1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 auto *BV = dyn_cast<BuildVectorSDNode>(N); 143 if (!BV) 144 return false; 145 146 APInt SplatUndef; 147 unsigned SplatBitSize; 148 bool HasUndefs; 149 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 150 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 151 EltSize) && 152 EltSize == SplatBitSize; 153 } 154 155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 156 // specializations of the more general isConstantSplatVector()? 157 158 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 159 // Look through a bit convert. 160 while (N->getOpcode() == ISD::BITCAST) 161 N = N->getOperand(0).getNode(); 162 163 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 164 165 unsigned i = 0, e = N->getNumOperands(); 166 167 // Skip over all of the undef values. 168 while (i != e && N->getOperand(i).isUndef()) 169 ++i; 170 171 // Do not accept an all-undef vector. 172 if (i == e) return false; 173 174 // Do not accept build_vectors that aren't all constants or which have non-~0 175 // elements. We have to be a bit careful here, as the type of the constant 176 // may not be the same as the type of the vector elements due to type 177 // legalization (the elements are promoted to a legal type for the target and 178 // a vector of a type may be legal when the base element type is not). 179 // We only want to check enough bits to cover the vector elements, because 180 // we care if the resultant vector is all ones, not whether the individual 181 // constants are. 182 SDValue NotZero = N->getOperand(i); 183 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 184 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 185 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 186 return false; 187 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 188 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 189 return false; 190 } else 191 return false; 192 193 // Okay, we have at least one ~0 value, check to see if the rest match or are 194 // undefs. Even with the above element type twiddling, this should be OK, as 195 // the same type legalization should have applied to all the elements. 196 for (++i; i != e; ++i) 197 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 198 return false; 199 return true; 200 } 201 202 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 203 // Look through a bit convert. 204 while (N->getOpcode() == ISD::BITCAST) 205 N = N->getOperand(0).getNode(); 206 207 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 208 209 bool IsAllUndef = true; 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 IsAllUndef = false; 214 // Do not accept build_vectors that aren't all constants or which have non-0 215 // elements. We have to be a bit careful here, as the type of the constant 216 // may not be the same as the type of the vector elements due to type 217 // legalization (the elements are promoted to a legal type for the target 218 // and a vector of a type may be legal when the base element type is not). 219 // We only want to check enough bits to cover the vector elements, because 220 // we care if the resultant vector is all zeros, not whether the individual 221 // constants are. 222 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 223 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 224 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 225 return false; 226 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 227 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 228 return false; 229 } else 230 return false; 231 } 232 233 // Do not accept an all-undef vector. 234 if (IsAllUndef) 235 return false; 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 253 if (N->getOpcode() != ISD::BUILD_VECTOR) 254 return false; 255 256 for (const SDValue &Op : N->op_values()) { 257 if (Op.isUndef()) 258 continue; 259 if (!isa<ConstantFPSDNode>(Op)) 260 return false; 261 } 262 return true; 263 } 264 265 bool ISD::allOperandsUndef(const SDNode *N) { 266 // Return false if the node has no operands. 267 // This is "logically inconsistent" with the definition of "all" but 268 // is probably the desired behavior. 269 if (N->getNumOperands() == 0) 270 return false; 271 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 272 } 273 274 bool ISD::matchUnaryPredicate(SDValue Op, 275 std::function<bool(ConstantSDNode *)> Match, 276 bool AllowUndefs) { 277 // FIXME: Add support for scalar UNDEF cases? 278 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 279 return Match(Cst); 280 281 // FIXME: Add support for vector UNDEF cases? 282 if (ISD::BUILD_VECTOR != Op.getOpcode()) 283 return false; 284 285 EVT SVT = Op.getValueType().getScalarType(); 286 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 287 if (AllowUndefs && Op.getOperand(i).isUndef()) { 288 if (!Match(nullptr)) 289 return false; 290 continue; 291 } 292 293 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 294 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 295 return false; 296 } 297 return true; 298 } 299 300 bool ISD::matchBinaryPredicate( 301 SDValue LHS, SDValue RHS, 302 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 303 bool AllowUndefs, bool AllowTypeMismatch) { 304 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 305 return false; 306 307 // TODO: Add support for scalar UNDEF cases? 308 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 309 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 310 return Match(LHSCst, RHSCst); 311 312 // TODO: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 314 ISD::BUILD_VECTOR != RHS.getOpcode()) 315 return false; 316 317 EVT SVT = LHS.getValueType().getScalarType(); 318 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 319 SDValue LHSOp = LHS.getOperand(i); 320 SDValue RHSOp = RHS.getOperand(i); 321 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 322 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 323 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 324 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 325 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 326 return false; 327 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 328 LHSOp.getValueType() != RHSOp.getValueType())) 329 return false; 330 if (!Match(LHSCst, RHSCst)) 331 return false; 332 } 333 return true; 334 } 335 336 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 337 switch (VecReduceOpcode) { 338 default: 339 llvm_unreachable("Expected VECREDUCE opcode"); 340 case ISD::VECREDUCE_FADD: 341 case ISD::VECREDUCE_SEQ_FADD: 342 return ISD::FADD; 343 case ISD::VECREDUCE_FMUL: 344 return ISD::FMUL; 345 case ISD::VECREDUCE_ADD: 346 return ISD::ADD; 347 case ISD::VECREDUCE_MUL: 348 return ISD::MUL; 349 case ISD::VECREDUCE_AND: 350 return ISD::AND; 351 case ISD::VECREDUCE_OR: 352 return ISD::OR; 353 case ISD::VECREDUCE_XOR: 354 return ISD::XOR; 355 case ISD::VECREDUCE_SMAX: 356 return ISD::SMAX; 357 case ISD::VECREDUCE_SMIN: 358 return ISD::SMIN; 359 case ISD::VECREDUCE_UMAX: 360 return ISD::UMAX; 361 case ISD::VECREDUCE_UMIN: 362 return ISD::UMIN; 363 case ISD::VECREDUCE_FMAX: 364 return ISD::FMAXNUM; 365 case ISD::VECREDUCE_FMIN: 366 return ISD::FMINNUM; 367 } 368 } 369 370 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 371 switch (ExtType) { 372 case ISD::EXTLOAD: 373 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 374 case ISD::SEXTLOAD: 375 return ISD::SIGN_EXTEND; 376 case ISD::ZEXTLOAD: 377 return ISD::ZERO_EXTEND; 378 default: 379 break; 380 } 381 382 llvm_unreachable("Invalid LoadExtType"); 383 } 384 385 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 386 // To perform this operation, we just need to swap the L and G bits of the 387 // operation. 388 unsigned OldL = (Operation >> 2) & 1; 389 unsigned OldG = (Operation >> 1) & 1; 390 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 391 (OldL << 1) | // New G bit 392 (OldG << 2)); // New L bit. 393 } 394 395 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 396 unsigned Operation = Op; 397 if (isIntegerLike) 398 Operation ^= 7; // Flip L, G, E bits, but not U. 399 else 400 Operation ^= 15; // Flip all of the condition bits. 401 402 if (Operation > ISD::SETTRUE2) 403 Operation &= ~8; // Don't let N and U bits get set. 404 405 return ISD::CondCode(Operation); 406 } 407 408 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 409 return getSetCCInverseImpl(Op, Type.isInteger()); 410 } 411 412 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 413 bool isIntegerLike) { 414 return getSetCCInverseImpl(Op, isIntegerLike); 415 } 416 417 /// For an integer comparison, return 1 if the comparison is a signed operation 418 /// and 2 if the result is an unsigned comparison. Return zero if the operation 419 /// does not depend on the sign of the input (setne and seteq). 420 static int isSignedOp(ISD::CondCode Opcode) { 421 switch (Opcode) { 422 default: llvm_unreachable("Illegal integer setcc operation!"); 423 case ISD::SETEQ: 424 case ISD::SETNE: return 0; 425 case ISD::SETLT: 426 case ISD::SETLE: 427 case ISD::SETGT: 428 case ISD::SETGE: return 1; 429 case ISD::SETULT: 430 case ISD::SETULE: 431 case ISD::SETUGT: 432 case ISD::SETUGE: return 2; 433 } 434 } 435 436 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 437 EVT Type) { 438 bool IsInteger = Type.isInteger(); 439 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 440 // Cannot fold a signed integer setcc with an unsigned integer setcc. 441 return ISD::SETCC_INVALID; 442 443 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 444 445 // If the N and U bits get set, then the resultant comparison DOES suddenly 446 // care about orderedness, and it is true when ordered. 447 if (Op > ISD::SETTRUE2) 448 Op &= ~16; // Clear the U bit if the N bit is set. 449 450 // Canonicalize illegal integer setcc's. 451 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 452 Op = ISD::SETNE; 453 454 return ISD::CondCode(Op); 455 } 456 457 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 458 EVT Type) { 459 bool IsInteger = Type.isInteger(); 460 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 461 // Cannot fold a signed setcc with an unsigned setcc. 462 return ISD::SETCC_INVALID; 463 464 // Combine all of the condition bits. 465 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 466 467 // Canonicalize illegal integer setcc's. 468 if (IsInteger) { 469 switch (Result) { 470 default: break; 471 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 472 case ISD::SETOEQ: // SETEQ & SETU[LG]E 473 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 474 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 475 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 476 } 477 } 478 479 return Result; 480 } 481 482 //===----------------------------------------------------------------------===// 483 // SDNode Profile Support 484 //===----------------------------------------------------------------------===// 485 486 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 487 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 488 ID.AddInteger(OpC); 489 } 490 491 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 492 /// solely with their pointer. 493 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 494 ID.AddPointer(VTList.VTs); 495 } 496 497 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 498 static void AddNodeIDOperands(FoldingSetNodeID &ID, 499 ArrayRef<SDValue> Ops) { 500 for (auto& Op : Ops) { 501 ID.AddPointer(Op.getNode()); 502 ID.AddInteger(Op.getResNo()); 503 } 504 } 505 506 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 507 static void AddNodeIDOperands(FoldingSetNodeID &ID, 508 ArrayRef<SDUse> Ops) { 509 for (auto& Op : Ops) { 510 ID.AddPointer(Op.getNode()); 511 ID.AddInteger(Op.getResNo()); 512 } 513 } 514 515 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 516 SDVTList VTList, ArrayRef<SDValue> OpList) { 517 AddNodeIDOpcode(ID, OpC); 518 AddNodeIDValueTypes(ID, VTList); 519 AddNodeIDOperands(ID, OpList); 520 } 521 522 /// If this is an SDNode with special info, add this info to the NodeID data. 523 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 524 switch (N->getOpcode()) { 525 case ISD::TargetExternalSymbol: 526 case ISD::ExternalSymbol: 527 case ISD::MCSymbol: 528 llvm_unreachable("Should only be used on nodes with operands"); 529 default: break; // Normal nodes don't need extra info. 530 case ISD::TargetConstant: 531 case ISD::Constant: { 532 const ConstantSDNode *C = cast<ConstantSDNode>(N); 533 ID.AddPointer(C->getConstantIntValue()); 534 ID.AddBoolean(C->isOpaque()); 535 break; 536 } 537 case ISD::TargetConstantFP: 538 case ISD::ConstantFP: 539 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 540 break; 541 case ISD::TargetGlobalAddress: 542 case ISD::GlobalAddress: 543 case ISD::TargetGlobalTLSAddress: 544 case ISD::GlobalTLSAddress: { 545 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 546 ID.AddPointer(GA->getGlobal()); 547 ID.AddInteger(GA->getOffset()); 548 ID.AddInteger(GA->getTargetFlags()); 549 break; 550 } 551 case ISD::BasicBlock: 552 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 553 break; 554 case ISD::Register: 555 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 556 break; 557 case ISD::RegisterMask: 558 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 559 break; 560 case ISD::SRCVALUE: 561 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 562 break; 563 case ISD::FrameIndex: 564 case ISD::TargetFrameIndex: 565 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 566 break; 567 case ISD::LIFETIME_START: 568 case ISD::LIFETIME_END: 569 if (cast<LifetimeSDNode>(N)->hasOffset()) { 570 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 571 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 572 } 573 break; 574 case ISD::JumpTable: 575 case ISD::TargetJumpTable: 576 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 577 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 578 break; 579 case ISD::ConstantPool: 580 case ISD::TargetConstantPool: { 581 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 582 ID.AddInteger(CP->getAlign().value()); 583 ID.AddInteger(CP->getOffset()); 584 if (CP->isMachineConstantPoolEntry()) 585 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 586 else 587 ID.AddPointer(CP->getConstVal()); 588 ID.AddInteger(CP->getTargetFlags()); 589 break; 590 } 591 case ISD::TargetIndex: { 592 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 593 ID.AddInteger(TI->getIndex()); 594 ID.AddInteger(TI->getOffset()); 595 ID.AddInteger(TI->getTargetFlags()); 596 break; 597 } 598 case ISD::LOAD: { 599 const LoadSDNode *LD = cast<LoadSDNode>(N); 600 ID.AddInteger(LD->getMemoryVT().getRawBits()); 601 ID.AddInteger(LD->getRawSubclassData()); 602 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 603 break; 604 } 605 case ISD::STORE: { 606 const StoreSDNode *ST = cast<StoreSDNode>(N); 607 ID.AddInteger(ST->getMemoryVT().getRawBits()); 608 ID.AddInteger(ST->getRawSubclassData()); 609 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 610 break; 611 } 612 case ISD::MLOAD: { 613 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 614 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 615 ID.AddInteger(MLD->getRawSubclassData()); 616 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 617 break; 618 } 619 case ISD::MSTORE: { 620 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 621 ID.AddInteger(MST->getMemoryVT().getRawBits()); 622 ID.AddInteger(MST->getRawSubclassData()); 623 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::MGATHER: { 627 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 628 ID.AddInteger(MG->getMemoryVT().getRawBits()); 629 ID.AddInteger(MG->getRawSubclassData()); 630 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 631 break; 632 } 633 case ISD::MSCATTER: { 634 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 635 ID.AddInteger(MS->getMemoryVT().getRawBits()); 636 ID.AddInteger(MS->getRawSubclassData()); 637 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 638 break; 639 } 640 case ISD::ATOMIC_CMP_SWAP: 641 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 642 case ISD::ATOMIC_SWAP: 643 case ISD::ATOMIC_LOAD_ADD: 644 case ISD::ATOMIC_LOAD_SUB: 645 case ISD::ATOMIC_LOAD_AND: 646 case ISD::ATOMIC_LOAD_CLR: 647 case ISD::ATOMIC_LOAD_OR: 648 case ISD::ATOMIC_LOAD_XOR: 649 case ISD::ATOMIC_LOAD_NAND: 650 case ISD::ATOMIC_LOAD_MIN: 651 case ISD::ATOMIC_LOAD_MAX: 652 case ISD::ATOMIC_LOAD_UMIN: 653 case ISD::ATOMIC_LOAD_UMAX: 654 case ISD::ATOMIC_LOAD: 655 case ISD::ATOMIC_STORE: { 656 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 657 ID.AddInteger(AT->getMemoryVT().getRawBits()); 658 ID.AddInteger(AT->getRawSubclassData()); 659 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 660 break; 661 } 662 case ISD::PREFETCH: { 663 const MemSDNode *PF = cast<MemSDNode>(N); 664 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 665 break; 666 } 667 case ISD::VECTOR_SHUFFLE: { 668 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 669 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 670 i != e; ++i) 671 ID.AddInteger(SVN->getMaskElt(i)); 672 break; 673 } 674 case ISD::TargetBlockAddress: 675 case ISD::BlockAddress: { 676 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 677 ID.AddPointer(BA->getBlockAddress()); 678 ID.AddInteger(BA->getOffset()); 679 ID.AddInteger(BA->getTargetFlags()); 680 break; 681 } 682 } // end switch (N->getOpcode()) 683 684 // Target specific memory nodes could also have address spaces to check. 685 if (N->isTargetMemoryOpcode()) 686 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 687 } 688 689 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 690 /// data. 691 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 692 AddNodeIDOpcode(ID, N->getOpcode()); 693 // Add the return value info. 694 AddNodeIDValueTypes(ID, N->getVTList()); 695 // Add the operand info. 696 AddNodeIDOperands(ID, N->ops()); 697 698 // Handle SDNode leafs with special info. 699 AddNodeIDCustom(ID, N); 700 } 701 702 //===----------------------------------------------------------------------===// 703 // SelectionDAG Class 704 //===----------------------------------------------------------------------===// 705 706 /// doNotCSE - Return true if CSE should not be performed for this node. 707 static bool doNotCSE(SDNode *N) { 708 if (N->getValueType(0) == MVT::Glue) 709 return true; // Never CSE anything that produces a flag. 710 711 switch (N->getOpcode()) { 712 default: break; 713 case ISD::HANDLENODE: 714 case ISD::EH_LABEL: 715 return true; // Never CSE these nodes. 716 } 717 718 // Check that remaining values produced are not flags. 719 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 720 if (N->getValueType(i) == MVT::Glue) 721 return true; // Never CSE anything that produces a flag. 722 723 return false; 724 } 725 726 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 727 /// SelectionDAG. 728 void SelectionDAG::RemoveDeadNodes() { 729 // Create a dummy node (which is not added to allnodes), that adds a reference 730 // to the root node, preventing it from being deleted. 731 HandleSDNode Dummy(getRoot()); 732 733 SmallVector<SDNode*, 128> DeadNodes; 734 735 // Add all obviously-dead nodes to the DeadNodes worklist. 736 for (SDNode &Node : allnodes()) 737 if (Node.use_empty()) 738 DeadNodes.push_back(&Node); 739 740 RemoveDeadNodes(DeadNodes); 741 742 // If the root changed (e.g. it was a dead load, update the root). 743 setRoot(Dummy.getValue()); 744 } 745 746 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 747 /// given list, and any nodes that become unreachable as a result. 748 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 749 750 // Process the worklist, deleting the nodes and adding their uses to the 751 // worklist. 752 while (!DeadNodes.empty()) { 753 SDNode *N = DeadNodes.pop_back_val(); 754 // Skip to next node if we've already managed to delete the node. This could 755 // happen if replacing a node causes a node previously added to the node to 756 // be deleted. 757 if (N->getOpcode() == ISD::DELETED_NODE) 758 continue; 759 760 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 761 DUL->NodeDeleted(N, nullptr); 762 763 // Take the node out of the appropriate CSE map. 764 RemoveNodeFromCSEMaps(N); 765 766 // Next, brutally remove the operand list. This is safe to do, as there are 767 // no cycles in the graph. 768 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 769 SDUse &Use = *I++; 770 SDNode *Operand = Use.getNode(); 771 Use.set(SDValue()); 772 773 // Now that we removed this operand, see if there are no uses of it left. 774 if (Operand->use_empty()) 775 DeadNodes.push_back(Operand); 776 } 777 778 DeallocateNode(N); 779 } 780 } 781 782 void SelectionDAG::RemoveDeadNode(SDNode *N){ 783 SmallVector<SDNode*, 16> DeadNodes(1, N); 784 785 // Create a dummy node that adds a reference to the root node, preventing 786 // it from being deleted. (This matters if the root is an operand of the 787 // dead node.) 788 HandleSDNode Dummy(getRoot()); 789 790 RemoveDeadNodes(DeadNodes); 791 } 792 793 void SelectionDAG::DeleteNode(SDNode *N) { 794 // First take this out of the appropriate CSE map. 795 RemoveNodeFromCSEMaps(N); 796 797 // Finally, remove uses due to operands of this node, remove from the 798 // AllNodes list, and delete the node. 799 DeleteNodeNotInCSEMaps(N); 800 } 801 802 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 803 assert(N->getIterator() != AllNodes.begin() && 804 "Cannot delete the entry node!"); 805 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 806 807 // Drop all of the operands and decrement used node's use counts. 808 N->DropOperands(); 809 810 DeallocateNode(N); 811 } 812 813 void SDDbgInfo::erase(const SDNode *Node) { 814 DbgValMapType::iterator I = DbgValMap.find(Node); 815 if (I == DbgValMap.end()) 816 return; 817 for (auto &Val: I->second) 818 Val->setIsInvalidated(); 819 DbgValMap.erase(I); 820 } 821 822 void SelectionDAG::DeallocateNode(SDNode *N) { 823 // If we have operands, deallocate them. 824 removeOperands(N); 825 826 NodeAllocator.Deallocate(AllNodes.remove(N)); 827 828 // Set the opcode to DELETED_NODE to help catch bugs when node 829 // memory is reallocated. 830 // FIXME: There are places in SDag that have grown a dependency on the opcode 831 // value in the released node. 832 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 833 N->NodeType = ISD::DELETED_NODE; 834 835 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 836 // them and forget about that node. 837 DbgInfo->erase(N); 838 } 839 840 #ifndef NDEBUG 841 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 842 static void VerifySDNode(SDNode *N) { 843 switch (N->getOpcode()) { 844 default: 845 break; 846 case ISD::BUILD_PAIR: { 847 EVT VT = N->getValueType(0); 848 assert(N->getNumValues() == 1 && "Too many results!"); 849 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 850 "Wrong return type!"); 851 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 852 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 853 "Mismatched operand types!"); 854 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 855 "Wrong operand type!"); 856 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 857 "Wrong return type size"); 858 break; 859 } 860 case ISD::BUILD_VECTOR: { 861 assert(N->getNumValues() == 1 && "Too many results!"); 862 assert(N->getValueType(0).isVector() && "Wrong return type!"); 863 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 864 "Wrong number of operands!"); 865 EVT EltVT = N->getValueType(0).getVectorElementType(); 866 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 867 assert((I->getValueType() == EltVT || 868 (EltVT.isInteger() && I->getValueType().isInteger() && 869 EltVT.bitsLE(I->getValueType()))) && 870 "Wrong operand type!"); 871 assert(I->getValueType() == N->getOperand(0).getValueType() && 872 "Operands must all have the same type"); 873 } 874 break; 875 } 876 } 877 } 878 #endif // NDEBUG 879 880 /// Insert a newly allocated node into the DAG. 881 /// 882 /// Handles insertion into the all nodes list and CSE map, as well as 883 /// verification and other common operations when a new node is allocated. 884 void SelectionDAG::InsertNode(SDNode *N) { 885 AllNodes.push_back(N); 886 #ifndef NDEBUG 887 N->PersistentId = NextPersistentId++; 888 VerifySDNode(N); 889 #endif 890 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 891 DUL->NodeInserted(N); 892 } 893 894 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 895 /// correspond to it. This is useful when we're about to delete or repurpose 896 /// the node. We don't want future request for structurally identical nodes 897 /// to return N anymore. 898 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 899 bool Erased = false; 900 switch (N->getOpcode()) { 901 case ISD::HANDLENODE: return false; // noop. 902 case ISD::CONDCODE: 903 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 904 "Cond code doesn't exist!"); 905 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 906 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 907 break; 908 case ISD::ExternalSymbol: 909 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 910 break; 911 case ISD::TargetExternalSymbol: { 912 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 913 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 914 ESN->getSymbol(), ESN->getTargetFlags())); 915 break; 916 } 917 case ISD::MCSymbol: { 918 auto *MCSN = cast<MCSymbolSDNode>(N); 919 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 920 break; 921 } 922 case ISD::VALUETYPE: { 923 EVT VT = cast<VTSDNode>(N)->getVT(); 924 if (VT.isExtended()) { 925 Erased = ExtendedValueTypeNodes.erase(VT); 926 } else { 927 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 928 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 929 } 930 break; 931 } 932 default: 933 // Remove it from the CSE Map. 934 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 935 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 936 Erased = CSEMap.RemoveNode(N); 937 break; 938 } 939 #ifndef NDEBUG 940 // Verify that the node was actually in one of the CSE maps, unless it has a 941 // flag result (which cannot be CSE'd) or is one of the special cases that are 942 // not subject to CSE. 943 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 944 !N->isMachineOpcode() && !doNotCSE(N)) { 945 N->dump(this); 946 dbgs() << "\n"; 947 llvm_unreachable("Node is not in map!"); 948 } 949 #endif 950 return Erased; 951 } 952 953 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 954 /// maps and modified in place. Add it back to the CSE maps, unless an identical 955 /// node already exists, in which case transfer all its users to the existing 956 /// node. This transfer can potentially trigger recursive merging. 957 void 958 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 959 // For node types that aren't CSE'd, just act as if no identical node 960 // already exists. 961 if (!doNotCSE(N)) { 962 SDNode *Existing = CSEMap.GetOrInsertNode(N); 963 if (Existing != N) { 964 // If there was already an existing matching node, use ReplaceAllUsesWith 965 // to replace the dead one with the existing one. This can cause 966 // recursive merging of other unrelated nodes down the line. 967 ReplaceAllUsesWith(N, Existing); 968 969 // N is now dead. Inform the listeners and delete it. 970 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 971 DUL->NodeDeleted(N, Existing); 972 DeleteNodeNotInCSEMaps(N); 973 return; 974 } 975 } 976 977 // If the node doesn't already exist, we updated it. Inform listeners. 978 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 979 DUL->NodeUpdated(N); 980 } 981 982 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 983 /// were replaced with those specified. If this node is never memoized, 984 /// return null, otherwise return a pointer to the slot it would take. If a 985 /// node already exists with these operands, the slot will be non-null. 986 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 987 void *&InsertPos) { 988 if (doNotCSE(N)) 989 return nullptr; 990 991 SDValue Ops[] = { Op }; 992 FoldingSetNodeID ID; 993 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 994 AddNodeIDCustom(ID, N); 995 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 996 if (Node) 997 Node->intersectFlagsWith(N->getFlags()); 998 return Node; 999 } 1000 1001 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1002 /// were replaced with those specified. If this node is never memoized, 1003 /// return null, otherwise return a pointer to the slot it would take. If a 1004 /// node already exists with these operands, the slot will be non-null. 1005 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1006 SDValue Op1, SDValue Op2, 1007 void *&InsertPos) { 1008 if (doNotCSE(N)) 1009 return nullptr; 1010 1011 SDValue Ops[] = { Op1, Op2 }; 1012 FoldingSetNodeID ID; 1013 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1014 AddNodeIDCustom(ID, N); 1015 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1016 if (Node) 1017 Node->intersectFlagsWith(N->getFlags()); 1018 return Node; 1019 } 1020 1021 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1022 /// were replaced with those specified. If this node is never memoized, 1023 /// return null, otherwise return a pointer to the slot it would take. If a 1024 /// node already exists with these operands, the slot will be non-null. 1025 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1026 void *&InsertPos) { 1027 if (doNotCSE(N)) 1028 return nullptr; 1029 1030 FoldingSetNodeID ID; 1031 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1032 AddNodeIDCustom(ID, N); 1033 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1034 if (Node) 1035 Node->intersectFlagsWith(N->getFlags()); 1036 return Node; 1037 } 1038 1039 Align SelectionDAG::getEVTAlign(EVT VT) const { 1040 Type *Ty = VT == MVT::iPTR ? 1041 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1042 VT.getTypeForEVT(*getContext()); 1043 1044 return getDataLayout().getABITypeAlign(Ty); 1045 } 1046 1047 // EntryNode could meaningfully have debug info if we can find it... 1048 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1049 : TM(tm), OptLevel(OL), 1050 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1051 Root(getEntryNode()) { 1052 InsertNode(&EntryNode); 1053 DbgInfo = new SDDbgInfo(); 1054 } 1055 1056 void SelectionDAG::init(MachineFunction &NewMF, 1057 OptimizationRemarkEmitter &NewORE, 1058 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1059 LegacyDivergenceAnalysis * Divergence, 1060 ProfileSummaryInfo *PSIin, 1061 BlockFrequencyInfo *BFIin) { 1062 MF = &NewMF; 1063 SDAGISelPass = PassPtr; 1064 ORE = &NewORE; 1065 TLI = getSubtarget().getTargetLowering(); 1066 TSI = getSubtarget().getSelectionDAGInfo(); 1067 LibInfo = LibraryInfo; 1068 Context = &MF->getFunction().getContext(); 1069 DA = Divergence; 1070 PSI = PSIin; 1071 BFI = BFIin; 1072 } 1073 1074 SelectionDAG::~SelectionDAG() { 1075 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1076 allnodes_clear(); 1077 OperandRecycler.clear(OperandAllocator); 1078 delete DbgInfo; 1079 } 1080 1081 bool SelectionDAG::shouldOptForSize() const { 1082 return MF->getFunction().hasOptSize() || 1083 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1084 } 1085 1086 void SelectionDAG::allnodes_clear() { 1087 assert(&*AllNodes.begin() == &EntryNode); 1088 AllNodes.remove(AllNodes.begin()); 1089 while (!AllNodes.empty()) 1090 DeallocateNode(&AllNodes.front()); 1091 #ifndef NDEBUG 1092 NextPersistentId = 0; 1093 #endif 1094 } 1095 1096 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1097 void *&InsertPos) { 1098 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1099 if (N) { 1100 switch (N->getOpcode()) { 1101 default: break; 1102 case ISD::Constant: 1103 case ISD::ConstantFP: 1104 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1105 "debug location. Use another overload."); 1106 } 1107 } 1108 return N; 1109 } 1110 1111 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1112 const SDLoc &DL, void *&InsertPos) { 1113 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1114 if (N) { 1115 switch (N->getOpcode()) { 1116 case ISD::Constant: 1117 case ISD::ConstantFP: 1118 // Erase debug location from the node if the node is used at several 1119 // different places. Do not propagate one location to all uses as it 1120 // will cause a worse single stepping debugging experience. 1121 if (N->getDebugLoc() != DL.getDebugLoc()) 1122 N->setDebugLoc(DebugLoc()); 1123 break; 1124 default: 1125 // When the node's point of use is located earlier in the instruction 1126 // sequence than its prior point of use, update its debug info to the 1127 // earlier location. 1128 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1129 N->setDebugLoc(DL.getDebugLoc()); 1130 break; 1131 } 1132 } 1133 return N; 1134 } 1135 1136 void SelectionDAG::clear() { 1137 allnodes_clear(); 1138 OperandRecycler.clear(OperandAllocator); 1139 OperandAllocator.Reset(); 1140 CSEMap.clear(); 1141 1142 ExtendedValueTypeNodes.clear(); 1143 ExternalSymbols.clear(); 1144 TargetExternalSymbols.clear(); 1145 MCSymbols.clear(); 1146 SDCallSiteDbgInfo.clear(); 1147 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1148 static_cast<CondCodeSDNode*>(nullptr)); 1149 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1150 static_cast<SDNode*>(nullptr)); 1151 1152 EntryNode.UseList = nullptr; 1153 InsertNode(&EntryNode); 1154 Root = getEntryNode(); 1155 DbgInfo->clear(); 1156 } 1157 1158 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1159 return VT.bitsGT(Op.getValueType()) 1160 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1161 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1162 } 1163 1164 std::pair<SDValue, SDValue> 1165 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1166 const SDLoc &DL, EVT VT) { 1167 assert(!VT.bitsEq(Op.getValueType()) && 1168 "Strict no-op FP extend/round not allowed."); 1169 SDValue Res = 1170 VT.bitsGT(Op.getValueType()) 1171 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1172 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1173 {Chain, Op, getIntPtrConstant(0, DL)}); 1174 1175 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1176 } 1177 1178 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1179 return VT.bitsGT(Op.getValueType()) ? 1180 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1181 getNode(ISD::TRUNCATE, DL, VT, Op); 1182 } 1183 1184 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1185 return VT.bitsGT(Op.getValueType()) ? 1186 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1187 getNode(ISD::TRUNCATE, DL, VT, Op); 1188 } 1189 1190 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1191 return VT.bitsGT(Op.getValueType()) ? 1192 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1193 getNode(ISD::TRUNCATE, DL, VT, Op); 1194 } 1195 1196 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1197 EVT OpVT) { 1198 if (VT.bitsLE(Op.getValueType())) 1199 return getNode(ISD::TRUNCATE, SL, VT, Op); 1200 1201 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1202 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1203 } 1204 1205 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1206 EVT OpVT = Op.getValueType(); 1207 assert(VT.isInteger() && OpVT.isInteger() && 1208 "Cannot getZeroExtendInReg FP types"); 1209 assert(VT.isVector() == OpVT.isVector() && 1210 "getZeroExtendInReg type should be vector iff the operand " 1211 "type is vector!"); 1212 assert((!VT.isVector() || 1213 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1214 "Vector element counts must match in getZeroExtendInReg"); 1215 assert(VT.bitsLE(OpVT) && "Not extending!"); 1216 if (OpVT == VT) 1217 return Op; 1218 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1219 VT.getScalarSizeInBits()); 1220 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1221 } 1222 1223 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1224 // Only unsigned pointer semantics are supported right now. In the future this 1225 // might delegate to TLI to check pointer signedness. 1226 return getZExtOrTrunc(Op, DL, VT); 1227 } 1228 1229 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1230 // Only unsigned pointer semantics are supported right now. In the future this 1231 // might delegate to TLI to check pointer signedness. 1232 return getZeroExtendInReg(Op, DL, VT); 1233 } 1234 1235 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1236 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1237 EVT EltVT = VT.getScalarType(); 1238 SDValue NegOne = 1239 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1240 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1241 } 1242 1243 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1244 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1245 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1246 } 1247 1248 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1249 EVT OpVT) { 1250 if (!V) 1251 return getConstant(0, DL, VT); 1252 1253 switch (TLI->getBooleanContents(OpVT)) { 1254 case TargetLowering::ZeroOrOneBooleanContent: 1255 case TargetLowering::UndefinedBooleanContent: 1256 return getConstant(1, DL, VT); 1257 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1258 return getAllOnesConstant(DL, VT); 1259 } 1260 llvm_unreachable("Unexpected boolean content enum!"); 1261 } 1262 1263 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1264 bool isT, bool isO) { 1265 EVT EltVT = VT.getScalarType(); 1266 assert((EltVT.getSizeInBits() >= 64 || 1267 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1268 "getConstant with a uint64_t value that doesn't fit in the type!"); 1269 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1270 } 1271 1272 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1273 bool isT, bool isO) { 1274 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1275 } 1276 1277 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1278 EVT VT, bool isT, bool isO) { 1279 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1280 1281 EVT EltVT = VT.getScalarType(); 1282 const ConstantInt *Elt = &Val; 1283 1284 // In some cases the vector type is legal but the element type is illegal and 1285 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1286 // inserted value (the type does not need to match the vector element type). 1287 // Any extra bits introduced will be truncated away. 1288 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1289 TargetLowering::TypePromoteInteger) { 1290 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1291 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1292 Elt = ConstantInt::get(*getContext(), NewVal); 1293 } 1294 // In other cases the element type is illegal and needs to be expanded, for 1295 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1296 // the value into n parts and use a vector type with n-times the elements. 1297 // Then bitcast to the type requested. 1298 // Legalizing constants too early makes the DAGCombiner's job harder so we 1299 // only legalize if the DAG tells us we must produce legal types. 1300 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1301 TLI->getTypeAction(*getContext(), EltVT) == 1302 TargetLowering::TypeExpandInteger) { 1303 const APInt &NewVal = Elt->getValue(); 1304 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1305 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1306 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1307 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1308 1309 // Check the temporary vector is the correct size. If this fails then 1310 // getTypeToTransformTo() probably returned a type whose size (in bits) 1311 // isn't a power-of-2 factor of the requested type size. 1312 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1313 1314 SmallVector<SDValue, 2> EltParts; 1315 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1316 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1317 .zextOrTrunc(ViaEltSizeInBits), DL, 1318 ViaEltVT, isT, isO)); 1319 } 1320 1321 // EltParts is currently in little endian order. If we actually want 1322 // big-endian order then reverse it now. 1323 if (getDataLayout().isBigEndian()) 1324 std::reverse(EltParts.begin(), EltParts.end()); 1325 1326 // The elements must be reversed when the element order is different 1327 // to the endianness of the elements (because the BITCAST is itself a 1328 // vector shuffle in this situation). However, we do not need any code to 1329 // perform this reversal because getConstant() is producing a vector 1330 // splat. 1331 // This situation occurs in MIPS MSA. 1332 1333 SmallVector<SDValue, 8> Ops; 1334 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1335 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1336 1337 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1338 return V; 1339 } 1340 1341 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1342 "APInt size does not match type size!"); 1343 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1344 FoldingSetNodeID ID; 1345 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1346 ID.AddPointer(Elt); 1347 ID.AddBoolean(isO); 1348 void *IP = nullptr; 1349 SDNode *N = nullptr; 1350 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1351 if (!VT.isVector()) 1352 return SDValue(N, 0); 1353 1354 if (!N) { 1355 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1356 CSEMap.InsertNode(N, IP); 1357 InsertNode(N); 1358 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1359 } 1360 1361 SDValue Result(N, 0); 1362 if (VT.isScalableVector()) 1363 Result = getSplatVector(VT, DL, Result); 1364 else if (VT.isVector()) 1365 Result = getSplatBuildVector(VT, DL, Result); 1366 1367 return Result; 1368 } 1369 1370 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1371 bool isTarget) { 1372 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1373 } 1374 1375 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1376 const SDLoc &DL, bool LegalTypes) { 1377 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1378 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1379 return getConstant(Val, DL, ShiftVT); 1380 } 1381 1382 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1383 bool isTarget) { 1384 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1385 } 1386 1387 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1388 bool isTarget) { 1389 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1390 } 1391 1392 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1393 EVT VT, bool isTarget) { 1394 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1395 1396 EVT EltVT = VT.getScalarType(); 1397 1398 // Do the map lookup using the actual bit pattern for the floating point 1399 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1400 // we don't have issues with SNANs. 1401 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1402 FoldingSetNodeID ID; 1403 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1404 ID.AddPointer(&V); 1405 void *IP = nullptr; 1406 SDNode *N = nullptr; 1407 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1408 if (!VT.isVector()) 1409 return SDValue(N, 0); 1410 1411 if (!N) { 1412 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1413 CSEMap.InsertNode(N, IP); 1414 InsertNode(N); 1415 } 1416 1417 SDValue Result(N, 0); 1418 if (VT.isScalableVector()) 1419 Result = getSplatVector(VT, DL, Result); 1420 else if (VT.isVector()) 1421 Result = getSplatBuildVector(VT, DL, Result); 1422 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1423 return Result; 1424 } 1425 1426 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1427 bool isTarget) { 1428 EVT EltVT = VT.getScalarType(); 1429 if (EltVT == MVT::f32) 1430 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1431 else if (EltVT == MVT::f64) 1432 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1433 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1434 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1435 bool Ignored; 1436 APFloat APF = APFloat(Val); 1437 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1438 &Ignored); 1439 return getConstantFP(APF, DL, VT, isTarget); 1440 } else 1441 llvm_unreachable("Unsupported type in getConstantFP"); 1442 } 1443 1444 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1445 EVT VT, int64_t Offset, bool isTargetGA, 1446 unsigned TargetFlags) { 1447 assert((TargetFlags == 0 || isTargetGA) && 1448 "Cannot set target flags on target-independent globals"); 1449 1450 // Truncate (with sign-extension) the offset value to the pointer size. 1451 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1452 if (BitWidth < 64) 1453 Offset = SignExtend64(Offset, BitWidth); 1454 1455 unsigned Opc; 1456 if (GV->isThreadLocal()) 1457 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1458 else 1459 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1460 1461 FoldingSetNodeID ID; 1462 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1463 ID.AddPointer(GV); 1464 ID.AddInteger(Offset); 1465 ID.AddInteger(TargetFlags); 1466 void *IP = nullptr; 1467 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1468 return SDValue(E, 0); 1469 1470 auto *N = newSDNode<GlobalAddressSDNode>( 1471 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1472 CSEMap.InsertNode(N, IP); 1473 InsertNode(N); 1474 return SDValue(N, 0); 1475 } 1476 1477 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1478 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1479 FoldingSetNodeID ID; 1480 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1481 ID.AddInteger(FI); 1482 void *IP = nullptr; 1483 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1484 return SDValue(E, 0); 1485 1486 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1487 CSEMap.InsertNode(N, IP); 1488 InsertNode(N); 1489 return SDValue(N, 0); 1490 } 1491 1492 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1493 unsigned TargetFlags) { 1494 assert((TargetFlags == 0 || isTarget) && 1495 "Cannot set target flags on target-independent jump tables"); 1496 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1497 FoldingSetNodeID ID; 1498 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1499 ID.AddInteger(JTI); 1500 ID.AddInteger(TargetFlags); 1501 void *IP = nullptr; 1502 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1503 return SDValue(E, 0); 1504 1505 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1506 CSEMap.InsertNode(N, IP); 1507 InsertNode(N); 1508 return SDValue(N, 0); 1509 } 1510 1511 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1512 MaybeAlign Alignment, int Offset, 1513 bool isTarget, unsigned TargetFlags) { 1514 assert((TargetFlags == 0 || isTarget) && 1515 "Cannot set target flags on target-independent globals"); 1516 if (!Alignment) 1517 Alignment = shouldOptForSize() 1518 ? getDataLayout().getABITypeAlign(C->getType()) 1519 : getDataLayout().getPrefTypeAlign(C->getType()); 1520 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1521 FoldingSetNodeID ID; 1522 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1523 ID.AddInteger(Alignment->value()); 1524 ID.AddInteger(Offset); 1525 ID.AddPointer(C); 1526 ID.AddInteger(TargetFlags); 1527 void *IP = nullptr; 1528 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1529 return SDValue(E, 0); 1530 1531 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1532 TargetFlags); 1533 CSEMap.InsertNode(N, IP); 1534 InsertNode(N); 1535 SDValue V = SDValue(N, 0); 1536 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1537 return V; 1538 } 1539 1540 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1541 MaybeAlign Alignment, int Offset, 1542 bool isTarget, unsigned TargetFlags) { 1543 assert((TargetFlags == 0 || isTarget) && 1544 "Cannot set target flags on target-independent globals"); 1545 if (!Alignment) 1546 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1547 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1548 FoldingSetNodeID ID; 1549 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1550 ID.AddInteger(Alignment->value()); 1551 ID.AddInteger(Offset); 1552 C->addSelectionDAGCSEId(ID); 1553 ID.AddInteger(TargetFlags); 1554 void *IP = nullptr; 1555 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1556 return SDValue(E, 0); 1557 1558 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1559 TargetFlags); 1560 CSEMap.InsertNode(N, IP); 1561 InsertNode(N); 1562 return SDValue(N, 0); 1563 } 1564 1565 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1566 unsigned TargetFlags) { 1567 FoldingSetNodeID ID; 1568 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1569 ID.AddInteger(Index); 1570 ID.AddInteger(Offset); 1571 ID.AddInteger(TargetFlags); 1572 void *IP = nullptr; 1573 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1574 return SDValue(E, 0); 1575 1576 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1577 CSEMap.InsertNode(N, IP); 1578 InsertNode(N); 1579 return SDValue(N, 0); 1580 } 1581 1582 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1583 FoldingSetNodeID ID; 1584 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1585 ID.AddPointer(MBB); 1586 void *IP = nullptr; 1587 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1588 return SDValue(E, 0); 1589 1590 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1591 CSEMap.InsertNode(N, IP); 1592 InsertNode(N); 1593 return SDValue(N, 0); 1594 } 1595 1596 SDValue SelectionDAG::getValueType(EVT VT) { 1597 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1598 ValueTypeNodes.size()) 1599 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1600 1601 SDNode *&N = VT.isExtended() ? 1602 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1603 1604 if (N) return SDValue(N, 0); 1605 N = newSDNode<VTSDNode>(VT); 1606 InsertNode(N); 1607 return SDValue(N, 0); 1608 } 1609 1610 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1611 SDNode *&N = ExternalSymbols[Sym]; 1612 if (N) return SDValue(N, 0); 1613 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1614 InsertNode(N); 1615 return SDValue(N, 0); 1616 } 1617 1618 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1619 SDNode *&N = MCSymbols[Sym]; 1620 if (N) 1621 return SDValue(N, 0); 1622 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1623 InsertNode(N); 1624 return SDValue(N, 0); 1625 } 1626 1627 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1628 unsigned TargetFlags) { 1629 SDNode *&N = 1630 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1631 if (N) return SDValue(N, 0); 1632 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1633 InsertNode(N); 1634 return SDValue(N, 0); 1635 } 1636 1637 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1638 if ((unsigned)Cond >= CondCodeNodes.size()) 1639 CondCodeNodes.resize(Cond+1); 1640 1641 if (!CondCodeNodes[Cond]) { 1642 auto *N = newSDNode<CondCodeSDNode>(Cond); 1643 CondCodeNodes[Cond] = N; 1644 InsertNode(N); 1645 } 1646 1647 return SDValue(CondCodeNodes[Cond], 0); 1648 } 1649 1650 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1651 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1652 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1653 std::swap(N1, N2); 1654 ShuffleVectorSDNode::commuteMask(M); 1655 } 1656 1657 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1658 SDValue N2, ArrayRef<int> Mask) { 1659 assert(VT.getVectorNumElements() == Mask.size() && 1660 "Must have the same number of vector elements as mask elements!"); 1661 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1662 "Invalid VECTOR_SHUFFLE"); 1663 1664 // Canonicalize shuffle undef, undef -> undef 1665 if (N1.isUndef() && N2.isUndef()) 1666 return getUNDEF(VT); 1667 1668 // Validate that all indices in Mask are within the range of the elements 1669 // input to the shuffle. 1670 int NElts = Mask.size(); 1671 assert(llvm::all_of(Mask, 1672 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1673 "Index out of range"); 1674 1675 // Copy the mask so we can do any needed cleanup. 1676 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1677 1678 // Canonicalize shuffle v, v -> v, undef 1679 if (N1 == N2) { 1680 N2 = getUNDEF(VT); 1681 for (int i = 0; i != NElts; ++i) 1682 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1683 } 1684 1685 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1686 if (N1.isUndef()) 1687 commuteShuffle(N1, N2, MaskVec); 1688 1689 if (TLI->hasVectorBlend()) { 1690 // If shuffling a splat, try to blend the splat instead. We do this here so 1691 // that even when this arises during lowering we don't have to re-handle it. 1692 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1693 BitVector UndefElements; 1694 SDValue Splat = BV->getSplatValue(&UndefElements); 1695 if (!Splat) 1696 return; 1697 1698 for (int i = 0; i < NElts; ++i) { 1699 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1700 continue; 1701 1702 // If this input comes from undef, mark it as such. 1703 if (UndefElements[MaskVec[i] - Offset]) { 1704 MaskVec[i] = -1; 1705 continue; 1706 } 1707 1708 // If we can blend a non-undef lane, use that instead. 1709 if (!UndefElements[i]) 1710 MaskVec[i] = i + Offset; 1711 } 1712 }; 1713 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1714 BlendSplat(N1BV, 0); 1715 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1716 BlendSplat(N2BV, NElts); 1717 } 1718 1719 // Canonicalize all index into lhs, -> shuffle lhs, undef 1720 // Canonicalize all index into rhs, -> shuffle rhs, undef 1721 bool AllLHS = true, AllRHS = true; 1722 bool N2Undef = N2.isUndef(); 1723 for (int i = 0; i != NElts; ++i) { 1724 if (MaskVec[i] >= NElts) { 1725 if (N2Undef) 1726 MaskVec[i] = -1; 1727 else 1728 AllLHS = false; 1729 } else if (MaskVec[i] >= 0) { 1730 AllRHS = false; 1731 } 1732 } 1733 if (AllLHS && AllRHS) 1734 return getUNDEF(VT); 1735 if (AllLHS && !N2Undef) 1736 N2 = getUNDEF(VT); 1737 if (AllRHS) { 1738 N1 = getUNDEF(VT); 1739 commuteShuffle(N1, N2, MaskVec); 1740 } 1741 // Reset our undef status after accounting for the mask. 1742 N2Undef = N2.isUndef(); 1743 // Re-check whether both sides ended up undef. 1744 if (N1.isUndef() && N2Undef) 1745 return getUNDEF(VT); 1746 1747 // If Identity shuffle return that node. 1748 bool Identity = true, AllSame = true; 1749 for (int i = 0; i != NElts; ++i) { 1750 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1751 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1752 } 1753 if (Identity && NElts) 1754 return N1; 1755 1756 // Shuffling a constant splat doesn't change the result. 1757 if (N2Undef) { 1758 SDValue V = N1; 1759 1760 // Look through any bitcasts. We check that these don't change the number 1761 // (and size) of elements and just changes their types. 1762 while (V.getOpcode() == ISD::BITCAST) 1763 V = V->getOperand(0); 1764 1765 // A splat should always show up as a build vector node. 1766 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1767 BitVector UndefElements; 1768 SDValue Splat = BV->getSplatValue(&UndefElements); 1769 // If this is a splat of an undef, shuffling it is also undef. 1770 if (Splat && Splat.isUndef()) 1771 return getUNDEF(VT); 1772 1773 bool SameNumElts = 1774 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1775 1776 // We only have a splat which can skip shuffles if there is a splatted 1777 // value and no undef lanes rearranged by the shuffle. 1778 if (Splat && UndefElements.none()) { 1779 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1780 // number of elements match or the value splatted is a zero constant. 1781 if (SameNumElts) 1782 return N1; 1783 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1784 if (C->isNullValue()) 1785 return N1; 1786 } 1787 1788 // If the shuffle itself creates a splat, build the vector directly. 1789 if (AllSame && SameNumElts) { 1790 EVT BuildVT = BV->getValueType(0); 1791 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1792 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1793 1794 // We may have jumped through bitcasts, so the type of the 1795 // BUILD_VECTOR may not match the type of the shuffle. 1796 if (BuildVT != VT) 1797 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1798 return NewBV; 1799 } 1800 } 1801 } 1802 1803 FoldingSetNodeID ID; 1804 SDValue Ops[2] = { N1, N2 }; 1805 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1806 for (int i = 0; i != NElts; ++i) 1807 ID.AddInteger(MaskVec[i]); 1808 1809 void* IP = nullptr; 1810 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1811 return SDValue(E, 0); 1812 1813 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1814 // SDNode doesn't have access to it. This memory will be "leaked" when 1815 // the node is deallocated, but recovered when the NodeAllocator is released. 1816 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1817 llvm::copy(MaskVec, MaskAlloc); 1818 1819 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1820 dl.getDebugLoc(), MaskAlloc); 1821 createOperands(N, Ops); 1822 1823 CSEMap.InsertNode(N, IP); 1824 InsertNode(N); 1825 SDValue V = SDValue(N, 0); 1826 NewSDValueDbgMsg(V, "Creating new node: ", this); 1827 return V; 1828 } 1829 1830 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1831 EVT VT = SV.getValueType(0); 1832 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1833 ShuffleVectorSDNode::commuteMask(MaskVec); 1834 1835 SDValue Op0 = SV.getOperand(0); 1836 SDValue Op1 = SV.getOperand(1); 1837 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1838 } 1839 1840 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1841 FoldingSetNodeID ID; 1842 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1843 ID.AddInteger(RegNo); 1844 void *IP = nullptr; 1845 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1846 return SDValue(E, 0); 1847 1848 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1849 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1850 CSEMap.InsertNode(N, IP); 1851 InsertNode(N); 1852 return SDValue(N, 0); 1853 } 1854 1855 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1856 FoldingSetNodeID ID; 1857 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1858 ID.AddPointer(RegMask); 1859 void *IP = nullptr; 1860 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1861 return SDValue(E, 0); 1862 1863 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1864 CSEMap.InsertNode(N, IP); 1865 InsertNode(N); 1866 return SDValue(N, 0); 1867 } 1868 1869 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1870 MCSymbol *Label) { 1871 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1872 } 1873 1874 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1875 SDValue Root, MCSymbol *Label) { 1876 FoldingSetNodeID ID; 1877 SDValue Ops[] = { Root }; 1878 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1879 ID.AddPointer(Label); 1880 void *IP = nullptr; 1881 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1882 return SDValue(E, 0); 1883 1884 auto *N = 1885 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1886 createOperands(N, Ops); 1887 1888 CSEMap.InsertNode(N, IP); 1889 InsertNode(N); 1890 return SDValue(N, 0); 1891 } 1892 1893 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1894 int64_t Offset, bool isTarget, 1895 unsigned TargetFlags) { 1896 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1897 1898 FoldingSetNodeID ID; 1899 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1900 ID.AddPointer(BA); 1901 ID.AddInteger(Offset); 1902 ID.AddInteger(TargetFlags); 1903 void *IP = nullptr; 1904 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1905 return SDValue(E, 0); 1906 1907 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1908 CSEMap.InsertNode(N, IP); 1909 InsertNode(N); 1910 return SDValue(N, 0); 1911 } 1912 1913 SDValue SelectionDAG::getSrcValue(const Value *V) { 1914 FoldingSetNodeID ID; 1915 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1916 ID.AddPointer(V); 1917 1918 void *IP = nullptr; 1919 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1920 return SDValue(E, 0); 1921 1922 auto *N = newSDNode<SrcValueSDNode>(V); 1923 CSEMap.InsertNode(N, IP); 1924 InsertNode(N); 1925 return SDValue(N, 0); 1926 } 1927 1928 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1929 FoldingSetNodeID ID; 1930 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1931 ID.AddPointer(MD); 1932 1933 void *IP = nullptr; 1934 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1935 return SDValue(E, 0); 1936 1937 auto *N = newSDNode<MDNodeSDNode>(MD); 1938 CSEMap.InsertNode(N, IP); 1939 InsertNode(N); 1940 return SDValue(N, 0); 1941 } 1942 1943 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1944 if (VT == V.getValueType()) 1945 return V; 1946 1947 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1948 } 1949 1950 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1951 unsigned SrcAS, unsigned DestAS) { 1952 SDValue Ops[] = {Ptr}; 1953 FoldingSetNodeID ID; 1954 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1955 ID.AddInteger(SrcAS); 1956 ID.AddInteger(DestAS); 1957 1958 void *IP = nullptr; 1959 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1960 return SDValue(E, 0); 1961 1962 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1963 VT, SrcAS, DestAS); 1964 createOperands(N, Ops); 1965 1966 CSEMap.InsertNode(N, IP); 1967 InsertNode(N); 1968 return SDValue(N, 0); 1969 } 1970 1971 SDValue SelectionDAG::getFreeze(SDValue V) { 1972 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1973 } 1974 1975 /// getShiftAmountOperand - Return the specified value casted to 1976 /// the target's desired shift amount type. 1977 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1978 EVT OpTy = Op.getValueType(); 1979 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1980 if (OpTy == ShTy || OpTy.isVector()) return Op; 1981 1982 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1983 } 1984 1985 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1986 SDLoc dl(Node); 1987 const TargetLowering &TLI = getTargetLoweringInfo(); 1988 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1989 EVT VT = Node->getValueType(0); 1990 SDValue Tmp1 = Node->getOperand(0); 1991 SDValue Tmp2 = Node->getOperand(1); 1992 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1993 1994 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1995 Tmp2, MachinePointerInfo(V)); 1996 SDValue VAList = VAListLoad; 1997 1998 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1999 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2000 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2001 2002 VAList = 2003 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2004 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2005 } 2006 2007 // Increment the pointer, VAList, to the next vaarg 2008 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2009 getConstant(getDataLayout().getTypeAllocSize( 2010 VT.getTypeForEVT(*getContext())), 2011 dl, VAList.getValueType())); 2012 // Store the incremented VAList to the legalized pointer 2013 Tmp1 = 2014 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2015 // Load the actual argument out of the pointer VAList 2016 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2017 } 2018 2019 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2020 SDLoc dl(Node); 2021 const TargetLowering &TLI = getTargetLoweringInfo(); 2022 // This defaults to loading a pointer from the input and storing it to the 2023 // output, returning the chain. 2024 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2025 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2026 SDValue Tmp1 = 2027 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2028 Node->getOperand(2), MachinePointerInfo(VS)); 2029 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2030 MachinePointerInfo(VD)); 2031 } 2032 2033 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2034 const DataLayout &DL = getDataLayout(); 2035 Type *Ty = VT.getTypeForEVT(*getContext()); 2036 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2037 2038 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2039 return RedAlign; 2040 2041 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2042 const Align StackAlign = TFI->getStackAlign(); 2043 2044 // See if we can choose a smaller ABI alignment in cases where it's an 2045 // illegal vector type that will get broken down. 2046 if (RedAlign > StackAlign) { 2047 EVT IntermediateVT; 2048 MVT RegisterVT; 2049 unsigned NumIntermediates; 2050 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2051 NumIntermediates, RegisterVT); 2052 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2053 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2054 if (RedAlign2 < RedAlign) 2055 RedAlign = RedAlign2; 2056 } 2057 2058 return RedAlign; 2059 } 2060 2061 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2062 MachineFrameInfo &MFI = MF->getFrameInfo(); 2063 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2064 int StackID = 0; 2065 if (Bytes.isScalable()) 2066 StackID = TFI->getStackIDForScalableVectors(); 2067 // The stack id gives an indication of whether the object is scalable or 2068 // not, so it's safe to pass in the minimum size here. 2069 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2070 false, nullptr, StackID); 2071 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2072 } 2073 2074 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2075 Type *Ty = VT.getTypeForEVT(*getContext()); 2076 Align StackAlign = 2077 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2078 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2079 } 2080 2081 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2082 TypeSize VT1Size = VT1.getStoreSize(); 2083 TypeSize VT2Size = VT2.getStoreSize(); 2084 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2085 "Don't know how to choose the maximum size when creating a stack " 2086 "temporary"); 2087 TypeSize Bytes = 2088 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2089 2090 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2091 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2092 const DataLayout &DL = getDataLayout(); 2093 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2094 return CreateStackTemporary(Bytes, Align); 2095 } 2096 2097 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2098 ISD::CondCode Cond, const SDLoc &dl) { 2099 EVT OpVT = N1.getValueType(); 2100 2101 // These setcc operations always fold. 2102 switch (Cond) { 2103 default: break; 2104 case ISD::SETFALSE: 2105 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2106 case ISD::SETTRUE: 2107 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2108 2109 case ISD::SETOEQ: 2110 case ISD::SETOGT: 2111 case ISD::SETOGE: 2112 case ISD::SETOLT: 2113 case ISD::SETOLE: 2114 case ISD::SETONE: 2115 case ISD::SETO: 2116 case ISD::SETUO: 2117 case ISD::SETUEQ: 2118 case ISD::SETUNE: 2119 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2120 break; 2121 } 2122 2123 if (OpVT.isInteger()) { 2124 // For EQ and NE, we can always pick a value for the undef to make the 2125 // predicate pass or fail, so we can return undef. 2126 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2127 // icmp eq/ne X, undef -> undef. 2128 if ((N1.isUndef() || N2.isUndef()) && 2129 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2130 return getUNDEF(VT); 2131 2132 // If both operands are undef, we can return undef for int comparison. 2133 // icmp undef, undef -> undef. 2134 if (N1.isUndef() && N2.isUndef()) 2135 return getUNDEF(VT); 2136 2137 // icmp X, X -> true/false 2138 // icmp X, undef -> true/false because undef could be X. 2139 if (N1 == N2) 2140 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2141 } 2142 2143 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2144 const APInt &C2 = N2C->getAPIntValue(); 2145 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2146 const APInt &C1 = N1C->getAPIntValue(); 2147 2148 switch (Cond) { 2149 default: llvm_unreachable("Unknown integer setcc!"); 2150 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2151 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2152 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2153 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2154 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2155 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2156 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2157 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2158 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2159 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2160 } 2161 } 2162 } 2163 2164 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2165 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2166 2167 if (N1CFP && N2CFP) { 2168 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2169 switch (Cond) { 2170 default: break; 2171 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2172 return getUNDEF(VT); 2173 LLVM_FALLTHROUGH; 2174 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2175 OpVT); 2176 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2177 return getUNDEF(VT); 2178 LLVM_FALLTHROUGH; 2179 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2180 R==APFloat::cmpLessThan, dl, VT, 2181 OpVT); 2182 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2183 return getUNDEF(VT); 2184 LLVM_FALLTHROUGH; 2185 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2186 OpVT); 2187 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2188 return getUNDEF(VT); 2189 LLVM_FALLTHROUGH; 2190 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2191 VT, OpVT); 2192 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2193 return getUNDEF(VT); 2194 LLVM_FALLTHROUGH; 2195 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2196 R==APFloat::cmpEqual, dl, VT, 2197 OpVT); 2198 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2199 return getUNDEF(VT); 2200 LLVM_FALLTHROUGH; 2201 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2202 R==APFloat::cmpEqual, dl, VT, OpVT); 2203 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2204 OpVT); 2205 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2206 OpVT); 2207 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2208 R==APFloat::cmpEqual, dl, VT, 2209 OpVT); 2210 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2211 OpVT); 2212 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2213 R==APFloat::cmpLessThan, dl, VT, 2214 OpVT); 2215 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2216 R==APFloat::cmpUnordered, dl, VT, 2217 OpVT); 2218 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2219 VT, OpVT); 2220 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2221 OpVT); 2222 } 2223 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2224 // Ensure that the constant occurs on the RHS. 2225 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2226 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2227 return SDValue(); 2228 return getSetCC(dl, VT, N2, N1, SwappedCond); 2229 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2230 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2231 // If an operand is known to be a nan (or undef that could be a nan), we can 2232 // fold it. 2233 // Choosing NaN for the undef will always make unordered comparison succeed 2234 // and ordered comparison fails. 2235 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2236 switch (ISD::getUnorderedFlavor(Cond)) { 2237 default: 2238 llvm_unreachable("Unknown flavor!"); 2239 case 0: // Known false. 2240 return getBoolConstant(false, dl, VT, OpVT); 2241 case 1: // Known true. 2242 return getBoolConstant(true, dl, VT, OpVT); 2243 case 2: // Undefined. 2244 return getUNDEF(VT); 2245 } 2246 } 2247 2248 // Could not fold it. 2249 return SDValue(); 2250 } 2251 2252 /// See if the specified operand can be simplified with the knowledge that only 2253 /// the bits specified by DemandedBits are used. 2254 /// TODO: really we should be making this into the DAG equivalent of 2255 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2256 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2257 EVT VT = V.getValueType(); 2258 2259 if (VT.isScalableVector()) 2260 return SDValue(); 2261 2262 APInt DemandedElts = VT.isVector() 2263 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2264 : APInt(1, 1); 2265 return GetDemandedBits(V, DemandedBits, DemandedElts); 2266 } 2267 2268 /// See if the specified operand can be simplified with the knowledge that only 2269 /// the bits specified by DemandedBits are used in the elements specified by 2270 /// DemandedElts. 2271 /// TODO: really we should be making this into the DAG equivalent of 2272 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2273 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2274 const APInt &DemandedElts) { 2275 switch (V.getOpcode()) { 2276 default: 2277 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2278 *this, 0); 2279 case ISD::Constant: { 2280 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2281 APInt NewVal = CVal & DemandedBits; 2282 if (NewVal != CVal) 2283 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2284 break; 2285 } 2286 case ISD::SRL: 2287 // Only look at single-use SRLs. 2288 if (!V.getNode()->hasOneUse()) 2289 break; 2290 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2291 // See if we can recursively simplify the LHS. 2292 unsigned Amt = RHSC->getZExtValue(); 2293 2294 // Watch out for shift count overflow though. 2295 if (Amt >= DemandedBits.getBitWidth()) 2296 break; 2297 APInt SrcDemandedBits = DemandedBits << Amt; 2298 if (SDValue SimplifyLHS = 2299 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2300 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2301 V.getOperand(1)); 2302 } 2303 break; 2304 } 2305 return SDValue(); 2306 } 2307 2308 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2309 /// use this predicate to simplify operations downstream. 2310 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2311 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2312 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2313 } 2314 2315 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2316 /// this predicate to simplify operations downstream. Mask is known to be zero 2317 /// for bits that V cannot have. 2318 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2319 unsigned Depth) const { 2320 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2321 } 2322 2323 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2324 /// DemandedElts. We use this predicate to simplify operations downstream. 2325 /// Mask is known to be zero for bits that V cannot have. 2326 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2327 const APInt &DemandedElts, 2328 unsigned Depth) const { 2329 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2330 } 2331 2332 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2333 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2334 unsigned Depth) const { 2335 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2336 } 2337 2338 /// isSplatValue - Return true if the vector V has the same value 2339 /// across all DemandedElts. For scalable vectors it does not make 2340 /// sense to specify which elements are demanded or undefined, therefore 2341 /// they are simply ignored. 2342 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2343 APInt &UndefElts) { 2344 EVT VT = V.getValueType(); 2345 assert(VT.isVector() && "Vector type expected"); 2346 2347 if (!VT.isScalableVector() && !DemandedElts) 2348 return false; // No demanded elts, better to assume we don't know anything. 2349 2350 // Deal with some common cases here that work for both fixed and scalable 2351 // vector types. 2352 switch (V.getOpcode()) { 2353 case ISD::SPLAT_VECTOR: 2354 UndefElts = V.getOperand(0).isUndef() 2355 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2356 : APInt(DemandedElts.getBitWidth(), 0); 2357 return true; 2358 case ISD::ADD: 2359 case ISD::SUB: 2360 case ISD::AND: { 2361 APInt UndefLHS, UndefRHS; 2362 SDValue LHS = V.getOperand(0); 2363 SDValue RHS = V.getOperand(1); 2364 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2365 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2366 UndefElts = UndefLHS | UndefRHS; 2367 return true; 2368 } 2369 break; 2370 } 2371 case ISD::TRUNCATE: 2372 case ISD::SIGN_EXTEND: 2373 case ISD::ZERO_EXTEND: 2374 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2375 } 2376 2377 // We don't support other cases than those above for scalable vectors at 2378 // the moment. 2379 if (VT.isScalableVector()) 2380 return false; 2381 2382 unsigned NumElts = VT.getVectorNumElements(); 2383 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2384 UndefElts = APInt::getNullValue(NumElts); 2385 2386 switch (V.getOpcode()) { 2387 case ISD::BUILD_VECTOR: { 2388 SDValue Scl; 2389 for (unsigned i = 0; i != NumElts; ++i) { 2390 SDValue Op = V.getOperand(i); 2391 if (Op.isUndef()) { 2392 UndefElts.setBit(i); 2393 continue; 2394 } 2395 if (!DemandedElts[i]) 2396 continue; 2397 if (Scl && Scl != Op) 2398 return false; 2399 Scl = Op; 2400 } 2401 return true; 2402 } 2403 case ISD::VECTOR_SHUFFLE: { 2404 // Check if this is a shuffle node doing a splat. 2405 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2406 int SplatIndex = -1; 2407 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2408 for (int i = 0; i != (int)NumElts; ++i) { 2409 int M = Mask[i]; 2410 if (M < 0) { 2411 UndefElts.setBit(i); 2412 continue; 2413 } 2414 if (!DemandedElts[i]) 2415 continue; 2416 if (0 <= SplatIndex && SplatIndex != M) 2417 return false; 2418 SplatIndex = M; 2419 } 2420 return true; 2421 } 2422 case ISD::EXTRACT_SUBVECTOR: { 2423 // Offset the demanded elts by the subvector index. 2424 SDValue Src = V.getOperand(0); 2425 uint64_t Idx = V.getConstantOperandVal(1); 2426 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2427 APInt UndefSrcElts; 2428 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2429 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2430 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2431 return true; 2432 } 2433 break; 2434 } 2435 } 2436 2437 return false; 2438 } 2439 2440 /// Helper wrapper to main isSplatValue function. 2441 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2442 EVT VT = V.getValueType(); 2443 assert(VT.isVector() && "Vector type expected"); 2444 2445 APInt UndefElts; 2446 APInt DemandedElts; 2447 2448 // For now we don't support this with scalable vectors. 2449 if (!VT.isScalableVector()) 2450 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2451 return isSplatValue(V, DemandedElts, UndefElts) && 2452 (AllowUndefs || !UndefElts); 2453 } 2454 2455 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2456 V = peekThroughExtractSubvectors(V); 2457 2458 EVT VT = V.getValueType(); 2459 unsigned Opcode = V.getOpcode(); 2460 switch (Opcode) { 2461 default: { 2462 APInt UndefElts; 2463 APInt DemandedElts; 2464 2465 if (!VT.isScalableVector()) 2466 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2467 2468 if (isSplatValue(V, DemandedElts, UndefElts)) { 2469 if (VT.isScalableVector()) { 2470 // DemandedElts and UndefElts are ignored for scalable vectors, since 2471 // the only supported cases are SPLAT_VECTOR nodes. 2472 SplatIdx = 0; 2473 } else { 2474 // Handle case where all demanded elements are UNDEF. 2475 if (DemandedElts.isSubsetOf(UndefElts)) { 2476 SplatIdx = 0; 2477 return getUNDEF(VT); 2478 } 2479 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2480 } 2481 return V; 2482 } 2483 break; 2484 } 2485 case ISD::SPLAT_VECTOR: 2486 SplatIdx = 0; 2487 return V; 2488 case ISD::VECTOR_SHUFFLE: { 2489 if (VT.isScalableVector()) 2490 return SDValue(); 2491 2492 // Check if this is a shuffle node doing a splat. 2493 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2494 // getTargetVShiftNode currently struggles without the splat source. 2495 auto *SVN = cast<ShuffleVectorSDNode>(V); 2496 if (!SVN->isSplat()) 2497 break; 2498 int Idx = SVN->getSplatIndex(); 2499 int NumElts = V.getValueType().getVectorNumElements(); 2500 SplatIdx = Idx % NumElts; 2501 return V.getOperand(Idx / NumElts); 2502 } 2503 } 2504 2505 return SDValue(); 2506 } 2507 2508 SDValue SelectionDAG::getSplatValue(SDValue V) { 2509 int SplatIdx; 2510 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2511 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2512 SrcVector.getValueType().getScalarType(), SrcVector, 2513 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2514 return SDValue(); 2515 } 2516 2517 const APInt * 2518 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2519 const APInt &DemandedElts) const { 2520 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2521 V.getOpcode() == ISD::SRA) && 2522 "Unknown shift node"); 2523 unsigned BitWidth = V.getScalarValueSizeInBits(); 2524 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2525 // Shifting more than the bitwidth is not valid. 2526 const APInt &ShAmt = SA->getAPIntValue(); 2527 if (ShAmt.ult(BitWidth)) 2528 return &ShAmt; 2529 } 2530 return nullptr; 2531 } 2532 2533 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2534 SDValue V, const APInt &DemandedElts) const { 2535 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2536 V.getOpcode() == ISD::SRA) && 2537 "Unknown shift node"); 2538 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2539 return ValidAmt; 2540 unsigned BitWidth = V.getScalarValueSizeInBits(); 2541 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2542 if (!BV) 2543 return nullptr; 2544 const APInt *MinShAmt = nullptr; 2545 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2546 if (!DemandedElts[i]) 2547 continue; 2548 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2549 if (!SA) 2550 return nullptr; 2551 // Shifting more than the bitwidth is not valid. 2552 const APInt &ShAmt = SA->getAPIntValue(); 2553 if (ShAmt.uge(BitWidth)) 2554 return nullptr; 2555 if (MinShAmt && MinShAmt->ule(ShAmt)) 2556 continue; 2557 MinShAmt = &ShAmt; 2558 } 2559 return MinShAmt; 2560 } 2561 2562 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2563 SDValue V, const APInt &DemandedElts) const { 2564 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2565 V.getOpcode() == ISD::SRA) && 2566 "Unknown shift node"); 2567 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2568 return ValidAmt; 2569 unsigned BitWidth = V.getScalarValueSizeInBits(); 2570 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2571 if (!BV) 2572 return nullptr; 2573 const APInt *MaxShAmt = nullptr; 2574 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2575 if (!DemandedElts[i]) 2576 continue; 2577 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2578 if (!SA) 2579 return nullptr; 2580 // Shifting more than the bitwidth is not valid. 2581 const APInt &ShAmt = SA->getAPIntValue(); 2582 if (ShAmt.uge(BitWidth)) 2583 return nullptr; 2584 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2585 continue; 2586 MaxShAmt = &ShAmt; 2587 } 2588 return MaxShAmt; 2589 } 2590 2591 /// Determine which bits of Op are known to be either zero or one and return 2592 /// them in Known. For vectors, the known bits are those that are shared by 2593 /// every vector element. 2594 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2595 EVT VT = Op.getValueType(); 2596 2597 // TOOD: Until we have a plan for how to represent demanded elements for 2598 // scalable vectors, we can just bail out for now. 2599 if (Op.getValueType().isScalableVector()) { 2600 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2601 return KnownBits(BitWidth); 2602 } 2603 2604 APInt DemandedElts = VT.isVector() 2605 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2606 : APInt(1, 1); 2607 return computeKnownBits(Op, DemandedElts, Depth); 2608 } 2609 2610 /// Determine which bits of Op are known to be either zero or one and return 2611 /// them in Known. The DemandedElts argument allows us to only collect the known 2612 /// bits that are shared by the requested vector elements. 2613 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2614 unsigned Depth) const { 2615 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2616 2617 KnownBits Known(BitWidth); // Don't know anything. 2618 2619 // TOOD: Until we have a plan for how to represent demanded elements for 2620 // scalable vectors, we can just bail out for now. 2621 if (Op.getValueType().isScalableVector()) 2622 return Known; 2623 2624 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2625 // We know all of the bits for a constant! 2626 Known.One = C->getAPIntValue(); 2627 Known.Zero = ~Known.One; 2628 return Known; 2629 } 2630 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2631 // We know all of the bits for a constant fp! 2632 Known.One = C->getValueAPF().bitcastToAPInt(); 2633 Known.Zero = ~Known.One; 2634 return Known; 2635 } 2636 2637 if (Depth >= MaxRecursionDepth) 2638 return Known; // Limit search depth. 2639 2640 KnownBits Known2; 2641 unsigned NumElts = DemandedElts.getBitWidth(); 2642 assert((!Op.getValueType().isVector() || 2643 NumElts == Op.getValueType().getVectorNumElements()) && 2644 "Unexpected vector size"); 2645 2646 if (!DemandedElts) 2647 return Known; // No demanded elts, better to assume we don't know anything. 2648 2649 unsigned Opcode = Op.getOpcode(); 2650 switch (Opcode) { 2651 case ISD::BUILD_VECTOR: 2652 // Collect the known bits that are shared by every demanded vector element. 2653 Known.Zero.setAllBits(); Known.One.setAllBits(); 2654 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2655 if (!DemandedElts[i]) 2656 continue; 2657 2658 SDValue SrcOp = Op.getOperand(i); 2659 Known2 = computeKnownBits(SrcOp, Depth + 1); 2660 2661 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2662 if (SrcOp.getValueSizeInBits() != BitWidth) { 2663 assert(SrcOp.getValueSizeInBits() > BitWidth && 2664 "Expected BUILD_VECTOR implicit truncation"); 2665 Known2 = Known2.trunc(BitWidth); 2666 } 2667 2668 // Known bits are the values that are shared by every demanded element. 2669 Known.One &= Known2.One; 2670 Known.Zero &= Known2.Zero; 2671 2672 // If we don't know any bits, early out. 2673 if (Known.isUnknown()) 2674 break; 2675 } 2676 break; 2677 case ISD::VECTOR_SHUFFLE: { 2678 // Collect the known bits that are shared by every vector element referenced 2679 // by the shuffle. 2680 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2681 Known.Zero.setAllBits(); Known.One.setAllBits(); 2682 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2683 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2684 for (unsigned i = 0; i != NumElts; ++i) { 2685 if (!DemandedElts[i]) 2686 continue; 2687 2688 int M = SVN->getMaskElt(i); 2689 if (M < 0) { 2690 // For UNDEF elements, we don't know anything about the common state of 2691 // the shuffle result. 2692 Known.resetAll(); 2693 DemandedLHS.clearAllBits(); 2694 DemandedRHS.clearAllBits(); 2695 break; 2696 } 2697 2698 if ((unsigned)M < NumElts) 2699 DemandedLHS.setBit((unsigned)M % NumElts); 2700 else 2701 DemandedRHS.setBit((unsigned)M % NumElts); 2702 } 2703 // Known bits are the values that are shared by every demanded element. 2704 if (!!DemandedLHS) { 2705 SDValue LHS = Op.getOperand(0); 2706 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2707 Known.One &= Known2.One; 2708 Known.Zero &= Known2.Zero; 2709 } 2710 // If we don't know any bits, early out. 2711 if (Known.isUnknown()) 2712 break; 2713 if (!!DemandedRHS) { 2714 SDValue RHS = Op.getOperand(1); 2715 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2716 Known.One &= Known2.One; 2717 Known.Zero &= Known2.Zero; 2718 } 2719 break; 2720 } 2721 case ISD::CONCAT_VECTORS: { 2722 // Split DemandedElts and test each of the demanded subvectors. 2723 Known.Zero.setAllBits(); Known.One.setAllBits(); 2724 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2725 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2726 unsigned NumSubVectors = Op.getNumOperands(); 2727 for (unsigned i = 0; i != NumSubVectors; ++i) { 2728 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2729 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2730 if (!!DemandedSub) { 2731 SDValue Sub = Op.getOperand(i); 2732 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2733 Known.One &= Known2.One; 2734 Known.Zero &= Known2.Zero; 2735 } 2736 // If we don't know any bits, early out. 2737 if (Known.isUnknown()) 2738 break; 2739 } 2740 break; 2741 } 2742 case ISD::INSERT_SUBVECTOR: { 2743 // Demand any elements from the subvector and the remainder from the src its 2744 // inserted into. 2745 SDValue Src = Op.getOperand(0); 2746 SDValue Sub = Op.getOperand(1); 2747 uint64_t Idx = Op.getConstantOperandVal(2); 2748 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2749 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2750 APInt DemandedSrcElts = DemandedElts; 2751 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2752 2753 Known.One.setAllBits(); 2754 Known.Zero.setAllBits(); 2755 if (!!DemandedSubElts) { 2756 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2757 if (Known.isUnknown()) 2758 break; // early-out. 2759 } 2760 if (!!DemandedSrcElts) { 2761 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2762 Known.One &= Known2.One; 2763 Known.Zero &= Known2.Zero; 2764 } 2765 break; 2766 } 2767 case ISD::EXTRACT_SUBVECTOR: { 2768 // Offset the demanded elts by the subvector index. 2769 SDValue Src = Op.getOperand(0); 2770 // Bail until we can represent demanded elements for scalable vectors. 2771 if (Src.getValueType().isScalableVector()) 2772 break; 2773 uint64_t Idx = Op.getConstantOperandVal(1); 2774 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2775 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2776 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2777 break; 2778 } 2779 case ISD::SCALAR_TO_VECTOR: { 2780 // We know about scalar_to_vector as much as we know about it source, 2781 // which becomes the first element of otherwise unknown vector. 2782 if (DemandedElts != 1) 2783 break; 2784 2785 SDValue N0 = Op.getOperand(0); 2786 Known = computeKnownBits(N0, Depth + 1); 2787 if (N0.getValueSizeInBits() != BitWidth) 2788 Known = Known.trunc(BitWidth); 2789 2790 break; 2791 } 2792 case ISD::BITCAST: { 2793 SDValue N0 = Op.getOperand(0); 2794 EVT SubVT = N0.getValueType(); 2795 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2796 2797 // Ignore bitcasts from unsupported types. 2798 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2799 break; 2800 2801 // Fast handling of 'identity' bitcasts. 2802 if (BitWidth == SubBitWidth) { 2803 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2804 break; 2805 } 2806 2807 bool IsLE = getDataLayout().isLittleEndian(); 2808 2809 // Bitcast 'small element' vector to 'large element' scalar/vector. 2810 if ((BitWidth % SubBitWidth) == 0) { 2811 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2812 2813 // Collect known bits for the (larger) output by collecting the known 2814 // bits from each set of sub elements and shift these into place. 2815 // We need to separately call computeKnownBits for each set of 2816 // sub elements as the knownbits for each is likely to be different. 2817 unsigned SubScale = BitWidth / SubBitWidth; 2818 APInt SubDemandedElts(NumElts * SubScale, 0); 2819 for (unsigned i = 0; i != NumElts; ++i) 2820 if (DemandedElts[i]) 2821 SubDemandedElts.setBit(i * SubScale); 2822 2823 for (unsigned i = 0; i != SubScale; ++i) { 2824 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2825 Depth + 1); 2826 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2827 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2828 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2829 } 2830 } 2831 2832 // Bitcast 'large element' scalar/vector to 'small element' vector. 2833 if ((SubBitWidth % BitWidth) == 0) { 2834 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2835 2836 // Collect known bits for the (smaller) output by collecting the known 2837 // bits from the overlapping larger input elements and extracting the 2838 // sub sections we actually care about. 2839 unsigned SubScale = SubBitWidth / BitWidth; 2840 APInt SubDemandedElts(NumElts / SubScale, 0); 2841 for (unsigned i = 0; i != NumElts; ++i) 2842 if (DemandedElts[i]) 2843 SubDemandedElts.setBit(i / SubScale); 2844 2845 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2846 2847 Known.Zero.setAllBits(); Known.One.setAllBits(); 2848 for (unsigned i = 0; i != NumElts; ++i) 2849 if (DemandedElts[i]) { 2850 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2851 unsigned Offset = (Shifts % SubScale) * BitWidth; 2852 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2853 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2854 // If we don't know any bits, early out. 2855 if (Known.isUnknown()) 2856 break; 2857 } 2858 } 2859 break; 2860 } 2861 case ISD::AND: 2862 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2863 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2864 2865 Known &= Known2; 2866 break; 2867 case ISD::OR: 2868 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2869 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2870 2871 Known |= Known2; 2872 break; 2873 case ISD::XOR: 2874 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2875 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2876 2877 Known ^= Known2; 2878 break; 2879 case ISD::MUL: { 2880 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2881 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2882 2883 // If low bits are zero in either operand, output low known-0 bits. 2884 // Also compute a conservative estimate for high known-0 bits. 2885 // More trickiness is possible, but this is sufficient for the 2886 // interesting case of alignment computation. 2887 unsigned TrailZ = Known.countMinTrailingZeros() + 2888 Known2.countMinTrailingZeros(); 2889 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2890 Known2.countMinLeadingZeros(), 2891 BitWidth) - BitWidth; 2892 2893 Known.resetAll(); 2894 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2895 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2896 break; 2897 } 2898 case ISD::UDIV: { 2899 // For the purposes of computing leading zeros we can conservatively 2900 // treat a udiv as a logical right shift by the power of 2 known to 2901 // be less than the denominator. 2902 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2903 unsigned LeadZ = Known2.countMinLeadingZeros(); 2904 2905 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2906 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2907 if (RHSMaxLeadingZeros != BitWidth) 2908 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2909 2910 Known.Zero.setHighBits(LeadZ); 2911 break; 2912 } 2913 case ISD::SELECT: 2914 case ISD::VSELECT: 2915 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2916 // If we don't know any bits, early out. 2917 if (Known.isUnknown()) 2918 break; 2919 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2920 2921 // Only known if known in both the LHS and RHS. 2922 Known.One &= Known2.One; 2923 Known.Zero &= Known2.Zero; 2924 break; 2925 case ISD::SELECT_CC: 2926 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2927 // If we don't know any bits, early out. 2928 if (Known.isUnknown()) 2929 break; 2930 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2931 2932 // Only known if known in both the LHS and RHS. 2933 Known.One &= Known2.One; 2934 Known.Zero &= Known2.Zero; 2935 break; 2936 case ISD::SMULO: 2937 case ISD::UMULO: 2938 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2939 if (Op.getResNo() != 1) 2940 break; 2941 // The boolean result conforms to getBooleanContents. 2942 // If we know the result of a setcc has the top bits zero, use this info. 2943 // We know that we have an integer-based boolean since these operations 2944 // are only available for integer. 2945 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2946 TargetLowering::ZeroOrOneBooleanContent && 2947 BitWidth > 1) 2948 Known.Zero.setBitsFrom(1); 2949 break; 2950 case ISD::SETCC: 2951 case ISD::STRICT_FSETCC: 2952 case ISD::STRICT_FSETCCS: { 2953 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2954 // If we know the result of a setcc has the top bits zero, use this info. 2955 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2956 TargetLowering::ZeroOrOneBooleanContent && 2957 BitWidth > 1) 2958 Known.Zero.setBitsFrom(1); 2959 break; 2960 } 2961 case ISD::SHL: 2962 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2963 2964 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2965 unsigned Shift = ShAmt->getZExtValue(); 2966 Known.Zero <<= Shift; 2967 Known.One <<= Shift; 2968 // Low bits are known zero. 2969 Known.Zero.setLowBits(Shift); 2970 break; 2971 } 2972 2973 // No matter the shift amount, the trailing zeros will stay zero. 2974 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2975 Known.One.clearAllBits(); 2976 2977 // Minimum shift low bits are known zero. 2978 if (const APInt *ShMinAmt = 2979 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2980 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2981 break; 2982 case ISD::SRL: 2983 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2984 2985 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2986 unsigned Shift = ShAmt->getZExtValue(); 2987 Known.Zero.lshrInPlace(Shift); 2988 Known.One.lshrInPlace(Shift); 2989 // High bits are known zero. 2990 Known.Zero.setHighBits(Shift); 2991 break; 2992 } 2993 2994 // No matter the shift amount, the leading zeros will stay zero. 2995 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2996 Known.One.clearAllBits(); 2997 2998 // Minimum shift high bits are known zero. 2999 if (const APInt *ShMinAmt = 3000 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3001 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3002 break; 3003 case ISD::SRA: 3004 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3005 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3006 unsigned Shift = ShAmt->getZExtValue(); 3007 // Sign extend known zero/one bit (else is unknown). 3008 Known.Zero.ashrInPlace(Shift); 3009 Known.One.ashrInPlace(Shift); 3010 } 3011 break; 3012 case ISD::FSHL: 3013 case ISD::FSHR: 3014 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3015 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3016 3017 // For fshl, 0-shift returns the 1st arg. 3018 // For fshr, 0-shift returns the 2nd arg. 3019 if (Amt == 0) { 3020 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3021 DemandedElts, Depth + 1); 3022 break; 3023 } 3024 3025 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3026 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3027 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3028 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3029 if (Opcode == ISD::FSHL) { 3030 Known.One <<= Amt; 3031 Known.Zero <<= Amt; 3032 Known2.One.lshrInPlace(BitWidth - Amt); 3033 Known2.Zero.lshrInPlace(BitWidth - Amt); 3034 } else { 3035 Known.One <<= BitWidth - Amt; 3036 Known.Zero <<= BitWidth - Amt; 3037 Known2.One.lshrInPlace(Amt); 3038 Known2.Zero.lshrInPlace(Amt); 3039 } 3040 Known.One |= Known2.One; 3041 Known.Zero |= Known2.Zero; 3042 } 3043 break; 3044 case ISD::SIGN_EXTEND_INREG: { 3045 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3046 unsigned EBits = EVT.getScalarSizeInBits(); 3047 3048 // Sign extension. Compute the demanded bits in the result that are not 3049 // present in the input. 3050 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 3051 3052 APInt InSignMask = APInt::getSignMask(EBits); 3053 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3054 3055 // If the sign extended bits are demanded, we know that the sign 3056 // bit is demanded. 3057 InSignMask = InSignMask.zext(BitWidth); 3058 if (NewBits.getBoolValue()) 3059 InputDemandedBits |= InSignMask; 3060 3061 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3062 Known.One &= InputDemandedBits; 3063 Known.Zero &= InputDemandedBits; 3064 3065 // If the sign bit of the input is known set or clear, then we know the 3066 // top bits of the result. 3067 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3068 Known.Zero |= NewBits; 3069 Known.One &= ~NewBits; 3070 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3071 Known.One |= NewBits; 3072 Known.Zero &= ~NewBits; 3073 } else { // Input sign bit unknown 3074 Known.Zero &= ~NewBits; 3075 Known.One &= ~NewBits; 3076 } 3077 break; 3078 } 3079 case ISD::CTTZ: 3080 case ISD::CTTZ_ZERO_UNDEF: { 3081 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3082 // If we have a known 1, its position is our upper bound. 3083 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3084 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3085 Known.Zero.setBitsFrom(LowBits); 3086 break; 3087 } 3088 case ISD::CTLZ: 3089 case ISD::CTLZ_ZERO_UNDEF: { 3090 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3091 // If we have a known 1, its position is our upper bound. 3092 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3093 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3094 Known.Zero.setBitsFrom(LowBits); 3095 break; 3096 } 3097 case ISD::CTPOP: { 3098 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3099 // If we know some of the bits are zero, they can't be one. 3100 unsigned PossibleOnes = Known2.countMaxPopulation(); 3101 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3102 break; 3103 } 3104 case ISD::PARITY: { 3105 // Parity returns 0 everywhere but the LSB. 3106 Known.Zero.setBitsFrom(1); 3107 break; 3108 } 3109 case ISD::LOAD: { 3110 LoadSDNode *LD = cast<LoadSDNode>(Op); 3111 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3112 if (ISD::isNON_EXTLoad(LD) && Cst) { 3113 // Determine any common known bits from the loaded constant pool value. 3114 Type *CstTy = Cst->getType(); 3115 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3116 // If its a vector splat, then we can (quickly) reuse the scalar path. 3117 // NOTE: We assume all elements match and none are UNDEF. 3118 if (CstTy->isVectorTy()) { 3119 if (const Constant *Splat = Cst->getSplatValue()) { 3120 Cst = Splat; 3121 CstTy = Cst->getType(); 3122 } 3123 } 3124 // TODO - do we need to handle different bitwidths? 3125 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3126 // Iterate across all vector elements finding common known bits. 3127 Known.One.setAllBits(); 3128 Known.Zero.setAllBits(); 3129 for (unsigned i = 0; i != NumElts; ++i) { 3130 if (!DemandedElts[i]) 3131 continue; 3132 if (Constant *Elt = Cst->getAggregateElement(i)) { 3133 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3134 const APInt &Value = CInt->getValue(); 3135 Known.One &= Value; 3136 Known.Zero &= ~Value; 3137 continue; 3138 } 3139 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3140 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3141 Known.One &= Value; 3142 Known.Zero &= ~Value; 3143 continue; 3144 } 3145 } 3146 Known.One.clearAllBits(); 3147 Known.Zero.clearAllBits(); 3148 break; 3149 } 3150 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3151 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3152 const APInt &Value = CInt->getValue(); 3153 Known.One = Value; 3154 Known.Zero = ~Value; 3155 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3156 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3157 Known.One = Value; 3158 Known.Zero = ~Value; 3159 } 3160 } 3161 } 3162 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3163 // If this is a ZEXTLoad and we are looking at the loaded value. 3164 EVT VT = LD->getMemoryVT(); 3165 unsigned MemBits = VT.getScalarSizeInBits(); 3166 Known.Zero.setBitsFrom(MemBits); 3167 } else if (const MDNode *Ranges = LD->getRanges()) { 3168 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3169 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3170 } 3171 break; 3172 } 3173 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3174 EVT InVT = Op.getOperand(0).getValueType(); 3175 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3176 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3177 Known = Known.zext(BitWidth); 3178 break; 3179 } 3180 case ISD::ZERO_EXTEND: { 3181 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3182 Known = Known.zext(BitWidth); 3183 break; 3184 } 3185 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3186 EVT InVT = Op.getOperand(0).getValueType(); 3187 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3188 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3189 // If the sign bit is known to be zero or one, then sext will extend 3190 // it to the top bits, else it will just zext. 3191 Known = Known.sext(BitWidth); 3192 break; 3193 } 3194 case ISD::SIGN_EXTEND: { 3195 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3196 // If the sign bit is known to be zero or one, then sext will extend 3197 // it to the top bits, else it will just zext. 3198 Known = Known.sext(BitWidth); 3199 break; 3200 } 3201 case ISD::ANY_EXTEND_VECTOR_INREG: { 3202 EVT InVT = Op.getOperand(0).getValueType(); 3203 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3204 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3205 Known = Known.anyext(BitWidth); 3206 break; 3207 } 3208 case ISD::ANY_EXTEND: { 3209 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3210 Known = Known.anyext(BitWidth); 3211 break; 3212 } 3213 case ISD::TRUNCATE: { 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 Known = Known.trunc(BitWidth); 3216 break; 3217 } 3218 case ISD::AssertZext: { 3219 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3220 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3221 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3222 Known.Zero |= (~InMask); 3223 Known.One &= (~Known.Zero); 3224 break; 3225 } 3226 case ISD::AssertAlign: { 3227 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3228 assert(LogOfAlign != 0); 3229 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3230 // well as clearing one bits. 3231 Known.Zero.setLowBits(LogOfAlign); 3232 Known.One.clearLowBits(LogOfAlign); 3233 break; 3234 } 3235 case ISD::FGETSIGN: 3236 // All bits are zero except the low bit. 3237 Known.Zero.setBitsFrom(1); 3238 break; 3239 case ISD::USUBO: 3240 case ISD::SSUBO: 3241 if (Op.getResNo() == 1) { 3242 // If we know the result of a setcc has the top bits zero, use this info. 3243 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3244 TargetLowering::ZeroOrOneBooleanContent && 3245 BitWidth > 1) 3246 Known.Zero.setBitsFrom(1); 3247 break; 3248 } 3249 LLVM_FALLTHROUGH; 3250 case ISD::SUB: 3251 case ISD::SUBC: { 3252 assert(Op.getResNo() == 0 && 3253 "We only compute knownbits for the difference here."); 3254 3255 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3256 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3257 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3258 Known, Known2); 3259 break; 3260 } 3261 case ISD::UADDO: 3262 case ISD::SADDO: 3263 case ISD::ADDCARRY: 3264 if (Op.getResNo() == 1) { 3265 // If we know the result of a setcc has the top bits zero, use this info. 3266 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3267 TargetLowering::ZeroOrOneBooleanContent && 3268 BitWidth > 1) 3269 Known.Zero.setBitsFrom(1); 3270 break; 3271 } 3272 LLVM_FALLTHROUGH; 3273 case ISD::ADD: 3274 case ISD::ADDC: 3275 case ISD::ADDE: { 3276 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3277 3278 // With ADDE and ADDCARRY, a carry bit may be added in. 3279 KnownBits Carry(1); 3280 if (Opcode == ISD::ADDE) 3281 // Can't track carry from glue, set carry to unknown. 3282 Carry.resetAll(); 3283 else if (Opcode == ISD::ADDCARRY) 3284 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3285 // the trouble (how often will we find a known carry bit). And I haven't 3286 // tested this very much yet, but something like this might work: 3287 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3288 // Carry = Carry.zextOrTrunc(1, false); 3289 Carry.resetAll(); 3290 else 3291 Carry.setAllZero(); 3292 3293 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3294 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3295 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3296 break; 3297 } 3298 case ISD::SREM: 3299 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3300 const APInt &RA = Rem->getAPIntValue().abs(); 3301 if (RA.isPowerOf2()) { 3302 APInt LowBits = RA - 1; 3303 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3304 3305 // The low bits of the first operand are unchanged by the srem. 3306 Known.Zero = Known2.Zero & LowBits; 3307 Known.One = Known2.One & LowBits; 3308 3309 // If the first operand is non-negative or has all low bits zero, then 3310 // the upper bits are all zero. 3311 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3312 Known.Zero |= ~LowBits; 3313 3314 // If the first operand is negative and not all low bits are zero, then 3315 // the upper bits are all one. 3316 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3317 Known.One |= ~LowBits; 3318 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3319 } 3320 } 3321 break; 3322 case ISD::UREM: { 3323 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3324 const APInt &RA = Rem->getAPIntValue(); 3325 if (RA.isPowerOf2()) { 3326 APInt LowBits = (RA - 1); 3327 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3328 3329 // The upper bits are all zero, the lower ones are unchanged. 3330 Known.Zero = Known2.Zero | ~LowBits; 3331 Known.One = Known2.One & LowBits; 3332 break; 3333 } 3334 } 3335 3336 // Since the result is less than or equal to either operand, any leading 3337 // zero bits in either operand must also exist in the result. 3338 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3339 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3340 3341 uint32_t Leaders = 3342 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3343 Known.resetAll(); 3344 Known.Zero.setHighBits(Leaders); 3345 break; 3346 } 3347 case ISD::EXTRACT_ELEMENT: { 3348 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3349 const unsigned Index = Op.getConstantOperandVal(1); 3350 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3351 3352 // Remove low part of known bits mask 3353 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3354 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3355 3356 // Remove high part of known bit mask 3357 Known = Known.trunc(EltBitWidth); 3358 break; 3359 } 3360 case ISD::EXTRACT_VECTOR_ELT: { 3361 SDValue InVec = Op.getOperand(0); 3362 SDValue EltNo = Op.getOperand(1); 3363 EVT VecVT = InVec.getValueType(); 3364 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3365 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3366 3367 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3368 // anything about the extended bits. 3369 if (BitWidth > EltBitWidth) 3370 Known = Known.trunc(EltBitWidth); 3371 3372 // If we know the element index, just demand that vector element, else for 3373 // an unknown element index, ignore DemandedElts and demand them all. 3374 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3375 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3376 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3377 DemandedSrcElts = 3378 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3379 3380 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3381 if (BitWidth > EltBitWidth) 3382 Known = Known.anyext(BitWidth); 3383 break; 3384 } 3385 case ISD::INSERT_VECTOR_ELT: { 3386 // If we know the element index, split the demand between the 3387 // source vector and the inserted element, otherwise assume we need 3388 // the original demanded vector elements and the value. 3389 SDValue InVec = Op.getOperand(0); 3390 SDValue InVal = Op.getOperand(1); 3391 SDValue EltNo = Op.getOperand(2); 3392 bool DemandedVal = true; 3393 APInt DemandedVecElts = DemandedElts; 3394 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3395 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3396 unsigned EltIdx = CEltNo->getZExtValue(); 3397 DemandedVal = !!DemandedElts[EltIdx]; 3398 DemandedVecElts.clearBit(EltIdx); 3399 } 3400 Known.One.setAllBits(); 3401 Known.Zero.setAllBits(); 3402 if (DemandedVal) { 3403 Known2 = computeKnownBits(InVal, Depth + 1); 3404 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3405 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3406 } 3407 if (!!DemandedVecElts) { 3408 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3409 Known.One &= Known2.One; 3410 Known.Zero &= Known2.Zero; 3411 } 3412 break; 3413 } 3414 case ISD::BITREVERSE: { 3415 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3416 Known = Known2.reverseBits(); 3417 break; 3418 } 3419 case ISD::BSWAP: { 3420 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3421 Known = Known2.byteSwap(); 3422 break; 3423 } 3424 case ISD::ABS: { 3425 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3426 Known = Known2.abs(); 3427 break; 3428 } 3429 case ISD::UMIN: { 3430 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3431 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3432 Known = KnownBits::umin(Known, Known2); 3433 break; 3434 } 3435 case ISD::UMAX: { 3436 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3437 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3438 Known = KnownBits::umax(Known, Known2); 3439 break; 3440 } 3441 case ISD::SMIN: 3442 case ISD::SMAX: { 3443 // If we have a clamp pattern, we know that the number of sign bits will be 3444 // the minimum of the clamp min/max range. 3445 bool IsMax = (Opcode == ISD::SMAX); 3446 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3447 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3448 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3449 CstHigh = 3450 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3451 if (CstLow && CstHigh) { 3452 if (!IsMax) 3453 std::swap(CstLow, CstHigh); 3454 3455 const APInt &ValueLow = CstLow->getAPIntValue(); 3456 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3457 if (ValueLow.sle(ValueHigh)) { 3458 unsigned LowSignBits = ValueLow.getNumSignBits(); 3459 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3460 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3461 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3462 Known.One.setHighBits(MinSignBits); 3463 break; 3464 } 3465 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3466 Known.Zero.setHighBits(MinSignBits); 3467 break; 3468 } 3469 } 3470 } 3471 3472 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3473 if (Known.isUnknown()) break; // Early-out 3474 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3475 if (IsMax) 3476 Known = KnownBits::smax(Known, Known2); 3477 else 3478 Known = KnownBits::smin(Known, Known2); 3479 break; 3480 } 3481 case ISD::FrameIndex: 3482 case ISD::TargetFrameIndex: 3483 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3484 Known, getMachineFunction()); 3485 break; 3486 3487 default: 3488 if (Opcode < ISD::BUILTIN_OP_END) 3489 break; 3490 LLVM_FALLTHROUGH; 3491 case ISD::INTRINSIC_WO_CHAIN: 3492 case ISD::INTRINSIC_W_CHAIN: 3493 case ISD::INTRINSIC_VOID: 3494 // Allow the target to implement this method for its nodes. 3495 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3496 break; 3497 } 3498 3499 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3500 return Known; 3501 } 3502 3503 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3504 SDValue N1) const { 3505 // X + 0 never overflow 3506 if (isNullConstant(N1)) 3507 return OFK_Never; 3508 3509 KnownBits N1Known = computeKnownBits(N1); 3510 if (N1Known.Zero.getBoolValue()) { 3511 KnownBits N0Known = computeKnownBits(N0); 3512 3513 bool overflow; 3514 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3515 if (!overflow) 3516 return OFK_Never; 3517 } 3518 3519 // mulhi + 1 never overflow 3520 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3521 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3522 return OFK_Never; 3523 3524 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3525 KnownBits N0Known = computeKnownBits(N0); 3526 3527 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3528 return OFK_Never; 3529 } 3530 3531 return OFK_Sometime; 3532 } 3533 3534 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3535 EVT OpVT = Val.getValueType(); 3536 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3537 3538 // Is the constant a known power of 2? 3539 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3540 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3541 3542 // A left-shift of a constant one will have exactly one bit set because 3543 // shifting the bit off the end is undefined. 3544 if (Val.getOpcode() == ISD::SHL) { 3545 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3546 if (C && C->getAPIntValue() == 1) 3547 return true; 3548 } 3549 3550 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3551 // one bit set. 3552 if (Val.getOpcode() == ISD::SRL) { 3553 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3554 if (C && C->getAPIntValue().isSignMask()) 3555 return true; 3556 } 3557 3558 // Are all operands of a build vector constant powers of two? 3559 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3560 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3561 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3562 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3563 return false; 3564 })) 3565 return true; 3566 3567 // More could be done here, though the above checks are enough 3568 // to handle some common cases. 3569 3570 // Fall back to computeKnownBits to catch other known cases. 3571 KnownBits Known = computeKnownBits(Val); 3572 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3573 } 3574 3575 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3576 EVT VT = Op.getValueType(); 3577 3578 // TODO: Assume we don't know anything for now. 3579 if (VT.isScalableVector()) 3580 return 1; 3581 3582 APInt DemandedElts = VT.isVector() 3583 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3584 : APInt(1, 1); 3585 return ComputeNumSignBits(Op, DemandedElts, Depth); 3586 } 3587 3588 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3589 unsigned Depth) const { 3590 EVT VT = Op.getValueType(); 3591 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3592 unsigned VTBits = VT.getScalarSizeInBits(); 3593 unsigned NumElts = DemandedElts.getBitWidth(); 3594 unsigned Tmp, Tmp2; 3595 unsigned FirstAnswer = 1; 3596 3597 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3598 const APInt &Val = C->getAPIntValue(); 3599 return Val.getNumSignBits(); 3600 } 3601 3602 if (Depth >= MaxRecursionDepth) 3603 return 1; // Limit search depth. 3604 3605 if (!DemandedElts || VT.isScalableVector()) 3606 return 1; // No demanded elts, better to assume we don't know anything. 3607 3608 unsigned Opcode = Op.getOpcode(); 3609 switch (Opcode) { 3610 default: break; 3611 case ISD::AssertSext: 3612 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3613 return VTBits-Tmp+1; 3614 case ISD::AssertZext: 3615 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3616 return VTBits-Tmp; 3617 3618 case ISD::BUILD_VECTOR: 3619 Tmp = VTBits; 3620 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3621 if (!DemandedElts[i]) 3622 continue; 3623 3624 SDValue SrcOp = Op.getOperand(i); 3625 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3626 3627 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3628 if (SrcOp.getValueSizeInBits() != VTBits) { 3629 assert(SrcOp.getValueSizeInBits() > VTBits && 3630 "Expected BUILD_VECTOR implicit truncation"); 3631 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3632 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3633 } 3634 Tmp = std::min(Tmp, Tmp2); 3635 } 3636 return Tmp; 3637 3638 case ISD::VECTOR_SHUFFLE: { 3639 // Collect the minimum number of sign bits that are shared by every vector 3640 // element referenced by the shuffle. 3641 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3642 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3643 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3644 for (unsigned i = 0; i != NumElts; ++i) { 3645 int M = SVN->getMaskElt(i); 3646 if (!DemandedElts[i]) 3647 continue; 3648 // For UNDEF elements, we don't know anything about the common state of 3649 // the shuffle result. 3650 if (M < 0) 3651 return 1; 3652 if ((unsigned)M < NumElts) 3653 DemandedLHS.setBit((unsigned)M % NumElts); 3654 else 3655 DemandedRHS.setBit((unsigned)M % NumElts); 3656 } 3657 Tmp = std::numeric_limits<unsigned>::max(); 3658 if (!!DemandedLHS) 3659 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3660 if (!!DemandedRHS) { 3661 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3662 Tmp = std::min(Tmp, Tmp2); 3663 } 3664 // If we don't know anything, early out and try computeKnownBits fall-back. 3665 if (Tmp == 1) 3666 break; 3667 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3668 return Tmp; 3669 } 3670 3671 case ISD::BITCAST: { 3672 SDValue N0 = Op.getOperand(0); 3673 EVT SrcVT = N0.getValueType(); 3674 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3675 3676 // Ignore bitcasts from unsupported types.. 3677 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3678 break; 3679 3680 // Fast handling of 'identity' bitcasts. 3681 if (VTBits == SrcBits) 3682 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3683 3684 bool IsLE = getDataLayout().isLittleEndian(); 3685 3686 // Bitcast 'large element' scalar/vector to 'small element' vector. 3687 if ((SrcBits % VTBits) == 0) { 3688 assert(VT.isVector() && "Expected bitcast to vector"); 3689 3690 unsigned Scale = SrcBits / VTBits; 3691 APInt SrcDemandedElts(NumElts / Scale, 0); 3692 for (unsigned i = 0; i != NumElts; ++i) 3693 if (DemandedElts[i]) 3694 SrcDemandedElts.setBit(i / Scale); 3695 3696 // Fast case - sign splat can be simply split across the small elements. 3697 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3698 if (Tmp == SrcBits) 3699 return VTBits; 3700 3701 // Slow case - determine how far the sign extends into each sub-element. 3702 Tmp2 = VTBits; 3703 for (unsigned i = 0; i != NumElts; ++i) 3704 if (DemandedElts[i]) { 3705 unsigned SubOffset = i % Scale; 3706 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3707 SubOffset = SubOffset * VTBits; 3708 if (Tmp <= SubOffset) 3709 return 1; 3710 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3711 } 3712 return Tmp2; 3713 } 3714 break; 3715 } 3716 3717 case ISD::SIGN_EXTEND: 3718 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3719 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3720 case ISD::SIGN_EXTEND_INREG: 3721 // Max of the input and what this extends. 3722 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3723 Tmp = VTBits-Tmp+1; 3724 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3725 return std::max(Tmp, Tmp2); 3726 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3727 SDValue Src = Op.getOperand(0); 3728 EVT SrcVT = Src.getValueType(); 3729 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3730 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3731 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3732 } 3733 case ISD::SRA: 3734 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3735 // SRA X, C -> adds C sign bits. 3736 if (const APInt *ShAmt = 3737 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3738 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3739 return Tmp; 3740 case ISD::SHL: 3741 if (const APInt *ShAmt = 3742 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3743 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3744 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3745 if (ShAmt->ult(Tmp)) 3746 return Tmp - ShAmt->getZExtValue(); 3747 } 3748 break; 3749 case ISD::AND: 3750 case ISD::OR: 3751 case ISD::XOR: // NOT is handled here. 3752 // Logical binary ops preserve the number of sign bits at the worst. 3753 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3754 if (Tmp != 1) { 3755 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3756 FirstAnswer = std::min(Tmp, Tmp2); 3757 // We computed what we know about the sign bits as our first 3758 // answer. Now proceed to the generic code that uses 3759 // computeKnownBits, and pick whichever answer is better. 3760 } 3761 break; 3762 3763 case ISD::SELECT: 3764 case ISD::VSELECT: 3765 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3766 if (Tmp == 1) return 1; // Early out. 3767 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3768 return std::min(Tmp, Tmp2); 3769 case ISD::SELECT_CC: 3770 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3771 if (Tmp == 1) return 1; // Early out. 3772 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3773 return std::min(Tmp, Tmp2); 3774 3775 case ISD::SMIN: 3776 case ISD::SMAX: { 3777 // If we have a clamp pattern, we know that the number of sign bits will be 3778 // the minimum of the clamp min/max range. 3779 bool IsMax = (Opcode == ISD::SMAX); 3780 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3781 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3782 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3783 CstHigh = 3784 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3785 if (CstLow && CstHigh) { 3786 if (!IsMax) 3787 std::swap(CstLow, CstHigh); 3788 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3789 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3790 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3791 return std::min(Tmp, Tmp2); 3792 } 3793 } 3794 3795 // Fallback - just get the minimum number of sign bits of the operands. 3796 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3797 if (Tmp == 1) 3798 return 1; // Early out. 3799 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3800 return std::min(Tmp, Tmp2); 3801 } 3802 case ISD::UMIN: 3803 case ISD::UMAX: 3804 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3805 if (Tmp == 1) 3806 return 1; // Early out. 3807 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3808 return std::min(Tmp, Tmp2); 3809 case ISD::SADDO: 3810 case ISD::UADDO: 3811 case ISD::SSUBO: 3812 case ISD::USUBO: 3813 case ISD::SMULO: 3814 case ISD::UMULO: 3815 if (Op.getResNo() != 1) 3816 break; 3817 // The boolean result conforms to getBooleanContents. Fall through. 3818 // If setcc returns 0/-1, all bits are sign bits. 3819 // We know that we have an integer-based boolean since these operations 3820 // are only available for integer. 3821 if (TLI->getBooleanContents(VT.isVector(), false) == 3822 TargetLowering::ZeroOrNegativeOneBooleanContent) 3823 return VTBits; 3824 break; 3825 case ISD::SETCC: 3826 case ISD::STRICT_FSETCC: 3827 case ISD::STRICT_FSETCCS: { 3828 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3829 // If setcc returns 0/-1, all bits are sign bits. 3830 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3831 TargetLowering::ZeroOrNegativeOneBooleanContent) 3832 return VTBits; 3833 break; 3834 } 3835 case ISD::ROTL: 3836 case ISD::ROTR: 3837 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3838 3839 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3840 if (Tmp == VTBits) 3841 return VTBits; 3842 3843 if (ConstantSDNode *C = 3844 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3845 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3846 3847 // Handle rotate right by N like a rotate left by 32-N. 3848 if (Opcode == ISD::ROTR) 3849 RotAmt = (VTBits - RotAmt) % VTBits; 3850 3851 // If we aren't rotating out all of the known-in sign bits, return the 3852 // number that are left. This handles rotl(sext(x), 1) for example. 3853 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3854 } 3855 break; 3856 case ISD::ADD: 3857 case ISD::ADDC: 3858 // Add can have at most one carry bit. Thus we know that the output 3859 // is, at worst, one more bit than the inputs. 3860 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3861 if (Tmp == 1) return 1; // Early out. 3862 3863 // Special case decrementing a value (ADD X, -1): 3864 if (ConstantSDNode *CRHS = 3865 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3866 if (CRHS->isAllOnesValue()) { 3867 KnownBits Known = 3868 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3869 3870 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3871 // sign bits set. 3872 if ((Known.Zero | 1).isAllOnesValue()) 3873 return VTBits; 3874 3875 // If we are subtracting one from a positive number, there is no carry 3876 // out of the result. 3877 if (Known.isNonNegative()) 3878 return Tmp; 3879 } 3880 3881 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3882 if (Tmp2 == 1) return 1; // Early out. 3883 return std::min(Tmp, Tmp2) - 1; 3884 case ISD::SUB: 3885 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3886 if (Tmp2 == 1) return 1; // Early out. 3887 3888 // Handle NEG. 3889 if (ConstantSDNode *CLHS = 3890 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3891 if (CLHS->isNullValue()) { 3892 KnownBits Known = 3893 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3894 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3895 // sign bits set. 3896 if ((Known.Zero | 1).isAllOnesValue()) 3897 return VTBits; 3898 3899 // If the input is known to be positive (the sign bit is known clear), 3900 // the output of the NEG has the same number of sign bits as the input. 3901 if (Known.isNonNegative()) 3902 return Tmp2; 3903 3904 // Otherwise, we treat this like a SUB. 3905 } 3906 3907 // Sub can have at most one carry bit. Thus we know that the output 3908 // is, at worst, one more bit than the inputs. 3909 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3910 if (Tmp == 1) return 1; // Early out. 3911 return std::min(Tmp, Tmp2) - 1; 3912 case ISD::MUL: { 3913 // The output of the Mul can be at most twice the valid bits in the inputs. 3914 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3915 if (SignBitsOp0 == 1) 3916 break; 3917 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3918 if (SignBitsOp1 == 1) 3919 break; 3920 unsigned OutValidBits = 3921 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3922 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3923 } 3924 case ISD::TRUNCATE: { 3925 // Check if the sign bits of source go down as far as the truncated value. 3926 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3927 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3928 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3929 return NumSrcSignBits - (NumSrcBits - VTBits); 3930 break; 3931 } 3932 case ISD::EXTRACT_ELEMENT: { 3933 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3934 const int BitWidth = Op.getValueSizeInBits(); 3935 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3936 3937 // Get reverse index (starting from 1), Op1 value indexes elements from 3938 // little end. Sign starts at big end. 3939 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3940 3941 // If the sign portion ends in our element the subtraction gives correct 3942 // result. Otherwise it gives either negative or > bitwidth result 3943 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3944 } 3945 case ISD::INSERT_VECTOR_ELT: { 3946 // If we know the element index, split the demand between the 3947 // source vector and the inserted element, otherwise assume we need 3948 // the original demanded vector elements and the value. 3949 SDValue InVec = Op.getOperand(0); 3950 SDValue InVal = Op.getOperand(1); 3951 SDValue EltNo = Op.getOperand(2); 3952 bool DemandedVal = true; 3953 APInt DemandedVecElts = DemandedElts; 3954 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3955 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3956 unsigned EltIdx = CEltNo->getZExtValue(); 3957 DemandedVal = !!DemandedElts[EltIdx]; 3958 DemandedVecElts.clearBit(EltIdx); 3959 } 3960 Tmp = std::numeric_limits<unsigned>::max(); 3961 if (DemandedVal) { 3962 // TODO - handle implicit truncation of inserted elements. 3963 if (InVal.getScalarValueSizeInBits() != VTBits) 3964 break; 3965 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3966 Tmp = std::min(Tmp, Tmp2); 3967 } 3968 if (!!DemandedVecElts) { 3969 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3970 Tmp = std::min(Tmp, Tmp2); 3971 } 3972 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3973 return Tmp; 3974 } 3975 case ISD::EXTRACT_VECTOR_ELT: { 3976 SDValue InVec = Op.getOperand(0); 3977 SDValue EltNo = Op.getOperand(1); 3978 EVT VecVT = InVec.getValueType(); 3979 const unsigned BitWidth = Op.getValueSizeInBits(); 3980 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3981 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3982 3983 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3984 // anything about sign bits. But if the sizes match we can derive knowledge 3985 // about sign bits from the vector operand. 3986 if (BitWidth != EltBitWidth) 3987 break; 3988 3989 // If we know the element index, just demand that vector element, else for 3990 // an unknown element index, ignore DemandedElts and demand them all. 3991 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3992 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3993 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3994 DemandedSrcElts = 3995 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3996 3997 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3998 } 3999 case ISD::EXTRACT_SUBVECTOR: { 4000 // Offset the demanded elts by the subvector index. 4001 SDValue Src = Op.getOperand(0); 4002 // Bail until we can represent demanded elements for scalable vectors. 4003 if (Src.getValueType().isScalableVector()) 4004 break; 4005 uint64_t Idx = Op.getConstantOperandVal(1); 4006 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4007 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4008 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4009 } 4010 case ISD::CONCAT_VECTORS: { 4011 // Determine the minimum number of sign bits across all demanded 4012 // elts of the input vectors. Early out if the result is already 1. 4013 Tmp = std::numeric_limits<unsigned>::max(); 4014 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4015 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4016 unsigned NumSubVectors = Op.getNumOperands(); 4017 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4018 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 4019 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 4020 if (!DemandedSub) 4021 continue; 4022 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4023 Tmp = std::min(Tmp, Tmp2); 4024 } 4025 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4026 return Tmp; 4027 } 4028 case ISD::INSERT_SUBVECTOR: { 4029 // Demand any elements from the subvector and the remainder from the src its 4030 // inserted into. 4031 SDValue Src = Op.getOperand(0); 4032 SDValue Sub = Op.getOperand(1); 4033 uint64_t Idx = Op.getConstantOperandVal(2); 4034 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4035 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4036 APInt DemandedSrcElts = DemandedElts; 4037 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4038 4039 Tmp = std::numeric_limits<unsigned>::max(); 4040 if (!!DemandedSubElts) { 4041 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4042 if (Tmp == 1) 4043 return 1; // early-out 4044 } 4045 if (!!DemandedSrcElts) { 4046 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4047 Tmp = std::min(Tmp, Tmp2); 4048 } 4049 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4050 return Tmp; 4051 } 4052 } 4053 4054 // If we are looking at the loaded value of the SDNode. 4055 if (Op.getResNo() == 0) { 4056 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4057 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4058 unsigned ExtType = LD->getExtensionType(); 4059 switch (ExtType) { 4060 default: break; 4061 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4062 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4063 return VTBits - Tmp + 1; 4064 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4065 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4066 return VTBits - Tmp; 4067 case ISD::NON_EXTLOAD: 4068 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4069 // We only need to handle vectors - computeKnownBits should handle 4070 // scalar cases. 4071 Type *CstTy = Cst->getType(); 4072 if (CstTy->isVectorTy() && 4073 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4074 Tmp = VTBits; 4075 for (unsigned i = 0; i != NumElts; ++i) { 4076 if (!DemandedElts[i]) 4077 continue; 4078 if (Constant *Elt = Cst->getAggregateElement(i)) { 4079 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4080 const APInt &Value = CInt->getValue(); 4081 Tmp = std::min(Tmp, Value.getNumSignBits()); 4082 continue; 4083 } 4084 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4085 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4086 Tmp = std::min(Tmp, Value.getNumSignBits()); 4087 continue; 4088 } 4089 } 4090 // Unknown type. Conservatively assume no bits match sign bit. 4091 return 1; 4092 } 4093 return Tmp; 4094 } 4095 } 4096 break; 4097 } 4098 } 4099 } 4100 4101 // Allow the target to implement this method for its nodes. 4102 if (Opcode >= ISD::BUILTIN_OP_END || 4103 Opcode == ISD::INTRINSIC_WO_CHAIN || 4104 Opcode == ISD::INTRINSIC_W_CHAIN || 4105 Opcode == ISD::INTRINSIC_VOID) { 4106 unsigned NumBits = 4107 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4108 if (NumBits > 1) 4109 FirstAnswer = std::max(FirstAnswer, NumBits); 4110 } 4111 4112 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4113 // use this information. 4114 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4115 4116 APInt Mask; 4117 if (Known.isNonNegative()) { // sign bit is 0 4118 Mask = Known.Zero; 4119 } else if (Known.isNegative()) { // sign bit is 1; 4120 Mask = Known.One; 4121 } else { 4122 // Nothing known. 4123 return FirstAnswer; 4124 } 4125 4126 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4127 // the number of identical bits in the top of the input value. 4128 Mask <<= Mask.getBitWidth()-VTBits; 4129 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4130 } 4131 4132 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4133 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4134 !isa<ConstantSDNode>(Op.getOperand(1))) 4135 return false; 4136 4137 if (Op.getOpcode() == ISD::OR && 4138 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4139 return false; 4140 4141 return true; 4142 } 4143 4144 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4145 // If we're told that NaNs won't happen, assume they won't. 4146 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4147 return true; 4148 4149 if (Depth >= MaxRecursionDepth) 4150 return false; // Limit search depth. 4151 4152 // TODO: Handle vectors. 4153 // If the value is a constant, we can obviously see if it is a NaN or not. 4154 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4155 return !C->getValueAPF().isNaN() || 4156 (SNaN && !C->getValueAPF().isSignaling()); 4157 } 4158 4159 unsigned Opcode = Op.getOpcode(); 4160 switch (Opcode) { 4161 case ISD::FADD: 4162 case ISD::FSUB: 4163 case ISD::FMUL: 4164 case ISD::FDIV: 4165 case ISD::FREM: 4166 case ISD::FSIN: 4167 case ISD::FCOS: { 4168 if (SNaN) 4169 return true; 4170 // TODO: Need isKnownNeverInfinity 4171 return false; 4172 } 4173 case ISD::FCANONICALIZE: 4174 case ISD::FEXP: 4175 case ISD::FEXP2: 4176 case ISD::FTRUNC: 4177 case ISD::FFLOOR: 4178 case ISD::FCEIL: 4179 case ISD::FROUND: 4180 case ISD::FROUNDEVEN: 4181 case ISD::FRINT: 4182 case ISD::FNEARBYINT: { 4183 if (SNaN) 4184 return true; 4185 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4186 } 4187 case ISD::FABS: 4188 case ISD::FNEG: 4189 case ISD::FCOPYSIGN: { 4190 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4191 } 4192 case ISD::SELECT: 4193 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4194 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4195 case ISD::FP_EXTEND: 4196 case ISD::FP_ROUND: { 4197 if (SNaN) 4198 return true; 4199 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4200 } 4201 case ISD::SINT_TO_FP: 4202 case ISD::UINT_TO_FP: 4203 return true; 4204 case ISD::FMA: 4205 case ISD::FMAD: { 4206 if (SNaN) 4207 return true; 4208 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4209 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4210 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4211 } 4212 case ISD::FSQRT: // Need is known positive 4213 case ISD::FLOG: 4214 case ISD::FLOG2: 4215 case ISD::FLOG10: 4216 case ISD::FPOWI: 4217 case ISD::FPOW: { 4218 if (SNaN) 4219 return true; 4220 // TODO: Refine on operand 4221 return false; 4222 } 4223 case ISD::FMINNUM: 4224 case ISD::FMAXNUM: { 4225 // Only one needs to be known not-nan, since it will be returned if the 4226 // other ends up being one. 4227 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4228 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4229 } 4230 case ISD::FMINNUM_IEEE: 4231 case ISD::FMAXNUM_IEEE: { 4232 if (SNaN) 4233 return true; 4234 // This can return a NaN if either operand is an sNaN, or if both operands 4235 // are NaN. 4236 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4237 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4238 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4239 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4240 } 4241 case ISD::FMINIMUM: 4242 case ISD::FMAXIMUM: { 4243 // TODO: Does this quiet or return the origina NaN as-is? 4244 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4245 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4246 } 4247 case ISD::EXTRACT_VECTOR_ELT: { 4248 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4249 } 4250 default: 4251 if (Opcode >= ISD::BUILTIN_OP_END || 4252 Opcode == ISD::INTRINSIC_WO_CHAIN || 4253 Opcode == ISD::INTRINSIC_W_CHAIN || 4254 Opcode == ISD::INTRINSIC_VOID) { 4255 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4256 } 4257 4258 return false; 4259 } 4260 } 4261 4262 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4263 assert(Op.getValueType().isFloatingPoint() && 4264 "Floating point type expected"); 4265 4266 // If the value is a constant, we can obviously see if it is a zero or not. 4267 // TODO: Add BuildVector support. 4268 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4269 return !C->isZero(); 4270 return false; 4271 } 4272 4273 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4274 assert(!Op.getValueType().isFloatingPoint() && 4275 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4276 4277 // If the value is a constant, we can obviously see if it is a zero or not. 4278 if (ISD::matchUnaryPredicate( 4279 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4280 return true; 4281 4282 // TODO: Recognize more cases here. 4283 switch (Op.getOpcode()) { 4284 default: break; 4285 case ISD::OR: 4286 if (isKnownNeverZero(Op.getOperand(1)) || 4287 isKnownNeverZero(Op.getOperand(0))) 4288 return true; 4289 break; 4290 } 4291 4292 return false; 4293 } 4294 4295 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4296 // Check the obvious case. 4297 if (A == B) return true; 4298 4299 // For for negative and positive zero. 4300 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4301 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4302 if (CA->isZero() && CB->isZero()) return true; 4303 4304 // Otherwise they may not be equal. 4305 return false; 4306 } 4307 4308 // FIXME: unify with llvm::haveNoCommonBitsSet. 4309 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4310 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4311 assert(A.getValueType() == B.getValueType() && 4312 "Values must have the same type"); 4313 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4314 } 4315 4316 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4317 ArrayRef<SDValue> Ops, 4318 SelectionDAG &DAG) { 4319 int NumOps = Ops.size(); 4320 assert(NumOps != 0 && "Can't build an empty vector!"); 4321 assert(!VT.isScalableVector() && 4322 "BUILD_VECTOR cannot be used with scalable types"); 4323 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4324 "Incorrect element count in BUILD_VECTOR!"); 4325 4326 // BUILD_VECTOR of UNDEFs is UNDEF. 4327 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4328 return DAG.getUNDEF(VT); 4329 4330 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4331 SDValue IdentitySrc; 4332 bool IsIdentity = true; 4333 for (int i = 0; i != NumOps; ++i) { 4334 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4335 Ops[i].getOperand(0).getValueType() != VT || 4336 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4337 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4338 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4339 IsIdentity = false; 4340 break; 4341 } 4342 IdentitySrc = Ops[i].getOperand(0); 4343 } 4344 if (IsIdentity) 4345 return IdentitySrc; 4346 4347 return SDValue(); 4348 } 4349 4350 /// Try to simplify vector concatenation to an input value, undef, or build 4351 /// vector. 4352 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4353 ArrayRef<SDValue> Ops, 4354 SelectionDAG &DAG) { 4355 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4356 assert(llvm::all_of(Ops, 4357 [Ops](SDValue Op) { 4358 return Ops[0].getValueType() == Op.getValueType(); 4359 }) && 4360 "Concatenation of vectors with inconsistent value types!"); 4361 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4362 VT.getVectorElementCount() && 4363 "Incorrect element count in vector concatenation!"); 4364 4365 if (Ops.size() == 1) 4366 return Ops[0]; 4367 4368 // Concat of UNDEFs is UNDEF. 4369 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4370 return DAG.getUNDEF(VT); 4371 4372 // Scan the operands and look for extract operations from a single source 4373 // that correspond to insertion at the same location via this concatenation: 4374 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4375 SDValue IdentitySrc; 4376 bool IsIdentity = true; 4377 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4378 SDValue Op = Ops[i]; 4379 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4380 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4381 Op.getOperand(0).getValueType() != VT || 4382 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4383 Op.getConstantOperandVal(1) != IdentityIndex) { 4384 IsIdentity = false; 4385 break; 4386 } 4387 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4388 "Unexpected identity source vector for concat of extracts"); 4389 IdentitySrc = Op.getOperand(0); 4390 } 4391 if (IsIdentity) { 4392 assert(IdentitySrc && "Failed to set source vector of extracts"); 4393 return IdentitySrc; 4394 } 4395 4396 // The code below this point is only designed to work for fixed width 4397 // vectors, so we bail out for now. 4398 if (VT.isScalableVector()) 4399 return SDValue(); 4400 4401 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4402 // simplified to one big BUILD_VECTOR. 4403 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4404 EVT SVT = VT.getScalarType(); 4405 SmallVector<SDValue, 16> Elts; 4406 for (SDValue Op : Ops) { 4407 EVT OpVT = Op.getValueType(); 4408 if (Op.isUndef()) 4409 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4410 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4411 Elts.append(Op->op_begin(), Op->op_end()); 4412 else 4413 return SDValue(); 4414 } 4415 4416 // BUILD_VECTOR requires all inputs to be of the same type, find the 4417 // maximum type and extend them all. 4418 for (SDValue Op : Elts) 4419 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4420 4421 if (SVT.bitsGT(VT.getScalarType())) { 4422 for (SDValue &Op : Elts) { 4423 if (Op.isUndef()) 4424 Op = DAG.getUNDEF(SVT); 4425 else 4426 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4427 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4428 : DAG.getSExtOrTrunc(Op, DL, SVT); 4429 } 4430 } 4431 4432 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4433 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4434 return V; 4435 } 4436 4437 /// Gets or creates the specified node. 4438 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4439 FoldingSetNodeID ID; 4440 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4441 void *IP = nullptr; 4442 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4443 return SDValue(E, 0); 4444 4445 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4446 getVTList(VT)); 4447 CSEMap.InsertNode(N, IP); 4448 4449 InsertNode(N); 4450 SDValue V = SDValue(N, 0); 4451 NewSDValueDbgMsg(V, "Creating new node: ", this); 4452 return V; 4453 } 4454 4455 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4456 SDValue Operand) { 4457 SDNodeFlags Flags; 4458 if (Inserter) 4459 Flags = Inserter->getFlags(); 4460 return getNode(Opcode, DL, VT, Operand, Flags); 4461 } 4462 4463 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4464 SDValue Operand, const SDNodeFlags Flags) { 4465 // Constant fold unary operations with an integer constant operand. Even 4466 // opaque constant will be folded, because the folding of unary operations 4467 // doesn't create new constants with different values. Nevertheless, the 4468 // opaque flag is preserved during folding to prevent future folding with 4469 // other constants. 4470 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4471 const APInt &Val = C->getAPIntValue(); 4472 switch (Opcode) { 4473 default: break; 4474 case ISD::SIGN_EXTEND: 4475 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4476 C->isTargetOpcode(), C->isOpaque()); 4477 case ISD::TRUNCATE: 4478 if (C->isOpaque()) 4479 break; 4480 LLVM_FALLTHROUGH; 4481 case ISD::ANY_EXTEND: 4482 case ISD::ZERO_EXTEND: 4483 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4484 C->isTargetOpcode(), C->isOpaque()); 4485 case ISD::UINT_TO_FP: 4486 case ISD::SINT_TO_FP: { 4487 APFloat apf(EVTToAPFloatSemantics(VT), 4488 APInt::getNullValue(VT.getSizeInBits())); 4489 (void)apf.convertFromAPInt(Val, 4490 Opcode==ISD::SINT_TO_FP, 4491 APFloat::rmNearestTiesToEven); 4492 return getConstantFP(apf, DL, VT); 4493 } 4494 case ISD::BITCAST: 4495 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4496 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4497 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4498 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4499 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4500 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4501 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4502 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4503 break; 4504 case ISD::ABS: 4505 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4506 C->isOpaque()); 4507 case ISD::BITREVERSE: 4508 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4509 C->isOpaque()); 4510 case ISD::BSWAP: 4511 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4512 C->isOpaque()); 4513 case ISD::CTPOP: 4514 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4515 C->isOpaque()); 4516 case ISD::CTLZ: 4517 case ISD::CTLZ_ZERO_UNDEF: 4518 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4519 C->isOpaque()); 4520 case ISD::CTTZ: 4521 case ISD::CTTZ_ZERO_UNDEF: 4522 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4523 C->isOpaque()); 4524 case ISD::FP16_TO_FP: { 4525 bool Ignored; 4526 APFloat FPV(APFloat::IEEEhalf(), 4527 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4528 4529 // This can return overflow, underflow, or inexact; we don't care. 4530 // FIXME need to be more flexible about rounding mode. 4531 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4532 APFloat::rmNearestTiesToEven, &Ignored); 4533 return getConstantFP(FPV, DL, VT); 4534 } 4535 } 4536 } 4537 4538 // Constant fold unary operations with a floating point constant operand. 4539 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4540 APFloat V = C->getValueAPF(); // make copy 4541 switch (Opcode) { 4542 case ISD::FNEG: 4543 V.changeSign(); 4544 return getConstantFP(V, DL, VT); 4545 case ISD::FABS: 4546 V.clearSign(); 4547 return getConstantFP(V, DL, VT); 4548 case ISD::FCEIL: { 4549 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4550 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4551 return getConstantFP(V, DL, VT); 4552 break; 4553 } 4554 case ISD::FTRUNC: { 4555 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4556 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4557 return getConstantFP(V, DL, VT); 4558 break; 4559 } 4560 case ISD::FFLOOR: { 4561 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4562 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4563 return getConstantFP(V, DL, VT); 4564 break; 4565 } 4566 case ISD::FP_EXTEND: { 4567 bool ignored; 4568 // This can return overflow, underflow, or inexact; we don't care. 4569 // FIXME need to be more flexible about rounding mode. 4570 (void)V.convert(EVTToAPFloatSemantics(VT), 4571 APFloat::rmNearestTiesToEven, &ignored); 4572 return getConstantFP(V, DL, VT); 4573 } 4574 case ISD::FP_TO_SINT: 4575 case ISD::FP_TO_UINT: { 4576 bool ignored; 4577 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4578 // FIXME need to be more flexible about rounding mode. 4579 APFloat::opStatus s = 4580 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4581 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4582 break; 4583 return getConstant(IntVal, DL, VT); 4584 } 4585 case ISD::BITCAST: 4586 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4587 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4588 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4589 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4590 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4591 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4592 break; 4593 case ISD::FP_TO_FP16: { 4594 bool Ignored; 4595 // This can return overflow, underflow, or inexact; we don't care. 4596 // FIXME need to be more flexible about rounding mode. 4597 (void)V.convert(APFloat::IEEEhalf(), 4598 APFloat::rmNearestTiesToEven, &Ignored); 4599 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4600 } 4601 } 4602 } 4603 4604 // Constant fold unary operations with a vector integer or float operand. 4605 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4606 if (BV->isConstant()) { 4607 switch (Opcode) { 4608 default: 4609 // FIXME: Entirely reasonable to perform folding of other unary 4610 // operations here as the need arises. 4611 break; 4612 case ISD::FNEG: 4613 case ISD::FABS: 4614 case ISD::FCEIL: 4615 case ISD::FTRUNC: 4616 case ISD::FFLOOR: 4617 case ISD::FP_EXTEND: 4618 case ISD::FP_TO_SINT: 4619 case ISD::FP_TO_UINT: 4620 case ISD::TRUNCATE: 4621 case ISD::ANY_EXTEND: 4622 case ISD::ZERO_EXTEND: 4623 case ISD::SIGN_EXTEND: 4624 case ISD::UINT_TO_FP: 4625 case ISD::SINT_TO_FP: 4626 case ISD::ABS: 4627 case ISD::BITREVERSE: 4628 case ISD::BSWAP: 4629 case ISD::CTLZ: 4630 case ISD::CTLZ_ZERO_UNDEF: 4631 case ISD::CTTZ: 4632 case ISD::CTTZ_ZERO_UNDEF: 4633 case ISD::CTPOP: { 4634 SDValue Ops = { Operand }; 4635 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4636 return Fold; 4637 } 4638 } 4639 } 4640 } 4641 4642 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4643 switch (Opcode) { 4644 case ISD::FREEZE: 4645 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4646 break; 4647 case ISD::TokenFactor: 4648 case ISD::MERGE_VALUES: 4649 case ISD::CONCAT_VECTORS: 4650 return Operand; // Factor, merge or concat of one node? No need. 4651 case ISD::BUILD_VECTOR: { 4652 // Attempt to simplify BUILD_VECTOR. 4653 SDValue Ops[] = {Operand}; 4654 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4655 return V; 4656 break; 4657 } 4658 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4659 case ISD::FP_EXTEND: 4660 assert(VT.isFloatingPoint() && 4661 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4662 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4663 assert((!VT.isVector() || 4664 VT.getVectorElementCount() == 4665 Operand.getValueType().getVectorElementCount()) && 4666 "Vector element count mismatch!"); 4667 assert(Operand.getValueType().bitsLT(VT) && 4668 "Invalid fpext node, dst < src!"); 4669 if (Operand.isUndef()) 4670 return getUNDEF(VT); 4671 break; 4672 case ISD::FP_TO_SINT: 4673 case ISD::FP_TO_UINT: 4674 if (Operand.isUndef()) 4675 return getUNDEF(VT); 4676 break; 4677 case ISD::SINT_TO_FP: 4678 case ISD::UINT_TO_FP: 4679 // [us]itofp(undef) = 0, because the result value is bounded. 4680 if (Operand.isUndef()) 4681 return getConstantFP(0.0, DL, VT); 4682 break; 4683 case ISD::SIGN_EXTEND: 4684 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4685 "Invalid SIGN_EXTEND!"); 4686 assert(VT.isVector() == Operand.getValueType().isVector() && 4687 "SIGN_EXTEND result type type should be vector iff the operand " 4688 "type is vector!"); 4689 if (Operand.getValueType() == VT) return Operand; // noop extension 4690 assert((!VT.isVector() || 4691 VT.getVectorElementCount() == 4692 Operand.getValueType().getVectorElementCount()) && 4693 "Vector element count mismatch!"); 4694 assert(Operand.getValueType().bitsLT(VT) && 4695 "Invalid sext node, dst < src!"); 4696 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4697 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4698 else if (OpOpcode == ISD::UNDEF) 4699 // sext(undef) = 0, because the top bits will all be the same. 4700 return getConstant(0, DL, VT); 4701 break; 4702 case ISD::ZERO_EXTEND: 4703 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4704 "Invalid ZERO_EXTEND!"); 4705 assert(VT.isVector() == Operand.getValueType().isVector() && 4706 "ZERO_EXTEND result type type should be vector iff the operand " 4707 "type is vector!"); 4708 if (Operand.getValueType() == VT) return Operand; // noop extension 4709 assert((!VT.isVector() || 4710 VT.getVectorElementCount() == 4711 Operand.getValueType().getVectorElementCount()) && 4712 "Vector element count mismatch!"); 4713 assert(Operand.getValueType().bitsLT(VT) && 4714 "Invalid zext node, dst < src!"); 4715 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4716 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4717 else if (OpOpcode == ISD::UNDEF) 4718 // zext(undef) = 0, because the top bits will be zero. 4719 return getConstant(0, DL, VT); 4720 break; 4721 case ISD::ANY_EXTEND: 4722 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4723 "Invalid ANY_EXTEND!"); 4724 assert(VT.isVector() == Operand.getValueType().isVector() && 4725 "ANY_EXTEND result type type should be vector iff the operand " 4726 "type is vector!"); 4727 if (Operand.getValueType() == VT) return Operand; // noop extension 4728 assert((!VT.isVector() || 4729 VT.getVectorElementCount() == 4730 Operand.getValueType().getVectorElementCount()) && 4731 "Vector element count mismatch!"); 4732 assert(Operand.getValueType().bitsLT(VT) && 4733 "Invalid anyext node, dst < src!"); 4734 4735 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4736 OpOpcode == ISD::ANY_EXTEND) 4737 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4738 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4739 else if (OpOpcode == ISD::UNDEF) 4740 return getUNDEF(VT); 4741 4742 // (ext (trunc x)) -> x 4743 if (OpOpcode == ISD::TRUNCATE) { 4744 SDValue OpOp = Operand.getOperand(0); 4745 if (OpOp.getValueType() == VT) { 4746 transferDbgValues(Operand, OpOp); 4747 return OpOp; 4748 } 4749 } 4750 break; 4751 case ISD::TRUNCATE: 4752 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4753 "Invalid TRUNCATE!"); 4754 assert(VT.isVector() == Operand.getValueType().isVector() && 4755 "TRUNCATE result type type should be vector iff the operand " 4756 "type is vector!"); 4757 if (Operand.getValueType() == VT) return Operand; // noop truncate 4758 assert((!VT.isVector() || 4759 VT.getVectorElementCount() == 4760 Operand.getValueType().getVectorElementCount()) && 4761 "Vector element count mismatch!"); 4762 assert(Operand.getValueType().bitsGT(VT) && 4763 "Invalid truncate node, src < dst!"); 4764 if (OpOpcode == ISD::TRUNCATE) 4765 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4766 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4767 OpOpcode == ISD::ANY_EXTEND) { 4768 // If the source is smaller than the dest, we still need an extend. 4769 if (Operand.getOperand(0).getValueType().getScalarType() 4770 .bitsLT(VT.getScalarType())) 4771 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4772 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4773 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4774 return Operand.getOperand(0); 4775 } 4776 if (OpOpcode == ISD::UNDEF) 4777 return getUNDEF(VT); 4778 break; 4779 case ISD::ANY_EXTEND_VECTOR_INREG: 4780 case ISD::ZERO_EXTEND_VECTOR_INREG: 4781 case ISD::SIGN_EXTEND_VECTOR_INREG: 4782 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4783 assert(Operand.getValueType().bitsLE(VT) && 4784 "The input must be the same size or smaller than the result."); 4785 assert(VT.getVectorNumElements() < 4786 Operand.getValueType().getVectorNumElements() && 4787 "The destination vector type must have fewer lanes than the input."); 4788 break; 4789 case ISD::ABS: 4790 assert(VT.isInteger() && VT == Operand.getValueType() && 4791 "Invalid ABS!"); 4792 if (OpOpcode == ISD::UNDEF) 4793 return getUNDEF(VT); 4794 break; 4795 case ISD::BSWAP: 4796 assert(VT.isInteger() && VT == Operand.getValueType() && 4797 "Invalid BSWAP!"); 4798 assert((VT.getScalarSizeInBits() % 16 == 0) && 4799 "BSWAP types must be a multiple of 16 bits!"); 4800 if (OpOpcode == ISD::UNDEF) 4801 return getUNDEF(VT); 4802 break; 4803 case ISD::BITREVERSE: 4804 assert(VT.isInteger() && VT == Operand.getValueType() && 4805 "Invalid BITREVERSE!"); 4806 if (OpOpcode == ISD::UNDEF) 4807 return getUNDEF(VT); 4808 break; 4809 case ISD::BITCAST: 4810 // Basic sanity checking. 4811 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4812 "Cannot BITCAST between types of different sizes!"); 4813 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4814 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4815 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4816 if (OpOpcode == ISD::UNDEF) 4817 return getUNDEF(VT); 4818 break; 4819 case ISD::SCALAR_TO_VECTOR: 4820 assert(VT.isVector() && !Operand.getValueType().isVector() && 4821 (VT.getVectorElementType() == Operand.getValueType() || 4822 (VT.getVectorElementType().isInteger() && 4823 Operand.getValueType().isInteger() && 4824 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4825 "Illegal SCALAR_TO_VECTOR node!"); 4826 if (OpOpcode == ISD::UNDEF) 4827 return getUNDEF(VT); 4828 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4829 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4830 isa<ConstantSDNode>(Operand.getOperand(1)) && 4831 Operand.getConstantOperandVal(1) == 0 && 4832 Operand.getOperand(0).getValueType() == VT) 4833 return Operand.getOperand(0); 4834 break; 4835 case ISD::FNEG: 4836 // Negation of an unknown bag of bits is still completely undefined. 4837 if (OpOpcode == ISD::UNDEF) 4838 return getUNDEF(VT); 4839 4840 if (OpOpcode == ISD::FNEG) // --X -> X 4841 return Operand.getOperand(0); 4842 break; 4843 case ISD::FABS: 4844 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4845 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4846 break; 4847 case ISD::VSCALE: 4848 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4849 break; 4850 } 4851 4852 SDNode *N; 4853 SDVTList VTs = getVTList(VT); 4854 SDValue Ops[] = {Operand}; 4855 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4856 FoldingSetNodeID ID; 4857 AddNodeIDNode(ID, Opcode, VTs, Ops); 4858 void *IP = nullptr; 4859 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4860 E->intersectFlagsWith(Flags); 4861 return SDValue(E, 0); 4862 } 4863 4864 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4865 N->setFlags(Flags); 4866 createOperands(N, Ops); 4867 CSEMap.InsertNode(N, IP); 4868 } else { 4869 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4870 createOperands(N, Ops); 4871 } 4872 4873 InsertNode(N); 4874 SDValue V = SDValue(N, 0); 4875 NewSDValueDbgMsg(V, "Creating new node: ", this); 4876 return V; 4877 } 4878 4879 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4880 const APInt &C2) { 4881 switch (Opcode) { 4882 case ISD::ADD: return C1 + C2; 4883 case ISD::SUB: return C1 - C2; 4884 case ISD::MUL: return C1 * C2; 4885 case ISD::AND: return C1 & C2; 4886 case ISD::OR: return C1 | C2; 4887 case ISD::XOR: return C1 ^ C2; 4888 case ISD::SHL: return C1 << C2; 4889 case ISD::SRL: return C1.lshr(C2); 4890 case ISD::SRA: return C1.ashr(C2); 4891 case ISD::ROTL: return C1.rotl(C2); 4892 case ISD::ROTR: return C1.rotr(C2); 4893 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4894 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4895 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4896 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4897 case ISD::SADDSAT: return C1.sadd_sat(C2); 4898 case ISD::UADDSAT: return C1.uadd_sat(C2); 4899 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4900 case ISD::USUBSAT: return C1.usub_sat(C2); 4901 case ISD::UDIV: 4902 if (!C2.getBoolValue()) 4903 break; 4904 return C1.udiv(C2); 4905 case ISD::UREM: 4906 if (!C2.getBoolValue()) 4907 break; 4908 return C1.urem(C2); 4909 case ISD::SDIV: 4910 if (!C2.getBoolValue()) 4911 break; 4912 return C1.sdiv(C2); 4913 case ISD::SREM: 4914 if (!C2.getBoolValue()) 4915 break; 4916 return C1.srem(C2); 4917 } 4918 return llvm::None; 4919 } 4920 4921 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4922 const GlobalAddressSDNode *GA, 4923 const SDNode *N2) { 4924 if (GA->getOpcode() != ISD::GlobalAddress) 4925 return SDValue(); 4926 if (!TLI->isOffsetFoldingLegal(GA)) 4927 return SDValue(); 4928 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4929 if (!C2) 4930 return SDValue(); 4931 int64_t Offset = C2->getSExtValue(); 4932 switch (Opcode) { 4933 case ISD::ADD: break; 4934 case ISD::SUB: Offset = -uint64_t(Offset); break; 4935 default: return SDValue(); 4936 } 4937 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4938 GA->getOffset() + uint64_t(Offset)); 4939 } 4940 4941 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4942 switch (Opcode) { 4943 case ISD::SDIV: 4944 case ISD::UDIV: 4945 case ISD::SREM: 4946 case ISD::UREM: { 4947 // If a divisor is zero/undef or any element of a divisor vector is 4948 // zero/undef, the whole op is undef. 4949 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4950 SDValue Divisor = Ops[1]; 4951 if (Divisor.isUndef() || isNullConstant(Divisor)) 4952 return true; 4953 4954 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4955 llvm::any_of(Divisor->op_values(), 4956 [](SDValue V) { return V.isUndef() || 4957 isNullConstant(V); }); 4958 // TODO: Handle signed overflow. 4959 } 4960 // TODO: Handle oversized shifts. 4961 default: 4962 return false; 4963 } 4964 } 4965 4966 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4967 EVT VT, ArrayRef<SDValue> Ops) { 4968 // If the opcode is a target-specific ISD node, there's nothing we can 4969 // do here and the operand rules may not line up with the below, so 4970 // bail early. 4971 if (Opcode >= ISD::BUILTIN_OP_END) 4972 return SDValue(); 4973 4974 // For now, the array Ops should only contain two values. 4975 // This enforcement will be removed once this function is merged with 4976 // FoldConstantVectorArithmetic 4977 if (Ops.size() != 2) 4978 return SDValue(); 4979 4980 if (isUndef(Opcode, Ops)) 4981 return getUNDEF(VT); 4982 4983 SDNode *N1 = Ops[0].getNode(); 4984 SDNode *N2 = Ops[1].getNode(); 4985 4986 // Handle the case of two scalars. 4987 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4988 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4989 if (C1->isOpaque() || C2->isOpaque()) 4990 return SDValue(); 4991 4992 Optional<APInt> FoldAttempt = 4993 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4994 if (!FoldAttempt) 4995 return SDValue(); 4996 4997 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4998 assert((!Folded || !VT.isVector()) && 4999 "Can't fold vectors ops with scalar operands"); 5000 return Folded; 5001 } 5002 } 5003 5004 // fold (add Sym, c) -> Sym+c 5005 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5006 return FoldSymbolOffset(Opcode, VT, GA, N2); 5007 if (TLI->isCommutativeBinOp(Opcode)) 5008 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5009 return FoldSymbolOffset(Opcode, VT, GA, N1); 5010 5011 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5012 // vector width, however we should be able to do constant folds involving 5013 // splat vector nodes too. 5014 if (VT.isScalableVector()) 5015 return SDValue(); 5016 5017 // For fixed width vectors, extract each constant element and fold them 5018 // individually. Either input may be an undef value. 5019 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5020 if (!BV1 && !N1->isUndef()) 5021 return SDValue(); 5022 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5023 if (!BV2 && !N2->isUndef()) 5024 return SDValue(); 5025 // If both operands are undef, that's handled the same way as scalars. 5026 if (!BV1 && !BV2) 5027 return SDValue(); 5028 5029 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 5030 "Vector binop with different number of elements in operands?"); 5031 5032 EVT SVT = VT.getScalarType(); 5033 EVT LegalSVT = SVT; 5034 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5035 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5036 if (LegalSVT.bitsLT(SVT)) 5037 return SDValue(); 5038 } 5039 SmallVector<SDValue, 4> Outputs; 5040 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5041 for (unsigned I = 0; I != NumOps; ++I) { 5042 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5043 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5044 if (SVT.isInteger()) { 5045 if (V1->getValueType(0).bitsGT(SVT)) 5046 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5047 if (V2->getValueType(0).bitsGT(SVT)) 5048 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5049 } 5050 5051 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5052 return SDValue(); 5053 5054 // Fold one vector element. 5055 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5056 if (LegalSVT != SVT) 5057 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5058 5059 // Scalar folding only succeeded if the result is a constant or UNDEF. 5060 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5061 ScalarResult.getOpcode() != ISD::ConstantFP) 5062 return SDValue(); 5063 Outputs.push_back(ScalarResult); 5064 } 5065 5066 assert(VT.getVectorNumElements() == Outputs.size() && 5067 "Vector size mismatch!"); 5068 5069 // We may have a vector type but a scalar result. Create a splat. 5070 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5071 5072 // Build a big vector out of the scalar elements we generated. 5073 return getBuildVector(VT, SDLoc(), Outputs); 5074 } 5075 5076 // TODO: Merge with FoldConstantArithmetic 5077 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5078 const SDLoc &DL, EVT VT, 5079 ArrayRef<SDValue> Ops, 5080 const SDNodeFlags Flags) { 5081 // If the opcode is a target-specific ISD node, there's nothing we can 5082 // do here and the operand rules may not line up with the below, so 5083 // bail early. 5084 if (Opcode >= ISD::BUILTIN_OP_END) 5085 return SDValue(); 5086 5087 if (isUndef(Opcode, Ops)) 5088 return getUNDEF(VT); 5089 5090 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5091 if (!VT.isVector()) 5092 return SDValue(); 5093 5094 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5095 // vector width, however we should be able to do constant folds involving 5096 // splat vector nodes too. 5097 if (VT.isScalableVector()) 5098 return SDValue(); 5099 5100 // From this point onwards all vectors are assumed to be fixed width. 5101 unsigned NumElts = VT.getVectorNumElements(); 5102 5103 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5104 return !Op.getValueType().isVector() || 5105 Op.getValueType().getVectorNumElements() == NumElts; 5106 }; 5107 5108 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5109 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5110 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5111 (BV && BV->isConstant()); 5112 }; 5113 5114 // All operands must be vector types with the same number of elements as 5115 // the result type and must be either UNDEF or a build vector of constant 5116 // or UNDEF scalars. 5117 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5118 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5119 return SDValue(); 5120 5121 // If we are comparing vectors, then the result needs to be a i1 boolean 5122 // that is then sign-extended back to the legal result type. 5123 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5124 5125 // Find legal integer scalar type for constant promotion and 5126 // ensure that its scalar size is at least as large as source. 5127 EVT LegalSVT = VT.getScalarType(); 5128 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5129 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5130 if (LegalSVT.bitsLT(VT.getScalarType())) 5131 return SDValue(); 5132 } 5133 5134 // Constant fold each scalar lane separately. 5135 SmallVector<SDValue, 4> ScalarResults; 5136 for (unsigned i = 0; i != NumElts; i++) { 5137 SmallVector<SDValue, 4> ScalarOps; 5138 for (SDValue Op : Ops) { 5139 EVT InSVT = Op.getValueType().getScalarType(); 5140 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5141 if (!InBV) { 5142 // We've checked that this is UNDEF or a constant of some kind. 5143 if (Op.isUndef()) 5144 ScalarOps.push_back(getUNDEF(InSVT)); 5145 else 5146 ScalarOps.push_back(Op); 5147 continue; 5148 } 5149 5150 SDValue ScalarOp = InBV->getOperand(i); 5151 EVT ScalarVT = ScalarOp.getValueType(); 5152 5153 // Build vector (integer) scalar operands may need implicit 5154 // truncation - do this before constant folding. 5155 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5156 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5157 5158 ScalarOps.push_back(ScalarOp); 5159 } 5160 5161 // Constant fold the scalar operands. 5162 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5163 5164 // Legalize the (integer) scalar constant if necessary. 5165 if (LegalSVT != SVT) 5166 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5167 5168 // Scalar folding only succeeded if the result is a constant or UNDEF. 5169 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5170 ScalarResult.getOpcode() != ISD::ConstantFP) 5171 return SDValue(); 5172 ScalarResults.push_back(ScalarResult); 5173 } 5174 5175 SDValue V = getBuildVector(VT, DL, ScalarResults); 5176 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5177 return V; 5178 } 5179 5180 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5181 EVT VT, SDValue N1, SDValue N2) { 5182 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5183 // should. That will require dealing with a potentially non-default 5184 // rounding mode, checking the "opStatus" return value from the APFloat 5185 // math calculations, and possibly other variations. 5186 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5187 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5188 if (N1CFP && N2CFP) { 5189 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5190 switch (Opcode) { 5191 case ISD::FADD: 5192 C1.add(C2, APFloat::rmNearestTiesToEven); 5193 return getConstantFP(C1, DL, VT); 5194 case ISD::FSUB: 5195 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5196 return getConstantFP(C1, DL, VT); 5197 case ISD::FMUL: 5198 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5199 return getConstantFP(C1, DL, VT); 5200 case ISD::FDIV: 5201 C1.divide(C2, APFloat::rmNearestTiesToEven); 5202 return getConstantFP(C1, DL, VT); 5203 case ISD::FREM: 5204 C1.mod(C2); 5205 return getConstantFP(C1, DL, VT); 5206 case ISD::FCOPYSIGN: 5207 C1.copySign(C2); 5208 return getConstantFP(C1, DL, VT); 5209 default: break; 5210 } 5211 } 5212 if (N1CFP && Opcode == ISD::FP_ROUND) { 5213 APFloat C1 = N1CFP->getValueAPF(); // make copy 5214 bool Unused; 5215 // This can return overflow, underflow, or inexact; we don't care. 5216 // FIXME need to be more flexible about rounding mode. 5217 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5218 &Unused); 5219 return getConstantFP(C1, DL, VT); 5220 } 5221 5222 switch (Opcode) { 5223 case ISD::FSUB: 5224 // -0.0 - undef --> undef (consistent with "fneg undef") 5225 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5226 return getUNDEF(VT); 5227 LLVM_FALLTHROUGH; 5228 5229 case ISD::FADD: 5230 case ISD::FMUL: 5231 case ISD::FDIV: 5232 case ISD::FREM: 5233 // If both operands are undef, the result is undef. If 1 operand is undef, 5234 // the result is NaN. This should match the behavior of the IR optimizer. 5235 if (N1.isUndef() && N2.isUndef()) 5236 return getUNDEF(VT); 5237 if (N1.isUndef() || N2.isUndef()) 5238 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5239 } 5240 return SDValue(); 5241 } 5242 5243 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5244 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5245 5246 // There's no need to assert on a byte-aligned pointer. All pointers are at 5247 // least byte aligned. 5248 if (A == Align(1)) 5249 return Val; 5250 5251 FoldingSetNodeID ID; 5252 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5253 ID.AddInteger(A.value()); 5254 5255 void *IP = nullptr; 5256 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5257 return SDValue(E, 0); 5258 5259 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5260 Val.getValueType(), A); 5261 createOperands(N, {Val}); 5262 5263 CSEMap.InsertNode(N, IP); 5264 InsertNode(N); 5265 5266 SDValue V(N, 0); 5267 NewSDValueDbgMsg(V, "Creating new node: ", this); 5268 return V; 5269 } 5270 5271 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5272 SDValue N1, SDValue N2) { 5273 SDNodeFlags Flags; 5274 if (Inserter) 5275 Flags = Inserter->getFlags(); 5276 return getNode(Opcode, DL, VT, N1, N2, Flags); 5277 } 5278 5279 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5280 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5281 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5282 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5283 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5284 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5285 5286 // Canonicalize constant to RHS if commutative. 5287 if (TLI->isCommutativeBinOp(Opcode)) { 5288 if (N1C && !N2C) { 5289 std::swap(N1C, N2C); 5290 std::swap(N1, N2); 5291 } else if (N1CFP && !N2CFP) { 5292 std::swap(N1CFP, N2CFP); 5293 std::swap(N1, N2); 5294 } 5295 } 5296 5297 switch (Opcode) { 5298 default: break; 5299 case ISD::TokenFactor: 5300 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5301 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5302 // Fold trivial token factors. 5303 if (N1.getOpcode() == ISD::EntryToken) return N2; 5304 if (N2.getOpcode() == ISD::EntryToken) return N1; 5305 if (N1 == N2) return N1; 5306 break; 5307 case ISD::BUILD_VECTOR: { 5308 // Attempt to simplify BUILD_VECTOR. 5309 SDValue Ops[] = {N1, N2}; 5310 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5311 return V; 5312 break; 5313 } 5314 case ISD::CONCAT_VECTORS: { 5315 SDValue Ops[] = {N1, N2}; 5316 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5317 return V; 5318 break; 5319 } 5320 case ISD::AND: 5321 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5322 assert(N1.getValueType() == N2.getValueType() && 5323 N1.getValueType() == VT && "Binary operator types must match!"); 5324 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5325 // worth handling here. 5326 if (N2C && N2C->isNullValue()) 5327 return N2; 5328 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5329 return N1; 5330 break; 5331 case ISD::OR: 5332 case ISD::XOR: 5333 case ISD::ADD: 5334 case ISD::SUB: 5335 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5336 assert(N1.getValueType() == N2.getValueType() && 5337 N1.getValueType() == VT && "Binary operator types must match!"); 5338 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5339 // it's worth handling here. 5340 if (N2C && N2C->isNullValue()) 5341 return N1; 5342 break; 5343 case ISD::MUL: 5344 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5345 assert(N1.getValueType() == N2.getValueType() && 5346 N1.getValueType() == VT && "Binary operator types must match!"); 5347 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5348 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5349 APInt N2CImm = N2C->getAPIntValue(); 5350 return getVScale(DL, VT, MulImm * N2CImm); 5351 } 5352 break; 5353 case ISD::UDIV: 5354 case ISD::UREM: 5355 case ISD::MULHU: 5356 case ISD::MULHS: 5357 case ISD::SDIV: 5358 case ISD::SREM: 5359 case ISD::SMIN: 5360 case ISD::SMAX: 5361 case ISD::UMIN: 5362 case ISD::UMAX: 5363 case ISD::SADDSAT: 5364 case ISD::SSUBSAT: 5365 case ISD::UADDSAT: 5366 case ISD::USUBSAT: 5367 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5368 assert(N1.getValueType() == N2.getValueType() && 5369 N1.getValueType() == VT && "Binary operator types must match!"); 5370 break; 5371 case ISD::FADD: 5372 case ISD::FSUB: 5373 case ISD::FMUL: 5374 case ISD::FDIV: 5375 case ISD::FREM: 5376 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5377 assert(N1.getValueType() == N2.getValueType() && 5378 N1.getValueType() == VT && "Binary operator types must match!"); 5379 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5380 return V; 5381 break; 5382 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5383 assert(N1.getValueType() == VT && 5384 N1.getValueType().isFloatingPoint() && 5385 N2.getValueType().isFloatingPoint() && 5386 "Invalid FCOPYSIGN!"); 5387 break; 5388 case ISD::SHL: 5389 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5390 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5391 APInt ShiftImm = N2C->getAPIntValue(); 5392 return getVScale(DL, VT, MulImm << ShiftImm); 5393 } 5394 LLVM_FALLTHROUGH; 5395 case ISD::SRA: 5396 case ISD::SRL: 5397 if (SDValue V = simplifyShift(N1, N2)) 5398 return V; 5399 LLVM_FALLTHROUGH; 5400 case ISD::ROTL: 5401 case ISD::ROTR: 5402 assert(VT == N1.getValueType() && 5403 "Shift operators return type must be the same as their first arg"); 5404 assert(VT.isInteger() && N2.getValueType().isInteger() && 5405 "Shifts only work on integers"); 5406 assert((!VT.isVector() || VT == N2.getValueType()) && 5407 "Vector shift amounts must be in the same as their first arg"); 5408 // Verify that the shift amount VT is big enough to hold valid shift 5409 // amounts. This catches things like trying to shift an i1024 value by an 5410 // i8, which is easy to fall into in generic code that uses 5411 // TLI.getShiftAmount(). 5412 assert(N2.getValueType().getScalarSizeInBits() >= 5413 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5414 "Invalid use of small shift amount with oversized value!"); 5415 5416 // Always fold shifts of i1 values so the code generator doesn't need to 5417 // handle them. Since we know the size of the shift has to be less than the 5418 // size of the value, the shift/rotate count is guaranteed to be zero. 5419 if (VT == MVT::i1) 5420 return N1; 5421 if (N2C && N2C->isNullValue()) 5422 return N1; 5423 break; 5424 case ISD::FP_ROUND: 5425 assert(VT.isFloatingPoint() && 5426 N1.getValueType().isFloatingPoint() && 5427 VT.bitsLE(N1.getValueType()) && 5428 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5429 "Invalid FP_ROUND!"); 5430 if (N1.getValueType() == VT) return N1; // noop conversion. 5431 break; 5432 case ISD::AssertSext: 5433 case ISD::AssertZext: { 5434 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5435 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5436 assert(VT.isInteger() && EVT.isInteger() && 5437 "Cannot *_EXTEND_INREG FP types"); 5438 assert(!EVT.isVector() && 5439 "AssertSExt/AssertZExt type should be the vector element type " 5440 "rather than the vector type!"); 5441 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5442 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5443 break; 5444 } 5445 case ISD::SIGN_EXTEND_INREG: { 5446 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5447 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5448 assert(VT.isInteger() && EVT.isInteger() && 5449 "Cannot *_EXTEND_INREG FP types"); 5450 assert(EVT.isVector() == VT.isVector() && 5451 "SIGN_EXTEND_INREG type should be vector iff the operand " 5452 "type is vector!"); 5453 assert((!EVT.isVector() || 5454 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5455 "Vector element counts must match in SIGN_EXTEND_INREG"); 5456 assert(EVT.bitsLE(VT) && "Not extending!"); 5457 if (EVT == VT) return N1; // Not actually extending 5458 5459 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5460 unsigned FromBits = EVT.getScalarSizeInBits(); 5461 Val <<= Val.getBitWidth() - FromBits; 5462 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5463 return getConstant(Val, DL, ConstantVT); 5464 }; 5465 5466 if (N1C) { 5467 const APInt &Val = N1C->getAPIntValue(); 5468 return SignExtendInReg(Val, VT); 5469 } 5470 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5471 SmallVector<SDValue, 8> Ops; 5472 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5473 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5474 SDValue Op = N1.getOperand(i); 5475 if (Op.isUndef()) { 5476 Ops.push_back(getUNDEF(OpVT)); 5477 continue; 5478 } 5479 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5480 APInt Val = C->getAPIntValue(); 5481 Ops.push_back(SignExtendInReg(Val, OpVT)); 5482 } 5483 return getBuildVector(VT, DL, Ops); 5484 } 5485 break; 5486 } 5487 case ISD::EXTRACT_VECTOR_ELT: 5488 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5489 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5490 element type of the vector."); 5491 5492 // Extract from an undefined value or using an undefined index is undefined. 5493 if (N1.isUndef() || N2.isUndef()) 5494 return getUNDEF(VT); 5495 5496 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5497 // vectors. For scalable vectors we will provide appropriate support for 5498 // dealing with arbitrary indices. 5499 if (N2C && N1.getValueType().isFixedLengthVector() && 5500 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5501 return getUNDEF(VT); 5502 5503 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5504 // expanding copies of large vectors from registers. This only works for 5505 // fixed length vectors, since we need to know the exact number of 5506 // elements. 5507 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5508 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5509 unsigned Factor = 5510 N1.getOperand(0).getValueType().getVectorNumElements(); 5511 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5512 N1.getOperand(N2C->getZExtValue() / Factor), 5513 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5514 } 5515 5516 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5517 // lowering is expanding large vector constants. 5518 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5519 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5520 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5521 N1.getValueType().isFixedLengthVector()) && 5522 "BUILD_VECTOR used for scalable vectors"); 5523 unsigned Index = 5524 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5525 SDValue Elt = N1.getOperand(Index); 5526 5527 if (VT != Elt.getValueType()) 5528 // If the vector element type is not legal, the BUILD_VECTOR operands 5529 // are promoted and implicitly truncated, and the result implicitly 5530 // extended. Make that explicit here. 5531 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5532 5533 return Elt; 5534 } 5535 5536 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5537 // operations are lowered to scalars. 5538 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5539 // If the indices are the same, return the inserted element else 5540 // if the indices are known different, extract the element from 5541 // the original vector. 5542 SDValue N1Op2 = N1.getOperand(2); 5543 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5544 5545 if (N1Op2C && N2C) { 5546 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5547 if (VT == N1.getOperand(1).getValueType()) 5548 return N1.getOperand(1); 5549 else 5550 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5551 } 5552 5553 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5554 } 5555 } 5556 5557 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5558 // when vector types are scalarized and v1iX is legal. 5559 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5560 // Here we are completely ignoring the extract element index (N2), 5561 // which is fine for fixed width vectors, since any index other than 0 5562 // is undefined anyway. However, this cannot be ignored for scalable 5563 // vectors - in theory we could support this, but we don't want to do this 5564 // without a profitability check. 5565 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5566 N1.getValueType().isFixedLengthVector() && 5567 N1.getValueType().getVectorNumElements() == 1) { 5568 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5569 N1.getOperand(1)); 5570 } 5571 break; 5572 case ISD::EXTRACT_ELEMENT: 5573 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5574 assert(!N1.getValueType().isVector() && !VT.isVector() && 5575 (N1.getValueType().isInteger() == VT.isInteger()) && 5576 N1.getValueType() != VT && 5577 "Wrong types for EXTRACT_ELEMENT!"); 5578 5579 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5580 // 64-bit integers into 32-bit parts. Instead of building the extract of 5581 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5582 if (N1.getOpcode() == ISD::BUILD_PAIR) 5583 return N1.getOperand(N2C->getZExtValue()); 5584 5585 // EXTRACT_ELEMENT of a constant int is also very common. 5586 if (N1C) { 5587 unsigned ElementSize = VT.getSizeInBits(); 5588 unsigned Shift = ElementSize * N2C->getZExtValue(); 5589 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5590 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5591 } 5592 break; 5593 case ISD::EXTRACT_SUBVECTOR: 5594 EVT N1VT = N1.getValueType(); 5595 assert(VT.isVector() && N1VT.isVector() && 5596 "Extract subvector VTs must be vectors!"); 5597 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5598 "Extract subvector VTs must have the same element type!"); 5599 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5600 "Cannot extract a scalable vector from a fixed length vector!"); 5601 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5602 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5603 "Extract subvector must be from larger vector to smaller vector!"); 5604 assert(N2C && "Extract subvector index must be a constant"); 5605 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5606 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5607 N1VT.getVectorMinNumElements()) && 5608 "Extract subvector overflow!"); 5609 assert(N2C->getAPIntValue().getBitWidth() == 5610 TLI->getVectorIdxTy(getDataLayout()) 5611 .getSizeInBits() 5612 .getFixedSize() && 5613 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5614 5615 // Trivial extraction. 5616 if (VT == N1VT) 5617 return N1; 5618 5619 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5620 if (N1.isUndef()) 5621 return getUNDEF(VT); 5622 5623 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5624 // the concat have the same type as the extract. 5625 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5626 VT == N1.getOperand(0).getValueType()) { 5627 unsigned Factor = VT.getVectorMinNumElements(); 5628 return N1.getOperand(N2C->getZExtValue() / Factor); 5629 } 5630 5631 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5632 // during shuffle legalization. 5633 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5634 VT == N1.getOperand(1).getValueType()) 5635 return N1.getOperand(1); 5636 break; 5637 } 5638 5639 // Perform trivial constant folding. 5640 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5641 return SV; 5642 5643 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5644 return V; 5645 5646 // Canonicalize an UNDEF to the RHS, even over a constant. 5647 if (N1.isUndef()) { 5648 if (TLI->isCommutativeBinOp(Opcode)) { 5649 std::swap(N1, N2); 5650 } else { 5651 switch (Opcode) { 5652 case ISD::SIGN_EXTEND_INREG: 5653 case ISD::SUB: 5654 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5655 case ISD::UDIV: 5656 case ISD::SDIV: 5657 case ISD::UREM: 5658 case ISD::SREM: 5659 case ISD::SSUBSAT: 5660 case ISD::USUBSAT: 5661 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5662 } 5663 } 5664 } 5665 5666 // Fold a bunch of operators when the RHS is undef. 5667 if (N2.isUndef()) { 5668 switch (Opcode) { 5669 case ISD::XOR: 5670 if (N1.isUndef()) 5671 // Handle undef ^ undef -> 0 special case. This is a common 5672 // idiom (misuse). 5673 return getConstant(0, DL, VT); 5674 LLVM_FALLTHROUGH; 5675 case ISD::ADD: 5676 case ISD::SUB: 5677 case ISD::UDIV: 5678 case ISD::SDIV: 5679 case ISD::UREM: 5680 case ISD::SREM: 5681 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5682 case ISD::MUL: 5683 case ISD::AND: 5684 case ISD::SSUBSAT: 5685 case ISD::USUBSAT: 5686 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5687 case ISD::OR: 5688 case ISD::SADDSAT: 5689 case ISD::UADDSAT: 5690 return getAllOnesConstant(DL, VT); 5691 } 5692 } 5693 5694 // Memoize this node if possible. 5695 SDNode *N; 5696 SDVTList VTs = getVTList(VT); 5697 SDValue Ops[] = {N1, N2}; 5698 if (VT != MVT::Glue) { 5699 FoldingSetNodeID ID; 5700 AddNodeIDNode(ID, Opcode, VTs, Ops); 5701 void *IP = nullptr; 5702 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5703 E->intersectFlagsWith(Flags); 5704 return SDValue(E, 0); 5705 } 5706 5707 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5708 N->setFlags(Flags); 5709 createOperands(N, Ops); 5710 CSEMap.InsertNode(N, IP); 5711 } else { 5712 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5713 createOperands(N, Ops); 5714 } 5715 5716 InsertNode(N); 5717 SDValue V = SDValue(N, 0); 5718 NewSDValueDbgMsg(V, "Creating new node: ", this); 5719 return V; 5720 } 5721 5722 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5723 SDValue N1, SDValue N2, SDValue N3) { 5724 SDNodeFlags Flags; 5725 if (Inserter) 5726 Flags = Inserter->getFlags(); 5727 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5728 } 5729 5730 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5731 SDValue N1, SDValue N2, SDValue N3, 5732 const SDNodeFlags Flags) { 5733 // Perform various simplifications. 5734 switch (Opcode) { 5735 case ISD::FMA: { 5736 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5737 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5738 N3.getValueType() == VT && "FMA types must match!"); 5739 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5740 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5741 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5742 if (N1CFP && N2CFP && N3CFP) { 5743 APFloat V1 = N1CFP->getValueAPF(); 5744 const APFloat &V2 = N2CFP->getValueAPF(); 5745 const APFloat &V3 = N3CFP->getValueAPF(); 5746 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5747 return getConstantFP(V1, DL, VT); 5748 } 5749 break; 5750 } 5751 case ISD::BUILD_VECTOR: { 5752 // Attempt to simplify BUILD_VECTOR. 5753 SDValue Ops[] = {N1, N2, N3}; 5754 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5755 return V; 5756 break; 5757 } 5758 case ISD::CONCAT_VECTORS: { 5759 SDValue Ops[] = {N1, N2, N3}; 5760 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5761 return V; 5762 break; 5763 } 5764 case ISD::SETCC: { 5765 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5766 assert(N1.getValueType() == N2.getValueType() && 5767 "SETCC operands must have the same type!"); 5768 assert(VT.isVector() == N1.getValueType().isVector() && 5769 "SETCC type should be vector iff the operand type is vector!"); 5770 assert((!VT.isVector() || VT.getVectorElementCount() == 5771 N1.getValueType().getVectorElementCount()) && 5772 "SETCC vector element counts must match!"); 5773 // Use FoldSetCC to simplify SETCC's. 5774 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5775 return V; 5776 // Vector constant folding. 5777 SDValue Ops[] = {N1, N2, N3}; 5778 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5779 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5780 return V; 5781 } 5782 break; 5783 } 5784 case ISD::SELECT: 5785 case ISD::VSELECT: 5786 if (SDValue V = simplifySelect(N1, N2, N3)) 5787 return V; 5788 break; 5789 case ISD::VECTOR_SHUFFLE: 5790 llvm_unreachable("should use getVectorShuffle constructor!"); 5791 case ISD::INSERT_VECTOR_ELT: { 5792 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5793 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5794 // for scalable vectors where we will generate appropriate code to 5795 // deal with out-of-bounds cases correctly. 5796 if (N3C && N1.getValueType().isFixedLengthVector() && 5797 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5798 return getUNDEF(VT); 5799 5800 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5801 if (N3.isUndef()) 5802 return getUNDEF(VT); 5803 5804 // If the inserted element is an UNDEF, just use the input vector. 5805 if (N2.isUndef()) 5806 return N1; 5807 5808 break; 5809 } 5810 case ISD::INSERT_SUBVECTOR: { 5811 // Inserting undef into undef is still undef. 5812 if (N1.isUndef() && N2.isUndef()) 5813 return getUNDEF(VT); 5814 5815 EVT N2VT = N2.getValueType(); 5816 assert(VT == N1.getValueType() && 5817 "Dest and insert subvector source types must match!"); 5818 assert(VT.isVector() && N2VT.isVector() && 5819 "Insert subvector VTs must be vectors!"); 5820 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5821 "Cannot insert a scalable vector into a fixed length vector!"); 5822 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5823 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5824 "Insert subvector must be from smaller vector to larger vector!"); 5825 assert(isa<ConstantSDNode>(N3) && 5826 "Insert subvector index must be constant"); 5827 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5828 (N2VT.getVectorMinNumElements() + 5829 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5830 VT.getVectorMinNumElements()) && 5831 "Insert subvector overflow!"); 5832 5833 // Trivial insertion. 5834 if (VT == N2VT) 5835 return N2; 5836 5837 // If this is an insert of an extracted vector into an undef vector, we 5838 // can just use the input to the extract. 5839 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5840 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5841 return N2.getOperand(0); 5842 break; 5843 } 5844 case ISD::BITCAST: 5845 // Fold bit_convert nodes from a type to themselves. 5846 if (N1.getValueType() == VT) 5847 return N1; 5848 break; 5849 } 5850 5851 // Memoize node if it doesn't produce a flag. 5852 SDNode *N; 5853 SDVTList VTs = getVTList(VT); 5854 SDValue Ops[] = {N1, N2, N3}; 5855 if (VT != MVT::Glue) { 5856 FoldingSetNodeID ID; 5857 AddNodeIDNode(ID, Opcode, VTs, Ops); 5858 void *IP = nullptr; 5859 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5860 E->intersectFlagsWith(Flags); 5861 return SDValue(E, 0); 5862 } 5863 5864 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5865 N->setFlags(Flags); 5866 createOperands(N, Ops); 5867 CSEMap.InsertNode(N, IP); 5868 } else { 5869 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5870 createOperands(N, Ops); 5871 } 5872 5873 InsertNode(N); 5874 SDValue V = SDValue(N, 0); 5875 NewSDValueDbgMsg(V, "Creating new node: ", this); 5876 return V; 5877 } 5878 5879 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5880 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5881 SDValue Ops[] = { N1, N2, N3, N4 }; 5882 return getNode(Opcode, DL, VT, Ops); 5883 } 5884 5885 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5886 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5887 SDValue N5) { 5888 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5889 return getNode(Opcode, DL, VT, Ops); 5890 } 5891 5892 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5893 /// the incoming stack arguments to be loaded from the stack. 5894 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5895 SmallVector<SDValue, 8> ArgChains; 5896 5897 // Include the original chain at the beginning of the list. When this is 5898 // used by target LowerCall hooks, this helps legalize find the 5899 // CALLSEQ_BEGIN node. 5900 ArgChains.push_back(Chain); 5901 5902 // Add a chain value for each stack argument. 5903 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5904 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5905 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5906 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5907 if (FI->getIndex() < 0) 5908 ArgChains.push_back(SDValue(L, 1)); 5909 5910 // Build a tokenfactor for all the chains. 5911 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5912 } 5913 5914 /// getMemsetValue - Vectorized representation of the memset value 5915 /// operand. 5916 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5917 const SDLoc &dl) { 5918 assert(!Value.isUndef()); 5919 5920 unsigned NumBits = VT.getScalarSizeInBits(); 5921 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5922 assert(C->getAPIntValue().getBitWidth() == 8); 5923 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5924 if (VT.isInteger()) { 5925 bool IsOpaque = VT.getSizeInBits() > 64 || 5926 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5927 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5928 } 5929 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5930 VT); 5931 } 5932 5933 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5934 EVT IntVT = VT.getScalarType(); 5935 if (!IntVT.isInteger()) 5936 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5937 5938 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5939 if (NumBits > 8) { 5940 // Use a multiplication with 0x010101... to extend the input to the 5941 // required length. 5942 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5943 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5944 DAG.getConstant(Magic, dl, IntVT)); 5945 } 5946 5947 if (VT != Value.getValueType() && !VT.isInteger()) 5948 Value = DAG.getBitcast(VT.getScalarType(), Value); 5949 if (VT != Value.getValueType()) 5950 Value = DAG.getSplatBuildVector(VT, dl, Value); 5951 5952 return Value; 5953 } 5954 5955 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5956 /// used when a memcpy is turned into a memset when the source is a constant 5957 /// string ptr. 5958 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5959 const TargetLowering &TLI, 5960 const ConstantDataArraySlice &Slice) { 5961 // Handle vector with all elements zero. 5962 if (Slice.Array == nullptr) { 5963 if (VT.isInteger()) 5964 return DAG.getConstant(0, dl, VT); 5965 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5966 return DAG.getConstantFP(0.0, dl, VT); 5967 else if (VT.isVector()) { 5968 unsigned NumElts = VT.getVectorNumElements(); 5969 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5970 return DAG.getNode(ISD::BITCAST, dl, VT, 5971 DAG.getConstant(0, dl, 5972 EVT::getVectorVT(*DAG.getContext(), 5973 EltVT, NumElts))); 5974 } else 5975 llvm_unreachable("Expected type!"); 5976 } 5977 5978 assert(!VT.isVector() && "Can't handle vector type here!"); 5979 unsigned NumVTBits = VT.getSizeInBits(); 5980 unsigned NumVTBytes = NumVTBits / 8; 5981 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5982 5983 APInt Val(NumVTBits, 0); 5984 if (DAG.getDataLayout().isLittleEndian()) { 5985 for (unsigned i = 0; i != NumBytes; ++i) 5986 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5987 } else { 5988 for (unsigned i = 0; i != NumBytes; ++i) 5989 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5990 } 5991 5992 // If the "cost" of materializing the integer immediate is less than the cost 5993 // of a load, then it is cost effective to turn the load into the immediate. 5994 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5995 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5996 return DAG.getConstant(Val, dl, VT); 5997 return SDValue(nullptr, 0); 5998 } 5999 6000 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6001 const SDLoc &DL, 6002 const SDNodeFlags Flags) { 6003 EVT VT = Base.getValueType(); 6004 SDValue Index; 6005 6006 if (Offset.isScalable()) 6007 Index = getVScale(DL, Base.getValueType(), 6008 APInt(Base.getValueSizeInBits().getFixedSize(), 6009 Offset.getKnownMinSize())); 6010 else 6011 Index = getConstant(Offset.getFixedSize(), DL, VT); 6012 6013 return getMemBasePlusOffset(Base, Index, DL, Flags); 6014 } 6015 6016 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6017 const SDLoc &DL, 6018 const SDNodeFlags Flags) { 6019 assert(Offset.getValueType().isInteger()); 6020 EVT BasePtrVT = Ptr.getValueType(); 6021 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6022 } 6023 6024 /// Returns true if memcpy source is constant data. 6025 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6026 uint64_t SrcDelta = 0; 6027 GlobalAddressSDNode *G = nullptr; 6028 if (Src.getOpcode() == ISD::GlobalAddress) 6029 G = cast<GlobalAddressSDNode>(Src); 6030 else if (Src.getOpcode() == ISD::ADD && 6031 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6032 Src.getOperand(1).getOpcode() == ISD::Constant) { 6033 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6034 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6035 } 6036 if (!G) 6037 return false; 6038 6039 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6040 SrcDelta + G->getOffset()); 6041 } 6042 6043 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6044 SelectionDAG &DAG) { 6045 // On Darwin, -Os means optimize for size without hurting performance, so 6046 // only really optimize for size when -Oz (MinSize) is used. 6047 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6048 return MF.getFunction().hasMinSize(); 6049 return DAG.shouldOptForSize(); 6050 } 6051 6052 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6053 SmallVector<SDValue, 32> &OutChains, unsigned From, 6054 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6055 SmallVector<SDValue, 16> &OutStoreChains) { 6056 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6057 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6058 SmallVector<SDValue, 16> GluedLoadChains; 6059 for (unsigned i = From; i < To; ++i) { 6060 OutChains.push_back(OutLoadChains[i]); 6061 GluedLoadChains.push_back(OutLoadChains[i]); 6062 } 6063 6064 // Chain for all loads. 6065 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6066 GluedLoadChains); 6067 6068 for (unsigned i = From; i < To; ++i) { 6069 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6070 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6071 ST->getBasePtr(), ST->getMemoryVT(), 6072 ST->getMemOperand()); 6073 OutChains.push_back(NewStore); 6074 } 6075 } 6076 6077 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6078 SDValue Chain, SDValue Dst, SDValue Src, 6079 uint64_t Size, Align Alignment, 6080 bool isVol, bool AlwaysInline, 6081 MachinePointerInfo DstPtrInfo, 6082 MachinePointerInfo SrcPtrInfo) { 6083 // Turn a memcpy of undef to nop. 6084 // FIXME: We need to honor volatile even is Src is undef. 6085 if (Src.isUndef()) 6086 return Chain; 6087 6088 // Expand memcpy to a series of load and store ops if the size operand falls 6089 // below a certain threshold. 6090 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6091 // rather than maybe a humongous number of loads and stores. 6092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6093 const DataLayout &DL = DAG.getDataLayout(); 6094 LLVMContext &C = *DAG.getContext(); 6095 std::vector<EVT> MemOps; 6096 bool DstAlignCanChange = false; 6097 MachineFunction &MF = DAG.getMachineFunction(); 6098 MachineFrameInfo &MFI = MF.getFrameInfo(); 6099 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6100 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6101 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6102 DstAlignCanChange = true; 6103 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6104 if (!SrcAlign || Alignment > *SrcAlign) 6105 SrcAlign = Alignment; 6106 assert(SrcAlign && "SrcAlign must be set"); 6107 ConstantDataArraySlice Slice; 6108 // If marked as volatile, perform a copy even when marked as constant. 6109 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6110 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6111 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6112 const MemOp Op = isZeroConstant 6113 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6114 /*IsZeroMemset*/ true, isVol) 6115 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6116 *SrcAlign, isVol, CopyFromConstant); 6117 if (!TLI.findOptimalMemOpLowering( 6118 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6119 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6120 return SDValue(); 6121 6122 if (DstAlignCanChange) { 6123 Type *Ty = MemOps[0].getTypeForEVT(C); 6124 Align NewAlign = DL.getABITypeAlign(Ty); 6125 6126 // Don't promote to an alignment that would require dynamic stack 6127 // realignment. 6128 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6129 if (!TRI->needsStackRealignment(MF)) 6130 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6131 NewAlign = NewAlign / 2; 6132 6133 if (NewAlign > Alignment) { 6134 // Give the stack frame object a larger alignment if needed. 6135 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6136 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6137 Alignment = NewAlign; 6138 } 6139 } 6140 6141 MachineMemOperand::Flags MMOFlags = 6142 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6143 SmallVector<SDValue, 16> OutLoadChains; 6144 SmallVector<SDValue, 16> OutStoreChains; 6145 SmallVector<SDValue, 32> OutChains; 6146 unsigned NumMemOps = MemOps.size(); 6147 uint64_t SrcOff = 0, DstOff = 0; 6148 for (unsigned i = 0; i != NumMemOps; ++i) { 6149 EVT VT = MemOps[i]; 6150 unsigned VTSize = VT.getSizeInBits() / 8; 6151 SDValue Value, Store; 6152 6153 if (VTSize > Size) { 6154 // Issuing an unaligned load / store pair that overlaps with the previous 6155 // pair. Adjust the offset accordingly. 6156 assert(i == NumMemOps-1 && i != 0); 6157 SrcOff -= VTSize - Size; 6158 DstOff -= VTSize - Size; 6159 } 6160 6161 if (CopyFromConstant && 6162 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6163 // It's unlikely a store of a vector immediate can be done in a single 6164 // instruction. It would require a load from a constantpool first. 6165 // We only handle zero vectors here. 6166 // FIXME: Handle other cases where store of vector immediate is done in 6167 // a single instruction. 6168 ConstantDataArraySlice SubSlice; 6169 if (SrcOff < Slice.Length) { 6170 SubSlice = Slice; 6171 SubSlice.move(SrcOff); 6172 } else { 6173 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6174 SubSlice.Array = nullptr; 6175 SubSlice.Offset = 0; 6176 SubSlice.Length = VTSize; 6177 } 6178 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6179 if (Value.getNode()) { 6180 Store = DAG.getStore( 6181 Chain, dl, Value, 6182 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6183 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6184 OutChains.push_back(Store); 6185 } 6186 } 6187 6188 if (!Store.getNode()) { 6189 // The type might not be legal for the target. This should only happen 6190 // if the type is smaller than a legal type, as on PPC, so the right 6191 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6192 // to Load/Store if NVT==VT. 6193 // FIXME does the case above also need this? 6194 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6195 assert(NVT.bitsGE(VT)); 6196 6197 bool isDereferenceable = 6198 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6199 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6200 if (isDereferenceable) 6201 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6202 6203 Value = DAG.getExtLoad( 6204 ISD::EXTLOAD, dl, NVT, Chain, 6205 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6206 SrcPtrInfo.getWithOffset(SrcOff), VT, 6207 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6208 OutLoadChains.push_back(Value.getValue(1)); 6209 6210 Store = DAG.getTruncStore( 6211 Chain, dl, Value, 6212 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6213 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6214 OutStoreChains.push_back(Store); 6215 } 6216 SrcOff += VTSize; 6217 DstOff += VTSize; 6218 Size -= VTSize; 6219 } 6220 6221 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6222 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6223 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6224 6225 if (NumLdStInMemcpy) { 6226 // It may be that memcpy might be converted to memset if it's memcpy 6227 // of constants. In such a case, we won't have loads and stores, but 6228 // just stores. In the absence of loads, there is nothing to gang up. 6229 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6230 // If target does not care, just leave as it. 6231 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6232 OutChains.push_back(OutLoadChains[i]); 6233 OutChains.push_back(OutStoreChains[i]); 6234 } 6235 } else { 6236 // Ld/St less than/equal limit set by target. 6237 if (NumLdStInMemcpy <= GluedLdStLimit) { 6238 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6239 NumLdStInMemcpy, OutLoadChains, 6240 OutStoreChains); 6241 } else { 6242 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6243 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6244 unsigned GlueIter = 0; 6245 6246 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6247 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6248 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6249 6250 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6251 OutLoadChains, OutStoreChains); 6252 GlueIter += GluedLdStLimit; 6253 } 6254 6255 // Residual ld/st. 6256 if (RemainingLdStInMemcpy) { 6257 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6258 RemainingLdStInMemcpy, OutLoadChains, 6259 OutStoreChains); 6260 } 6261 } 6262 } 6263 } 6264 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6265 } 6266 6267 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6268 SDValue Chain, SDValue Dst, SDValue Src, 6269 uint64_t Size, Align Alignment, 6270 bool isVol, bool AlwaysInline, 6271 MachinePointerInfo DstPtrInfo, 6272 MachinePointerInfo SrcPtrInfo) { 6273 // Turn a memmove of undef to nop. 6274 // FIXME: We need to honor volatile even is Src is undef. 6275 if (Src.isUndef()) 6276 return Chain; 6277 6278 // Expand memmove to a series of load and store ops if the size operand falls 6279 // below a certain threshold. 6280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6281 const DataLayout &DL = DAG.getDataLayout(); 6282 LLVMContext &C = *DAG.getContext(); 6283 std::vector<EVT> MemOps; 6284 bool DstAlignCanChange = false; 6285 MachineFunction &MF = DAG.getMachineFunction(); 6286 MachineFrameInfo &MFI = MF.getFrameInfo(); 6287 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6288 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6289 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6290 DstAlignCanChange = true; 6291 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6292 if (!SrcAlign || Alignment > *SrcAlign) 6293 SrcAlign = Alignment; 6294 assert(SrcAlign && "SrcAlign must be set"); 6295 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6296 if (!TLI.findOptimalMemOpLowering( 6297 MemOps, Limit, 6298 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6299 /*IsVolatile*/ true), 6300 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6301 MF.getFunction().getAttributes())) 6302 return SDValue(); 6303 6304 if (DstAlignCanChange) { 6305 Type *Ty = MemOps[0].getTypeForEVT(C); 6306 Align NewAlign = DL.getABITypeAlign(Ty); 6307 if (NewAlign > Alignment) { 6308 // Give the stack frame object a larger alignment if needed. 6309 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6310 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6311 Alignment = NewAlign; 6312 } 6313 } 6314 6315 MachineMemOperand::Flags MMOFlags = 6316 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6317 uint64_t SrcOff = 0, DstOff = 0; 6318 SmallVector<SDValue, 8> LoadValues; 6319 SmallVector<SDValue, 8> LoadChains; 6320 SmallVector<SDValue, 8> OutChains; 6321 unsigned NumMemOps = MemOps.size(); 6322 for (unsigned i = 0; i < NumMemOps; i++) { 6323 EVT VT = MemOps[i]; 6324 unsigned VTSize = VT.getSizeInBits() / 8; 6325 SDValue Value; 6326 6327 bool isDereferenceable = 6328 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6329 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6330 if (isDereferenceable) 6331 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6332 6333 Value = 6334 DAG.getLoad(VT, dl, Chain, 6335 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6336 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6337 LoadValues.push_back(Value); 6338 LoadChains.push_back(Value.getValue(1)); 6339 SrcOff += VTSize; 6340 } 6341 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6342 OutChains.clear(); 6343 for (unsigned i = 0; i < NumMemOps; i++) { 6344 EVT VT = MemOps[i]; 6345 unsigned VTSize = VT.getSizeInBits() / 8; 6346 SDValue Store; 6347 6348 Store = 6349 DAG.getStore(Chain, dl, LoadValues[i], 6350 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6351 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6352 OutChains.push_back(Store); 6353 DstOff += VTSize; 6354 } 6355 6356 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6357 } 6358 6359 /// Lower the call to 'memset' intrinsic function into a series of store 6360 /// operations. 6361 /// 6362 /// \param DAG Selection DAG where lowered code is placed. 6363 /// \param dl Link to corresponding IR location. 6364 /// \param Chain Control flow dependency. 6365 /// \param Dst Pointer to destination memory location. 6366 /// \param Src Value of byte to write into the memory. 6367 /// \param Size Number of bytes to write. 6368 /// \param Alignment Alignment of the destination in bytes. 6369 /// \param isVol True if destination is volatile. 6370 /// \param DstPtrInfo IR information on the memory pointer. 6371 /// \returns New head in the control flow, if lowering was successful, empty 6372 /// SDValue otherwise. 6373 /// 6374 /// The function tries to replace 'llvm.memset' intrinsic with several store 6375 /// operations and value calculation code. This is usually profitable for small 6376 /// memory size. 6377 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6378 SDValue Chain, SDValue Dst, SDValue Src, 6379 uint64_t Size, Align Alignment, bool isVol, 6380 MachinePointerInfo DstPtrInfo) { 6381 // Turn a memset of undef to nop. 6382 // FIXME: We need to honor volatile even is Src is undef. 6383 if (Src.isUndef()) 6384 return Chain; 6385 6386 // Expand memset to a series of load/store ops if the size operand 6387 // falls below a certain threshold. 6388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6389 std::vector<EVT> MemOps; 6390 bool DstAlignCanChange = false; 6391 MachineFunction &MF = DAG.getMachineFunction(); 6392 MachineFrameInfo &MFI = MF.getFrameInfo(); 6393 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6394 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6395 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6396 DstAlignCanChange = true; 6397 bool IsZeroVal = 6398 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6399 if (!TLI.findOptimalMemOpLowering( 6400 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6401 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6402 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6403 return SDValue(); 6404 6405 if (DstAlignCanChange) { 6406 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6407 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6408 if (NewAlign > Alignment) { 6409 // Give the stack frame object a larger alignment if needed. 6410 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6411 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6412 Alignment = NewAlign; 6413 } 6414 } 6415 6416 SmallVector<SDValue, 8> OutChains; 6417 uint64_t DstOff = 0; 6418 unsigned NumMemOps = MemOps.size(); 6419 6420 // Find the largest store and generate the bit pattern for it. 6421 EVT LargestVT = MemOps[0]; 6422 for (unsigned i = 1; i < NumMemOps; i++) 6423 if (MemOps[i].bitsGT(LargestVT)) 6424 LargestVT = MemOps[i]; 6425 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6426 6427 for (unsigned i = 0; i < NumMemOps; i++) { 6428 EVT VT = MemOps[i]; 6429 unsigned VTSize = VT.getSizeInBits() / 8; 6430 if (VTSize > Size) { 6431 // Issuing an unaligned load / store pair that overlaps with the previous 6432 // pair. Adjust the offset accordingly. 6433 assert(i == NumMemOps-1 && i != 0); 6434 DstOff -= VTSize - Size; 6435 } 6436 6437 // If this store is smaller than the largest store see whether we can get 6438 // the smaller value for free with a truncate. 6439 SDValue Value = MemSetValue; 6440 if (VT.bitsLT(LargestVT)) { 6441 if (!LargestVT.isVector() && !VT.isVector() && 6442 TLI.isTruncateFree(LargestVT, VT)) 6443 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6444 else 6445 Value = getMemsetValue(Src, VT, DAG, dl); 6446 } 6447 assert(Value.getValueType() == VT && "Value with wrong type."); 6448 SDValue Store = DAG.getStore( 6449 Chain, dl, Value, 6450 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6451 DstPtrInfo.getWithOffset(DstOff), Alignment, 6452 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6453 OutChains.push_back(Store); 6454 DstOff += VT.getSizeInBits() / 8; 6455 Size -= VTSize; 6456 } 6457 6458 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6459 } 6460 6461 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6462 unsigned AS) { 6463 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6464 // pointer operands can be losslessly bitcasted to pointers of address space 0 6465 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6466 report_fatal_error("cannot lower memory intrinsic in address space " + 6467 Twine(AS)); 6468 } 6469 } 6470 6471 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6472 SDValue Src, SDValue Size, Align Alignment, 6473 bool isVol, bool AlwaysInline, bool isTailCall, 6474 MachinePointerInfo DstPtrInfo, 6475 MachinePointerInfo SrcPtrInfo) { 6476 // Check to see if we should lower the memcpy to loads and stores first. 6477 // For cases within the target-specified limits, this is the best choice. 6478 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6479 if (ConstantSize) { 6480 // Memcpy with size zero? Just return the original chain. 6481 if (ConstantSize->isNullValue()) 6482 return Chain; 6483 6484 SDValue Result = getMemcpyLoadsAndStores( 6485 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6486 isVol, false, DstPtrInfo, SrcPtrInfo); 6487 if (Result.getNode()) 6488 return Result; 6489 } 6490 6491 // Then check to see if we should lower the memcpy with target-specific 6492 // code. If the target chooses to do this, this is the next best. 6493 if (TSI) { 6494 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6495 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6496 DstPtrInfo, SrcPtrInfo); 6497 if (Result.getNode()) 6498 return Result; 6499 } 6500 6501 // If we really need inline code and the target declined to provide it, 6502 // use a (potentially long) sequence of loads and stores. 6503 if (AlwaysInline) { 6504 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6505 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6506 ConstantSize->getZExtValue(), Alignment, 6507 isVol, true, DstPtrInfo, SrcPtrInfo); 6508 } 6509 6510 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6511 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6512 6513 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6514 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6515 // respect volatile, so they may do things like read or write memory 6516 // beyond the given memory regions. But fixing this isn't easy, and most 6517 // people don't care. 6518 6519 // Emit a library call. 6520 TargetLowering::ArgListTy Args; 6521 TargetLowering::ArgListEntry Entry; 6522 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6523 Entry.Node = Dst; Args.push_back(Entry); 6524 Entry.Node = Src; Args.push_back(Entry); 6525 6526 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6527 Entry.Node = Size; Args.push_back(Entry); 6528 // FIXME: pass in SDLoc 6529 TargetLowering::CallLoweringInfo CLI(*this); 6530 CLI.setDebugLoc(dl) 6531 .setChain(Chain) 6532 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6533 Dst.getValueType().getTypeForEVT(*getContext()), 6534 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6535 TLI->getPointerTy(getDataLayout())), 6536 std::move(Args)) 6537 .setDiscardResult() 6538 .setTailCall(isTailCall); 6539 6540 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6541 return CallResult.second; 6542 } 6543 6544 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6545 SDValue Dst, unsigned DstAlign, 6546 SDValue Src, unsigned SrcAlign, 6547 SDValue Size, Type *SizeTy, 6548 unsigned ElemSz, bool isTailCall, 6549 MachinePointerInfo DstPtrInfo, 6550 MachinePointerInfo SrcPtrInfo) { 6551 // Emit a library call. 6552 TargetLowering::ArgListTy Args; 6553 TargetLowering::ArgListEntry Entry; 6554 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6555 Entry.Node = Dst; 6556 Args.push_back(Entry); 6557 6558 Entry.Node = Src; 6559 Args.push_back(Entry); 6560 6561 Entry.Ty = SizeTy; 6562 Entry.Node = Size; 6563 Args.push_back(Entry); 6564 6565 RTLIB::Libcall LibraryCall = 6566 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6567 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6568 report_fatal_error("Unsupported element size"); 6569 6570 TargetLowering::CallLoweringInfo CLI(*this); 6571 CLI.setDebugLoc(dl) 6572 .setChain(Chain) 6573 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6574 Type::getVoidTy(*getContext()), 6575 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6576 TLI->getPointerTy(getDataLayout())), 6577 std::move(Args)) 6578 .setDiscardResult() 6579 .setTailCall(isTailCall); 6580 6581 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6582 return CallResult.second; 6583 } 6584 6585 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6586 SDValue Src, SDValue Size, Align Alignment, 6587 bool isVol, bool isTailCall, 6588 MachinePointerInfo DstPtrInfo, 6589 MachinePointerInfo SrcPtrInfo) { 6590 // Check to see if we should lower the memmove to loads and stores first. 6591 // For cases within the target-specified limits, this is the best choice. 6592 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6593 if (ConstantSize) { 6594 // Memmove with size zero? Just return the original chain. 6595 if (ConstantSize->isNullValue()) 6596 return Chain; 6597 6598 SDValue Result = getMemmoveLoadsAndStores( 6599 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6600 isVol, false, DstPtrInfo, SrcPtrInfo); 6601 if (Result.getNode()) 6602 return Result; 6603 } 6604 6605 // Then check to see if we should lower the memmove with target-specific 6606 // code. If the target chooses to do this, this is the next best. 6607 if (TSI) { 6608 SDValue Result = 6609 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6610 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6611 if (Result.getNode()) 6612 return Result; 6613 } 6614 6615 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6616 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6617 6618 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6619 // not be safe. See memcpy above for more details. 6620 6621 // Emit a library call. 6622 TargetLowering::ArgListTy Args; 6623 TargetLowering::ArgListEntry Entry; 6624 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6625 Entry.Node = Dst; Args.push_back(Entry); 6626 Entry.Node = Src; Args.push_back(Entry); 6627 6628 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6629 Entry.Node = Size; Args.push_back(Entry); 6630 // FIXME: pass in SDLoc 6631 TargetLowering::CallLoweringInfo CLI(*this); 6632 CLI.setDebugLoc(dl) 6633 .setChain(Chain) 6634 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6635 Dst.getValueType().getTypeForEVT(*getContext()), 6636 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6637 TLI->getPointerTy(getDataLayout())), 6638 std::move(Args)) 6639 .setDiscardResult() 6640 .setTailCall(isTailCall); 6641 6642 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6643 return CallResult.second; 6644 } 6645 6646 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6647 SDValue Dst, unsigned DstAlign, 6648 SDValue Src, unsigned SrcAlign, 6649 SDValue Size, Type *SizeTy, 6650 unsigned ElemSz, bool isTailCall, 6651 MachinePointerInfo DstPtrInfo, 6652 MachinePointerInfo SrcPtrInfo) { 6653 // Emit a library call. 6654 TargetLowering::ArgListTy Args; 6655 TargetLowering::ArgListEntry Entry; 6656 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6657 Entry.Node = Dst; 6658 Args.push_back(Entry); 6659 6660 Entry.Node = Src; 6661 Args.push_back(Entry); 6662 6663 Entry.Ty = SizeTy; 6664 Entry.Node = Size; 6665 Args.push_back(Entry); 6666 6667 RTLIB::Libcall LibraryCall = 6668 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6669 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6670 report_fatal_error("Unsupported element size"); 6671 6672 TargetLowering::CallLoweringInfo CLI(*this); 6673 CLI.setDebugLoc(dl) 6674 .setChain(Chain) 6675 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6676 Type::getVoidTy(*getContext()), 6677 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6678 TLI->getPointerTy(getDataLayout())), 6679 std::move(Args)) 6680 .setDiscardResult() 6681 .setTailCall(isTailCall); 6682 6683 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6684 return CallResult.second; 6685 } 6686 6687 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6688 SDValue Src, SDValue Size, Align Alignment, 6689 bool isVol, bool isTailCall, 6690 MachinePointerInfo DstPtrInfo) { 6691 // Check to see if we should lower the memset to stores first. 6692 // For cases within the target-specified limits, this is the best choice. 6693 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6694 if (ConstantSize) { 6695 // Memset with size zero? Just return the original chain. 6696 if (ConstantSize->isNullValue()) 6697 return Chain; 6698 6699 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6700 ConstantSize->getZExtValue(), Alignment, 6701 isVol, DstPtrInfo); 6702 6703 if (Result.getNode()) 6704 return Result; 6705 } 6706 6707 // Then check to see if we should lower the memset with target-specific 6708 // code. If the target chooses to do this, this is the next best. 6709 if (TSI) { 6710 SDValue Result = TSI->EmitTargetCodeForMemset( 6711 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6712 if (Result.getNode()) 6713 return Result; 6714 } 6715 6716 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6717 6718 // Emit a library call. 6719 TargetLowering::ArgListTy Args; 6720 TargetLowering::ArgListEntry Entry; 6721 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6722 Args.push_back(Entry); 6723 Entry.Node = Src; 6724 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6725 Args.push_back(Entry); 6726 Entry.Node = Size; 6727 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6728 Args.push_back(Entry); 6729 6730 // FIXME: pass in SDLoc 6731 TargetLowering::CallLoweringInfo CLI(*this); 6732 CLI.setDebugLoc(dl) 6733 .setChain(Chain) 6734 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6735 Dst.getValueType().getTypeForEVT(*getContext()), 6736 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6737 TLI->getPointerTy(getDataLayout())), 6738 std::move(Args)) 6739 .setDiscardResult() 6740 .setTailCall(isTailCall); 6741 6742 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6743 return CallResult.second; 6744 } 6745 6746 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6747 SDValue Dst, unsigned DstAlign, 6748 SDValue Value, SDValue Size, Type *SizeTy, 6749 unsigned ElemSz, bool isTailCall, 6750 MachinePointerInfo DstPtrInfo) { 6751 // Emit a library call. 6752 TargetLowering::ArgListTy Args; 6753 TargetLowering::ArgListEntry Entry; 6754 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6755 Entry.Node = Dst; 6756 Args.push_back(Entry); 6757 6758 Entry.Ty = Type::getInt8Ty(*getContext()); 6759 Entry.Node = Value; 6760 Args.push_back(Entry); 6761 6762 Entry.Ty = SizeTy; 6763 Entry.Node = Size; 6764 Args.push_back(Entry); 6765 6766 RTLIB::Libcall LibraryCall = 6767 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6768 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6769 report_fatal_error("Unsupported element size"); 6770 6771 TargetLowering::CallLoweringInfo CLI(*this); 6772 CLI.setDebugLoc(dl) 6773 .setChain(Chain) 6774 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6775 Type::getVoidTy(*getContext()), 6776 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6777 TLI->getPointerTy(getDataLayout())), 6778 std::move(Args)) 6779 .setDiscardResult() 6780 .setTailCall(isTailCall); 6781 6782 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6783 return CallResult.second; 6784 } 6785 6786 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6787 SDVTList VTList, ArrayRef<SDValue> Ops, 6788 MachineMemOperand *MMO) { 6789 FoldingSetNodeID ID; 6790 ID.AddInteger(MemVT.getRawBits()); 6791 AddNodeIDNode(ID, Opcode, VTList, Ops); 6792 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6793 void* IP = nullptr; 6794 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6795 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6796 return SDValue(E, 0); 6797 } 6798 6799 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6800 VTList, MemVT, MMO); 6801 createOperands(N, Ops); 6802 6803 CSEMap.InsertNode(N, IP); 6804 InsertNode(N); 6805 return SDValue(N, 0); 6806 } 6807 6808 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6809 EVT MemVT, SDVTList VTs, SDValue Chain, 6810 SDValue Ptr, SDValue Cmp, SDValue Swp, 6811 MachineMemOperand *MMO) { 6812 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6813 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6814 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6815 6816 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6817 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6818 } 6819 6820 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6821 SDValue Chain, SDValue Ptr, SDValue Val, 6822 MachineMemOperand *MMO) { 6823 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6824 Opcode == ISD::ATOMIC_LOAD_SUB || 6825 Opcode == ISD::ATOMIC_LOAD_AND || 6826 Opcode == ISD::ATOMIC_LOAD_CLR || 6827 Opcode == ISD::ATOMIC_LOAD_OR || 6828 Opcode == ISD::ATOMIC_LOAD_XOR || 6829 Opcode == ISD::ATOMIC_LOAD_NAND || 6830 Opcode == ISD::ATOMIC_LOAD_MIN || 6831 Opcode == ISD::ATOMIC_LOAD_MAX || 6832 Opcode == ISD::ATOMIC_LOAD_UMIN || 6833 Opcode == ISD::ATOMIC_LOAD_UMAX || 6834 Opcode == ISD::ATOMIC_LOAD_FADD || 6835 Opcode == ISD::ATOMIC_LOAD_FSUB || 6836 Opcode == ISD::ATOMIC_SWAP || 6837 Opcode == ISD::ATOMIC_STORE) && 6838 "Invalid Atomic Op"); 6839 6840 EVT VT = Val.getValueType(); 6841 6842 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6843 getVTList(VT, MVT::Other); 6844 SDValue Ops[] = {Chain, Ptr, Val}; 6845 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6846 } 6847 6848 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6849 EVT VT, SDValue Chain, SDValue Ptr, 6850 MachineMemOperand *MMO) { 6851 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6852 6853 SDVTList VTs = getVTList(VT, MVT::Other); 6854 SDValue Ops[] = {Chain, Ptr}; 6855 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6856 } 6857 6858 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6859 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6860 if (Ops.size() == 1) 6861 return Ops[0]; 6862 6863 SmallVector<EVT, 4> VTs; 6864 VTs.reserve(Ops.size()); 6865 for (unsigned i = 0; i < Ops.size(); ++i) 6866 VTs.push_back(Ops[i].getValueType()); 6867 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6868 } 6869 6870 SDValue SelectionDAG::getMemIntrinsicNode( 6871 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6872 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6873 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6874 if (!Size && MemVT.isScalableVector()) 6875 Size = MemoryLocation::UnknownSize; 6876 else if (!Size) 6877 Size = MemVT.getStoreSize(); 6878 6879 MachineFunction &MF = getMachineFunction(); 6880 MachineMemOperand *MMO = 6881 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6882 6883 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6884 } 6885 6886 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6887 SDVTList VTList, 6888 ArrayRef<SDValue> Ops, EVT MemVT, 6889 MachineMemOperand *MMO) { 6890 assert((Opcode == ISD::INTRINSIC_VOID || 6891 Opcode == ISD::INTRINSIC_W_CHAIN || 6892 Opcode == ISD::PREFETCH || 6893 ((int)Opcode <= std::numeric_limits<int>::max() && 6894 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6895 "Opcode is not a memory-accessing opcode!"); 6896 6897 // Memoize the node unless it returns a flag. 6898 MemIntrinsicSDNode *N; 6899 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6900 FoldingSetNodeID ID; 6901 AddNodeIDNode(ID, Opcode, VTList, Ops); 6902 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6903 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6904 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6905 void *IP = nullptr; 6906 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6907 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6908 return SDValue(E, 0); 6909 } 6910 6911 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6912 VTList, MemVT, MMO); 6913 createOperands(N, Ops); 6914 6915 CSEMap.InsertNode(N, IP); 6916 } else { 6917 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6918 VTList, MemVT, MMO); 6919 createOperands(N, Ops); 6920 } 6921 InsertNode(N); 6922 SDValue V(N, 0); 6923 NewSDValueDbgMsg(V, "Creating new node: ", this); 6924 return V; 6925 } 6926 6927 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6928 SDValue Chain, int FrameIndex, 6929 int64_t Size, int64_t Offset) { 6930 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6931 const auto VTs = getVTList(MVT::Other); 6932 SDValue Ops[2] = { 6933 Chain, 6934 getFrameIndex(FrameIndex, 6935 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6936 true)}; 6937 6938 FoldingSetNodeID ID; 6939 AddNodeIDNode(ID, Opcode, VTs, Ops); 6940 ID.AddInteger(FrameIndex); 6941 ID.AddInteger(Size); 6942 ID.AddInteger(Offset); 6943 void *IP = nullptr; 6944 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6945 return SDValue(E, 0); 6946 6947 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6948 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6949 createOperands(N, Ops); 6950 CSEMap.InsertNode(N, IP); 6951 InsertNode(N); 6952 SDValue V(N, 0); 6953 NewSDValueDbgMsg(V, "Creating new node: ", this); 6954 return V; 6955 } 6956 6957 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6958 /// MachinePointerInfo record from it. This is particularly useful because the 6959 /// code generator has many cases where it doesn't bother passing in a 6960 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6961 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6962 SelectionDAG &DAG, SDValue Ptr, 6963 int64_t Offset = 0) { 6964 // If this is FI+Offset, we can model it. 6965 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6966 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6967 FI->getIndex(), Offset); 6968 6969 // If this is (FI+Offset1)+Offset2, we can model it. 6970 if (Ptr.getOpcode() != ISD::ADD || 6971 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6972 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6973 return Info; 6974 6975 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6976 return MachinePointerInfo::getFixedStack( 6977 DAG.getMachineFunction(), FI, 6978 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6979 } 6980 6981 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6982 /// MachinePointerInfo record from it. This is particularly useful because the 6983 /// code generator has many cases where it doesn't bother passing in a 6984 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6985 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6986 SelectionDAG &DAG, SDValue Ptr, 6987 SDValue OffsetOp) { 6988 // If the 'Offset' value isn't a constant, we can't handle this. 6989 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6990 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6991 if (OffsetOp.isUndef()) 6992 return InferPointerInfo(Info, DAG, Ptr); 6993 return Info; 6994 } 6995 6996 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6997 EVT VT, const SDLoc &dl, SDValue Chain, 6998 SDValue Ptr, SDValue Offset, 6999 MachinePointerInfo PtrInfo, EVT MemVT, 7000 Align Alignment, 7001 MachineMemOperand::Flags MMOFlags, 7002 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7003 assert(Chain.getValueType() == MVT::Other && 7004 "Invalid chain type"); 7005 7006 MMOFlags |= MachineMemOperand::MOLoad; 7007 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7008 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7009 // clients. 7010 if (PtrInfo.V.isNull()) 7011 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7012 7013 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7014 MachineFunction &MF = getMachineFunction(); 7015 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7016 Alignment, AAInfo, Ranges); 7017 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7018 } 7019 7020 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7021 EVT VT, const SDLoc &dl, SDValue Chain, 7022 SDValue Ptr, SDValue Offset, EVT MemVT, 7023 MachineMemOperand *MMO) { 7024 if (VT == MemVT) { 7025 ExtType = ISD::NON_EXTLOAD; 7026 } else if (ExtType == ISD::NON_EXTLOAD) { 7027 assert(VT == MemVT && "Non-extending load from different memory type!"); 7028 } else { 7029 // Extending load. 7030 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7031 "Should only be an extending load, not truncating!"); 7032 assert(VT.isInteger() == MemVT.isInteger() && 7033 "Cannot convert from FP to Int or Int -> FP!"); 7034 assert(VT.isVector() == MemVT.isVector() && 7035 "Cannot use an ext load to convert to or from a vector!"); 7036 assert((!VT.isVector() || 7037 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7038 "Cannot use an ext load to change the number of vector elements!"); 7039 } 7040 7041 bool Indexed = AM != ISD::UNINDEXED; 7042 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7043 7044 SDVTList VTs = Indexed ? 7045 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7046 SDValue Ops[] = { Chain, Ptr, Offset }; 7047 FoldingSetNodeID ID; 7048 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7049 ID.AddInteger(MemVT.getRawBits()); 7050 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7051 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7052 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7053 void *IP = nullptr; 7054 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7055 cast<LoadSDNode>(E)->refineAlignment(MMO); 7056 return SDValue(E, 0); 7057 } 7058 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7059 ExtType, MemVT, MMO); 7060 createOperands(N, Ops); 7061 7062 CSEMap.InsertNode(N, IP); 7063 InsertNode(N); 7064 SDValue V(N, 0); 7065 NewSDValueDbgMsg(V, "Creating new node: ", this); 7066 return V; 7067 } 7068 7069 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7070 SDValue Ptr, MachinePointerInfo PtrInfo, 7071 MaybeAlign Alignment, 7072 MachineMemOperand::Flags MMOFlags, 7073 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7074 SDValue Undef = getUNDEF(Ptr.getValueType()); 7075 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7076 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7077 } 7078 7079 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7080 SDValue Ptr, MachineMemOperand *MMO) { 7081 SDValue Undef = getUNDEF(Ptr.getValueType()); 7082 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7083 VT, MMO); 7084 } 7085 7086 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7087 EVT VT, SDValue Chain, SDValue Ptr, 7088 MachinePointerInfo PtrInfo, EVT MemVT, 7089 MaybeAlign Alignment, 7090 MachineMemOperand::Flags MMOFlags, 7091 const AAMDNodes &AAInfo) { 7092 SDValue Undef = getUNDEF(Ptr.getValueType()); 7093 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7094 MemVT, Alignment, MMOFlags, AAInfo); 7095 } 7096 7097 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7098 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7099 MachineMemOperand *MMO) { 7100 SDValue Undef = getUNDEF(Ptr.getValueType()); 7101 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7102 MemVT, MMO); 7103 } 7104 7105 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7106 SDValue Base, SDValue Offset, 7107 ISD::MemIndexedMode AM) { 7108 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7109 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7110 // Don't propagate the invariant or dereferenceable flags. 7111 auto MMOFlags = 7112 LD->getMemOperand()->getFlags() & 7113 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7114 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7115 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7116 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7117 } 7118 7119 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7120 SDValue Ptr, MachinePointerInfo PtrInfo, 7121 Align Alignment, 7122 MachineMemOperand::Flags MMOFlags, 7123 const AAMDNodes &AAInfo) { 7124 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7125 7126 MMOFlags |= MachineMemOperand::MOStore; 7127 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7128 7129 if (PtrInfo.V.isNull()) 7130 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7131 7132 MachineFunction &MF = getMachineFunction(); 7133 uint64_t Size = 7134 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7135 MachineMemOperand *MMO = 7136 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7137 return getStore(Chain, dl, Val, Ptr, MMO); 7138 } 7139 7140 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7141 SDValue Ptr, MachineMemOperand *MMO) { 7142 assert(Chain.getValueType() == MVT::Other && 7143 "Invalid chain type"); 7144 EVT VT = Val.getValueType(); 7145 SDVTList VTs = getVTList(MVT::Other); 7146 SDValue Undef = getUNDEF(Ptr.getValueType()); 7147 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7148 FoldingSetNodeID ID; 7149 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7150 ID.AddInteger(VT.getRawBits()); 7151 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7152 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7153 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7154 void *IP = nullptr; 7155 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7156 cast<StoreSDNode>(E)->refineAlignment(MMO); 7157 return SDValue(E, 0); 7158 } 7159 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7160 ISD::UNINDEXED, false, VT, MMO); 7161 createOperands(N, Ops); 7162 7163 CSEMap.InsertNode(N, IP); 7164 InsertNode(N); 7165 SDValue V(N, 0); 7166 NewSDValueDbgMsg(V, "Creating new node: ", this); 7167 return V; 7168 } 7169 7170 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7171 SDValue Ptr, MachinePointerInfo PtrInfo, 7172 EVT SVT, Align Alignment, 7173 MachineMemOperand::Flags MMOFlags, 7174 const AAMDNodes &AAInfo) { 7175 assert(Chain.getValueType() == MVT::Other && 7176 "Invalid chain type"); 7177 7178 MMOFlags |= MachineMemOperand::MOStore; 7179 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7180 7181 if (PtrInfo.V.isNull()) 7182 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7183 7184 MachineFunction &MF = getMachineFunction(); 7185 MachineMemOperand *MMO = MF.getMachineMemOperand( 7186 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7187 Alignment, AAInfo); 7188 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7189 } 7190 7191 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7192 SDValue Ptr, EVT SVT, 7193 MachineMemOperand *MMO) { 7194 EVT VT = Val.getValueType(); 7195 7196 assert(Chain.getValueType() == MVT::Other && 7197 "Invalid chain type"); 7198 if (VT == SVT) 7199 return getStore(Chain, dl, Val, Ptr, MMO); 7200 7201 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7202 "Should only be a truncating store, not extending!"); 7203 assert(VT.isInteger() == SVT.isInteger() && 7204 "Can't do FP-INT conversion!"); 7205 assert(VT.isVector() == SVT.isVector() && 7206 "Cannot use trunc store to convert to or from a vector!"); 7207 assert((!VT.isVector() || 7208 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7209 "Cannot use trunc store to change the number of vector elements!"); 7210 7211 SDVTList VTs = getVTList(MVT::Other); 7212 SDValue Undef = getUNDEF(Ptr.getValueType()); 7213 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7214 FoldingSetNodeID ID; 7215 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7216 ID.AddInteger(SVT.getRawBits()); 7217 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7218 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7219 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7220 void *IP = nullptr; 7221 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7222 cast<StoreSDNode>(E)->refineAlignment(MMO); 7223 return SDValue(E, 0); 7224 } 7225 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7226 ISD::UNINDEXED, true, SVT, MMO); 7227 createOperands(N, Ops); 7228 7229 CSEMap.InsertNode(N, IP); 7230 InsertNode(N); 7231 SDValue V(N, 0); 7232 NewSDValueDbgMsg(V, "Creating new node: ", this); 7233 return V; 7234 } 7235 7236 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7237 SDValue Base, SDValue Offset, 7238 ISD::MemIndexedMode AM) { 7239 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7240 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7241 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7242 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7243 FoldingSetNodeID ID; 7244 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7245 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7246 ID.AddInteger(ST->getRawSubclassData()); 7247 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7248 void *IP = nullptr; 7249 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7250 return SDValue(E, 0); 7251 7252 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7253 ST->isTruncatingStore(), ST->getMemoryVT(), 7254 ST->getMemOperand()); 7255 createOperands(N, Ops); 7256 7257 CSEMap.InsertNode(N, IP); 7258 InsertNode(N); 7259 SDValue V(N, 0); 7260 NewSDValueDbgMsg(V, "Creating new node: ", this); 7261 return V; 7262 } 7263 7264 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7265 SDValue Base, SDValue Offset, SDValue Mask, 7266 SDValue PassThru, EVT MemVT, 7267 MachineMemOperand *MMO, 7268 ISD::MemIndexedMode AM, 7269 ISD::LoadExtType ExtTy, bool isExpanding) { 7270 bool Indexed = AM != ISD::UNINDEXED; 7271 assert((Indexed || Offset.isUndef()) && 7272 "Unindexed masked load with an offset!"); 7273 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7274 : getVTList(VT, MVT::Other); 7275 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7276 FoldingSetNodeID ID; 7277 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7278 ID.AddInteger(MemVT.getRawBits()); 7279 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7280 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7281 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7282 void *IP = nullptr; 7283 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7284 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7285 return SDValue(E, 0); 7286 } 7287 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7288 AM, ExtTy, isExpanding, MemVT, MMO); 7289 createOperands(N, Ops); 7290 7291 CSEMap.InsertNode(N, IP); 7292 InsertNode(N); 7293 SDValue V(N, 0); 7294 NewSDValueDbgMsg(V, "Creating new node: ", this); 7295 return V; 7296 } 7297 7298 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7299 SDValue Base, SDValue Offset, 7300 ISD::MemIndexedMode AM) { 7301 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7302 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7303 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7304 Offset, LD->getMask(), LD->getPassThru(), 7305 LD->getMemoryVT(), LD->getMemOperand(), AM, 7306 LD->getExtensionType(), LD->isExpandingLoad()); 7307 } 7308 7309 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7310 SDValue Val, SDValue Base, SDValue Offset, 7311 SDValue Mask, EVT MemVT, 7312 MachineMemOperand *MMO, 7313 ISD::MemIndexedMode AM, bool IsTruncating, 7314 bool IsCompressing) { 7315 assert(Chain.getValueType() == MVT::Other && 7316 "Invalid chain type"); 7317 bool Indexed = AM != ISD::UNINDEXED; 7318 assert((Indexed || Offset.isUndef()) && 7319 "Unindexed masked store with an offset!"); 7320 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7321 : getVTList(MVT::Other); 7322 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7323 FoldingSetNodeID ID; 7324 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7325 ID.AddInteger(MemVT.getRawBits()); 7326 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7327 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7328 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7329 void *IP = nullptr; 7330 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7331 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7332 return SDValue(E, 0); 7333 } 7334 auto *N = 7335 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7336 IsTruncating, IsCompressing, MemVT, MMO); 7337 createOperands(N, Ops); 7338 7339 CSEMap.InsertNode(N, IP); 7340 InsertNode(N); 7341 SDValue V(N, 0); 7342 NewSDValueDbgMsg(V, "Creating new node: ", this); 7343 return V; 7344 } 7345 7346 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7347 SDValue Base, SDValue Offset, 7348 ISD::MemIndexedMode AM) { 7349 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7350 assert(ST->getOffset().isUndef() && 7351 "Masked store is already a indexed store!"); 7352 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7353 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7354 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7355 } 7356 7357 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7358 ArrayRef<SDValue> Ops, 7359 MachineMemOperand *MMO, 7360 ISD::MemIndexType IndexType) { 7361 assert(Ops.size() == 6 && "Incompatible number of operands"); 7362 7363 FoldingSetNodeID ID; 7364 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7365 ID.AddInteger(VT.getRawBits()); 7366 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7367 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7368 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7369 void *IP = nullptr; 7370 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7371 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7372 return SDValue(E, 0); 7373 } 7374 7375 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7376 VTs, VT, MMO, IndexType); 7377 createOperands(N, Ops); 7378 7379 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7380 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7381 assert(N->getMask().getValueType().getVectorNumElements() == 7382 N->getValueType(0).getVectorNumElements() && 7383 "Vector width mismatch between mask and data"); 7384 assert(N->getIndex().getValueType().getVectorNumElements() >= 7385 N->getValueType(0).getVectorNumElements() && 7386 "Vector width mismatch between index and data"); 7387 assert(isa<ConstantSDNode>(N->getScale()) && 7388 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7389 "Scale should be a constant power of 2"); 7390 7391 CSEMap.InsertNode(N, IP); 7392 InsertNode(N); 7393 SDValue V(N, 0); 7394 NewSDValueDbgMsg(V, "Creating new node: ", this); 7395 return V; 7396 } 7397 7398 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7399 ArrayRef<SDValue> Ops, 7400 MachineMemOperand *MMO, 7401 ISD::MemIndexType IndexType) { 7402 assert(Ops.size() == 6 && "Incompatible number of operands"); 7403 7404 FoldingSetNodeID ID; 7405 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7406 ID.AddInteger(VT.getRawBits()); 7407 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7408 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7409 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7410 void *IP = nullptr; 7411 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7412 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7413 return SDValue(E, 0); 7414 } 7415 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7416 VTs, VT, MMO, IndexType); 7417 createOperands(N, Ops); 7418 7419 assert(N->getMask().getValueType().getVectorNumElements() == 7420 N->getValue().getValueType().getVectorNumElements() && 7421 "Vector width mismatch between mask and data"); 7422 assert(N->getIndex().getValueType().getVectorNumElements() >= 7423 N->getValue().getValueType().getVectorNumElements() && 7424 "Vector width mismatch between index and data"); 7425 assert(isa<ConstantSDNode>(N->getScale()) && 7426 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7427 "Scale should be a constant power of 2"); 7428 7429 CSEMap.InsertNode(N, IP); 7430 InsertNode(N); 7431 SDValue V(N, 0); 7432 NewSDValueDbgMsg(V, "Creating new node: ", this); 7433 return V; 7434 } 7435 7436 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7437 // select undef, T, F --> T (if T is a constant), otherwise F 7438 // select, ?, undef, F --> F 7439 // select, ?, T, undef --> T 7440 if (Cond.isUndef()) 7441 return isConstantValueOfAnyType(T) ? T : F; 7442 if (T.isUndef()) 7443 return F; 7444 if (F.isUndef()) 7445 return T; 7446 7447 // select true, T, F --> T 7448 // select false, T, F --> F 7449 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7450 return CondC->isNullValue() ? F : T; 7451 7452 // TODO: This should simplify VSELECT with constant condition using something 7453 // like this (but check boolean contents to be complete?): 7454 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7455 // return T; 7456 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7457 // return F; 7458 7459 // select ?, T, T --> T 7460 if (T == F) 7461 return T; 7462 7463 return SDValue(); 7464 } 7465 7466 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7467 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7468 if (X.isUndef()) 7469 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7470 // shift X, undef --> undef (because it may shift by the bitwidth) 7471 if (Y.isUndef()) 7472 return getUNDEF(X.getValueType()); 7473 7474 // shift 0, Y --> 0 7475 // shift X, 0 --> X 7476 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7477 return X; 7478 7479 // shift X, C >= bitwidth(X) --> undef 7480 // All vector elements must be too big (or undef) to avoid partial undefs. 7481 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7482 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7483 }; 7484 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7485 return getUNDEF(X.getValueType()); 7486 7487 return SDValue(); 7488 } 7489 7490 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7491 SDNodeFlags Flags) { 7492 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7493 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7494 // operation is poison. That result can be relaxed to undef. 7495 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7496 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7497 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7498 (YC && YC->getValueAPF().isNaN()); 7499 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7500 (YC && YC->getValueAPF().isInfinity()); 7501 7502 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7503 return getUNDEF(X.getValueType()); 7504 7505 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7506 return getUNDEF(X.getValueType()); 7507 7508 if (!YC) 7509 return SDValue(); 7510 7511 // X + -0.0 --> X 7512 if (Opcode == ISD::FADD) 7513 if (YC->getValueAPF().isNegZero()) 7514 return X; 7515 7516 // X - +0.0 --> X 7517 if (Opcode == ISD::FSUB) 7518 if (YC->getValueAPF().isPosZero()) 7519 return X; 7520 7521 // X * 1.0 --> X 7522 // X / 1.0 --> X 7523 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7524 if (YC->getValueAPF().isExactlyValue(1.0)) 7525 return X; 7526 7527 // X * 0.0 --> 0.0 7528 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7529 if (YC->getValueAPF().isZero()) 7530 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7531 7532 return SDValue(); 7533 } 7534 7535 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7536 SDValue Ptr, SDValue SV, unsigned Align) { 7537 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7538 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7539 } 7540 7541 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7542 ArrayRef<SDUse> Ops) { 7543 switch (Ops.size()) { 7544 case 0: return getNode(Opcode, DL, VT); 7545 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7546 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7547 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7548 default: break; 7549 } 7550 7551 // Copy from an SDUse array into an SDValue array for use with 7552 // the regular getNode logic. 7553 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7554 return getNode(Opcode, DL, VT, NewOps); 7555 } 7556 7557 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7558 ArrayRef<SDValue> Ops) { 7559 SDNodeFlags Flags; 7560 if (Inserter) 7561 Flags = Inserter->getFlags(); 7562 return getNode(Opcode, DL, VT, Ops, Flags); 7563 } 7564 7565 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7566 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7567 unsigned NumOps = Ops.size(); 7568 switch (NumOps) { 7569 case 0: return getNode(Opcode, DL, VT); 7570 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7571 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7572 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7573 default: break; 7574 } 7575 7576 switch (Opcode) { 7577 default: break; 7578 case ISD::BUILD_VECTOR: 7579 // Attempt to simplify BUILD_VECTOR. 7580 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7581 return V; 7582 break; 7583 case ISD::CONCAT_VECTORS: 7584 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7585 return V; 7586 break; 7587 case ISD::SELECT_CC: 7588 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7589 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7590 "LHS and RHS of condition must have same type!"); 7591 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7592 "True and False arms of SelectCC must have same type!"); 7593 assert(Ops[2].getValueType() == VT && 7594 "select_cc node must be of same type as true and false value!"); 7595 break; 7596 case ISD::BR_CC: 7597 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7598 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7599 "LHS/RHS of comparison should match types!"); 7600 break; 7601 } 7602 7603 // Memoize nodes. 7604 SDNode *N; 7605 SDVTList VTs = getVTList(VT); 7606 7607 if (VT != MVT::Glue) { 7608 FoldingSetNodeID ID; 7609 AddNodeIDNode(ID, Opcode, VTs, Ops); 7610 void *IP = nullptr; 7611 7612 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7613 return SDValue(E, 0); 7614 7615 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7616 createOperands(N, Ops); 7617 7618 CSEMap.InsertNode(N, IP); 7619 } else { 7620 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7621 createOperands(N, Ops); 7622 } 7623 7624 N->setFlags(Flags); 7625 InsertNode(N); 7626 SDValue V(N, 0); 7627 NewSDValueDbgMsg(V, "Creating new node: ", this); 7628 return V; 7629 } 7630 7631 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7632 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7633 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7634 } 7635 7636 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7637 ArrayRef<SDValue> Ops) { 7638 SDNodeFlags Flags; 7639 if (Inserter) 7640 Flags = Inserter->getFlags(); 7641 return getNode(Opcode, DL, VTList, Ops, Flags); 7642 } 7643 7644 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7645 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7646 if (VTList.NumVTs == 1) 7647 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7648 7649 switch (Opcode) { 7650 case ISD::STRICT_FP_EXTEND: 7651 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7652 "Invalid STRICT_FP_EXTEND!"); 7653 assert(VTList.VTs[0].isFloatingPoint() && 7654 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7655 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7656 "STRICT_FP_EXTEND result type should be vector iff the operand " 7657 "type is vector!"); 7658 assert((!VTList.VTs[0].isVector() || 7659 VTList.VTs[0].getVectorNumElements() == 7660 Ops[1].getValueType().getVectorNumElements()) && 7661 "Vector element count mismatch!"); 7662 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7663 "Invalid fpext node, dst <= src!"); 7664 break; 7665 case ISD::STRICT_FP_ROUND: 7666 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7667 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7668 "STRICT_FP_ROUND result type should be vector iff the operand " 7669 "type is vector!"); 7670 assert((!VTList.VTs[0].isVector() || 7671 VTList.VTs[0].getVectorNumElements() == 7672 Ops[1].getValueType().getVectorNumElements()) && 7673 "Vector element count mismatch!"); 7674 assert(VTList.VTs[0].isFloatingPoint() && 7675 Ops[1].getValueType().isFloatingPoint() && 7676 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7677 isa<ConstantSDNode>(Ops[2]) && 7678 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7679 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7680 "Invalid STRICT_FP_ROUND!"); 7681 break; 7682 #if 0 7683 // FIXME: figure out how to safely handle things like 7684 // int foo(int x) { return 1 << (x & 255); } 7685 // int bar() { return foo(256); } 7686 case ISD::SRA_PARTS: 7687 case ISD::SRL_PARTS: 7688 case ISD::SHL_PARTS: 7689 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7690 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7691 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7692 else if (N3.getOpcode() == ISD::AND) 7693 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7694 // If the and is only masking out bits that cannot effect the shift, 7695 // eliminate the and. 7696 unsigned NumBits = VT.getScalarSizeInBits()*2; 7697 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7698 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7699 } 7700 break; 7701 #endif 7702 } 7703 7704 // Memoize the node unless it returns a flag. 7705 SDNode *N; 7706 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7707 FoldingSetNodeID ID; 7708 AddNodeIDNode(ID, Opcode, VTList, Ops); 7709 void *IP = nullptr; 7710 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7711 return SDValue(E, 0); 7712 7713 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7714 createOperands(N, Ops); 7715 CSEMap.InsertNode(N, IP); 7716 } else { 7717 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7718 createOperands(N, Ops); 7719 } 7720 7721 N->setFlags(Flags); 7722 InsertNode(N); 7723 SDValue V(N, 0); 7724 NewSDValueDbgMsg(V, "Creating new node: ", this); 7725 return V; 7726 } 7727 7728 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7729 SDVTList VTList) { 7730 return getNode(Opcode, DL, VTList, None); 7731 } 7732 7733 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7734 SDValue N1) { 7735 SDValue Ops[] = { N1 }; 7736 return getNode(Opcode, DL, VTList, Ops); 7737 } 7738 7739 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7740 SDValue N1, SDValue N2) { 7741 SDValue Ops[] = { N1, N2 }; 7742 return getNode(Opcode, DL, VTList, Ops); 7743 } 7744 7745 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7746 SDValue N1, SDValue N2, SDValue N3) { 7747 SDValue Ops[] = { N1, N2, N3 }; 7748 return getNode(Opcode, DL, VTList, Ops); 7749 } 7750 7751 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7752 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7753 SDValue Ops[] = { N1, N2, N3, N4 }; 7754 return getNode(Opcode, DL, VTList, Ops); 7755 } 7756 7757 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7758 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7759 SDValue N5) { 7760 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7761 return getNode(Opcode, DL, VTList, Ops); 7762 } 7763 7764 SDVTList SelectionDAG::getVTList(EVT VT) { 7765 return makeVTList(SDNode::getValueTypeList(VT), 1); 7766 } 7767 7768 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7769 FoldingSetNodeID ID; 7770 ID.AddInteger(2U); 7771 ID.AddInteger(VT1.getRawBits()); 7772 ID.AddInteger(VT2.getRawBits()); 7773 7774 void *IP = nullptr; 7775 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7776 if (!Result) { 7777 EVT *Array = Allocator.Allocate<EVT>(2); 7778 Array[0] = VT1; 7779 Array[1] = VT2; 7780 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7781 VTListMap.InsertNode(Result, IP); 7782 } 7783 return Result->getSDVTList(); 7784 } 7785 7786 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7787 FoldingSetNodeID ID; 7788 ID.AddInteger(3U); 7789 ID.AddInteger(VT1.getRawBits()); 7790 ID.AddInteger(VT2.getRawBits()); 7791 ID.AddInteger(VT3.getRawBits()); 7792 7793 void *IP = nullptr; 7794 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7795 if (!Result) { 7796 EVT *Array = Allocator.Allocate<EVT>(3); 7797 Array[0] = VT1; 7798 Array[1] = VT2; 7799 Array[2] = VT3; 7800 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7801 VTListMap.InsertNode(Result, IP); 7802 } 7803 return Result->getSDVTList(); 7804 } 7805 7806 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7807 FoldingSetNodeID ID; 7808 ID.AddInteger(4U); 7809 ID.AddInteger(VT1.getRawBits()); 7810 ID.AddInteger(VT2.getRawBits()); 7811 ID.AddInteger(VT3.getRawBits()); 7812 ID.AddInteger(VT4.getRawBits()); 7813 7814 void *IP = nullptr; 7815 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7816 if (!Result) { 7817 EVT *Array = Allocator.Allocate<EVT>(4); 7818 Array[0] = VT1; 7819 Array[1] = VT2; 7820 Array[2] = VT3; 7821 Array[3] = VT4; 7822 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7823 VTListMap.InsertNode(Result, IP); 7824 } 7825 return Result->getSDVTList(); 7826 } 7827 7828 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7829 unsigned NumVTs = VTs.size(); 7830 FoldingSetNodeID ID; 7831 ID.AddInteger(NumVTs); 7832 for (unsigned index = 0; index < NumVTs; index++) { 7833 ID.AddInteger(VTs[index].getRawBits()); 7834 } 7835 7836 void *IP = nullptr; 7837 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7838 if (!Result) { 7839 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7840 llvm::copy(VTs, Array); 7841 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7842 VTListMap.InsertNode(Result, IP); 7843 } 7844 return Result->getSDVTList(); 7845 } 7846 7847 7848 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7849 /// specified operands. If the resultant node already exists in the DAG, 7850 /// this does not modify the specified node, instead it returns the node that 7851 /// already exists. If the resultant node does not exist in the DAG, the 7852 /// input node is returned. As a degenerate case, if you specify the same 7853 /// input operands as the node already has, the input node is returned. 7854 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7855 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7856 7857 // Check to see if there is no change. 7858 if (Op == N->getOperand(0)) return N; 7859 7860 // See if the modified node already exists. 7861 void *InsertPos = nullptr; 7862 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7863 return Existing; 7864 7865 // Nope it doesn't. Remove the node from its current place in the maps. 7866 if (InsertPos) 7867 if (!RemoveNodeFromCSEMaps(N)) 7868 InsertPos = nullptr; 7869 7870 // Now we update the operands. 7871 N->OperandList[0].set(Op); 7872 7873 updateDivergence(N); 7874 // If this gets put into a CSE map, add it. 7875 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7876 return N; 7877 } 7878 7879 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7880 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7881 7882 // Check to see if there is no change. 7883 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7884 return N; // No operands changed, just return the input node. 7885 7886 // See if the modified node already exists. 7887 void *InsertPos = nullptr; 7888 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7889 return Existing; 7890 7891 // Nope it doesn't. Remove the node from its current place in the maps. 7892 if (InsertPos) 7893 if (!RemoveNodeFromCSEMaps(N)) 7894 InsertPos = nullptr; 7895 7896 // Now we update the operands. 7897 if (N->OperandList[0] != Op1) 7898 N->OperandList[0].set(Op1); 7899 if (N->OperandList[1] != Op2) 7900 N->OperandList[1].set(Op2); 7901 7902 updateDivergence(N); 7903 // If this gets put into a CSE map, add it. 7904 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7905 return N; 7906 } 7907 7908 SDNode *SelectionDAG:: 7909 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7910 SDValue Ops[] = { Op1, Op2, Op3 }; 7911 return UpdateNodeOperands(N, Ops); 7912 } 7913 7914 SDNode *SelectionDAG:: 7915 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7916 SDValue Op3, SDValue Op4) { 7917 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7918 return UpdateNodeOperands(N, Ops); 7919 } 7920 7921 SDNode *SelectionDAG:: 7922 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7923 SDValue Op3, SDValue Op4, SDValue Op5) { 7924 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7925 return UpdateNodeOperands(N, Ops); 7926 } 7927 7928 SDNode *SelectionDAG:: 7929 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7930 unsigned NumOps = Ops.size(); 7931 assert(N->getNumOperands() == NumOps && 7932 "Update with wrong number of operands"); 7933 7934 // If no operands changed just return the input node. 7935 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7936 return N; 7937 7938 // See if the modified node already exists. 7939 void *InsertPos = nullptr; 7940 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7941 return Existing; 7942 7943 // Nope it doesn't. Remove the node from its current place in the maps. 7944 if (InsertPos) 7945 if (!RemoveNodeFromCSEMaps(N)) 7946 InsertPos = nullptr; 7947 7948 // Now we update the operands. 7949 for (unsigned i = 0; i != NumOps; ++i) 7950 if (N->OperandList[i] != Ops[i]) 7951 N->OperandList[i].set(Ops[i]); 7952 7953 updateDivergence(N); 7954 // If this gets put into a CSE map, add it. 7955 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7956 return N; 7957 } 7958 7959 /// DropOperands - Release the operands and set this node to have 7960 /// zero operands. 7961 void SDNode::DropOperands() { 7962 // Unlike the code in MorphNodeTo that does this, we don't need to 7963 // watch for dead nodes here. 7964 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7965 SDUse &Use = *I++; 7966 Use.set(SDValue()); 7967 } 7968 } 7969 7970 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7971 ArrayRef<MachineMemOperand *> NewMemRefs) { 7972 if (NewMemRefs.empty()) { 7973 N->clearMemRefs(); 7974 return; 7975 } 7976 7977 // Check if we can avoid allocating by storing a single reference directly. 7978 if (NewMemRefs.size() == 1) { 7979 N->MemRefs = NewMemRefs[0]; 7980 N->NumMemRefs = 1; 7981 return; 7982 } 7983 7984 MachineMemOperand **MemRefsBuffer = 7985 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7986 llvm::copy(NewMemRefs, MemRefsBuffer); 7987 N->MemRefs = MemRefsBuffer; 7988 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7989 } 7990 7991 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7992 /// machine opcode. 7993 /// 7994 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7995 EVT VT) { 7996 SDVTList VTs = getVTList(VT); 7997 return SelectNodeTo(N, MachineOpc, VTs, None); 7998 } 7999 8000 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8001 EVT VT, SDValue Op1) { 8002 SDVTList VTs = getVTList(VT); 8003 SDValue Ops[] = { Op1 }; 8004 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8005 } 8006 8007 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8008 EVT VT, SDValue Op1, 8009 SDValue Op2) { 8010 SDVTList VTs = getVTList(VT); 8011 SDValue Ops[] = { Op1, Op2 }; 8012 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8013 } 8014 8015 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8016 EVT VT, SDValue Op1, 8017 SDValue Op2, SDValue Op3) { 8018 SDVTList VTs = getVTList(VT); 8019 SDValue Ops[] = { Op1, Op2, Op3 }; 8020 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8021 } 8022 8023 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8024 EVT VT, ArrayRef<SDValue> Ops) { 8025 SDVTList VTs = getVTList(VT); 8026 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8027 } 8028 8029 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8030 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8031 SDVTList VTs = getVTList(VT1, VT2); 8032 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8033 } 8034 8035 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8036 EVT VT1, EVT VT2) { 8037 SDVTList VTs = getVTList(VT1, VT2); 8038 return SelectNodeTo(N, MachineOpc, VTs, None); 8039 } 8040 8041 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8042 EVT VT1, EVT VT2, EVT VT3, 8043 ArrayRef<SDValue> Ops) { 8044 SDVTList VTs = getVTList(VT1, VT2, VT3); 8045 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8046 } 8047 8048 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8049 EVT VT1, EVT VT2, 8050 SDValue Op1, SDValue Op2) { 8051 SDVTList VTs = getVTList(VT1, VT2); 8052 SDValue Ops[] = { Op1, Op2 }; 8053 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8054 } 8055 8056 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8057 SDVTList VTs,ArrayRef<SDValue> Ops) { 8058 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8059 // Reset the NodeID to -1. 8060 New->setNodeId(-1); 8061 if (New != N) { 8062 ReplaceAllUsesWith(N, New); 8063 RemoveDeadNode(N); 8064 } 8065 return New; 8066 } 8067 8068 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8069 /// the line number information on the merged node since it is not possible to 8070 /// preserve the information that operation is associated with multiple lines. 8071 /// This will make the debugger working better at -O0, were there is a higher 8072 /// probability having other instructions associated with that line. 8073 /// 8074 /// For IROrder, we keep the smaller of the two 8075 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8076 DebugLoc NLoc = N->getDebugLoc(); 8077 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8078 N->setDebugLoc(DebugLoc()); 8079 } 8080 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8081 N->setIROrder(Order); 8082 return N; 8083 } 8084 8085 /// MorphNodeTo - This *mutates* the specified node to have the specified 8086 /// return type, opcode, and operands. 8087 /// 8088 /// Note that MorphNodeTo returns the resultant node. If there is already a 8089 /// node of the specified opcode and operands, it returns that node instead of 8090 /// the current one. Note that the SDLoc need not be the same. 8091 /// 8092 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8093 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8094 /// node, and because it doesn't require CSE recalculation for any of 8095 /// the node's users. 8096 /// 8097 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8098 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8099 /// the legalizer which maintain worklists that would need to be updated when 8100 /// deleting things. 8101 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8102 SDVTList VTs, ArrayRef<SDValue> Ops) { 8103 // If an identical node already exists, use it. 8104 void *IP = nullptr; 8105 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8106 FoldingSetNodeID ID; 8107 AddNodeIDNode(ID, Opc, VTs, Ops); 8108 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8109 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8110 } 8111 8112 if (!RemoveNodeFromCSEMaps(N)) 8113 IP = nullptr; 8114 8115 // Start the morphing. 8116 N->NodeType = Opc; 8117 N->ValueList = VTs.VTs; 8118 N->NumValues = VTs.NumVTs; 8119 8120 // Clear the operands list, updating used nodes to remove this from their 8121 // use list. Keep track of any operands that become dead as a result. 8122 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8123 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8124 SDUse &Use = *I++; 8125 SDNode *Used = Use.getNode(); 8126 Use.set(SDValue()); 8127 if (Used->use_empty()) 8128 DeadNodeSet.insert(Used); 8129 } 8130 8131 // For MachineNode, initialize the memory references information. 8132 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8133 MN->clearMemRefs(); 8134 8135 // Swap for an appropriately sized array from the recycler. 8136 removeOperands(N); 8137 createOperands(N, Ops); 8138 8139 // Delete any nodes that are still dead after adding the uses for the 8140 // new operands. 8141 if (!DeadNodeSet.empty()) { 8142 SmallVector<SDNode *, 16> DeadNodes; 8143 for (SDNode *N : DeadNodeSet) 8144 if (N->use_empty()) 8145 DeadNodes.push_back(N); 8146 RemoveDeadNodes(DeadNodes); 8147 } 8148 8149 if (IP) 8150 CSEMap.InsertNode(N, IP); // Memoize the new node. 8151 return N; 8152 } 8153 8154 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8155 unsigned OrigOpc = Node->getOpcode(); 8156 unsigned NewOpc; 8157 switch (OrigOpc) { 8158 default: 8159 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8160 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8161 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8162 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8163 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8164 #include "llvm/IR/ConstrainedOps.def" 8165 } 8166 8167 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8168 8169 // We're taking this node out of the chain, so we need to re-link things. 8170 SDValue InputChain = Node->getOperand(0); 8171 SDValue OutputChain = SDValue(Node, 1); 8172 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8173 8174 SmallVector<SDValue, 3> Ops; 8175 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8176 Ops.push_back(Node->getOperand(i)); 8177 8178 SDVTList VTs = getVTList(Node->getValueType(0)); 8179 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8180 8181 // MorphNodeTo can operate in two ways: if an existing node with the 8182 // specified operands exists, it can just return it. Otherwise, it 8183 // updates the node in place to have the requested operands. 8184 if (Res == Node) { 8185 // If we updated the node in place, reset the node ID. To the isel, 8186 // this should be just like a newly allocated machine node. 8187 Res->setNodeId(-1); 8188 } else { 8189 ReplaceAllUsesWith(Node, Res); 8190 RemoveDeadNode(Node); 8191 } 8192 8193 return Res; 8194 } 8195 8196 /// getMachineNode - These are used for target selectors to create a new node 8197 /// with specified return type(s), MachineInstr opcode, and operands. 8198 /// 8199 /// Note that getMachineNode returns the resultant node. If there is already a 8200 /// node of the specified opcode and operands, it returns that node instead of 8201 /// the current one. 8202 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8203 EVT VT) { 8204 SDVTList VTs = getVTList(VT); 8205 return getMachineNode(Opcode, dl, VTs, None); 8206 } 8207 8208 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8209 EVT VT, SDValue Op1) { 8210 SDVTList VTs = getVTList(VT); 8211 SDValue Ops[] = { Op1 }; 8212 return getMachineNode(Opcode, dl, VTs, Ops); 8213 } 8214 8215 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8216 EVT VT, SDValue Op1, SDValue Op2) { 8217 SDVTList VTs = getVTList(VT); 8218 SDValue Ops[] = { Op1, Op2 }; 8219 return getMachineNode(Opcode, dl, VTs, Ops); 8220 } 8221 8222 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8223 EVT VT, SDValue Op1, SDValue Op2, 8224 SDValue Op3) { 8225 SDVTList VTs = getVTList(VT); 8226 SDValue Ops[] = { Op1, Op2, Op3 }; 8227 return getMachineNode(Opcode, dl, VTs, Ops); 8228 } 8229 8230 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8231 EVT VT, ArrayRef<SDValue> Ops) { 8232 SDVTList VTs = getVTList(VT); 8233 return getMachineNode(Opcode, dl, VTs, Ops); 8234 } 8235 8236 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8237 EVT VT1, EVT VT2, SDValue Op1, 8238 SDValue Op2) { 8239 SDVTList VTs = getVTList(VT1, VT2); 8240 SDValue Ops[] = { Op1, Op2 }; 8241 return getMachineNode(Opcode, dl, VTs, Ops); 8242 } 8243 8244 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8245 EVT VT1, EVT VT2, SDValue Op1, 8246 SDValue Op2, SDValue Op3) { 8247 SDVTList VTs = getVTList(VT1, VT2); 8248 SDValue Ops[] = { Op1, Op2, Op3 }; 8249 return getMachineNode(Opcode, dl, VTs, Ops); 8250 } 8251 8252 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8253 EVT VT1, EVT VT2, 8254 ArrayRef<SDValue> Ops) { 8255 SDVTList VTs = getVTList(VT1, VT2); 8256 return getMachineNode(Opcode, dl, VTs, Ops); 8257 } 8258 8259 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8260 EVT VT1, EVT VT2, EVT VT3, 8261 SDValue Op1, SDValue Op2) { 8262 SDVTList VTs = getVTList(VT1, VT2, VT3); 8263 SDValue Ops[] = { Op1, Op2 }; 8264 return getMachineNode(Opcode, dl, VTs, Ops); 8265 } 8266 8267 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8268 EVT VT1, EVT VT2, EVT VT3, 8269 SDValue Op1, SDValue Op2, 8270 SDValue Op3) { 8271 SDVTList VTs = getVTList(VT1, VT2, VT3); 8272 SDValue Ops[] = { Op1, Op2, Op3 }; 8273 return getMachineNode(Opcode, dl, VTs, Ops); 8274 } 8275 8276 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8277 EVT VT1, EVT VT2, EVT VT3, 8278 ArrayRef<SDValue> Ops) { 8279 SDVTList VTs = getVTList(VT1, VT2, VT3); 8280 return getMachineNode(Opcode, dl, VTs, Ops); 8281 } 8282 8283 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8284 ArrayRef<EVT> ResultTys, 8285 ArrayRef<SDValue> Ops) { 8286 SDVTList VTs = getVTList(ResultTys); 8287 return getMachineNode(Opcode, dl, VTs, Ops); 8288 } 8289 8290 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8291 SDVTList VTs, 8292 ArrayRef<SDValue> Ops) { 8293 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8294 MachineSDNode *N; 8295 void *IP = nullptr; 8296 8297 if (DoCSE) { 8298 FoldingSetNodeID ID; 8299 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8300 IP = nullptr; 8301 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8302 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8303 } 8304 } 8305 8306 // Allocate a new MachineSDNode. 8307 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8308 createOperands(N, Ops); 8309 8310 if (DoCSE) 8311 CSEMap.InsertNode(N, IP); 8312 8313 InsertNode(N); 8314 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8315 return N; 8316 } 8317 8318 /// getTargetExtractSubreg - A convenience function for creating 8319 /// TargetOpcode::EXTRACT_SUBREG nodes. 8320 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8321 SDValue Operand) { 8322 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8323 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8324 VT, Operand, SRIdxVal); 8325 return SDValue(Subreg, 0); 8326 } 8327 8328 /// getTargetInsertSubreg - A convenience function for creating 8329 /// TargetOpcode::INSERT_SUBREG nodes. 8330 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8331 SDValue Operand, SDValue Subreg) { 8332 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8333 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8334 VT, Operand, Subreg, SRIdxVal); 8335 return SDValue(Result, 0); 8336 } 8337 8338 /// getNodeIfExists - Get the specified node if it's already available, or 8339 /// else return NULL. 8340 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8341 ArrayRef<SDValue> Ops) { 8342 SDNodeFlags Flags; 8343 if (Inserter) 8344 Flags = Inserter->getFlags(); 8345 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8346 } 8347 8348 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8349 ArrayRef<SDValue> Ops, 8350 const SDNodeFlags Flags) { 8351 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8352 FoldingSetNodeID ID; 8353 AddNodeIDNode(ID, Opcode, VTList, Ops); 8354 void *IP = nullptr; 8355 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8356 E->intersectFlagsWith(Flags); 8357 return E; 8358 } 8359 } 8360 return nullptr; 8361 } 8362 8363 /// getDbgValue - Creates a SDDbgValue node. 8364 /// 8365 /// SDNode 8366 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8367 SDNode *N, unsigned R, bool IsIndirect, 8368 const DebugLoc &DL, unsigned O) { 8369 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8370 "Expected inlined-at fields to agree"); 8371 return new (DbgInfo->getAlloc()) 8372 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8373 } 8374 8375 /// Constant 8376 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8377 DIExpression *Expr, 8378 const Value *C, 8379 const DebugLoc &DL, unsigned O) { 8380 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8381 "Expected inlined-at fields to agree"); 8382 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8383 } 8384 8385 /// FrameIndex 8386 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8387 DIExpression *Expr, unsigned FI, 8388 bool IsIndirect, 8389 const DebugLoc &DL, 8390 unsigned O) { 8391 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8392 "Expected inlined-at fields to agree"); 8393 return new (DbgInfo->getAlloc()) 8394 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8395 } 8396 8397 /// VReg 8398 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8399 DIExpression *Expr, 8400 unsigned VReg, bool IsIndirect, 8401 const DebugLoc &DL, unsigned O) { 8402 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8403 "Expected inlined-at fields to agree"); 8404 return new (DbgInfo->getAlloc()) 8405 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8406 } 8407 8408 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8409 unsigned OffsetInBits, unsigned SizeInBits, 8410 bool InvalidateDbg) { 8411 SDNode *FromNode = From.getNode(); 8412 SDNode *ToNode = To.getNode(); 8413 assert(FromNode && ToNode && "Can't modify dbg values"); 8414 8415 // PR35338 8416 // TODO: assert(From != To && "Redundant dbg value transfer"); 8417 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8418 if (From == To || FromNode == ToNode) 8419 return; 8420 8421 if (!FromNode->getHasDebugValue()) 8422 return; 8423 8424 SmallVector<SDDbgValue *, 2> ClonedDVs; 8425 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8426 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8427 continue; 8428 8429 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8430 8431 // Just transfer the dbg value attached to From. 8432 if (Dbg->getResNo() != From.getResNo()) 8433 continue; 8434 8435 DIVariable *Var = Dbg->getVariable(); 8436 auto *Expr = Dbg->getExpression(); 8437 // If a fragment is requested, update the expression. 8438 if (SizeInBits) { 8439 // When splitting a larger (e.g., sign-extended) value whose 8440 // lower bits are described with an SDDbgValue, do not attempt 8441 // to transfer the SDDbgValue to the upper bits. 8442 if (auto FI = Expr->getFragmentInfo()) 8443 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8444 continue; 8445 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8446 SizeInBits); 8447 if (!Fragment) 8448 continue; 8449 Expr = *Fragment; 8450 } 8451 // Clone the SDDbgValue and move it to To. 8452 SDDbgValue *Clone = getDbgValue( 8453 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8454 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8455 ClonedDVs.push_back(Clone); 8456 8457 if (InvalidateDbg) { 8458 // Invalidate value and indicate the SDDbgValue should not be emitted. 8459 Dbg->setIsInvalidated(); 8460 Dbg->setIsEmitted(); 8461 } 8462 } 8463 8464 for (SDDbgValue *Dbg : ClonedDVs) 8465 AddDbgValue(Dbg, ToNode, false); 8466 } 8467 8468 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8469 if (!N.getHasDebugValue()) 8470 return; 8471 8472 SmallVector<SDDbgValue *, 2> ClonedDVs; 8473 for (auto DV : GetDbgValues(&N)) { 8474 if (DV->isInvalidated()) 8475 continue; 8476 switch (N.getOpcode()) { 8477 default: 8478 break; 8479 case ISD::ADD: 8480 SDValue N0 = N.getOperand(0); 8481 SDValue N1 = N.getOperand(1); 8482 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8483 isConstantIntBuildVectorOrConstantInt(N1)) { 8484 uint64_t Offset = N.getConstantOperandVal(1); 8485 // Rewrite an ADD constant node into a DIExpression. Since we are 8486 // performing arithmetic to compute the variable's *value* in the 8487 // DIExpression, we need to mark the expression with a 8488 // DW_OP_stack_value. 8489 auto *DIExpr = DV->getExpression(); 8490 DIExpr = 8491 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8492 SDDbgValue *Clone = 8493 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8494 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8495 ClonedDVs.push_back(Clone); 8496 DV->setIsInvalidated(); 8497 DV->setIsEmitted(); 8498 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8499 N0.getNode()->dumprFull(this); 8500 dbgs() << " into " << *DIExpr << '\n'); 8501 } 8502 } 8503 } 8504 8505 for (SDDbgValue *Dbg : ClonedDVs) 8506 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8507 } 8508 8509 /// Creates a SDDbgLabel node. 8510 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8511 const DebugLoc &DL, unsigned O) { 8512 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8513 "Expected inlined-at fields to agree"); 8514 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8515 } 8516 8517 namespace { 8518 8519 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8520 /// pointed to by a use iterator is deleted, increment the use iterator 8521 /// so that it doesn't dangle. 8522 /// 8523 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8524 SDNode::use_iterator &UI; 8525 SDNode::use_iterator &UE; 8526 8527 void NodeDeleted(SDNode *N, SDNode *E) override { 8528 // Increment the iterator as needed. 8529 while (UI != UE && N == *UI) 8530 ++UI; 8531 } 8532 8533 public: 8534 RAUWUpdateListener(SelectionDAG &d, 8535 SDNode::use_iterator &ui, 8536 SDNode::use_iterator &ue) 8537 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8538 }; 8539 8540 } // end anonymous namespace 8541 8542 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8543 /// This can cause recursive merging of nodes in the DAG. 8544 /// 8545 /// This version assumes From has a single result value. 8546 /// 8547 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8548 SDNode *From = FromN.getNode(); 8549 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8550 "Cannot replace with this method!"); 8551 assert(From != To.getNode() && "Cannot replace uses of with self"); 8552 8553 // Preserve Debug Values 8554 transferDbgValues(FromN, To); 8555 8556 // Iterate over all the existing uses of From. New uses will be added 8557 // to the beginning of the use list, which we avoid visiting. 8558 // This specifically avoids visiting uses of From that arise while the 8559 // replacement is happening, because any such uses would be the result 8560 // of CSE: If an existing node looks like From after one of its operands 8561 // is replaced by To, we don't want to replace of all its users with To 8562 // too. See PR3018 for more info. 8563 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8564 RAUWUpdateListener Listener(*this, UI, UE); 8565 while (UI != UE) { 8566 SDNode *User = *UI; 8567 8568 // This node is about to morph, remove its old self from the CSE maps. 8569 RemoveNodeFromCSEMaps(User); 8570 8571 // A user can appear in a use list multiple times, and when this 8572 // happens the uses are usually next to each other in the list. 8573 // To help reduce the number of CSE recomputations, process all 8574 // the uses of this user that we can find this way. 8575 do { 8576 SDUse &Use = UI.getUse(); 8577 ++UI; 8578 Use.set(To); 8579 if (To->isDivergent() != From->isDivergent()) 8580 updateDivergence(User); 8581 } while (UI != UE && *UI == User); 8582 // Now that we have modified User, add it back to the CSE maps. If it 8583 // already exists there, recursively merge the results together. 8584 AddModifiedNodeToCSEMaps(User); 8585 } 8586 8587 // If we just RAUW'd the root, take note. 8588 if (FromN == getRoot()) 8589 setRoot(To); 8590 } 8591 8592 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8593 /// This can cause recursive merging of nodes in the DAG. 8594 /// 8595 /// This version assumes that for each value of From, there is a 8596 /// corresponding value in To in the same position with the same type. 8597 /// 8598 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8599 #ifndef NDEBUG 8600 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8601 assert((!From->hasAnyUseOfValue(i) || 8602 From->getValueType(i) == To->getValueType(i)) && 8603 "Cannot use this version of ReplaceAllUsesWith!"); 8604 #endif 8605 8606 // Handle the trivial case. 8607 if (From == To) 8608 return; 8609 8610 // Preserve Debug Info. Only do this if there's a use. 8611 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8612 if (From->hasAnyUseOfValue(i)) { 8613 assert((i < To->getNumValues()) && "Invalid To location"); 8614 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8615 } 8616 8617 // Iterate over just the existing users of From. See the comments in 8618 // the ReplaceAllUsesWith above. 8619 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8620 RAUWUpdateListener Listener(*this, UI, UE); 8621 while (UI != UE) { 8622 SDNode *User = *UI; 8623 8624 // This node is about to morph, remove its old self from the CSE maps. 8625 RemoveNodeFromCSEMaps(User); 8626 8627 // A user can appear in a use list multiple times, and when this 8628 // happens the uses are usually next to each other in the list. 8629 // To help reduce the number of CSE recomputations, process all 8630 // the uses of this user that we can find this way. 8631 do { 8632 SDUse &Use = UI.getUse(); 8633 ++UI; 8634 Use.setNode(To); 8635 if (To->isDivergent() != From->isDivergent()) 8636 updateDivergence(User); 8637 } while (UI != UE && *UI == User); 8638 8639 // Now that we have modified User, add it back to the CSE maps. If it 8640 // already exists there, recursively merge the results together. 8641 AddModifiedNodeToCSEMaps(User); 8642 } 8643 8644 // If we just RAUW'd the root, take note. 8645 if (From == getRoot().getNode()) 8646 setRoot(SDValue(To, getRoot().getResNo())); 8647 } 8648 8649 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8650 /// This can cause recursive merging of nodes in the DAG. 8651 /// 8652 /// This version can replace From with any result values. To must match the 8653 /// number and types of values returned by From. 8654 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8655 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8656 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8657 8658 // Preserve Debug Info. 8659 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8660 transferDbgValues(SDValue(From, i), To[i]); 8661 8662 // Iterate over just the existing users of From. See the comments in 8663 // the ReplaceAllUsesWith above. 8664 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8665 RAUWUpdateListener Listener(*this, UI, UE); 8666 while (UI != UE) { 8667 SDNode *User = *UI; 8668 8669 // This node is about to morph, remove its old self from the CSE maps. 8670 RemoveNodeFromCSEMaps(User); 8671 8672 // A user can appear in a use list multiple times, and when this happens the 8673 // uses are usually next to each other in the list. To help reduce the 8674 // number of CSE and divergence recomputations, process all the uses of this 8675 // user that we can find this way. 8676 bool To_IsDivergent = false; 8677 do { 8678 SDUse &Use = UI.getUse(); 8679 const SDValue &ToOp = To[Use.getResNo()]; 8680 ++UI; 8681 Use.set(ToOp); 8682 To_IsDivergent |= ToOp->isDivergent(); 8683 } while (UI != UE && *UI == User); 8684 8685 if (To_IsDivergent != From->isDivergent()) 8686 updateDivergence(User); 8687 8688 // Now that we have modified User, add it back to the CSE maps. If it 8689 // already exists there, recursively merge the results together. 8690 AddModifiedNodeToCSEMaps(User); 8691 } 8692 8693 // If we just RAUW'd the root, take note. 8694 if (From == getRoot().getNode()) 8695 setRoot(SDValue(To[getRoot().getResNo()])); 8696 } 8697 8698 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8699 /// uses of other values produced by From.getNode() alone. The Deleted 8700 /// vector is handled the same way as for ReplaceAllUsesWith. 8701 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8702 // Handle the really simple, really trivial case efficiently. 8703 if (From == To) return; 8704 8705 // Handle the simple, trivial, case efficiently. 8706 if (From.getNode()->getNumValues() == 1) { 8707 ReplaceAllUsesWith(From, To); 8708 return; 8709 } 8710 8711 // Preserve Debug Info. 8712 transferDbgValues(From, To); 8713 8714 // Iterate over just the existing users of From. See the comments in 8715 // the ReplaceAllUsesWith above. 8716 SDNode::use_iterator UI = From.getNode()->use_begin(), 8717 UE = From.getNode()->use_end(); 8718 RAUWUpdateListener Listener(*this, UI, UE); 8719 while (UI != UE) { 8720 SDNode *User = *UI; 8721 bool UserRemovedFromCSEMaps = false; 8722 8723 // A user can appear in a use list multiple times, and when this 8724 // happens the uses are usually next to each other in the list. 8725 // To help reduce the number of CSE recomputations, process all 8726 // the uses of this user that we can find this way. 8727 do { 8728 SDUse &Use = UI.getUse(); 8729 8730 // Skip uses of different values from the same node. 8731 if (Use.getResNo() != From.getResNo()) { 8732 ++UI; 8733 continue; 8734 } 8735 8736 // If this node hasn't been modified yet, it's still in the CSE maps, 8737 // so remove its old self from the CSE maps. 8738 if (!UserRemovedFromCSEMaps) { 8739 RemoveNodeFromCSEMaps(User); 8740 UserRemovedFromCSEMaps = true; 8741 } 8742 8743 ++UI; 8744 Use.set(To); 8745 if (To->isDivergent() != From->isDivergent()) 8746 updateDivergence(User); 8747 } while (UI != UE && *UI == User); 8748 // We are iterating over all uses of the From node, so if a use 8749 // doesn't use the specific value, no changes are made. 8750 if (!UserRemovedFromCSEMaps) 8751 continue; 8752 8753 // Now that we have modified User, add it back to the CSE maps. If it 8754 // already exists there, recursively merge the results together. 8755 AddModifiedNodeToCSEMaps(User); 8756 } 8757 8758 // If we just RAUW'd the root, take note. 8759 if (From == getRoot()) 8760 setRoot(To); 8761 } 8762 8763 namespace { 8764 8765 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8766 /// to record information about a use. 8767 struct UseMemo { 8768 SDNode *User; 8769 unsigned Index; 8770 SDUse *Use; 8771 }; 8772 8773 /// operator< - Sort Memos by User. 8774 bool operator<(const UseMemo &L, const UseMemo &R) { 8775 return (intptr_t)L.User < (intptr_t)R.User; 8776 } 8777 8778 } // end anonymous namespace 8779 8780 bool SelectionDAG::calculateDivergence(SDNode *N) { 8781 if (TLI->isSDNodeAlwaysUniform(N)) { 8782 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8783 "Conflicting divergence information!"); 8784 return false; 8785 } 8786 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8787 return true; 8788 for (auto &Op : N->ops()) { 8789 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8790 return true; 8791 } 8792 return false; 8793 } 8794 8795 void SelectionDAG::updateDivergence(SDNode *N) { 8796 SmallVector<SDNode *, 16> Worklist(1, N); 8797 do { 8798 N = Worklist.pop_back_val(); 8799 bool IsDivergent = calculateDivergence(N); 8800 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8801 N->SDNodeBits.IsDivergent = IsDivergent; 8802 Worklist.insert(Worklist.end(), N->use_begin(), N->use_end()); 8803 } 8804 } while (!Worklist.empty()); 8805 } 8806 8807 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8808 DenseMap<SDNode *, unsigned> Degree; 8809 Order.reserve(AllNodes.size()); 8810 for (auto &N : allnodes()) { 8811 unsigned NOps = N.getNumOperands(); 8812 Degree[&N] = NOps; 8813 if (0 == NOps) 8814 Order.push_back(&N); 8815 } 8816 for (size_t I = 0; I != Order.size(); ++I) { 8817 SDNode *N = Order[I]; 8818 for (auto U : N->uses()) { 8819 unsigned &UnsortedOps = Degree[U]; 8820 if (0 == --UnsortedOps) 8821 Order.push_back(U); 8822 } 8823 } 8824 } 8825 8826 #ifndef NDEBUG 8827 void SelectionDAG::VerifyDAGDiverence() { 8828 std::vector<SDNode *> TopoOrder; 8829 CreateTopologicalOrder(TopoOrder); 8830 for (auto *N : TopoOrder) { 8831 assert(calculateDivergence(N) == N->isDivergent() && 8832 "Divergence bit inconsistency detected"); 8833 } 8834 } 8835 #endif 8836 8837 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8838 /// uses of other values produced by From.getNode() alone. The same value 8839 /// may appear in both the From and To list. The Deleted vector is 8840 /// handled the same way as for ReplaceAllUsesWith. 8841 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8842 const SDValue *To, 8843 unsigned Num){ 8844 // Handle the simple, trivial case efficiently. 8845 if (Num == 1) 8846 return ReplaceAllUsesOfValueWith(*From, *To); 8847 8848 transferDbgValues(*From, *To); 8849 8850 // Read up all the uses and make records of them. This helps 8851 // processing new uses that are introduced during the 8852 // replacement process. 8853 SmallVector<UseMemo, 4> Uses; 8854 for (unsigned i = 0; i != Num; ++i) { 8855 unsigned FromResNo = From[i].getResNo(); 8856 SDNode *FromNode = From[i].getNode(); 8857 for (SDNode::use_iterator UI = FromNode->use_begin(), 8858 E = FromNode->use_end(); UI != E; ++UI) { 8859 SDUse &Use = UI.getUse(); 8860 if (Use.getResNo() == FromResNo) { 8861 UseMemo Memo = { *UI, i, &Use }; 8862 Uses.push_back(Memo); 8863 } 8864 } 8865 } 8866 8867 // Sort the uses, so that all the uses from a given User are together. 8868 llvm::sort(Uses); 8869 8870 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8871 UseIndex != UseIndexEnd; ) { 8872 // We know that this user uses some value of From. If it is the right 8873 // value, update it. 8874 SDNode *User = Uses[UseIndex].User; 8875 8876 // This node is about to morph, remove its old self from the CSE maps. 8877 RemoveNodeFromCSEMaps(User); 8878 8879 // The Uses array is sorted, so all the uses for a given User 8880 // are next to each other in the list. 8881 // To help reduce the number of CSE recomputations, process all 8882 // the uses of this user that we can find this way. 8883 do { 8884 unsigned i = Uses[UseIndex].Index; 8885 SDUse &Use = *Uses[UseIndex].Use; 8886 ++UseIndex; 8887 8888 Use.set(To[i]); 8889 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8890 8891 // Now that we have modified User, add it back to the CSE maps. If it 8892 // already exists there, recursively merge the results together. 8893 AddModifiedNodeToCSEMaps(User); 8894 } 8895 } 8896 8897 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8898 /// based on their topological order. It returns the maximum id and a vector 8899 /// of the SDNodes* in assigned order by reference. 8900 unsigned SelectionDAG::AssignTopologicalOrder() { 8901 unsigned DAGSize = 0; 8902 8903 // SortedPos tracks the progress of the algorithm. Nodes before it are 8904 // sorted, nodes after it are unsorted. When the algorithm completes 8905 // it is at the end of the list. 8906 allnodes_iterator SortedPos = allnodes_begin(); 8907 8908 // Visit all the nodes. Move nodes with no operands to the front of 8909 // the list immediately. Annotate nodes that do have operands with their 8910 // operand count. Before we do this, the Node Id fields of the nodes 8911 // may contain arbitrary values. After, the Node Id fields for nodes 8912 // before SortedPos will contain the topological sort index, and the 8913 // Node Id fields for nodes At SortedPos and after will contain the 8914 // count of outstanding operands. 8915 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8916 SDNode *N = &*I++; 8917 checkForCycles(N, this); 8918 unsigned Degree = N->getNumOperands(); 8919 if (Degree == 0) { 8920 // A node with no uses, add it to the result array immediately. 8921 N->setNodeId(DAGSize++); 8922 allnodes_iterator Q(N); 8923 if (Q != SortedPos) 8924 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8925 assert(SortedPos != AllNodes.end() && "Overran node list"); 8926 ++SortedPos; 8927 } else { 8928 // Temporarily use the Node Id as scratch space for the degree count. 8929 N->setNodeId(Degree); 8930 } 8931 } 8932 8933 // Visit all the nodes. As we iterate, move nodes into sorted order, 8934 // such that by the time the end is reached all nodes will be sorted. 8935 for (SDNode &Node : allnodes()) { 8936 SDNode *N = &Node; 8937 checkForCycles(N, this); 8938 // N is in sorted position, so all its uses have one less operand 8939 // that needs to be sorted. 8940 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8941 UI != UE; ++UI) { 8942 SDNode *P = *UI; 8943 unsigned Degree = P->getNodeId(); 8944 assert(Degree != 0 && "Invalid node degree"); 8945 --Degree; 8946 if (Degree == 0) { 8947 // All of P's operands are sorted, so P may sorted now. 8948 P->setNodeId(DAGSize++); 8949 if (P->getIterator() != SortedPos) 8950 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8951 assert(SortedPos != AllNodes.end() && "Overran node list"); 8952 ++SortedPos; 8953 } else { 8954 // Update P's outstanding operand count. 8955 P->setNodeId(Degree); 8956 } 8957 } 8958 if (Node.getIterator() == SortedPos) { 8959 #ifndef NDEBUG 8960 allnodes_iterator I(N); 8961 SDNode *S = &*++I; 8962 dbgs() << "Overran sorted position:\n"; 8963 S->dumprFull(this); dbgs() << "\n"; 8964 dbgs() << "Checking if this is due to cycles\n"; 8965 checkForCycles(this, true); 8966 #endif 8967 llvm_unreachable(nullptr); 8968 } 8969 } 8970 8971 assert(SortedPos == AllNodes.end() && 8972 "Topological sort incomplete!"); 8973 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8974 "First node in topological sort is not the entry token!"); 8975 assert(AllNodes.front().getNodeId() == 0 && 8976 "First node in topological sort has non-zero id!"); 8977 assert(AllNodes.front().getNumOperands() == 0 && 8978 "First node in topological sort has operands!"); 8979 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8980 "Last node in topologic sort has unexpected id!"); 8981 assert(AllNodes.back().use_empty() && 8982 "Last node in topologic sort has users!"); 8983 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8984 return DAGSize; 8985 } 8986 8987 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8988 /// value is produced by SD. 8989 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8990 if (SD) { 8991 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8992 SD->setHasDebugValue(true); 8993 } 8994 DbgInfo->add(DB, SD, isParameter); 8995 } 8996 8997 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8998 DbgInfo->add(DB); 8999 } 9000 9001 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9002 SDValue NewMemOp) { 9003 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9004 // The new memory operation must have the same position as the old load in 9005 // terms of memory dependency. Create a TokenFactor for the old load and new 9006 // memory operation and update uses of the old load's output chain to use that 9007 // TokenFactor. 9008 SDValue OldChain = SDValue(OldLoad, 1); 9009 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 9010 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 9011 return NewChain; 9012 9013 SDValue TokenFactor = 9014 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 9015 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9016 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 9017 return TokenFactor; 9018 } 9019 9020 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9021 Function **OutFunction) { 9022 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9023 9024 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9025 auto *Module = MF->getFunction().getParent(); 9026 auto *Function = Module->getFunction(Symbol); 9027 9028 if (OutFunction != nullptr) 9029 *OutFunction = Function; 9030 9031 if (Function != nullptr) { 9032 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9033 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9034 } 9035 9036 std::string ErrorStr; 9037 raw_string_ostream ErrorFormatter(ErrorStr); 9038 9039 ErrorFormatter << "Undefined external symbol "; 9040 ErrorFormatter << '"' << Symbol << '"'; 9041 ErrorFormatter.flush(); 9042 9043 report_fatal_error(ErrorStr); 9044 } 9045 9046 //===----------------------------------------------------------------------===// 9047 // SDNode Class 9048 //===----------------------------------------------------------------------===// 9049 9050 bool llvm::isNullConstant(SDValue V) { 9051 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9052 return Const != nullptr && Const->isNullValue(); 9053 } 9054 9055 bool llvm::isNullFPConstant(SDValue V) { 9056 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9057 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9058 } 9059 9060 bool llvm::isAllOnesConstant(SDValue V) { 9061 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9062 return Const != nullptr && Const->isAllOnesValue(); 9063 } 9064 9065 bool llvm::isOneConstant(SDValue V) { 9066 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9067 return Const != nullptr && Const->isOne(); 9068 } 9069 9070 SDValue llvm::peekThroughBitcasts(SDValue V) { 9071 while (V.getOpcode() == ISD::BITCAST) 9072 V = V.getOperand(0); 9073 return V; 9074 } 9075 9076 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9077 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9078 V = V.getOperand(0); 9079 return V; 9080 } 9081 9082 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9083 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9084 V = V.getOperand(0); 9085 return V; 9086 } 9087 9088 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9089 if (V.getOpcode() != ISD::XOR) 9090 return false; 9091 V = peekThroughBitcasts(V.getOperand(1)); 9092 unsigned NumBits = V.getScalarValueSizeInBits(); 9093 ConstantSDNode *C = 9094 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9095 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9096 } 9097 9098 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9099 bool AllowTruncation) { 9100 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9101 return CN; 9102 9103 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9104 BitVector UndefElements; 9105 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9106 9107 // BuildVectors can truncate their operands. Ignore that case here unless 9108 // AllowTruncation is set. 9109 if (CN && (UndefElements.none() || AllowUndefs)) { 9110 EVT CVT = CN->getValueType(0); 9111 EVT NSVT = N.getValueType().getScalarType(); 9112 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9113 if (AllowTruncation || (CVT == NSVT)) 9114 return CN; 9115 } 9116 } 9117 9118 return nullptr; 9119 } 9120 9121 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9122 bool AllowUndefs, 9123 bool AllowTruncation) { 9124 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9125 return CN; 9126 9127 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9128 BitVector UndefElements; 9129 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9130 9131 // BuildVectors can truncate their operands. Ignore that case here unless 9132 // AllowTruncation is set. 9133 if (CN && (UndefElements.none() || AllowUndefs)) { 9134 EVT CVT = CN->getValueType(0); 9135 EVT NSVT = N.getValueType().getScalarType(); 9136 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9137 if (AllowTruncation || (CVT == NSVT)) 9138 return CN; 9139 } 9140 } 9141 9142 return nullptr; 9143 } 9144 9145 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9146 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9147 return CN; 9148 9149 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9150 BitVector UndefElements; 9151 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9152 if (CN && (UndefElements.none() || AllowUndefs)) 9153 return CN; 9154 } 9155 9156 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9157 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9158 return CN; 9159 9160 return nullptr; 9161 } 9162 9163 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9164 const APInt &DemandedElts, 9165 bool AllowUndefs) { 9166 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9167 return CN; 9168 9169 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9170 BitVector UndefElements; 9171 ConstantFPSDNode *CN = 9172 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9173 if (CN && (UndefElements.none() || AllowUndefs)) 9174 return CN; 9175 } 9176 9177 return nullptr; 9178 } 9179 9180 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9181 // TODO: may want to use peekThroughBitcast() here. 9182 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9183 return C && C->isNullValue(); 9184 } 9185 9186 bool llvm::isOneOrOneSplat(SDValue N) { 9187 // TODO: may want to use peekThroughBitcast() here. 9188 unsigned BitWidth = N.getScalarValueSizeInBits(); 9189 ConstantSDNode *C = isConstOrConstSplat(N); 9190 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9191 } 9192 9193 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9194 N = peekThroughBitcasts(N); 9195 unsigned BitWidth = N.getScalarValueSizeInBits(); 9196 ConstantSDNode *C = isConstOrConstSplat(N); 9197 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9198 } 9199 9200 HandleSDNode::~HandleSDNode() { 9201 DropOperands(); 9202 } 9203 9204 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9205 const DebugLoc &DL, 9206 const GlobalValue *GA, EVT VT, 9207 int64_t o, unsigned TF) 9208 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9209 TheGlobal = GA; 9210 } 9211 9212 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9213 EVT VT, unsigned SrcAS, 9214 unsigned DestAS) 9215 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9216 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9217 9218 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9219 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9220 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9221 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9222 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9223 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9224 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9225 9226 // We check here that the size of the memory operand fits within the size of 9227 // the MMO. This is because the MMO might indicate only a possible address 9228 // range instead of specifying the affected memory addresses precisely. 9229 // TODO: Make MachineMemOperands aware of scalable vectors. 9230 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9231 "Size mismatch!"); 9232 } 9233 9234 /// Profile - Gather unique data for the node. 9235 /// 9236 void SDNode::Profile(FoldingSetNodeID &ID) const { 9237 AddNodeIDNode(ID, this); 9238 } 9239 9240 namespace { 9241 9242 struct EVTArray { 9243 std::vector<EVT> VTs; 9244 9245 EVTArray() { 9246 VTs.reserve(MVT::LAST_VALUETYPE); 9247 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9248 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9249 } 9250 }; 9251 9252 } // end anonymous namespace 9253 9254 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9255 static ManagedStatic<EVTArray> SimpleVTArray; 9256 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9257 9258 /// getValueTypeList - Return a pointer to the specified value type. 9259 /// 9260 const EVT *SDNode::getValueTypeList(EVT VT) { 9261 if (VT.isExtended()) { 9262 sys::SmartScopedLock<true> Lock(*VTMutex); 9263 return &(*EVTs->insert(VT).first); 9264 } else { 9265 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9266 "Value type out of range!"); 9267 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9268 } 9269 } 9270 9271 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9272 /// indicated value. This method ignores uses of other values defined by this 9273 /// operation. 9274 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9275 assert(Value < getNumValues() && "Bad value!"); 9276 9277 // TODO: Only iterate over uses of a given value of the node 9278 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9279 if (UI.getUse().getResNo() == Value) { 9280 if (NUses == 0) 9281 return false; 9282 --NUses; 9283 } 9284 } 9285 9286 // Found exactly the right number of uses? 9287 return NUses == 0; 9288 } 9289 9290 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9291 /// value. This method ignores uses of other values defined by this operation. 9292 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9293 assert(Value < getNumValues() && "Bad value!"); 9294 9295 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9296 if (UI.getUse().getResNo() == Value) 9297 return true; 9298 9299 return false; 9300 } 9301 9302 /// isOnlyUserOf - Return true if this node is the only use of N. 9303 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9304 bool Seen = false; 9305 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9306 SDNode *User = *I; 9307 if (User == this) 9308 Seen = true; 9309 else 9310 return false; 9311 } 9312 9313 return Seen; 9314 } 9315 9316 /// Return true if the only users of N are contained in Nodes. 9317 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9318 bool Seen = false; 9319 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9320 SDNode *User = *I; 9321 if (llvm::any_of(Nodes, 9322 [&User](const SDNode *Node) { return User == Node; })) 9323 Seen = true; 9324 else 9325 return false; 9326 } 9327 9328 return Seen; 9329 } 9330 9331 /// isOperand - Return true if this node is an operand of N. 9332 bool SDValue::isOperandOf(const SDNode *N) const { 9333 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9334 } 9335 9336 bool SDNode::isOperandOf(const SDNode *N) const { 9337 return any_of(N->op_values(), 9338 [this](SDValue Op) { return this == Op.getNode(); }); 9339 } 9340 9341 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9342 /// be a chain) reaches the specified operand without crossing any 9343 /// side-effecting instructions on any chain path. In practice, this looks 9344 /// through token factors and non-volatile loads. In order to remain efficient, 9345 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9346 /// 9347 /// Note that we only need to examine chains when we're searching for 9348 /// side-effects; SelectionDAG requires that all side-effects are represented 9349 /// by chains, even if another operand would force a specific ordering. This 9350 /// constraint is necessary to allow transformations like splitting loads. 9351 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9352 unsigned Depth) const { 9353 if (*this == Dest) return true; 9354 9355 // Don't search too deeply, we just want to be able to see through 9356 // TokenFactor's etc. 9357 if (Depth == 0) return false; 9358 9359 // If this is a token factor, all inputs to the TF happen in parallel. 9360 if (getOpcode() == ISD::TokenFactor) { 9361 // First, try a shallow search. 9362 if (is_contained((*this)->ops(), Dest)) { 9363 // We found the chain we want as an operand of this TokenFactor. 9364 // Essentially, we reach the chain without side-effects if we could 9365 // serialize the TokenFactor into a simple chain of operations with 9366 // Dest as the last operation. This is automatically true if the 9367 // chain has one use: there are no other ordering constraints. 9368 // If the chain has more than one use, we give up: some other 9369 // use of Dest might force a side-effect between Dest and the current 9370 // node. 9371 if (Dest.hasOneUse()) 9372 return true; 9373 } 9374 // Next, try a deep search: check whether every operand of the TokenFactor 9375 // reaches Dest. 9376 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9377 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9378 }); 9379 } 9380 9381 // Loads don't have side effects, look through them. 9382 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9383 if (Ld->isUnordered()) 9384 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9385 } 9386 return false; 9387 } 9388 9389 bool SDNode::hasPredecessor(const SDNode *N) const { 9390 SmallPtrSet<const SDNode *, 32> Visited; 9391 SmallVector<const SDNode *, 16> Worklist; 9392 Worklist.push_back(this); 9393 return hasPredecessorHelper(N, Visited, Worklist); 9394 } 9395 9396 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9397 this->Flags.intersectWith(Flags); 9398 } 9399 9400 SDValue 9401 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9402 ArrayRef<ISD::NodeType> CandidateBinOps, 9403 bool AllowPartials) { 9404 // The pattern must end in an extract from index 0. 9405 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9406 !isNullConstant(Extract->getOperand(1))) 9407 return SDValue(); 9408 9409 // Match against one of the candidate binary ops. 9410 SDValue Op = Extract->getOperand(0); 9411 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9412 return Op.getOpcode() == unsigned(BinOp); 9413 })) 9414 return SDValue(); 9415 9416 // Floating-point reductions may require relaxed constraints on the final step 9417 // of the reduction because they may reorder intermediate operations. 9418 unsigned CandidateBinOp = Op.getOpcode(); 9419 if (Op.getValueType().isFloatingPoint()) { 9420 SDNodeFlags Flags = Op->getFlags(); 9421 switch (CandidateBinOp) { 9422 case ISD::FADD: 9423 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9424 return SDValue(); 9425 break; 9426 default: 9427 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9428 } 9429 } 9430 9431 // Matching failed - attempt to see if we did enough stages that a partial 9432 // reduction from a subvector is possible. 9433 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9434 if (!AllowPartials || !Op) 9435 return SDValue(); 9436 EVT OpVT = Op.getValueType(); 9437 EVT OpSVT = OpVT.getScalarType(); 9438 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9439 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9440 return SDValue(); 9441 BinOp = (ISD::NodeType)CandidateBinOp; 9442 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9443 getVectorIdxConstant(0, SDLoc(Op))); 9444 }; 9445 9446 // At each stage, we're looking for something that looks like: 9447 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9448 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9449 // i32 undef, i32 undef, i32 undef, i32 undef> 9450 // %a = binop <8 x i32> %op, %s 9451 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9452 // we expect something like: 9453 // <4,5,6,7,u,u,u,u> 9454 // <2,3,u,u,u,u,u,u> 9455 // <1,u,u,u,u,u,u,u> 9456 // While a partial reduction match would be: 9457 // <2,3,u,u,u,u,u,u> 9458 // <1,u,u,u,u,u,u,u> 9459 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9460 SDValue PrevOp; 9461 for (unsigned i = 0; i < Stages; ++i) { 9462 unsigned MaskEnd = (1 << i); 9463 9464 if (Op.getOpcode() != CandidateBinOp) 9465 return PartialReduction(PrevOp, MaskEnd); 9466 9467 SDValue Op0 = Op.getOperand(0); 9468 SDValue Op1 = Op.getOperand(1); 9469 9470 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9471 if (Shuffle) { 9472 Op = Op1; 9473 } else { 9474 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9475 Op = Op0; 9476 } 9477 9478 // The first operand of the shuffle should be the same as the other operand 9479 // of the binop. 9480 if (!Shuffle || Shuffle->getOperand(0) != Op) 9481 return PartialReduction(PrevOp, MaskEnd); 9482 9483 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9484 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9485 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9486 return PartialReduction(PrevOp, MaskEnd); 9487 9488 PrevOp = Op; 9489 } 9490 9491 // Handle subvector reductions, which tend to appear after the shuffle 9492 // reduction stages. 9493 while (Op.getOpcode() == CandidateBinOp) { 9494 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9495 SDValue Op0 = Op.getOperand(0); 9496 SDValue Op1 = Op.getOperand(1); 9497 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9498 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9499 Op0.getOperand(0) != Op1.getOperand(0)) 9500 break; 9501 SDValue Src = Op0.getOperand(0); 9502 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9503 if (NumSrcElts != (2 * NumElts)) 9504 break; 9505 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9506 Op1.getConstantOperandAPInt(1) == NumElts) && 9507 !(Op1.getConstantOperandAPInt(1) == 0 && 9508 Op0.getConstantOperandAPInt(1) == NumElts)) 9509 break; 9510 Op = Src; 9511 } 9512 9513 BinOp = (ISD::NodeType)CandidateBinOp; 9514 return Op; 9515 } 9516 9517 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9518 assert(N->getNumValues() == 1 && 9519 "Can't unroll a vector with multiple results!"); 9520 9521 EVT VT = N->getValueType(0); 9522 unsigned NE = VT.getVectorNumElements(); 9523 EVT EltVT = VT.getVectorElementType(); 9524 SDLoc dl(N); 9525 9526 SmallVector<SDValue, 8> Scalars; 9527 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9528 9529 // If ResNE is 0, fully unroll the vector op. 9530 if (ResNE == 0) 9531 ResNE = NE; 9532 else if (NE > ResNE) 9533 NE = ResNE; 9534 9535 unsigned i; 9536 for (i= 0; i != NE; ++i) { 9537 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9538 SDValue Operand = N->getOperand(j); 9539 EVT OperandVT = Operand.getValueType(); 9540 if (OperandVT.isVector()) { 9541 // A vector operand; extract a single element. 9542 EVT OperandEltVT = OperandVT.getVectorElementType(); 9543 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9544 Operand, getVectorIdxConstant(i, dl)); 9545 } else { 9546 // A scalar operand; just use it as is. 9547 Operands[j] = Operand; 9548 } 9549 } 9550 9551 switch (N->getOpcode()) { 9552 default: { 9553 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9554 N->getFlags())); 9555 break; 9556 } 9557 case ISD::VSELECT: 9558 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9559 break; 9560 case ISD::SHL: 9561 case ISD::SRA: 9562 case ISD::SRL: 9563 case ISD::ROTL: 9564 case ISD::ROTR: 9565 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9566 getShiftAmountOperand(Operands[0].getValueType(), 9567 Operands[1]))); 9568 break; 9569 case ISD::SIGN_EXTEND_INREG: { 9570 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9571 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9572 Operands[0], 9573 getValueType(ExtVT))); 9574 } 9575 } 9576 } 9577 9578 for (; i < ResNE; ++i) 9579 Scalars.push_back(getUNDEF(EltVT)); 9580 9581 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9582 return getBuildVector(VecVT, dl, Scalars); 9583 } 9584 9585 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9586 SDNode *N, unsigned ResNE) { 9587 unsigned Opcode = N->getOpcode(); 9588 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9589 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9590 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9591 "Expected an overflow opcode"); 9592 9593 EVT ResVT = N->getValueType(0); 9594 EVT OvVT = N->getValueType(1); 9595 EVT ResEltVT = ResVT.getVectorElementType(); 9596 EVT OvEltVT = OvVT.getVectorElementType(); 9597 SDLoc dl(N); 9598 9599 // If ResNE is 0, fully unroll the vector op. 9600 unsigned NE = ResVT.getVectorNumElements(); 9601 if (ResNE == 0) 9602 ResNE = NE; 9603 else if (NE > ResNE) 9604 NE = ResNE; 9605 9606 SmallVector<SDValue, 8> LHSScalars; 9607 SmallVector<SDValue, 8> RHSScalars; 9608 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9609 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9610 9611 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9612 SDVTList VTs = getVTList(ResEltVT, SVT); 9613 SmallVector<SDValue, 8> ResScalars; 9614 SmallVector<SDValue, 8> OvScalars; 9615 for (unsigned i = 0; i < NE; ++i) { 9616 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9617 SDValue Ov = 9618 getSelect(dl, OvEltVT, Res.getValue(1), 9619 getBoolConstant(true, dl, OvEltVT, ResVT), 9620 getConstant(0, dl, OvEltVT)); 9621 9622 ResScalars.push_back(Res); 9623 OvScalars.push_back(Ov); 9624 } 9625 9626 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9627 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9628 9629 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9630 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9631 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9632 getBuildVector(NewOvVT, dl, OvScalars)); 9633 } 9634 9635 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9636 LoadSDNode *Base, 9637 unsigned Bytes, 9638 int Dist) const { 9639 if (LD->isVolatile() || Base->isVolatile()) 9640 return false; 9641 // TODO: probably too restrictive for atomics, revisit 9642 if (!LD->isSimple()) 9643 return false; 9644 if (LD->isIndexed() || Base->isIndexed()) 9645 return false; 9646 if (LD->getChain() != Base->getChain()) 9647 return false; 9648 EVT VT = LD->getValueType(0); 9649 if (VT.getSizeInBits() / 8 != Bytes) 9650 return false; 9651 9652 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9653 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9654 9655 int64_t Offset = 0; 9656 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9657 return (Dist * Bytes == Offset); 9658 return false; 9659 } 9660 9661 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9662 /// if it cannot be inferred. 9663 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9664 // If this is a GlobalAddress + cst, return the alignment. 9665 const GlobalValue *GV = nullptr; 9666 int64_t GVOffset = 0; 9667 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9668 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9669 KnownBits Known(PtrWidth); 9670 llvm::computeKnownBits(GV, Known, getDataLayout()); 9671 unsigned AlignBits = Known.countMinTrailingZeros(); 9672 if (AlignBits) 9673 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9674 } 9675 9676 // If this is a direct reference to a stack slot, use information about the 9677 // stack slot's alignment. 9678 int FrameIdx = INT_MIN; 9679 int64_t FrameOffset = 0; 9680 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9681 FrameIdx = FI->getIndex(); 9682 } else if (isBaseWithConstantOffset(Ptr) && 9683 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9684 // Handle FI+Cst 9685 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9686 FrameOffset = Ptr.getConstantOperandVal(1); 9687 } 9688 9689 if (FrameIdx != INT_MIN) { 9690 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9691 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9692 } 9693 9694 return None; 9695 } 9696 9697 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9698 /// which is split (or expanded) into two not necessarily identical pieces. 9699 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9700 // Currently all types are split in half. 9701 EVT LoVT, HiVT; 9702 if (!VT.isVector()) 9703 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9704 else 9705 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9706 9707 return std::make_pair(LoVT, HiVT); 9708 } 9709 9710 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9711 /// type, dependent on an enveloping VT that has been split into two identical 9712 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9713 std::pair<EVT, EVT> 9714 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9715 bool *HiIsEmpty) const { 9716 EVT EltTp = VT.getVectorElementType(); 9717 // Examples: 9718 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9719 // custom VL=9 with enveloping VL=8/8 yields 8/1 9720 // custom VL=10 with enveloping VL=8/8 yields 8/2 9721 // etc. 9722 ElementCount VTNumElts = VT.getVectorElementCount(); 9723 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9724 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9725 "Mixing fixed width and scalable vectors when enveloping a type"); 9726 EVT LoVT, HiVT; 9727 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9728 LoVT = EnvVT; 9729 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9730 *HiIsEmpty = false; 9731 } else { 9732 // Flag that hi type has zero storage size, but return split envelop type 9733 // (this would be easier if vector types with zero elements were allowed). 9734 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9735 HiVT = EnvVT; 9736 *HiIsEmpty = true; 9737 } 9738 return std::make_pair(LoVT, HiVT); 9739 } 9740 9741 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9742 /// low/high part. 9743 std::pair<SDValue, SDValue> 9744 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9745 const EVT &HiVT) { 9746 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9747 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9748 "Splitting vector with an invalid mixture of fixed and scalable " 9749 "vector types"); 9750 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9751 N.getValueType().getVectorMinNumElements() && 9752 "More vector elements requested than available!"); 9753 SDValue Lo, Hi; 9754 Lo = 9755 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9756 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9757 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9758 // IDX with the runtime scaling factor of the result vector type. For 9759 // fixed-width result vectors, that runtime scaling factor is 1. 9760 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9761 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9762 return std::make_pair(Lo, Hi); 9763 } 9764 9765 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9766 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9767 EVT VT = N.getValueType(); 9768 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9769 NextPowerOf2(VT.getVectorNumElements())); 9770 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9771 getVectorIdxConstant(0, DL)); 9772 } 9773 9774 void SelectionDAG::ExtractVectorElements(SDValue Op, 9775 SmallVectorImpl<SDValue> &Args, 9776 unsigned Start, unsigned Count, 9777 EVT EltVT) { 9778 EVT VT = Op.getValueType(); 9779 if (Count == 0) 9780 Count = VT.getVectorNumElements(); 9781 if (EltVT == EVT()) 9782 EltVT = VT.getVectorElementType(); 9783 SDLoc SL(Op); 9784 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9785 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9786 getVectorIdxConstant(i, SL))); 9787 } 9788 } 9789 9790 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9791 unsigned GlobalAddressSDNode::getAddressSpace() const { 9792 return getGlobal()->getType()->getAddressSpace(); 9793 } 9794 9795 Type *ConstantPoolSDNode::getType() const { 9796 if (isMachineConstantPoolEntry()) 9797 return Val.MachineCPVal->getType(); 9798 return Val.ConstVal->getType(); 9799 } 9800 9801 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9802 unsigned &SplatBitSize, 9803 bool &HasAnyUndefs, 9804 unsigned MinSplatBits, 9805 bool IsBigEndian) const { 9806 EVT VT = getValueType(0); 9807 assert(VT.isVector() && "Expected a vector type"); 9808 unsigned VecWidth = VT.getSizeInBits(); 9809 if (MinSplatBits > VecWidth) 9810 return false; 9811 9812 // FIXME: The widths are based on this node's type, but build vectors can 9813 // truncate their operands. 9814 SplatValue = APInt(VecWidth, 0); 9815 SplatUndef = APInt(VecWidth, 0); 9816 9817 // Get the bits. Bits with undefined values (when the corresponding element 9818 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9819 // in SplatValue. If any of the values are not constant, give up and return 9820 // false. 9821 unsigned int NumOps = getNumOperands(); 9822 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9823 unsigned EltWidth = VT.getScalarSizeInBits(); 9824 9825 for (unsigned j = 0; j < NumOps; ++j) { 9826 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9827 SDValue OpVal = getOperand(i); 9828 unsigned BitPos = j * EltWidth; 9829 9830 if (OpVal.isUndef()) 9831 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9832 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9833 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9834 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9835 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9836 else 9837 return false; 9838 } 9839 9840 // The build_vector is all constants or undefs. Find the smallest element 9841 // size that splats the vector. 9842 HasAnyUndefs = (SplatUndef != 0); 9843 9844 // FIXME: This does not work for vectors with elements less than 8 bits. 9845 while (VecWidth > 8) { 9846 unsigned HalfSize = VecWidth / 2; 9847 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9848 APInt LowValue = SplatValue.trunc(HalfSize); 9849 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9850 APInt LowUndef = SplatUndef.trunc(HalfSize); 9851 9852 // If the two halves do not match (ignoring undef bits), stop here. 9853 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9854 MinSplatBits > HalfSize) 9855 break; 9856 9857 SplatValue = HighValue | LowValue; 9858 SplatUndef = HighUndef & LowUndef; 9859 9860 VecWidth = HalfSize; 9861 } 9862 9863 SplatBitSize = VecWidth; 9864 return true; 9865 } 9866 9867 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9868 BitVector *UndefElements) const { 9869 unsigned NumOps = getNumOperands(); 9870 if (UndefElements) { 9871 UndefElements->clear(); 9872 UndefElements->resize(NumOps); 9873 } 9874 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9875 if (!DemandedElts) 9876 return SDValue(); 9877 SDValue Splatted; 9878 for (unsigned i = 0; i != NumOps; ++i) { 9879 if (!DemandedElts[i]) 9880 continue; 9881 SDValue Op = getOperand(i); 9882 if (Op.isUndef()) { 9883 if (UndefElements) 9884 (*UndefElements)[i] = true; 9885 } else if (!Splatted) { 9886 Splatted = Op; 9887 } else if (Splatted != Op) { 9888 return SDValue(); 9889 } 9890 } 9891 9892 if (!Splatted) { 9893 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9894 assert(getOperand(FirstDemandedIdx).isUndef() && 9895 "Can only have a splat without a constant for all undefs."); 9896 return getOperand(FirstDemandedIdx); 9897 } 9898 9899 return Splatted; 9900 } 9901 9902 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9903 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9904 return getSplatValue(DemandedElts, UndefElements); 9905 } 9906 9907 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9908 SmallVectorImpl<SDValue> &Sequence, 9909 BitVector *UndefElements) const { 9910 unsigned NumOps = getNumOperands(); 9911 Sequence.clear(); 9912 if (UndefElements) { 9913 UndefElements->clear(); 9914 UndefElements->resize(NumOps); 9915 } 9916 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9917 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9918 return false; 9919 9920 // Set the undefs even if we don't find a sequence (like getSplatValue). 9921 if (UndefElements) 9922 for (unsigned I = 0; I != NumOps; ++I) 9923 if (DemandedElts[I] && getOperand(I).isUndef()) 9924 (*UndefElements)[I] = true; 9925 9926 // Iteratively widen the sequence length looking for repetitions. 9927 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9928 Sequence.append(SeqLen, SDValue()); 9929 for (unsigned I = 0; I != NumOps; ++I) { 9930 if (!DemandedElts[I]) 9931 continue; 9932 SDValue &SeqOp = Sequence[I % SeqLen]; 9933 SDValue Op = getOperand(I); 9934 if (Op.isUndef()) { 9935 if (!SeqOp) 9936 SeqOp = Op; 9937 continue; 9938 } 9939 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9940 Sequence.clear(); 9941 break; 9942 } 9943 SeqOp = Op; 9944 } 9945 if (!Sequence.empty()) 9946 return true; 9947 } 9948 9949 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9950 return false; 9951 } 9952 9953 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 9954 BitVector *UndefElements) const { 9955 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9956 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 9957 } 9958 9959 ConstantSDNode * 9960 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9961 BitVector *UndefElements) const { 9962 return dyn_cast_or_null<ConstantSDNode>( 9963 getSplatValue(DemandedElts, UndefElements)); 9964 } 9965 9966 ConstantSDNode * 9967 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9968 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9969 } 9970 9971 ConstantFPSDNode * 9972 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9973 BitVector *UndefElements) const { 9974 return dyn_cast_or_null<ConstantFPSDNode>( 9975 getSplatValue(DemandedElts, UndefElements)); 9976 } 9977 9978 ConstantFPSDNode * 9979 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9980 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9981 } 9982 9983 int32_t 9984 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9985 uint32_t BitWidth) const { 9986 if (ConstantFPSDNode *CN = 9987 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9988 bool IsExact; 9989 APSInt IntVal(BitWidth); 9990 const APFloat &APF = CN->getValueAPF(); 9991 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9992 APFloat::opOK || 9993 !IsExact) 9994 return -1; 9995 9996 return IntVal.exactLogBase2(); 9997 } 9998 return -1; 9999 } 10000 10001 bool BuildVectorSDNode::isConstant() const { 10002 for (const SDValue &Op : op_values()) { 10003 unsigned Opc = Op.getOpcode(); 10004 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10005 return false; 10006 } 10007 return true; 10008 } 10009 10010 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10011 // Find the first non-undef value in the shuffle mask. 10012 unsigned i, e; 10013 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10014 /* search */; 10015 10016 // If all elements are undefined, this shuffle can be considered a splat 10017 // (although it should eventually get simplified away completely). 10018 if (i == e) 10019 return true; 10020 10021 // Make sure all remaining elements are either undef or the same as the first 10022 // non-undef value. 10023 for (int Idx = Mask[i]; i != e; ++i) 10024 if (Mask[i] >= 0 && Mask[i] != Idx) 10025 return false; 10026 return true; 10027 } 10028 10029 // Returns the SDNode if it is a constant integer BuildVector 10030 // or constant integer. 10031 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 10032 if (isa<ConstantSDNode>(N)) 10033 return N.getNode(); 10034 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10035 return N.getNode(); 10036 // Treat a GlobalAddress supporting constant offset folding as a 10037 // constant integer. 10038 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10039 if (GA->getOpcode() == ISD::GlobalAddress && 10040 TLI->isOffsetFoldingLegal(GA)) 10041 return GA; 10042 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10043 isa<ConstantSDNode>(N.getOperand(0))) 10044 return N.getNode(); 10045 return nullptr; 10046 } 10047 10048 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 10049 if (isa<ConstantFPSDNode>(N)) 10050 return N.getNode(); 10051 10052 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10053 return N.getNode(); 10054 10055 return nullptr; 10056 } 10057 10058 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10059 assert(!Node->OperandList && "Node already has operands"); 10060 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10061 "too many operands to fit into SDNode"); 10062 SDUse *Ops = OperandRecycler.allocate( 10063 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10064 10065 bool IsDivergent = false; 10066 for (unsigned I = 0; I != Vals.size(); ++I) { 10067 Ops[I].setUser(Node); 10068 Ops[I].setInitial(Vals[I]); 10069 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10070 IsDivergent |= Ops[I].getNode()->isDivergent(); 10071 } 10072 Node->NumOperands = Vals.size(); 10073 Node->OperandList = Ops; 10074 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10075 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10076 Node->SDNodeBits.IsDivergent = IsDivergent; 10077 } 10078 checkForCycles(Node); 10079 } 10080 10081 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10082 SmallVectorImpl<SDValue> &Vals) { 10083 size_t Limit = SDNode::getMaxNumOperands(); 10084 while (Vals.size() > Limit) { 10085 unsigned SliceIdx = Vals.size() - Limit; 10086 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10087 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10088 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10089 Vals.emplace_back(NewTF); 10090 } 10091 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10092 } 10093 10094 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10095 EVT VT, SDNodeFlags Flags) { 10096 switch (Opcode) { 10097 default: 10098 return SDValue(); 10099 case ISD::ADD: 10100 case ISD::OR: 10101 case ISD::XOR: 10102 case ISD::UMAX: 10103 return getConstant(0, DL, VT); 10104 case ISD::MUL: 10105 return getConstant(1, DL, VT); 10106 case ISD::AND: 10107 case ISD::UMIN: 10108 return getAllOnesConstant(DL, VT); 10109 case ISD::SMAX: 10110 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10111 case ISD::SMIN: 10112 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10113 case ISD::FADD: 10114 return getConstantFP(-0.0, DL, VT); 10115 case ISD::FMUL: 10116 return getConstantFP(1.0, DL, VT); 10117 case ISD::FMINNUM: 10118 case ISD::FMAXNUM: { 10119 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10120 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10121 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10122 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10123 APFloat::getLargest(Semantics); 10124 if (Opcode == ISD::FMAXNUM) 10125 NeutralAF.changeSign(); 10126 10127 return getConstantFP(NeutralAF, DL, VT); 10128 } 10129 } 10130 } 10131 10132 #ifndef NDEBUG 10133 static void checkForCyclesHelper(const SDNode *N, 10134 SmallPtrSetImpl<const SDNode*> &Visited, 10135 SmallPtrSetImpl<const SDNode*> &Checked, 10136 const llvm::SelectionDAG *DAG) { 10137 // If this node has already been checked, don't check it again. 10138 if (Checked.count(N)) 10139 return; 10140 10141 // If a node has already been visited on this depth-first walk, reject it as 10142 // a cycle. 10143 if (!Visited.insert(N).second) { 10144 errs() << "Detected cycle in SelectionDAG\n"; 10145 dbgs() << "Offending node:\n"; 10146 N->dumprFull(DAG); dbgs() << "\n"; 10147 abort(); 10148 } 10149 10150 for (const SDValue &Op : N->op_values()) 10151 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10152 10153 Checked.insert(N); 10154 Visited.erase(N); 10155 } 10156 #endif 10157 10158 void llvm::checkForCycles(const llvm::SDNode *N, 10159 const llvm::SelectionDAG *DAG, 10160 bool force) { 10161 #ifndef NDEBUG 10162 bool check = force; 10163 #ifdef EXPENSIVE_CHECKS 10164 check = true; 10165 #endif // EXPENSIVE_CHECKS 10166 if (check) { 10167 assert(N && "Checking nonexistent SDNode"); 10168 SmallPtrSet<const SDNode*, 32> visited; 10169 SmallPtrSet<const SDNode*, 32> checked; 10170 checkForCyclesHelper(N, visited, checked, DAG); 10171 } 10172 #endif // !NDEBUG 10173 } 10174 10175 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10176 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10177 } 10178