory is reallocated.
779   // FIXME: There are places in SDag that have grown a dependency on the opcode
780   // value in the released node.
781   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782   N->NodeType = ISD::DELETED_NODE;
783 
784   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785   // them and forget about that node.
786   DbgInfo->erase(N);
787 }
788 
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792   switch (N->getOpcode()) {
793   default:
794     break;
795   case ISD::BUILD_PAIR: {
796     EVT VT = N->getValueType(0);
797     assert(N->getNumValues() == 1 && "Too many results!");
798     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799            "Wrong return type!");
800     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802            "Mismatched operand types!");
803     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804            "Wrong operand type!");
805     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806            "Wrong return type size");
807     break;
808   }
809   case ISD::BUILD_VECTOR: {
810     assert(N->getNumValues() == 1 && "Too many results!");
811     assert(N->getValueType(0).isVector() && "Wrong return type!");
812     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813            "Wrong number of operands!");
814     EVT EltVT = N->getValueType(0).getVectorElementType();
815     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816       assert((I->getValueType() == EltVT ||
817              (EltVT.isInteger() && I->getValueType().isInteger() &&
818               EltVT.bitsLE(I->getValueType()))) &&
819             "Wrong operand type!");
820       assert(I->getValueType() == N->getOperand(0).getValueType() &&
821              "Operands must all have the same type");
822     }
823     break;
824   }
825   }
826 }
827 #endif // NDEBUG
828 
829 /// Insert a newly allocated node into the DAG.
830 ///
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834   AllNodes.push_back(N);
835 #ifndef NDEBUG
836   N->PersistentId = NextPersistentId++;
837   VerifySDNode(N);
838 #endif
839   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840     DUL->NodeInserted(N);
841 }
842 
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it.  This is useful when we're about to delete or repurpose
845 /// the node.  We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848   bool Erased = false;
849   switch (N->getOpcode()) {
850   case ISD::HANDLENODE: return false;  // noop.
851   case ISD::CONDCODE:
852     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853            "Cond code doesn't exist!");
854     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856     break;
857   case ISD::ExternalSymbol:
858     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859     break;
860   case ISD::TargetExternalSymbol: {
861     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862     Erased = TargetExternalSymbols.erase(
863                std::pair<std::string,unsigned char>(ESN->getSymbol(),
864                                                     ESN->getTargetFlags()));
865     break;
866   }
867   case ISD::MCSymbol: {
868     auto *MCSN = cast<MCSymbolSDNode>(N);
869     Erased = MCSymbols.erase(MCSN->getMCSymbol());
870     break;
871   }
872   case ISD::VALUETYPE: {
873     EVT VT = cast<VTSDNode>(N)->getVT();
874     if (VT.isExtended()) {
875       Erased = ExtendedValueTypeNodes.erase(VT);
876     } else {
877       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
878       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
879     }
880     break;
881   }
882   default:
883     // Remove it from the CSE Map.
884     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
885     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
886     Erased = CSEMap.RemoveNode(N);
887     break;
888   }
889 #ifndef NDEBUG
890   // Verify that the node was actually in one of the CSE maps, unless it has a
891   // flag result (which cannot be CSE'd) or is one of the special cases that are
892   // not subject to CSE.
893   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
894       !N->isMachineOpcode() && !doNotCSE(N)) {
895     N->dump(this);
896     dbgs() << "\n";
897     llvm_unreachable("Node is not in map!");
898   }
899 #endif
900   return Erased;
901 }
902 
903 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
904 /// maps and modified in place. Add it back to the CSE maps, unless an identical
905 /// node already exists, in which case transfer all its users to the existing
906 /// node. This transfer can potentially trigger recursive merging.
907 void
908 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
909   // For node types that aren't CSE'd, just act as if no identical node
910   // already exists.
911   if (!doNotCSE(N)) {
912     SDNode *Existing = CSEMap.GetOrInsertNode(N);
913     if (Existing != N) {
914       // If there was already an existing matching node, use ReplaceAllUsesWith
915       // to replace the dead one with the existing one.  This can cause
916       // recursive merging of other unrelated nodes down the line.
917       ReplaceAllUsesWith(N, Existing);
918 
919       // N is now dead. Inform the listeners and delete it.
920       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
921         DUL->NodeDeleted(N, Existing);
922       DeleteNodeNotInCSEMaps(N);
923       return;
924     }
925   }
926 
927   // If the node doesn't already exist, we updated it.  Inform listeners.
928   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
929     DUL->NodeUpdated(N);
930 }
931 
932 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
933 /// were replaced with those specified.  If this node is never memoized,
934 /// return null, otherwise return a pointer to the slot it would take.  If a
935 /// node already exists with these operands, the slot will be non-null.
936 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
937                                            void *&InsertPos) {
938   if (doNotCSE(N))
939     return nullptr;
940 
941   SDValue Ops[] = { Op };
942   FoldingSetNodeID ID;
943   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
944   AddNodeIDCustom(ID, N);
945   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
946   if (Node)
947     Node->intersectFlagsWith(N->getFlags());
948   return Node;
949 }
950 
951 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
952 /// were replaced with those specified.  If this node is never memoized,
953 /// return null, otherwise return a pointer to the slot it would take.  If a
954 /// node already exists with these operands, the slot will be non-null.
955 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
956                                            SDValue Op1, SDValue Op2,
957                                            void *&InsertPos) {
958   if (doNotCSE(N))
959     return nullptr;
960 
961   SDValue Ops[] = { Op1, Op2 };
962   FoldingSetNodeID ID;
963   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
964   AddNodeIDCustom(ID, N);
965   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
966   if (Node)
967     Node->intersectFlagsWith(N->getFlags());
968   return Node;
969 }
970 
971 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
972 /// were replaced with those specified.  If this node is never memoized,
973 /// return null, otherwise return a pointer to the slot it would take.  If a
974 /// node already exists with these operands, the slot will be non-null.
975 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
976                                            void *&InsertPos) {
977   if (doNotCSE(N))
978     return nullptr;
979 
980   FoldingSetNodeID ID;
981   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
982   AddNodeIDCustom(ID, N);
983   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
984   if (Node)
985     Node->intersectFlagsWith(N->getFlags());
986   return Node;
987 }
988 
989 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
990   Type *Ty = VT == MVT::iPTR ?
991                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
992                    VT.getTypeForEVT(*getContext());
993 
994   return getDataLayout().getABITypeAlignment(Ty);
995 }
996 
997 // EntryNode could meaningfully have debug info if we can find it...
998 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
999     : TM(tm), OptLevel(OL),
1000       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1001       Root(getEntryNode()) {
1002   InsertNode(&EntryNode);
1003   DbgInfo = new SDDbgInfo();
1004 }
1005 
1006 void SelectionDAG::init(MachineFunction &NewMF,
1007                         OptimizationRemarkEmitter &NewORE,
1008                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1009                         LegacyDivergenceAnalysis * Divergence) {
1010   MF = &NewMF;
1011   SDAGISelPass = PassPtr;
1012   ORE = &NewORE;
1013   TLI = getSubtarget().getTargetLowering();
1014   TSI = getSubtarget().getSelectionDAGInfo();
1015   LibInfo = LibraryInfo;
1016   Context = &MF->getFunction().getContext();
1017   DA = Divergence;
1018 }
1019 
1020 SelectionDAG::~SelectionDAG() {
1021   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1022   allnodes_clear();
1023   OperandRecycler.clear(OperandAllocator);
1024   delete DbgInfo;
1025 }
1026 
1027 void SelectionDAG::allnodes_clear() {
1028   assert(&*AllNodes.begin() == &EntryNode);
1029   AllNodes.remove(AllNodes.begin());
1030   while (!AllNodes.empty())
1031     DeallocateNode(&AllNodes.front());
1032 #ifndef NDEBUG
1033   NextPersistentId = 0;
1034 #endif
1035 }
1036 
1037 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1038                                           void *&InsertPos) {
1039   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1040   if (N) {
1041     switch (N->getOpcode()) {
1042     default: break;
1043     case ISD::Constant:
1044     case ISD::ConstantFP:
1045       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1046                        "debug location.  Use another overload.");
1047     }
1048   }
1049   return N;
1050 }
1051 
1052 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1053                                           const SDLoc &DL, void *&InsertPos) {
1054   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1055   if (N) {
1056     switch (N->getOpcode()) {
1057     case ISD::Constant:
1058     case ISD::ConstantFP:
1059       // Erase debug location from the node if the node is used at several
1060       // different places. Do not propagate one location to all uses as it
1061       // will cause a worse single stepping debugging experience.
1062       if (N->getDebugLoc() != DL.getDebugLoc())
1063         N->setDebugLoc(DebugLoc());
1064       break;
1065     default:
1066       // When the node's point of use is located earlier in the instruction
1067       // sequence than its prior point of use, update its debug info to the
1068       // earlier location.
1069       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1070         N->setDebugLoc(DL.getDebugLoc());
1071       break;
1072     }
1073   }
1074   return N;
1075 }
1076 
1077 void SelectionDAG::clear() {
1078   allnodes_clear();
1079   OperandRecycler.clear(OperandAllocator);
1080   OperandAllocator.Reset();
1081   CSEMap.clear();
1082 
1083   ExtendedValueTypeNodes.clear();
1084   ExternalSymbols.clear();
1085   TargetExternalSymbols.clear();
1086   MCSymbols.clear();
1087   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1088             static_cast<CondCodeSDNode*>(nullptr));
1089   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1090             static_cast<SDNode*>(nullptr));
1091 
1092   EntryNode.UseList = nullptr;
1093   InsertNode(&EntryNode);
1094   Root = getEntryNode();
1095   DbgInfo->clear();
1096 }
1097 
1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1099   return VT.bitsGT(Op.getValueType())
1100              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1101              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1102 }
1103 
1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1105   return VT.bitsGT(Op.getValueType()) ?
1106     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1107     getNode(ISD::TRUNCATE, DL, VT, Op);
1108 }
1109 
1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1111   return VT.bitsGT(Op.getValueType()) ?
1112     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1113     getNode(ISD::TRUNCATE, DL, VT, Op);
1114 }
1115 
1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1117   return VT.bitsGT(Op.getValueType()) ?
1118     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1119     getNode(ISD::TRUNCATE, DL, VT, Op);
1120 }
1121 
1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1123                                         EVT OpVT) {
1124   if (VT.bitsLE(Op.getValueType()))
1125     return getNode(ISD::TRUNCATE, SL, VT, Op);
1126 
1127   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1128   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1129 }
1130 
1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1132   assert(!VT.isVector() &&
1133          "getZeroExtendInReg should use the vector element type instead of "
1134          "the vector type!");
1135   if (Op.getValueType().getScalarType() == VT) return Op;
1136   unsigned BitWidth = Op.getScalarValueSizeInBits();
1137   APInt Imm = APInt::getLowBitsSet(BitWidth,
1138                                    VT.getSizeInBits());
1139   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1140                  getConstant(Imm, DL, Op.getValueType()));
1141 }
1142 
1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   // Only unsigned pointer semantics are supported right now. In the future this
1145   // might delegate to TLI to check pointer signedness.
1146   return getZExtOrTrunc(Op, DL, VT);
1147 }
1148 
1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1150   // Only unsigned pointer semantics are supported right now. In the future this
1151   // might delegate to TLI to check pointer signedness.
1152   return getZeroExtendInReg(Op, DL, VT);
1153 }
1154 
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157   EVT EltVT = VT.getScalarType();
1158   SDValue NegOne =
1159     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1160   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1161 }
1162 
1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1164   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1165   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1166 }
1167 
1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1169                                       EVT OpVT) {
1170   if (!V)
1171     return getConstant(0, DL, VT);
1172 
1173   switch (TLI->getBooleanContents(OpVT)) {
1174   case TargetLowering::ZeroOrOneBooleanContent:
1175   case TargetLowering::UndefinedBooleanContent:
1176     return getConstant(1, DL, VT);
1177   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1178     return getAllOnesConstant(DL, VT);
1179   }
1180   llvm_unreachable("Unexpected boolean content enum!");
1181 }
1182 
1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1184                                   bool isT, bool isO) {
1185   EVT EltVT = VT.getScalarType();
1186   assert((EltVT.getSizeInBits() >= 64 ||
1187          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1188          "getConstant with a uint64_t value that doesn't fit in the type!");
1189   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1190 }
1191 
1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1193                                   bool isT, bool isO) {
1194   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1195 }
1196 
1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1198                                   EVT VT, bool isT, bool isO) {
1199   assert(VT.isInteger() && "Cannot create FP integer constant!");
1200 
1201   EVT EltVT = VT.getScalarType();
1202   const ConstantInt *Elt = &Val;
1203 
1204   // In some cases the vector type is legal but the element type is illegal and
1205   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1206   // inserted value (the type does not need to match the vector element type).
1207   // Any extra bits introduced will be truncated away.
1208   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1209       TargetLowering::TypePromoteInteger) {
1210    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1211    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1212    Elt = ConstantInt::get(*getContext(), NewVal);
1213   }
1214   // In other cases the element type is illegal and needs to be expanded, for
1215   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216   // the value into n parts and use a vector type with n-times the elements.
1217   // Then bitcast to the type requested.
1218   // Legalizing constants too early makes the DAGCombiner's job harder so we
1219   // only legalize if the DAG tells us we must produce legal types.
1220   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1221            TLI->getTypeAction(*getContext(), EltVT) ==
1222            TargetLowering::TypeExpandInteger) {
1223     const APInt &NewVal = Elt->getValue();
1224     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1225     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1226     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1227     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1228 
1229     // Check the temporary vector is the correct size. If this fails then
1230     // getTypeToTransformTo() probably returned a type whose size (in bits)
1231     // isn't a power-of-2 factor of the requested type size.
1232     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1233 
1234     SmallVector<SDValue, 2> EltParts;
1235     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1236       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1237                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1238                                      ViaEltVT, isT, isO));
1239     }
1240 
1241     // EltParts is currently in little endian order. If we actually want
1242     // big-endian order then reverse it now.
1243     if (getDataLayout().isBigEndian())
1244       std::reverse(EltParts.begin(), EltParts.end());
1245 
1246     // The elements must be reversed when the element order is different
1247     // to the endianness of the elements (because the BITCAST is itself a
1248     // vector shuffle in this situation). However, we do not need any code to
1249     // perform this reversal because getConstant() is producing a vector
1250     // splat.
1251     // This situation occurs in MIPS MSA.
1252 
1253     SmallVector<SDValue, 8> Ops;
1254     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1255       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1256 
1257     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1258     return V;
1259   }
1260 
1261   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1262          "APInt size does not match type size!");
1263   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1264   FoldingSetNodeID ID;
1265   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1266   ID.AddPointer(Elt);
1267   ID.AddBoolean(isO);
1268   void *IP = nullptr;
1269   SDNode *N = nullptr;
1270   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1271     if (!VT.isVector())
1272       return SDValue(N, 0);
1273 
1274   if (!N) {
1275     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1276     CSEMap.InsertNode(N, IP);
1277     InsertNode(N);
1278     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1279   }
1280 
1281   SDValue Result(N, 0);
1282   if (VT.isVector())
1283     Result = getSplatBuildVector(VT, DL, Result);
1284 
1285   return Result;
1286 }
1287 
1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1289                                         bool isTarget) {
1290   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1291 }
1292 
1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1294                                              const SDLoc &DL, bool LegalTypes) {
1295   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1296   return getConstant(Val, DL, ShiftVT);
1297 }
1298 
1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1300                                     bool isTarget) {
1301   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1302 }
1303 
1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1305                                     EVT VT, bool isTarget) {
1306   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1307 
1308   EVT EltVT = VT.getScalarType();
1309 
1310   // Do the map lookup using the actual bit pattern for the floating point
1311   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1312   // we don't have issues with SNANs.
1313   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1316   ID.AddPointer(&V);
1317   void *IP = nullptr;
1318   SDNode *N = nullptr;
1319   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1320     if (!VT.isVector())
1321       return SDValue(N, 0);
1322 
1323   if (!N) {
1324     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1325     CSEMap.InsertNode(N, IP);
1326     InsertNode(N);
1327   }
1328 
1329   SDValue Result(N, 0);
1330   if (VT.isVector())
1331     Result = getSplatBuildVector(VT, DL, Result);
1332   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1333   return Result;
1334 }
1335 
1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1337                                     bool isTarget) {
1338   EVT EltVT = VT.getScalarType();
1339   if (EltVT == MVT::f32)
1340     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1341   else if (EltVT == MVT::f64)
1342     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1343   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1344            EltVT == MVT::f16) {
1345     bool Ignored;
1346     APFloat APF = APFloat(Val);
1347     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1348                 &Ignored);
1349     return getConstantFP(APF, DL, VT, isTarget);
1350   } else
1351     llvm_unreachable("Unsupported type in getConstantFP");
1352 }
1353 
1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1355                                        EVT VT, int64_t Offset, bool isTargetGA,
1356                                        unsigned char TargetFlags) {
1357   assert((TargetFlags == 0 || isTargetGA) &&
1358          "Cannot set target flags on target-independent globals");
1359 
1360   // Truncate (with sign-extension) the offset value to the pointer size.
1361   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1362   if (BitWidth < 64)
1363     Offset = SignExtend64(Offset, BitWidth);
1364 
1365   unsigned Opc;
1366   if (GV->isThreadLocal())
1367     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1368   else
1369     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1370 
1371   FoldingSetNodeID ID;
1372   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1373   ID.AddPointer(GV);
1374   ID.AddInteger(Offset);
1375   ID.AddInteger(TargetFlags);
1376   void *IP = nullptr;
1377   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1378     return SDValue(E, 0);
1379 
1380   auto *N = newSDNode<GlobalAddressSDNode>(
1381       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1382   CSEMap.InsertNode(N, IP);
1383     InsertNode(N);
1384   return SDValue(N, 0);
1385 }
1386 
1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1388   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1389   FoldingSetNodeID ID;
1390   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1391   ID.AddInteger(FI);
1392   void *IP = nullptr;
1393   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1394     return SDValue(E, 0);
1395 
1396   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1397   CSEMap.InsertNode(N, IP);
1398   InsertNode(N);
1399   return SDValue(N, 0);
1400 }
1401 
1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1403                                    unsigned char TargetFlags) {
1404   assert((TargetFlags == 0 || isTarget) &&
1405          "Cannot set target flags on target-independent jump tables");
1406   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1407   FoldingSetNodeID ID;
1408   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1409   ID.AddInteger(JTI);
1410   ID.AddInteger(TargetFlags);
1411   void *IP = nullptr;
1412   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1413     return SDValue(E, 0);
1414 
1415   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1416   CSEMap.InsertNode(N, IP);
1417   InsertNode(N);
1418   return SDValue(N, 0);
1419 }
1420 
1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1422                                       unsigned Alignment, int Offset,
1423                                       bool isTarget,
1424                                       unsigned char TargetFlags) {
1425   assert((TargetFlags == 0 || isTarget) &&
1426          "Cannot set target flags on target-independent globals");
1427   if (Alignment == 0)
1428     Alignment = MF->getFunction().hasOptSize()
1429                     ? getDataLayout().getABITypeAlignment(C->getType())
1430                     : getDataLayout().getPrefTypeAlignment(C->getType());
1431   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1432   FoldingSetNodeID ID;
1433   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1434   ID.AddInteger(Alignment);
1435   ID.AddInteger(Offset);
1436   ID.AddPointer(C);
1437   ID.AddInteger(TargetFlags);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1443                                           TargetFlags);
1444   CSEMap.InsertNode(N, IP);
1445   InsertNode(N);
1446   return SDValue(N, 0);
1447 }
1448 
1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1450                                       unsigned Alignment, int Offset,
1451                                       bool isTarget,
1452                                       unsigned char TargetFlags) {
1453   assert((TargetFlags == 0 || isTarget) &&
1454          "Cannot set target flags on target-independent globals");
1455   if (Alignment == 0)
1456     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1457   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1458   FoldingSetNodeID ID;
1459   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1460   ID.AddInteger(Alignment);
1461   ID.AddInteger(Offset);
1462   C->addSelectionDAGCSEId(ID);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1469                                           TargetFlags);
1470   CSEMap.InsertNode(N, IP);
1471   InsertNode(N);
1472   return SDValue(N, 0);
1473 }
1474 
1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1476                                      unsigned char TargetFlags) {
1477   FoldingSetNodeID ID;
1478   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1479   ID.AddInteger(Index);
1480   ID.AddInteger(Offset);
1481   ID.AddInteger(TargetFlags);
1482   void *IP = nullptr;
1483   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1484     return SDValue(E, 0);
1485 
1486   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1487   CSEMap.InsertNode(N, IP);
1488   InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1493   FoldingSetNodeID ID;
1494   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1495   ID.AddPointer(MBB);
1496   void *IP = nullptr;
1497   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1498     return SDValue(E, 0);
1499 
1500   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1501   CSEMap.InsertNode(N, IP);
1502   InsertNode(N);
1503   return SDValue(N, 0);
1504 }
1505 
1506 SDValue SelectionDAG::getValueType(EVT VT) {
1507   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1508       ValueTypeNodes.size())
1509     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1510 
1511   SDNode *&N = VT.isExtended() ?
1512     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1513 
1514   if (N) return SDValue(N, 0);
1515   N = newSDNode<VTSDNode>(VT);
1516   InsertNode(N);
1517   return SDValue(N, 0);
1518 }
1519 
1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1521   SDNode *&N = ExternalSymbols[Sym];
1522   if (N) return SDValue(N, 0);
1523   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1529   SDNode *&N = MCSymbols[Sym];
1530   if (N)
1531     return SDValue(N, 0);
1532   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1533   InsertNode(N);
1534   return SDValue(N, 0);
1535 }
1536 
1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1538                                               unsigned char TargetFlags) {
1539   SDNode *&N =
1540     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1541                                                                TargetFlags)];
1542   if (N) return SDValue(N, 0);
1543   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1544   InsertNode(N);
1545   return SDValue(N, 0);
1546 }
1547 
1548 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1549   if ((unsigned)Cond >= CondCodeNodes.size())
1550     CondCodeNodes.resize(Cond+1);
1551 
1552   if (!CondCodeNodes[Cond]) {
1553     auto *N = newSDNode<CondCodeSDNode>(Cond);
1554     CondCodeNodes[Cond] = N;
1555     InsertNode(N);
1556   }
1557 
1558   return SDValue(CondCodeNodes[Cond], 0);
1559 }
1560 
1561 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1562 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1563 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1564   std::swap(N1, N2);
1565   ShuffleVectorSDNode::commuteMask(M);
1566 }
1567 
1568 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1569                                        SDValue N2, ArrayRef<int> Mask) {
1570   assert(VT.getVectorNumElements() == Mask.size() &&
1571            "Must have the same number of vector elements as mask elements!");
1572   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1573          "Invalid VECTOR_SHUFFLE");
1574 
1575   // Canonicalize shuffle undef, undef -> undef
1576   if (N1.isUndef() && N2.isUndef())
1577     return getUNDEF(VT);
1578 
1579   // Validate that all indices in Mask are within the range of the elements
1580   // input to the shuffle.
1581   int NElts = Mask.size();
1582   assert(llvm::all_of(Mask,
1583                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1584          "Index out of range");
1585 
1586   // Copy the mask so we can do any needed cleanup.
1587   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1588 
1589   // Canonicalize shuffle v, v -> v, undef
1590   if (N1 == N2) {
1591     N2 = getUNDEF(VT);
1592     for (int i = 0; i != NElts; ++i)
1593       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1594   }
1595 
1596   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1597   if (N1.isUndef())
1598     commuteShuffle(N1, N2, MaskVec);
1599 
1600   if (TLI->hasVectorBlend()) {
1601     // If shuffling a splat, try to blend the splat instead. We do this here so
1602     // that even when this arises during lowering we don't have to re-handle it.
1603     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1604       BitVector UndefElements;
1605       SDValue Splat = BV->getSplatValue(&UndefElements);
1606       if (!Splat)
1607         return;
1608 
1609       for (int i = 0; i < NElts; ++i) {
1610         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1611           continue;
1612 
1613         // If this input comes from undef, mark it as such.
1614         if (UndefElements[MaskVec[i] - Offset]) {
1615           MaskVec[i] = -1;
1616           continue;
1617         }
1618 
1619         // If we can blend a non-undef lane, use that instead.
1620         if (!UndefElements[i])
1621           MaskVec[i] = i + Offset;
1622       }
1623     };
1624     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1625       BlendSplat(N1BV, 0);
1626     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1627       BlendSplat(N2BV, NElts);
1628   }
1629 
1630   // Canonicalize all index into lhs, -> shuffle lhs, undef
1631   // Canonicalize all index into rhs, -> shuffle rhs, undef
1632   bool AllLHS = true, AllRHS = true;
1633   bool N2Undef = N2.isUndef();
1634   for (int i = 0; i != NElts; ++i) {
1635     if (MaskVec[i] >= NElts) {
1636       if (N2Undef)
1637         MaskVec[i] = -1;
1638       else
1639         AllLHS = false;
1640     } else if (MaskVec[i] >= 0) {
1641       AllRHS = false;
1642     }
1643   }
1644   if (AllLHS && AllRHS)
1645     return getUNDEF(VT);
1646   if (AllLHS && !N2Undef)
1647     N2 = getUNDEF(VT);
1648   if (AllRHS) {
1649     N1 = getUNDEF(VT);
1650     commuteShuffle(N1, N2, MaskVec);
1651   }
1652   // Reset our undef status after accounting for the mask.
1653   N2Undef = N2.isUndef();
1654   // Re-check whether both sides ended up undef.
1655   if (N1.isUndef() && N2Undef)
1656     return getUNDEF(VT);
1657 
1658   // If Identity shuffle return that node.
1659   bool Identity = true, AllSame = true;
1660   for (int i = 0; i != NElts; ++i) {
1661     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1662     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1663   }
1664   if (Identity && NElts)
1665     return N1;
1666 
1667   // Shuffling a constant splat doesn't change the result.
1668   if (N2Undef) {
1669     SDValue V = N1;
1670 
1671     // Look through any bitcasts. We check that these don't change the number
1672     // (and size) of elements and just changes their types.
1673     while (V.getOpcode() == ISD::BITCAST)
1674       V = V->getOperand(0);
1675 
1676     // A splat should always show up as a build vector node.
1677     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1678       BitVector UndefElements;
1679       SDValue Splat = BV->getSplatValue(&UndefElements);
1680       // If this is a splat of an undef, shuffling it is also undef.
1681       if (Splat && Splat.isUndef())
1682         return getUNDEF(VT);
1683 
1684       bool SameNumElts =
1685           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1686 
1687       // We only have a splat which can skip shuffles if there is a splatted
1688       // value and no undef lanes rearranged by the shuffle.
1689       if (Splat && UndefElements.none()) {
1690         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1691         // number of elements match or the value splatted is a zero constant.
1692         if (SameNumElts)
1693           return N1;
1694         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1695           if (C->isNullValue())
1696             return N1;
1697       }
1698 
1699       // If the shuffle itself creates a splat, build the vector directly.
1700       if (AllSame && SameNumElts) {
1701         EVT BuildVT = BV->getValueType(0);
1702         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1703         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1704 
1705         // We may have jumped through bitcasts, so the type of the
1706         // BUILD_VECTOR may not match the type of the shuffle.
1707         if (BuildVT != VT)
1708           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1709         return NewBV;
1710       }
1711     }
1712   }
1713 
1714   FoldingSetNodeID ID;
1715   SDValue Ops[2] = { N1, N2 };
1716   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1717   for (int i = 0; i != NElts; ++i)
1718     ID.AddInteger(MaskVec[i]);
1719 
1720   void* IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1722     return SDValue(E, 0);
1723 
1724   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1725   // SDNode doesn't have access to it.  This memory will be "leaked" when
1726   // the node is deallocated, but recovered when the NodeAllocator is released.
1727   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1728   llvm::copy(MaskVec, MaskAlloc);
1729 
1730   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1731                                            dl.getDebugLoc(), MaskAlloc);
1732   createOperands(N, Ops);
1733 
1734   CSEMap.InsertNode(N, IP);
1735   InsertNode(N);
1736   SDValue V = SDValue(N, 0);
1737   NewSDValueDbgMsg(V, "Creating new node: ", this);
1738   return V;
1739 }
1740 
1741 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1742   EVT VT = SV.getValueType(0);
1743   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1744   ShuffleVectorSDNode::commuteMask(MaskVec);
1745 
1746   SDValue Op0 = SV.getOperand(0);
1747   SDValue Op1 = SV.getOperand(1);
1748   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1749 }
1750 
1751 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1752   FoldingSetNodeID ID;
1753   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1754   ID.AddInteger(RegNo);
1755   void *IP = nullptr;
1756   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1757     return SDValue(E, 0);
1758 
1759   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1760   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1761   CSEMap.InsertNode(N, IP);
1762   InsertNode(N);
1763   return SDValue(N, 0);
1764 }
1765 
1766 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1767   FoldingSetNodeID ID;
1768   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1769   ID.AddPointer(RegMask);
1770   void *IP = nullptr;
1771   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1772     return SDValue(E, 0);
1773 
1774   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1775   CSEMap.InsertNode(N, IP);
1776   InsertNode(N);
1777   return SDValue(N, 0);
1778 }
1779 
1780 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1781                                  MCSymbol *Label) {
1782   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1783 }
1784 
1785 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1786                                    SDValue Root, MCSymbol *Label) {
1787   FoldingSetNodeID ID;
1788   SDValue Ops[] = { Root };
1789   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1790   ID.AddPointer(Label);
1791   void *IP = nullptr;
1792   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1793     return SDValue(E, 0);
1794 
1795   auto *N =
1796       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1797   createOperands(N, Ops);
1798 
1799   CSEMap.InsertNode(N, IP);
1800   InsertNode(N);
1801   return SDValue(N, 0);
1802 }
1803 
1804 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1805                                       int64_t Offset,
1806                                       bool isTarget,
1807                                       unsigned char TargetFlags) {
1808   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1809 
1810   FoldingSetNodeID ID;
1811   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1812   ID.AddPointer(BA);
1813   ID.AddInteger(Offset);
1814   ID.AddInteger(TargetFlags);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getSrcValue(const Value *V) {
1826   assert((!V || V->getType()->isPointerTy()) &&
1827          "SrcValue is not a pointer?");
1828 
1829   FoldingSetNodeID ID;
1830   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1831   ID.AddPointer(V);
1832 
1833   void *IP = nullptr;
1834   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1835     return SDValue(E, 0);
1836 
1837   auto *N = newSDNode<SrcValueSDNode>(V);
1838   CSEMap.InsertNode(N, IP);
1839   InsertNode(N);
1840   return SDValue(N, 0);
1841 }
1842 
1843 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1844   FoldingSetNodeID ID;
1845   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1846   ID.AddPointer(MD);
1847 
1848   void *IP = nullptr;
1849   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1850     return SDValue(E, 0);
1851 
1852   auto *N = newSDNode<MDNodeSDNode>(MD);
1853   CSEMap.InsertNode(N, IP);
1854   InsertNode(N);
1855   return SDValue(N, 0);
1856 }
1857 
1858 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1859   if (VT == V.getValueType())
1860     return V;
1861 
1862   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1863 }
1864 
1865 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1866                                        unsigned SrcAS, unsigned DestAS) {
1867   SDValue Ops[] = {Ptr};
1868   FoldingSetNodeID ID;
1869   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1870   ID.AddInteger(SrcAS);
1871   ID.AddInteger(DestAS);
1872 
1873   void *IP = nullptr;
1874   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1875     return SDValue(E, 0);
1876 
1877   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1878                                            VT, SrcAS, DestAS);
1879   createOperands(N, Ops);
1880 
1881   CSEMap.InsertNode(N, IP);
1882   InsertNode(N);
1883   return SDValue(N, 0);
1884 }
1885 
1886 /// getShiftAmountOperand - Return the specified value casted to
1887 /// the target's desired shift amount type.
1888 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1889   EVT OpTy = Op.getValueType();
1890   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1891   if (OpTy == ShTy || OpTy.isVector()) return Op;
1892 
1893   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1894 }
1895 
1896 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1897   SDLoc dl(Node);
1898   const TargetLowering &TLI = getTargetLoweringInfo();
1899   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1900   EVT VT = Node->getValueType(0);
1901   SDValue Tmp1 = Node->getOperand(0);
1902   SDValue Tmp2 = Node->getOperand(1);
1903   unsigned Align = Node->getConstantOperandVal(3);
1904 
1905   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1906                                Tmp2, MachinePointerInfo(V));
1907   SDValue VAList = VAListLoad;
1908 
1909   if (Align > TLI.getMinStackArgumentAlignment()) {
1910     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1911 
1912     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1913                      getConstant(Align - 1, dl, VAList.getValueType()));
1914 
1915     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1916                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1917   }
1918 
1919   // Increment the pointer, VAList, to the next vaarg
1920   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1921                  getConstant(getDataLayout().getTypeAllocSize(
1922                                                VT.getTypeForEVT(*getContext())),
1923                              dl, VAList.getValueType()));
1924   // Store the incremented VAList to the legalized pointer
1925   Tmp1 =
1926       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1927   // Load the actual argument out of the pointer VAList
1928   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1929 }
1930 
1931 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1932   SDLoc dl(Node);
1933   const TargetLowering &TLI = getTargetLoweringInfo();
1934   // This defaults to loading a pointer from the input and storing it to the
1935   // output, returning the chain.
1936   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1937   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1938   SDValue Tmp1 =
1939       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1940               Node->getOperand(2), MachinePointerInfo(VS));
1941   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1942                   MachinePointerInfo(VD));
1943 }
1944 
1945 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1946   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1947   unsigned ByteSize = VT.getStoreSize();
1948   Type *Ty = VT.getTypeForEVT(*getContext());
1949   unsigned StackAlign =
1950       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1951 
1952   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1953   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1954 }
1955 
1956 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1957   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1958   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1959   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1960   const DataLayout &DL = getDataLayout();
1961   unsigned Align =
1962       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1963 
1964   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1965   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1966   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1967 }
1968 
1969 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1970                                 ISD::CondCode Cond, const SDLoc &dl) {
1971   EVT OpVT = N1.getValueType();
1972 
1973   // These setcc operations always fold.
1974   switch (Cond) {
1975   default: break;
1976   case ISD::SETFALSE:
1977   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1978   case ISD::SETTRUE:
1979   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1980 
1981   case ISD::SETOEQ:
1982   case ISD::SETOGT:
1983   case ISD::SETOGE:
1984   case ISD::SETOLT:
1985   case ISD::SETOLE:
1986   case ISD::SETONE:
1987   case ISD::SETO:
1988   case ISD::SETUO:
1989   case ISD::SETUEQ:
1990   case ISD::SETUNE:
1991     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1992     break;
1993   }
1994 
1995   if (OpVT.isInteger()) {
1996     // For EQ and NE, we can always pick a value for the undef to make the
1997     // predicate pass or fail, so we can return undef.
1998     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1999     // icmp eq/ne X, undef -> undef.
2000     if ((N1.isUndef() || N2.isUndef()) &&
2001         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2002       return getUNDEF(VT);
2003 
2004     // If both operands are undef, we can return undef for int comparison.
2005     // icmp undef, undef -> undef.
2006     if (N1.isUndef() && N2.isUndef())
2007       return getUNDEF(VT);
2008 
2009     // icmp X, X -> true/false
2010     // icmp X, undef -> true/false because undef could be X.
2011     if (N1 == N2)
2012       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2013   }
2014 
2015   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2016     const APInt &C2 = N2C->getAPIntValue();
2017     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2018       const APInt &C1 = N1C->getAPIntValue();
2019 
2020       switch (Cond) {
2021       default: llvm_unreachable("Unknown integer setcc!");
2022       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2023       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2024       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2025       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2026       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2027       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2028       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2029       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2030       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2031       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2032       }
2033     }
2034   }
2035 
2036   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2037   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2038 
2039   if (N1CFP && N2CFP) {
2040     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2041     switch (Cond) {
2042     default: break;
2043     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2044                         return getUNDEF(VT);
2045                       LLVM_FALLTHROUGH;
2046     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2047                                              OpVT);
2048     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2049                         return getUNDEF(VT);
2050                       LLVM_FALLTHROUGH;
2051     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2052                                              R==APFloat::cmpLessThan, dl, VT,
2053                                              OpVT);
2054     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2055                         return getUNDEF(VT);
2056                       LLVM_FALLTHROUGH;
2057     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2058                                              OpVT);
2059     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2060                         return getUNDEF(VT);
2061                       LLVM_FALLTHROUGH;
2062     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2063                                              VT, OpVT);
2064     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2065                         return getUNDEF(VT);
2066                       LLVM_FALLTHROUGH;
2067     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2068                                              R==APFloat::cmpEqual, dl, VT,
2069                                              OpVT);
2070     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2071                         return getUNDEF(VT);
2072                       LLVM_FALLTHROUGH;
2073     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2074                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2075     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2076                                              OpVT);
2077     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2078                                              OpVT);
2079     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2080                                              R==APFloat::cmpEqual, dl, VT,
2081                                              OpVT);
2082     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2083                                              OpVT);
2084     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2085                                              R==APFloat::cmpLessThan, dl, VT,
2086                                              OpVT);
2087     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2088                                              R==APFloat::cmpUnordered, dl, VT,
2089                                              OpVT);
2090     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2091                                              VT, OpVT);
2092     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2093                                              OpVT);
2094     }
2095   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2096     // Ensure that the constant occurs on the RHS.
2097     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2098     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2099       return SDValue();
2100     return getSetCC(dl, VT, N2, N1, SwappedCond);
2101   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2102              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2103     // If an operand is known to be a nan (or undef that could be a nan), we can
2104     // fold it.
2105     // Choosing NaN for the undef will always make unordered comparison succeed
2106     // and ordered comparison fails.
2107     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2108     switch (ISD::getUnorderedFlavor(Cond)) {
2109     default:
2110       llvm_unreachable("Unknown flavor!");
2111     case 0: // Known false.
2112       return getBoolConstant(false, dl, VT, OpVT);
2113     case 1: // Known true.
2114       return getBoolConstant(true, dl, VT, OpVT);
2115     case 2: // Undefined.
2116       return getUNDEF(VT);
2117     }
2118   }
2119 
2120   // Could not fold it.
2121   return SDValue();
2122 }
2123 
2124 /// See if the specified operand can be simplified with the knowledge that only
2125 /// the bits specified by DemandedBits are used.
2126 /// TODO: really we should be making this into the DAG equivalent of
2127 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2128 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2129   EVT VT = V.getValueType();
2130   APInt DemandedElts = VT.isVector()
2131                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2132                            : APInt(1, 1);
2133   return GetDemandedBits(V, DemandedBits, DemandedElts);
2134 }
2135 
2136 /// See if the specified operand can be simplified with the knowledge that only
2137 /// the bits specified by DemandedBits are used in the elements specified by
2138 /// DemandedElts.
2139 /// TODO: really we should be making this into the DAG equivalent of
2140 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2141 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2142                                       const APInt &DemandedElts) {
2143   switch (V.getOpcode()) {
2144   default:
2145     break;
2146   case ISD::Constant: {
2147     auto *CV = cast<ConstantSDNode>(V.getNode());
2148     assert(CV && "Const value should be ConstSDNode.");
2149     const APInt &CVal = CV->getAPIntValue();
2150     APInt NewVal = CVal & DemandedBits;
2151     if (NewVal != CVal)
2152       return getConstant(NewVal, SDLoc(V), V.getValueType());
2153     break;
2154   }
2155   case ISD::OR:
2156   case ISD::XOR:
2157     // If the LHS or RHS don't contribute bits to the or, drop them.
2158     if (MaskedValueIsZero(V.getOperand(0), DemandedBits))
2159       return V.getOperand(1);
2160     if (MaskedValueIsZero(V.getOperand(1), DemandedBits))
2161       return V.getOperand(0);
2162     break;
2163   case ISD::SRL:
2164     // Only look at single-use SRLs.
2165     if (!V.getNode()->hasOneUse())
2166       break;
2167     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2168       // See if we can recursively simplify the LHS.
2169       unsigned Amt = RHSC->getZExtValue();
2170 
2171       // Watch out for shift count overflow though.
2172       if (Amt >= DemandedBits.getBitWidth())
2173         break;
2174       APInt SrcDemandedBits = DemandedBits << Amt;
2175       if (SDValue SimplifyLHS =
2176               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2177         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2178                        V.getOperand(1));
2179     }
2180     break;
2181   case ISD::AND: {
2182     // X & -1 -> X (ignoring bits which aren't demanded).
2183     // Also handle the case where masked out bits in X are known to be zero.
2184     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2185       const APInt &AndVal = RHSC->getAPIntValue();
2186       if (DemandedBits.isSubsetOf(AndVal) ||
2187           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2188                                   AndVal))
2189         return V.getOperand(0);
2190     }
2191     break;
2192   }
2193   case ISD::ANY_EXTEND: {
2194     SDValue Src = V.getOperand(0);
2195     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2196     // Being conservative here - only peek through if we only demand bits in the
2197     // non-extended source (even though the extended bits are technically
2198     // undef).
2199     if (DemandedBits.getActiveBits() > SrcBitWidth)
2200       break;
2201     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2202     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2203       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2204     break;
2205   }
2206   case ISD::SIGN_EXTEND_INREG:
2207     EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
2208     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2209 
2210     // If none of the extended bits are demanded, eliminate the sextinreg.
2211     if (DemandedBits.getActiveBits() <= ExVTBits)
2212       return V.getOperand(0);
2213 
2214     break;
2215   }
2216   return SDValue();
2217 }
2218 
2219 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2220 /// use this predicate to simplify operations downstream.
2221 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2222   unsigned BitWidth = Op.getScalarValueSizeInBits();
2223   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2224 }
2225 
2226 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2227 /// this predicate to simplify operations downstream.  Mask is known to be zero
2228 /// for bits that V cannot have.
2229 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2230                                      unsigned Depth) const {
2231   EVT VT = V.getValueType();
2232   APInt DemandedElts = VT.isVector()
2233                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2234                            : APInt(1, 1);
2235   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2236 }
2237 
2238 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2239 /// DemandedElts.  We use this predicate to simplify operations downstream.
2240 /// Mask is known to be zero for bits that V cannot have.
2241 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2242                                      const APInt &DemandedElts,
2243                                      unsigned Depth) const {
2244   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2245 }
2246 
2247 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2248 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2249                                         unsigned Depth) const {
2250   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2251 }
2252 
2253 /// isSplatValue - Return true if the vector V has the same value
2254 /// across all DemandedElts.
2255 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2256                                 APInt &UndefElts) {
2257   if (!DemandedElts)
2258     return false; // No demanded elts, better to assume we don't know anything.
2259 
2260   EVT VT = V.getValueType();
2261   assert(VT.isVector() && "Vector type expected");
2262 
2263   unsigned NumElts = VT.getVectorNumElements();
2264   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2265   UndefElts = APInt::getNullValue(NumElts);
2266 
2267   switch (V.getOpcode()) {
2268   case ISD::BUILD_VECTOR: {
2269     SDValue Scl;
2270     for (unsigned i = 0; i != NumElts; ++i) {
2271       SDValue Op = V.getOperand(i);
2272       if (Op.isUndef()) {
2273         UndefElts.setBit(i);
2274         continue;
2275       }
2276       if (!DemandedElts[i])
2277         continue;
2278       if (Scl && Scl != Op)
2279         return false;
2280       Scl = Op;
2281     }
2282     return true;
2283   }
2284   case ISD::VECTOR_SHUFFLE: {
2285     // Check if this is a shuffle node doing a splat.
2286     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2287     int SplatIndex = -1;
2288     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2289     for (int i = 0; i != (int)NumElts; ++i) {
2290       int M = Mask[i];
2291       if (M < 0) {
2292         UndefElts.setBit(i);
2293         continue;
2294       }
2295       if (!DemandedElts[i])
2296         continue;
2297       if (0 <= SplatIndex && SplatIndex != M)
2298         return false;
2299       SplatIndex = M;
2300     }
2301     return true;
2302   }
2303   case ISD::EXTRACT_SUBVECTOR: {
2304     SDValue Src = V.getOperand(0);
2305     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2306     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2307     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2308       // Offset the demanded elts by the subvector index.
2309       uint64_t Idx = SubIdx->getZExtValue();
2310       APInt UndefSrcElts;
2311       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2312       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2313         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2314         return true;
2315       }
2316     }
2317     break;
2318   }
2319   case ISD::ADD:
2320   case ISD::SUB:
2321   case ISD::AND: {
2322     APInt UndefLHS, UndefRHS;
2323     SDValue LHS = V.getOperand(0);
2324     SDValue RHS = V.getOperand(1);
2325     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2326         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2327       UndefElts = UndefLHS | UndefRHS;
2328       return true;
2329     }
2330     break;
2331   }
2332   }
2333 
2334   return false;
2335 }
2336 
2337 /// Helper wrapper to main isSplatValue function.
2338 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2339   EVT VT = V.getValueType();
2340   assert(VT.isVector() && "Vector type expected");
2341   unsigned NumElts = VT.getVectorNumElements();
2342 
2343   APInt UndefElts;
2344   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2345   return isSplatValue(V, DemandedElts, UndefElts) &&
2346          (AllowUndefs || !UndefElts);
2347 }
2348 
2349 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2350   V = peekThroughExtractSubvectors(V);
2351 
2352   EVT VT = V.getValueType();
2353   unsigned Opcode = V.getOpcode();
2354   switch (Opcode) {
2355   default: {
2356     APInt UndefElts;
2357     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2358     if (isSplatValue(V, DemandedElts, UndefElts)) {
2359       // Handle case where all demanded elements are UNDEF.
2360       if (DemandedElts.isSubsetOf(UndefElts)) {
2361         SplatIdx = 0;
2362         return getUNDEF(VT);
2363       }
2364       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2365       return V;
2366     }
2367     break;
2368   }
2369   case ISD::VECTOR_SHUFFLE: {
2370     // Check if this is a shuffle node doing a splat.
2371     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2372     // getTargetVShiftNode currently struggles without the splat source.
2373     auto *SVN = cast<ShuffleVectorSDNode>(V);
2374     if (!SVN->isSplat())
2375       break;
2376     int Idx = SVN->getSplatIndex();
2377     int NumElts = V.getValueType().getVectorNumElements();
2378     SplatIdx = Idx % NumElts;
2379     return V.getOperand(Idx / NumElts);
2380   }
2381   }
2382 
2383   return SDValue();
2384 }
2385 
2386 SDValue SelectionDAG::getSplatValue(SDValue V) {
2387   int SplatIdx;
2388   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2389     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2390                    SrcVector.getValueType().getScalarType(), SrcVector,
2391                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2392   return SDValue();
2393 }
2394 
2395 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2396 /// is less than the element bit-width of the shift node, return it.
2397 static const APInt *getValidShiftAmountConstant(SDValue V) {
2398   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2399     // Shifting more than the bitwidth is not valid.
2400     const APInt &ShAmt = SA->getAPIntValue();
2401     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2402       return &ShAmt;
2403   }
2404   return nullptr;
2405 }
2406 
2407 /// Determine which bits of Op are known to be either zero or one and return
2408 /// them in Known. For vectors, the known bits are those that are shared by
2409 /// every vector element.
2410 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2411   EVT VT = Op.getValueType();
2412   APInt DemandedElts = VT.isVector()
2413                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2414                            : APInt(1, 1);
2415   return computeKnownBits(Op, DemandedElts, Depth);
2416 }
2417 
2418 /// Determine which bits of Op are known to be either zero or one and return
2419 /// them in Known. The DemandedElts argument allows us to only collect the known
2420 /// bits that are shared by the requested vector elements.
2421 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2422                                          unsigned Depth) const {
2423   unsigned BitWidth = Op.getScalarValueSizeInBits();
2424 
2425   KnownBits Known(BitWidth);   // Don't know anything.
2426 
2427   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2428     // We know all of the bits for a constant!
2429     Known.One = C->getAPIntValue();
2430     Known.Zero = ~Known.One;
2431     return Known;
2432   }
2433   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2434     // We know all of the bits for a constant fp!
2435     Known.One = C->getValueAPF().bitcastToAPInt();
2436     Known.Zero = ~Known.One;
2437     return Known;
2438   }
2439 
2440   if (Depth == 6)
2441     return Known;  // Limit search depth.
2442 
2443   KnownBits Known2;
2444   unsigned NumElts = DemandedElts.getBitWidth();
2445   assert((!Op.getValueType().isVector() ||
2446           NumElts == Op.getValueType().getVectorNumElements()) &&
2447          "Unexpected vector size");
2448 
2449   if (!DemandedElts)
2450     return Known;  // No demanded elts, better to assume we don't know anything.
2451 
2452   unsigned Opcode = Op.getOpcode();
2453   switch (Opcode) {
2454   case ISD::BUILD_VECTOR:
2455     // Collect the known bits that are shared by every demanded vector element.
2456     Known.Zero.setAllBits(); Known.One.setAllBits();
2457     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2458       if (!DemandedElts[i])
2459         continue;
2460 
2461       SDValue SrcOp = Op.getOperand(i);
2462       Known2 = computeKnownBits(SrcOp, Depth + 1);
2463 
2464       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2465       if (SrcOp.getValueSizeInBits() != BitWidth) {
2466         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2467                "Expected BUILD_VECTOR implicit truncation");
2468         Known2 = Known2.trunc(BitWidth);
2469       }
2470 
2471       // Known bits are the values that are shared by every demanded element.
2472       Known.One &= Known2.One;
2473       Known.Zero &= Known2.Zero;
2474 
2475       // If we don't know any bits, early out.
2476       if (Known.isUnknown())
2477         break;
2478     }
2479     break;
2480   case ISD::VECTOR_SHUFFLE: {
2481     // Collect the known bits that are shared by every vector element referenced
2482     // by the shuffle.
2483     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2484     Known.Zero.setAllBits(); Known.One.setAllBits();
2485     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2486     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2487     for (unsigned i = 0; i != NumElts; ++i) {
2488       if (!DemandedElts[i])
2489         continue;
2490 
2491       int M = SVN->getMaskElt(i);
2492       if (M < 0) {
2493         // For UNDEF elements, we don't know anything about the common state of
2494         // the shuffle result.
2495         Known.resetAll();
2496         DemandedLHS.clearAllBits();
2497         DemandedRHS.clearAllBits();
2498         break;
2499       }
2500 
2501       if ((unsigned)M < NumElts)
2502         DemandedLHS.setBit((unsigned)M % NumElts);
2503       else
2504         DemandedRHS.setBit((unsigned)M % NumElts);
2505     }
2506     // Known bits are the values that are shared by every demanded element.
2507     if (!!DemandedLHS) {
2508       SDValue LHS = Op.getOperand(0);
2509       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2510       Known.One &= Known2.One;
2511       Known.Zero &= Known2.Zero;
2512     }
2513     // If we don't know any bits, early out.
2514     if (Known.isUnknown())
2515       break;
2516     if (!!DemandedRHS) {
2517       SDValue RHS = Op.getOperand(1);
2518       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2519       Known.One &= Known2.One;
2520       Known.Zero &= Known2.Zero;
2521     }
2522     break;
2523   }
2524   case ISD::CONCAT_VECTORS: {
2525     // Split DemandedElts and test each of the demanded subvectors.
2526     Known.Zero.setAllBits(); Known.One.setAllBits();
2527     EVT SubVectorVT = Op.getOperand(0).getValueType();
2528     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2529     unsigned NumSubVectors = Op.getNumOperands();
2530     for (unsigned i = 0; i != NumSubVectors; ++i) {
2531       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2532       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2533       if (!!DemandedSub) {
2534         SDValue Sub = Op.getOperand(i);
2535         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2536         Known.One &= Known2.One;
2537         Known.Zero &= Known2.Zero;
2538       }
2539       // If we don't know any bits, early out.
2540       if (Known.isUnknown())
2541         break;
2542     }
2543     break;
2544   }
2545   case ISD::INSERT_SUBVECTOR: {
2546     // If we know the element index, demand any elements from the subvector and
2547     // the remainder from the src its inserted into, otherwise demand them all.
2548     SDValue Src = Op.getOperand(0);
2549     SDValue Sub = Op.getOperand(1);
2550     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2551     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2552     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2553       Known.One.setAllBits();
2554       Known.Zero.setAllBits();
2555       uint64_t Idx = SubIdx->getZExtValue();
2556       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2557       if (!!DemandedSubElts) {
2558         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2559         if (Known.isUnknown())
2560           break; // early-out.
2561       }
2562       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2563       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2564       if (!!DemandedSrcElts) {
2565         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2566         Known.One &= Known2.One;
2567         Known.Zero &= Known2.Zero;
2568       }
2569     } else {
2570       Known = computeKnownBits(Sub, Depth + 1);
2571       if (Known.isUnknown())
2572         break; // early-out.
2573       Known2 = computeKnownBits(Src, Depth + 1);
2574       Known.One &= Known2.One;
2575       Known.Zero &= Known2.Zero;
2576     }
2577     break;
2578   }
2579   case ISD::EXTRACT_SUBVECTOR: {
2580     // If we know the element index, just demand that subvector elements,
2581     // otherwise demand them all.
2582     SDValue Src = Op.getOperand(0);
2583     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2584     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2585     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2586       // Offset the demanded elts by the subvector index.
2587       uint64_t Idx = SubIdx->getZExtValue();
2588       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2589       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2590     } else {
2591       Known = computeKnownBits(Src, Depth + 1);
2592     }
2593     break;
2594   }
2595   case ISD::SCALAR_TO_VECTOR: {
2596     // We know about scalar_to_vector as much as we know about it source,
2597     // which becomes the first element of otherwise unknown vector.
2598     if (DemandedElts != 1)
2599       break;
2600 
2601     SDValue N0 = Op.getOperand(0);
2602     Known = computeKnownBits(N0, Depth + 1);
2603     if (N0.getValueSizeInBits() != BitWidth)
2604       Known = Known.trunc(BitWidth);
2605 
2606     break;
2607   }
2608   case ISD::BITCAST: {
2609     SDValue N0 = Op.getOperand(0);
2610     EVT SubVT = N0.getValueType();
2611     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2612 
2613     // Ignore bitcasts from unsupported types.
2614     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2615       break;
2616 
2617     // Fast handling of 'identity' bitcasts.
2618     if (BitWidth == SubBitWidth) {
2619       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2620       break;
2621     }
2622 
2623     bool IsLE = getDataLayout().isLittleEndian();
2624 
2625     // Bitcast 'small element' vector to 'large element' scalar/vector.
2626     if ((BitWidth % SubBitWidth) == 0) {
2627       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2628 
2629       // Collect known bits for the (larger) output by collecting the known
2630       // bits from each set of sub elements and shift these into place.
2631       // We need to separately call computeKnownBits for each set of
2632       // sub elements as the knownbits for each is likely to be different.
2633       unsigned SubScale = BitWidth / SubBitWidth;
2634       APInt SubDemandedElts(NumElts * SubScale, 0);
2635       for (unsigned i = 0; i != NumElts; ++i)
2636         if (DemandedElts[i])
2637           SubDemandedElts.setBit(i * SubScale);
2638 
2639       for (unsigned i = 0; i != SubScale; ++i) {
2640         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2641                          Depth + 1);
2642         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2643         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2644         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2645       }
2646     }
2647 
2648     // Bitcast 'large element' scalar/vector to 'small element' vector.
2649     if ((SubBitWidth % BitWidth) == 0) {
2650       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2651 
2652       // Collect known bits for the (smaller) output by collecting the known
2653       // bits from the overlapping larger input elements and extracting the
2654       // sub sections we actually care about.
2655       unsigned SubScale = SubBitWidth / BitWidth;
2656       APInt SubDemandedElts(NumElts / SubScale, 0);
2657       for (unsigned i = 0; i != NumElts; ++i)
2658         if (DemandedElts[i])
2659           SubDemandedElts.setBit(i / SubScale);
2660 
2661       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2662 
2663       Known.Zero.setAllBits(); Known.One.setAllBits();
2664       for (unsigned i = 0; i != NumElts; ++i)
2665         if (DemandedElts[i]) {
2666           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2667           unsigned Offset = (Shifts % SubScale) * BitWidth;
2668           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2669           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2670           // If we don't know any bits, early out.
2671           if (Known.isUnknown())
2672             break;
2673         }
2674     }
2675     break;
2676   }
2677   case ISD::AND:
2678     // If either the LHS or the RHS are Zero, the result is zero.
2679     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2680     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2681 
2682     // Output known-1 bits are only known if set in both the LHS & RHS.
2683     Known.One &= Known2.One;
2684     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2685     Known.Zero |= Known2.Zero;
2686     break;
2687   case ISD::OR:
2688     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2689     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2690 
2691     // Output known-0 bits are only known if clear in both the LHS & RHS.
2692     Known.Zero &= Known2.Zero;
2693     // Output known-1 are known to be set if set in either the LHS | RHS.
2694     Known.One |= Known2.One;
2695     break;
2696   case ISD::XOR: {
2697     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2698     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2699 
2700     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2701     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2702     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2703     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2704     Known.Zero = KnownZeroOut;
2705     break;
2706   }
2707   case ISD::MUL: {
2708     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2709     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2710 
2711     // If low bits are zero in either operand, output low known-0 bits.
2712     // Also compute a conservative estimate for high known-0 bits.
2713     // More trickiness is possible, but this is sufficient for the
2714     // interesting case of alignment computation.
2715     unsigned TrailZ = Known.countMinTrailingZeros() +
2716                       Known2.countMinTrailingZeros();
2717     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2718                                Known2.countMinLeadingZeros(),
2719                                BitWidth) - BitWidth;
2720 
2721     Known.resetAll();
2722     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2723     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2724     break;
2725   }
2726   case ISD::UDIV: {
2727     // For the purposes of computing leading zeros we can conservatively
2728     // treat a udiv as a logical right shift by the power of 2 known to
2729     // be less than the denominator.
2730     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2731     unsigned LeadZ = Known2.countMinLeadingZeros();
2732 
2733     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2734     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2735     if (RHSMaxLeadingZeros != BitWidth)
2736       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2737 
2738     Known.Zero.setHighBits(LeadZ);
2739     break;
2740   }
2741   case ISD::SELECT:
2742   case ISD::VSELECT:
2743     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2744     // If we don't know any bits, early out.
2745     if (Known.isUnknown())
2746       break;
2747     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2748 
2749     // Only known if known in both the LHS and RHS.
2750     Known.One &= Known2.One;
2751     Known.Zero &= Known2.Zero;
2752     break;
2753   case ISD::SELECT_CC:
2754     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2755     // If we don't know any bits, early out.
2756     if (Known.isUnknown())
2757       break;
2758     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2759 
2760     // Only known if known in both the LHS and RHS.
2761     Known.One &= Known2.One;
2762     Known.Zero &= Known2.Zero;
2763     break;
2764   case ISD::SMULO:
2765   case ISD::UMULO:
2766   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2767     if (Op.getResNo() != 1)
2768       break;
2769     // The boolean result conforms to getBooleanContents.
2770     // If we know the result of a setcc has the top bits zero, use this info.
2771     // We know that we have an integer-based boolean since these operations
2772     // are only available for integer.
2773     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2774             TargetLowering::ZeroOrOneBooleanContent &&
2775         BitWidth > 1)
2776       Known.Zero.setBitsFrom(1);
2777     break;
2778   case ISD::SETCC:
2779     // If we know the result of a setcc has the top bits zero, use this info.
2780     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2781             TargetLowering::ZeroOrOneBooleanContent &&
2782         BitWidth > 1)
2783       Known.Zero.setBitsFrom(1);
2784     break;
2785   case ISD::SHL:
2786     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2787       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2788       unsigned Shift = ShAmt->getZExtValue();
2789       Known.Zero <<= Shift;
2790       Known.One <<= Shift;
2791       // Low bits are known zero.
2792       Known.Zero.setLowBits(Shift);
2793     }
2794     break;
2795   case ISD::SRL:
2796     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2797       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2798       unsigned Shift = ShAmt->getZExtValue();
2799       Known.Zero.lshrInPlace(Shift);
2800       Known.One.lshrInPlace(Shift);
2801       // High bits are known zero.
2802       Known.Zero.setHighBits(Shift);
2803     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2804       // If the shift amount is a vector of constants see if we can bound
2805       // the number of upper zero bits.
2806       unsigned ShiftAmountMin = BitWidth;
2807       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2808         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2809           const APInt &ShAmt = C->getAPIntValue();
2810           if (ShAmt.ult(BitWidth)) {
2811             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2812                                                 ShAmt.getZExtValue());
2813             continue;
2814           }
2815         }
2816         // Don't know anything.
2817         ShiftAmountMin = 0;
2818         break;
2819       }
2820 
2821       Known.Zero.setHighBits(ShiftAmountMin);
2822     }
2823     break;
2824   case ISD::SRA:
2825     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2826       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2827       unsigned Shift = ShAmt->getZExtValue();
2828       // Sign extend known zero/one bit (else is unknown).
2829       Known.Zero.ashrInPlace(Shift);
2830       Known.One.ashrInPlace(Shift);
2831     }
2832     break;
2833   case ISD::FSHL:
2834   case ISD::FSHR:
2835     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2836       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2837 
2838       // For fshl, 0-shift returns the 1st arg.
2839       // For fshr, 0-shift returns the 2nd arg.
2840       if (Amt == 0) {
2841         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2842                                  DemandedElts, Depth + 1);
2843         break;
2844       }
2845 
2846       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2847       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2848       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2849       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2850       if (Opcode == ISD::FSHL) {
2851         Known.One <<= Amt;
2852         Known.Zero <<= Amt;
2853         Known2.One.lshrInPlace(BitWidth - Amt);
2854         Known2.Zero.lshrInPlace(BitWidth - Amt);
2855       } else {
2856         Known.One <<= BitWidth - Amt;
2857         Known.Zero <<= BitWidth - Amt;
2858         Known2.One.lshrInPlace(Amt);
2859         Known2.Zero.lshrInPlace(Amt);
2860       }
2861       Known.One |= Known2.One;
2862       Known.Zero |= Known2.Zero;
2863     }
2864     break;
2865   case ISD::SIGN_EXTEND_INREG: {
2866     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2867     unsigned EBits = EVT.getScalarSizeInBits();
2868 
2869     // Sign extension.  Compute the demanded bits in the result that are not
2870     // present in the input.
2871     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2872 
2873     APInt InSignMask = APInt::getSignMask(EBits);
2874     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2875 
2876     // If the sign extended bits are demanded, we know that the sign
2877     // bit is demanded.
2878     InSignMask = InSignMask.zext(BitWidth);
2879     if (NewBits.getBoolValue())
2880       InputDemandedBits |= InSignMask;
2881 
2882     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2883     Known.One &= InputDemandedBits;
2884     Known.Zero &= InputDemandedBits;
2885 
2886     // If the sign bit of the input is known set or clear, then we know the
2887     // top bits of the result.
2888     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2889       Known.Zero |= NewBits;
2890       Known.One  &= ~NewBits;
2891     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2892       Known.One  |= NewBits;
2893       Known.Zero &= ~NewBits;
2894     } else {                              // Input sign bit unknown
2895       Known.Zero &= ~NewBits;
2896       Known.One  &= ~NewBits;
2897     }
2898     break;
2899   }
2900   case ISD::CTTZ:
2901   case ISD::CTTZ_ZERO_UNDEF: {
2902     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2903     // If we have a known 1, its position is our upper bound.
2904     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2905     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2906     Known.Zero.setBitsFrom(LowBits);
2907     break;
2908   }
2909   case ISD::CTLZ:
2910   case ISD::CTLZ_ZERO_UNDEF: {
2911     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2912     // If we have a known 1, its position is our upper bound.
2913     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2914     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2915     Known.Zero.setBitsFrom(LowBits);
2916     break;
2917   }
2918   case ISD::CTPOP: {
2919     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2920     // If we know some of the bits are zero, they can't be one.
2921     unsigned PossibleOnes = Known2.countMaxPopulation();
2922     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2923     break;
2924   }
2925   case ISD::LOAD: {
2926     LoadSDNode *LD = cast<LoadSDNode>(Op);
2927     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2928     if (ISD::isNON_EXTLoad(LD) && Cst) {
2929       // Determine any common known bits from the loaded constant pool value.
2930       Type *CstTy = Cst->getType();
2931       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
2932         // If its a vector splat, then we can (quickly) reuse the scalar path.
2933         // NOTE: We assume all elements match and none are UNDEF.
2934         if (CstTy->isVectorTy()) {
2935           if (const Constant *Splat = Cst->getSplatValue()) {
2936             Cst = Splat;
2937             CstTy = Cst->getType();
2938           }
2939         }
2940         // TODO - do we need to handle different bitwidths?
2941         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
2942           // Iterate across all vector elements finding common known bits.
2943           Known.One.setAllBits();
2944           Known.Zero.setAllBits();
2945           for (unsigned i = 0; i != NumElts; ++i) {
2946             if (!DemandedElts[i])
2947               continue;
2948             if (Constant *Elt = Cst->getAggregateElement(i)) {
2949               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
2950                 const APInt &Value = CInt->getValue();
2951                 Known.One &= Value;
2952                 Known.Zero &= ~Value;
2953                 continue;
2954               }
2955               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
2956                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
2957                 Known.One &= Value;
2958                 Known.Zero &= ~Value;
2959                 continue;
2960               }
2961             }
2962             Known.One.clearAllBits();
2963             Known.Zero.clearAllBits();
2964             break;
2965           }
2966         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
2967           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
2968             const APInt &Value = CInt->getValue();
2969             Known.One = Value;
2970             Known.Zero = ~Value;
2971           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
2972             APInt Value = CFP->getValueAPF().bitcastToAPInt();
2973             Known.One = Value;
2974             Known.Zero = ~Value;
2975           }
2976         }
2977       }
2978     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2979       // If this is a ZEXTLoad and we are looking at the loaded value.
2980       EVT VT = LD->getMemoryVT();
2981       unsigned MemBits = VT.getScalarSizeInBits();
2982       Known.Zero.setBitsFrom(MemBits);
2983     } else if (const MDNode *Ranges = LD->getRanges()) {
2984       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2985         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2986     }
2987     break;
2988   }
2989   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2990     EVT InVT = Op.getOperand(0).getValueType();
2991     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2992     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2993     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2994     break;
2995   }
2996   case ISD::ZERO_EXTEND: {
2997     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2999     break;
3000   }
3001   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3002     EVT InVT = Op.getOperand(0).getValueType();
3003     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3004     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3005     // If the sign bit is known to be zero or one, then sext will extend
3006     // it to the top bits, else it will just zext.
3007     Known = Known.sext(BitWidth);
3008     break;
3009   }
3010   case ISD::SIGN_EXTEND: {
3011     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3012     // If the sign bit is known to be zero or one, then sext will extend
3013     // it to the top bits, else it will just zext.
3014     Known = Known.sext(BitWidth);
3015     break;
3016   }
3017   case ISD::ANY_EXTEND: {
3018     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3019     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3020     break;
3021   }
3022   case ISD::TRUNCATE: {
3023     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3024     Known = Known.trunc(BitWidth);
3025     break;
3026   }
3027   case ISD::AssertZext: {
3028     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3029     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3030     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3031     Known.Zero |= (~InMask);
3032     Known.One  &= (~Known.Zero);
3033     break;
3034   }
3035   case ISD::FGETSIGN:
3036     // All bits are zero except the low bit.
3037     Known.Zero.setBitsFrom(1);
3038     break;
3039   case ISD::USUBO:
3040   case ISD::SSUBO:
3041     if (Op.getResNo() == 1) {
3042       // If we know the result of a setcc has the top bits zero, use this info.
3043       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3044               TargetLowering::ZeroOrOneBooleanContent &&
3045           BitWidth > 1)
3046         Known.Zero.setBitsFrom(1);
3047       break;
3048     }
3049     LLVM_FALLTHROUGH;
3050   case ISD::SUB:
3051   case ISD::SUBC: {
3052     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3053     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3054     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3055                                         Known, Known2);
3056     break;
3057   }
3058   case ISD::UADDO:
3059   case ISD::SADDO:
3060   case ISD::ADDCARRY:
3061     if (Op.getResNo() == 1) {
3062       // If we know the result of a setcc has the top bits zero, use this info.
3063       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3064               TargetLowering::ZeroOrOneBooleanContent &&
3065           BitWidth > 1)
3066         Known.Zero.setBitsFrom(1);
3067       break;
3068     }
3069     LLVM_FALLTHROUGH;
3070   case ISD::ADD:
3071   case ISD::ADDC:
3072   case ISD::ADDE: {
3073     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3074 
3075     // With ADDE and ADDCARRY, a carry bit may be added in.
3076     KnownBits Carry(1);
3077     if (Opcode == ISD::ADDE)
3078       // Can't track carry from glue, set carry to unknown.
3079       Carry.resetAll();
3080     else if (Opcode == ISD::ADDCARRY)
3081       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3082       // the trouble (how often will we find a known carry bit). And I haven't
3083       // tested this very much yet, but something like this might work:
3084       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3085       //   Carry = Carry.zextOrTrunc(1, false);
3086       Carry.resetAll();
3087     else
3088       Carry.setAllZero();
3089 
3090     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3092     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3093     break;
3094   }
3095   case ISD::SREM:
3096     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3097       const APInt &RA = Rem->getAPIntValue().abs();
3098       if (RA.isPowerOf2()) {
3099         APInt LowBits = RA - 1;
3100         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3101 
3102         // The low bits of the first operand are unchanged by the srem.
3103         Known.Zero = Known2.Zero & LowBits;
3104         Known.One = Known2.One & LowBits;
3105 
3106         // If the first operand is non-negative or has all low bits zero, then
3107         // the upper bits are all zero.
3108         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
3109           Known.Zero |= ~LowBits;
3110 
3111         // If the first operand is negative and not all low bits are zero, then
3112         // the upper bits are all one.
3113         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
3114           Known.One |= ~LowBits;
3115         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3116       }
3117     }
3118     break;
3119   case ISD::UREM: {
3120     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3121       const APInt &RA = Rem->getAPIntValue();
3122       if (RA.isPowerOf2()) {
3123         APInt LowBits = (RA - 1);
3124         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3125 
3126         // The upper bits are all zero, the lower ones are unchanged.
3127         Known.Zero = Known2.Zero | ~LowBits;
3128         Known.One = Known2.One & LowBits;
3129         break;
3130       }
3131     }
3132 
3133     // Since the result is less than or equal to either operand, any leading
3134     // zero bits in either operand must also exist in the result.
3135     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3136     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3137 
3138     uint32_t Leaders =
3139         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3140     Known.resetAll();
3141     Known.Zero.setHighBits(Leaders);
3142     break;
3143   }
3144   case ISD::EXTRACT_ELEMENT: {
3145     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3146     const unsigned Index = Op.getConstantOperandVal(1);
3147     const unsigned EltBitWidth = Op.getValueSizeInBits();
3148 
3149     // Remove low part of known bits mask
3150     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3151     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3152 
3153     // Remove high part of known bit mask
3154     Known = Known.trunc(EltBitWidth);
3155     break;
3156   }
3157   case ISD::EXTRACT_VECTOR_ELT: {
3158     SDValue InVec = Op.getOperand(0);
3159     SDValue EltNo = Op.getOperand(1);
3160     EVT VecVT = InVec.getValueType();
3161     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3162     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3163     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3164     // anything about the extended bits.
3165     if (BitWidth > EltBitWidth)
3166       Known = Known.trunc(EltBitWidth);
3167     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3168     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3169       // If we know the element index, just demand that vector element.
3170       unsigned Idx = ConstEltNo->getZExtValue();
3171       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3172       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3173     } else {
3174       // Unknown element index, so ignore DemandedElts and demand them all.
3175       Known = computeKnownBits(InVec, Depth + 1);
3176     }
3177     if (BitWidth > EltBitWidth)
3178       Known = Known.zext(BitWidth, false /* => any extend */);
3179     break;
3180   }
3181   case ISD::INSERT_VECTOR_ELT: {
3182     SDValue InVec = Op.getOperand(0);
3183     SDValue InVal = Op.getOperand(1);
3184     SDValue EltNo = Op.getOperand(2);
3185 
3186     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3187     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3188       // If we know the element index, split the demand between the
3189       // source vector and the inserted element.
3190       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3191       unsigned EltIdx = CEltNo->getZExtValue();
3192 
3193       // If we demand the inserted element then add its common known bits.
3194       if (DemandedElts[EltIdx]) {
3195         Known2 = computeKnownBits(InVal, Depth + 1);
3196         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3197         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3198       }
3199 
3200       // If we demand the source vector then add its common known bits, ensuring
3201       // that we don't demand the inserted element.
3202       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3203       if (!!VectorElts) {
3204         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3205         Known.One &= Known2.One;
3206         Known.Zero &= Known2.Zero;
3207       }
3208     } else {
3209       // Unknown element index, so ignore DemandedElts and demand them all.
3210       Known = computeKnownBits(InVec, Depth + 1);
3211       Known2 = computeKnownBits(InVal, Depth + 1);
3212       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3213       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3214     }
3215     break;
3216   }
3217   case ISD::BITREVERSE: {
3218     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3219     Known.Zero = Known2.Zero.reverseBits();
3220     Known.One = Known2.One.reverseBits();
3221     break;
3222   }
3223   case ISD::BSWAP: {
3224     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225     Known.Zero = Known2.Zero.byteSwap();
3226     Known.One = Known2.One.byteSwap();
3227     break;
3228   }
3229   case ISD::ABS: {
3230     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3231 
3232     // If the source's MSB is zero then we know the rest of the bits already.
3233     if (Known2.isNonNegative()) {
3234       Known.Zero = Known2.Zero;
3235       Known.One = Known2.One;
3236       break;
3237     }
3238 
3239     // We only know that the absolute values's MSB will be zero iff there is
3240     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3241     Known2.One.clearSignBit();
3242     if (Known2.One.getBoolValue()) {
3243       Known.Zero = APInt::getSignMask(BitWidth);
3244       break;
3245     }
3246     break;
3247   }
3248   case ISD::UMIN: {
3249     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3250     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3251 
3252     // UMIN - we know that the result will have the maximum of the
3253     // known zero leading bits of the inputs.
3254     unsigned LeadZero = Known.countMinLeadingZeros();
3255     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3256 
3257     Known.Zero &= Known2.Zero;
3258     Known.One &= Known2.One;
3259     Known.Zero.setHighBits(LeadZero);
3260     break;
3261   }
3262   case ISD::UMAX: {
3263     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3264     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3265 
3266     // UMAX - we know that the result will have the maximum of the
3267     // known one leading bits of the inputs.
3268     unsigned LeadOne = Known.countMinLeadingOnes();
3269     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3270 
3271     Known.Zero &= Known2.Zero;
3272     Known.One &= Known2.One;
3273     Known.One.setHighBits(LeadOne);
3274     break;
3275   }
3276   case ISD::SMIN:
3277   case ISD::SMAX: {
3278     // If we have a clamp pattern, we know that the number of sign bits will be
3279     // the minimum of the clamp min/max range.
3280     bool IsMax = (Opcode == ISD::SMAX);
3281     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3282     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3283       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3284         CstHigh =
3285             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3286     if (CstLow && CstHigh) {
3287       if (!IsMax)
3288         std::swap(CstLow, CstHigh);
3289 
3290       const APInt &ValueLow = CstLow->getAPIntValue();
3291       const APInt &ValueHigh = CstHigh->getAPIntValue();
3292       if (ValueLow.sle(ValueHigh)) {
3293         unsigned LowSignBits = ValueLow.getNumSignBits();
3294         unsigned HighSignBits = ValueHigh.getNumSignBits();
3295         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3296         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3297           Known.One.setHighBits(MinSignBits);
3298           break;
3299         }
3300         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3301           Known.Zero.setHighBits(MinSignBits);
3302           break;
3303         }
3304       }
3305     }
3306 
3307     // Fallback - just get the shared known bits of the operands.
3308     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3309     if (Known.isUnknown()) break; // Early-out
3310     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3311     Known.Zero &= Known2.Zero;
3312     Known.One &= Known2.One;
3313     break;
3314   }
3315   case ISD::FrameIndex:
3316   case ISD::TargetFrameIndex:
3317     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3318     break;
3319 
3320   default:
3321     if (Opcode < ISD::BUILTIN_OP_END)
3322       break;
3323     LLVM_FALLTHROUGH;
3324   case ISD::INTRINSIC_WO_CHAIN:
3325   case ISD::INTRINSIC_W_CHAIN:
3326   case ISD::INTRINSIC_VOID:
3327     // Allow the target to implement this method for its nodes.
3328     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3329     break;
3330   }
3331 
3332   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3333   return Known;
3334 }
3335 
3336 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3337                                                              SDValue N1) const {
3338   // X + 0 never overflow
3339   if (isNullConstant(N1))
3340     return OFK_Never;
3341 
3342   KnownBits N1Known = computeKnownBits(N1);
3343   if (N1Known.Zero.getBoolValue()) {
3344     KnownBits N0Known = computeKnownBits(N0);
3345 
3346     bool overflow;
3347     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3348     if (!overflow)
3349       return OFK_Never;
3350   }
3351 
3352   // mulhi + 1 never overflow
3353   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3354       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3355     return OFK_Never;
3356 
3357   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3358     KnownBits N0Known = computeKnownBits(N0);
3359 
3360     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3361       return OFK_Never;
3362   }
3363 
3364   return OFK_Sometime;
3365 }
3366 
3367 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3368   EVT OpVT = Val.getValueType();
3369   unsigned BitWidth = OpVT.getScalarSizeInBits();
3370 
3371   // Is the constant a known power of 2?
3372   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3373     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3374 
3375   // A left-shift of a constant one will have exactly one bit set because
3376   // shifting the bit off the end is undefined.
3377   if (Val.getOpcode() == ISD::SHL) {
3378     auto *C = isConstOrConstSplat(Val.getOperand(0));
3379     if (C && C->getAPIntValue() == 1)
3380       return true;
3381   }
3382 
3383   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3384   // one bit set.
3385   if (Val.getOpcode() == ISD::SRL) {
3386     auto *C = isConstOrConstSplat(Val.getOperand(0));
3387     if (C && C->getAPIntValue().isSignMask())
3388       return true;
3389   }
3390 
3391   // Are all operands of a build vector constant powers of two?
3392   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3393     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3394           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3395             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3396           return false;
3397         }))
3398       return true;
3399 
3400   // More could be done here, though the above checks are enough
3401   // to handle some common cases.
3402 
3403   // Fall back to computeKnownBits to catch other known cases.
3404   KnownBits Known = computeKnownBits(Val);
3405   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3406 }
3407 
3408 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3409   EVT VT = Op.getValueType();
3410   APInt DemandedElts = VT.isVector()
3411                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3412                            : APInt(1, 1);
3413   return ComputeNumSignBits(Op, DemandedElts, Depth);
3414 }
3415 
3416 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3417                                           unsigned Depth) const {
3418   EVT VT = Op.getValueType();
3419   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3420   unsigned VTBits = VT.getScalarSizeInBits();
3421   unsigned NumElts = DemandedElts.getBitWidth();
3422   unsigned Tmp, Tmp2;
3423   unsigned FirstAnswer = 1;
3424 
3425   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3426     const APInt &Val = C->getAPIntValue();
3427     return Val.getNumSignBits();
3428   }
3429 
3430   if (Depth == 6)
3431     return 1;  // Limit search depth.
3432 
3433   if (!DemandedElts)
3434     return 1;  // No demanded elts, better to assume we don't know anything.
3435 
3436   unsigned Opcode = Op.getOpcode();
3437   switch (Opcode) {
3438   default: break;
3439   case ISD::AssertSext:
3440     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3441     return VTBits-Tmp+1;
3442   case ISD::AssertZext:
3443     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3444     return VTBits-Tmp;
3445 
3446   case ISD::BUILD_VECTOR:
3447     Tmp = VTBits;
3448     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3449       if (!DemandedElts[i])
3450         continue;
3451 
3452       SDValue SrcOp = Op.getOperand(i);
3453       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3454 
3455       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3456       if (SrcOp.getValueSizeInBits() != VTBits) {
3457         assert(SrcOp.getValueSizeInBits() > VTBits &&
3458                "Expected BUILD_VECTOR implicit truncation");
3459         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3460         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3461       }
3462       Tmp = std::min(Tmp, Tmp2);
3463     }
3464     return Tmp;
3465 
3466   case ISD::VECTOR_SHUFFLE: {
3467     // Collect the minimum number of sign bits that are shared by every vector
3468     // element referenced by the shuffle.
3469     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3470     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3471     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3472     for (unsigned i = 0; i != NumElts; ++i) {
3473       int M = SVN->getMaskElt(i);
3474       if (!DemandedElts[i])
3475         continue;
3476       // For UNDEF elements, we don't know anything about the common state of
3477       // the shuffle result.
3478       if (M < 0)
3479         return 1;
3480       if ((unsigned)M < NumElts)
3481         DemandedLHS.setBit((unsigned)M % NumElts);
3482       else
3483         DemandedRHS.setBit((unsigned)M % NumElts);
3484     }
3485     Tmp = std::numeric_limits<unsigned>::max();
3486     if (!!DemandedLHS)
3487       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3488     if (!!DemandedRHS) {
3489       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3490       Tmp = std::min(Tmp, Tmp2);
3491     }
3492     // If we don't know anything, early out and try computeKnownBits fall-back.
3493     if (Tmp == 1)
3494       break;
3495     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3496     return Tmp;
3497   }
3498 
3499   case ISD::BITCAST: {
3500     SDValue N0 = Op.getOperand(0);
3501     EVT SrcVT = N0.getValueType();
3502     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3503 
3504     // Ignore bitcasts from unsupported types..
3505     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3506       break;
3507 
3508     // Fast handling of 'identity' bitcasts.
3509     if (VTBits == SrcBits)
3510       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3511 
3512     bool IsLE = getDataLayout().isLittleEndian();
3513 
3514     // Bitcast 'large element' scalar/vector to 'small element' vector.
3515     if ((SrcBits % VTBits) == 0) {
3516       assert(VT.isVector() && "Expected bitcast to vector");
3517 
3518       unsigned Scale = SrcBits / VTBits;
3519       APInt SrcDemandedElts(NumElts / Scale, 0);
3520       for (unsigned i = 0; i != NumElts; ++i)
3521         if (DemandedElts[i])
3522           SrcDemandedElts.setBit(i / Scale);
3523 
3524       // Fast case - sign splat can be simply split across the small elements.
3525       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3526       if (Tmp == SrcBits)
3527         return VTBits;
3528 
3529       // Slow case - determine how far the sign extends into each sub-element.
3530       Tmp2 = VTBits;
3531       for (unsigned i = 0; i != NumElts; ++i)
3532         if (DemandedElts[i]) {
3533           unsigned SubOffset = i % Scale;
3534           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3535           SubOffset = SubOffset * VTBits;
3536           if (Tmp <= SubOffset)
3537             return 1;
3538           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3539         }
3540       return Tmp2;
3541     }
3542     break;
3543   }
3544 
3545   case ISD::SIGN_EXTEND:
3546     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3547     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3548   case ISD::SIGN_EXTEND_INREG:
3549     // Max of the input and what this extends.
3550     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3551     Tmp = VTBits-Tmp+1;
3552     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3553     return std::max(Tmp, Tmp2);
3554   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3555     SDValue Src = Op.getOperand(0);
3556     EVT SrcVT = Src.getValueType();
3557     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3558     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3559     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3560   }
3561 
3562   case ISD::SRA:
3563     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3564     // SRA X, C   -> adds C sign bits.
3565     if (ConstantSDNode *C =
3566             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3567       APInt ShiftVal = C->getAPIntValue();
3568       ShiftVal += Tmp;
3569       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3570     }
3571     return Tmp;
3572   case ISD::SHL:
3573     if (ConstantSDNode *C =
3574             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3575       // shl destroys sign bits.
3576       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3577       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3578           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3579       return Tmp - C->getZExtValue();
3580     }
3581     break;
3582   case ISD::AND:
3583   case ISD::OR:
3584   case ISD::XOR:    // NOT is handled here.
3585     // Logical binary ops preserve the number of sign bits at the worst.
3586     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3587     if (Tmp != 1) {
3588       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3589       FirstAnswer = std::min(Tmp, Tmp2);
3590       // We computed what we know about the sign bits as our first
3591       // answer. Now proceed to the generic code that uses
3592       // computeKnownBits, and pick whichever answer is better.
3593     }
3594     break;
3595 
3596   case ISD::SELECT:
3597   case ISD::VSELECT:
3598     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3599     if (Tmp == 1) return 1;  // Early out.
3600     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3601     return std::min(Tmp, Tmp2);
3602   case ISD::SELECT_CC:
3603     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3604     if (Tmp == 1) return 1;  // Early out.
3605     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3606     return std::min(Tmp, Tmp2);
3607 
3608   case ISD::SMIN:
3609   case ISD::SMAX: {
3610     // If we have a clamp pattern, we know that the number of sign bits will be
3611     // the minimum of the clamp min/max range.
3612     bool IsMax = (Opcode == ISD::SMAX);
3613     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3614     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3615       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3616         CstHigh =
3617             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3618     if (CstLow && CstHigh) {
3619       if (!IsMax)
3620         std::swap(CstLow, CstHigh);
3621       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3622         Tmp = CstLow->getAPIntValue().getNumSignBits();
3623         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3624         return std::min(Tmp, Tmp2);
3625       }
3626     }
3627 
3628     // Fallback - just get the minimum number of sign bits of the operands.
3629     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3630     if (Tmp == 1)
3631       return 1;  // Early out.
3632     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3633     return std::min(Tmp, Tmp2);
3634   }
3635   case ISD::UMIN:
3636   case ISD::UMAX:
3637     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3638     if (Tmp == 1)
3639       return 1;  // Early out.
3640     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3641     return std::min(Tmp, Tmp2);
3642   case ISD::SADDO:
3643   case ISD::UADDO:
3644   case ISD::SSUBO:
3645   case ISD::USUBO:
3646   case ISD::SMULO:
3647   case ISD::UMULO:
3648     if (Op.getResNo() != 1)
3649       break;
3650     // The boolean result conforms to getBooleanContents.  Fall through.
3651     // If setcc returns 0/-1, all bits are sign bits.
3652     // We know that we have an integer-based boolean since these operations
3653     // are only available for integer.
3654     if (TLI->getBooleanContents(VT.isVector(), false) ==
3655         TargetLowering::ZeroOrNegativeOneBooleanContent)
3656       return VTBits;
3657     break;
3658   case ISD::SETCC:
3659     // If setcc returns 0/-1, all bits are sign bits.
3660     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3661         TargetLowering::ZeroOrNegativeOneBooleanContent)
3662       return VTBits;
3663     break;
3664   case ISD::ROTL:
3665   case ISD::ROTR:
3666     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3667       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3668 
3669       // Handle rotate right by N like a rotate left by 32-N.
3670       if (Opcode == ISD::ROTR)
3671         RotAmt = (VTBits - RotAmt) % VTBits;
3672 
3673       // If we aren't rotating out all of the known-in sign bits, return the
3674       // number that are left.  This handles rotl(sext(x), 1) for example.
3675       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3676       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3677     }
3678     break;
3679   case ISD::ADD:
3680   case ISD::ADDC:
3681     // Add can have at most one carry bit.  Thus we know that the output
3682     // is, at worst, one more bit than the inputs.
3683     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3684     if (Tmp == 1) return 1;  // Early out.
3685 
3686     // Special case decrementing a value (ADD X, -1):
3687     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3688       if (CRHS->isAllOnesValue()) {
3689         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3690 
3691         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3692         // sign bits set.
3693         if ((Known.Zero | 1).isAllOnesValue())
3694           return VTBits;
3695 
3696         // If we are subtracting one from a positive number, there is no carry
3697         // out of the result.
3698         if (Known.isNonNegative())
3699           return Tmp;
3700       }
3701 
3702     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3703     if (Tmp2 == 1) return 1;
3704     return std::min(Tmp, Tmp2)-1;
3705 
3706   case ISD::SUB:
3707     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3708     if (Tmp2 == 1) return 1;
3709 
3710     // Handle NEG.
3711     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3712       if (CLHS->isNullValue()) {
3713         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3714         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3715         // sign bits set.
3716         if ((Known.Zero | 1).isAllOnesValue())
3717           return VTBits;
3718 
3719         // If the input is known to be positive (the sign bit is known clear),
3720         // the output of the NEG has the same number of sign bits as the input.
3721         if (Known.isNonNegative())
3722           return Tmp2;
3723 
3724         // Otherwise, we treat this like a SUB.
3725       }
3726 
3727     // Sub can have at most one carry bit.  Thus we know that the output
3728     // is, at worst, one more bit than the inputs.
3729     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3730     if (Tmp == 1) return 1;  // Early out.
3731     return std::min(Tmp, Tmp2)-1;
3732   case ISD::TRUNCATE: {
3733     // Check if the sign bits of source go down as far as the truncated value.
3734     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3735     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3736     if (NumSrcSignBits > (NumSrcBits - VTBits))
3737       return NumSrcSignBits - (NumSrcBits - VTBits);
3738     break;
3739   }
3740   case ISD::EXTRACT_ELEMENT: {
3741     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3742     const int BitWidth = Op.getValueSizeInBits();
3743     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3744 
3745     // Get reverse index (starting from 1), Op1 value indexes elements from
3746     // little end. Sign starts at big end.
3747     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3748 
3749     // If the sign portion ends in our element the subtraction gives correct
3750     // result. Otherwise it gives either negative or > bitwidth result
3751     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3752   }
3753   case ISD::INSERT_VECTOR_ELT: {
3754     SDValue InVec = Op.getOperand(0);
3755     SDValue InVal = Op.getOperand(1);
3756     SDValue EltNo = Op.getOperand(2);
3757 
3758     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3759     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3760       // If we know the element index, split the demand between the
3761       // source vector and the inserted element.
3762       unsigned EltIdx = CEltNo->getZExtValue();
3763 
3764       // If we demand the inserted element then get its sign bits.
3765       Tmp = std::numeric_limits<unsigned>::max();
3766       if (DemandedElts[EltIdx]) {
3767         // TODO - handle implicit truncation of inserted elements.
3768         if (InVal.getScalarValueSizeInBits() != VTBits)
3769           break;
3770         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3771       }
3772 
3773       // If we demand the source vector then get its sign bits, and determine
3774       // the minimum.
3775       APInt VectorElts = DemandedElts;
3776       VectorElts.clearBit(EltIdx);
3777       if (!!VectorElts) {
3778         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3779         Tmp = std::min(Tmp, Tmp2);
3780       }
3781     } else {
3782       // Unknown element index, so ignore DemandedElts and demand them all.
3783       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3784       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3785       Tmp = std::min(Tmp, Tmp2);
3786     }
3787     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3788     return Tmp;
3789   }
3790   case ISD::EXTRACT_VECTOR_ELT: {
3791     SDValue InVec = Op.getOperand(0);
3792     SDValue EltNo = Op.getOperand(1);
3793     EVT VecVT = InVec.getValueType();
3794     const unsigned BitWidth = Op.getValueSizeInBits();
3795     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3796     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3797 
3798     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3799     // anything about sign bits. But if the sizes match we can derive knowledge
3800     // about sign bits from the vector operand.
3801     if (BitWidth != EltBitWidth)
3802       break;
3803 
3804     // If we know the element index, just demand that vector element, else for
3805     // an unknown element index, ignore DemandedElts and demand them all.
3806     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3807     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3808     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3809       DemandedSrcElts =
3810           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3811 
3812     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3813   }
3814   case ISD::EXTRACT_SUBVECTOR: {
3815     // If we know the element index, just demand that subvector elements,
3816     // otherwise demand them all.
3817     SDValue Src = Op.getOperand(0);
3818     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3819     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3820     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3821       // Offset the demanded elts by the subvector index.
3822       uint64_t Idx = SubIdx->getZExtValue();
3823       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3824       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3825     }
3826     return ComputeNumSignBits(Src, Depth + 1);
3827   }
3828   case ISD::CONCAT_VECTORS: {
3829     // Determine the minimum number of sign bits across all demanded
3830     // elts of the input vectors. Early out if the result is already 1.
3831     Tmp = std::numeric_limits<unsigned>::max();
3832     EVT SubVectorVT = Op.getOperand(0).getValueType();
3833     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3834     unsigned NumSubVectors = Op.getNumOperands();
3835     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3836       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3837       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3838       if (!DemandedSub)
3839         continue;
3840       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3841       Tmp = std::min(Tmp, Tmp2);
3842     }
3843     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3844     return Tmp;
3845   }
3846   case ISD::INSERT_SUBVECTOR: {
3847     // If we know the element index, demand any elements from the subvector and
3848     // the remainder from the src its inserted into, otherwise demand them all.
3849     SDValue Src = Op.getOperand(0);
3850     SDValue Sub = Op.getOperand(1);
3851     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3852     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3853     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3854       Tmp = std::numeric_limits<unsigned>::max();
3855       uint64_t Idx = SubIdx->getZExtValue();
3856       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3857       if (!!DemandedSubElts) {
3858         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3859         if (Tmp == 1) return 1; // early-out
3860       }
3861       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3862       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3863       if (!!DemandedSrcElts) {
3864         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3865         Tmp = std::min(Tmp, Tmp2);
3866       }
3867       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3868       return Tmp;
3869     }
3870 
3871     // Not able to determine the index so just assume worst case.
3872     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3873     if (Tmp == 1) return 1; // early-out
3874     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3875     Tmp = std::min(Tmp, Tmp2);
3876     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3877     return Tmp;
3878   }
3879   }
3880 
3881   // If we are looking at the loaded value of the SDNode.
3882   if (Op.getResNo() == 0) {
3883     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3884     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3885       unsigned ExtType = LD->getExtensionType();
3886       switch (ExtType) {
3887       default: break;
3888       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3889         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3890         return VTBits - Tmp + 1;
3891       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3892         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3893         return VTBits - Tmp;
3894       case ISD::NON_EXTLOAD:
3895         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3896           // We only need to handle vectors - computeKnownBits should handle
3897           // scalar cases.
3898           Type *CstTy = Cst->getType();
3899           if (CstTy->isVectorTy() &&
3900               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3901             Tmp = VTBits;
3902             for (unsigned i = 0; i != NumElts; ++i) {
3903               if (!DemandedElts[i])
3904                 continue;
3905               if (Constant *Elt = Cst->getAggregateElement(i)) {
3906                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3907                   const APInt &Value = CInt->getValue();
3908                   Tmp = std::min(Tmp, Value.getNumSignBits());
3909                   continue;
3910                 }
3911                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3912                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3913                   Tmp = std::min(Tmp, Value.getNumSignBits());
3914                   continue;
3915                 }
3916               }
3917               // Unknown type. Conservatively assume no bits match sign bit.
3918               return 1;
3919             }
3920             return Tmp;
3921           }
3922         }
3923         break;
3924       }
3925     }
3926   }
3927 
3928   // Allow the target to implement this method for its nodes.
3929   if (Opcode >= ISD::BUILTIN_OP_END ||
3930       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3931       Opcode == ISD::INTRINSIC_W_CHAIN ||
3932       Opcode == ISD::INTRINSIC_VOID) {
3933     unsigned NumBits =
3934         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3935     if (NumBits > 1)
3936       FirstAnswer = std::max(FirstAnswer, NumBits);
3937   }
3938 
3939   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3940   // use this information.
3941   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3942 
3943   APInt Mask;
3944   if (Known.isNonNegative()) {        // sign bit is 0
3945     Mask = Known.Zero;
3946   } else if (Known.isNegative()) {  // sign bit is 1;
3947     Mask = Known.One;
3948   } else {
3949     // Nothing known.
3950     return FirstAnswer;
3951   }
3952 
3953   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3954   // the number of identical bits in the top of the input value.
3955   Mask = ~Mask;
3956   Mask <<= Mask.getBitWidth()-VTBits;
3957   // Return # leading zeros.  We use 'min' here in case Val was zero before
3958   // shifting.  We don't want to return '64' as for an i32 "0".
3959   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3960 }
3961 
3962 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3963   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3964       !isa<ConstantSDNode>(Op.getOperand(1)))
3965     return false;
3966 
3967   if (Op.getOpcode() == ISD::OR &&
3968       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3969     return false;
3970 
3971   return true;
3972 }
3973 
3974 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3975   // If we're told that NaNs won't happen, assume they won't.
3976   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3977     return true;
3978 
3979   if (Depth == 6)
3980     return false; // Limit search depth.
3981 
3982   // TODO: Handle vectors.
3983   // If the value is a constant, we can obviously see if it is a NaN or not.
3984   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3985     return !C->getValueAPF().isNaN() ||
3986            (SNaN && !C->getValueAPF().isSignaling());
3987   }
3988 
3989   unsigned Opcode = Op.getOpcode();
3990   switch (Opcode) {
3991   case ISD::FADD:
3992   case ISD::FSUB:
3993   case ISD::FMUL:
3994   case ISD::FDIV:
3995   case ISD::FREM:
3996   case ISD::FSIN:
3997   case ISD::FCOS: {
3998     if (SNaN)
3999       return true;
4000     // TODO: Need isKnownNeverInfinity
4001     return false;
4002   }
4003   case ISD::FCANONICALIZE:
4004   case ISD::FEXP:
4005   case ISD::FEXP2:
4006   case ISD::FTRUNC:
4007   case ISD::FFLOOR:
4008   case ISD::FCEIL:
4009   case ISD::FROUND:
4010   case ISD::FRINT:
4011   case ISD::FNEARBYINT: {
4012     if (SNaN)
4013       return true;
4014     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4015   }
4016   case ISD::FABS:
4017   case ISD::FNEG:
4018   case ISD::FCOPYSIGN: {
4019     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4020   }
4021   case ISD::SELECT:
4022     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4023            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4024   case ISD::FP_EXTEND:
4025   case ISD::FP_ROUND: {
4026     if (SNaN)
4027       return true;
4028     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4029   }
4030   case ISD::SINT_TO_FP:
4031   case ISD::UINT_TO_FP:
4032     return true;
4033   case ISD::FMA:
4034   case ISD::FMAD: {
4035     if (SNaN)
4036       return true;
4037     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4038            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4039            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4040   }
4041   case ISD::FSQRT: // Need is known positive
4042   case ISD::FLOG:
4043   case ISD::FLOG2:
4044   case ISD::FLOG10:
4045   case ISD::FPOWI:
4046   case ISD::FPOW: {
4047     if (SNaN)
4048       return true;
4049     // TODO: Refine on operand
4050     return false;
4051   }
4052   case ISD::FMINNUM:
4053   case ISD::FMAXNUM: {
4054     // Only one needs to be known not-nan, since it will be returned if the
4055     // other ends up being one.
4056     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4057            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4058   }
4059   case ISD::FMINNUM_IEEE:
4060   case ISD::FMAXNUM_IEEE: {
4061     if (SNaN)
4062       return true;
4063     // This can return a NaN if either operand is an sNaN, or if both operands
4064     // are NaN.
4065     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4066             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4067            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4068             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4069   }
4070   case ISD::FMINIMUM:
4071   case ISD::FMAXIMUM: {
4072     // TODO: Does this quiet or return the origina NaN as-is?
4073     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4074            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4075   }
4076   case ISD::EXTRACT_VECTOR_ELT: {
4077     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4078   }
4079   default:
4080     if (Opcode >= ISD::BUILTIN_OP_END ||
4081         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4082         Opcode == ISD::INTRINSIC_W_CHAIN ||
4083         Opcode == ISD::INTRINSIC_VOID) {
4084       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4085     }
4086 
4087     return false;
4088   }
4089 }
4090 
4091 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4092   assert(Op.getValueType().isFloatingPoint() &&
4093          "Floating point type expected");
4094 
4095   // If the value is a constant, we can obviously see if it is a zero or not.
4096   // TODO: Add BuildVector support.
4097   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4098     return !C->isZero();
4099   return false;
4100 }
4101 
4102 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4103   assert(!Op.getValueType().isFloatingPoint() &&
4104          "Floating point types unsupported - use isKnownNeverZeroFloat");
4105 
4106   // If the value is a constant, we can obviously see if it is a zero or not.
4107   if (ISD::matchUnaryPredicate(
4108           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4109     return true;
4110 
4111   // TODO: Recognize more cases here.
4112   switch (Op.getOpcode()) {
4113   default: break;
4114   case ISD::OR:
4115     if (isKnownNeverZero(Op.getOperand(1)) ||
4116         isKnownNeverZero(Op.getOperand(0)))
4117       return true;
4118     break;
4119   }
4120 
4121   return false;
4122 }
4123 
4124 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4125   // Check the obvious case.
4126   if (A == B) return true;
4127 
4128   // For for negative and positive zero.
4129   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4130     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4131       if (CA->isZero() && CB->isZero()) return true;
4132 
4133   // Otherwise they may not be equal.
4134   return false;
4135 }
4136 
4137 // FIXME: unify with llvm::haveNoCommonBitsSet.
4138 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4139 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4140   assert(A.getValueType() == B.getValueType() &&
4141          "Values must have the same type");
4142   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4143 }
4144 
4145 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4146                                 ArrayRef<SDValue> Ops,
4147                                 SelectionDAG &DAG) {
4148   int NumOps = Ops.size();
4149   assert(NumOps != 0 && "Can't build an empty vector!");
4150   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4151          "Incorrect element count in BUILD_VECTOR!");
4152 
4153   // BUILD_VECTOR of UNDEFs is UNDEF.
4154   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4155     return DAG.getUNDEF(VT);
4156 
4157   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4158   SDValue IdentitySrc;
4159   bool IsIdentity = true;
4160   for (int i = 0; i != NumOps; ++i) {
4161     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4162         Ops[i].getOperand(0).getValueType() != VT ||
4163         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4164         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4165         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4166       IsIdentity = false;
4167       break;
4168     }
4169     IdentitySrc = Ops[i].getOperand(0);
4170   }
4171   if (IsIdentity)
4172     return IdentitySrc;
4173 
4174   return SDValue();
4175 }
4176 
4177 /// Try to simplify vector concatenation to an input value, undef, or build
4178 /// vector.
4179 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4180                                   ArrayRef<SDValue> Ops,
4181                                   SelectionDAG &DAG) {
4182   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4183   assert(llvm::all_of(Ops,
4184                       [Ops](SDValue Op) {
4185                         return Ops[0].getValueType() == Op.getValueType();
4186                       }) &&
4187          "Concatenation of vectors with inconsistent value types!");
4188   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4189              VT.getVectorNumElements() &&
4190          "Incorrect element count in vector concatenation!");
4191 
4192   if (Ops.size() == 1)
4193     return Ops[0];
4194 
4195   // Concat of UNDEFs is UNDEF.
4196   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4197     return DAG.getUNDEF(VT);
4198 
4199   // Scan the operands and look for extract operations from a single source
4200   // that correspond to insertion at the same location via this concatenation:
4201   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4202   SDValue IdentitySrc;
4203   bool IsIdentity = true;
4204   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4205     SDValue Op = Ops[i];
4206     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4207     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4208         Op.getOperand(0).getValueType() != VT ||
4209         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4210         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4211         Op.getConstantOperandVal(1) != IdentityIndex) {
4212       IsIdentity = false;
4213       break;
4214     }
4215     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4216            "Unexpected identity source vector for concat of extracts");
4217     IdentitySrc = Op.getOperand(0);
4218   }
4219   if (IsIdentity) {
4220     assert(IdentitySrc && "Failed to set source vector of extracts");
4221     return IdentitySrc;
4222   }
4223 
4224   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4225   // simplified to one big BUILD_VECTOR.
4226   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4227   EVT SVT = VT.getScalarType();
4228   SmallVector<SDValue, 16> Elts;
4229   for (SDValue Op : Ops) {
4230     EVT OpVT = Op.getValueType();
4231     if (Op.isUndef())
4232       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4233     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4234       Elts.append(Op->op_begin(), Op->op_end());
4235     else
4236       return SDValue();
4237   }
4238 
4239   // BUILD_VECTOR requires all inputs to be of the same type, find the
4240   // maximum type and extend them all.
4241   for (SDValue Op : Elts)
4242     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4243 
4244   if (SVT.bitsGT(VT.getScalarType()))
4245     for (SDValue &Op : Elts)
4246       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4247                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4248                : DAG.getSExtOrTrunc(Op, DL, SVT);
4249 
4250   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4251   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4252   return V;
4253 }
4254 
4255 /// Gets or creates the specified node.
4256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4257   FoldingSetNodeID ID;
4258   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4259   void *IP = nullptr;
4260   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4261     return SDValue(E, 0);
4262 
4263   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4264                               getVTList(VT));
4265   CSEMap.InsertNode(N, IP);
4266 
4267   InsertNode(N);
4268   SDValue V = SDValue(N, 0);
4269   NewSDValueDbgMsg(V, "Creating new node: ", this);
4270   return V;
4271 }
4272 
4273 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4274                               SDValue Operand, const SDNodeFlags Flags) {
4275   // Constant fold unary operations with an integer constant operand. Even
4276   // opaque constant will be folded, because the folding of unary operations
4277   // doesn't create new constants with different values. Nevertheless, the
4278   // opaque flag is preserved during folding to prevent future folding with
4279   // other constants.
4280   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4281     const APInt &Val = C->getAPIntValue();
4282     switch (Opcode) {
4283     default: break;
4284     case ISD::SIGN_EXTEND:
4285       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4286                          C->isTargetOpcode(), C->isOpaque());
4287     case ISD::TRUNCATE:
4288       if (C->isOpaque())
4289         break;
4290       LLVM_FALLTHROUGH;
4291     case ISD::ANY_EXTEND:
4292     case ISD::ZERO_EXTEND:
4293       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4294                          C->isTargetOpcode(), C->isOpaque());
4295     case ISD::UINT_TO_FP:
4296     case ISD::SINT_TO_FP: {
4297       APFloat apf(EVTToAPFloatSemantics(VT),
4298                   APInt::getNullValue(VT.getSizeInBits()));
4299       (void)apf.convertFromAPInt(Val,
4300                                  Opcode==ISD::SINT_TO_FP,
4301                                  APFloat::rmNearestTiesToEven);
4302       return getConstantFP(apf, DL, VT);
4303     }
4304     case ISD::BITCAST:
4305       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4306         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4307       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4308         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4309       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4310         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4311       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4312         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4313       break;
4314     case ISD::ABS:
4315       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4316                          C->isOpaque());
4317     case ISD::BITREVERSE:
4318       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4319                          C->isOpaque());
4320     case ISD::BSWAP:
4321       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4322                          C->isOpaque());
4323     case ISD::CTPOP:
4324       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4325                          C->isOpaque());
4326     case ISD::CTLZ:
4327     case ISD::CTLZ_ZERO_UNDEF:
4328       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4329                          C->isOpaque());
4330     case ISD::CTTZ:
4331     case ISD::CTTZ_ZERO_UNDEF:
4332       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4333                          C->isOpaque());
4334     case ISD::FP16_TO_FP: {
4335       bool Ignored;
4336       APFloat FPV(APFloat::IEEEhalf(),
4337                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4338 
4339       // This can return overflow, underflow, or inexact; we don't care.
4340       // FIXME need to be more flexible about rounding mode.
4341       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4342                         APFloat::rmNearestTiesToEven, &Ignored);
4343       return getConstantFP(FPV, DL, VT);
4344     }
4345     }
4346   }
4347 
4348   // Constant fold unary operations with a floating point constant operand.
4349   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4350     APFloat V = C->getValueAPF();    // make copy
4351     switch (Opcode) {
4352     case ISD::FNEG:
4353       V.changeSign();
4354       return getConstantFP(V, DL, VT);
4355     case ISD::FABS:
4356       V.clearSign();
4357       return getConstantFP(V, DL, VT);
4358     case ISD::FCEIL: {
4359       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4360       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4361         return getConstantFP(V, DL, VT);
4362       break;
4363     }
4364     case ISD::FTRUNC: {
4365       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4366       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4367         return getConstantFP(V, DL, VT);
4368       break;
4369     }
4370     case ISD::FFLOOR: {
4371       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4372       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4373         return getConstantFP(V, DL, VT);
4374       break;
4375     }
4376     case ISD::FP_EXTEND: {
4377       bool ignored;
4378       // This can return overflow, underflow, or inexact; we don't care.
4379       // FIXME need to be more flexible about rounding mode.
4380       (void)V.convert(EVTToAPFloatSemantics(VT),
4381                       APFloat::rmNearestTiesToEven, &ignored);
4382       return getConstantFP(V, DL, VT);
4383     }
4384     case ISD::FP_TO_SINT:
4385     case ISD::FP_TO_UINT: {
4386       bool ignored;
4387       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4388       // FIXME need to be more flexible about rounding mode.
4389       APFloat::opStatus s =
4390           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4391       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4392         break;
4393       return getConstant(IntVal, DL, VT);
4394     }
4395     case ISD::BITCAST:
4396       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4397         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4398       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4399         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4400       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4401         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4402       break;
4403     case ISD::FP_TO_FP16: {
4404       bool Ignored;
4405       // This can return overflow, underflow, or inexact; we don't care.
4406       // FIXME need to be more flexible about rounding mode.
4407       (void)V.convert(APFloat::IEEEhalf(),
4408                       APFloat::rmNearestTiesToEven, &Ignored);
4409       return getConstant(V.bitcastToAPInt(), DL, VT);
4410     }
4411     }
4412   }
4413 
4414   // Constant fold unary operations with a vector integer or float operand.
4415   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4416     if (BV->isConstant()) {
4417       switch (Opcode) {
4418       default:
4419         // FIXME: Entirely reasonable to perform folding of other unary
4420         // operations here as the need arises.
4421         break;
4422       case ISD::FNEG:
4423       case ISD::FABS:
4424       case ISD::FCEIL:
4425       case ISD::FTRUNC:
4426       case ISD::FFLOOR:
4427       case ISD::FP_EXTEND:
4428       case ISD::FP_TO_SINT:
4429       case ISD::FP_TO_UINT:
4430       case ISD::TRUNCATE:
4431       case ISD::ANY_EXTEND:
4432       case ISD::ZERO_EXTEND:
4433       case ISD::SIGN_EXTEND:
4434       case ISD::UINT_TO_FP:
4435       case ISD::SINT_TO_FP:
4436       case ISD::ABS:
4437       case ISD::BITREVERSE:
4438       case ISD::BSWAP:
4439       case ISD::CTLZ:
4440       case ISD::CTLZ_ZERO_UNDEF:
4441       case ISD::CTTZ:
4442       case ISD::CTTZ_ZERO_UNDEF:
4443       case ISD::CTPOP: {
4444         SDValue Ops = { Operand };
4445         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4446           return Fold;
4447       }
4448       }
4449     }
4450   }
4451 
4452   unsigned OpOpcode = Operand.getNode()->getOpcode();
4453   switch (Opcode) {
4454   case ISD::TokenFactor:
4455   case ISD::MERGE_VALUES:
4456   case ISD::CONCAT_VECTORS:
4457     return Operand;         // Factor, merge or concat of one node?  No need.
4458   case ISD::BUILD_VECTOR: {
4459     // Attempt to simplify BUILD_VECTOR.
4460     SDValue Ops[] = {Operand};
4461     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4462       return V;
4463     break;
4464   }
4465   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4466   case ISD::FP_EXTEND:
4467     assert(VT.isFloatingPoint() &&
4468            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4469     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4470     assert((!VT.isVector() ||
4471             VT.getVectorNumElements() ==
4472             Operand.getValueType().getVectorNumElements()) &&
4473            "Vector element count mismatch!");
4474     assert(Operand.getValueType().bitsLT(VT) &&
4475            "Invalid fpext node, dst < src!");
4476     if (Operand.isUndef())
4477       return getUNDEF(VT);
4478     break;
4479   case ISD::FP_TO_SINT:
4480   case ISD::FP_TO_UINT:
4481     if (Operand.isUndef())
4482       return getUNDEF(VT);
4483     break;
4484   case ISD::SINT_TO_FP:
4485   case ISD::UINT_TO_FP:
4486     // [us]itofp(undef) = 0, because the result value is bounded.
4487     if (Operand.isUndef())
4488       return getConstantFP(0.0, DL, VT);
4489     break;
4490   case ISD::SIGN_EXTEND:
4491     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4492            "Invalid SIGN_EXTEND!");
4493     assert(VT.isVector() == Operand.getValueType().isVector() &&
4494            "SIGN_EXTEND result type type should be vector iff the operand "
4495            "type is vector!");
4496     if (Operand.getValueType() == VT) return Operand;   // noop extension
4497     assert((!VT.isVector() ||
4498             VT.getVectorNumElements() ==
4499             Operand.getValueType().getVectorNumElements()) &&
4500            "Vector element count mismatch!");
4501     assert(Operand.getValueType().bitsLT(VT) &&
4502            "Invalid sext node, dst < src!");
4503     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4504       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4505     else if (OpOpcode == ISD::UNDEF)
4506       // sext(undef) = 0, because the top bits will all be the same.
4507       return getConstant(0, DL, VT);
4508     break;
4509   case ISD::ZERO_EXTEND:
4510     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4511            "Invalid ZERO_EXTEND!");
4512     assert(VT.isVector() == Operand.getValueType().isVector() &&
4513            "ZERO_EXTEND result type type should be vector iff the operand "
4514            "type is vector!");
4515     if (Operand.getValueType() == VT) return Operand;   // noop extension
4516     assert((!VT.isVector() ||
4517             VT.getVectorNumElements() ==
4518             Operand.getValueType().getVectorNumElements()) &&
4519            "Vector element count mismatch!");
4520     assert(Operand.getValueType().bitsLT(VT) &&
4521            "Invalid zext node, dst < src!");
4522     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4523       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4524     else if (OpOpcode == ISD::UNDEF)
4525       // zext(undef) = 0, because the top bits will be zero.
4526       return getConstant(0, DL, VT);
4527     break;
4528   case ISD::ANY_EXTEND:
4529     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4530            "Invalid ANY_EXTEND!");
4531     assert(VT.isVector() == Operand.getValueType().isVector() &&
4532            "ANY_EXTEND result type type should be vector iff the operand "
4533            "type is vector!");
4534     if (Operand.getValueType() == VT) return Operand;   // noop extension
4535     assert((!VT.isVector() ||
4536             VT.getVectorNumElements() ==
4537             Operand.getValueType().getVectorNumElements()) &&
4538            "Vector element count mismatch!");
4539     assert(Operand.getValueType().bitsLT(VT) &&
4540            "Invalid anyext node, dst < src!");
4541 
4542     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4543         OpOpcode == ISD::ANY_EXTEND)
4544       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4545       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4546     else if (OpOpcode == ISD::UNDEF)
4547       return getUNDEF(VT);
4548 
4549     // (ext (trunc x)) -> x
4550     if (OpOpcode == ISD::TRUNCATE) {
4551       SDValue OpOp = Operand.getOperand(0);
4552       if (OpOp.getValueType() == VT) {
4553         transferDbgValues(Operand, OpOp);
4554         return OpOp;
4555       }
4556     }
4557     break;
4558   case ISD::TRUNCATE:
4559     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4560            "Invalid TRUNCATE!");
4561     assert(VT.isVector() == Operand.getValueType().isVector() &&
4562            "TRUNCATE result type type should be vector iff the operand "
4563            "type is vector!");
4564     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4565     assert((!VT.isVector() ||
4566             VT.getVectorNumElements() ==
4567             Operand.getValueType().getVectorNumElements()) &&
4568            "Vector element count mismatch!");
4569     assert(Operand.getValueType().bitsGT(VT) &&
4570            "Invalid truncate node, src < dst!");
4571     if (OpOpcode == ISD::TRUNCATE)
4572       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4573     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4574         OpOpcode == ISD::ANY_EXTEND) {
4575       // If the source is smaller than the dest, we still need an extend.
4576       if (Operand.getOperand(0).getValueType().getScalarType()
4577             .bitsLT(VT.getScalarType()))
4578         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4579       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4580         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4581       return Operand.getOperand(0);
4582     }
4583     if (OpOpcode == ISD::UNDEF)
4584       return getUNDEF(VT);
4585     break;
4586   case ISD::ANY_EXTEND_VECTOR_INREG:
4587   case ISD::ZERO_EXTEND_VECTOR_INREG:
4588   case ISD::SIGN_EXTEND_VECTOR_INREG:
4589     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4590     assert(Operand.getValueType().bitsLE(VT) &&
4591            "The input must be the same size or smaller than the result.");
4592     assert(VT.getVectorNumElements() <
4593              Operand.getValueType().getVectorNumElements() &&
4594            "The destination vector type must have fewer lanes than the input.");
4595     break;
4596   case ISD::ABS:
4597     assert(VT.isInteger() && VT == Operand.getValueType() &&
4598            "Invalid ABS!");
4599     if (OpOpcode == ISD::UNDEF)
4600       return getUNDEF(VT);
4601     break;
4602   case ISD::BSWAP:
4603     assert(VT.isInteger() && VT == Operand.getValueType() &&
4604            "Invalid BSWAP!");
4605     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4606            "BSWAP types must be a multiple of 16 bits!");
4607     if (OpOpcode == ISD::UNDEF)
4608       return getUNDEF(VT);
4609     break;
4610   case ISD::BITREVERSE:
4611     assert(VT.isInteger() && VT == Operand.getValueType() &&
4612            "Invalid BITREVERSE!");
4613     if (OpOpcode == ISD::UNDEF)
4614       return getUNDEF(VT);
4615     break;
4616   case ISD::BITCAST:
4617     // Basic sanity checking.
4618     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4619            "Cannot BITCAST between types of different sizes!");
4620     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4621     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4622       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4623     if (OpOpcode == ISD::UNDEF)
4624       return getUNDEF(VT);
4625     break;
4626   case ISD::SCALAR_TO_VECTOR:
4627     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4628            (VT.getVectorElementType() == Operand.getValueType() ||
4629             (VT.getVectorElementType().isInteger() &&
4630              Operand.getValueType().isInteger() &&
4631              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4632            "Illegal SCALAR_TO_VECTOR node!");
4633     if (OpOpcode == ISD::UNDEF)
4634       return getUNDEF(VT);
4635     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4636     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4637         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4638         Operand.getConstantOperandVal(1) == 0 &&
4639         Operand.getOperand(0).getValueType() == VT)
4640       return Operand.getOperand(0);
4641     break;
4642   case ISD::FNEG:
4643     // Negation of an unknown bag of bits is still completely undefined.
4644     if (OpOpcode == ISD::UNDEF)
4645       return getUNDEF(VT);
4646 
4647     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4648     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4649         OpOpcode == ISD::FSUB)
4650       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4651                      Operand.getOperand(0), Flags);
4652     if (OpOpcode == ISD::FNEG)  // --X -> X
4653       return Operand.getOperand(0);
4654     break;
4655   case ISD::FABS:
4656     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4657       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4658     break;
4659   }
4660 
4661   SDNode *N;
4662   SDVTList VTs = getVTList(VT);
4663   SDValue Ops[] = {Operand};
4664   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4665     FoldingSetNodeID ID;
4666     AddNodeIDNode(ID, Opcode, VTs, Ops);
4667     void *IP = nullptr;
4668     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4669       E->intersectFlagsWith(Flags);
4670       return SDValue(E, 0);
4671     }
4672 
4673     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4674     N->setFlags(Flags);
4675     createOperands(N, Ops);
4676     CSEMap.InsertNode(N, IP);
4677   } else {
4678     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4679     createOperands(N, Ops);
4680   }
4681 
4682   InsertNode(N);
4683   SDValue V = SDValue(N, 0);
4684   NewSDValueDbgMsg(V, "Creating new node: ", this);
4685   return V;
4686 }
4687 
4688 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4689                                         const APInt &C2) {
4690   switch (Opcode) {
4691   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4692   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4693   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4694   case ISD::AND:  return std::make_pair(C1 & C2, true);
4695   case ISD::OR:   return std::make_pair(C1 | C2, true);
4696   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4697   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4698   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4699   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4700   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4701   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4702   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4703   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4704   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4705   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4706   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4707   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4708   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4709   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4710   case ISD::UDIV:
4711     if (!C2.getBoolValue())
4712       break;
4713     return std::make_pair(C1.udiv(C2), true);
4714   case ISD::UREM:
4715     if (!C2.getBoolValue())
4716       break;
4717     return std::make_pair(C1.urem(C2), true);
4718   case ISD::SDIV:
4719     if (!C2.getBoolValue())
4720       break;
4721     return std::make_pair(C1.sdiv(C2), true);
4722   case ISD::SREM:
4723     if (!C2.getBoolValue())
4724       break;
4725     return std::make_pair(C1.srem(C2), true);
4726   }
4727   return std::make_pair(APInt(1, 0), false);
4728 }
4729 
4730 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4731                                              EVT VT, const ConstantSDNode *C1,
4732                                              const ConstantSDNode *C2) {
4733   if (C1->isOpaque() || C2->isOpaque())
4734     return SDValue();
4735 
4736   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4737                                             C2->getAPIntValue());
4738   if (!Folded.second)
4739     return SDValue();
4740   return getConstant(Folded.first, DL, VT);
4741 }
4742 
4743 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4744                                        const GlobalAddressSDNode *GA,
4745                                        const SDNode *N2) {
4746   if (GA->getOpcode() != ISD::GlobalAddress)
4747     return SDValue();
4748   if (!TLI->isOffsetFoldingLegal(GA))
4749     return SDValue();
4750   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4751   if (!C2)
4752     return SDValue();
4753   int64_t Offset = C2->getSExtValue();
4754   switch (Opcode) {
4755   case ISD::ADD: break;
4756   case ISD::SUB: Offset = -uint64_t(Offset); break;
4757   default: return SDValue();
4758   }
4759   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4760                           GA->getOffset() + uint64_t(Offset));
4761 }
4762 
4763 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4764   switch (Opcode) {
4765   case ISD::SDIV:
4766   case ISD::UDIV:
4767   case ISD::SREM:
4768   case ISD::UREM: {
4769     // If a divisor is zero/undef or any element of a divisor vector is
4770     // zero/undef, the whole op is undef.
4771     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4772     SDValue Divisor = Ops[1];
4773     if (Divisor.isUndef() || isNullConstant(Divisor))
4774       return true;
4775 
4776     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4777            llvm::any_of(Divisor->op_values(),
4778                         [](SDValue V) { return V.isUndef() ||
4779                                         isNullConstant(V); });
4780     // TODO: Handle signed overflow.
4781   }
4782   // TODO: Handle oversized shifts.
4783   default:
4784     return false;
4785   }
4786 }
4787 
4788 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4789                                              EVT VT, SDNode *N1, SDNode *N2) {
4790   // If the opcode is a target-specific ISD node, there's nothing we can
4791   // do here and the operand rules may not line up with the below, so
4792   // bail early.
4793   if (Opcode >= ISD::BUILTIN_OP_END)
4794     return SDValue();
4795 
4796   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4797     return getUNDEF(VT);
4798 
4799   // Handle the case of two scalars.
4800   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4801     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4802       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4803       assert((!Folded || !VT.isVector()) &&
4804              "Can't fold vectors ops with scalar operands");
4805       return Folded;
4806     }
4807   }
4808 
4809   // fold (add Sym, c) -> Sym+c
4810   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4811     return FoldSymbolOffset(Opcode, VT, GA, N2);
4812   if (TLI->isCommutativeBinOp(Opcode))
4813     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4814       return FoldSymbolOffset(Opcode, VT, GA, N1);
4815 
4816   // For vectors, extract each constant element and fold them individually.
4817   // Either input may be an undef value.
4818   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4819   if (!BV1 && !N1->isUndef())
4820     return SDValue();
4821   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4822   if (!BV2 && !N2->isUndef())
4823     return SDValue();
4824   // If both operands are undef, that's handled the same way as scalars.
4825   if (!BV1 && !BV2)
4826     return SDValue();
4827 
4828   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4829          "Vector binop with different number of elements in operands?");
4830 
4831   EVT SVT = VT.getScalarType();
4832   EVT LegalSVT = SVT;
4833   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4834     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4835     if (LegalSVT.bitsLT(SVT))
4836       return SDValue();
4837   }
4838   SmallVector<SDValue, 4> Outputs;
4839   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4840   for (unsigned I = 0; I != NumOps; ++I) {
4841     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4842     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4843     if (SVT.isInteger()) {
4844       if (V1->getValueType(0).bitsGT(SVT))
4845         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4846       if (V2->getValueType(0).bitsGT(SVT))
4847         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4848     }
4849 
4850     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4851       return SDValue();
4852 
4853     // Fold one vector element.
4854     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4855     if (LegalSVT != SVT)
4856       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4857 
4858     // Scalar folding only succeeded if the result is a constant or UNDEF.
4859     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4860         ScalarResult.getOpcode() != ISD::ConstantFP)
4861       return SDValue();
4862     Outputs.push_back(ScalarResult);
4863   }
4864 
4865   assert(VT.getVectorNumElements() == Outputs.size() &&
4866          "Vector size mismatch!");
4867 
4868   // We may have a vector type but a scalar result. Create a splat.
4869   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4870 
4871   // Build a big vector out of the scalar elements we generated.
4872   return getBuildVector(VT, SDLoc(), Outputs);
4873 }
4874 
4875 // TODO: Merge with FoldConstantArithmetic
4876 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4877                                                    const SDLoc &DL, EVT VT,
4878                                                    ArrayRef<SDValue> Ops,
4879                                                    const SDNodeFlags Flags) {
4880   // If the opcode is a target-specific ISD node, there's nothing we can
4881   // do here and the operand rules may not line up with the below, so
4882   // bail early.
4883   if (Opcode >= ISD::BUILTIN_OP_END)
4884     return SDValue();
4885 
4886   if (isUndef(Opcode, Ops))
4887     return getUNDEF(VT);
4888 
4889   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4890   if (!VT.isVector())
4891     return SDValue();
4892 
4893   unsigned NumElts = VT.getVectorNumElements();
4894 
4895   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4896     return !Op.getValueType().isVector() ||
4897            Op.getValueType().getVectorNumElements() == NumElts;
4898   };
4899 
4900   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4901     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4902     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4903            (BV && BV->isConstant());
4904   };
4905 
4906   // All operands must be vector types with the same number of elements as
4907   // the result type and must be either UNDEF or a build vector of constant
4908   // or UNDEF scalars.
4909   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4910       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4911     return SDValue();
4912 
4913   // If we are comparing vectors, then the result needs to be a i1 boolean
4914   // that is then sign-extended back to the legal result type.
4915   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4916 
4917   // Find legal integer scalar type for constant promotion and
4918   // ensure that its scalar size is at least as large as source.
4919   EVT LegalSVT = VT.getScalarType();
4920   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4921     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4922     if (LegalSVT.bitsLT(VT.getScalarType()))
4923       return SDValue();
4924   }
4925 
4926   // Constant fold each scalar lane separately.
4927   SmallVector<SDValue, 4> ScalarResults;
4928   for (unsigned i = 0; i != NumElts; i++) {
4929     SmallVector<SDValue, 4> ScalarOps;
4930     for (SDValue Op : Ops) {
4931       EVT InSVT = Op.getValueType().getScalarType();
4932       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4933       if (!InBV) {
4934         // We've checked that this is UNDEF or a constant of some kind.
4935         if (Op.isUndef())
4936           ScalarOps.push_back(getUNDEF(InSVT));
4937         else
4938           ScalarOps.push_back(Op);
4939         continue;
4940       }
4941 
4942       SDValue ScalarOp = InBV->getOperand(i);
4943       EVT ScalarVT = ScalarOp.getValueType();
4944 
4945       // Build vector (integer) scalar operands may need implicit
4946       // truncation - do this before constant folding.
4947       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4948         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4949 
4950       ScalarOps.push_back(ScalarOp);
4951     }
4952 
4953     // Constant fold the scalar operands.
4954     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4955 
4956     // Legalize the (integer) scalar constant if necessary.
4957     if (LegalSVT != SVT)
4958       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4959 
4960     // Scalar folding only succeeded if the result is a constant or UNDEF.
4961     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4962         ScalarResult.getOpcode() != ISD::ConstantFP)
4963       return SDValue();
4964     ScalarResults.push_back(ScalarResult);
4965   }
4966 
4967   SDValue V = getBuildVector(VT, DL, ScalarResults);
4968   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4969   return V;
4970 }
4971 
4972 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4973                                          EVT VT, SDValue N1, SDValue N2) {
4974   // TODO: We don't do any constant folding for strict FP opcodes here, but we
4975   //       should. That will require dealing with a potentially non-default
4976   //       rounding mode, checking the "opStatus" return value from the APFloat
4977   //       math calculations, and possibly other variations.
4978   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4979   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4980   if (N1CFP && N2CFP) {
4981     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4982     switch (Opcode) {
4983     case ISD::FADD:
4984       C1.add(C2, APFloat::rmNearestTiesToEven);
4985       return getConstantFP(C1, DL, VT);
4986     case ISD::FSUB:
4987       C1.subtract(C2, APFloat::rmNearestTiesToEven);
4988       return getConstantFP(C1, DL, VT);
4989     case ISD::FMUL:
4990       C1.multiply(C2, APFloat::rmNearestTiesToEven);
4991       return getConstantFP(C1, DL, VT);
4992     case ISD::FDIV:
4993       C1.divide(C2, APFloat::rmNearestTiesToEven);
4994       return getConstantFP(C1, DL, VT);
4995     case ISD::FREM:
4996       C1.mod(C2);
4997       return getConstantFP(C1, DL, VT);
4998     case ISD::FCOPYSIGN:
4999       C1.copySign(C2);
5000       return getConstantFP(C1, DL, VT);
5001     default: break;
5002     }
5003   }
5004   if (N1CFP && Opcode == ISD::FP_ROUND) {
5005     APFloat C1 = N1CFP->getValueAPF();    // make copy
5006     bool Unused;
5007     // This can return overflow, underflow, or inexact; we don't care.
5008     // FIXME need to be more flexible about rounding mode.
5009     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5010                       &Unused);
5011     return getConstantFP(C1, DL, VT);
5012   }
5013 
5014   switch (Opcode) {
5015   case ISD::FADD:
5016   case ISD::FSUB:
5017   case ISD::FMUL:
5018   case ISD::FDIV:
5019   case ISD::FREM:
5020     // If both operands are undef, the result is undef. If 1 operand is undef,
5021     // the result is NaN. This should match the behavior of the IR optimizer.
5022     if (N1.isUndef() && N2.isUndef())
5023       return getUNDEF(VT);
5024     if (N1.isUndef() || N2.isUndef())
5025       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5026   }
5027   return SDValue();
5028 }
5029 
5030 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5031                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5032   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5033   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5034   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5035   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5036 
5037   // Canonicalize constant to RHS if commutative.
5038   if (TLI->isCommutativeBinOp(Opcode)) {
5039     if (N1C && !N2C) {
5040       std::swap(N1C, N2C);
5041       std::swap(N1, N2);
5042     } else if (N1CFP && !N2CFP) {
5043       std::swap(N1CFP, N2CFP);
5044       std::swap(N1, N2);
5045     }
5046   }
5047 
5048   switch (Opcode) {
5049   default: break;
5050   case ISD::TokenFactor:
5051     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5052            N2.getValueType() == MVT::Other && "Invalid token factor!");
5053     // Fold trivial token factors.
5054     if (N1.getOpcode() == ISD::EntryToken) return N2;
5055     if (N2.getOpcode() == ISD::EntryToken) return N1;
5056     if (N1 == N2) return N1;
5057     break;
5058   case ISD::BUILD_VECTOR: {
5059     // Attempt to simplify BUILD_VECTOR.
5060     SDValue Ops[] = {N1, N2};
5061     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5062       return V;
5063     break;
5064   }
5065   case ISD::CONCAT_VECTORS: {
5066     SDValue Ops[] = {N1, N2};
5067     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5068       return V;
5069     break;
5070   }
5071   case ISD::AND:
5072     assert(VT.isInteger() && "This operator does not apply to FP types!");
5073     assert(N1.getValueType() == N2.getValueType() &&
5074            N1.getValueType() == VT && "Binary operator types must match!");
5075     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5076     // worth handling here.
5077     if (N2C && N2C->isNullValue())
5078       return N2;
5079     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5080       return N1;
5081     break;
5082   case ISD::OR:
5083   case ISD::XOR:
5084   case ISD::ADD:
5085   case ISD::SUB:
5086     assert(VT.isInteger() && "This operator does not apply to FP types!");
5087     assert(N1.getValueType() == N2.getValueType() &&
5088            N1.getValueType() == VT && "Binary operator types must match!");
5089     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5090     // it's worth handling here.
5091     if (N2C && N2C->isNullValue())
5092       return N1;
5093     break;
5094   case ISD::UDIV:
5095   case ISD::UREM:
5096   case ISD::MULHU:
5097   case ISD::MULHS:
5098   case ISD::MUL:
5099   case ISD::SDIV:
5100   case ISD::SREM:
5101   case ISD::SMIN:
5102   case ISD::SMAX:
5103   case ISD::UMIN:
5104   case ISD::UMAX:
5105   case ISD::SADDSAT:
5106   case ISD::SSUBSAT:
5107   case ISD::UADDSAT:
5108   case ISD::USUBSAT:
5109     assert(VT.isInteger() && "This operator does not apply to FP types!");
5110     assert(N1.getValueType() == N2.getValueType() &&
5111            N1.getValueType() == VT && "Binary operator types must match!");
5112     break;
5113   case ISD::FADD:
5114   case ISD::FSUB:
5115   case ISD::FMUL:
5116   case ISD::FDIV:
5117   case ISD::FREM:
5118     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5119     assert(N1.getValueType() == N2.getValueType() &&
5120            N1.getValueType() == VT && "Binary operator types must match!");
5121     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5122       return V;
5123     break;
5124   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5125     assert(N1.getValueType() == VT &&
5126            N1.getValueType().isFloatingPoint() &&
5127            N2.getValueType().isFloatingPoint() &&
5128            "Invalid FCOPYSIGN!");
5129     break;
5130   case ISD::SHL:
5131   case ISD::SRA:
5132   case ISD::SRL:
5133     if (SDValue V = simplifyShift(N1, N2))
5134       return V;
5135     LLVM_FALLTHROUGH;
5136   case ISD::ROTL:
5137   case ISD::ROTR:
5138     assert(VT == N1.getValueType() &&
5139            "Shift operators return type must be the same as their first arg");
5140     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5141            "Shifts only work on integers");
5142     assert((!VT.isVector() || VT == N2.getValueType()) &&
5143            "Vector shift amounts must be in the same as their first arg");
5144     // Verify that the shift amount VT is big enough to hold valid shift
5145     // amounts.  This catches things like trying to shift an i1024 value by an
5146     // i8, which is easy to fall into in generic code that uses
5147     // TLI.getShiftAmount().
5148     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5149            "Invalid use of small shift amount with oversized value!");
5150 
5151     // Always fold shifts of i1 values so the code generator doesn't need to
5152     // handle them.  Since we know the size of the shift has to be less than the
5153     // size of the value, the shift/rotate count is guaranteed to be zero.
5154     if (VT == MVT::i1)
5155       return N1;
5156     if (N2C && N2C->isNullValue())
5157       return N1;
5158     break;
5159   case ISD::FP_ROUND_INREG: {
5160     EVT EVT = cast<VTSDNode>(N2)->getVT();
5161     assert(VT == N1.getValueType() && "Not an inreg round!");
5162     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
5163            "Cannot FP_ROUND_INREG integer types");
5164     assert(EVT.isVector() == VT.isVector() &&
5165            "FP_ROUND_INREG type should be vector iff the operand "
5166            "type is vector!");
5167     assert((!EVT.isVector() ||
5168             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5169            "Vector element counts must match in FP_ROUND_INREG");
5170     assert(EVT.bitsLE(VT) && "Not rounding down!");
5171     (void)EVT;
5172     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
5173     break;
5174   }
5175   case ISD::FP_ROUND:
5176     assert(VT.isFloatingPoint() &&
5177            N1.getValueType().isFloatingPoint() &&
5178            VT.bitsLE(N1.getValueType()) &&
5179            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5180            "Invalid FP_ROUND!");
5181     if (N1.getValueType() == VT) return N1;  // noop conversion.
5182     break;
5183   case ISD::AssertSext:
5184   case ISD::AssertZext: {
5185     EVT EVT = cast<VTSDNode>(N2)->getVT();
5186     assert(VT == N1.getValueType() && "Not an inreg extend!");
5187     assert(VT.isInteger() && EVT.isInteger() &&
5188            "Cannot *_EXTEND_INREG FP types");
5189     assert(!EVT.isVector() &&
5190            "AssertSExt/AssertZExt type should be the vector element type "
5191            "rather than the vector type!");
5192     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5193     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5194     break;
5195   }
5196   case ISD::SIGN_EXTEND_INREG: {
5197     EVT EVT = cast<VTSDNode>(N2)->getVT();
5198     assert(VT == N1.getValueType() && "Not an inreg extend!");
5199     assert(VT.isInteger() && EVT.isInteger() &&
5200            "Cannot *_EXTEND_INREG FP types");
5201     assert(EVT.isVector() == VT.isVector() &&
5202            "SIGN_EXTEND_INREG type should be vector iff the operand "
5203            "type is vector!");
5204     assert((!EVT.isVector() ||
5205             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5206            "Vector element counts must match in SIGN_EXTEND_INREG");
5207     assert(EVT.bitsLE(VT) && "Not extending!");
5208     if (EVT == VT) return N1;  // Not actually extending
5209 
5210     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5211       unsigned FromBits = EVT.getScalarSizeInBits();
5212       Val <<= Val.getBitWidth() - FromBits;
5213       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5214       return getConstant(Val, DL, ConstantVT);
5215     };
5216 
5217     if (N1C) {
5218       const APInt &Val = N1C->getAPIntValue();
5219       return SignExtendInReg(Val, VT);
5220     }
5221     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5222       SmallVector<SDValue, 8> Ops;
5223       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5224       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5225         SDValue Op = N1.getOperand(i);
5226         if (Op.isUndef()) {
5227           Ops.push_back(getUNDEF(OpVT));
5228           continue;
5229         }
5230         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5231         APInt Val = C->getAPIntValue();
5232         Ops.push_back(SignExtendInReg(Val, OpVT));
5233       }
5234       return getBuildVector(VT, DL, Ops);
5235     }
5236     break;
5237   }
5238   case ISD::EXTRACT_VECTOR_ELT:
5239     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5240            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5241              element type of the vector.");
5242 
5243     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5244     if (N1.isUndef())
5245       return getUNDEF(VT);
5246 
5247     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5248     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5249       return getUNDEF(VT);
5250 
5251     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5252     // expanding copies of large vectors from registers.
5253     if (N2C &&
5254         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5255         N1.getNumOperands() > 0) {
5256       unsigned Factor =
5257         N1.getOperand(0).getValueType().getVectorNumElements();
5258       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5259                      N1.getOperand(N2C->getZExtValue() / Factor),
5260                      getConstant(N2C->getZExtValue() % Factor, DL,
5261                                  N2.getValueType()));
5262     }
5263 
5264     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5265     // expanding large vector constants.
5266     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5267       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5268 
5269       if (VT != Elt.getValueType())
5270         // If the vector element type is not legal, the BUILD_VECTOR operands
5271         // are promoted and implicitly truncated, and the result implicitly
5272         // extended. Make that explicit here.
5273         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5274 
5275       return Elt;
5276     }
5277 
5278     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5279     // operations are lowered to scalars.
5280     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5281       // If the indices are the same, return the inserted element else
5282       // if the indices are known different, extract the element from
5283       // the original vector.
5284       SDValue N1Op2 = N1.getOperand(2);
5285       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5286 
5287       if (N1Op2C && N2C) {
5288         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5289           if (VT == N1.getOperand(1).getValueType())
5290             return N1.getOperand(1);
5291           else
5292             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5293         }
5294 
5295         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5296       }
5297     }
5298 
5299     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5300     // when vector types are scalarized and v1iX is legal.
5301     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5302     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5303         N1.getValueType().getVectorNumElements() == 1) {
5304       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5305                      N1.getOperand(1));
5306     }
5307     break;
5308   case ISD::EXTRACT_ELEMENT:
5309     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5310     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5311            (N1.getValueType().isInteger() == VT.isInteger()) &&
5312            N1.getValueType() != VT &&
5313            "Wrong types for EXTRACT_ELEMENT!");
5314 
5315     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5316     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5317     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5318     if (N1.getOpcode() == ISD::BUILD_PAIR)
5319       return N1.getOperand(N2C->getZExtValue());
5320 
5321     // EXTRACT_ELEMENT of a constant int is also very common.
5322     if (N1C) {
5323       unsigned ElementSize = VT.getSizeInBits();
5324       unsigned Shift = ElementSize * N2C->getZExtValue();
5325       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5326       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5327     }
5328     break;
5329   case ISD::EXTRACT_SUBVECTOR:
5330     if (VT.isSimple() && N1.getValueType().isSimple()) {
5331       assert(VT.isVector() && N1.getValueType().isVector() &&
5332              "Extract subvector VTs must be a vectors!");
5333       assert(VT.getVectorElementType() ==
5334              N1.getValueType().getVectorElementType() &&
5335              "Extract subvector VTs must have the same element type!");
5336       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5337              "Extract subvector must be from larger vector to smaller vector!");
5338 
5339       if (N2C) {
5340         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5341                 <= N1.getValueType().getVectorNumElements())
5342                && "Extract subvector overflow!");
5343       }
5344 
5345       // Trivial extraction.
5346       if (VT.getSimpleVT() == N1.getSimpleValueType())
5347         return N1;
5348 
5349       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5350       if (N1.isUndef())
5351         return getUNDEF(VT);
5352 
5353       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5354       // the concat have the same type as the extract.
5355       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5356           N1.getNumOperands() > 0 &&
5357           VT == N1.getOperand(0).getValueType()) {
5358         unsigned Factor = VT.getVectorNumElements();
5359         return N1.getOperand(N2C->getZExtValue() / Factor);
5360       }
5361 
5362       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5363       // during shuffle legalization.
5364       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5365           VT == N1.getOperand(1).getValueType())
5366         return N1.getOperand(1);
5367     }
5368     break;
5369   }
5370 
5371   // Perform trivial constant folding.
5372   if (SDValue SV =
5373           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5374     return SV;
5375 
5376   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5377     return V;
5378 
5379   // Canonicalize an UNDEF to the RHS, even over a constant.
5380   if (N1.isUndef()) {
5381     if (TLI->isCommutativeBinOp(Opcode)) {
5382       std::swap(N1, N2);
5383     } else {
5384       switch (Opcode) {
5385       case ISD::FP_ROUND_INREG:
5386       case ISD::SIGN_EXTEND_INREG:
5387       case ISD::SUB:
5388         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5389       case ISD::UDIV:
5390       case ISD::SDIV:
5391       case ISD::UREM:
5392       case ISD::SREM:
5393       case ISD::SSUBSAT:
5394       case ISD::USUBSAT:
5395         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5396       }
5397     }
5398   }
5399 
5400   // Fold a bunch of operators when the RHS is undef.
5401   if (N2.isUndef()) {
5402     switch (Opcode) {
5403     case ISD::XOR:
5404       if (N1.isUndef())
5405         // Handle undef ^ undef -> 0 special case. This is a common
5406         // idiom (misuse).
5407         return getConstant(0, DL, VT);
5408       LLVM_FALLTHROUGH;
5409     case ISD::ADD:
5410     case ISD::SUB:
5411     case ISD::UDIV:
5412     case ISD::SDIV:
5413     case ISD::UREM:
5414     case ISD::SREM:
5415       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5416     case ISD::MUL:
5417     case ISD::AND:
5418     case ISD::SSUBSAT:
5419     case ISD::USUBSAT:
5420       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5421     case ISD::OR:
5422     case ISD::SADDSAT:
5423     case ISD::UADDSAT:
5424       return getAllOnesConstant(DL, VT);
5425     }
5426   }
5427 
5428   // Memoize this node if possible.
5429   SDNode *N;
5430   SDVTList VTs = getVTList(VT);
5431   SDValue Ops[] = {N1, N2};
5432   if (VT != MVT::Glue) {
5433     FoldingSetNodeID ID;
5434     AddNodeIDNode(ID, Opcode, VTs, Ops);
5435     void *IP = nullptr;
5436     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5437       E->intersectFlagsWith(Flags);
5438       return SDValue(E, 0);
5439     }
5440 
5441     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5442     N->setFlags(Flags);
5443     createOperands(N, Ops);
5444     CSEMap.InsertNode(N, IP);
5445   } else {
5446     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5447     createOperands(N, Ops);
5448   }
5449 
5450   InsertNode(N);
5451   SDValue V = SDValue(N, 0);
5452   NewSDValueDbgMsg(V, "Creating new node: ", this);
5453   return V;
5454 }
5455 
5456 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5457                               SDValue N1, SDValue N2, SDValue N3,
5458                               const SDNodeFlags Flags) {
5459   // Perform various simplifications.
5460   switch (Opcode) {
5461   case ISD::FMA: {
5462     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5463     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5464            N3.getValueType() == VT && "FMA types must match!");
5465     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5466     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5467     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5468     if (N1CFP && N2CFP && N3CFP) {
5469       APFloat  V1 = N1CFP->getValueAPF();
5470       const APFloat &V2 = N2CFP->getValueAPF();
5471       const APFloat &V3 = N3CFP->getValueAPF();
5472       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5473       return getConstantFP(V1, DL, VT);
5474     }
5475     break;
5476   }
5477   case ISD::BUILD_VECTOR: {
5478     // Attempt to simplify BUILD_VECTOR.
5479     SDValue Ops[] = {N1, N2, N3};
5480     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5481       return V;
5482     break;
5483   }
5484   case ISD::CONCAT_VECTORS: {
5485     SDValue Ops[] = {N1, N2, N3};
5486     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5487       return V;
5488     break;
5489   }
5490   case ISD::SETCC: {
5491     assert(VT.isInteger() && "SETCC result type must be an integer!");
5492     assert(N1.getValueType() == N2.getValueType() &&
5493            "SETCC operands must have the same type!");
5494     assert(VT.isVector() == N1.getValueType().isVector() &&
5495            "SETCC type should be vector iff the operand type is vector!");
5496     assert((!VT.isVector() ||
5497             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5498            "SETCC vector element counts must match!");
5499     // Use FoldSetCC to simplify SETCC's.
5500     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5501       return V;
5502     // Vector constant folding.
5503     SDValue Ops[] = {N1, N2, N3};
5504     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5505       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5506       return V;
5507     }
5508     break;
5509   }
5510   case ISD::SELECT:
5511   case ISD::VSELECT:
5512     if (SDValue V = simplifySelect(N1, N2, N3))
5513       return V;
5514     break;
5515   case ISD::VECTOR_SHUFFLE:
5516     llvm_unreachable("should use getVectorShuffle constructor!");
5517   case ISD::INSERT_VECTOR_ELT: {
5518     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5519     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5520     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5521       return getUNDEF(VT);
5522     break;
5523   }
5524   case ISD::INSERT_SUBVECTOR: {
5525     // Inserting undef into undef is still undef.
5526     if (N1.isUndef() && N2.isUndef())
5527       return getUNDEF(VT);
5528     SDValue Index = N3;
5529     if (VT.isSimple() && N1.getValueType().isSimple()
5530         && N2.getValueType().isSimple()) {
5531       assert(VT.isVector() && N1.getValueType().isVector() &&
5532              N2.getValueType().isVector() &&
5533              "Insert subvector VTs must be a vectors");
5534       assert(VT == N1.getValueType() &&
5535              "Dest and insert subvector source types must match!");
5536       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5537              "Insert subvector must be from smaller vector to larger vector!");
5538       if (isa<ConstantSDNode>(Index)) {
5539         assert((N2.getValueType().getVectorNumElements() +
5540                 cast<ConstantSDNode>(Index)->getZExtValue()
5541                 <= VT.getVectorNumElements())
5542                && "Insert subvector overflow!");
5543       }
5544 
5545       // Trivial insertion.
5546       if (VT.getSimpleVT() == N2.getSimpleValueType())
5547         return N2;
5548 
5549       // If this is an insert of an extracted vector into an undef vector, we
5550       // can just use the input to the extract.
5551       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5552           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5553         return N2.getOperand(0);
5554     }
5555     break;
5556   }
5557   case ISD::BITCAST:
5558     // Fold bit_convert nodes from a type to themselves.
5559     if (N1.getValueType() == VT)
5560       return N1;
5561     break;
5562   }
5563 
5564   // Memoize node if it doesn't produce a flag.
5565   SDNode *N;
5566   SDVTList VTs = getVTList(VT);
5567   SDValue Ops[] = {N1, N2, N3};
5568   if (VT != MVT::Glue) {
5569     FoldingSetNodeID ID;
5570     AddNodeIDNode(ID, Opcode, VTs, Ops);
5571     void *IP = nullptr;
5572     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5573       E->intersectFlagsWith(Flags);
5574       return SDValue(E, 0);
5575     }
5576 
5577     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5578     N->setFlags(Flags);
5579     createOperands(N, Ops);
5580     CSEMap.InsertNode(N, IP);
5581   } else {
5582     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5583     createOperands(N, Ops);
5584   }
5585 
5586   InsertNode(N);
5587   SDValue V = SDValue(N, 0);
5588   NewSDValueDbgMsg(V, "Creating new node: ", this);
5589   return V;
5590 }
5591 
5592 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5593                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5594   SDValue Ops[] = { N1, N2, N3, N4 };
5595   return getNode(Opcode, DL, VT, Ops);
5596 }
5597 
5598 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5599                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5600                               SDValue N5) {
5601   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5602   return getNode(Opcode, DL, VT, Ops);
5603 }
5604 
5605 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5606 /// the incoming stack arguments to be loaded from the stack.
5607 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5608   SmallVector<SDValue, 8> ArgChains;
5609 
5610   // Include the original chain at the beginning of the list. When this is
5611   // used by target LowerCall hooks, this helps legalize find the
5612   // CALLSEQ_BEGIN node.
5613   ArgChains.push_back(Chain);
5614 
5615   // Add a chain value for each stack argument.
5616   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5617        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5618     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5619       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5620         if (FI->getIndex() < 0)
5621           ArgChains.push_back(SDValue(L, 1));
5622 
5623   // Build a tokenfactor for all the chains.
5624   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5625 }
5626 
5627 /// getMemsetValue - Vectorized representation of the memset value
5628 /// operand.
5629 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5630                               const SDLoc &dl) {
5631   assert(!Value.isUndef());
5632 
5633   unsigned NumBits = VT.getScalarSizeInBits();
5634   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5635     assert(C->getAPIntValue().getBitWidth() == 8);
5636     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5637     if (VT.isInteger()) {
5638       bool IsOpaque = VT.getSizeInBits() > 64 ||
5639           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5640       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5641     }
5642     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5643                              VT);
5644   }
5645 
5646   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5647   EVT IntVT = VT.getScalarType();
5648   if (!IntVT.isInteger())
5649     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5650 
5651   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5652   if (NumBits > 8) {
5653     // Use a multiplication with 0x010101... to extend the input to the
5654     // required length.
5655     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5656     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5657                         DAG.getConstant(Magic, dl, IntVT));
5658   }
5659 
5660   if (VT != Value.getValueType() && !VT.isInteger())
5661     Value = DAG.getBitcast(VT.getScalarType(), Value);
5662   if (VT != Value.getValueType())
5663     Value = DAG.getSplatBuildVector(VT, dl, Value);
5664 
5665   return Value;
5666 }
5667 
5668 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5669 /// used when a memcpy is turned into a memset when the source is a constant
5670 /// string ptr.
5671 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5672                                   const TargetLowering &TLI,
5673                                   const ConstantDataArraySlice &Slice) {
5674   // Handle vector with all elements zero.
5675   if (Slice.Array == nullptr) {
5676     if (VT.isInteger())
5677       return DAG.getConstant(0, dl, VT);
5678     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5679       return DAG.getConstantFP(0.0, dl, VT);
5680     else if (VT.isVector()) {
5681       unsigned NumElts = VT.getVectorNumElements();
5682       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5683       return DAG.getNode(ISD::BITCAST, dl, VT,
5684                          DAG.getConstant(0, dl,
5685                                          EVT::getVectorVT(*DAG.getContext(),
5686                                                           EltVT, NumElts)));
5687     } else
5688       llvm_unreachable("Expected type!");
5689   }
5690 
5691   assert(!VT.isVector() && "Can't handle vector type here!");
5692   unsigned NumVTBits = VT.getSizeInBits();
5693   unsigned NumVTBytes = NumVTBits / 8;
5694   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5695 
5696   APInt Val(NumVTBits, 0);
5697   if (DAG.getDataLayout().isLittleEndian()) {
5698     for (unsigned i = 0; i != NumBytes; ++i)
5699       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5700   } else {
5701     for (unsigned i = 0; i != NumBytes; ++i)
5702       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5703   }
5704 
5705   // If the "cost" of materializing the integer immediate is less than the cost
5706   // of a load, then it is cost effective to turn the load into the immediate.
5707   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5708   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5709     return DAG.getConstant(Val, dl, VT);
5710   return SDValue(nullptr, 0);
5711 }
5712 
5713 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5714                                            const SDLoc &DL) {
5715   EVT VT = Base.getValueType();
5716   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5717 }
5718 
5719 /// Returns true if memcpy source is constant data.
5720 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5721   uint64_t SrcDelta = 0;
5722   GlobalAddressSDNode *G = nullptr;
5723   if (Src.getOpcode() == ISD::GlobalAddress)
5724     G = cast<GlobalAddressSDNode>(Src);
5725   else if (Src.getOpcode() == ISD::ADD &&
5726            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5727            Src.getOperand(1).getOpcode() == ISD::Constant) {
5728     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5729     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5730   }
5731   if (!G)
5732     return false;
5733 
5734   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5735                                   SrcDelta + G->getOffset());
5736 }
5737 
5738 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5739   // On Darwin, -Os means optimize for size without hurting performance, so
5740   // only really optimize for size when -Oz (MinSize) is used.
5741   if (MF.getTarget().getTargetTriple().isOSDarwin())
5742     return MF.getFunction().hasMinSize();
5743   return MF.getFunction().hasOptSize();
5744 }
5745 
5746 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5747                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5748                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5749                           SmallVector<SDValue, 16> &OutStoreChains) {
5750   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5751   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5752   SmallVector<SDValue, 16> GluedLoadChains;
5753   for (unsigned i = From; i < To; ++i) {
5754     OutChains.push_back(OutLoadChains[i]);
5755     GluedLoadChains.push_back(OutLoadChains[i]);
5756   }
5757 
5758   // Chain for all loads.
5759   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5760                                   GluedLoadChains);
5761 
5762   for (unsigned i = From; i < To; ++i) {
5763     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5764     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5765                                   ST->getBasePtr(), ST->getMemoryVT(),
5766                                   ST->getMemOperand());
5767     OutChains.push_back(NewStore);
5768   }
5769 }
5770 
5771 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5772                                        SDValue Chain, SDValue Dst, SDValue Src,
5773                                        uint64_t Size, unsigned Align,
5774                                        bool isVol, bool AlwaysInline,
5775                                        MachinePointerInfo DstPtrInfo,
5776                                        MachinePointerInfo SrcPtrInfo) {
5777   // Turn a memcpy of undef to nop.
5778   if (Src.isUndef())
5779     return Chain;
5780 
5781   // Expand memcpy to a series of load and store ops if the size operand falls
5782   // below a certain threshold.
5783   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5784   // rather than maybe a humongous number of loads and stores.
5785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5786   const DataLayout &DL = DAG.getDataLayout();
5787   LLVMContext &C = *DAG.getContext();
5788   std::vector<EVT> MemOps;
5789   bool DstAlignCanChange = false;
5790   MachineFunction &MF = DAG.getMachineFunction();
5791   MachineFrameInfo &MFI = MF.getFrameInfo();
5792   bool OptSize = shouldLowerMemFuncForSize(MF);
5793   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5794   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5795     DstAlignCanChange = true;
5796   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5797   if (Align > SrcAlign)
5798     SrcAlign = Align;
5799   ConstantDataArraySlice Slice;
5800   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5801   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5802   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5803 
5804   if (!TLI.findOptimalMemOpLowering(MemOps, Limit, Size,
5805                                     (DstAlignCanChange ? 0 : Align),
5806                                     (isZeroConstant ? 0 : SrcAlign),
5807                                     false, false, CopyFromConstant, true,
5808                                     DstPtrInfo.getAddrSpace(),
5809                                     SrcPtrInfo.getAddrSpace(),
5810                                     MF.getFunction().getAttributes()))
5811     return SDValue();
5812 
5813   if (DstAlignCanChange) {
5814     Type *Ty = MemOps[0].getTypeForEVT(C);
5815     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5816 
5817     // Don't promote to an alignment that would require dynamic stack
5818     // realignment.
5819     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5820     if (!TRI->needsStackRealignment(MF))
5821       while (NewAlign > Align &&
5822              DL.exceedsNaturalStackAlignment(NewAlign))
5823           NewAlign /= 2;
5824 
5825     if (NewAlign > Align) {
5826       // Give the stack frame object a larger alignment if needed.
5827       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5828         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5829       Align = NewAlign;
5830     }
5831   }
5832 
5833   MachineMemOperand::Flags MMOFlags =
5834       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5835   SmallVector<SDValue, 16> OutLoadChains;
5836   SmallVector<SDValue, 16> OutStoreChains;
5837   SmallVector<SDValue, 32> OutChains;
5838   unsigned NumMemOps = MemOps.size();
5839   uint64_t SrcOff = 0, DstOff = 0;
5840   for (unsigned i = 0; i != NumMemOps; ++i) {
5841     EVT VT = MemOps[i];
5842     unsigned VTSize = VT.getSizeInBits() / 8;
5843     SDValue Value, Store;
5844 
5845     if (VTSize > Size) {
5846       // Issuing an unaligned load / store pair  that overlaps with the previous
5847       // pair. Adjust the offset accordingly.
5848       assert(i == NumMemOps-1 && i != 0);
5849       SrcOff -= VTSize - Size;
5850       DstOff -= VTSize - Size;
5851     }
5852 
5853     if (CopyFromConstant &&
5854         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5855       // It's unlikely a store of a vector immediate can be done in a single
5856       // instruction. It would require a load from a constantpool first.
5857       // We only handle zero vectors here.
5858       // FIXME: Handle other cases where store of vector immediate is done in
5859       // a single instruction.
5860       ConstantDataArraySlice SubSlice;
5861       if (SrcOff < Slice.Length) {
5862         SubSlice = Slice;
5863         SubSlice.move(SrcOff);
5864       } else {
5865         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5866         SubSlice.Array = nullptr;
5867         SubSlice.Offset = 0;
5868         SubSlice.Length = VTSize;
5869       }
5870       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5871       if (Value.getNode()) {
5872         Store = DAG.getStore(Chain, dl, Value,
5873                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5874                              DstPtrInfo.getWithOffset(DstOff), Align,
5875                              MMOFlags);
5876         OutChains.push_back(Store);
5877       }
5878     }
5879 
5880     if (!Store.getNode()) {
5881       // The type might not be legal for the target.  This should only happen
5882       // if the type is smaller than a legal type, as on PPC, so the right
5883       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5884       // to Load/Store if NVT==VT.
5885       // FIXME does the case above also need this?
5886       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5887       assert(NVT.bitsGE(VT));
5888 
5889       bool isDereferenceable =
5890         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5891       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5892       if (isDereferenceable)
5893         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5894 
5895       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5896                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5897                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5898                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5899       OutLoadChains.push_back(Value.getValue(1));
5900 
5901       Store = DAG.getTruncStore(
5902           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5903           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5904       OutStoreChains.push_back(Store);
5905     }
5906     SrcOff += VTSize;
5907     DstOff += VTSize;
5908     Size -= VTSize;
5909   }
5910 
5911   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5912                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5913   unsigned NumLdStInMemcpy = OutStoreChains.size();
5914 
5915   if (NumLdStInMemcpy) {
5916     // It may be that memcpy might be converted to memset if it's memcpy
5917     // of constants. In such a case, we won't have loads and stores, but
5918     // just stores. In the absence of loads, there is nothing to gang up.
5919     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5920       // If target does not care, just leave as it.
5921       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5922         OutChains.push_back(OutLoadChains[i]);
5923         OutChains.push_back(OutStoreChains[i]);
5924       }
5925     } else {
5926       // Ld/St less than/equal limit set by target.
5927       if (NumLdStInMemcpy <= GluedLdStLimit) {
5928           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5929                                         NumLdStInMemcpy, OutLoadChains,
5930                                         OutStoreChains);
5931       } else {
5932         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5933         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5934         unsigned GlueIter = 0;
5935 
5936         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5937           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5938           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5939 
5940           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5941                                        OutLoadChains, OutStoreChains);
5942           GlueIter += GluedLdStLimit;
5943         }
5944 
5945         // Residual ld/st.
5946         if (RemainingLdStInMemcpy) {
5947           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5948                                         RemainingLdStInMemcpy, OutLoadChains,
5949                                         OutStoreChains);
5950         }
5951       }
5952     }
5953   }
5954   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5955 }
5956 
5957 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5958                                         SDValue Chain, SDValue Dst, SDValue Src,
5959                                         uint64_t Size, unsigned Align,
5960                                         bool isVol, bool AlwaysInline,
5961                                         MachinePointerInfo DstPtrInfo,
5962                                         MachinePointerInfo SrcPtrInfo) {
5963   // Turn a memmove of undef to nop.
5964   if (Src.isUndef())
5965     return Chain;
5966 
5967   // Expand memmove to a series of load and store ops if the size operand falls
5968   // below a certain threshold.
5969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5970   const DataLayout &DL = DAG.getDataLayout();
5971   LLVMContext &C = *DAG.getContext();
5972   std::vector<EVT> MemOps;
5973   bool DstAlignCanChange = false;
5974   MachineFunction &MF = DAG.getMachineFunction();
5975   MachineFrameInfo &MFI = MF.getFrameInfo();
5976   bool OptSize = shouldLowerMemFuncForSize(MF);
5977   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5978   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5979     DstAlignCanChange = true;
5980   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5981   if (Align > SrcAlign)
5982     SrcAlign = Align;
5983   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5984 
5985   if (!TLI.findOptimalMemOpLowering(MemOps, Limit, Size,
5986                                     (DstAlignCanChange ? 0 : Align), SrcAlign,
5987                                     false, false, false, false,
5988                                     DstPtrInfo.getAddrSpace(),
5989                                     SrcPtrInfo.getAddrSpace(),
5990                                     MF.getFunction().getAttributes()))
5991     return SDValue();
5992 
5993   if (DstAlignCanChange) {
5994     Type *Ty = MemOps[0].getTypeForEVT(C);
5995     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5996     if (NewAlign > Align) {
5997       // Give the stack frame object a larger alignment if needed.
5998       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5999         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6000       Align = NewAlign;
6001     }
6002   }
6003 
6004   MachineMemOperand::Flags MMOFlags =
6005       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6006   uint64_t SrcOff = 0, DstOff = 0;
6007   SmallVector<SDValue, 8> LoadValues;
6008   SmallVector<SDValue, 8> LoadChains;
6009   SmallVector<SDValue, 8> OutChains;
6010   unsigned NumMemOps = MemOps.size();
6011   for (unsigned i = 0; i < NumMemOps; i++) {
6012     EVT VT = MemOps[i];
6013     unsigned VTSize = VT.getSizeInBits() / 8;
6014     SDValue Value;
6015 
6016     bool isDereferenceable =
6017       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6018     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6019     if (isDereferenceable)
6020       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6021 
6022     Value =
6023         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6024                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6025     LoadValues.push_back(Value);
6026     LoadChains.push_back(Value.getValue(1));
6027     SrcOff += VTSize;
6028   }
6029   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6030   OutChains.clear();
6031   for (unsigned i = 0; i < NumMemOps; i++) {
6032     EVT VT = MemOps[i];
6033     unsigned VTSize = VT.getSizeInBits() / 8;
6034     SDValue Store;
6035 
6036     Store = DAG.getStore(Chain, dl, LoadValues[i],
6037                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6038                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6039     OutChains.push_back(Store);
6040     DstOff += VTSize;
6041   }
6042 
6043   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6044 }
6045 
6046 /// Lower the call to 'memset' intrinsic function into a series of store
6047 /// operations.
6048 ///
6049 /// \param DAG Selection DAG where lowered code is placed.
6050 /// \param dl Link to corresponding IR location.
6051 /// \param Chain Control flow dependency.
6052 /// \param Dst Pointer to destination memory location.
6053 /// \param Src Value of byte to write into the memory.
6054 /// \param Size Number of bytes to write.
6055 /// \param Align Alignment of the destination in bytes.
6056 /// \param isVol True if destination is volatile.
6057 /// \param DstPtrInfo IR information on the memory pointer.
6058 /// \returns New head in the control flow, if lowering was successful, empty
6059 /// SDValue otherwise.
6060 ///
6061 /// The function tries to replace 'llvm.memset' intrinsic with several store
6062 /// operations and value calculation code. This is usually profitable for small
6063 /// memory size.
6064 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6065                                SDValue Chain, SDValue Dst, SDValue Src,
6066                                uint64_t Size, unsigned Align, bool isVol,
6067                                MachinePointerInfo DstPtrInfo) {
6068   // Turn a memset of undef to nop.
6069   if (Src.isUndef())
6070     return Chain;
6071 
6072   // Expand memset to a series of load/store ops if the size operand
6073   // falls below a certain threshold.
6074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6075   std::vector<EVT> MemOps;
6076   bool DstAlignCanChange = false;
6077   MachineFunction &MF = DAG.getMachineFunction();
6078   MachineFrameInfo &MFI = MF.getFrameInfo();
6079   bool OptSize = shouldLowerMemFuncForSize(MF);
6080   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6081   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6082     DstAlignCanChange = true;
6083   bool IsZeroVal =
6084     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6085   if (!TLI.findOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
6086                                     Size, (DstAlignCanChange ? 0 : Align), 0,
6087                                     true, IsZeroVal, false, true,
6088                                     DstPtrInfo.getAddrSpace(), ~0u,
6089                                     MF.getFunction().getAttributes()))
6090     return SDValue();
6091 
6092   if (DstAlignCanChange) {
6093     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6094     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6095     if (NewAlign > Align) {
6096       // Give the stack frame object a larger alignment if needed.
6097       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6098         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6099       Align = NewAlign;
6100     }
6101   }
6102 
6103   SmallVector<SDValue, 8> OutChains;
6104   uint64_t DstOff = 0;
6105   unsigned NumMemOps = MemOps.size();
6106 
6107   // Find the largest store and generate the bit pattern for it.
6108   EVT LargestVT = MemOps[0];
6109   for (unsigned i = 1; i < NumMemOps; i++)
6110     if (MemOps[i].bitsGT(LargestVT))
6111       LargestVT = MemOps[i];
6112   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6113 
6114   for (unsigned i = 0; i < NumMemOps; i++) {
6115     EVT VT = MemOps[i];
6116     unsigned VTSize = VT.getSizeInBits() / 8;
6117     if (VTSize > Size) {
6118       // Issuing an unaligned load / store pair  that overlaps with the previous
6119       // pair. Adjust the offset accordingly.
6120       assert(i == NumMemOps-1 && i != 0);
6121       DstOff -= VTSize - Size;
6122     }
6123 
6124     // If this store is smaller than the largest store see whether we can get
6125     // the smaller value for free with a truncate.
6126     SDValue Value = MemSetValue;
6127     if (VT.bitsLT(LargestVT)) {
6128       if (!LargestVT.isVector() && !VT.isVector() &&
6129           TLI.isTruncateFree(LargestVT, VT))
6130         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6131       else
6132         Value = getMemsetValue(Src, VT, DAG, dl);
6133     }
6134     assert(Value.getValueType() == VT && "Value with wrong type.");
6135     SDValue Store = DAG.getStore(
6136         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6137         DstPtrInfo.getWithOffset(DstOff), Align,
6138         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6139     OutChains.push_back(Store);
6140     DstOff += VT.getSizeInBits() / 8;
6141     Size -= VTSize;
6142   }
6143 
6144   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6145 }
6146 
6147 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6148                                             unsigned AS) {
6149   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6150   // pointer operands can be losslessly bitcasted to pointers of address space 0
6151   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6152     report_fatal_error("cannot lower memory intrinsic in address space " +
6153                        Twine(AS));
6154   }
6155 }
6156 
6157 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6158                                 SDValue Src, SDValue Size, unsigned Align,
6159                                 bool isVol, bool AlwaysInline, bool isTailCall,
6160                                 MachinePointerInfo DstPtrInfo,
6161                                 MachinePointerInfo SrcPtrInfo) {
6162   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6163 
6164   // Check to see if we should lower the memcpy to loads and stores first.
6165   // For cases within the target-specified limits, this is the best choice.
6166   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6167   if (ConstantSize) {
6168     // Memcpy with size zero? Just return the original chain.
6169     if (ConstantSize->isNullValue())
6170       return Chain;
6171 
6172     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6173                                              ConstantSize->getZExtValue(),Align,
6174                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6175     if (Result.getNode())
6176       return Result;
6177   }
6178 
6179   // Then check to see if we should lower the memcpy with target-specific
6180   // code. If the target chooses to do this, this is the next best.
6181   if (TSI) {
6182     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6183         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6184         DstPtrInfo, SrcPtrInfo);
6185     if (Result.getNode())
6186       return Result;
6187   }
6188 
6189   // If we really need inline code and the target declined to provide it,
6190   // use a (potentially long) sequence of loads and stores.
6191   if (AlwaysInline) {
6192     assert(ConstantSize && "AlwaysInline requires a constant size!");
6193     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6194                                    ConstantSize->getZExtValue(), Align, isVol,
6195                                    true, DstPtrInfo, SrcPtrInfo);
6196   }
6197 
6198   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6199   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6200 
6201   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6202   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6203   // respect volatile, so they may do things like read or write memory
6204   // beyond the given memory regions. But fixing this isn't easy, and most
6205   // people don't care.
6206 
6207   // Emit a library call.
6208   TargetLowering::ArgListTy Args;
6209   TargetLowering::ArgListEntry Entry;
6210   Entry.Ty = Type::getInt8PtrTy(*getContext());
6211   Entry.Node = Dst; Args.push_back(Entry);
6212   Entry.Node = Src; Args.push_back(Entry);
6213 
6214   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6215   Entry.Node = Size; Args.push_back(Entry);
6216   // FIXME: pass in SDLoc
6217   TargetLowering::CallLoweringInfo CLI(*this);
6218   CLI.setDebugLoc(dl)
6219       .setChain(Chain)
6220       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6221                     Dst.getValueType().getTypeForEVT(*getContext()),
6222                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6223                                       TLI->getPointerTy(getDataLayout())),
6224                     std::move(Args))
6225       .setDiscardResult()
6226       .setTailCall(isTailCall);
6227 
6228   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6229   return CallResult.second;
6230 }
6231 
6232 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6233                                       SDValue Dst, unsigned DstAlign,
6234                                       SDValue Src, unsigned SrcAlign,
6235                                       SDValue Size, Type *SizeTy,
6236                                       unsigned ElemSz, bool isTailCall,
6237                                       MachinePointerInfo DstPtrInfo,
6238                                       MachinePointerInfo SrcPtrInfo) {
6239   // Emit a library call.
6240   TargetLowering::ArgListTy Args;
6241   TargetLowering::ArgListEntry Entry;
6242   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6243   Entry.Node = Dst;
6244   Args.push_back(Entry);
6245 
6246   Entry.Node = Src;
6247   Args.push_back(Entry);
6248 
6249   Entry.Ty = SizeTy;
6250   Entry.Node = Size;
6251   Args.push_back(Entry);
6252 
6253   RTLIB::Libcall LibraryCall =
6254       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6255   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6256     report_fatal_error("Unsupported element size");
6257 
6258   TargetLowering::CallLoweringInfo CLI(*this);
6259   CLI.setDebugLoc(dl)
6260       .setChain(Chain)
6261       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6262                     Type::getVoidTy(*getContext()),
6263                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6264                                       TLI->getPointerTy(getDataLayout())),
6265                     std::move(Args))
6266       .setDiscardResult()
6267       .setTailCall(isTailCall);
6268 
6269   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6270   return CallResult.second;
6271 }
6272 
6273 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6274                                  SDValue Src, SDValue Size, unsigned Align,
6275                                  bool isVol, bool isTailCall,
6276                                  MachinePointerInfo DstPtrInfo,
6277                                  MachinePointerInfo SrcPtrInfo) {
6278   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6279 
6280   // Check to see if we should lower the memmove to loads and stores first.
6281   // For cases within the target-specified limits, this is the best choice.
6282   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6283   if (ConstantSize) {
6284     // Memmove with size zero? Just return the original chain.
6285     if (ConstantSize->isNullValue())
6286       return Chain;
6287 
6288     SDValue Result =
6289       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6290                                ConstantSize->getZExtValue(), Align, isVol,
6291                                false, DstPtrInfo, SrcPtrInfo);
6292     if (Result.getNode())
6293       return Result;
6294   }
6295 
6296   // Then check to see if we should lower the memmove with target-specific
6297   // code. If the target chooses to do this, this is the next best.
6298   if (TSI) {
6299     SDValue Result = TSI->EmitTargetCodeForMemmove(
6300         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6301     if (Result.getNode())
6302       return Result;
6303   }
6304 
6305   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6306   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6307 
6308   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6309   // not be safe.  See memcpy above for more details.
6310 
6311   // Emit a library call.
6312   TargetLowering::ArgListTy Args;
6313   TargetLowering::ArgListEntry Entry;
6314   Entry.Ty = Type::getInt8PtrTy(*getContext());
6315   Entry.Node = Dst; Args.push_back(Entry);
6316   Entry.Node = Src; Args.push_back(Entry);
6317 
6318   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6319   Entry.Node = Size; Args.push_back(Entry);
6320   // FIXME:  pass in SDLoc
6321   TargetLowering::CallLoweringInfo CLI(*this);
6322   CLI.setDebugLoc(dl)
6323       .setChain(Chain)
6324       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6325                     Dst.getValueType().getTypeForEVT(*getContext()),
6326                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6327                                       TLI->getPointerTy(getDataLayout())),
6328                     std::move(Args))
6329       .setDiscardResult()
6330       .setTailCall(isTailCall);
6331 
6332   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6333   return CallResult.second;
6334 }
6335 
6336 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6337                                        SDValue Dst, unsigned DstAlign,
6338                                        SDValue Src, unsigned SrcAlign,
6339                                        SDValue Size, Type *SizeTy,
6340                                        unsigned ElemSz, bool isTailCall,
6341                                        MachinePointerInfo DstPtrInfo,
6342                                        MachinePointerInfo SrcPtrInfo) {
6343   // Emit a library call.
6344   TargetLowering::ArgListTy Args;
6345   TargetLowering::ArgListEntry Entry;
6346   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6347   Entry.Node = Dst;
6348   Args.push_back(Entry);
6349 
6350   Entry.Node = Src;
6351   Args.push_back(Entry);
6352 
6353   Entry.Ty = SizeTy;
6354   Entry.Node = Size;
6355   Args.push_back(Entry);
6356 
6357   RTLIB::Libcall LibraryCall =
6358       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6359   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6360     report_fatal_error("Unsupported element size");
6361 
6362   TargetLowering::CallLoweringInfo CLI(*this);
6363   CLI.setDebugLoc(dl)
6364       .setChain(Chain)
6365       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6366                     Type::getVoidTy(*getContext()),
6367                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6368                                       TLI->getPointerTy(getDataLayout())),
6369                     std::move(Args))
6370       .setDiscardResult()
6371       .setTailCall(isTailCall);
6372 
6373   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6374   return CallResult.second;
6375 }
6376 
6377 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6378                                 SDValue Src, SDValue Size, unsigned Align,
6379                                 bool isVol, bool isTailCall,
6380                                 MachinePointerInfo DstPtrInfo) {
6381   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6382 
6383   // Check to see if we should lower the memset to stores first.
6384   // For cases within the target-specified limits, this is the best choice.
6385   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6386   if (ConstantSize) {
6387     // Memset with size zero? Just return the original chain.
6388     if (ConstantSize->isNullValue())
6389       return Chain;
6390 
6391     SDValue Result =
6392       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6393                       Align, isVol, DstPtrInfo);
6394 
6395     if (Result.getNode())
6396       return Result;
6397   }
6398 
6399   // Then check to see if we should lower the memset with target-specific
6400   // code. If the target chooses to do this, this is the next best.
6401   if (TSI) {
6402     SDValue Result = TSI->EmitTargetCodeForMemset(
6403         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6404     if (Result.getNode())
6405       return Result;
6406   }
6407 
6408   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6409 
6410   // Emit a library call.
6411   TargetLowering::ArgListTy Args;
6412   TargetLowering::ArgListEntry Entry;
6413   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6414   Args.push_back(Entry);
6415   Entry.Node = Src;
6416   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6417   Args.push_back(Entry);
6418   Entry.Node = Size;
6419   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6420   Args.push_back(Entry);
6421 
6422   // FIXME: pass in SDLoc
6423   TargetLowering::CallLoweringInfo CLI(*this);
6424   CLI.setDebugLoc(dl)
6425       .setChain(Chain)
6426       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6427                     Dst.getValueType().getTypeForEVT(*getContext()),
6428                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6429                                       TLI->getPointerTy(getDataLayout())),
6430                     std::move(Args))
6431       .setDiscardResult()
6432       .setTailCall(isTailCall);
6433 
6434   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6435   return CallResult.second;
6436 }
6437 
6438 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6439                                       SDValue Dst, unsigned DstAlign,
6440                                       SDValue Value, SDValue Size, Type *SizeTy,
6441                                       unsigned ElemSz, bool isTailCall,
6442                                       MachinePointerInfo DstPtrInfo) {
6443   // Emit a library call.
6444   TargetLowering::ArgListTy Args;
6445   TargetLowering::ArgListEntry Entry;
6446   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6447   Entry.Node = Dst;
6448   Args.push_back(Entry);
6449 
6450   Entry.Ty = Type::getInt8Ty(*getContext());
6451   Entry.Node = Value;
6452   Args.push_back(Entry);
6453 
6454   Entry.Ty = SizeTy;
6455   Entry.Node = Size;
6456   Args.push_back(Entry);
6457 
6458   RTLIB::Libcall LibraryCall =
6459       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6460   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6461     report_fatal_error("Unsupported element size");
6462 
6463   TargetLowering::CallLoweringInfo CLI(*this);
6464   CLI.setDebugLoc(dl)
6465       .setChain(Chain)
6466       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6467                     Type::getVoidTy(*getContext()),
6468                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6469                                       TLI->getPointerTy(getDataLayout())),
6470                     std::move(Args))
6471       .setDiscardResult()
6472       .setTailCall(isTailCall);
6473 
6474   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6475   return CallResult.second;
6476 }
6477 
6478 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6479                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6480                                 MachineMemOperand *MMO) {
6481   FoldingSetNodeID ID;
6482   ID.AddInteger(MemVT.getRawBits());
6483   AddNodeIDNode(ID, Opcode, VTList, Ops);
6484   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6485   void* IP = nullptr;
6486   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6487     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6488     return SDValue(E, 0);
6489   }
6490 
6491   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6492                                     VTList, MemVT, MMO);
6493   createOperands(N, Ops);
6494 
6495   CSEMap.InsertNode(N, IP);
6496   InsertNode(N);
6497   return SDValue(N, 0);
6498 }
6499 
6500 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6501                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6502                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6503                                        MachineMemOperand *MMO) {
6504   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6505          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6506   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6507 
6508   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6509   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6510 }
6511 
6512 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6513                                 SDValue Chain, SDValue Ptr, SDValue Val,
6514                                 MachineMemOperand *MMO) {
6515   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6516           Opcode == ISD::ATOMIC_LOAD_SUB ||
6517           Opcode == ISD::ATOMIC_LOAD_AND ||
6518           Opcode == ISD::ATOMIC_LOAD_CLR ||
6519           Opcode == ISD::ATOMIC_LOAD_OR ||
6520           Opcode == ISD::ATOMIC_LOAD_XOR ||
6521           Opcode == ISD::ATOMIC_LOAD_NAND ||
6522           Opcode == ISD::ATOMIC_LOAD_MIN ||
6523           Opcode == ISD::ATOMIC_LOAD_MAX ||
6524           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6525           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6526           Opcode == ISD::ATOMIC_LOAD_FADD ||
6527           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6528           Opcode == ISD::ATOMIC_SWAP ||
6529           Opcode == ISD::ATOMIC_STORE) &&
6530          "Invalid Atomic Op");
6531 
6532   EVT VT = Val.getValueType();
6533 
6534   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6535                                                getVTList(VT, MVT::Other);
6536   SDValue Ops[] = {Chain, Ptr, Val};
6537   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6538 }
6539 
6540 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6541                                 EVT VT, SDValue Chain, SDValue Ptr,
6542                                 MachineMemOperand *MMO) {
6543   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6544 
6545   SDVTList VTs = getVTList(VT, MVT::Other);
6546   SDValue Ops[] = {Chain, Ptr};
6547   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6548 }
6549 
6550 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6551 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6552   if (Ops.size() == 1)
6553     return Ops[0];
6554 
6555   SmallVector<EVT, 4> VTs;
6556   VTs.reserve(Ops.size());
6557   for (unsigned i = 0; i < Ops.size(); ++i)
6558     VTs.push_back(Ops[i].getValueType());
6559   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6560 }
6561 
6562 SDValue SelectionDAG::getMemIntrinsicNode(
6563     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6564     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6565     MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) {
6566   if (Align == 0)  // Ensure that codegen never sees alignment 0
6567     Align = getEVTAlignment(MemVT);
6568 
6569   if (!Size)
6570     Size = MemVT.getStoreSize();
6571 
6572   MachineFunction &MF = getMachineFunction();
6573   MachineMemOperand *MMO =
6574       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6575 
6576   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6577 }
6578 
6579 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6580                                           SDVTList VTList,
6581                                           ArrayRef<SDValue> Ops, EVT MemVT,
6582                                           MachineMemOperand *MMO) {
6583   assert((Opcode == ISD::INTRINSIC_VOID ||
6584           Opcode == ISD::INTRINSIC_W_CHAIN ||
6585           Opcode == ISD::PREFETCH ||
6586           Opcode == ISD::LIFETIME_START ||
6587           Opcode == ISD::LIFETIME_END ||
6588           ((int)Opcode <= std::numeric_limits<int>::max() &&
6589            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6590          "Opcode is not a memory-accessing opcode!");
6591 
6592   // Memoize the node unless it returns a flag.
6593   MemIntrinsicSDNode *N;
6594   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6595     FoldingSetNodeID ID;
6596     AddNodeIDNode(ID, Opcode, VTList, Ops);
6597     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6598         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6599     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6600     void *IP = nullptr;
6601     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6602       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6603       return SDValue(E, 0);
6604     }
6605 
6606     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6607                                       VTList, MemVT, MMO);
6608     createOperands(N, Ops);
6609 
6610   CSEMap.InsertNode(N, IP);
6611   } else {
6612     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6613                                       VTList, MemVT, MMO);
6614     createOperands(N, Ops);
6615   }
6616   InsertNode(N);
6617   return SDValue(N, 0);
6618 }
6619 
6620 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6621                                       SDValue Chain, int FrameIndex,
6622                                       int64_t Size, int64_t Offset) {
6623   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6624   const auto VTs = getVTList(MVT::Other);
6625   SDValue Ops[2] = {
6626       Chain,
6627       getFrameIndex(FrameIndex,
6628                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6629                     true)};
6630 
6631   FoldingSetNodeID ID;
6632   AddNodeIDNode(ID, Opcode, VTs, Ops);
6633   ID.AddInteger(FrameIndex);
6634   ID.AddInteger(Size);
6635   ID.AddInteger(Offset);
6636   void *IP = nullptr;
6637   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6638     return SDValue(E, 0);
6639 
6640   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6641       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6642   createOperands(N, Ops);
6643   CSEMap.InsertNode(N, IP);
6644   InsertNode(N);
6645   SDValue V(N, 0);
6646   NewSDValueDbgMsg(V, "Creating new node: ", this);
6647   return V;
6648 }
6649 
6650 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6651 /// MachinePointerInfo record from it.  This is particularly useful because the
6652 /// code generator has many cases where it doesn't bother passing in a
6653 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6654 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6655                                            SelectionDAG &DAG, SDValue Ptr,
6656                                            int64_t Offset = 0) {
6657   // If this is FI+Offset, we can model it.
6658   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6659     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6660                                              FI->getIndex(), Offset);
6661 
6662   // If this is (FI+Offset1)+Offset2, we can model it.
6663   if (Ptr.getOpcode() != ISD::ADD ||
6664       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6665       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6666     return Info;
6667 
6668   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6669   return MachinePointerInfo::getFixedStack(
6670       DAG.getMachineFunction(), FI,
6671       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6672 }
6673 
6674 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6675 /// MachinePointerInfo record from it.  This is particularly useful because the
6676 /// code generator has many cases where it doesn't bother passing in a
6677 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6678 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6679                                            SelectionDAG &DAG, SDValue Ptr,
6680                                            SDValue OffsetOp) {
6681   // If the 'Offset' value isn't a constant, we can't handle this.
6682   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6683     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6684   if (OffsetOp.isUndef())
6685     return InferPointerInfo(Info, DAG, Ptr);
6686   return Info;
6687 }
6688 
6689 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6690                               EVT VT, const SDLoc &dl, SDValue Chain,
6691                               SDValue Ptr, SDValue Offset,
6692                               MachinePointerInfo PtrInfo, EVT MemVT,
6693                               unsigned Alignment,
6694                               MachineMemOperand::Flags MMOFlags,
6695                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6696   assert(Chain.getValueType() == MVT::Other &&
6697         "Invalid chain type");
6698   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6699     Alignment = getEVTAlignment(MemVT);
6700 
6701   MMOFlags |= MachineMemOperand::MOLoad;
6702   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6703   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6704   // clients.
6705   if (PtrInfo.V.isNull())
6706     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6707 
6708   MachineFunction &MF = getMachineFunction();
6709   MachineMemOperand *MMO = MF.getMachineMemOperand(
6710       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6711   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6712 }
6713 
6714 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6715                               EVT VT, const SDLoc &dl, SDValue Chain,
6716                               SDValue Ptr, SDValue Offset, EVT MemVT,
6717                               MachineMemOperand *MMO) {
6718   if (VT == MemVT) {
6719     ExtType = ISD::NON_EXTLOAD;
6720   } else if (ExtType == ISD::NON_EXTLOAD) {
6721     assert(VT == MemVT && "Non-extending load from different memory type!");
6722   } else {
6723     // Extending load.
6724     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6725            "Should only be an extending load, not truncating!");
6726     assert(VT.isInteger() == MemVT.isInteger() &&
6727            "Cannot convert from FP to Int or Int -> FP!");
6728     assert(VT.isVector() == MemVT.isVector() &&
6729            "Cannot use an ext load to convert to or from a vector!");
6730     assert((!VT.isVector() ||
6731             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6732            "Cannot use an ext load to change the number of vector elements!");
6733   }
6734 
6735   bool Indexed = AM != ISD::UNINDEXED;
6736   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6737 
6738   SDVTList VTs = Indexed ?
6739     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6740   SDValue Ops[] = { Chain, Ptr, Offset };
6741   FoldingSetNodeID ID;
6742   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6743   ID.AddInteger(MemVT.getRawBits());
6744   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6745       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6746   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6747   void *IP = nullptr;
6748   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6749     cast<LoadSDNode>(E)->refineAlignment(MMO);
6750     return SDValue(E, 0);
6751   }
6752   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6753                                   ExtType, MemVT, MMO);
6754   createOperands(N, Ops);
6755 
6756   CSEMap.InsertNode(N, IP);
6757   InsertNode(N);
6758   SDValue V(N, 0);
6759   NewSDValueDbgMsg(V, "Creating new node: ", this);
6760   return V;
6761 }
6762 
6763 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6764                               SDValue Ptr, MachinePointerInfo PtrInfo,
6765                               unsigned Alignment,
6766                               MachineMemOperand::Flags MMOFlags,
6767                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6768   SDValue Undef = getUNDEF(Ptr.getValueType());
6769   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6770                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6771 }
6772 
6773 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6774                               SDValue Ptr, MachineMemOperand *MMO) {
6775   SDValue Undef = getUNDEF(Ptr.getValueType());
6776   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6777                  VT, MMO);
6778 }
6779 
6780 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6781                                  EVT VT, SDValue Chain, SDValue Ptr,
6782                                  MachinePointerInfo PtrInfo, EVT MemVT,
6783                                  unsigned Alignment,
6784                                  MachineMemOperand::Flags MMOFlags,
6785                                  const AAMDNodes &AAInfo) {
6786   SDValue Undef = getUNDEF(Ptr.getValueType());
6787   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6788                  MemVT, Alignment, MMOFlags, AAInfo);
6789 }
6790 
6791 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6792                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6793                                  MachineMemOperand *MMO) {
6794   SDValue Undef = getUNDEF(Ptr.getValueType());
6795   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6796                  MemVT, MMO);
6797 }
6798 
6799 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6800                                      SDValue Base, SDValue Offset,
6801                                      ISD::MemIndexedMode AM) {
6802   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6803   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6804   // Don't propagate the invariant or dereferenceable flags.
6805   auto MMOFlags =
6806       LD->getMemOperand()->getFlags() &
6807       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6808   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6809                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6810                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6811                  LD->getAAInfo());
6812 }
6813 
6814 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6815                                SDValue Ptr, MachinePointerInfo PtrInfo,
6816                                unsigned Alignment,
6817                                MachineMemOperand::Flags MMOFlags,
6818                                const AAMDNodes &AAInfo) {
6819   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6820   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6821     Alignment = getEVTAlignment(Val.getValueType());
6822 
6823   MMOFlags |= MachineMemOperand::MOStore;
6824   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6825 
6826   if (PtrInfo.V.isNull())
6827     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6828 
6829   MachineFunction &MF = getMachineFunction();
6830   MachineMemOperand *MMO = MF.getMachineMemOperand(
6831       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6832   return getStore(Chain, dl, Val, Ptr, MMO);
6833 }
6834 
6835 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6836                                SDValue Ptr, MachineMemOperand *MMO) {
6837   assert(Chain.getValueType() == MVT::Other &&
6838         "Invalid chain type");
6839   EVT VT = Val.getValueType();
6840   SDVTList VTs = getVTList(MVT::Other);
6841   SDValue Undef = getUNDEF(Ptr.getValueType());
6842   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6843   FoldingSetNodeID ID;
6844   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6845   ID.AddInteger(VT.getRawBits());
6846   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6847       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6848   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6849   void *IP = nullptr;
6850   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6851     cast<StoreSDNode>(E)->refineAlignment(MMO);
6852     return SDValue(E, 0);
6853   }
6854   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6855                                    ISD::UNINDEXED, false, VT, MMO);
6856   createOperands(N, Ops);
6857 
6858   CSEMap.InsertNode(N, IP);
6859   InsertNode(N);
6860   SDValue V(N, 0);
6861   NewSDValueDbgMsg(V, "Creating new node: ", this);
6862   return V;
6863 }
6864 
6865 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6866                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6867                                     EVT SVT, unsigned Alignment,
6868                                     MachineMemOperand::Flags MMOFlags,
6869                                     const AAMDNodes &AAInfo) {
6870   assert(Chain.getValueType() == MVT::Other &&
6871         "Invalid chain type");
6872   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6873     Alignment = getEVTAlignment(SVT);
6874 
6875   MMOFlags |= MachineMemOperand::MOStore;
6876   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6877 
6878   if (PtrInfo.V.isNull())
6879     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6880 
6881   MachineFunction &MF = getMachineFunction();
6882   MachineMemOperand *MMO = MF.getMachineMemOperand(
6883       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6884   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6885 }
6886 
6887 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6888                                     SDValue Ptr, EVT SVT,
6889                                     MachineMemOperand *MMO) {
6890   EVT VT = Val.getValueType();
6891 
6892   assert(Chain.getValueType() == MVT::Other &&
6893         "Invalid chain type");
6894   if (VT == SVT)
6895     return getStore(Chain, dl, Val, Ptr, MMO);
6896 
6897   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6898          "Should only be a truncating store, not extending!");
6899   assert(VT.isInteger() == SVT.isInteger() &&
6900          "Can't do FP-INT conversion!");
6901   assert(VT.isVector() == SVT.isVector() &&
6902          "Cannot use trunc store to convert to or from a vector!");
6903   assert((!VT.isVector() ||
6904           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6905          "Cannot use trunc store to change the number of vector elements!");
6906 
6907   SDVTList VTs = getVTList(MVT::Other);
6908   SDValue Undef = getUNDEF(Ptr.getValueType());
6909   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6910   FoldingSetNodeID ID;
6911   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6912   ID.AddInteger(SVT.getRawBits());
6913   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6914       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6915   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6916   void *IP = nullptr;
6917   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6918     cast<StoreSDNode>(E)->refineAlignment(MMO);
6919     return SDValue(E, 0);
6920   }
6921   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6922                                    ISD::UNINDEXED, true, SVT, MMO);
6923   createOperands(N, Ops);
6924 
6925   CSEMap.InsertNode(N, IP);
6926   InsertNode(N);
6927   SDValue V(N, 0);
6928   NewSDValueDbgMsg(V, "Creating new node: ", this);
6929   return V;
6930 }
6931 
6932 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6933                                       SDValue Base, SDValue Offset,
6934                                       ISD::MemIndexedMode AM) {
6935   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6936   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6937   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6938   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6939   FoldingSetNodeID ID;
6940   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6941   ID.AddInteger(ST->getMemoryVT().getRawBits());
6942   ID.AddInteger(ST->getRawSubclassData());
6943   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6944   void *IP = nullptr;
6945   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6946     return SDValue(E, 0);
6947 
6948   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6949                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6950                                    ST->getMemOperand());
6951   createOperands(N, Ops);
6952 
6953   CSEMap.InsertNode(N, IP);
6954   InsertNode(N);
6955   SDValue V(N, 0);
6956   NewSDValueDbgMsg(V, "Creating new node: ", this);
6957   return V;
6958 }
6959 
6960 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6961                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6962                                     EVT MemVT, MachineMemOperand *MMO,
6963                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6964   SDVTList VTs = getVTList(VT, MVT::Other);
6965   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6966   FoldingSetNodeID ID;
6967   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6968   ID.AddInteger(MemVT.getRawBits());
6969   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6970       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6971   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6972   void *IP = nullptr;
6973   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6974     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6975     return SDValue(E, 0);
6976   }
6977   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6978                                         ExtTy, isExpanding, MemVT, MMO);
6979   createOperands(N, Ops);
6980 
6981   CSEMap.InsertNode(N, IP);
6982   InsertNode(N);
6983   SDValue V(N, 0);
6984   NewSDValueDbgMsg(V, "Creating new node: ", this);
6985   return V;
6986 }
6987 
6988 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6989                                      SDValue Val, SDValue Ptr, SDValue Mask,
6990                                      EVT MemVT, MachineMemOperand *MMO,
6991                                      bool IsTruncating, bool IsCompressing) {
6992   assert(Chain.getValueType() == MVT::Other &&
6993         "Invalid chain type");
6994   SDVTList VTs = getVTList(MVT::Other);
6995   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6996   FoldingSetNodeID ID;
6997   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6998   ID.AddInteger(MemVT.getRawBits());
6999   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7000       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
7001   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7002   void *IP = nullptr;
7003   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7004     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7005     return SDValue(E, 0);
7006   }
7007   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7008                                          IsTruncating, IsCompressing, MemVT, MMO);
7009   createOperands(N, Ops);
7010 
7011   CSEMap.InsertNode(N, IP);
7012   InsertNode(N);
7013   SDValue V(N, 0);
7014   NewSDValueDbgMsg(V, "Creating new node: ", this);
7015   return V;
7016 }
7017 
7018 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7019                                       ArrayRef<SDValue> Ops,
7020                                       MachineMemOperand *MMO) {
7021   assert(Ops.size() == 6 && "Incompatible number of operands");
7022 
7023   FoldingSetNodeID ID;
7024   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7025   ID.AddInteger(VT.getRawBits());
7026   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7027       dl.getIROrder(), VTs, VT, MMO));
7028   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7029   void *IP = nullptr;
7030   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7031     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7032     return SDValue(E, 0);
7033   }
7034 
7035   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7036                                           VTs, VT, MMO);
7037   createOperands(N, Ops);
7038 
7039   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7040          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7041   assert(N->getMask().getValueType().getVectorNumElements() ==
7042              N->getValueType(0).getVectorNumElements() &&
7043          "Vector width mismatch between mask and data");
7044   assert(N->getIndex().getValueType().getVectorNumElements() >=
7045              N->getValueType(0).getVectorNumElements() &&
7046          "Vector width mismatch between index and data");
7047   assert(isa<ConstantSDNode>(N->getScale()) &&
7048          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7049          "Scale should be a constant power of 2");
7050 
7051   CSEMap.InsertNode(N, IP);
7052   InsertNode(N);
7053   SDValue V(N, 0);
7054   NewSDValueDbgMsg(V, "Creating new node: ", this);
7055   return V;
7056 }
7057 
7058 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7059                                        ArrayRef<SDValue> Ops,
7060                                        MachineMemOperand *MMO) {
7061   assert(Ops.size() == 6 && "Incompatible number of operands");
7062 
7063   FoldingSetNodeID ID;
7064   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7065   ID.AddInteger(VT.getRawBits());
7066   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7067       dl.getIROrder(), VTs, VT, MMO));
7068   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7069   void *IP = nullptr;
7070   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7071     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7072     return SDValue(E, 0);
7073   }
7074   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7075                                            VTs, VT, MMO);
7076   createOperands(N, Ops);
7077 
7078   assert(N->getMask().getValueType().getVectorNumElements() ==
7079              N->getValue().getValueType().getVectorNumElements() &&
7080          "Vector width mismatch between mask and data");
7081   assert(N->getIndex().getValueType().getVectorNumElements() >=
7082              N->getValue().getValueType().getVectorNumElements() &&
7083          "Vector width mismatch between index and data");
7084   assert(isa<ConstantSDNode>(N->getScale()) &&
7085          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7086          "Scale should be a constant power of 2");
7087 
7088   CSEMap.InsertNode(N, IP);
7089   InsertNode(N);
7090   SDValue V(N, 0);
7091   NewSDValueDbgMsg(V, "Creating new node: ", this);
7092   return V;
7093 }
7094 
7095 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7096   // select undef, T, F --> T (if T is a constant), otherwise F
7097   // select, ?, undef, F --> F
7098   // select, ?, T, undef --> T
7099   if (Cond.isUndef())
7100     return isConstantValueOfAnyType(T) ? T : F;
7101   if (T.isUndef())
7102     return F;
7103   if (F.isUndef())
7104     return T;
7105 
7106   // select true, T, F --> T
7107   // select false, T, F --> F
7108   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7109     return CondC->isNullValue() ? F : T;
7110 
7111   // TODO: This should simplify VSELECT with constant condition using something
7112   // like this (but check boolean contents to be complete?):
7113   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7114   //    return T;
7115   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7116   //    return F;
7117 
7118   // select ?, T, T --> T
7119   if (T == F)
7120     return T;
7121 
7122   return SDValue();
7123 }
7124 
7125 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7126   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7127   if (X.isUndef())
7128     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7129   // shift X, undef --> undef (because it may shift by the bitwidth)
7130   if (Y.isUndef())
7131     return getUNDEF(X.getValueType());
7132 
7133   // shift 0, Y --> 0
7134   // shift X, 0 --> X
7135   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7136     return X;
7137 
7138   // shift X, C >= bitwidth(X) --> undef
7139   // All vector elements must be too big (or undef) to avoid partial undefs.
7140   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7141     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7142   };
7143   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7144     return getUNDEF(X.getValueType());
7145 
7146   return SDValue();
7147 }
7148 
7149 // TODO: Use fast-math-flags to enable more simplifications.
7150 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7151   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7152   if (!YC)
7153     return SDValue();
7154 
7155   // X + -0.0 --> X
7156   if (Opcode == ISD::FADD)
7157     if (YC->getValueAPF().isNegZero())
7158       return X;
7159 
7160   // X - +0.0 --> X
7161   if (Opcode == ISD::FSUB)
7162     if (YC->getValueAPF().isPosZero())
7163       return X;
7164 
7165   // X * 1.0 --> X
7166   // X / 1.0 --> X
7167   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7168     if (YC->getValueAPF().isExactlyValue(1.0))
7169       return X;
7170 
7171   return SDValue();
7172 }
7173 
7174 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7175                                SDValue Ptr, SDValue SV, unsigned Align) {
7176   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7177   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7178 }
7179 
7180 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7181                               ArrayRef<SDUse> Ops) {
7182   switch (Ops.size()) {
7183   case 0: return getNode(Opcode, DL, VT);
7184   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7185   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7186   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7187   default: break;
7188   }
7189 
7190   // Copy from an SDUse array into an SDValue array for use with
7191   // the regular getNode logic.
7192   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7193   return getNode(Opcode, DL, VT, NewOps);
7194 }
7195 
7196 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7197                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7198   unsigned NumOps = Ops.size();
7199   switch (NumOps) {
7200   case 0: return getNode(Opcode, DL, VT);
7201   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7202   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7203   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7204   default: break;
7205   }
7206 
7207   switch (Opcode) {
7208   default: break;
7209   case ISD::BUILD_VECTOR:
7210     // Attempt to simplify BUILD_VECTOR.
7211     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7212       return V;
7213     break;
7214   case ISD::CONCAT_VECTORS:
7215     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7216       return V;
7217     break;
7218   case ISD::SELECT_CC:
7219     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7220     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7221            "LHS and RHS of condition must have same type!");
7222     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7223            "True and False arms of SelectCC must have same type!");
7224     assert(Ops[2].getValueType() == VT &&
7225            "select_cc node must be of same type as true and false value!");
7226     break;
7227   case ISD::BR_CC:
7228     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7229     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7230            "LHS/RHS of comparison should match types!");
7231     break;
7232   }
7233 
7234   // Memoize nodes.
7235   SDNode *N;
7236   SDVTList VTs = getVTList(VT);
7237 
7238   if (VT != MVT::Glue) {
7239     FoldingSetNodeID ID;
7240     AddNodeIDNode(ID, Opcode, VTs, Ops);
7241     void *IP = nullptr;
7242 
7243     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7244       return SDValue(E, 0);
7245 
7246     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7247     createOperands(N, Ops);
7248 
7249     CSEMap.InsertNode(N, IP);
7250   } else {
7251     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7252     createOperands(N, Ops);
7253   }
7254 
7255   InsertNode(N);
7256   SDValue V(N, 0);
7257   NewSDValueDbgMsg(V, "Creating new node: ", this);
7258   return V;
7259 }
7260 
7261 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7262                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7263   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7264 }
7265 
7266 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7267                               ArrayRef<SDValue> Ops) {
7268   if (VTList.NumVTs == 1)
7269     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7270 
7271 #if 0
7272   switch (Opcode) {
7273   // FIXME: figure out how to safely handle things like
7274   // int foo(int x) { return 1 << (x & 255); }
7275   // int bar() { return foo(256); }
7276   case ISD::SRA_PARTS:
7277   case ISD::SRL_PARTS:
7278   case ISD::SHL_PARTS:
7279     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7280         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7281       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7282     else if (N3.getOpcode() == ISD::AND)
7283       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7284         // If the and is only masking out bits that cannot effect the shift,
7285         // eliminate the and.
7286         unsigned NumBits = VT.getScalarSizeInBits()*2;
7287         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7288           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7289       }
7290     break;
7291   }
7292 #endif
7293 
7294   // Memoize the node unless it returns a flag.
7295   SDNode *N;
7296   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7297     FoldingSetNodeID ID;
7298     AddNodeIDNode(ID, Opcode, VTList, Ops);
7299     void *IP = nullptr;
7300     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7301       return SDValue(E, 0);
7302 
7303     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7304     createOperands(N, Ops);
7305     CSEMap.InsertNode(N, IP);
7306   } else {
7307     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7308     createOperands(N, Ops);
7309   }
7310   InsertNode(N);
7311   SDValue V(N, 0);
7312   NewSDValueDbgMsg(V, "Creating new node: ", this);
7313   return V;
7314 }
7315 
7316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7317                               SDVTList VTList) {
7318   return getNode(Opcode, DL, VTList, None);
7319 }
7320 
7321 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7322                               SDValue N1) {
7323   SDValue Ops[] = { N1 };
7324   return getNode(Opcode, DL, VTList, Ops);
7325 }
7326 
7327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7328                               SDValue N1, SDValue N2) {
7329   SDValue Ops[] = { N1, N2 };
7330   return getNode(Opcode, DL, VTList, Ops);
7331 }
7332 
7333 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7334                               SDValue N1, SDValue N2, SDValue N3) {
7335   SDValue Ops[] = { N1, N2, N3 };
7336   return getNode(Opcode, DL, VTList, Ops);
7337 }
7338 
7339 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7340                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7341   SDValue Ops[] = { N1, N2, N3, N4 };
7342   return getNode(Opcode, DL, VTList, Ops);
7343 }
7344 
7345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7346                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7347                               SDValue N5) {
7348   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7349   return getNode(Opcode, DL, VTList, Ops);
7350 }
7351 
7352 SDVTList SelectionDAG::getVTList(EVT VT) {
7353   return makeVTList(SDNode::getValueTypeList(VT), 1);
7354 }
7355 
7356 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7357   FoldingSetNodeID ID;
7358   ID.AddInteger(2U);
7359   ID.AddInteger(VT1.getRawBits());
7360   ID.AddInteger(VT2.getRawBits());
7361 
7362   void *IP = nullptr;
7363   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7364   if (!Result) {
7365     EVT *Array = Allocator.Allocate<EVT>(2);
7366     Array[0] = VT1;
7367     Array[1] = VT2;
7368     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7369     VTListMap.InsertNode(Result, IP);
7370   }
7371   return Result->getSDVTList();
7372 }
7373 
7374 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7375   FoldingSetNodeID ID;
7376   ID.AddInteger(3U);
7377   ID.AddInteger(VT1.getRawBits());
7378   ID.AddInteger(VT2.getRawBits());
7379   ID.AddInteger(VT3.getRawBits());
7380 
7381   void *IP = nullptr;
7382   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7383   if (!Result) {
7384     EVT *Array = Allocator.Allocate<EVT>(3);
7385     Array[0] = VT1;
7386     Array[1] = VT2;
7387     Array[2] = VT3;
7388     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7389     VTListMap.InsertNode(Result, IP);
7390   }
7391   return Result->getSDVTList();
7392 }
7393 
7394 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7395   FoldingSetNodeID ID;
7396   ID.AddInteger(4U);
7397   ID.AddInteger(VT1.getRawBits());
7398   ID.AddInteger(VT2.getRawBits());
7399   ID.AddInteger(VT3.getRawBits());
7400   ID.AddInteger(VT4.getRawBits());
7401 
7402   void *IP = nullptr;
7403   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7404   if (!Result) {
7405     EVT *Array = Allocator.Allocate<EVT>(4);
7406     Array[0] = VT1;
7407     Array[1] = VT2;
7408     Array[2] = VT3;
7409     Array[3] = VT4;
7410     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7411     VTListMap.InsertNode(Result, IP);
7412   }
7413   return Result->getSDVTList();
7414 }
7415 
7416 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7417   unsigned NumVTs = VTs.size();
7418   FoldingSetNodeID ID;
7419   ID.AddInteger(NumVTs);
7420   for (unsigned index = 0; index < NumVTs; index++) {
7421     ID.AddInteger(VTs[index].getRawBits());
7422   }
7423 
7424   void *IP = nullptr;
7425   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7426   if (!Result) {
7427     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7428     llvm::copy(VTs, Array);
7429     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7430     VTListMap.InsertNode(Result, IP);
7431   }
7432   return Result->getSDVTList();
7433 }
7434 
7435 
7436 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7437 /// specified operands.  If the resultant node already exists in the DAG,
7438 /// this does not modify the specified node, instead it returns the node that
7439 /// already exists.  If the resultant node does not exist in the DAG, the
7440 /// input node is returned.  As a degenerate case, if you specify the same
7441 /// input operands as the node already has, the input node is returned.
7442 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7443   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7444 
7445   // Check to see if there is no change.
7446   if (Op == N->getOperand(0)) return N;
7447 
7448   // See if the modified node already exists.
7449   void *InsertPos = nullptr;
7450   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7451     return Existing;
7452 
7453   // Nope it doesn't.  Remove the node from its current place in the maps.
7454   if (InsertPos)
7455     if (!RemoveNodeFromCSEMaps(N))
7456       InsertPos = nullptr;
7457 
7458   // Now we update the operands.
7459   N->OperandList[0].set(Op);
7460 
7461   updateDivergence(N);
7462   // If this gets put into a CSE map, add it.
7463   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7464   return N;
7465 }
7466 
7467 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7468   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7469 
7470   // Check to see if there is no change.
7471   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7472     return N;   // No operands changed, just return the input node.
7473 
7474   // See if the modified node already exists.
7475   void *InsertPos = nullptr;
7476   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7477     return Existing;
7478 
7479   // Nope it doesn't.  Remove the node from its current place in the maps.
7480   if (InsertPos)
7481     if (!RemoveNodeFromCSEMaps(N))
7482       InsertPos = nullptr;
7483 
7484   // Now we update the operands.
7485   if (N->OperandList[0] != Op1)
7486     N->OperandList[0].set(Op1);
7487   if (N->OperandList[1] != Op2)
7488     N->OperandList[1].set(Op2);
7489 
7490   updateDivergence(N);
7491   // If this gets put into a CSE map, add it.
7492   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7493   return N;
7494 }
7495 
7496 SDNode *SelectionDAG::
7497 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7498   SDValue Ops[] = { Op1, Op2, Op3 };
7499   return UpdateNodeOperands(N, Ops);
7500 }
7501 
7502 SDNode *SelectionDAG::
7503 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7504                    SDValue Op3, SDValue Op4) {
7505   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7506   return UpdateNodeOperands(N, Ops);
7507 }
7508 
7509 SDNode *SelectionDAG::
7510 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7511                    SDValue Op3, SDValue Op4, SDValue Op5) {
7512   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7513   return UpdateNodeOperands(N, Ops);
7514 }
7515 
7516 SDNode *SelectionDAG::
7517 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7518   unsigned NumOps = Ops.size();
7519   assert(N->getNumOperands() == NumOps &&
7520          "Update with wrong number of operands");
7521 
7522   // If no operands changed just return the input node.
7523   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7524     return N;
7525 
7526   // See if the modified node already exists.
7527   void *InsertPos = nullptr;
7528   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7529     return Existing;
7530 
7531   // Nope it doesn't.  Remove the node from its current place in the maps.
7532   if (InsertPos)
7533     if (!RemoveNodeFromCSEMaps(N))
7534       InsertPos = nullptr;
7535 
7536   // Now we update the operands.
7537   for (unsigned i = 0; i != NumOps; ++i)
7538     if (N->OperandList[i] != Ops[i])
7539       N->OperandList[i].set(Ops[i]);
7540 
7541   updateDivergence(N);
7542   // If this gets put into a CSE map, add it.
7543   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7544   return N;
7545 }
7546 
7547 /// DropOperands - Release the operands and set this node to have
7548 /// zero operands.
7549 void SDNode::DropOperands() {
7550   // Unlike the code in MorphNodeTo that does this, we don't need to
7551   // watch for dead nodes here.
7552   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7553     SDUse &Use = *I++;
7554     Use.set(SDValue());
7555   }
7556 }
7557 
7558 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7559                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7560   if (NewMemRefs.empty()) {
7561     N->clearMemRefs();
7562     return;
7563   }
7564 
7565   // Check if we can avoid allocating by storing a single reference directly.
7566   if (NewMemRefs.size() == 1) {
7567     N->MemRefs = NewMemRefs[0];
7568     N->NumMemRefs = 1;
7569     return;
7570   }
7571 
7572   MachineMemOperand **MemRefsBuffer =
7573       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7574   llvm::copy(NewMemRefs, MemRefsBuffer);
7575   N->MemRefs = MemRefsBuffer;
7576   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7577 }
7578 
7579 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7580 /// machine opcode.
7581 ///
7582 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7583                                    EVT VT) {
7584   SDVTList VTs = getVTList(VT);
7585   return SelectNodeTo(N, MachineOpc, VTs, None);
7586 }
7587 
7588 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7589                                    EVT VT, SDValue Op1) {
7590   SDVTList VTs = getVTList(VT);
7591   SDValue Ops[] = { Op1 };
7592   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7593 }
7594 
7595 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7596                                    EVT VT, SDValue Op1,
7597                                    SDValue Op2) {
7598   SDVTList VTs = getVTList(VT);
7599   SDValue Ops[] = { Op1, Op2 };
7600   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7601 }
7602 
7603 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7604                                    EVT VT, SDValue Op1,
7605                                    SDValue Op2, SDValue Op3) {
7606   SDVTList VTs = getVTList(VT);
7607   SDValue Ops[] = { Op1, Op2, Op3 };
7608   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7609 }
7610 
7611 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7612                                    EVT VT, ArrayRef<SDValue> Ops) {
7613   SDVTList VTs = getVTList(VT);
7614   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7615 }
7616 
7617 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7618                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7619   SDVTList VTs = getVTList(VT1, VT2);
7620   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7621 }
7622 
7623 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7624                                    EVT VT1, EVT VT2) {
7625   SDVTList VTs = getVTList(VT1, VT2);
7626   return SelectNodeTo(N, MachineOpc, VTs, None);
7627 }
7628 
7629 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7630                                    EVT VT1, EVT VT2, EVT VT3,
7631                                    ArrayRef<SDValue> Ops) {
7632   SDVTList VTs = getVTList(VT1, VT2, VT3);
7633   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7634 }
7635 
7636 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7637                                    EVT VT1, EVT VT2,
7638                                    SDValue Op1, SDValue Op2) {
7639   SDVTList VTs = getVTList(VT1, VT2);
7640   SDValue Ops[] = { Op1, Op2 };
7641   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7642 }
7643 
7644 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7645                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7646   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7647   // Reset the NodeID to -1.
7648   New->setNodeId(-1);
7649   if (New != N) {
7650     ReplaceAllUsesWith(N, New);
7651     RemoveDeadNode(N);
7652   }
7653   return New;
7654 }
7655 
7656 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7657 /// the line number information on the merged node since it is not possible to
7658 /// preserve the information that operation is associated with multiple lines.
7659 /// This will make the debugger working better at -O0, were there is a higher
7660 /// probability having other instructions associated with that line.
7661 ///
7662 /// For IROrder, we keep the smaller of the two
7663 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7664   DebugLoc NLoc = N->getDebugLoc();
7665   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7666     N->setDebugLoc(DebugLoc());
7667   }
7668   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7669   N->setIROrder(Order);
7670   return N;
7671 }
7672 
7673 /// MorphNodeTo - This *mutates* the specified node to have the specified
7674 /// return type, opcode, and operands.
7675 ///
7676 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7677 /// node of the specified opcode and operands, it returns that node instead of
7678 /// the current one.  Note that the SDLoc need not be the same.
7679 ///
7680 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7681 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7682 /// node, and because it doesn't require CSE recalculation for any of
7683 /// the node's users.
7684 ///
7685 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7686 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7687 /// the legalizer which maintain worklists that would need to be updated when
7688 /// deleting things.
7689 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7690                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7691   // If an identical node already exists, use it.
7692   void *IP = nullptr;
7693   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7694     FoldingSetNodeID ID;
7695     AddNodeIDNode(ID, Opc, VTs, Ops);
7696     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7697       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7698   }
7699 
7700   if (!RemoveNodeFromCSEMaps(N))
7701     IP = nullptr;
7702 
7703   // Start the morphing.
7704   N->NodeType = Opc;
7705   N->ValueList = VTs.VTs;
7706   N->NumValues = VTs.NumVTs;
7707 
7708   // Clear the operands list, updating used nodes to remove this from their
7709   // use list.  Keep track of any operands that become dead as a result.
7710   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7711   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7712     SDUse &Use = *I++;
7713     SDNode *Used = Use.getNode();
7714     Use.set(SDValue());
7715     if (Used->use_empty())
7716       DeadNodeSet.insert(Used);
7717   }
7718 
7719   // For MachineNode, initialize the memory references information.
7720   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7721     MN->clearMemRefs();
7722 
7723   // Swap for an appropriately sized array from the recycler.
7724   removeOperands(N);
7725   createOperands(N, Ops);
7726 
7727   // Delete any nodes that are still dead after adding the uses for the
7728   // new operands.
7729   if (!DeadNodeSet.empty()) {
7730     SmallVector<SDNode *, 16> DeadNodes;
7731     for (SDNode *N : DeadNodeSet)
7732       if (N->use_empty())
7733         DeadNodes.push_back(N);
7734     RemoveDeadNodes(DeadNodes);
7735   }
7736 
7737   if (IP)
7738     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7739   return N;
7740 }
7741 
7742 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7743   unsigned OrigOpc = Node->getOpcode();
7744   unsigned NewOpc;
7745   switch (OrigOpc) {
7746   default:
7747     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7748   case ISD::STRICT_FADD:       NewOpc = ISD::FADD;       break;
7749   case ISD::STRICT_FSUB:       NewOpc = ISD::FSUB;       break;
7750   case ISD::STRICT_FMUL:       NewOpc = ISD::FMUL;       break;
7751   case ISD::STRICT_FDIV:       NewOpc = ISD::FDIV;       break;
7752   case ISD::STRICT_FREM:       NewOpc = ISD::FREM;       break;
7753   case ISD::STRICT_FMA:        NewOpc = ISD::FMA;        break;
7754   case ISD::STRICT_FSQRT:      NewOpc = ISD::FSQRT;      break;
7755   case ISD::STRICT_FPOW:       NewOpc = ISD::FPOW;       break;
7756   case ISD::STRICT_FPOWI:      NewOpc = ISD::FPOWI;      break;
7757   case ISD::STRICT_FSIN:       NewOpc = ISD::FSIN;       break;
7758   case ISD::STRICT_FCOS:       NewOpc = ISD::FCOS;       break;
7759   case ISD::STRICT_FEXP:       NewOpc = ISD::FEXP;       break;
7760   case ISD::STRICT_FEXP2:      NewOpc = ISD::FEXP2;      break;
7761   case ISD::STRICT_FLOG:       NewOpc = ISD::FLOG;       break;
7762   case ISD::STRICT_FLOG10:     NewOpc = ISD::FLOG10;     break;
7763   case ISD::STRICT_FLOG2:      NewOpc = ISD::FLOG2;      break;
7764   case ISD::STRICT_FRINT:      NewOpc = ISD::FRINT;      break;
7765   case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break;
7766   case ISD::STRICT_FMAXNUM:    NewOpc = ISD::FMAXNUM;    break;
7767   case ISD::STRICT_FMINNUM:    NewOpc = ISD::FMINNUM;    break;
7768   case ISD::STRICT_FCEIL:      NewOpc = ISD::FCEIL;      break;
7769   case ISD::STRICT_FFLOOR:     NewOpc = ISD::FFLOOR;     break;
7770   case ISD::STRICT_FROUND:     NewOpc = ISD::FROUND;     break;
7771   case ISD::STRICT_FTRUNC:     NewOpc = ISD::FTRUNC;     break;
7772   case ISD::STRICT_FP_ROUND:   NewOpc = ISD::FP_ROUND;   break;
7773   case ISD::STRICT_FP_EXTEND:  NewOpc = ISD::FP_EXTEND;  break;
7774   }
7775 
7776   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7777 
7778   // We're taking this node out of the chain, so we need to re-link things.
7779   SDValue InputChain = Node->getOperand(0);
7780   SDValue OutputChain = SDValue(Node, 1);
7781   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7782 
7783   SmallVector<SDValue, 3> Ops;
7784   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7785     Ops.push_back(Node->getOperand(i));
7786 
7787   SDVTList VTs = getVTList(Node->getValueType(0));
7788   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7789 
7790   // MorphNodeTo can operate in two ways: if an existing node with the
7791   // specified operands exists, it can just return it.  Otherwise, it
7792   // updates the node in place to have the requested operands.
7793   if (Res == Node) {
7794     // If we updated the node in place, reset the node ID.  To the isel,
7795     // this should be just like a newly allocated machine node.
7796     Res->setNodeId(-1);
7797   } else {
7798     ReplaceAllUsesWith(Node, Res);
7799     RemoveDeadNode(Node);
7800   }
7801 
7802   return Res;
7803 }
7804 
7805 /// getMachineNode - These are used for target selectors to create a new node
7806 /// with specified return type(s), MachineInstr opcode, and operands.
7807 ///
7808 /// Note that getMachineNode returns the resultant node.  If there is already a
7809 /// node of the specified opcode and operands, it returns that node instead of
7810 /// the current one.
7811 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7812                                             EVT VT) {
7813   SDVTList VTs = getVTList(VT);
7814   return getMachineNode(Opcode, dl, VTs, None);
7815 }
7816 
7817 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7818                                             EVT VT, SDValue Op1) {
7819   SDVTList VTs = getVTList(VT);
7820   SDValue Ops[] = { Op1 };
7821   return getMachineNode(Opcode, dl, VTs, Ops);
7822 }
7823 
7824 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7825                                             EVT VT, SDValue Op1, SDValue Op2) {
7826   SDVTList VTs = getVTList(VT);
7827   SDValue Ops[] = { Op1, Op2 };
7828   return getMachineNode(Opcode, dl, VTs, Ops);
7829 }
7830 
7831 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7832                                             EVT VT, SDValue Op1, SDValue Op2,
7833                                             SDValue Op3) {
7834   SDVTList VTs = getVTList(VT);
7835   SDValue Ops[] = { Op1, Op2, Op3 };
7836   return getMachineNode(Opcode, dl, VTs, Ops);
7837 }
7838 
7839 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7840                                             EVT VT, ArrayRef<SDValue> Ops) {
7841   SDVTList VTs = getVTList(VT);
7842   return getMachineNode(Opcode, dl, VTs, Ops);
7843 }
7844 
7845 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7846                                             EVT VT1, EVT VT2, SDValue Op1,
7847                                             SDValue Op2) {
7848   SDVTList VTs = getVTList(VT1, VT2);
7849   SDValue Ops[] = { Op1, Op2 };
7850   return getMachineNode(Opcode, dl, VTs, Ops);
7851 }
7852 
7853 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7854                                             EVT VT1, EVT VT2, SDValue Op1,
7855                                             SDValue Op2, SDValue Op3) {
7856   SDVTList VTs = getVTList(VT1, VT2);
7857   SDValue Ops[] = { Op1, Op2, Op3 };
7858   return getMachineNode(Opcode, dl, VTs, Ops);
7859 }
7860 
7861 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7862                                             EVT VT1, EVT VT2,
7863                                             ArrayRef<SDValue> Ops) {
7864   SDVTList VTs = getVTList(VT1, VT2);
7865   return getMachineNode(Opcode, dl, VTs, Ops);
7866 }
7867 
7868 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7869                                             EVT VT1, EVT VT2, EVT VT3,
7870                                             SDValue Op1, SDValue Op2) {
7871   SDVTList VTs = getVTList(VT1, VT2, VT3);
7872   SDValue Ops[] = { Op1, Op2 };
7873   return getMachineNode(Opcode, dl, VTs, Ops);
7874 }
7875 
7876 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7877                                             EVT VT1, EVT VT2, EVT VT3,
7878                                             SDValue Op1, SDValue Op2,
7879                                             SDValue Op3) {
7880   SDVTList VTs = getVTList(VT1, VT2, VT3);
7881   SDValue Ops[] = { Op1, Op2, Op3 };
7882   return getMachineNode(Opcode, dl, VTs, Ops);
7883 }
7884 
7885 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7886                                             EVT VT1, EVT VT2, EVT VT3,
7887                                             ArrayRef<SDValue> Ops) {
7888   SDVTList VTs = getVTList(VT1, VT2, VT3);
7889   return getMachineNode(Opcode, dl, VTs, Ops);
7890 }
7891 
7892 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7893                                             ArrayRef<EVT> ResultTys,
7894                                             ArrayRef<SDValue> Ops) {
7895   SDVTList VTs = getVTList(ResultTys);
7896   return getMachineNode(Opcode, dl, VTs, Ops);
7897 }
7898 
7899 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7900                                             SDVTList VTs,
7901                                             ArrayRef<SDValue> Ops) {
7902   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7903   MachineSDNode *N;
7904   void *IP = nullptr;
7905 
7906   if (DoCSE) {
7907     FoldingSetNodeID ID;
7908     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7909     IP = nullptr;
7910     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7911       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7912     }
7913   }
7914 
7915   // Allocate a new MachineSDNode.
7916   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7917   createOperands(N, Ops);
7918 
7919   if (DoCSE)
7920     CSEMap.InsertNode(N, IP);
7921 
7922   InsertNode(N);
7923   return N;
7924 }
7925 
7926 /// getTargetExtractSubreg - A convenience function for creating
7927 /// TargetOpcode::EXTRACT_SUBREG nodes.
7928 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7929                                              SDValue Operand) {
7930   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7931   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7932                                   VT, Operand, SRIdxVal);
7933   return SDValue(Subreg, 0);
7934 }
7935 
7936 /// getTargetInsertSubreg - A convenience function for creating
7937 /// TargetOpcode::INSERT_SUBREG nodes.
7938 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7939                                             SDValue Operand, SDValue Subreg) {
7940   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7941   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7942                                   VT, Operand, Subreg, SRIdxVal);
7943   return SDValue(Result, 0);
7944 }
7945 
7946 /// getNodeIfExists - Get the specified node if it's already available, or
7947 /// else return NULL.
7948 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7949                                       ArrayRef<SDValue> Ops,
7950                                       const SDNodeFlags Flags) {
7951   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7952     FoldingSetNodeID ID;
7953     AddNodeIDNode(ID, Opcode, VTList, Ops);
7954     void *IP = nullptr;
7955     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7956       E->intersectFlagsWith(Flags);
7957       return E;
7958     }
7959   }
7960   return nullptr;
7961 }
7962 
7963 /// getDbgValue - Creates a SDDbgValue node.
7964 ///
7965 /// SDNode
7966 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7967                                       SDNode *N, unsigned R, bool IsIndirect,
7968                                       const DebugLoc &DL, unsigned O) {
7969   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7970          "Expected inlined-at fields to agree");
7971   return new (DbgInfo->getAlloc())
7972       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7973 }
7974 
7975 /// Constant
7976 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7977                                               DIExpression *Expr,
7978                                               const Value *C,
7979                                               const DebugLoc &DL, unsigned O) {
7980   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7981          "Expected inlined-at fields to agree");
7982   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7983 }
7984 
7985 /// FrameIndex
7986 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7987                                                 DIExpression *Expr, unsigned FI,
7988                                                 bool IsIndirect,
7989                                                 const DebugLoc &DL,
7990                                                 unsigned O) {
7991   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7992          "Expected inlined-at fields to agree");
7993   return new (DbgInfo->getAlloc())
7994       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7995 }
7996 
7997 /// VReg
7998 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7999                                           DIExpression *Expr,
8000                                           unsigned VReg, bool IsIndirect,
8001                                           const DebugLoc &DL, unsigned O) {
8002   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8003          "Expected inlined-at fields to agree");
8004   return new (DbgInfo->getAlloc())
8005       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8006 }
8007 
8008 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8009                                      unsigned OffsetInBits, unsigned SizeInBits,
8010                                      bool InvalidateDbg) {
8011   SDNode *FromNode = From.getNode();
8012   SDNode *ToNode = To.getNode();
8013   assert(FromNode && ToNode && "Can't modify dbg values");
8014 
8015   // PR35338
8016   // TODO: assert(From != To && "Redundant dbg value transfer");
8017   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8018   if (From == To || FromNode == ToNode)
8019     return;
8020 
8021   if (!FromNode->getHasDebugValue())
8022     return;
8023 
8024   SmallVector<SDDbgValue *, 2> ClonedDVs;
8025   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8026     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8027       continue;
8028 
8029     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8030 
8031     // Just transfer the dbg value attached to From.
8032     if (Dbg->getResNo() != From.getResNo())
8033       continue;
8034 
8035     DIVariable *Var = Dbg->getVariable();
8036     auto *Expr = Dbg->getExpression();
8037     // If a fragment is requested, update the expression.
8038     if (SizeInBits) {
8039       // When splitting a larger (e.g., sign-extended) value whose
8040       // lower bits are described with an SDDbgValue, do not attempt
8041       // to transfer the SDDbgValue to the upper bits.
8042       if (auto FI = Expr->getFragmentInfo())
8043         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8044           continue;
8045       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8046                                                              SizeInBits);
8047       if (!Fragment)
8048         continue;
8049       Expr = *Fragment;
8050     }
8051     // Clone the SDDbgValue and move it to To.
8052     SDDbgValue *Clone =
8053         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
8054                     Dbg->getDebugLoc(), Dbg->getOrder());
8055     ClonedDVs.push_back(Clone);
8056 
8057     if (InvalidateDbg) {
8058       // Invalidate value and indicate the SDDbgValue should not be emitted.
8059       Dbg->setIsInvalidated();
8060       Dbg->setIsEmitted();
8061     }
8062   }
8063 
8064   for (SDDbgValue *Dbg : ClonedDVs)
8065     AddDbgValue(Dbg, ToNode, false);
8066 }
8067 
8068 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8069   if (!N.getHasDebugValue())
8070     return;
8071 
8072   SmallVector<SDDbgValue *, 2> ClonedDVs;
8073   for (auto DV : GetDbgValues(&N)) {
8074     if (DV->isInvalidated())
8075       continue;
8076     switch (N.getOpcode()) {
8077     default:
8078       break;
8079     case ISD::ADD:
8080       SDValue N0 = N.getOperand(0);
8081       SDValue N1 = N.getOperand(1);
8082       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8083           isConstantIntBuildVectorOrConstantInt(N1)) {
8084         uint64_t Offset = N.getConstantOperandVal(1);
8085         // Rewrite an ADD constant node into a DIExpression. Since we are
8086         // performing arithmetic to compute the variable's *value* in the
8087         // DIExpression, we need to mark the expression with a
8088         // DW_OP_stack_value.
8089         auto *DIExpr = DV->getExpression();
8090         DIExpr =
8091             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8092         SDDbgValue *Clone =
8093             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8094                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8095         ClonedDVs.push_back(Clone);
8096         DV->setIsInvalidated();
8097         DV->setIsEmitted();
8098         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8099                    N0.getNode()->dumprFull(this);
8100                    dbgs() << " into " << *DIExpr << '\n');
8101       }
8102     }
8103   }
8104 
8105   for (SDDbgValue *Dbg : ClonedDVs)
8106     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8107 }
8108 
8109 /// Creates a SDDbgLabel node.
8110 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8111                                       const DebugLoc &DL, unsigned O) {
8112   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8113          "Expected inlined-at fields to agree");
8114   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8115 }
8116 
8117 namespace {
8118 
8119 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8120 /// pointed to by a use iterator is deleted, increment the use iterator
8121 /// so that it doesn't dangle.
8122 ///
8123 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8124   SDNode::use_iterator &UI;
8125   SDNode::use_iterator &UE;
8126 
8127   void NodeDeleted(SDNode *N, SDNode *E) override {
8128     // Increment the iterator as needed.
8129     while (UI != UE && N == *UI)
8130       ++UI;
8131   }
8132 
8133 public:
8134   RAUWUpdateListener(SelectionDAG &d,
8135                      SDNode::use_iterator &ui,
8136                      SDNode::use_iterator &ue)
8137     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8138 };
8139 
8140 } // end anonymous namespace
8141 
8142 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8143 /// This can cause recursive merging of nodes in the DAG.
8144 ///
8145 /// This version assumes From has a single result value.
8146 ///
8147 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8148   SDNode *From = FromN.getNode();
8149   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8150          "Cannot replace with this method!");
8151   assert(From != To.getNode() && "Cannot replace uses of with self");
8152 
8153   // Preserve Debug Values
8154   transferDbgValues(FromN, To);
8155 
8156   // Iterate over all the existing uses of From. New uses will be added
8157   // to the beginning of the use list, which we avoid visiting.
8158   // This specifically avoids visiting uses of From that arise while the
8159   // replacement is happening, because any such uses would be the result
8160   // of CSE: If an existing node looks like From after one of its operands
8161   // is replaced by To, we don't want to replace of all its users with To
8162   // too. See PR3018 for more info.
8163   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8164   RAUWUpdateListener Listener(*this, UI, UE);
8165   while (UI != UE) {
8166     SDNode *User = *UI;
8167 
8168     // This node is about to morph, remove its old self from the CSE maps.
8169     RemoveNodeFromCSEMaps(User);
8170 
8171     // A user can appear in a use list multiple times, and when this
8172     // happens the uses are usually next to each other in the list.
8173     // To help reduce the number of CSE recomputations, process all
8174     // the uses of this user that we can find this way.
8175     do {
8176       SDUse &Use = UI.getUse();
8177       ++UI;
8178       Use.set(To);
8179       if (To->isDivergent() != From->isDivergent())
8180         updateDivergence(User);
8181     } while (UI != UE && *UI == User);
8182     // Now that we have modified User, add it back to the CSE maps.  If it
8183     // already exists there, recursively merge the results together.
8184     AddModifiedNodeToCSEMaps(User);
8185   }
8186 
8187   // If we just RAUW'd the root, take note.
8188   if (FromN == getRoot())
8189     setRoot(To);
8190 }
8191 
8192 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8193 /// This can cause recursive merging of nodes in the DAG.
8194 ///
8195 /// This version assumes that for each value of From, there is a
8196 /// corresponding value in To in the same position with the same type.
8197 ///
8198 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8199 #ifndef NDEBUG
8200   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8201     assert((!From->hasAnyUseOfValue(i) ||
8202             From->getValueType(i) == To->getValueType(i)) &&
8203            "Cannot use this version of ReplaceAllUsesWith!");
8204 #endif
8205 
8206   // Handle the trivial case.
8207   if (From == To)
8208     return;
8209 
8210   // Preserve Debug Info. Only do this if there's a use.
8211   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8212     if (From->hasAnyUseOfValue(i)) {
8213       assert((i < To->getNumValues()) && "Invalid To location");
8214       transferDbgValues(SDValue(From, i), SDValue(To, i));
8215     }
8216 
8217   // Iterate over just the existing users of From. See the comments in
8218   // the ReplaceAllUsesWith above.
8219   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8220   RAUWUpdateListener Listener(*this, UI, UE);
8221   while (UI != UE) {
8222     SDNode *User = *UI;
8223 
8224     // This node is about to morph, remove its old self from the CSE maps.
8225     RemoveNodeFromCSEMaps(User);
8226 
8227     // A user can appear in a use list multiple times, and when this
8228     // happens the uses are usually next to each other in the list.
8229     // To help reduce the number of CSE recomputations, process all
8230     // the uses of this user that we can find this way.
8231     do {
8232       SDUse &Use = UI.getUse();
8233       ++UI;
8234       Use.setNode(To);
8235       if (To->isDivergent() != From->isDivergent())
8236         updateDivergence(User);
8237     } while (UI != UE && *UI == User);
8238 
8239     // Now that we have modified User, add it back to the CSE maps.  If it
8240     // already exists there, recursively merge the results together.
8241     AddModifiedNodeToCSEMaps(User);
8242   }
8243 
8244   // If we just RAUW'd the root, take note.
8245   if (From == getRoot().getNode())
8246     setRoot(SDValue(To, getRoot().getResNo()));
8247 }
8248 
8249 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8250 /// This can cause recursive merging of nodes in the DAG.
8251 ///
8252 /// This version can replace From with any result values.  To must match the
8253 /// number and types of values returned by From.
8254 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8255   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8256     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8257 
8258   // Preserve Debug Info.
8259   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8260     transferDbgValues(SDValue(From, i), To[i]);
8261 
8262   // Iterate over just the existing users of From. See the comments in
8263   // the ReplaceAllUsesWith above.
8264   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8265   RAUWUpdateListener Listener(*this, UI, UE);
8266   while (UI != UE) {
8267     SDNode *User = *UI;
8268 
8269     // This node is about to morph, remove its old self from the CSE maps.
8270     RemoveNodeFromCSEMaps(User);
8271 
8272     // A user can appear in a use list multiple times, and when this happens the
8273     // uses are usually next to each other in the list.  To help reduce the
8274     // number of CSE and divergence recomputations, process all the uses of this
8275     // user that we can find this way.
8276     bool To_IsDivergent = false;
8277     do {
8278       SDUse &Use = UI.getUse();
8279       const SDValue &ToOp = To[Use.getResNo()];
8280       ++UI;
8281       Use.set(ToOp);
8282       To_IsDivergent |= ToOp->isDivergent();
8283     } while (UI != UE && *UI == User);
8284 
8285     if (To_IsDivergent != From->isDivergent())
8286       updateDivergence(User);
8287 
8288     // Now that we have modified User, add it back to the CSE maps.  If it
8289     // already exists there, recursively merge the results together.
8290     AddModifiedNodeToCSEMaps(User);
8291   }
8292 
8293   // If we just RAUW'd the root, take note.
8294   if (From == getRoot().getNode())
8295     setRoot(SDValue(To[getRoot().getResNo()]));
8296 }
8297 
8298 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8299 /// uses of other values produced by From.getNode() alone.  The Deleted
8300 /// vector is handled the same way as for ReplaceAllUsesWith.
8301 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8302   // Handle the really simple, really trivial case efficiently.
8303   if (From == To) return;
8304 
8305   // Handle the simple, trivial, case efficiently.
8306   if (From.getNode()->getNumValues() == 1) {
8307     ReplaceAllUsesWith(From, To);
8308     return;
8309   }
8310 
8311   // Preserve Debug Info.
8312   transferDbgValues(From, To);
8313 
8314   // Iterate over just the existing users of From. See the comments in
8315   // the ReplaceAllUsesWith above.
8316   SDNode::use_iterator UI = From.getNode()->use_begin(),
8317                        UE = From.getNode()->use_end();
8318   RAUWUpdateListener Listener(*this, UI, UE);
8319   while (UI != UE) {
8320     SDNode *User = *UI;
8321     bool UserRemovedFromCSEMaps = false;
8322 
8323     // A user can appear in a use list multiple times, and when this
8324     // happens the uses are usually next to each other in the list.
8325     // To help reduce the number of CSE recomputations, process all
8326     // the uses of this user that we can find this way.
8327     do {
8328       SDUse &Use = UI.getUse();
8329 
8330       // Skip uses of different values from the same node.
8331       if (Use.getResNo() != From.getResNo()) {
8332         ++UI;
8333         continue;
8334       }
8335 
8336       // If this node hasn't been modified yet, it's still in the CSE maps,
8337       // so remove its old self from the CSE maps.
8338       if (!UserRemovedFromCSEMaps) {
8339         RemoveNodeFromCSEMaps(User);
8340         UserRemovedFromCSEMaps = true;
8341       }
8342 
8343       ++UI;
8344       Use.set(To);
8345       if (To->isDivergent() != From->isDivergent())
8346         updateDivergence(User);
8347     } while (UI != UE && *UI == User);
8348     // We are iterating over all uses of the From node, so if a use
8349     // doesn't use the specific value, no changes are made.
8350     if (!UserRemovedFromCSEMaps)
8351       continue;
8352 
8353     // Now that we have modified User, add it back to the CSE maps.  If it
8354     // already exists there, recursively merge the results together.
8355     AddModifiedNodeToCSEMaps(User);
8356   }
8357 
8358   // If we just RAUW'd the root, take note.
8359   if (From == getRoot())
8360     setRoot(To);
8361 }
8362 
8363 namespace {
8364 
8365   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8366   /// to record information about a use.
8367   struct UseMemo {
8368     SDNode *User;
8369     unsigned Index;
8370     SDUse *Use;
8371   };
8372 
8373   /// operator< - Sort Memos by User.
8374   bool operator<(const UseMemo &L, const UseMemo &R) {
8375     return (intptr_t)L.User < (intptr_t)R.User;
8376   }
8377 
8378 } // end anonymous namespace
8379 
8380 void SelectionDAG::updateDivergence(SDNode * N)
8381 {
8382   if (TLI->isSDNodeAlwaysUniform(N))
8383     return;
8384   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8385   for (auto &Op : N->ops()) {
8386     if (Op.Val.getValueType() != MVT::Other)
8387       IsDivergent |= Op.getNode()->isDivergent();
8388   }
8389   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8390     N->SDNodeBits.IsDivergent = IsDivergent;
8391     for (auto U : N->uses()) {
8392       updateDivergence(U);
8393     }
8394   }
8395 }
8396 
8397 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8398   DenseMap<SDNode *, unsigned> Degree;
8399   Order.reserve(AllNodes.size());
8400   for (auto &N : allnodes()) {
8401     unsigned NOps = N.getNumOperands();
8402     Degree[&N] = NOps;
8403     if (0 == NOps)
8404       Order.push_back(&N);
8405   }
8406   for (size_t I = 0; I != Order.size(); ++I) {
8407     SDNode *N = Order[I];
8408     for (auto U : N->uses()) {
8409       unsigned &UnsortedOps = Degree[U];
8410       if (0 == --UnsortedOps)
8411         Order.push_back(U);
8412     }
8413   }
8414 }
8415 
8416 #ifndef NDEBUG
8417 void SelectionDAG::VerifyDAGDiverence() {
8418   std::vector<SDNode *> TopoOrder;
8419   CreateTopologicalOrder(TopoOrder);
8420   const TargetLowering &TLI = getTargetLoweringInfo();
8421   DenseMap<const SDNode *, bool> DivergenceMap;
8422   for (auto &N : allnodes()) {
8423     DivergenceMap[&N] = false;
8424   }
8425   for (auto N : TopoOrder) {
8426     bool IsDivergent = DivergenceMap[N];
8427     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8428     for (auto &Op : N->ops()) {
8429       if (Op.Val.getValueType() != MVT::Other)
8430         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8431     }
8432     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8433       DivergenceMap[N] = true;
8434     }
8435   }
8436   for (auto &N : allnodes()) {
8437     (void)N;
8438     assert(DivergenceMap[&N] == N.isDivergent() &&
8439            "Divergence bit inconsistency detected\n");
8440   }
8441 }
8442 #endif
8443 
8444 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8445 /// uses of other values produced by From.getNode() alone.  The same value
8446 /// may appear in both the From and To list.  The Deleted vector is
8447 /// handled the same way as for ReplaceAllUsesWith.
8448 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8449                                               const SDValue *To,
8450                                               unsigned Num){
8451   // Handle the simple, trivial case efficiently.
8452   if (Num == 1)
8453     return ReplaceAllUsesOfValueWith(*From, *To);
8454 
8455   transferDbgValues(*From, *To);
8456 
8457   // Read up all the uses and make records of them. This helps
8458   // processing new uses that are introduced during the
8459   // replacement process.
8460   SmallVector<UseMemo, 4> Uses;
8461   for (unsigned i = 0; i != Num; ++i) {
8462     unsigned FromResNo = From[i].getResNo();
8463     SDNode *FromNode = From[i].getNode();
8464     for (SDNode::use_iterator UI = FromNode->use_begin(),
8465          E = FromNode->use_end(); UI != E; ++UI) {
8466       SDUse &Use = UI.getUse();
8467       if (Use.getResNo() == FromResNo) {
8468         UseMemo Memo = { *UI, i, &Use };
8469         Uses.push_back(Memo);
8470       }
8471     }
8472   }
8473 
8474   // Sort the uses, so that all the uses from a given User are together.
8475   llvm::sort(Uses);
8476 
8477   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8478        UseIndex != UseIndexEnd; ) {
8479     // We know that this user uses some value of From.  If it is the right
8480     // value, update it.
8481     SDNode *User = Uses[UseIndex].User;
8482 
8483     // This node is about to morph, remove its old self from the CSE maps.
8484     RemoveNodeFromCSEMaps(User);
8485 
8486     // The Uses array is sorted, so all the uses for a given User
8487     // are next to each other in the list.
8488     // To help reduce the number of CSE recomputations, process all
8489     // the uses of this user that we can find this way.
8490     do {
8491       unsigned i = Uses[UseIndex].Index;
8492       SDUse &Use = *Uses[UseIndex].Use;
8493       ++UseIndex;
8494 
8495       Use.set(To[i]);
8496     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8497 
8498     // Now that we have modified User, add it back to the CSE maps.  If it
8499     // already exists there, recursively merge the results together.
8500     AddModifiedNodeToCSEMaps(User);
8501   }
8502 }
8503 
8504 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8505 /// based on their topological order. It returns the maximum id and a vector
8506 /// of the SDNodes* in assigned order by reference.
8507 unsigned SelectionDAG::AssignTopologicalOrder() {
8508   unsigned DAGSize = 0;
8509 
8510   // SortedPos tracks the progress of the algorithm. Nodes before it are
8511   // sorted, nodes after it are unsorted. When the algorithm completes
8512   // it is at the end of the list.
8513   allnodes_iterator SortedPos = allnodes_begin();
8514 
8515   // Visit all the nodes. Move nodes with no operands to the front of
8516   // the list immediately. Annotate nodes that do have operands with their
8517   // operand count. Before we do this, the Node Id fields of the nodes
8518   // may contain arbitrary values. After, the Node Id fields for nodes
8519   // before SortedPos will contain the topological sort index, and the
8520   // Node Id fields for nodes At SortedPos and after will contain the
8521   // count of outstanding operands.
8522   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8523     SDNode *N = &*I++;
8524     checkForCycles(N, this);
8525     unsigned Degree = N->getNumOperands();
8526     if (Degree == 0) {
8527       // A node with no uses, add it to the result array immediately.
8528       N->setNodeId(DAGSize++);
8529       allnodes_iterator Q(N);
8530       if (Q != SortedPos)
8531         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8532       assert(SortedPos != AllNodes.end() && "Overran node list");
8533       ++SortedPos;
8534     } else {
8535       // Temporarily use the Node Id as scratch space for the degree count.
8536       N->setNodeId(Degree);
8537     }
8538   }
8539 
8540   // Visit all the nodes. As we iterate, move nodes into sorted order,
8541   // such that by the time the end is reached all nodes will be sorted.
8542   for (SDNode &Node : allnodes()) {
8543     SDNode *N = &Node;
8544     checkForCycles(N, this);
8545     // N is in sorted position, so all its uses have one less operand
8546     // that needs to be sorted.
8547     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8548          UI != UE; ++UI) {
8549       SDNode *P = *UI;
8550       unsigned Degree = P->getNodeId();
8551       assert(Degree != 0 && "Invalid node degree");
8552       --Degree;
8553       if (Degree == 0) {
8554         // All of P's operands are sorted, so P may sorted now.
8555         P->setNodeId(DAGSize++);
8556         if (P->getIterator() != SortedPos)
8557           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8558         assert(SortedPos != AllNodes.end() && "Overran node list");
8559         ++SortedPos;
8560       } else {
8561         // Update P's outstanding operand count.
8562         P->setNodeId(Degree);
8563       }
8564     }
8565     if (Node.getIterator() == SortedPos) {
8566 #ifndef NDEBUG
8567       allnodes_iterator I(N);
8568       SDNode *S = &*++I;
8569       dbgs() << "Overran sorted position:\n";
8570       S->dumprFull(this); dbgs() << "\n";
8571       dbgs() << "Checking if this is due to cycles\n";
8572       checkForCycles(this, true);
8573 #endif
8574       llvm_unreachable(nullptr);
8575     }
8576   }
8577 
8578   assert(SortedPos == AllNodes.end() &&
8579          "Topological sort incomplete!");
8580   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8581          "First node in topological sort is not the entry token!");
8582   assert(AllNodes.front().getNodeId() == 0 &&
8583          "First node in topological sort has non-zero id!");
8584   assert(AllNodes.front().getNumOperands() == 0 &&
8585          "First node in topological sort has operands!");
8586   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8587          "Last node in topologic sort has unexpected id!");
8588   assert(AllNodes.back().use_empty() &&
8589          "Last node in topologic sort has users!");
8590   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8591   return DAGSize;
8592 }
8593 
8594 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8595 /// value is produced by SD.
8596 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8597   if (SD) {
8598     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8599     SD->setHasDebugValue(true);
8600   }
8601   DbgInfo->add(DB, SD, isParameter);
8602 }
8603 
8604 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8605   DbgInfo->add(DB);
8606 }
8607 
8608 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8609                                                    SDValue NewMemOp) {
8610   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8611   // The new memory operation must have the same position as the old load in
8612   // terms of memory dependency. Create a TokenFactor for the old load and new
8613   // memory operation and update uses of the old load's output chain to use that
8614   // TokenFactor.
8615   SDValue OldChain = SDValue(OldLoad, 1);
8616   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8617   if (!OldLoad->hasAnyUseOfValue(1))
8618     return NewChain;
8619 
8620   SDValue TokenFactor =
8621       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8622   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8623   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8624   return TokenFactor;
8625 }
8626 
8627 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8628                                                      Function **OutFunction) {
8629   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8630 
8631   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8632   auto *Module = MF->getFunction().getParent();
8633   auto *Function = Module->getFunction(Symbol);
8634 
8635   if (OutFunction != nullptr)
8636       *OutFunction = Function;
8637 
8638   if (Function != nullptr) {
8639     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8640     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8641   }
8642 
8643   std::string ErrorStr;
8644   raw_string_ostream ErrorFormatter(ErrorStr);
8645 
8646   ErrorFormatter << "Undefined external symbol ";
8647   ErrorFormatter << '"' << Symbol << '"';
8648   ErrorFormatter.flush();
8649 
8650   report_fatal_error(ErrorStr);
8651 }
8652 
8653 //===----------------------------------------------------------------------===//
8654 //                              SDNode Class
8655 //===----------------------------------------------------------------------===//
8656 
8657 bool llvm::isNullConstant(SDValue V) {
8658   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8659   return Const != nullptr && Const->isNullValue();
8660 }
8661 
8662 bool llvm::isNullFPConstant(SDValue V) {
8663   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8664   return Const != nullptr && Const->isZero() && !Const->isNegative();
8665 }
8666 
8667 bool llvm::isAllOnesConstant(SDValue V) {
8668   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8669   return Const != nullptr && Const->isAllOnesValue();
8670 }
8671 
8672 bool llvm::isOneConstant(SDValue V) {
8673   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8674   return Const != nullptr && Const->isOne();
8675 }
8676 
8677 SDValue llvm::peekThroughBitcasts(SDValue V) {
8678   while (V.getOpcode() == ISD::BITCAST)
8679     V = V.getOperand(0);
8680   return V;
8681 }
8682 
8683 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8684   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8685     V = V.getOperand(0);
8686   return V;
8687 }
8688 
8689 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8690   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8691     V = V.getOperand(0);
8692   return V;
8693 }
8694 
8695 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8696   if (V.getOpcode() != ISD::XOR)
8697     return false;
8698   V = peekThroughBitcasts(V.getOperand(1));
8699   unsigned NumBits = V.getScalarValueSizeInBits();
8700   ConstantSDNode *C =
8701       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8702   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8703 }
8704 
8705 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8706                                           bool AllowTruncation) {
8707   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8708     return CN;
8709 
8710   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8711     BitVector UndefElements;
8712     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8713 
8714     // BuildVectors can truncate their operands. Ignore that case here unless
8715     // AllowTruncation is set.
8716     if (CN && (UndefElements.none() || AllowUndefs)) {
8717       EVT CVT = CN->getValueType(0);
8718       EVT NSVT = N.getValueType().getScalarType();
8719       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8720       if (AllowTruncation || (CVT == NSVT))
8721         return CN;
8722     }
8723   }
8724 
8725   return nullptr;
8726 }
8727 
8728 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8729                                           bool AllowUndefs,
8730                                           bool AllowTruncation) {
8731   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8732     return CN;
8733 
8734   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8735     BitVector UndefElements;
8736     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8737 
8738     // BuildVectors can truncate their operands. Ignore that case here unless
8739     // AllowTruncation is set.
8740     if (CN && (UndefElements.none() || AllowUndefs)) {
8741       EVT CVT = CN->getValueType(0);
8742       EVT NSVT = N.getValueType().getScalarType();
8743       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8744       if (AllowTruncation || (CVT == NSVT))
8745         return CN;
8746     }
8747   }
8748 
8749   return nullptr;
8750 }
8751 
8752 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8753   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8754     return CN;
8755 
8756   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8757     BitVector UndefElements;
8758     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8759     if (CN && (UndefElements.none() || AllowUndefs))
8760       return CN;
8761   }
8762 
8763   return nullptr;
8764 }
8765 
8766 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8767                                               const APInt &DemandedElts,
8768                                               bool AllowUndefs) {
8769   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8770     return CN;
8771 
8772   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8773     BitVector UndefElements;
8774     ConstantFPSDNode *CN =
8775         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8776     if (CN && (UndefElements.none() || AllowUndefs))
8777       return CN;
8778   }
8779 
8780   return nullptr;
8781 }
8782 
8783 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8784   // TODO: may want to use peekThroughBitcast() here.
8785   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8786   return C && C->isNullValue();
8787 }
8788 
8789 bool llvm::isOneOrOneSplat(SDValue N) {
8790   // TODO: may want to use peekThroughBitcast() here.
8791   unsigned BitWidth = N.getScalarValueSizeInBits();
8792   ConstantSDNode *C = isConstOrConstSplat(N);
8793   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8794 }
8795 
8796 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8797   N = peekThroughBitcasts(N);
8798   unsigned BitWidth = N.getScalarValueSizeInBits();
8799   ConstantSDNode *C = isConstOrConstSplat(N);
8800   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8801 }
8802 
8803 HandleSDNode::~HandleSDNode() {
8804   DropOperands();
8805 }
8806 
8807 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8808                                          const DebugLoc &DL,
8809                                          const GlobalValue *GA, EVT VT,
8810                                          int64_t o, unsigned char TF)
8811     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8812   TheGlobal = GA;
8813 }
8814 
8815 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8816                                          EVT VT, unsigned SrcAS,
8817                                          unsigned DestAS)
8818     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8819       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8820 
8821 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8822                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8823     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8824   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8825   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8826   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8827   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8828 
8829   // We check here that the size of the memory operand fits within the size of
8830   // the MMO. This is because the MMO might indicate only a possible address
8831   // range instead of specifying the affected memory addresses precisely.
8832   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8833 }
8834 
8835 /// Profile - Gather unique data for the node.
8836 ///
8837 void SDNode::Profile(FoldingSetNodeID &ID) const {
8838   AddNodeIDNode(ID, this);
8839 }
8840 
8841 namespace {
8842 
8843   struct EVTArray {
8844     std::vector<EVT> VTs;
8845 
8846     EVTArray() {
8847       VTs.reserve(MVT::LAST_VALUETYPE);
8848       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8849         VTs.push_back(MVT((MVT::SimpleValueType)i));
8850     }
8851   };
8852 
8853 } // end anonymous namespace
8854 
8855 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8856 static ManagedStatic<EVTArray> SimpleVTArray;
8857 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8858 
8859 /// getValueTypeList - Return a pointer to the specified value type.
8860 ///
8861 const EVT *SDNode::getValueTypeList(EVT VT) {
8862   if (VT.isExtended()) {
8863     sys::SmartScopedLock<true> Lock(*VTMutex);
8864     return &(*EVTs->insert(VT).first);
8865   } else {
8866     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8867            "Value type out of range!");
8868     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8869   }
8870 }
8871 
8872 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8873 /// indicated value.  This method ignores uses of other values defined by this
8874 /// operation.
8875 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8876   assert(Value < getNumValues() && "Bad value!");
8877 
8878   // TODO: Only iterate over uses of a given value of the node
8879   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8880     if (UI.getUse().getResNo() == Value) {
8881       if (NUses == 0)
8882         return false;
8883       --NUses;
8884     }
8885   }
8886 
8887   // Found exactly the right number of uses?
8888   return NUses == 0;
8889 }
8890 
8891 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8892 /// value. This method ignores uses of other values defined by this operation.
8893 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8894   assert(Value < getNumValues() && "Bad value!");
8895 
8896   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8897     if (UI.getUse().getResNo() == Value)
8898       return true;
8899 
8900   return false;
8901 }
8902 
8903 /// isOnlyUserOf - Return true if this node is the only use of N.
8904 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8905   bool Seen = false;
8906   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8907     SDNode *User = *I;
8908     if (User == this)
8909       Seen = true;
8910     else
8911       return false;
8912   }
8913 
8914   return Seen;
8915 }
8916 
8917 /// Return true if the only users of N are contained in Nodes.
8918 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8919   bool Seen = false;
8920   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8921     SDNode *User = *I;
8922     if (llvm::any_of(Nodes,
8923                      [&User](const SDNode *Node) { return User == Node; }))
8924       Seen = true;
8925     else
8926       return false;
8927   }
8928 
8929   return Seen;
8930 }
8931 
8932 /// isOperand - Return true if this node is an operand of N.
8933 bool SDValue::isOperandOf(const SDNode *N) const {
8934   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8935 }
8936 
8937 bool SDNode::isOperandOf(const SDNode *N) const {
8938   return any_of(N->op_values(),
8939                 [this](SDValue Op) { return this == Op.getNode(); });
8940 }
8941 
8942 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8943 /// be a chain) reaches the specified operand without crossing any
8944 /// side-effecting instructions on any chain path.  In practice, this looks
8945 /// through token factors and non-volatile loads.  In order to remain efficient,
8946 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8947 ///
8948 /// Note that we only need to examine chains when we're searching for
8949 /// side-effects; SelectionDAG requires that all side-effects are represented
8950 /// by chains, even if another operand would force a specific ordering. This
8951 /// constraint is necessary to allow transformations like splitting loads.
8952 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8953                                              unsigned Depth) const {
8954   if (*this == Dest) return true;
8955 
8956   // Don't search too deeply, we just want to be able to see through
8957   // TokenFactor's etc.
8958   if (Depth == 0) return false;
8959 
8960   // If this is a token factor, all inputs to the TF happen in parallel.
8961   if (getOpcode() == ISD::TokenFactor) {
8962     // First, try a shallow search.
8963     if (is_contained((*this)->ops(), Dest)) {
8964       // We found the chain we want as an operand of this TokenFactor.
8965       // Essentially, we reach the chain without side-effects if we could
8966       // serialize the TokenFactor into a simple chain of operations with
8967       // Dest as the last operation. This is automatically true if the
8968       // chain has one use: there are no other ordering constraints.
8969       // If the chain has more than one use, we give up: some other
8970       // use of Dest might force a side-effect between Dest and the current
8971       // node.
8972       if (Dest.hasOneUse())
8973         return true;
8974     }
8975     // Next, try a deep search: check whether every operand of the TokenFactor
8976     // reaches Dest.
8977     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8978       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8979     });
8980   }
8981 
8982   // Loads don't have side effects, look through them.
8983   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8984     if (!Ld->isVolatile())
8985       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8986   }
8987   return false;
8988 }
8989 
8990 bool SDNode::hasPredecessor(const SDNode *N) const {
8991   SmallPtrSet<const SDNode *, 32> Visited;
8992   SmallVector<const SDNode *, 16> Worklist;
8993   Worklist.push_back(this);
8994   return hasPredecessorHelper(N, Visited, Worklist);
8995 }
8996 
8997 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8998   this->Flags.intersectWith(Flags);
8999 }
9000 
9001 SDValue
9002 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9003                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
9004   // The pattern must end in an extract from index 0.
9005   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9006       !isNullConstant(Extract->getOperand(1)))
9007     return SDValue();
9008 
9009   SDValue Op = Extract->getOperand(0);
9010   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9011 
9012   // Match against one of the candidate binary ops.
9013   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9014         return Op.getOpcode() == unsigned(BinOp);
9015       }))
9016     return SDValue();
9017 
9018   // At each stage, we're looking for something that looks like:
9019   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9020   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9021   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9022   // %a = binop <8 x i32> %op, %s
9023   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9024   // we expect something like:
9025   // <4,5,6,7,u,u,u,u>
9026   // <2,3,u,u,u,u,u,u>
9027   // <1,u,u,u,u,u,u,u>
9028   unsigned CandidateBinOp = Op.getOpcode();
9029   for (unsigned i = 0; i < Stages; ++i) {
9030     if (Op.getOpcode() != CandidateBinOp)
9031       return SDValue();
9032 
9033     SDValue Op0 = Op.getOperand(0);
9034     SDValue Op1 = Op.getOperand(1);
9035 
9036     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9037     if (Shuffle) {
9038       Op = Op1;
9039     } else {
9040       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9041       Op = Op0;
9042     }
9043 
9044     // The first operand of the shuffle should be the same as the other operand
9045     // of the binop.
9046     if (!Shuffle || Shuffle->getOperand(0) != Op)
9047       return SDValue();
9048 
9049     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9050     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
9051       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
9052         return SDValue();
9053   }
9054 
9055   BinOp = (ISD::NodeType)CandidateBinOp;
9056   return Op;
9057 }
9058 
9059 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9060   assert(N->getNumValues() == 1 &&
9061          "Can't unroll a vector with multiple results!");
9062 
9063   EVT VT = N->getValueType(0);
9064   unsigned NE = VT.getVectorNumElements();
9065   EVT EltVT = VT.getVectorElementType();
9066   SDLoc dl(N);
9067 
9068   SmallVector<SDValue, 8> Scalars;
9069   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9070 
9071   // If ResNE is 0, fully unroll the vector op.
9072   if (ResNE == 0)
9073     ResNE = NE;
9074   else if (NE > ResNE)
9075     NE = ResNE;
9076 
9077   unsigned i;
9078   for (i= 0; i != NE; ++i) {
9079     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9080       SDValue Operand = N->getOperand(j);
9081       EVT OperandVT = Operand.getValueType();
9082       if (OperandVT.isVector()) {
9083         // A vector operand; extract a single element.
9084         EVT OperandEltVT = OperandVT.getVectorElementType();
9085         Operands[j] =
9086             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9087                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9088       } else {
9089         // A scalar operand; just use it as is.
9090         Operands[j] = Operand;
9091       }
9092     }
9093 
9094     switch (N->getOpcode()) {
9095     default: {
9096       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9097                                 N->getFlags()));
9098       break;
9099     }
9100     case ISD::VSELECT:
9101       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9102       break;
9103     case ISD::SHL:
9104     case ISD::SRA:
9105     case ISD::SRL:
9106     case ISD::ROTL:
9107     case ISD::ROTR:
9108       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9109                                getShiftAmountOperand(Operands[0].getValueType(),
9110                                                      Operands[1])));
9111       break;
9112     case ISD::SIGN_EXTEND_INREG:
9113     case ISD::FP_ROUND_INREG: {
9114       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9115       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9116                                 Operands[0],
9117                                 getValueType(ExtVT)));
9118     }
9119     }
9120   }
9121 
9122   for (; i < ResNE; ++i)
9123     Scalars.push_back(getUNDEF(EltVT));
9124 
9125   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9126   return getBuildVector(VecVT, dl, Scalars);
9127 }
9128 
9129 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9130     SDNode *N, unsigned ResNE) {
9131   unsigned Opcode = N->getOpcode();
9132   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9133           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9134           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9135          "Expected an overflow opcode");
9136 
9137   EVT ResVT = N->getValueType(0);
9138   EVT OvVT = N->getValueType(1);
9139   EVT ResEltVT = ResVT.getVectorElementType();
9140   EVT OvEltVT = OvVT.getVectorElementType();
9141   SDLoc dl(N);
9142 
9143   // If ResNE is 0, fully unroll the vector op.
9144   unsigned NE = ResVT.getVectorNumElements();
9145   if (ResNE == 0)
9146     ResNE = NE;
9147   else if (NE > ResNE)
9148     NE = ResNE;
9149 
9150   SmallVector<SDValue, 8> LHSScalars;
9151   SmallVector<SDValue, 8> RHSScalars;
9152   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9153   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9154 
9155   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9156   SDVTList VTs = getVTList(ResEltVT, SVT);
9157   SmallVector<SDValue, 8> ResScalars;
9158   SmallVector<SDValue, 8> OvScalars;
9159   for (unsigned i = 0; i < NE; ++i) {
9160     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9161     SDValue Ov =
9162         getSelect(dl, OvEltVT, Res.getValue(1),
9163                   getBoolConstant(true, dl, OvEltVT, ResVT),
9164                   getConstant(0, dl, OvEltVT));
9165 
9166     ResScalars.push_back(Res);
9167     OvScalars.push_back(Ov);
9168   }
9169 
9170   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9171   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9172 
9173   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9174   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9175   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9176                         getBuildVector(NewOvVT, dl, OvScalars));
9177 }
9178 
9179 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9180                                                   LoadSDNode *Base,
9181                                                   unsigned Bytes,
9182                                                   int Dist) const {
9183   if (LD->isVolatile() || Base->isVolatile())
9184     return false;
9185   if (LD->isIndexed() || Base->isIndexed())
9186     return false;
9187   if (LD->getChain() != Base->getChain())
9188     return false;
9189   EVT VT = LD->getValueType(0);
9190   if (VT.getSizeInBits() / 8 != Bytes)
9191     return false;
9192 
9193   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9194   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9195 
9196   int64_t Offset = 0;
9197   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9198     return (Dist * Bytes == Offset);
9199   return false;
9200 }
9201 
9202 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9203 /// it cannot be inferred.
9204 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9205   // If this is a GlobalAddress + cst, return the alignment.
9206   const GlobalValue *GV;
9207   int64_t GVOffset = 0;
9208   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9209     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9210     KnownBits Known(IdxWidth);
9211     llvm::computeKnownBits(GV, Known, getDataLayout());
9212     unsigned AlignBits = Known.countMinTrailingZeros();
9213     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9214     if (Align)
9215       return MinAlign(Align, GVOffset);
9216   }
9217 
9218   // If this is a direct reference to a stack slot, use information about the
9219   // stack slot's alignment.
9220   int FrameIdx = INT_MIN;
9221   int64_t FrameOffset = 0;
9222   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9223     FrameIdx = FI->getIndex();
9224   } else if (isBaseWithConstantOffset(Ptr) &&
9225              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9226     // Handle FI+Cst
9227     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9228     FrameOffset = Ptr.getConstantOperandVal(1);
9229   }
9230 
9231   if (FrameIdx != INT_MIN) {
9232     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9233     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9234                                     FrameOffset);
9235     return FIInfoAlign;
9236   }
9237 
9238   return 0;
9239 }
9240 
9241 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9242 /// which is split (or expanded) into two not necessarily identical pieces.
9243 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9244   // Currently all types are split in half.
9245   EVT LoVT, HiVT;
9246   if (!VT.isVector())
9247     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9248   else
9249     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9250 
9251   return std::make_pair(LoVT, HiVT);
9252 }
9253 
9254 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9255 /// low/high part.
9256 std::pair<SDValue, SDValue>
9257 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9258                           const EVT &HiVT) {
9259   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9260          N.getValueType().getVectorNumElements() &&
9261          "More vector elements requested than available!");
9262   SDValue Lo, Hi;
9263   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9264                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9265   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9266                getConstant(LoVT.getVectorNumElements(), DL,
9267                            TLI->getVectorIdxTy(getDataLayout())));
9268   return std::make_pair(Lo, Hi);
9269 }
9270 
9271 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9272 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9273   EVT VT = N.getValueType();
9274   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9275                                 NextPowerOf2(VT.getVectorNumElements()));
9276   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9277                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9278 }
9279 
9280 void SelectionDAG::ExtractVectorElements(SDValue Op,
9281                                          SmallVectorImpl<SDValue> &Args,
9282                                          unsigned Start, unsigned Count) {
9283   EVT VT = Op.getValueType();
9284   if (Count == 0)
9285     Count = VT.getVectorNumElements();
9286 
9287   EVT EltVT = VT.getVectorElementType();
9288   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9289   SDLoc SL(Op);
9290   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9291     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9292                            Op, getConstant(i, SL, IdxTy)));
9293   }
9294 }
9295 
9296 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9297 unsigned GlobalAddressSDNode::getAddressSpace() const {
9298   return getGlobal()->getType()->getAddressSpace();
9299 }
9300 
9301 Type *ConstantPoolSDNode::getType() const {
9302   if (isMachineConstantPoolEntry())
9303     return Val.MachineCPVal->getType();
9304   return Val.ConstVal->getType();
9305 }
9306 
9307 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9308                                         unsigned &SplatBitSize,
9309                                         bool &HasAnyUndefs,
9310                                         unsigned MinSplatBits,
9311                                         bool IsBigEndian) const {
9312   EVT VT = getValueType(0);
9313   assert(VT.isVector() && "Expected a vector type");
9314   unsigned VecWidth = VT.getSizeInBits();
9315   if (MinSplatBits > VecWidth)
9316     return false;
9317 
9318   // FIXME: The widths are based on this node's type, but build vectors can
9319   // truncate their operands.
9320   SplatValue = APInt(VecWidth, 0);
9321   SplatUndef = APInt(VecWidth, 0);
9322 
9323   // Get the bits. Bits with undefined values (when the corresponding element
9324   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9325   // in SplatValue. If any of the values are not constant, give up and return
9326   // false.
9327   unsigned int NumOps = getNumOperands();
9328   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9329   unsigned EltWidth = VT.getScalarSizeInBits();
9330 
9331   for (unsigned j = 0; j < NumOps; ++j) {
9332     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9333     SDValue OpVal = getOperand(i);
9334     unsigned BitPos = j * EltWidth;
9335 
9336     if (OpVal.isUndef())
9337       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9338     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9339       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9340     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9341       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9342     else
9343       return false;
9344   }
9345 
9346   // The build_vector is all constants or undefs. Find the smallest element
9347   // size that splats the vector.
9348   HasAnyUndefs = (SplatUndef != 0);
9349 
9350   // FIXME: This does not work for vectors with elements less than 8 bits.
9351   while (VecWidth > 8) {
9352     unsigned HalfSize = VecWidth / 2;
9353     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9354     APInt LowValue = SplatValue.trunc(HalfSize);
9355     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9356     APInt LowUndef = SplatUndef.trunc(HalfSize);
9357 
9358     // If the two halves do not match (ignoring undef bits), stop here.
9359     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9360         MinSplatBits > HalfSize)
9361       break;
9362 
9363     SplatValue = HighValue | LowValue;
9364     SplatUndef = HighUndef & LowUndef;
9365 
9366     VecWidth = HalfSize;
9367   }
9368 
9369   SplatBitSize = VecWidth;
9370   return true;
9371 }
9372 
9373 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9374                                          BitVector *UndefElements) const {
9375   if (UndefElements) {
9376     UndefElements->clear();
9377     UndefElements->resize(getNumOperands());
9378   }
9379   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9380          "Unexpected vector size");
9381   if (!DemandedElts)
9382     return SDValue();
9383   SDValue Splatted;
9384   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9385     if (!DemandedElts[i])
9386       continue;
9387     SDValue Op = getOperand(i);
9388     if (Op.isUndef()) {
9389       if (UndefElements)
9390         (*UndefElements)[i] = true;
9391     } else if (!Splatted) {
9392       Splatted = Op;
9393     } else if (Splatted != Op) {
9394       return SDValue();
9395     }
9396   }
9397 
9398   if (!Splatted) {
9399     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9400     assert(getOperand(FirstDemandedIdx).isUndef() &&
9401            "Can only have a splat without a constant for all undefs.");
9402     return getOperand(FirstDemandedIdx);
9403   }
9404 
9405   return Splatted;
9406 }
9407 
9408 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9409   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9410   return getSplatValue(DemandedElts, UndefElements);
9411 }
9412 
9413 ConstantSDNode *
9414 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9415                                         BitVector *UndefElements) const {
9416   return dyn_cast_or_null<ConstantSDNode>(
9417       getSplatValue(DemandedElts, UndefElements));
9418 }
9419 
9420 ConstantSDNode *
9421 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9422   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9423 }
9424 
9425 ConstantFPSDNode *
9426 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9427                                           BitVector *UndefElements) const {
9428   return dyn_cast_or_null<ConstantFPSDNode>(
9429       getSplatValue(DemandedElts, UndefElements));
9430 }
9431 
9432 ConstantFPSDNode *
9433 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9434   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9435 }
9436 
9437 int32_t
9438 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9439                                                    uint32_t BitWidth) const {
9440   if (ConstantFPSDNode *CN =
9441           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9442     bool IsExact;
9443     APSInt IntVal(BitWidth);
9444     const APFloat &APF = CN->getValueAPF();
9445     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9446             APFloat::opOK ||
9447         !IsExact)
9448       return -1;
9449 
9450     return IntVal.exactLogBase2();
9451   }
9452   return -1;
9453 }
9454 
9455 bool BuildVectorSDNode::isConstant() const {
9456   for (const SDValue &Op : op_values()) {
9457     unsigned Opc = Op.getOpcode();
9458     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9459       return false;
9460   }
9461   return true;
9462 }
9463 
9464 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9465   // Find the first non-undef value in the shuffle mask.
9466   unsigned i, e;
9467   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9468     /* search */;
9469 
9470   // If all elements are undefined, this shuffle can be considered a splat
9471   // (although it should eventually get simplified away completely).
9472   if (i == e)
9473     return true;
9474 
9475   // Make sure all remaining elements are either undef or the same as the first
9476   // non-undef value.
9477   for (int Idx = Mask[i]; i != e; ++i)
9478     if (Mask[i] >= 0 && Mask[i] != Idx)
9479       return false;
9480   return true;
9481 }
9482 
9483 // Returns the SDNode if it is a constant integer BuildVector
9484 // or constant integer.
9485 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9486   if (isa<ConstantSDNode>(N))
9487     return N.getNode();
9488   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9489     return N.getNode();
9490   // Treat a GlobalAddress supporting constant offset folding as a
9491   // constant integer.
9492   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9493     if (GA->getOpcode() == ISD::GlobalAddress &&
9494         TLI->isOffsetFoldingLegal(GA))
9495       return GA;
9496   return nullptr;
9497 }
9498 
9499 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9500   if (isa<ConstantFPSDNode>(N))
9501     return N.getNode();
9502 
9503   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9504     return N.getNode();
9505 
9506   return nullptr;
9507 }
9508 
9509 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9510   assert(!Node->OperandList && "Node already has operands");
9511   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9512          "too many operands to fit into SDNode");
9513   SDUse *Ops = OperandRecycler.allocate(
9514       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9515 
9516   bool IsDivergent = false;
9517   for (unsigned I = 0; I != Vals.size(); ++I) {
9518     Ops[I].setUser(Node);
9519     Ops[I].setInitial(Vals[I]);
9520     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9521       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9522   }
9523   Node->NumOperands = Vals.size();
9524   Node->OperandList = Ops;
9525   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9526   if (!TLI->isSDNodeAlwaysUniform(Node))
9527     Node->SDNodeBits.IsDivergent = IsDivergent;
9528   checkForCycles(Node);
9529 }
9530 
9531 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9532                                      SmallVectorImpl<SDValue> &Vals) {
9533   size_t Limit = SDNode::getMaxNumOperands();
9534   while (Vals.size() > Limit) {
9535     unsigned SliceIdx = Vals.size() - Limit;
9536     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9537     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9538     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9539     Vals.emplace_back(NewTF);
9540   }
9541   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9542 }
9543 
9544 #ifndef NDEBUG
9545 static void checkForCyclesHelper(const SDNode *N,
9546                                  SmallPtrSetImpl<const SDNode*> &Visited,
9547                                  SmallPtrSetImpl<const SDNode*> &Checked,
9548                                  const llvm::SelectionDAG *DAG) {
9549   // If this node has already been checked, don't check it again.
9550   if (Checked.count(N))
9551     return;
9552 
9553   // If a node has already been visited on this depth-first walk, reject it as
9554   // a cycle.
9555   if (!Visited.insert(N).second) {
9556     errs() << "Detected cycle in SelectionDAG\n";
9557     dbgs() << "Offending node:\n";
9558     N->dumprFull(DAG); dbgs() << "\n";
9559     abort();
9560   }
9561 
9562   for (const SDValue &Op : N->op_values())
9563     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9564 
9565   Checked.insert(N);
9566   Visited.erase(N);
9567 }
9568 #endif
9569 
9570 void llvm::checkForCycles(const llvm::SDNode *N,
9571                           const llvm::SelectionDAG *DAG,
9572                           bool force) {
9573 #ifndef NDEBUG
9574   bool check = force;
9575 #ifdef EXPENSIVE_CHECKS
9576   check = true;
9577 #endif  // EXPENSIVE_CHECKS
9578   if (check) {
9579     assert(N && "Checking nonexistent SDNode");
9580     SmallPtrSet<const SDNode*, 32> visited;
9581     SmallPtrSet<const SDNode*, 32> checked;
9582     checkForCyclesHelper(N, visited, checked, DAG);
9583   }
9584 #endif  // !NDEBUG
9585 }
9586 
9587 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9588   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9589 }
9590