1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 
89 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
90 
91 #define DEBUG_TYPE "selectiondag"
92 
93 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
94        cl::Hidden, cl::init(true),
95        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
96 
97 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
98        cl::desc("Number limit for gluing ld/st of memcpy."),
99        cl::Hidden, cl::init(0));
100 
101 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
102   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                              ConstantFPSDNode Class
107 //===----------------------------------------------------------------------===//
108 
109 /// isExactlyValue - We don't rely on operator== working on double values, as
110 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
111 /// As such, this method can be used to do an exact bit-for-bit comparison of
112 /// two floating point values.
113 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
114   return getValueAPF().bitwiseIsEqual(V);
115 }
116 
117 bool ConstantFPSDNode::isValueValidForType(EVT VT,
118                                            const APFloat& Val) {
119   assert(VT.isFloatingPoint() && "Can only convert between FP types");
120 
121   // convert modifies in place, so make a copy.
122   APFloat Val2 = APFloat(Val);
123   bool losesInfo;
124   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
125                       APFloat::rmNearestTiesToEven,
126                       &losesInfo);
127   return !losesInfo;
128 }
129 
130 //===----------------------------------------------------------------------===//
131 //                              ISD Namespace
132 //===----------------------------------------------------------------------===//
133 
134 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
135   auto *BV = dyn_cast<BuildVectorSDNode>(N);
136   if (!BV)
137     return false;
138 
139   APInt SplatUndef;
140   unsigned SplatBitSize;
141   bool HasUndefs;
142   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
143   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
144                              EltSize) &&
145          EltSize == SplatBitSize;
146 }
147 
148 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
149 // specializations of the more general isConstantSplatVector()?
150 
151 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
152   // Look through a bit convert.
153   while (N->getOpcode() == ISD::BITCAST)
154     N = N->getOperand(0).getNode();
155 
156   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157 
158   unsigned i = 0, e = N->getNumOperands();
159 
160   // Skip over all of the undef values.
161   while (i != e && N->getOperand(i).isUndef())
162     ++i;
163 
164   // Do not accept an all-undef vector.
165   if (i == e) return false;
166 
167   // Do not accept build_vectors that aren't all constants or which have non-~0
168   // elements. We have to be a bit careful here, as the type of the constant
169   // may not be the same as the type of the vector elements due to type
170   // legalization (the elements are promoted to a legal type for the target and
171   // a vector of a type may be legal when the base element type is not).
172   // We only want to check enough bits to cover the vector elements, because
173   // we care if the resultant vector is all ones, not whether the individual
174   // constants are.
175   SDValue NotZero = N->getOperand(i);
176   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
178     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
179       return false;
180   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
181     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
182       return false;
183   } else
184     return false;
185 
186   // Okay, we have at least one ~0 value, check to see if the rest match or are
187   // undefs. Even with the above element type twiddling, this should be OK, as
188   // the same type legalization should have applied to all the elements.
189   for (++i; i != e; ++i)
190     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
191       return false;
192   return true;
193 }
194 
195 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
196   // Look through a bit convert.
197   while (N->getOpcode() == ISD::BITCAST)
198     N = N->getOperand(0).getNode();
199 
200   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
201 
202   bool IsAllUndef = true;
203   for (const SDValue &Op : N->op_values()) {
204     if (Op.isUndef())
205       continue;
206     IsAllUndef = false;
207     // Do not accept build_vectors that aren't all constants or which have non-0
208     // elements. We have to be a bit careful here, as the type of the constant
209     // may not be the same as the type of the vector elements due to type
210     // legalization (the elements are promoted to a legal type for the target
211     // and a vector of a type may be legal when the base element type is not).
212     // We only want to check enough bits to cover the vector elements, because
213     // we care if the resultant vector is all zeros, not whether the individual
214     // constants are.
215     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
216     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
217       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
218         return false;
219     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
220       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
221         return false;
222     } else
223       return false;
224   }
225 
226   // Do not accept an all-undef vector.
227   if (IsAllUndef)
228     return false;
229   return true;
230 }
231 
232 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
233   if (N->getOpcode() != ISD::BUILD_VECTOR)
234     return false;
235 
236   for (const SDValue &Op : N->op_values()) {
237     if (Op.isUndef())
238       continue;
239     if (!isa<ConstantSDNode>(Op))
240       return false;
241   }
242   return true;
243 }
244 
245 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
246   if (N->getOpcode() != ISD::BUILD_VECTOR)
247     return false;
248 
249   for (const SDValue &Op : N->op_values()) {
250     if (Op.isUndef())
251       continue;
252     if (!isa<ConstantFPSDNode>(Op))
253       return false;
254   }
255   return true;
256 }
257 
258 bool ISD::allOperandsUndef(const SDNode *N) {
259   // Return false if the node has no operands.
260   // This is "logically inconsistent" with the definition of "all" but
261   // is probably the desired behavior.
262   if (N->getNumOperands() == 0)
263     return false;
264 
265   for (const SDValue &Op : N->op_values())
266     if (!Op.isUndef())
267       return false;
268 
269   return true;
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs) {
302   if (LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (LHSOp.getValueType() != SVT ||
326         LHSOp.getValueType() != RHSOp.getValueType())
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
360   unsigned Operation = Op;
361   if (isInteger)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 /// For an integer comparison, return 1 if the comparison is a signed operation
373 /// and 2 if the result is an unsigned comparison. Return zero if the operation
374 /// does not depend on the sign of the input (setne and seteq).
375 static int isSignedOp(ISD::CondCode Opcode) {
376   switch (Opcode) {
377   default: llvm_unreachable("Illegal integer setcc operation!");
378   case ISD::SETEQ:
379   case ISD::SETNE: return 0;
380   case ISD::SETLT:
381   case ISD::SETLE:
382   case ISD::SETGT:
383   case ISD::SETGE: return 1;
384   case ISD::SETULT:
385   case ISD::SETULE:
386   case ISD::SETUGT:
387   case ISD::SETUGE: return 2;
388   }
389 }
390 
391 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
392                                        bool IsInteger) {
393   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
394     // Cannot fold a signed integer setcc with an unsigned integer setcc.
395     return ISD::SETCC_INVALID;
396 
397   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
398 
399   // If the N and U bits get set, then the resultant comparison DOES suddenly
400   // care about orderedness, and it is true when ordered.
401   if (Op > ISD::SETTRUE2)
402     Op &= ~16;     // Clear the U bit if the N bit is set.
403 
404   // Canonicalize illegal integer setcc's.
405   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
406     Op = ISD::SETNE;
407 
408   return ISD::CondCode(Op);
409 }
410 
411 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
412                                         bool IsInteger) {
413   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
414     // Cannot fold a signed setcc with an unsigned setcc.
415     return ISD::SETCC_INVALID;
416 
417   // Combine all of the condition bits.
418   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
419 
420   // Canonicalize illegal integer setcc's.
421   if (IsInteger) {
422     switch (Result) {
423     default: break;
424     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
425     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
426     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
427     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
428     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
429     }
430   }
431 
432   return Result;
433 }
434 
435 //===----------------------------------------------------------------------===//
436 //                           SDNode Profile Support
437 //===----------------------------------------------------------------------===//
438 
439 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
440 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
441   ID.AddInteger(OpC);
442 }
443 
444 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
445 /// solely with their pointer.
446 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
447   ID.AddPointer(VTList.VTs);
448 }
449 
450 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
451 static void AddNodeIDOperands(FoldingSetNodeID &ID,
452                               ArrayRef<SDValue> Ops) {
453   for (auto& Op : Ops) {
454     ID.AddPointer(Op.getNode());
455     ID.AddInteger(Op.getResNo());
456   }
457 }
458 
459 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
460 static void AddNodeIDOperands(FoldingSetNodeID &ID,
461                               ArrayRef<SDUse> Ops) {
462   for (auto& Op : Ops) {
463     ID.AddPointer(Op.getNode());
464     ID.AddInteger(Op.getResNo());
465   }
466 }
467 
468 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
469                           SDVTList VTList, ArrayRef<SDValue> OpList) {
470   AddNodeIDOpcode(ID, OpC);
471   AddNodeIDValueTypes(ID, VTList);
472   AddNodeIDOperands(ID, OpList);
473 }
474 
475 /// If this is an SDNode with special info, add this info to the NodeID data.
476 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
477   switch (N->getOpcode()) {
478   case ISD::TargetExternalSymbol:
479   case ISD::ExternalSymbol:
480   case ISD::MCSymbol:
481     llvm_unreachable("Should only be used on nodes with operands");
482   default: break;  // Normal nodes don't need extra info.
483   case ISD::TargetConstant:
484   case ISD::Constant: {
485     const ConstantSDNode *C = cast<ConstantSDNode>(N);
486     ID.AddPointer(C->getConstantIntValue());
487     ID.AddBoolean(C->isOpaque());
488     break;
489   }
490   case ISD::TargetConstantFP:
491   case ISD::ConstantFP:
492     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
493     break;
494   case ISD::TargetGlobalAddress:
495   case ISD::GlobalAddress:
496   case ISD::TargetGlobalTLSAddress:
497   case ISD::GlobalTLSAddress: {
498     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
499     ID.AddPointer(GA->getGlobal());
500     ID.AddInteger(GA->getOffset());
501     ID.AddInteger(GA->getTargetFlags());
502     break;
503   }
504   case ISD::BasicBlock:
505     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
506     break;
507   case ISD::Register:
508     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
509     break;
510   case ISD::RegisterMask:
511     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
512     break;
513   case ISD::SRCVALUE:
514     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
515     break;
516   case ISD::FrameIndex:
517   case ISD::TargetFrameIndex:
518     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
519     break;
520   case ISD::JumpTable:
521   case ISD::TargetJumpTable:
522     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
523     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
524     break;
525   case ISD::ConstantPool:
526   case ISD::TargetConstantPool: {
527     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
528     ID.AddInteger(CP->getAlignment());
529     ID.AddInteger(CP->getOffset());
530     if (CP->isMachineConstantPoolEntry())
531       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
532     else
533       ID.AddPointer(CP->getConstVal());
534     ID.AddInteger(CP->getTargetFlags());
535     break;
536   }
537   case ISD::TargetIndex: {
538     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
539     ID.AddInteger(TI->getIndex());
540     ID.AddInteger(TI->getOffset());
541     ID.AddInteger(TI->getTargetFlags());
542     break;
543   }
544   case ISD::LOAD: {
545     const LoadSDNode *LD = cast<LoadSDNode>(N);
546     ID.AddInteger(LD->getMemoryVT().getRawBits());
547     ID.AddInteger(LD->getRawSubclassData());
548     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
549     break;
550   }
551   case ISD::STORE: {
552     const StoreSDNode *ST = cast<StoreSDNode>(N);
553     ID.AddInteger(ST->getMemoryVT().getRawBits());
554     ID.AddInteger(ST->getRawSubclassData());
555     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
556     break;
557   }
558   case ISD::MLOAD: {
559     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
560     ID.AddInteger(MLD->getMemoryVT().getRawBits());
561     ID.AddInteger(MLD->getRawSubclassData());
562     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
563     break;
564   }
565   case ISD::MSTORE: {
566     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
567     ID.AddInteger(MST->getMemoryVT().getRawBits());
568     ID.AddInteger(MST->getRawSubclassData());
569     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
570     break;
571   }
572   case ISD::MGATHER: {
573     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
574     ID.AddInteger(MG->getMemoryVT().getRawBits());
575     ID.AddInteger(MG->getRawSubclassData());
576     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
577     break;
578   }
579   case ISD::MSCATTER: {
580     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
581     ID.AddInteger(MS->getMemoryVT().getRawBits());
582     ID.AddInteger(MS->getRawSubclassData());
583     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
584     break;
585   }
586   case ISD::ATOMIC_CMP_SWAP:
587   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
588   case ISD::ATOMIC_SWAP:
589   case ISD::ATOMIC_LOAD_ADD:
590   case ISD::ATOMIC_LOAD_SUB:
591   case ISD::ATOMIC_LOAD_AND:
592   case ISD::ATOMIC_LOAD_CLR:
593   case ISD::ATOMIC_LOAD_OR:
594   case ISD::ATOMIC_LOAD_XOR:
595   case ISD::ATOMIC_LOAD_NAND:
596   case ISD::ATOMIC_LOAD_MIN:
597   case ISD::ATOMIC_LOAD_MAX:
598   case ISD::ATOMIC_LOAD_UMIN:
599   case ISD::ATOMIC_LOAD_UMAX:
600   case ISD::ATOMIC_LOAD:
601   case ISD::ATOMIC_STORE: {
602     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
603     ID.AddInteger(AT->getMemoryVT().getRawBits());
604     ID.AddInteger(AT->getRawSubclassData());
605     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
606     break;
607   }
608   case ISD::PREFETCH: {
609     const MemSDNode *PF = cast<MemSDNode>(N);
610     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
611     break;
612   }
613   case ISD::VECTOR_SHUFFLE: {
614     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
615     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
616          i != e; ++i)
617       ID.AddInteger(SVN->getMaskElt(i));
618     break;
619   }
620   case ISD::TargetBlockAddress:
621   case ISD::BlockAddress: {
622     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
623     ID.AddPointer(BA->getBlockAddress());
624     ID.AddInteger(BA->getOffset());
625     ID.AddInteger(BA->getTargetFlags());
626     break;
627   }
628   } // end switch (N->getOpcode())
629 
630   // Target specific memory nodes could also have address spaces to check.
631   if (N->isTargetMemoryOpcode())
632     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
633 }
634 
635 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
636 /// data.
637 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
638   AddNodeIDOpcode(ID, N->getOpcode());
639   // Add the return value info.
640   AddNodeIDValueTypes(ID, N->getVTList());
641   // Add the operand info.
642   AddNodeIDOperands(ID, N->ops());
643 
644   // Handle SDNode leafs with special info.
645   AddNodeIDCustom(ID, N);
646 }
647 
648 //===----------------------------------------------------------------------===//
649 //                              SelectionDAG Class
650 //===----------------------------------------------------------------------===//
651 
652 /// doNotCSE - Return true if CSE should not be performed for this node.
653 static bool doNotCSE(SDNode *N) {
654   if (N->getValueType(0) == MVT::Glue)
655     return true; // Never CSE anything that produces a flag.
656 
657   switch (N->getOpcode()) {
658   default: break;
659   case ISD::HANDLENODE:
660   case ISD::EH_LABEL:
661     return true;   // Never CSE these nodes.
662   }
663 
664   // Check that remaining values produced are not flags.
665   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
666     if (N->getValueType(i) == MVT::Glue)
667       return true; // Never CSE anything that produces a flag.
668 
669   return false;
670 }
671 
672 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
673 /// SelectionDAG.
674 void SelectionDAG::RemoveDeadNodes() {
675   // Create a dummy node (which is not added to allnodes), that adds a reference
676   // to the root node, preventing it from being deleted.
677   HandleSDNode Dummy(getRoot());
678 
679   SmallVector<SDNode*, 128> DeadNodes;
680 
681   // Add all obviously-dead nodes to the DeadNodes worklist.
682   for (SDNode &Node : allnodes())
683     if (Node.use_empty())
684       DeadNodes.push_back(&Node);
685 
686   RemoveDeadNodes(DeadNodes);
687 
688   // If the root changed (e.g. it was a dead load, update the root).
689   setRoot(Dummy.getValue());
690 }
691 
692 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
693 /// given list, and any nodes that become unreachable as a result.
694 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
695 
696   // Process the worklist, deleting the nodes and adding their uses to the
697   // worklist.
698   while (!DeadNodes.empty()) {
699     SDNode *N = DeadNodes.pop_back_val();
700     // Skip to next node if we've already managed to delete the node. This could
701     // happen if replacing a node causes a node previously added to the node to
702     // be deleted.
703     if (N->getOpcode() == ISD::DELETED_NODE)
704       continue;
705 
706     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
707       DUL->NodeDeleted(N, nullptr);
708 
709     // Take the node out of the appropriate CSE map.
710     RemoveNodeFromCSEMaps(N);
711 
712     // Next, brutally remove the operand list.  This is safe to do, as there are
713     // no cycles in the graph.
714     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
715       SDUse &Use = *I++;
716       SDNode *Operand = Use.getNode();
717       Use.set(SDValue());
718 
719       // Now that we removed this operand, see if there are no uses of it left.
720       if (Operand->use_empty())
721         DeadNodes.push_back(Operand);
722     }
723 
724     DeallocateNode(N);
725   }
726 }
727 
728 void SelectionDAG::RemoveDeadNode(SDNode *N){
729   SmallVector<SDNode*, 16> DeadNodes(1, N);
730 
731   // Create a dummy node that adds a reference to the root node, preventing
732   // it from being deleted.  (This matters if the root is an operand of the
733   // dead node.)
734   HandleSDNode Dummy(getRoot());
735 
736   RemoveDeadNodes(DeadNodes);
737 }
738 
739 void SelectionDAG::DeleteNode(SDNode *N) {
740   // First take this out of the appropriate CSE map.
741   RemoveNodeFromCSEMaps(N);
742 
743   // Finally, remove uses due to operands of this node, remove from the
744   // AllNodes list, and delete the node.
745   DeleteNodeNotInCSEMaps(N);
746 }
747 
748 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
749   assert(N->getIterator() != AllNodes.begin() &&
750          "Cannot delete the entry node!");
751   assert(N->use_empty() && "Cannot delete a node that is not dead!");
752 
753   // Drop all of the operands and decrement used node's use counts.
754   N->DropOperands();
755 
756   DeallocateNode(N);
757 }
758 
759 void SDDbgInfo::erase(const SDNode *Node) {
760   DbgValMapType::iterator I = DbgValMap.find(Node);
761   if (I == DbgValMap.end())
762     return;
763   for (auto &Val: I->second)
764     Val->setIsInvalidated();
765   DbgValMap.erase(I);
766 }
767 
768 void SelectionDAG::DeallocateNode(SDNode *N) {
769   // If we have operands, deallocate them.
770   removeOperands(N);
771 
772   NodeAllocator.Deallocate(AllNodes.remove(N));
773 
774   // Set the opcode to DELETED_NODE to help catch bugs when node
775   // memory is reallocated.
776   // FIXME: There are places in SDag that have grown a dependency on the opcode
777   // value in the released node.
778   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
779   N->NodeType = ISD::DELETED_NODE;
780 
781   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
782   // them and forget about that node.
783   DbgInfo->erase(N);
784 }
785 
786 #ifndef NDEBUG
787 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
788 static void VerifySDNode(SDNode *N) {
789   switch (N->getOpcode()) {
790   default:
791     break;
792   case ISD::BUILD_PAIR: {
793     EVT VT = N->getValueType(0);
794     assert(N->getNumValues() == 1 && "Too many results!");
795     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
796            "Wrong return type!");
797     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
798     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
799            "Mismatched operand types!");
800     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
801            "Wrong operand type!");
802     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
803            "Wrong return type size");
804     break;
805   }
806   case ISD::BUILD_VECTOR: {
807     assert(N->getNumValues() == 1 && "Too many results!");
808     assert(N->getValueType(0).isVector() && "Wrong return type!");
809     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
810            "Wrong number of operands!");
811     EVT EltVT = N->getValueType(0).getVectorElementType();
812     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
813       assert((I->getValueType() == EltVT ||
814              (EltVT.isInteger() && I->getValueType().isInteger() &&
815               EltVT.bitsLE(I->getValueType()))) &&
816             "Wrong operand type!");
817       assert(I->getValueType() == N->getOperand(0).getValueType() &&
818              "Operands must all have the same type");
819     }
820     break;
821   }
822   }
823 }
824 #endif // NDEBUG
825 
826 /// Insert a newly allocated node into the DAG.
827 ///
828 /// Handles insertion into the all nodes list and CSE map, as well as
829 /// verification and other common operations when a new node is allocated.
830 void SelectionDAG::InsertNode(SDNode *N) {
831   AllNodes.push_back(N);
832 #ifndef NDEBUG
833   N->PersistentId = NextPersistentId++;
834   VerifySDNode(N);
835 #endif
836 }
837 
838 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
839 /// correspond to it.  This is useful when we're about to delete or repurpose
840 /// the node.  We don't want future request for structurally identical nodes
841 /// to return N anymore.
842 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
843   bool Erased = false;
844   switch (N->getOpcode()) {
845   case ISD::HANDLENODE: return false;  // noop.
846   case ISD::CONDCODE:
847     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
848            "Cond code doesn't exist!");
849     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
850     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
851     break;
852   case ISD::ExternalSymbol:
853     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
854     break;
855   case ISD::TargetExternalSymbol: {
856     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
857     Erased = TargetExternalSymbols.erase(
858                std::pair<std::string,unsigned char>(ESN->getSymbol(),
859                                                     ESN->getTargetFlags()));
860     break;
861   }
862   case ISD::MCSymbol: {
863     auto *MCSN = cast<MCSymbolSDNode>(N);
864     Erased = MCSymbols.erase(MCSN->getMCSymbol());
865     break;
866   }
867   case ISD::VALUETYPE: {
868     EVT VT = cast<VTSDNode>(N)->getVT();
869     if (VT.isExtended()) {
870       Erased = ExtendedValueTypeNodes.erase(VT);
871     } else {
872       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
873       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
874     }
875     break;
876   }
877   default:
878     // Remove it from the CSE Map.
879     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
880     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
881     Erased = CSEMap.RemoveNode(N);
882     break;
883   }
884 #ifndef NDEBUG
885   // Verify that the node was actually in one of the CSE maps, unless it has a
886   // flag result (which cannot be CSE'd) or is one of the special cases that are
887   // not subject to CSE.
888   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
889       !N->isMachineOpcode() && !doNotCSE(N)) {
890     N->dump(this);
891     dbgs() << "\n";
892     llvm_unreachable("Node is not in map!");
893   }
894 #endif
895   return Erased;
896 }
897 
898 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
899 /// maps and modified in place. Add it back to the CSE maps, unless an identical
900 /// node already exists, in which case transfer all its users to the existing
901 /// node. This transfer can potentially trigger recursive merging.
902 void
903 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
904   // For node types that aren't CSE'd, just act as if no identical node
905   // already exists.
906   if (!doNotCSE(N)) {
907     SDNode *Existing = CSEMap.GetOrInsertNode(N);
908     if (Existing != N) {
909       // If there was already an existing matching node, use ReplaceAllUsesWith
910       // to replace the dead one with the existing one.  This can cause
911       // recursive merging of other unrelated nodes down the line.
912       ReplaceAllUsesWith(N, Existing);
913 
914       // N is now dead. Inform the listeners and delete it.
915       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
916         DUL->NodeDeleted(N, Existing);
917       DeleteNodeNotInCSEMaps(N);
918       return;
919     }
920   }
921 
922   // If the node doesn't already exist, we updated it.  Inform listeners.
923   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
924     DUL->NodeUpdated(N);
925 }
926 
927 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
928 /// were replaced with those specified.  If this node is never memoized,
929 /// return null, otherwise return a pointer to the slot it would take.  If a
930 /// node already exists with these operands, the slot will be non-null.
931 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
932                                            void *&InsertPos) {
933   if (doNotCSE(N))
934     return nullptr;
935 
936   SDValue Ops[] = { Op };
937   FoldingSetNodeID ID;
938   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
939   AddNodeIDCustom(ID, N);
940   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
941   if (Node)
942     Node->intersectFlagsWith(N->getFlags());
943   return Node;
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
951                                            SDValue Op1, SDValue Op2,
952                                            void *&InsertPos) {
953   if (doNotCSE(N))
954     return nullptr;
955 
956   SDValue Ops[] = { Op1, Op2 };
957   FoldingSetNodeID ID;
958   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
959   AddNodeIDCustom(ID, N);
960   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
961   if (Node)
962     Node->intersectFlagsWith(N->getFlags());
963   return Node;
964 }
965 
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified.  If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take.  If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   FoldingSetNodeID ID;
976   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
977   AddNodeIDCustom(ID, N);
978   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
979   if (Node)
980     Node->intersectFlagsWith(N->getFlags());
981   return Node;
982 }
983 
984 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
985   Type *Ty = VT == MVT::iPTR ?
986                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
987                    VT.getTypeForEVT(*getContext());
988 
989   return getDataLayout().getABITypeAlignment(Ty);
990 }
991 
992 // EntryNode could meaningfully have debug info if we can find it...
993 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
994     : TM(tm), OptLevel(OL),
995       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
996       Root(getEntryNode()) {
997   InsertNode(&EntryNode);
998   DbgInfo = new SDDbgInfo();
999 }
1000 
1001 void SelectionDAG::init(MachineFunction &NewMF,
1002                         OptimizationRemarkEmitter &NewORE,
1003                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1004                         LegacyDivergenceAnalysis * Divergence) {
1005   MF = &NewMF;
1006   SDAGISelPass = PassPtr;
1007   ORE = &NewORE;
1008   TLI = getSubtarget().getTargetLowering();
1009   TSI = getSubtarget().getSelectionDAGInfo();
1010   LibInfo = LibraryInfo;
1011   Context = &MF->getFunction().getContext();
1012   DA = Divergence;
1013 }
1014 
1015 SelectionDAG::~SelectionDAG() {
1016   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1017   allnodes_clear();
1018   OperandRecycler.clear(OperandAllocator);
1019   delete DbgInfo;
1020 }
1021 
1022 void SelectionDAG::allnodes_clear() {
1023   assert(&*AllNodes.begin() == &EntryNode);
1024   AllNodes.remove(AllNodes.begin());
1025   while (!AllNodes.empty())
1026     DeallocateNode(&AllNodes.front());
1027 #ifndef NDEBUG
1028   NextPersistentId = 0;
1029 #endif
1030 }
1031 
1032 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1033                                           void *&InsertPos) {
1034   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1035   if (N) {
1036     switch (N->getOpcode()) {
1037     default: break;
1038     case ISD::Constant:
1039     case ISD::ConstantFP:
1040       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1041                        "debug location.  Use another overload.");
1042     }
1043   }
1044   return N;
1045 }
1046 
1047 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1048                                           const SDLoc &DL, void *&InsertPos) {
1049   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1050   if (N) {
1051     switch (N->getOpcode()) {
1052     case ISD::Constant:
1053     case ISD::ConstantFP:
1054       // Erase debug location from the node if the node is used at several
1055       // different places. Do not propagate one location to all uses as it
1056       // will cause a worse single stepping debugging experience.
1057       if (N->getDebugLoc() != DL.getDebugLoc())
1058         N->setDebugLoc(DebugLoc());
1059       break;
1060     default:
1061       // When the node's point of use is located earlier in the instruction
1062       // sequence than its prior point of use, update its debug info to the
1063       // earlier location.
1064       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1065         N->setDebugLoc(DL.getDebugLoc());
1066       break;
1067     }
1068   }
1069   return N;
1070 }
1071 
1072 void SelectionDAG::clear() {
1073   allnodes_clear();
1074   OperandRecycler.clear(OperandAllocator);
1075   OperandAllocator.Reset();
1076   CSEMap.clear();
1077 
1078   ExtendedValueTypeNodes.clear();
1079   ExternalSymbols.clear();
1080   TargetExternalSymbols.clear();
1081   MCSymbols.clear();
1082   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1083             static_cast<CondCodeSDNode*>(nullptr));
1084   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1085             static_cast<SDNode*>(nullptr));
1086 
1087   EntryNode.UseList = nullptr;
1088   InsertNode(&EntryNode);
1089   Root = getEntryNode();
1090   DbgInfo->clear();
1091 }
1092 
1093 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1094   return VT.bitsGT(Op.getValueType())
1095              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1096              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1097 }
1098 
1099 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1100   return VT.bitsGT(Op.getValueType()) ?
1101     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1102     getNode(ISD::TRUNCATE, DL, VT, Op);
1103 }
1104 
1105 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1106   return VT.bitsGT(Op.getValueType()) ?
1107     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1108     getNode(ISD::TRUNCATE, DL, VT, Op);
1109 }
1110 
1111 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1112   return VT.bitsGT(Op.getValueType()) ?
1113     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1114     getNode(ISD::TRUNCATE, DL, VT, Op);
1115 }
1116 
1117 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1118                                         EVT OpVT) {
1119   if (VT.bitsLE(Op.getValueType()))
1120     return getNode(ISD::TRUNCATE, SL, VT, Op);
1121 
1122   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1123   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1124 }
1125 
1126 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1127   assert(!VT.isVector() &&
1128          "getZeroExtendInReg should use the vector element type instead of "
1129          "the vector type!");
1130   if (Op.getValueType().getScalarType() == VT) return Op;
1131   unsigned BitWidth = Op.getScalarValueSizeInBits();
1132   APInt Imm = APInt::getLowBitsSet(BitWidth,
1133                                    VT.getSizeInBits());
1134   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1135                  getConstant(Imm, DL, Op.getValueType()));
1136 }
1137 
1138 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1139 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1140   EVT EltVT = VT.getScalarType();
1141   SDValue NegOne =
1142     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1143   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1144 }
1145 
1146 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1147   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1148   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1149 }
1150 
1151 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1152                                       EVT OpVT) {
1153   if (!V)
1154     return getConstant(0, DL, VT);
1155 
1156   switch (TLI->getBooleanContents(OpVT)) {
1157   case TargetLowering::ZeroOrOneBooleanContent:
1158   case TargetLowering::UndefinedBooleanContent:
1159     return getConstant(1, DL, VT);
1160   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1161     return getAllOnesConstant(DL, VT);
1162   }
1163   llvm_unreachable("Unexpected boolean content enum!");
1164 }
1165 
1166 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1167                                   bool isT, bool isO) {
1168   EVT EltVT = VT.getScalarType();
1169   assert((EltVT.getSizeInBits() >= 64 ||
1170          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1171          "getConstant with a uint64_t value that doesn't fit in the type!");
1172   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1173 }
1174 
1175 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1176                                   bool isT, bool isO) {
1177   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1178 }
1179 
1180 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1181                                   EVT VT, bool isT, bool isO) {
1182   assert(VT.isInteger() && "Cannot create FP integer constant!");
1183 
1184   EVT EltVT = VT.getScalarType();
1185   const ConstantInt *Elt = &Val;
1186 
1187   // In some cases the vector type is legal but the element type is illegal and
1188   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1189   // inserted value (the type does not need to match the vector element type).
1190   // Any extra bits introduced will be truncated away.
1191   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1192       TargetLowering::TypePromoteInteger) {
1193    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1194    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1195    Elt = ConstantInt::get(*getContext(), NewVal);
1196   }
1197   // In other cases the element type is illegal and needs to be expanded, for
1198   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1199   // the value into n parts and use a vector type with n-times the elements.
1200   // Then bitcast to the type requested.
1201   // Legalizing constants too early makes the DAGCombiner's job harder so we
1202   // only legalize if the DAG tells us we must produce legal types.
1203   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1204            TLI->getTypeAction(*getContext(), EltVT) ==
1205            TargetLowering::TypeExpandInteger) {
1206     const APInt &NewVal = Elt->getValue();
1207     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1208     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1209     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1210     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1211 
1212     // Check the temporary vector is the correct size. If this fails then
1213     // getTypeToTransformTo() probably returned a type whose size (in bits)
1214     // isn't a power-of-2 factor of the requested type size.
1215     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1216 
1217     SmallVector<SDValue, 2> EltParts;
1218     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1219       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1220                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1221                                      ViaEltVT, isT, isO));
1222     }
1223 
1224     // EltParts is currently in little endian order. If we actually want
1225     // big-endian order then reverse it now.
1226     if (getDataLayout().isBigEndian())
1227       std::reverse(EltParts.begin(), EltParts.end());
1228 
1229     // The elements must be reversed when the element order is different
1230     // to the endianness of the elements (because the BITCAST is itself a
1231     // vector shuffle in this situation). However, we do not need any code to
1232     // perform this reversal because getConstant() is producing a vector
1233     // splat.
1234     // This situation occurs in MIPS MSA.
1235 
1236     SmallVector<SDValue, 8> Ops;
1237     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1238       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1239 
1240     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1241     return V;
1242   }
1243 
1244   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1245          "APInt size does not match type size!");
1246   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1247   FoldingSetNodeID ID;
1248   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1249   ID.AddPointer(Elt);
1250   ID.AddBoolean(isO);
1251   void *IP = nullptr;
1252   SDNode *N = nullptr;
1253   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1254     if (!VT.isVector())
1255       return SDValue(N, 0);
1256 
1257   if (!N) {
1258     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1259     CSEMap.InsertNode(N, IP);
1260     InsertNode(N);
1261     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1262   }
1263 
1264   SDValue Result(N, 0);
1265   if (VT.isVector())
1266     Result = getSplatBuildVector(VT, DL, Result);
1267 
1268   return Result;
1269 }
1270 
1271 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1272                                         bool isTarget) {
1273   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1274 }
1275 
1276 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1277                                     bool isTarget) {
1278   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1279 }
1280 
1281 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1282                                     EVT VT, bool isTarget) {
1283   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1284 
1285   EVT EltVT = VT.getScalarType();
1286 
1287   // Do the map lookup using the actual bit pattern for the floating point
1288   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1289   // we don't have issues with SNANs.
1290   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1291   FoldingSetNodeID ID;
1292   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1293   ID.AddPointer(&V);
1294   void *IP = nullptr;
1295   SDNode *N = nullptr;
1296   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1297     if (!VT.isVector())
1298       return SDValue(N, 0);
1299 
1300   if (!N) {
1301     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1302     CSEMap.InsertNode(N, IP);
1303     InsertNode(N);
1304   }
1305 
1306   SDValue Result(N, 0);
1307   if (VT.isVector())
1308     Result = getSplatBuildVector(VT, DL, Result);
1309   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1310   return Result;
1311 }
1312 
1313 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1314                                     bool isTarget) {
1315   EVT EltVT = VT.getScalarType();
1316   if (EltVT == MVT::f32)
1317     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1318   else if (EltVT == MVT::f64)
1319     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1320   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1321            EltVT == MVT::f16) {
1322     bool Ignored;
1323     APFloat APF = APFloat(Val);
1324     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1325                 &Ignored);
1326     return getConstantFP(APF, DL, VT, isTarget);
1327   } else
1328     llvm_unreachable("Unsupported type in getConstantFP");
1329 }
1330 
1331 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1332                                        EVT VT, int64_t Offset, bool isTargetGA,
1333                                        unsigned char TargetFlags) {
1334   assert((TargetFlags == 0 || isTargetGA) &&
1335          "Cannot set target flags on target-independent globals");
1336 
1337   // Truncate (with sign-extension) the offset value to the pointer size.
1338   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1339   if (BitWidth < 64)
1340     Offset = SignExtend64(Offset, BitWidth);
1341 
1342   unsigned Opc;
1343   if (GV->isThreadLocal())
1344     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1345   else
1346     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1347 
1348   FoldingSetNodeID ID;
1349   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1350   ID.AddPointer(GV);
1351   ID.AddInteger(Offset);
1352   ID.AddInteger(TargetFlags);
1353   void *IP = nullptr;
1354   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1355     return SDValue(E, 0);
1356 
1357   auto *N = newSDNode<GlobalAddressSDNode>(
1358       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1359   CSEMap.InsertNode(N, IP);
1360     InsertNode(N);
1361   return SDValue(N, 0);
1362 }
1363 
1364 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1365   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1366   FoldingSetNodeID ID;
1367   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1368   ID.AddInteger(FI);
1369   void *IP = nullptr;
1370   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1371     return SDValue(E, 0);
1372 
1373   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1374   CSEMap.InsertNode(N, IP);
1375   InsertNode(N);
1376   return SDValue(N, 0);
1377 }
1378 
1379 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1380                                    unsigned char TargetFlags) {
1381   assert((TargetFlags == 0 || isTarget) &&
1382          "Cannot set target flags on target-independent jump tables");
1383   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1384   FoldingSetNodeID ID;
1385   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1386   ID.AddInteger(JTI);
1387   ID.AddInteger(TargetFlags);
1388   void *IP = nullptr;
1389   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1390     return SDValue(E, 0);
1391 
1392   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1393   CSEMap.InsertNode(N, IP);
1394   InsertNode(N);
1395   return SDValue(N, 0);
1396 }
1397 
1398 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1399                                       unsigned Alignment, int Offset,
1400                                       bool isTarget,
1401                                       unsigned char TargetFlags) {
1402   assert((TargetFlags == 0 || isTarget) &&
1403          "Cannot set target flags on target-independent globals");
1404   if (Alignment == 0)
1405     Alignment = MF->getFunction().optForSize()
1406                     ? getDataLayout().getABITypeAlignment(C->getType())
1407                     : getDataLayout().getPrefTypeAlignment(C->getType());
1408   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1409   FoldingSetNodeID ID;
1410   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1411   ID.AddInteger(Alignment);
1412   ID.AddInteger(Offset);
1413   ID.AddPointer(C);
1414   ID.AddInteger(TargetFlags);
1415   void *IP = nullptr;
1416   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1417     return SDValue(E, 0);
1418 
1419   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1420                                           TargetFlags);
1421   CSEMap.InsertNode(N, IP);
1422   InsertNode(N);
1423   return SDValue(N, 0);
1424 }
1425 
1426 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1427                                       unsigned Alignment, int Offset,
1428                                       bool isTarget,
1429                                       unsigned char TargetFlags) {
1430   assert((TargetFlags == 0 || isTarget) &&
1431          "Cannot set target flags on target-independent globals");
1432   if (Alignment == 0)
1433     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1434   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1435   FoldingSetNodeID ID;
1436   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1437   ID.AddInteger(Alignment);
1438   ID.AddInteger(Offset);
1439   C->addSelectionDAGCSEId(ID);
1440   ID.AddInteger(TargetFlags);
1441   void *IP = nullptr;
1442   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1443     return SDValue(E, 0);
1444 
1445   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1446                                           TargetFlags);
1447   CSEMap.InsertNode(N, IP);
1448   InsertNode(N);
1449   return SDValue(N, 0);
1450 }
1451 
1452 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1453                                      unsigned char TargetFlags) {
1454   FoldingSetNodeID ID;
1455   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1456   ID.AddInteger(Index);
1457   ID.AddInteger(Offset);
1458   ID.AddInteger(TargetFlags);
1459   void *IP = nullptr;
1460   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1461     return SDValue(E, 0);
1462 
1463   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1464   CSEMap.InsertNode(N, IP);
1465   InsertNode(N);
1466   return SDValue(N, 0);
1467 }
1468 
1469 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1470   FoldingSetNodeID ID;
1471   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1472   ID.AddPointer(MBB);
1473   void *IP = nullptr;
1474   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1475     return SDValue(E, 0);
1476 
1477   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1478   CSEMap.InsertNode(N, IP);
1479   InsertNode(N);
1480   return SDValue(N, 0);
1481 }
1482 
1483 SDValue SelectionDAG::getValueType(EVT VT) {
1484   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1485       ValueTypeNodes.size())
1486     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1487 
1488   SDNode *&N = VT.isExtended() ?
1489     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1490 
1491   if (N) return SDValue(N, 0);
1492   N = newSDNode<VTSDNode>(VT);
1493   InsertNode(N);
1494   return SDValue(N, 0);
1495 }
1496 
1497 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1498   SDNode *&N = ExternalSymbols[Sym];
1499   if (N) return SDValue(N, 0);
1500   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1501   InsertNode(N);
1502   return SDValue(N, 0);
1503 }
1504 
1505 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1506   SDNode *&N = MCSymbols[Sym];
1507   if (N)
1508     return SDValue(N, 0);
1509   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1510   InsertNode(N);
1511   return SDValue(N, 0);
1512 }
1513 
1514 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1515                                               unsigned char TargetFlags) {
1516   SDNode *&N =
1517     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1518                                                                TargetFlags)];
1519   if (N) return SDValue(N, 0);
1520   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1521   InsertNode(N);
1522   return SDValue(N, 0);
1523 }
1524 
1525 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1526   if ((unsigned)Cond >= CondCodeNodes.size())
1527     CondCodeNodes.resize(Cond+1);
1528 
1529   if (!CondCodeNodes[Cond]) {
1530     auto *N = newSDNode<CondCodeSDNode>(Cond);
1531     CondCodeNodes[Cond] = N;
1532     InsertNode(N);
1533   }
1534 
1535   return SDValue(CondCodeNodes[Cond], 0);
1536 }
1537 
1538 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1539 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1540 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1541   std::swap(N1, N2);
1542   ShuffleVectorSDNode::commuteMask(M);
1543 }
1544 
1545 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1546                                        SDValue N2, ArrayRef<int> Mask) {
1547   assert(VT.getVectorNumElements() == Mask.size() &&
1548            "Must have the same number of vector elements as mask elements!");
1549   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1550          "Invalid VECTOR_SHUFFLE");
1551 
1552   // Canonicalize shuffle undef, undef -> undef
1553   if (N1.isUndef() && N2.isUndef())
1554     return getUNDEF(VT);
1555 
1556   // Validate that all indices in Mask are within the range of the elements
1557   // input to the shuffle.
1558   int NElts = Mask.size();
1559   assert(llvm::all_of(Mask,
1560                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1561          "Index out of range");
1562 
1563   // Copy the mask so we can do any needed cleanup.
1564   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1565 
1566   // Canonicalize shuffle v, v -> v, undef
1567   if (N1 == N2) {
1568     N2 = getUNDEF(VT);
1569     for (int i = 0; i != NElts; ++i)
1570       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1571   }
1572 
1573   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1574   if (N1.isUndef())
1575     commuteShuffle(N1, N2, MaskVec);
1576 
1577   if (TLI->hasVectorBlend()) {
1578     // If shuffling a splat, try to blend the splat instead. We do this here so
1579     // that even when this arises during lowering we don't have to re-handle it.
1580     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1581       BitVector UndefElements;
1582       SDValue Splat = BV->getSplatValue(&UndefElements);
1583       if (!Splat)
1584         return;
1585 
1586       for (int i = 0; i < NElts; ++i) {
1587         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1588           continue;
1589 
1590         // If this input comes from undef, mark it as such.
1591         if (UndefElements[MaskVec[i] - Offset]) {
1592           MaskVec[i] = -1;
1593           continue;
1594         }
1595 
1596         // If we can blend a non-undef lane, use that instead.
1597         if (!UndefElements[i])
1598           MaskVec[i] = i + Offset;
1599       }
1600     };
1601     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1602       BlendSplat(N1BV, 0);
1603     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1604       BlendSplat(N2BV, NElts);
1605   }
1606 
1607   // Canonicalize all index into lhs, -> shuffle lhs, undef
1608   // Canonicalize all index into rhs, -> shuffle rhs, undef
1609   bool AllLHS = true, AllRHS = true;
1610   bool N2Undef = N2.isUndef();
1611   for (int i = 0; i != NElts; ++i) {
1612     if (MaskVec[i] >= NElts) {
1613       if (N2Undef)
1614         MaskVec[i] = -1;
1615       else
1616         AllLHS = false;
1617     } else if (MaskVec[i] >= 0) {
1618       AllRHS = false;
1619     }
1620   }
1621   if (AllLHS && AllRHS)
1622     return getUNDEF(VT);
1623   if (AllLHS && !N2Undef)
1624     N2 = getUNDEF(VT);
1625   if (AllRHS) {
1626     N1 = getUNDEF(VT);
1627     commuteShuffle(N1, N2, MaskVec);
1628   }
1629   // Reset our undef status after accounting for the mask.
1630   N2Undef = N2.isUndef();
1631   // Re-check whether both sides ended up undef.
1632   if (N1.isUndef() && N2Undef)
1633     return getUNDEF(VT);
1634 
1635   // If Identity shuffle return that node.
1636   bool Identity = true, AllSame = true;
1637   for (int i = 0; i != NElts; ++i) {
1638     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1639     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1640   }
1641   if (Identity && NElts)
1642     return N1;
1643 
1644   // Shuffling a constant splat doesn't change the result.
1645   if (N2Undef) {
1646     SDValue V = N1;
1647 
1648     // Look through any bitcasts. We check that these don't change the number
1649     // (and size) of elements and just changes their types.
1650     while (V.getOpcode() == ISD::BITCAST)
1651       V = V->getOperand(0);
1652 
1653     // A splat should always show up as a build vector node.
1654     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1655       BitVector UndefElements;
1656       SDValue Splat = BV->getSplatValue(&UndefElements);
1657       // If this is a splat of an undef, shuffling it is also undef.
1658       if (Splat && Splat.isUndef())
1659         return getUNDEF(VT);
1660 
1661       bool SameNumElts =
1662           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1663 
1664       // We only have a splat which can skip shuffles if there is a splatted
1665       // value and no undef lanes rearranged by the shuffle.
1666       if (Splat && UndefElements.none()) {
1667         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1668         // number of elements match or the value splatted is a zero constant.
1669         if (SameNumElts)
1670           return N1;
1671         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1672           if (C->isNullValue())
1673             return N1;
1674       }
1675 
1676       // If the shuffle itself creates a splat, build the vector directly.
1677       if (AllSame && SameNumElts) {
1678         EVT BuildVT = BV->getValueType(0);
1679         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1680         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1681 
1682         // We may have jumped through bitcasts, so the type of the
1683         // BUILD_VECTOR may not match the type of the shuffle.
1684         if (BuildVT != VT)
1685           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1686         return NewBV;
1687       }
1688     }
1689   }
1690 
1691   FoldingSetNodeID ID;
1692   SDValue Ops[2] = { N1, N2 };
1693   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1694   for (int i = 0; i != NElts; ++i)
1695     ID.AddInteger(MaskVec[i]);
1696 
1697   void* IP = nullptr;
1698   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1699     return SDValue(E, 0);
1700 
1701   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1702   // SDNode doesn't have access to it.  This memory will be "leaked" when
1703   // the node is deallocated, but recovered when the NodeAllocator is released.
1704   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1705   llvm::copy(MaskVec, MaskAlloc);
1706 
1707   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1708                                            dl.getDebugLoc(), MaskAlloc);
1709   createOperands(N, Ops);
1710 
1711   CSEMap.InsertNode(N, IP);
1712   InsertNode(N);
1713   SDValue V = SDValue(N, 0);
1714   NewSDValueDbgMsg(V, "Creating new node: ", this);
1715   return V;
1716 }
1717 
1718 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1719   EVT VT = SV.getValueType(0);
1720   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1721   ShuffleVectorSDNode::commuteMask(MaskVec);
1722 
1723   SDValue Op0 = SV.getOperand(0);
1724   SDValue Op1 = SV.getOperand(1);
1725   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1726 }
1727 
1728 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1729   FoldingSetNodeID ID;
1730   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1731   ID.AddInteger(RegNo);
1732   void *IP = nullptr;
1733   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1734     return SDValue(E, 0);
1735 
1736   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1737   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1738   CSEMap.InsertNode(N, IP);
1739   InsertNode(N);
1740   return SDValue(N, 0);
1741 }
1742 
1743 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1744   FoldingSetNodeID ID;
1745   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1746   ID.AddPointer(RegMask);
1747   void *IP = nullptr;
1748   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1749     return SDValue(E, 0);
1750 
1751   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1752   CSEMap.InsertNode(N, IP);
1753   InsertNode(N);
1754   return SDValue(N, 0);
1755 }
1756 
1757 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1758                                  MCSymbol *Label) {
1759   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1760 }
1761 
1762 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1763                                    SDValue Root, MCSymbol *Label) {
1764   FoldingSetNodeID ID;
1765   SDValue Ops[] = { Root };
1766   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1767   ID.AddPointer(Label);
1768   void *IP = nullptr;
1769   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1770     return SDValue(E, 0);
1771 
1772   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1773   createOperands(N, Ops);
1774 
1775   CSEMap.InsertNode(N, IP);
1776   InsertNode(N);
1777   return SDValue(N, 0);
1778 }
1779 
1780 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1781                                       int64_t Offset,
1782                                       bool isTarget,
1783                                       unsigned char TargetFlags) {
1784   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1785 
1786   FoldingSetNodeID ID;
1787   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1788   ID.AddPointer(BA);
1789   ID.AddInteger(Offset);
1790   ID.AddInteger(TargetFlags);
1791   void *IP = nullptr;
1792   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1793     return SDValue(E, 0);
1794 
1795   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1796   CSEMap.InsertNode(N, IP);
1797   InsertNode(N);
1798   return SDValue(N, 0);
1799 }
1800 
1801 SDValue SelectionDAG::getSrcValue(const Value *V) {
1802   assert((!V || V->getType()->isPointerTy()) &&
1803          "SrcValue is not a pointer?");
1804 
1805   FoldingSetNodeID ID;
1806   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1807   ID.AddPointer(V);
1808 
1809   void *IP = nullptr;
1810   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1811     return SDValue(E, 0);
1812 
1813   auto *N = newSDNode<SrcValueSDNode>(V);
1814   CSEMap.InsertNode(N, IP);
1815   InsertNode(N);
1816   return SDValue(N, 0);
1817 }
1818 
1819 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1820   FoldingSetNodeID ID;
1821   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1822   ID.AddPointer(MD);
1823 
1824   void *IP = nullptr;
1825   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1826     return SDValue(E, 0);
1827 
1828   auto *N = newSDNode<MDNodeSDNode>(MD);
1829   CSEMap.InsertNode(N, IP);
1830   InsertNode(N);
1831   return SDValue(N, 0);
1832 }
1833 
1834 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1835   if (VT == V.getValueType())
1836     return V;
1837 
1838   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1839 }
1840 
1841 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1842                                        unsigned SrcAS, unsigned DestAS) {
1843   SDValue Ops[] = {Ptr};
1844   FoldingSetNodeID ID;
1845   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1846   ID.AddInteger(SrcAS);
1847   ID.AddInteger(DestAS);
1848 
1849   void *IP = nullptr;
1850   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1851     return SDValue(E, 0);
1852 
1853   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1854                                            VT, SrcAS, DestAS);
1855   createOperands(N, Ops);
1856 
1857   CSEMap.InsertNode(N, IP);
1858   InsertNode(N);
1859   return SDValue(N, 0);
1860 }
1861 
1862 /// getShiftAmountOperand - Return the specified value casted to
1863 /// the target's desired shift amount type.
1864 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1865   EVT OpTy = Op.getValueType();
1866   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1867   if (OpTy == ShTy || OpTy.isVector()) return Op;
1868 
1869   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1870 }
1871 
1872 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1873   SDLoc dl(Node);
1874   const TargetLowering &TLI = getTargetLoweringInfo();
1875   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1876   EVT VT = Node->getValueType(0);
1877   SDValue Tmp1 = Node->getOperand(0);
1878   SDValue Tmp2 = Node->getOperand(1);
1879   unsigned Align = Node->getConstantOperandVal(3);
1880 
1881   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1882                                Tmp2, MachinePointerInfo(V));
1883   SDValue VAList = VAListLoad;
1884 
1885   if (Align > TLI.getMinStackArgumentAlignment()) {
1886     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1887 
1888     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1889                      getConstant(Align - 1, dl, VAList.getValueType()));
1890 
1891     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1892                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1893   }
1894 
1895   // Increment the pointer, VAList, to the next vaarg
1896   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1897                  getConstant(getDataLayout().getTypeAllocSize(
1898                                                VT.getTypeForEVT(*getContext())),
1899                              dl, VAList.getValueType()));
1900   // Store the incremented VAList to the legalized pointer
1901   Tmp1 =
1902       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1903   // Load the actual argument out of the pointer VAList
1904   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1905 }
1906 
1907 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1908   SDLoc dl(Node);
1909   const TargetLowering &TLI = getTargetLoweringInfo();
1910   // This defaults to loading a pointer from the input and storing it to the
1911   // output, returning the chain.
1912   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1913   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1914   SDValue Tmp1 =
1915       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1916               Node->getOperand(2), MachinePointerInfo(VS));
1917   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1918                   MachinePointerInfo(VD));
1919 }
1920 
1921 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1922   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1923   unsigned ByteSize = VT.getStoreSize();
1924   Type *Ty = VT.getTypeForEVT(*getContext());
1925   unsigned StackAlign =
1926       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1927 
1928   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1929   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1930 }
1931 
1932 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1933   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1934   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1935   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1936   const DataLayout &DL = getDataLayout();
1937   unsigned Align =
1938       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1939 
1940   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1941   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1942   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1943 }
1944 
1945 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1946                                 ISD::CondCode Cond, const SDLoc &dl) {
1947   EVT OpVT = N1.getValueType();
1948 
1949   // These setcc operations always fold.
1950   switch (Cond) {
1951   default: break;
1952   case ISD::SETFALSE:
1953   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1954   case ISD::SETTRUE:
1955   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1956 
1957   case ISD::SETOEQ:
1958   case ISD::SETOGT:
1959   case ISD::SETOGE:
1960   case ISD::SETOLT:
1961   case ISD::SETOLE:
1962   case ISD::SETONE:
1963   case ISD::SETO:
1964   case ISD::SETUO:
1965   case ISD::SETUEQ:
1966   case ISD::SETUNE:
1967     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1968     break;
1969   }
1970 
1971   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1972     const APInt &C2 = N2C->getAPIntValue();
1973     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1974       const APInt &C1 = N1C->getAPIntValue();
1975 
1976       switch (Cond) {
1977       default: llvm_unreachable("Unknown integer setcc!");
1978       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1979       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1980       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1981       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1982       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1983       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
1984       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
1985       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
1986       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
1987       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
1988       }
1989     }
1990   }
1991   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1992     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1993       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1994       switch (Cond) {
1995       default: break;
1996       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1997                           return getUNDEF(VT);
1998                         LLVM_FALLTHROUGH;
1999       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2000                                                OpVT);
2001       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2002                           return getUNDEF(VT);
2003                         LLVM_FALLTHROUGH;
2004       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2005                                                R==APFloat::cmpLessThan, dl, VT,
2006                                                OpVT);
2007       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2008                           return getUNDEF(VT);
2009                         LLVM_FALLTHROUGH;
2010       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2011                                                OpVT);
2012       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2013                           return getUNDEF(VT);
2014                         LLVM_FALLTHROUGH;
2015       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2016                                                VT, OpVT);
2017       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2018                           return getUNDEF(VT);
2019                         LLVM_FALLTHROUGH;
2020       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2021                                                R==APFloat::cmpEqual, dl, VT,
2022                                                OpVT);
2023       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2024                           return getUNDEF(VT);
2025                         LLVM_FALLTHROUGH;
2026       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2027                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2028       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2029                                                OpVT);
2030       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2031                                                OpVT);
2032       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2033                                                R==APFloat::cmpEqual, dl, VT,
2034                                                OpVT);
2035       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2036                                                OpVT);
2037       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2038                                                R==APFloat::cmpLessThan, dl, VT,
2039                                                OpVT);
2040       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2041                                                R==APFloat::cmpUnordered, dl, VT,
2042                                                OpVT);
2043       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2044                                                VT, OpVT);
2045       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2046                                                OpVT);
2047       }
2048     } else {
2049       // Ensure that the constant occurs on the RHS.
2050       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2051       MVT CompVT = N1.getValueType().getSimpleVT();
2052       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2053         return SDValue();
2054 
2055       return getSetCC(dl, VT, N2, N1, SwappedCond);
2056     }
2057   }
2058 
2059   // Could not fold it.
2060   return SDValue();
2061 }
2062 
2063 /// See if the specified operand can be simplified with the knowledge that only
2064 /// the bits specified by Mask are used.
2065 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2066   switch (V.getOpcode()) {
2067   default:
2068     break;
2069   case ISD::Constant: {
2070     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2071     assert(CV && "Const value should be ConstSDNode.");
2072     const APInt &CVal = CV->getAPIntValue();
2073     APInt NewVal = CVal & Mask;
2074     if (NewVal != CVal)
2075       return getConstant(NewVal, SDLoc(V), V.getValueType());
2076     break;
2077   }
2078   case ISD::OR:
2079   case ISD::XOR:
2080     // If the LHS or RHS don't contribute bits to the or, drop them.
2081     if (MaskedValueIsZero(V.getOperand(0), Mask))
2082       return V.getOperand(1);
2083     if (MaskedValueIsZero(V.getOperand(1), Mask))
2084       return V.getOperand(0);
2085     break;
2086   case ISD::SRL:
2087     // Only look at single-use SRLs.
2088     if (!V.getNode()->hasOneUse())
2089       break;
2090     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2091       // See if we can recursively simplify the LHS.
2092       unsigned Amt = RHSC->getZExtValue();
2093 
2094       // Watch out for shift count overflow though.
2095       if (Amt >= Mask.getBitWidth())
2096         break;
2097       APInt NewMask = Mask << Amt;
2098       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2099         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2100                        V.getOperand(1));
2101     }
2102     break;
2103   case ISD::AND: {
2104     // X & -1 -> X (ignoring bits which aren't demanded).
2105     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2106     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2107       return V.getOperand(0);
2108     break;
2109   }
2110   case ISD::ANY_EXTEND: {
2111     SDValue Src = V.getOperand(0);
2112     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2113     // Being conservative here - only peek through if we only demand bits in the
2114     // non-extended source (even though the extended bits are technically undef).
2115     if (Mask.getActiveBits() > SrcBitWidth)
2116       break;
2117     APInt SrcMask = Mask.trunc(SrcBitWidth);
2118     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2119       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2120     break;
2121   }
2122   case ISD::SIGN_EXTEND_INREG:
2123     EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
2124     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2125 
2126     // If none of the extended bits are demanded, eliminate the sextinreg.
2127     if (Mask.getActiveBits() <= ExVTBits)
2128       return V.getOperand(0);
2129 
2130     break;
2131   }
2132   return SDValue();
2133 }
2134 
2135 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2136 /// use this predicate to simplify operations downstream.
2137 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2138   unsigned BitWidth = Op.getScalarValueSizeInBits();
2139   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2140 }
2141 
2142 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2143 /// this predicate to simplify operations downstream.  Mask is known to be zero
2144 /// for bits that V cannot have.
2145 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2146                                      unsigned Depth) const {
2147   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2148 }
2149 
2150 /// isSplatValue - Return true if the vector V has the same value
2151 /// across all DemandedElts.
2152 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2153                                 APInt &UndefElts) {
2154   if (!DemandedElts)
2155     return false; // No demanded elts, better to assume we don't know anything.
2156 
2157   EVT VT = V.getValueType();
2158   assert(VT.isVector() && "Vector type expected");
2159 
2160   unsigned NumElts = VT.getVectorNumElements();
2161   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2162   UndefElts = APInt::getNullValue(NumElts);
2163 
2164   switch (V.getOpcode()) {
2165   case ISD::BUILD_VECTOR: {
2166     SDValue Scl;
2167     for (unsigned i = 0; i != NumElts; ++i) {
2168       SDValue Op = V.getOperand(i);
2169       if (Op.isUndef()) {
2170         UndefElts.setBit(i);
2171         continue;
2172       }
2173       if (!DemandedElts[i])
2174         continue;
2175       if (Scl && Scl != Op)
2176         return false;
2177       Scl = Op;
2178     }
2179     return true;
2180   }
2181   case ISD::VECTOR_SHUFFLE: {
2182     // Check if this is a shuffle node doing a splat.
2183     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2184     int SplatIndex = -1;
2185     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2186     for (int i = 0; i != (int)NumElts; ++i) {
2187       int M = Mask[i];
2188       if (M < 0) {
2189         UndefElts.setBit(i);
2190         continue;
2191       }
2192       if (!DemandedElts[i])
2193         continue;
2194       if (0 <= SplatIndex && SplatIndex != M)
2195         return false;
2196       SplatIndex = M;
2197     }
2198     return true;
2199   }
2200   case ISD::EXTRACT_SUBVECTOR: {
2201     SDValue Src = V.getOperand(0);
2202     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2203     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2204     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2205       // Offset the demanded elts by the subvector index.
2206       uint64_t Idx = SubIdx->getZExtValue();
2207       APInt UndefSrcElts;
2208       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2209       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2210         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2211         return true;
2212       }
2213     }
2214     break;
2215   }
2216   case ISD::ADD:
2217   case ISD::SUB:
2218   case ISD::AND: {
2219     APInt UndefLHS, UndefRHS;
2220     SDValue LHS = V.getOperand(0);
2221     SDValue RHS = V.getOperand(1);
2222     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2223         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2224       UndefElts = UndefLHS | UndefRHS;
2225       return true;
2226     }
2227     break;
2228   }
2229   }
2230 
2231   return false;
2232 }
2233 
2234 /// Helper wrapper to main isSplatValue function.
2235 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2236   EVT VT = V.getValueType();
2237   assert(VT.isVector() && "Vector type expected");
2238   unsigned NumElts = VT.getVectorNumElements();
2239 
2240   APInt UndefElts;
2241   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2242   return isSplatValue(V, DemandedElts, UndefElts) &&
2243          (AllowUndefs || !UndefElts);
2244 }
2245 
2246 /// Helper function that checks to see if a node is a constant or a
2247 /// build vector of splat constants at least within the demanded elts.
2248 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2249                                                    const APInt &DemandedElts) {
2250   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2251     return CN;
2252   if (N.getOpcode() != ISD::BUILD_VECTOR)
2253     return nullptr;
2254   EVT VT = N.getValueType();
2255   ConstantSDNode *Cst = nullptr;
2256   unsigned NumElts = VT.getVectorNumElements();
2257   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2258   for (unsigned i = 0; i != NumElts; ++i) {
2259     if (!DemandedElts[i])
2260       continue;
2261     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2262     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2263         C->getValueType(0) != VT.getScalarType())
2264       return nullptr;
2265     Cst = C;
2266   }
2267   return Cst;
2268 }
2269 
2270 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2271 /// is less than the element bit-width of the shift node, return it.
2272 static const APInt *getValidShiftAmountConstant(SDValue V) {
2273   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2274     // Shifting more than the bitwidth is not valid.
2275     const APInt &ShAmt = SA->getAPIntValue();
2276     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2277       return &ShAmt;
2278   }
2279   return nullptr;
2280 }
2281 
2282 /// Determine which bits of Op are known to be either zero or one and return
2283 /// them in Known. For vectors, the known bits are those that are shared by
2284 /// every vector element.
2285 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2286   EVT VT = Op.getValueType();
2287   APInt DemandedElts = VT.isVector()
2288                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2289                            : APInt(1, 1);
2290   return computeKnownBits(Op, DemandedElts, Depth);
2291 }
2292 
2293 /// Determine which bits of Op are known to be either zero or one and return
2294 /// them in Known. The DemandedElts argument allows us to only collect the known
2295 /// bits that are shared by the requested vector elements.
2296 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2297                                          unsigned Depth) const {
2298   unsigned BitWidth = Op.getScalarValueSizeInBits();
2299 
2300   KnownBits Known(BitWidth);   // Don't know anything.
2301 
2302   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2303     // We know all of the bits for a constant!
2304     Known.One = C->getAPIntValue();
2305     Known.Zero = ~Known.One;
2306     return Known;
2307   }
2308   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2309     // We know all of the bits for a constant fp!
2310     Known.One = C->getValueAPF().bitcastToAPInt();
2311     Known.Zero = ~Known.One;
2312     return Known;
2313   }
2314 
2315   if (Depth == 6)
2316     return Known;  // Limit search depth.
2317 
2318   KnownBits Known2;
2319   unsigned NumElts = DemandedElts.getBitWidth();
2320   assert((!Op.getValueType().isVector() ||
2321           NumElts == Op.getValueType().getVectorNumElements()) &&
2322          "Unexpected vector size");
2323 
2324   if (!DemandedElts)
2325     return Known;  // No demanded elts, better to assume we don't know anything.
2326 
2327   unsigned Opcode = Op.getOpcode();
2328   switch (Opcode) {
2329   case ISD::BUILD_VECTOR:
2330     // Collect the known bits that are shared by every demanded vector element.
2331     Known.Zero.setAllBits(); Known.One.setAllBits();
2332     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2333       if (!DemandedElts[i])
2334         continue;
2335 
2336       SDValue SrcOp = Op.getOperand(i);
2337       Known2 = computeKnownBits(SrcOp, Depth + 1);
2338 
2339       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2340       if (SrcOp.getValueSizeInBits() != BitWidth) {
2341         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2342                "Expected BUILD_VECTOR implicit truncation");
2343         Known2 = Known2.trunc(BitWidth);
2344       }
2345 
2346       // Known bits are the values that are shared by every demanded element.
2347       Known.One &= Known2.One;
2348       Known.Zero &= Known2.Zero;
2349 
2350       // If we don't know any bits, early out.
2351       if (Known.isUnknown())
2352         break;
2353     }
2354     break;
2355   case ISD::VECTOR_SHUFFLE: {
2356     // Collect the known bits that are shared by every vector element referenced
2357     // by the shuffle.
2358     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2359     Known.Zero.setAllBits(); Known.One.setAllBits();
2360     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2361     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2362     for (unsigned i = 0; i != NumElts; ++i) {
2363       if (!DemandedElts[i])
2364         continue;
2365 
2366       int M = SVN->getMaskElt(i);
2367       if (M < 0) {
2368         // For UNDEF elements, we don't know anything about the common state of
2369         // the shuffle result.
2370         Known.resetAll();
2371         DemandedLHS.clearAllBits();
2372         DemandedRHS.clearAllBits();
2373         break;
2374       }
2375 
2376       if ((unsigned)M < NumElts)
2377         DemandedLHS.setBit((unsigned)M % NumElts);
2378       else
2379         DemandedRHS.setBit((unsigned)M % NumElts);
2380     }
2381     // Known bits are the values that are shared by every demanded element.
2382     if (!!DemandedLHS) {
2383       SDValue LHS = Op.getOperand(0);
2384       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2385       Known.One &= Known2.One;
2386       Known.Zero &= Known2.Zero;
2387     }
2388     // If we don't know any bits, early out.
2389     if (Known.isUnknown())
2390       break;
2391     if (!!DemandedRHS) {
2392       SDValue RHS = Op.getOperand(1);
2393       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2394       Known.One &= Known2.One;
2395       Known.Zero &= Known2.Zero;
2396     }
2397     break;
2398   }
2399   case ISD::CONCAT_VECTORS: {
2400     // Split DemandedElts and test each of the demanded subvectors.
2401     Known.Zero.setAllBits(); Known.One.setAllBits();
2402     EVT SubVectorVT = Op.getOperand(0).getValueType();
2403     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2404     unsigned NumSubVectors = Op.getNumOperands();
2405     for (unsigned i = 0; i != NumSubVectors; ++i) {
2406       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2407       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2408       if (!!DemandedSub) {
2409         SDValue Sub = Op.getOperand(i);
2410         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2411         Known.One &= Known2.One;
2412         Known.Zero &= Known2.Zero;
2413       }
2414       // If we don't know any bits, early out.
2415       if (Known.isUnknown())
2416         break;
2417     }
2418     break;
2419   }
2420   case ISD::INSERT_SUBVECTOR: {
2421     // If we know the element index, demand any elements from the subvector and
2422     // the remainder from the src its inserted into, otherwise demand them all.
2423     SDValue Src = Op.getOperand(0);
2424     SDValue Sub = Op.getOperand(1);
2425     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2426     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2427     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2428       Known.One.setAllBits();
2429       Known.Zero.setAllBits();
2430       uint64_t Idx = SubIdx->getZExtValue();
2431       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2432       if (!!DemandedSubElts) {
2433         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2434         if (Known.isUnknown())
2435           break; // early-out.
2436       }
2437       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2438       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2439       if (!!DemandedSrcElts) {
2440         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2441         Known.One &= Known2.One;
2442         Known.Zero &= Known2.Zero;
2443       }
2444     } else {
2445       Known = computeKnownBits(Sub, Depth + 1);
2446       if (Known.isUnknown())
2447         break; // early-out.
2448       Known2 = computeKnownBits(Src, Depth + 1);
2449       Known.One &= Known2.One;
2450       Known.Zero &= Known2.Zero;
2451     }
2452     break;
2453   }
2454   case ISD::EXTRACT_SUBVECTOR: {
2455     // If we know the element index, just demand that subvector elements,
2456     // otherwise demand them all.
2457     SDValue Src = Op.getOperand(0);
2458     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2459     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2460     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2461       // Offset the demanded elts by the subvector index.
2462       uint64_t Idx = SubIdx->getZExtValue();
2463       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2464       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2465     } else {
2466       Known = computeKnownBits(Src, Depth + 1);
2467     }
2468     break;
2469   }
2470   case ISD::SCALAR_TO_VECTOR: {
2471     // We know about scalar_to_vector as much as we know about it source,
2472     // which becomes the first element of otherwise unknown vector.
2473     if (DemandedElts != 1)
2474       break;
2475 
2476     SDValue N0 = Op.getOperand(0);
2477     Known = computeKnownBits(N0, Depth + 1);
2478     if (N0.getValueSizeInBits() != BitWidth)
2479       Known = Known.trunc(BitWidth);
2480 
2481     break;
2482   }
2483   case ISD::BITCAST: {
2484     SDValue N0 = Op.getOperand(0);
2485     EVT SubVT = N0.getValueType();
2486     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2487 
2488     // Ignore bitcasts from unsupported types.
2489     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2490       break;
2491 
2492     // Fast handling of 'identity' bitcasts.
2493     if (BitWidth == SubBitWidth) {
2494       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2495       break;
2496     }
2497 
2498     bool IsLE = getDataLayout().isLittleEndian();
2499 
2500     // Bitcast 'small element' vector to 'large element' scalar/vector.
2501     if ((BitWidth % SubBitWidth) == 0) {
2502       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2503 
2504       // Collect known bits for the (larger) output by collecting the known
2505       // bits from each set of sub elements and shift these into place.
2506       // We need to separately call computeKnownBits for each set of
2507       // sub elements as the knownbits for each is likely to be different.
2508       unsigned SubScale = BitWidth / SubBitWidth;
2509       APInt SubDemandedElts(NumElts * SubScale, 0);
2510       for (unsigned i = 0; i != NumElts; ++i)
2511         if (DemandedElts[i])
2512           SubDemandedElts.setBit(i * SubScale);
2513 
2514       for (unsigned i = 0; i != SubScale; ++i) {
2515         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2516                          Depth + 1);
2517         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2518         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2519         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2520       }
2521     }
2522 
2523     // Bitcast 'large element' scalar/vector to 'small element' vector.
2524     if ((SubBitWidth % BitWidth) == 0) {
2525       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2526 
2527       // Collect known bits for the (smaller) output by collecting the known
2528       // bits from the overlapping larger input elements and extracting the
2529       // sub sections we actually care about.
2530       unsigned SubScale = SubBitWidth / BitWidth;
2531       APInt SubDemandedElts(NumElts / SubScale, 0);
2532       for (unsigned i = 0; i != NumElts; ++i)
2533         if (DemandedElts[i])
2534           SubDemandedElts.setBit(i / SubScale);
2535 
2536       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2537 
2538       Known.Zero.setAllBits(); Known.One.setAllBits();
2539       for (unsigned i = 0; i != NumElts; ++i)
2540         if (DemandedElts[i]) {
2541           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2542           unsigned Offset = (Shifts % SubScale) * BitWidth;
2543           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2544           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2545           // If we don't know any bits, early out.
2546           if (Known.isUnknown())
2547             break;
2548         }
2549     }
2550     break;
2551   }
2552   case ISD::AND:
2553     // If either the LHS or the RHS are Zero, the result is zero.
2554     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2555     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2556 
2557     // Output known-1 bits are only known if set in both the LHS & RHS.
2558     Known.One &= Known2.One;
2559     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2560     Known.Zero |= Known2.Zero;
2561     break;
2562   case ISD::OR:
2563     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2564     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2565 
2566     // Output known-0 bits are only known if clear in both the LHS & RHS.
2567     Known.Zero &= Known2.Zero;
2568     // Output known-1 are known to be set if set in either the LHS | RHS.
2569     Known.One |= Known2.One;
2570     break;
2571   case ISD::XOR: {
2572     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2573     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2574 
2575     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2576     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2577     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2578     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2579     Known.Zero = KnownZeroOut;
2580     break;
2581   }
2582   case ISD::MUL: {
2583     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2584     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2585 
2586     // If low bits are zero in either operand, output low known-0 bits.
2587     // Also compute a conservative estimate for high known-0 bits.
2588     // More trickiness is possible, but this is sufficient for the
2589     // interesting case of alignment computation.
2590     unsigned TrailZ = Known.countMinTrailingZeros() +
2591                       Known2.countMinTrailingZeros();
2592     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2593                                Known2.countMinLeadingZeros(),
2594                                BitWidth) - BitWidth;
2595 
2596     Known.resetAll();
2597     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2598     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2599     break;
2600   }
2601   case ISD::UDIV: {
2602     // For the purposes of computing leading zeros we can conservatively
2603     // treat a udiv as a logical right shift by the power of 2 known to
2604     // be less than the denominator.
2605     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2606     unsigned LeadZ = Known2.countMinLeadingZeros();
2607 
2608     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2609     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2610     if (RHSMaxLeadingZeros != BitWidth)
2611       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2612 
2613     Known.Zero.setHighBits(LeadZ);
2614     break;
2615   }
2616   case ISD::SELECT:
2617   case ISD::VSELECT:
2618     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2619     // If we don't know any bits, early out.
2620     if (Known.isUnknown())
2621       break;
2622     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2623 
2624     // Only known if known in both the LHS and RHS.
2625     Known.One &= Known2.One;
2626     Known.Zero &= Known2.Zero;
2627     break;
2628   case ISD::SELECT_CC:
2629     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2630     // If we don't know any bits, early out.
2631     if (Known.isUnknown())
2632       break;
2633     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2634 
2635     // Only known if known in both the LHS and RHS.
2636     Known.One &= Known2.One;
2637     Known.Zero &= Known2.Zero;
2638     break;
2639   case ISD::SMULO:
2640   case ISD::UMULO:
2641   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2642     if (Op.getResNo() != 1)
2643       break;
2644     // The boolean result conforms to getBooleanContents.
2645     // If we know the result of a setcc has the top bits zero, use this info.
2646     // We know that we have an integer-based boolean since these operations
2647     // are only available for integer.
2648     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2649             TargetLowering::ZeroOrOneBooleanContent &&
2650         BitWidth > 1)
2651       Known.Zero.setBitsFrom(1);
2652     break;
2653   case ISD::SETCC:
2654     // If we know the result of a setcc has the top bits zero, use this info.
2655     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2656             TargetLowering::ZeroOrOneBooleanContent &&
2657         BitWidth > 1)
2658       Known.Zero.setBitsFrom(1);
2659     break;
2660   case ISD::SHL:
2661     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2662       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2663       unsigned Shift = ShAmt->getZExtValue();
2664       Known.Zero <<= Shift;
2665       Known.One <<= Shift;
2666       // Low bits are known zero.
2667       Known.Zero.setLowBits(Shift);
2668     }
2669     break;
2670   case ISD::SRL:
2671     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2672       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2673       unsigned Shift = ShAmt->getZExtValue();
2674       Known.Zero.lshrInPlace(Shift);
2675       Known.One.lshrInPlace(Shift);
2676       // High bits are known zero.
2677       Known.Zero.setHighBits(Shift);
2678     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2679       // If the shift amount is a vector of constants see if we can bound
2680       // the number of upper zero bits.
2681       unsigned ShiftAmountMin = BitWidth;
2682       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2683         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2684           const APInt &ShAmt = C->getAPIntValue();
2685           if (ShAmt.ult(BitWidth)) {
2686             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2687                                                 ShAmt.getZExtValue());
2688             continue;
2689           }
2690         }
2691         // Don't know anything.
2692         ShiftAmountMin = 0;
2693         break;
2694       }
2695 
2696       Known.Zero.setHighBits(ShiftAmountMin);
2697     }
2698     break;
2699   case ISD::SRA:
2700     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2701       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2702       unsigned Shift = ShAmt->getZExtValue();
2703       // Sign extend known zero/one bit (else is unknown).
2704       Known.Zero.ashrInPlace(Shift);
2705       Known.One.ashrInPlace(Shift);
2706     }
2707     break;
2708   case ISD::FSHL:
2709   case ISD::FSHR:
2710     if (ConstantSDNode *C =
2711             isConstOrDemandedConstSplat(Op.getOperand(2), DemandedElts)) {
2712       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2713 
2714       // For fshl, 0-shift returns the 1st arg.
2715       // For fshr, 0-shift returns the 2nd arg.
2716       if (Amt == 0) {
2717         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2718                                  DemandedElts, Depth + 1);
2719         break;
2720       }
2721 
2722       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2723       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2724       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2725       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2726       if (Opcode == ISD::FSHL) {
2727         Known.One <<= Amt;
2728         Known.Zero <<= Amt;
2729         Known2.One.lshrInPlace(BitWidth - Amt);
2730         Known2.Zero.lshrInPlace(BitWidth - Amt);
2731       } else {
2732         Known.One <<= BitWidth - Amt;
2733         Known.Zero <<= BitWidth - Amt;
2734         Known2.One.lshrInPlace(Amt);
2735         Known2.Zero.lshrInPlace(Amt);
2736       }
2737       Known.One |= Known2.One;
2738       Known.Zero |= Known2.Zero;
2739     }
2740     break;
2741   case ISD::SIGN_EXTEND_INREG: {
2742     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2743     unsigned EBits = EVT.getScalarSizeInBits();
2744 
2745     // Sign extension.  Compute the demanded bits in the result that are not
2746     // present in the input.
2747     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2748 
2749     APInt InSignMask = APInt::getSignMask(EBits);
2750     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2751 
2752     // If the sign extended bits are demanded, we know that the sign
2753     // bit is demanded.
2754     InSignMask = InSignMask.zext(BitWidth);
2755     if (NewBits.getBoolValue())
2756       InputDemandedBits |= InSignMask;
2757 
2758     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2759     Known.One &= InputDemandedBits;
2760     Known.Zero &= InputDemandedBits;
2761 
2762     // If the sign bit of the input is known set or clear, then we know the
2763     // top bits of the result.
2764     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2765       Known.Zero |= NewBits;
2766       Known.One  &= ~NewBits;
2767     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2768       Known.One  |= NewBits;
2769       Known.Zero &= ~NewBits;
2770     } else {                              // Input sign bit unknown
2771       Known.Zero &= ~NewBits;
2772       Known.One  &= ~NewBits;
2773     }
2774     break;
2775   }
2776   case ISD::CTTZ:
2777   case ISD::CTTZ_ZERO_UNDEF: {
2778     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2779     // If we have a known 1, its position is our upper bound.
2780     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2781     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2782     Known.Zero.setBitsFrom(LowBits);
2783     break;
2784   }
2785   case ISD::CTLZ:
2786   case ISD::CTLZ_ZERO_UNDEF: {
2787     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2788     // If we have a known 1, its position is our upper bound.
2789     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2790     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2791     Known.Zero.setBitsFrom(LowBits);
2792     break;
2793   }
2794   case ISD::CTPOP: {
2795     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2796     // If we know some of the bits are zero, they can't be one.
2797     unsigned PossibleOnes = Known2.countMaxPopulation();
2798     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2799     break;
2800   }
2801   case ISD::LOAD: {
2802     LoadSDNode *LD = cast<LoadSDNode>(Op);
2803     // If this is a ZEXTLoad and we are looking at the loaded value.
2804     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2805       EVT VT = LD->getMemoryVT();
2806       unsigned MemBits = VT.getScalarSizeInBits();
2807       Known.Zero.setBitsFrom(MemBits);
2808     } else if (const MDNode *Ranges = LD->getRanges()) {
2809       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2810         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2811     }
2812     break;
2813   }
2814   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2815     EVT InVT = Op.getOperand(0).getValueType();
2816     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2817     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2818     Known = Known.zext(BitWidth);
2819     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2820     break;
2821   }
2822   case ISD::ZERO_EXTEND: {
2823     EVT InVT = Op.getOperand(0).getValueType();
2824     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2825     Known = Known.zext(BitWidth);
2826     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2827     break;
2828   }
2829   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2830     EVT InVT = Op.getOperand(0).getValueType();
2831     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2832     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2833     // If the sign bit is known to be zero or one, then sext will extend
2834     // it to the top bits, else it will just zext.
2835     Known = Known.sext(BitWidth);
2836     break;
2837   }
2838   case ISD::SIGN_EXTEND: {
2839     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2840     // If the sign bit is known to be zero or one, then sext will extend
2841     // it to the top bits, else it will just zext.
2842     Known = Known.sext(BitWidth);
2843     break;
2844   }
2845   case ISD::ANY_EXTEND: {
2846     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2847     Known = Known.zext(BitWidth);
2848     break;
2849   }
2850   case ISD::TRUNCATE: {
2851     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2852     Known = Known.trunc(BitWidth);
2853     break;
2854   }
2855   case ISD::AssertZext: {
2856     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2857     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2858     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2859     Known.Zero |= (~InMask);
2860     Known.One  &= (~Known.Zero);
2861     break;
2862   }
2863   case ISD::FGETSIGN:
2864     // All bits are zero except the low bit.
2865     Known.Zero.setBitsFrom(1);
2866     break;
2867   case ISD::USUBO:
2868   case ISD::SSUBO:
2869     if (Op.getResNo() == 1) {
2870       // If we know the result of a setcc has the top bits zero, use this info.
2871       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2872               TargetLowering::ZeroOrOneBooleanContent &&
2873           BitWidth > 1)
2874         Known.Zero.setBitsFrom(1);
2875       break;
2876     }
2877     LLVM_FALLTHROUGH;
2878   case ISD::SUB:
2879   case ISD::SUBC: {
2880     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2881       // We know that the top bits of C-X are clear if X contains less bits
2882       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2883       // positive if we can prove that X is >= 0 and < 16.
2884       if (CLHS->getAPIntValue().isNonNegative()) {
2885         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2886         // NLZ can't be BitWidth with no sign bit
2887         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2888         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2889                          Depth + 1);
2890 
2891         // If all of the MaskV bits are known to be zero, then we know the
2892         // output top bits are zero, because we now know that the output is
2893         // from [0-C].
2894         if ((Known2.Zero & MaskV) == MaskV) {
2895           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2896           // Top bits known zero.
2897           Known.Zero.setHighBits(NLZ2);
2898         }
2899       }
2900     }
2901 
2902     // If low bits are know to be zero in both operands, then we know they are
2903     // going to be 0 in the result. Both addition and complement operations
2904     // preserve the low zero bits.
2905     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2906     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2907     if (KnownZeroLow == 0)
2908       break;
2909 
2910     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2911     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2912     Known.Zero.setLowBits(KnownZeroLow);
2913     break;
2914   }
2915   case ISD::UADDO:
2916   case ISD::SADDO:
2917   case ISD::ADDCARRY:
2918     if (Op.getResNo() == 1) {
2919       // If we know the result of a setcc has the top bits zero, use this info.
2920       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2921               TargetLowering::ZeroOrOneBooleanContent &&
2922           BitWidth > 1)
2923         Known.Zero.setBitsFrom(1);
2924       break;
2925     }
2926     LLVM_FALLTHROUGH;
2927   case ISD::ADD:
2928   case ISD::ADDC:
2929   case ISD::ADDE: {
2930     // Output known-0 bits are known if clear or set in both the low clear bits
2931     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2932     // low 3 bits clear.
2933     // Output known-0 bits are also known if the top bits of each input are
2934     // known to be clear. For example, if one input has the top 10 bits clear
2935     // and the other has the top 8 bits clear, we know the top 7 bits of the
2936     // output must be clear.
2937     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2938     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2939     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2940 
2941     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2942     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2943     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2944 
2945     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2946       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2947       // use this information if we know (at least) that the low two bits are
2948       // clear. We then return to the caller that the low bit is unknown but
2949       // that other bits are known zero.
2950       if (KnownZeroLow >= 2)
2951         Known.Zero.setBits(1, KnownZeroLow);
2952       break;
2953     }
2954 
2955     Known.Zero.setLowBits(KnownZeroLow);
2956     if (KnownZeroHigh > 1)
2957       Known.Zero.setHighBits(KnownZeroHigh - 1);
2958     break;
2959   }
2960   case ISD::SREM:
2961     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2962       const APInt &RA = Rem->getAPIntValue().abs();
2963       if (RA.isPowerOf2()) {
2964         APInt LowBits = RA - 1;
2965         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2966 
2967         // The low bits of the first operand are unchanged by the srem.
2968         Known.Zero = Known2.Zero & LowBits;
2969         Known.One = Known2.One & LowBits;
2970 
2971         // If the first operand is non-negative or has all low bits zero, then
2972         // the upper bits are all zero.
2973         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2974           Known.Zero |= ~LowBits;
2975 
2976         // If the first operand is negative and not all low bits are zero, then
2977         // the upper bits are all one.
2978         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2979           Known.One |= ~LowBits;
2980         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2981       }
2982     }
2983     break;
2984   case ISD::UREM: {
2985     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2986       const APInt &RA = Rem->getAPIntValue();
2987       if (RA.isPowerOf2()) {
2988         APInt LowBits = (RA - 1);
2989         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2990 
2991         // The upper bits are all zero, the lower ones are unchanged.
2992         Known.Zero = Known2.Zero | ~LowBits;
2993         Known.One = Known2.One & LowBits;
2994         break;
2995       }
2996     }
2997 
2998     // Since the result is less than or equal to either operand, any leading
2999     // zero bits in either operand must also exist in the result.
3000     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3001     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3002 
3003     uint32_t Leaders =
3004         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3005     Known.resetAll();
3006     Known.Zero.setHighBits(Leaders);
3007     break;
3008   }
3009   case ISD::EXTRACT_ELEMENT: {
3010     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3011     const unsigned Index = Op.getConstantOperandVal(1);
3012     const unsigned BitWidth = Op.getValueSizeInBits();
3013 
3014     // Remove low part of known bits mask
3015     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
3016     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
3017 
3018     // Remove high part of known bit mask
3019     Known = Known.trunc(BitWidth);
3020     break;
3021   }
3022   case ISD::EXTRACT_VECTOR_ELT: {
3023     SDValue InVec = Op.getOperand(0);
3024     SDValue EltNo = Op.getOperand(1);
3025     EVT VecVT = InVec.getValueType();
3026     const unsigned BitWidth = Op.getValueSizeInBits();
3027     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3028     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3029     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3030     // anything about the extended bits.
3031     if (BitWidth > EltBitWidth)
3032       Known = Known.trunc(EltBitWidth);
3033     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3034     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3035       // If we know the element index, just demand that vector element.
3036       unsigned Idx = ConstEltNo->getZExtValue();
3037       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3038       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3039     } else {
3040       // Unknown element index, so ignore DemandedElts and demand them all.
3041       Known = computeKnownBits(InVec, Depth + 1);
3042     }
3043     if (BitWidth > EltBitWidth)
3044       Known = Known.zext(BitWidth);
3045     break;
3046   }
3047   case ISD::INSERT_VECTOR_ELT: {
3048     SDValue InVec = Op.getOperand(0);
3049     SDValue InVal = Op.getOperand(1);
3050     SDValue EltNo = Op.getOperand(2);
3051 
3052     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3053     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3054       // If we know the element index, split the demand between the
3055       // source vector and the inserted element.
3056       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3057       unsigned EltIdx = CEltNo->getZExtValue();
3058 
3059       // If we demand the inserted element then add its common known bits.
3060       if (DemandedElts[EltIdx]) {
3061         Known2 = computeKnownBits(InVal, Depth + 1);
3062         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3063         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3064       }
3065 
3066       // If we demand the source vector then add its common known bits, ensuring
3067       // that we don't demand the inserted element.
3068       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3069       if (!!VectorElts) {
3070         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3071         Known.One &= Known2.One;
3072         Known.Zero &= Known2.Zero;
3073       }
3074     } else {
3075       // Unknown element index, so ignore DemandedElts and demand them all.
3076       Known = computeKnownBits(InVec, Depth + 1);
3077       Known2 = computeKnownBits(InVal, Depth + 1);
3078       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3079       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3080     }
3081     break;
3082   }
3083   case ISD::BITREVERSE: {
3084     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3085     Known.Zero = Known2.Zero.reverseBits();
3086     Known.One = Known2.One.reverseBits();
3087     break;
3088   }
3089   case ISD::BSWAP: {
3090     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     Known.Zero = Known2.Zero.byteSwap();
3092     Known.One = Known2.One.byteSwap();
3093     break;
3094   }
3095   case ISD::ABS: {
3096     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097 
3098     // If the source's MSB is zero then we know the rest of the bits already.
3099     if (Known2.isNonNegative()) {
3100       Known.Zero = Known2.Zero;
3101       Known.One = Known2.One;
3102       break;
3103     }
3104 
3105     // We only know that the absolute values's MSB will be zero iff there is
3106     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3107     Known2.One.clearSignBit();
3108     if (Known2.One.getBoolValue()) {
3109       Known.Zero = APInt::getSignMask(BitWidth);
3110       break;
3111     }
3112     break;
3113   }
3114   case ISD::UMIN: {
3115     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3116     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3117 
3118     // UMIN - we know that the result will have the maximum of the
3119     // known zero leading bits of the inputs.
3120     unsigned LeadZero = Known.countMinLeadingZeros();
3121     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3122 
3123     Known.Zero &= Known2.Zero;
3124     Known.One &= Known2.One;
3125     Known.Zero.setHighBits(LeadZero);
3126     break;
3127   }
3128   case ISD::UMAX: {
3129     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3130     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3131 
3132     // UMAX - we know that the result will have the maximum of the
3133     // known one leading bits of the inputs.
3134     unsigned LeadOne = Known.countMinLeadingOnes();
3135     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3136 
3137     Known.Zero &= Known2.Zero;
3138     Known.One &= Known2.One;
3139     Known.One.setHighBits(LeadOne);
3140     break;
3141   }
3142   case ISD::SMIN:
3143   case ISD::SMAX: {
3144     // If we have a clamp pattern, we know that the number of sign bits will be
3145     // the minimum of the clamp min/max range.
3146     bool IsMax = (Opcode == ISD::SMAX);
3147     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3148     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3149       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3150         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3151                                               DemandedElts);
3152     if (CstLow && CstHigh) {
3153       if (!IsMax)
3154         std::swap(CstLow, CstHigh);
3155 
3156       const APInt &ValueLow = CstLow->getAPIntValue();
3157       const APInt &ValueHigh = CstHigh->getAPIntValue();
3158       if (ValueLow.sle(ValueHigh)) {
3159         unsigned LowSignBits = ValueLow.getNumSignBits();
3160         unsigned HighSignBits = ValueHigh.getNumSignBits();
3161         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3162         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3163           Known.One.setHighBits(MinSignBits);
3164           break;
3165         }
3166         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3167           Known.Zero.setHighBits(MinSignBits);
3168           break;
3169         }
3170       }
3171     }
3172 
3173     // Fallback - just get the shared known bits of the operands.
3174     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     if (Known.isUnknown()) break; // Early-out
3176     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3177     Known.Zero &= Known2.Zero;
3178     Known.One &= Known2.One;
3179     break;
3180   }
3181   case ISD::FrameIndex:
3182   case ISD::TargetFrameIndex:
3183     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3184     break;
3185 
3186   default:
3187     if (Opcode < ISD::BUILTIN_OP_END)
3188       break;
3189     LLVM_FALLTHROUGH;
3190   case ISD::INTRINSIC_WO_CHAIN:
3191   case ISD::INTRINSIC_W_CHAIN:
3192   case ISD::INTRINSIC_VOID:
3193     // Allow the target to implement this method for its nodes.
3194     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3195     break;
3196   }
3197 
3198   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3199   return Known;
3200 }
3201 
3202 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3203                                                              SDValue N1) const {
3204   // X + 0 never overflow
3205   if (isNullConstant(N1))
3206     return OFK_Never;
3207 
3208   KnownBits N1Known = computeKnownBits(N1);
3209   if (N1Known.Zero.getBoolValue()) {
3210     KnownBits N0Known = computeKnownBits(N0);
3211 
3212     bool overflow;
3213     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3214     if (!overflow)
3215       return OFK_Never;
3216   }
3217 
3218   // mulhi + 1 never overflow
3219   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3220       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3221     return OFK_Never;
3222 
3223   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3224     KnownBits N0Known = computeKnownBits(N0);
3225 
3226     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3227       return OFK_Never;
3228   }
3229 
3230   return OFK_Sometime;
3231 }
3232 
3233 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3234   EVT OpVT = Val.getValueType();
3235   unsigned BitWidth = OpVT.getScalarSizeInBits();
3236 
3237   // Is the constant a known power of 2?
3238   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3239     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3240 
3241   // A left-shift of a constant one will have exactly one bit set because
3242   // shifting the bit off the end is undefined.
3243   if (Val.getOpcode() == ISD::SHL) {
3244     auto *C = isConstOrConstSplat(Val.getOperand(0));
3245     if (C && C->getAPIntValue() == 1)
3246       return true;
3247   }
3248 
3249   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3250   // one bit set.
3251   if (Val.getOpcode() == ISD::SRL) {
3252     auto *C = isConstOrConstSplat(Val.getOperand(0));
3253     if (C && C->getAPIntValue().isSignMask())
3254       return true;
3255   }
3256 
3257   // Are all operands of a build vector constant powers of two?
3258   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3259     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3260           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3261             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3262           return false;
3263         }))
3264       return true;
3265 
3266   // More could be done here, though the above checks are enough
3267   // to handle some common cases.
3268 
3269   // Fall back to computeKnownBits to catch other known cases.
3270   KnownBits Known = computeKnownBits(Val);
3271   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3272 }
3273 
3274 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3275   EVT VT = Op.getValueType();
3276   APInt DemandedElts = VT.isVector()
3277                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3278                            : APInt(1, 1);
3279   return ComputeNumSignBits(Op, DemandedElts, Depth);
3280 }
3281 
3282 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3283                                           unsigned Depth) const {
3284   EVT VT = Op.getValueType();
3285   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3286   unsigned VTBits = VT.getScalarSizeInBits();
3287   unsigned NumElts = DemandedElts.getBitWidth();
3288   unsigned Tmp, Tmp2;
3289   unsigned FirstAnswer = 1;
3290 
3291   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3292     const APInt &Val = C->getAPIntValue();
3293     return Val.getNumSignBits();
3294   }
3295 
3296   if (Depth == 6)
3297     return 1;  // Limit search depth.
3298 
3299   if (!DemandedElts)
3300     return 1;  // No demanded elts, better to assume we don't know anything.
3301 
3302   unsigned Opcode = Op.getOpcode();
3303   switch (Opcode) {
3304   default: break;
3305   case ISD::AssertSext:
3306     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3307     return VTBits-Tmp+1;
3308   case ISD::AssertZext:
3309     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3310     return VTBits-Tmp;
3311 
3312   case ISD::BUILD_VECTOR:
3313     Tmp = VTBits;
3314     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3315       if (!DemandedElts[i])
3316         continue;
3317 
3318       SDValue SrcOp = Op.getOperand(i);
3319       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3320 
3321       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3322       if (SrcOp.getValueSizeInBits() != VTBits) {
3323         assert(SrcOp.getValueSizeInBits() > VTBits &&
3324                "Expected BUILD_VECTOR implicit truncation");
3325         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3326         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3327       }
3328       Tmp = std::min(Tmp, Tmp2);
3329     }
3330     return Tmp;
3331 
3332   case ISD::VECTOR_SHUFFLE: {
3333     // Collect the minimum number of sign bits that are shared by every vector
3334     // element referenced by the shuffle.
3335     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3336     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3337     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3338     for (unsigned i = 0; i != NumElts; ++i) {
3339       int M = SVN->getMaskElt(i);
3340       if (!DemandedElts[i])
3341         continue;
3342       // For UNDEF elements, we don't know anything about the common state of
3343       // the shuffle result.
3344       if (M < 0)
3345         return 1;
3346       if ((unsigned)M < NumElts)
3347         DemandedLHS.setBit((unsigned)M % NumElts);
3348       else
3349         DemandedRHS.setBit((unsigned)M % NumElts);
3350     }
3351     Tmp = std::numeric_limits<unsigned>::max();
3352     if (!!DemandedLHS)
3353       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3354     if (!!DemandedRHS) {
3355       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3356       Tmp = std::min(Tmp, Tmp2);
3357     }
3358     // If we don't know anything, early out and try computeKnownBits fall-back.
3359     if (Tmp == 1)
3360       break;
3361     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3362     return Tmp;
3363   }
3364 
3365   case ISD::BITCAST: {
3366     SDValue N0 = Op.getOperand(0);
3367     EVT SrcVT = N0.getValueType();
3368     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3369 
3370     // Ignore bitcasts from unsupported types..
3371     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3372       break;
3373 
3374     // Fast handling of 'identity' bitcasts.
3375     if (VTBits == SrcBits)
3376       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3377 
3378     bool IsLE = getDataLayout().isLittleEndian();
3379 
3380     // Bitcast 'large element' scalar/vector to 'small element' vector.
3381     if ((SrcBits % VTBits) == 0) {
3382       assert(VT.isVector() && "Expected bitcast to vector");
3383 
3384       unsigned Scale = SrcBits / VTBits;
3385       APInt SrcDemandedElts(NumElts / Scale, 0);
3386       for (unsigned i = 0; i != NumElts; ++i)
3387         if (DemandedElts[i])
3388           SrcDemandedElts.setBit(i / Scale);
3389 
3390       // Fast case - sign splat can be simply split across the small elements.
3391       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3392       if (Tmp == SrcBits)
3393         return VTBits;
3394 
3395       // Slow case - determine how far the sign extends into each sub-element.
3396       Tmp2 = VTBits;
3397       for (unsigned i = 0; i != NumElts; ++i)
3398         if (DemandedElts[i]) {
3399           unsigned SubOffset = i % Scale;
3400           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3401           SubOffset = SubOffset * VTBits;
3402           if (Tmp <= SubOffset)
3403             return 1;
3404           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3405         }
3406       return Tmp2;
3407     }
3408     break;
3409   }
3410 
3411   case ISD::SIGN_EXTEND:
3412     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3413     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3414   case ISD::SIGN_EXTEND_INREG:
3415     // Max of the input and what this extends.
3416     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3417     Tmp = VTBits-Tmp+1;
3418     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3419     return std::max(Tmp, Tmp2);
3420   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3421     SDValue Src = Op.getOperand(0);
3422     EVT SrcVT = Src.getValueType();
3423     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3424     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3425     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3426   }
3427 
3428   case ISD::SRA:
3429     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3430     // SRA X, C   -> adds C sign bits.
3431     if (ConstantSDNode *C =
3432             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3433       APInt ShiftVal = C->getAPIntValue();
3434       ShiftVal += Tmp;
3435       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3436     }
3437     return Tmp;
3438   case ISD::SHL:
3439     if (ConstantSDNode *C =
3440             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3441       // shl destroys sign bits.
3442       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3443       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3444           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3445       return Tmp - C->getZExtValue();
3446     }
3447     break;
3448   case ISD::AND:
3449   case ISD::OR:
3450   case ISD::XOR:    // NOT is handled here.
3451     // Logical binary ops preserve the number of sign bits at the worst.
3452     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3453     if (Tmp != 1) {
3454       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3455       FirstAnswer = std::min(Tmp, Tmp2);
3456       // We computed what we know about the sign bits as our first
3457       // answer. Now proceed to the generic code that uses
3458       // computeKnownBits, and pick whichever answer is better.
3459     }
3460     break;
3461 
3462   case ISD::SELECT:
3463   case ISD::VSELECT:
3464     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3465     if (Tmp == 1) return 1;  // Early out.
3466     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3467     return std::min(Tmp, Tmp2);
3468   case ISD::SELECT_CC:
3469     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3470     if (Tmp == 1) return 1;  // Early out.
3471     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3472     return std::min(Tmp, Tmp2);
3473 
3474   case ISD::SMIN:
3475   case ISD::SMAX: {
3476     // If we have a clamp pattern, we know that the number of sign bits will be
3477     // the minimum of the clamp min/max range.
3478     bool IsMax = (Opcode == ISD::SMAX);
3479     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3480     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3481       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3482         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3483                                               DemandedElts);
3484     if (CstLow && CstHigh) {
3485       if (!IsMax)
3486         std::swap(CstLow, CstHigh);
3487       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3488         Tmp = CstLow->getAPIntValue().getNumSignBits();
3489         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3490         return std::min(Tmp, Tmp2);
3491       }
3492     }
3493 
3494     // Fallback - just get the minimum number of sign bits of the operands.
3495     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3496     if (Tmp == 1)
3497       return 1;  // Early out.
3498     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3499     return std::min(Tmp, Tmp2);
3500   }
3501   case ISD::UMIN:
3502   case ISD::UMAX:
3503     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3504     if (Tmp == 1)
3505       return 1;  // Early out.
3506     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3507     return std::min(Tmp, Tmp2);
3508   case ISD::SADDO:
3509   case ISD::UADDO:
3510   case ISD::SSUBO:
3511   case ISD::USUBO:
3512   case ISD::SMULO:
3513   case ISD::UMULO:
3514     if (Op.getResNo() != 1)
3515       break;
3516     // The boolean result conforms to getBooleanContents.  Fall through.
3517     // If setcc returns 0/-1, all bits are sign bits.
3518     // We know that we have an integer-based boolean since these operations
3519     // are only available for integer.
3520     if (TLI->getBooleanContents(VT.isVector(), false) ==
3521         TargetLowering::ZeroOrNegativeOneBooleanContent)
3522       return VTBits;
3523     break;
3524   case ISD::SETCC:
3525     // If setcc returns 0/-1, all bits are sign bits.
3526     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3527         TargetLowering::ZeroOrNegativeOneBooleanContent)
3528       return VTBits;
3529     break;
3530   case ISD::ROTL:
3531   case ISD::ROTR:
3532     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3533       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3534 
3535       // Handle rotate right by N like a rotate left by 32-N.
3536       if (Opcode == ISD::ROTR)
3537         RotAmt = (VTBits - RotAmt) % VTBits;
3538 
3539       // If we aren't rotating out all of the known-in sign bits, return the
3540       // number that are left.  This handles rotl(sext(x), 1) for example.
3541       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3542       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3543     }
3544     break;
3545   case ISD::ADD:
3546   case ISD::ADDC:
3547     // Add can have at most one carry bit.  Thus we know that the output
3548     // is, at worst, one more bit than the inputs.
3549     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3550     if (Tmp == 1) return 1;  // Early out.
3551 
3552     // Special case decrementing a value (ADD X, -1):
3553     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3554       if (CRHS->isAllOnesValue()) {
3555         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3556 
3557         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3558         // sign bits set.
3559         if ((Known.Zero | 1).isAllOnesValue())
3560           return VTBits;
3561 
3562         // If we are subtracting one from a positive number, there is no carry
3563         // out of the result.
3564         if (Known.isNonNegative())
3565           return Tmp;
3566       }
3567 
3568     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3569     if (Tmp2 == 1) return 1;
3570     return std::min(Tmp, Tmp2)-1;
3571 
3572   case ISD::SUB:
3573     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3574     if (Tmp2 == 1) return 1;
3575 
3576     // Handle NEG.
3577     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3578       if (CLHS->isNullValue()) {
3579         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3580         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3581         // sign bits set.
3582         if ((Known.Zero | 1).isAllOnesValue())
3583           return VTBits;
3584 
3585         // If the input is known to be positive (the sign bit is known clear),
3586         // the output of the NEG has the same number of sign bits as the input.
3587         if (Known.isNonNegative())
3588           return Tmp2;
3589 
3590         // Otherwise, we treat this like a SUB.
3591       }
3592 
3593     // Sub can have at most one carry bit.  Thus we know that the output
3594     // is, at worst, one more bit than the inputs.
3595     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3596     if (Tmp == 1) return 1;  // Early out.
3597     return std::min(Tmp, Tmp2)-1;
3598   case ISD::TRUNCATE: {
3599     // Check if the sign bits of source go down as far as the truncated value.
3600     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3601     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3602     if (NumSrcSignBits > (NumSrcBits - VTBits))
3603       return NumSrcSignBits - (NumSrcBits - VTBits);
3604     break;
3605   }
3606   case ISD::EXTRACT_ELEMENT: {
3607     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3608     const int BitWidth = Op.getValueSizeInBits();
3609     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3610 
3611     // Get reverse index (starting from 1), Op1 value indexes elements from
3612     // little end. Sign starts at big end.
3613     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3614 
3615     // If the sign portion ends in our element the subtraction gives correct
3616     // result. Otherwise it gives either negative or > bitwidth result
3617     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3618   }
3619   case ISD::INSERT_VECTOR_ELT: {
3620     SDValue InVec = Op.getOperand(0);
3621     SDValue InVal = Op.getOperand(1);
3622     SDValue EltNo = Op.getOperand(2);
3623     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3624 
3625     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3626     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3627       // If we know the element index, split the demand between the
3628       // source vector and the inserted element.
3629       unsigned EltIdx = CEltNo->getZExtValue();
3630 
3631       // If we demand the inserted element then get its sign bits.
3632       Tmp = std::numeric_limits<unsigned>::max();
3633       if (DemandedElts[EltIdx]) {
3634         // TODO - handle implicit truncation of inserted elements.
3635         if (InVal.getScalarValueSizeInBits() != VTBits)
3636           break;
3637         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3638       }
3639 
3640       // If we demand the source vector then get its sign bits, and determine
3641       // the minimum.
3642       APInt VectorElts = DemandedElts;
3643       VectorElts.clearBit(EltIdx);
3644       if (!!VectorElts) {
3645         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3646         Tmp = std::min(Tmp, Tmp2);
3647       }
3648     } else {
3649       // Unknown element index, so ignore DemandedElts and demand them all.
3650       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3651       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3652       Tmp = std::min(Tmp, Tmp2);
3653     }
3654     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3655     return Tmp;
3656   }
3657   case ISD::EXTRACT_VECTOR_ELT: {
3658     SDValue InVec = Op.getOperand(0);
3659     SDValue EltNo = Op.getOperand(1);
3660     EVT VecVT = InVec.getValueType();
3661     const unsigned BitWidth = Op.getValueSizeInBits();
3662     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3663     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3664 
3665     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3666     // anything about sign bits. But if the sizes match we can derive knowledge
3667     // about sign bits from the vector operand.
3668     if (BitWidth != EltBitWidth)
3669       break;
3670 
3671     // If we know the element index, just demand that vector element, else for
3672     // an unknown element index, ignore DemandedElts and demand them all.
3673     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3674     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3675     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3676       DemandedSrcElts =
3677           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3678 
3679     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3680   }
3681   case ISD::EXTRACT_SUBVECTOR: {
3682     // If we know the element index, just demand that subvector elements,
3683     // otherwise demand them all.
3684     SDValue Src = Op.getOperand(0);
3685     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3686     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3687     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3688       // Offset the demanded elts by the subvector index.
3689       uint64_t Idx = SubIdx->getZExtValue();
3690       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3691       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3692     }
3693     return ComputeNumSignBits(Src, Depth + 1);
3694   }
3695   case ISD::CONCAT_VECTORS: {
3696     // Determine the minimum number of sign bits across all demanded
3697     // elts of the input vectors. Early out if the result is already 1.
3698     Tmp = std::numeric_limits<unsigned>::max();
3699     EVT SubVectorVT = Op.getOperand(0).getValueType();
3700     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3701     unsigned NumSubVectors = Op.getNumOperands();
3702     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3703       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3704       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3705       if (!DemandedSub)
3706         continue;
3707       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3708       Tmp = std::min(Tmp, Tmp2);
3709     }
3710     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3711     return Tmp;
3712   }
3713   case ISD::INSERT_SUBVECTOR: {
3714     // If we know the element index, demand any elements from the subvector and
3715     // the remainder from the src its inserted into, otherwise demand them all.
3716     SDValue Src = Op.getOperand(0);
3717     SDValue Sub = Op.getOperand(1);
3718     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3719     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3720     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3721       Tmp = std::numeric_limits<unsigned>::max();
3722       uint64_t Idx = SubIdx->getZExtValue();
3723       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3724       if (!!DemandedSubElts) {
3725         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3726         if (Tmp == 1) return 1; // early-out
3727       }
3728       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3729       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3730       if (!!DemandedSrcElts) {
3731         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3732         Tmp = std::min(Tmp, Tmp2);
3733       }
3734       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3735       return Tmp;
3736     }
3737 
3738     // Not able to determine the index so just assume worst case.
3739     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3740     if (Tmp == 1) return 1; // early-out
3741     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3742     Tmp = std::min(Tmp, Tmp2);
3743     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3744     return Tmp;
3745   }
3746   }
3747 
3748   // If we are looking at the loaded value of the SDNode.
3749   if (Op.getResNo() == 0) {
3750     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3751     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3752       unsigned ExtType = LD->getExtensionType();
3753       switch (ExtType) {
3754         default: break;
3755         case ISD::SEXTLOAD:    // '17' bits known
3756           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3757           return VTBits-Tmp+1;
3758         case ISD::ZEXTLOAD:    // '16' bits known
3759           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3760           return VTBits-Tmp;
3761       }
3762     }
3763   }
3764 
3765   // Allow the target to implement this method for its nodes.
3766   if (Opcode >= ISD::BUILTIN_OP_END ||
3767       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3768       Opcode == ISD::INTRINSIC_W_CHAIN ||
3769       Opcode == ISD::INTRINSIC_VOID) {
3770     unsigned NumBits =
3771         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3772     if (NumBits > 1)
3773       FirstAnswer = std::max(FirstAnswer, NumBits);
3774   }
3775 
3776   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3777   // use this information.
3778   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3779 
3780   APInt Mask;
3781   if (Known.isNonNegative()) {        // sign bit is 0
3782     Mask = Known.Zero;
3783   } else if (Known.isNegative()) {  // sign bit is 1;
3784     Mask = Known.One;
3785   } else {
3786     // Nothing known.
3787     return FirstAnswer;
3788   }
3789 
3790   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3791   // the number of identical bits in the top of the input value.
3792   Mask = ~Mask;
3793   Mask <<= Mask.getBitWidth()-VTBits;
3794   // Return # leading zeros.  We use 'min' here in case Val was zero before
3795   // shifting.  We don't want to return '64' as for an i32 "0".
3796   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3797 }
3798 
3799 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3800   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3801       !isa<ConstantSDNode>(Op.getOperand(1)))
3802     return false;
3803 
3804   if (Op.getOpcode() == ISD::OR &&
3805       !MaskedValueIsZero(Op.getOperand(0),
3806                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3807     return false;
3808 
3809   return true;
3810 }
3811 
3812 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3813   // If we're told that NaNs won't happen, assume they won't.
3814   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3815     return true;
3816 
3817   if (Depth == 6)
3818     return false; // Limit search depth.
3819 
3820   // TODO: Handle vectors.
3821   // If the value is a constant, we can obviously see if it is a NaN or not.
3822   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3823     return !C->getValueAPF().isNaN() ||
3824            (SNaN && !C->getValueAPF().isSignaling());
3825   }
3826 
3827   unsigned Opcode = Op.getOpcode();
3828   switch (Opcode) {
3829   case ISD::FADD:
3830   case ISD::FSUB:
3831   case ISD::FMUL:
3832   case ISD::FDIV:
3833   case ISD::FREM:
3834   case ISD::FSIN:
3835   case ISD::FCOS: {
3836     if (SNaN)
3837       return true;
3838     // TODO: Need isKnownNeverInfinity
3839     return false;
3840   }
3841   case ISD::FCANONICALIZE:
3842   case ISD::FEXP:
3843   case ISD::FEXP2:
3844   case ISD::FTRUNC:
3845   case ISD::FFLOOR:
3846   case ISD::FCEIL:
3847   case ISD::FROUND:
3848   case ISD::FRINT:
3849   case ISD::FNEARBYINT: {
3850     if (SNaN)
3851       return true;
3852     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3853   }
3854   case ISD::FABS:
3855   case ISD::FNEG:
3856   case ISD::FCOPYSIGN: {
3857     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3858   }
3859   case ISD::SELECT:
3860     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3861            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3862   case ISD::FP_EXTEND:
3863   case ISD::FP_ROUND: {
3864     if (SNaN)
3865       return true;
3866     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3867   }
3868   case ISD::SINT_TO_FP:
3869   case ISD::UINT_TO_FP:
3870     return true;
3871   case ISD::FMA:
3872   case ISD::FMAD: {
3873     if (SNaN)
3874       return true;
3875     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3876            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3877            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3878   }
3879   case ISD::FSQRT: // Need is known positive
3880   case ISD::FLOG:
3881   case ISD::FLOG2:
3882   case ISD::FLOG10:
3883   case ISD::FPOWI:
3884   case ISD::FPOW: {
3885     if (SNaN)
3886       return true;
3887     // TODO: Refine on operand
3888     return false;
3889   }
3890   case ISD::FMINNUM:
3891   case ISD::FMAXNUM: {
3892     // Only one needs to be known not-nan, since it will be returned if the
3893     // other ends up being one.
3894     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
3895            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3896   }
3897   case ISD::FMINNUM_IEEE:
3898   case ISD::FMAXNUM_IEEE: {
3899     if (SNaN)
3900       return true;
3901     // This can return a NaN if either operand is an sNaN, or if both operands
3902     // are NaN.
3903     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
3904             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
3905            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
3906             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
3907   }
3908   case ISD::FMINIMUM:
3909   case ISD::FMAXIMUM: {
3910     // TODO: Does this quiet or return the origina NaN as-is?
3911     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3912            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3913   }
3914   case ISD::EXTRACT_VECTOR_ELT: {
3915     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3916   }
3917   default:
3918     if (Opcode >= ISD::BUILTIN_OP_END ||
3919         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3920         Opcode == ISD::INTRINSIC_W_CHAIN ||
3921         Opcode == ISD::INTRINSIC_VOID) {
3922       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3923     }
3924 
3925     return false;
3926   }
3927 }
3928 
3929 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3930   assert(Op.getValueType().isFloatingPoint() &&
3931          "Floating point type expected");
3932 
3933   // If the value is a constant, we can obviously see if it is a zero or not.
3934   // TODO: Add BuildVector support.
3935   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3936     return !C->isZero();
3937   return false;
3938 }
3939 
3940 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3941   assert(!Op.getValueType().isFloatingPoint() &&
3942          "Floating point types unsupported - use isKnownNeverZeroFloat");
3943 
3944   // If the value is a constant, we can obviously see if it is a zero or not.
3945   if (ISD::matchUnaryPredicate(
3946           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3947     return true;
3948 
3949   // TODO: Recognize more cases here.
3950   switch (Op.getOpcode()) {
3951   default: break;
3952   case ISD::OR:
3953     if (isKnownNeverZero(Op.getOperand(1)) ||
3954         isKnownNeverZero(Op.getOperand(0)))
3955       return true;
3956     break;
3957   }
3958 
3959   return false;
3960 }
3961 
3962 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3963   // Check the obvious case.
3964   if (A == B) return true;
3965 
3966   // For for negative and positive zero.
3967   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3968     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3969       if (CA->isZero() && CB->isZero()) return true;
3970 
3971   // Otherwise they may not be equal.
3972   return false;
3973 }
3974 
3975 // FIXME: unify with llvm::haveNoCommonBitsSet.
3976 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3977 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3978   assert(A.getValueType() == B.getValueType() &&
3979          "Values must have the same type");
3980   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
3981 }
3982 
3983 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
3984                                 ArrayRef<SDValue> Ops,
3985                                 SelectionDAG &DAG) {
3986   int NumOps = Ops.size();
3987   assert(NumOps != 0 && "Can't build an empty vector!");
3988   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
3989          "Incorrect element count in BUILD_VECTOR!");
3990 
3991   // BUILD_VECTOR of UNDEFs is UNDEF.
3992   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3993     return DAG.getUNDEF(VT);
3994 
3995   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
3996   SDValue IdentitySrc;
3997   bool IsIdentity = true;
3998   for (int i = 0; i != NumOps; ++i) {
3999     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4000         Ops[i].getOperand(0).getValueType() != VT ||
4001         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4002         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4003         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4004       IsIdentity = false;
4005       break;
4006     }
4007     IdentitySrc = Ops[i].getOperand(0);
4008   }
4009   if (IsIdentity)
4010     return IdentitySrc;
4011 
4012   return SDValue();
4013 }
4014 
4015 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4016                                   ArrayRef<SDValue> Ops,
4017                                   SelectionDAG &DAG) {
4018   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4019   assert(llvm::all_of(Ops,
4020                       [Ops](SDValue Op) {
4021                         return Ops[0].getValueType() == Op.getValueType();
4022                       }) &&
4023          "Concatenation of vectors with inconsistent value types!");
4024   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4025              VT.getVectorNumElements() &&
4026          "Incorrect element count in vector concatenation!");
4027 
4028   if (Ops.size() == 1)
4029     return Ops[0];
4030 
4031   // Concat of UNDEFs is UNDEF.
4032   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4033     return DAG.getUNDEF(VT);
4034 
4035   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4036   // simplified to one big BUILD_VECTOR.
4037   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4038   EVT SVT = VT.getScalarType();
4039   SmallVector<SDValue, 16> Elts;
4040   for (SDValue Op : Ops) {
4041     EVT OpVT = Op.getValueType();
4042     if (Op.isUndef())
4043       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4044     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4045       Elts.append(Op->op_begin(), Op->op_end());
4046     else
4047       return SDValue();
4048   }
4049 
4050   // BUILD_VECTOR requires all inputs to be of the same type, find the
4051   // maximum type and extend them all.
4052   for (SDValue Op : Elts)
4053     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4054 
4055   if (SVT.bitsGT(VT.getScalarType()))
4056     for (SDValue &Op : Elts)
4057       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4058                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4059                : DAG.getSExtOrTrunc(Op, DL, SVT);
4060 
4061   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4062   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4063   return V;
4064 }
4065 
4066 /// Gets or creates the specified node.
4067 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4068   FoldingSetNodeID ID;
4069   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4070   void *IP = nullptr;
4071   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4072     return SDValue(E, 0);
4073 
4074   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4075                               getVTList(VT));
4076   CSEMap.InsertNode(N, IP);
4077 
4078   InsertNode(N);
4079   SDValue V = SDValue(N, 0);
4080   NewSDValueDbgMsg(V, "Creating new node: ", this);
4081   return V;
4082 }
4083 
4084 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4085                               SDValue Operand, const SDNodeFlags Flags) {
4086   // Constant fold unary operations with an integer constant operand. Even
4087   // opaque constant will be folded, because the folding of unary operations
4088   // doesn't create new constants with different values. Nevertheless, the
4089   // opaque flag is preserved during folding to prevent future folding with
4090   // other constants.
4091   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4092     const APInt &Val = C->getAPIntValue();
4093     switch (Opcode) {
4094     default: break;
4095     case ISD::SIGN_EXTEND:
4096       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4097                          C->isTargetOpcode(), C->isOpaque());
4098     case ISD::TRUNCATE:
4099       if (C->isOpaque())
4100         break;
4101       LLVM_FALLTHROUGH;
4102     case ISD::ANY_EXTEND:
4103     case ISD::ZERO_EXTEND:
4104       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4105                          C->isTargetOpcode(), C->isOpaque());
4106     case ISD::UINT_TO_FP:
4107     case ISD::SINT_TO_FP: {
4108       APFloat apf(EVTToAPFloatSemantics(VT),
4109                   APInt::getNullValue(VT.getSizeInBits()));
4110       (void)apf.convertFromAPInt(Val,
4111                                  Opcode==ISD::SINT_TO_FP,
4112                                  APFloat::rmNearestTiesToEven);
4113       return getConstantFP(apf, DL, VT);
4114     }
4115     case ISD::BITCAST:
4116       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4117         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4118       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4119         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4120       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4121         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4122       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4123         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4124       break;
4125     case ISD::ABS:
4126       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4127                          C->isOpaque());
4128     case ISD::BITREVERSE:
4129       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4130                          C->isOpaque());
4131     case ISD::BSWAP:
4132       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4133                          C->isOpaque());
4134     case ISD::CTPOP:
4135       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4136                          C->isOpaque());
4137     case ISD::CTLZ:
4138     case ISD::CTLZ_ZERO_UNDEF:
4139       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4140                          C->isOpaque());
4141     case ISD::CTTZ:
4142     case ISD::CTTZ_ZERO_UNDEF:
4143       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4144                          C->isOpaque());
4145     case ISD::FP16_TO_FP: {
4146       bool Ignored;
4147       APFloat FPV(APFloat::IEEEhalf(),
4148                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4149 
4150       // This can return overflow, underflow, or inexact; we don't care.
4151       // FIXME need to be more flexible about rounding mode.
4152       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4153                         APFloat::rmNearestTiesToEven, &Ignored);
4154       return getConstantFP(FPV, DL, VT);
4155     }
4156     }
4157   }
4158 
4159   // Constant fold unary operations with a floating point constant operand.
4160   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4161     APFloat V = C->getValueAPF();    // make copy
4162     switch (Opcode) {
4163     case ISD::FNEG:
4164       V.changeSign();
4165       return getConstantFP(V, DL, VT);
4166     case ISD::FABS:
4167       V.clearSign();
4168       return getConstantFP(V, DL, VT);
4169     case ISD::FCEIL: {
4170       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4171       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4172         return getConstantFP(V, DL, VT);
4173       break;
4174     }
4175     case ISD::FTRUNC: {
4176       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4177       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4178         return getConstantFP(V, DL, VT);
4179       break;
4180     }
4181     case ISD::FFLOOR: {
4182       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4183       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4184         return getConstantFP(V, DL, VT);
4185       break;
4186     }
4187     case ISD::FP_EXTEND: {
4188       bool ignored;
4189       // This can return overflow, underflow, or inexact; we don't care.
4190       // FIXME need to be more flexible about rounding mode.
4191       (void)V.convert(EVTToAPFloatSemantics(VT),
4192                       APFloat::rmNearestTiesToEven, &ignored);
4193       return getConstantFP(V, DL, VT);
4194     }
4195     case ISD::FP_TO_SINT:
4196     case ISD::FP_TO_UINT: {
4197       bool ignored;
4198       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4199       // FIXME need to be more flexible about rounding mode.
4200       APFloat::opStatus s =
4201           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4202       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4203         break;
4204       return getConstant(IntVal, DL, VT);
4205     }
4206     case ISD::BITCAST:
4207       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4208         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4209       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4210         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4211       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4212         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4213       break;
4214     case ISD::FP_TO_FP16: {
4215       bool Ignored;
4216       // This can return overflow, underflow, or inexact; we don't care.
4217       // FIXME need to be more flexible about rounding mode.
4218       (void)V.convert(APFloat::IEEEhalf(),
4219                       APFloat::rmNearestTiesToEven, &Ignored);
4220       return getConstant(V.bitcastToAPInt(), DL, VT);
4221     }
4222     }
4223   }
4224 
4225   // Constant fold unary operations with a vector integer or float operand.
4226   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4227     if (BV->isConstant()) {
4228       switch (Opcode) {
4229       default:
4230         // FIXME: Entirely reasonable to perform folding of other unary
4231         // operations here as the need arises.
4232         break;
4233       case ISD::FNEG:
4234       case ISD::FABS:
4235       case ISD::FCEIL:
4236       case ISD::FTRUNC:
4237       case ISD::FFLOOR:
4238       case ISD::FP_EXTEND:
4239       case ISD::FP_TO_SINT:
4240       case ISD::FP_TO_UINT:
4241       case ISD::TRUNCATE:
4242       case ISD::ANY_EXTEND:
4243       case ISD::ZERO_EXTEND:
4244       case ISD::SIGN_EXTEND:
4245       case ISD::UINT_TO_FP:
4246       case ISD::SINT_TO_FP:
4247       case ISD::ABS:
4248       case ISD::BITREVERSE:
4249       case ISD::BSWAP:
4250       case ISD::CTLZ:
4251       case ISD::CTLZ_ZERO_UNDEF:
4252       case ISD::CTTZ:
4253       case ISD::CTTZ_ZERO_UNDEF:
4254       case ISD::CTPOP: {
4255         SDValue Ops = { Operand };
4256         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4257           return Fold;
4258       }
4259       }
4260     }
4261   }
4262 
4263   unsigned OpOpcode = Operand.getNode()->getOpcode();
4264   switch (Opcode) {
4265   case ISD::TokenFactor:
4266   case ISD::MERGE_VALUES:
4267   case ISD::CONCAT_VECTORS:
4268     return Operand;         // Factor, merge or concat of one node?  No need.
4269   case ISD::BUILD_VECTOR: {
4270     // Attempt to simplify BUILD_VECTOR.
4271     SDValue Ops[] = {Operand};
4272     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4273       return V;
4274     break;
4275   }
4276   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4277   case ISD::FP_EXTEND:
4278     assert(VT.isFloatingPoint() &&
4279            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4280     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4281     assert((!VT.isVector() ||
4282             VT.getVectorNumElements() ==
4283             Operand.getValueType().getVectorNumElements()) &&
4284            "Vector element count mismatch!");
4285     assert(Operand.getValueType().bitsLT(VT) &&
4286            "Invalid fpext node, dst < src!");
4287     if (Operand.isUndef())
4288       return getUNDEF(VT);
4289     break;
4290   case ISD::SIGN_EXTEND:
4291     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4292            "Invalid SIGN_EXTEND!");
4293     if (Operand.getValueType() == VT) return Operand;   // noop extension
4294     assert((!VT.isVector() ||
4295             VT.getVectorNumElements() ==
4296             Operand.getValueType().getVectorNumElements()) &&
4297            "Vector element count mismatch!");
4298     assert(Operand.getValueType().bitsLT(VT) &&
4299            "Invalid sext node, dst < src!");
4300     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4301       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4302     else if (OpOpcode == ISD::UNDEF)
4303       // sext(undef) = 0, because the top bits will all be the same.
4304       return getConstant(0, DL, VT);
4305     break;
4306   case ISD::ZERO_EXTEND:
4307     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4308            "Invalid ZERO_EXTEND!");
4309     if (Operand.getValueType() == VT) return Operand;   // noop extension
4310     assert((!VT.isVector() ||
4311             VT.getVectorNumElements() ==
4312             Operand.getValueType().getVectorNumElements()) &&
4313            "Vector element count mismatch!");
4314     assert(Operand.getValueType().bitsLT(VT) &&
4315            "Invalid zext node, dst < src!");
4316     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4317       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4318     else if (OpOpcode == ISD::UNDEF)
4319       // zext(undef) = 0, because the top bits will be zero.
4320       return getConstant(0, DL, VT);
4321     break;
4322   case ISD::ANY_EXTEND:
4323     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4324            "Invalid ANY_EXTEND!");
4325     if (Operand.getValueType() == VT) return Operand;   // noop extension
4326     assert((!VT.isVector() ||
4327             VT.getVectorNumElements() ==
4328             Operand.getValueType().getVectorNumElements()) &&
4329            "Vector element count mismatch!");
4330     assert(Operand.getValueType().bitsLT(VT) &&
4331            "Invalid anyext node, dst < src!");
4332 
4333     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4334         OpOpcode == ISD::ANY_EXTEND)
4335       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4336       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4337     else if (OpOpcode == ISD::UNDEF)
4338       return getUNDEF(VT);
4339 
4340     // (ext (trunc x)) -> x
4341     if (OpOpcode == ISD::TRUNCATE) {
4342       SDValue OpOp = Operand.getOperand(0);
4343       if (OpOp.getValueType() == VT) {
4344         transferDbgValues(Operand, OpOp);
4345         return OpOp;
4346       }
4347     }
4348     break;
4349   case ISD::TRUNCATE:
4350     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4351            "Invalid TRUNCATE!");
4352     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4353     assert((!VT.isVector() ||
4354             VT.getVectorNumElements() ==
4355             Operand.getValueType().getVectorNumElements()) &&
4356            "Vector element count mismatch!");
4357     assert(Operand.getValueType().bitsGT(VT) &&
4358            "Invalid truncate node, src < dst!");
4359     if (OpOpcode == ISD::TRUNCATE)
4360       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4361     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4362         OpOpcode == ISD::ANY_EXTEND) {
4363       // If the source is smaller than the dest, we still need an extend.
4364       if (Operand.getOperand(0).getValueType().getScalarType()
4365             .bitsLT(VT.getScalarType()))
4366         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4367       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4368         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4369       return Operand.getOperand(0);
4370     }
4371     if (OpOpcode == ISD::UNDEF)
4372       return getUNDEF(VT);
4373     break;
4374   case ISD::ANY_EXTEND_VECTOR_INREG:
4375   case ISD::ZERO_EXTEND_VECTOR_INREG:
4376   case ISD::SIGN_EXTEND_VECTOR_INREG:
4377     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4378     assert(Operand.getValueType().bitsLE(VT) &&
4379            "The input must be the same size or smaller than the result.");
4380     assert(VT.getVectorNumElements() <
4381              Operand.getValueType().getVectorNumElements() &&
4382            "The destination vector type must have fewer lanes than the input.");
4383     break;
4384   case ISD::ABS:
4385     assert(VT.isInteger() && VT == Operand.getValueType() &&
4386            "Invalid ABS!");
4387     if (OpOpcode == ISD::UNDEF)
4388       return getUNDEF(VT);
4389     break;
4390   case ISD::BSWAP:
4391     assert(VT.isInteger() && VT == Operand.getValueType() &&
4392            "Invalid BSWAP!");
4393     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4394            "BSWAP types must be a multiple of 16 bits!");
4395     if (OpOpcode == ISD::UNDEF)
4396       return getUNDEF(VT);
4397     break;
4398   case ISD::BITREVERSE:
4399     assert(VT.isInteger() && VT == Operand.getValueType() &&
4400            "Invalid BITREVERSE!");
4401     if (OpOpcode == ISD::UNDEF)
4402       return getUNDEF(VT);
4403     break;
4404   case ISD::BITCAST:
4405     // Basic sanity checking.
4406     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4407            "Cannot BITCAST between types of different sizes!");
4408     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4409     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4410       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4411     if (OpOpcode == ISD::UNDEF)
4412       return getUNDEF(VT);
4413     break;
4414   case ISD::SCALAR_TO_VECTOR:
4415     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4416            (VT.getVectorElementType() == Operand.getValueType() ||
4417             (VT.getVectorElementType().isInteger() &&
4418              Operand.getValueType().isInteger() &&
4419              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4420            "Illegal SCALAR_TO_VECTOR node!");
4421     if (OpOpcode == ISD::UNDEF)
4422       return getUNDEF(VT);
4423     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4424     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4425         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4426         Operand.getConstantOperandVal(1) == 0 &&
4427         Operand.getOperand(0).getValueType() == VT)
4428       return Operand.getOperand(0);
4429     break;
4430   case ISD::FNEG:
4431     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4432     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4433         OpOpcode == ISD::FSUB)
4434       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4435                      Operand.getOperand(0), Flags);
4436     if (OpOpcode == ISD::FNEG)  // --X -> X
4437       return Operand.getOperand(0);
4438     break;
4439   case ISD::FABS:
4440     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4441       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4442     break;
4443   }
4444 
4445   SDNode *N;
4446   SDVTList VTs = getVTList(VT);
4447   SDValue Ops[] = {Operand};
4448   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4449     FoldingSetNodeID ID;
4450     AddNodeIDNode(ID, Opcode, VTs, Ops);
4451     void *IP = nullptr;
4452     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4453       E->intersectFlagsWith(Flags);
4454       return SDValue(E, 0);
4455     }
4456 
4457     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4458     N->setFlags(Flags);
4459     createOperands(N, Ops);
4460     CSEMap.InsertNode(N, IP);
4461   } else {
4462     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4463     createOperands(N, Ops);
4464   }
4465 
4466   InsertNode(N);
4467   SDValue V = SDValue(N, 0);
4468   NewSDValueDbgMsg(V, "Creating new node: ", this);
4469   return V;
4470 }
4471 
4472 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4473                                         const APInt &C2) {
4474   switch (Opcode) {
4475   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4476   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4477   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4478   case ISD::AND:  return std::make_pair(C1 & C2, true);
4479   case ISD::OR:   return std::make_pair(C1 | C2, true);
4480   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4481   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4482   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4483   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4484   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4485   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4486   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4487   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4488   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4489   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4490   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4491   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4492   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4493   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4494   case ISD::UDIV:
4495     if (!C2.getBoolValue())
4496       break;
4497     return std::make_pair(C1.udiv(C2), true);
4498   case ISD::UREM:
4499     if (!C2.getBoolValue())
4500       break;
4501     return std::make_pair(C1.urem(C2), true);
4502   case ISD::SDIV:
4503     if (!C2.getBoolValue())
4504       break;
4505     return std::make_pair(C1.sdiv(C2), true);
4506   case ISD::SREM:
4507     if (!C2.getBoolValue())
4508       break;
4509     return std::make_pair(C1.srem(C2), true);
4510   }
4511   return std::make_pair(APInt(1, 0), false);
4512 }
4513 
4514 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4515                                              EVT VT, const ConstantSDNode *C1,
4516                                              const ConstantSDNode *C2) {
4517   if (C1->isOpaque() || C2->isOpaque())
4518     return SDValue();
4519 
4520   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4521                                             C2->getAPIntValue());
4522   if (!Folded.second)
4523     return SDValue();
4524   return getConstant(Folded.first, DL, VT);
4525 }
4526 
4527 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4528                                        const GlobalAddressSDNode *GA,
4529                                        const SDNode *N2) {
4530   if (GA->getOpcode() != ISD::GlobalAddress)
4531     return SDValue();
4532   if (!TLI->isOffsetFoldingLegal(GA))
4533     return SDValue();
4534   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4535   if (!C2)
4536     return SDValue();
4537   int64_t Offset = C2->getSExtValue();
4538   switch (Opcode) {
4539   case ISD::ADD: break;
4540   case ISD::SUB: Offset = -uint64_t(Offset); break;
4541   default: return SDValue();
4542   }
4543   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4544                           GA->getOffset() + uint64_t(Offset));
4545 }
4546 
4547 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4548   switch (Opcode) {
4549   case ISD::SDIV:
4550   case ISD::UDIV:
4551   case ISD::SREM:
4552   case ISD::UREM: {
4553     // If a divisor is zero/undef or any element of a divisor vector is
4554     // zero/undef, the whole op is undef.
4555     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4556     SDValue Divisor = Ops[1];
4557     if (Divisor.isUndef() || isNullConstant(Divisor))
4558       return true;
4559 
4560     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4561            llvm::any_of(Divisor->op_values(),
4562                         [](SDValue V) { return V.isUndef() ||
4563                                         isNullConstant(V); });
4564     // TODO: Handle signed overflow.
4565   }
4566   // TODO: Handle oversized shifts.
4567   default:
4568     return false;
4569   }
4570 }
4571 
4572 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4573                                              EVT VT, SDNode *N1, SDNode *N2) {
4574   // If the opcode is a target-specific ISD node, there's nothing we can
4575   // do here and the operand rules may not line up with the below, so
4576   // bail early.
4577   if (Opcode >= ISD::BUILTIN_OP_END)
4578     return SDValue();
4579 
4580   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4581     return getUNDEF(VT);
4582 
4583   // Handle the case of two scalars.
4584   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4585     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4586       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4587       assert((!Folded || !VT.isVector()) &&
4588              "Can't fold vectors ops with scalar operands");
4589       return Folded;
4590     }
4591   }
4592 
4593   // fold (add Sym, c) -> Sym+c
4594   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4595     return FoldSymbolOffset(Opcode, VT, GA, N2);
4596   if (TLI->isCommutativeBinOp(Opcode))
4597     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4598       return FoldSymbolOffset(Opcode, VT, GA, N1);
4599 
4600   // For vectors, extract each constant element and fold them individually.
4601   // Either input may be an undef value.
4602   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4603   if (!BV1 && !N1->isUndef())
4604     return SDValue();
4605   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4606   if (!BV2 && !N2->isUndef())
4607     return SDValue();
4608   // If both operands are undef, that's handled the same way as scalars.
4609   if (!BV1 && !BV2)
4610     return SDValue();
4611 
4612   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4613          "Vector binop with different number of elements in operands?");
4614 
4615   EVT SVT = VT.getScalarType();
4616   EVT LegalSVT = SVT;
4617   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4618     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4619     if (LegalSVT.bitsLT(SVT))
4620       return SDValue();
4621   }
4622   SmallVector<SDValue, 4> Outputs;
4623   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4624   for (unsigned I = 0; I != NumOps; ++I) {
4625     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4626     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4627     if (SVT.isInteger()) {
4628       if (V1->getValueType(0).bitsGT(SVT))
4629         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4630       if (V2->getValueType(0).bitsGT(SVT))
4631         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4632     }
4633 
4634     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4635       return SDValue();
4636 
4637     // Fold one vector element.
4638     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4639     if (LegalSVT != SVT)
4640       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4641 
4642     // Scalar folding only succeeded if the result is a constant or UNDEF.
4643     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4644         ScalarResult.getOpcode() != ISD::ConstantFP)
4645       return SDValue();
4646     Outputs.push_back(ScalarResult);
4647   }
4648 
4649   assert(VT.getVectorNumElements() == Outputs.size() &&
4650          "Vector size mismatch!");
4651 
4652   // We may have a vector type but a scalar result. Create a splat.
4653   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4654 
4655   // Build a big vector out of the scalar elements we generated.
4656   return getBuildVector(VT, SDLoc(), Outputs);
4657 }
4658 
4659 // TODO: Merge with FoldConstantArithmetic
4660 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4661                                                    const SDLoc &DL, EVT VT,
4662                                                    ArrayRef<SDValue> Ops,
4663                                                    const SDNodeFlags Flags) {
4664   // If the opcode is a target-specific ISD node, there's nothing we can
4665   // do here and the operand rules may not line up with the below, so
4666   // bail early.
4667   if (Opcode >= ISD::BUILTIN_OP_END)
4668     return SDValue();
4669 
4670   if (isUndef(Opcode, Ops))
4671     return getUNDEF(VT);
4672 
4673   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4674   if (!VT.isVector())
4675     return SDValue();
4676 
4677   unsigned NumElts = VT.getVectorNumElements();
4678 
4679   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4680     return !Op.getValueType().isVector() ||
4681            Op.getValueType().getVectorNumElements() == NumElts;
4682   };
4683 
4684   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4685     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4686     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4687            (BV && BV->isConstant());
4688   };
4689 
4690   // All operands must be vector types with the same number of elements as
4691   // the result type and must be either UNDEF or a build vector of constant
4692   // or UNDEF scalars.
4693   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4694       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4695     return SDValue();
4696 
4697   // If we are comparing vectors, then the result needs to be a i1 boolean
4698   // that is then sign-extended back to the legal result type.
4699   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4700 
4701   // Find legal integer scalar type for constant promotion and
4702   // ensure that its scalar size is at least as large as source.
4703   EVT LegalSVT = VT.getScalarType();
4704   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4705     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4706     if (LegalSVT.bitsLT(VT.getScalarType()))
4707       return SDValue();
4708   }
4709 
4710   // Constant fold each scalar lane separately.
4711   SmallVector<SDValue, 4> ScalarResults;
4712   for (unsigned i = 0; i != NumElts; i++) {
4713     SmallVector<SDValue, 4> ScalarOps;
4714     for (SDValue Op : Ops) {
4715       EVT InSVT = Op.getValueType().getScalarType();
4716       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4717       if (!InBV) {
4718         // We've checked that this is UNDEF or a constant of some kind.
4719         if (Op.isUndef())
4720           ScalarOps.push_back(getUNDEF(InSVT));
4721         else
4722           ScalarOps.push_back(Op);
4723         continue;
4724       }
4725 
4726       SDValue ScalarOp = InBV->getOperand(i);
4727       EVT ScalarVT = ScalarOp.getValueType();
4728 
4729       // Build vector (integer) scalar operands may need implicit
4730       // truncation - do this before constant folding.
4731       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4732         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4733 
4734       ScalarOps.push_back(ScalarOp);
4735     }
4736 
4737     // Constant fold the scalar operands.
4738     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4739 
4740     // Legalize the (integer) scalar constant if necessary.
4741     if (LegalSVT != SVT)
4742       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4743 
4744     // Scalar folding only succeeded if the result is a constant or UNDEF.
4745     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4746         ScalarResult.getOpcode() != ISD::ConstantFP)
4747       return SDValue();
4748     ScalarResults.push_back(ScalarResult);
4749   }
4750 
4751   SDValue V = getBuildVector(VT, DL, ScalarResults);
4752   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4753   return V;
4754 }
4755 
4756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4757                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4758   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4759   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4760   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4761   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4762 
4763   // Canonicalize constant to RHS if commutative.
4764   if (TLI->isCommutativeBinOp(Opcode)) {
4765     if (N1C && !N2C) {
4766       std::swap(N1C, N2C);
4767       std::swap(N1, N2);
4768     } else if (N1CFP && !N2CFP) {
4769       std::swap(N1CFP, N2CFP);
4770       std::swap(N1, N2);
4771     }
4772   }
4773 
4774   switch (Opcode) {
4775   default: break;
4776   case ISD::TokenFactor:
4777     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4778            N2.getValueType() == MVT::Other && "Invalid token factor!");
4779     // Fold trivial token factors.
4780     if (N1.getOpcode() == ISD::EntryToken) return N2;
4781     if (N2.getOpcode() == ISD::EntryToken) return N1;
4782     if (N1 == N2) return N1;
4783     break;
4784   case ISD::BUILD_VECTOR: {
4785     // Attempt to simplify BUILD_VECTOR.
4786     SDValue Ops[] = {N1, N2};
4787     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4788       return V;
4789     break;
4790   }
4791   case ISD::CONCAT_VECTORS: {
4792     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4793     SDValue Ops[] = {N1, N2};
4794     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4795       return V;
4796     break;
4797   }
4798   case ISD::AND:
4799     assert(VT.isInteger() && "This operator does not apply to FP types!");
4800     assert(N1.getValueType() == N2.getValueType() &&
4801            N1.getValueType() == VT && "Binary operator types must match!");
4802     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4803     // worth handling here.
4804     if (N2C && N2C->isNullValue())
4805       return N2;
4806     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4807       return N1;
4808     break;
4809   case ISD::OR:
4810   case ISD::XOR:
4811   case ISD::ADD:
4812   case ISD::SUB:
4813     assert(VT.isInteger() && "This operator does not apply to FP types!");
4814     assert(N1.getValueType() == N2.getValueType() &&
4815            N1.getValueType() == VT && "Binary operator types must match!");
4816     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4817     // it's worth handling here.
4818     if (N2C && N2C->isNullValue())
4819       return N1;
4820     break;
4821   case ISD::UDIV:
4822   case ISD::UREM:
4823   case ISD::MULHU:
4824   case ISD::MULHS:
4825   case ISD::MUL:
4826   case ISD::SDIV:
4827   case ISD::SREM:
4828   case ISD::SMIN:
4829   case ISD::SMAX:
4830   case ISD::UMIN:
4831   case ISD::UMAX:
4832   case ISD::SADDSAT:
4833   case ISD::SSUBSAT:
4834   case ISD::UADDSAT:
4835   case ISD::USUBSAT:
4836     assert(VT.isInteger() && "This operator does not apply to FP types!");
4837     assert(N1.getValueType() == N2.getValueType() &&
4838            N1.getValueType() == VT && "Binary operator types must match!");
4839     break;
4840   case ISD::FADD:
4841   case ISD::FSUB:
4842   case ISD::FMUL:
4843   case ISD::FDIV:
4844   case ISD::FREM:
4845     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4846     assert(N1.getValueType() == N2.getValueType() &&
4847            N1.getValueType() == VT && "Binary operator types must match!");
4848     break;
4849   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4850     assert(N1.getValueType() == VT &&
4851            N1.getValueType().isFloatingPoint() &&
4852            N2.getValueType().isFloatingPoint() &&
4853            "Invalid FCOPYSIGN!");
4854     break;
4855   case ISD::SHL:
4856   case ISD::SRA:
4857   case ISD::SRL:
4858     if (SDValue V = simplifyShift(N1, N2))
4859       return V;
4860     LLVM_FALLTHROUGH;
4861   case ISD::ROTL:
4862   case ISD::ROTR:
4863     assert(VT == N1.getValueType() &&
4864            "Shift operators return type must be the same as their first arg");
4865     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4866            "Shifts only work on integers");
4867     assert((!VT.isVector() || VT == N2.getValueType()) &&
4868            "Vector shift amounts must be in the same as their first arg");
4869     // Verify that the shift amount VT is big enough to hold valid shift
4870     // amounts.  This catches things like trying to shift an i1024 value by an
4871     // i8, which is easy to fall into in generic code that uses
4872     // TLI.getShiftAmount().
4873     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4874            "Invalid use of small shift amount with oversized value!");
4875 
4876     // Always fold shifts of i1 values so the code generator doesn't need to
4877     // handle them.  Since we know the size of the shift has to be less than the
4878     // size of the value, the shift/rotate count is guaranteed to be zero.
4879     if (VT == MVT::i1)
4880       return N1;
4881     if (N2C && N2C->isNullValue())
4882       return N1;
4883     break;
4884   case ISD::FP_ROUND_INREG: {
4885     EVT EVT = cast<VTSDNode>(N2)->getVT();
4886     assert(VT == N1.getValueType() && "Not an inreg round!");
4887     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4888            "Cannot FP_ROUND_INREG integer types");
4889     assert(EVT.isVector() == VT.isVector() &&
4890            "FP_ROUND_INREG type should be vector iff the operand "
4891            "type is vector!");
4892     assert((!EVT.isVector() ||
4893             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4894            "Vector element counts must match in FP_ROUND_INREG");
4895     assert(EVT.bitsLE(VT) && "Not rounding down!");
4896     (void)EVT;
4897     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4898     break;
4899   }
4900   case ISD::FP_ROUND:
4901     assert(VT.isFloatingPoint() &&
4902            N1.getValueType().isFloatingPoint() &&
4903            VT.bitsLE(N1.getValueType()) &&
4904            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4905            "Invalid FP_ROUND!");
4906     if (N1.getValueType() == VT) return N1;  // noop conversion.
4907     break;
4908   case ISD::AssertSext:
4909   case ISD::AssertZext: {
4910     EVT EVT = cast<VTSDNode>(N2)->getVT();
4911     assert(VT == N1.getValueType() && "Not an inreg extend!");
4912     assert(VT.isInteger() && EVT.isInteger() &&
4913            "Cannot *_EXTEND_INREG FP types");
4914     assert(!EVT.isVector() &&
4915            "AssertSExt/AssertZExt type should be the vector element type "
4916            "rather than the vector type!");
4917     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
4918     if (VT.getScalarType() == EVT) return N1; // noop assertion.
4919     break;
4920   }
4921   case ISD::SIGN_EXTEND_INREG: {
4922     EVT EVT = cast<VTSDNode>(N2)->getVT();
4923     assert(VT == N1.getValueType() && "Not an inreg extend!");
4924     assert(VT.isInteger() && EVT.isInteger() &&
4925            "Cannot *_EXTEND_INREG FP types");
4926     assert(EVT.isVector() == VT.isVector() &&
4927            "SIGN_EXTEND_INREG type should be vector iff the operand "
4928            "type is vector!");
4929     assert((!EVT.isVector() ||
4930             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4931            "Vector element counts must match in SIGN_EXTEND_INREG");
4932     assert(EVT.bitsLE(VT) && "Not extending!");
4933     if (EVT == VT) return N1;  // Not actually extending
4934 
4935     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4936       unsigned FromBits = EVT.getScalarSizeInBits();
4937       Val <<= Val.getBitWidth() - FromBits;
4938       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4939       return getConstant(Val, DL, ConstantVT);
4940     };
4941 
4942     if (N1C) {
4943       const APInt &Val = N1C->getAPIntValue();
4944       return SignExtendInReg(Val, VT);
4945     }
4946     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4947       SmallVector<SDValue, 8> Ops;
4948       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4949       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4950         SDValue Op = N1.getOperand(i);
4951         if (Op.isUndef()) {
4952           Ops.push_back(getUNDEF(OpVT));
4953           continue;
4954         }
4955         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4956         APInt Val = C->getAPIntValue();
4957         Ops.push_back(SignExtendInReg(Val, OpVT));
4958       }
4959       return getBuildVector(VT, DL, Ops);
4960     }
4961     break;
4962   }
4963   case ISD::EXTRACT_VECTOR_ELT:
4964     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4965            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4966              element type of the vector.");
4967 
4968     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4969     if (N1.isUndef())
4970       return getUNDEF(VT);
4971 
4972     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4973     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4974       return getUNDEF(VT);
4975 
4976     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4977     // expanding copies of large vectors from registers.
4978     if (N2C &&
4979         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4980         N1.getNumOperands() > 0) {
4981       unsigned Factor =
4982         N1.getOperand(0).getValueType().getVectorNumElements();
4983       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4984                      N1.getOperand(N2C->getZExtValue() / Factor),
4985                      getConstant(N2C->getZExtValue() % Factor, DL,
4986                                  N2.getValueType()));
4987     }
4988 
4989     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4990     // expanding large vector constants.
4991     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4992       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4993 
4994       if (VT != Elt.getValueType())
4995         // If the vector element type is not legal, the BUILD_VECTOR operands
4996         // are promoted and implicitly truncated, and the result implicitly
4997         // extended. Make that explicit here.
4998         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4999 
5000       return Elt;
5001     }
5002 
5003     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5004     // operations are lowered to scalars.
5005     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5006       // If the indices are the same, return the inserted element else
5007       // if the indices are known different, extract the element from
5008       // the original vector.
5009       SDValue N1Op2 = N1.getOperand(2);
5010       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5011 
5012       if (N1Op2C && N2C) {
5013         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5014           if (VT == N1.getOperand(1).getValueType())
5015             return N1.getOperand(1);
5016           else
5017             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5018         }
5019 
5020         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5021       }
5022     }
5023 
5024     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5025     // when vector types are scalarized and v1iX is legal.
5026     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5027     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5028         N1.getValueType().getVectorNumElements() == 1) {
5029       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5030                      N1.getOperand(1));
5031     }
5032     break;
5033   case ISD::EXTRACT_ELEMENT:
5034     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5035     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5036            (N1.getValueType().isInteger() == VT.isInteger()) &&
5037            N1.getValueType() != VT &&
5038            "Wrong types for EXTRACT_ELEMENT!");
5039 
5040     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5041     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5042     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5043     if (N1.getOpcode() == ISD::BUILD_PAIR)
5044       return N1.getOperand(N2C->getZExtValue());
5045 
5046     // EXTRACT_ELEMENT of a constant int is also very common.
5047     if (N1C) {
5048       unsigned ElementSize = VT.getSizeInBits();
5049       unsigned Shift = ElementSize * N2C->getZExtValue();
5050       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5051       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5052     }
5053     break;
5054   case ISD::EXTRACT_SUBVECTOR:
5055     if (VT.isSimple() && N1.getValueType().isSimple()) {
5056       assert(VT.isVector() && N1.getValueType().isVector() &&
5057              "Extract subvector VTs must be a vectors!");
5058       assert(VT.getVectorElementType() ==
5059              N1.getValueType().getVectorElementType() &&
5060              "Extract subvector VTs must have the same element type!");
5061       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5062              "Extract subvector must be from larger vector to smaller vector!");
5063 
5064       if (N2C) {
5065         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5066                 <= N1.getValueType().getVectorNumElements())
5067                && "Extract subvector overflow!");
5068       }
5069 
5070       // Trivial extraction.
5071       if (VT.getSimpleVT() == N1.getSimpleValueType())
5072         return N1;
5073 
5074       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5075       if (N1.isUndef())
5076         return getUNDEF(VT);
5077 
5078       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5079       // the concat have the same type as the extract.
5080       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5081           N1.getNumOperands() > 0 &&
5082           VT == N1.getOperand(0).getValueType()) {
5083         unsigned Factor = VT.getVectorNumElements();
5084         return N1.getOperand(N2C->getZExtValue() / Factor);
5085       }
5086 
5087       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5088       // during shuffle legalization.
5089       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5090           VT == N1.getOperand(1).getValueType())
5091         return N1.getOperand(1);
5092     }
5093     break;
5094   }
5095 
5096   // Perform trivial constant folding.
5097   if (SDValue SV =
5098           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5099     return SV;
5100 
5101   // Constant fold FP operations.
5102   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
5103   if (N1CFP) {
5104     if (N2CFP) {
5105       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
5106       APFloat::opStatus s;
5107       switch (Opcode) {
5108       case ISD::FADD:
5109         s = V1.add(V2, APFloat::rmNearestTiesToEven);
5110         if (!HasFPExceptions || s != APFloat::opInvalidOp)
5111           return getConstantFP(V1, DL, VT);
5112         break;
5113       case ISD::FSUB:
5114         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
5115         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
5116           return getConstantFP(V1, DL, VT);
5117         break;
5118       case ISD::FMUL:
5119         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
5120         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
5121           return getConstantFP(V1, DL, VT);
5122         break;
5123       case ISD::FDIV:
5124         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
5125         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
5126                                  s!=APFloat::opDivByZero)) {
5127           return getConstantFP(V1, DL, VT);
5128         }
5129         break;
5130       case ISD::FREM :
5131         s = V1.mod(V2);
5132         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
5133                                  s!=APFloat::opDivByZero)) {
5134           return getConstantFP(V1, DL, VT);
5135         }
5136         break;
5137       case ISD::FCOPYSIGN:
5138         V1.copySign(V2);
5139         return getConstantFP(V1, DL, VT);
5140       default: break;
5141       }
5142     }
5143 
5144     if (Opcode == ISD::FP_ROUND) {
5145       APFloat V = N1CFP->getValueAPF();    // make copy
5146       bool ignored;
5147       // This can return overflow, underflow, or inexact; we don't care.
5148       // FIXME need to be more flexible about rounding mode.
5149       (void)V.convert(EVTToAPFloatSemantics(VT),
5150                       APFloat::rmNearestTiesToEven, &ignored);
5151       return getConstantFP(V, DL, VT);
5152     }
5153   }
5154 
5155   switch (Opcode) {
5156   case ISD::FADD:
5157   case ISD::FSUB:
5158   case ISD::FMUL:
5159   case ISD::FDIV:
5160   case ISD::FREM:
5161     // If both operands are undef, the result is undef. If 1 operand is undef,
5162     // the result is NaN. This should match the behavior of the IR optimizer.
5163     if (N1.isUndef() && N2.isUndef())
5164       return getUNDEF(VT);
5165     if (N1.isUndef() || N2.isUndef())
5166       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5167   }
5168 
5169   // Canonicalize an UNDEF to the RHS, even over a constant.
5170   if (N1.isUndef()) {
5171     if (TLI->isCommutativeBinOp(Opcode)) {
5172       std::swap(N1, N2);
5173     } else {
5174       switch (Opcode) {
5175       case ISD::FP_ROUND_INREG:
5176       case ISD::SIGN_EXTEND_INREG:
5177       case ISD::SUB:
5178         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5179       case ISD::UDIV:
5180       case ISD::SDIV:
5181       case ISD::UREM:
5182       case ISD::SREM:
5183       case ISD::SSUBSAT:
5184       case ISD::USUBSAT:
5185         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5186       }
5187     }
5188   }
5189 
5190   // Fold a bunch of operators when the RHS is undef.
5191   if (N2.isUndef()) {
5192     switch (Opcode) {
5193     case ISD::XOR:
5194       if (N1.isUndef())
5195         // Handle undef ^ undef -> 0 special case. This is a common
5196         // idiom (misuse).
5197         return getConstant(0, DL, VT);
5198       LLVM_FALLTHROUGH;
5199     case ISD::ADD:
5200     case ISD::SUB:
5201     case ISD::UDIV:
5202     case ISD::SDIV:
5203     case ISD::UREM:
5204     case ISD::SREM:
5205       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5206     case ISD::MUL:
5207     case ISD::AND:
5208     case ISD::SSUBSAT:
5209     case ISD::USUBSAT:
5210       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5211     case ISD::OR:
5212     case ISD::SADDSAT:
5213     case ISD::UADDSAT:
5214       return getAllOnesConstant(DL, VT);
5215     }
5216   }
5217 
5218   // Memoize this node if possible.
5219   SDNode *N;
5220   SDVTList VTs = getVTList(VT);
5221   SDValue Ops[] = {N1, N2};
5222   if (VT != MVT::Glue) {
5223     FoldingSetNodeID ID;
5224     AddNodeIDNode(ID, Opcode, VTs, Ops);
5225     void *IP = nullptr;
5226     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5227       E->intersectFlagsWith(Flags);
5228       return SDValue(E, 0);
5229     }
5230 
5231     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5232     N->setFlags(Flags);
5233     createOperands(N, Ops);
5234     CSEMap.InsertNode(N, IP);
5235   } else {
5236     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5237     createOperands(N, Ops);
5238   }
5239 
5240   InsertNode(N);
5241   SDValue V = SDValue(N, 0);
5242   NewSDValueDbgMsg(V, "Creating new node: ", this);
5243   return V;
5244 }
5245 
5246 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5247                               SDValue N1, SDValue N2, SDValue N3,
5248                               const SDNodeFlags Flags) {
5249   // Perform various simplifications.
5250   switch (Opcode) {
5251   case ISD::FMA: {
5252     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5253     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5254            N3.getValueType() == VT && "FMA types must match!");
5255     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5256     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5257     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5258     if (N1CFP && N2CFP && N3CFP) {
5259       APFloat  V1 = N1CFP->getValueAPF();
5260       const APFloat &V2 = N2CFP->getValueAPF();
5261       const APFloat &V3 = N3CFP->getValueAPF();
5262       APFloat::opStatus s =
5263         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5264       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
5265         return getConstantFP(V1, DL, VT);
5266     }
5267     break;
5268   }
5269   case ISD::BUILD_VECTOR: {
5270     // Attempt to simplify BUILD_VECTOR.
5271     SDValue Ops[] = {N1, N2, N3};
5272     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5273       return V;
5274     break;
5275   }
5276   case ISD::CONCAT_VECTORS: {
5277     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5278     SDValue Ops[] = {N1, N2, N3};
5279     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5280       return V;
5281     break;
5282   }
5283   case ISD::SETCC: {
5284     assert(VT.isInteger() && "SETCC result type must be an integer!");
5285     assert(N1.getValueType() == N2.getValueType() &&
5286            "SETCC operands must have the same type!");
5287     assert(VT.isVector() == N1.getValueType().isVector() &&
5288            "SETCC type should be vector iff the operand type is vector!");
5289     assert((!VT.isVector() ||
5290             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5291            "SETCC vector element counts must match!");
5292     // Use FoldSetCC to simplify SETCC's.
5293     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5294       return V;
5295     // Vector constant folding.
5296     SDValue Ops[] = {N1, N2, N3};
5297     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5298       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5299       return V;
5300     }
5301     break;
5302   }
5303   case ISD::SELECT:
5304   case ISD::VSELECT:
5305     if (SDValue V = simplifySelect(N1, N2, N3))
5306       return V;
5307     break;
5308   case ISD::VECTOR_SHUFFLE:
5309     llvm_unreachable("should use getVectorShuffle constructor!");
5310   case ISD::INSERT_VECTOR_ELT: {
5311     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5312     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5313     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5314       return getUNDEF(VT);
5315     break;
5316   }
5317   case ISD::INSERT_SUBVECTOR: {
5318     SDValue Index = N3;
5319     if (VT.isSimple() && N1.getValueType().isSimple()
5320         && N2.getValueType().isSimple()) {
5321       assert(VT.isVector() && N1.getValueType().isVector() &&
5322              N2.getValueType().isVector() &&
5323              "Insert subvector VTs must be a vectors");
5324       assert(VT == N1.getValueType() &&
5325              "Dest and insert subvector source types must match!");
5326       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5327              "Insert subvector must be from smaller vector to larger vector!");
5328       if (isa<ConstantSDNode>(Index)) {
5329         assert((N2.getValueType().getVectorNumElements() +
5330                 cast<ConstantSDNode>(Index)->getZExtValue()
5331                 <= VT.getVectorNumElements())
5332                && "Insert subvector overflow!");
5333       }
5334 
5335       // Trivial insertion.
5336       if (VT.getSimpleVT() == N2.getSimpleValueType())
5337         return N2;
5338     }
5339     break;
5340   }
5341   case ISD::BITCAST:
5342     // Fold bit_convert nodes from a type to themselves.
5343     if (N1.getValueType() == VT)
5344       return N1;
5345     break;
5346   }
5347 
5348   // Memoize node if it doesn't produce a flag.
5349   SDNode *N;
5350   SDVTList VTs = getVTList(VT);
5351   SDValue Ops[] = {N1, N2, N3};
5352   if (VT != MVT::Glue) {
5353     FoldingSetNodeID ID;
5354     AddNodeIDNode(ID, Opcode, VTs, Ops);
5355     void *IP = nullptr;
5356     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5357       E->intersectFlagsWith(Flags);
5358       return SDValue(E, 0);
5359     }
5360 
5361     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5362     N->setFlags(Flags);
5363     createOperands(N, Ops);
5364     CSEMap.InsertNode(N, IP);
5365   } else {
5366     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5367     createOperands(N, Ops);
5368   }
5369 
5370   InsertNode(N);
5371   SDValue V = SDValue(N, 0);
5372   NewSDValueDbgMsg(V, "Creating new node: ", this);
5373   return V;
5374 }
5375 
5376 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5377                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5378   SDValue Ops[] = { N1, N2, N3, N4 };
5379   return getNode(Opcode, DL, VT, Ops);
5380 }
5381 
5382 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5383                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5384                               SDValue N5) {
5385   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5386   return getNode(Opcode, DL, VT, Ops);
5387 }
5388 
5389 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5390 /// the incoming stack arguments to be loaded from the stack.
5391 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5392   SmallVector<SDValue, 8> ArgChains;
5393 
5394   // Include the original chain at the beginning of the list. When this is
5395   // used by target LowerCall hooks, this helps legalize find the
5396   // CALLSEQ_BEGIN node.
5397   ArgChains.push_back(Chain);
5398 
5399   // Add a chain value for each stack argument.
5400   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5401        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5402     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5403       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5404         if (FI->getIndex() < 0)
5405           ArgChains.push_back(SDValue(L, 1));
5406 
5407   // Build a tokenfactor for all the chains.
5408   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5409 }
5410 
5411 /// getMemsetValue - Vectorized representation of the memset value
5412 /// operand.
5413 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5414                               const SDLoc &dl) {
5415   assert(!Value.isUndef());
5416 
5417   unsigned NumBits = VT.getScalarSizeInBits();
5418   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5419     assert(C->getAPIntValue().getBitWidth() == 8);
5420     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5421     if (VT.isInteger()) {
5422       bool IsOpaque = VT.getSizeInBits() > 64 ||
5423           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5424       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5425     }
5426     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5427                              VT);
5428   }
5429 
5430   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5431   EVT IntVT = VT.getScalarType();
5432   if (!IntVT.isInteger())
5433     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5434 
5435   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5436   if (NumBits > 8) {
5437     // Use a multiplication with 0x010101... to extend the input to the
5438     // required length.
5439     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5440     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5441                         DAG.getConstant(Magic, dl, IntVT));
5442   }
5443 
5444   if (VT != Value.getValueType() && !VT.isInteger())
5445     Value = DAG.getBitcast(VT.getScalarType(), Value);
5446   if (VT != Value.getValueType())
5447     Value = DAG.getSplatBuildVector(VT, dl, Value);
5448 
5449   return Value;
5450 }
5451 
5452 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5453 /// used when a memcpy is turned into a memset when the source is a constant
5454 /// string ptr.
5455 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5456                                   const TargetLowering &TLI,
5457                                   const ConstantDataArraySlice &Slice) {
5458   // Handle vector with all elements zero.
5459   if (Slice.Array == nullptr) {
5460     if (VT.isInteger())
5461       return DAG.getConstant(0, dl, VT);
5462     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5463       return DAG.getConstantFP(0.0, dl, VT);
5464     else if (VT.isVector()) {
5465       unsigned NumElts = VT.getVectorNumElements();
5466       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5467       return DAG.getNode(ISD::BITCAST, dl, VT,
5468                          DAG.getConstant(0, dl,
5469                                          EVT::getVectorVT(*DAG.getContext(),
5470                                                           EltVT, NumElts)));
5471     } else
5472       llvm_unreachable("Expected type!");
5473   }
5474 
5475   assert(!VT.isVector() && "Can't handle vector type here!");
5476   unsigned NumVTBits = VT.getSizeInBits();
5477   unsigned NumVTBytes = NumVTBits / 8;
5478   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5479 
5480   APInt Val(NumVTBits, 0);
5481   if (DAG.getDataLayout().isLittleEndian()) {
5482     for (unsigned i = 0; i != NumBytes; ++i)
5483       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5484   } else {
5485     for (unsigned i = 0; i != NumBytes; ++i)
5486       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5487   }
5488 
5489   // If the "cost" of materializing the integer immediate is less than the cost
5490   // of a load, then it is cost effective to turn the load into the immediate.
5491   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5492   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5493     return DAG.getConstant(Val, dl, VT);
5494   return SDValue(nullptr, 0);
5495 }
5496 
5497 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5498                                            const SDLoc &DL) {
5499   EVT VT = Base.getValueType();
5500   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5501 }
5502 
5503 /// Returns true if memcpy source is constant data.
5504 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5505   uint64_t SrcDelta = 0;
5506   GlobalAddressSDNode *G = nullptr;
5507   if (Src.getOpcode() == ISD::GlobalAddress)
5508     G = cast<GlobalAddressSDNode>(Src);
5509   else if (Src.getOpcode() == ISD::ADD &&
5510            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5511            Src.getOperand(1).getOpcode() == ISD::Constant) {
5512     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5513     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5514   }
5515   if (!G)
5516     return false;
5517 
5518   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5519                                   SrcDelta + G->getOffset());
5520 }
5521 
5522 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5523 /// Return true if the number of memory ops is below the threshold (Limit).
5524 /// It returns the types of the sequence of memory ops to perform
5525 /// memset / memcpy by reference.
5526 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5527                                      unsigned Limit, uint64_t Size,
5528                                      unsigned DstAlign, unsigned SrcAlign,
5529                                      bool IsMemset,
5530                                      bool ZeroMemset,
5531                                      bool MemcpyStrSrc,
5532                                      bool AllowOverlap,
5533                                      unsigned DstAS, unsigned SrcAS,
5534                                      SelectionDAG &DAG,
5535                                      const TargetLowering &TLI) {
5536   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5537          "Expecting memcpy / memset source to meet alignment requirement!");
5538   // If 'SrcAlign' is zero, that means the memory operation does not need to
5539   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5540   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5541   // is the specified alignment of the memory operation. If it is zero, that
5542   // means it's possible to change the alignment of the destination.
5543   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5544   // not need to be loaded.
5545   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5546                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5547                                    DAG.getMachineFunction());
5548 
5549   if (VT == MVT::Other) {
5550     // Use the largest integer type whose alignment constraints are satisfied.
5551     // We only need to check DstAlign here as SrcAlign is always greater or
5552     // equal to DstAlign (or zero).
5553     VT = MVT::i64;
5554     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5555            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5556       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5557     assert(VT.isInteger());
5558 
5559     // Find the largest legal integer type.
5560     MVT LVT = MVT::i64;
5561     while (!TLI.isTypeLegal(LVT))
5562       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5563     assert(LVT.isInteger());
5564 
5565     // If the type we've chosen is larger than the largest legal integer type
5566     // then use that instead.
5567     if (VT.bitsGT(LVT))
5568       VT = LVT;
5569   }
5570 
5571   unsigned NumMemOps = 0;
5572   while (Size != 0) {
5573     unsigned VTSize = VT.getSizeInBits() / 8;
5574     while (VTSize > Size) {
5575       // For now, only use non-vector load / store's for the left-over pieces.
5576       EVT NewVT = VT;
5577       unsigned NewVTSize;
5578 
5579       bool Found = false;
5580       if (VT.isVector() || VT.isFloatingPoint()) {
5581         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5582         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5583             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5584           Found = true;
5585         else if (NewVT == MVT::i64 &&
5586                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5587                  TLI.isSafeMemOpType(MVT::f64)) {
5588           // i64 is usually not legal on 32-bit targets, but f64 may be.
5589           NewVT = MVT::f64;
5590           Found = true;
5591         }
5592       }
5593 
5594       if (!Found) {
5595         do {
5596           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5597           if (NewVT == MVT::i8)
5598             break;
5599         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5600       }
5601       NewVTSize = NewVT.getSizeInBits() / 8;
5602 
5603       // If the new VT cannot cover all of the remaining bits, then consider
5604       // issuing a (or a pair of) unaligned and overlapping load / store.
5605       bool Fast;
5606       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
5607           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
5608           Fast)
5609         VTSize = Size;
5610       else {
5611         VT = NewVT;
5612         VTSize = NewVTSize;
5613       }
5614     }
5615 
5616     if (++NumMemOps > Limit)
5617       return false;
5618 
5619     MemOps.push_back(VT);
5620     Size -= VTSize;
5621   }
5622 
5623   return true;
5624 }
5625 
5626 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5627   // On Darwin, -Os means optimize for size without hurting performance, so
5628   // only really optimize for size when -Oz (MinSize) is used.
5629   if (MF.getTarget().getTargetTriple().isOSDarwin())
5630     return MF.getFunction().optForMinSize();
5631   return MF.getFunction().optForSize();
5632 }
5633 
5634 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5635                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5636                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5637                           SmallVector<SDValue, 16> &OutStoreChains) {
5638   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5639   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5640   SmallVector<SDValue, 16> GluedLoadChains;
5641   for (unsigned i = From; i < To; ++i) {
5642     OutChains.push_back(OutLoadChains[i]);
5643     GluedLoadChains.push_back(OutLoadChains[i]);
5644   }
5645 
5646   // Chain for all loads.
5647   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5648                                   GluedLoadChains);
5649 
5650   for (unsigned i = From; i < To; ++i) {
5651     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5652     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5653                                   ST->getBasePtr(), ST->getMemoryVT(),
5654                                   ST->getMemOperand());
5655     OutChains.push_back(NewStore);
5656   }
5657 }
5658 
5659 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5660                                        SDValue Chain, SDValue Dst, SDValue Src,
5661                                        uint64_t Size, unsigned Align,
5662                                        bool isVol, bool AlwaysInline,
5663                                        MachinePointerInfo DstPtrInfo,
5664                                        MachinePointerInfo SrcPtrInfo) {
5665   // Turn a memcpy of undef to nop.
5666   if (Src.isUndef())
5667     return Chain;
5668 
5669   // Expand memcpy to a series of load and store ops if the size operand falls
5670   // below a certain threshold.
5671   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5672   // rather than maybe a humongous number of loads and stores.
5673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5674   const DataLayout &DL = DAG.getDataLayout();
5675   LLVMContext &C = *DAG.getContext();
5676   std::vector<EVT> MemOps;
5677   bool DstAlignCanChange = false;
5678   MachineFunction &MF = DAG.getMachineFunction();
5679   MachineFrameInfo &MFI = MF.getFrameInfo();
5680   bool OptSize = shouldLowerMemFuncForSize(MF);
5681   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5682   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5683     DstAlignCanChange = true;
5684   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5685   if (Align > SrcAlign)
5686     SrcAlign = Align;
5687   ConstantDataArraySlice Slice;
5688   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5689   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5690   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5691 
5692   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5693                                 (DstAlignCanChange ? 0 : Align),
5694                                 (isZeroConstant ? 0 : SrcAlign),
5695                                 false, false, CopyFromConstant, true,
5696                                 DstPtrInfo.getAddrSpace(),
5697                                 SrcPtrInfo.getAddrSpace(),
5698                                 DAG, TLI))
5699     return SDValue();
5700 
5701   if (DstAlignCanChange) {
5702     Type *Ty = MemOps[0].getTypeForEVT(C);
5703     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5704 
5705     // Don't promote to an alignment that would require dynamic stack
5706     // realignment.
5707     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5708     if (!TRI->needsStackRealignment(MF))
5709       while (NewAlign > Align &&
5710              DL.exceedsNaturalStackAlignment(NewAlign))
5711           NewAlign /= 2;
5712 
5713     if (NewAlign > Align) {
5714       // Give the stack frame object a larger alignment if needed.
5715       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5716         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5717       Align = NewAlign;
5718     }
5719   }
5720 
5721   MachineMemOperand::Flags MMOFlags =
5722       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5723   SmallVector<SDValue, 16> OutLoadChains;
5724   SmallVector<SDValue, 16> OutStoreChains;
5725   SmallVector<SDValue, 32> OutChains;
5726   unsigned NumMemOps = MemOps.size();
5727   uint64_t SrcOff = 0, DstOff = 0;
5728   for (unsigned i = 0; i != NumMemOps; ++i) {
5729     EVT VT = MemOps[i];
5730     unsigned VTSize = VT.getSizeInBits() / 8;
5731     SDValue Value, Store;
5732 
5733     if (VTSize > Size) {
5734       // Issuing an unaligned load / store pair  that overlaps with the previous
5735       // pair. Adjust the offset accordingly.
5736       assert(i == NumMemOps-1 && i != 0);
5737       SrcOff -= VTSize - Size;
5738       DstOff -= VTSize - Size;
5739     }
5740 
5741     if (CopyFromConstant &&
5742         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5743       // It's unlikely a store of a vector immediate can be done in a single
5744       // instruction. It would require a load from a constantpool first.
5745       // We only handle zero vectors here.
5746       // FIXME: Handle other cases where store of vector immediate is done in
5747       // a single instruction.
5748       ConstantDataArraySlice SubSlice;
5749       if (SrcOff < Slice.Length) {
5750         SubSlice = Slice;
5751         SubSlice.move(SrcOff);
5752       } else {
5753         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5754         SubSlice.Array = nullptr;
5755         SubSlice.Offset = 0;
5756         SubSlice.Length = VTSize;
5757       }
5758       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5759       if (Value.getNode()) {
5760         Store = DAG.getStore(Chain, dl, Value,
5761                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5762                              DstPtrInfo.getWithOffset(DstOff), Align,
5763                              MMOFlags);
5764         OutChains.push_back(Store);
5765       }
5766     }
5767 
5768     if (!Store.getNode()) {
5769       // The type might not be legal for the target.  This should only happen
5770       // if the type is smaller than a legal type, as on PPC, so the right
5771       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5772       // to Load/Store if NVT==VT.
5773       // FIXME does the case above also need this?
5774       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5775       assert(NVT.bitsGE(VT));
5776 
5777       bool isDereferenceable =
5778         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5779       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5780       if (isDereferenceable)
5781         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5782 
5783       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5784                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5785                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5786                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5787       OutLoadChains.push_back(Value.getValue(1));
5788 
5789       Store = DAG.getTruncStore(
5790           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5791           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5792       OutStoreChains.push_back(Store);
5793     }
5794     SrcOff += VTSize;
5795     DstOff += VTSize;
5796     Size -= VTSize;
5797   }
5798 
5799   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5800                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5801   unsigned NumLdStInMemcpy = OutStoreChains.size();
5802 
5803   if (NumLdStInMemcpy) {
5804     // It may be that memcpy might be converted to memset if it's memcpy
5805     // of constants. In such a case, we won't have loads and stores, but
5806     // just stores. In the absence of loads, there is nothing to gang up.
5807     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5808       // If target does not care, just leave as it.
5809       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5810         OutChains.push_back(OutLoadChains[i]);
5811         OutChains.push_back(OutStoreChains[i]);
5812       }
5813     } else {
5814       // Ld/St less than/equal limit set by target.
5815       if (NumLdStInMemcpy <= GluedLdStLimit) {
5816           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5817                                         NumLdStInMemcpy, OutLoadChains,
5818                                         OutStoreChains);
5819       } else {
5820         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5821         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5822         unsigned GlueIter = 0;
5823 
5824         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5825           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5826           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5827 
5828           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5829                                        OutLoadChains, OutStoreChains);
5830           GlueIter += GluedLdStLimit;
5831         }
5832 
5833         // Residual ld/st.
5834         if (RemainingLdStInMemcpy) {
5835           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5836                                         RemainingLdStInMemcpy, OutLoadChains,
5837                                         OutStoreChains);
5838         }
5839       }
5840     }
5841   }
5842   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5843 }
5844 
5845 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5846                                         SDValue Chain, SDValue Dst, SDValue Src,
5847                                         uint64_t Size, unsigned Align,
5848                                         bool isVol, bool AlwaysInline,
5849                                         MachinePointerInfo DstPtrInfo,
5850                                         MachinePointerInfo SrcPtrInfo) {
5851   // Turn a memmove of undef to nop.
5852   if (Src.isUndef())
5853     return Chain;
5854 
5855   // Expand memmove to a series of load and store ops if the size operand falls
5856   // below a certain threshold.
5857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5858   const DataLayout &DL = DAG.getDataLayout();
5859   LLVMContext &C = *DAG.getContext();
5860   std::vector<EVT> MemOps;
5861   bool DstAlignCanChange = false;
5862   MachineFunction &MF = DAG.getMachineFunction();
5863   MachineFrameInfo &MFI = MF.getFrameInfo();
5864   bool OptSize = shouldLowerMemFuncForSize(MF);
5865   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5866   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5867     DstAlignCanChange = true;
5868   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5869   if (Align > SrcAlign)
5870     SrcAlign = Align;
5871   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5872 
5873   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5874                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5875                                 false, false, false, false,
5876                                 DstPtrInfo.getAddrSpace(),
5877                                 SrcPtrInfo.getAddrSpace(),
5878                                 DAG, TLI))
5879     return SDValue();
5880 
5881   if (DstAlignCanChange) {
5882     Type *Ty = MemOps[0].getTypeForEVT(C);
5883     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5884     if (NewAlign > Align) {
5885       // Give the stack frame object a larger alignment if needed.
5886       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5887         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5888       Align = NewAlign;
5889     }
5890   }
5891 
5892   MachineMemOperand::Flags MMOFlags =
5893       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5894   uint64_t SrcOff = 0, DstOff = 0;
5895   SmallVector<SDValue, 8> LoadValues;
5896   SmallVector<SDValue, 8> LoadChains;
5897   SmallVector<SDValue, 8> OutChains;
5898   unsigned NumMemOps = MemOps.size();
5899   for (unsigned i = 0; i < NumMemOps; i++) {
5900     EVT VT = MemOps[i];
5901     unsigned VTSize = VT.getSizeInBits() / 8;
5902     SDValue Value;
5903 
5904     bool isDereferenceable =
5905       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5906     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5907     if (isDereferenceable)
5908       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5909 
5910     Value =
5911         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5912                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5913     LoadValues.push_back(Value);
5914     LoadChains.push_back(Value.getValue(1));
5915     SrcOff += VTSize;
5916   }
5917   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5918   OutChains.clear();
5919   for (unsigned i = 0; i < NumMemOps; i++) {
5920     EVT VT = MemOps[i];
5921     unsigned VTSize = VT.getSizeInBits() / 8;
5922     SDValue Store;
5923 
5924     Store = DAG.getStore(Chain, dl, LoadValues[i],
5925                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5926                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5927     OutChains.push_back(Store);
5928     DstOff += VTSize;
5929   }
5930 
5931   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5932 }
5933 
5934 /// Lower the call to 'memset' intrinsic function into a series of store
5935 /// operations.
5936 ///
5937 /// \param DAG Selection DAG where lowered code is placed.
5938 /// \param dl Link to corresponding IR location.
5939 /// \param Chain Control flow dependency.
5940 /// \param Dst Pointer to destination memory location.
5941 /// \param Src Value of byte to write into the memory.
5942 /// \param Size Number of bytes to write.
5943 /// \param Align Alignment of the destination in bytes.
5944 /// \param isVol True if destination is volatile.
5945 /// \param DstPtrInfo IR information on the memory pointer.
5946 /// \returns New head in the control flow, if lowering was successful, empty
5947 /// SDValue otherwise.
5948 ///
5949 /// The function tries to replace 'llvm.memset' intrinsic with several store
5950 /// operations and value calculation code. This is usually profitable for small
5951 /// memory size.
5952 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5953                                SDValue Chain, SDValue Dst, SDValue Src,
5954                                uint64_t Size, unsigned Align, bool isVol,
5955                                MachinePointerInfo DstPtrInfo) {
5956   // Turn a memset of undef to nop.
5957   if (Src.isUndef())
5958     return Chain;
5959 
5960   // Expand memset to a series of load/store ops if the size operand
5961   // falls below a certain threshold.
5962   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5963   std::vector<EVT> MemOps;
5964   bool DstAlignCanChange = false;
5965   MachineFunction &MF = DAG.getMachineFunction();
5966   MachineFrameInfo &MFI = MF.getFrameInfo();
5967   bool OptSize = shouldLowerMemFuncForSize(MF);
5968   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5969   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5970     DstAlignCanChange = true;
5971   bool IsZeroVal =
5972     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5973   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5974                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5975                                 true, IsZeroVal, false, true,
5976                                 DstPtrInfo.getAddrSpace(), ~0u,
5977                                 DAG, TLI))
5978     return SDValue();
5979 
5980   if (DstAlignCanChange) {
5981     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5982     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5983     if (NewAlign > Align) {
5984       // Give the stack frame object a larger alignment if needed.
5985       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5986         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5987       Align = NewAlign;
5988     }
5989   }
5990 
5991   SmallVector<SDValue, 8> OutChains;
5992   uint64_t DstOff = 0;
5993   unsigned NumMemOps = MemOps.size();
5994 
5995   // Find the largest store and generate the bit pattern for it.
5996   EVT LargestVT = MemOps[0];
5997   for (unsigned i = 1; i < NumMemOps; i++)
5998     if (MemOps[i].bitsGT(LargestVT))
5999       LargestVT = MemOps[i];
6000   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6001 
6002   for (unsigned i = 0; i < NumMemOps; i++) {
6003     EVT VT = MemOps[i];
6004     unsigned VTSize = VT.getSizeInBits() / 8;
6005     if (VTSize > Size) {
6006       // Issuing an unaligned load / store pair  that overlaps with the previous
6007       // pair. Adjust the offset accordingly.
6008       assert(i == NumMemOps-1 && i != 0);
6009       DstOff -= VTSize - Size;
6010     }
6011 
6012     // If this store is smaller than the largest store see whether we can get
6013     // the smaller value for free with a truncate.
6014     SDValue Value = MemSetValue;
6015     if (VT.bitsLT(LargestVT)) {
6016       if (!LargestVT.isVector() && !VT.isVector() &&
6017           TLI.isTruncateFree(LargestVT, VT))
6018         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6019       else
6020         Value = getMemsetValue(Src, VT, DAG, dl);
6021     }
6022     assert(Value.getValueType() == VT && "Value with wrong type.");
6023     SDValue Store = DAG.getStore(
6024         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6025         DstPtrInfo.getWithOffset(DstOff), Align,
6026         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6027     OutChains.push_back(Store);
6028     DstOff += VT.getSizeInBits() / 8;
6029     Size -= VTSize;
6030   }
6031 
6032   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6033 }
6034 
6035 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6036                                             unsigned AS) {
6037   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6038   // pointer operands can be losslessly bitcasted to pointers of address space 0
6039   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6040     report_fatal_error("cannot lower memory intrinsic in address space " +
6041                        Twine(AS));
6042   }
6043 }
6044 
6045 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6046                                 SDValue Src, SDValue Size, unsigned Align,
6047                                 bool isVol, bool AlwaysInline, bool isTailCall,
6048                                 MachinePointerInfo DstPtrInfo,
6049                                 MachinePointerInfo SrcPtrInfo) {
6050   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6051 
6052   // Check to see if we should lower the memcpy to loads and stores first.
6053   // For cases within the target-specified limits, this is the best choice.
6054   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6055   if (ConstantSize) {
6056     // Memcpy with size zero? Just return the original chain.
6057     if (ConstantSize->isNullValue())
6058       return Chain;
6059 
6060     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6061                                              ConstantSize->getZExtValue(),Align,
6062                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6063     if (Result.getNode())
6064       return Result;
6065   }
6066 
6067   // Then check to see if we should lower the memcpy with target-specific
6068   // code. If the target chooses to do this, this is the next best.
6069   if (TSI) {
6070     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6071         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6072         DstPtrInfo, SrcPtrInfo);
6073     if (Result.getNode())
6074       return Result;
6075   }
6076 
6077   // If we really need inline code and the target declined to provide it,
6078   // use a (potentially long) sequence of loads and stores.
6079   if (AlwaysInline) {
6080     assert(ConstantSize && "AlwaysInline requires a constant size!");
6081     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6082                                    ConstantSize->getZExtValue(), Align, isVol,
6083                                    true, DstPtrInfo, SrcPtrInfo);
6084   }
6085 
6086   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6087   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6088 
6089   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6090   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6091   // respect volatile, so they may do things like read or write memory
6092   // beyond the given memory regions. But fixing this isn't easy, and most
6093   // people don't care.
6094 
6095   // Emit a library call.
6096   TargetLowering::ArgListTy Args;
6097   TargetLowering::ArgListEntry Entry;
6098   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6099   Entry.Node = Dst; Args.push_back(Entry);
6100   Entry.Node = Src; Args.push_back(Entry);
6101   Entry.Node = Size; Args.push_back(Entry);
6102   // FIXME: pass in SDLoc
6103   TargetLowering::CallLoweringInfo CLI(*this);
6104   CLI.setDebugLoc(dl)
6105       .setChain(Chain)
6106       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6107                     Dst.getValueType().getTypeForEVT(*getContext()),
6108                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6109                                       TLI->getPointerTy(getDataLayout())),
6110                     std::move(Args))
6111       .setDiscardResult()
6112       .setTailCall(isTailCall);
6113 
6114   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6115   return CallResult.second;
6116 }
6117 
6118 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6119                                       SDValue Dst, unsigned DstAlign,
6120                                       SDValue Src, unsigned SrcAlign,
6121                                       SDValue Size, Type *SizeTy,
6122                                       unsigned ElemSz, bool isTailCall,
6123                                       MachinePointerInfo DstPtrInfo,
6124                                       MachinePointerInfo SrcPtrInfo) {
6125   // Emit a library call.
6126   TargetLowering::ArgListTy Args;
6127   TargetLowering::ArgListEntry Entry;
6128   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6129   Entry.Node = Dst;
6130   Args.push_back(Entry);
6131 
6132   Entry.Node = Src;
6133   Args.push_back(Entry);
6134 
6135   Entry.Ty = SizeTy;
6136   Entry.Node = Size;
6137   Args.push_back(Entry);
6138 
6139   RTLIB::Libcall LibraryCall =
6140       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6141   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6142     report_fatal_error("Unsupported element size");
6143 
6144   TargetLowering::CallLoweringInfo CLI(*this);
6145   CLI.setDebugLoc(dl)
6146       .setChain(Chain)
6147       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6148                     Type::getVoidTy(*getContext()),
6149                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6150                                       TLI->getPointerTy(getDataLayout())),
6151                     std::move(Args))
6152       .setDiscardResult()
6153       .setTailCall(isTailCall);
6154 
6155   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6156   return CallResult.second;
6157 }
6158 
6159 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6160                                  SDValue Src, SDValue Size, unsigned Align,
6161                                  bool isVol, bool isTailCall,
6162                                  MachinePointerInfo DstPtrInfo,
6163                                  MachinePointerInfo SrcPtrInfo) {
6164   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6165 
6166   // Check to see if we should lower the memmove to loads and stores first.
6167   // For cases within the target-specified limits, this is the best choice.
6168   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6169   if (ConstantSize) {
6170     // Memmove with size zero? Just return the original chain.
6171     if (ConstantSize->isNullValue())
6172       return Chain;
6173 
6174     SDValue Result =
6175       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6176                                ConstantSize->getZExtValue(), Align, isVol,
6177                                false, DstPtrInfo, SrcPtrInfo);
6178     if (Result.getNode())
6179       return Result;
6180   }
6181 
6182   // Then check to see if we should lower the memmove with target-specific
6183   // code. If the target chooses to do this, this is the next best.
6184   if (TSI) {
6185     SDValue Result = TSI->EmitTargetCodeForMemmove(
6186         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6187     if (Result.getNode())
6188       return Result;
6189   }
6190 
6191   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6192   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6193 
6194   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6195   // not be safe.  See memcpy above for more details.
6196 
6197   // Emit a library call.
6198   TargetLowering::ArgListTy Args;
6199   TargetLowering::ArgListEntry Entry;
6200   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6201   Entry.Node = Dst; Args.push_back(Entry);
6202   Entry.Node = Src; Args.push_back(Entry);
6203   Entry.Node = Size; Args.push_back(Entry);
6204   // FIXME:  pass in SDLoc
6205   TargetLowering::CallLoweringInfo CLI(*this);
6206   CLI.setDebugLoc(dl)
6207       .setChain(Chain)
6208       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6209                     Dst.getValueType().getTypeForEVT(*getContext()),
6210                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6211                                       TLI->getPointerTy(getDataLayout())),
6212                     std::move(Args))
6213       .setDiscardResult()
6214       .setTailCall(isTailCall);
6215 
6216   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6217   return CallResult.second;
6218 }
6219 
6220 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6221                                        SDValue Dst, unsigned DstAlign,
6222                                        SDValue Src, unsigned SrcAlign,
6223                                        SDValue Size, Type *SizeTy,
6224                                        unsigned ElemSz, bool isTailCall,
6225                                        MachinePointerInfo DstPtrInfo,
6226                                        MachinePointerInfo SrcPtrInfo) {
6227   // Emit a library call.
6228   TargetLowering::ArgListTy Args;
6229   TargetLowering::ArgListEntry Entry;
6230   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6231   Entry.Node = Dst;
6232   Args.push_back(Entry);
6233 
6234   Entry.Node = Src;
6235   Args.push_back(Entry);
6236 
6237   Entry.Ty = SizeTy;
6238   Entry.Node = Size;
6239   Args.push_back(Entry);
6240 
6241   RTLIB::Libcall LibraryCall =
6242       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6243   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6244     report_fatal_error("Unsupported element size");
6245 
6246   TargetLowering::CallLoweringInfo CLI(*this);
6247   CLI.setDebugLoc(dl)
6248       .setChain(Chain)
6249       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6250                     Type::getVoidTy(*getContext()),
6251                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6252                                       TLI->getPointerTy(getDataLayout())),
6253                     std::move(Args))
6254       .setDiscardResult()
6255       .setTailCall(isTailCall);
6256 
6257   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6258   return CallResult.second;
6259 }
6260 
6261 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6262                                 SDValue Src, SDValue Size, unsigned Align,
6263                                 bool isVol, bool isTailCall,
6264                                 MachinePointerInfo DstPtrInfo) {
6265   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6266 
6267   // Check to see if we should lower the memset to stores first.
6268   // For cases within the target-specified limits, this is the best choice.
6269   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6270   if (ConstantSize) {
6271     // Memset with size zero? Just return the original chain.
6272     if (ConstantSize->isNullValue())
6273       return Chain;
6274 
6275     SDValue Result =
6276       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6277                       Align, isVol, DstPtrInfo);
6278 
6279     if (Result.getNode())
6280       return Result;
6281   }
6282 
6283   // Then check to see if we should lower the memset with target-specific
6284   // code. If the target chooses to do this, this is the next best.
6285   if (TSI) {
6286     SDValue Result = TSI->EmitTargetCodeForMemset(
6287         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6288     if (Result.getNode())
6289       return Result;
6290   }
6291 
6292   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6293 
6294   // Emit a library call.
6295   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6296   TargetLowering::ArgListTy Args;
6297   TargetLowering::ArgListEntry Entry;
6298   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6299   Args.push_back(Entry);
6300   Entry.Node = Src;
6301   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6302   Args.push_back(Entry);
6303   Entry.Node = Size;
6304   Entry.Ty = IntPtrTy;
6305   Args.push_back(Entry);
6306 
6307   // FIXME: pass in SDLoc
6308   TargetLowering::CallLoweringInfo CLI(*this);
6309   CLI.setDebugLoc(dl)
6310       .setChain(Chain)
6311       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6312                     Dst.getValueType().getTypeForEVT(*getContext()),
6313                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6314                                       TLI->getPointerTy(getDataLayout())),
6315                     std::move(Args))
6316       .setDiscardResult()
6317       .setTailCall(isTailCall);
6318 
6319   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6320   return CallResult.second;
6321 }
6322 
6323 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6324                                       SDValue Dst, unsigned DstAlign,
6325                                       SDValue Value, SDValue Size, Type *SizeTy,
6326                                       unsigned ElemSz, bool isTailCall,
6327                                       MachinePointerInfo DstPtrInfo) {
6328   // Emit a library call.
6329   TargetLowering::ArgListTy Args;
6330   TargetLowering::ArgListEntry Entry;
6331   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6332   Entry.Node = Dst;
6333   Args.push_back(Entry);
6334 
6335   Entry.Ty = Type::getInt8Ty(*getContext());
6336   Entry.Node = Value;
6337   Args.push_back(Entry);
6338 
6339   Entry.Ty = SizeTy;
6340   Entry.Node = Size;
6341   Args.push_back(Entry);
6342 
6343   RTLIB::Libcall LibraryCall =
6344       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6345   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6346     report_fatal_error("Unsupported element size");
6347 
6348   TargetLowering::CallLoweringInfo CLI(*this);
6349   CLI.setDebugLoc(dl)
6350       .setChain(Chain)
6351       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6352                     Type::getVoidTy(*getContext()),
6353                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6354                                       TLI->getPointerTy(getDataLayout())),
6355                     std::move(Args))
6356       .setDiscardResult()
6357       .setTailCall(isTailCall);
6358 
6359   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6360   return CallResult.second;
6361 }
6362 
6363 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6364                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6365                                 MachineMemOperand *MMO) {
6366   FoldingSetNodeID ID;
6367   ID.AddInteger(MemVT.getRawBits());
6368   AddNodeIDNode(ID, Opcode, VTList, Ops);
6369   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6370   void* IP = nullptr;
6371   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6372     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6373     return SDValue(E, 0);
6374   }
6375 
6376   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6377                                     VTList, MemVT, MMO);
6378   createOperands(N, Ops);
6379 
6380   CSEMap.InsertNode(N, IP);
6381   InsertNode(N);
6382   return SDValue(N, 0);
6383 }
6384 
6385 SDValue SelectionDAG::getAtomicCmpSwap(
6386     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
6387     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
6388     unsigned Alignment, AtomicOrdering SuccessOrdering,
6389     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
6390   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6391          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6392   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6393 
6394   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6395     Alignment = getEVTAlignment(MemVT);
6396 
6397   MachineFunction &MF = getMachineFunction();
6398 
6399   // FIXME: Volatile isn't really correct; we should keep track of atomic
6400   // orderings in the memoperand.
6401   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
6402                MachineMemOperand::MOStore;
6403   MachineMemOperand *MMO =
6404     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6405                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
6406                             FailureOrdering);
6407 
6408   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6409 }
6410 
6411 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6412                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6413                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6414                                        MachineMemOperand *MMO) {
6415   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6416          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6417   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6418 
6419   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6420   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6421 }
6422 
6423 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6424                                 SDValue Chain, SDValue Ptr, SDValue Val,
6425                                 const Value *PtrVal, unsigned Alignment,
6426                                 AtomicOrdering Ordering,
6427                                 SyncScope::ID SSID) {
6428   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6429     Alignment = getEVTAlignment(MemVT);
6430 
6431   MachineFunction &MF = getMachineFunction();
6432   // An atomic store does not load. An atomic load does not store.
6433   // (An atomicrmw obviously both loads and stores.)
6434   // For now, atomics are considered to be volatile always, and they are
6435   // chained as such.
6436   // FIXME: Volatile isn't really correct; we should keep track of atomic
6437   // orderings in the memoperand.
6438   auto Flags = MachineMemOperand::MOVolatile;
6439   if (Opcode != ISD::ATOMIC_STORE)
6440     Flags |= MachineMemOperand::MOLoad;
6441   if (Opcode != ISD::ATOMIC_LOAD)
6442     Flags |= MachineMemOperand::MOStore;
6443 
6444   MachineMemOperand *MMO =
6445     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6446                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
6447                             nullptr, SSID, Ordering);
6448 
6449   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6450 }
6451 
6452 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6453                                 SDValue Chain, SDValue Ptr, SDValue Val,
6454                                 MachineMemOperand *MMO) {
6455   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6456           Opcode == ISD::ATOMIC_LOAD_SUB ||
6457           Opcode == ISD::ATOMIC_LOAD_AND ||
6458           Opcode == ISD::ATOMIC_LOAD_CLR ||
6459           Opcode == ISD::ATOMIC_LOAD_OR ||
6460           Opcode == ISD::ATOMIC_LOAD_XOR ||
6461           Opcode == ISD::ATOMIC_LOAD_NAND ||
6462           Opcode == ISD::ATOMIC_LOAD_MIN ||
6463           Opcode == ISD::ATOMIC_LOAD_MAX ||
6464           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6465           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6466           Opcode == ISD::ATOMIC_LOAD_FADD ||
6467           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6468           Opcode == ISD::ATOMIC_SWAP ||
6469           Opcode == ISD::ATOMIC_STORE) &&
6470          "Invalid Atomic Op");
6471 
6472   EVT VT = Val.getValueType();
6473 
6474   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6475                                                getVTList(VT, MVT::Other);
6476   SDValue Ops[] = {Chain, Ptr, Val};
6477   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6478 }
6479 
6480 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6481                                 EVT VT, SDValue Chain, SDValue Ptr,
6482                                 MachineMemOperand *MMO) {
6483   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6484 
6485   SDVTList VTs = getVTList(VT, MVT::Other);
6486   SDValue Ops[] = {Chain, Ptr};
6487   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6488 }
6489 
6490 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6491 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6492   if (Ops.size() == 1)
6493     return Ops[0];
6494 
6495   SmallVector<EVT, 4> VTs;
6496   VTs.reserve(Ops.size());
6497   for (unsigned i = 0; i < Ops.size(); ++i)
6498     VTs.push_back(Ops[i].getValueType());
6499   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6500 }
6501 
6502 SDValue SelectionDAG::getMemIntrinsicNode(
6503     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6504     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6505     MachineMemOperand::Flags Flags, unsigned Size) {
6506   if (Align == 0)  // Ensure that codegen never sees alignment 0
6507     Align = getEVTAlignment(MemVT);
6508 
6509   if (!Size)
6510     Size = MemVT.getStoreSize();
6511 
6512   MachineFunction &MF = getMachineFunction();
6513   MachineMemOperand *MMO =
6514     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6515 
6516   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6517 }
6518 
6519 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6520                                           SDVTList VTList,
6521                                           ArrayRef<SDValue> Ops, EVT MemVT,
6522                                           MachineMemOperand *MMO) {
6523   assert((Opcode == ISD::INTRINSIC_VOID ||
6524           Opcode == ISD::INTRINSIC_W_CHAIN ||
6525           Opcode == ISD::PREFETCH ||
6526           Opcode == ISD::LIFETIME_START ||
6527           Opcode == ISD::LIFETIME_END ||
6528           ((int)Opcode <= std::numeric_limits<int>::max() &&
6529            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6530          "Opcode is not a memory-accessing opcode!");
6531 
6532   // Memoize the node unless it returns a flag.
6533   MemIntrinsicSDNode *N;
6534   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6535     FoldingSetNodeID ID;
6536     AddNodeIDNode(ID, Opcode, VTList, Ops);
6537     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6538         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6539     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6540     void *IP = nullptr;
6541     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6542       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6543       return SDValue(E, 0);
6544     }
6545 
6546     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6547                                       VTList, MemVT, MMO);
6548     createOperands(N, Ops);
6549 
6550   CSEMap.InsertNode(N, IP);
6551   } else {
6552     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6553                                       VTList, MemVT, MMO);
6554     createOperands(N, Ops);
6555   }
6556   InsertNode(N);
6557   return SDValue(N, 0);
6558 }
6559 
6560 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6561 /// MachinePointerInfo record from it.  This is particularly useful because the
6562 /// code generator has many cases where it doesn't bother passing in a
6563 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6564 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6565                                            SelectionDAG &DAG, SDValue Ptr,
6566                                            int64_t Offset = 0) {
6567   // If this is FI+Offset, we can model it.
6568   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6569     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6570                                              FI->getIndex(), Offset);
6571 
6572   // If this is (FI+Offset1)+Offset2, we can model it.
6573   if (Ptr.getOpcode() != ISD::ADD ||
6574       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6575       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6576     return Info;
6577 
6578   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6579   return MachinePointerInfo::getFixedStack(
6580       DAG.getMachineFunction(), FI,
6581       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6582 }
6583 
6584 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6585 /// MachinePointerInfo record from it.  This is particularly useful because the
6586 /// code generator has many cases where it doesn't bother passing in a
6587 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6588 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6589                                            SelectionDAG &DAG, SDValue Ptr,
6590                                            SDValue OffsetOp) {
6591   // If the 'Offset' value isn't a constant, we can't handle this.
6592   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6593     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6594   if (OffsetOp.isUndef())
6595     return InferPointerInfo(Info, DAG, Ptr);
6596   return Info;
6597 }
6598 
6599 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6600                               EVT VT, const SDLoc &dl, SDValue Chain,
6601                               SDValue Ptr, SDValue Offset,
6602                               MachinePointerInfo PtrInfo, EVT MemVT,
6603                               unsigned Alignment,
6604                               MachineMemOperand::Flags MMOFlags,
6605                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6606   assert(Chain.getValueType() == MVT::Other &&
6607         "Invalid chain type");
6608   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6609     Alignment = getEVTAlignment(MemVT);
6610 
6611   MMOFlags |= MachineMemOperand::MOLoad;
6612   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6613   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6614   // clients.
6615   if (PtrInfo.V.isNull())
6616     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6617 
6618   MachineFunction &MF = getMachineFunction();
6619   MachineMemOperand *MMO = MF.getMachineMemOperand(
6620       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6621   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6622 }
6623 
6624 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6625                               EVT VT, const SDLoc &dl, SDValue Chain,
6626                               SDValue Ptr, SDValue Offset, EVT MemVT,
6627                               MachineMemOperand *MMO) {
6628   if (VT == MemVT) {
6629     ExtType = ISD::NON_EXTLOAD;
6630   } else if (ExtType == ISD::NON_EXTLOAD) {
6631     assert(VT == MemVT && "Non-extending load from different memory type!");
6632   } else {
6633     // Extending load.
6634     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6635            "Should only be an extending load, not truncating!");
6636     assert(VT.isInteger() == MemVT.isInteger() &&
6637            "Cannot convert from FP to Int or Int -> FP!");
6638     assert(VT.isVector() == MemVT.isVector() &&
6639            "Cannot use an ext load to convert to or from a vector!");
6640     assert((!VT.isVector() ||
6641             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6642            "Cannot use an ext load to change the number of vector elements!");
6643   }
6644 
6645   bool Indexed = AM != ISD::UNINDEXED;
6646   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6647 
6648   SDVTList VTs = Indexed ?
6649     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6650   SDValue Ops[] = { Chain, Ptr, Offset };
6651   FoldingSetNodeID ID;
6652   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6653   ID.AddInteger(MemVT.getRawBits());
6654   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6655       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6656   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6657   void *IP = nullptr;
6658   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6659     cast<LoadSDNode>(E)->refineAlignment(MMO);
6660     return SDValue(E, 0);
6661   }
6662   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6663                                   ExtType, MemVT, MMO);
6664   createOperands(N, Ops);
6665 
6666   CSEMap.InsertNode(N, IP);
6667   InsertNode(N);
6668   SDValue V(N, 0);
6669   NewSDValueDbgMsg(V, "Creating new node: ", this);
6670   return V;
6671 }
6672 
6673 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6674                               SDValue Ptr, MachinePointerInfo PtrInfo,
6675                               unsigned Alignment,
6676                               MachineMemOperand::Flags MMOFlags,
6677                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6678   SDValue Undef = getUNDEF(Ptr.getValueType());
6679   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6680                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6681 }
6682 
6683 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6684                               SDValue Ptr, MachineMemOperand *MMO) {
6685   SDValue Undef = getUNDEF(Ptr.getValueType());
6686   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6687                  VT, MMO);
6688 }
6689 
6690 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6691                                  EVT VT, SDValue Chain, SDValue Ptr,
6692                                  MachinePointerInfo PtrInfo, EVT MemVT,
6693                                  unsigned Alignment,
6694                                  MachineMemOperand::Flags MMOFlags,
6695                                  const AAMDNodes &AAInfo) {
6696   SDValue Undef = getUNDEF(Ptr.getValueType());
6697   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6698                  MemVT, Alignment, MMOFlags, AAInfo);
6699 }
6700 
6701 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6702                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6703                                  MachineMemOperand *MMO) {
6704   SDValue Undef = getUNDEF(Ptr.getValueType());
6705   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6706                  MemVT, MMO);
6707 }
6708 
6709 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6710                                      SDValue Base, SDValue Offset,
6711                                      ISD::MemIndexedMode AM) {
6712   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6713   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6714   // Don't propagate the invariant or dereferenceable flags.
6715   auto MMOFlags =
6716       LD->getMemOperand()->getFlags() &
6717       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6718   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6719                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6720                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6721                  LD->getAAInfo());
6722 }
6723 
6724 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6725                                SDValue Ptr, MachinePointerInfo PtrInfo,
6726                                unsigned Alignment,
6727                                MachineMemOperand::Flags MMOFlags,
6728                                const AAMDNodes &AAInfo) {
6729   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6730   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6731     Alignment = getEVTAlignment(Val.getValueType());
6732 
6733   MMOFlags |= MachineMemOperand::MOStore;
6734   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6735 
6736   if (PtrInfo.V.isNull())
6737     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6738 
6739   MachineFunction &MF = getMachineFunction();
6740   MachineMemOperand *MMO = MF.getMachineMemOperand(
6741       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6742   return getStore(Chain, dl, Val, Ptr, MMO);
6743 }
6744 
6745 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6746                                SDValue Ptr, MachineMemOperand *MMO) {
6747   assert(Chain.getValueType() == MVT::Other &&
6748         "Invalid chain type");
6749   EVT VT = Val.getValueType();
6750   SDVTList VTs = getVTList(MVT::Other);
6751   SDValue Undef = getUNDEF(Ptr.getValueType());
6752   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6753   FoldingSetNodeID ID;
6754   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6755   ID.AddInteger(VT.getRawBits());
6756   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6757       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6758   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6759   void *IP = nullptr;
6760   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6761     cast<StoreSDNode>(E)->refineAlignment(MMO);
6762     return SDValue(E, 0);
6763   }
6764   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6765                                    ISD::UNINDEXED, false, VT, MMO);
6766   createOperands(N, Ops);
6767 
6768   CSEMap.InsertNode(N, IP);
6769   InsertNode(N);
6770   SDValue V(N, 0);
6771   NewSDValueDbgMsg(V, "Creating new node: ", this);
6772   return V;
6773 }
6774 
6775 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6776                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6777                                     EVT SVT, unsigned Alignment,
6778                                     MachineMemOperand::Flags MMOFlags,
6779                                     const AAMDNodes &AAInfo) {
6780   assert(Chain.getValueType() == MVT::Other &&
6781         "Invalid chain type");
6782   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6783     Alignment = getEVTAlignment(SVT);
6784 
6785   MMOFlags |= MachineMemOperand::MOStore;
6786   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6787 
6788   if (PtrInfo.V.isNull())
6789     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6790 
6791   MachineFunction &MF = getMachineFunction();
6792   MachineMemOperand *MMO = MF.getMachineMemOperand(
6793       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6794   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6795 }
6796 
6797 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6798                                     SDValue Ptr, EVT SVT,
6799                                     MachineMemOperand *MMO) {
6800   EVT VT = Val.getValueType();
6801 
6802   assert(Chain.getValueType() == MVT::Other &&
6803         "Invalid chain type");
6804   if (VT == SVT)
6805     return getStore(Chain, dl, Val, Ptr, MMO);
6806 
6807   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6808          "Should only be a truncating store, not extending!");
6809   assert(VT.isInteger() == SVT.isInteger() &&
6810          "Can't do FP-INT conversion!");
6811   assert(VT.isVector() == SVT.isVector() &&
6812          "Cannot use trunc store to convert to or from a vector!");
6813   assert((!VT.isVector() ||
6814           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6815          "Cannot use trunc store to change the number of vector elements!");
6816 
6817   SDVTList VTs = getVTList(MVT::Other);
6818   SDValue Undef = getUNDEF(Ptr.getValueType());
6819   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6820   FoldingSetNodeID ID;
6821   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6822   ID.AddInteger(SVT.getRawBits());
6823   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6824       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6825   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6826   void *IP = nullptr;
6827   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6828     cast<StoreSDNode>(E)->refineAlignment(MMO);
6829     return SDValue(E, 0);
6830   }
6831   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6832                                    ISD::UNINDEXED, true, SVT, MMO);
6833   createOperands(N, Ops);
6834 
6835   CSEMap.InsertNode(N, IP);
6836   InsertNode(N);
6837   SDValue V(N, 0);
6838   NewSDValueDbgMsg(V, "Creating new node: ", this);
6839   return V;
6840 }
6841 
6842 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6843                                       SDValue Base, SDValue Offset,
6844                                       ISD::MemIndexedMode AM) {
6845   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6846   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6847   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6848   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6849   FoldingSetNodeID ID;
6850   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6851   ID.AddInteger(ST->getMemoryVT().getRawBits());
6852   ID.AddInteger(ST->getRawSubclassData());
6853   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6854   void *IP = nullptr;
6855   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6856     return SDValue(E, 0);
6857 
6858   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6859                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6860                                    ST->getMemOperand());
6861   createOperands(N, Ops);
6862 
6863   CSEMap.InsertNode(N, IP);
6864   InsertNode(N);
6865   SDValue V(N, 0);
6866   NewSDValueDbgMsg(V, "Creating new node: ", this);
6867   return V;
6868 }
6869 
6870 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6871                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6872                                     EVT MemVT, MachineMemOperand *MMO,
6873                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6874   SDVTList VTs = getVTList(VT, MVT::Other);
6875   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6876   FoldingSetNodeID ID;
6877   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6878   ID.AddInteger(VT.getRawBits());
6879   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6880       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6881   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6882   void *IP = nullptr;
6883   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6884     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6885     return SDValue(E, 0);
6886   }
6887   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6888                                         ExtTy, isExpanding, MemVT, MMO);
6889   createOperands(N, Ops);
6890 
6891   CSEMap.InsertNode(N, IP);
6892   InsertNode(N);
6893   SDValue V(N, 0);
6894   NewSDValueDbgMsg(V, "Creating new node: ", this);
6895   return V;
6896 }
6897 
6898 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6899                                      SDValue Val, SDValue Ptr, SDValue Mask,
6900                                      EVT MemVT, MachineMemOperand *MMO,
6901                                      bool IsTruncating, bool IsCompressing) {
6902   assert(Chain.getValueType() == MVT::Other &&
6903         "Invalid chain type");
6904   EVT VT = Val.getValueType();
6905   SDVTList VTs = getVTList(MVT::Other);
6906   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6907   FoldingSetNodeID ID;
6908   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6909   ID.AddInteger(VT.getRawBits());
6910   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6911       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6912   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6913   void *IP = nullptr;
6914   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6915     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6916     return SDValue(E, 0);
6917   }
6918   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6919                                          IsTruncating, IsCompressing, MemVT, MMO);
6920   createOperands(N, Ops);
6921 
6922   CSEMap.InsertNode(N, IP);
6923   InsertNode(N);
6924   SDValue V(N, 0);
6925   NewSDValueDbgMsg(V, "Creating new node: ", this);
6926   return V;
6927 }
6928 
6929 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6930                                       ArrayRef<SDValue> Ops,
6931                                       MachineMemOperand *MMO) {
6932   assert(Ops.size() == 6 && "Incompatible number of operands");
6933 
6934   FoldingSetNodeID ID;
6935   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6936   ID.AddInteger(VT.getRawBits());
6937   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6938       dl.getIROrder(), VTs, VT, MMO));
6939   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6940   void *IP = nullptr;
6941   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6942     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6943     return SDValue(E, 0);
6944   }
6945 
6946   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6947                                           VTs, VT, MMO);
6948   createOperands(N, Ops);
6949 
6950   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6951          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6952   assert(N->getMask().getValueType().getVectorNumElements() ==
6953              N->getValueType(0).getVectorNumElements() &&
6954          "Vector width mismatch between mask and data");
6955   assert(N->getIndex().getValueType().getVectorNumElements() >=
6956              N->getValueType(0).getVectorNumElements() &&
6957          "Vector width mismatch between index and data");
6958   assert(isa<ConstantSDNode>(N->getScale()) &&
6959          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6960          "Scale should be a constant power of 2");
6961 
6962   CSEMap.InsertNode(N, IP);
6963   InsertNode(N);
6964   SDValue V(N, 0);
6965   NewSDValueDbgMsg(V, "Creating new node: ", this);
6966   return V;
6967 }
6968 
6969 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6970                                        ArrayRef<SDValue> Ops,
6971                                        MachineMemOperand *MMO) {
6972   assert(Ops.size() == 6 && "Incompatible number of operands");
6973 
6974   FoldingSetNodeID ID;
6975   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6976   ID.AddInteger(VT.getRawBits());
6977   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6978       dl.getIROrder(), VTs, VT, MMO));
6979   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6980   void *IP = nullptr;
6981   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6982     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6983     return SDValue(E, 0);
6984   }
6985   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6986                                            VTs, VT, MMO);
6987   createOperands(N, Ops);
6988 
6989   assert(N->getMask().getValueType().getVectorNumElements() ==
6990              N->getValue().getValueType().getVectorNumElements() &&
6991          "Vector width mismatch between mask and data");
6992   assert(N->getIndex().getValueType().getVectorNumElements() >=
6993              N->getValue().getValueType().getVectorNumElements() &&
6994          "Vector width mismatch between index and data");
6995   assert(isa<ConstantSDNode>(N->getScale()) &&
6996          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6997          "Scale should be a constant power of 2");
6998 
6999   CSEMap.InsertNode(N, IP);
7000   InsertNode(N);
7001   SDValue V(N, 0);
7002   NewSDValueDbgMsg(V, "Creating new node: ", this);
7003   return V;
7004 }
7005 
7006 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7007   // select undef, T, F --> T (if T is a constant), otherwise F
7008   // select, ?, undef, F --> F
7009   // select, ?, T, undef --> T
7010   if (Cond.isUndef())
7011     return isConstantValueOfAnyType(T) ? T : F;
7012   if (T.isUndef())
7013     return F;
7014   if (F.isUndef())
7015     return T;
7016 
7017   // select true, T, F --> T
7018   // select false, T, F --> F
7019   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7020     return CondC->isNullValue() ? F : T;
7021 
7022   // TODO: This should simplify VSELECT with constant condition using something
7023   // like this (but check boolean contents to be complete?):
7024   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7025   //    return T;
7026   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7027   //    return F;
7028 
7029   // select ?, T, T --> T
7030   if (T == F)
7031     return T;
7032 
7033   return SDValue();
7034 }
7035 
7036 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7037   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7038   if (X.isUndef())
7039     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7040   // shift X, undef --> undef (because it may shift by the bitwidth)
7041   if (Y.isUndef())
7042     return getUNDEF(X.getValueType());
7043 
7044   // shift 0, Y --> 0
7045   // shift X, 0 --> X
7046   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7047     return X;
7048 
7049   // shift X, C >= bitwidth(X) --> undef
7050   // All vector elements must be too big (or undef) to avoid partial undefs.
7051   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7052     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7053   };
7054   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7055     return getUNDEF(X.getValueType());
7056 
7057   return SDValue();
7058 }
7059 
7060 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7061                                SDValue Ptr, SDValue SV, unsigned Align) {
7062   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7063   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7064 }
7065 
7066 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7067                               ArrayRef<SDUse> Ops) {
7068   switch (Ops.size()) {
7069   case 0: return getNode(Opcode, DL, VT);
7070   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7071   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7072   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7073   default: break;
7074   }
7075 
7076   // Copy from an SDUse array into an SDValue array for use with
7077   // the regular getNode logic.
7078   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7079   return getNode(Opcode, DL, VT, NewOps);
7080 }
7081 
7082 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7083                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7084   unsigned NumOps = Ops.size();
7085   switch (NumOps) {
7086   case 0: return getNode(Opcode, DL, VT);
7087   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7088   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7089   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7090   default: break;
7091   }
7092 
7093   switch (Opcode) {
7094   default: break;
7095   case ISD::BUILD_VECTOR:
7096     // Attempt to simplify BUILD_VECTOR.
7097     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7098       return V;
7099     break;
7100   case ISD::CONCAT_VECTORS:
7101     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
7102     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
7103       return V;
7104     break;
7105   case ISD::SELECT_CC:
7106     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7107     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7108            "LHS and RHS of condition must have same type!");
7109     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7110            "True and False arms of SelectCC must have same type!");
7111     assert(Ops[2].getValueType() == VT &&
7112            "select_cc node must be of same type as true and false value!");
7113     break;
7114   case ISD::BR_CC:
7115     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7116     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7117            "LHS/RHS of comparison should match types!");
7118     break;
7119   }
7120 
7121   // Memoize nodes.
7122   SDNode *N;
7123   SDVTList VTs = getVTList(VT);
7124 
7125   if (VT != MVT::Glue) {
7126     FoldingSetNodeID ID;
7127     AddNodeIDNode(ID, Opcode, VTs, Ops);
7128     void *IP = nullptr;
7129 
7130     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7131       return SDValue(E, 0);
7132 
7133     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7134     createOperands(N, Ops);
7135 
7136     CSEMap.InsertNode(N, IP);
7137   } else {
7138     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7139     createOperands(N, Ops);
7140   }
7141 
7142   InsertNode(N);
7143   SDValue V(N, 0);
7144   NewSDValueDbgMsg(V, "Creating new node: ", this);
7145   return V;
7146 }
7147 
7148 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7149                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7150   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7151 }
7152 
7153 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7154                               ArrayRef<SDValue> Ops) {
7155   if (VTList.NumVTs == 1)
7156     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7157 
7158 #if 0
7159   switch (Opcode) {
7160   // FIXME: figure out how to safely handle things like
7161   // int foo(int x) { return 1 << (x & 255); }
7162   // int bar() { return foo(256); }
7163   case ISD::SRA_PARTS:
7164   case ISD::SRL_PARTS:
7165   case ISD::SHL_PARTS:
7166     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7167         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7168       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7169     else if (N3.getOpcode() == ISD::AND)
7170       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7171         // If the and is only masking out bits that cannot effect the shift,
7172         // eliminate the and.
7173         unsigned NumBits = VT.getScalarSizeInBits()*2;
7174         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7175           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7176       }
7177     break;
7178   }
7179 #endif
7180 
7181   // Memoize the node unless it returns a flag.
7182   SDNode *N;
7183   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7184     FoldingSetNodeID ID;
7185     AddNodeIDNode(ID, Opcode, VTList, Ops);
7186     void *IP = nullptr;
7187     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7188       return SDValue(E, 0);
7189 
7190     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7191     createOperands(N, Ops);
7192     CSEMap.InsertNode(N, IP);
7193   } else {
7194     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7195     createOperands(N, Ops);
7196   }
7197   InsertNode(N);
7198   SDValue V(N, 0);
7199   NewSDValueDbgMsg(V, "Creating new node: ", this);
7200   return V;
7201 }
7202 
7203 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7204                               SDVTList VTList) {
7205   return getNode(Opcode, DL, VTList, None);
7206 }
7207 
7208 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7209                               SDValue N1) {
7210   SDValue Ops[] = { N1 };
7211   return getNode(Opcode, DL, VTList, Ops);
7212 }
7213 
7214 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7215                               SDValue N1, SDValue N2) {
7216   SDValue Ops[] = { N1, N2 };
7217   return getNode(Opcode, DL, VTList, Ops);
7218 }
7219 
7220 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7221                               SDValue N1, SDValue N2, SDValue N3) {
7222   SDValue Ops[] = { N1, N2, N3 };
7223   return getNode(Opcode, DL, VTList, Ops);
7224 }
7225 
7226 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7227                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7228   SDValue Ops[] = { N1, N2, N3, N4 };
7229   return getNode(Opcode, DL, VTList, Ops);
7230 }
7231 
7232 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7233                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7234                               SDValue N5) {
7235   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7236   return getNode(Opcode, DL, VTList, Ops);
7237 }
7238 
7239 SDVTList SelectionDAG::getVTList(EVT VT) {
7240   return makeVTList(SDNode::getValueTypeList(VT), 1);
7241 }
7242 
7243 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7244   FoldingSetNodeID ID;
7245   ID.AddInteger(2U);
7246   ID.AddInteger(VT1.getRawBits());
7247   ID.AddInteger(VT2.getRawBits());
7248 
7249   void *IP = nullptr;
7250   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7251   if (!Result) {
7252     EVT *Array = Allocator.Allocate<EVT>(2);
7253     Array[0] = VT1;
7254     Array[1] = VT2;
7255     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7256     VTListMap.InsertNode(Result, IP);
7257   }
7258   return Result->getSDVTList();
7259 }
7260 
7261 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7262   FoldingSetNodeID ID;
7263   ID.AddInteger(3U);
7264   ID.AddInteger(VT1.getRawBits());
7265   ID.AddInteger(VT2.getRawBits());
7266   ID.AddInteger(VT3.getRawBits());
7267 
7268   void *IP = nullptr;
7269   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7270   if (!Result) {
7271     EVT *Array = Allocator.Allocate<EVT>(3);
7272     Array[0] = VT1;
7273     Array[1] = VT2;
7274     Array[2] = VT3;
7275     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7276     VTListMap.InsertNode(Result, IP);
7277   }
7278   return Result->getSDVTList();
7279 }
7280 
7281 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7282   FoldingSetNodeID ID;
7283   ID.AddInteger(4U);
7284   ID.AddInteger(VT1.getRawBits());
7285   ID.AddInteger(VT2.getRawBits());
7286   ID.AddInteger(VT3.getRawBits());
7287   ID.AddInteger(VT4.getRawBits());
7288 
7289   void *IP = nullptr;
7290   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7291   if (!Result) {
7292     EVT *Array = Allocator.Allocate<EVT>(4);
7293     Array[0] = VT1;
7294     Array[1] = VT2;
7295     Array[2] = VT3;
7296     Array[3] = VT4;
7297     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7298     VTListMap.InsertNode(Result, IP);
7299   }
7300   return Result->getSDVTList();
7301 }
7302 
7303 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7304   unsigned NumVTs = VTs.size();
7305   FoldingSetNodeID ID;
7306   ID.AddInteger(NumVTs);
7307   for (unsigned index = 0; index < NumVTs; index++) {
7308     ID.AddInteger(VTs[index].getRawBits());
7309   }
7310 
7311   void *IP = nullptr;
7312   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7313   if (!Result) {
7314     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7315     llvm::copy(VTs, Array);
7316     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7317     VTListMap.InsertNode(Result, IP);
7318   }
7319   return Result->getSDVTList();
7320 }
7321 
7322 
7323 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7324 /// specified operands.  If the resultant node already exists in the DAG,
7325 /// this does not modify the specified node, instead it returns the node that
7326 /// already exists.  If the resultant node does not exist in the DAG, the
7327 /// input node is returned.  As a degenerate case, if you specify the same
7328 /// input operands as the node already has, the input node is returned.
7329 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7330   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7331 
7332   // Check to see if there is no change.
7333   if (Op == N->getOperand(0)) return N;
7334 
7335   // See if the modified node already exists.
7336   void *InsertPos = nullptr;
7337   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7338     return Existing;
7339 
7340   // Nope it doesn't.  Remove the node from its current place in the maps.
7341   if (InsertPos)
7342     if (!RemoveNodeFromCSEMaps(N))
7343       InsertPos = nullptr;
7344 
7345   // Now we update the operands.
7346   N->OperandList[0].set(Op);
7347 
7348   updateDivergence(N);
7349   // If this gets put into a CSE map, add it.
7350   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7351   return N;
7352 }
7353 
7354 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7355   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7356 
7357   // Check to see if there is no change.
7358   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7359     return N;   // No operands changed, just return the input node.
7360 
7361   // See if the modified node already exists.
7362   void *InsertPos = nullptr;
7363   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7364     return Existing;
7365 
7366   // Nope it doesn't.  Remove the node from its current place in the maps.
7367   if (InsertPos)
7368     if (!RemoveNodeFromCSEMaps(N))
7369       InsertPos = nullptr;
7370 
7371   // Now we update the operands.
7372   if (N->OperandList[0] != Op1)
7373     N->OperandList[0].set(Op1);
7374   if (N->OperandList[1] != Op2)
7375     N->OperandList[1].set(Op2);
7376 
7377   updateDivergence(N);
7378   // If this gets put into a CSE map, add it.
7379   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7380   return N;
7381 }
7382 
7383 SDNode *SelectionDAG::
7384 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7385   SDValue Ops[] = { Op1, Op2, Op3 };
7386   return UpdateNodeOperands(N, Ops);
7387 }
7388 
7389 SDNode *SelectionDAG::
7390 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7391                    SDValue Op3, SDValue Op4) {
7392   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7393   return UpdateNodeOperands(N, Ops);
7394 }
7395 
7396 SDNode *SelectionDAG::
7397 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7398                    SDValue Op3, SDValue Op4, SDValue Op5) {
7399   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7400   return UpdateNodeOperands(N, Ops);
7401 }
7402 
7403 SDNode *SelectionDAG::
7404 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7405   unsigned NumOps = Ops.size();
7406   assert(N->getNumOperands() == NumOps &&
7407          "Update with wrong number of operands");
7408 
7409   // If no operands changed just return the input node.
7410   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7411     return N;
7412 
7413   // See if the modified node already exists.
7414   void *InsertPos = nullptr;
7415   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7416     return Existing;
7417 
7418   // Nope it doesn't.  Remove the node from its current place in the maps.
7419   if (InsertPos)
7420     if (!RemoveNodeFromCSEMaps(N))
7421       InsertPos = nullptr;
7422 
7423   // Now we update the operands.
7424   for (unsigned i = 0; i != NumOps; ++i)
7425     if (N->OperandList[i] != Ops[i])
7426       N->OperandList[i].set(Ops[i]);
7427 
7428   updateDivergence(N);
7429   // If this gets put into a CSE map, add it.
7430   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7431   return N;
7432 }
7433 
7434 /// DropOperands - Release the operands and set this node to have
7435 /// zero operands.
7436 void SDNode::DropOperands() {
7437   // Unlike the code in MorphNodeTo that does this, we don't need to
7438   // watch for dead nodes here.
7439   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7440     SDUse &Use = *I++;
7441     Use.set(SDValue());
7442   }
7443 }
7444 
7445 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7446                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7447   if (NewMemRefs.empty()) {
7448     N->clearMemRefs();
7449     return;
7450   }
7451 
7452   // Check if we can avoid allocating by storing a single reference directly.
7453   if (NewMemRefs.size() == 1) {
7454     N->MemRefs = NewMemRefs[0];
7455     N->NumMemRefs = 1;
7456     return;
7457   }
7458 
7459   MachineMemOperand **MemRefsBuffer =
7460       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7461   llvm::copy(NewMemRefs, MemRefsBuffer);
7462   N->MemRefs = MemRefsBuffer;
7463   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7464 }
7465 
7466 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7467 /// machine opcode.
7468 ///
7469 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7470                                    EVT VT) {
7471   SDVTList VTs = getVTList(VT);
7472   return SelectNodeTo(N, MachineOpc, VTs, None);
7473 }
7474 
7475 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7476                                    EVT VT, SDValue Op1) {
7477   SDVTList VTs = getVTList(VT);
7478   SDValue Ops[] = { Op1 };
7479   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7480 }
7481 
7482 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7483                                    EVT VT, SDValue Op1,
7484                                    SDValue Op2) {
7485   SDVTList VTs = getVTList(VT);
7486   SDValue Ops[] = { Op1, Op2 };
7487   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7488 }
7489 
7490 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7491                                    EVT VT, SDValue Op1,
7492                                    SDValue Op2, SDValue Op3) {
7493   SDVTList VTs = getVTList(VT);
7494   SDValue Ops[] = { Op1, Op2, Op3 };
7495   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7496 }
7497 
7498 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7499                                    EVT VT, ArrayRef<SDValue> Ops) {
7500   SDVTList VTs = getVTList(VT);
7501   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7502 }
7503 
7504 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7505                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7506   SDVTList VTs = getVTList(VT1, VT2);
7507   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7508 }
7509 
7510 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7511                                    EVT VT1, EVT VT2) {
7512   SDVTList VTs = getVTList(VT1, VT2);
7513   return SelectNodeTo(N, MachineOpc, VTs, None);
7514 }
7515 
7516 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7517                                    EVT VT1, EVT VT2, EVT VT3,
7518                                    ArrayRef<SDValue> Ops) {
7519   SDVTList VTs = getVTList(VT1, VT2, VT3);
7520   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7521 }
7522 
7523 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7524                                    EVT VT1, EVT VT2,
7525                                    SDValue Op1, SDValue Op2) {
7526   SDVTList VTs = getVTList(VT1, VT2);
7527   SDValue Ops[] = { Op1, Op2 };
7528   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7529 }
7530 
7531 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7532                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7533   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7534   // Reset the NodeID to -1.
7535   New->setNodeId(-1);
7536   if (New != N) {
7537     ReplaceAllUsesWith(N, New);
7538     RemoveDeadNode(N);
7539   }
7540   return New;
7541 }
7542 
7543 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7544 /// the line number information on the merged node since it is not possible to
7545 /// preserve the information that operation is associated with multiple lines.
7546 /// This will make the debugger working better at -O0, were there is a higher
7547 /// probability having other instructions associated with that line.
7548 ///
7549 /// For IROrder, we keep the smaller of the two
7550 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7551   DebugLoc NLoc = N->getDebugLoc();
7552   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7553     N->setDebugLoc(DebugLoc());
7554   }
7555   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7556   N->setIROrder(Order);
7557   return N;
7558 }
7559 
7560 /// MorphNodeTo - This *mutates* the specified node to have the specified
7561 /// return type, opcode, and operands.
7562 ///
7563 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7564 /// node of the specified opcode and operands, it returns that node instead of
7565 /// the current one.  Note that the SDLoc need not be the same.
7566 ///
7567 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7568 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7569 /// node, and because it doesn't require CSE recalculation for any of
7570 /// the node's users.
7571 ///
7572 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7573 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7574 /// the legalizer which maintain worklists that would need to be updated when
7575 /// deleting things.
7576 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7577                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7578   // If an identical node already exists, use it.
7579   void *IP = nullptr;
7580   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7581     FoldingSetNodeID ID;
7582     AddNodeIDNode(ID, Opc, VTs, Ops);
7583     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7584       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7585   }
7586 
7587   if (!RemoveNodeFromCSEMaps(N))
7588     IP = nullptr;
7589 
7590   // Start the morphing.
7591   N->NodeType = Opc;
7592   N->ValueList = VTs.VTs;
7593   N->NumValues = VTs.NumVTs;
7594 
7595   // Clear the operands list, updating used nodes to remove this from their
7596   // use list.  Keep track of any operands that become dead as a result.
7597   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7598   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7599     SDUse &Use = *I++;
7600     SDNode *Used = Use.getNode();
7601     Use.set(SDValue());
7602     if (Used->use_empty())
7603       DeadNodeSet.insert(Used);
7604   }
7605 
7606   // For MachineNode, initialize the memory references information.
7607   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7608     MN->clearMemRefs();
7609 
7610   // Swap for an appropriately sized array from the recycler.
7611   removeOperands(N);
7612   createOperands(N, Ops);
7613 
7614   // Delete any nodes that are still dead after adding the uses for the
7615   // new operands.
7616   if (!DeadNodeSet.empty()) {
7617     SmallVector<SDNode *, 16> DeadNodes;
7618     for (SDNode *N : DeadNodeSet)
7619       if (N->use_empty())
7620         DeadNodes.push_back(N);
7621     RemoveDeadNodes(DeadNodes);
7622   }
7623 
7624   if (IP)
7625     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7626   return N;
7627 }
7628 
7629 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7630   unsigned OrigOpc = Node->getOpcode();
7631   unsigned NewOpc;
7632   bool IsUnary = false;
7633   bool IsTernary = false;
7634   switch (OrigOpc) {
7635   default:
7636     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7637   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7638   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7639   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7640   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7641   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7642   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7643   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7644   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7645   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7646   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7647   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7648   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7649   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7650   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7651   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7652   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7653   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7654   case ISD::STRICT_FNEARBYINT:
7655     NewOpc = ISD::FNEARBYINT;
7656     IsUnary = true;
7657     break;
7658   case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
7659   case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
7660   case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
7661   case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
7662   case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
7663   case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
7664   }
7665 
7666   // We're taking this node out of the chain, so we need to re-link things.
7667   SDValue InputChain = Node->getOperand(0);
7668   SDValue OutputChain = SDValue(Node, 1);
7669   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7670 
7671   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7672   SDNode *Res = nullptr;
7673   if (IsUnary)
7674     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7675   else if (IsTernary)
7676     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7677                                            Node->getOperand(2),
7678                                            Node->getOperand(3)});
7679   else
7680     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7681                                            Node->getOperand(2) });
7682 
7683   // MorphNodeTo can operate in two ways: if an existing node with the
7684   // specified operands exists, it can just return it.  Otherwise, it
7685   // updates the node in place to have the requested operands.
7686   if (Res == Node) {
7687     // If we updated the node in place, reset the node ID.  To the isel,
7688     // this should be just like a newly allocated machine node.
7689     Res->setNodeId(-1);
7690   } else {
7691     ReplaceAllUsesWith(Node, Res);
7692     RemoveDeadNode(Node);
7693   }
7694 
7695   return Res;
7696 }
7697 
7698 /// getMachineNode - These are used for target selectors to create a new node
7699 /// with specified return type(s), MachineInstr opcode, and operands.
7700 ///
7701 /// Note that getMachineNode returns the resultant node.  If there is already a
7702 /// node of the specified opcode and operands, it returns that node instead of
7703 /// the current one.
7704 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7705                                             EVT VT) {
7706   SDVTList VTs = getVTList(VT);
7707   return getMachineNode(Opcode, dl, VTs, None);
7708 }
7709 
7710 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7711                                             EVT VT, SDValue Op1) {
7712   SDVTList VTs = getVTList(VT);
7713   SDValue Ops[] = { Op1 };
7714   return getMachineNode(Opcode, dl, VTs, Ops);
7715 }
7716 
7717 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7718                                             EVT VT, SDValue Op1, SDValue Op2) {
7719   SDVTList VTs = getVTList(VT);
7720   SDValue Ops[] = { Op1, Op2 };
7721   return getMachineNode(Opcode, dl, VTs, Ops);
7722 }
7723 
7724 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7725                                             EVT VT, SDValue Op1, SDValue Op2,
7726                                             SDValue Op3) {
7727   SDVTList VTs = getVTList(VT);
7728   SDValue Ops[] = { Op1, Op2, Op3 };
7729   return getMachineNode(Opcode, dl, VTs, Ops);
7730 }
7731 
7732 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7733                                             EVT VT, ArrayRef<SDValue> Ops) {
7734   SDVTList VTs = getVTList(VT);
7735   return getMachineNode(Opcode, dl, VTs, Ops);
7736 }
7737 
7738 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7739                                             EVT VT1, EVT VT2, SDValue Op1,
7740                                             SDValue Op2) {
7741   SDVTList VTs = getVTList(VT1, VT2);
7742   SDValue Ops[] = { Op1, Op2 };
7743   return getMachineNode(Opcode, dl, VTs, Ops);
7744 }
7745 
7746 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7747                                             EVT VT1, EVT VT2, SDValue Op1,
7748                                             SDValue Op2, SDValue Op3) {
7749   SDVTList VTs = getVTList(VT1, VT2);
7750   SDValue Ops[] = { Op1, Op2, Op3 };
7751   return getMachineNode(Opcode, dl, VTs, Ops);
7752 }
7753 
7754 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7755                                             EVT VT1, EVT VT2,
7756                                             ArrayRef<SDValue> Ops) {
7757   SDVTList VTs = getVTList(VT1, VT2);
7758   return getMachineNode(Opcode, dl, VTs, Ops);
7759 }
7760 
7761 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7762                                             EVT VT1, EVT VT2, EVT VT3,
7763                                             SDValue Op1, SDValue Op2) {
7764   SDVTList VTs = getVTList(VT1, VT2, VT3);
7765   SDValue Ops[] = { Op1, Op2 };
7766   return getMachineNode(Opcode, dl, VTs, Ops);
7767 }
7768 
7769 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7770                                             EVT VT1, EVT VT2, EVT VT3,
7771                                             SDValue Op1, SDValue Op2,
7772                                             SDValue Op3) {
7773   SDVTList VTs = getVTList(VT1, VT2, VT3);
7774   SDValue Ops[] = { Op1, Op2, Op3 };
7775   return getMachineNode(Opcode, dl, VTs, Ops);
7776 }
7777 
7778 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7779                                             EVT VT1, EVT VT2, EVT VT3,
7780                                             ArrayRef<SDValue> Ops) {
7781   SDVTList VTs = getVTList(VT1, VT2, VT3);
7782   return getMachineNode(Opcode, dl, VTs, Ops);
7783 }
7784 
7785 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7786                                             ArrayRef<EVT> ResultTys,
7787                                             ArrayRef<SDValue> Ops) {
7788   SDVTList VTs = getVTList(ResultTys);
7789   return getMachineNode(Opcode, dl, VTs, Ops);
7790 }
7791 
7792 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7793                                             SDVTList VTs,
7794                                             ArrayRef<SDValue> Ops) {
7795   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7796   MachineSDNode *N;
7797   void *IP = nullptr;
7798 
7799   if (DoCSE) {
7800     FoldingSetNodeID ID;
7801     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7802     IP = nullptr;
7803     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7804       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7805     }
7806   }
7807 
7808   // Allocate a new MachineSDNode.
7809   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7810   createOperands(N, Ops);
7811 
7812   if (DoCSE)
7813     CSEMap.InsertNode(N, IP);
7814 
7815   InsertNode(N);
7816   return N;
7817 }
7818 
7819 /// getTargetExtractSubreg - A convenience function for creating
7820 /// TargetOpcode::EXTRACT_SUBREG nodes.
7821 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7822                                              SDValue Operand) {
7823   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7824   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7825                                   VT, Operand, SRIdxVal);
7826   return SDValue(Subreg, 0);
7827 }
7828 
7829 /// getTargetInsertSubreg - A convenience function for creating
7830 /// TargetOpcode::INSERT_SUBREG nodes.
7831 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7832                                             SDValue Operand, SDValue Subreg) {
7833   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7834   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7835                                   VT, Operand, Subreg, SRIdxVal);
7836   return SDValue(Result, 0);
7837 }
7838 
7839 /// getNodeIfExists - Get the specified node if it's already available, or
7840 /// else return NULL.
7841 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7842                                       ArrayRef<SDValue> Ops,
7843                                       const SDNodeFlags Flags) {
7844   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7845     FoldingSetNodeID ID;
7846     AddNodeIDNode(ID, Opcode, VTList, Ops);
7847     void *IP = nullptr;
7848     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7849       E->intersectFlagsWith(Flags);
7850       return E;
7851     }
7852   }
7853   return nullptr;
7854 }
7855 
7856 /// getDbgValue - Creates a SDDbgValue node.
7857 ///
7858 /// SDNode
7859 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7860                                       SDNode *N, unsigned R, bool IsIndirect,
7861                                       const DebugLoc &DL, unsigned O) {
7862   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7863          "Expected inlined-at fields to agree");
7864   return new (DbgInfo->getAlloc())
7865       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7866 }
7867 
7868 /// Constant
7869 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7870                                               DIExpression *Expr,
7871                                               const Value *C,
7872                                               const DebugLoc &DL, unsigned O) {
7873   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7874          "Expected inlined-at fields to agree");
7875   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7876 }
7877 
7878 /// FrameIndex
7879 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7880                                                 DIExpression *Expr, unsigned FI,
7881                                                 bool IsIndirect,
7882                                                 const DebugLoc &DL,
7883                                                 unsigned O) {
7884   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7885          "Expected inlined-at fields to agree");
7886   return new (DbgInfo->getAlloc())
7887       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7888 }
7889 
7890 /// VReg
7891 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7892                                           DIExpression *Expr,
7893                                           unsigned VReg, bool IsIndirect,
7894                                           const DebugLoc &DL, unsigned O) {
7895   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7896          "Expected inlined-at fields to agree");
7897   return new (DbgInfo->getAlloc())
7898       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7899 }
7900 
7901 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7902                                      unsigned OffsetInBits, unsigned SizeInBits,
7903                                      bool InvalidateDbg) {
7904   SDNode *FromNode = From.getNode();
7905   SDNode *ToNode = To.getNode();
7906   assert(FromNode && ToNode && "Can't modify dbg values");
7907 
7908   // PR35338
7909   // TODO: assert(From != To && "Redundant dbg value transfer");
7910   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7911   if (From == To || FromNode == ToNode)
7912     return;
7913 
7914   if (!FromNode->getHasDebugValue())
7915     return;
7916 
7917   SmallVector<SDDbgValue *, 2> ClonedDVs;
7918   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7919     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7920       continue;
7921 
7922     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7923 
7924     // Just transfer the dbg value attached to From.
7925     if (Dbg->getResNo() != From.getResNo())
7926       continue;
7927 
7928     DIVariable *Var = Dbg->getVariable();
7929     auto *Expr = Dbg->getExpression();
7930     // If a fragment is requested, update the expression.
7931     if (SizeInBits) {
7932       // When splitting a larger (e.g., sign-extended) value whose
7933       // lower bits are described with an SDDbgValue, do not attempt
7934       // to transfer the SDDbgValue to the upper bits.
7935       if (auto FI = Expr->getFragmentInfo())
7936         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7937           continue;
7938       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7939                                                              SizeInBits);
7940       if (!Fragment)
7941         continue;
7942       Expr = *Fragment;
7943     }
7944     // Clone the SDDbgValue and move it to To.
7945     SDDbgValue *Clone =
7946         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7947                     Dbg->getDebugLoc(), Dbg->getOrder());
7948     ClonedDVs.push_back(Clone);
7949 
7950     if (InvalidateDbg) {
7951       // Invalidate value and indicate the SDDbgValue should not be emitted.
7952       Dbg->setIsInvalidated();
7953       Dbg->setIsEmitted();
7954     }
7955   }
7956 
7957   for (SDDbgValue *Dbg : ClonedDVs)
7958     AddDbgValue(Dbg, ToNode, false);
7959 }
7960 
7961 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7962   if (!N.getHasDebugValue())
7963     return;
7964 
7965   SmallVector<SDDbgValue *, 2> ClonedDVs;
7966   for (auto DV : GetDbgValues(&N)) {
7967     if (DV->isInvalidated())
7968       continue;
7969     switch (N.getOpcode()) {
7970     default:
7971       break;
7972     case ISD::ADD:
7973       SDValue N0 = N.getOperand(0);
7974       SDValue N1 = N.getOperand(1);
7975       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7976           isConstantIntBuildVectorOrConstantInt(N1)) {
7977         uint64_t Offset = N.getConstantOperandVal(1);
7978         // Rewrite an ADD constant node into a DIExpression. Since we are
7979         // performing arithmetic to compute the variable's *value* in the
7980         // DIExpression, we need to mark the expression with a
7981         // DW_OP_stack_value.
7982         auto *DIExpr = DV->getExpression();
7983         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7984                                        DIExpression::NoDeref,
7985                                        DIExpression::WithStackValue);
7986         SDDbgValue *Clone =
7987             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7988                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7989         ClonedDVs.push_back(Clone);
7990         DV->setIsInvalidated();
7991         DV->setIsEmitted();
7992         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7993                    N0.getNode()->dumprFull(this);
7994                    dbgs() << " into " << *DIExpr << '\n');
7995       }
7996     }
7997   }
7998 
7999   for (SDDbgValue *Dbg : ClonedDVs)
8000     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8001 }
8002 
8003 /// Creates a SDDbgLabel node.
8004 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8005                                       const DebugLoc &DL, unsigned O) {
8006   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8007          "Expected inlined-at fields to agree");
8008   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8009 }
8010 
8011 namespace {
8012 
8013 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8014 /// pointed to by a use iterator is deleted, increment the use iterator
8015 /// so that it doesn't dangle.
8016 ///
8017 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8018   SDNode::use_iterator &UI;
8019   SDNode::use_iterator &UE;
8020 
8021   void NodeDeleted(SDNode *N, SDNode *E) override {
8022     // Increment the iterator as needed.
8023     while (UI != UE && N == *UI)
8024       ++UI;
8025   }
8026 
8027 public:
8028   RAUWUpdateListener(SelectionDAG &d,
8029                      SDNode::use_iterator &ui,
8030                      SDNode::use_iterator &ue)
8031     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8032 };
8033 
8034 } // end anonymous namespace
8035 
8036 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8037 /// This can cause recursive merging of nodes in the DAG.
8038 ///
8039 /// This version assumes From has a single result value.
8040 ///
8041 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8042   SDNode *From = FromN.getNode();
8043   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8044          "Cannot replace with this method!");
8045   assert(From != To.getNode() && "Cannot replace uses of with self");
8046 
8047   // Preserve Debug Values
8048   transferDbgValues(FromN, To);
8049 
8050   // Iterate over all the existing uses of From. New uses will be added
8051   // to the beginning of the use list, which we avoid visiting.
8052   // This specifically avoids visiting uses of From that arise while the
8053   // replacement is happening, because any such uses would be the result
8054   // of CSE: If an existing node looks like From after one of its operands
8055   // is replaced by To, we don't want to replace of all its users with To
8056   // too. See PR3018 for more info.
8057   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8058   RAUWUpdateListener Listener(*this, UI, UE);
8059   while (UI != UE) {
8060     SDNode *User = *UI;
8061 
8062     // This node is about to morph, remove its old self from the CSE maps.
8063     RemoveNodeFromCSEMaps(User);
8064 
8065     // A user can appear in a use list multiple times, and when this
8066     // happens the uses are usually next to each other in the list.
8067     // To help reduce the number of CSE recomputations, process all
8068     // the uses of this user that we can find this way.
8069     do {
8070       SDUse &Use = UI.getUse();
8071       ++UI;
8072       Use.set(To);
8073       if (To->isDivergent() != From->isDivergent())
8074         updateDivergence(User);
8075     } while (UI != UE && *UI == User);
8076     // Now that we have modified User, add it back to the CSE maps.  If it
8077     // already exists there, recursively merge the results together.
8078     AddModifiedNodeToCSEMaps(User);
8079   }
8080 
8081   // If we just RAUW'd the root, take note.
8082   if (FromN == getRoot())
8083     setRoot(To);
8084 }
8085 
8086 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8087 /// This can cause recursive merging of nodes in the DAG.
8088 ///
8089 /// This version assumes that for each value of From, there is a
8090 /// corresponding value in To in the same position with the same type.
8091 ///
8092 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8093 #ifndef NDEBUG
8094   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8095     assert((!From->hasAnyUseOfValue(i) ||
8096             From->getValueType(i) == To->getValueType(i)) &&
8097            "Cannot use this version of ReplaceAllUsesWith!");
8098 #endif
8099 
8100   // Handle the trivial case.
8101   if (From == To)
8102     return;
8103 
8104   // Preserve Debug Info. Only do this if there's a use.
8105   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8106     if (From->hasAnyUseOfValue(i)) {
8107       assert((i < To->getNumValues()) && "Invalid To location");
8108       transferDbgValues(SDValue(From, i), SDValue(To, i));
8109     }
8110 
8111   // Iterate over just the existing users of From. See the comments in
8112   // the ReplaceAllUsesWith above.
8113   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8114   RAUWUpdateListener Listener(*this, UI, UE);
8115   while (UI != UE) {
8116     SDNode *User = *UI;
8117 
8118     // This node is about to morph, remove its old self from the CSE maps.
8119     RemoveNodeFromCSEMaps(User);
8120 
8121     // A user can appear in a use list multiple times, and when this
8122     // happens the uses are usually next to each other in the list.
8123     // To help reduce the number of CSE recomputations, process all
8124     // the uses of this user that we can find this way.
8125     do {
8126       SDUse &Use = UI.getUse();
8127       ++UI;
8128       Use.setNode(To);
8129       if (To->isDivergent() != From->isDivergent())
8130         updateDivergence(User);
8131     } while (UI != UE && *UI == User);
8132 
8133     // Now that we have modified User, add it back to the CSE maps.  If it
8134     // already exists there, recursively merge the results together.
8135     AddModifiedNodeToCSEMaps(User);
8136   }
8137 
8138   // If we just RAUW'd the root, take note.
8139   if (From == getRoot().getNode())
8140     setRoot(SDValue(To, getRoot().getResNo()));
8141 }
8142 
8143 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8144 /// This can cause recursive merging of nodes in the DAG.
8145 ///
8146 /// This version can replace From with any result values.  To must match the
8147 /// number and types of values returned by From.
8148 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8149   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8150     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8151 
8152   // Preserve Debug Info.
8153   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8154     transferDbgValues(SDValue(From, i), To[i]);
8155 
8156   // Iterate over just the existing users of From. See the comments in
8157   // the ReplaceAllUsesWith above.
8158   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8159   RAUWUpdateListener Listener(*this, UI, UE);
8160   while (UI != UE) {
8161     SDNode *User = *UI;
8162 
8163     // This node is about to morph, remove its old self from the CSE maps.
8164     RemoveNodeFromCSEMaps(User);
8165 
8166     // A user can appear in a use list multiple times, and when this happens the
8167     // uses are usually next to each other in the list.  To help reduce the
8168     // number of CSE and divergence recomputations, process all the uses of this
8169     // user that we can find this way.
8170     bool To_IsDivergent = false;
8171     do {
8172       SDUse &Use = UI.getUse();
8173       const SDValue &ToOp = To[Use.getResNo()];
8174       ++UI;
8175       Use.set(ToOp);
8176       To_IsDivergent |= ToOp->isDivergent();
8177     } while (UI != UE && *UI == User);
8178 
8179     if (To_IsDivergent != From->isDivergent())
8180       updateDivergence(User);
8181 
8182     // Now that we have modified User, add it back to the CSE maps.  If it
8183     // already exists there, recursively merge the results together.
8184     AddModifiedNodeToCSEMaps(User);
8185   }
8186 
8187   // If we just RAUW'd the root, take note.
8188   if (From == getRoot().getNode())
8189     setRoot(SDValue(To[getRoot().getResNo()]));
8190 }
8191 
8192 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8193 /// uses of other values produced by From.getNode() alone.  The Deleted
8194 /// vector is handled the same way as for ReplaceAllUsesWith.
8195 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8196   // Handle the really simple, really trivial case efficiently.
8197   if (From == To) return;
8198 
8199   // Handle the simple, trivial, case efficiently.
8200   if (From.getNode()->getNumValues() == 1) {
8201     ReplaceAllUsesWith(From, To);
8202     return;
8203   }
8204 
8205   // Preserve Debug Info.
8206   transferDbgValues(From, To);
8207 
8208   // Iterate over just the existing users of From. See the comments in
8209   // the ReplaceAllUsesWith above.
8210   SDNode::use_iterator UI = From.getNode()->use_begin(),
8211                        UE = From.getNode()->use_end();
8212   RAUWUpdateListener Listener(*this, UI, UE);
8213   while (UI != UE) {
8214     SDNode *User = *UI;
8215     bool UserRemovedFromCSEMaps = false;
8216 
8217     // A user can appear in a use list multiple times, and when this
8218     // happens the uses are usually next to each other in the list.
8219     // To help reduce the number of CSE recomputations, process all
8220     // the uses of this user that we can find this way.
8221     do {
8222       SDUse &Use = UI.getUse();
8223 
8224       // Skip uses of different values from the same node.
8225       if (Use.getResNo() != From.getResNo()) {
8226         ++UI;
8227         continue;
8228       }
8229 
8230       // If this node hasn't been modified yet, it's still in the CSE maps,
8231       // so remove its old self from the CSE maps.
8232       if (!UserRemovedFromCSEMaps) {
8233         RemoveNodeFromCSEMaps(User);
8234         UserRemovedFromCSEMaps = true;
8235       }
8236 
8237       ++UI;
8238       Use.set(To);
8239       if (To->isDivergent() != From->isDivergent())
8240         updateDivergence(User);
8241     } while (UI != UE && *UI == User);
8242     // We are iterating over all uses of the From node, so if a use
8243     // doesn't use the specific value, no changes are made.
8244     if (!UserRemovedFromCSEMaps)
8245       continue;
8246 
8247     // Now that we have modified User, add it back to the CSE maps.  If it
8248     // already exists there, recursively merge the results together.
8249     AddModifiedNodeToCSEMaps(User);
8250   }
8251 
8252   // If we just RAUW'd the root, take note.
8253   if (From == getRoot())
8254     setRoot(To);
8255 }
8256 
8257 namespace {
8258 
8259   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8260   /// to record information about a use.
8261   struct UseMemo {
8262     SDNode *User;
8263     unsigned Index;
8264     SDUse *Use;
8265   };
8266 
8267   /// operator< - Sort Memos by User.
8268   bool operator<(const UseMemo &L, const UseMemo &R) {
8269     return (intptr_t)L.User < (intptr_t)R.User;
8270   }
8271 
8272 } // end anonymous namespace
8273 
8274 void SelectionDAG::updateDivergence(SDNode * N)
8275 {
8276   if (TLI->isSDNodeAlwaysUniform(N))
8277     return;
8278   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8279   for (auto &Op : N->ops()) {
8280     if (Op.Val.getValueType() != MVT::Other)
8281       IsDivergent |= Op.getNode()->isDivergent();
8282   }
8283   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8284     N->SDNodeBits.IsDivergent = IsDivergent;
8285     for (auto U : N->uses()) {
8286       updateDivergence(U);
8287     }
8288   }
8289 }
8290 
8291 
8292 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
8293   DenseMap<SDNode *, unsigned> Degree;
8294   Order.reserve(AllNodes.size());
8295   for (auto & N : allnodes()) {
8296     unsigned NOps = N.getNumOperands();
8297     Degree[&N] = NOps;
8298     if (0 == NOps)
8299       Order.push_back(&N);
8300   }
8301   for (std::vector<SDNode *>::iterator I = Order.begin();
8302   I!=Order.end();++I) {
8303     SDNode * N = *I;
8304     for (auto U : N->uses()) {
8305       unsigned &UnsortedOps = Degree[U];
8306       if (0 == --UnsortedOps)
8307         Order.push_back(U);
8308     }
8309   }
8310 }
8311 
8312 #ifndef NDEBUG
8313 void SelectionDAG::VerifyDAGDiverence()
8314 {
8315   std::vector<SDNode*> TopoOrder;
8316   CreateTopologicalOrder(TopoOrder);
8317   const TargetLowering &TLI = getTargetLoweringInfo();
8318   DenseMap<const SDNode *, bool> DivergenceMap;
8319   for (auto &N : allnodes()) {
8320     DivergenceMap[&N] = false;
8321   }
8322   for (auto N : TopoOrder) {
8323     bool IsDivergent = DivergenceMap[N];
8324     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8325     for (auto &Op : N->ops()) {
8326       if (Op.Val.getValueType() != MVT::Other)
8327         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8328     }
8329     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8330       DivergenceMap[N] = true;
8331     }
8332   }
8333   for (auto &N : allnodes()) {
8334     (void)N;
8335     assert(DivergenceMap[&N] == N.isDivergent() &&
8336            "Divergence bit inconsistency detected\n");
8337   }
8338 }
8339 #endif
8340 
8341 
8342 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8343 /// uses of other values produced by From.getNode() alone.  The same value
8344 /// may appear in both the From and To list.  The Deleted vector is
8345 /// handled the same way as for ReplaceAllUsesWith.
8346 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8347                                               const SDValue *To,
8348                                               unsigned Num){
8349   // Handle the simple, trivial case efficiently.
8350   if (Num == 1)
8351     return ReplaceAllUsesOfValueWith(*From, *To);
8352 
8353   transferDbgValues(*From, *To);
8354 
8355   // Read up all the uses and make records of them. This helps
8356   // processing new uses that are introduced during the
8357   // replacement process.
8358   SmallVector<UseMemo, 4> Uses;
8359   for (unsigned i = 0; i != Num; ++i) {
8360     unsigned FromResNo = From[i].getResNo();
8361     SDNode *FromNode = From[i].getNode();
8362     for (SDNode::use_iterator UI = FromNode->use_begin(),
8363          E = FromNode->use_end(); UI != E; ++UI) {
8364       SDUse &Use = UI.getUse();
8365       if (Use.getResNo() == FromResNo) {
8366         UseMemo Memo = { *UI, i, &Use };
8367         Uses.push_back(Memo);
8368       }
8369     }
8370   }
8371 
8372   // Sort the uses, so that all the uses from a given User are together.
8373   llvm::sort(Uses);
8374 
8375   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8376        UseIndex != UseIndexEnd; ) {
8377     // We know that this user uses some value of From.  If it is the right
8378     // value, update it.
8379     SDNode *User = Uses[UseIndex].User;
8380 
8381     // This node is about to morph, remove its old self from the CSE maps.
8382     RemoveNodeFromCSEMaps(User);
8383 
8384     // The Uses array is sorted, so all the uses for a given User
8385     // are next to each other in the list.
8386     // To help reduce the number of CSE recomputations, process all
8387     // the uses of this user that we can find this way.
8388     do {
8389       unsigned i = Uses[UseIndex].Index;
8390       SDUse &Use = *Uses[UseIndex].Use;
8391       ++UseIndex;
8392 
8393       Use.set(To[i]);
8394     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8395 
8396     // Now that we have modified User, add it back to the CSE maps.  If it
8397     // already exists there, recursively merge the results together.
8398     AddModifiedNodeToCSEMaps(User);
8399   }
8400 }
8401 
8402 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8403 /// based on their topological order. It returns the maximum id and a vector
8404 /// of the SDNodes* in assigned order by reference.
8405 unsigned SelectionDAG::AssignTopologicalOrder() {
8406   unsigned DAGSize = 0;
8407 
8408   // SortedPos tracks the progress of the algorithm. Nodes before it are
8409   // sorted, nodes after it are unsorted. When the algorithm completes
8410   // it is at the end of the list.
8411   allnodes_iterator SortedPos = allnodes_begin();
8412 
8413   // Visit all the nodes. Move nodes with no operands to the front of
8414   // the list immediately. Annotate nodes that do have operands with their
8415   // operand count. Before we do this, the Node Id fields of the nodes
8416   // may contain arbitrary values. After, the Node Id fields for nodes
8417   // before SortedPos will contain the topological sort index, and the
8418   // Node Id fields for nodes At SortedPos and after will contain the
8419   // count of outstanding operands.
8420   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8421     SDNode *N = &*I++;
8422     checkForCycles(N, this);
8423     unsigned Degree = N->getNumOperands();
8424     if (Degree == 0) {
8425       // A node with no uses, add it to the result array immediately.
8426       N->setNodeId(DAGSize++);
8427       allnodes_iterator Q(N);
8428       if (Q != SortedPos)
8429         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8430       assert(SortedPos != AllNodes.end() && "Overran node list");
8431       ++SortedPos;
8432     } else {
8433       // Temporarily use the Node Id as scratch space for the degree count.
8434       N->setNodeId(Degree);
8435     }
8436   }
8437 
8438   // Visit all the nodes. As we iterate, move nodes into sorted order,
8439   // such that by the time the end is reached all nodes will be sorted.
8440   for (SDNode &Node : allnodes()) {
8441     SDNode *N = &Node;
8442     checkForCycles(N, this);
8443     // N is in sorted position, so all its uses have one less operand
8444     // that needs to be sorted.
8445     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8446          UI != UE; ++UI) {
8447       SDNode *P = *UI;
8448       unsigned Degree = P->getNodeId();
8449       assert(Degree != 0 && "Invalid node degree");
8450       --Degree;
8451       if (Degree == 0) {
8452         // All of P's operands are sorted, so P may sorted now.
8453         P->setNodeId(DAGSize++);
8454         if (P->getIterator() != SortedPos)
8455           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8456         assert(SortedPos != AllNodes.end() && "Overran node list");
8457         ++SortedPos;
8458       } else {
8459         // Update P's outstanding operand count.
8460         P->setNodeId(Degree);
8461       }
8462     }
8463     if (Node.getIterator() == SortedPos) {
8464 #ifndef NDEBUG
8465       allnodes_iterator I(N);
8466       SDNode *S = &*++I;
8467       dbgs() << "Overran sorted position:\n";
8468       S->dumprFull(this); dbgs() << "\n";
8469       dbgs() << "Checking if this is due to cycles\n";
8470       checkForCycles(this, true);
8471 #endif
8472       llvm_unreachable(nullptr);
8473     }
8474   }
8475 
8476   assert(SortedPos == AllNodes.end() &&
8477          "Topological sort incomplete!");
8478   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8479          "First node in topological sort is not the entry token!");
8480   assert(AllNodes.front().getNodeId() == 0 &&
8481          "First node in topological sort has non-zero id!");
8482   assert(AllNodes.front().getNumOperands() == 0 &&
8483          "First node in topological sort has operands!");
8484   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8485          "Last node in topologic sort has unexpected id!");
8486   assert(AllNodes.back().use_empty() &&
8487          "Last node in topologic sort has users!");
8488   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8489   return DAGSize;
8490 }
8491 
8492 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8493 /// value is produced by SD.
8494 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8495   if (SD) {
8496     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8497     SD->setHasDebugValue(true);
8498   }
8499   DbgInfo->add(DB, SD, isParameter);
8500 }
8501 
8502 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8503   DbgInfo->add(DB);
8504 }
8505 
8506 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8507                                                    SDValue NewMemOp) {
8508   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8509   // The new memory operation must have the same position as the old load in
8510   // terms of memory dependency. Create a TokenFactor for the old load and new
8511   // memory operation and update uses of the old load's output chain to use that
8512   // TokenFactor.
8513   SDValue OldChain = SDValue(OldLoad, 1);
8514   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8515   if (!OldLoad->hasAnyUseOfValue(1))
8516     return NewChain;
8517 
8518   SDValue TokenFactor =
8519       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8520   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8521   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8522   return TokenFactor;
8523 }
8524 
8525 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8526                                                      Function **OutFunction) {
8527   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8528 
8529   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8530   auto *Module = MF->getFunction().getParent();
8531   auto *Function = Module->getFunction(Symbol);
8532 
8533   if (OutFunction != nullptr)
8534       *OutFunction = Function;
8535 
8536   if (Function != nullptr) {
8537     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8538     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8539   }
8540 
8541   std::string ErrorStr;
8542   raw_string_ostream ErrorFormatter(ErrorStr);
8543 
8544   ErrorFormatter << "Undefined external symbol ";
8545   ErrorFormatter << '"' << Symbol << '"';
8546   ErrorFormatter.flush();
8547 
8548   report_fatal_error(ErrorStr);
8549 }
8550 
8551 //===----------------------------------------------------------------------===//
8552 //                              SDNode Class
8553 //===----------------------------------------------------------------------===//
8554 
8555 bool llvm::isNullConstant(SDValue V) {
8556   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8557   return Const != nullptr && Const->isNullValue();
8558 }
8559 
8560 bool llvm::isNullFPConstant(SDValue V) {
8561   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8562   return Const != nullptr && Const->isZero() && !Const->isNegative();
8563 }
8564 
8565 bool llvm::isAllOnesConstant(SDValue V) {
8566   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8567   return Const != nullptr && Const->isAllOnesValue();
8568 }
8569 
8570 bool llvm::isOneConstant(SDValue V) {
8571   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8572   return Const != nullptr && Const->isOne();
8573 }
8574 
8575 SDValue llvm::peekThroughBitcasts(SDValue V) {
8576   while (V.getOpcode() == ISD::BITCAST)
8577     V = V.getOperand(0);
8578   return V;
8579 }
8580 
8581 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8582   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8583     V = V.getOperand(0);
8584   return V;
8585 }
8586 
8587 bool llvm::isBitwiseNot(SDValue V) {
8588   if (V.getOpcode() != ISD::XOR)
8589     return false;
8590   ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
8591   return C && C->isAllOnesValue();
8592 }
8593 
8594 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
8595   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8596     return CN;
8597 
8598   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8599     BitVector UndefElements;
8600     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8601 
8602     // BuildVectors can truncate their operands. Ignore that case here.
8603     if (CN && (UndefElements.none() || AllowUndefs) &&
8604         CN->getValueType(0) == N.getValueType().getScalarType())
8605       return CN;
8606   }
8607 
8608   return nullptr;
8609 }
8610 
8611 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8612   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8613     return CN;
8614 
8615   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8616     BitVector UndefElements;
8617     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8618     if (CN && (UndefElements.none() || AllowUndefs))
8619       return CN;
8620   }
8621 
8622   return nullptr;
8623 }
8624 
8625 bool llvm::isNullOrNullSplat(SDValue N) {
8626   // TODO: may want to use peekThroughBitcast() here.
8627   ConstantSDNode *C = isConstOrConstSplat(N);
8628   return C && C->isNullValue();
8629 }
8630 
8631 bool llvm::isOneOrOneSplat(SDValue N) {
8632   // TODO: may want to use peekThroughBitcast() here.
8633   unsigned BitWidth = N.getScalarValueSizeInBits();
8634   ConstantSDNode *C = isConstOrConstSplat(N);
8635   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8636 }
8637 
8638 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8639   N = peekThroughBitcasts(N);
8640   unsigned BitWidth = N.getScalarValueSizeInBits();
8641   ConstantSDNode *C = isConstOrConstSplat(N);
8642   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8643 }
8644 
8645 HandleSDNode::~HandleSDNode() {
8646   DropOperands();
8647 }
8648 
8649 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8650                                          const DebugLoc &DL,
8651                                          const GlobalValue *GA, EVT VT,
8652                                          int64_t o, unsigned char TF)
8653     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8654   TheGlobal = GA;
8655 }
8656 
8657 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8658                                          EVT VT, unsigned SrcAS,
8659                                          unsigned DestAS)
8660     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8661       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8662 
8663 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8664                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8665     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8666   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8667   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8668   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8669   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8670 
8671   // We check here that the size of the memory operand fits within the size of
8672   // the MMO. This is because the MMO might indicate only a possible address
8673   // range instead of specifying the affected memory addresses precisely.
8674   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8675 }
8676 
8677 /// Profile - Gather unique data for the node.
8678 ///
8679 void SDNode::Profile(FoldingSetNodeID &ID) const {
8680   AddNodeIDNode(ID, this);
8681 }
8682 
8683 namespace {
8684 
8685   struct EVTArray {
8686     std::vector<EVT> VTs;
8687 
8688     EVTArray() {
8689       VTs.reserve(MVT::LAST_VALUETYPE);
8690       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8691         VTs.push_back(MVT((MVT::SimpleValueType)i));
8692     }
8693   };
8694 
8695 } // end anonymous namespace
8696 
8697 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8698 static ManagedStatic<EVTArray> SimpleVTArray;
8699 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8700 
8701 /// getValueTypeList - Return a pointer to the specified value type.
8702 ///
8703 const EVT *SDNode::getValueTypeList(EVT VT) {
8704   if (VT.isExtended()) {
8705     sys::SmartScopedLock<true> Lock(*VTMutex);
8706     return &(*EVTs->insert(VT).first);
8707   } else {
8708     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8709            "Value type out of range!");
8710     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8711   }
8712 }
8713 
8714 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8715 /// indicated value.  This method ignores uses of other values defined by this
8716 /// operation.
8717 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8718   assert(Value < getNumValues() && "Bad value!");
8719 
8720   // TODO: Only iterate over uses of a given value of the node
8721   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8722     if (UI.getUse().getResNo() == Value) {
8723       if (NUses == 0)
8724         return false;
8725       --NUses;
8726     }
8727   }
8728 
8729   // Found exactly the right number of uses?
8730   return NUses == 0;
8731 }
8732 
8733 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8734 /// value. This method ignores uses of other values defined by this operation.
8735 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8736   assert(Value < getNumValues() && "Bad value!");
8737 
8738   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8739     if (UI.getUse().getResNo() == Value)
8740       return true;
8741 
8742   return false;
8743 }
8744 
8745 /// isOnlyUserOf - Return true if this node is the only use of N.
8746 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8747   bool Seen = false;
8748   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8749     SDNode *User = *I;
8750     if (User == this)
8751       Seen = true;
8752     else
8753       return false;
8754   }
8755 
8756   return Seen;
8757 }
8758 
8759 /// Return true if the only users of N are contained in Nodes.
8760 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8761   bool Seen = false;
8762   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8763     SDNode *User = *I;
8764     if (llvm::any_of(Nodes,
8765                      [&User](const SDNode *Node) { return User == Node; }))
8766       Seen = true;
8767     else
8768       return false;
8769   }
8770 
8771   return Seen;
8772 }
8773 
8774 /// isOperand - Return true if this node is an operand of N.
8775 bool SDValue::isOperandOf(const SDNode *N) const {
8776   for (const SDValue &Op : N->op_values())
8777     if (*this == Op)
8778       return true;
8779   return false;
8780 }
8781 
8782 bool SDNode::isOperandOf(const SDNode *N) const {
8783   for (const SDValue &Op : N->op_values())
8784     if (this == Op.getNode())
8785       return true;
8786   return false;
8787 }
8788 
8789 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8790 /// be a chain) reaches the specified operand without crossing any
8791 /// side-effecting instructions on any chain path.  In practice, this looks
8792 /// through token factors and non-volatile loads.  In order to remain efficient,
8793 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8794 ///
8795 /// Note that we only need to examine chains when we're searching for
8796 /// side-effects; SelectionDAG requires that all side-effects are represented
8797 /// by chains, even if another operand would force a specific ordering. This
8798 /// constraint is necessary to allow transformations like splitting loads.
8799 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8800                                              unsigned Depth) const {
8801   if (*this == Dest) return true;
8802 
8803   // Don't search too deeply, we just want to be able to see through
8804   // TokenFactor's etc.
8805   if (Depth == 0) return false;
8806 
8807   // If this is a token factor, all inputs to the TF happen in parallel.
8808   if (getOpcode() == ISD::TokenFactor) {
8809     // First, try a shallow search.
8810     if (is_contained((*this)->ops(), Dest)) {
8811       // We found the chain we want as an operand of this TokenFactor.
8812       // Essentially, we reach the chain without side-effects if we could
8813       // serialize the TokenFactor into a simple chain of operations with
8814       // Dest as the last operation. This is automatically true if the
8815       // chain has one use: there are no other ordering constraints.
8816       // If the chain has more than one use, we give up: some other
8817       // use of Dest might force a side-effect between Dest and the current
8818       // node.
8819       if (Dest.hasOneUse())
8820         return true;
8821     }
8822     // Next, try a deep search: check whether every operand of the TokenFactor
8823     // reaches Dest.
8824     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8825       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8826     });
8827   }
8828 
8829   // Loads don't have side effects, look through them.
8830   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8831     if (!Ld->isVolatile())
8832       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8833   }
8834   return false;
8835 }
8836 
8837 bool SDNode::hasPredecessor(const SDNode *N) const {
8838   SmallPtrSet<const SDNode *, 32> Visited;
8839   SmallVector<const SDNode *, 16> Worklist;
8840   Worklist.push_back(this);
8841   return hasPredecessorHelper(N, Visited, Worklist);
8842 }
8843 
8844 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8845   this->Flags.intersectWith(Flags);
8846 }
8847 
8848 SDValue
8849 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8850                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8851   // The pattern must end in an extract from index 0.
8852   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8853       !isNullConstant(Extract->getOperand(1)))
8854     return SDValue();
8855 
8856   SDValue Op = Extract->getOperand(0);
8857   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8858 
8859   // Match against one of the candidate binary ops.
8860   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8861         return Op.getOpcode() == unsigned(BinOp);
8862       }))
8863     return SDValue();
8864 
8865   // At each stage, we're looking for something that looks like:
8866   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8867   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8868   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8869   // %a = binop <8 x i32> %op, %s
8870   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8871   // we expect something like:
8872   // <4,5,6,7,u,u,u,u>
8873   // <2,3,u,u,u,u,u,u>
8874   // <1,u,u,u,u,u,u,u>
8875   unsigned CandidateBinOp = Op.getOpcode();
8876   for (unsigned i = 0; i < Stages; ++i) {
8877     if (Op.getOpcode() != CandidateBinOp)
8878       return SDValue();
8879 
8880     SDValue Op0 = Op.getOperand(0);
8881     SDValue Op1 = Op.getOperand(1);
8882 
8883     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8884     if (Shuffle) {
8885       Op = Op1;
8886     } else {
8887       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8888       Op = Op0;
8889     }
8890 
8891     // The first operand of the shuffle should be the same as the other operand
8892     // of the binop.
8893     if (!Shuffle || Shuffle->getOperand(0) != Op)
8894       return SDValue();
8895 
8896     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8897     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8898       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8899         return SDValue();
8900   }
8901 
8902   BinOp = (ISD::NodeType)CandidateBinOp;
8903   return Op;
8904 }
8905 
8906 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8907   assert(N->getNumValues() == 1 &&
8908          "Can't unroll a vector with multiple results!");
8909 
8910   EVT VT = N->getValueType(0);
8911   unsigned NE = VT.getVectorNumElements();
8912   EVT EltVT = VT.getVectorElementType();
8913   SDLoc dl(N);
8914 
8915   SmallVector<SDValue, 8> Scalars;
8916   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8917 
8918   // If ResNE is 0, fully unroll the vector op.
8919   if (ResNE == 0)
8920     ResNE = NE;
8921   else if (NE > ResNE)
8922     NE = ResNE;
8923 
8924   unsigned i;
8925   for (i= 0; i != NE; ++i) {
8926     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8927       SDValue Operand = N->getOperand(j);
8928       EVT OperandVT = Operand.getValueType();
8929       if (OperandVT.isVector()) {
8930         // A vector operand; extract a single element.
8931         EVT OperandEltVT = OperandVT.getVectorElementType();
8932         Operands[j] =
8933             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8934                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8935       } else {
8936         // A scalar operand; just use it as is.
8937         Operands[j] = Operand;
8938       }
8939     }
8940 
8941     switch (N->getOpcode()) {
8942     default: {
8943       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8944                                 N->getFlags()));
8945       break;
8946     }
8947     case ISD::VSELECT:
8948       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8949       break;
8950     case ISD::SHL:
8951     case ISD::SRA:
8952     case ISD::SRL:
8953     case ISD::ROTL:
8954     case ISD::ROTR:
8955       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8956                                getShiftAmountOperand(Operands[0].getValueType(),
8957                                                      Operands[1])));
8958       break;
8959     case ISD::SIGN_EXTEND_INREG:
8960     case ISD::FP_ROUND_INREG: {
8961       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8962       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8963                                 Operands[0],
8964                                 getValueType(ExtVT)));
8965     }
8966     }
8967   }
8968 
8969   for (; i < ResNE; ++i)
8970     Scalars.push_back(getUNDEF(EltVT));
8971 
8972   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8973   return getBuildVector(VecVT, dl, Scalars);
8974 }
8975 
8976 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8977                                                   LoadSDNode *Base,
8978                                                   unsigned Bytes,
8979                                                   int Dist) const {
8980   if (LD->isVolatile() || Base->isVolatile())
8981     return false;
8982   if (LD->isIndexed() || Base->isIndexed())
8983     return false;
8984   if (LD->getChain() != Base->getChain())
8985     return false;
8986   EVT VT = LD->getValueType(0);
8987   if (VT.getSizeInBits() / 8 != Bytes)
8988     return false;
8989 
8990   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8991   auto LocDecomp = BaseIndexOffset::match(LD, *this);
8992 
8993   int64_t Offset = 0;
8994   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8995     return (Dist * Bytes == Offset);
8996   return false;
8997 }
8998 
8999 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9000 /// it cannot be inferred.
9001 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9002   // If this is a GlobalAddress + cst, return the alignment.
9003   const GlobalValue *GV;
9004   int64_t GVOffset = 0;
9005   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9006     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9007     KnownBits Known(IdxWidth);
9008     llvm::computeKnownBits(GV, Known, getDataLayout());
9009     unsigned AlignBits = Known.countMinTrailingZeros();
9010     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9011     if (Align)
9012       return MinAlign(Align, GVOffset);
9013   }
9014 
9015   // If this is a direct reference to a stack slot, use information about the
9016   // stack slot's alignment.
9017   int FrameIdx = 1 << 31;
9018   int64_t FrameOffset = 0;
9019   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9020     FrameIdx = FI->getIndex();
9021   } else if (isBaseWithConstantOffset(Ptr) &&
9022              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9023     // Handle FI+Cst
9024     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9025     FrameOffset = Ptr.getConstantOperandVal(1);
9026   }
9027 
9028   if (FrameIdx != (1 << 31)) {
9029     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9030     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9031                                     FrameOffset);
9032     return FIInfoAlign;
9033   }
9034 
9035   return 0;
9036 }
9037 
9038 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9039 /// which is split (or expanded) into two not necessarily identical pieces.
9040 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9041   // Currently all types are split in half.
9042   EVT LoVT, HiVT;
9043   if (!VT.isVector())
9044     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9045   else
9046     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9047 
9048   return std::make_pair(LoVT, HiVT);
9049 }
9050 
9051 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9052 /// low/high part.
9053 std::pair<SDValue, SDValue>
9054 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9055                           const EVT &HiVT) {
9056   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9057          N.getValueType().getVectorNumElements() &&
9058          "More vector elements requested than available!");
9059   SDValue Lo, Hi;
9060   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9061                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9062   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9063                getConstant(LoVT.getVectorNumElements(), DL,
9064                            TLI->getVectorIdxTy(getDataLayout())));
9065   return std::make_pair(Lo, Hi);
9066 }
9067 
9068 void SelectionDAG::ExtractVectorElements(SDValue Op,
9069                                          SmallVectorImpl<SDValue> &Args,
9070                                          unsigned Start, unsigned Count) {
9071   EVT VT = Op.getValueType();
9072   if (Count == 0)
9073     Count = VT.getVectorNumElements();
9074 
9075   EVT EltVT = VT.getVectorElementType();
9076   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9077   SDLoc SL(Op);
9078   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9079     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9080                            Op, getConstant(i, SL, IdxTy)));
9081   }
9082 }
9083 
9084 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9085 unsigned GlobalAddressSDNode::getAddressSpace() const {
9086   return getGlobal()->getType()->getAddressSpace();
9087 }
9088 
9089 Type *ConstantPoolSDNode::getType() const {
9090   if (isMachineConstantPoolEntry())
9091     return Val.MachineCPVal->getType();
9092   return Val.ConstVal->getType();
9093 }
9094 
9095 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9096                                         unsigned &SplatBitSize,
9097                                         bool &HasAnyUndefs,
9098                                         unsigned MinSplatBits,
9099                                         bool IsBigEndian) const {
9100   EVT VT = getValueType(0);
9101   assert(VT.isVector() && "Expected a vector type");
9102   unsigned VecWidth = VT.getSizeInBits();
9103   if (MinSplatBits > VecWidth)
9104     return false;
9105 
9106   // FIXME: The widths are based on this node's type, but build vectors can
9107   // truncate their operands.
9108   SplatValue = APInt(VecWidth, 0);
9109   SplatUndef = APInt(VecWidth, 0);
9110 
9111   // Get the bits. Bits with undefined values (when the corresponding element
9112   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9113   // in SplatValue. If any of the values are not constant, give up and return
9114   // false.
9115   unsigned int NumOps = getNumOperands();
9116   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9117   unsigned EltWidth = VT.getScalarSizeInBits();
9118 
9119   for (unsigned j = 0; j < NumOps; ++j) {
9120     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9121     SDValue OpVal = getOperand(i);
9122     unsigned BitPos = j * EltWidth;
9123 
9124     if (OpVal.isUndef())
9125       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9126     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9127       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9128     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9129       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9130     else
9131       return false;
9132   }
9133 
9134   // The build_vector is all constants or undefs. Find the smallest element
9135   // size that splats the vector.
9136   HasAnyUndefs = (SplatUndef != 0);
9137 
9138   // FIXME: This does not work for vectors with elements less than 8 bits.
9139   while (VecWidth > 8) {
9140     unsigned HalfSize = VecWidth / 2;
9141     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9142     APInt LowValue = SplatValue.trunc(HalfSize);
9143     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9144     APInt LowUndef = SplatUndef.trunc(HalfSize);
9145 
9146     // If the two halves do not match (ignoring undef bits), stop here.
9147     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9148         MinSplatBits > HalfSize)
9149       break;
9150 
9151     SplatValue = HighValue | LowValue;
9152     SplatUndef = HighUndef & LowUndef;
9153 
9154     VecWidth = HalfSize;
9155   }
9156 
9157   SplatBitSize = VecWidth;
9158   return true;
9159 }
9160 
9161 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9162   if (UndefElements) {
9163     UndefElements->clear();
9164     UndefElements->resize(getNumOperands());
9165   }
9166   SDValue Splatted;
9167   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9168     SDValue Op = getOperand(i);
9169     if (Op.isUndef()) {
9170       if (UndefElements)
9171         (*UndefElements)[i] = true;
9172     } else if (!Splatted) {
9173       Splatted = Op;
9174     } else if (Splatted != Op) {
9175       return SDValue();
9176     }
9177   }
9178 
9179   if (!Splatted) {
9180     assert(getOperand(0).isUndef() &&
9181            "Can only have a splat without a constant for all undefs.");
9182     return getOperand(0);
9183   }
9184 
9185   return Splatted;
9186 }
9187 
9188 ConstantSDNode *
9189 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9190   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9191 }
9192 
9193 ConstantFPSDNode *
9194 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9195   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9196 }
9197 
9198 int32_t
9199 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9200                                                    uint32_t BitWidth) const {
9201   if (ConstantFPSDNode *CN =
9202           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9203     bool IsExact;
9204     APSInt IntVal(BitWidth);
9205     const APFloat &APF = CN->getValueAPF();
9206     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9207             APFloat::opOK ||
9208         !IsExact)
9209       return -1;
9210 
9211     return IntVal.exactLogBase2();
9212   }
9213   return -1;
9214 }
9215 
9216 bool BuildVectorSDNode::isConstant() const {
9217   for (const SDValue &Op : op_values()) {
9218     unsigned Opc = Op.getOpcode();
9219     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9220       return false;
9221   }
9222   return true;
9223 }
9224 
9225 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9226   // Find the first non-undef value in the shuffle mask.
9227   unsigned i, e;
9228   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9229     /* search */;
9230 
9231   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
9232 
9233   // Make sure all remaining elements are either undef or the same as the first
9234   // non-undef value.
9235   for (int Idx = Mask[i]; i != e; ++i)
9236     if (Mask[i] >= 0 && Mask[i] != Idx)
9237       return false;
9238   return true;
9239 }
9240 
9241 // Returns the SDNode if it is a constant integer BuildVector
9242 // or constant integer.
9243 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9244   if (isa<ConstantSDNode>(N))
9245     return N.getNode();
9246   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9247     return N.getNode();
9248   // Treat a GlobalAddress supporting constant offset folding as a
9249   // constant integer.
9250   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9251     if (GA->getOpcode() == ISD::GlobalAddress &&
9252         TLI->isOffsetFoldingLegal(GA))
9253       return GA;
9254   return nullptr;
9255 }
9256 
9257 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9258   if (isa<ConstantFPSDNode>(N))
9259     return N.getNode();
9260 
9261   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9262     return N.getNode();
9263 
9264   return nullptr;
9265 }
9266 
9267 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9268   assert(!Node->OperandList && "Node already has operands");
9269   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9270          "too many operands to fit into SDNode");
9271   SDUse *Ops = OperandRecycler.allocate(
9272       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9273 
9274   bool IsDivergent = false;
9275   for (unsigned I = 0; I != Vals.size(); ++I) {
9276     Ops[I].setUser(Node);
9277     Ops[I].setInitial(Vals[I]);
9278     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9279       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9280   }
9281   Node->NumOperands = Vals.size();
9282   Node->OperandList = Ops;
9283   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9284   if (!TLI->isSDNodeAlwaysUniform(Node))
9285     Node->SDNodeBits.IsDivergent = IsDivergent;
9286   checkForCycles(Node);
9287 }
9288 
9289 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9290                                      SmallVectorImpl<SDValue> &Vals) {
9291   size_t Limit = SDNode::getMaxNumOperands();
9292   while (Vals.size() > Limit) {
9293     unsigned SliceIdx = Vals.size() - Limit;
9294     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9295     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9296     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9297     Vals.emplace_back(NewTF);
9298   }
9299   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9300 }
9301 
9302 #ifndef NDEBUG
9303 static void checkForCyclesHelper(const SDNode *N,
9304                                  SmallPtrSetImpl<const SDNode*> &Visited,
9305                                  SmallPtrSetImpl<const SDNode*> &Checked,
9306                                  const llvm::SelectionDAG *DAG) {
9307   // If this node has already been checked, don't check it again.
9308   if (Checked.count(N))
9309     return;
9310 
9311   // If a node has already been visited on this depth-first walk, reject it as
9312   // a cycle.
9313   if (!Visited.insert(N).second) {
9314     errs() << "Detected cycle in SelectionDAG\n";
9315     dbgs() << "Offending node:\n";
9316     N->dumprFull(DAG); dbgs() << "\n";
9317     abort();
9318   }
9319 
9320   for (const SDValue &Op : N->op_values())
9321     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9322 
9323   Checked.insert(N);
9324   Visited.erase(N);
9325 }
9326 #endif
9327 
9328 void llvm::checkForCycles(const llvm::SDNode *N,
9329                           const llvm::SelectionDAG *DAG,
9330                           bool force) {
9331 #ifndef NDEBUG
9332   bool check = force;
9333 #ifdef EXPENSIVE_CHECKS
9334   check = true;
9335 #endif  // EXPENSIVE_CHECKS
9336   if (check) {
9337     assert(N && "Checking nonexistent SDNode");
9338     SmallPtrSet<const SDNode*, 32> visited;
9339     SmallPtrSet<const SDNode*, 32> checked;
9340     checkForCyclesHelper(N, visited, checked, DAG);
9341   }
9342 #endif  // !NDEBUG
9343 }
9344 
9345 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9346   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9347 }
9348