1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 150 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 151 return true; 152 } 153 } 154 155 auto *BV = dyn_cast<BuildVectorSDNode>(N); 156 if (!BV) 157 return false; 158 159 APInt SplatUndef; 160 unsigned SplatBitSize; 161 bool HasUndefs; 162 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 163 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 164 EltSize) && 165 EltSize == SplatBitSize; 166 } 167 168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 169 // specializations of the more general isConstantSplatVector()? 170 171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 172 // Look through a bit convert. 173 while (N->getOpcode() == ISD::BITCAST) 174 N = N->getOperand(0).getNode(); 175 176 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 177 APInt SplatVal; 178 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 179 } 180 181 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 182 183 unsigned i = 0, e = N->getNumOperands(); 184 185 // Skip over all of the undef values. 186 while (i != e && N->getOperand(i).isUndef()) 187 ++i; 188 189 // Do not accept an all-undef vector. 190 if (i == e) return false; 191 192 // Do not accept build_vectors that aren't all constants or which have non-~0 193 // elements. We have to be a bit careful here, as the type of the constant 194 // may not be the same as the type of the vector elements due to type 195 // legalization (the elements are promoted to a legal type for the target and 196 // a vector of a type may be legal when the base element type is not). 197 // We only want to check enough bits to cover the vector elements, because 198 // we care if the resultant vector is all ones, not whether the individual 199 // constants are. 200 SDValue NotZero = N->getOperand(i); 201 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 202 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 203 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 204 return false; 205 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 206 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 207 return false; 208 } else 209 return false; 210 211 // Okay, we have at least one ~0 value, check to see if the rest match or are 212 // undefs. Even with the above element type twiddling, this should be OK, as 213 // the same type legalization should have applied to all the elements. 214 for (++i; i != e; ++i) 215 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 216 return false; 217 return true; 218 } 219 220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 221 // Look through a bit convert. 222 while (N->getOpcode() == ISD::BITCAST) 223 N = N->getOperand(0).getNode(); 224 225 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 226 APInt SplatVal; 227 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 228 } 229 230 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 231 232 bool IsAllUndef = true; 233 for (const SDValue &Op : N->op_values()) { 234 if (Op.isUndef()) 235 continue; 236 IsAllUndef = false; 237 // Do not accept build_vectors that aren't all constants or which have non-0 238 // elements. We have to be a bit careful here, as the type of the constant 239 // may not be the same as the type of the vector elements due to type 240 // legalization (the elements are promoted to a legal type for the target 241 // and a vector of a type may be legal when the base element type is not). 242 // We only want to check enough bits to cover the vector elements, because 243 // we care if the resultant vector is all zeros, not whether the individual 244 // constants are. 245 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 246 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 247 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 248 return false; 249 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 250 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 251 return false; 252 } else 253 return false; 254 } 255 256 // Do not accept an all-undef vector. 257 if (IsAllUndef) 258 return false; 259 return true; 260 } 261 262 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 263 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 267 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 268 } 269 270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 271 if (N->getOpcode() != ISD::BUILD_VECTOR) 272 return false; 273 274 for (const SDValue &Op : N->op_values()) { 275 if (Op.isUndef()) 276 continue; 277 if (!isa<ConstantSDNode>(Op)) 278 return false; 279 } 280 return true; 281 } 282 283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 284 if (N->getOpcode() != ISD::BUILD_VECTOR) 285 return false; 286 287 for (const SDValue &Op : N->op_values()) { 288 if (Op.isUndef()) 289 continue; 290 if (!isa<ConstantFPSDNode>(Op)) 291 return false; 292 } 293 return true; 294 } 295 296 bool ISD::allOperandsUndef(const SDNode *N) { 297 // Return false if the node has no operands. 298 // This is "logically inconsistent" with the definition of "all" but 299 // is probably the desired behavior. 300 if (N->getNumOperands() == 0) 301 return false; 302 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 303 } 304 305 bool ISD::matchUnaryPredicate(SDValue Op, 306 std::function<bool(ConstantSDNode *)> Match, 307 bool AllowUndefs) { 308 // FIXME: Add support for scalar UNDEF cases? 309 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 310 return Match(Cst); 311 312 // FIXME: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != Op.getOpcode() && 314 ISD::SPLAT_VECTOR != Op.getOpcode()) 315 return false; 316 317 EVT SVT = Op.getValueType().getScalarType(); 318 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 319 if (AllowUndefs && Op.getOperand(i).isUndef()) { 320 if (!Match(nullptr)) 321 return false; 322 continue; 323 } 324 325 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 326 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 327 return false; 328 } 329 return true; 330 } 331 332 bool ISD::matchBinaryPredicate( 333 SDValue LHS, SDValue RHS, 334 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 335 bool AllowUndefs, bool AllowTypeMismatch) { 336 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 337 return false; 338 339 // TODO: Add support for scalar UNDEF cases? 340 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 341 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 342 return Match(LHSCst, RHSCst); 343 344 // TODO: Add support for vector UNDEF cases? 345 if (LHS.getOpcode() != RHS.getOpcode() || 346 (LHS.getOpcode() != ISD::BUILD_VECTOR && 347 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 348 return false; 349 350 EVT SVT = LHS.getValueType().getScalarType(); 351 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 352 SDValue LHSOp = LHS.getOperand(i); 353 SDValue RHSOp = RHS.getOperand(i); 354 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 355 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 356 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 357 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 358 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 359 return false; 360 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 361 LHSOp.getValueType() != RHSOp.getValueType())) 362 return false; 363 if (!Match(LHSCst, RHSCst)) 364 return false; 365 } 366 return true; 367 } 368 369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 370 switch (VecReduceOpcode) { 371 default: 372 llvm_unreachable("Expected VECREDUCE opcode"); 373 case ISD::VECREDUCE_FADD: 374 case ISD::VECREDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 return ISD::FMUL; 379 case ISD::VECREDUCE_ADD: 380 return ISD::ADD; 381 case ISD::VECREDUCE_MUL: 382 return ISD::MUL; 383 case ISD::VECREDUCE_AND: 384 return ISD::AND; 385 case ISD::VECREDUCE_OR: 386 return ISD::OR; 387 case ISD::VECREDUCE_XOR: 388 return ISD::XOR; 389 case ISD::VECREDUCE_SMAX: 390 return ISD::SMAX; 391 case ISD::VECREDUCE_SMIN: 392 return ISD::SMIN; 393 case ISD::VECREDUCE_UMAX: 394 return ISD::UMAX; 395 case ISD::VECREDUCE_UMIN: 396 return ISD::UMIN; 397 case ISD::VECREDUCE_FMAX: 398 return ISD::FMAXNUM; 399 case ISD::VECREDUCE_FMIN: 400 return ISD::FMINNUM; 401 } 402 } 403 404 bool ISD::isVPOpcode(unsigned Opcode) { 405 switch (Opcode) { 406 default: 407 return false; 408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 409 case ISD::SDOPC: \ 410 return true; 411 #include "llvm/IR/VPIntrinsics.def" 412 } 413 } 414 415 /// The operand position of the vector mask. 416 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return None; 420 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 421 case ISD::SDOPC: \ 422 return MASKPOS; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 /// The operand position of the explicit vector length parameter. 428 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 return None; 432 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 433 case ISD::SDOPC: \ 434 return EVLPOS; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 } 438 439 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 440 switch (ExtType) { 441 case ISD::EXTLOAD: 442 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 443 case ISD::SEXTLOAD: 444 return ISD::SIGN_EXTEND; 445 case ISD::ZEXTLOAD: 446 return ISD::ZERO_EXTEND; 447 default: 448 break; 449 } 450 451 llvm_unreachable("Invalid LoadExtType"); 452 } 453 454 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 455 // To perform this operation, we just need to swap the L and G bits of the 456 // operation. 457 unsigned OldL = (Operation >> 2) & 1; 458 unsigned OldG = (Operation >> 1) & 1; 459 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 460 (OldL << 1) | // New G bit 461 (OldG << 2)); // New L bit. 462 } 463 464 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 465 unsigned Operation = Op; 466 if (isIntegerLike) 467 Operation ^= 7; // Flip L, G, E bits, but not U. 468 else 469 Operation ^= 15; // Flip all of the condition bits. 470 471 if (Operation > ISD::SETTRUE2) 472 Operation &= ~8; // Don't let N and U bits get set. 473 474 return ISD::CondCode(Operation); 475 } 476 477 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 478 return getSetCCInverseImpl(Op, Type.isInteger()); 479 } 480 481 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 482 bool isIntegerLike) { 483 return getSetCCInverseImpl(Op, isIntegerLike); 484 } 485 486 /// For an integer comparison, return 1 if the comparison is a signed operation 487 /// and 2 if the result is an unsigned comparison. Return zero if the operation 488 /// does not depend on the sign of the input (setne and seteq). 489 static int isSignedOp(ISD::CondCode Opcode) { 490 switch (Opcode) { 491 default: llvm_unreachable("Illegal integer setcc operation!"); 492 case ISD::SETEQ: 493 case ISD::SETNE: return 0; 494 case ISD::SETLT: 495 case ISD::SETLE: 496 case ISD::SETGT: 497 case ISD::SETGE: return 1; 498 case ISD::SETULT: 499 case ISD::SETULE: 500 case ISD::SETUGT: 501 case ISD::SETUGE: return 2; 502 } 503 } 504 505 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 506 EVT Type) { 507 bool IsInteger = Type.isInteger(); 508 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 509 // Cannot fold a signed integer setcc with an unsigned integer setcc. 510 return ISD::SETCC_INVALID; 511 512 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 513 514 // If the N and U bits get set, then the resultant comparison DOES suddenly 515 // care about orderedness, and it is true when ordered. 516 if (Op > ISD::SETTRUE2) 517 Op &= ~16; // Clear the U bit if the N bit is set. 518 519 // Canonicalize illegal integer setcc's. 520 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 521 Op = ISD::SETNE; 522 523 return ISD::CondCode(Op); 524 } 525 526 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 527 EVT Type) { 528 bool IsInteger = Type.isInteger(); 529 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 530 // Cannot fold a signed setcc with an unsigned setcc. 531 return ISD::SETCC_INVALID; 532 533 // Combine all of the condition bits. 534 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 535 536 // Canonicalize illegal integer setcc's. 537 if (IsInteger) { 538 switch (Result) { 539 default: break; 540 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 541 case ISD::SETOEQ: // SETEQ & SETU[LG]E 542 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 543 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 544 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 545 } 546 } 547 548 return Result; 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SDNode Profile Support 553 //===----------------------------------------------------------------------===// 554 555 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 556 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 557 ID.AddInteger(OpC); 558 } 559 560 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 561 /// solely with their pointer. 562 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 563 ID.AddPointer(VTList.VTs); 564 } 565 566 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 567 static void AddNodeIDOperands(FoldingSetNodeID &ID, 568 ArrayRef<SDValue> Ops) { 569 for (auto& Op : Ops) { 570 ID.AddPointer(Op.getNode()); 571 ID.AddInteger(Op.getResNo()); 572 } 573 } 574 575 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 576 static void AddNodeIDOperands(FoldingSetNodeID &ID, 577 ArrayRef<SDUse> Ops) { 578 for (auto& Op : Ops) { 579 ID.AddPointer(Op.getNode()); 580 ID.AddInteger(Op.getResNo()); 581 } 582 } 583 584 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 585 SDVTList VTList, ArrayRef<SDValue> OpList) { 586 AddNodeIDOpcode(ID, OpC); 587 AddNodeIDValueTypes(ID, VTList); 588 AddNodeIDOperands(ID, OpList); 589 } 590 591 /// If this is an SDNode with special info, add this info to the NodeID data. 592 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 593 switch (N->getOpcode()) { 594 case ISD::TargetExternalSymbol: 595 case ISD::ExternalSymbol: 596 case ISD::MCSymbol: 597 llvm_unreachable("Should only be used on nodes with operands"); 598 default: break; // Normal nodes don't need extra info. 599 case ISD::TargetConstant: 600 case ISD::Constant: { 601 const ConstantSDNode *C = cast<ConstantSDNode>(N); 602 ID.AddPointer(C->getConstantIntValue()); 603 ID.AddBoolean(C->isOpaque()); 604 break; 605 } 606 case ISD::TargetConstantFP: 607 case ISD::ConstantFP: 608 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 609 break; 610 case ISD::TargetGlobalAddress: 611 case ISD::GlobalAddress: 612 case ISD::TargetGlobalTLSAddress: 613 case ISD::GlobalTLSAddress: { 614 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 615 ID.AddPointer(GA->getGlobal()); 616 ID.AddInteger(GA->getOffset()); 617 ID.AddInteger(GA->getTargetFlags()); 618 break; 619 } 620 case ISD::BasicBlock: 621 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 622 break; 623 case ISD::Register: 624 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 625 break; 626 case ISD::RegisterMask: 627 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 628 break; 629 case ISD::SRCVALUE: 630 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 631 break; 632 case ISD::FrameIndex: 633 case ISD::TargetFrameIndex: 634 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 635 break; 636 case ISD::LIFETIME_START: 637 case ISD::LIFETIME_END: 638 if (cast<LifetimeSDNode>(N)->hasOffset()) { 639 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 640 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 641 } 642 break; 643 case ISD::PSEUDO_PROBE: 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 645 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 647 break; 648 case ISD::JumpTable: 649 case ISD::TargetJumpTable: 650 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 651 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 652 break; 653 case ISD::ConstantPool: 654 case ISD::TargetConstantPool: { 655 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 656 ID.AddInteger(CP->getAlign().value()); 657 ID.AddInteger(CP->getOffset()); 658 if (CP->isMachineConstantPoolEntry()) 659 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 660 else 661 ID.AddPointer(CP->getConstVal()); 662 ID.AddInteger(CP->getTargetFlags()); 663 break; 664 } 665 case ISD::TargetIndex: { 666 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 667 ID.AddInteger(TI->getIndex()); 668 ID.AddInteger(TI->getOffset()); 669 ID.AddInteger(TI->getTargetFlags()); 670 break; 671 } 672 case ISD::LOAD: { 673 const LoadSDNode *LD = cast<LoadSDNode>(N); 674 ID.AddInteger(LD->getMemoryVT().getRawBits()); 675 ID.AddInteger(LD->getRawSubclassData()); 676 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 677 break; 678 } 679 case ISD::STORE: { 680 const StoreSDNode *ST = cast<StoreSDNode>(N); 681 ID.AddInteger(ST->getMemoryVT().getRawBits()); 682 ID.AddInteger(ST->getRawSubclassData()); 683 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 684 break; 685 } 686 case ISD::MLOAD: { 687 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 688 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 689 ID.AddInteger(MLD->getRawSubclassData()); 690 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 691 break; 692 } 693 case ISD::MSTORE: { 694 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 695 ID.AddInteger(MST->getMemoryVT().getRawBits()); 696 ID.AddInteger(MST->getRawSubclassData()); 697 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 698 break; 699 } 700 case ISD::MGATHER: { 701 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 702 ID.AddInteger(MG->getMemoryVT().getRawBits()); 703 ID.AddInteger(MG->getRawSubclassData()); 704 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 705 break; 706 } 707 case ISD::MSCATTER: { 708 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 709 ID.AddInteger(MS->getMemoryVT().getRawBits()); 710 ID.AddInteger(MS->getRawSubclassData()); 711 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 712 break; 713 } 714 case ISD::ATOMIC_CMP_SWAP: 715 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 716 case ISD::ATOMIC_SWAP: 717 case ISD::ATOMIC_LOAD_ADD: 718 case ISD::ATOMIC_LOAD_SUB: 719 case ISD::ATOMIC_LOAD_AND: 720 case ISD::ATOMIC_LOAD_CLR: 721 case ISD::ATOMIC_LOAD_OR: 722 case ISD::ATOMIC_LOAD_XOR: 723 case ISD::ATOMIC_LOAD_NAND: 724 case ISD::ATOMIC_LOAD_MIN: 725 case ISD::ATOMIC_LOAD_MAX: 726 case ISD::ATOMIC_LOAD_UMIN: 727 case ISD::ATOMIC_LOAD_UMAX: 728 case ISD::ATOMIC_LOAD: 729 case ISD::ATOMIC_STORE: { 730 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 731 ID.AddInteger(AT->getMemoryVT().getRawBits()); 732 ID.AddInteger(AT->getRawSubclassData()); 733 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 734 break; 735 } 736 case ISD::PREFETCH: { 737 const MemSDNode *PF = cast<MemSDNode>(N); 738 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 739 break; 740 } 741 case ISD::VECTOR_SHUFFLE: { 742 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 743 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 744 i != e; ++i) 745 ID.AddInteger(SVN->getMaskElt(i)); 746 break; 747 } 748 case ISD::TargetBlockAddress: 749 case ISD::BlockAddress: { 750 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 751 ID.AddPointer(BA->getBlockAddress()); 752 ID.AddInteger(BA->getOffset()); 753 ID.AddInteger(BA->getTargetFlags()); 754 break; 755 } 756 } // end switch (N->getOpcode()) 757 758 // Target specific memory nodes could also have address spaces to check. 759 if (N->isTargetMemoryOpcode()) 760 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 761 } 762 763 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 764 /// data. 765 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 766 AddNodeIDOpcode(ID, N->getOpcode()); 767 // Add the return value info. 768 AddNodeIDValueTypes(ID, N->getVTList()); 769 // Add the operand info. 770 AddNodeIDOperands(ID, N->ops()); 771 772 // Handle SDNode leafs with special info. 773 AddNodeIDCustom(ID, N); 774 } 775 776 //===----------------------------------------------------------------------===// 777 // SelectionDAG Class 778 //===----------------------------------------------------------------------===// 779 780 /// doNotCSE - Return true if CSE should not be performed for this node. 781 static bool doNotCSE(SDNode *N) { 782 if (N->getValueType(0) == MVT::Glue) 783 return true; // Never CSE anything that produces a flag. 784 785 switch (N->getOpcode()) { 786 default: break; 787 case ISD::HANDLENODE: 788 case ISD::EH_LABEL: 789 return true; // Never CSE these nodes. 790 } 791 792 // Check that remaining values produced are not flags. 793 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 794 if (N->getValueType(i) == MVT::Glue) 795 return true; // Never CSE anything that produces a flag. 796 797 return false; 798 } 799 800 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 801 /// SelectionDAG. 802 void SelectionDAG::RemoveDeadNodes() { 803 // Create a dummy node (which is not added to allnodes), that adds a reference 804 // to the root node, preventing it from being deleted. 805 HandleSDNode Dummy(getRoot()); 806 807 SmallVector<SDNode*, 128> DeadNodes; 808 809 // Add all obviously-dead nodes to the DeadNodes worklist. 810 for (SDNode &Node : allnodes()) 811 if (Node.use_empty()) 812 DeadNodes.push_back(&Node); 813 814 RemoveDeadNodes(DeadNodes); 815 816 // If the root changed (e.g. it was a dead load, update the root). 817 setRoot(Dummy.getValue()); 818 } 819 820 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 821 /// given list, and any nodes that become unreachable as a result. 822 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 823 824 // Process the worklist, deleting the nodes and adding their uses to the 825 // worklist. 826 while (!DeadNodes.empty()) { 827 SDNode *N = DeadNodes.pop_back_val(); 828 // Skip to next node if we've already managed to delete the node. This could 829 // happen if replacing a node causes a node previously added to the node to 830 // be deleted. 831 if (N->getOpcode() == ISD::DELETED_NODE) 832 continue; 833 834 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 835 DUL->NodeDeleted(N, nullptr); 836 837 // Take the node out of the appropriate CSE map. 838 RemoveNodeFromCSEMaps(N); 839 840 // Next, brutally remove the operand list. This is safe to do, as there are 841 // no cycles in the graph. 842 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 843 SDUse &Use = *I++; 844 SDNode *Operand = Use.getNode(); 845 Use.set(SDValue()); 846 847 // Now that we removed this operand, see if there are no uses of it left. 848 if (Operand->use_empty()) 849 DeadNodes.push_back(Operand); 850 } 851 852 DeallocateNode(N); 853 } 854 } 855 856 void SelectionDAG::RemoveDeadNode(SDNode *N){ 857 SmallVector<SDNode*, 16> DeadNodes(1, N); 858 859 // Create a dummy node that adds a reference to the root node, preventing 860 // it from being deleted. (This matters if the root is an operand of the 861 // dead node.) 862 HandleSDNode Dummy(getRoot()); 863 864 RemoveDeadNodes(DeadNodes); 865 } 866 867 void SelectionDAG::DeleteNode(SDNode *N) { 868 // First take this out of the appropriate CSE map. 869 RemoveNodeFromCSEMaps(N); 870 871 // Finally, remove uses due to operands of this node, remove from the 872 // AllNodes list, and delete the node. 873 DeleteNodeNotInCSEMaps(N); 874 } 875 876 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 877 assert(N->getIterator() != AllNodes.begin() && 878 "Cannot delete the entry node!"); 879 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 880 881 // Drop all of the operands and decrement used node's use counts. 882 N->DropOperands(); 883 884 DeallocateNode(N); 885 } 886 887 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 888 assert(!(V->isVariadic() && isParameter)); 889 if (isParameter) 890 ByvalParmDbgValues.push_back(V); 891 else 892 DbgValues.push_back(V); 893 for (const SDNode *Node : V->getSDNodes()) 894 if (Node) 895 DbgValMap[Node].push_back(V); 896 } 897 898 void SDDbgInfo::erase(const SDNode *Node) { 899 DbgValMapType::iterator I = DbgValMap.find(Node); 900 if (I == DbgValMap.end()) 901 return; 902 for (auto &Val: I->second) 903 Val->setIsInvalidated(); 904 DbgValMap.erase(I); 905 } 906 907 void SelectionDAG::DeallocateNode(SDNode *N) { 908 // If we have operands, deallocate them. 909 removeOperands(N); 910 911 NodeAllocator.Deallocate(AllNodes.remove(N)); 912 913 // Set the opcode to DELETED_NODE to help catch bugs when node 914 // memory is reallocated. 915 // FIXME: There are places in SDag that have grown a dependency on the opcode 916 // value in the released node. 917 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 918 N->NodeType = ISD::DELETED_NODE; 919 920 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 921 // them and forget about that node. 922 DbgInfo->erase(N); 923 } 924 925 #ifndef NDEBUG 926 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 927 static void VerifySDNode(SDNode *N) { 928 switch (N->getOpcode()) { 929 default: 930 break; 931 case ISD::BUILD_PAIR: { 932 EVT VT = N->getValueType(0); 933 assert(N->getNumValues() == 1 && "Too many results!"); 934 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 935 "Wrong return type!"); 936 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 937 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 938 "Mismatched operand types!"); 939 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 940 "Wrong operand type!"); 941 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 942 "Wrong return type size"); 943 break; 944 } 945 case ISD::BUILD_VECTOR: { 946 assert(N->getNumValues() == 1 && "Too many results!"); 947 assert(N->getValueType(0).isVector() && "Wrong return type!"); 948 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 949 "Wrong number of operands!"); 950 EVT EltVT = N->getValueType(0).getVectorElementType(); 951 for (const SDUse &Op : N->ops()) { 952 assert((Op.getValueType() == EltVT || 953 (EltVT.isInteger() && Op.getValueType().isInteger() && 954 EltVT.bitsLE(Op.getValueType()))) && 955 "Wrong operand type!"); 956 assert(Op.getValueType() == N->getOperand(0).getValueType() && 957 "Operands must all have the same type"); 958 } 959 break; 960 } 961 } 962 } 963 #endif // NDEBUG 964 965 /// Insert a newly allocated node into the DAG. 966 /// 967 /// Handles insertion into the all nodes list and CSE map, as well as 968 /// verification and other common operations when a new node is allocated. 969 void SelectionDAG::InsertNode(SDNode *N) { 970 AllNodes.push_back(N); 971 #ifndef NDEBUG 972 N->PersistentId = NextPersistentId++; 973 VerifySDNode(N); 974 #endif 975 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 976 DUL->NodeInserted(N); 977 } 978 979 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 980 /// correspond to it. This is useful when we're about to delete or repurpose 981 /// the node. We don't want future request for structurally identical nodes 982 /// to return N anymore. 983 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 984 bool Erased = false; 985 switch (N->getOpcode()) { 986 case ISD::HANDLENODE: return false; // noop. 987 case ISD::CONDCODE: 988 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 989 "Cond code doesn't exist!"); 990 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 991 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 992 break; 993 case ISD::ExternalSymbol: 994 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 995 break; 996 case ISD::TargetExternalSymbol: { 997 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 998 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 999 ESN->getSymbol(), ESN->getTargetFlags())); 1000 break; 1001 } 1002 case ISD::MCSymbol: { 1003 auto *MCSN = cast<MCSymbolSDNode>(N); 1004 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1005 break; 1006 } 1007 case ISD::VALUETYPE: { 1008 EVT VT = cast<VTSDNode>(N)->getVT(); 1009 if (VT.isExtended()) { 1010 Erased = ExtendedValueTypeNodes.erase(VT); 1011 } else { 1012 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1013 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1014 } 1015 break; 1016 } 1017 default: 1018 // Remove it from the CSE Map. 1019 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1020 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1021 Erased = CSEMap.RemoveNode(N); 1022 break; 1023 } 1024 #ifndef NDEBUG 1025 // Verify that the node was actually in one of the CSE maps, unless it has a 1026 // flag result (which cannot be CSE'd) or is one of the special cases that are 1027 // not subject to CSE. 1028 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1029 !N->isMachineOpcode() && !doNotCSE(N)) { 1030 N->dump(this); 1031 dbgs() << "\n"; 1032 llvm_unreachable("Node is not in map!"); 1033 } 1034 #endif 1035 return Erased; 1036 } 1037 1038 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1039 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1040 /// node already exists, in which case transfer all its users to the existing 1041 /// node. This transfer can potentially trigger recursive merging. 1042 void 1043 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1044 // For node types that aren't CSE'd, just act as if no identical node 1045 // already exists. 1046 if (!doNotCSE(N)) { 1047 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1048 if (Existing != N) { 1049 // If there was already an existing matching node, use ReplaceAllUsesWith 1050 // to replace the dead one with the existing one. This can cause 1051 // recursive merging of other unrelated nodes down the line. 1052 ReplaceAllUsesWith(N, Existing); 1053 1054 // N is now dead. Inform the listeners and delete it. 1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1056 DUL->NodeDeleted(N, Existing); 1057 DeleteNodeNotInCSEMaps(N); 1058 return; 1059 } 1060 } 1061 1062 // If the node doesn't already exist, we updated it. Inform listeners. 1063 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1064 DUL->NodeUpdated(N); 1065 } 1066 1067 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1068 /// were replaced with those specified. If this node is never memoized, 1069 /// return null, otherwise return a pointer to the slot it would take. If a 1070 /// node already exists with these operands, the slot will be non-null. 1071 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1072 void *&InsertPos) { 1073 if (doNotCSE(N)) 1074 return nullptr; 1075 1076 SDValue Ops[] = { Op }; 1077 FoldingSetNodeID ID; 1078 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1079 AddNodeIDCustom(ID, N); 1080 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1081 if (Node) 1082 Node->intersectFlagsWith(N->getFlags()); 1083 return Node; 1084 } 1085 1086 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1087 /// were replaced with those specified. If this node is never memoized, 1088 /// return null, otherwise return a pointer to the slot it would take. If a 1089 /// node already exists with these operands, the slot will be non-null. 1090 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1091 SDValue Op1, SDValue Op2, 1092 void *&InsertPos) { 1093 if (doNotCSE(N)) 1094 return nullptr; 1095 1096 SDValue Ops[] = { Op1, Op2 }; 1097 FoldingSetNodeID ID; 1098 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1099 AddNodeIDCustom(ID, N); 1100 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1101 if (Node) 1102 Node->intersectFlagsWith(N->getFlags()); 1103 return Node; 1104 } 1105 1106 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1107 /// were replaced with those specified. If this node is never memoized, 1108 /// return null, otherwise return a pointer to the slot it would take. If a 1109 /// node already exists with these operands, the slot will be non-null. 1110 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1111 void *&InsertPos) { 1112 if (doNotCSE(N)) 1113 return nullptr; 1114 1115 FoldingSetNodeID ID; 1116 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1117 AddNodeIDCustom(ID, N); 1118 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1119 if (Node) 1120 Node->intersectFlagsWith(N->getFlags()); 1121 return Node; 1122 } 1123 1124 Align SelectionDAG::getEVTAlign(EVT VT) const { 1125 Type *Ty = VT == MVT::iPTR ? 1126 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1127 VT.getTypeForEVT(*getContext()); 1128 1129 return getDataLayout().getABITypeAlign(Ty); 1130 } 1131 1132 // EntryNode could meaningfully have debug info if we can find it... 1133 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1134 : TM(tm), OptLevel(OL), 1135 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1136 Root(getEntryNode()) { 1137 InsertNode(&EntryNode); 1138 DbgInfo = new SDDbgInfo(); 1139 } 1140 1141 void SelectionDAG::init(MachineFunction &NewMF, 1142 OptimizationRemarkEmitter &NewORE, 1143 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1144 LegacyDivergenceAnalysis * Divergence, 1145 ProfileSummaryInfo *PSIin, 1146 BlockFrequencyInfo *BFIin) { 1147 MF = &NewMF; 1148 SDAGISelPass = PassPtr; 1149 ORE = &NewORE; 1150 TLI = getSubtarget().getTargetLowering(); 1151 TSI = getSubtarget().getSelectionDAGInfo(); 1152 LibInfo = LibraryInfo; 1153 Context = &MF->getFunction().getContext(); 1154 DA = Divergence; 1155 PSI = PSIin; 1156 BFI = BFIin; 1157 } 1158 1159 SelectionDAG::~SelectionDAG() { 1160 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1161 allnodes_clear(); 1162 OperandRecycler.clear(OperandAllocator); 1163 delete DbgInfo; 1164 } 1165 1166 bool SelectionDAG::shouldOptForSize() const { 1167 return MF->getFunction().hasOptSize() || 1168 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1169 } 1170 1171 void SelectionDAG::allnodes_clear() { 1172 assert(&*AllNodes.begin() == &EntryNode); 1173 AllNodes.remove(AllNodes.begin()); 1174 while (!AllNodes.empty()) 1175 DeallocateNode(&AllNodes.front()); 1176 #ifndef NDEBUG 1177 NextPersistentId = 0; 1178 #endif 1179 } 1180 1181 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1182 void *&InsertPos) { 1183 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1184 if (N) { 1185 switch (N->getOpcode()) { 1186 default: break; 1187 case ISD::Constant: 1188 case ISD::ConstantFP: 1189 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1190 "debug location. Use another overload."); 1191 } 1192 } 1193 return N; 1194 } 1195 1196 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1197 const SDLoc &DL, void *&InsertPos) { 1198 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1199 if (N) { 1200 switch (N->getOpcode()) { 1201 case ISD::Constant: 1202 case ISD::ConstantFP: 1203 // Erase debug location from the node if the node is used at several 1204 // different places. Do not propagate one location to all uses as it 1205 // will cause a worse single stepping debugging experience. 1206 if (N->getDebugLoc() != DL.getDebugLoc()) 1207 N->setDebugLoc(DebugLoc()); 1208 break; 1209 default: 1210 // When the node's point of use is located earlier in the instruction 1211 // sequence than its prior point of use, update its debug info to the 1212 // earlier location. 1213 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1214 N->setDebugLoc(DL.getDebugLoc()); 1215 break; 1216 } 1217 } 1218 return N; 1219 } 1220 1221 void SelectionDAG::clear() { 1222 allnodes_clear(); 1223 OperandRecycler.clear(OperandAllocator); 1224 OperandAllocator.Reset(); 1225 CSEMap.clear(); 1226 1227 ExtendedValueTypeNodes.clear(); 1228 ExternalSymbols.clear(); 1229 TargetExternalSymbols.clear(); 1230 MCSymbols.clear(); 1231 SDCallSiteDbgInfo.clear(); 1232 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1233 static_cast<CondCodeSDNode*>(nullptr)); 1234 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1235 static_cast<SDNode*>(nullptr)); 1236 1237 EntryNode.UseList = nullptr; 1238 InsertNode(&EntryNode); 1239 Root = getEntryNode(); 1240 DbgInfo->clear(); 1241 } 1242 1243 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1244 return VT.bitsGT(Op.getValueType()) 1245 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1246 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1247 } 1248 1249 std::pair<SDValue, SDValue> 1250 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1251 const SDLoc &DL, EVT VT) { 1252 assert(!VT.bitsEq(Op.getValueType()) && 1253 "Strict no-op FP extend/round not allowed."); 1254 SDValue Res = 1255 VT.bitsGT(Op.getValueType()) 1256 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1257 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1258 {Chain, Op, getIntPtrConstant(0, DL)}); 1259 1260 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1261 } 1262 1263 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1264 return VT.bitsGT(Op.getValueType()) ? 1265 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1266 getNode(ISD::TRUNCATE, DL, VT, Op); 1267 } 1268 1269 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1270 return VT.bitsGT(Op.getValueType()) ? 1271 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1272 getNode(ISD::TRUNCATE, DL, VT, Op); 1273 } 1274 1275 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1276 return VT.bitsGT(Op.getValueType()) ? 1277 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1278 getNode(ISD::TRUNCATE, DL, VT, Op); 1279 } 1280 1281 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1282 EVT OpVT) { 1283 if (VT.bitsLE(Op.getValueType())) 1284 return getNode(ISD::TRUNCATE, SL, VT, Op); 1285 1286 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1287 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1288 } 1289 1290 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1291 EVT OpVT = Op.getValueType(); 1292 assert(VT.isInteger() && OpVT.isInteger() && 1293 "Cannot getZeroExtendInReg FP types"); 1294 assert(VT.isVector() == OpVT.isVector() && 1295 "getZeroExtendInReg type should be vector iff the operand " 1296 "type is vector!"); 1297 assert((!VT.isVector() || 1298 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1299 "Vector element counts must match in getZeroExtendInReg"); 1300 assert(VT.bitsLE(OpVT) && "Not extending!"); 1301 if (OpVT == VT) 1302 return Op; 1303 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1304 VT.getScalarSizeInBits()); 1305 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1306 } 1307 1308 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1309 // Only unsigned pointer semantics are supported right now. In the future this 1310 // might delegate to TLI to check pointer signedness. 1311 return getZExtOrTrunc(Op, DL, VT); 1312 } 1313 1314 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1315 // Only unsigned pointer semantics are supported right now. In the future this 1316 // might delegate to TLI to check pointer signedness. 1317 return getZeroExtendInReg(Op, DL, VT); 1318 } 1319 1320 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1321 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1322 EVT EltVT = VT.getScalarType(); 1323 SDValue NegOne = 1324 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1325 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1326 } 1327 1328 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1329 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1330 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1331 } 1332 1333 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1334 EVT OpVT) { 1335 if (!V) 1336 return getConstant(0, DL, VT); 1337 1338 switch (TLI->getBooleanContents(OpVT)) { 1339 case TargetLowering::ZeroOrOneBooleanContent: 1340 case TargetLowering::UndefinedBooleanContent: 1341 return getConstant(1, DL, VT); 1342 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1343 return getAllOnesConstant(DL, VT); 1344 } 1345 llvm_unreachable("Unexpected boolean content enum!"); 1346 } 1347 1348 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1349 bool isT, bool isO) { 1350 EVT EltVT = VT.getScalarType(); 1351 assert((EltVT.getSizeInBits() >= 64 || 1352 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1353 "getConstant with a uint64_t value that doesn't fit in the type!"); 1354 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1355 } 1356 1357 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1358 bool isT, bool isO) { 1359 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1360 } 1361 1362 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1363 EVT VT, bool isT, bool isO) { 1364 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1365 1366 EVT EltVT = VT.getScalarType(); 1367 const ConstantInt *Elt = &Val; 1368 1369 // In some cases the vector type is legal but the element type is illegal and 1370 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1371 // inserted value (the type does not need to match the vector element type). 1372 // Any extra bits introduced will be truncated away. 1373 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1374 TargetLowering::TypePromoteInteger) { 1375 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1376 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1377 Elt = ConstantInt::get(*getContext(), NewVal); 1378 } 1379 // In other cases the element type is illegal and needs to be expanded, for 1380 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1381 // the value into n parts and use a vector type with n-times the elements. 1382 // Then bitcast to the type requested. 1383 // Legalizing constants too early makes the DAGCombiner's job harder so we 1384 // only legalize if the DAG tells us we must produce legal types. 1385 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1386 TLI->getTypeAction(*getContext(), EltVT) == 1387 TargetLowering::TypeExpandInteger) { 1388 const APInt &NewVal = Elt->getValue(); 1389 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1390 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1391 1392 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1393 if (VT.isScalableVector()) { 1394 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1395 "Can only handle an even split!"); 1396 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1397 1398 SmallVector<SDValue, 2> ScalarParts; 1399 for (unsigned i = 0; i != Parts; ++i) 1400 ScalarParts.push_back(getConstant( 1401 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1402 ViaEltVT, isT, isO)); 1403 1404 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1405 } 1406 1407 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1408 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1409 1410 // Check the temporary vector is the correct size. If this fails then 1411 // getTypeToTransformTo() probably returned a type whose size (in bits) 1412 // isn't a power-of-2 factor of the requested type size. 1413 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1414 1415 SmallVector<SDValue, 2> EltParts; 1416 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1417 EltParts.push_back(getConstant( 1418 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1419 ViaEltVT, isT, isO)); 1420 1421 // EltParts is currently in little endian order. If we actually want 1422 // big-endian order then reverse it now. 1423 if (getDataLayout().isBigEndian()) 1424 std::reverse(EltParts.begin(), EltParts.end()); 1425 1426 // The elements must be reversed when the element order is different 1427 // to the endianness of the elements (because the BITCAST is itself a 1428 // vector shuffle in this situation). However, we do not need any code to 1429 // perform this reversal because getConstant() is producing a vector 1430 // splat. 1431 // This situation occurs in MIPS MSA. 1432 1433 SmallVector<SDValue, 8> Ops; 1434 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1435 llvm::append_range(Ops, EltParts); 1436 1437 SDValue V = 1438 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1439 return V; 1440 } 1441 1442 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1443 "APInt size does not match type size!"); 1444 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1445 FoldingSetNodeID ID; 1446 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1447 ID.AddPointer(Elt); 1448 ID.AddBoolean(isO); 1449 void *IP = nullptr; 1450 SDNode *N = nullptr; 1451 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1452 if (!VT.isVector()) 1453 return SDValue(N, 0); 1454 1455 if (!N) { 1456 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1457 CSEMap.InsertNode(N, IP); 1458 InsertNode(N); 1459 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1460 } 1461 1462 SDValue Result(N, 0); 1463 if (VT.isScalableVector()) 1464 Result = getSplatVector(VT, DL, Result); 1465 else if (VT.isVector()) 1466 Result = getSplatBuildVector(VT, DL, Result); 1467 1468 return Result; 1469 } 1470 1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1472 bool isTarget) { 1473 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1474 } 1475 1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1477 const SDLoc &DL, bool LegalTypes) { 1478 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1479 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1480 return getConstant(Val, DL, ShiftVT); 1481 } 1482 1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1484 bool isTarget) { 1485 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1486 } 1487 1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1489 bool isTarget) { 1490 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1491 } 1492 1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1494 EVT VT, bool isTarget) { 1495 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1496 1497 EVT EltVT = VT.getScalarType(); 1498 1499 // Do the map lookup using the actual bit pattern for the floating point 1500 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1501 // we don't have issues with SNANs. 1502 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1503 FoldingSetNodeID ID; 1504 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1505 ID.AddPointer(&V); 1506 void *IP = nullptr; 1507 SDNode *N = nullptr; 1508 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1509 if (!VT.isVector()) 1510 return SDValue(N, 0); 1511 1512 if (!N) { 1513 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1514 CSEMap.InsertNode(N, IP); 1515 InsertNode(N); 1516 } 1517 1518 SDValue Result(N, 0); 1519 if (VT.isScalableVector()) 1520 Result = getSplatVector(VT, DL, Result); 1521 else if (VT.isVector()) 1522 Result = getSplatBuildVector(VT, DL, Result); 1523 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1524 return Result; 1525 } 1526 1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1528 bool isTarget) { 1529 EVT EltVT = VT.getScalarType(); 1530 if (EltVT == MVT::f32) 1531 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1532 if (EltVT == MVT::f64) 1533 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1534 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1535 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1536 bool Ignored; 1537 APFloat APF = APFloat(Val); 1538 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1539 &Ignored); 1540 return getConstantFP(APF, DL, VT, isTarget); 1541 } 1542 llvm_unreachable("Unsupported type in getConstantFP"); 1543 } 1544 1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1546 EVT VT, int64_t Offset, bool isTargetGA, 1547 unsigned TargetFlags) { 1548 assert((TargetFlags == 0 || isTargetGA) && 1549 "Cannot set target flags on target-independent globals"); 1550 1551 // Truncate (with sign-extension) the offset value to the pointer size. 1552 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1553 if (BitWidth < 64) 1554 Offset = SignExtend64(Offset, BitWidth); 1555 1556 unsigned Opc; 1557 if (GV->isThreadLocal()) 1558 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1559 else 1560 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1561 1562 FoldingSetNodeID ID; 1563 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1564 ID.AddPointer(GV); 1565 ID.AddInteger(Offset); 1566 ID.AddInteger(TargetFlags); 1567 void *IP = nullptr; 1568 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1569 return SDValue(E, 0); 1570 1571 auto *N = newSDNode<GlobalAddressSDNode>( 1572 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1573 CSEMap.InsertNode(N, IP); 1574 InsertNode(N); 1575 return SDValue(N, 0); 1576 } 1577 1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1579 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1580 FoldingSetNodeID ID; 1581 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1582 ID.AddInteger(FI); 1583 void *IP = nullptr; 1584 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1585 return SDValue(E, 0); 1586 1587 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1588 CSEMap.InsertNode(N, IP); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1594 unsigned TargetFlags) { 1595 assert((TargetFlags == 0 || isTarget) && 1596 "Cannot set target flags on target-independent jump tables"); 1597 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1598 FoldingSetNodeID ID; 1599 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1600 ID.AddInteger(JTI); 1601 ID.AddInteger(TargetFlags); 1602 void *IP = nullptr; 1603 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1604 return SDValue(E, 0); 1605 1606 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1607 CSEMap.InsertNode(N, IP); 1608 InsertNode(N); 1609 return SDValue(N, 0); 1610 } 1611 1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1613 MaybeAlign Alignment, int Offset, 1614 bool isTarget, unsigned TargetFlags) { 1615 assert((TargetFlags == 0 || isTarget) && 1616 "Cannot set target flags on target-independent globals"); 1617 if (!Alignment) 1618 Alignment = shouldOptForSize() 1619 ? getDataLayout().getABITypeAlign(C->getType()) 1620 : getDataLayout().getPrefTypeAlign(C->getType()); 1621 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1622 FoldingSetNodeID ID; 1623 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1624 ID.AddInteger(Alignment->value()); 1625 ID.AddInteger(Offset); 1626 ID.AddPointer(C); 1627 ID.AddInteger(TargetFlags); 1628 void *IP = nullptr; 1629 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1630 return SDValue(E, 0); 1631 1632 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1633 TargetFlags); 1634 CSEMap.InsertNode(N, IP); 1635 InsertNode(N); 1636 SDValue V = SDValue(N, 0); 1637 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1638 return V; 1639 } 1640 1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1642 MaybeAlign Alignment, int Offset, 1643 bool isTarget, unsigned TargetFlags) { 1644 assert((TargetFlags == 0 || isTarget) && 1645 "Cannot set target flags on target-independent globals"); 1646 if (!Alignment) 1647 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1648 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1649 FoldingSetNodeID ID; 1650 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1651 ID.AddInteger(Alignment->value()); 1652 ID.AddInteger(Offset); 1653 C->addSelectionDAGCSEId(ID); 1654 ID.AddInteger(TargetFlags); 1655 void *IP = nullptr; 1656 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1657 return SDValue(E, 0); 1658 1659 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1660 TargetFlags); 1661 CSEMap.InsertNode(N, IP); 1662 InsertNode(N); 1663 return SDValue(N, 0); 1664 } 1665 1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1667 unsigned TargetFlags) { 1668 FoldingSetNodeID ID; 1669 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1670 ID.AddInteger(Index); 1671 ID.AddInteger(Offset); 1672 ID.AddInteger(TargetFlags); 1673 void *IP = nullptr; 1674 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1675 return SDValue(E, 0); 1676 1677 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1678 CSEMap.InsertNode(N, IP); 1679 InsertNode(N); 1680 return SDValue(N, 0); 1681 } 1682 1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1684 FoldingSetNodeID ID; 1685 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1686 ID.AddPointer(MBB); 1687 void *IP = nullptr; 1688 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1689 return SDValue(E, 0); 1690 1691 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1692 CSEMap.InsertNode(N, IP); 1693 InsertNode(N); 1694 return SDValue(N, 0); 1695 } 1696 1697 SDValue SelectionDAG::getValueType(EVT VT) { 1698 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1699 ValueTypeNodes.size()) 1700 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1701 1702 SDNode *&N = VT.isExtended() ? 1703 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1704 1705 if (N) return SDValue(N, 0); 1706 N = newSDNode<VTSDNode>(VT); 1707 InsertNode(N); 1708 return SDValue(N, 0); 1709 } 1710 1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1712 SDNode *&N = ExternalSymbols[Sym]; 1713 if (N) return SDValue(N, 0); 1714 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1715 InsertNode(N); 1716 return SDValue(N, 0); 1717 } 1718 1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1720 SDNode *&N = MCSymbols[Sym]; 1721 if (N) 1722 return SDValue(N, 0); 1723 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1724 InsertNode(N); 1725 return SDValue(N, 0); 1726 } 1727 1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1729 unsigned TargetFlags) { 1730 SDNode *&N = 1731 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1732 if (N) return SDValue(N, 0); 1733 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1734 InsertNode(N); 1735 return SDValue(N, 0); 1736 } 1737 1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1739 if ((unsigned)Cond >= CondCodeNodes.size()) 1740 CondCodeNodes.resize(Cond+1); 1741 1742 if (!CondCodeNodes[Cond]) { 1743 auto *N = newSDNode<CondCodeSDNode>(Cond); 1744 CondCodeNodes[Cond] = N; 1745 InsertNode(N); 1746 } 1747 1748 return SDValue(CondCodeNodes[Cond], 0); 1749 } 1750 1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1752 APInt One(ResVT.getScalarSizeInBits(), 1); 1753 return getStepVector(DL, ResVT, One); 1754 } 1755 1756 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1757 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1758 if (ResVT.isScalableVector()) 1759 return getNode( 1760 ISD::STEP_VECTOR, DL, ResVT, 1761 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1762 1763 SmallVector<SDValue, 16> OpsStepConstants; 1764 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1765 OpsStepConstants.push_back( 1766 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1767 return getBuildVector(ResVT, DL, OpsStepConstants); 1768 } 1769 1770 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1771 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1772 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1773 std::swap(N1, N2); 1774 ShuffleVectorSDNode::commuteMask(M); 1775 } 1776 1777 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1778 SDValue N2, ArrayRef<int> Mask) { 1779 assert(VT.getVectorNumElements() == Mask.size() && 1780 "Must have the same number of vector elements as mask elements!"); 1781 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1782 "Invalid VECTOR_SHUFFLE"); 1783 1784 // Canonicalize shuffle undef, undef -> undef 1785 if (N1.isUndef() && N2.isUndef()) 1786 return getUNDEF(VT); 1787 1788 // Validate that all indices in Mask are within the range of the elements 1789 // input to the shuffle. 1790 int NElts = Mask.size(); 1791 assert(llvm::all_of(Mask, 1792 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1793 "Index out of range"); 1794 1795 // Copy the mask so we can do any needed cleanup. 1796 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1797 1798 // Canonicalize shuffle v, v -> v, undef 1799 if (N1 == N2) { 1800 N2 = getUNDEF(VT); 1801 for (int i = 0; i != NElts; ++i) 1802 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1803 } 1804 1805 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1806 if (N1.isUndef()) 1807 commuteShuffle(N1, N2, MaskVec); 1808 1809 if (TLI->hasVectorBlend()) { 1810 // If shuffling a splat, try to blend the splat instead. We do this here so 1811 // that even when this arises during lowering we don't have to re-handle it. 1812 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1813 BitVector UndefElements; 1814 SDValue Splat = BV->getSplatValue(&UndefElements); 1815 if (!Splat) 1816 return; 1817 1818 for (int i = 0; i < NElts; ++i) { 1819 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1820 continue; 1821 1822 // If this input comes from undef, mark it as such. 1823 if (UndefElements[MaskVec[i] - Offset]) { 1824 MaskVec[i] = -1; 1825 continue; 1826 } 1827 1828 // If we can blend a non-undef lane, use that instead. 1829 if (!UndefElements[i]) 1830 MaskVec[i] = i + Offset; 1831 } 1832 }; 1833 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1834 BlendSplat(N1BV, 0); 1835 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1836 BlendSplat(N2BV, NElts); 1837 } 1838 1839 // Canonicalize all index into lhs, -> shuffle lhs, undef 1840 // Canonicalize all index into rhs, -> shuffle rhs, undef 1841 bool AllLHS = true, AllRHS = true; 1842 bool N2Undef = N2.isUndef(); 1843 for (int i = 0; i != NElts; ++i) { 1844 if (MaskVec[i] >= NElts) { 1845 if (N2Undef) 1846 MaskVec[i] = -1; 1847 else 1848 AllLHS = false; 1849 } else if (MaskVec[i] >= 0) { 1850 AllRHS = false; 1851 } 1852 } 1853 if (AllLHS && AllRHS) 1854 return getUNDEF(VT); 1855 if (AllLHS && !N2Undef) 1856 N2 = getUNDEF(VT); 1857 if (AllRHS) { 1858 N1 = getUNDEF(VT); 1859 commuteShuffle(N1, N2, MaskVec); 1860 } 1861 // Reset our undef status after accounting for the mask. 1862 N2Undef = N2.isUndef(); 1863 // Re-check whether both sides ended up undef. 1864 if (N1.isUndef() && N2Undef) 1865 return getUNDEF(VT); 1866 1867 // If Identity shuffle return that node. 1868 bool Identity = true, AllSame = true; 1869 for (int i = 0; i != NElts; ++i) { 1870 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1871 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1872 } 1873 if (Identity && NElts) 1874 return N1; 1875 1876 // Shuffling a constant splat doesn't change the result. 1877 if (N2Undef) { 1878 SDValue V = N1; 1879 1880 // Look through any bitcasts. We check that these don't change the number 1881 // (and size) of elements and just changes their types. 1882 while (V.getOpcode() == ISD::BITCAST) 1883 V = V->getOperand(0); 1884 1885 // A splat should always show up as a build vector node. 1886 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1887 BitVector UndefElements; 1888 SDValue Splat = BV->getSplatValue(&UndefElements); 1889 // If this is a splat of an undef, shuffling it is also undef. 1890 if (Splat && Splat.isUndef()) 1891 return getUNDEF(VT); 1892 1893 bool SameNumElts = 1894 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1895 1896 // We only have a splat which can skip shuffles if there is a splatted 1897 // value and no undef lanes rearranged by the shuffle. 1898 if (Splat && UndefElements.none()) { 1899 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1900 // number of elements match or the value splatted is a zero constant. 1901 if (SameNumElts) 1902 return N1; 1903 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1904 if (C->isNullValue()) 1905 return N1; 1906 } 1907 1908 // If the shuffle itself creates a splat, build the vector directly. 1909 if (AllSame && SameNumElts) { 1910 EVT BuildVT = BV->getValueType(0); 1911 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1912 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1913 1914 // We may have jumped through bitcasts, so the type of the 1915 // BUILD_VECTOR may not match the type of the shuffle. 1916 if (BuildVT != VT) 1917 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1918 return NewBV; 1919 } 1920 } 1921 } 1922 1923 FoldingSetNodeID ID; 1924 SDValue Ops[2] = { N1, N2 }; 1925 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1926 for (int i = 0; i != NElts; ++i) 1927 ID.AddInteger(MaskVec[i]); 1928 1929 void* IP = nullptr; 1930 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1931 return SDValue(E, 0); 1932 1933 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1934 // SDNode doesn't have access to it. This memory will be "leaked" when 1935 // the node is deallocated, but recovered when the NodeAllocator is released. 1936 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1937 llvm::copy(MaskVec, MaskAlloc); 1938 1939 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1940 dl.getDebugLoc(), MaskAlloc); 1941 createOperands(N, Ops); 1942 1943 CSEMap.InsertNode(N, IP); 1944 InsertNode(N); 1945 SDValue V = SDValue(N, 0); 1946 NewSDValueDbgMsg(V, "Creating new node: ", this); 1947 return V; 1948 } 1949 1950 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1951 EVT VT = SV.getValueType(0); 1952 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1953 ShuffleVectorSDNode::commuteMask(MaskVec); 1954 1955 SDValue Op0 = SV.getOperand(0); 1956 SDValue Op1 = SV.getOperand(1); 1957 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1958 } 1959 1960 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1961 FoldingSetNodeID ID; 1962 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1963 ID.AddInteger(RegNo); 1964 void *IP = nullptr; 1965 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1966 return SDValue(E, 0); 1967 1968 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1969 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1970 CSEMap.InsertNode(N, IP); 1971 InsertNode(N); 1972 return SDValue(N, 0); 1973 } 1974 1975 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1976 FoldingSetNodeID ID; 1977 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1978 ID.AddPointer(RegMask); 1979 void *IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1981 return SDValue(E, 0); 1982 1983 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1984 CSEMap.InsertNode(N, IP); 1985 InsertNode(N); 1986 return SDValue(N, 0); 1987 } 1988 1989 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1990 MCSymbol *Label) { 1991 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1992 } 1993 1994 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1995 SDValue Root, MCSymbol *Label) { 1996 FoldingSetNodeID ID; 1997 SDValue Ops[] = { Root }; 1998 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1999 ID.AddPointer(Label); 2000 void *IP = nullptr; 2001 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2002 return SDValue(E, 0); 2003 2004 auto *N = 2005 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2006 createOperands(N, Ops); 2007 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 return SDValue(N, 0); 2011 } 2012 2013 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2014 int64_t Offset, bool isTarget, 2015 unsigned TargetFlags) { 2016 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2017 2018 FoldingSetNodeID ID; 2019 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2020 ID.AddPointer(BA); 2021 ID.AddInteger(Offset); 2022 ID.AddInteger(TargetFlags); 2023 void *IP = nullptr; 2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2025 return SDValue(E, 0); 2026 2027 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2028 CSEMap.InsertNode(N, IP); 2029 InsertNode(N); 2030 return SDValue(N, 0); 2031 } 2032 2033 SDValue SelectionDAG::getSrcValue(const Value *V) { 2034 FoldingSetNodeID ID; 2035 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2036 ID.AddPointer(V); 2037 2038 void *IP = nullptr; 2039 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2040 return SDValue(E, 0); 2041 2042 auto *N = newSDNode<SrcValueSDNode>(V); 2043 CSEMap.InsertNode(N, IP); 2044 InsertNode(N); 2045 return SDValue(N, 0); 2046 } 2047 2048 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2049 FoldingSetNodeID ID; 2050 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2051 ID.AddPointer(MD); 2052 2053 void *IP = nullptr; 2054 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2055 return SDValue(E, 0); 2056 2057 auto *N = newSDNode<MDNodeSDNode>(MD); 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2064 if (VT == V.getValueType()) 2065 return V; 2066 2067 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2068 } 2069 2070 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2071 unsigned SrcAS, unsigned DestAS) { 2072 SDValue Ops[] = {Ptr}; 2073 FoldingSetNodeID ID; 2074 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2075 ID.AddInteger(SrcAS); 2076 ID.AddInteger(DestAS); 2077 2078 void *IP = nullptr; 2079 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2080 return SDValue(E, 0); 2081 2082 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2083 VT, SrcAS, DestAS); 2084 createOperands(N, Ops); 2085 2086 CSEMap.InsertNode(N, IP); 2087 InsertNode(N); 2088 return SDValue(N, 0); 2089 } 2090 2091 SDValue SelectionDAG::getFreeze(SDValue V) { 2092 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2093 } 2094 2095 /// getShiftAmountOperand - Return the specified value casted to 2096 /// the target's desired shift amount type. 2097 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2098 EVT OpTy = Op.getValueType(); 2099 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2100 if (OpTy == ShTy || OpTy.isVector()) return Op; 2101 2102 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2103 } 2104 2105 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2106 SDLoc dl(Node); 2107 const TargetLowering &TLI = getTargetLoweringInfo(); 2108 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2109 EVT VT = Node->getValueType(0); 2110 SDValue Tmp1 = Node->getOperand(0); 2111 SDValue Tmp2 = Node->getOperand(1); 2112 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2113 2114 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2115 Tmp2, MachinePointerInfo(V)); 2116 SDValue VAList = VAListLoad; 2117 2118 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2119 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2120 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2121 2122 VAList = 2123 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2124 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2125 } 2126 2127 // Increment the pointer, VAList, to the next vaarg 2128 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2129 getConstant(getDataLayout().getTypeAllocSize( 2130 VT.getTypeForEVT(*getContext())), 2131 dl, VAList.getValueType())); 2132 // Store the incremented VAList to the legalized pointer 2133 Tmp1 = 2134 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2135 // Load the actual argument out of the pointer VAList 2136 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2137 } 2138 2139 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2140 SDLoc dl(Node); 2141 const TargetLowering &TLI = getTargetLoweringInfo(); 2142 // This defaults to loading a pointer from the input and storing it to the 2143 // output, returning the chain. 2144 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2145 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2146 SDValue Tmp1 = 2147 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2148 Node->getOperand(2), MachinePointerInfo(VS)); 2149 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2150 MachinePointerInfo(VD)); 2151 } 2152 2153 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2154 const DataLayout &DL = getDataLayout(); 2155 Type *Ty = VT.getTypeForEVT(*getContext()); 2156 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2157 2158 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2159 return RedAlign; 2160 2161 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2162 const Align StackAlign = TFI->getStackAlign(); 2163 2164 // See if we can choose a smaller ABI alignment in cases where it's an 2165 // illegal vector type that will get broken down. 2166 if (RedAlign > StackAlign) { 2167 EVT IntermediateVT; 2168 MVT RegisterVT; 2169 unsigned NumIntermediates; 2170 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2171 NumIntermediates, RegisterVT); 2172 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2173 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2174 if (RedAlign2 < RedAlign) 2175 RedAlign = RedAlign2; 2176 } 2177 2178 return RedAlign; 2179 } 2180 2181 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2182 MachineFrameInfo &MFI = MF->getFrameInfo(); 2183 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2184 int StackID = 0; 2185 if (Bytes.isScalable()) 2186 StackID = TFI->getStackIDForScalableVectors(); 2187 // The stack id gives an indication of whether the object is scalable or 2188 // not, so it's safe to pass in the minimum size here. 2189 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2190 false, nullptr, StackID); 2191 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2192 } 2193 2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2195 Type *Ty = VT.getTypeForEVT(*getContext()); 2196 Align StackAlign = 2197 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2198 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2199 } 2200 2201 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2202 TypeSize VT1Size = VT1.getStoreSize(); 2203 TypeSize VT2Size = VT2.getStoreSize(); 2204 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2205 "Don't know how to choose the maximum size when creating a stack " 2206 "temporary"); 2207 TypeSize Bytes = 2208 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2209 2210 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2211 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2212 const DataLayout &DL = getDataLayout(); 2213 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2214 return CreateStackTemporary(Bytes, Align); 2215 } 2216 2217 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2218 ISD::CondCode Cond, const SDLoc &dl) { 2219 EVT OpVT = N1.getValueType(); 2220 2221 // These setcc operations always fold. 2222 switch (Cond) { 2223 default: break; 2224 case ISD::SETFALSE: 2225 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2226 case ISD::SETTRUE: 2227 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2228 2229 case ISD::SETOEQ: 2230 case ISD::SETOGT: 2231 case ISD::SETOGE: 2232 case ISD::SETOLT: 2233 case ISD::SETOLE: 2234 case ISD::SETONE: 2235 case ISD::SETO: 2236 case ISD::SETUO: 2237 case ISD::SETUEQ: 2238 case ISD::SETUNE: 2239 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2240 break; 2241 } 2242 2243 if (OpVT.isInteger()) { 2244 // For EQ and NE, we can always pick a value for the undef to make the 2245 // predicate pass or fail, so we can return undef. 2246 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2247 // icmp eq/ne X, undef -> undef. 2248 if ((N1.isUndef() || N2.isUndef()) && 2249 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2250 return getUNDEF(VT); 2251 2252 // If both operands are undef, we can return undef for int comparison. 2253 // icmp undef, undef -> undef. 2254 if (N1.isUndef() && N2.isUndef()) 2255 return getUNDEF(VT); 2256 2257 // icmp X, X -> true/false 2258 // icmp X, undef -> true/false because undef could be X. 2259 if (N1 == N2) 2260 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2261 } 2262 2263 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2264 const APInt &C2 = N2C->getAPIntValue(); 2265 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2266 const APInt &C1 = N1C->getAPIntValue(); 2267 2268 switch (Cond) { 2269 default: llvm_unreachable("Unknown integer setcc!"); 2270 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2271 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2272 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2273 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2274 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2275 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2276 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2277 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2278 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2279 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2280 } 2281 } 2282 } 2283 2284 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2285 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2286 2287 if (N1CFP && N2CFP) { 2288 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2289 switch (Cond) { 2290 default: break; 2291 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2292 return getUNDEF(VT); 2293 LLVM_FALLTHROUGH; 2294 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2295 OpVT); 2296 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2297 return getUNDEF(VT); 2298 LLVM_FALLTHROUGH; 2299 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2300 R==APFloat::cmpLessThan, dl, VT, 2301 OpVT); 2302 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2303 return getUNDEF(VT); 2304 LLVM_FALLTHROUGH; 2305 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2306 OpVT); 2307 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2308 return getUNDEF(VT); 2309 LLVM_FALLTHROUGH; 2310 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2311 VT, OpVT); 2312 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2313 return getUNDEF(VT); 2314 LLVM_FALLTHROUGH; 2315 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2316 R==APFloat::cmpEqual, dl, VT, 2317 OpVT); 2318 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2319 return getUNDEF(VT); 2320 LLVM_FALLTHROUGH; 2321 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2322 R==APFloat::cmpEqual, dl, VT, OpVT); 2323 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2324 OpVT); 2325 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2326 OpVT); 2327 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2328 R==APFloat::cmpEqual, dl, VT, 2329 OpVT); 2330 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2331 OpVT); 2332 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2333 R==APFloat::cmpLessThan, dl, VT, 2334 OpVT); 2335 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2336 R==APFloat::cmpUnordered, dl, VT, 2337 OpVT); 2338 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2339 VT, OpVT); 2340 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2341 OpVT); 2342 } 2343 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2344 // Ensure that the constant occurs on the RHS. 2345 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2346 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2347 return SDValue(); 2348 return getSetCC(dl, VT, N2, N1, SwappedCond); 2349 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2350 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2351 // If an operand is known to be a nan (or undef that could be a nan), we can 2352 // fold it. 2353 // Choosing NaN for the undef will always make unordered comparison succeed 2354 // and ordered comparison fails. 2355 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2356 switch (ISD::getUnorderedFlavor(Cond)) { 2357 default: 2358 llvm_unreachable("Unknown flavor!"); 2359 case 0: // Known false. 2360 return getBoolConstant(false, dl, VT, OpVT); 2361 case 1: // Known true. 2362 return getBoolConstant(true, dl, VT, OpVT); 2363 case 2: // Undefined. 2364 return getUNDEF(VT); 2365 } 2366 } 2367 2368 // Could not fold it. 2369 return SDValue(); 2370 } 2371 2372 /// See if the specified operand can be simplified with the knowledge that only 2373 /// the bits specified by DemandedBits are used. 2374 /// TODO: really we should be making this into the DAG equivalent of 2375 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2376 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2377 EVT VT = V.getValueType(); 2378 2379 if (VT.isScalableVector()) 2380 return SDValue(); 2381 2382 APInt DemandedElts = VT.isVector() 2383 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2384 : APInt(1, 1); 2385 return GetDemandedBits(V, DemandedBits, DemandedElts); 2386 } 2387 2388 /// See if the specified operand can be simplified with the knowledge that only 2389 /// the bits specified by DemandedBits are used in the elements specified by 2390 /// DemandedElts. 2391 /// TODO: really we should be making this into the DAG equivalent of 2392 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2393 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2394 const APInt &DemandedElts) { 2395 switch (V.getOpcode()) { 2396 default: 2397 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2398 *this, 0); 2399 case ISD::Constant: { 2400 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2401 APInt NewVal = CVal & DemandedBits; 2402 if (NewVal != CVal) 2403 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2404 break; 2405 } 2406 case ISD::SRL: 2407 // Only look at single-use SRLs. 2408 if (!V.getNode()->hasOneUse()) 2409 break; 2410 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2411 // See if we can recursively simplify the LHS. 2412 unsigned Amt = RHSC->getZExtValue(); 2413 2414 // Watch out for shift count overflow though. 2415 if (Amt >= DemandedBits.getBitWidth()) 2416 break; 2417 APInt SrcDemandedBits = DemandedBits << Amt; 2418 if (SDValue SimplifyLHS = 2419 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2420 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2421 V.getOperand(1)); 2422 } 2423 break; 2424 } 2425 return SDValue(); 2426 } 2427 2428 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2429 /// use this predicate to simplify operations downstream. 2430 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2431 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2432 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2433 } 2434 2435 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2436 /// this predicate to simplify operations downstream. Mask is known to be zero 2437 /// for bits that V cannot have. 2438 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2439 unsigned Depth) const { 2440 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2441 } 2442 2443 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2444 /// DemandedElts. We use this predicate to simplify operations downstream. 2445 /// Mask is known to be zero for bits that V cannot have. 2446 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2447 const APInt &DemandedElts, 2448 unsigned Depth) const { 2449 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2450 } 2451 2452 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2453 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2454 unsigned Depth) const { 2455 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2456 } 2457 2458 /// isSplatValue - Return true if the vector V has the same value 2459 /// across all DemandedElts. For scalable vectors it does not make 2460 /// sense to specify which elements are demanded or undefined, therefore 2461 /// they are simply ignored. 2462 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2463 APInt &UndefElts, unsigned Depth) { 2464 EVT VT = V.getValueType(); 2465 assert(VT.isVector() && "Vector type expected"); 2466 2467 if (!VT.isScalableVector() && !DemandedElts) 2468 return false; // No demanded elts, better to assume we don't know anything. 2469 2470 if (Depth >= MaxRecursionDepth) 2471 return false; // Limit search depth. 2472 2473 // Deal with some common cases here that work for both fixed and scalable 2474 // vector types. 2475 switch (V.getOpcode()) { 2476 case ISD::SPLAT_VECTOR: 2477 UndefElts = V.getOperand(0).isUndef() 2478 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2479 : APInt(DemandedElts.getBitWidth(), 0); 2480 return true; 2481 case ISD::ADD: 2482 case ISD::SUB: 2483 case ISD::AND: 2484 case ISD::XOR: 2485 case ISD::OR: { 2486 APInt UndefLHS, UndefRHS; 2487 SDValue LHS = V.getOperand(0); 2488 SDValue RHS = V.getOperand(1); 2489 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2490 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2491 UndefElts = UndefLHS | UndefRHS; 2492 return true; 2493 } 2494 return false; 2495 } 2496 case ISD::ABS: 2497 case ISD::TRUNCATE: 2498 case ISD::SIGN_EXTEND: 2499 case ISD::ZERO_EXTEND: 2500 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2501 } 2502 2503 // We don't support other cases than those above for scalable vectors at 2504 // the moment. 2505 if (VT.isScalableVector()) 2506 return false; 2507 2508 unsigned NumElts = VT.getVectorNumElements(); 2509 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2510 UndefElts = APInt::getNullValue(NumElts); 2511 2512 switch (V.getOpcode()) { 2513 case ISD::BUILD_VECTOR: { 2514 SDValue Scl; 2515 for (unsigned i = 0; i != NumElts; ++i) { 2516 SDValue Op = V.getOperand(i); 2517 if (Op.isUndef()) { 2518 UndefElts.setBit(i); 2519 continue; 2520 } 2521 if (!DemandedElts[i]) 2522 continue; 2523 if (Scl && Scl != Op) 2524 return false; 2525 Scl = Op; 2526 } 2527 return true; 2528 } 2529 case ISD::VECTOR_SHUFFLE: { 2530 // Check if this is a shuffle node doing a splat. 2531 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2532 int SplatIndex = -1; 2533 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2534 for (int i = 0; i != (int)NumElts; ++i) { 2535 int M = Mask[i]; 2536 if (M < 0) { 2537 UndefElts.setBit(i); 2538 continue; 2539 } 2540 if (!DemandedElts[i]) 2541 continue; 2542 if (0 <= SplatIndex && SplatIndex != M) 2543 return false; 2544 SplatIndex = M; 2545 } 2546 return true; 2547 } 2548 case ISD::EXTRACT_SUBVECTOR: { 2549 // Offset the demanded elts by the subvector index. 2550 SDValue Src = V.getOperand(0); 2551 // We don't support scalable vectors at the moment. 2552 if (Src.getValueType().isScalableVector()) 2553 return false; 2554 uint64_t Idx = V.getConstantOperandVal(1); 2555 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2556 APInt UndefSrcElts; 2557 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2558 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2559 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2560 return true; 2561 } 2562 break; 2563 } 2564 } 2565 2566 return false; 2567 } 2568 2569 /// Helper wrapper to main isSplatValue function. 2570 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2571 EVT VT = V.getValueType(); 2572 assert(VT.isVector() && "Vector type expected"); 2573 2574 APInt UndefElts; 2575 APInt DemandedElts; 2576 2577 // For now we don't support this with scalable vectors. 2578 if (!VT.isScalableVector()) 2579 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2580 return isSplatValue(V, DemandedElts, UndefElts) && 2581 (AllowUndefs || !UndefElts); 2582 } 2583 2584 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2585 V = peekThroughExtractSubvectors(V); 2586 2587 EVT VT = V.getValueType(); 2588 unsigned Opcode = V.getOpcode(); 2589 switch (Opcode) { 2590 default: { 2591 APInt UndefElts; 2592 APInt DemandedElts; 2593 2594 if (!VT.isScalableVector()) 2595 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2596 2597 if (isSplatValue(V, DemandedElts, UndefElts)) { 2598 if (VT.isScalableVector()) { 2599 // DemandedElts and UndefElts are ignored for scalable vectors, since 2600 // the only supported cases are SPLAT_VECTOR nodes. 2601 SplatIdx = 0; 2602 } else { 2603 // Handle case where all demanded elements are UNDEF. 2604 if (DemandedElts.isSubsetOf(UndefElts)) { 2605 SplatIdx = 0; 2606 return getUNDEF(VT); 2607 } 2608 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2609 } 2610 return V; 2611 } 2612 break; 2613 } 2614 case ISD::SPLAT_VECTOR: 2615 SplatIdx = 0; 2616 return V; 2617 case ISD::VECTOR_SHUFFLE: { 2618 if (VT.isScalableVector()) 2619 return SDValue(); 2620 2621 // Check if this is a shuffle node doing a splat. 2622 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2623 // getTargetVShiftNode currently struggles without the splat source. 2624 auto *SVN = cast<ShuffleVectorSDNode>(V); 2625 if (!SVN->isSplat()) 2626 break; 2627 int Idx = SVN->getSplatIndex(); 2628 int NumElts = V.getValueType().getVectorNumElements(); 2629 SplatIdx = Idx % NumElts; 2630 return V.getOperand(Idx / NumElts); 2631 } 2632 } 2633 2634 return SDValue(); 2635 } 2636 2637 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2638 int SplatIdx; 2639 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2640 EVT SVT = SrcVector.getValueType().getScalarType(); 2641 EVT LegalSVT = SVT; 2642 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2643 if (!SVT.isInteger()) 2644 return SDValue(); 2645 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2646 if (LegalSVT.bitsLT(SVT)) 2647 return SDValue(); 2648 } 2649 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2650 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2651 } 2652 return SDValue(); 2653 } 2654 2655 const APInt * 2656 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2657 const APInt &DemandedElts) const { 2658 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2659 V.getOpcode() == ISD::SRA) && 2660 "Unknown shift node"); 2661 unsigned BitWidth = V.getScalarValueSizeInBits(); 2662 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2663 // Shifting more than the bitwidth is not valid. 2664 const APInt &ShAmt = SA->getAPIntValue(); 2665 if (ShAmt.ult(BitWidth)) 2666 return &ShAmt; 2667 } 2668 return nullptr; 2669 } 2670 2671 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2672 SDValue V, const APInt &DemandedElts) const { 2673 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2674 V.getOpcode() == ISD::SRA) && 2675 "Unknown shift node"); 2676 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2677 return ValidAmt; 2678 unsigned BitWidth = V.getScalarValueSizeInBits(); 2679 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2680 if (!BV) 2681 return nullptr; 2682 const APInt *MinShAmt = nullptr; 2683 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2684 if (!DemandedElts[i]) 2685 continue; 2686 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2687 if (!SA) 2688 return nullptr; 2689 // Shifting more than the bitwidth is not valid. 2690 const APInt &ShAmt = SA->getAPIntValue(); 2691 if (ShAmt.uge(BitWidth)) 2692 return nullptr; 2693 if (MinShAmt && MinShAmt->ule(ShAmt)) 2694 continue; 2695 MinShAmt = &ShAmt; 2696 } 2697 return MinShAmt; 2698 } 2699 2700 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2701 SDValue V, const APInt &DemandedElts) const { 2702 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2703 V.getOpcode() == ISD::SRA) && 2704 "Unknown shift node"); 2705 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2706 return ValidAmt; 2707 unsigned BitWidth = V.getScalarValueSizeInBits(); 2708 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2709 if (!BV) 2710 return nullptr; 2711 const APInt *MaxShAmt = nullptr; 2712 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2713 if (!DemandedElts[i]) 2714 continue; 2715 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2716 if (!SA) 2717 return nullptr; 2718 // Shifting more than the bitwidth is not valid. 2719 const APInt &ShAmt = SA->getAPIntValue(); 2720 if (ShAmt.uge(BitWidth)) 2721 return nullptr; 2722 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2723 continue; 2724 MaxShAmt = &ShAmt; 2725 } 2726 return MaxShAmt; 2727 } 2728 2729 /// Determine which bits of Op are known to be either zero or one and return 2730 /// them in Known. For vectors, the known bits are those that are shared by 2731 /// every vector element. 2732 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2733 EVT VT = Op.getValueType(); 2734 2735 // TOOD: Until we have a plan for how to represent demanded elements for 2736 // scalable vectors, we can just bail out for now. 2737 if (Op.getValueType().isScalableVector()) { 2738 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2739 return KnownBits(BitWidth); 2740 } 2741 2742 APInt DemandedElts = VT.isVector() 2743 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2744 : APInt(1, 1); 2745 return computeKnownBits(Op, DemandedElts, Depth); 2746 } 2747 2748 /// Determine which bits of Op are known to be either zero or one and return 2749 /// them in Known. The DemandedElts argument allows us to only collect the known 2750 /// bits that are shared by the requested vector elements. 2751 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2752 unsigned Depth) const { 2753 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2754 2755 KnownBits Known(BitWidth); // Don't know anything. 2756 2757 // TOOD: Until we have a plan for how to represent demanded elements for 2758 // scalable vectors, we can just bail out for now. 2759 if (Op.getValueType().isScalableVector()) 2760 return Known; 2761 2762 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2763 // We know all of the bits for a constant! 2764 return KnownBits::makeConstant(C->getAPIntValue()); 2765 } 2766 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2767 // We know all of the bits for a constant fp! 2768 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2769 } 2770 2771 if (Depth >= MaxRecursionDepth) 2772 return Known; // Limit search depth. 2773 2774 KnownBits Known2; 2775 unsigned NumElts = DemandedElts.getBitWidth(); 2776 assert((!Op.getValueType().isVector() || 2777 NumElts == Op.getValueType().getVectorNumElements()) && 2778 "Unexpected vector size"); 2779 2780 if (!DemandedElts) 2781 return Known; // No demanded elts, better to assume we don't know anything. 2782 2783 unsigned Opcode = Op.getOpcode(); 2784 switch (Opcode) { 2785 case ISD::BUILD_VECTOR: 2786 // Collect the known bits that are shared by every demanded vector element. 2787 Known.Zero.setAllBits(); Known.One.setAllBits(); 2788 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2789 if (!DemandedElts[i]) 2790 continue; 2791 2792 SDValue SrcOp = Op.getOperand(i); 2793 Known2 = computeKnownBits(SrcOp, Depth + 1); 2794 2795 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2796 if (SrcOp.getValueSizeInBits() != BitWidth) { 2797 assert(SrcOp.getValueSizeInBits() > BitWidth && 2798 "Expected BUILD_VECTOR implicit truncation"); 2799 Known2 = Known2.trunc(BitWidth); 2800 } 2801 2802 // Known bits are the values that are shared by every demanded element. 2803 Known = KnownBits::commonBits(Known, Known2); 2804 2805 // If we don't know any bits, early out. 2806 if (Known.isUnknown()) 2807 break; 2808 } 2809 break; 2810 case ISD::VECTOR_SHUFFLE: { 2811 // Collect the known bits that are shared by every vector element referenced 2812 // by the shuffle. 2813 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2814 Known.Zero.setAllBits(); Known.One.setAllBits(); 2815 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2816 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2817 for (unsigned i = 0; i != NumElts; ++i) { 2818 if (!DemandedElts[i]) 2819 continue; 2820 2821 int M = SVN->getMaskElt(i); 2822 if (M < 0) { 2823 // For UNDEF elements, we don't know anything about the common state of 2824 // the shuffle result. 2825 Known.resetAll(); 2826 DemandedLHS.clearAllBits(); 2827 DemandedRHS.clearAllBits(); 2828 break; 2829 } 2830 2831 if ((unsigned)M < NumElts) 2832 DemandedLHS.setBit((unsigned)M % NumElts); 2833 else 2834 DemandedRHS.setBit((unsigned)M % NumElts); 2835 } 2836 // Known bits are the values that are shared by every demanded element. 2837 if (!!DemandedLHS) { 2838 SDValue LHS = Op.getOperand(0); 2839 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2840 Known = KnownBits::commonBits(Known, Known2); 2841 } 2842 // If we don't know any bits, early out. 2843 if (Known.isUnknown()) 2844 break; 2845 if (!!DemandedRHS) { 2846 SDValue RHS = Op.getOperand(1); 2847 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2848 Known = KnownBits::commonBits(Known, Known2); 2849 } 2850 break; 2851 } 2852 case ISD::CONCAT_VECTORS: { 2853 // Split DemandedElts and test each of the demanded subvectors. 2854 Known.Zero.setAllBits(); Known.One.setAllBits(); 2855 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2856 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2857 unsigned NumSubVectors = Op.getNumOperands(); 2858 for (unsigned i = 0; i != NumSubVectors; ++i) { 2859 APInt DemandedSub = 2860 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2861 if (!!DemandedSub) { 2862 SDValue Sub = Op.getOperand(i); 2863 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2864 Known = KnownBits::commonBits(Known, Known2); 2865 } 2866 // If we don't know any bits, early out. 2867 if (Known.isUnknown()) 2868 break; 2869 } 2870 break; 2871 } 2872 case ISD::INSERT_SUBVECTOR: { 2873 // Demand any elements from the subvector and the remainder from the src its 2874 // inserted into. 2875 SDValue Src = Op.getOperand(0); 2876 SDValue Sub = Op.getOperand(1); 2877 uint64_t Idx = Op.getConstantOperandVal(2); 2878 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2879 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2880 APInt DemandedSrcElts = DemandedElts; 2881 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2882 2883 Known.One.setAllBits(); 2884 Known.Zero.setAllBits(); 2885 if (!!DemandedSubElts) { 2886 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2887 if (Known.isUnknown()) 2888 break; // early-out. 2889 } 2890 if (!!DemandedSrcElts) { 2891 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2892 Known = KnownBits::commonBits(Known, Known2); 2893 } 2894 break; 2895 } 2896 case ISD::EXTRACT_SUBVECTOR: { 2897 // Offset the demanded elts by the subvector index. 2898 SDValue Src = Op.getOperand(0); 2899 // Bail until we can represent demanded elements for scalable vectors. 2900 if (Src.getValueType().isScalableVector()) 2901 break; 2902 uint64_t Idx = Op.getConstantOperandVal(1); 2903 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2904 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2905 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2906 break; 2907 } 2908 case ISD::SCALAR_TO_VECTOR: { 2909 // We know about scalar_to_vector as much as we know about it source, 2910 // which becomes the first element of otherwise unknown vector. 2911 if (DemandedElts != 1) 2912 break; 2913 2914 SDValue N0 = Op.getOperand(0); 2915 Known = computeKnownBits(N0, Depth + 1); 2916 if (N0.getValueSizeInBits() != BitWidth) 2917 Known = Known.trunc(BitWidth); 2918 2919 break; 2920 } 2921 case ISD::BITCAST: { 2922 SDValue N0 = Op.getOperand(0); 2923 EVT SubVT = N0.getValueType(); 2924 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2925 2926 // Ignore bitcasts from unsupported types. 2927 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2928 break; 2929 2930 // Fast handling of 'identity' bitcasts. 2931 if (BitWidth == SubBitWidth) { 2932 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2933 break; 2934 } 2935 2936 bool IsLE = getDataLayout().isLittleEndian(); 2937 2938 // Bitcast 'small element' vector to 'large element' scalar/vector. 2939 if ((BitWidth % SubBitWidth) == 0) { 2940 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2941 2942 // Collect known bits for the (larger) output by collecting the known 2943 // bits from each set of sub elements and shift these into place. 2944 // We need to separately call computeKnownBits for each set of 2945 // sub elements as the knownbits for each is likely to be different. 2946 unsigned SubScale = BitWidth / SubBitWidth; 2947 APInt SubDemandedElts(NumElts * SubScale, 0); 2948 for (unsigned i = 0; i != NumElts; ++i) 2949 if (DemandedElts[i]) 2950 SubDemandedElts.setBit(i * SubScale); 2951 2952 for (unsigned i = 0; i != SubScale; ++i) { 2953 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2954 Depth + 1); 2955 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2956 Known.insertBits(Known2, SubBitWidth * Shifts); 2957 } 2958 } 2959 2960 // Bitcast 'large element' scalar/vector to 'small element' vector. 2961 if ((SubBitWidth % BitWidth) == 0) { 2962 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2963 2964 // Collect known bits for the (smaller) output by collecting the known 2965 // bits from the overlapping larger input elements and extracting the 2966 // sub sections we actually care about. 2967 unsigned SubScale = SubBitWidth / BitWidth; 2968 APInt SubDemandedElts(NumElts / SubScale, 0); 2969 for (unsigned i = 0; i != NumElts; ++i) 2970 if (DemandedElts[i]) 2971 SubDemandedElts.setBit(i / SubScale); 2972 2973 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2974 2975 Known.Zero.setAllBits(); Known.One.setAllBits(); 2976 for (unsigned i = 0; i != NumElts; ++i) 2977 if (DemandedElts[i]) { 2978 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2979 unsigned Offset = (Shifts % SubScale) * BitWidth; 2980 Known = KnownBits::commonBits(Known, 2981 Known2.extractBits(BitWidth, Offset)); 2982 // If we don't know any bits, early out. 2983 if (Known.isUnknown()) 2984 break; 2985 } 2986 } 2987 break; 2988 } 2989 case ISD::AND: 2990 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2991 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2992 2993 Known &= Known2; 2994 break; 2995 case ISD::OR: 2996 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2997 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2998 2999 Known |= Known2; 3000 break; 3001 case ISD::XOR: 3002 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3003 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3004 3005 Known ^= Known2; 3006 break; 3007 case ISD::MUL: { 3008 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3009 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known = KnownBits::mul(Known, Known2); 3011 break; 3012 } 3013 case ISD::MULHU: { 3014 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3015 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3016 Known = KnownBits::mulhu(Known, Known2); 3017 break; 3018 } 3019 case ISD::MULHS: { 3020 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3021 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3022 Known = KnownBits::mulhs(Known, Known2); 3023 break; 3024 } 3025 case ISD::UMUL_LOHI: { 3026 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3027 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3028 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3029 if (Op.getResNo() == 0) 3030 Known = KnownBits::mul(Known, Known2); 3031 else 3032 Known = KnownBits::mulhu(Known, Known2); 3033 break; 3034 } 3035 case ISD::SMUL_LOHI: { 3036 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3037 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3038 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 if (Op.getResNo() == 0) 3040 Known = KnownBits::mul(Known, Known2); 3041 else 3042 Known = KnownBits::mulhs(Known, Known2); 3043 break; 3044 } 3045 case ISD::UDIV: { 3046 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3047 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3048 Known = KnownBits::udiv(Known, Known2); 3049 break; 3050 } 3051 case ISD::SELECT: 3052 case ISD::VSELECT: 3053 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3054 // If we don't know any bits, early out. 3055 if (Known.isUnknown()) 3056 break; 3057 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3058 3059 // Only known if known in both the LHS and RHS. 3060 Known = KnownBits::commonBits(Known, Known2); 3061 break; 3062 case ISD::SELECT_CC: 3063 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3064 // If we don't know any bits, early out. 3065 if (Known.isUnknown()) 3066 break; 3067 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3068 3069 // Only known if known in both the LHS and RHS. 3070 Known = KnownBits::commonBits(Known, Known2); 3071 break; 3072 case ISD::SMULO: 3073 case ISD::UMULO: 3074 if (Op.getResNo() != 1) 3075 break; 3076 // The boolean result conforms to getBooleanContents. 3077 // If we know the result of a setcc has the top bits zero, use this info. 3078 // We know that we have an integer-based boolean since these operations 3079 // are only available for integer. 3080 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3081 TargetLowering::ZeroOrOneBooleanContent && 3082 BitWidth > 1) 3083 Known.Zero.setBitsFrom(1); 3084 break; 3085 case ISD::SETCC: 3086 case ISD::STRICT_FSETCC: 3087 case ISD::STRICT_FSETCCS: { 3088 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3089 // If we know the result of a setcc has the top bits zero, use this info. 3090 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3091 TargetLowering::ZeroOrOneBooleanContent && 3092 BitWidth > 1) 3093 Known.Zero.setBitsFrom(1); 3094 break; 3095 } 3096 case ISD::SHL: 3097 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3098 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3099 Known = KnownBits::shl(Known, Known2); 3100 3101 // Minimum shift low bits are known zero. 3102 if (const APInt *ShMinAmt = 3103 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3104 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3105 break; 3106 case ISD::SRL: 3107 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3108 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3109 Known = KnownBits::lshr(Known, Known2); 3110 3111 // Minimum shift high bits are known zero. 3112 if (const APInt *ShMinAmt = 3113 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3114 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3115 break; 3116 case ISD::SRA: 3117 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3118 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3119 Known = KnownBits::ashr(Known, Known2); 3120 // TODO: Add minimum shift high known sign bits. 3121 break; 3122 case ISD::FSHL: 3123 case ISD::FSHR: 3124 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3125 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3126 3127 // For fshl, 0-shift returns the 1st arg. 3128 // For fshr, 0-shift returns the 2nd arg. 3129 if (Amt == 0) { 3130 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3131 DemandedElts, Depth + 1); 3132 break; 3133 } 3134 3135 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3136 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3137 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3138 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3139 if (Opcode == ISD::FSHL) { 3140 Known.One <<= Amt; 3141 Known.Zero <<= Amt; 3142 Known2.One.lshrInPlace(BitWidth - Amt); 3143 Known2.Zero.lshrInPlace(BitWidth - Amt); 3144 } else { 3145 Known.One <<= BitWidth - Amt; 3146 Known.Zero <<= BitWidth - Amt; 3147 Known2.One.lshrInPlace(Amt); 3148 Known2.Zero.lshrInPlace(Amt); 3149 } 3150 Known.One |= Known2.One; 3151 Known.Zero |= Known2.Zero; 3152 } 3153 break; 3154 case ISD::SIGN_EXTEND_INREG: { 3155 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3156 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3157 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3158 break; 3159 } 3160 case ISD::CTTZ: 3161 case ISD::CTTZ_ZERO_UNDEF: { 3162 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3163 // If we have a known 1, its position is our upper bound. 3164 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3165 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3166 Known.Zero.setBitsFrom(LowBits); 3167 break; 3168 } 3169 case ISD::CTLZ: 3170 case ISD::CTLZ_ZERO_UNDEF: { 3171 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 // If we have a known 1, its position is our upper bound. 3173 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3174 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3175 Known.Zero.setBitsFrom(LowBits); 3176 break; 3177 } 3178 case ISD::CTPOP: { 3179 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3180 // If we know some of the bits are zero, they can't be one. 3181 unsigned PossibleOnes = Known2.countMaxPopulation(); 3182 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3183 break; 3184 } 3185 case ISD::PARITY: { 3186 // Parity returns 0 everywhere but the LSB. 3187 Known.Zero.setBitsFrom(1); 3188 break; 3189 } 3190 case ISD::LOAD: { 3191 LoadSDNode *LD = cast<LoadSDNode>(Op); 3192 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3193 if (ISD::isNON_EXTLoad(LD) && Cst) { 3194 // Determine any common known bits from the loaded constant pool value. 3195 Type *CstTy = Cst->getType(); 3196 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3197 // If its a vector splat, then we can (quickly) reuse the scalar path. 3198 // NOTE: We assume all elements match and none are UNDEF. 3199 if (CstTy->isVectorTy()) { 3200 if (const Constant *Splat = Cst->getSplatValue()) { 3201 Cst = Splat; 3202 CstTy = Cst->getType(); 3203 } 3204 } 3205 // TODO - do we need to handle different bitwidths? 3206 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3207 // Iterate across all vector elements finding common known bits. 3208 Known.One.setAllBits(); 3209 Known.Zero.setAllBits(); 3210 for (unsigned i = 0; i != NumElts; ++i) { 3211 if (!DemandedElts[i]) 3212 continue; 3213 if (Constant *Elt = Cst->getAggregateElement(i)) { 3214 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3215 const APInt &Value = CInt->getValue(); 3216 Known.One &= Value; 3217 Known.Zero &= ~Value; 3218 continue; 3219 } 3220 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3221 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3222 Known.One &= Value; 3223 Known.Zero &= ~Value; 3224 continue; 3225 } 3226 } 3227 Known.One.clearAllBits(); 3228 Known.Zero.clearAllBits(); 3229 break; 3230 } 3231 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3232 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3233 Known = KnownBits::makeConstant(CInt->getValue()); 3234 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3235 Known = 3236 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3237 } 3238 } 3239 } 3240 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3241 // If this is a ZEXTLoad and we are looking at the loaded value. 3242 EVT VT = LD->getMemoryVT(); 3243 unsigned MemBits = VT.getScalarSizeInBits(); 3244 Known.Zero.setBitsFrom(MemBits); 3245 } else if (const MDNode *Ranges = LD->getRanges()) { 3246 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3247 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3248 } 3249 break; 3250 } 3251 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3252 EVT InVT = Op.getOperand(0).getValueType(); 3253 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3254 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3255 Known = Known.zext(BitWidth); 3256 break; 3257 } 3258 case ISD::ZERO_EXTEND: { 3259 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3260 Known = Known.zext(BitWidth); 3261 break; 3262 } 3263 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3264 EVT InVT = Op.getOperand(0).getValueType(); 3265 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3266 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3267 // If the sign bit is known to be zero or one, then sext will extend 3268 // it to the top bits, else it will just zext. 3269 Known = Known.sext(BitWidth); 3270 break; 3271 } 3272 case ISD::SIGN_EXTEND: { 3273 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3274 // If the sign bit is known to be zero or one, then sext will extend 3275 // it to the top bits, else it will just zext. 3276 Known = Known.sext(BitWidth); 3277 break; 3278 } 3279 case ISD::ANY_EXTEND_VECTOR_INREG: { 3280 EVT InVT = Op.getOperand(0).getValueType(); 3281 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3282 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3283 Known = Known.anyext(BitWidth); 3284 break; 3285 } 3286 case ISD::ANY_EXTEND: { 3287 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3288 Known = Known.anyext(BitWidth); 3289 break; 3290 } 3291 case ISD::TRUNCATE: { 3292 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3293 Known = Known.trunc(BitWidth); 3294 break; 3295 } 3296 case ISD::AssertZext: { 3297 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3298 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3299 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3300 Known.Zero |= (~InMask); 3301 Known.One &= (~Known.Zero); 3302 break; 3303 } 3304 case ISD::AssertAlign: { 3305 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3306 assert(LogOfAlign != 0); 3307 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3308 // well as clearing one bits. 3309 Known.Zero.setLowBits(LogOfAlign); 3310 Known.One.clearLowBits(LogOfAlign); 3311 break; 3312 } 3313 case ISD::FGETSIGN: 3314 // All bits are zero except the low bit. 3315 Known.Zero.setBitsFrom(1); 3316 break; 3317 case ISD::USUBO: 3318 case ISD::SSUBO: 3319 if (Op.getResNo() == 1) { 3320 // If we know the result of a setcc has the top bits zero, use this info. 3321 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3322 TargetLowering::ZeroOrOneBooleanContent && 3323 BitWidth > 1) 3324 Known.Zero.setBitsFrom(1); 3325 break; 3326 } 3327 LLVM_FALLTHROUGH; 3328 case ISD::SUB: 3329 case ISD::SUBC: { 3330 assert(Op.getResNo() == 0 && 3331 "We only compute knownbits for the difference here."); 3332 3333 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3334 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3335 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3336 Known, Known2); 3337 break; 3338 } 3339 case ISD::UADDO: 3340 case ISD::SADDO: 3341 case ISD::ADDCARRY: 3342 if (Op.getResNo() == 1) { 3343 // If we know the result of a setcc has the top bits zero, use this info. 3344 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3345 TargetLowering::ZeroOrOneBooleanContent && 3346 BitWidth > 1) 3347 Known.Zero.setBitsFrom(1); 3348 break; 3349 } 3350 LLVM_FALLTHROUGH; 3351 case ISD::ADD: 3352 case ISD::ADDC: 3353 case ISD::ADDE: { 3354 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3355 3356 // With ADDE and ADDCARRY, a carry bit may be added in. 3357 KnownBits Carry(1); 3358 if (Opcode == ISD::ADDE) 3359 // Can't track carry from glue, set carry to unknown. 3360 Carry.resetAll(); 3361 else if (Opcode == ISD::ADDCARRY) 3362 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3363 // the trouble (how often will we find a known carry bit). And I haven't 3364 // tested this very much yet, but something like this might work: 3365 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3366 // Carry = Carry.zextOrTrunc(1, false); 3367 Carry.resetAll(); 3368 else 3369 Carry.setAllZero(); 3370 3371 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3372 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3373 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3374 break; 3375 } 3376 case ISD::SREM: { 3377 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3378 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3379 Known = KnownBits::srem(Known, Known2); 3380 break; 3381 } 3382 case ISD::UREM: { 3383 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3384 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3385 Known = KnownBits::urem(Known, Known2); 3386 break; 3387 } 3388 case ISD::EXTRACT_ELEMENT: { 3389 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3390 const unsigned Index = Op.getConstantOperandVal(1); 3391 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3392 3393 // Remove low part of known bits mask 3394 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3395 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3396 3397 // Remove high part of known bit mask 3398 Known = Known.trunc(EltBitWidth); 3399 break; 3400 } 3401 case ISD::EXTRACT_VECTOR_ELT: { 3402 SDValue InVec = Op.getOperand(0); 3403 SDValue EltNo = Op.getOperand(1); 3404 EVT VecVT = InVec.getValueType(); 3405 // computeKnownBits not yet implemented for scalable vectors. 3406 if (VecVT.isScalableVector()) 3407 break; 3408 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3409 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3410 3411 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3412 // anything about the extended bits. 3413 if (BitWidth > EltBitWidth) 3414 Known = Known.trunc(EltBitWidth); 3415 3416 // If we know the element index, just demand that vector element, else for 3417 // an unknown element index, ignore DemandedElts and demand them all. 3418 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3419 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3420 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3421 DemandedSrcElts = 3422 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3423 3424 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3425 if (BitWidth > EltBitWidth) 3426 Known = Known.anyext(BitWidth); 3427 break; 3428 } 3429 case ISD::INSERT_VECTOR_ELT: { 3430 // If we know the element index, split the demand between the 3431 // source vector and the inserted element, otherwise assume we need 3432 // the original demanded vector elements and the value. 3433 SDValue InVec = Op.getOperand(0); 3434 SDValue InVal = Op.getOperand(1); 3435 SDValue EltNo = Op.getOperand(2); 3436 bool DemandedVal = true; 3437 APInt DemandedVecElts = DemandedElts; 3438 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3439 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3440 unsigned EltIdx = CEltNo->getZExtValue(); 3441 DemandedVal = !!DemandedElts[EltIdx]; 3442 DemandedVecElts.clearBit(EltIdx); 3443 } 3444 Known.One.setAllBits(); 3445 Known.Zero.setAllBits(); 3446 if (DemandedVal) { 3447 Known2 = computeKnownBits(InVal, Depth + 1); 3448 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3449 } 3450 if (!!DemandedVecElts) { 3451 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3452 Known = KnownBits::commonBits(Known, Known2); 3453 } 3454 break; 3455 } 3456 case ISD::BITREVERSE: { 3457 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3458 Known = Known2.reverseBits(); 3459 break; 3460 } 3461 case ISD::BSWAP: { 3462 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3463 Known = Known2.byteSwap(); 3464 break; 3465 } 3466 case ISD::ABS: { 3467 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3468 Known = Known2.abs(); 3469 break; 3470 } 3471 case ISD::USUBSAT: { 3472 // The result of usubsat will never be larger than the LHS. 3473 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3474 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3475 break; 3476 } 3477 case ISD::UMIN: { 3478 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3479 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3480 Known = KnownBits::umin(Known, Known2); 3481 break; 3482 } 3483 case ISD::UMAX: { 3484 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3485 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3486 Known = KnownBits::umax(Known, Known2); 3487 break; 3488 } 3489 case ISD::SMIN: 3490 case ISD::SMAX: { 3491 // If we have a clamp pattern, we know that the number of sign bits will be 3492 // the minimum of the clamp min/max range. 3493 bool IsMax = (Opcode == ISD::SMAX); 3494 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3495 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3496 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3497 CstHigh = 3498 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3499 if (CstLow && CstHigh) { 3500 if (!IsMax) 3501 std::swap(CstLow, CstHigh); 3502 3503 const APInt &ValueLow = CstLow->getAPIntValue(); 3504 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3505 if (ValueLow.sle(ValueHigh)) { 3506 unsigned LowSignBits = ValueLow.getNumSignBits(); 3507 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3508 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3509 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3510 Known.One.setHighBits(MinSignBits); 3511 break; 3512 } 3513 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3514 Known.Zero.setHighBits(MinSignBits); 3515 break; 3516 } 3517 } 3518 } 3519 3520 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3521 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3522 if (IsMax) 3523 Known = KnownBits::smax(Known, Known2); 3524 else 3525 Known = KnownBits::smin(Known, Known2); 3526 break; 3527 } 3528 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3529 if (Op.getResNo() == 1) { 3530 // The boolean result conforms to getBooleanContents. 3531 // If we know the result of a setcc has the top bits zero, use this info. 3532 // We know that we have an integer-based boolean since these operations 3533 // are only available for integer. 3534 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3535 TargetLowering::ZeroOrOneBooleanContent && 3536 BitWidth > 1) 3537 Known.Zero.setBitsFrom(1); 3538 break; 3539 } 3540 LLVM_FALLTHROUGH; 3541 case ISD::ATOMIC_CMP_SWAP: 3542 case ISD::ATOMIC_SWAP: 3543 case ISD::ATOMIC_LOAD_ADD: 3544 case ISD::ATOMIC_LOAD_SUB: 3545 case ISD::ATOMIC_LOAD_AND: 3546 case ISD::ATOMIC_LOAD_CLR: 3547 case ISD::ATOMIC_LOAD_OR: 3548 case ISD::ATOMIC_LOAD_XOR: 3549 case ISD::ATOMIC_LOAD_NAND: 3550 case ISD::ATOMIC_LOAD_MIN: 3551 case ISD::ATOMIC_LOAD_MAX: 3552 case ISD::ATOMIC_LOAD_UMIN: 3553 case ISD::ATOMIC_LOAD_UMAX: 3554 case ISD::ATOMIC_LOAD: { 3555 unsigned MemBits = 3556 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3557 // If we are looking at the loaded value. 3558 if (Op.getResNo() == 0) { 3559 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3560 Known.Zero.setBitsFrom(MemBits); 3561 } 3562 break; 3563 } 3564 case ISD::FrameIndex: 3565 case ISD::TargetFrameIndex: 3566 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3567 Known, getMachineFunction()); 3568 break; 3569 3570 default: 3571 if (Opcode < ISD::BUILTIN_OP_END) 3572 break; 3573 LLVM_FALLTHROUGH; 3574 case ISD::INTRINSIC_WO_CHAIN: 3575 case ISD::INTRINSIC_W_CHAIN: 3576 case ISD::INTRINSIC_VOID: 3577 // Allow the target to implement this method for its nodes. 3578 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3579 break; 3580 } 3581 3582 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3583 return Known; 3584 } 3585 3586 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3587 SDValue N1) const { 3588 // X + 0 never overflow 3589 if (isNullConstant(N1)) 3590 return OFK_Never; 3591 3592 KnownBits N1Known = computeKnownBits(N1); 3593 if (N1Known.Zero.getBoolValue()) { 3594 KnownBits N0Known = computeKnownBits(N0); 3595 3596 bool overflow; 3597 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3598 if (!overflow) 3599 return OFK_Never; 3600 } 3601 3602 // mulhi + 1 never overflow 3603 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3604 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3605 return OFK_Never; 3606 3607 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3608 KnownBits N0Known = computeKnownBits(N0); 3609 3610 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3611 return OFK_Never; 3612 } 3613 3614 return OFK_Sometime; 3615 } 3616 3617 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3618 EVT OpVT = Val.getValueType(); 3619 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3620 3621 // Is the constant a known power of 2? 3622 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3623 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3624 3625 // A left-shift of a constant one will have exactly one bit set because 3626 // shifting the bit off the end is undefined. 3627 if (Val.getOpcode() == ISD::SHL) { 3628 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3629 if (C && C->getAPIntValue() == 1) 3630 return true; 3631 } 3632 3633 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3634 // one bit set. 3635 if (Val.getOpcode() == ISD::SRL) { 3636 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3637 if (C && C->getAPIntValue().isSignMask()) 3638 return true; 3639 } 3640 3641 // Are all operands of a build vector constant powers of two? 3642 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3643 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3644 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3645 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3646 return false; 3647 })) 3648 return true; 3649 3650 // Is the operand of a splat vector a constant power of two? 3651 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3652 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3653 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3654 return true; 3655 3656 // More could be done here, though the above checks are enough 3657 // to handle some common cases. 3658 3659 // Fall back to computeKnownBits to catch other known cases. 3660 KnownBits Known = computeKnownBits(Val); 3661 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3662 } 3663 3664 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3665 EVT VT = Op.getValueType(); 3666 3667 // TODO: Assume we don't know anything for now. 3668 if (VT.isScalableVector()) 3669 return 1; 3670 3671 APInt DemandedElts = VT.isVector() 3672 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3673 : APInt(1, 1); 3674 return ComputeNumSignBits(Op, DemandedElts, Depth); 3675 } 3676 3677 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3678 unsigned Depth) const { 3679 EVT VT = Op.getValueType(); 3680 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3681 unsigned VTBits = VT.getScalarSizeInBits(); 3682 unsigned NumElts = DemandedElts.getBitWidth(); 3683 unsigned Tmp, Tmp2; 3684 unsigned FirstAnswer = 1; 3685 3686 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3687 const APInt &Val = C->getAPIntValue(); 3688 return Val.getNumSignBits(); 3689 } 3690 3691 if (Depth >= MaxRecursionDepth) 3692 return 1; // Limit search depth. 3693 3694 if (!DemandedElts || VT.isScalableVector()) 3695 return 1; // No demanded elts, better to assume we don't know anything. 3696 3697 unsigned Opcode = Op.getOpcode(); 3698 switch (Opcode) { 3699 default: break; 3700 case ISD::AssertSext: 3701 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3702 return VTBits-Tmp+1; 3703 case ISD::AssertZext: 3704 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3705 return VTBits-Tmp; 3706 3707 case ISD::BUILD_VECTOR: 3708 Tmp = VTBits; 3709 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3710 if (!DemandedElts[i]) 3711 continue; 3712 3713 SDValue SrcOp = Op.getOperand(i); 3714 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3715 3716 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3717 if (SrcOp.getValueSizeInBits() != VTBits) { 3718 assert(SrcOp.getValueSizeInBits() > VTBits && 3719 "Expected BUILD_VECTOR implicit truncation"); 3720 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3721 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3722 } 3723 Tmp = std::min(Tmp, Tmp2); 3724 } 3725 return Tmp; 3726 3727 case ISD::VECTOR_SHUFFLE: { 3728 // Collect the minimum number of sign bits that are shared by every vector 3729 // element referenced by the shuffle. 3730 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3731 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3732 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3733 for (unsigned i = 0; i != NumElts; ++i) { 3734 int M = SVN->getMaskElt(i); 3735 if (!DemandedElts[i]) 3736 continue; 3737 // For UNDEF elements, we don't know anything about the common state of 3738 // the shuffle result. 3739 if (M < 0) 3740 return 1; 3741 if ((unsigned)M < NumElts) 3742 DemandedLHS.setBit((unsigned)M % NumElts); 3743 else 3744 DemandedRHS.setBit((unsigned)M % NumElts); 3745 } 3746 Tmp = std::numeric_limits<unsigned>::max(); 3747 if (!!DemandedLHS) 3748 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3749 if (!!DemandedRHS) { 3750 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3751 Tmp = std::min(Tmp, Tmp2); 3752 } 3753 // If we don't know anything, early out and try computeKnownBits fall-back. 3754 if (Tmp == 1) 3755 break; 3756 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3757 return Tmp; 3758 } 3759 3760 case ISD::BITCAST: { 3761 SDValue N0 = Op.getOperand(0); 3762 EVT SrcVT = N0.getValueType(); 3763 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3764 3765 // Ignore bitcasts from unsupported types.. 3766 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3767 break; 3768 3769 // Fast handling of 'identity' bitcasts. 3770 if (VTBits == SrcBits) 3771 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3772 3773 bool IsLE = getDataLayout().isLittleEndian(); 3774 3775 // Bitcast 'large element' scalar/vector to 'small element' vector. 3776 if ((SrcBits % VTBits) == 0) { 3777 assert(VT.isVector() && "Expected bitcast to vector"); 3778 3779 unsigned Scale = SrcBits / VTBits; 3780 APInt SrcDemandedElts(NumElts / Scale, 0); 3781 for (unsigned i = 0; i != NumElts; ++i) 3782 if (DemandedElts[i]) 3783 SrcDemandedElts.setBit(i / Scale); 3784 3785 // Fast case - sign splat can be simply split across the small elements. 3786 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3787 if (Tmp == SrcBits) 3788 return VTBits; 3789 3790 // Slow case - determine how far the sign extends into each sub-element. 3791 Tmp2 = VTBits; 3792 for (unsigned i = 0; i != NumElts; ++i) 3793 if (DemandedElts[i]) { 3794 unsigned SubOffset = i % Scale; 3795 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3796 SubOffset = SubOffset * VTBits; 3797 if (Tmp <= SubOffset) 3798 return 1; 3799 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3800 } 3801 return Tmp2; 3802 } 3803 break; 3804 } 3805 3806 case ISD::SIGN_EXTEND: 3807 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3808 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3809 case ISD::SIGN_EXTEND_INREG: 3810 // Max of the input and what this extends. 3811 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3812 Tmp = VTBits-Tmp+1; 3813 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3814 return std::max(Tmp, Tmp2); 3815 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3816 SDValue Src = Op.getOperand(0); 3817 EVT SrcVT = Src.getValueType(); 3818 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3819 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3820 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3821 } 3822 case ISD::SRA: 3823 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3824 // SRA X, C -> adds C sign bits. 3825 if (const APInt *ShAmt = 3826 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3827 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3828 return Tmp; 3829 case ISD::SHL: 3830 if (const APInt *ShAmt = 3831 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3832 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3833 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3834 if (ShAmt->ult(Tmp)) 3835 return Tmp - ShAmt->getZExtValue(); 3836 } 3837 break; 3838 case ISD::AND: 3839 case ISD::OR: 3840 case ISD::XOR: // NOT is handled here. 3841 // Logical binary ops preserve the number of sign bits at the worst. 3842 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3843 if (Tmp != 1) { 3844 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3845 FirstAnswer = std::min(Tmp, Tmp2); 3846 // We computed what we know about the sign bits as our first 3847 // answer. Now proceed to the generic code that uses 3848 // computeKnownBits, and pick whichever answer is better. 3849 } 3850 break; 3851 3852 case ISD::SELECT: 3853 case ISD::VSELECT: 3854 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3855 if (Tmp == 1) return 1; // Early out. 3856 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3857 return std::min(Tmp, Tmp2); 3858 case ISD::SELECT_CC: 3859 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3860 if (Tmp == 1) return 1; // Early out. 3861 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3862 return std::min(Tmp, Tmp2); 3863 3864 case ISD::SMIN: 3865 case ISD::SMAX: { 3866 // If we have a clamp pattern, we know that the number of sign bits will be 3867 // the minimum of the clamp min/max range. 3868 bool IsMax = (Opcode == ISD::SMAX); 3869 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3870 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3871 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3872 CstHigh = 3873 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3874 if (CstLow && CstHigh) { 3875 if (!IsMax) 3876 std::swap(CstLow, CstHigh); 3877 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3878 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3879 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3880 return std::min(Tmp, Tmp2); 3881 } 3882 } 3883 3884 // Fallback - just get the minimum number of sign bits of the operands. 3885 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3886 if (Tmp == 1) 3887 return 1; // Early out. 3888 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3889 return std::min(Tmp, Tmp2); 3890 } 3891 case ISD::UMIN: 3892 case ISD::UMAX: 3893 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3894 if (Tmp == 1) 3895 return 1; // Early out. 3896 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3897 return std::min(Tmp, Tmp2); 3898 case ISD::SADDO: 3899 case ISD::UADDO: 3900 case ISD::SSUBO: 3901 case ISD::USUBO: 3902 case ISD::SMULO: 3903 case ISD::UMULO: 3904 if (Op.getResNo() != 1) 3905 break; 3906 // The boolean result conforms to getBooleanContents. Fall through. 3907 // If setcc returns 0/-1, all bits are sign bits. 3908 // We know that we have an integer-based boolean since these operations 3909 // are only available for integer. 3910 if (TLI->getBooleanContents(VT.isVector(), false) == 3911 TargetLowering::ZeroOrNegativeOneBooleanContent) 3912 return VTBits; 3913 break; 3914 case ISD::SETCC: 3915 case ISD::STRICT_FSETCC: 3916 case ISD::STRICT_FSETCCS: { 3917 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3918 // If setcc returns 0/-1, all bits are sign bits. 3919 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3920 TargetLowering::ZeroOrNegativeOneBooleanContent) 3921 return VTBits; 3922 break; 3923 } 3924 case ISD::ROTL: 3925 case ISD::ROTR: 3926 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3927 3928 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3929 if (Tmp == VTBits) 3930 return VTBits; 3931 3932 if (ConstantSDNode *C = 3933 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3934 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3935 3936 // Handle rotate right by N like a rotate left by 32-N. 3937 if (Opcode == ISD::ROTR) 3938 RotAmt = (VTBits - RotAmt) % VTBits; 3939 3940 // If we aren't rotating out all of the known-in sign bits, return the 3941 // number that are left. This handles rotl(sext(x), 1) for example. 3942 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3943 } 3944 break; 3945 case ISD::ADD: 3946 case ISD::ADDC: 3947 // Add can have at most one carry bit. Thus we know that the output 3948 // is, at worst, one more bit than the inputs. 3949 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3950 if (Tmp == 1) return 1; // Early out. 3951 3952 // Special case decrementing a value (ADD X, -1): 3953 if (ConstantSDNode *CRHS = 3954 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3955 if (CRHS->isAllOnesValue()) { 3956 KnownBits Known = 3957 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3958 3959 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3960 // sign bits set. 3961 if ((Known.Zero | 1).isAllOnesValue()) 3962 return VTBits; 3963 3964 // If we are subtracting one from a positive number, there is no carry 3965 // out of the result. 3966 if (Known.isNonNegative()) 3967 return Tmp; 3968 } 3969 3970 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3971 if (Tmp2 == 1) return 1; // Early out. 3972 return std::min(Tmp, Tmp2) - 1; 3973 case ISD::SUB: 3974 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3975 if (Tmp2 == 1) return 1; // Early out. 3976 3977 // Handle NEG. 3978 if (ConstantSDNode *CLHS = 3979 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3980 if (CLHS->isNullValue()) { 3981 KnownBits Known = 3982 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3983 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3984 // sign bits set. 3985 if ((Known.Zero | 1).isAllOnesValue()) 3986 return VTBits; 3987 3988 // If the input is known to be positive (the sign bit is known clear), 3989 // the output of the NEG has the same number of sign bits as the input. 3990 if (Known.isNonNegative()) 3991 return Tmp2; 3992 3993 // Otherwise, we treat this like a SUB. 3994 } 3995 3996 // Sub can have at most one carry bit. Thus we know that the output 3997 // is, at worst, one more bit than the inputs. 3998 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3999 if (Tmp == 1) return 1; // Early out. 4000 return std::min(Tmp, Tmp2) - 1; 4001 case ISD::MUL: { 4002 // The output of the Mul can be at most twice the valid bits in the inputs. 4003 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4004 if (SignBitsOp0 == 1) 4005 break; 4006 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4007 if (SignBitsOp1 == 1) 4008 break; 4009 unsigned OutValidBits = 4010 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4011 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4012 } 4013 case ISD::SREM: 4014 // The sign bit is the LHS's sign bit, except when the result of the 4015 // remainder is zero. The magnitude of the result should be less than or 4016 // equal to the magnitude of the LHS. Therefore, the result should have 4017 // at least as many sign bits as the left hand side. 4018 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4019 case ISD::TRUNCATE: { 4020 // Check if the sign bits of source go down as far as the truncated value. 4021 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4022 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4023 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4024 return NumSrcSignBits - (NumSrcBits - VTBits); 4025 break; 4026 } 4027 case ISD::EXTRACT_ELEMENT: { 4028 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4029 const int BitWidth = Op.getValueSizeInBits(); 4030 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4031 4032 // Get reverse index (starting from 1), Op1 value indexes elements from 4033 // little end. Sign starts at big end. 4034 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4035 4036 // If the sign portion ends in our element the subtraction gives correct 4037 // result. Otherwise it gives either negative or > bitwidth result 4038 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4039 } 4040 case ISD::INSERT_VECTOR_ELT: { 4041 // If we know the element index, split the demand between the 4042 // source vector and the inserted element, otherwise assume we need 4043 // the original demanded vector elements and the value. 4044 SDValue InVec = Op.getOperand(0); 4045 SDValue InVal = Op.getOperand(1); 4046 SDValue EltNo = Op.getOperand(2); 4047 bool DemandedVal = true; 4048 APInt DemandedVecElts = DemandedElts; 4049 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4050 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4051 unsigned EltIdx = CEltNo->getZExtValue(); 4052 DemandedVal = !!DemandedElts[EltIdx]; 4053 DemandedVecElts.clearBit(EltIdx); 4054 } 4055 Tmp = std::numeric_limits<unsigned>::max(); 4056 if (DemandedVal) { 4057 // TODO - handle implicit truncation of inserted elements. 4058 if (InVal.getScalarValueSizeInBits() != VTBits) 4059 break; 4060 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4061 Tmp = std::min(Tmp, Tmp2); 4062 } 4063 if (!!DemandedVecElts) { 4064 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4065 Tmp = std::min(Tmp, Tmp2); 4066 } 4067 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4068 return Tmp; 4069 } 4070 case ISD::EXTRACT_VECTOR_ELT: { 4071 SDValue InVec = Op.getOperand(0); 4072 SDValue EltNo = Op.getOperand(1); 4073 EVT VecVT = InVec.getValueType(); 4074 // ComputeNumSignBits not yet implemented for scalable vectors. 4075 if (VecVT.isScalableVector()) 4076 break; 4077 const unsigned BitWidth = Op.getValueSizeInBits(); 4078 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4079 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4080 4081 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4082 // anything about sign bits. But if the sizes match we can derive knowledge 4083 // about sign bits from the vector operand. 4084 if (BitWidth != EltBitWidth) 4085 break; 4086 4087 // If we know the element index, just demand that vector element, else for 4088 // an unknown element index, ignore DemandedElts and demand them all. 4089 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 4090 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4091 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4092 DemandedSrcElts = 4093 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4094 4095 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4096 } 4097 case ISD::EXTRACT_SUBVECTOR: { 4098 // Offset the demanded elts by the subvector index. 4099 SDValue Src = Op.getOperand(0); 4100 // Bail until we can represent demanded elements for scalable vectors. 4101 if (Src.getValueType().isScalableVector()) 4102 break; 4103 uint64_t Idx = Op.getConstantOperandVal(1); 4104 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4105 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4106 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4107 } 4108 case ISD::CONCAT_VECTORS: { 4109 // Determine the minimum number of sign bits across all demanded 4110 // elts of the input vectors. Early out if the result is already 1. 4111 Tmp = std::numeric_limits<unsigned>::max(); 4112 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4113 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4114 unsigned NumSubVectors = Op.getNumOperands(); 4115 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4116 APInt DemandedSub = 4117 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4118 if (!DemandedSub) 4119 continue; 4120 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4121 Tmp = std::min(Tmp, Tmp2); 4122 } 4123 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4124 return Tmp; 4125 } 4126 case ISD::INSERT_SUBVECTOR: { 4127 // Demand any elements from the subvector and the remainder from the src its 4128 // inserted into. 4129 SDValue Src = Op.getOperand(0); 4130 SDValue Sub = Op.getOperand(1); 4131 uint64_t Idx = Op.getConstantOperandVal(2); 4132 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4133 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4134 APInt DemandedSrcElts = DemandedElts; 4135 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4136 4137 Tmp = std::numeric_limits<unsigned>::max(); 4138 if (!!DemandedSubElts) { 4139 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4140 if (Tmp == 1) 4141 return 1; // early-out 4142 } 4143 if (!!DemandedSrcElts) { 4144 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4145 Tmp = std::min(Tmp, Tmp2); 4146 } 4147 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4148 return Tmp; 4149 } 4150 case ISD::ATOMIC_CMP_SWAP: 4151 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4152 case ISD::ATOMIC_SWAP: 4153 case ISD::ATOMIC_LOAD_ADD: 4154 case ISD::ATOMIC_LOAD_SUB: 4155 case ISD::ATOMIC_LOAD_AND: 4156 case ISD::ATOMIC_LOAD_CLR: 4157 case ISD::ATOMIC_LOAD_OR: 4158 case ISD::ATOMIC_LOAD_XOR: 4159 case ISD::ATOMIC_LOAD_NAND: 4160 case ISD::ATOMIC_LOAD_MIN: 4161 case ISD::ATOMIC_LOAD_MAX: 4162 case ISD::ATOMIC_LOAD_UMIN: 4163 case ISD::ATOMIC_LOAD_UMAX: 4164 case ISD::ATOMIC_LOAD: { 4165 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4166 // If we are looking at the loaded value. 4167 if (Op.getResNo() == 0) { 4168 if (Tmp == VTBits) 4169 return 1; // early-out 4170 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4171 return VTBits - Tmp + 1; 4172 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4173 return VTBits - Tmp; 4174 } 4175 break; 4176 } 4177 } 4178 4179 // If we are looking at the loaded value of the SDNode. 4180 if (Op.getResNo() == 0) { 4181 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4182 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4183 unsigned ExtType = LD->getExtensionType(); 4184 switch (ExtType) { 4185 default: break; 4186 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4187 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4188 return VTBits - Tmp + 1; 4189 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4190 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4191 return VTBits - Tmp; 4192 case ISD::NON_EXTLOAD: 4193 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4194 // We only need to handle vectors - computeKnownBits should handle 4195 // scalar cases. 4196 Type *CstTy = Cst->getType(); 4197 if (CstTy->isVectorTy() && 4198 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4199 Tmp = VTBits; 4200 for (unsigned i = 0; i != NumElts; ++i) { 4201 if (!DemandedElts[i]) 4202 continue; 4203 if (Constant *Elt = Cst->getAggregateElement(i)) { 4204 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4205 const APInt &Value = CInt->getValue(); 4206 Tmp = std::min(Tmp, Value.getNumSignBits()); 4207 continue; 4208 } 4209 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4210 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4211 Tmp = std::min(Tmp, Value.getNumSignBits()); 4212 continue; 4213 } 4214 } 4215 // Unknown type. Conservatively assume no bits match sign bit. 4216 return 1; 4217 } 4218 return Tmp; 4219 } 4220 } 4221 break; 4222 } 4223 } 4224 } 4225 4226 // Allow the target to implement this method for its nodes. 4227 if (Opcode >= ISD::BUILTIN_OP_END || 4228 Opcode == ISD::INTRINSIC_WO_CHAIN || 4229 Opcode == ISD::INTRINSIC_W_CHAIN || 4230 Opcode == ISD::INTRINSIC_VOID) { 4231 unsigned NumBits = 4232 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4233 if (NumBits > 1) 4234 FirstAnswer = std::max(FirstAnswer, NumBits); 4235 } 4236 4237 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4238 // use this information. 4239 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4240 4241 APInt Mask; 4242 if (Known.isNonNegative()) { // sign bit is 0 4243 Mask = Known.Zero; 4244 } else if (Known.isNegative()) { // sign bit is 1; 4245 Mask = Known.One; 4246 } else { 4247 // Nothing known. 4248 return FirstAnswer; 4249 } 4250 4251 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4252 // the number of identical bits in the top of the input value. 4253 Mask <<= Mask.getBitWidth()-VTBits; 4254 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4255 } 4256 4257 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4258 unsigned Depth) const { 4259 // Early out for FREEZE. 4260 if (Op.getOpcode() == ISD::FREEZE) 4261 return true; 4262 4263 // TODO: Assume we don't know anything for now. 4264 EVT VT = Op.getValueType(); 4265 if (VT.isScalableVector()) 4266 return false; 4267 4268 APInt DemandedElts = VT.isVector() 4269 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 4270 : APInt(1, 1); 4271 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4272 } 4273 4274 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4275 const APInt &DemandedElts, 4276 bool PoisonOnly, 4277 unsigned Depth) const { 4278 unsigned Opcode = Op.getOpcode(); 4279 4280 // Early out for FREEZE. 4281 if (Opcode == ISD::FREEZE) 4282 return true; 4283 4284 if (Depth >= MaxRecursionDepth) 4285 return false; // Limit search depth. 4286 4287 if (isIntOrFPConstant(Op)) 4288 return true; 4289 4290 switch (Opcode) { 4291 case ISD::UNDEF: 4292 return PoisonOnly; 4293 4294 case ISD::BUILD_VECTOR: 4295 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4296 // this shouldn't affect the result. 4297 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4298 if (!DemandedElts[i]) 4299 continue; 4300 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4301 Depth + 1)) 4302 return false; 4303 } 4304 return true; 4305 4306 // TODO: Search for noundef attributes from library functions. 4307 4308 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4309 4310 default: 4311 // Allow the target to implement this method for its nodes. 4312 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4313 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4314 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4315 Op, DemandedElts, *this, PoisonOnly, Depth); 4316 break; 4317 } 4318 4319 return false; 4320 } 4321 4322 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4323 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4324 !isa<ConstantSDNode>(Op.getOperand(1))) 4325 return false; 4326 4327 if (Op.getOpcode() == ISD::OR && 4328 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4329 return false; 4330 4331 return true; 4332 } 4333 4334 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4335 // If we're told that NaNs won't happen, assume they won't. 4336 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4337 return true; 4338 4339 if (Depth >= MaxRecursionDepth) 4340 return false; // Limit search depth. 4341 4342 // TODO: Handle vectors. 4343 // If the value is a constant, we can obviously see if it is a NaN or not. 4344 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4345 return !C->getValueAPF().isNaN() || 4346 (SNaN && !C->getValueAPF().isSignaling()); 4347 } 4348 4349 unsigned Opcode = Op.getOpcode(); 4350 switch (Opcode) { 4351 case ISD::FADD: 4352 case ISD::FSUB: 4353 case ISD::FMUL: 4354 case ISD::FDIV: 4355 case ISD::FREM: 4356 case ISD::FSIN: 4357 case ISD::FCOS: { 4358 if (SNaN) 4359 return true; 4360 // TODO: Need isKnownNeverInfinity 4361 return false; 4362 } 4363 case ISD::FCANONICALIZE: 4364 case ISD::FEXP: 4365 case ISD::FEXP2: 4366 case ISD::FTRUNC: 4367 case ISD::FFLOOR: 4368 case ISD::FCEIL: 4369 case ISD::FROUND: 4370 case ISD::FROUNDEVEN: 4371 case ISD::FRINT: 4372 case ISD::FNEARBYINT: { 4373 if (SNaN) 4374 return true; 4375 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4376 } 4377 case ISD::FABS: 4378 case ISD::FNEG: 4379 case ISD::FCOPYSIGN: { 4380 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4381 } 4382 case ISD::SELECT: 4383 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4384 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4385 case ISD::FP_EXTEND: 4386 case ISD::FP_ROUND: { 4387 if (SNaN) 4388 return true; 4389 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4390 } 4391 case ISD::SINT_TO_FP: 4392 case ISD::UINT_TO_FP: 4393 return true; 4394 case ISD::FMA: 4395 case ISD::FMAD: { 4396 if (SNaN) 4397 return true; 4398 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4399 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4400 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4401 } 4402 case ISD::FSQRT: // Need is known positive 4403 case ISD::FLOG: 4404 case ISD::FLOG2: 4405 case ISD::FLOG10: 4406 case ISD::FPOWI: 4407 case ISD::FPOW: { 4408 if (SNaN) 4409 return true; 4410 // TODO: Refine on operand 4411 return false; 4412 } 4413 case ISD::FMINNUM: 4414 case ISD::FMAXNUM: { 4415 // Only one needs to be known not-nan, since it will be returned if the 4416 // other ends up being one. 4417 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4418 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4419 } 4420 case ISD::FMINNUM_IEEE: 4421 case ISD::FMAXNUM_IEEE: { 4422 if (SNaN) 4423 return true; 4424 // This can return a NaN if either operand is an sNaN, or if both operands 4425 // are NaN. 4426 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4427 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4428 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4429 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4430 } 4431 case ISD::FMINIMUM: 4432 case ISD::FMAXIMUM: { 4433 // TODO: Does this quiet or return the origina NaN as-is? 4434 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4435 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4436 } 4437 case ISD::EXTRACT_VECTOR_ELT: { 4438 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4439 } 4440 default: 4441 if (Opcode >= ISD::BUILTIN_OP_END || 4442 Opcode == ISD::INTRINSIC_WO_CHAIN || 4443 Opcode == ISD::INTRINSIC_W_CHAIN || 4444 Opcode == ISD::INTRINSIC_VOID) { 4445 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4446 } 4447 4448 return false; 4449 } 4450 } 4451 4452 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4453 assert(Op.getValueType().isFloatingPoint() && 4454 "Floating point type expected"); 4455 4456 // If the value is a constant, we can obviously see if it is a zero or not. 4457 // TODO: Add BuildVector support. 4458 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4459 return !C->isZero(); 4460 return false; 4461 } 4462 4463 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4464 assert(!Op.getValueType().isFloatingPoint() && 4465 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4466 4467 // If the value is a constant, we can obviously see if it is a zero or not. 4468 if (ISD::matchUnaryPredicate( 4469 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4470 return true; 4471 4472 // TODO: Recognize more cases here. 4473 switch (Op.getOpcode()) { 4474 default: break; 4475 case ISD::OR: 4476 if (isKnownNeverZero(Op.getOperand(1)) || 4477 isKnownNeverZero(Op.getOperand(0))) 4478 return true; 4479 break; 4480 } 4481 4482 return false; 4483 } 4484 4485 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4486 // Check the obvious case. 4487 if (A == B) return true; 4488 4489 // For for negative and positive zero. 4490 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4491 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4492 if (CA->isZero() && CB->isZero()) return true; 4493 4494 // Otherwise they may not be equal. 4495 return false; 4496 } 4497 4498 // FIXME: unify with llvm::haveNoCommonBitsSet. 4499 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4500 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4501 assert(A.getValueType() == B.getValueType() && 4502 "Values must have the same type"); 4503 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4504 computeKnownBits(B)); 4505 } 4506 4507 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4508 SelectionDAG &DAG) { 4509 if (cast<ConstantSDNode>(Step)->isNullValue()) 4510 return DAG.getConstant(0, DL, VT); 4511 4512 return SDValue(); 4513 } 4514 4515 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4516 ArrayRef<SDValue> Ops, 4517 SelectionDAG &DAG) { 4518 int NumOps = Ops.size(); 4519 assert(NumOps != 0 && "Can't build an empty vector!"); 4520 assert(!VT.isScalableVector() && 4521 "BUILD_VECTOR cannot be used with scalable types"); 4522 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4523 "Incorrect element count in BUILD_VECTOR!"); 4524 4525 // BUILD_VECTOR of UNDEFs is UNDEF. 4526 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4527 return DAG.getUNDEF(VT); 4528 4529 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4530 SDValue IdentitySrc; 4531 bool IsIdentity = true; 4532 for (int i = 0; i != NumOps; ++i) { 4533 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4534 Ops[i].getOperand(0).getValueType() != VT || 4535 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4536 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4537 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4538 IsIdentity = false; 4539 break; 4540 } 4541 IdentitySrc = Ops[i].getOperand(0); 4542 } 4543 if (IsIdentity) 4544 return IdentitySrc; 4545 4546 return SDValue(); 4547 } 4548 4549 /// Try to simplify vector concatenation to an input value, undef, or build 4550 /// vector. 4551 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4552 ArrayRef<SDValue> Ops, 4553 SelectionDAG &DAG) { 4554 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4555 assert(llvm::all_of(Ops, 4556 [Ops](SDValue Op) { 4557 return Ops[0].getValueType() == Op.getValueType(); 4558 }) && 4559 "Concatenation of vectors with inconsistent value types!"); 4560 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4561 VT.getVectorElementCount() && 4562 "Incorrect element count in vector concatenation!"); 4563 4564 if (Ops.size() == 1) 4565 return Ops[0]; 4566 4567 // Concat of UNDEFs is UNDEF. 4568 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4569 return DAG.getUNDEF(VT); 4570 4571 // Scan the operands and look for extract operations from a single source 4572 // that correspond to insertion at the same location via this concatenation: 4573 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4574 SDValue IdentitySrc; 4575 bool IsIdentity = true; 4576 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4577 SDValue Op = Ops[i]; 4578 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4579 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4580 Op.getOperand(0).getValueType() != VT || 4581 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4582 Op.getConstantOperandVal(1) != IdentityIndex) { 4583 IsIdentity = false; 4584 break; 4585 } 4586 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4587 "Unexpected identity source vector for concat of extracts"); 4588 IdentitySrc = Op.getOperand(0); 4589 } 4590 if (IsIdentity) { 4591 assert(IdentitySrc && "Failed to set source vector of extracts"); 4592 return IdentitySrc; 4593 } 4594 4595 // The code below this point is only designed to work for fixed width 4596 // vectors, so we bail out for now. 4597 if (VT.isScalableVector()) 4598 return SDValue(); 4599 4600 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4601 // simplified to one big BUILD_VECTOR. 4602 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4603 EVT SVT = VT.getScalarType(); 4604 SmallVector<SDValue, 16> Elts; 4605 for (SDValue Op : Ops) { 4606 EVT OpVT = Op.getValueType(); 4607 if (Op.isUndef()) 4608 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4609 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4610 Elts.append(Op->op_begin(), Op->op_end()); 4611 else 4612 return SDValue(); 4613 } 4614 4615 // BUILD_VECTOR requires all inputs to be of the same type, find the 4616 // maximum type and extend them all. 4617 for (SDValue Op : Elts) 4618 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4619 4620 if (SVT.bitsGT(VT.getScalarType())) { 4621 for (SDValue &Op : Elts) { 4622 if (Op.isUndef()) 4623 Op = DAG.getUNDEF(SVT); 4624 else 4625 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4626 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4627 : DAG.getSExtOrTrunc(Op, DL, SVT); 4628 } 4629 } 4630 4631 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4632 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4633 return V; 4634 } 4635 4636 /// Gets or creates the specified node. 4637 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4638 FoldingSetNodeID ID; 4639 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4640 void *IP = nullptr; 4641 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4642 return SDValue(E, 0); 4643 4644 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4645 getVTList(VT)); 4646 CSEMap.InsertNode(N, IP); 4647 4648 InsertNode(N); 4649 SDValue V = SDValue(N, 0); 4650 NewSDValueDbgMsg(V, "Creating new node: ", this); 4651 return V; 4652 } 4653 4654 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4655 SDValue Operand) { 4656 SDNodeFlags Flags; 4657 if (Inserter) 4658 Flags = Inserter->getFlags(); 4659 return getNode(Opcode, DL, VT, Operand, Flags); 4660 } 4661 4662 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4663 SDValue Operand, const SDNodeFlags Flags) { 4664 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4665 "Operand is DELETED_NODE!"); 4666 // Constant fold unary operations with an integer constant operand. Even 4667 // opaque constant will be folded, because the folding of unary operations 4668 // doesn't create new constants with different values. Nevertheless, the 4669 // opaque flag is preserved during folding to prevent future folding with 4670 // other constants. 4671 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4672 const APInt &Val = C->getAPIntValue(); 4673 switch (Opcode) { 4674 default: break; 4675 case ISD::SIGN_EXTEND: 4676 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4677 C->isTargetOpcode(), C->isOpaque()); 4678 case ISD::TRUNCATE: 4679 if (C->isOpaque()) 4680 break; 4681 LLVM_FALLTHROUGH; 4682 case ISD::ZERO_EXTEND: 4683 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4684 C->isTargetOpcode(), C->isOpaque()); 4685 case ISD::ANY_EXTEND: 4686 // Some targets like RISCV prefer to sign extend some types. 4687 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4688 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4689 C->isTargetOpcode(), C->isOpaque()); 4690 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4691 C->isTargetOpcode(), C->isOpaque()); 4692 case ISD::UINT_TO_FP: 4693 case ISD::SINT_TO_FP: { 4694 APFloat apf(EVTToAPFloatSemantics(VT), 4695 APInt::getNullValue(VT.getSizeInBits())); 4696 (void)apf.convertFromAPInt(Val, 4697 Opcode==ISD::SINT_TO_FP, 4698 APFloat::rmNearestTiesToEven); 4699 return getConstantFP(apf, DL, VT); 4700 } 4701 case ISD::BITCAST: 4702 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4703 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4704 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4705 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4706 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4707 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4708 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4709 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4710 break; 4711 case ISD::ABS: 4712 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4713 C->isOpaque()); 4714 case ISD::BITREVERSE: 4715 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4716 C->isOpaque()); 4717 case ISD::BSWAP: 4718 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4719 C->isOpaque()); 4720 case ISD::CTPOP: 4721 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4722 C->isOpaque()); 4723 case ISD::CTLZ: 4724 case ISD::CTLZ_ZERO_UNDEF: 4725 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4726 C->isOpaque()); 4727 case ISD::CTTZ: 4728 case ISD::CTTZ_ZERO_UNDEF: 4729 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4730 C->isOpaque()); 4731 case ISD::FP16_TO_FP: { 4732 bool Ignored; 4733 APFloat FPV(APFloat::IEEEhalf(), 4734 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4735 4736 // This can return overflow, underflow, or inexact; we don't care. 4737 // FIXME need to be more flexible about rounding mode. 4738 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4739 APFloat::rmNearestTiesToEven, &Ignored); 4740 return getConstantFP(FPV, DL, VT); 4741 } 4742 case ISD::STEP_VECTOR: { 4743 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4744 return V; 4745 break; 4746 } 4747 } 4748 } 4749 4750 // Constant fold unary operations with a floating point constant operand. 4751 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4752 APFloat V = C->getValueAPF(); // make copy 4753 switch (Opcode) { 4754 case ISD::FNEG: 4755 V.changeSign(); 4756 return getConstantFP(V, DL, VT); 4757 case ISD::FABS: 4758 V.clearSign(); 4759 return getConstantFP(V, DL, VT); 4760 case ISD::FCEIL: { 4761 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4762 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4763 return getConstantFP(V, DL, VT); 4764 break; 4765 } 4766 case ISD::FTRUNC: { 4767 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4768 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4769 return getConstantFP(V, DL, VT); 4770 break; 4771 } 4772 case ISD::FFLOOR: { 4773 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4774 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4775 return getConstantFP(V, DL, VT); 4776 break; 4777 } 4778 case ISD::FP_EXTEND: { 4779 bool ignored; 4780 // This can return overflow, underflow, or inexact; we don't care. 4781 // FIXME need to be more flexible about rounding mode. 4782 (void)V.convert(EVTToAPFloatSemantics(VT), 4783 APFloat::rmNearestTiesToEven, &ignored); 4784 return getConstantFP(V, DL, VT); 4785 } 4786 case ISD::FP_TO_SINT: 4787 case ISD::FP_TO_UINT: { 4788 bool ignored; 4789 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4790 // FIXME need to be more flexible about rounding mode. 4791 APFloat::opStatus s = 4792 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4793 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4794 break; 4795 return getConstant(IntVal, DL, VT); 4796 } 4797 case ISD::BITCAST: 4798 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4799 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4800 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4801 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4802 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4803 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4804 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4805 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4806 break; 4807 case ISD::FP_TO_FP16: { 4808 bool Ignored; 4809 // This can return overflow, underflow, or inexact; we don't care. 4810 // FIXME need to be more flexible about rounding mode. 4811 (void)V.convert(APFloat::IEEEhalf(), 4812 APFloat::rmNearestTiesToEven, &Ignored); 4813 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4814 } 4815 } 4816 } 4817 4818 // Constant fold unary operations with a vector integer or float operand. 4819 switch (Opcode) { 4820 default: 4821 // FIXME: Entirely reasonable to perform folding of other unary 4822 // operations here as the need arises. 4823 break; 4824 case ISD::FNEG: 4825 case ISD::FABS: 4826 case ISD::FCEIL: 4827 case ISD::FTRUNC: 4828 case ISD::FFLOOR: 4829 case ISD::FP_EXTEND: 4830 case ISD::FP_TO_SINT: 4831 case ISD::FP_TO_UINT: 4832 case ISD::TRUNCATE: 4833 case ISD::ANY_EXTEND: 4834 case ISD::ZERO_EXTEND: 4835 case ISD::SIGN_EXTEND: 4836 case ISD::UINT_TO_FP: 4837 case ISD::SINT_TO_FP: 4838 case ISD::ABS: 4839 case ISD::BITREVERSE: 4840 case ISD::BSWAP: 4841 case ISD::CTLZ: 4842 case ISD::CTLZ_ZERO_UNDEF: 4843 case ISD::CTTZ: 4844 case ISD::CTTZ_ZERO_UNDEF: 4845 case ISD::CTPOP: { 4846 SDValue Ops = {Operand}; 4847 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4848 return Fold; 4849 } 4850 } 4851 4852 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4853 switch (Opcode) { 4854 case ISD::STEP_VECTOR: 4855 assert(VT.isScalableVector() && 4856 "STEP_VECTOR can only be used with scalable types"); 4857 assert(OpOpcode == ISD::TargetConstant && 4858 VT.getVectorElementType() == Operand.getValueType() && 4859 "Unexpected step operand"); 4860 break; 4861 case ISD::FREEZE: 4862 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4863 break; 4864 case ISD::TokenFactor: 4865 case ISD::MERGE_VALUES: 4866 case ISD::CONCAT_VECTORS: 4867 return Operand; // Factor, merge or concat of one node? No need. 4868 case ISD::BUILD_VECTOR: { 4869 // Attempt to simplify BUILD_VECTOR. 4870 SDValue Ops[] = {Operand}; 4871 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4872 return V; 4873 break; 4874 } 4875 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4876 case ISD::FP_EXTEND: 4877 assert(VT.isFloatingPoint() && 4878 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4879 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4880 assert((!VT.isVector() || 4881 VT.getVectorElementCount() == 4882 Operand.getValueType().getVectorElementCount()) && 4883 "Vector element count mismatch!"); 4884 assert(Operand.getValueType().bitsLT(VT) && 4885 "Invalid fpext node, dst < src!"); 4886 if (Operand.isUndef()) 4887 return getUNDEF(VT); 4888 break; 4889 case ISD::FP_TO_SINT: 4890 case ISD::FP_TO_UINT: 4891 if (Operand.isUndef()) 4892 return getUNDEF(VT); 4893 break; 4894 case ISD::SINT_TO_FP: 4895 case ISD::UINT_TO_FP: 4896 // [us]itofp(undef) = 0, because the result value is bounded. 4897 if (Operand.isUndef()) 4898 return getConstantFP(0.0, DL, VT); 4899 break; 4900 case ISD::SIGN_EXTEND: 4901 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4902 "Invalid SIGN_EXTEND!"); 4903 assert(VT.isVector() == Operand.getValueType().isVector() && 4904 "SIGN_EXTEND result type type should be vector iff the operand " 4905 "type is vector!"); 4906 if (Operand.getValueType() == VT) return Operand; // noop extension 4907 assert((!VT.isVector() || 4908 VT.getVectorElementCount() == 4909 Operand.getValueType().getVectorElementCount()) && 4910 "Vector element count mismatch!"); 4911 assert(Operand.getValueType().bitsLT(VT) && 4912 "Invalid sext node, dst < src!"); 4913 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4914 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4915 if (OpOpcode == ISD::UNDEF) 4916 // sext(undef) = 0, because the top bits will all be the same. 4917 return getConstant(0, DL, VT); 4918 break; 4919 case ISD::ZERO_EXTEND: 4920 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4921 "Invalid ZERO_EXTEND!"); 4922 assert(VT.isVector() == Operand.getValueType().isVector() && 4923 "ZERO_EXTEND result type type should be vector iff the operand " 4924 "type is vector!"); 4925 if (Operand.getValueType() == VT) return Operand; // noop extension 4926 assert((!VT.isVector() || 4927 VT.getVectorElementCount() == 4928 Operand.getValueType().getVectorElementCount()) && 4929 "Vector element count mismatch!"); 4930 assert(Operand.getValueType().bitsLT(VT) && 4931 "Invalid zext node, dst < src!"); 4932 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4933 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4934 if (OpOpcode == ISD::UNDEF) 4935 // zext(undef) = 0, because the top bits will be zero. 4936 return getConstant(0, DL, VT); 4937 break; 4938 case ISD::ANY_EXTEND: 4939 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4940 "Invalid ANY_EXTEND!"); 4941 assert(VT.isVector() == Operand.getValueType().isVector() && 4942 "ANY_EXTEND result type type should be vector iff the operand " 4943 "type is vector!"); 4944 if (Operand.getValueType() == VT) return Operand; // noop extension 4945 assert((!VT.isVector() || 4946 VT.getVectorElementCount() == 4947 Operand.getValueType().getVectorElementCount()) && 4948 "Vector element count mismatch!"); 4949 assert(Operand.getValueType().bitsLT(VT) && 4950 "Invalid anyext node, dst < src!"); 4951 4952 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4953 OpOpcode == ISD::ANY_EXTEND) 4954 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4955 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4956 if (OpOpcode == ISD::UNDEF) 4957 return getUNDEF(VT); 4958 4959 // (ext (trunc x)) -> x 4960 if (OpOpcode == ISD::TRUNCATE) { 4961 SDValue OpOp = Operand.getOperand(0); 4962 if (OpOp.getValueType() == VT) { 4963 transferDbgValues(Operand, OpOp); 4964 return OpOp; 4965 } 4966 } 4967 break; 4968 case ISD::TRUNCATE: 4969 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4970 "Invalid TRUNCATE!"); 4971 assert(VT.isVector() == Operand.getValueType().isVector() && 4972 "TRUNCATE result type type should be vector iff the operand " 4973 "type is vector!"); 4974 if (Operand.getValueType() == VT) return Operand; // noop truncate 4975 assert((!VT.isVector() || 4976 VT.getVectorElementCount() == 4977 Operand.getValueType().getVectorElementCount()) && 4978 "Vector element count mismatch!"); 4979 assert(Operand.getValueType().bitsGT(VT) && 4980 "Invalid truncate node, src < dst!"); 4981 if (OpOpcode == ISD::TRUNCATE) 4982 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4983 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4984 OpOpcode == ISD::ANY_EXTEND) { 4985 // If the source is smaller than the dest, we still need an extend. 4986 if (Operand.getOperand(0).getValueType().getScalarType() 4987 .bitsLT(VT.getScalarType())) 4988 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4989 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4990 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4991 return Operand.getOperand(0); 4992 } 4993 if (OpOpcode == ISD::UNDEF) 4994 return getUNDEF(VT); 4995 break; 4996 case ISD::ANY_EXTEND_VECTOR_INREG: 4997 case ISD::ZERO_EXTEND_VECTOR_INREG: 4998 case ISD::SIGN_EXTEND_VECTOR_INREG: 4999 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5000 assert(Operand.getValueType().bitsLE(VT) && 5001 "The input must be the same size or smaller than the result."); 5002 assert(VT.getVectorMinNumElements() < 5003 Operand.getValueType().getVectorMinNumElements() && 5004 "The destination vector type must have fewer lanes than the input."); 5005 break; 5006 case ISD::ABS: 5007 assert(VT.isInteger() && VT == Operand.getValueType() && 5008 "Invalid ABS!"); 5009 if (OpOpcode == ISD::UNDEF) 5010 return getUNDEF(VT); 5011 break; 5012 case ISD::BSWAP: 5013 assert(VT.isInteger() && VT == Operand.getValueType() && 5014 "Invalid BSWAP!"); 5015 assert((VT.getScalarSizeInBits() % 16 == 0) && 5016 "BSWAP types must be a multiple of 16 bits!"); 5017 if (OpOpcode == ISD::UNDEF) 5018 return getUNDEF(VT); 5019 break; 5020 case ISD::BITREVERSE: 5021 assert(VT.isInteger() && VT == Operand.getValueType() && 5022 "Invalid BITREVERSE!"); 5023 if (OpOpcode == ISD::UNDEF) 5024 return getUNDEF(VT); 5025 break; 5026 case ISD::BITCAST: 5027 // Basic sanity checking. 5028 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5029 "Cannot BITCAST between types of different sizes!"); 5030 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5031 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5032 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5033 if (OpOpcode == ISD::UNDEF) 5034 return getUNDEF(VT); 5035 break; 5036 case ISD::SCALAR_TO_VECTOR: 5037 assert(VT.isVector() && !Operand.getValueType().isVector() && 5038 (VT.getVectorElementType() == Operand.getValueType() || 5039 (VT.getVectorElementType().isInteger() && 5040 Operand.getValueType().isInteger() && 5041 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5042 "Illegal SCALAR_TO_VECTOR node!"); 5043 if (OpOpcode == ISD::UNDEF) 5044 return getUNDEF(VT); 5045 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5046 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5047 isa<ConstantSDNode>(Operand.getOperand(1)) && 5048 Operand.getConstantOperandVal(1) == 0 && 5049 Operand.getOperand(0).getValueType() == VT) 5050 return Operand.getOperand(0); 5051 break; 5052 case ISD::FNEG: 5053 // Negation of an unknown bag of bits is still completely undefined. 5054 if (OpOpcode == ISD::UNDEF) 5055 return getUNDEF(VT); 5056 5057 if (OpOpcode == ISD::FNEG) // --X -> X 5058 return Operand.getOperand(0); 5059 break; 5060 case ISD::FABS: 5061 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5062 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5063 break; 5064 case ISD::VSCALE: 5065 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5066 break; 5067 case ISD::CTPOP: 5068 if (Operand.getValueType().getScalarType() == MVT::i1) 5069 return Operand; 5070 break; 5071 case ISD::CTLZ: 5072 case ISD::CTTZ: 5073 if (Operand.getValueType().getScalarType() == MVT::i1) 5074 return getNOT(DL, Operand, Operand.getValueType()); 5075 break; 5076 case ISD::VECREDUCE_SMIN: 5077 case ISD::VECREDUCE_UMAX: 5078 if (Operand.getValueType().getScalarType() == MVT::i1) 5079 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5080 break; 5081 case ISD::VECREDUCE_SMAX: 5082 case ISD::VECREDUCE_UMIN: 5083 if (Operand.getValueType().getScalarType() == MVT::i1) 5084 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5085 break; 5086 } 5087 5088 SDNode *N; 5089 SDVTList VTs = getVTList(VT); 5090 SDValue Ops[] = {Operand}; 5091 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5092 FoldingSetNodeID ID; 5093 AddNodeIDNode(ID, Opcode, VTs, Ops); 5094 void *IP = nullptr; 5095 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5096 E->intersectFlagsWith(Flags); 5097 return SDValue(E, 0); 5098 } 5099 5100 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5101 N->setFlags(Flags); 5102 createOperands(N, Ops); 5103 CSEMap.InsertNode(N, IP); 5104 } else { 5105 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5106 createOperands(N, Ops); 5107 } 5108 5109 InsertNode(N); 5110 SDValue V = SDValue(N, 0); 5111 NewSDValueDbgMsg(V, "Creating new node: ", this); 5112 return V; 5113 } 5114 5115 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5116 const APInt &C2) { 5117 switch (Opcode) { 5118 case ISD::ADD: return C1 + C2; 5119 case ISD::SUB: return C1 - C2; 5120 case ISD::MUL: return C1 * C2; 5121 case ISD::AND: return C1 & C2; 5122 case ISD::OR: return C1 | C2; 5123 case ISD::XOR: return C1 ^ C2; 5124 case ISD::SHL: return C1 << C2; 5125 case ISD::SRL: return C1.lshr(C2); 5126 case ISD::SRA: return C1.ashr(C2); 5127 case ISD::ROTL: return C1.rotl(C2); 5128 case ISD::ROTR: return C1.rotr(C2); 5129 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5130 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5131 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5132 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5133 case ISD::SADDSAT: return C1.sadd_sat(C2); 5134 case ISD::UADDSAT: return C1.uadd_sat(C2); 5135 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5136 case ISD::USUBSAT: return C1.usub_sat(C2); 5137 case ISD::UDIV: 5138 if (!C2.getBoolValue()) 5139 break; 5140 return C1.udiv(C2); 5141 case ISD::UREM: 5142 if (!C2.getBoolValue()) 5143 break; 5144 return C1.urem(C2); 5145 case ISD::SDIV: 5146 if (!C2.getBoolValue()) 5147 break; 5148 return C1.sdiv(C2); 5149 case ISD::SREM: 5150 if (!C2.getBoolValue()) 5151 break; 5152 return C1.srem(C2); 5153 case ISD::MULHS: { 5154 unsigned FullWidth = C1.getBitWidth() * 2; 5155 APInt C1Ext = C1.sext(FullWidth); 5156 APInt C2Ext = C2.sext(FullWidth); 5157 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5158 } 5159 case ISD::MULHU: { 5160 unsigned FullWidth = C1.getBitWidth() * 2; 5161 APInt C1Ext = C1.zext(FullWidth); 5162 APInt C2Ext = C2.zext(FullWidth); 5163 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5164 } 5165 } 5166 return llvm::None; 5167 } 5168 5169 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5170 const GlobalAddressSDNode *GA, 5171 const SDNode *N2) { 5172 if (GA->getOpcode() != ISD::GlobalAddress) 5173 return SDValue(); 5174 if (!TLI->isOffsetFoldingLegal(GA)) 5175 return SDValue(); 5176 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5177 if (!C2) 5178 return SDValue(); 5179 int64_t Offset = C2->getSExtValue(); 5180 switch (Opcode) { 5181 case ISD::ADD: break; 5182 case ISD::SUB: Offset = -uint64_t(Offset); break; 5183 default: return SDValue(); 5184 } 5185 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5186 GA->getOffset() + uint64_t(Offset)); 5187 } 5188 5189 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5190 switch (Opcode) { 5191 case ISD::SDIV: 5192 case ISD::UDIV: 5193 case ISD::SREM: 5194 case ISD::UREM: { 5195 // If a divisor is zero/undef or any element of a divisor vector is 5196 // zero/undef, the whole op is undef. 5197 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5198 SDValue Divisor = Ops[1]; 5199 if (Divisor.isUndef() || isNullConstant(Divisor)) 5200 return true; 5201 5202 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5203 llvm::any_of(Divisor->op_values(), 5204 [](SDValue V) { return V.isUndef() || 5205 isNullConstant(V); }); 5206 // TODO: Handle signed overflow. 5207 } 5208 // TODO: Handle oversized shifts. 5209 default: 5210 return false; 5211 } 5212 } 5213 5214 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5215 EVT VT, ArrayRef<SDValue> Ops) { 5216 // If the opcode is a target-specific ISD node, there's nothing we can 5217 // do here and the operand rules may not line up with the below, so 5218 // bail early. 5219 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5220 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5221 // foldCONCAT_VECTORS in getNode before this is called. 5222 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5223 return SDValue(); 5224 5225 // For now, the array Ops should only contain two values. 5226 // This enforcement will be removed once this function is merged with 5227 // FoldConstantVectorArithmetic 5228 if (Ops.size() != 2) 5229 return SDValue(); 5230 5231 if (isUndef(Opcode, Ops)) 5232 return getUNDEF(VT); 5233 5234 SDNode *N1 = Ops[0].getNode(); 5235 SDNode *N2 = Ops[1].getNode(); 5236 5237 // Handle the case of two scalars. 5238 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5239 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5240 if (C1->isOpaque() || C2->isOpaque()) 5241 return SDValue(); 5242 5243 Optional<APInt> FoldAttempt = 5244 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5245 if (!FoldAttempt) 5246 return SDValue(); 5247 5248 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5249 assert((!Folded || !VT.isVector()) && 5250 "Can't fold vectors ops with scalar operands"); 5251 return Folded; 5252 } 5253 } 5254 5255 // fold (add Sym, c) -> Sym+c 5256 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5257 return FoldSymbolOffset(Opcode, VT, GA, N2); 5258 if (TLI->isCommutativeBinOp(Opcode)) 5259 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5260 return FoldSymbolOffset(Opcode, VT, GA, N1); 5261 5262 // For fixed width vectors, extract each constant element and fold them 5263 // individually. Either input may be an undef value. 5264 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5265 N1->getOpcode() == ISD::SPLAT_VECTOR; 5266 if (!IsBVOrSV1 && !N1->isUndef()) 5267 return SDValue(); 5268 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5269 N2->getOpcode() == ISD::SPLAT_VECTOR; 5270 if (!IsBVOrSV2 && !N2->isUndef()) 5271 return SDValue(); 5272 // If both operands are undef, that's handled the same way as scalars. 5273 if (!IsBVOrSV1 && !IsBVOrSV2) 5274 return SDValue(); 5275 5276 EVT SVT = VT.getScalarType(); 5277 EVT LegalSVT = SVT; 5278 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5279 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5280 if (LegalSVT.bitsLT(SVT)) 5281 return SDValue(); 5282 } 5283 5284 SmallVector<SDValue, 4> Outputs; 5285 unsigned NumOps = 0; 5286 if (IsBVOrSV1) 5287 NumOps = std::max(NumOps, N1->getNumOperands()); 5288 if (IsBVOrSV2) 5289 NumOps = std::max(NumOps, N2->getNumOperands()); 5290 assert(NumOps != 0 && "Expected non-zero operands"); 5291 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5292 // one iteration for that. 5293 assert((!VT.isScalableVector() || NumOps == 1) && 5294 "Scalable vector should only have one scalar"); 5295 5296 for (unsigned I = 0; I != NumOps; ++I) { 5297 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5298 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5299 SDValue V1; 5300 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5301 V1 = N1->getOperand(I); 5302 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5303 V1 = N1->getOperand(0); 5304 else 5305 V1 = getUNDEF(SVT); 5306 5307 SDValue V2; 5308 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5309 V2 = N2->getOperand(I); 5310 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5311 V2 = N2->getOperand(0); 5312 else 5313 V2 = getUNDEF(SVT); 5314 5315 if (SVT.isInteger()) { 5316 if (V1.getValueType().bitsGT(SVT)) 5317 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5318 if (V2.getValueType().bitsGT(SVT)) 5319 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5320 } 5321 5322 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5323 return SDValue(); 5324 5325 // Fold one vector element. 5326 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5327 if (LegalSVT != SVT) 5328 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5329 5330 // Scalar folding only succeeded if the result is a constant or UNDEF. 5331 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5332 ScalarResult.getOpcode() != ISD::ConstantFP) 5333 return SDValue(); 5334 Outputs.push_back(ScalarResult); 5335 } 5336 5337 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5338 N2->getOpcode() == ISD::BUILD_VECTOR) { 5339 assert(VT.getVectorNumElements() == Outputs.size() && 5340 "Vector size mismatch!"); 5341 5342 // Build a big vector out of the scalar elements we generated. 5343 return getBuildVector(VT, SDLoc(), Outputs); 5344 } 5345 5346 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5347 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5348 "One operand should be a splat vector"); 5349 5350 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5351 return getSplatVector(VT, SDLoc(), Outputs[0]); 5352 } 5353 5354 // TODO: Merge with FoldConstantArithmetic 5355 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5356 const SDLoc &DL, EVT VT, 5357 ArrayRef<SDValue> Ops, 5358 const SDNodeFlags Flags) { 5359 // If the opcode is a target-specific ISD node, there's nothing we can 5360 // do here and the operand rules may not line up with the below, so 5361 // bail early. 5362 if (Opcode >= ISD::BUILTIN_OP_END) 5363 return SDValue(); 5364 5365 if (isUndef(Opcode, Ops)) 5366 return getUNDEF(VT); 5367 5368 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5369 if (!VT.isVector()) 5370 return SDValue(); 5371 5372 ElementCount NumElts = VT.getVectorElementCount(); 5373 5374 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5375 return !Op.getValueType().isVector() || 5376 Op.getValueType().getVectorElementCount() == NumElts; 5377 }; 5378 5379 auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5380 APInt SplatVal; 5381 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5382 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5383 (BV && BV->isConstant()) || 5384 (Op.getOpcode() == ISD::SPLAT_VECTOR && 5385 ISD::isConstantSplatVector(Op.getNode(), SplatVal)); 5386 }; 5387 5388 // All operands must be vector types with the same number of elements as 5389 // the result type and must be either UNDEF or a build vector of constant 5390 // or UNDEF scalars. 5391 if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) || 5392 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5393 return SDValue(); 5394 5395 // If we are comparing vectors, then the result needs to be a i1 boolean 5396 // that is then sign-extended back to the legal result type. 5397 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5398 5399 // Find legal integer scalar type for constant promotion and 5400 // ensure that its scalar size is at least as large as source. 5401 EVT LegalSVT = VT.getScalarType(); 5402 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5403 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5404 if (LegalSVT.bitsLT(VT.getScalarType())) 5405 return SDValue(); 5406 } 5407 5408 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5409 // only have one operand to check. For fixed-length vector types we may have 5410 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5411 unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5412 5413 // Constant fold each scalar lane separately. 5414 SmallVector<SDValue, 4> ScalarResults; 5415 for (unsigned I = 0; I != NumOperands; I++) { 5416 SmallVector<SDValue, 4> ScalarOps; 5417 for (SDValue Op : Ops) { 5418 EVT InSVT = Op.getValueType().getScalarType(); 5419 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5420 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5421 // We've checked that this is UNDEF or a constant of some kind. 5422 if (Op.isUndef()) 5423 ScalarOps.push_back(getUNDEF(InSVT)); 5424 else 5425 ScalarOps.push_back(Op); 5426 continue; 5427 } 5428 5429 SDValue ScalarOp = 5430 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5431 EVT ScalarVT = ScalarOp.getValueType(); 5432 5433 // Build vector (integer) scalar operands may need implicit 5434 // truncation - do this before constant folding. 5435 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5436 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5437 5438 ScalarOps.push_back(ScalarOp); 5439 } 5440 5441 // Constant fold the scalar operands. 5442 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5443 5444 // Legalize the (integer) scalar constant if necessary. 5445 if (LegalSVT != SVT) 5446 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5447 5448 // Scalar folding only succeeded if the result is a constant or UNDEF. 5449 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5450 ScalarResult.getOpcode() != ISD::ConstantFP) 5451 return SDValue(); 5452 ScalarResults.push_back(ScalarResult); 5453 } 5454 5455 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5456 : getBuildVector(VT, DL, ScalarResults); 5457 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5458 return V; 5459 } 5460 5461 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5462 EVT VT, SDValue N1, SDValue N2) { 5463 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5464 // should. That will require dealing with a potentially non-default 5465 // rounding mode, checking the "opStatus" return value from the APFloat 5466 // math calculations, and possibly other variations. 5467 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5468 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5469 if (N1CFP && N2CFP) { 5470 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5471 switch (Opcode) { 5472 case ISD::FADD: 5473 C1.add(C2, APFloat::rmNearestTiesToEven); 5474 return getConstantFP(C1, DL, VT); 5475 case ISD::FSUB: 5476 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5477 return getConstantFP(C1, DL, VT); 5478 case ISD::FMUL: 5479 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5480 return getConstantFP(C1, DL, VT); 5481 case ISD::FDIV: 5482 C1.divide(C2, APFloat::rmNearestTiesToEven); 5483 return getConstantFP(C1, DL, VT); 5484 case ISD::FREM: 5485 C1.mod(C2); 5486 return getConstantFP(C1, DL, VT); 5487 case ISD::FCOPYSIGN: 5488 C1.copySign(C2); 5489 return getConstantFP(C1, DL, VT); 5490 default: break; 5491 } 5492 } 5493 if (N1CFP && Opcode == ISD::FP_ROUND) { 5494 APFloat C1 = N1CFP->getValueAPF(); // make copy 5495 bool Unused; 5496 // This can return overflow, underflow, or inexact; we don't care. 5497 // FIXME need to be more flexible about rounding mode. 5498 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5499 &Unused); 5500 return getConstantFP(C1, DL, VT); 5501 } 5502 5503 switch (Opcode) { 5504 case ISD::FSUB: 5505 // -0.0 - undef --> undef (consistent with "fneg undef") 5506 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5507 return getUNDEF(VT); 5508 LLVM_FALLTHROUGH; 5509 5510 case ISD::FADD: 5511 case ISD::FMUL: 5512 case ISD::FDIV: 5513 case ISD::FREM: 5514 // If both operands are undef, the result is undef. If 1 operand is undef, 5515 // the result is NaN. This should match the behavior of the IR optimizer. 5516 if (N1.isUndef() && N2.isUndef()) 5517 return getUNDEF(VT); 5518 if (N1.isUndef() || N2.isUndef()) 5519 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5520 } 5521 return SDValue(); 5522 } 5523 5524 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5525 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5526 5527 // There's no need to assert on a byte-aligned pointer. All pointers are at 5528 // least byte aligned. 5529 if (A == Align(1)) 5530 return Val; 5531 5532 FoldingSetNodeID ID; 5533 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5534 ID.AddInteger(A.value()); 5535 5536 void *IP = nullptr; 5537 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5538 return SDValue(E, 0); 5539 5540 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5541 Val.getValueType(), A); 5542 createOperands(N, {Val}); 5543 5544 CSEMap.InsertNode(N, IP); 5545 InsertNode(N); 5546 5547 SDValue V(N, 0); 5548 NewSDValueDbgMsg(V, "Creating new node: ", this); 5549 return V; 5550 } 5551 5552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5553 SDValue N1, SDValue N2) { 5554 SDNodeFlags Flags; 5555 if (Inserter) 5556 Flags = Inserter->getFlags(); 5557 return getNode(Opcode, DL, VT, N1, N2, Flags); 5558 } 5559 5560 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5561 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5562 assert(N1.getOpcode() != ISD::DELETED_NODE && 5563 N2.getOpcode() != ISD::DELETED_NODE && 5564 "Operand is DELETED_NODE!"); 5565 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5566 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5567 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5568 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5569 5570 // Canonicalize constant to RHS if commutative. 5571 if (TLI->isCommutativeBinOp(Opcode)) { 5572 if (N1C && !N2C) { 5573 std::swap(N1C, N2C); 5574 std::swap(N1, N2); 5575 } else if (N1CFP && !N2CFP) { 5576 std::swap(N1CFP, N2CFP); 5577 std::swap(N1, N2); 5578 } 5579 } 5580 5581 switch (Opcode) { 5582 default: break; 5583 case ISD::TokenFactor: 5584 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5585 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5586 // Fold trivial token factors. 5587 if (N1.getOpcode() == ISD::EntryToken) return N2; 5588 if (N2.getOpcode() == ISD::EntryToken) return N1; 5589 if (N1 == N2) return N1; 5590 break; 5591 case ISD::BUILD_VECTOR: { 5592 // Attempt to simplify BUILD_VECTOR. 5593 SDValue Ops[] = {N1, N2}; 5594 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5595 return V; 5596 break; 5597 } 5598 case ISD::CONCAT_VECTORS: { 5599 SDValue Ops[] = {N1, N2}; 5600 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5601 return V; 5602 break; 5603 } 5604 case ISD::AND: 5605 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5606 assert(N1.getValueType() == N2.getValueType() && 5607 N1.getValueType() == VT && "Binary operator types must match!"); 5608 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5609 // worth handling here. 5610 if (N2C && N2C->isNullValue()) 5611 return N2; 5612 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5613 return N1; 5614 break; 5615 case ISD::OR: 5616 case ISD::XOR: 5617 case ISD::ADD: 5618 case ISD::SUB: 5619 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5620 assert(N1.getValueType() == N2.getValueType() && 5621 N1.getValueType() == VT && "Binary operator types must match!"); 5622 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5623 // it's worth handling here. 5624 if (N2C && N2C->isNullValue()) 5625 return N1; 5626 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5627 VT.getVectorElementType() == MVT::i1) 5628 return getNode(ISD::XOR, DL, VT, N1, N2); 5629 break; 5630 case ISD::MUL: 5631 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5632 assert(N1.getValueType() == N2.getValueType() && 5633 N1.getValueType() == VT && "Binary operator types must match!"); 5634 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5635 return getNode(ISD::AND, DL, VT, N1, N2); 5636 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5637 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5638 const APInt &N2CImm = N2C->getAPIntValue(); 5639 return getVScale(DL, VT, MulImm * N2CImm); 5640 } 5641 break; 5642 case ISD::UDIV: 5643 case ISD::UREM: 5644 case ISD::MULHU: 5645 case ISD::MULHS: 5646 case ISD::SDIV: 5647 case ISD::SREM: 5648 case ISD::SADDSAT: 5649 case ISD::SSUBSAT: 5650 case ISD::UADDSAT: 5651 case ISD::USUBSAT: 5652 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5653 assert(N1.getValueType() == N2.getValueType() && 5654 N1.getValueType() == VT && "Binary operator types must match!"); 5655 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5656 // fold (add_sat x, y) -> (or x, y) for bool types. 5657 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5658 return getNode(ISD::OR, DL, VT, N1, N2); 5659 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5660 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5661 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5662 } 5663 break; 5664 case ISD::SMIN: 5665 case ISD::UMAX: 5666 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5667 assert(N1.getValueType() == N2.getValueType() && 5668 N1.getValueType() == VT && "Binary operator types must match!"); 5669 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5670 return getNode(ISD::OR, DL, VT, N1, N2); 5671 break; 5672 case ISD::SMAX: 5673 case ISD::UMIN: 5674 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5675 assert(N1.getValueType() == N2.getValueType() && 5676 N1.getValueType() == VT && "Binary operator types must match!"); 5677 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5678 return getNode(ISD::AND, DL, VT, N1, N2); 5679 break; 5680 case ISD::FADD: 5681 case ISD::FSUB: 5682 case ISD::FMUL: 5683 case ISD::FDIV: 5684 case ISD::FREM: 5685 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5686 assert(N1.getValueType() == N2.getValueType() && 5687 N1.getValueType() == VT && "Binary operator types must match!"); 5688 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5689 return V; 5690 break; 5691 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5692 assert(N1.getValueType() == VT && 5693 N1.getValueType().isFloatingPoint() && 5694 N2.getValueType().isFloatingPoint() && 5695 "Invalid FCOPYSIGN!"); 5696 break; 5697 case ISD::SHL: 5698 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5699 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5700 const APInt &ShiftImm = N2C->getAPIntValue(); 5701 return getVScale(DL, VT, MulImm << ShiftImm); 5702 } 5703 LLVM_FALLTHROUGH; 5704 case ISD::SRA: 5705 case ISD::SRL: 5706 if (SDValue V = simplifyShift(N1, N2)) 5707 return V; 5708 LLVM_FALLTHROUGH; 5709 case ISD::ROTL: 5710 case ISD::ROTR: 5711 assert(VT == N1.getValueType() && 5712 "Shift operators return type must be the same as their first arg"); 5713 assert(VT.isInteger() && N2.getValueType().isInteger() && 5714 "Shifts only work on integers"); 5715 assert((!VT.isVector() || VT == N2.getValueType()) && 5716 "Vector shift amounts must be in the same as their first arg"); 5717 // Verify that the shift amount VT is big enough to hold valid shift 5718 // amounts. This catches things like trying to shift an i1024 value by an 5719 // i8, which is easy to fall into in generic code that uses 5720 // TLI.getShiftAmount(). 5721 assert(N2.getValueType().getScalarSizeInBits() >= 5722 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5723 "Invalid use of small shift amount with oversized value!"); 5724 5725 // Always fold shifts of i1 values so the code generator doesn't need to 5726 // handle them. Since we know the size of the shift has to be less than the 5727 // size of the value, the shift/rotate count is guaranteed to be zero. 5728 if (VT == MVT::i1) 5729 return N1; 5730 if (N2C && N2C->isNullValue()) 5731 return N1; 5732 break; 5733 case ISD::FP_ROUND: 5734 assert(VT.isFloatingPoint() && 5735 N1.getValueType().isFloatingPoint() && 5736 VT.bitsLE(N1.getValueType()) && 5737 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5738 "Invalid FP_ROUND!"); 5739 if (N1.getValueType() == VT) return N1; // noop conversion. 5740 break; 5741 case ISD::AssertSext: 5742 case ISD::AssertZext: { 5743 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5744 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5745 assert(VT.isInteger() && EVT.isInteger() && 5746 "Cannot *_EXTEND_INREG FP types"); 5747 assert(!EVT.isVector() && 5748 "AssertSExt/AssertZExt type should be the vector element type " 5749 "rather than the vector type!"); 5750 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5751 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5752 break; 5753 } 5754 case ISD::SIGN_EXTEND_INREG: { 5755 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5756 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5757 assert(VT.isInteger() && EVT.isInteger() && 5758 "Cannot *_EXTEND_INREG FP types"); 5759 assert(EVT.isVector() == VT.isVector() && 5760 "SIGN_EXTEND_INREG type should be vector iff the operand " 5761 "type is vector!"); 5762 assert((!EVT.isVector() || 5763 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5764 "Vector element counts must match in SIGN_EXTEND_INREG"); 5765 assert(EVT.bitsLE(VT) && "Not extending!"); 5766 if (EVT == VT) return N1; // Not actually extending 5767 5768 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5769 unsigned FromBits = EVT.getScalarSizeInBits(); 5770 Val <<= Val.getBitWidth() - FromBits; 5771 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5772 return getConstant(Val, DL, ConstantVT); 5773 }; 5774 5775 if (N1C) { 5776 const APInt &Val = N1C->getAPIntValue(); 5777 return SignExtendInReg(Val, VT); 5778 } 5779 5780 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5781 SmallVector<SDValue, 8> Ops; 5782 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5783 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5784 SDValue Op = N1.getOperand(i); 5785 if (Op.isUndef()) { 5786 Ops.push_back(getUNDEF(OpVT)); 5787 continue; 5788 } 5789 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5790 APInt Val = C->getAPIntValue(); 5791 Ops.push_back(SignExtendInReg(Val, OpVT)); 5792 } 5793 return getBuildVector(VT, DL, Ops); 5794 } 5795 break; 5796 } 5797 case ISD::FP_TO_SINT_SAT: 5798 case ISD::FP_TO_UINT_SAT: { 5799 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5800 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5801 assert(N1.getValueType().isVector() == VT.isVector() && 5802 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5803 "vector!"); 5804 assert((!VT.isVector() || VT.getVectorNumElements() == 5805 N1.getValueType().getVectorNumElements()) && 5806 "Vector element counts must match in FP_TO_*INT_SAT"); 5807 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5808 "Type to saturate to must be a scalar."); 5809 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5810 "Not extending!"); 5811 break; 5812 } 5813 case ISD::EXTRACT_VECTOR_ELT: 5814 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5815 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5816 element type of the vector."); 5817 5818 // Extract from an undefined value or using an undefined index is undefined. 5819 if (N1.isUndef() || N2.isUndef()) 5820 return getUNDEF(VT); 5821 5822 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5823 // vectors. For scalable vectors we will provide appropriate support for 5824 // dealing with arbitrary indices. 5825 if (N2C && N1.getValueType().isFixedLengthVector() && 5826 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5827 return getUNDEF(VT); 5828 5829 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5830 // expanding copies of large vectors from registers. This only works for 5831 // fixed length vectors, since we need to know the exact number of 5832 // elements. 5833 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5834 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5835 unsigned Factor = 5836 N1.getOperand(0).getValueType().getVectorNumElements(); 5837 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5838 N1.getOperand(N2C->getZExtValue() / Factor), 5839 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5840 } 5841 5842 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5843 // lowering is expanding large vector constants. 5844 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5845 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5846 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5847 N1.getValueType().isFixedLengthVector()) && 5848 "BUILD_VECTOR used for scalable vectors"); 5849 unsigned Index = 5850 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5851 SDValue Elt = N1.getOperand(Index); 5852 5853 if (VT != Elt.getValueType()) 5854 // If the vector element type is not legal, the BUILD_VECTOR operands 5855 // are promoted and implicitly truncated, and the result implicitly 5856 // extended. Make that explicit here. 5857 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5858 5859 return Elt; 5860 } 5861 5862 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5863 // operations are lowered to scalars. 5864 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5865 // If the indices are the same, return the inserted element else 5866 // if the indices are known different, extract the element from 5867 // the original vector. 5868 SDValue N1Op2 = N1.getOperand(2); 5869 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5870 5871 if (N1Op2C && N2C) { 5872 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5873 if (VT == N1.getOperand(1).getValueType()) 5874 return N1.getOperand(1); 5875 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5876 } 5877 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5878 } 5879 } 5880 5881 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5882 // when vector types are scalarized and v1iX is legal. 5883 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5884 // Here we are completely ignoring the extract element index (N2), 5885 // which is fine for fixed width vectors, since any index other than 0 5886 // is undefined anyway. However, this cannot be ignored for scalable 5887 // vectors - in theory we could support this, but we don't want to do this 5888 // without a profitability check. 5889 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5890 N1.getValueType().isFixedLengthVector() && 5891 N1.getValueType().getVectorNumElements() == 1) { 5892 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5893 N1.getOperand(1)); 5894 } 5895 break; 5896 case ISD::EXTRACT_ELEMENT: 5897 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5898 assert(!N1.getValueType().isVector() && !VT.isVector() && 5899 (N1.getValueType().isInteger() == VT.isInteger()) && 5900 N1.getValueType() != VT && 5901 "Wrong types for EXTRACT_ELEMENT!"); 5902 5903 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5904 // 64-bit integers into 32-bit parts. Instead of building the extract of 5905 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5906 if (N1.getOpcode() == ISD::BUILD_PAIR) 5907 return N1.getOperand(N2C->getZExtValue()); 5908 5909 // EXTRACT_ELEMENT of a constant int is also very common. 5910 if (N1C) { 5911 unsigned ElementSize = VT.getSizeInBits(); 5912 unsigned Shift = ElementSize * N2C->getZExtValue(); 5913 const APInt &Val = N1C->getAPIntValue(); 5914 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5915 } 5916 break; 5917 case ISD::EXTRACT_SUBVECTOR: { 5918 EVT N1VT = N1.getValueType(); 5919 assert(VT.isVector() && N1VT.isVector() && 5920 "Extract subvector VTs must be vectors!"); 5921 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5922 "Extract subvector VTs must have the same element type!"); 5923 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5924 "Cannot extract a scalable vector from a fixed length vector!"); 5925 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5926 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5927 "Extract subvector must be from larger vector to smaller vector!"); 5928 assert(N2C && "Extract subvector index must be a constant"); 5929 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5930 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5931 N1VT.getVectorMinNumElements()) && 5932 "Extract subvector overflow!"); 5933 assert(N2C->getAPIntValue().getBitWidth() == 5934 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5935 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5936 5937 // Trivial extraction. 5938 if (VT == N1VT) 5939 return N1; 5940 5941 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5942 if (N1.isUndef()) 5943 return getUNDEF(VT); 5944 5945 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5946 // the concat have the same type as the extract. 5947 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5948 VT == N1.getOperand(0).getValueType()) { 5949 unsigned Factor = VT.getVectorMinNumElements(); 5950 return N1.getOperand(N2C->getZExtValue() / Factor); 5951 } 5952 5953 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5954 // during shuffle legalization. 5955 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5956 VT == N1.getOperand(1).getValueType()) 5957 return N1.getOperand(1); 5958 break; 5959 } 5960 } 5961 5962 // Perform trivial constant folding. 5963 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5964 return SV; 5965 5966 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5967 return V; 5968 5969 // Canonicalize an UNDEF to the RHS, even over a constant. 5970 if (N1.isUndef()) { 5971 if (TLI->isCommutativeBinOp(Opcode)) { 5972 std::swap(N1, N2); 5973 } else { 5974 switch (Opcode) { 5975 case ISD::SIGN_EXTEND_INREG: 5976 case ISD::SUB: 5977 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5978 case ISD::UDIV: 5979 case ISD::SDIV: 5980 case ISD::UREM: 5981 case ISD::SREM: 5982 case ISD::SSUBSAT: 5983 case ISD::USUBSAT: 5984 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5985 } 5986 } 5987 } 5988 5989 // Fold a bunch of operators when the RHS is undef. 5990 if (N2.isUndef()) { 5991 switch (Opcode) { 5992 case ISD::XOR: 5993 if (N1.isUndef()) 5994 // Handle undef ^ undef -> 0 special case. This is a common 5995 // idiom (misuse). 5996 return getConstant(0, DL, VT); 5997 LLVM_FALLTHROUGH; 5998 case ISD::ADD: 5999 case ISD::SUB: 6000 case ISD::UDIV: 6001 case ISD::SDIV: 6002 case ISD::UREM: 6003 case ISD::SREM: 6004 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6005 case ISD::MUL: 6006 case ISD::AND: 6007 case ISD::SSUBSAT: 6008 case ISD::USUBSAT: 6009 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6010 case ISD::OR: 6011 case ISD::SADDSAT: 6012 case ISD::UADDSAT: 6013 return getAllOnesConstant(DL, VT); 6014 } 6015 } 6016 6017 // Memoize this node if possible. 6018 SDNode *N; 6019 SDVTList VTs = getVTList(VT); 6020 SDValue Ops[] = {N1, N2}; 6021 if (VT != MVT::Glue) { 6022 FoldingSetNodeID ID; 6023 AddNodeIDNode(ID, Opcode, VTs, Ops); 6024 void *IP = nullptr; 6025 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6026 E->intersectFlagsWith(Flags); 6027 return SDValue(E, 0); 6028 } 6029 6030 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6031 N->setFlags(Flags); 6032 createOperands(N, Ops); 6033 CSEMap.InsertNode(N, IP); 6034 } else { 6035 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6036 createOperands(N, Ops); 6037 } 6038 6039 InsertNode(N); 6040 SDValue V = SDValue(N, 0); 6041 NewSDValueDbgMsg(V, "Creating new node: ", this); 6042 return V; 6043 } 6044 6045 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6046 SDValue N1, SDValue N2, SDValue N3) { 6047 SDNodeFlags Flags; 6048 if (Inserter) 6049 Flags = Inserter->getFlags(); 6050 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6051 } 6052 6053 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6054 SDValue N1, SDValue N2, SDValue N3, 6055 const SDNodeFlags Flags) { 6056 assert(N1.getOpcode() != ISD::DELETED_NODE && 6057 N2.getOpcode() != ISD::DELETED_NODE && 6058 N3.getOpcode() != ISD::DELETED_NODE && 6059 "Operand is DELETED_NODE!"); 6060 // Perform various simplifications. 6061 switch (Opcode) { 6062 case ISD::FMA: { 6063 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6064 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6065 N3.getValueType() == VT && "FMA types must match!"); 6066 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6067 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6068 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6069 if (N1CFP && N2CFP && N3CFP) { 6070 APFloat V1 = N1CFP->getValueAPF(); 6071 const APFloat &V2 = N2CFP->getValueAPF(); 6072 const APFloat &V3 = N3CFP->getValueAPF(); 6073 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6074 return getConstantFP(V1, DL, VT); 6075 } 6076 break; 6077 } 6078 case ISD::BUILD_VECTOR: { 6079 // Attempt to simplify BUILD_VECTOR. 6080 SDValue Ops[] = {N1, N2, N3}; 6081 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6082 return V; 6083 break; 6084 } 6085 case ISD::CONCAT_VECTORS: { 6086 SDValue Ops[] = {N1, N2, N3}; 6087 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6088 return V; 6089 break; 6090 } 6091 case ISD::SETCC: { 6092 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6093 assert(N1.getValueType() == N2.getValueType() && 6094 "SETCC operands must have the same type!"); 6095 assert(VT.isVector() == N1.getValueType().isVector() && 6096 "SETCC type should be vector iff the operand type is vector!"); 6097 assert((!VT.isVector() || VT.getVectorElementCount() == 6098 N1.getValueType().getVectorElementCount()) && 6099 "SETCC vector element counts must match!"); 6100 // Use FoldSetCC to simplify SETCC's. 6101 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6102 return V; 6103 // Vector constant folding. 6104 SDValue Ops[] = {N1, N2, N3}; 6105 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 6106 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6107 return V; 6108 } 6109 break; 6110 } 6111 case ISD::SELECT: 6112 case ISD::VSELECT: 6113 if (SDValue V = simplifySelect(N1, N2, N3)) 6114 return V; 6115 break; 6116 case ISD::VECTOR_SHUFFLE: 6117 llvm_unreachable("should use getVectorShuffle constructor!"); 6118 case ISD::INSERT_VECTOR_ELT: { 6119 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6120 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6121 // for scalable vectors where we will generate appropriate code to 6122 // deal with out-of-bounds cases correctly. 6123 if (N3C && N1.getValueType().isFixedLengthVector() && 6124 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6125 return getUNDEF(VT); 6126 6127 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6128 if (N3.isUndef()) 6129 return getUNDEF(VT); 6130 6131 // If the inserted element is an UNDEF, just use the input vector. 6132 if (N2.isUndef()) 6133 return N1; 6134 6135 break; 6136 } 6137 case ISD::INSERT_SUBVECTOR: { 6138 // Inserting undef into undef is still undef. 6139 if (N1.isUndef() && N2.isUndef()) 6140 return getUNDEF(VT); 6141 6142 EVT N2VT = N2.getValueType(); 6143 assert(VT == N1.getValueType() && 6144 "Dest and insert subvector source types must match!"); 6145 assert(VT.isVector() && N2VT.isVector() && 6146 "Insert subvector VTs must be vectors!"); 6147 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6148 "Cannot insert a scalable vector into a fixed length vector!"); 6149 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6150 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6151 "Insert subvector must be from smaller vector to larger vector!"); 6152 assert(isa<ConstantSDNode>(N3) && 6153 "Insert subvector index must be constant"); 6154 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6155 (N2VT.getVectorMinNumElements() + 6156 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6157 VT.getVectorMinNumElements()) && 6158 "Insert subvector overflow!"); 6159 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6160 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6161 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6162 6163 // Trivial insertion. 6164 if (VT == N2VT) 6165 return N2; 6166 6167 // If this is an insert of an extracted vector into an undef vector, we 6168 // can just use the input to the extract. 6169 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6170 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6171 return N2.getOperand(0); 6172 break; 6173 } 6174 case ISD::BITCAST: 6175 // Fold bit_convert nodes from a type to themselves. 6176 if (N1.getValueType() == VT) 6177 return N1; 6178 break; 6179 } 6180 6181 // Memoize node if it doesn't produce a flag. 6182 SDNode *N; 6183 SDVTList VTs = getVTList(VT); 6184 SDValue Ops[] = {N1, N2, N3}; 6185 if (VT != MVT::Glue) { 6186 FoldingSetNodeID ID; 6187 AddNodeIDNode(ID, Opcode, VTs, Ops); 6188 void *IP = nullptr; 6189 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6190 E->intersectFlagsWith(Flags); 6191 return SDValue(E, 0); 6192 } 6193 6194 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6195 N->setFlags(Flags); 6196 createOperands(N, Ops); 6197 CSEMap.InsertNode(N, IP); 6198 } else { 6199 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6200 createOperands(N, Ops); 6201 } 6202 6203 InsertNode(N); 6204 SDValue V = SDValue(N, 0); 6205 NewSDValueDbgMsg(V, "Creating new node: ", this); 6206 return V; 6207 } 6208 6209 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6210 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6211 SDValue Ops[] = { N1, N2, N3, N4 }; 6212 return getNode(Opcode, DL, VT, Ops); 6213 } 6214 6215 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6216 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6217 SDValue N5) { 6218 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6219 return getNode(Opcode, DL, VT, Ops); 6220 } 6221 6222 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6223 /// the incoming stack arguments to be loaded from the stack. 6224 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6225 SmallVector<SDValue, 8> ArgChains; 6226 6227 // Include the original chain at the beginning of the list. When this is 6228 // used by target LowerCall hooks, this helps legalize find the 6229 // CALLSEQ_BEGIN node. 6230 ArgChains.push_back(Chain); 6231 6232 // Add a chain value for each stack argument. 6233 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6234 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6235 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6236 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6237 if (FI->getIndex() < 0) 6238 ArgChains.push_back(SDValue(L, 1)); 6239 6240 // Build a tokenfactor for all the chains. 6241 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6242 } 6243 6244 /// getMemsetValue - Vectorized representation of the memset value 6245 /// operand. 6246 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6247 const SDLoc &dl) { 6248 assert(!Value.isUndef()); 6249 6250 unsigned NumBits = VT.getScalarSizeInBits(); 6251 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6252 assert(C->getAPIntValue().getBitWidth() == 8); 6253 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6254 if (VT.isInteger()) { 6255 bool IsOpaque = VT.getSizeInBits() > 64 || 6256 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6257 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6258 } 6259 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6260 VT); 6261 } 6262 6263 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6264 EVT IntVT = VT.getScalarType(); 6265 if (!IntVT.isInteger()) 6266 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6267 6268 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6269 if (NumBits > 8) { 6270 // Use a multiplication with 0x010101... to extend the input to the 6271 // required length. 6272 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6273 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6274 DAG.getConstant(Magic, dl, IntVT)); 6275 } 6276 6277 if (VT != Value.getValueType() && !VT.isInteger()) 6278 Value = DAG.getBitcast(VT.getScalarType(), Value); 6279 if (VT != Value.getValueType()) 6280 Value = DAG.getSplatBuildVector(VT, dl, Value); 6281 6282 return Value; 6283 } 6284 6285 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6286 /// used when a memcpy is turned into a memset when the source is a constant 6287 /// string ptr. 6288 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6289 const TargetLowering &TLI, 6290 const ConstantDataArraySlice &Slice) { 6291 // Handle vector with all elements zero. 6292 if (Slice.Array == nullptr) { 6293 if (VT.isInteger()) 6294 return DAG.getConstant(0, dl, VT); 6295 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6296 return DAG.getConstantFP(0.0, dl, VT); 6297 if (VT.isVector()) { 6298 unsigned NumElts = VT.getVectorNumElements(); 6299 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6300 return DAG.getNode(ISD::BITCAST, dl, VT, 6301 DAG.getConstant(0, dl, 6302 EVT::getVectorVT(*DAG.getContext(), 6303 EltVT, NumElts))); 6304 } 6305 llvm_unreachable("Expected type!"); 6306 } 6307 6308 assert(!VT.isVector() && "Can't handle vector type here!"); 6309 unsigned NumVTBits = VT.getSizeInBits(); 6310 unsigned NumVTBytes = NumVTBits / 8; 6311 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6312 6313 APInt Val(NumVTBits, 0); 6314 if (DAG.getDataLayout().isLittleEndian()) { 6315 for (unsigned i = 0; i != NumBytes; ++i) 6316 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6317 } else { 6318 for (unsigned i = 0; i != NumBytes; ++i) 6319 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6320 } 6321 6322 // If the "cost" of materializing the integer immediate is less than the cost 6323 // of a load, then it is cost effective to turn the load into the immediate. 6324 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6325 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6326 return DAG.getConstant(Val, dl, VT); 6327 return SDValue(nullptr, 0); 6328 } 6329 6330 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6331 const SDLoc &DL, 6332 const SDNodeFlags Flags) { 6333 EVT VT = Base.getValueType(); 6334 SDValue Index; 6335 6336 if (Offset.isScalable()) 6337 Index = getVScale(DL, Base.getValueType(), 6338 APInt(Base.getValueSizeInBits().getFixedSize(), 6339 Offset.getKnownMinSize())); 6340 else 6341 Index = getConstant(Offset.getFixedSize(), DL, VT); 6342 6343 return getMemBasePlusOffset(Base, Index, DL, Flags); 6344 } 6345 6346 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6347 const SDLoc &DL, 6348 const SDNodeFlags Flags) { 6349 assert(Offset.getValueType().isInteger()); 6350 EVT BasePtrVT = Ptr.getValueType(); 6351 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6352 } 6353 6354 /// Returns true if memcpy source is constant data. 6355 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6356 uint64_t SrcDelta = 0; 6357 GlobalAddressSDNode *G = nullptr; 6358 if (Src.getOpcode() == ISD::GlobalAddress) 6359 G = cast<GlobalAddressSDNode>(Src); 6360 else if (Src.getOpcode() == ISD::ADD && 6361 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6362 Src.getOperand(1).getOpcode() == ISD::Constant) { 6363 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6364 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6365 } 6366 if (!G) 6367 return false; 6368 6369 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6370 SrcDelta + G->getOffset()); 6371 } 6372 6373 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6374 SelectionDAG &DAG) { 6375 // On Darwin, -Os means optimize for size without hurting performance, so 6376 // only really optimize for size when -Oz (MinSize) is used. 6377 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6378 return MF.getFunction().hasMinSize(); 6379 return DAG.shouldOptForSize(); 6380 } 6381 6382 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6383 SmallVector<SDValue, 32> &OutChains, unsigned From, 6384 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6385 SmallVector<SDValue, 16> &OutStoreChains) { 6386 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6387 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6388 SmallVector<SDValue, 16> GluedLoadChains; 6389 for (unsigned i = From; i < To; ++i) { 6390 OutChains.push_back(OutLoadChains[i]); 6391 GluedLoadChains.push_back(OutLoadChains[i]); 6392 } 6393 6394 // Chain for all loads. 6395 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6396 GluedLoadChains); 6397 6398 for (unsigned i = From; i < To; ++i) { 6399 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6400 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6401 ST->getBasePtr(), ST->getMemoryVT(), 6402 ST->getMemOperand()); 6403 OutChains.push_back(NewStore); 6404 } 6405 } 6406 6407 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6408 SDValue Chain, SDValue Dst, SDValue Src, 6409 uint64_t Size, Align Alignment, 6410 bool isVol, bool AlwaysInline, 6411 MachinePointerInfo DstPtrInfo, 6412 MachinePointerInfo SrcPtrInfo, 6413 const AAMDNodes &AAInfo) { 6414 // Turn a memcpy of undef to nop. 6415 // FIXME: We need to honor volatile even is Src is undef. 6416 if (Src.isUndef()) 6417 return Chain; 6418 6419 // Expand memcpy to a series of load and store ops if the size operand falls 6420 // below a certain threshold. 6421 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6422 // rather than maybe a humongous number of loads and stores. 6423 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6424 const DataLayout &DL = DAG.getDataLayout(); 6425 LLVMContext &C = *DAG.getContext(); 6426 std::vector<EVT> MemOps; 6427 bool DstAlignCanChange = false; 6428 MachineFunction &MF = DAG.getMachineFunction(); 6429 MachineFrameInfo &MFI = MF.getFrameInfo(); 6430 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6431 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6432 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6433 DstAlignCanChange = true; 6434 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6435 if (!SrcAlign || Alignment > *SrcAlign) 6436 SrcAlign = Alignment; 6437 assert(SrcAlign && "SrcAlign must be set"); 6438 ConstantDataArraySlice Slice; 6439 // If marked as volatile, perform a copy even when marked as constant. 6440 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6441 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6442 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6443 const MemOp Op = isZeroConstant 6444 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6445 /*IsZeroMemset*/ true, isVol) 6446 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6447 *SrcAlign, isVol, CopyFromConstant); 6448 if (!TLI.findOptimalMemOpLowering( 6449 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6450 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6451 return SDValue(); 6452 6453 if (DstAlignCanChange) { 6454 Type *Ty = MemOps[0].getTypeForEVT(C); 6455 Align NewAlign = DL.getABITypeAlign(Ty); 6456 6457 // Don't promote to an alignment that would require dynamic stack 6458 // realignment. 6459 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6460 if (!TRI->hasStackRealignment(MF)) 6461 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6462 NewAlign = NewAlign / 2; 6463 6464 if (NewAlign > Alignment) { 6465 // Give the stack frame object a larger alignment if needed. 6466 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6467 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6468 Alignment = NewAlign; 6469 } 6470 } 6471 6472 // Prepare AAInfo for loads/stores after lowering this memcpy. 6473 AAMDNodes NewAAInfo = AAInfo; 6474 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6475 6476 MachineMemOperand::Flags MMOFlags = 6477 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6478 SmallVector<SDValue, 16> OutLoadChains; 6479 SmallVector<SDValue, 16> OutStoreChains; 6480 SmallVector<SDValue, 32> OutChains; 6481 unsigned NumMemOps = MemOps.size(); 6482 uint64_t SrcOff = 0, DstOff = 0; 6483 for (unsigned i = 0; i != NumMemOps; ++i) { 6484 EVT VT = MemOps[i]; 6485 unsigned VTSize = VT.getSizeInBits() / 8; 6486 SDValue Value, Store; 6487 6488 if (VTSize > Size) { 6489 // Issuing an unaligned load / store pair that overlaps with the previous 6490 // pair. Adjust the offset accordingly. 6491 assert(i == NumMemOps-1 && i != 0); 6492 SrcOff -= VTSize - Size; 6493 DstOff -= VTSize - Size; 6494 } 6495 6496 if (CopyFromConstant && 6497 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6498 // It's unlikely a store of a vector immediate can be done in a single 6499 // instruction. It would require a load from a constantpool first. 6500 // We only handle zero vectors here. 6501 // FIXME: Handle other cases where store of vector immediate is done in 6502 // a single instruction. 6503 ConstantDataArraySlice SubSlice; 6504 if (SrcOff < Slice.Length) { 6505 SubSlice = Slice; 6506 SubSlice.move(SrcOff); 6507 } else { 6508 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6509 SubSlice.Array = nullptr; 6510 SubSlice.Offset = 0; 6511 SubSlice.Length = VTSize; 6512 } 6513 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6514 if (Value.getNode()) { 6515 Store = DAG.getStore( 6516 Chain, dl, Value, 6517 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6518 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6519 OutChains.push_back(Store); 6520 } 6521 } 6522 6523 if (!Store.getNode()) { 6524 // The type might not be legal for the target. This should only happen 6525 // if the type is smaller than a legal type, as on PPC, so the right 6526 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6527 // to Load/Store if NVT==VT. 6528 // FIXME does the case above also need this? 6529 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6530 assert(NVT.bitsGE(VT)); 6531 6532 bool isDereferenceable = 6533 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6534 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6535 if (isDereferenceable) 6536 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6537 6538 Value = DAG.getExtLoad( 6539 ISD::EXTLOAD, dl, NVT, Chain, 6540 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6541 SrcPtrInfo.getWithOffset(SrcOff), VT, 6542 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6543 OutLoadChains.push_back(Value.getValue(1)); 6544 6545 Store = DAG.getTruncStore( 6546 Chain, dl, Value, 6547 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6548 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6549 OutStoreChains.push_back(Store); 6550 } 6551 SrcOff += VTSize; 6552 DstOff += VTSize; 6553 Size -= VTSize; 6554 } 6555 6556 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6557 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6558 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6559 6560 if (NumLdStInMemcpy) { 6561 // It may be that memcpy might be converted to memset if it's memcpy 6562 // of constants. In such a case, we won't have loads and stores, but 6563 // just stores. In the absence of loads, there is nothing to gang up. 6564 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6565 // If target does not care, just leave as it. 6566 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6567 OutChains.push_back(OutLoadChains[i]); 6568 OutChains.push_back(OutStoreChains[i]); 6569 } 6570 } else { 6571 // Ld/St less than/equal limit set by target. 6572 if (NumLdStInMemcpy <= GluedLdStLimit) { 6573 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6574 NumLdStInMemcpy, OutLoadChains, 6575 OutStoreChains); 6576 } else { 6577 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6578 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6579 unsigned GlueIter = 0; 6580 6581 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6582 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6583 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6584 6585 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6586 OutLoadChains, OutStoreChains); 6587 GlueIter += GluedLdStLimit; 6588 } 6589 6590 // Residual ld/st. 6591 if (RemainingLdStInMemcpy) { 6592 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6593 RemainingLdStInMemcpy, OutLoadChains, 6594 OutStoreChains); 6595 } 6596 } 6597 } 6598 } 6599 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6600 } 6601 6602 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6603 SDValue Chain, SDValue Dst, SDValue Src, 6604 uint64_t Size, Align Alignment, 6605 bool isVol, bool AlwaysInline, 6606 MachinePointerInfo DstPtrInfo, 6607 MachinePointerInfo SrcPtrInfo, 6608 const AAMDNodes &AAInfo) { 6609 // Turn a memmove of undef to nop. 6610 // FIXME: We need to honor volatile even is Src is undef. 6611 if (Src.isUndef()) 6612 return Chain; 6613 6614 // Expand memmove to a series of load and store ops if the size operand falls 6615 // below a certain threshold. 6616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6617 const DataLayout &DL = DAG.getDataLayout(); 6618 LLVMContext &C = *DAG.getContext(); 6619 std::vector<EVT> MemOps; 6620 bool DstAlignCanChange = false; 6621 MachineFunction &MF = DAG.getMachineFunction(); 6622 MachineFrameInfo &MFI = MF.getFrameInfo(); 6623 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6624 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6625 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6626 DstAlignCanChange = true; 6627 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6628 if (!SrcAlign || Alignment > *SrcAlign) 6629 SrcAlign = Alignment; 6630 assert(SrcAlign && "SrcAlign must be set"); 6631 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6632 if (!TLI.findOptimalMemOpLowering( 6633 MemOps, Limit, 6634 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6635 /*IsVolatile*/ true), 6636 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6637 MF.getFunction().getAttributes())) 6638 return SDValue(); 6639 6640 if (DstAlignCanChange) { 6641 Type *Ty = MemOps[0].getTypeForEVT(C); 6642 Align NewAlign = DL.getABITypeAlign(Ty); 6643 if (NewAlign > Alignment) { 6644 // Give the stack frame object a larger alignment if needed. 6645 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6646 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6647 Alignment = NewAlign; 6648 } 6649 } 6650 6651 // Prepare AAInfo for loads/stores after lowering this memmove. 6652 AAMDNodes NewAAInfo = AAInfo; 6653 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6654 6655 MachineMemOperand::Flags MMOFlags = 6656 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6657 uint64_t SrcOff = 0, DstOff = 0; 6658 SmallVector<SDValue, 8> LoadValues; 6659 SmallVector<SDValue, 8> LoadChains; 6660 SmallVector<SDValue, 8> OutChains; 6661 unsigned NumMemOps = MemOps.size(); 6662 for (unsigned i = 0; i < NumMemOps; i++) { 6663 EVT VT = MemOps[i]; 6664 unsigned VTSize = VT.getSizeInBits() / 8; 6665 SDValue Value; 6666 6667 bool isDereferenceable = 6668 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6669 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6670 if (isDereferenceable) 6671 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6672 6673 Value = DAG.getLoad( 6674 VT, dl, Chain, 6675 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6676 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6677 LoadValues.push_back(Value); 6678 LoadChains.push_back(Value.getValue(1)); 6679 SrcOff += VTSize; 6680 } 6681 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6682 OutChains.clear(); 6683 for (unsigned i = 0; i < NumMemOps; i++) { 6684 EVT VT = MemOps[i]; 6685 unsigned VTSize = VT.getSizeInBits() / 8; 6686 SDValue Store; 6687 6688 Store = DAG.getStore( 6689 Chain, dl, LoadValues[i], 6690 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6691 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6692 OutChains.push_back(Store); 6693 DstOff += VTSize; 6694 } 6695 6696 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6697 } 6698 6699 /// Lower the call to 'memset' intrinsic function into a series of store 6700 /// operations. 6701 /// 6702 /// \param DAG Selection DAG where lowered code is placed. 6703 /// \param dl Link to corresponding IR location. 6704 /// \param Chain Control flow dependency. 6705 /// \param Dst Pointer to destination memory location. 6706 /// \param Src Value of byte to write into the memory. 6707 /// \param Size Number of bytes to write. 6708 /// \param Alignment Alignment of the destination in bytes. 6709 /// \param isVol True if destination is volatile. 6710 /// \param DstPtrInfo IR information on the memory pointer. 6711 /// \returns New head in the control flow, if lowering was successful, empty 6712 /// SDValue otherwise. 6713 /// 6714 /// The function tries to replace 'llvm.memset' intrinsic with several store 6715 /// operations and value calculation code. This is usually profitable for small 6716 /// memory size. 6717 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6718 SDValue Chain, SDValue Dst, SDValue Src, 6719 uint64_t Size, Align Alignment, bool isVol, 6720 MachinePointerInfo DstPtrInfo, 6721 const AAMDNodes &AAInfo) { 6722 // Turn a memset of undef to nop. 6723 // FIXME: We need to honor volatile even is Src is undef. 6724 if (Src.isUndef()) 6725 return Chain; 6726 6727 // Expand memset to a series of load/store ops if the size operand 6728 // falls below a certain threshold. 6729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6730 std::vector<EVT> MemOps; 6731 bool DstAlignCanChange = false; 6732 MachineFunction &MF = DAG.getMachineFunction(); 6733 MachineFrameInfo &MFI = MF.getFrameInfo(); 6734 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6735 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6736 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6737 DstAlignCanChange = true; 6738 bool IsZeroVal = 6739 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6740 if (!TLI.findOptimalMemOpLowering( 6741 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6742 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6743 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6744 return SDValue(); 6745 6746 if (DstAlignCanChange) { 6747 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6748 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6749 if (NewAlign > Alignment) { 6750 // Give the stack frame object a larger alignment if needed. 6751 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6752 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6753 Alignment = NewAlign; 6754 } 6755 } 6756 6757 SmallVector<SDValue, 8> OutChains; 6758 uint64_t DstOff = 0; 6759 unsigned NumMemOps = MemOps.size(); 6760 6761 // Find the largest store and generate the bit pattern for it. 6762 EVT LargestVT = MemOps[0]; 6763 for (unsigned i = 1; i < NumMemOps; i++) 6764 if (MemOps[i].bitsGT(LargestVT)) 6765 LargestVT = MemOps[i]; 6766 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6767 6768 // Prepare AAInfo for loads/stores after lowering this memset. 6769 AAMDNodes NewAAInfo = AAInfo; 6770 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6771 6772 for (unsigned i = 0; i < NumMemOps; i++) { 6773 EVT VT = MemOps[i]; 6774 unsigned VTSize = VT.getSizeInBits() / 8; 6775 if (VTSize > Size) { 6776 // Issuing an unaligned load / store pair that overlaps with the previous 6777 // pair. Adjust the offset accordingly. 6778 assert(i == NumMemOps-1 && i != 0); 6779 DstOff -= VTSize - Size; 6780 } 6781 6782 // If this store is smaller than the largest store see whether we can get 6783 // the smaller value for free with a truncate. 6784 SDValue Value = MemSetValue; 6785 if (VT.bitsLT(LargestVT)) { 6786 if (!LargestVT.isVector() && !VT.isVector() && 6787 TLI.isTruncateFree(LargestVT, VT)) 6788 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6789 else 6790 Value = getMemsetValue(Src, VT, DAG, dl); 6791 } 6792 assert(Value.getValueType() == VT && "Value with wrong type."); 6793 SDValue Store = DAG.getStore( 6794 Chain, dl, Value, 6795 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6796 DstPtrInfo.getWithOffset(DstOff), Alignment, 6797 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6798 NewAAInfo); 6799 OutChains.push_back(Store); 6800 DstOff += VT.getSizeInBits() / 8; 6801 Size -= VTSize; 6802 } 6803 6804 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6805 } 6806 6807 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6808 unsigned AS) { 6809 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6810 // pointer operands can be losslessly bitcasted to pointers of address space 0 6811 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6812 report_fatal_error("cannot lower memory intrinsic in address space " + 6813 Twine(AS)); 6814 } 6815 } 6816 6817 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6818 SDValue Src, SDValue Size, Align Alignment, 6819 bool isVol, bool AlwaysInline, bool isTailCall, 6820 MachinePointerInfo DstPtrInfo, 6821 MachinePointerInfo SrcPtrInfo, 6822 const AAMDNodes &AAInfo) { 6823 // Check to see if we should lower the memcpy to loads and stores first. 6824 // For cases within the target-specified limits, this is the best choice. 6825 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6826 if (ConstantSize) { 6827 // Memcpy with size zero? Just return the original chain. 6828 if (ConstantSize->isNullValue()) 6829 return Chain; 6830 6831 SDValue Result = getMemcpyLoadsAndStores( 6832 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6833 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6834 if (Result.getNode()) 6835 return Result; 6836 } 6837 6838 // Then check to see if we should lower the memcpy with target-specific 6839 // code. If the target chooses to do this, this is the next best. 6840 if (TSI) { 6841 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6842 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6843 DstPtrInfo, SrcPtrInfo); 6844 if (Result.getNode()) 6845 return Result; 6846 } 6847 6848 // If we really need inline code and the target declined to provide it, 6849 // use a (potentially long) sequence of loads and stores. 6850 if (AlwaysInline) { 6851 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6852 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6853 ConstantSize->getZExtValue(), Alignment, 6854 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6855 } 6856 6857 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6858 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6859 6860 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6861 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6862 // respect volatile, so they may do things like read or write memory 6863 // beyond the given memory regions. But fixing this isn't easy, and most 6864 // people don't care. 6865 6866 // Emit a library call. 6867 TargetLowering::ArgListTy Args; 6868 TargetLowering::ArgListEntry Entry; 6869 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6870 Entry.Node = Dst; Args.push_back(Entry); 6871 Entry.Node = Src; Args.push_back(Entry); 6872 6873 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6874 Entry.Node = Size; Args.push_back(Entry); 6875 // FIXME: pass in SDLoc 6876 TargetLowering::CallLoweringInfo CLI(*this); 6877 CLI.setDebugLoc(dl) 6878 .setChain(Chain) 6879 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6880 Dst.getValueType().getTypeForEVT(*getContext()), 6881 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6882 TLI->getPointerTy(getDataLayout())), 6883 std::move(Args)) 6884 .setDiscardResult() 6885 .setTailCall(isTailCall); 6886 6887 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6888 return CallResult.second; 6889 } 6890 6891 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6892 SDValue Dst, unsigned DstAlign, 6893 SDValue Src, unsigned SrcAlign, 6894 SDValue Size, Type *SizeTy, 6895 unsigned ElemSz, bool isTailCall, 6896 MachinePointerInfo DstPtrInfo, 6897 MachinePointerInfo SrcPtrInfo) { 6898 // Emit a library call. 6899 TargetLowering::ArgListTy Args; 6900 TargetLowering::ArgListEntry Entry; 6901 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6902 Entry.Node = Dst; 6903 Args.push_back(Entry); 6904 6905 Entry.Node = Src; 6906 Args.push_back(Entry); 6907 6908 Entry.Ty = SizeTy; 6909 Entry.Node = Size; 6910 Args.push_back(Entry); 6911 6912 RTLIB::Libcall LibraryCall = 6913 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6914 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6915 report_fatal_error("Unsupported element size"); 6916 6917 TargetLowering::CallLoweringInfo CLI(*this); 6918 CLI.setDebugLoc(dl) 6919 .setChain(Chain) 6920 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6921 Type::getVoidTy(*getContext()), 6922 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6923 TLI->getPointerTy(getDataLayout())), 6924 std::move(Args)) 6925 .setDiscardResult() 6926 .setTailCall(isTailCall); 6927 6928 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6929 return CallResult.second; 6930 } 6931 6932 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6933 SDValue Src, SDValue Size, Align Alignment, 6934 bool isVol, bool isTailCall, 6935 MachinePointerInfo DstPtrInfo, 6936 MachinePointerInfo SrcPtrInfo, 6937 const AAMDNodes &AAInfo) { 6938 // Check to see if we should lower the memmove to loads and stores first. 6939 // For cases within the target-specified limits, this is the best choice. 6940 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6941 if (ConstantSize) { 6942 // Memmove with size zero? Just return the original chain. 6943 if (ConstantSize->isNullValue()) 6944 return Chain; 6945 6946 SDValue Result = getMemmoveLoadsAndStores( 6947 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6948 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6949 if (Result.getNode()) 6950 return Result; 6951 } 6952 6953 // Then check to see if we should lower the memmove with target-specific 6954 // code. If the target chooses to do this, this is the next best. 6955 if (TSI) { 6956 SDValue Result = 6957 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6958 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6959 if (Result.getNode()) 6960 return Result; 6961 } 6962 6963 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6964 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6965 6966 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6967 // not be safe. See memcpy above for more details. 6968 6969 // Emit a library call. 6970 TargetLowering::ArgListTy Args; 6971 TargetLowering::ArgListEntry Entry; 6972 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6973 Entry.Node = Dst; Args.push_back(Entry); 6974 Entry.Node = Src; Args.push_back(Entry); 6975 6976 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6977 Entry.Node = Size; Args.push_back(Entry); 6978 // FIXME: pass in SDLoc 6979 TargetLowering::CallLoweringInfo CLI(*this); 6980 CLI.setDebugLoc(dl) 6981 .setChain(Chain) 6982 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6983 Dst.getValueType().getTypeForEVT(*getContext()), 6984 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6985 TLI->getPointerTy(getDataLayout())), 6986 std::move(Args)) 6987 .setDiscardResult() 6988 .setTailCall(isTailCall); 6989 6990 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6991 return CallResult.second; 6992 } 6993 6994 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6995 SDValue Dst, unsigned DstAlign, 6996 SDValue Src, unsigned SrcAlign, 6997 SDValue Size, Type *SizeTy, 6998 unsigned ElemSz, bool isTailCall, 6999 MachinePointerInfo DstPtrInfo, 7000 MachinePointerInfo SrcPtrInfo) { 7001 // Emit a library call. 7002 TargetLowering::ArgListTy Args; 7003 TargetLowering::ArgListEntry Entry; 7004 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7005 Entry.Node = Dst; 7006 Args.push_back(Entry); 7007 7008 Entry.Node = Src; 7009 Args.push_back(Entry); 7010 7011 Entry.Ty = SizeTy; 7012 Entry.Node = Size; 7013 Args.push_back(Entry); 7014 7015 RTLIB::Libcall LibraryCall = 7016 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7017 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7018 report_fatal_error("Unsupported element size"); 7019 7020 TargetLowering::CallLoweringInfo CLI(*this); 7021 CLI.setDebugLoc(dl) 7022 .setChain(Chain) 7023 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7024 Type::getVoidTy(*getContext()), 7025 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7026 TLI->getPointerTy(getDataLayout())), 7027 std::move(Args)) 7028 .setDiscardResult() 7029 .setTailCall(isTailCall); 7030 7031 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7032 return CallResult.second; 7033 } 7034 7035 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7036 SDValue Src, SDValue Size, Align Alignment, 7037 bool isVol, bool isTailCall, 7038 MachinePointerInfo DstPtrInfo, 7039 const AAMDNodes &AAInfo) { 7040 // Check to see if we should lower the memset to stores first. 7041 // For cases within the target-specified limits, this is the best choice. 7042 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7043 if (ConstantSize) { 7044 // Memset with size zero? Just return the original chain. 7045 if (ConstantSize->isNullValue()) 7046 return Chain; 7047 7048 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7049 ConstantSize->getZExtValue(), Alignment, 7050 isVol, DstPtrInfo, AAInfo); 7051 7052 if (Result.getNode()) 7053 return Result; 7054 } 7055 7056 // Then check to see if we should lower the memset with target-specific 7057 // code. If the target chooses to do this, this is the next best. 7058 if (TSI) { 7059 SDValue Result = TSI->EmitTargetCodeForMemset( 7060 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7061 if (Result.getNode()) 7062 return Result; 7063 } 7064 7065 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7066 7067 // Emit a library call. 7068 TargetLowering::ArgListTy Args; 7069 TargetLowering::ArgListEntry Entry; 7070 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7071 Args.push_back(Entry); 7072 Entry.Node = Src; 7073 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7074 Args.push_back(Entry); 7075 Entry.Node = Size; 7076 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7077 Args.push_back(Entry); 7078 7079 // FIXME: pass in SDLoc 7080 TargetLowering::CallLoweringInfo CLI(*this); 7081 CLI.setDebugLoc(dl) 7082 .setChain(Chain) 7083 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7084 Dst.getValueType().getTypeForEVT(*getContext()), 7085 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7086 TLI->getPointerTy(getDataLayout())), 7087 std::move(Args)) 7088 .setDiscardResult() 7089 .setTailCall(isTailCall); 7090 7091 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7092 return CallResult.second; 7093 } 7094 7095 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7096 SDValue Dst, unsigned DstAlign, 7097 SDValue Value, SDValue Size, Type *SizeTy, 7098 unsigned ElemSz, bool isTailCall, 7099 MachinePointerInfo DstPtrInfo) { 7100 // Emit a library call. 7101 TargetLowering::ArgListTy Args; 7102 TargetLowering::ArgListEntry Entry; 7103 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7104 Entry.Node = Dst; 7105 Args.push_back(Entry); 7106 7107 Entry.Ty = Type::getInt8Ty(*getContext()); 7108 Entry.Node = Value; 7109 Args.push_back(Entry); 7110 7111 Entry.Ty = SizeTy; 7112 Entry.Node = Size; 7113 Args.push_back(Entry); 7114 7115 RTLIB::Libcall LibraryCall = 7116 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7117 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7118 report_fatal_error("Unsupported element size"); 7119 7120 TargetLowering::CallLoweringInfo CLI(*this); 7121 CLI.setDebugLoc(dl) 7122 .setChain(Chain) 7123 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7124 Type::getVoidTy(*getContext()), 7125 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7126 TLI->getPointerTy(getDataLayout())), 7127 std::move(Args)) 7128 .setDiscardResult() 7129 .setTailCall(isTailCall); 7130 7131 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7132 return CallResult.second; 7133 } 7134 7135 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7136 SDVTList VTList, ArrayRef<SDValue> Ops, 7137 MachineMemOperand *MMO) { 7138 FoldingSetNodeID ID; 7139 ID.AddInteger(MemVT.getRawBits()); 7140 AddNodeIDNode(ID, Opcode, VTList, Ops); 7141 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7142 void* IP = nullptr; 7143 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7144 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7145 return SDValue(E, 0); 7146 } 7147 7148 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7149 VTList, MemVT, MMO); 7150 createOperands(N, Ops); 7151 7152 CSEMap.InsertNode(N, IP); 7153 InsertNode(N); 7154 return SDValue(N, 0); 7155 } 7156 7157 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7158 EVT MemVT, SDVTList VTs, SDValue Chain, 7159 SDValue Ptr, SDValue Cmp, SDValue Swp, 7160 MachineMemOperand *MMO) { 7161 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7162 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7163 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7164 7165 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7166 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7167 } 7168 7169 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7170 SDValue Chain, SDValue Ptr, SDValue Val, 7171 MachineMemOperand *MMO) { 7172 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7173 Opcode == ISD::ATOMIC_LOAD_SUB || 7174 Opcode == ISD::ATOMIC_LOAD_AND || 7175 Opcode == ISD::ATOMIC_LOAD_CLR || 7176 Opcode == ISD::ATOMIC_LOAD_OR || 7177 Opcode == ISD::ATOMIC_LOAD_XOR || 7178 Opcode == ISD::ATOMIC_LOAD_NAND || 7179 Opcode == ISD::ATOMIC_LOAD_MIN || 7180 Opcode == ISD::ATOMIC_LOAD_MAX || 7181 Opcode == ISD::ATOMIC_LOAD_UMIN || 7182 Opcode == ISD::ATOMIC_LOAD_UMAX || 7183 Opcode == ISD::ATOMIC_LOAD_FADD || 7184 Opcode == ISD::ATOMIC_LOAD_FSUB || 7185 Opcode == ISD::ATOMIC_SWAP || 7186 Opcode == ISD::ATOMIC_STORE) && 7187 "Invalid Atomic Op"); 7188 7189 EVT VT = Val.getValueType(); 7190 7191 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7192 getVTList(VT, MVT::Other); 7193 SDValue Ops[] = {Chain, Ptr, Val}; 7194 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7195 } 7196 7197 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7198 EVT VT, SDValue Chain, SDValue Ptr, 7199 MachineMemOperand *MMO) { 7200 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7201 7202 SDVTList VTs = getVTList(VT, MVT::Other); 7203 SDValue Ops[] = {Chain, Ptr}; 7204 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7205 } 7206 7207 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7208 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7209 if (Ops.size() == 1) 7210 return Ops[0]; 7211 7212 SmallVector<EVT, 4> VTs; 7213 VTs.reserve(Ops.size()); 7214 for (const SDValue &Op : Ops) 7215 VTs.push_back(Op.getValueType()); 7216 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7217 } 7218 7219 SDValue SelectionDAG::getMemIntrinsicNode( 7220 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7221 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7222 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7223 if (!Size && MemVT.isScalableVector()) 7224 Size = MemoryLocation::UnknownSize; 7225 else if (!Size) 7226 Size = MemVT.getStoreSize(); 7227 7228 MachineFunction &MF = getMachineFunction(); 7229 MachineMemOperand *MMO = 7230 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7231 7232 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7233 } 7234 7235 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7236 SDVTList VTList, 7237 ArrayRef<SDValue> Ops, EVT MemVT, 7238 MachineMemOperand *MMO) { 7239 assert((Opcode == ISD::INTRINSIC_VOID || 7240 Opcode == ISD::INTRINSIC_W_CHAIN || 7241 Opcode == ISD::PREFETCH || 7242 ((int)Opcode <= std::numeric_limits<int>::max() && 7243 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7244 "Opcode is not a memory-accessing opcode!"); 7245 7246 // Memoize the node unless it returns a flag. 7247 MemIntrinsicSDNode *N; 7248 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7249 FoldingSetNodeID ID; 7250 AddNodeIDNode(ID, Opcode, VTList, Ops); 7251 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7252 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7253 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7254 void *IP = nullptr; 7255 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7256 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7257 return SDValue(E, 0); 7258 } 7259 7260 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7261 VTList, MemVT, MMO); 7262 createOperands(N, Ops); 7263 7264 CSEMap.InsertNode(N, IP); 7265 } else { 7266 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7267 VTList, MemVT, MMO); 7268 createOperands(N, Ops); 7269 } 7270 InsertNode(N); 7271 SDValue V(N, 0); 7272 NewSDValueDbgMsg(V, "Creating new node: ", this); 7273 return V; 7274 } 7275 7276 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7277 SDValue Chain, int FrameIndex, 7278 int64_t Size, int64_t Offset) { 7279 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7280 const auto VTs = getVTList(MVT::Other); 7281 SDValue Ops[2] = { 7282 Chain, 7283 getFrameIndex(FrameIndex, 7284 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7285 true)}; 7286 7287 FoldingSetNodeID ID; 7288 AddNodeIDNode(ID, Opcode, VTs, Ops); 7289 ID.AddInteger(FrameIndex); 7290 ID.AddInteger(Size); 7291 ID.AddInteger(Offset); 7292 void *IP = nullptr; 7293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7294 return SDValue(E, 0); 7295 7296 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7297 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7298 createOperands(N, Ops); 7299 CSEMap.InsertNode(N, IP); 7300 InsertNode(N); 7301 SDValue V(N, 0); 7302 NewSDValueDbgMsg(V, "Creating new node: ", this); 7303 return V; 7304 } 7305 7306 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7307 uint64_t Guid, uint64_t Index, 7308 uint32_t Attr) { 7309 const unsigned Opcode = ISD::PSEUDO_PROBE; 7310 const auto VTs = getVTList(MVT::Other); 7311 SDValue Ops[] = {Chain}; 7312 FoldingSetNodeID ID; 7313 AddNodeIDNode(ID, Opcode, VTs, Ops); 7314 ID.AddInteger(Guid); 7315 ID.AddInteger(Index); 7316 void *IP = nullptr; 7317 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7318 return SDValue(E, 0); 7319 7320 auto *N = newSDNode<PseudoProbeSDNode>( 7321 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7322 createOperands(N, Ops); 7323 CSEMap.InsertNode(N, IP); 7324 InsertNode(N); 7325 SDValue V(N, 0); 7326 NewSDValueDbgMsg(V, "Creating new node: ", this); 7327 return V; 7328 } 7329 7330 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7331 /// MachinePointerInfo record from it. This is particularly useful because the 7332 /// code generator has many cases where it doesn't bother passing in a 7333 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7334 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7335 SelectionDAG &DAG, SDValue Ptr, 7336 int64_t Offset = 0) { 7337 // If this is FI+Offset, we can model it. 7338 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7339 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7340 FI->getIndex(), Offset); 7341 7342 // If this is (FI+Offset1)+Offset2, we can model it. 7343 if (Ptr.getOpcode() != ISD::ADD || 7344 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7345 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7346 return Info; 7347 7348 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7349 return MachinePointerInfo::getFixedStack( 7350 DAG.getMachineFunction(), FI, 7351 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7352 } 7353 7354 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7355 /// MachinePointerInfo record from it. This is particularly useful because the 7356 /// code generator has many cases where it doesn't bother passing in a 7357 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7358 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7359 SelectionDAG &DAG, SDValue Ptr, 7360 SDValue OffsetOp) { 7361 // If the 'Offset' value isn't a constant, we can't handle this. 7362 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7363 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7364 if (OffsetOp.isUndef()) 7365 return InferPointerInfo(Info, DAG, Ptr); 7366 return Info; 7367 } 7368 7369 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7370 EVT VT, const SDLoc &dl, SDValue Chain, 7371 SDValue Ptr, SDValue Offset, 7372 MachinePointerInfo PtrInfo, EVT MemVT, 7373 Align Alignment, 7374 MachineMemOperand::Flags MMOFlags, 7375 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7376 assert(Chain.getValueType() == MVT::Other && 7377 "Invalid chain type"); 7378 7379 MMOFlags |= MachineMemOperand::MOLoad; 7380 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7381 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7382 // clients. 7383 if (PtrInfo.V.isNull()) 7384 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7385 7386 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7387 MachineFunction &MF = getMachineFunction(); 7388 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7389 Alignment, AAInfo, Ranges); 7390 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7391 } 7392 7393 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7394 EVT VT, const SDLoc &dl, SDValue Chain, 7395 SDValue Ptr, SDValue Offset, EVT MemVT, 7396 MachineMemOperand *MMO) { 7397 if (VT == MemVT) { 7398 ExtType = ISD::NON_EXTLOAD; 7399 } else if (ExtType == ISD::NON_EXTLOAD) { 7400 assert(VT == MemVT && "Non-extending load from different memory type!"); 7401 } else { 7402 // Extending load. 7403 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7404 "Should only be an extending load, not truncating!"); 7405 assert(VT.isInteger() == MemVT.isInteger() && 7406 "Cannot convert from FP to Int or Int -> FP!"); 7407 assert(VT.isVector() == MemVT.isVector() && 7408 "Cannot use an ext load to convert to or from a vector!"); 7409 assert((!VT.isVector() || 7410 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7411 "Cannot use an ext load to change the number of vector elements!"); 7412 } 7413 7414 bool Indexed = AM != ISD::UNINDEXED; 7415 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7416 7417 SDVTList VTs = Indexed ? 7418 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7419 SDValue Ops[] = { Chain, Ptr, Offset }; 7420 FoldingSetNodeID ID; 7421 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7422 ID.AddInteger(MemVT.getRawBits()); 7423 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7424 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7425 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7426 void *IP = nullptr; 7427 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7428 cast<LoadSDNode>(E)->refineAlignment(MMO); 7429 return SDValue(E, 0); 7430 } 7431 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7432 ExtType, MemVT, MMO); 7433 createOperands(N, Ops); 7434 7435 CSEMap.InsertNode(N, IP); 7436 InsertNode(N); 7437 SDValue V(N, 0); 7438 NewSDValueDbgMsg(V, "Creating new node: ", this); 7439 return V; 7440 } 7441 7442 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7443 SDValue Ptr, MachinePointerInfo PtrInfo, 7444 MaybeAlign Alignment, 7445 MachineMemOperand::Flags MMOFlags, 7446 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7447 SDValue Undef = getUNDEF(Ptr.getValueType()); 7448 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7449 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7450 } 7451 7452 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7453 SDValue Ptr, MachineMemOperand *MMO) { 7454 SDValue Undef = getUNDEF(Ptr.getValueType()); 7455 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7456 VT, MMO); 7457 } 7458 7459 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7460 EVT VT, SDValue Chain, SDValue Ptr, 7461 MachinePointerInfo PtrInfo, EVT MemVT, 7462 MaybeAlign Alignment, 7463 MachineMemOperand::Flags MMOFlags, 7464 const AAMDNodes &AAInfo) { 7465 SDValue Undef = getUNDEF(Ptr.getValueType()); 7466 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7467 MemVT, Alignment, MMOFlags, AAInfo); 7468 } 7469 7470 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7471 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7472 MachineMemOperand *MMO) { 7473 SDValue Undef = getUNDEF(Ptr.getValueType()); 7474 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7475 MemVT, MMO); 7476 } 7477 7478 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7479 SDValue Base, SDValue Offset, 7480 ISD::MemIndexedMode AM) { 7481 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7482 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7483 // Don't propagate the invariant or dereferenceable flags. 7484 auto MMOFlags = 7485 LD->getMemOperand()->getFlags() & 7486 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7487 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7488 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7489 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7490 } 7491 7492 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7493 SDValue Ptr, MachinePointerInfo PtrInfo, 7494 Align Alignment, 7495 MachineMemOperand::Flags MMOFlags, 7496 const AAMDNodes &AAInfo) { 7497 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7498 7499 MMOFlags |= MachineMemOperand::MOStore; 7500 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7501 7502 if (PtrInfo.V.isNull()) 7503 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7504 7505 MachineFunction &MF = getMachineFunction(); 7506 uint64_t Size = 7507 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7508 MachineMemOperand *MMO = 7509 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7510 return getStore(Chain, dl, Val, Ptr, MMO); 7511 } 7512 7513 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7514 SDValue Ptr, MachineMemOperand *MMO) { 7515 assert(Chain.getValueType() == MVT::Other && 7516 "Invalid chain type"); 7517 EVT VT = Val.getValueType(); 7518 SDVTList VTs = getVTList(MVT::Other); 7519 SDValue Undef = getUNDEF(Ptr.getValueType()); 7520 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7521 FoldingSetNodeID ID; 7522 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7523 ID.AddInteger(VT.getRawBits()); 7524 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7525 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7526 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7527 void *IP = nullptr; 7528 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7529 cast<StoreSDNode>(E)->refineAlignment(MMO); 7530 return SDValue(E, 0); 7531 } 7532 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7533 ISD::UNINDEXED, false, VT, MMO); 7534 createOperands(N, Ops); 7535 7536 CSEMap.InsertNode(N, IP); 7537 InsertNode(N); 7538 SDValue V(N, 0); 7539 NewSDValueDbgMsg(V, "Creating new node: ", this); 7540 return V; 7541 } 7542 7543 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7544 SDValue Ptr, MachinePointerInfo PtrInfo, 7545 EVT SVT, Align Alignment, 7546 MachineMemOperand::Flags MMOFlags, 7547 const AAMDNodes &AAInfo) { 7548 assert(Chain.getValueType() == MVT::Other && 7549 "Invalid chain type"); 7550 7551 MMOFlags |= MachineMemOperand::MOStore; 7552 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7553 7554 if (PtrInfo.V.isNull()) 7555 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7556 7557 MachineFunction &MF = getMachineFunction(); 7558 MachineMemOperand *MMO = MF.getMachineMemOperand( 7559 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7560 Alignment, AAInfo); 7561 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7562 } 7563 7564 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7565 SDValue Ptr, EVT SVT, 7566 MachineMemOperand *MMO) { 7567 EVT VT = Val.getValueType(); 7568 7569 assert(Chain.getValueType() == MVT::Other && 7570 "Invalid chain type"); 7571 if (VT == SVT) 7572 return getStore(Chain, dl, Val, Ptr, MMO); 7573 7574 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7575 "Should only be a truncating store, not extending!"); 7576 assert(VT.isInteger() == SVT.isInteger() && 7577 "Can't do FP-INT conversion!"); 7578 assert(VT.isVector() == SVT.isVector() && 7579 "Cannot use trunc store to convert to or from a vector!"); 7580 assert((!VT.isVector() || 7581 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7582 "Cannot use trunc store to change the number of vector elements!"); 7583 7584 SDVTList VTs = getVTList(MVT::Other); 7585 SDValue Undef = getUNDEF(Ptr.getValueType()); 7586 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7587 FoldingSetNodeID ID; 7588 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7589 ID.AddInteger(SVT.getRawBits()); 7590 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7591 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7592 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7593 void *IP = nullptr; 7594 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7595 cast<StoreSDNode>(E)->refineAlignment(MMO); 7596 return SDValue(E, 0); 7597 } 7598 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7599 ISD::UNINDEXED, true, SVT, MMO); 7600 createOperands(N, Ops); 7601 7602 CSEMap.InsertNode(N, IP); 7603 InsertNode(N); 7604 SDValue V(N, 0); 7605 NewSDValueDbgMsg(V, "Creating new node: ", this); 7606 return V; 7607 } 7608 7609 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7610 SDValue Base, SDValue Offset, 7611 ISD::MemIndexedMode AM) { 7612 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7613 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7614 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7615 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7616 FoldingSetNodeID ID; 7617 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7618 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7619 ID.AddInteger(ST->getRawSubclassData()); 7620 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7621 void *IP = nullptr; 7622 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7623 return SDValue(E, 0); 7624 7625 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7626 ST->isTruncatingStore(), ST->getMemoryVT(), 7627 ST->getMemOperand()); 7628 createOperands(N, Ops); 7629 7630 CSEMap.InsertNode(N, IP); 7631 InsertNode(N); 7632 SDValue V(N, 0); 7633 NewSDValueDbgMsg(V, "Creating new node: ", this); 7634 return V; 7635 } 7636 7637 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7638 SDValue Base, SDValue Offset, SDValue Mask, 7639 SDValue PassThru, EVT MemVT, 7640 MachineMemOperand *MMO, 7641 ISD::MemIndexedMode AM, 7642 ISD::LoadExtType ExtTy, bool isExpanding) { 7643 bool Indexed = AM != ISD::UNINDEXED; 7644 assert((Indexed || Offset.isUndef()) && 7645 "Unindexed masked load with an offset!"); 7646 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7647 : getVTList(VT, MVT::Other); 7648 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7649 FoldingSetNodeID ID; 7650 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7651 ID.AddInteger(MemVT.getRawBits()); 7652 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7653 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7654 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7655 void *IP = nullptr; 7656 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7657 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7658 return SDValue(E, 0); 7659 } 7660 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7661 AM, ExtTy, isExpanding, MemVT, MMO); 7662 createOperands(N, Ops); 7663 7664 CSEMap.InsertNode(N, IP); 7665 InsertNode(N); 7666 SDValue V(N, 0); 7667 NewSDValueDbgMsg(V, "Creating new node: ", this); 7668 return V; 7669 } 7670 7671 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7672 SDValue Base, SDValue Offset, 7673 ISD::MemIndexedMode AM) { 7674 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7675 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7676 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7677 Offset, LD->getMask(), LD->getPassThru(), 7678 LD->getMemoryVT(), LD->getMemOperand(), AM, 7679 LD->getExtensionType(), LD->isExpandingLoad()); 7680 } 7681 7682 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7683 SDValue Val, SDValue Base, SDValue Offset, 7684 SDValue Mask, EVT MemVT, 7685 MachineMemOperand *MMO, 7686 ISD::MemIndexedMode AM, bool IsTruncating, 7687 bool IsCompressing) { 7688 assert(Chain.getValueType() == MVT::Other && 7689 "Invalid chain type"); 7690 bool Indexed = AM != ISD::UNINDEXED; 7691 assert((Indexed || Offset.isUndef()) && 7692 "Unindexed masked store with an offset!"); 7693 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7694 : getVTList(MVT::Other); 7695 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7696 FoldingSetNodeID ID; 7697 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7698 ID.AddInteger(MemVT.getRawBits()); 7699 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7700 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7701 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7702 void *IP = nullptr; 7703 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7704 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7705 return SDValue(E, 0); 7706 } 7707 auto *N = 7708 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7709 IsTruncating, IsCompressing, MemVT, MMO); 7710 createOperands(N, Ops); 7711 7712 CSEMap.InsertNode(N, IP); 7713 InsertNode(N); 7714 SDValue V(N, 0); 7715 NewSDValueDbgMsg(V, "Creating new node: ", this); 7716 return V; 7717 } 7718 7719 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7720 SDValue Base, SDValue Offset, 7721 ISD::MemIndexedMode AM) { 7722 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7723 assert(ST->getOffset().isUndef() && 7724 "Masked store is already a indexed store!"); 7725 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7726 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7727 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7728 } 7729 7730 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 7731 ArrayRef<SDValue> Ops, 7732 MachineMemOperand *MMO, 7733 ISD::MemIndexType IndexType, 7734 ISD::LoadExtType ExtTy) { 7735 assert(Ops.size() == 6 && "Incompatible number of operands"); 7736 7737 FoldingSetNodeID ID; 7738 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7739 ID.AddInteger(MemVT.getRawBits()); 7740 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7741 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 7742 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7743 void *IP = nullptr; 7744 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7745 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7746 return SDValue(E, 0); 7747 } 7748 7749 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 7750 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7751 VTs, MemVT, MMO, IndexType, ExtTy); 7752 createOperands(N, Ops); 7753 7754 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7755 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7756 assert(N->getMask().getValueType().getVectorElementCount() == 7757 N->getValueType(0).getVectorElementCount() && 7758 "Vector width mismatch between mask and data"); 7759 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7760 N->getValueType(0).getVectorElementCount().isScalable() && 7761 "Scalable flags of index and data do not match"); 7762 assert(ElementCount::isKnownGE( 7763 N->getIndex().getValueType().getVectorElementCount(), 7764 N->getValueType(0).getVectorElementCount()) && 7765 "Vector width mismatch between index and data"); 7766 assert(isa<ConstantSDNode>(N->getScale()) && 7767 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7768 "Scale should be a constant power of 2"); 7769 7770 CSEMap.InsertNode(N, IP); 7771 InsertNode(N); 7772 SDValue V(N, 0); 7773 NewSDValueDbgMsg(V, "Creating new node: ", this); 7774 return V; 7775 } 7776 7777 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 7778 ArrayRef<SDValue> Ops, 7779 MachineMemOperand *MMO, 7780 ISD::MemIndexType IndexType, 7781 bool IsTrunc) { 7782 assert(Ops.size() == 6 && "Incompatible number of operands"); 7783 7784 FoldingSetNodeID ID; 7785 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7786 ID.AddInteger(MemVT.getRawBits()); 7787 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7788 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 7789 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7790 void *IP = nullptr; 7791 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7792 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7793 return SDValue(E, 0); 7794 } 7795 7796 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 7797 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7798 VTs, MemVT, MMO, IndexType, IsTrunc); 7799 createOperands(N, Ops); 7800 7801 assert(N->getMask().getValueType().getVectorElementCount() == 7802 N->getValue().getValueType().getVectorElementCount() && 7803 "Vector width mismatch between mask and data"); 7804 assert( 7805 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7806 N->getValue().getValueType().getVectorElementCount().isScalable() && 7807 "Scalable flags of index and data do not match"); 7808 assert(ElementCount::isKnownGE( 7809 N->getIndex().getValueType().getVectorElementCount(), 7810 N->getValue().getValueType().getVectorElementCount()) && 7811 "Vector width mismatch between index and data"); 7812 assert(isa<ConstantSDNode>(N->getScale()) && 7813 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7814 "Scale should be a constant power of 2"); 7815 7816 CSEMap.InsertNode(N, IP); 7817 InsertNode(N); 7818 SDValue V(N, 0); 7819 NewSDValueDbgMsg(V, "Creating new node: ", this); 7820 return V; 7821 } 7822 7823 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7824 // select undef, T, F --> T (if T is a constant), otherwise F 7825 // select, ?, undef, F --> F 7826 // select, ?, T, undef --> T 7827 if (Cond.isUndef()) 7828 return isConstantValueOfAnyType(T) ? T : F; 7829 if (T.isUndef()) 7830 return F; 7831 if (F.isUndef()) 7832 return T; 7833 7834 // select true, T, F --> T 7835 // select false, T, F --> F 7836 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7837 return CondC->isNullValue() ? F : T; 7838 7839 // TODO: This should simplify VSELECT with constant condition using something 7840 // like this (but check boolean contents to be complete?): 7841 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7842 // return T; 7843 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7844 // return F; 7845 7846 // select ?, T, T --> T 7847 if (T == F) 7848 return T; 7849 7850 return SDValue(); 7851 } 7852 7853 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7854 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7855 if (X.isUndef()) 7856 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7857 // shift X, undef --> undef (because it may shift by the bitwidth) 7858 if (Y.isUndef()) 7859 return getUNDEF(X.getValueType()); 7860 7861 // shift 0, Y --> 0 7862 // shift X, 0 --> X 7863 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7864 return X; 7865 7866 // shift X, C >= bitwidth(X) --> undef 7867 // All vector elements must be too big (or undef) to avoid partial undefs. 7868 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7869 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7870 }; 7871 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7872 return getUNDEF(X.getValueType()); 7873 7874 return SDValue(); 7875 } 7876 7877 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7878 SDNodeFlags Flags) { 7879 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7880 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7881 // operation is poison. That result can be relaxed to undef. 7882 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7883 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7884 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7885 (YC && YC->getValueAPF().isNaN()); 7886 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7887 (YC && YC->getValueAPF().isInfinity()); 7888 7889 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7890 return getUNDEF(X.getValueType()); 7891 7892 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7893 return getUNDEF(X.getValueType()); 7894 7895 if (!YC) 7896 return SDValue(); 7897 7898 // X + -0.0 --> X 7899 if (Opcode == ISD::FADD) 7900 if (YC->getValueAPF().isNegZero()) 7901 return X; 7902 7903 // X - +0.0 --> X 7904 if (Opcode == ISD::FSUB) 7905 if (YC->getValueAPF().isPosZero()) 7906 return X; 7907 7908 // X * 1.0 --> X 7909 // X / 1.0 --> X 7910 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7911 if (YC->getValueAPF().isExactlyValue(1.0)) 7912 return X; 7913 7914 // X * 0.0 --> 0.0 7915 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7916 if (YC->getValueAPF().isZero()) 7917 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7918 7919 return SDValue(); 7920 } 7921 7922 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7923 SDValue Ptr, SDValue SV, unsigned Align) { 7924 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7925 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7926 } 7927 7928 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7929 ArrayRef<SDUse> Ops) { 7930 switch (Ops.size()) { 7931 case 0: return getNode(Opcode, DL, VT); 7932 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7933 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7934 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7935 default: break; 7936 } 7937 7938 // Copy from an SDUse array into an SDValue array for use with 7939 // the regular getNode logic. 7940 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7941 return getNode(Opcode, DL, VT, NewOps); 7942 } 7943 7944 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7945 ArrayRef<SDValue> Ops) { 7946 SDNodeFlags Flags; 7947 if (Inserter) 7948 Flags = Inserter->getFlags(); 7949 return getNode(Opcode, DL, VT, Ops, Flags); 7950 } 7951 7952 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7953 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7954 unsigned NumOps = Ops.size(); 7955 switch (NumOps) { 7956 case 0: return getNode(Opcode, DL, VT); 7957 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7958 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7959 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7960 default: break; 7961 } 7962 7963 #ifndef NDEBUG 7964 for (auto &Op : Ops) 7965 assert(Op.getOpcode() != ISD::DELETED_NODE && 7966 "Operand is DELETED_NODE!"); 7967 #endif 7968 7969 switch (Opcode) { 7970 default: break; 7971 case ISD::BUILD_VECTOR: 7972 // Attempt to simplify BUILD_VECTOR. 7973 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7974 return V; 7975 break; 7976 case ISD::CONCAT_VECTORS: 7977 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7978 return V; 7979 break; 7980 case ISD::SELECT_CC: 7981 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7982 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7983 "LHS and RHS of condition must have same type!"); 7984 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7985 "True and False arms of SelectCC must have same type!"); 7986 assert(Ops[2].getValueType() == VT && 7987 "select_cc node must be of same type as true and false value!"); 7988 break; 7989 case ISD::BR_CC: 7990 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7991 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7992 "LHS/RHS of comparison should match types!"); 7993 break; 7994 } 7995 7996 // Memoize nodes. 7997 SDNode *N; 7998 SDVTList VTs = getVTList(VT); 7999 8000 if (VT != MVT::Glue) { 8001 FoldingSetNodeID ID; 8002 AddNodeIDNode(ID, Opcode, VTs, Ops); 8003 void *IP = nullptr; 8004 8005 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8006 return SDValue(E, 0); 8007 8008 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8009 createOperands(N, Ops); 8010 8011 CSEMap.InsertNode(N, IP); 8012 } else { 8013 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8014 createOperands(N, Ops); 8015 } 8016 8017 N->setFlags(Flags); 8018 InsertNode(N); 8019 SDValue V(N, 0); 8020 NewSDValueDbgMsg(V, "Creating new node: ", this); 8021 return V; 8022 } 8023 8024 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8025 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8026 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8027 } 8028 8029 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8030 ArrayRef<SDValue> Ops) { 8031 SDNodeFlags Flags; 8032 if (Inserter) 8033 Flags = Inserter->getFlags(); 8034 return getNode(Opcode, DL, VTList, Ops, Flags); 8035 } 8036 8037 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8038 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8039 if (VTList.NumVTs == 1) 8040 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8041 8042 #ifndef NDEBUG 8043 for (auto &Op : Ops) 8044 assert(Op.getOpcode() != ISD::DELETED_NODE && 8045 "Operand is DELETED_NODE!"); 8046 #endif 8047 8048 switch (Opcode) { 8049 case ISD::STRICT_FP_EXTEND: 8050 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8051 "Invalid STRICT_FP_EXTEND!"); 8052 assert(VTList.VTs[0].isFloatingPoint() && 8053 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8054 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8055 "STRICT_FP_EXTEND result type should be vector iff the operand " 8056 "type is vector!"); 8057 assert((!VTList.VTs[0].isVector() || 8058 VTList.VTs[0].getVectorNumElements() == 8059 Ops[1].getValueType().getVectorNumElements()) && 8060 "Vector element count mismatch!"); 8061 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8062 "Invalid fpext node, dst <= src!"); 8063 break; 8064 case ISD::STRICT_FP_ROUND: 8065 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8066 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8067 "STRICT_FP_ROUND result type should be vector iff the operand " 8068 "type is vector!"); 8069 assert((!VTList.VTs[0].isVector() || 8070 VTList.VTs[0].getVectorNumElements() == 8071 Ops[1].getValueType().getVectorNumElements()) && 8072 "Vector element count mismatch!"); 8073 assert(VTList.VTs[0].isFloatingPoint() && 8074 Ops[1].getValueType().isFloatingPoint() && 8075 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8076 isa<ConstantSDNode>(Ops[2]) && 8077 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8078 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8079 "Invalid STRICT_FP_ROUND!"); 8080 break; 8081 #if 0 8082 // FIXME: figure out how to safely handle things like 8083 // int foo(int x) { return 1 << (x & 255); } 8084 // int bar() { return foo(256); } 8085 case ISD::SRA_PARTS: 8086 case ISD::SRL_PARTS: 8087 case ISD::SHL_PARTS: 8088 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8089 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8090 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8091 else if (N3.getOpcode() == ISD::AND) 8092 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8093 // If the and is only masking out bits that cannot effect the shift, 8094 // eliminate the and. 8095 unsigned NumBits = VT.getScalarSizeInBits()*2; 8096 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8097 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8098 } 8099 break; 8100 #endif 8101 } 8102 8103 // Memoize the node unless it returns a flag. 8104 SDNode *N; 8105 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8106 FoldingSetNodeID ID; 8107 AddNodeIDNode(ID, Opcode, VTList, Ops); 8108 void *IP = nullptr; 8109 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8110 return SDValue(E, 0); 8111 8112 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8113 createOperands(N, Ops); 8114 CSEMap.InsertNode(N, IP); 8115 } else { 8116 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8117 createOperands(N, Ops); 8118 } 8119 8120 N->setFlags(Flags); 8121 InsertNode(N); 8122 SDValue V(N, 0); 8123 NewSDValueDbgMsg(V, "Creating new node: ", this); 8124 return V; 8125 } 8126 8127 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8128 SDVTList VTList) { 8129 return getNode(Opcode, DL, VTList, None); 8130 } 8131 8132 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8133 SDValue N1) { 8134 SDValue Ops[] = { N1 }; 8135 return getNode(Opcode, DL, VTList, Ops); 8136 } 8137 8138 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8139 SDValue N1, SDValue N2) { 8140 SDValue Ops[] = { N1, N2 }; 8141 return getNode(Opcode, DL, VTList, Ops); 8142 } 8143 8144 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8145 SDValue N1, SDValue N2, SDValue N3) { 8146 SDValue Ops[] = { N1, N2, N3 }; 8147 return getNode(Opcode, DL, VTList, Ops); 8148 } 8149 8150 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8151 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8152 SDValue Ops[] = { N1, N2, N3, N4 }; 8153 return getNode(Opcode, DL, VTList, Ops); 8154 } 8155 8156 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8157 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8158 SDValue N5) { 8159 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8160 return getNode(Opcode, DL, VTList, Ops); 8161 } 8162 8163 SDVTList SelectionDAG::getVTList(EVT VT) { 8164 return makeVTList(SDNode::getValueTypeList(VT), 1); 8165 } 8166 8167 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8168 FoldingSetNodeID ID; 8169 ID.AddInteger(2U); 8170 ID.AddInteger(VT1.getRawBits()); 8171 ID.AddInteger(VT2.getRawBits()); 8172 8173 void *IP = nullptr; 8174 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8175 if (!Result) { 8176 EVT *Array = Allocator.Allocate<EVT>(2); 8177 Array[0] = VT1; 8178 Array[1] = VT2; 8179 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8180 VTListMap.InsertNode(Result, IP); 8181 } 8182 return Result->getSDVTList(); 8183 } 8184 8185 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8186 FoldingSetNodeID ID; 8187 ID.AddInteger(3U); 8188 ID.AddInteger(VT1.getRawBits()); 8189 ID.AddInteger(VT2.getRawBits()); 8190 ID.AddInteger(VT3.getRawBits()); 8191 8192 void *IP = nullptr; 8193 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8194 if (!Result) { 8195 EVT *Array = Allocator.Allocate<EVT>(3); 8196 Array[0] = VT1; 8197 Array[1] = VT2; 8198 Array[2] = VT3; 8199 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8200 VTListMap.InsertNode(Result, IP); 8201 } 8202 return Result->getSDVTList(); 8203 } 8204 8205 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8206 FoldingSetNodeID ID; 8207 ID.AddInteger(4U); 8208 ID.AddInteger(VT1.getRawBits()); 8209 ID.AddInteger(VT2.getRawBits()); 8210 ID.AddInteger(VT3.getRawBits()); 8211 ID.AddInteger(VT4.getRawBits()); 8212 8213 void *IP = nullptr; 8214 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8215 if (!Result) { 8216 EVT *Array = Allocator.Allocate<EVT>(4); 8217 Array[0] = VT1; 8218 Array[1] = VT2; 8219 Array[2] = VT3; 8220 Array[3] = VT4; 8221 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8222 VTListMap.InsertNode(Result, IP); 8223 } 8224 return Result->getSDVTList(); 8225 } 8226 8227 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8228 unsigned NumVTs = VTs.size(); 8229 FoldingSetNodeID ID; 8230 ID.AddInteger(NumVTs); 8231 for (unsigned index = 0; index < NumVTs; index++) { 8232 ID.AddInteger(VTs[index].getRawBits()); 8233 } 8234 8235 void *IP = nullptr; 8236 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8237 if (!Result) { 8238 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8239 llvm::copy(VTs, Array); 8240 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8241 VTListMap.InsertNode(Result, IP); 8242 } 8243 return Result->getSDVTList(); 8244 } 8245 8246 8247 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8248 /// specified operands. If the resultant node already exists in the DAG, 8249 /// this does not modify the specified node, instead it returns the node that 8250 /// already exists. If the resultant node does not exist in the DAG, the 8251 /// input node is returned. As a degenerate case, if you specify the same 8252 /// input operands as the node already has, the input node is returned. 8253 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8254 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8255 8256 // Check to see if there is no change. 8257 if (Op == N->getOperand(0)) return N; 8258 8259 // See if the modified node already exists. 8260 void *InsertPos = nullptr; 8261 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8262 return Existing; 8263 8264 // Nope it doesn't. Remove the node from its current place in the maps. 8265 if (InsertPos) 8266 if (!RemoveNodeFromCSEMaps(N)) 8267 InsertPos = nullptr; 8268 8269 // Now we update the operands. 8270 N->OperandList[0].set(Op); 8271 8272 updateDivergence(N); 8273 // If this gets put into a CSE map, add it. 8274 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8275 return N; 8276 } 8277 8278 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8279 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8280 8281 // Check to see if there is no change. 8282 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8283 return N; // No operands changed, just return the input node. 8284 8285 // See if the modified node already exists. 8286 void *InsertPos = nullptr; 8287 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8288 return Existing; 8289 8290 // Nope it doesn't. Remove the node from its current place in the maps. 8291 if (InsertPos) 8292 if (!RemoveNodeFromCSEMaps(N)) 8293 InsertPos = nullptr; 8294 8295 // Now we update the operands. 8296 if (N->OperandList[0] != Op1) 8297 N->OperandList[0].set(Op1); 8298 if (N->OperandList[1] != Op2) 8299 N->OperandList[1].set(Op2); 8300 8301 updateDivergence(N); 8302 // If this gets put into a CSE map, add it. 8303 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8304 return N; 8305 } 8306 8307 SDNode *SelectionDAG:: 8308 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8309 SDValue Ops[] = { Op1, Op2, Op3 }; 8310 return UpdateNodeOperands(N, Ops); 8311 } 8312 8313 SDNode *SelectionDAG:: 8314 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8315 SDValue Op3, SDValue Op4) { 8316 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8317 return UpdateNodeOperands(N, Ops); 8318 } 8319 8320 SDNode *SelectionDAG:: 8321 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8322 SDValue Op3, SDValue Op4, SDValue Op5) { 8323 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8324 return UpdateNodeOperands(N, Ops); 8325 } 8326 8327 SDNode *SelectionDAG:: 8328 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8329 unsigned NumOps = Ops.size(); 8330 assert(N->getNumOperands() == NumOps && 8331 "Update with wrong number of operands"); 8332 8333 // If no operands changed just return the input node. 8334 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8335 return N; 8336 8337 // See if the modified node already exists. 8338 void *InsertPos = nullptr; 8339 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8340 return Existing; 8341 8342 // Nope it doesn't. Remove the node from its current place in the maps. 8343 if (InsertPos) 8344 if (!RemoveNodeFromCSEMaps(N)) 8345 InsertPos = nullptr; 8346 8347 // Now we update the operands. 8348 for (unsigned i = 0; i != NumOps; ++i) 8349 if (N->OperandList[i] != Ops[i]) 8350 N->OperandList[i].set(Ops[i]); 8351 8352 updateDivergence(N); 8353 // If this gets put into a CSE map, add it. 8354 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8355 return N; 8356 } 8357 8358 /// DropOperands - Release the operands and set this node to have 8359 /// zero operands. 8360 void SDNode::DropOperands() { 8361 // Unlike the code in MorphNodeTo that does this, we don't need to 8362 // watch for dead nodes here. 8363 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8364 SDUse &Use = *I++; 8365 Use.set(SDValue()); 8366 } 8367 } 8368 8369 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8370 ArrayRef<MachineMemOperand *> NewMemRefs) { 8371 if (NewMemRefs.empty()) { 8372 N->clearMemRefs(); 8373 return; 8374 } 8375 8376 // Check if we can avoid allocating by storing a single reference directly. 8377 if (NewMemRefs.size() == 1) { 8378 N->MemRefs = NewMemRefs[0]; 8379 N->NumMemRefs = 1; 8380 return; 8381 } 8382 8383 MachineMemOperand **MemRefsBuffer = 8384 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8385 llvm::copy(NewMemRefs, MemRefsBuffer); 8386 N->MemRefs = MemRefsBuffer; 8387 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8388 } 8389 8390 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8391 /// machine opcode. 8392 /// 8393 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8394 EVT VT) { 8395 SDVTList VTs = getVTList(VT); 8396 return SelectNodeTo(N, MachineOpc, VTs, None); 8397 } 8398 8399 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8400 EVT VT, SDValue Op1) { 8401 SDVTList VTs = getVTList(VT); 8402 SDValue Ops[] = { Op1 }; 8403 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8404 } 8405 8406 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8407 EVT VT, SDValue Op1, 8408 SDValue Op2) { 8409 SDVTList VTs = getVTList(VT); 8410 SDValue Ops[] = { Op1, Op2 }; 8411 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8412 } 8413 8414 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8415 EVT VT, SDValue Op1, 8416 SDValue Op2, SDValue Op3) { 8417 SDVTList VTs = getVTList(VT); 8418 SDValue Ops[] = { Op1, Op2, Op3 }; 8419 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8420 } 8421 8422 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8423 EVT VT, ArrayRef<SDValue> Ops) { 8424 SDVTList VTs = getVTList(VT); 8425 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8426 } 8427 8428 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8429 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8430 SDVTList VTs = getVTList(VT1, VT2); 8431 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8432 } 8433 8434 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8435 EVT VT1, EVT VT2) { 8436 SDVTList VTs = getVTList(VT1, VT2); 8437 return SelectNodeTo(N, MachineOpc, VTs, None); 8438 } 8439 8440 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8441 EVT VT1, EVT VT2, EVT VT3, 8442 ArrayRef<SDValue> Ops) { 8443 SDVTList VTs = getVTList(VT1, VT2, VT3); 8444 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8445 } 8446 8447 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8448 EVT VT1, EVT VT2, 8449 SDValue Op1, SDValue Op2) { 8450 SDVTList VTs = getVTList(VT1, VT2); 8451 SDValue Ops[] = { Op1, Op2 }; 8452 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8453 } 8454 8455 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8456 SDVTList VTs,ArrayRef<SDValue> Ops) { 8457 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8458 // Reset the NodeID to -1. 8459 New->setNodeId(-1); 8460 if (New != N) { 8461 ReplaceAllUsesWith(N, New); 8462 RemoveDeadNode(N); 8463 } 8464 return New; 8465 } 8466 8467 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8468 /// the line number information on the merged node since it is not possible to 8469 /// preserve the information that operation is associated with multiple lines. 8470 /// This will make the debugger working better at -O0, were there is a higher 8471 /// probability having other instructions associated with that line. 8472 /// 8473 /// For IROrder, we keep the smaller of the two 8474 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8475 DebugLoc NLoc = N->getDebugLoc(); 8476 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8477 N->setDebugLoc(DebugLoc()); 8478 } 8479 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8480 N->setIROrder(Order); 8481 return N; 8482 } 8483 8484 /// MorphNodeTo - This *mutates* the specified node to have the specified 8485 /// return type, opcode, and operands. 8486 /// 8487 /// Note that MorphNodeTo returns the resultant node. If there is already a 8488 /// node of the specified opcode and operands, it returns that node instead of 8489 /// the current one. Note that the SDLoc need not be the same. 8490 /// 8491 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8492 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8493 /// node, and because it doesn't require CSE recalculation for any of 8494 /// the node's users. 8495 /// 8496 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8497 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8498 /// the legalizer which maintain worklists that would need to be updated when 8499 /// deleting things. 8500 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8501 SDVTList VTs, ArrayRef<SDValue> Ops) { 8502 // If an identical node already exists, use it. 8503 void *IP = nullptr; 8504 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8505 FoldingSetNodeID ID; 8506 AddNodeIDNode(ID, Opc, VTs, Ops); 8507 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8508 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8509 } 8510 8511 if (!RemoveNodeFromCSEMaps(N)) 8512 IP = nullptr; 8513 8514 // Start the morphing. 8515 N->NodeType = Opc; 8516 N->ValueList = VTs.VTs; 8517 N->NumValues = VTs.NumVTs; 8518 8519 // Clear the operands list, updating used nodes to remove this from their 8520 // use list. Keep track of any operands that become dead as a result. 8521 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8522 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8523 SDUse &Use = *I++; 8524 SDNode *Used = Use.getNode(); 8525 Use.set(SDValue()); 8526 if (Used->use_empty()) 8527 DeadNodeSet.insert(Used); 8528 } 8529 8530 // For MachineNode, initialize the memory references information. 8531 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8532 MN->clearMemRefs(); 8533 8534 // Swap for an appropriately sized array from the recycler. 8535 removeOperands(N); 8536 createOperands(N, Ops); 8537 8538 // Delete any nodes that are still dead after adding the uses for the 8539 // new operands. 8540 if (!DeadNodeSet.empty()) { 8541 SmallVector<SDNode *, 16> DeadNodes; 8542 for (SDNode *N : DeadNodeSet) 8543 if (N->use_empty()) 8544 DeadNodes.push_back(N); 8545 RemoveDeadNodes(DeadNodes); 8546 } 8547 8548 if (IP) 8549 CSEMap.InsertNode(N, IP); // Memoize the new node. 8550 return N; 8551 } 8552 8553 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8554 unsigned OrigOpc = Node->getOpcode(); 8555 unsigned NewOpc; 8556 switch (OrigOpc) { 8557 default: 8558 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8559 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8560 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8561 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8562 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8563 #include "llvm/IR/ConstrainedOps.def" 8564 } 8565 8566 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8567 8568 // We're taking this node out of the chain, so we need to re-link things. 8569 SDValue InputChain = Node->getOperand(0); 8570 SDValue OutputChain = SDValue(Node, 1); 8571 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8572 8573 SmallVector<SDValue, 3> Ops; 8574 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8575 Ops.push_back(Node->getOperand(i)); 8576 8577 SDVTList VTs = getVTList(Node->getValueType(0)); 8578 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8579 8580 // MorphNodeTo can operate in two ways: if an existing node with the 8581 // specified operands exists, it can just return it. Otherwise, it 8582 // updates the node in place to have the requested operands. 8583 if (Res == Node) { 8584 // If we updated the node in place, reset the node ID. To the isel, 8585 // this should be just like a newly allocated machine node. 8586 Res->setNodeId(-1); 8587 } else { 8588 ReplaceAllUsesWith(Node, Res); 8589 RemoveDeadNode(Node); 8590 } 8591 8592 return Res; 8593 } 8594 8595 /// getMachineNode - These are used for target selectors to create a new node 8596 /// with specified return type(s), MachineInstr opcode, and operands. 8597 /// 8598 /// Note that getMachineNode returns the resultant node. If there is already a 8599 /// node of the specified opcode and operands, it returns that node instead of 8600 /// the current one. 8601 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8602 EVT VT) { 8603 SDVTList VTs = getVTList(VT); 8604 return getMachineNode(Opcode, dl, VTs, None); 8605 } 8606 8607 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8608 EVT VT, SDValue Op1) { 8609 SDVTList VTs = getVTList(VT); 8610 SDValue Ops[] = { Op1 }; 8611 return getMachineNode(Opcode, dl, VTs, Ops); 8612 } 8613 8614 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8615 EVT VT, SDValue Op1, SDValue Op2) { 8616 SDVTList VTs = getVTList(VT); 8617 SDValue Ops[] = { Op1, Op2 }; 8618 return getMachineNode(Opcode, dl, VTs, Ops); 8619 } 8620 8621 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8622 EVT VT, SDValue Op1, SDValue Op2, 8623 SDValue Op3) { 8624 SDVTList VTs = getVTList(VT); 8625 SDValue Ops[] = { Op1, Op2, Op3 }; 8626 return getMachineNode(Opcode, dl, VTs, Ops); 8627 } 8628 8629 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8630 EVT VT, ArrayRef<SDValue> Ops) { 8631 SDVTList VTs = getVTList(VT); 8632 return getMachineNode(Opcode, dl, VTs, Ops); 8633 } 8634 8635 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8636 EVT VT1, EVT VT2, SDValue Op1, 8637 SDValue Op2) { 8638 SDVTList VTs = getVTList(VT1, VT2); 8639 SDValue Ops[] = { Op1, Op2 }; 8640 return getMachineNode(Opcode, dl, VTs, Ops); 8641 } 8642 8643 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8644 EVT VT1, EVT VT2, SDValue Op1, 8645 SDValue Op2, SDValue Op3) { 8646 SDVTList VTs = getVTList(VT1, VT2); 8647 SDValue Ops[] = { Op1, Op2, Op3 }; 8648 return getMachineNode(Opcode, dl, VTs, Ops); 8649 } 8650 8651 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8652 EVT VT1, EVT VT2, 8653 ArrayRef<SDValue> Ops) { 8654 SDVTList VTs = getVTList(VT1, VT2); 8655 return getMachineNode(Opcode, dl, VTs, Ops); 8656 } 8657 8658 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8659 EVT VT1, EVT VT2, EVT VT3, 8660 SDValue Op1, SDValue Op2) { 8661 SDVTList VTs = getVTList(VT1, VT2, VT3); 8662 SDValue Ops[] = { Op1, Op2 }; 8663 return getMachineNode(Opcode, dl, VTs, Ops); 8664 } 8665 8666 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8667 EVT VT1, EVT VT2, EVT VT3, 8668 SDValue Op1, SDValue Op2, 8669 SDValue Op3) { 8670 SDVTList VTs = getVTList(VT1, VT2, VT3); 8671 SDValue Ops[] = { Op1, Op2, Op3 }; 8672 return getMachineNode(Opcode, dl, VTs, Ops); 8673 } 8674 8675 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8676 EVT VT1, EVT VT2, EVT VT3, 8677 ArrayRef<SDValue> Ops) { 8678 SDVTList VTs = getVTList(VT1, VT2, VT3); 8679 return getMachineNode(Opcode, dl, VTs, Ops); 8680 } 8681 8682 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8683 ArrayRef<EVT> ResultTys, 8684 ArrayRef<SDValue> Ops) { 8685 SDVTList VTs = getVTList(ResultTys); 8686 return getMachineNode(Opcode, dl, VTs, Ops); 8687 } 8688 8689 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8690 SDVTList VTs, 8691 ArrayRef<SDValue> Ops) { 8692 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8693 MachineSDNode *N; 8694 void *IP = nullptr; 8695 8696 if (DoCSE) { 8697 FoldingSetNodeID ID; 8698 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8699 IP = nullptr; 8700 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8701 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8702 } 8703 } 8704 8705 // Allocate a new MachineSDNode. 8706 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8707 createOperands(N, Ops); 8708 8709 if (DoCSE) 8710 CSEMap.InsertNode(N, IP); 8711 8712 InsertNode(N); 8713 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8714 return N; 8715 } 8716 8717 /// getTargetExtractSubreg - A convenience function for creating 8718 /// TargetOpcode::EXTRACT_SUBREG nodes. 8719 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8720 SDValue Operand) { 8721 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8722 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8723 VT, Operand, SRIdxVal); 8724 return SDValue(Subreg, 0); 8725 } 8726 8727 /// getTargetInsertSubreg - A convenience function for creating 8728 /// TargetOpcode::INSERT_SUBREG nodes. 8729 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8730 SDValue Operand, SDValue Subreg) { 8731 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8732 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8733 VT, Operand, Subreg, SRIdxVal); 8734 return SDValue(Result, 0); 8735 } 8736 8737 /// getNodeIfExists - Get the specified node if it's already available, or 8738 /// else return NULL. 8739 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8740 ArrayRef<SDValue> Ops) { 8741 SDNodeFlags Flags; 8742 if (Inserter) 8743 Flags = Inserter->getFlags(); 8744 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8745 } 8746 8747 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8748 ArrayRef<SDValue> Ops, 8749 const SDNodeFlags Flags) { 8750 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8751 FoldingSetNodeID ID; 8752 AddNodeIDNode(ID, Opcode, VTList, Ops); 8753 void *IP = nullptr; 8754 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8755 E->intersectFlagsWith(Flags); 8756 return E; 8757 } 8758 } 8759 return nullptr; 8760 } 8761 8762 /// doesNodeExist - Check if a node exists without modifying its flags. 8763 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8764 ArrayRef<SDValue> Ops) { 8765 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8766 FoldingSetNodeID ID; 8767 AddNodeIDNode(ID, Opcode, VTList, Ops); 8768 void *IP = nullptr; 8769 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8770 return true; 8771 } 8772 return false; 8773 } 8774 8775 /// getDbgValue - Creates a SDDbgValue node. 8776 /// 8777 /// SDNode 8778 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8779 SDNode *N, unsigned R, bool IsIndirect, 8780 const DebugLoc &DL, unsigned O) { 8781 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8782 "Expected inlined-at fields to agree"); 8783 return new (DbgInfo->getAlloc()) 8784 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 8785 {}, IsIndirect, DL, O, 8786 /*IsVariadic=*/false); 8787 } 8788 8789 /// Constant 8790 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8791 DIExpression *Expr, 8792 const Value *C, 8793 const DebugLoc &DL, unsigned O) { 8794 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8795 "Expected inlined-at fields to agree"); 8796 return new (DbgInfo->getAlloc()) 8797 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 8798 /*IsIndirect=*/false, DL, O, 8799 /*IsVariadic=*/false); 8800 } 8801 8802 /// FrameIndex 8803 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8804 DIExpression *Expr, unsigned FI, 8805 bool IsIndirect, 8806 const DebugLoc &DL, 8807 unsigned O) { 8808 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8809 "Expected inlined-at fields to agree"); 8810 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8811 } 8812 8813 /// FrameIndex with dependencies 8814 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8815 DIExpression *Expr, unsigned FI, 8816 ArrayRef<SDNode *> Dependencies, 8817 bool IsIndirect, 8818 const DebugLoc &DL, 8819 unsigned O) { 8820 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8821 "Expected inlined-at fields to agree"); 8822 return new (DbgInfo->getAlloc()) 8823 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 8824 Dependencies, IsIndirect, DL, O, 8825 /*IsVariadic=*/false); 8826 } 8827 8828 /// VReg 8829 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8830 unsigned VReg, bool IsIndirect, 8831 const DebugLoc &DL, unsigned O) { 8832 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8833 "Expected inlined-at fields to agree"); 8834 return new (DbgInfo->getAlloc()) 8835 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 8836 {}, IsIndirect, DL, O, 8837 /*IsVariadic=*/false); 8838 } 8839 8840 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8841 ArrayRef<SDDbgOperand> Locs, 8842 ArrayRef<SDNode *> Dependencies, 8843 bool IsIndirect, const DebugLoc &DL, 8844 unsigned O, bool IsVariadic) { 8845 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8846 "Expected inlined-at fields to agree"); 8847 return new (DbgInfo->getAlloc()) 8848 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 8849 DL, O, IsVariadic); 8850 } 8851 8852 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8853 unsigned OffsetInBits, unsigned SizeInBits, 8854 bool InvalidateDbg) { 8855 SDNode *FromNode = From.getNode(); 8856 SDNode *ToNode = To.getNode(); 8857 assert(FromNode && ToNode && "Can't modify dbg values"); 8858 8859 // PR35338 8860 // TODO: assert(From != To && "Redundant dbg value transfer"); 8861 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8862 if (From == To || FromNode == ToNode) 8863 return; 8864 8865 if (!FromNode->getHasDebugValue()) 8866 return; 8867 8868 SDDbgOperand FromLocOp = 8869 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8870 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8871 8872 SmallVector<SDDbgValue *, 2> ClonedDVs; 8873 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8874 if (Dbg->isInvalidated()) 8875 continue; 8876 8877 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8878 8879 // Create a new location ops vector that is equal to the old vector, but 8880 // with each instance of FromLocOp replaced with ToLocOp. 8881 bool Changed = false; 8882 auto NewLocOps = Dbg->copyLocationOps(); 8883 std::replace_if( 8884 NewLocOps.begin(), NewLocOps.end(), 8885 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8886 bool Match = Op == FromLocOp; 8887 Changed |= Match; 8888 return Match; 8889 }, 8890 ToLocOp); 8891 // Ignore this SDDbgValue if we didn't find a matching location. 8892 if (!Changed) 8893 continue; 8894 8895 DIVariable *Var = Dbg->getVariable(); 8896 auto *Expr = Dbg->getExpression(); 8897 // If a fragment is requested, update the expression. 8898 if (SizeInBits) { 8899 // When splitting a larger (e.g., sign-extended) value whose 8900 // lower bits are described with an SDDbgValue, do not attempt 8901 // to transfer the SDDbgValue to the upper bits. 8902 if (auto FI = Expr->getFragmentInfo()) 8903 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8904 continue; 8905 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8906 SizeInBits); 8907 if (!Fragment) 8908 continue; 8909 Expr = *Fragment; 8910 } 8911 8912 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 8913 // Clone the SDDbgValue and move it to To. 8914 SDDbgValue *Clone = getDbgValueList( 8915 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 8916 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8917 Dbg->isVariadic()); 8918 ClonedDVs.push_back(Clone); 8919 8920 if (InvalidateDbg) { 8921 // Invalidate value and indicate the SDDbgValue should not be emitted. 8922 Dbg->setIsInvalidated(); 8923 Dbg->setIsEmitted(); 8924 } 8925 } 8926 8927 for (SDDbgValue *Dbg : ClonedDVs) { 8928 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8929 "Transferred DbgValues should depend on the new SDNode"); 8930 AddDbgValue(Dbg, false); 8931 } 8932 } 8933 8934 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8935 if (!N.getHasDebugValue()) 8936 return; 8937 8938 SmallVector<SDDbgValue *, 2> ClonedDVs; 8939 for (auto DV : GetDbgValues(&N)) { 8940 if (DV->isInvalidated()) 8941 continue; 8942 switch (N.getOpcode()) { 8943 default: 8944 break; 8945 case ISD::ADD: 8946 SDValue N0 = N.getOperand(0); 8947 SDValue N1 = N.getOperand(1); 8948 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8949 isConstantIntBuildVectorOrConstantInt(N1)) { 8950 uint64_t Offset = N.getConstantOperandVal(1); 8951 8952 // Rewrite an ADD constant node into a DIExpression. Since we are 8953 // performing arithmetic to compute the variable's *value* in the 8954 // DIExpression, we need to mark the expression with a 8955 // DW_OP_stack_value. 8956 auto *DIExpr = DV->getExpression(); 8957 auto NewLocOps = DV->copyLocationOps(); 8958 bool Changed = false; 8959 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8960 // We're not given a ResNo to compare against because the whole 8961 // node is going away. We know that any ISD::ADD only has one 8962 // result, so we can assume any node match is using the result. 8963 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8964 NewLocOps[i].getSDNode() != &N) 8965 continue; 8966 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8967 SmallVector<uint64_t, 3> ExprOps; 8968 DIExpression::appendOffset(ExprOps, Offset); 8969 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8970 Changed = true; 8971 } 8972 (void)Changed; 8973 assert(Changed && "Salvage target doesn't use N"); 8974 8975 auto AdditionalDependencies = DV->getAdditionalDependencies(); 8976 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8977 NewLocOps, AdditionalDependencies, 8978 DV->isIndirect(), DV->getDebugLoc(), 8979 DV->getOrder(), DV->isVariadic()); 8980 ClonedDVs.push_back(Clone); 8981 DV->setIsInvalidated(); 8982 DV->setIsEmitted(); 8983 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8984 N0.getNode()->dumprFull(this); 8985 dbgs() << " into " << *DIExpr << '\n'); 8986 } 8987 } 8988 } 8989 8990 for (SDDbgValue *Dbg : ClonedDVs) { 8991 assert(!Dbg->getSDNodes().empty() && 8992 "Salvaged DbgValue should depend on a new SDNode"); 8993 AddDbgValue(Dbg, false); 8994 } 8995 } 8996 8997 /// Creates a SDDbgLabel node. 8998 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8999 const DebugLoc &DL, unsigned O) { 9000 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9001 "Expected inlined-at fields to agree"); 9002 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9003 } 9004 9005 namespace { 9006 9007 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9008 /// pointed to by a use iterator is deleted, increment the use iterator 9009 /// so that it doesn't dangle. 9010 /// 9011 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9012 SDNode::use_iterator &UI; 9013 SDNode::use_iterator &UE; 9014 9015 void NodeDeleted(SDNode *N, SDNode *E) override { 9016 // Increment the iterator as needed. 9017 while (UI != UE && N == *UI) 9018 ++UI; 9019 } 9020 9021 public: 9022 RAUWUpdateListener(SelectionDAG &d, 9023 SDNode::use_iterator &ui, 9024 SDNode::use_iterator &ue) 9025 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9026 }; 9027 9028 } // end anonymous namespace 9029 9030 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9031 /// This can cause recursive merging of nodes in the DAG. 9032 /// 9033 /// This version assumes From has a single result value. 9034 /// 9035 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9036 SDNode *From = FromN.getNode(); 9037 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9038 "Cannot replace with this method!"); 9039 assert(From != To.getNode() && "Cannot replace uses of with self"); 9040 9041 // Preserve Debug Values 9042 transferDbgValues(FromN, To); 9043 9044 // Iterate over all the existing uses of From. New uses will be added 9045 // to the beginning of the use list, which we avoid visiting. 9046 // This specifically avoids visiting uses of From that arise while the 9047 // replacement is happening, because any such uses would be the result 9048 // of CSE: If an existing node looks like From after one of its operands 9049 // is replaced by To, we don't want to replace of all its users with To 9050 // too. See PR3018 for more info. 9051 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9052 RAUWUpdateListener Listener(*this, UI, UE); 9053 while (UI != UE) { 9054 SDNode *User = *UI; 9055 9056 // This node is about to morph, remove its old self from the CSE maps. 9057 RemoveNodeFromCSEMaps(User); 9058 9059 // A user can appear in a use list multiple times, and when this 9060 // happens the uses are usually next to each other in the list. 9061 // To help reduce the number of CSE recomputations, process all 9062 // the uses of this user that we can find this way. 9063 do { 9064 SDUse &Use = UI.getUse(); 9065 ++UI; 9066 Use.set(To); 9067 if (To->isDivergent() != From->isDivergent()) 9068 updateDivergence(User); 9069 } while (UI != UE && *UI == User); 9070 // Now that we have modified User, add it back to the CSE maps. If it 9071 // already exists there, recursively merge the results together. 9072 AddModifiedNodeToCSEMaps(User); 9073 } 9074 9075 // If we just RAUW'd the root, take note. 9076 if (FromN == getRoot()) 9077 setRoot(To); 9078 } 9079 9080 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9081 /// This can cause recursive merging of nodes in the DAG. 9082 /// 9083 /// This version assumes that for each value of From, there is a 9084 /// corresponding value in To in the same position with the same type. 9085 /// 9086 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9087 #ifndef NDEBUG 9088 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9089 assert((!From->hasAnyUseOfValue(i) || 9090 From->getValueType(i) == To->getValueType(i)) && 9091 "Cannot use this version of ReplaceAllUsesWith!"); 9092 #endif 9093 9094 // Handle the trivial case. 9095 if (From == To) 9096 return; 9097 9098 // Preserve Debug Info. Only do this if there's a use. 9099 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9100 if (From->hasAnyUseOfValue(i)) { 9101 assert((i < To->getNumValues()) && "Invalid To location"); 9102 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9103 } 9104 9105 // Iterate over just the existing users of From. See the comments in 9106 // the ReplaceAllUsesWith above. 9107 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9108 RAUWUpdateListener Listener(*this, UI, UE); 9109 while (UI != UE) { 9110 SDNode *User = *UI; 9111 9112 // This node is about to morph, remove its old self from the CSE maps. 9113 RemoveNodeFromCSEMaps(User); 9114 9115 // A user can appear in a use list multiple times, and when this 9116 // happens the uses are usually next to each other in the list. 9117 // To help reduce the number of CSE recomputations, process all 9118 // the uses of this user that we can find this way. 9119 do { 9120 SDUse &Use = UI.getUse(); 9121 ++UI; 9122 Use.setNode(To); 9123 if (To->isDivergent() != From->isDivergent()) 9124 updateDivergence(User); 9125 } while (UI != UE && *UI == User); 9126 9127 // Now that we have modified User, add it back to the CSE maps. If it 9128 // already exists there, recursively merge the results together. 9129 AddModifiedNodeToCSEMaps(User); 9130 } 9131 9132 // If we just RAUW'd the root, take note. 9133 if (From == getRoot().getNode()) 9134 setRoot(SDValue(To, getRoot().getResNo())); 9135 } 9136 9137 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9138 /// This can cause recursive merging of nodes in the DAG. 9139 /// 9140 /// This version can replace From with any result values. To must match the 9141 /// number and types of values returned by From. 9142 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9143 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9144 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9145 9146 // Preserve Debug Info. 9147 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9148 transferDbgValues(SDValue(From, i), To[i]); 9149 9150 // Iterate over just the existing users of From. See the comments in 9151 // the ReplaceAllUsesWith above. 9152 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9153 RAUWUpdateListener Listener(*this, UI, UE); 9154 while (UI != UE) { 9155 SDNode *User = *UI; 9156 9157 // This node is about to morph, remove its old self from the CSE maps. 9158 RemoveNodeFromCSEMaps(User); 9159 9160 // A user can appear in a use list multiple times, and when this happens the 9161 // uses are usually next to each other in the list. To help reduce the 9162 // number of CSE and divergence recomputations, process all the uses of this 9163 // user that we can find this way. 9164 bool To_IsDivergent = false; 9165 do { 9166 SDUse &Use = UI.getUse(); 9167 const SDValue &ToOp = To[Use.getResNo()]; 9168 ++UI; 9169 Use.set(ToOp); 9170 To_IsDivergent |= ToOp->isDivergent(); 9171 } while (UI != UE && *UI == User); 9172 9173 if (To_IsDivergent != From->isDivergent()) 9174 updateDivergence(User); 9175 9176 // Now that we have modified User, add it back to the CSE maps. If it 9177 // already exists there, recursively merge the results together. 9178 AddModifiedNodeToCSEMaps(User); 9179 } 9180 9181 // If we just RAUW'd the root, take note. 9182 if (From == getRoot().getNode()) 9183 setRoot(SDValue(To[getRoot().getResNo()])); 9184 } 9185 9186 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9187 /// uses of other values produced by From.getNode() alone. The Deleted 9188 /// vector is handled the same way as for ReplaceAllUsesWith. 9189 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9190 // Handle the really simple, really trivial case efficiently. 9191 if (From == To) return; 9192 9193 // Handle the simple, trivial, case efficiently. 9194 if (From.getNode()->getNumValues() == 1) { 9195 ReplaceAllUsesWith(From, To); 9196 return; 9197 } 9198 9199 // Preserve Debug Info. 9200 transferDbgValues(From, To); 9201 9202 // Iterate over just the existing users of From. See the comments in 9203 // the ReplaceAllUsesWith above. 9204 SDNode::use_iterator UI = From.getNode()->use_begin(), 9205 UE = From.getNode()->use_end(); 9206 RAUWUpdateListener Listener(*this, UI, UE); 9207 while (UI != UE) { 9208 SDNode *User = *UI; 9209 bool UserRemovedFromCSEMaps = false; 9210 9211 // A user can appear in a use list multiple times, and when this 9212 // happens the uses are usually next to each other in the list. 9213 // To help reduce the number of CSE recomputations, process all 9214 // the uses of this user that we can find this way. 9215 do { 9216 SDUse &Use = UI.getUse(); 9217 9218 // Skip uses of different values from the same node. 9219 if (Use.getResNo() != From.getResNo()) { 9220 ++UI; 9221 continue; 9222 } 9223 9224 // If this node hasn't been modified yet, it's still in the CSE maps, 9225 // so remove its old self from the CSE maps. 9226 if (!UserRemovedFromCSEMaps) { 9227 RemoveNodeFromCSEMaps(User); 9228 UserRemovedFromCSEMaps = true; 9229 } 9230 9231 ++UI; 9232 Use.set(To); 9233 if (To->isDivergent() != From->isDivergent()) 9234 updateDivergence(User); 9235 } while (UI != UE && *UI == User); 9236 // We are iterating over all uses of the From node, so if a use 9237 // doesn't use the specific value, no changes are made. 9238 if (!UserRemovedFromCSEMaps) 9239 continue; 9240 9241 // Now that we have modified User, add it back to the CSE maps. If it 9242 // already exists there, recursively merge the results together. 9243 AddModifiedNodeToCSEMaps(User); 9244 } 9245 9246 // If we just RAUW'd the root, take note. 9247 if (From == getRoot()) 9248 setRoot(To); 9249 } 9250 9251 namespace { 9252 9253 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9254 /// to record information about a use. 9255 struct UseMemo { 9256 SDNode *User; 9257 unsigned Index; 9258 SDUse *Use; 9259 }; 9260 9261 /// operator< - Sort Memos by User. 9262 bool operator<(const UseMemo &L, const UseMemo &R) { 9263 return (intptr_t)L.User < (intptr_t)R.User; 9264 } 9265 9266 } // end anonymous namespace 9267 9268 bool SelectionDAG::calculateDivergence(SDNode *N) { 9269 if (TLI->isSDNodeAlwaysUniform(N)) { 9270 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9271 "Conflicting divergence information!"); 9272 return false; 9273 } 9274 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9275 return true; 9276 for (auto &Op : N->ops()) { 9277 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9278 return true; 9279 } 9280 return false; 9281 } 9282 9283 void SelectionDAG::updateDivergence(SDNode *N) { 9284 SmallVector<SDNode *, 16> Worklist(1, N); 9285 do { 9286 N = Worklist.pop_back_val(); 9287 bool IsDivergent = calculateDivergence(N); 9288 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9289 N->SDNodeBits.IsDivergent = IsDivergent; 9290 llvm::append_range(Worklist, N->uses()); 9291 } 9292 } while (!Worklist.empty()); 9293 } 9294 9295 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9296 DenseMap<SDNode *, unsigned> Degree; 9297 Order.reserve(AllNodes.size()); 9298 for (auto &N : allnodes()) { 9299 unsigned NOps = N.getNumOperands(); 9300 Degree[&N] = NOps; 9301 if (0 == NOps) 9302 Order.push_back(&N); 9303 } 9304 for (size_t I = 0; I != Order.size(); ++I) { 9305 SDNode *N = Order[I]; 9306 for (auto U : N->uses()) { 9307 unsigned &UnsortedOps = Degree[U]; 9308 if (0 == --UnsortedOps) 9309 Order.push_back(U); 9310 } 9311 } 9312 } 9313 9314 #ifndef NDEBUG 9315 void SelectionDAG::VerifyDAGDiverence() { 9316 std::vector<SDNode *> TopoOrder; 9317 CreateTopologicalOrder(TopoOrder); 9318 for (auto *N : TopoOrder) { 9319 assert(calculateDivergence(N) == N->isDivergent() && 9320 "Divergence bit inconsistency detected"); 9321 } 9322 } 9323 #endif 9324 9325 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9326 /// uses of other values produced by From.getNode() alone. The same value 9327 /// may appear in both the From and To list. The Deleted vector is 9328 /// handled the same way as for ReplaceAllUsesWith. 9329 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9330 const SDValue *To, 9331 unsigned Num){ 9332 // Handle the simple, trivial case efficiently. 9333 if (Num == 1) 9334 return ReplaceAllUsesOfValueWith(*From, *To); 9335 9336 transferDbgValues(*From, *To); 9337 9338 // Read up all the uses and make records of them. This helps 9339 // processing new uses that are introduced during the 9340 // replacement process. 9341 SmallVector<UseMemo, 4> Uses; 9342 for (unsigned i = 0; i != Num; ++i) { 9343 unsigned FromResNo = From[i].getResNo(); 9344 SDNode *FromNode = From[i].getNode(); 9345 for (SDNode::use_iterator UI = FromNode->use_begin(), 9346 E = FromNode->use_end(); UI != E; ++UI) { 9347 SDUse &Use = UI.getUse(); 9348 if (Use.getResNo() == FromResNo) { 9349 UseMemo Memo = { *UI, i, &Use }; 9350 Uses.push_back(Memo); 9351 } 9352 } 9353 } 9354 9355 // Sort the uses, so that all the uses from a given User are together. 9356 llvm::sort(Uses); 9357 9358 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9359 UseIndex != UseIndexEnd; ) { 9360 // We know that this user uses some value of From. If it is the right 9361 // value, update it. 9362 SDNode *User = Uses[UseIndex].User; 9363 9364 // This node is about to morph, remove its old self from the CSE maps. 9365 RemoveNodeFromCSEMaps(User); 9366 9367 // The Uses array is sorted, so all the uses for a given User 9368 // are next to each other in the list. 9369 // To help reduce the number of CSE recomputations, process all 9370 // the uses of this user that we can find this way. 9371 do { 9372 unsigned i = Uses[UseIndex].Index; 9373 SDUse &Use = *Uses[UseIndex].Use; 9374 ++UseIndex; 9375 9376 Use.set(To[i]); 9377 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9378 9379 // Now that we have modified User, add it back to the CSE maps. If it 9380 // already exists there, recursively merge the results together. 9381 AddModifiedNodeToCSEMaps(User); 9382 } 9383 } 9384 9385 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9386 /// based on their topological order. It returns the maximum id and a vector 9387 /// of the SDNodes* in assigned order by reference. 9388 unsigned SelectionDAG::AssignTopologicalOrder() { 9389 unsigned DAGSize = 0; 9390 9391 // SortedPos tracks the progress of the algorithm. Nodes before it are 9392 // sorted, nodes after it are unsorted. When the algorithm completes 9393 // it is at the end of the list. 9394 allnodes_iterator SortedPos = allnodes_begin(); 9395 9396 // Visit all the nodes. Move nodes with no operands to the front of 9397 // the list immediately. Annotate nodes that do have operands with their 9398 // operand count. Before we do this, the Node Id fields of the nodes 9399 // may contain arbitrary values. After, the Node Id fields for nodes 9400 // before SortedPos will contain the topological sort index, and the 9401 // Node Id fields for nodes At SortedPos and after will contain the 9402 // count of outstanding operands. 9403 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9404 SDNode *N = &*I++; 9405 checkForCycles(N, this); 9406 unsigned Degree = N->getNumOperands(); 9407 if (Degree == 0) { 9408 // A node with no uses, add it to the result array immediately. 9409 N->setNodeId(DAGSize++); 9410 allnodes_iterator Q(N); 9411 if (Q != SortedPos) 9412 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9413 assert(SortedPos != AllNodes.end() && "Overran node list"); 9414 ++SortedPos; 9415 } else { 9416 // Temporarily use the Node Id as scratch space for the degree count. 9417 N->setNodeId(Degree); 9418 } 9419 } 9420 9421 // Visit all the nodes. As we iterate, move nodes into sorted order, 9422 // such that by the time the end is reached all nodes will be sorted. 9423 for (SDNode &Node : allnodes()) { 9424 SDNode *N = &Node; 9425 checkForCycles(N, this); 9426 // N is in sorted position, so all its uses have one less operand 9427 // that needs to be sorted. 9428 for (SDNode *P : N->uses()) { 9429 unsigned Degree = P->getNodeId(); 9430 assert(Degree != 0 && "Invalid node degree"); 9431 --Degree; 9432 if (Degree == 0) { 9433 // All of P's operands are sorted, so P may sorted now. 9434 P->setNodeId(DAGSize++); 9435 if (P->getIterator() != SortedPos) 9436 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9437 assert(SortedPos != AllNodes.end() && "Overran node list"); 9438 ++SortedPos; 9439 } else { 9440 // Update P's outstanding operand count. 9441 P->setNodeId(Degree); 9442 } 9443 } 9444 if (Node.getIterator() == SortedPos) { 9445 #ifndef NDEBUG 9446 allnodes_iterator I(N); 9447 SDNode *S = &*++I; 9448 dbgs() << "Overran sorted position:\n"; 9449 S->dumprFull(this); dbgs() << "\n"; 9450 dbgs() << "Checking if this is due to cycles\n"; 9451 checkForCycles(this, true); 9452 #endif 9453 llvm_unreachable(nullptr); 9454 } 9455 } 9456 9457 assert(SortedPos == AllNodes.end() && 9458 "Topological sort incomplete!"); 9459 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9460 "First node in topological sort is not the entry token!"); 9461 assert(AllNodes.front().getNodeId() == 0 && 9462 "First node in topological sort has non-zero id!"); 9463 assert(AllNodes.front().getNumOperands() == 0 && 9464 "First node in topological sort has operands!"); 9465 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9466 "Last node in topologic sort has unexpected id!"); 9467 assert(AllNodes.back().use_empty() && 9468 "Last node in topologic sort has users!"); 9469 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9470 return DAGSize; 9471 } 9472 9473 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9474 /// value is produced by SD. 9475 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9476 for (SDNode *SD : DB->getSDNodes()) { 9477 if (!SD) 9478 continue; 9479 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9480 SD->setHasDebugValue(true); 9481 } 9482 DbgInfo->add(DB, isParameter); 9483 } 9484 9485 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9486 9487 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9488 SDValue NewMemOpChain) { 9489 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9490 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9491 // The new memory operation must have the same position as the old load in 9492 // terms of memory dependency. Create a TokenFactor for the old load and new 9493 // memory operation and update uses of the old load's output chain to use that 9494 // TokenFactor. 9495 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9496 return NewMemOpChain; 9497 9498 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9499 OldChain, NewMemOpChain); 9500 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9501 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9502 return TokenFactor; 9503 } 9504 9505 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9506 SDValue NewMemOp) { 9507 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9508 SDValue OldChain = SDValue(OldLoad, 1); 9509 SDValue NewMemOpChain = NewMemOp.getValue(1); 9510 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9511 } 9512 9513 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9514 Function **OutFunction) { 9515 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9516 9517 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9518 auto *Module = MF->getFunction().getParent(); 9519 auto *Function = Module->getFunction(Symbol); 9520 9521 if (OutFunction != nullptr) 9522 *OutFunction = Function; 9523 9524 if (Function != nullptr) { 9525 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9526 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9527 } 9528 9529 std::string ErrorStr; 9530 raw_string_ostream ErrorFormatter(ErrorStr); 9531 9532 ErrorFormatter << "Undefined external symbol "; 9533 ErrorFormatter << '"' << Symbol << '"'; 9534 ErrorFormatter.flush(); 9535 9536 report_fatal_error(ErrorStr); 9537 } 9538 9539 //===----------------------------------------------------------------------===// 9540 // SDNode Class 9541 //===----------------------------------------------------------------------===// 9542 9543 bool llvm::isNullConstant(SDValue V) { 9544 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9545 return Const != nullptr && Const->isNullValue(); 9546 } 9547 9548 bool llvm::isNullFPConstant(SDValue V) { 9549 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9550 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9551 } 9552 9553 bool llvm::isAllOnesConstant(SDValue V) { 9554 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9555 return Const != nullptr && Const->isAllOnesValue(); 9556 } 9557 9558 bool llvm::isOneConstant(SDValue V) { 9559 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9560 return Const != nullptr && Const->isOne(); 9561 } 9562 9563 SDValue llvm::peekThroughBitcasts(SDValue V) { 9564 while (V.getOpcode() == ISD::BITCAST) 9565 V = V.getOperand(0); 9566 return V; 9567 } 9568 9569 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9570 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9571 V = V.getOperand(0); 9572 return V; 9573 } 9574 9575 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9576 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9577 V = V.getOperand(0); 9578 return V; 9579 } 9580 9581 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9582 if (V.getOpcode() != ISD::XOR) 9583 return false; 9584 V = peekThroughBitcasts(V.getOperand(1)); 9585 unsigned NumBits = V.getScalarValueSizeInBits(); 9586 ConstantSDNode *C = 9587 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9588 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9589 } 9590 9591 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9592 bool AllowTruncation) { 9593 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9594 return CN; 9595 9596 // SplatVectors can truncate their operands. Ignore that case here unless 9597 // AllowTruncation is set. 9598 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9599 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9600 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9601 EVT CVT = CN->getValueType(0); 9602 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9603 if (AllowTruncation || CVT == VecEltVT) 9604 return CN; 9605 } 9606 } 9607 9608 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9609 BitVector UndefElements; 9610 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9611 9612 // BuildVectors can truncate their operands. Ignore that case here unless 9613 // AllowTruncation is set. 9614 if (CN && (UndefElements.none() || AllowUndefs)) { 9615 EVT CVT = CN->getValueType(0); 9616 EVT NSVT = N.getValueType().getScalarType(); 9617 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9618 if (AllowTruncation || (CVT == NSVT)) 9619 return CN; 9620 } 9621 } 9622 9623 return nullptr; 9624 } 9625 9626 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9627 bool AllowUndefs, 9628 bool AllowTruncation) { 9629 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9630 return CN; 9631 9632 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9633 BitVector UndefElements; 9634 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9635 9636 // BuildVectors can truncate their operands. Ignore that case here unless 9637 // AllowTruncation is set. 9638 if (CN && (UndefElements.none() || AllowUndefs)) { 9639 EVT CVT = CN->getValueType(0); 9640 EVT NSVT = N.getValueType().getScalarType(); 9641 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9642 if (AllowTruncation || (CVT == NSVT)) 9643 return CN; 9644 } 9645 } 9646 9647 return nullptr; 9648 } 9649 9650 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9651 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9652 return CN; 9653 9654 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9655 BitVector UndefElements; 9656 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9657 if (CN && (UndefElements.none() || AllowUndefs)) 9658 return CN; 9659 } 9660 9661 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9662 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9663 return CN; 9664 9665 return nullptr; 9666 } 9667 9668 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9669 const APInt &DemandedElts, 9670 bool AllowUndefs) { 9671 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9672 return CN; 9673 9674 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9675 BitVector UndefElements; 9676 ConstantFPSDNode *CN = 9677 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9678 if (CN && (UndefElements.none() || AllowUndefs)) 9679 return CN; 9680 } 9681 9682 return nullptr; 9683 } 9684 9685 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9686 // TODO: may want to use peekThroughBitcast() here. 9687 ConstantSDNode *C = 9688 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 9689 return C && C->isNullValue(); 9690 } 9691 9692 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9693 // TODO: may want to use peekThroughBitcast() here. 9694 unsigned BitWidth = N.getScalarValueSizeInBits(); 9695 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9696 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9697 } 9698 9699 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9700 N = peekThroughBitcasts(N); 9701 unsigned BitWidth = N.getScalarValueSizeInBits(); 9702 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9703 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9704 } 9705 9706 HandleSDNode::~HandleSDNode() { 9707 DropOperands(); 9708 } 9709 9710 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9711 const DebugLoc &DL, 9712 const GlobalValue *GA, EVT VT, 9713 int64_t o, unsigned TF) 9714 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9715 TheGlobal = GA; 9716 } 9717 9718 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9719 EVT VT, unsigned SrcAS, 9720 unsigned DestAS) 9721 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9722 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9723 9724 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9725 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9726 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9727 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9728 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9729 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9730 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9731 9732 // We check here that the size of the memory operand fits within the size of 9733 // the MMO. This is because the MMO might indicate only a possible address 9734 // range instead of specifying the affected memory addresses precisely. 9735 // TODO: Make MachineMemOperands aware of scalable vectors. 9736 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9737 "Size mismatch!"); 9738 } 9739 9740 /// Profile - Gather unique data for the node. 9741 /// 9742 void SDNode::Profile(FoldingSetNodeID &ID) const { 9743 AddNodeIDNode(ID, this); 9744 } 9745 9746 namespace { 9747 9748 struct EVTArray { 9749 std::vector<EVT> VTs; 9750 9751 EVTArray() { 9752 VTs.reserve(MVT::VALUETYPE_SIZE); 9753 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 9754 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9755 } 9756 }; 9757 9758 } // end anonymous namespace 9759 9760 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9761 static ManagedStatic<EVTArray> SimpleVTArray; 9762 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9763 9764 /// getValueTypeList - Return a pointer to the specified value type. 9765 /// 9766 const EVT *SDNode::getValueTypeList(EVT VT) { 9767 if (VT.isExtended()) { 9768 sys::SmartScopedLock<true> Lock(*VTMutex); 9769 return &(*EVTs->insert(VT).first); 9770 } 9771 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 9772 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9773 } 9774 9775 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9776 /// indicated value. This method ignores uses of other values defined by this 9777 /// operation. 9778 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9779 assert(Value < getNumValues() && "Bad value!"); 9780 9781 // TODO: Only iterate over uses of a given value of the node 9782 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9783 if (UI.getUse().getResNo() == Value) { 9784 if (NUses == 0) 9785 return false; 9786 --NUses; 9787 } 9788 } 9789 9790 // Found exactly the right number of uses? 9791 return NUses == 0; 9792 } 9793 9794 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9795 /// value. This method ignores uses of other values defined by this operation. 9796 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9797 assert(Value < getNumValues() && "Bad value!"); 9798 9799 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9800 if (UI.getUse().getResNo() == Value) 9801 return true; 9802 9803 return false; 9804 } 9805 9806 /// isOnlyUserOf - Return true if this node is the only use of N. 9807 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9808 bool Seen = false; 9809 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9810 SDNode *User = *I; 9811 if (User == this) 9812 Seen = true; 9813 else 9814 return false; 9815 } 9816 9817 return Seen; 9818 } 9819 9820 /// Return true if the only users of N are contained in Nodes. 9821 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9822 bool Seen = false; 9823 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9824 SDNode *User = *I; 9825 if (llvm::is_contained(Nodes, User)) 9826 Seen = true; 9827 else 9828 return false; 9829 } 9830 9831 return Seen; 9832 } 9833 9834 /// isOperand - Return true if this node is an operand of N. 9835 bool SDValue::isOperandOf(const SDNode *N) const { 9836 return is_contained(N->op_values(), *this); 9837 } 9838 9839 bool SDNode::isOperandOf(const SDNode *N) const { 9840 return any_of(N->op_values(), 9841 [this](SDValue Op) { return this == Op.getNode(); }); 9842 } 9843 9844 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9845 /// be a chain) reaches the specified operand without crossing any 9846 /// side-effecting instructions on any chain path. In practice, this looks 9847 /// through token factors and non-volatile loads. In order to remain efficient, 9848 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9849 /// 9850 /// Note that we only need to examine chains when we're searching for 9851 /// side-effects; SelectionDAG requires that all side-effects are represented 9852 /// by chains, even if another operand would force a specific ordering. This 9853 /// constraint is necessary to allow transformations like splitting loads. 9854 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9855 unsigned Depth) const { 9856 if (*this == Dest) return true; 9857 9858 // Don't search too deeply, we just want to be able to see through 9859 // TokenFactor's etc. 9860 if (Depth == 0) return false; 9861 9862 // If this is a token factor, all inputs to the TF happen in parallel. 9863 if (getOpcode() == ISD::TokenFactor) { 9864 // First, try a shallow search. 9865 if (is_contained((*this)->ops(), Dest)) { 9866 // We found the chain we want as an operand of this TokenFactor. 9867 // Essentially, we reach the chain without side-effects if we could 9868 // serialize the TokenFactor into a simple chain of operations with 9869 // Dest as the last operation. This is automatically true if the 9870 // chain has one use: there are no other ordering constraints. 9871 // If the chain has more than one use, we give up: some other 9872 // use of Dest might force a side-effect between Dest and the current 9873 // node. 9874 if (Dest.hasOneUse()) 9875 return true; 9876 } 9877 // Next, try a deep search: check whether every operand of the TokenFactor 9878 // reaches Dest. 9879 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9880 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9881 }); 9882 } 9883 9884 // Loads don't have side effects, look through them. 9885 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9886 if (Ld->isUnordered()) 9887 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9888 } 9889 return false; 9890 } 9891 9892 bool SDNode::hasPredecessor(const SDNode *N) const { 9893 SmallPtrSet<const SDNode *, 32> Visited; 9894 SmallVector<const SDNode *, 16> Worklist; 9895 Worklist.push_back(this); 9896 return hasPredecessorHelper(N, Visited, Worklist); 9897 } 9898 9899 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9900 this->Flags.intersectWith(Flags); 9901 } 9902 9903 SDValue 9904 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9905 ArrayRef<ISD::NodeType> CandidateBinOps, 9906 bool AllowPartials) { 9907 // The pattern must end in an extract from index 0. 9908 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9909 !isNullConstant(Extract->getOperand(1))) 9910 return SDValue(); 9911 9912 // Match against one of the candidate binary ops. 9913 SDValue Op = Extract->getOperand(0); 9914 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9915 return Op.getOpcode() == unsigned(BinOp); 9916 })) 9917 return SDValue(); 9918 9919 // Floating-point reductions may require relaxed constraints on the final step 9920 // of the reduction because they may reorder intermediate operations. 9921 unsigned CandidateBinOp = Op.getOpcode(); 9922 if (Op.getValueType().isFloatingPoint()) { 9923 SDNodeFlags Flags = Op->getFlags(); 9924 switch (CandidateBinOp) { 9925 case ISD::FADD: 9926 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9927 return SDValue(); 9928 break; 9929 default: 9930 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9931 } 9932 } 9933 9934 // Matching failed - attempt to see if we did enough stages that a partial 9935 // reduction from a subvector is possible. 9936 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9937 if (!AllowPartials || !Op) 9938 return SDValue(); 9939 EVT OpVT = Op.getValueType(); 9940 EVT OpSVT = OpVT.getScalarType(); 9941 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9942 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9943 return SDValue(); 9944 BinOp = (ISD::NodeType)CandidateBinOp; 9945 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9946 getVectorIdxConstant(0, SDLoc(Op))); 9947 }; 9948 9949 // At each stage, we're looking for something that looks like: 9950 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9951 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9952 // i32 undef, i32 undef, i32 undef, i32 undef> 9953 // %a = binop <8 x i32> %op, %s 9954 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9955 // we expect something like: 9956 // <4,5,6,7,u,u,u,u> 9957 // <2,3,u,u,u,u,u,u> 9958 // <1,u,u,u,u,u,u,u> 9959 // While a partial reduction match would be: 9960 // <2,3,u,u,u,u,u,u> 9961 // <1,u,u,u,u,u,u,u> 9962 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9963 SDValue PrevOp; 9964 for (unsigned i = 0; i < Stages; ++i) { 9965 unsigned MaskEnd = (1 << i); 9966 9967 if (Op.getOpcode() != CandidateBinOp) 9968 return PartialReduction(PrevOp, MaskEnd); 9969 9970 SDValue Op0 = Op.getOperand(0); 9971 SDValue Op1 = Op.getOperand(1); 9972 9973 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9974 if (Shuffle) { 9975 Op = Op1; 9976 } else { 9977 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9978 Op = Op0; 9979 } 9980 9981 // The first operand of the shuffle should be the same as the other operand 9982 // of the binop. 9983 if (!Shuffle || Shuffle->getOperand(0) != Op) 9984 return PartialReduction(PrevOp, MaskEnd); 9985 9986 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9987 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9988 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9989 return PartialReduction(PrevOp, MaskEnd); 9990 9991 PrevOp = Op; 9992 } 9993 9994 // Handle subvector reductions, which tend to appear after the shuffle 9995 // reduction stages. 9996 while (Op.getOpcode() == CandidateBinOp) { 9997 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9998 SDValue Op0 = Op.getOperand(0); 9999 SDValue Op1 = Op.getOperand(1); 10000 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10001 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10002 Op0.getOperand(0) != Op1.getOperand(0)) 10003 break; 10004 SDValue Src = Op0.getOperand(0); 10005 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10006 if (NumSrcElts != (2 * NumElts)) 10007 break; 10008 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10009 Op1.getConstantOperandAPInt(1) == NumElts) && 10010 !(Op1.getConstantOperandAPInt(1) == 0 && 10011 Op0.getConstantOperandAPInt(1) == NumElts)) 10012 break; 10013 Op = Src; 10014 } 10015 10016 BinOp = (ISD::NodeType)CandidateBinOp; 10017 return Op; 10018 } 10019 10020 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10021 assert(N->getNumValues() == 1 && 10022 "Can't unroll a vector with multiple results!"); 10023 10024 EVT VT = N->getValueType(0); 10025 unsigned NE = VT.getVectorNumElements(); 10026 EVT EltVT = VT.getVectorElementType(); 10027 SDLoc dl(N); 10028 10029 SmallVector<SDValue, 8> Scalars; 10030 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10031 10032 // If ResNE is 0, fully unroll the vector op. 10033 if (ResNE == 0) 10034 ResNE = NE; 10035 else if (NE > ResNE) 10036 NE = ResNE; 10037 10038 unsigned i; 10039 for (i= 0; i != NE; ++i) { 10040 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10041 SDValue Operand = N->getOperand(j); 10042 EVT OperandVT = Operand.getValueType(); 10043 if (OperandVT.isVector()) { 10044 // A vector operand; extract a single element. 10045 EVT OperandEltVT = OperandVT.getVectorElementType(); 10046 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10047 Operand, getVectorIdxConstant(i, dl)); 10048 } else { 10049 // A scalar operand; just use it as is. 10050 Operands[j] = Operand; 10051 } 10052 } 10053 10054 switch (N->getOpcode()) { 10055 default: { 10056 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10057 N->getFlags())); 10058 break; 10059 } 10060 case ISD::VSELECT: 10061 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10062 break; 10063 case ISD::SHL: 10064 case ISD::SRA: 10065 case ISD::SRL: 10066 case ISD::ROTL: 10067 case ISD::ROTR: 10068 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10069 getShiftAmountOperand(Operands[0].getValueType(), 10070 Operands[1]))); 10071 break; 10072 case ISD::SIGN_EXTEND_INREG: { 10073 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10074 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10075 Operands[0], 10076 getValueType(ExtVT))); 10077 } 10078 } 10079 } 10080 10081 for (; i < ResNE; ++i) 10082 Scalars.push_back(getUNDEF(EltVT)); 10083 10084 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10085 return getBuildVector(VecVT, dl, Scalars); 10086 } 10087 10088 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10089 SDNode *N, unsigned ResNE) { 10090 unsigned Opcode = N->getOpcode(); 10091 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10092 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10093 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10094 "Expected an overflow opcode"); 10095 10096 EVT ResVT = N->getValueType(0); 10097 EVT OvVT = N->getValueType(1); 10098 EVT ResEltVT = ResVT.getVectorElementType(); 10099 EVT OvEltVT = OvVT.getVectorElementType(); 10100 SDLoc dl(N); 10101 10102 // If ResNE is 0, fully unroll the vector op. 10103 unsigned NE = ResVT.getVectorNumElements(); 10104 if (ResNE == 0) 10105 ResNE = NE; 10106 else if (NE > ResNE) 10107 NE = ResNE; 10108 10109 SmallVector<SDValue, 8> LHSScalars; 10110 SmallVector<SDValue, 8> RHSScalars; 10111 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10112 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10113 10114 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10115 SDVTList VTs = getVTList(ResEltVT, SVT); 10116 SmallVector<SDValue, 8> ResScalars; 10117 SmallVector<SDValue, 8> OvScalars; 10118 for (unsigned i = 0; i < NE; ++i) { 10119 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10120 SDValue Ov = 10121 getSelect(dl, OvEltVT, Res.getValue(1), 10122 getBoolConstant(true, dl, OvEltVT, ResVT), 10123 getConstant(0, dl, OvEltVT)); 10124 10125 ResScalars.push_back(Res); 10126 OvScalars.push_back(Ov); 10127 } 10128 10129 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10130 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10131 10132 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10133 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10134 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10135 getBuildVector(NewOvVT, dl, OvScalars)); 10136 } 10137 10138 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10139 LoadSDNode *Base, 10140 unsigned Bytes, 10141 int Dist) const { 10142 if (LD->isVolatile() || Base->isVolatile()) 10143 return false; 10144 // TODO: probably too restrictive for atomics, revisit 10145 if (!LD->isSimple()) 10146 return false; 10147 if (LD->isIndexed() || Base->isIndexed()) 10148 return false; 10149 if (LD->getChain() != Base->getChain()) 10150 return false; 10151 EVT VT = LD->getValueType(0); 10152 if (VT.getSizeInBits() / 8 != Bytes) 10153 return false; 10154 10155 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10156 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10157 10158 int64_t Offset = 0; 10159 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10160 return (Dist * Bytes == Offset); 10161 return false; 10162 } 10163 10164 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10165 /// if it cannot be inferred. 10166 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10167 // If this is a GlobalAddress + cst, return the alignment. 10168 const GlobalValue *GV = nullptr; 10169 int64_t GVOffset = 0; 10170 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10171 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10172 KnownBits Known(PtrWidth); 10173 llvm::computeKnownBits(GV, Known, getDataLayout()); 10174 unsigned AlignBits = Known.countMinTrailingZeros(); 10175 if (AlignBits) 10176 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10177 } 10178 10179 // If this is a direct reference to a stack slot, use information about the 10180 // stack slot's alignment. 10181 int FrameIdx = INT_MIN; 10182 int64_t FrameOffset = 0; 10183 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10184 FrameIdx = FI->getIndex(); 10185 } else if (isBaseWithConstantOffset(Ptr) && 10186 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10187 // Handle FI+Cst 10188 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10189 FrameOffset = Ptr.getConstantOperandVal(1); 10190 } 10191 10192 if (FrameIdx != INT_MIN) { 10193 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10194 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10195 } 10196 10197 return None; 10198 } 10199 10200 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10201 /// which is split (or expanded) into two not necessarily identical pieces. 10202 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10203 // Currently all types are split in half. 10204 EVT LoVT, HiVT; 10205 if (!VT.isVector()) 10206 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10207 else 10208 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10209 10210 return std::make_pair(LoVT, HiVT); 10211 } 10212 10213 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10214 /// type, dependent on an enveloping VT that has been split into two identical 10215 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10216 std::pair<EVT, EVT> 10217 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10218 bool *HiIsEmpty) const { 10219 EVT EltTp = VT.getVectorElementType(); 10220 // Examples: 10221 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10222 // custom VL=9 with enveloping VL=8/8 yields 8/1 10223 // custom VL=10 with enveloping VL=8/8 yields 8/2 10224 // etc. 10225 ElementCount VTNumElts = VT.getVectorElementCount(); 10226 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10227 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10228 "Mixing fixed width and scalable vectors when enveloping a type"); 10229 EVT LoVT, HiVT; 10230 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10231 LoVT = EnvVT; 10232 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10233 *HiIsEmpty = false; 10234 } else { 10235 // Flag that hi type has zero storage size, but return split envelop type 10236 // (this would be easier if vector types with zero elements were allowed). 10237 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10238 HiVT = EnvVT; 10239 *HiIsEmpty = true; 10240 } 10241 return std::make_pair(LoVT, HiVT); 10242 } 10243 10244 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10245 /// low/high part. 10246 std::pair<SDValue, SDValue> 10247 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10248 const EVT &HiVT) { 10249 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10250 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10251 "Splitting vector with an invalid mixture of fixed and scalable " 10252 "vector types"); 10253 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10254 N.getValueType().getVectorMinNumElements() && 10255 "More vector elements requested than available!"); 10256 SDValue Lo, Hi; 10257 Lo = 10258 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10259 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10260 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10261 // IDX with the runtime scaling factor of the result vector type. For 10262 // fixed-width result vectors, that runtime scaling factor is 1. 10263 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10264 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10265 return std::make_pair(Lo, Hi); 10266 } 10267 10268 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10269 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10270 EVT VT = N.getValueType(); 10271 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10272 NextPowerOf2(VT.getVectorNumElements())); 10273 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10274 getVectorIdxConstant(0, DL)); 10275 } 10276 10277 void SelectionDAG::ExtractVectorElements(SDValue Op, 10278 SmallVectorImpl<SDValue> &Args, 10279 unsigned Start, unsigned Count, 10280 EVT EltVT) { 10281 EVT VT = Op.getValueType(); 10282 if (Count == 0) 10283 Count = VT.getVectorNumElements(); 10284 if (EltVT == EVT()) 10285 EltVT = VT.getVectorElementType(); 10286 SDLoc SL(Op); 10287 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10288 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10289 getVectorIdxConstant(i, SL))); 10290 } 10291 } 10292 10293 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10294 unsigned GlobalAddressSDNode::getAddressSpace() const { 10295 return getGlobal()->getType()->getAddressSpace(); 10296 } 10297 10298 Type *ConstantPoolSDNode::getType() const { 10299 if (isMachineConstantPoolEntry()) 10300 return Val.MachineCPVal->getType(); 10301 return Val.ConstVal->getType(); 10302 } 10303 10304 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10305 unsigned &SplatBitSize, 10306 bool &HasAnyUndefs, 10307 unsigned MinSplatBits, 10308 bool IsBigEndian) const { 10309 EVT VT = getValueType(0); 10310 assert(VT.isVector() && "Expected a vector type"); 10311 unsigned VecWidth = VT.getSizeInBits(); 10312 if (MinSplatBits > VecWidth) 10313 return false; 10314 10315 // FIXME: The widths are based on this node's type, but build vectors can 10316 // truncate their operands. 10317 SplatValue = APInt(VecWidth, 0); 10318 SplatUndef = APInt(VecWidth, 0); 10319 10320 // Get the bits. Bits with undefined values (when the corresponding element 10321 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10322 // in SplatValue. If any of the values are not constant, give up and return 10323 // false. 10324 unsigned int NumOps = getNumOperands(); 10325 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10326 unsigned EltWidth = VT.getScalarSizeInBits(); 10327 10328 for (unsigned j = 0; j < NumOps; ++j) { 10329 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10330 SDValue OpVal = getOperand(i); 10331 unsigned BitPos = j * EltWidth; 10332 10333 if (OpVal.isUndef()) 10334 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10335 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10336 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10337 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10338 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10339 else 10340 return false; 10341 } 10342 10343 // The build_vector is all constants or undefs. Find the smallest element 10344 // size that splats the vector. 10345 HasAnyUndefs = (SplatUndef != 0); 10346 10347 // FIXME: This does not work for vectors with elements less than 8 bits. 10348 while (VecWidth > 8) { 10349 unsigned HalfSize = VecWidth / 2; 10350 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10351 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10352 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10353 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10354 10355 // If the two halves do not match (ignoring undef bits), stop here. 10356 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10357 MinSplatBits > HalfSize) 10358 break; 10359 10360 SplatValue = HighValue | LowValue; 10361 SplatUndef = HighUndef & LowUndef; 10362 10363 VecWidth = HalfSize; 10364 } 10365 10366 SplatBitSize = VecWidth; 10367 return true; 10368 } 10369 10370 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10371 BitVector *UndefElements) const { 10372 unsigned NumOps = getNumOperands(); 10373 if (UndefElements) { 10374 UndefElements->clear(); 10375 UndefElements->resize(NumOps); 10376 } 10377 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10378 if (!DemandedElts) 10379 return SDValue(); 10380 SDValue Splatted; 10381 for (unsigned i = 0; i != NumOps; ++i) { 10382 if (!DemandedElts[i]) 10383 continue; 10384 SDValue Op = getOperand(i); 10385 if (Op.isUndef()) { 10386 if (UndefElements) 10387 (*UndefElements)[i] = true; 10388 } else if (!Splatted) { 10389 Splatted = Op; 10390 } else if (Splatted != Op) { 10391 return SDValue(); 10392 } 10393 } 10394 10395 if (!Splatted) { 10396 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10397 assert(getOperand(FirstDemandedIdx).isUndef() && 10398 "Can only have a splat without a constant for all undefs."); 10399 return getOperand(FirstDemandedIdx); 10400 } 10401 10402 return Splatted; 10403 } 10404 10405 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10406 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10407 return getSplatValue(DemandedElts, UndefElements); 10408 } 10409 10410 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10411 SmallVectorImpl<SDValue> &Sequence, 10412 BitVector *UndefElements) const { 10413 unsigned NumOps = getNumOperands(); 10414 Sequence.clear(); 10415 if (UndefElements) { 10416 UndefElements->clear(); 10417 UndefElements->resize(NumOps); 10418 } 10419 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10420 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10421 return false; 10422 10423 // Set the undefs even if we don't find a sequence (like getSplatValue). 10424 if (UndefElements) 10425 for (unsigned I = 0; I != NumOps; ++I) 10426 if (DemandedElts[I] && getOperand(I).isUndef()) 10427 (*UndefElements)[I] = true; 10428 10429 // Iteratively widen the sequence length looking for repetitions. 10430 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10431 Sequence.append(SeqLen, SDValue()); 10432 for (unsigned I = 0; I != NumOps; ++I) { 10433 if (!DemandedElts[I]) 10434 continue; 10435 SDValue &SeqOp = Sequence[I % SeqLen]; 10436 SDValue Op = getOperand(I); 10437 if (Op.isUndef()) { 10438 if (!SeqOp) 10439 SeqOp = Op; 10440 continue; 10441 } 10442 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10443 Sequence.clear(); 10444 break; 10445 } 10446 SeqOp = Op; 10447 } 10448 if (!Sequence.empty()) 10449 return true; 10450 } 10451 10452 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10453 return false; 10454 } 10455 10456 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10457 BitVector *UndefElements) const { 10458 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10459 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10460 } 10461 10462 ConstantSDNode * 10463 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10464 BitVector *UndefElements) const { 10465 return dyn_cast_or_null<ConstantSDNode>( 10466 getSplatValue(DemandedElts, UndefElements)); 10467 } 10468 10469 ConstantSDNode * 10470 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10471 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10472 } 10473 10474 ConstantFPSDNode * 10475 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10476 BitVector *UndefElements) const { 10477 return dyn_cast_or_null<ConstantFPSDNode>( 10478 getSplatValue(DemandedElts, UndefElements)); 10479 } 10480 10481 ConstantFPSDNode * 10482 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10483 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10484 } 10485 10486 int32_t 10487 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10488 uint32_t BitWidth) const { 10489 if (ConstantFPSDNode *CN = 10490 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10491 bool IsExact; 10492 APSInt IntVal(BitWidth); 10493 const APFloat &APF = CN->getValueAPF(); 10494 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10495 APFloat::opOK || 10496 !IsExact) 10497 return -1; 10498 10499 return IntVal.exactLogBase2(); 10500 } 10501 return -1; 10502 } 10503 10504 bool BuildVectorSDNode::isConstant() const { 10505 for (const SDValue &Op : op_values()) { 10506 unsigned Opc = Op.getOpcode(); 10507 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10508 return false; 10509 } 10510 return true; 10511 } 10512 10513 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10514 // Find the first non-undef value in the shuffle mask. 10515 unsigned i, e; 10516 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10517 /* search */; 10518 10519 // If all elements are undefined, this shuffle can be considered a splat 10520 // (although it should eventually get simplified away completely). 10521 if (i == e) 10522 return true; 10523 10524 // Make sure all remaining elements are either undef or the same as the first 10525 // non-undef value. 10526 for (int Idx = Mask[i]; i != e; ++i) 10527 if (Mask[i] >= 0 && Mask[i] != Idx) 10528 return false; 10529 return true; 10530 } 10531 10532 // Returns the SDNode if it is a constant integer BuildVector 10533 // or constant integer. 10534 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10535 if (isa<ConstantSDNode>(N)) 10536 return N.getNode(); 10537 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10538 return N.getNode(); 10539 // Treat a GlobalAddress supporting constant offset folding as a 10540 // constant integer. 10541 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10542 if (GA->getOpcode() == ISD::GlobalAddress && 10543 TLI->isOffsetFoldingLegal(GA)) 10544 return GA; 10545 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10546 isa<ConstantSDNode>(N.getOperand(0))) 10547 return N.getNode(); 10548 return nullptr; 10549 } 10550 10551 // Returns the SDNode if it is a constant float BuildVector 10552 // or constant float. 10553 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10554 if (isa<ConstantFPSDNode>(N)) 10555 return N.getNode(); 10556 10557 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10558 return N.getNode(); 10559 10560 return nullptr; 10561 } 10562 10563 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10564 assert(!Node->OperandList && "Node already has operands"); 10565 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10566 "too many operands to fit into SDNode"); 10567 SDUse *Ops = OperandRecycler.allocate( 10568 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10569 10570 bool IsDivergent = false; 10571 for (unsigned I = 0; I != Vals.size(); ++I) { 10572 Ops[I].setUser(Node); 10573 Ops[I].setInitial(Vals[I]); 10574 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10575 IsDivergent |= Ops[I].getNode()->isDivergent(); 10576 } 10577 Node->NumOperands = Vals.size(); 10578 Node->OperandList = Ops; 10579 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10580 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10581 Node->SDNodeBits.IsDivergent = IsDivergent; 10582 } 10583 checkForCycles(Node); 10584 } 10585 10586 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10587 SmallVectorImpl<SDValue> &Vals) { 10588 size_t Limit = SDNode::getMaxNumOperands(); 10589 while (Vals.size() > Limit) { 10590 unsigned SliceIdx = Vals.size() - Limit; 10591 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10592 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10593 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10594 Vals.emplace_back(NewTF); 10595 } 10596 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10597 } 10598 10599 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10600 EVT VT, SDNodeFlags Flags) { 10601 switch (Opcode) { 10602 default: 10603 return SDValue(); 10604 case ISD::ADD: 10605 case ISD::OR: 10606 case ISD::XOR: 10607 case ISD::UMAX: 10608 return getConstant(0, DL, VT); 10609 case ISD::MUL: 10610 return getConstant(1, DL, VT); 10611 case ISD::AND: 10612 case ISD::UMIN: 10613 return getAllOnesConstant(DL, VT); 10614 case ISD::SMAX: 10615 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10616 case ISD::SMIN: 10617 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10618 case ISD::FADD: 10619 return getConstantFP(-0.0, DL, VT); 10620 case ISD::FMUL: 10621 return getConstantFP(1.0, DL, VT); 10622 case ISD::FMINNUM: 10623 case ISD::FMAXNUM: { 10624 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10625 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10626 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10627 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10628 APFloat::getLargest(Semantics); 10629 if (Opcode == ISD::FMAXNUM) 10630 NeutralAF.changeSign(); 10631 10632 return getConstantFP(NeutralAF, DL, VT); 10633 } 10634 } 10635 } 10636 10637 #ifndef NDEBUG 10638 static void checkForCyclesHelper(const SDNode *N, 10639 SmallPtrSetImpl<const SDNode*> &Visited, 10640 SmallPtrSetImpl<const SDNode*> &Checked, 10641 const llvm::SelectionDAG *DAG) { 10642 // If this node has already been checked, don't check it again. 10643 if (Checked.count(N)) 10644 return; 10645 10646 // If a node has already been visited on this depth-first walk, reject it as 10647 // a cycle. 10648 if (!Visited.insert(N).second) { 10649 errs() << "Detected cycle in SelectionDAG\n"; 10650 dbgs() << "Offending node:\n"; 10651 N->dumprFull(DAG); dbgs() << "\n"; 10652 abort(); 10653 } 10654 10655 for (const SDValue &Op : N->op_values()) 10656 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10657 10658 Checked.insert(N); 10659 Visited.erase(N); 10660 } 10661 #endif 10662 10663 void llvm::checkForCycles(const llvm::SDNode *N, 10664 const llvm::SelectionDAG *DAG, 10665 bool force) { 10666 #ifndef NDEBUG 10667 bool check = force; 10668 #ifdef EXPENSIVE_CHECKS 10669 check = true; 10670 #endif // EXPENSIVE_CHECKS 10671 if (check) { 10672 assert(N && "Checking nonexistent SDNode"); 10673 SmallPtrSet<const SDNode*, 32> visited; 10674 SmallPtrSet<const SDNode*, 32> checked; 10675 checkForCyclesHelper(N, visited, checked, DAG); 10676 } 10677 #endif // !NDEBUG 10678 } 10679 10680 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10681 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10682 } 10683