1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/ManagedStatic.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Mutex.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 #include <cmath>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59   SDVTList Res = {VTs, NumVTs};
60   return Res;
61 }
62 
63 // Default null implementations of the callbacks.
64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66 
67 //===----------------------------------------------------------------------===//
68 //                              ConstantFPSDNode Class
69 //===----------------------------------------------------------------------===//
70 
71 /// isExactlyValue - We don't rely on operator== working on double values, as
72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73 /// As such, this method can be used to do an exact bit-for-bit comparison of
74 /// two floating point values.
75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76   return getValueAPF().bitwiseIsEqual(V);
77 }
78 
79 bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                            const APFloat& Val) {
81   assert(VT.isFloatingPoint() && "Can only convert between FP types");
82 
83   // convert modifies in place, so make a copy.
84   APFloat Val2 = APFloat(Val);
85   bool losesInfo;
86   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                       APFloat::rmNearestTiesToEven,
88                       &losesInfo);
89   return !losesInfo;
90 }
91 
92 //===----------------------------------------------------------------------===//
93 //                              ISD Namespace
94 //===----------------------------------------------------------------------===//
95 
96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
97   auto *BV = dyn_cast<BuildVectorSDNode>(N);
98   if (!BV)
99     return false;
100 
101   APInt SplatUndef;
102   unsigned SplatBitSize;
103   bool HasUndefs;
104   EVT EltVT = N->getValueType(0).getVectorElementType();
105   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) &&
106          EltVT.getSizeInBits() >= SplatBitSize;
107 }
108 
109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
110 // specializations of the more general isConstantSplatVector()?
111 
112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113   // Look through a bit convert.
114   while (N->getOpcode() == ISD::BITCAST)
115     N = N->getOperand(0).getNode();
116 
117   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 
119   unsigned i = 0, e = N->getNumOperands();
120 
121   // Skip over all of the undef values.
122   while (i != e && N->getOperand(i).isUndef())
123     ++i;
124 
125   // Do not accept an all-undef vector.
126   if (i == e) return false;
127 
128   // Do not accept build_vectors that aren't all constants or which have non-~0
129   // elements. We have to be a bit careful here, as the type of the constant
130   // may not be the same as the type of the vector elements due to type
131   // legalization (the elements are promoted to a legal type for the target and
132   // a vector of a type may be legal when the base element type is not).
133   // We only want to check enough bits to cover the vector elements, because
134   // we care if the resultant vector is all ones, not whether the individual
135   // constants are.
136   SDValue NotZero = N->getOperand(i);
137   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
138   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
139     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
140       return false;
141   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
142     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
143       return false;
144   } else
145     return false;
146 
147   // Okay, we have at least one ~0 value, check to see if the rest match or are
148   // undefs. Even with the above element type twiddling, this should be OK, as
149   // the same type legalization should have applied to all the elements.
150   for (++i; i != e; ++i)
151     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
152       return false;
153   return true;
154 }
155 
156 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   bool IsAllUndef = true;
164   for (const SDValue &Op : N->op_values()) {
165     if (Op.isUndef())
166       continue;
167     IsAllUndef = false;
168     // Do not accept build_vectors that aren't all constants or which have non-0
169     // elements. We have to be a bit careful here, as the type of the constant
170     // may not be the same as the type of the vector elements due to type
171     // legalization (the elements are promoted to a legal type for the target
172     // and a vector of a type may be legal when the base element type is not).
173     // We only want to check enough bits to cover the vector elements, because
174     // we care if the resultant vector is all zeros, not whether the individual
175     // constants are.
176     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
178       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
179         return false;
180     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
181       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
182         return false;
183     } else
184       return false;
185   }
186 
187   // Do not accept an all-undef vector.
188   if (IsAllUndef)
189     return false;
190   return true;
191 }
192 
193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
194   if (N->getOpcode() != ISD::BUILD_VECTOR)
195     return false;
196 
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     if (!isa<ConstantSDNode>(Op))
201       return false;
202   }
203   return true;
204 }
205 
206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
207   if (N->getOpcode() != ISD::BUILD_VECTOR)
208     return false;
209 
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     if (!isa<ConstantFPSDNode>(Op))
214       return false;
215   }
216   return true;
217 }
218 
219 bool ISD::allOperandsUndef(const SDNode *N) {
220   // Return false if the node has no operands.
221   // This is "logically inconsistent" with the definition of "all" but
222   // is probably the desired behavior.
223   if (N->getNumOperands() == 0)
224     return false;
225 
226   for (const SDValue &Op : N->op_values())
227     if (!Op.isUndef())
228       return false;
229 
230   return true;
231 }
232 
233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
234   switch (ExtType) {
235   case ISD::EXTLOAD:
236     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
237   case ISD::SEXTLOAD:
238     return ISD::SIGN_EXTEND;
239   case ISD::ZEXTLOAD:
240     return ISD::ZERO_EXTEND;
241   default:
242     break;
243   }
244 
245   llvm_unreachable("Invalid LoadExtType");
246 }
247 
248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
249   // To perform this operation, we just need to swap the L and G bits of the
250   // operation.
251   unsigned OldL = (Operation >> 2) & 1;
252   unsigned OldG = (Operation >> 1) & 1;
253   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
254                        (OldL << 1) |       // New G bit
255                        (OldG << 2));       // New L bit.
256 }
257 
258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
259   unsigned Operation = Op;
260   if (isInteger)
261     Operation ^= 7;   // Flip L, G, E bits, but not U.
262   else
263     Operation ^= 15;  // Flip all of the condition bits.
264 
265   if (Operation > ISD::SETTRUE2)
266     Operation &= ~8;  // Don't let N and U bits get set.
267 
268   return ISD::CondCode(Operation);
269 }
270 
271 
272 /// For an integer comparison, return 1 if the comparison is a signed operation
273 /// and 2 if the result is an unsigned comparison. Return zero if the operation
274 /// does not depend on the sign of the input (setne and seteq).
275 static int isSignedOp(ISD::CondCode Opcode) {
276   switch (Opcode) {
277   default: llvm_unreachable("Illegal integer setcc operation!");
278   case ISD::SETEQ:
279   case ISD::SETNE: return 0;
280   case ISD::SETLT:
281   case ISD::SETLE:
282   case ISD::SETGT:
283   case ISD::SETGE: return 1;
284   case ISD::SETULT:
285   case ISD::SETULE:
286   case ISD::SETUGT:
287   case ISD::SETUGE: return 2;
288   }
289 }
290 
291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294     // Cannot fold a signed integer setcc with an unsigned integer setcc.
295     return ISD::SETCC_INVALID;
296 
297   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
298 
299   // If the N and U bits get set then the resultant comparison DOES suddenly
300   // care about orderedness, and is true when ordered.
301   if (Op > ISD::SETTRUE2)
302     Op &= ~16;     // Clear the U bit if the N bit is set.
303 
304   // Canonicalize illegal integer setcc's.
305   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
306     Op = ISD::SETNE;
307 
308   return ISD::CondCode(Op);
309 }
310 
311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                         bool isInteger) {
313   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314     // Cannot fold a signed setcc with an unsigned setcc.
315     return ISD::SETCC_INVALID;
316 
317   // Combine all of the condition bits.
318   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319 
320   // Canonicalize illegal integer setcc's.
321   if (isInteger) {
322     switch (Result) {
323     default: break;
324     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329     }
330   }
331 
332   return Result;
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                           SDNode Profile Support
337 //===----------------------------------------------------------------------===//
338 
339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340 ///
341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342   ID.AddInteger(OpC);
343 }
344 
345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346 /// solely with their pointer.
347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348   ID.AddPointer(VTList.VTs);
349 }
350 
351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352 ///
353 static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                               ArrayRef<SDValue> Ops) {
355   for (auto& Op : Ops) {
356     ID.AddPointer(Op.getNode());
357     ID.AddInteger(Op.getResNo());
358   }
359 }
360 
361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362 ///
363 static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                               ArrayRef<SDUse> Ops) {
365   for (auto& Op : Ops) {
366     ID.AddPointer(Op.getNode());
367     ID.AddInteger(Op.getResNo());
368   }
369 }
370 
371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
372                           SDVTList VTList, ArrayRef<SDValue> OpList) {
373   AddNodeIDOpcode(ID, OpC);
374   AddNodeIDValueTypes(ID, VTList);
375   AddNodeIDOperands(ID, OpList);
376 }
377 
378 /// If this is an SDNode with special info, add this info to the NodeID data.
379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
380   switch (N->getOpcode()) {
381   case ISD::TargetExternalSymbol:
382   case ISD::ExternalSymbol:
383   case ISD::MCSymbol:
384     llvm_unreachable("Should only be used on nodes with operands");
385   default: break;  // Normal nodes don't need extra info.
386   case ISD::TargetConstant:
387   case ISD::Constant: {
388     const ConstantSDNode *C = cast<ConstantSDNode>(N);
389     ID.AddPointer(C->getConstantIntValue());
390     ID.AddBoolean(C->isOpaque());
391     break;
392   }
393   case ISD::TargetConstantFP:
394   case ISD::ConstantFP: {
395     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
396     break;
397   }
398   case ISD::TargetGlobalAddress:
399   case ISD::GlobalAddress:
400   case ISD::TargetGlobalTLSAddress:
401   case ISD::GlobalTLSAddress: {
402     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
403     ID.AddPointer(GA->getGlobal());
404     ID.AddInteger(GA->getOffset());
405     ID.AddInteger(GA->getTargetFlags());
406     ID.AddInteger(GA->getAddressSpace());
407     break;
408   }
409   case ISD::BasicBlock:
410     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
411     break;
412   case ISD::Register:
413     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
414     break;
415   case ISD::RegisterMask:
416     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
417     break;
418   case ISD::SRCVALUE:
419     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
420     break;
421   case ISD::FrameIndex:
422   case ISD::TargetFrameIndex:
423     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
424     break;
425   case ISD::JumpTable:
426   case ISD::TargetJumpTable:
427     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
428     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
429     break;
430   case ISD::ConstantPool:
431   case ISD::TargetConstantPool: {
432     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
433     ID.AddInteger(CP->getAlignment());
434     ID.AddInteger(CP->getOffset());
435     if (CP->isMachineConstantPoolEntry())
436       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
437     else
438       ID.AddPointer(CP->getConstVal());
439     ID.AddInteger(CP->getTargetFlags());
440     break;
441   }
442   case ISD::TargetIndex: {
443     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
444     ID.AddInteger(TI->getIndex());
445     ID.AddInteger(TI->getOffset());
446     ID.AddInteger(TI->getTargetFlags());
447     break;
448   }
449   case ISD::LOAD: {
450     const LoadSDNode *LD = cast<LoadSDNode>(N);
451     ID.AddInteger(LD->getMemoryVT().getRawBits());
452     ID.AddInteger(LD->getRawSubclassData());
453     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
454     break;
455   }
456   case ISD::STORE: {
457     const StoreSDNode *ST = cast<StoreSDNode>(N);
458     ID.AddInteger(ST->getMemoryVT().getRawBits());
459     ID.AddInteger(ST->getRawSubclassData());
460     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
461     break;
462   }
463   case ISD::ATOMIC_CMP_SWAP:
464   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
465   case ISD::ATOMIC_SWAP:
466   case ISD::ATOMIC_LOAD_ADD:
467   case ISD::ATOMIC_LOAD_SUB:
468   case ISD::ATOMIC_LOAD_AND:
469   case ISD::ATOMIC_LOAD_OR:
470   case ISD::ATOMIC_LOAD_XOR:
471   case ISD::ATOMIC_LOAD_NAND:
472   case ISD::ATOMIC_LOAD_MIN:
473   case ISD::ATOMIC_LOAD_MAX:
474   case ISD::ATOMIC_LOAD_UMIN:
475   case ISD::ATOMIC_LOAD_UMAX:
476   case ISD::ATOMIC_LOAD:
477   case ISD::ATOMIC_STORE: {
478     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
479     ID.AddInteger(AT->getMemoryVT().getRawBits());
480     ID.AddInteger(AT->getRawSubclassData());
481     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
482     break;
483   }
484   case ISD::PREFETCH: {
485     const MemSDNode *PF = cast<MemSDNode>(N);
486     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
487     break;
488   }
489   case ISD::VECTOR_SHUFFLE: {
490     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
491     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
492          i != e; ++i)
493       ID.AddInteger(SVN->getMaskElt(i));
494     break;
495   }
496   case ISD::TargetBlockAddress:
497   case ISD::BlockAddress: {
498     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
499     ID.AddPointer(BA->getBlockAddress());
500     ID.AddInteger(BA->getOffset());
501     ID.AddInteger(BA->getTargetFlags());
502     break;
503   }
504   } // end switch (N->getOpcode())
505 
506   // Target specific memory nodes could also have address spaces to check.
507   if (N->isTargetMemoryOpcode())
508     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
509 }
510 
511 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
512 /// data.
513 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
514   AddNodeIDOpcode(ID, N->getOpcode());
515   // Add the return value info.
516   AddNodeIDValueTypes(ID, N->getVTList());
517   // Add the operand info.
518   AddNodeIDOperands(ID, N->ops());
519 
520   // Handle SDNode leafs with special info.
521   AddNodeIDCustom(ID, N);
522 }
523 
524 //===----------------------------------------------------------------------===//
525 //                              SelectionDAG Class
526 //===----------------------------------------------------------------------===//
527 
528 /// doNotCSE - Return true if CSE should not be performed for this node.
529 static bool doNotCSE(SDNode *N) {
530   if (N->getValueType(0) == MVT::Glue)
531     return true; // Never CSE anything that produces a flag.
532 
533   switch (N->getOpcode()) {
534   default: break;
535   case ISD::HANDLENODE:
536   case ISD::EH_LABEL:
537     return true;   // Never CSE these nodes.
538   }
539 
540   // Check that remaining values produced are not flags.
541   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542     if (N->getValueType(i) == MVT::Glue)
543       return true; // Never CSE anything that produces a flag.
544 
545   return false;
546 }
547 
548 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
549 /// SelectionDAG.
550 void SelectionDAG::RemoveDeadNodes() {
551   // Create a dummy node (which is not added to allnodes), that adds a reference
552   // to the root node, preventing it from being deleted.
553   HandleSDNode Dummy(getRoot());
554 
555   SmallVector<SDNode*, 128> DeadNodes;
556 
557   // Add all obviously-dead nodes to the DeadNodes worklist.
558   for (SDNode &Node : allnodes())
559     if (Node.use_empty())
560       DeadNodes.push_back(&Node);
561 
562   RemoveDeadNodes(DeadNodes);
563 
564   // If the root changed (e.g. it was a dead load, update the root).
565   setRoot(Dummy.getValue());
566 }
567 
568 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
569 /// given list, and any nodes that become unreachable as a result.
570 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
571 
572   // Process the worklist, deleting the nodes and adding their uses to the
573   // worklist.
574   while (!DeadNodes.empty()) {
575     SDNode *N = DeadNodes.pop_back_val();
576 
577     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
578       DUL->NodeDeleted(N, nullptr);
579 
580     // Take the node out of the appropriate CSE map.
581     RemoveNodeFromCSEMaps(N);
582 
583     // Next, brutally remove the operand list.  This is safe to do, as there are
584     // no cycles in the graph.
585     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
586       SDUse &Use = *I++;
587       SDNode *Operand = Use.getNode();
588       Use.set(SDValue());
589 
590       // Now that we removed this operand, see if there are no uses of it left.
591       if (Operand->use_empty())
592         DeadNodes.push_back(Operand);
593     }
594 
595     DeallocateNode(N);
596   }
597 }
598 
599 void SelectionDAG::RemoveDeadNode(SDNode *N){
600   SmallVector<SDNode*, 16> DeadNodes(1, N);
601 
602   // Create a dummy node that adds a reference to the root node, preventing
603   // it from being deleted.  (This matters if the root is an operand of the
604   // dead node.)
605   HandleSDNode Dummy(getRoot());
606 
607   RemoveDeadNodes(DeadNodes);
608 }
609 
610 void SelectionDAG::DeleteNode(SDNode *N) {
611   // First take this out of the appropriate CSE map.
612   RemoveNodeFromCSEMaps(N);
613 
614   // Finally, remove uses due to operands of this node, remove from the
615   // AllNodes list, and delete the node.
616   DeleteNodeNotInCSEMaps(N);
617 }
618 
619 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
620   assert(N->getIterator() != AllNodes.begin() &&
621          "Cannot delete the entry node!");
622   assert(N->use_empty() && "Cannot delete a node that is not dead!");
623 
624   // Drop all of the operands and decrement used node's use counts.
625   N->DropOperands();
626 
627   DeallocateNode(N);
628 }
629 
630 void SDDbgInfo::erase(const SDNode *Node) {
631   DbgValMapType::iterator I = DbgValMap.find(Node);
632   if (I == DbgValMap.end())
633     return;
634   for (auto &Val: I->second)
635     Val->setIsInvalidated();
636   DbgValMap.erase(I);
637 }
638 
639 void SelectionDAG::DeallocateNode(SDNode *N) {
640   // If we have operands, deallocate them.
641   removeOperands(N);
642 
643   // Set the opcode to DELETED_NODE to help catch bugs when node
644   // memory is reallocated.
645   N->NodeType = ISD::DELETED_NODE;
646 
647   NodeAllocator.Deallocate(AllNodes.remove(N));
648 
649   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
650   // them and forget about that node.
651   DbgInfo->erase(N);
652 }
653 
654 #ifndef NDEBUG
655 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
656 static void VerifySDNode(SDNode *N) {
657   switch (N->getOpcode()) {
658   default:
659     break;
660   case ISD::BUILD_PAIR: {
661     EVT VT = N->getValueType(0);
662     assert(N->getNumValues() == 1 && "Too many results!");
663     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
664            "Wrong return type!");
665     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
666     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
667            "Mismatched operand types!");
668     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
669            "Wrong operand type!");
670     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
671            "Wrong return type size");
672     break;
673   }
674   case ISD::BUILD_VECTOR: {
675     assert(N->getNumValues() == 1 && "Too many results!");
676     assert(N->getValueType(0).isVector() && "Wrong return type!");
677     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
678            "Wrong number of operands!");
679     EVT EltVT = N->getValueType(0).getVectorElementType();
680     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
681       assert((I->getValueType() == EltVT ||
682              (EltVT.isInteger() && I->getValueType().isInteger() &&
683               EltVT.bitsLE(I->getValueType()))) &&
684             "Wrong operand type!");
685       assert(I->getValueType() == N->getOperand(0).getValueType() &&
686              "Operands must all have the same type");
687     }
688     break;
689   }
690   }
691 }
692 #endif // NDEBUG
693 
694 /// \brief Insert a newly allocated node into the DAG.
695 ///
696 /// Handles insertion into the all nodes list and CSE map, as well as
697 /// verification and other common operations when a new node is allocated.
698 void SelectionDAG::InsertNode(SDNode *N) {
699   AllNodes.push_back(N);
700 #ifndef NDEBUG
701   N->PersistentId = NextPersistentId++;
702   VerifySDNode(N);
703 #endif
704 }
705 
706 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
707 /// correspond to it.  This is useful when we're about to delete or repurpose
708 /// the node.  We don't want future request for structurally identical nodes
709 /// to return N anymore.
710 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
711   bool Erased = false;
712   switch (N->getOpcode()) {
713   case ISD::HANDLENODE: return false;  // noop.
714   case ISD::CONDCODE:
715     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
716            "Cond code doesn't exist!");
717     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
718     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
719     break;
720   case ISD::ExternalSymbol:
721     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
722     break;
723   case ISD::TargetExternalSymbol: {
724     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
725     Erased = TargetExternalSymbols.erase(
726                std::pair<std::string,unsigned char>(ESN->getSymbol(),
727                                                     ESN->getTargetFlags()));
728     break;
729   }
730   case ISD::MCSymbol: {
731     auto *MCSN = cast<MCSymbolSDNode>(N);
732     Erased = MCSymbols.erase(MCSN->getMCSymbol());
733     break;
734   }
735   case ISD::VALUETYPE: {
736     EVT VT = cast<VTSDNode>(N)->getVT();
737     if (VT.isExtended()) {
738       Erased = ExtendedValueTypeNodes.erase(VT);
739     } else {
740       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
741       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
742     }
743     break;
744   }
745   default:
746     // Remove it from the CSE Map.
747     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
748     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
749     Erased = CSEMap.RemoveNode(N);
750     break;
751   }
752 #ifndef NDEBUG
753   // Verify that the node was actually in one of the CSE maps, unless it has a
754   // flag result (which cannot be CSE'd) or is one of the special cases that are
755   // not subject to CSE.
756   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
757       !N->isMachineOpcode() && !doNotCSE(N)) {
758     N->dump(this);
759     dbgs() << "\n";
760     llvm_unreachable("Node is not in map!");
761   }
762 #endif
763   return Erased;
764 }
765 
766 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
767 /// maps and modified in place. Add it back to the CSE maps, unless an identical
768 /// node already exists, in which case transfer all its users to the existing
769 /// node. This transfer can potentially trigger recursive merging.
770 ///
771 void
772 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
773   // For node types that aren't CSE'd, just act as if no identical node
774   // already exists.
775   if (!doNotCSE(N)) {
776     SDNode *Existing = CSEMap.GetOrInsertNode(N);
777     if (Existing != N) {
778       // If there was already an existing matching node, use ReplaceAllUsesWith
779       // to replace the dead one with the existing one.  This can cause
780       // recursive merging of other unrelated nodes down the line.
781       ReplaceAllUsesWith(N, Existing);
782 
783       // N is now dead. Inform the listeners and delete it.
784       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
785         DUL->NodeDeleted(N, Existing);
786       DeleteNodeNotInCSEMaps(N);
787       return;
788     }
789   }
790 
791   // If the node doesn't already exist, we updated it.  Inform listeners.
792   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
793     DUL->NodeUpdated(N);
794 }
795 
796 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
797 /// were replaced with those specified.  If this node is never memoized,
798 /// return null, otherwise return a pointer to the slot it would take.  If a
799 /// node already exists with these operands, the slot will be non-null.
800 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
801                                            void *&InsertPos) {
802   if (doNotCSE(N))
803     return nullptr;
804 
805   SDValue Ops[] = { Op };
806   FoldingSetNodeID ID;
807   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
808   AddNodeIDCustom(ID, N);
809   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
810   if (Node)
811     if (const SDNodeFlags *Flags = N->getFlags())
812       Node->intersectFlagsWith(Flags);
813   return Node;
814 }
815 
816 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
817 /// were replaced with those specified.  If this node is never memoized,
818 /// return null, otherwise return a pointer to the slot it would take.  If a
819 /// node already exists with these operands, the slot will be non-null.
820 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
821                                            SDValue Op1, SDValue Op2,
822                                            void *&InsertPos) {
823   if (doNotCSE(N))
824     return nullptr;
825 
826   SDValue Ops[] = { Op1, Op2 };
827   FoldingSetNodeID ID;
828   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
829   AddNodeIDCustom(ID, N);
830   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
831   if (Node)
832     if (const SDNodeFlags *Flags = N->getFlags())
833       Node->intersectFlagsWith(Flags);
834   return Node;
835 }
836 
837 
838 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
839 /// were replaced with those specified.  If this node is never memoized,
840 /// return null, otherwise return a pointer to the slot it would take.  If a
841 /// node already exists with these operands, the slot will be non-null.
842 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
843                                            void *&InsertPos) {
844   if (doNotCSE(N))
845     return nullptr;
846 
847   FoldingSetNodeID ID;
848   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
849   AddNodeIDCustom(ID, N);
850   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
851   if (Node)
852     if (const SDNodeFlags *Flags = N->getFlags())
853       Node->intersectFlagsWith(Flags);
854   return Node;
855 }
856 
857 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
858   Type *Ty = VT == MVT::iPTR ?
859                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
860                    VT.getTypeForEVT(*getContext());
861 
862   return getDataLayout().getABITypeAlignment(Ty);
863 }
864 
865 // EntryNode could meaningfully have debug info if we can find it...
866 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
867     : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
868       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
869       Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
870       UpdateListeners(nullptr) {
871   InsertNode(&EntryNode);
872   DbgInfo = new SDDbgInfo();
873 }
874 
875 void SelectionDAG::init(MachineFunction &mf) {
876   MF = &mf;
877   TLI = getSubtarget().getTargetLowering();
878   TSI = getSubtarget().getSelectionDAGInfo();
879   Context = &mf.getFunction()->getContext();
880 }
881 
882 SelectionDAG::~SelectionDAG() {
883   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
884   allnodes_clear();
885   OperandRecycler.clear(OperandAllocator);
886   delete DbgInfo;
887 }
888 
889 void SelectionDAG::allnodes_clear() {
890   assert(&*AllNodes.begin() == &EntryNode);
891   AllNodes.remove(AllNodes.begin());
892   while (!AllNodes.empty())
893     DeallocateNode(&AllNodes.front());
894 #ifndef NDEBUG
895   NextPersistentId = 0;
896 #endif
897 }
898 
899 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL,
900                                       SDVTList VTs, SDValue N1, SDValue N2,
901                                       const SDNodeFlags *Flags) {
902   SDValue Ops[] = {N1, N2};
903 
904   if (isBinOpWithFlags(Opcode)) {
905     // If no flags were passed in, use a default flags object.
906     SDNodeFlags F;
907     if (Flags == nullptr)
908       Flags = &F;
909 
910     auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(),
911                                                 DL.getDebugLoc(), VTs, *Flags);
912     createOperands(FN, Ops);
913 
914     return FN;
915   }
916 
917   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
918   createOperands(N, Ops);
919   return N;
920 }
921 
922 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
923                                           void *&InsertPos) {
924   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
925   if (N) {
926     switch (N->getOpcode()) {
927     default: break;
928     case ISD::Constant:
929     case ISD::ConstantFP:
930       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
931                        "debug location.  Use another overload.");
932     }
933   }
934   return N;
935 }
936 
937 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
938                                           const SDLoc &DL, void *&InsertPos) {
939   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
940   if (N) {
941     switch (N->getOpcode()) {
942     case ISD::Constant:
943     case ISD::ConstantFP:
944       // Erase debug location from the node if the node is used at several
945       // different places. Do not propagate one location to all uses as it
946       // will cause a worse single stepping debugging experience.
947       if (N->getDebugLoc() != DL.getDebugLoc())
948         N->setDebugLoc(DebugLoc());
949       break;
950     default:
951       // When the node's point of use is located earlier in the instruction
952       // sequence than its prior point of use, update its debug info to the
953       // earlier location.
954       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
955         N->setDebugLoc(DL.getDebugLoc());
956       break;
957     }
958   }
959   return N;
960 }
961 
962 void SelectionDAG::clear() {
963   allnodes_clear();
964   OperandRecycler.clear(OperandAllocator);
965   OperandAllocator.Reset();
966   CSEMap.clear();
967 
968   ExtendedValueTypeNodes.clear();
969   ExternalSymbols.clear();
970   TargetExternalSymbols.clear();
971   MCSymbols.clear();
972   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
973             static_cast<CondCodeSDNode*>(nullptr));
974   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
975             static_cast<SDNode*>(nullptr));
976 
977   EntryNode.UseList = nullptr;
978   InsertNode(&EntryNode);
979   Root = getEntryNode();
980   DbgInfo->clear();
981 }
982 
983 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
984   return VT.bitsGT(Op.getValueType()) ?
985     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
986     getNode(ISD::TRUNCATE, DL, VT, Op);
987 }
988 
989 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
990   return VT.bitsGT(Op.getValueType()) ?
991     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
992     getNode(ISD::TRUNCATE, DL, VT, Op);
993 }
994 
995 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
996   return VT.bitsGT(Op.getValueType()) ?
997     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
998     getNode(ISD::TRUNCATE, DL, VT, Op);
999 }
1000 
1001 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1002                                         EVT OpVT) {
1003   if (VT.bitsLE(Op.getValueType()))
1004     return getNode(ISD::TRUNCATE, SL, VT, Op);
1005 
1006   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1007   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1008 }
1009 
1010 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1011   assert(!VT.isVector() &&
1012          "getZeroExtendInReg should use the vector element type instead of "
1013          "the vector type!");
1014   if (Op.getValueType() == VT) return Op;
1015   unsigned BitWidth = Op.getScalarValueSizeInBits();
1016   APInt Imm = APInt::getLowBitsSet(BitWidth,
1017                                    VT.getSizeInBits());
1018   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1019                  getConstant(Imm, DL, Op.getValueType()));
1020 }
1021 
1022 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1023                                               EVT VT) {
1024   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1025   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1026          "The sizes of the input and result must match in order to perform the "
1027          "extend in-register.");
1028   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1029          "The destination vector type must have fewer lanes than the input.");
1030   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1031 }
1032 
1033 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1034                                                EVT VT) {
1035   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1036   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1037          "The sizes of the input and result must match in order to perform the "
1038          "extend in-register.");
1039   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1040          "The destination vector type must have fewer lanes than the input.");
1041   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1042 }
1043 
1044 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1045                                                EVT VT) {
1046   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1047   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1048          "The sizes of the input and result must match in order to perform the "
1049          "extend in-register.");
1050   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1051          "The destination vector type must have fewer lanes than the input.");
1052   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1053 }
1054 
1055 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1056 ///
1057 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1058   EVT EltVT = VT.getScalarType();
1059   SDValue NegOne =
1060     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1061   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1062 }
1063 
1064 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1065   EVT EltVT = VT.getScalarType();
1066   SDValue TrueValue;
1067   switch (TLI->getBooleanContents(VT)) {
1068     case TargetLowering::ZeroOrOneBooleanContent:
1069     case TargetLowering::UndefinedBooleanContent:
1070       TrueValue = getConstant(1, DL, VT);
1071       break;
1072     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1073       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1074                               VT);
1075       break;
1076   }
1077   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1078 }
1079 
1080 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1081                                   bool isT, bool isO) {
1082   EVT EltVT = VT.getScalarType();
1083   assert((EltVT.getSizeInBits() >= 64 ||
1084          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1085          "getConstant with a uint64_t value that doesn't fit in the type!");
1086   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1087 }
1088 
1089 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1090                                   bool isT, bool isO) {
1091   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1092 }
1093 
1094 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1095                                   EVT VT, bool isT, bool isO) {
1096   assert(VT.isInteger() && "Cannot create FP integer constant!");
1097 
1098   EVT EltVT = VT.getScalarType();
1099   const ConstantInt *Elt = &Val;
1100 
1101   // In some cases the vector type is legal but the element type is illegal and
1102   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1103   // inserted value (the type does not need to match the vector element type).
1104   // Any extra bits introduced will be truncated away.
1105   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1106       TargetLowering::TypePromoteInteger) {
1107    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1108    APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
1109    Elt = ConstantInt::get(*getContext(), NewVal);
1110   }
1111   // In other cases the element type is illegal and needs to be expanded, for
1112   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1113   // the value into n parts and use a vector type with n-times the elements.
1114   // Then bitcast to the type requested.
1115   // Legalizing constants too early makes the DAGCombiner's job harder so we
1116   // only legalize if the DAG tells us we must produce legal types.
1117   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1118            TLI->getTypeAction(*getContext(), EltVT) ==
1119            TargetLowering::TypeExpandInteger) {
1120     const APInt &NewVal = Elt->getValue();
1121     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1122     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1123     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1124     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1125 
1126     // Check the temporary vector is the correct size. If this fails then
1127     // getTypeToTransformTo() probably returned a type whose size (in bits)
1128     // isn't a power-of-2 factor of the requested type size.
1129     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1130 
1131     SmallVector<SDValue, 2> EltParts;
1132     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1133       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1134                                            .trunc(ViaEltSizeInBits), DL,
1135                                      ViaEltVT, isT, isO));
1136     }
1137 
1138     // EltParts is currently in little endian order. If we actually want
1139     // big-endian order then reverse it now.
1140     if (getDataLayout().isBigEndian())
1141       std::reverse(EltParts.begin(), EltParts.end());
1142 
1143     // The elements must be reversed when the element order is different
1144     // to the endianness of the elements (because the BITCAST is itself a
1145     // vector shuffle in this situation). However, we do not need any code to
1146     // perform this reversal because getConstant() is producing a vector
1147     // splat.
1148     // This situation occurs in MIPS MSA.
1149 
1150     SmallVector<SDValue, 8> Ops;
1151     for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
1152       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1153 
1154     SDValue Result = getNode(ISD::BITCAST, DL, VT,
1155                              getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops));
1156     return Result;
1157   }
1158 
1159   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1160          "APInt size does not match type size!");
1161   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1162   FoldingSetNodeID ID;
1163   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1164   ID.AddPointer(Elt);
1165   ID.AddBoolean(isO);
1166   void *IP = nullptr;
1167   SDNode *N = nullptr;
1168   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1169     if (!VT.isVector())
1170       return SDValue(N, 0);
1171 
1172   if (!N) {
1173     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1174     CSEMap.InsertNode(N, IP);
1175     InsertNode(N);
1176   }
1177 
1178   SDValue Result(N, 0);
1179   if (VT.isVector())
1180     Result = getSplatBuildVector(VT, DL, Result);
1181   return Result;
1182 }
1183 
1184 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1185                                         bool isTarget) {
1186   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1187 }
1188 
1189 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1190                                     bool isTarget) {
1191   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1192 }
1193 
1194 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1195                                     EVT VT, bool isTarget) {
1196   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1197 
1198   EVT EltVT = VT.getScalarType();
1199 
1200   // Do the map lookup using the actual bit pattern for the floating point
1201   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1202   // we don't have issues with SNANs.
1203   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1204   FoldingSetNodeID ID;
1205   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1206   ID.AddPointer(&V);
1207   void *IP = nullptr;
1208   SDNode *N = nullptr;
1209   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1210     if (!VT.isVector())
1211       return SDValue(N, 0);
1212 
1213   if (!N) {
1214     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1215     CSEMap.InsertNode(N, IP);
1216     InsertNode(N);
1217   }
1218 
1219   SDValue Result(N, 0);
1220   if (VT.isVector())
1221     Result = getSplatBuildVector(VT, DL, Result);
1222   return Result;
1223 }
1224 
1225 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1226                                     bool isTarget) {
1227   EVT EltVT = VT.getScalarType();
1228   if (EltVT == MVT::f32)
1229     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1230   else if (EltVT == MVT::f64)
1231     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1232   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1233            EltVT == MVT::f16) {
1234     bool Ignored;
1235     APFloat APF = APFloat(Val);
1236     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1237                 &Ignored);
1238     return getConstantFP(APF, DL, VT, isTarget);
1239   } else
1240     llvm_unreachable("Unsupported type in getConstantFP");
1241 }
1242 
1243 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1244                                        EVT VT, int64_t Offset, bool isTargetGA,
1245                                        unsigned char TargetFlags) {
1246   assert((TargetFlags == 0 || isTargetGA) &&
1247          "Cannot set target flags on target-independent globals");
1248 
1249   // Truncate (with sign-extension) the offset value to the pointer size.
1250   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1251   if (BitWidth < 64)
1252     Offset = SignExtend64(Offset, BitWidth);
1253 
1254   unsigned Opc;
1255   if (GV->isThreadLocal())
1256     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1257   else
1258     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1259 
1260   FoldingSetNodeID ID;
1261   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1262   ID.AddPointer(GV);
1263   ID.AddInteger(Offset);
1264   ID.AddInteger(TargetFlags);
1265   ID.AddInteger(GV->getType()->getAddressSpace());
1266   void *IP = nullptr;
1267   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1268     return SDValue(E, 0);
1269 
1270   auto *N = newSDNode<GlobalAddressSDNode>(
1271       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1272   CSEMap.InsertNode(N, IP);
1273     InsertNode(N);
1274   return SDValue(N, 0);
1275 }
1276 
1277 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1278   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1279   FoldingSetNodeID ID;
1280   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1281   ID.AddInteger(FI);
1282   void *IP = nullptr;
1283   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1284     return SDValue(E, 0);
1285 
1286   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1287   CSEMap.InsertNode(N, IP);
1288   InsertNode(N);
1289   return SDValue(N, 0);
1290 }
1291 
1292 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1293                                    unsigned char TargetFlags) {
1294   assert((TargetFlags == 0 || isTarget) &&
1295          "Cannot set target flags on target-independent jump tables");
1296   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1297   FoldingSetNodeID ID;
1298   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1299   ID.AddInteger(JTI);
1300   ID.AddInteger(TargetFlags);
1301   void *IP = nullptr;
1302   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1303     return SDValue(E, 0);
1304 
1305   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1306   CSEMap.InsertNode(N, IP);
1307   InsertNode(N);
1308   return SDValue(N, 0);
1309 }
1310 
1311 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1312                                       unsigned Alignment, int Offset,
1313                                       bool isTarget,
1314                                       unsigned char TargetFlags) {
1315   assert((TargetFlags == 0 || isTarget) &&
1316          "Cannot set target flags on target-independent globals");
1317   if (Alignment == 0)
1318     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1319   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1320   FoldingSetNodeID ID;
1321   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1322   ID.AddInteger(Alignment);
1323   ID.AddInteger(Offset);
1324   ID.AddPointer(C);
1325   ID.AddInteger(TargetFlags);
1326   void *IP = nullptr;
1327   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1328     return SDValue(E, 0);
1329 
1330   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1331                                           TargetFlags);
1332   CSEMap.InsertNode(N, IP);
1333   InsertNode(N);
1334   return SDValue(N, 0);
1335 }
1336 
1337 
1338 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1339                                       unsigned Alignment, int Offset,
1340                                       bool isTarget,
1341                                       unsigned char TargetFlags) {
1342   assert((TargetFlags == 0 || isTarget) &&
1343          "Cannot set target flags on target-independent globals");
1344   if (Alignment == 0)
1345     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1346   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1347   FoldingSetNodeID ID;
1348   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1349   ID.AddInteger(Alignment);
1350   ID.AddInteger(Offset);
1351   C->addSelectionDAGCSEId(ID);
1352   ID.AddInteger(TargetFlags);
1353   void *IP = nullptr;
1354   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1355     return SDValue(E, 0);
1356 
1357   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1358                                           TargetFlags);
1359   CSEMap.InsertNode(N, IP);
1360   InsertNode(N);
1361   return SDValue(N, 0);
1362 }
1363 
1364 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1365                                      unsigned char TargetFlags) {
1366   FoldingSetNodeID ID;
1367   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1368   ID.AddInteger(Index);
1369   ID.AddInteger(Offset);
1370   ID.AddInteger(TargetFlags);
1371   void *IP = nullptr;
1372   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1373     return SDValue(E, 0);
1374 
1375   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1376   CSEMap.InsertNode(N, IP);
1377   InsertNode(N);
1378   return SDValue(N, 0);
1379 }
1380 
1381 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1382   FoldingSetNodeID ID;
1383   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1384   ID.AddPointer(MBB);
1385   void *IP = nullptr;
1386   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1387     return SDValue(E, 0);
1388 
1389   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1390   CSEMap.InsertNode(N, IP);
1391   InsertNode(N);
1392   return SDValue(N, 0);
1393 }
1394 
1395 SDValue SelectionDAG::getValueType(EVT VT) {
1396   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1397       ValueTypeNodes.size())
1398     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1399 
1400   SDNode *&N = VT.isExtended() ?
1401     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1402 
1403   if (N) return SDValue(N, 0);
1404   N = newSDNode<VTSDNode>(VT);
1405   InsertNode(N);
1406   return SDValue(N, 0);
1407 }
1408 
1409 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1410   SDNode *&N = ExternalSymbols[Sym];
1411   if (N) return SDValue(N, 0);
1412   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1413   InsertNode(N);
1414   return SDValue(N, 0);
1415 }
1416 
1417 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1418   SDNode *&N = MCSymbols[Sym];
1419   if (N)
1420     return SDValue(N, 0);
1421   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1422   InsertNode(N);
1423   return SDValue(N, 0);
1424 }
1425 
1426 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1427                                               unsigned char TargetFlags) {
1428   SDNode *&N =
1429     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1430                                                                TargetFlags)];
1431   if (N) return SDValue(N, 0);
1432   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1433   InsertNode(N);
1434   return SDValue(N, 0);
1435 }
1436 
1437 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1438   if ((unsigned)Cond >= CondCodeNodes.size())
1439     CondCodeNodes.resize(Cond+1);
1440 
1441   if (!CondCodeNodes[Cond]) {
1442     auto *N = newSDNode<CondCodeSDNode>(Cond);
1443     CondCodeNodes[Cond] = N;
1444     InsertNode(N);
1445   }
1446 
1447   return SDValue(CondCodeNodes[Cond], 0);
1448 }
1449 
1450 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1451 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1452 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1453   std::swap(N1, N2);
1454   ShuffleVectorSDNode::commuteMask(M);
1455 }
1456 
1457 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1458                                        SDValue N2, ArrayRef<int> Mask) {
1459   assert(VT.getVectorNumElements() == Mask.size() &&
1460            "Must have the same number of vector elements as mask elements!");
1461   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1462          "Invalid VECTOR_SHUFFLE");
1463 
1464   // Canonicalize shuffle undef, undef -> undef
1465   if (N1.isUndef() && N2.isUndef())
1466     return getUNDEF(VT);
1467 
1468   // Validate that all indices in Mask are within the range of the elements
1469   // input to the shuffle.
1470   int NElts = Mask.size();
1471   assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1472          "Index out of range");
1473 
1474   // Copy the mask so we can do any needed cleanup.
1475   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1476 
1477   // Canonicalize shuffle v, v -> v, undef
1478   if (N1 == N2) {
1479     N2 = getUNDEF(VT);
1480     for (int i = 0; i != NElts; ++i)
1481       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1482   }
1483 
1484   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1485   if (N1.isUndef())
1486     commuteShuffle(N1, N2, MaskVec);
1487 
1488   // If shuffling a splat, try to blend the splat instead. We do this here so
1489   // that even when this arises during lowering we don't have to re-handle it.
1490   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1491     BitVector UndefElements;
1492     SDValue Splat = BV->getSplatValue(&UndefElements);
1493     if (!Splat)
1494       return;
1495 
1496     for (int i = 0; i < NElts; ++i) {
1497       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1498         continue;
1499 
1500       // If this input comes from undef, mark it as such.
1501       if (UndefElements[MaskVec[i] - Offset]) {
1502         MaskVec[i] = -1;
1503         continue;
1504       }
1505 
1506       // If we can blend a non-undef lane, use that instead.
1507       if (!UndefElements[i])
1508         MaskVec[i] = i + Offset;
1509     }
1510   };
1511   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1512     BlendSplat(N1BV, 0);
1513   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1514     BlendSplat(N2BV, NElts);
1515 
1516   // Canonicalize all index into lhs, -> shuffle lhs, undef
1517   // Canonicalize all index into rhs, -> shuffle rhs, undef
1518   bool AllLHS = true, AllRHS = true;
1519   bool N2Undef = N2.isUndef();
1520   for (int i = 0; i != NElts; ++i) {
1521     if (MaskVec[i] >= NElts) {
1522       if (N2Undef)
1523         MaskVec[i] = -1;
1524       else
1525         AllLHS = false;
1526     } else if (MaskVec[i] >= 0) {
1527       AllRHS = false;
1528     }
1529   }
1530   if (AllLHS && AllRHS)
1531     return getUNDEF(VT);
1532   if (AllLHS && !N2Undef)
1533     N2 = getUNDEF(VT);
1534   if (AllRHS) {
1535     N1 = getUNDEF(VT);
1536     commuteShuffle(N1, N2, MaskVec);
1537   }
1538   // Reset our undef status after accounting for the mask.
1539   N2Undef = N2.isUndef();
1540   // Re-check whether both sides ended up undef.
1541   if (N1.isUndef() && N2Undef)
1542     return getUNDEF(VT);
1543 
1544   // If Identity shuffle return that node.
1545   bool Identity = true, AllSame = true;
1546   for (int i = 0; i != NElts; ++i) {
1547     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1548     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1549   }
1550   if (Identity && NElts)
1551     return N1;
1552 
1553   // Shuffling a constant splat doesn't change the result.
1554   if (N2Undef) {
1555     SDValue V = N1;
1556 
1557     // Look through any bitcasts. We check that these don't change the number
1558     // (and size) of elements and just changes their types.
1559     while (V.getOpcode() == ISD::BITCAST)
1560       V = V->getOperand(0);
1561 
1562     // A splat should always show up as a build vector node.
1563     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1564       BitVector UndefElements;
1565       SDValue Splat = BV->getSplatValue(&UndefElements);
1566       // If this is a splat of an undef, shuffling it is also undef.
1567       if (Splat && Splat.isUndef())
1568         return getUNDEF(VT);
1569 
1570       bool SameNumElts =
1571           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1572 
1573       // We only have a splat which can skip shuffles if there is a splatted
1574       // value and no undef lanes rearranged by the shuffle.
1575       if (Splat && UndefElements.none()) {
1576         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1577         // number of elements match or the value splatted is a zero constant.
1578         if (SameNumElts)
1579           return N1;
1580         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1581           if (C->isNullValue())
1582             return N1;
1583       }
1584 
1585       // If the shuffle itself creates a splat, build the vector directly.
1586       if (AllSame && SameNumElts) {
1587         EVT BuildVT = BV->getValueType(0);
1588         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1589         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1590 
1591         // We may have jumped through bitcasts, so the type of the
1592         // BUILD_VECTOR may not match the type of the shuffle.
1593         if (BuildVT != VT)
1594           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1595         return NewBV;
1596       }
1597     }
1598   }
1599 
1600   FoldingSetNodeID ID;
1601   SDValue Ops[2] = { N1, N2 };
1602   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1603   for (int i = 0; i != NElts; ++i)
1604     ID.AddInteger(MaskVec[i]);
1605 
1606   void* IP = nullptr;
1607   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1608     return SDValue(E, 0);
1609 
1610   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1611   // SDNode doesn't have access to it.  This memory will be "leaked" when
1612   // the node is deallocated, but recovered when the NodeAllocator is released.
1613   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1614   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1615 
1616   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1617                                            dl.getDebugLoc(), MaskAlloc);
1618   createOperands(N, Ops);
1619 
1620   CSEMap.InsertNode(N, IP);
1621   InsertNode(N);
1622   return SDValue(N, 0);
1623 }
1624 
1625 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1626   MVT VT = SV.getSimpleValueType(0);
1627   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1628   ShuffleVectorSDNode::commuteMask(MaskVec);
1629 
1630   SDValue Op0 = SV.getOperand(0);
1631   SDValue Op1 = SV.getOperand(1);
1632   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1633 }
1634 
1635 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val,
1636                                        SDValue DTy, SDValue STy, SDValue Rnd,
1637                                        SDValue Sat, ISD::CvtCode Code) {
1638   // If the src and dest types are the same and the conversion is between
1639   // integer types of the same sign or two floats, no conversion is necessary.
1640   if (DTy == STy &&
1641       (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1642     return Val;
1643 
1644   FoldingSetNodeID ID;
1645   SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1646   AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops);
1647   void* IP = nullptr;
1648   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1649     return SDValue(E, 0);
1650 
1651   auto *N =
1652       newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code);
1653   createOperands(N, Ops);
1654 
1655   CSEMap.InsertNode(N, IP);
1656   InsertNode(N);
1657   return SDValue(N, 0);
1658 }
1659 
1660 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1661   FoldingSetNodeID ID;
1662   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1663   ID.AddInteger(RegNo);
1664   void *IP = nullptr;
1665   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1666     return SDValue(E, 0);
1667 
1668   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1669   CSEMap.InsertNode(N, IP);
1670   InsertNode(N);
1671   return SDValue(N, 0);
1672 }
1673 
1674 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1675   FoldingSetNodeID ID;
1676   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1677   ID.AddPointer(RegMask);
1678   void *IP = nullptr;
1679   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1680     return SDValue(E, 0);
1681 
1682   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1683   CSEMap.InsertNode(N, IP);
1684   InsertNode(N);
1685   return SDValue(N, 0);
1686 }
1687 
1688 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1689                                  MCSymbol *Label) {
1690   FoldingSetNodeID ID;
1691   SDValue Ops[] = { Root };
1692   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
1693   ID.AddPointer(Label);
1694   void *IP = nullptr;
1695   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1696     return SDValue(E, 0);
1697 
1698   auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1699   createOperands(N, Ops);
1700 
1701   CSEMap.InsertNode(N, IP);
1702   InsertNode(N);
1703   return SDValue(N, 0);
1704 }
1705 
1706 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1707                                       int64_t Offset,
1708                                       bool isTarget,
1709                                       unsigned char TargetFlags) {
1710   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1711 
1712   FoldingSetNodeID ID;
1713   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1714   ID.AddPointer(BA);
1715   ID.AddInteger(Offset);
1716   ID.AddInteger(TargetFlags);
1717   void *IP = nullptr;
1718   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1719     return SDValue(E, 0);
1720 
1721   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1722   CSEMap.InsertNode(N, IP);
1723   InsertNode(N);
1724   return SDValue(N, 0);
1725 }
1726 
1727 SDValue SelectionDAG::getSrcValue(const Value *V) {
1728   assert((!V || V->getType()->isPointerTy()) &&
1729          "SrcValue is not a pointer?");
1730 
1731   FoldingSetNodeID ID;
1732   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1733   ID.AddPointer(V);
1734 
1735   void *IP = nullptr;
1736   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1737     return SDValue(E, 0);
1738 
1739   auto *N = newSDNode<SrcValueSDNode>(V);
1740   CSEMap.InsertNode(N, IP);
1741   InsertNode(N);
1742   return SDValue(N, 0);
1743 }
1744 
1745 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1746   FoldingSetNodeID ID;
1747   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1748   ID.AddPointer(MD);
1749 
1750   void *IP = nullptr;
1751   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1752     return SDValue(E, 0);
1753 
1754   auto *N = newSDNode<MDNodeSDNode>(MD);
1755   CSEMap.InsertNode(N, IP);
1756   InsertNode(N);
1757   return SDValue(N, 0);
1758 }
1759 
1760 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1761   if (VT == V.getValueType())
1762     return V;
1763 
1764   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1765 }
1766 
1767 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1768                                        unsigned SrcAS, unsigned DestAS) {
1769   SDValue Ops[] = {Ptr};
1770   FoldingSetNodeID ID;
1771   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1772   ID.AddInteger(SrcAS);
1773   ID.AddInteger(DestAS);
1774 
1775   void *IP = nullptr;
1776   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1777     return SDValue(E, 0);
1778 
1779   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1780                                            VT, SrcAS, DestAS);
1781   createOperands(N, Ops);
1782 
1783   CSEMap.InsertNode(N, IP);
1784   InsertNode(N);
1785   return SDValue(N, 0);
1786 }
1787 
1788 /// getShiftAmountOperand - Return the specified value casted to
1789 /// the target's desired shift amount type.
1790 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1791   EVT OpTy = Op.getValueType();
1792   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1793   if (OpTy == ShTy || OpTy.isVector()) return Op;
1794 
1795   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1796 }
1797 
1798 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1799   SDLoc dl(Node);
1800   const TargetLowering &TLI = getTargetLoweringInfo();
1801   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1802   EVT VT = Node->getValueType(0);
1803   SDValue Tmp1 = Node->getOperand(0);
1804   SDValue Tmp2 = Node->getOperand(1);
1805   unsigned Align = Node->getConstantOperandVal(3);
1806 
1807   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1808                                Tmp2, MachinePointerInfo(V));
1809   SDValue VAList = VAListLoad;
1810 
1811   if (Align > TLI.getMinStackArgumentAlignment()) {
1812     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1813 
1814     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1815                      getConstant(Align - 1, dl, VAList.getValueType()));
1816 
1817     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1818                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1819   }
1820 
1821   // Increment the pointer, VAList, to the next vaarg
1822   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1823                  getConstant(getDataLayout().getTypeAllocSize(
1824                                                VT.getTypeForEVT(*getContext())),
1825                              dl, VAList.getValueType()));
1826   // Store the incremented VAList to the legalized pointer
1827   Tmp1 =
1828       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1829   // Load the actual argument out of the pointer VAList
1830   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1831 }
1832 
1833 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1834   SDLoc dl(Node);
1835   const TargetLowering &TLI = getTargetLoweringInfo();
1836   // This defaults to loading a pointer from the input and storing it to the
1837   // output, returning the chain.
1838   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1839   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1840   SDValue Tmp1 =
1841       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1842               Node->getOperand(2), MachinePointerInfo(VS));
1843   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1844                   MachinePointerInfo(VD));
1845 }
1846 
1847 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1848   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1849   unsigned ByteSize = VT.getStoreSize();
1850   Type *Ty = VT.getTypeForEVT(*getContext());
1851   unsigned StackAlign =
1852       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1853 
1854   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1855   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1856 }
1857 
1858 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1859   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1860   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1861   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1862   const DataLayout &DL = getDataLayout();
1863   unsigned Align =
1864       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1865 
1866   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1867   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1868   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1869 }
1870 
1871 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1872                                 ISD::CondCode Cond, const SDLoc &dl) {
1873   // These setcc operations always fold.
1874   switch (Cond) {
1875   default: break;
1876   case ISD::SETFALSE:
1877   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1878   case ISD::SETTRUE:
1879   case ISD::SETTRUE2: {
1880     TargetLowering::BooleanContent Cnt =
1881         TLI->getBooleanContents(N1->getValueType(0));
1882     return getConstant(
1883         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1884         VT);
1885   }
1886 
1887   case ISD::SETOEQ:
1888   case ISD::SETOGT:
1889   case ISD::SETOGE:
1890   case ISD::SETOLT:
1891   case ISD::SETOLE:
1892   case ISD::SETONE:
1893   case ISD::SETO:
1894   case ISD::SETUO:
1895   case ISD::SETUEQ:
1896   case ISD::SETUNE:
1897     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1898     break;
1899   }
1900 
1901   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1902     const APInt &C2 = N2C->getAPIntValue();
1903     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1904       const APInt &C1 = N1C->getAPIntValue();
1905 
1906       switch (Cond) {
1907       default: llvm_unreachable("Unknown integer setcc!");
1908       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1909       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1910       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1911       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1912       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1913       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1914       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1915       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1916       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1917       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1918       }
1919     }
1920   }
1921   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1922     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1923       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1924       switch (Cond) {
1925       default: break;
1926       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1927                           return getUNDEF(VT);
1928                         LLVM_FALLTHROUGH;
1929       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1930       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1931                           return getUNDEF(VT);
1932                         LLVM_FALLTHROUGH;
1933       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1934                                            R==APFloat::cmpLessThan, dl, VT);
1935       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1936                           return getUNDEF(VT);
1937                         LLVM_FALLTHROUGH;
1938       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1939       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1940                           return getUNDEF(VT);
1941                         LLVM_FALLTHROUGH;
1942       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1943       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1944                           return getUNDEF(VT);
1945                         LLVM_FALLTHROUGH;
1946       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1947                                            R==APFloat::cmpEqual, dl, VT);
1948       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1949                           return getUNDEF(VT);
1950                         LLVM_FALLTHROUGH;
1951       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1952                                            R==APFloat::cmpEqual, dl, VT);
1953       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1954       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1955       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1956                                            R==APFloat::cmpEqual, dl, VT);
1957       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1958       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1959                                            R==APFloat::cmpLessThan, dl, VT);
1960       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1961                                            R==APFloat::cmpUnordered, dl, VT);
1962       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1963       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1964       }
1965     } else {
1966       // Ensure that the constant occurs on the RHS.
1967       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1968       MVT CompVT = N1.getValueType().getSimpleVT();
1969       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1970         return SDValue();
1971 
1972       return getSetCC(dl, VT, N2, N1, SwappedCond);
1973     }
1974   }
1975 
1976   // Could not fold it.
1977   return SDValue();
1978 }
1979 
1980 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1981 /// use this predicate to simplify operations downstream.
1982 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1983   unsigned BitWidth = Op.getScalarValueSizeInBits();
1984   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1985 }
1986 
1987 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1988 /// this predicate to simplify operations downstream.  Mask is known to be zero
1989 /// for bits that V cannot have.
1990 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1991                                      unsigned Depth) const {
1992   APInt KnownZero, KnownOne;
1993   computeKnownBits(Op, KnownZero, KnownOne, Depth);
1994   return (KnownZero & Mask) == Mask;
1995 }
1996 
1997 /// Determine which bits of Op are known to be either zero or one and return
1998 /// them in the KnownZero/KnownOne bitsets.
1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
2000                                     APInt &KnownOne, unsigned Depth) const {
2001   unsigned BitWidth = Op.getScalarValueSizeInBits();
2002 
2003   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
2004   if (Depth == 6)
2005     return;  // Limit search depth.
2006 
2007   APInt KnownZero2, KnownOne2;
2008 
2009   switch (Op.getOpcode()) {
2010   case ISD::Constant:
2011     // We know all of the bits for a constant!
2012     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
2013     KnownZero = ~KnownOne;
2014     break;
2015   case ISD::BUILD_VECTOR:
2016     // Collect the known bits that are shared by every vector element.
2017     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2018     for (SDValue SrcOp : Op->ops()) {
2019       computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1);
2020 
2021       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2022       if (SrcOp.getValueSizeInBits() != BitWidth) {
2023         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2024                "Expected BUILD_VECTOR implicit truncation");
2025         KnownOne2 = KnownOne2.trunc(BitWidth);
2026         KnownZero2 = KnownZero2.trunc(BitWidth);
2027       }
2028 
2029       // Known bits are the values that are shared by every element.
2030       // TODO: support per-element known bits.
2031       KnownOne &= KnownOne2;
2032       KnownZero &= KnownZero2;
2033     }
2034     break;
2035   case ISD::AND:
2036     // If either the LHS or the RHS are Zero, the result is zero.
2037     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2038     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2039 
2040     // Output known-1 bits are only known if set in both the LHS & RHS.
2041     KnownOne &= KnownOne2;
2042     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2043     KnownZero |= KnownZero2;
2044     break;
2045   case ISD::OR:
2046     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2047     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2048 
2049     // Output known-0 bits are only known if clear in both the LHS & RHS.
2050     KnownZero &= KnownZero2;
2051     // Output known-1 are known to be set if set in either the LHS | RHS.
2052     KnownOne |= KnownOne2;
2053     break;
2054   case ISD::XOR: {
2055     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2056     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2057 
2058     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2059     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
2060     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2061     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
2062     KnownZero = KnownZeroOut;
2063     break;
2064   }
2065   case ISD::MUL: {
2066     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2067     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2068 
2069     // If low bits are zero in either operand, output low known-0 bits.
2070     // Also compute a conserative estimate for high known-0 bits.
2071     // More trickiness is possible, but this is sufficient for the
2072     // interesting case of alignment computation.
2073     KnownOne.clearAllBits();
2074     unsigned TrailZ = KnownZero.countTrailingOnes() +
2075                       KnownZero2.countTrailingOnes();
2076     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
2077                                KnownZero2.countLeadingOnes(),
2078                                BitWidth) - BitWidth;
2079 
2080     TrailZ = std::min(TrailZ, BitWidth);
2081     LeadZ = std::min(LeadZ, BitWidth);
2082     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
2083                 APInt::getHighBitsSet(BitWidth, LeadZ);
2084     break;
2085   }
2086   case ISD::UDIV: {
2087     // For the purposes of computing leading zeros we can conservatively
2088     // treat a udiv as a logical right shift by the power of 2 known to
2089     // be less than the denominator.
2090     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2091     unsigned LeadZ = KnownZero2.countLeadingOnes();
2092 
2093     KnownOne2.clearAllBits();
2094     KnownZero2.clearAllBits();
2095     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2096     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
2097     if (RHSUnknownLeadingOnes != BitWidth)
2098       LeadZ = std::min(BitWidth,
2099                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
2100 
2101     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
2102     break;
2103   }
2104   case ISD::SELECT:
2105     computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
2106     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2107 
2108     // Only known if known in both the LHS and RHS.
2109     KnownOne &= KnownOne2;
2110     KnownZero &= KnownZero2;
2111     break;
2112   case ISD::SELECT_CC:
2113     computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
2114     computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
2115 
2116     // Only known if known in both the LHS and RHS.
2117     KnownOne &= KnownOne2;
2118     KnownZero &= KnownZero2;
2119     break;
2120   case ISD::SADDO:
2121   case ISD::UADDO:
2122   case ISD::SSUBO:
2123   case ISD::USUBO:
2124   case ISD::SMULO:
2125   case ISD::UMULO:
2126     if (Op.getResNo() != 1)
2127       break;
2128     // The boolean result conforms to getBooleanContents.
2129     // If we know the result of a setcc has the top bits zero, use this info.
2130     // We know that we have an integer-based boolean since these operations
2131     // are only available for integer.
2132     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2133             TargetLowering::ZeroOrOneBooleanContent &&
2134         BitWidth > 1)
2135       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2136     break;
2137   case ISD::SETCC:
2138     // If we know the result of a setcc has the top bits zero, use this info.
2139     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2140             TargetLowering::ZeroOrOneBooleanContent &&
2141         BitWidth > 1)
2142       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2143     break;
2144   case ISD::SHL:
2145     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
2146     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2147       unsigned ShAmt = SA->getZExtValue();
2148 
2149       // If the shift count is an invalid immediate, don't do anything.
2150       if (ShAmt >= BitWidth)
2151         break;
2152 
2153       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2154       KnownZero <<= ShAmt;
2155       KnownOne  <<= ShAmt;
2156       // low bits known zero.
2157       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
2158     }
2159     break;
2160   case ISD::SRL:
2161     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
2162     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2163       unsigned ShAmt = SA->getZExtValue();
2164 
2165       // If the shift count is an invalid immediate, don't do anything.
2166       if (ShAmt >= BitWidth)
2167         break;
2168 
2169       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2170       KnownZero = KnownZero.lshr(ShAmt);
2171       KnownOne  = KnownOne.lshr(ShAmt);
2172 
2173       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
2174       KnownZero |= HighBits;  // High bits known zero.
2175     }
2176     break;
2177   case ISD::SRA:
2178     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2179       unsigned ShAmt = SA->getZExtValue();
2180 
2181       // If the shift count is an invalid immediate, don't do anything.
2182       if (ShAmt >= BitWidth)
2183         break;
2184 
2185       // If any of the demanded bits are produced by the sign extension, we also
2186       // demand the input sign bit.
2187       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
2188 
2189       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2190       KnownZero = KnownZero.lshr(ShAmt);
2191       KnownOne  = KnownOne.lshr(ShAmt);
2192 
2193       // Handle the sign bits.
2194       APInt SignBit = APInt::getSignBit(BitWidth);
2195       SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
2196 
2197       if (KnownZero.intersects(SignBit)) {
2198         KnownZero |= HighBits;  // New bits are known zero.
2199       } else if (KnownOne.intersects(SignBit)) {
2200         KnownOne  |= HighBits;  // New bits are known one.
2201       }
2202     }
2203     break;
2204   case ISD::SIGN_EXTEND_INREG: {
2205     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2206     unsigned EBits = EVT.getScalarSizeInBits();
2207 
2208     // Sign extension.  Compute the demanded bits in the result that are not
2209     // present in the input.
2210     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2211 
2212     APInt InSignBit = APInt::getSignBit(EBits);
2213     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2214 
2215     // If the sign extended bits are demanded, we know that the sign
2216     // bit is demanded.
2217     InSignBit = InSignBit.zext(BitWidth);
2218     if (NewBits.getBoolValue())
2219       InputDemandedBits |= InSignBit;
2220 
2221     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2222     KnownOne &= InputDemandedBits;
2223     KnownZero &= InputDemandedBits;
2224 
2225     // If the sign bit of the input is known set or clear, then we know the
2226     // top bits of the result.
2227     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
2228       KnownZero |= NewBits;
2229       KnownOne  &= ~NewBits;
2230     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
2231       KnownOne  |= NewBits;
2232       KnownZero &= ~NewBits;
2233     } else {                              // Input sign bit unknown
2234       KnownZero &= ~NewBits;
2235       KnownOne  &= ~NewBits;
2236     }
2237     break;
2238   }
2239   case ISD::CTTZ:
2240   case ISD::CTTZ_ZERO_UNDEF:
2241   case ISD::CTLZ:
2242   case ISD::CTLZ_ZERO_UNDEF:
2243   case ISD::CTPOP: {
2244     unsigned LowBits = Log2_32(BitWidth)+1;
2245     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
2246     KnownOne.clearAllBits();
2247     break;
2248   }
2249   case ISD::LOAD: {
2250     LoadSDNode *LD = cast<LoadSDNode>(Op);
2251     // If this is a ZEXTLoad and we are looking at the loaded value.
2252     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2253       EVT VT = LD->getMemoryVT();
2254       unsigned MemBits = VT.getScalarSizeInBits();
2255       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
2256     } else if (const MDNode *Ranges = LD->getRanges()) {
2257       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2258         computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne);
2259     }
2260     break;
2261   }
2262   case ISD::ZERO_EXTEND: {
2263     EVT InVT = Op.getOperand(0).getValueType();
2264     unsigned InBits = InVT.getScalarSizeInBits();
2265     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2266     KnownZero = KnownZero.trunc(InBits);
2267     KnownOne = KnownOne.trunc(InBits);
2268     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2269     KnownZero = KnownZero.zext(BitWidth);
2270     KnownOne = KnownOne.zext(BitWidth);
2271     KnownZero |= NewBits;
2272     break;
2273   }
2274   case ISD::SIGN_EXTEND: {
2275     EVT InVT = Op.getOperand(0).getValueType();
2276     unsigned InBits = InVT.getScalarSizeInBits();
2277     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2278 
2279     KnownZero = KnownZero.trunc(InBits);
2280     KnownOne = KnownOne.trunc(InBits);
2281     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2282 
2283     // Note if the sign bit is known to be zero or one.
2284     bool SignBitKnownZero = KnownZero.isNegative();
2285     bool SignBitKnownOne  = KnownOne.isNegative();
2286 
2287     KnownZero = KnownZero.zext(BitWidth);
2288     KnownOne = KnownOne.zext(BitWidth);
2289 
2290     // If the sign bit is known zero or one, the top bits match.
2291     if (SignBitKnownZero)
2292       KnownZero |= NewBits;
2293     else if (SignBitKnownOne)
2294       KnownOne  |= NewBits;
2295     break;
2296   }
2297   case ISD::ANY_EXTEND: {
2298     EVT InVT = Op.getOperand(0).getValueType();
2299     unsigned InBits = InVT.getScalarSizeInBits();
2300     KnownZero = KnownZero.trunc(InBits);
2301     KnownOne = KnownOne.trunc(InBits);
2302     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2303     KnownZero = KnownZero.zext(BitWidth);
2304     KnownOne = KnownOne.zext(BitWidth);
2305     break;
2306   }
2307   case ISD::TRUNCATE: {
2308     EVT InVT = Op.getOperand(0).getValueType();
2309     unsigned InBits = InVT.getScalarSizeInBits();
2310     KnownZero = KnownZero.zext(InBits);
2311     KnownOne = KnownOne.zext(InBits);
2312     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2313     KnownZero = KnownZero.trunc(BitWidth);
2314     KnownOne = KnownOne.trunc(BitWidth);
2315     break;
2316   }
2317   case ISD::AssertZext: {
2318     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2319     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2320     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2321     KnownZero |= (~InMask);
2322     KnownOne  &= (~KnownZero);
2323     break;
2324   }
2325   case ISD::FGETSIGN:
2326     // All bits are zero except the low bit.
2327     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2328     break;
2329 
2330   case ISD::SUB: {
2331     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
2332       // We know that the top bits of C-X are clear if X contains less bits
2333       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2334       // positive if we can prove that X is >= 0 and < 16.
2335       if (CLHS->getAPIntValue().isNonNegative()) {
2336         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2337         // NLZ can't be BitWidth with no sign bit
2338         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2339         computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2340 
2341         // If all of the MaskV bits are known to be zero, then we know the
2342         // output top bits are zero, because we now know that the output is
2343         // from [0-C].
2344         if ((KnownZero2 & MaskV) == MaskV) {
2345           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2346           // Top bits known zero.
2347           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2348         }
2349       }
2350     }
2351     LLVM_FALLTHROUGH;
2352   }
2353   case ISD::ADD:
2354   case ISD::ADDE: {
2355     // Output known-0 bits are known if clear or set in both the low clear bits
2356     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2357     // low 3 bits clear.
2358     // Output known-0 bits are also known if the top bits of each input are
2359     // known to be clear. For example, if one input has the top 10 bits clear
2360     // and the other has the top 8 bits clear, we know the top 7 bits of the
2361     // output must be clear.
2362     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2363     unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
2364     unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
2365 
2366     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2367     KnownZeroHigh = std::min(KnownZeroHigh,
2368                              KnownZero2.countLeadingOnes());
2369     KnownZeroLow = std::min(KnownZeroLow,
2370                             KnownZero2.countTrailingOnes());
2371 
2372     if (Op.getOpcode() == ISD::ADD) {
2373       KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow);
2374       if (KnownZeroHigh > 1)
2375         KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1);
2376       break;
2377     }
2378 
2379     // With ADDE, a carry bit may be added in, so we can only use this
2380     // information if we know (at least) that the low two bits are clear.  We
2381     // then return to the caller that the low bit is unknown but that other bits
2382     // are known zero.
2383     if (KnownZeroLow >= 2) // ADDE
2384       KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow);
2385     break;
2386   }
2387   case ISD::SREM:
2388     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2389       const APInt &RA = Rem->getAPIntValue().abs();
2390       if (RA.isPowerOf2()) {
2391         APInt LowBits = RA - 1;
2392         computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
2393 
2394         // The low bits of the first operand are unchanged by the srem.
2395         KnownZero = KnownZero2 & LowBits;
2396         KnownOne = KnownOne2 & LowBits;
2397 
2398         // If the first operand is non-negative or has all low bits zero, then
2399         // the upper bits are all zero.
2400         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2401           KnownZero |= ~LowBits;
2402 
2403         // If the first operand is negative and not all low bits are zero, then
2404         // the upper bits are all one.
2405         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2406           KnownOne |= ~LowBits;
2407         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2408       }
2409     }
2410     break;
2411   case ISD::UREM: {
2412     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2413       const APInt &RA = Rem->getAPIntValue();
2414       if (RA.isPowerOf2()) {
2415         APInt LowBits = (RA - 1);
2416         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1);
2417 
2418         // The upper bits are all zero, the lower ones are unchanged.
2419         KnownZero = KnownZero2 | ~LowBits;
2420         KnownOne = KnownOne2 & LowBits;
2421         break;
2422       }
2423     }
2424 
2425     // Since the result is less than or equal to either operand, any leading
2426     // zero bits in either operand must also exist in the result.
2427     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2428     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2429 
2430     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2431                                 KnownZero2.countLeadingOnes());
2432     KnownOne.clearAllBits();
2433     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2434     break;
2435   }
2436   case ISD::EXTRACT_ELEMENT: {
2437     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2438     const unsigned Index =
2439       cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2440     const unsigned BitWidth = Op.getValueSizeInBits();
2441 
2442     // Remove low part of known bits mask
2443     KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
2444     KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
2445 
2446     // Remove high part of known bit mask
2447     KnownZero = KnownZero.trunc(BitWidth);
2448     KnownOne = KnownOne.trunc(BitWidth);
2449     break;
2450   }
2451   case ISD::BSWAP: {
2452     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2453     KnownZero = KnownZero2.byteSwap();
2454     KnownOne = KnownOne2.byteSwap();
2455     break;
2456   }
2457   case ISD::SMIN:
2458   case ISD::SMAX:
2459   case ISD::UMIN:
2460   case ISD::UMAX: {
2461     APInt Op0Zero, Op0One;
2462     APInt Op1Zero, Op1One;
2463     computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth);
2464     computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth);
2465 
2466     KnownZero = Op0Zero & Op1Zero;
2467     KnownOne = Op0One & Op1One;
2468     break;
2469   }
2470   case ISD::FrameIndex:
2471   case ISD::TargetFrameIndex:
2472     if (unsigned Align = InferPtrAlignment(Op)) {
2473       // The low bits are known zero if the pointer is aligned.
2474       KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2475       break;
2476     }
2477     break;
2478 
2479   default:
2480     if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2481       break;
2482     LLVM_FALLTHROUGH;
2483   case ISD::INTRINSIC_WO_CHAIN:
2484   case ISD::INTRINSIC_W_CHAIN:
2485   case ISD::INTRINSIC_VOID:
2486     // Allow the target to implement this method for its nodes.
2487     TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2488     break;
2489   }
2490 
2491   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2492 }
2493 
2494 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2495   // A left-shift of a constant one will have exactly one bit set because
2496   // shifting the bit off the end is undefined.
2497   if (Val.getOpcode() == ISD::SHL) {
2498     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2499     if (C && C->getAPIntValue() == 1)
2500       return true;
2501   }
2502 
2503   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2504   // one bit set.
2505   if (Val.getOpcode() == ISD::SRL) {
2506     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2507     if (C && C->getAPIntValue().isSignBit())
2508       return true;
2509   }
2510 
2511   // More could be done here, though the above checks are enough
2512   // to handle some common cases.
2513 
2514   // Fall back to computeKnownBits to catch other known cases.
2515   EVT OpVT = Val.getValueType();
2516   unsigned BitWidth = OpVT.getScalarSizeInBits();
2517   APInt KnownZero, KnownOne;
2518   computeKnownBits(Val, KnownZero, KnownOne);
2519   return (KnownZero.countPopulation() == BitWidth - 1) &&
2520          (KnownOne.countPopulation() == 1);
2521 }
2522 
2523 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2524   EVT VT = Op.getValueType();
2525   assert(VT.isInteger() && "Invalid VT!");
2526   unsigned VTBits = VT.getScalarSizeInBits();
2527   unsigned Tmp, Tmp2;
2528   unsigned FirstAnswer = 1;
2529 
2530   if (Depth == 6)
2531     return 1;  // Limit search depth.
2532 
2533   switch (Op.getOpcode()) {
2534   default: break;
2535   case ISD::AssertSext:
2536     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2537     return VTBits-Tmp+1;
2538   case ISD::AssertZext:
2539     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2540     return VTBits-Tmp;
2541 
2542   case ISD::Constant: {
2543     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2544     return Val.getNumSignBits();
2545   }
2546 
2547   case ISD::SIGN_EXTEND:
2548     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
2549     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2550 
2551   case ISD::SIGN_EXTEND_INREG:
2552     // Max of the input and what this extends.
2553     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
2554     Tmp = VTBits-Tmp+1;
2555 
2556     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2557     return std::max(Tmp, Tmp2);
2558 
2559   case ISD::SRA:
2560     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2561     // SRA X, C   -> adds C sign bits.
2562     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2563       Tmp += C->getZExtValue();
2564       if (Tmp > VTBits) Tmp = VTBits;
2565     }
2566     return Tmp;
2567   case ISD::SHL:
2568     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2569       // shl destroys sign bits.
2570       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2571       if (C->getZExtValue() >= VTBits ||      // Bad shift.
2572           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2573       return Tmp - C->getZExtValue();
2574     }
2575     break;
2576   case ISD::AND:
2577   case ISD::OR:
2578   case ISD::XOR:    // NOT is handled here.
2579     // Logical binary ops preserve the number of sign bits at the worst.
2580     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2581     if (Tmp != 1) {
2582       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2583       FirstAnswer = std::min(Tmp, Tmp2);
2584       // We computed what we know about the sign bits as our first
2585       // answer. Now proceed to the generic code that uses
2586       // computeKnownBits, and pick whichever answer is better.
2587     }
2588     break;
2589 
2590   case ISD::SELECT:
2591     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2592     if (Tmp == 1) return 1;  // Early out.
2593     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2594     return std::min(Tmp, Tmp2);
2595   case ISD::SELECT_CC:
2596     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2597     if (Tmp == 1) return 1;  // Early out.
2598     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
2599     return std::min(Tmp, Tmp2);
2600   case ISD::SMIN:
2601   case ISD::SMAX:
2602   case ISD::UMIN:
2603   case ISD::UMAX:
2604     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2605     if (Tmp == 1)
2606       return 1;  // Early out.
2607     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
2608     return std::min(Tmp, Tmp2);
2609   case ISD::SADDO:
2610   case ISD::UADDO:
2611   case ISD::SSUBO:
2612   case ISD::USUBO:
2613   case ISD::SMULO:
2614   case ISD::UMULO:
2615     if (Op.getResNo() != 1)
2616       break;
2617     // The boolean result conforms to getBooleanContents.  Fall through.
2618     // If setcc returns 0/-1, all bits are sign bits.
2619     // We know that we have an integer-based boolean since these operations
2620     // are only available for integer.
2621     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2622         TargetLowering::ZeroOrNegativeOneBooleanContent)
2623       return VTBits;
2624     break;
2625   case ISD::SETCC:
2626     // If setcc returns 0/-1, all bits are sign bits.
2627     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2628         TargetLowering::ZeroOrNegativeOneBooleanContent)
2629       return VTBits;
2630     break;
2631   case ISD::ROTL:
2632   case ISD::ROTR:
2633     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2634       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2635 
2636       // Handle rotate right by N like a rotate left by 32-N.
2637       if (Op.getOpcode() == ISD::ROTR)
2638         RotAmt = (VTBits-RotAmt) & (VTBits-1);
2639 
2640       // If we aren't rotating out all of the known-in sign bits, return the
2641       // number that are left.  This handles rotl(sext(x), 1) for example.
2642       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2643       if (Tmp > RotAmt+1) return Tmp-RotAmt;
2644     }
2645     break;
2646   case ISD::ADD:
2647     // Add can have at most one carry bit.  Thus we know that the output
2648     // is, at worst, one more bit than the inputs.
2649     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2650     if (Tmp == 1) return 1;  // Early out.
2651 
2652     // Special case decrementing a value (ADD X, -1):
2653     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2654       if (CRHS->isAllOnesValue()) {
2655         APInt KnownZero, KnownOne;
2656         computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2657 
2658         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2659         // sign bits set.
2660         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2661           return VTBits;
2662 
2663         // If we are subtracting one from a positive number, there is no carry
2664         // out of the result.
2665         if (KnownZero.isNegative())
2666           return Tmp;
2667       }
2668 
2669     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2670     if (Tmp2 == 1) return 1;
2671     return std::min(Tmp, Tmp2)-1;
2672 
2673   case ISD::SUB:
2674     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2675     if (Tmp2 == 1) return 1;
2676 
2677     // Handle NEG.
2678     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2679       if (CLHS->isNullValue()) {
2680         APInt KnownZero, KnownOne;
2681         computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2682         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2683         // sign bits set.
2684         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2685           return VTBits;
2686 
2687         // If the input is known to be positive (the sign bit is known clear),
2688         // the output of the NEG has the same number of sign bits as the input.
2689         if (KnownZero.isNegative())
2690           return Tmp2;
2691 
2692         // Otherwise, we treat this like a SUB.
2693       }
2694 
2695     // Sub can have at most one carry bit.  Thus we know that the output
2696     // is, at worst, one more bit than the inputs.
2697     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2698     if (Tmp == 1) return 1;  // Early out.
2699     return std::min(Tmp, Tmp2)-1;
2700   case ISD::TRUNCATE:
2701     // FIXME: it's tricky to do anything useful for this, but it is an important
2702     // case for targets like X86.
2703     break;
2704   case ISD::EXTRACT_ELEMENT: {
2705     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2706     const int BitWidth = Op.getValueSizeInBits();
2707     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
2708 
2709     // Get reverse index (starting from 1), Op1 value indexes elements from
2710     // little end. Sign starts at big end.
2711     const int rIndex = Items - 1 -
2712       cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2713 
2714     // If the sign portion ends in our element the subtraction gives correct
2715     // result. Otherwise it gives either negative or > bitwidth result
2716     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
2717   }
2718   }
2719 
2720   // If we are looking at the loaded value of the SDNode.
2721   if (Op.getResNo() == 0) {
2722     // Handle LOADX separately here. EXTLOAD case will fallthrough.
2723     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2724       unsigned ExtType = LD->getExtensionType();
2725       switch (ExtType) {
2726         default: break;
2727         case ISD::SEXTLOAD:    // '17' bits known
2728           Tmp = LD->getMemoryVT().getScalarSizeInBits();
2729           return VTBits-Tmp+1;
2730         case ISD::ZEXTLOAD:    // '16' bits known
2731           Tmp = LD->getMemoryVT().getScalarSizeInBits();
2732           return VTBits-Tmp;
2733       }
2734     }
2735   }
2736 
2737   // Allow the target to implement this method for its nodes.
2738   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2739       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2740       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2741       Op.getOpcode() == ISD::INTRINSIC_VOID) {
2742     unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
2743     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2744   }
2745 
2746   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2747   // use this information.
2748   APInt KnownZero, KnownOne;
2749   computeKnownBits(Op, KnownZero, KnownOne, Depth);
2750 
2751   APInt Mask;
2752   if (KnownZero.isNegative()) {        // sign bit is 0
2753     Mask = KnownZero;
2754   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2755     Mask = KnownOne;
2756   } else {
2757     // Nothing known.
2758     return FirstAnswer;
2759   }
2760 
2761   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2762   // the number of identical bits in the top of the input value.
2763   Mask = ~Mask;
2764   Mask <<= Mask.getBitWidth()-VTBits;
2765   // Return # leading zeros.  We use 'min' here in case Val was zero before
2766   // shifting.  We don't want to return '64' as for an i32 "0".
2767   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2768 }
2769 
2770 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2771   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2772       !isa<ConstantSDNode>(Op.getOperand(1)))
2773     return false;
2774 
2775   if (Op.getOpcode() == ISD::OR &&
2776       !MaskedValueIsZero(Op.getOperand(0),
2777                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2778     return false;
2779 
2780   return true;
2781 }
2782 
2783 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2784   // If we're told that NaNs won't happen, assume they won't.
2785   if (getTarget().Options.NoNaNsFPMath)
2786     return true;
2787 
2788   // If the value is a constant, we can obviously see if it is a NaN or not.
2789   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2790     return !C->getValueAPF().isNaN();
2791 
2792   // TODO: Recognize more cases here.
2793 
2794   return false;
2795 }
2796 
2797 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2798   // If the value is a constant, we can obviously see if it is a zero or not.
2799   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2800     return !C->isZero();
2801 
2802   // TODO: Recognize more cases here.
2803   switch (Op.getOpcode()) {
2804   default: break;
2805   case ISD::OR:
2806     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2807       return !C->isNullValue();
2808     break;
2809   }
2810 
2811   return false;
2812 }
2813 
2814 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2815   // Check the obvious case.
2816   if (A == B) return true;
2817 
2818   // For for negative and positive zero.
2819   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2820     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2821       if (CA->isZero() && CB->isZero()) return true;
2822 
2823   // Otherwise they may not be equal.
2824   return false;
2825 }
2826 
2827 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
2828   assert(A.getValueType() == B.getValueType() &&
2829          "Values must have the same type");
2830   APInt AZero, AOne;
2831   APInt BZero, BOne;
2832   computeKnownBits(A, AZero, AOne);
2833   computeKnownBits(B, BZero, BOne);
2834   return (AZero | BZero).isAllOnesValue();
2835 }
2836 
2837 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
2838                                   ArrayRef<SDValue> Ops,
2839                                   llvm::SelectionDAG &DAG) {
2840   if (Ops.size() == 1)
2841     return Ops[0];
2842 
2843   // Concat of UNDEFs is UNDEF.
2844   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
2845     return DAG.getUNDEF(VT);
2846 
2847   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
2848   // simplified to one big BUILD_VECTOR.
2849   // FIXME: Add support for SCALAR_TO_VECTOR as well.
2850   EVT SVT = VT.getScalarType();
2851   SmallVector<SDValue, 16> Elts;
2852   for (SDValue Op : Ops) {
2853     EVT OpVT = Op.getValueType();
2854     if (Op.isUndef())
2855       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
2856     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
2857       Elts.append(Op->op_begin(), Op->op_end());
2858     else
2859       return SDValue();
2860   }
2861 
2862   // BUILD_VECTOR requires all inputs to be of the same type, find the
2863   // maximum type and extend them all.
2864   for (SDValue Op : Elts)
2865     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
2866 
2867   if (SVT.bitsGT(VT.getScalarType()))
2868     for (SDValue &Op : Elts)
2869       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
2870                ? DAG.getZExtOrTrunc(Op, DL, SVT)
2871                : DAG.getSExtOrTrunc(Op, DL, SVT);
2872 
2873   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
2874 }
2875 
2876 /// Gets or creates the specified node.
2877 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
2878   FoldingSetNodeID ID;
2879   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
2880   void *IP = nullptr;
2881   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
2882     return SDValue(E, 0);
2883 
2884   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
2885                               getVTList(VT));
2886   CSEMap.InsertNode(N, IP);
2887 
2888   InsertNode(N);
2889   return SDValue(N, 0);
2890 }
2891 
2892 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
2893                               SDValue Operand) {
2894   // Constant fold unary operations with an integer constant operand. Even
2895   // opaque constant will be folded, because the folding of unary operations
2896   // doesn't create new constants with different values. Nevertheless, the
2897   // opaque flag is preserved during folding to prevent future folding with
2898   // other constants.
2899   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
2900     const APInt &Val = C->getAPIntValue();
2901     switch (Opcode) {
2902     default: break;
2903     case ISD::SIGN_EXTEND:
2904       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
2905                          C->isTargetOpcode(), C->isOpaque());
2906     case ISD::ANY_EXTEND:
2907     case ISD::ZERO_EXTEND:
2908     case ISD::TRUNCATE:
2909       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
2910                          C->isTargetOpcode(), C->isOpaque());
2911     case ISD::UINT_TO_FP:
2912     case ISD::SINT_TO_FP: {
2913       APFloat apf(EVTToAPFloatSemantics(VT),
2914                   APInt::getNullValue(VT.getSizeInBits()));
2915       (void)apf.convertFromAPInt(Val,
2916                                  Opcode==ISD::SINT_TO_FP,
2917                                  APFloat::rmNearestTiesToEven);
2918       return getConstantFP(apf, DL, VT);
2919     }
2920     case ISD::BITCAST:
2921       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
2922         return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT);
2923       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2924         return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT);
2925       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2926         return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT);
2927       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
2928         return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT);
2929       break;
2930     case ISD::BSWAP:
2931       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
2932                          C->isOpaque());
2933     case ISD::CTPOP:
2934       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
2935                          C->isOpaque());
2936     case ISD::CTLZ:
2937     case ISD::CTLZ_ZERO_UNDEF:
2938       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
2939                          C->isOpaque());
2940     case ISD::CTTZ:
2941     case ISD::CTTZ_ZERO_UNDEF:
2942       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
2943                          C->isOpaque());
2944     }
2945   }
2946 
2947   // Constant fold unary operations with a floating point constant operand.
2948   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
2949     APFloat V = C->getValueAPF();    // make copy
2950     switch (Opcode) {
2951     case ISD::FNEG:
2952       V.changeSign();
2953       return getConstantFP(V, DL, VT);
2954     case ISD::FABS:
2955       V.clearSign();
2956       return getConstantFP(V, DL, VT);
2957     case ISD::FCEIL: {
2958       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
2959       if (fs == APFloat::opOK || fs == APFloat::opInexact)
2960         return getConstantFP(V, DL, VT);
2961       break;
2962     }
2963     case ISD::FTRUNC: {
2964       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
2965       if (fs == APFloat::opOK || fs == APFloat::opInexact)
2966         return getConstantFP(V, DL, VT);
2967       break;
2968     }
2969     case ISD::FFLOOR: {
2970       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
2971       if (fs == APFloat::opOK || fs == APFloat::opInexact)
2972         return getConstantFP(V, DL, VT);
2973       break;
2974     }
2975     case ISD::FP_EXTEND: {
2976       bool ignored;
2977       // This can return overflow, underflow, or inexact; we don't care.
2978       // FIXME need to be more flexible about rounding mode.
2979       (void)V.convert(EVTToAPFloatSemantics(VT),
2980                       APFloat::rmNearestTiesToEven, &ignored);
2981       return getConstantFP(V, DL, VT);
2982     }
2983     case ISD::FP_TO_SINT:
2984     case ISD::FP_TO_UINT: {
2985       integerPart x[2];
2986       bool ignored;
2987       static_assert(integerPartWidth >= 64, "APFloat parts too small!");
2988       // FIXME need to be more flexible about rounding mode.
2989       APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2990                             Opcode==ISD::FP_TO_SINT,
2991                             APFloat::rmTowardZero, &ignored);
2992       if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2993         break;
2994       APInt api(VT.getSizeInBits(), x);
2995       return getConstant(api, DL, VT);
2996     }
2997     case ISD::BITCAST:
2998       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
2999         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3000       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3001         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3002       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3003         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3004       break;
3005     }
3006   }
3007 
3008   // Constant fold unary operations with a vector integer or float operand.
3009   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3010     if (BV->isConstant()) {
3011       switch (Opcode) {
3012       default:
3013         // FIXME: Entirely reasonable to perform folding of other unary
3014         // operations here as the need arises.
3015         break;
3016       case ISD::FNEG:
3017       case ISD::FABS:
3018       case ISD::FCEIL:
3019       case ISD::FTRUNC:
3020       case ISD::FFLOOR:
3021       case ISD::FP_EXTEND:
3022       case ISD::FP_TO_SINT:
3023       case ISD::FP_TO_UINT:
3024       case ISD::TRUNCATE:
3025       case ISD::UINT_TO_FP:
3026       case ISD::SINT_TO_FP:
3027       case ISD::BSWAP:
3028       case ISD::CTLZ:
3029       case ISD::CTLZ_ZERO_UNDEF:
3030       case ISD::CTTZ:
3031       case ISD::CTTZ_ZERO_UNDEF:
3032       case ISD::CTPOP: {
3033         SDValue Ops = { Operand };
3034         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3035           return Fold;
3036       }
3037       }
3038     }
3039   }
3040 
3041   unsigned OpOpcode = Operand.getNode()->getOpcode();
3042   switch (Opcode) {
3043   case ISD::TokenFactor:
3044   case ISD::MERGE_VALUES:
3045   case ISD::CONCAT_VECTORS:
3046     return Operand;         // Factor, merge or concat of one node?  No need.
3047   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3048   case ISD::FP_EXTEND:
3049     assert(VT.isFloatingPoint() &&
3050            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3051     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3052     assert((!VT.isVector() ||
3053             VT.getVectorNumElements() ==
3054             Operand.getValueType().getVectorNumElements()) &&
3055            "Vector element count mismatch!");
3056     assert(Operand.getValueType().bitsLT(VT) &&
3057            "Invalid fpext node, dst < src!");
3058     if (Operand.isUndef())
3059       return getUNDEF(VT);
3060     break;
3061   case ISD::SIGN_EXTEND:
3062     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3063            "Invalid SIGN_EXTEND!");
3064     if (Operand.getValueType() == VT) return Operand;   // noop extension
3065     assert((!VT.isVector() ||
3066             VT.getVectorNumElements() ==
3067             Operand.getValueType().getVectorNumElements()) &&
3068            "Vector element count mismatch!");
3069     assert(Operand.getValueType().bitsLT(VT) &&
3070            "Invalid sext node, dst < src!");
3071     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3072       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3073     else if (OpOpcode == ISD::UNDEF)
3074       // sext(undef) = 0, because the top bits will all be the same.
3075       return getConstant(0, DL, VT);
3076     break;
3077   case ISD::ZERO_EXTEND:
3078     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3079            "Invalid ZERO_EXTEND!");
3080     if (Operand.getValueType() == VT) return Operand;   // noop extension
3081     assert((!VT.isVector() ||
3082             VT.getVectorNumElements() ==
3083             Operand.getValueType().getVectorNumElements()) &&
3084            "Vector element count mismatch!");
3085     assert(Operand.getValueType().bitsLT(VT) &&
3086            "Invalid zext node, dst < src!");
3087     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3088       return getNode(ISD::ZERO_EXTEND, DL, VT,
3089                      Operand.getNode()->getOperand(0));
3090     else if (OpOpcode == ISD::UNDEF)
3091       // zext(undef) = 0, because the top bits will be zero.
3092       return getConstant(0, DL, VT);
3093     break;
3094   case ISD::ANY_EXTEND:
3095     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3096            "Invalid ANY_EXTEND!");
3097     if (Operand.getValueType() == VT) return Operand;   // noop extension
3098     assert((!VT.isVector() ||
3099             VT.getVectorNumElements() ==
3100             Operand.getValueType().getVectorNumElements()) &&
3101            "Vector element count mismatch!");
3102     assert(Operand.getValueType().bitsLT(VT) &&
3103            "Invalid anyext node, dst < src!");
3104 
3105     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3106         OpOpcode == ISD::ANY_EXTEND)
3107       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3108       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3109     else if (OpOpcode == ISD::UNDEF)
3110       return getUNDEF(VT);
3111 
3112     // (ext (trunx x)) -> x
3113     if (OpOpcode == ISD::TRUNCATE) {
3114       SDValue OpOp = Operand.getNode()->getOperand(0);
3115       if (OpOp.getValueType() == VT)
3116         return OpOp;
3117     }
3118     break;
3119   case ISD::TRUNCATE:
3120     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3121            "Invalid TRUNCATE!");
3122     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3123     assert((!VT.isVector() ||
3124             VT.getVectorNumElements() ==
3125             Operand.getValueType().getVectorNumElements()) &&
3126            "Vector element count mismatch!");
3127     assert(Operand.getValueType().bitsGT(VT) &&
3128            "Invalid truncate node, src < dst!");
3129     if (OpOpcode == ISD::TRUNCATE)
3130       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3131     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3132         OpOpcode == ISD::ANY_EXTEND) {
3133       // If the source is smaller than the dest, we still need an extend.
3134       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
3135             .bitsLT(VT.getScalarType()))
3136         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3137       if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
3138         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3139       return Operand.getNode()->getOperand(0);
3140     }
3141     if (OpOpcode == ISD::UNDEF)
3142       return getUNDEF(VT);
3143     break;
3144   case ISD::BSWAP:
3145     assert(VT.isInteger() && VT == Operand.getValueType() &&
3146            "Invalid BSWAP!");
3147     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3148            "BSWAP types must be a multiple of 16 bits!");
3149     if (OpOpcode == ISD::UNDEF)
3150       return getUNDEF(VT);
3151     break;
3152   case ISD::BITREVERSE:
3153     assert(VT.isInteger() && VT == Operand.getValueType() &&
3154            "Invalid BITREVERSE!");
3155     if (OpOpcode == ISD::UNDEF)
3156       return getUNDEF(VT);
3157     break;
3158   case ISD::BITCAST:
3159     // Basic sanity checking.
3160     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3161            "Cannot BITCAST between types of different sizes!");
3162     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3163     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3164       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3165     if (OpOpcode == ISD::UNDEF)
3166       return getUNDEF(VT);
3167     break;
3168   case ISD::SCALAR_TO_VECTOR:
3169     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3170            (VT.getVectorElementType() == Operand.getValueType() ||
3171             (VT.getVectorElementType().isInteger() &&
3172              Operand.getValueType().isInteger() &&
3173              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3174            "Illegal SCALAR_TO_VECTOR node!");
3175     if (OpOpcode == ISD::UNDEF)
3176       return getUNDEF(VT);
3177     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3178     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3179         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3180         Operand.getConstantOperandVal(1) == 0 &&
3181         Operand.getOperand(0).getValueType() == VT)
3182       return Operand.getOperand(0);
3183     break;
3184   case ISD::FNEG:
3185     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3186     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3187       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3188       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
3189                        Operand.getNode()->getOperand(0),
3190                        &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags);
3191     if (OpOpcode == ISD::FNEG)  // --X -> X
3192       return Operand.getNode()->getOperand(0);
3193     break;
3194   case ISD::FABS:
3195     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3196       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
3197     break;
3198   }
3199 
3200   SDNode *N;
3201   SDVTList VTs = getVTList(VT);
3202   SDValue Ops[] = {Operand};
3203   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3204     FoldingSetNodeID ID;
3205     AddNodeIDNode(ID, Opcode, VTs, Ops);
3206     void *IP = nullptr;
3207     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3208       return SDValue(E, 0);
3209 
3210     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3211     createOperands(N, Ops);
3212     CSEMap.InsertNode(N, IP);
3213   } else {
3214     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3215     createOperands(N, Ops);
3216   }
3217 
3218   InsertNode(N);
3219   return SDValue(N, 0);
3220 }
3221 
3222 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3223                                         const APInt &C2) {
3224   switch (Opcode) {
3225   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3226   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3227   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3228   case ISD::AND:  return std::make_pair(C1 & C2, true);
3229   case ISD::OR:   return std::make_pair(C1 | C2, true);
3230   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3231   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3232   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3233   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3234   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3235   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3236   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3237   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3238   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3239   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3240   case ISD::UDIV:
3241     if (!C2.getBoolValue())
3242       break;
3243     return std::make_pair(C1.udiv(C2), true);
3244   case ISD::UREM:
3245     if (!C2.getBoolValue())
3246       break;
3247     return std::make_pair(C1.urem(C2), true);
3248   case ISD::SDIV:
3249     if (!C2.getBoolValue())
3250       break;
3251     return std::make_pair(C1.sdiv(C2), true);
3252   case ISD::SREM:
3253     if (!C2.getBoolValue())
3254       break;
3255     return std::make_pair(C1.srem(C2), true);
3256   }
3257   return std::make_pair(APInt(1, 0), false);
3258 }
3259 
3260 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3261                                              EVT VT, const ConstantSDNode *Cst1,
3262                                              const ConstantSDNode *Cst2) {
3263   if (Cst1->isOpaque() || Cst2->isOpaque())
3264     return SDValue();
3265 
3266   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3267                                             Cst2->getAPIntValue());
3268   if (!Folded.second)
3269     return SDValue();
3270   return getConstant(Folded.first, DL, VT);
3271 }
3272 
3273 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3274                                        const GlobalAddressSDNode *GA,
3275                                        const SDNode *N2) {
3276   if (GA->getOpcode() != ISD::GlobalAddress)
3277     return SDValue();
3278   if (!TLI->isOffsetFoldingLegal(GA))
3279     return SDValue();
3280   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3281   if (!Cst2)
3282     return SDValue();
3283   int64_t Offset = Cst2->getSExtValue();
3284   switch (Opcode) {
3285   case ISD::ADD: break;
3286   case ISD::SUB: Offset = -uint64_t(Offset); break;
3287   default: return SDValue();
3288   }
3289   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3290                           GA->getOffset() + uint64_t(Offset));
3291 }
3292 
3293 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3294                                              EVT VT, SDNode *Cst1,
3295                                              SDNode *Cst2) {
3296   // If the opcode is a target-specific ISD node, there's nothing we can
3297   // do here and the operand rules may not line up with the below, so
3298   // bail early.
3299   if (Opcode >= ISD::BUILTIN_OP_END)
3300     return SDValue();
3301 
3302   // Handle the case of two scalars.
3303   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3304     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3305       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3306       assert((!Folded || !VT.isVector()) &&
3307              "Can't fold vectors ops with scalar operands");
3308       return Folded;
3309     }
3310   }
3311 
3312   // fold (add Sym, c) -> Sym+c
3313   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3314     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3315   if (isCommutativeBinOp(Opcode))
3316     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3317       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3318 
3319   // For vectors extract each constant element into Inputs so we can constant
3320   // fold them individually.
3321   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3322   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3323   if (!BV1 || !BV2)
3324     return SDValue();
3325 
3326   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3327 
3328   EVT SVT = VT.getScalarType();
3329   SmallVector<SDValue, 4> Outputs;
3330   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
3331     ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
3332     ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
3333     if (!V1 || !V2) // Not a constant, bail.
3334       return SDValue();
3335 
3336     if (V1->isOpaque() || V2->isOpaque())
3337       return SDValue();
3338 
3339     // Avoid BUILD_VECTOR nodes that perform implicit truncation.
3340     // FIXME: This is valid and could be handled by truncating the APInts.
3341     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
3342       return SDValue();
3343 
3344     // Fold one vector element.
3345     std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(),
3346                                               V2->getAPIntValue());
3347     if (!Folded.second)
3348       return SDValue();
3349     Outputs.push_back(getConstant(Folded.first, DL, SVT));
3350   }
3351 
3352   assert(VT.getVectorNumElements() == Outputs.size() &&
3353          "Vector size mismatch!");
3354 
3355   // We may have a vector type but a scalar result. Create a splat.
3356   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
3357 
3358   // Build a big vector out of the scalar elements we generated.
3359   return getBuildVector(VT, SDLoc(), Outputs);
3360 }
3361 
3362 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
3363                                                    const SDLoc &DL, EVT VT,
3364                                                    ArrayRef<SDValue> Ops,
3365                                                    const SDNodeFlags *Flags) {
3366   // If the opcode is a target-specific ISD node, there's nothing we can
3367   // do here and the operand rules may not line up with the below, so
3368   // bail early.
3369   if (Opcode >= ISD::BUILTIN_OP_END)
3370     return SDValue();
3371 
3372   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
3373   if (!VT.isVector())
3374     return SDValue();
3375 
3376   unsigned NumElts = VT.getVectorNumElements();
3377 
3378   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
3379     return !Op.getValueType().isVector() ||
3380            Op.getValueType().getVectorNumElements() == NumElts;
3381   };
3382 
3383   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
3384     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
3385     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
3386            (BV && BV->isConstant());
3387   };
3388 
3389   // All operands must be vector types with the same number of elements as
3390   // the result type and must be either UNDEF or a build vector of constant
3391   // or UNDEF scalars.
3392   if (!all_of(Ops, IsConstantBuildVectorOrUndef) ||
3393       !all_of(Ops, IsScalarOrSameVectorSize))
3394     return SDValue();
3395 
3396   // If we are comparing vectors, then the result needs to be a i1 boolean
3397   // that is then sign-extended back to the legal result type.
3398   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
3399 
3400   // Find legal integer scalar type for constant promotion and
3401   // ensure that its scalar size is at least as large as source.
3402   EVT LegalSVT = VT.getScalarType();
3403   if (LegalSVT.isInteger()) {
3404     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3405     if (LegalSVT.bitsLT(VT.getScalarType()))
3406       return SDValue();
3407   }
3408 
3409   // Constant fold each scalar lane separately.
3410   SmallVector<SDValue, 4> ScalarResults;
3411   for (unsigned i = 0; i != NumElts; i++) {
3412     SmallVector<SDValue, 4> ScalarOps;
3413     for (SDValue Op : Ops) {
3414       EVT InSVT = Op.getValueType().getScalarType();
3415       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
3416       if (!InBV) {
3417         // We've checked that this is UNDEF or a constant of some kind.
3418         if (Op.isUndef())
3419           ScalarOps.push_back(getUNDEF(InSVT));
3420         else
3421           ScalarOps.push_back(Op);
3422         continue;
3423       }
3424 
3425       SDValue ScalarOp = InBV->getOperand(i);
3426       EVT ScalarVT = ScalarOp.getValueType();
3427 
3428       // Build vector (integer) scalar operands may need implicit
3429       // truncation - do this before constant folding.
3430       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
3431         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
3432 
3433       ScalarOps.push_back(ScalarOp);
3434     }
3435 
3436     // Constant fold the scalar operands.
3437     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
3438 
3439     // Legalize the (integer) scalar constant if necessary.
3440     if (LegalSVT != SVT)
3441       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
3442 
3443     // Scalar folding only succeeded if the result is a constant or UNDEF.
3444     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3445         ScalarResult.getOpcode() != ISD::ConstantFP)
3446       return SDValue();
3447     ScalarResults.push_back(ScalarResult);
3448   }
3449 
3450   return getBuildVector(VT, DL, ScalarResults);
3451 }
3452 
3453 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3454                               SDValue N1, SDValue N2,
3455                               const SDNodeFlags *Flags) {
3456   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3457   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3458   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3459   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3460 
3461   // Canonicalize constant to RHS if commutative.
3462   if (isCommutativeBinOp(Opcode)) {
3463     if (N1C && !N2C) {
3464       std::swap(N1C, N2C);
3465       std::swap(N1, N2);
3466     } else if (N1CFP && !N2CFP) {
3467       std::swap(N1CFP, N2CFP);
3468       std::swap(N1, N2);
3469     }
3470   }
3471 
3472   switch (Opcode) {
3473   default: break;
3474   case ISD::TokenFactor:
3475     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
3476            N2.getValueType() == MVT::Other && "Invalid token factor!");
3477     // Fold trivial token factors.
3478     if (N1.getOpcode() == ISD::EntryToken) return N2;
3479     if (N2.getOpcode() == ISD::EntryToken) return N1;
3480     if (N1 == N2) return N1;
3481     break;
3482   case ISD::CONCAT_VECTORS: {
3483     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3484     SDValue Ops[] = {N1, N2};
3485     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3486       return V;
3487     break;
3488   }
3489   case ISD::AND:
3490     assert(VT.isInteger() && "This operator does not apply to FP types!");
3491     assert(N1.getValueType() == N2.getValueType() &&
3492            N1.getValueType() == VT && "Binary operator types must match!");
3493     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
3494     // worth handling here.
3495     if (N2C && N2C->isNullValue())
3496       return N2;
3497     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
3498       return N1;
3499     break;
3500   case ISD::OR:
3501   case ISD::XOR:
3502   case ISD::ADD:
3503   case ISD::SUB:
3504     assert(VT.isInteger() && "This operator does not apply to FP types!");
3505     assert(N1.getValueType() == N2.getValueType() &&
3506            N1.getValueType() == VT && "Binary operator types must match!");
3507     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
3508     // it's worth handling here.
3509     if (N2C && N2C->isNullValue())
3510       return N1;
3511     break;
3512   case ISD::UDIV:
3513   case ISD::UREM:
3514   case ISD::MULHU:
3515   case ISD::MULHS:
3516   case ISD::MUL:
3517   case ISD::SDIV:
3518   case ISD::SREM:
3519   case ISD::SMIN:
3520   case ISD::SMAX:
3521   case ISD::UMIN:
3522   case ISD::UMAX:
3523     assert(VT.isInteger() && "This operator does not apply to FP types!");
3524     assert(N1.getValueType() == N2.getValueType() &&
3525            N1.getValueType() == VT && "Binary operator types must match!");
3526     break;
3527   case ISD::FADD:
3528   case ISD::FSUB:
3529   case ISD::FMUL:
3530   case ISD::FDIV:
3531   case ISD::FREM:
3532     if (getTarget().Options.UnsafeFPMath) {
3533       if (Opcode == ISD::FADD) {
3534         // x+0 --> x
3535         if (N2CFP && N2CFP->getValueAPF().isZero())
3536           return N1;
3537       } else if (Opcode == ISD::FSUB) {
3538         // x-0 --> x
3539         if (N2CFP && N2CFP->getValueAPF().isZero())
3540           return N1;
3541       } else if (Opcode == ISD::FMUL) {
3542         // x*0 --> 0
3543         if (N2CFP && N2CFP->isZero())
3544           return N2;
3545         // x*1 --> x
3546         if (N2CFP && N2CFP->isExactlyValue(1.0))
3547           return N1;
3548       }
3549     }
3550     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
3551     assert(N1.getValueType() == N2.getValueType() &&
3552            N1.getValueType() == VT && "Binary operator types must match!");
3553     break;
3554   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
3555     assert(N1.getValueType() == VT &&
3556            N1.getValueType().isFloatingPoint() &&
3557            N2.getValueType().isFloatingPoint() &&
3558            "Invalid FCOPYSIGN!");
3559     break;
3560   case ISD::SHL:
3561   case ISD::SRA:
3562   case ISD::SRL:
3563   case ISD::ROTL:
3564   case ISD::ROTR:
3565     assert(VT == N1.getValueType() &&
3566            "Shift operators return type must be the same as their first arg");
3567     assert(VT.isInteger() && N2.getValueType().isInteger() &&
3568            "Shifts only work on integers");
3569     assert((!VT.isVector() || VT == N2.getValueType()) &&
3570            "Vector shift amounts must be in the same as their first arg");
3571     // Verify that the shift amount VT is bit enough to hold valid shift
3572     // amounts.  This catches things like trying to shift an i1024 value by an
3573     // i8, which is easy to fall into in generic code that uses
3574     // TLI.getShiftAmount().
3575     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
3576            "Invalid use of small shift amount with oversized value!");
3577 
3578     // Always fold shifts of i1 values so the code generator doesn't need to
3579     // handle them.  Since we know the size of the shift has to be less than the
3580     // size of the value, the shift/rotate count is guaranteed to be zero.
3581     if (VT == MVT::i1)
3582       return N1;
3583     if (N2C && N2C->isNullValue())
3584       return N1;
3585     break;
3586   case ISD::FP_ROUND_INREG: {
3587     EVT EVT = cast<VTSDNode>(N2)->getVT();
3588     assert(VT == N1.getValueType() && "Not an inreg round!");
3589     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
3590            "Cannot FP_ROUND_INREG integer types");
3591     assert(EVT.isVector() == VT.isVector() &&
3592            "FP_ROUND_INREG type should be vector iff the operand "
3593            "type is vector!");
3594     assert((!EVT.isVector() ||
3595             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3596            "Vector element counts must match in FP_ROUND_INREG");
3597     assert(EVT.bitsLE(VT) && "Not rounding down!");
3598     (void)EVT;
3599     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
3600     break;
3601   }
3602   case ISD::FP_ROUND:
3603     assert(VT.isFloatingPoint() &&
3604            N1.getValueType().isFloatingPoint() &&
3605            VT.bitsLE(N1.getValueType()) &&
3606            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
3607            "Invalid FP_ROUND!");
3608     if (N1.getValueType() == VT) return N1;  // noop conversion.
3609     break;
3610   case ISD::AssertSext:
3611   case ISD::AssertZext: {
3612     EVT EVT = cast<VTSDNode>(N2)->getVT();
3613     assert(VT == N1.getValueType() && "Not an inreg extend!");
3614     assert(VT.isInteger() && EVT.isInteger() &&
3615            "Cannot *_EXTEND_INREG FP types");
3616     assert(!EVT.isVector() &&
3617            "AssertSExt/AssertZExt type should be the vector element type "
3618            "rather than the vector type!");
3619     assert(EVT.bitsLE(VT) && "Not extending!");
3620     if (VT == EVT) return N1; // noop assertion.
3621     break;
3622   }
3623   case ISD::SIGN_EXTEND_INREG: {
3624     EVT EVT = cast<VTSDNode>(N2)->getVT();
3625     assert(VT == N1.getValueType() && "Not an inreg extend!");
3626     assert(VT.isInteger() && EVT.isInteger() &&
3627            "Cannot *_EXTEND_INREG FP types");
3628     assert(EVT.isVector() == VT.isVector() &&
3629            "SIGN_EXTEND_INREG type should be vector iff the operand "
3630            "type is vector!");
3631     assert((!EVT.isVector() ||
3632             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3633            "Vector element counts must match in SIGN_EXTEND_INREG");
3634     assert(EVT.bitsLE(VT) && "Not extending!");
3635     if (EVT == VT) return N1;  // Not actually extending
3636 
3637     auto SignExtendInReg = [&](APInt Val) {
3638       unsigned FromBits = EVT.getScalarSizeInBits();
3639       Val <<= Val.getBitWidth() - FromBits;
3640       Val = Val.ashr(Val.getBitWidth() - FromBits);
3641       return getConstant(Val, DL, VT.getScalarType());
3642     };
3643 
3644     if (N1C) {
3645       const APInt &Val = N1C->getAPIntValue();
3646       return SignExtendInReg(Val);
3647     }
3648     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
3649       SmallVector<SDValue, 8> Ops;
3650       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3651         SDValue Op = N1.getOperand(i);
3652         if (Op.isUndef()) {
3653           Ops.push_back(getUNDEF(VT.getScalarType()));
3654           continue;
3655         }
3656         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3657           APInt Val = C->getAPIntValue();
3658           Val = Val.zextOrTrunc(VT.getScalarSizeInBits());
3659           Ops.push_back(SignExtendInReg(Val));
3660           continue;
3661         }
3662         break;
3663       }
3664       if (Ops.size() == VT.getVectorNumElements())
3665         return getBuildVector(VT, DL, Ops);
3666     }
3667     break;
3668   }
3669   case ISD::EXTRACT_VECTOR_ELT:
3670     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
3671     if (N1.isUndef())
3672       return getUNDEF(VT);
3673 
3674     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
3675     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
3676       return getUNDEF(VT);
3677 
3678     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
3679     // expanding copies of large vectors from registers.
3680     if (N2C &&
3681         N1.getOpcode() == ISD::CONCAT_VECTORS &&
3682         N1.getNumOperands() > 0) {
3683       unsigned Factor =
3684         N1.getOperand(0).getValueType().getVectorNumElements();
3685       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
3686                      N1.getOperand(N2C->getZExtValue() / Factor),
3687                      getConstant(N2C->getZExtValue() % Factor, DL,
3688                                  N2.getValueType()));
3689     }
3690 
3691     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
3692     // expanding large vector constants.
3693     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
3694       SDValue Elt = N1.getOperand(N2C->getZExtValue());
3695 
3696       if (VT != Elt.getValueType())
3697         // If the vector element type is not legal, the BUILD_VECTOR operands
3698         // are promoted and implicitly truncated, and the result implicitly
3699         // extended. Make that explicit here.
3700         Elt = getAnyExtOrTrunc(Elt, DL, VT);
3701 
3702       return Elt;
3703     }
3704 
3705     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
3706     // operations are lowered to scalars.
3707     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
3708       // If the indices are the same, return the inserted element else
3709       // if the indices are known different, extract the element from
3710       // the original vector.
3711       SDValue N1Op2 = N1.getOperand(2);
3712       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
3713 
3714       if (N1Op2C && N2C) {
3715         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
3716           if (VT == N1.getOperand(1).getValueType())
3717             return N1.getOperand(1);
3718           else
3719             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
3720         }
3721 
3722         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
3723       }
3724     }
3725     break;
3726   case ISD::EXTRACT_ELEMENT:
3727     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
3728     assert(!N1.getValueType().isVector() && !VT.isVector() &&
3729            (N1.getValueType().isInteger() == VT.isInteger()) &&
3730            N1.getValueType() != VT &&
3731            "Wrong types for EXTRACT_ELEMENT!");
3732 
3733     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
3734     // 64-bit integers into 32-bit parts.  Instead of building the extract of
3735     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
3736     if (N1.getOpcode() == ISD::BUILD_PAIR)
3737       return N1.getOperand(N2C->getZExtValue());
3738 
3739     // EXTRACT_ELEMENT of a constant int is also very common.
3740     if (N1C) {
3741       unsigned ElementSize = VT.getSizeInBits();
3742       unsigned Shift = ElementSize * N2C->getZExtValue();
3743       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
3744       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
3745     }
3746     break;
3747   case ISD::EXTRACT_SUBVECTOR:
3748     if (VT.isSimple() && N1.getValueType().isSimple()) {
3749       assert(VT.isVector() && N1.getValueType().isVector() &&
3750              "Extract subvector VTs must be a vectors!");
3751       assert(VT.getVectorElementType() ==
3752              N1.getValueType().getVectorElementType() &&
3753              "Extract subvector VTs must have the same element type!");
3754       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
3755              "Extract subvector must be from larger vector to smaller vector!");
3756 
3757       if (N2C) {
3758         assert((VT.getVectorNumElements() + N2C->getZExtValue()
3759                 <= N1.getValueType().getVectorNumElements())
3760                && "Extract subvector overflow!");
3761       }
3762 
3763       // Trivial extraction.
3764       if (VT.getSimpleVT() == N1.getSimpleValueType())
3765         return N1;
3766 
3767       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
3768       // during shuffle legalization.
3769       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
3770           VT == N1.getOperand(1).getValueType())
3771         return N1.getOperand(1);
3772     }
3773     break;
3774   }
3775 
3776   // Perform trivial constant folding.
3777   if (SDValue SV =
3778           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
3779     return SV;
3780 
3781   // Constant fold FP operations.
3782   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
3783   if (N1CFP) {
3784     if (N2CFP) {
3785       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3786       APFloat::opStatus s;
3787       switch (Opcode) {
3788       case ISD::FADD:
3789         s = V1.add(V2, APFloat::rmNearestTiesToEven);
3790         if (!HasFPExceptions || s != APFloat::opInvalidOp)
3791           return getConstantFP(V1, DL, VT);
3792         break;
3793       case ISD::FSUB:
3794         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3795         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
3796           return getConstantFP(V1, DL, VT);
3797         break;
3798       case ISD::FMUL:
3799         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3800         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
3801           return getConstantFP(V1, DL, VT);
3802         break;
3803       case ISD::FDIV:
3804         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3805         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
3806                                  s!=APFloat::opDivByZero)) {
3807           return getConstantFP(V1, DL, VT);
3808         }
3809         break;
3810       case ISD::FREM :
3811         s = V1.mod(V2);
3812         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
3813                                  s!=APFloat::opDivByZero)) {
3814           return getConstantFP(V1, DL, VT);
3815         }
3816         break;
3817       case ISD::FCOPYSIGN:
3818         V1.copySign(V2);
3819         return getConstantFP(V1, DL, VT);
3820       default: break;
3821       }
3822     }
3823 
3824     if (Opcode == ISD::FP_ROUND) {
3825       APFloat V = N1CFP->getValueAPF();    // make copy
3826       bool ignored;
3827       // This can return overflow, underflow, or inexact; we don't care.
3828       // FIXME need to be more flexible about rounding mode.
3829       (void)V.convert(EVTToAPFloatSemantics(VT),
3830                       APFloat::rmNearestTiesToEven, &ignored);
3831       return getConstantFP(V, DL, VT);
3832     }
3833   }
3834 
3835   // Canonicalize an UNDEF to the RHS, even over a constant.
3836   if (N1.isUndef()) {
3837     if (isCommutativeBinOp(Opcode)) {
3838       std::swap(N1, N2);
3839     } else {
3840       switch (Opcode) {
3841       case ISD::FP_ROUND_INREG:
3842       case ISD::SIGN_EXTEND_INREG:
3843       case ISD::SUB:
3844       case ISD::FSUB:
3845       case ISD::FDIV:
3846       case ISD::FREM:
3847       case ISD::SRA:
3848         return N1;     // fold op(undef, arg2) -> undef
3849       case ISD::UDIV:
3850       case ISD::SDIV:
3851       case ISD::UREM:
3852       case ISD::SREM:
3853       case ISD::SRL:
3854       case ISD::SHL:
3855         if (!VT.isVector())
3856           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
3857         // For vectors, we can't easily build an all zero vector, just return
3858         // the LHS.
3859         return N2;
3860       }
3861     }
3862   }
3863 
3864   // Fold a bunch of operators when the RHS is undef.
3865   if (N2.isUndef()) {
3866     switch (Opcode) {
3867     case ISD::XOR:
3868       if (N1.isUndef())
3869         // Handle undef ^ undef -> 0 special case. This is a common
3870         // idiom (misuse).
3871         return getConstant(0, DL, VT);
3872       LLVM_FALLTHROUGH;
3873     case ISD::ADD:
3874     case ISD::ADDC:
3875     case ISD::ADDE:
3876     case ISD::SUB:
3877     case ISD::UDIV:
3878     case ISD::SDIV:
3879     case ISD::UREM:
3880     case ISD::SREM:
3881       return N2;       // fold op(arg1, undef) -> undef
3882     case ISD::FADD:
3883     case ISD::FSUB:
3884     case ISD::FMUL:
3885     case ISD::FDIV:
3886     case ISD::FREM:
3887       if (getTarget().Options.UnsafeFPMath)
3888         return N2;
3889       break;
3890     case ISD::MUL:
3891     case ISD::AND:
3892     case ISD::SRL:
3893     case ISD::SHL:
3894       if (!VT.isVector())
3895         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
3896       // For vectors, we can't easily build an all zero vector, just return
3897       // the LHS.
3898       return N1;
3899     case ISD::OR:
3900       if (!VT.isVector())
3901         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
3902       // For vectors, we can't easily build an all one vector, just return
3903       // the LHS.
3904       return N1;
3905     case ISD::SRA:
3906       return N1;
3907     }
3908   }
3909 
3910   // Memoize this node if possible.
3911   SDNode *N;
3912   SDVTList VTs = getVTList(VT);
3913   if (VT != MVT::Glue) {
3914     SDValue Ops[] = {N1, N2};
3915     FoldingSetNodeID ID;
3916     AddNodeIDNode(ID, Opcode, VTs, Ops);
3917     void *IP = nullptr;
3918     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
3919       if (Flags)
3920         E->intersectFlagsWith(Flags);
3921       return SDValue(E, 0);
3922     }
3923 
3924     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
3925     CSEMap.InsertNode(N, IP);
3926   } else {
3927     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
3928   }
3929 
3930   InsertNode(N);
3931   return SDValue(N, 0);
3932 }
3933 
3934 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3935                               SDValue N1, SDValue N2, SDValue N3) {
3936   // Perform various simplifications.
3937   switch (Opcode) {
3938   case ISD::FMA: {
3939     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3940     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3941     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
3942     if (N1CFP && N2CFP && N3CFP) {
3943       APFloat  V1 = N1CFP->getValueAPF();
3944       const APFloat &V2 = N2CFP->getValueAPF();
3945       const APFloat &V3 = N3CFP->getValueAPF();
3946       APFloat::opStatus s =
3947         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
3948       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
3949         return getConstantFP(V1, DL, VT);
3950     }
3951     break;
3952   }
3953   case ISD::CONCAT_VECTORS: {
3954     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3955     SDValue Ops[] = {N1, N2, N3};
3956     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3957       return V;
3958     break;
3959   }
3960   case ISD::SETCC: {
3961     // Use FoldSetCC to simplify SETCC's.
3962     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
3963       return V;
3964     // Vector constant folding.
3965     SDValue Ops[] = {N1, N2, N3};
3966     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3967       return V;
3968     break;
3969   }
3970   case ISD::SELECT:
3971     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
3972      if (N1C->getZExtValue())
3973        return N2;             // select true, X, Y -> X
3974      return N3;             // select false, X, Y -> Y
3975     }
3976 
3977     if (N2 == N3) return N2;   // select C, X, X -> X
3978     break;
3979   case ISD::VECTOR_SHUFFLE:
3980     llvm_unreachable("should use getVectorShuffle constructor!");
3981   case ISD::INSERT_SUBVECTOR: {
3982     SDValue Index = N3;
3983     if (VT.isSimple() && N1.getValueType().isSimple()
3984         && N2.getValueType().isSimple()) {
3985       assert(VT.isVector() && N1.getValueType().isVector() &&
3986              N2.getValueType().isVector() &&
3987              "Insert subvector VTs must be a vectors");
3988       assert(VT == N1.getValueType() &&
3989              "Dest and insert subvector source types must match!");
3990       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
3991              "Insert subvector must be from smaller vector to larger vector!");
3992       if (isa<ConstantSDNode>(Index)) {
3993         assert((N2.getValueType().getVectorNumElements() +
3994                 cast<ConstantSDNode>(Index)->getZExtValue()
3995                 <= VT.getVectorNumElements())
3996                && "Insert subvector overflow!");
3997       }
3998 
3999       // Trivial insertion.
4000       if (VT.getSimpleVT() == N2.getSimpleValueType())
4001         return N2;
4002     }
4003     break;
4004   }
4005   case ISD::BITCAST:
4006     // Fold bit_convert nodes from a type to themselves.
4007     if (N1.getValueType() == VT)
4008       return N1;
4009     break;
4010   }
4011 
4012   // Memoize node if it doesn't produce a flag.
4013   SDNode *N;
4014   SDVTList VTs = getVTList(VT);
4015   SDValue Ops[] = {N1, N2, N3};
4016   if (VT != MVT::Glue) {
4017     FoldingSetNodeID ID;
4018     AddNodeIDNode(ID, Opcode, VTs, Ops);
4019     void *IP = nullptr;
4020     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4021       return SDValue(E, 0);
4022 
4023     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4024     createOperands(N, Ops);
4025     CSEMap.InsertNode(N, IP);
4026   } else {
4027     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4028     createOperands(N, Ops);
4029   }
4030 
4031   InsertNode(N);
4032   return SDValue(N, 0);
4033 }
4034 
4035 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4036                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4037   SDValue Ops[] = { N1, N2, N3, N4 };
4038   return getNode(Opcode, DL, VT, Ops);
4039 }
4040 
4041 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4042                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4043                               SDValue N5) {
4044   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4045   return getNode(Opcode, DL, VT, Ops);
4046 }
4047 
4048 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4049 /// the incoming stack arguments to be loaded from the stack.
4050 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4051   SmallVector<SDValue, 8> ArgChains;
4052 
4053   // Include the original chain at the beginning of the list. When this is
4054   // used by target LowerCall hooks, this helps legalize find the
4055   // CALLSEQ_BEGIN node.
4056   ArgChains.push_back(Chain);
4057 
4058   // Add a chain value for each stack argument.
4059   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4060        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4061     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4062       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4063         if (FI->getIndex() < 0)
4064           ArgChains.push_back(SDValue(L, 1));
4065 
4066   // Build a tokenfactor for all the chains.
4067   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4068 }
4069 
4070 /// getMemsetValue - Vectorized representation of the memset value
4071 /// operand.
4072 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4073                               const SDLoc &dl) {
4074   assert(!Value.isUndef());
4075 
4076   unsigned NumBits = VT.getScalarSizeInBits();
4077   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4078     assert(C->getAPIntValue().getBitWidth() == 8);
4079     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4080     if (VT.isInteger())
4081       return DAG.getConstant(Val, dl, VT);
4082     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4083                              VT);
4084   }
4085 
4086   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4087   EVT IntVT = VT.getScalarType();
4088   if (!IntVT.isInteger())
4089     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4090 
4091   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4092   if (NumBits > 8) {
4093     // Use a multiplication with 0x010101... to extend the input to the
4094     // required length.
4095     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4096     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4097                         DAG.getConstant(Magic, dl, IntVT));
4098   }
4099 
4100   if (VT != Value.getValueType() && !VT.isInteger())
4101     Value = DAG.getBitcast(VT.getScalarType(), Value);
4102   if (VT != Value.getValueType())
4103     Value = DAG.getSplatBuildVector(VT, dl, Value);
4104 
4105   return Value;
4106 }
4107 
4108 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4109 /// used when a memcpy is turned into a memset when the source is a constant
4110 /// string ptr.
4111 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4112                                   const TargetLowering &TLI, StringRef Str) {
4113   // Handle vector with all elements zero.
4114   if (Str.empty()) {
4115     if (VT.isInteger())
4116       return DAG.getConstant(0, dl, VT);
4117     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4118       return DAG.getConstantFP(0.0, dl, VT);
4119     else if (VT.isVector()) {
4120       unsigned NumElts = VT.getVectorNumElements();
4121       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4122       return DAG.getNode(ISD::BITCAST, dl, VT,
4123                          DAG.getConstant(0, dl,
4124                                          EVT::getVectorVT(*DAG.getContext(),
4125                                                           EltVT, NumElts)));
4126     } else
4127       llvm_unreachable("Expected type!");
4128   }
4129 
4130   assert(!VT.isVector() && "Can't handle vector type here!");
4131   unsigned NumVTBits = VT.getSizeInBits();
4132   unsigned NumVTBytes = NumVTBits / 8;
4133   unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
4134 
4135   APInt Val(NumVTBits, 0);
4136   if (DAG.getDataLayout().isLittleEndian()) {
4137     for (unsigned i = 0; i != NumBytes; ++i)
4138       Val |= (uint64_t)(unsigned char)Str[i] << i*8;
4139   } else {
4140     for (unsigned i = 0; i != NumBytes; ++i)
4141       Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
4142   }
4143 
4144   // If the "cost" of materializing the integer immediate is less than the cost
4145   // of a load, then it is cost effective to turn the load into the immediate.
4146   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4147   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4148     return DAG.getConstant(Val, dl, VT);
4149   return SDValue(nullptr, 0);
4150 }
4151 
4152 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4153                                            const SDLoc &DL) {
4154   EVT VT = Base.getValueType();
4155   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4156 }
4157 
4158 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
4159 ///
4160 static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
4161   uint64_t SrcDelta = 0;
4162   GlobalAddressSDNode *G = nullptr;
4163   if (Src.getOpcode() == ISD::GlobalAddress)
4164     G = cast<GlobalAddressSDNode>(Src);
4165   else if (Src.getOpcode() == ISD::ADD &&
4166            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4167            Src.getOperand(1).getOpcode() == ISD::Constant) {
4168     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4169     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4170   }
4171   if (!G)
4172     return false;
4173 
4174   return getConstantStringInfo(G->getGlobal(), Str,
4175                                SrcDelta + G->getOffset(), false);
4176 }
4177 
4178 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4179 /// Return true if the number of memory ops is below the threshold (Limit).
4180 /// It returns the types of the sequence of memory ops to perform
4181 /// memset / memcpy by reference.
4182 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4183                                      unsigned Limit, uint64_t Size,
4184                                      unsigned DstAlign, unsigned SrcAlign,
4185                                      bool IsMemset,
4186                                      bool ZeroMemset,
4187                                      bool MemcpyStrSrc,
4188                                      bool AllowOverlap,
4189                                      unsigned DstAS, unsigned SrcAS,
4190                                      SelectionDAG &DAG,
4191                                      const TargetLowering &TLI) {
4192   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4193          "Expecting memcpy / memset source to meet alignment requirement!");
4194   // If 'SrcAlign' is zero, that means the memory operation does not need to
4195   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4196   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4197   // is the specified alignment of the memory operation. If it is zero, that
4198   // means it's possible to change the alignment of the destination.
4199   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4200   // not need to be loaded.
4201   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4202                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4203                                    DAG.getMachineFunction());
4204 
4205   if (VT == MVT::Other) {
4206     if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) ||
4207         TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) {
4208       VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS);
4209     } else {
4210       switch (DstAlign & 7) {
4211       case 0:  VT = MVT::i64; break;
4212       case 4:  VT = MVT::i32; break;
4213       case 2:  VT = MVT::i16; break;
4214       default: VT = MVT::i8;  break;
4215       }
4216     }
4217 
4218     MVT LVT = MVT::i64;
4219     while (!TLI.isTypeLegal(LVT))
4220       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4221     assert(LVT.isInteger());
4222 
4223     if (VT.bitsGT(LVT))
4224       VT = LVT;
4225   }
4226 
4227   unsigned NumMemOps = 0;
4228   while (Size != 0) {
4229     unsigned VTSize = VT.getSizeInBits() / 8;
4230     while (VTSize > Size) {
4231       // For now, only use non-vector load / store's for the left-over pieces.
4232       EVT NewVT = VT;
4233       unsigned NewVTSize;
4234 
4235       bool Found = false;
4236       if (VT.isVector() || VT.isFloatingPoint()) {
4237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4238         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4239             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4240           Found = true;
4241         else if (NewVT == MVT::i64 &&
4242                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4243                  TLI.isSafeMemOpType(MVT::f64)) {
4244           // i64 is usually not legal on 32-bit targets, but f64 may be.
4245           NewVT = MVT::f64;
4246           Found = true;
4247         }
4248       }
4249 
4250       if (!Found) {
4251         do {
4252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4253           if (NewVT == MVT::i8)
4254             break;
4255         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4256       }
4257       NewVTSize = NewVT.getSizeInBits() / 8;
4258 
4259       // If the new VT cannot cover all of the remaining bits, then consider
4260       // issuing a (or a pair of) unaligned and overlapping load / store.
4261       // FIXME: Only does this for 64-bit or more since we don't have proper
4262       // cost model for unaligned load / store.
4263       bool Fast;
4264       if (NumMemOps && AllowOverlap &&
4265           VTSize >= 8 && NewVTSize < Size &&
4266           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4267         VTSize = Size;
4268       else {
4269         VT = NewVT;
4270         VTSize = NewVTSize;
4271       }
4272     }
4273 
4274     if (++NumMemOps > Limit)
4275       return false;
4276 
4277     MemOps.push_back(VT);
4278     Size -= VTSize;
4279   }
4280 
4281   return true;
4282 }
4283 
4284 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
4285   // On Darwin, -Os means optimize for size without hurting performance, so
4286   // only really optimize for size when -Oz (MinSize) is used.
4287   if (MF.getTarget().getTargetTriple().isOSDarwin())
4288     return MF.getFunction()->optForMinSize();
4289   return MF.getFunction()->optForSize();
4290 }
4291 
4292 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4293                                        SDValue Chain, SDValue Dst, SDValue Src,
4294                                        uint64_t Size, unsigned Align,
4295                                        bool isVol, bool AlwaysInline,
4296                                        MachinePointerInfo DstPtrInfo,
4297                                        MachinePointerInfo SrcPtrInfo) {
4298   // Turn a memcpy of undef to nop.
4299   if (Src.isUndef())
4300     return Chain;
4301 
4302   // Expand memcpy to a series of load and store ops if the size operand falls
4303   // below a certain threshold.
4304   // TODO: In the AlwaysInline case, if the size is big then generate a loop
4305   // rather than maybe a humongous number of loads and stores.
4306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4307   std::vector<EVT> MemOps;
4308   bool DstAlignCanChange = false;
4309   MachineFunction &MF = DAG.getMachineFunction();
4310   MachineFrameInfo &MFI = MF.getFrameInfo();
4311   bool OptSize = shouldLowerMemFuncForSize(MF);
4312   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4313   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4314     DstAlignCanChange = true;
4315   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4316   if (Align > SrcAlign)
4317     SrcAlign = Align;
4318   StringRef Str;
4319   bool CopyFromStr = isMemSrcFromString(Src, Str);
4320   bool isZeroStr = CopyFromStr && Str.empty();
4321   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
4322 
4323   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4324                                 (DstAlignCanChange ? 0 : Align),
4325                                 (isZeroStr ? 0 : SrcAlign),
4326                                 false, false, CopyFromStr, true,
4327                                 DstPtrInfo.getAddrSpace(),
4328                                 SrcPtrInfo.getAddrSpace(),
4329                                 DAG, TLI))
4330     return SDValue();
4331 
4332   if (DstAlignCanChange) {
4333     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4334     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4335 
4336     // Don't promote to an alignment that would require dynamic stack
4337     // realignment.
4338     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
4339     if (!TRI->needsStackRealignment(MF))
4340       while (NewAlign > Align &&
4341              DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign))
4342           NewAlign /= 2;
4343 
4344     if (NewAlign > Align) {
4345       // Give the stack frame object a larger alignment if needed.
4346       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4347         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4348       Align = NewAlign;
4349     }
4350   }
4351 
4352   MachineMemOperand::Flags MMOFlags =
4353       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4354   SmallVector<SDValue, 8> OutChains;
4355   unsigned NumMemOps = MemOps.size();
4356   uint64_t SrcOff = 0, DstOff = 0;
4357   for (unsigned i = 0; i != NumMemOps; ++i) {
4358     EVT VT = MemOps[i];
4359     unsigned VTSize = VT.getSizeInBits() / 8;
4360     SDValue Value, Store;
4361 
4362     if (VTSize > Size) {
4363       // Issuing an unaligned load / store pair  that overlaps with the previous
4364       // pair. Adjust the offset accordingly.
4365       assert(i == NumMemOps-1 && i != 0);
4366       SrcOff -= VTSize - Size;
4367       DstOff -= VTSize - Size;
4368     }
4369 
4370     if (CopyFromStr &&
4371         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
4372       // It's unlikely a store of a vector immediate can be done in a single
4373       // instruction. It would require a load from a constantpool first.
4374       // We only handle zero vectors here.
4375       // FIXME: Handle other cases where store of vector immediate is done in
4376       // a single instruction.
4377       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
4378       if (Value.getNode())
4379         Store = DAG.getStore(Chain, dl, Value,
4380                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4381                              DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4382     }
4383 
4384     if (!Store.getNode()) {
4385       // The type might not be legal for the target.  This should only happen
4386       // if the type is smaller than a legal type, as on PPC, so the right
4387       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
4388       // to Load/Store if NVT==VT.
4389       // FIXME does the case above also need this?
4390       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4391       assert(NVT.bitsGE(VT));
4392       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
4393                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4394                              SrcPtrInfo.getWithOffset(SrcOff), VT,
4395                              MinAlign(SrcAlign, SrcOff), MMOFlags);
4396       OutChains.push_back(Value.getValue(1));
4397       Store = DAG.getTruncStore(
4398           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4399           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
4400     }
4401     OutChains.push_back(Store);
4402     SrcOff += VTSize;
4403     DstOff += VTSize;
4404     Size -= VTSize;
4405   }
4406 
4407   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4408 }
4409 
4410 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4411                                         SDValue Chain, SDValue Dst, SDValue Src,
4412                                         uint64_t Size, unsigned Align,
4413                                         bool isVol, bool AlwaysInline,
4414                                         MachinePointerInfo DstPtrInfo,
4415                                         MachinePointerInfo SrcPtrInfo) {
4416   // Turn a memmove of undef to nop.
4417   if (Src.isUndef())
4418     return Chain;
4419 
4420   // Expand memmove to a series of load and store ops if the size operand falls
4421   // below a certain threshold.
4422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4423   std::vector<EVT> MemOps;
4424   bool DstAlignCanChange = false;
4425   MachineFunction &MF = DAG.getMachineFunction();
4426   MachineFrameInfo &MFI = MF.getFrameInfo();
4427   bool OptSize = shouldLowerMemFuncForSize(MF);
4428   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4429   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4430     DstAlignCanChange = true;
4431   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4432   if (Align > SrcAlign)
4433     SrcAlign = Align;
4434   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
4435 
4436   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4437                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
4438                                 false, false, false, false,
4439                                 DstPtrInfo.getAddrSpace(),
4440                                 SrcPtrInfo.getAddrSpace(),
4441                                 DAG, TLI))
4442     return SDValue();
4443 
4444   if (DstAlignCanChange) {
4445     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4446     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4447     if (NewAlign > Align) {
4448       // Give the stack frame object a larger alignment if needed.
4449       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4450         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4451       Align = NewAlign;
4452     }
4453   }
4454 
4455   MachineMemOperand::Flags MMOFlags =
4456       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4457   uint64_t SrcOff = 0, DstOff = 0;
4458   SmallVector<SDValue, 8> LoadValues;
4459   SmallVector<SDValue, 8> LoadChains;
4460   SmallVector<SDValue, 8> OutChains;
4461   unsigned NumMemOps = MemOps.size();
4462   for (unsigned i = 0; i < NumMemOps; i++) {
4463     EVT VT = MemOps[i];
4464     unsigned VTSize = VT.getSizeInBits() / 8;
4465     SDValue Value;
4466 
4467     Value =
4468         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4469                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags);
4470     LoadValues.push_back(Value);
4471     LoadChains.push_back(Value.getValue(1));
4472     SrcOff += VTSize;
4473   }
4474   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
4475   OutChains.clear();
4476   for (unsigned i = 0; i < NumMemOps; i++) {
4477     EVT VT = MemOps[i];
4478     unsigned VTSize = VT.getSizeInBits() / 8;
4479     SDValue Store;
4480 
4481     Store = DAG.getStore(Chain, dl, LoadValues[i],
4482                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4483                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4484     OutChains.push_back(Store);
4485     DstOff += VTSize;
4486   }
4487 
4488   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4489 }
4490 
4491 /// \brief Lower the call to 'memset' intrinsic function into a series of store
4492 /// operations.
4493 ///
4494 /// \param DAG Selection DAG where lowered code is placed.
4495 /// \param dl Link to corresponding IR location.
4496 /// \param Chain Control flow dependency.
4497 /// \param Dst Pointer to destination memory location.
4498 /// \param Src Value of byte to write into the memory.
4499 /// \param Size Number of bytes to write.
4500 /// \param Align Alignment of the destination in bytes.
4501 /// \param isVol True if destination is volatile.
4502 /// \param DstPtrInfo IR information on the memory pointer.
4503 /// \returns New head in the control flow, if lowering was successful, empty
4504 /// SDValue otherwise.
4505 ///
4506 /// The function tries to replace 'llvm.memset' intrinsic with several store
4507 /// operations and value calculation code. This is usually profitable for small
4508 /// memory size.
4509 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
4510                                SDValue Chain, SDValue Dst, SDValue Src,
4511                                uint64_t Size, unsigned Align, bool isVol,
4512                                MachinePointerInfo DstPtrInfo) {
4513   // Turn a memset of undef to nop.
4514   if (Src.isUndef())
4515     return Chain;
4516 
4517   // Expand memset to a series of load/store ops if the size operand
4518   // falls below a certain threshold.
4519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4520   std::vector<EVT> MemOps;
4521   bool DstAlignCanChange = false;
4522   MachineFunction &MF = DAG.getMachineFunction();
4523   MachineFrameInfo &MFI = MF.getFrameInfo();
4524   bool OptSize = shouldLowerMemFuncForSize(MF);
4525   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4526   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4527     DstAlignCanChange = true;
4528   bool IsZeroVal =
4529     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
4530   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
4531                                 Size, (DstAlignCanChange ? 0 : Align), 0,
4532                                 true, IsZeroVal, false, true,
4533                                 DstPtrInfo.getAddrSpace(), ~0u,
4534                                 DAG, TLI))
4535     return SDValue();
4536 
4537   if (DstAlignCanChange) {
4538     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4539     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4540     if (NewAlign > Align) {
4541       // Give the stack frame object a larger alignment if needed.
4542       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4543         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4544       Align = NewAlign;
4545     }
4546   }
4547 
4548   SmallVector<SDValue, 8> OutChains;
4549   uint64_t DstOff = 0;
4550   unsigned NumMemOps = MemOps.size();
4551 
4552   // Find the largest store and generate the bit pattern for it.
4553   EVT LargestVT = MemOps[0];
4554   for (unsigned i = 1; i < NumMemOps; i++)
4555     if (MemOps[i].bitsGT(LargestVT))
4556       LargestVT = MemOps[i];
4557   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
4558 
4559   for (unsigned i = 0; i < NumMemOps; i++) {
4560     EVT VT = MemOps[i];
4561     unsigned VTSize = VT.getSizeInBits() / 8;
4562     if (VTSize > Size) {
4563       // Issuing an unaligned load / store pair  that overlaps with the previous
4564       // pair. Adjust the offset accordingly.
4565       assert(i == NumMemOps-1 && i != 0);
4566       DstOff -= VTSize - Size;
4567     }
4568 
4569     // If this store is smaller than the largest store see whether we can get
4570     // the smaller value for free with a truncate.
4571     SDValue Value = MemSetValue;
4572     if (VT.bitsLT(LargestVT)) {
4573       if (!LargestVT.isVector() && !VT.isVector() &&
4574           TLI.isTruncateFree(LargestVT, VT))
4575         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
4576       else
4577         Value = getMemsetValue(Src, VT, DAG, dl);
4578     }
4579     assert(Value.getValueType() == VT && "Value with wrong type.");
4580     SDValue Store = DAG.getStore(
4581         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4582         DstPtrInfo.getWithOffset(DstOff), Align,
4583         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
4584     OutChains.push_back(Store);
4585     DstOff += VT.getSizeInBits() / 8;
4586     Size -= VTSize;
4587   }
4588 
4589   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4590 }
4591 
4592 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
4593                                             unsigned AS) {
4594   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
4595   // pointer operands can be losslessly bitcasted to pointers of address space 0
4596   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
4597     report_fatal_error("cannot lower memory intrinsic in address space " +
4598                        Twine(AS));
4599   }
4600 }
4601 
4602 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
4603                                 SDValue Src, SDValue Size, unsigned Align,
4604                                 bool isVol, bool AlwaysInline, bool isTailCall,
4605                                 MachinePointerInfo DstPtrInfo,
4606                                 MachinePointerInfo SrcPtrInfo) {
4607   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4608 
4609   // Check to see if we should lower the memcpy to loads and stores first.
4610   // For cases within the target-specified limits, this is the best choice.
4611   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4612   if (ConstantSize) {
4613     // Memcpy with size zero? Just return the original chain.
4614     if (ConstantSize->isNullValue())
4615       return Chain;
4616 
4617     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4618                                              ConstantSize->getZExtValue(),Align,
4619                                 isVol, false, DstPtrInfo, SrcPtrInfo);
4620     if (Result.getNode())
4621       return Result;
4622   }
4623 
4624   // Then check to see if we should lower the memcpy with target-specific
4625   // code. If the target chooses to do this, this is the next best.
4626   if (TSI) {
4627     SDValue Result = TSI->EmitTargetCodeForMemcpy(
4628         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
4629         DstPtrInfo, SrcPtrInfo);
4630     if (Result.getNode())
4631       return Result;
4632   }
4633 
4634   // If we really need inline code and the target declined to provide it,
4635   // use a (potentially long) sequence of loads and stores.
4636   if (AlwaysInline) {
4637     assert(ConstantSize && "AlwaysInline requires a constant size!");
4638     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4639                                    ConstantSize->getZExtValue(), Align, isVol,
4640                                    true, DstPtrInfo, SrcPtrInfo);
4641   }
4642 
4643   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4644   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
4645 
4646   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
4647   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
4648   // respect volatile, so they may do things like read or write memory
4649   // beyond the given memory regions. But fixing this isn't easy, and most
4650   // people don't care.
4651 
4652   // Emit a library call.
4653   TargetLowering::ArgListTy Args;
4654   TargetLowering::ArgListEntry Entry;
4655   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
4656   Entry.Node = Dst; Args.push_back(Entry);
4657   Entry.Node = Src; Args.push_back(Entry);
4658   Entry.Node = Size; Args.push_back(Entry);
4659   // FIXME: pass in SDLoc
4660   TargetLowering::CallLoweringInfo CLI(*this);
4661   CLI.setDebugLoc(dl)
4662       .setChain(Chain)
4663       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
4664                  Dst.getValueType().getTypeForEVT(*getContext()),
4665                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
4666                                    TLI->getPointerTy(getDataLayout())),
4667                  std::move(Args))
4668       .setDiscardResult()
4669       .setTailCall(isTailCall);
4670 
4671   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4672   return CallResult.second;
4673 }
4674 
4675 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
4676                                  SDValue Src, SDValue Size, unsigned Align,
4677                                  bool isVol, bool isTailCall,
4678                                  MachinePointerInfo DstPtrInfo,
4679                                  MachinePointerInfo SrcPtrInfo) {
4680   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4681 
4682   // Check to see if we should lower the memmove to loads and stores first.
4683   // For cases within the target-specified limits, this is the best choice.
4684   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4685   if (ConstantSize) {
4686     // Memmove with size zero? Just return the original chain.
4687     if (ConstantSize->isNullValue())
4688       return Chain;
4689 
4690     SDValue Result =
4691       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
4692                                ConstantSize->getZExtValue(), Align, isVol,
4693                                false, DstPtrInfo, SrcPtrInfo);
4694     if (Result.getNode())
4695       return Result;
4696   }
4697 
4698   // Then check to see if we should lower the memmove with target-specific
4699   // code. If the target chooses to do this, this is the next best.
4700   if (TSI) {
4701     SDValue Result = TSI->EmitTargetCodeForMemmove(
4702         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
4703     if (Result.getNode())
4704       return Result;
4705   }
4706 
4707   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4708   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
4709 
4710   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
4711   // not be safe.  See memcpy above for more details.
4712 
4713   // Emit a library call.
4714   TargetLowering::ArgListTy Args;
4715   TargetLowering::ArgListEntry Entry;
4716   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
4717   Entry.Node = Dst; Args.push_back(Entry);
4718   Entry.Node = Src; Args.push_back(Entry);
4719   Entry.Node = Size; Args.push_back(Entry);
4720   // FIXME:  pass in SDLoc
4721   TargetLowering::CallLoweringInfo CLI(*this);
4722   CLI.setDebugLoc(dl)
4723       .setChain(Chain)
4724       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
4725                  Dst.getValueType().getTypeForEVT(*getContext()),
4726                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
4727                                    TLI->getPointerTy(getDataLayout())),
4728                  std::move(Args))
4729       .setDiscardResult()
4730       .setTailCall(isTailCall);
4731 
4732   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4733   return CallResult.second;
4734 }
4735 
4736 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
4737                                 SDValue Src, SDValue Size, unsigned Align,
4738                                 bool isVol, bool isTailCall,
4739                                 MachinePointerInfo DstPtrInfo) {
4740   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4741 
4742   // Check to see if we should lower the memset to stores first.
4743   // For cases within the target-specified limits, this is the best choice.
4744   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4745   if (ConstantSize) {
4746     // Memset with size zero? Just return the original chain.
4747     if (ConstantSize->isNullValue())
4748       return Chain;
4749 
4750     SDValue Result =
4751       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
4752                       Align, isVol, DstPtrInfo);
4753 
4754     if (Result.getNode())
4755       return Result;
4756   }
4757 
4758   // Then check to see if we should lower the memset with target-specific
4759   // code. If the target chooses to do this, this is the next best.
4760   if (TSI) {
4761     SDValue Result = TSI->EmitTargetCodeForMemset(
4762         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
4763     if (Result.getNode())
4764       return Result;
4765   }
4766 
4767   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4768 
4769   // Emit a library call.
4770   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
4771   TargetLowering::ArgListTy Args;
4772   TargetLowering::ArgListEntry Entry;
4773   Entry.Node = Dst; Entry.Ty = IntPtrTy;
4774   Args.push_back(Entry);
4775   Entry.Node = Src;
4776   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
4777   Args.push_back(Entry);
4778   Entry.Node = Size;
4779   Entry.Ty = IntPtrTy;
4780   Args.push_back(Entry);
4781 
4782   // FIXME: pass in SDLoc
4783   TargetLowering::CallLoweringInfo CLI(*this);
4784   CLI.setDebugLoc(dl)
4785       .setChain(Chain)
4786       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
4787                  Dst.getValueType().getTypeForEVT(*getContext()),
4788                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
4789                                    TLI->getPointerTy(getDataLayout())),
4790                  std::move(Args))
4791       .setDiscardResult()
4792       .setTailCall(isTailCall);
4793 
4794   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4795   return CallResult.second;
4796 }
4797 
4798 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4799                                 SDVTList VTList, ArrayRef<SDValue> Ops,
4800                                 MachineMemOperand *MMO,
4801                                 AtomicOrdering SuccessOrdering,
4802                                 AtomicOrdering FailureOrdering,
4803                                 SynchronizationScope SynchScope) {
4804   FoldingSetNodeID ID;
4805   ID.AddInteger(MemVT.getRawBits());
4806   AddNodeIDNode(ID, Opcode, VTList, Ops);
4807   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4808   void* IP = nullptr;
4809   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
4810     cast<AtomicSDNode>(E)->refineAlignment(MMO);
4811     return SDValue(E, 0);
4812   }
4813 
4814   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
4815                                     VTList, MemVT, MMO, SuccessOrdering,
4816                                     FailureOrdering, SynchScope);
4817   createOperands(N, Ops);
4818 
4819   CSEMap.InsertNode(N, IP);
4820   InsertNode(N);
4821   return SDValue(N, 0);
4822 }
4823 
4824 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4825                                 SDVTList VTList, ArrayRef<SDValue> Ops,
4826                                 MachineMemOperand *MMO, AtomicOrdering Ordering,
4827                                 SynchronizationScope SynchScope) {
4828   return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering,
4829                    Ordering, SynchScope);
4830 }
4831 
4832 SDValue SelectionDAG::getAtomicCmpSwap(
4833     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
4834     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
4835     unsigned Alignment, AtomicOrdering SuccessOrdering,
4836     AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
4837   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
4838          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
4839   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4840 
4841   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4842     Alignment = getEVTAlignment(MemVT);
4843 
4844   MachineFunction &MF = getMachineFunction();
4845 
4846   // FIXME: Volatile isn't really correct; we should keep track of atomic
4847   // orderings in the memoperand.
4848   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
4849                MachineMemOperand::MOStore;
4850   MachineMemOperand *MMO =
4851     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
4852 
4853   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO,
4854                           SuccessOrdering, FailureOrdering, SynchScope);
4855 }
4856 
4857 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
4858                                        EVT MemVT, SDVTList VTs, SDValue Chain,
4859                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
4860                                        MachineMemOperand *MMO,
4861                                        AtomicOrdering SuccessOrdering,
4862                                        AtomicOrdering FailureOrdering,
4863                                        SynchronizationScope SynchScope) {
4864   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
4865          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
4866   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4867 
4868   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
4869   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO,
4870                    SuccessOrdering, FailureOrdering, SynchScope);
4871 }
4872 
4873 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4874                                 SDValue Chain, SDValue Ptr, SDValue Val,
4875                                 const Value *PtrVal, unsigned Alignment,
4876                                 AtomicOrdering Ordering,
4877                                 SynchronizationScope SynchScope) {
4878   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4879     Alignment = getEVTAlignment(MemVT);
4880 
4881   MachineFunction &MF = getMachineFunction();
4882   // An atomic store does not load. An atomic load does not store.
4883   // (An atomicrmw obviously both loads and stores.)
4884   // For now, atomics are considered to be volatile always, and they are
4885   // chained as such.
4886   // FIXME: Volatile isn't really correct; we should keep track of atomic
4887   // orderings in the memoperand.
4888   auto Flags = MachineMemOperand::MOVolatile;
4889   if (Opcode != ISD::ATOMIC_STORE)
4890     Flags |= MachineMemOperand::MOLoad;
4891   if (Opcode != ISD::ATOMIC_LOAD)
4892     Flags |= MachineMemOperand::MOStore;
4893 
4894   MachineMemOperand *MMO =
4895     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4896                             MemVT.getStoreSize(), Alignment);
4897 
4898   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
4899                    Ordering, SynchScope);
4900 }
4901 
4902 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4903                                 SDValue Chain, SDValue Ptr, SDValue Val,
4904                                 MachineMemOperand *MMO, AtomicOrdering Ordering,
4905                                 SynchronizationScope SynchScope) {
4906   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
4907           Opcode == ISD::ATOMIC_LOAD_SUB ||
4908           Opcode == ISD::ATOMIC_LOAD_AND ||
4909           Opcode == ISD::ATOMIC_LOAD_OR ||
4910           Opcode == ISD::ATOMIC_LOAD_XOR ||
4911           Opcode == ISD::ATOMIC_LOAD_NAND ||
4912           Opcode == ISD::ATOMIC_LOAD_MIN ||
4913           Opcode == ISD::ATOMIC_LOAD_MAX ||
4914           Opcode == ISD::ATOMIC_LOAD_UMIN ||
4915           Opcode == ISD::ATOMIC_LOAD_UMAX ||
4916           Opcode == ISD::ATOMIC_SWAP ||
4917           Opcode == ISD::ATOMIC_STORE) &&
4918          "Invalid Atomic Op");
4919 
4920   EVT VT = Val.getValueType();
4921 
4922   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
4923                                                getVTList(VT, MVT::Other);
4924   SDValue Ops[] = {Chain, Ptr, Val};
4925   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
4926 }
4927 
4928 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4929                                 EVT VT, SDValue Chain, SDValue Ptr,
4930                                 MachineMemOperand *MMO, AtomicOrdering Ordering,
4931                                 SynchronizationScope SynchScope) {
4932   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4933 
4934   SDVTList VTs = getVTList(VT, MVT::Other);
4935   SDValue Ops[] = {Chain, Ptr};
4936   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
4937 }
4938 
4939 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
4940 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
4941   if (Ops.size() == 1)
4942     return Ops[0];
4943 
4944   SmallVector<EVT, 4> VTs;
4945   VTs.reserve(Ops.size());
4946   for (unsigned i = 0; i < Ops.size(); ++i)
4947     VTs.push_back(Ops[i].getValueType());
4948   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
4949 }
4950 
4951 SDValue SelectionDAG::getMemIntrinsicNode(
4952     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
4953     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
4954     bool ReadMem, bool WriteMem, unsigned Size) {
4955   if (Align == 0)  // Ensure that codegen never sees alignment 0
4956     Align = getEVTAlignment(MemVT);
4957 
4958   MachineFunction &MF = getMachineFunction();
4959   auto Flags = MachineMemOperand::MONone;
4960   if (WriteMem)
4961     Flags |= MachineMemOperand::MOStore;
4962   if (ReadMem)
4963     Flags |= MachineMemOperand::MOLoad;
4964   if (Vol)
4965     Flags |= MachineMemOperand::MOVolatile;
4966   if (!Size)
4967     Size = MemVT.getStoreSize();
4968   MachineMemOperand *MMO =
4969     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
4970 
4971   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
4972 }
4973 
4974 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
4975                                           SDVTList VTList,
4976                                           ArrayRef<SDValue> Ops, EVT MemVT,
4977                                           MachineMemOperand *MMO) {
4978   assert((Opcode == ISD::INTRINSIC_VOID ||
4979           Opcode == ISD::INTRINSIC_W_CHAIN ||
4980           Opcode == ISD::PREFETCH ||
4981           Opcode == ISD::LIFETIME_START ||
4982           Opcode == ISD::LIFETIME_END ||
4983           (Opcode <= INT_MAX &&
4984            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4985          "Opcode is not a memory-accessing opcode!");
4986 
4987   // Memoize the node unless it returns a flag.
4988   MemIntrinsicSDNode *N;
4989   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4990     FoldingSetNodeID ID;
4991     AddNodeIDNode(ID, Opcode, VTList, Ops);
4992     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4993     void *IP = nullptr;
4994     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
4995       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4996       return SDValue(E, 0);
4997     }
4998 
4999     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5000                                       VTList, MemVT, MMO);
5001     createOperands(N, Ops);
5002 
5003   CSEMap.InsertNode(N, IP);
5004   } else {
5005     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5006                                       VTList, MemVT, MMO);
5007     createOperands(N, Ops);
5008   }
5009   InsertNode(N);
5010   return SDValue(N, 0);
5011 }
5012 
5013 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5014 /// MachinePointerInfo record from it.  This is particularly useful because the
5015 /// code generator has many cases where it doesn't bother passing in a
5016 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5017 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5018                                            int64_t Offset = 0) {
5019   // If this is FI+Offset, we can model it.
5020   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5021     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5022                                              FI->getIndex(), Offset);
5023 
5024   // If this is (FI+Offset1)+Offset2, we can model it.
5025   if (Ptr.getOpcode() != ISD::ADD ||
5026       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5027       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5028     return MachinePointerInfo();
5029 
5030   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5031   return MachinePointerInfo::getFixedStack(
5032       DAG.getMachineFunction(), FI,
5033       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5034 }
5035 
5036 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5037 /// MachinePointerInfo record from it.  This is particularly useful because the
5038 /// code generator has many cases where it doesn't bother passing in a
5039 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5040 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5041                                            SDValue OffsetOp) {
5042   // If the 'Offset' value isn't a constant, we can't handle this.
5043   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5044     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5045   if (OffsetOp.isUndef())
5046     return InferPointerInfo(DAG, Ptr);
5047   return MachinePointerInfo();
5048 }
5049 
5050 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5051                               EVT VT, const SDLoc &dl, SDValue Chain,
5052                               SDValue Ptr, SDValue Offset,
5053                               MachinePointerInfo PtrInfo, EVT MemVT,
5054                               unsigned Alignment,
5055                               MachineMemOperand::Flags MMOFlags,
5056                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5057   assert(Chain.getValueType() == MVT::Other &&
5058         "Invalid chain type");
5059   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5060     Alignment = getEVTAlignment(MemVT);
5061 
5062   MMOFlags |= MachineMemOperand::MOLoad;
5063   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5064   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5065   // clients.
5066   if (PtrInfo.V.isNull())
5067     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5068 
5069   MachineFunction &MF = getMachineFunction();
5070   MachineMemOperand *MMO = MF.getMachineMemOperand(
5071       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5072   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5073 }
5074 
5075 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5076                               EVT VT, const SDLoc &dl, SDValue Chain,
5077                               SDValue Ptr, SDValue Offset, EVT MemVT,
5078                               MachineMemOperand *MMO) {
5079   if (VT == MemVT) {
5080     ExtType = ISD::NON_EXTLOAD;
5081   } else if (ExtType == ISD::NON_EXTLOAD) {
5082     assert(VT == MemVT && "Non-extending load from different memory type!");
5083   } else {
5084     // Extending load.
5085     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5086            "Should only be an extending load, not truncating!");
5087     assert(VT.isInteger() == MemVT.isInteger() &&
5088            "Cannot convert from FP to Int or Int -> FP!");
5089     assert(VT.isVector() == MemVT.isVector() &&
5090            "Cannot use an ext load to convert to or from a vector!");
5091     assert((!VT.isVector() ||
5092             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5093            "Cannot use an ext load to change the number of vector elements!");
5094   }
5095 
5096   bool Indexed = AM != ISD::UNINDEXED;
5097   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5098 
5099   SDVTList VTs = Indexed ?
5100     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5101   SDValue Ops[] = { Chain, Ptr, Offset };
5102   FoldingSetNodeID ID;
5103   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5104   ID.AddInteger(MemVT.getRawBits());
5105   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5106       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5107   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5108   void *IP = nullptr;
5109   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5110     cast<LoadSDNode>(E)->refineAlignment(MMO);
5111     return SDValue(E, 0);
5112   }
5113   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5114                                   ExtType, MemVT, MMO);
5115   createOperands(N, Ops);
5116 
5117   CSEMap.InsertNode(N, IP);
5118   InsertNode(N);
5119   return SDValue(N, 0);
5120 }
5121 
5122 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5123                               SDValue Ptr, MachinePointerInfo PtrInfo,
5124                               unsigned Alignment,
5125                               MachineMemOperand::Flags MMOFlags,
5126                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5127   SDValue Undef = getUNDEF(Ptr.getValueType());
5128   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5129                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5130 }
5131 
5132 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5133                               SDValue Ptr, MachineMemOperand *MMO) {
5134   SDValue Undef = getUNDEF(Ptr.getValueType());
5135   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5136                  VT, MMO);
5137 }
5138 
5139 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5140                                  EVT VT, SDValue Chain, SDValue Ptr,
5141                                  MachinePointerInfo PtrInfo, EVT MemVT,
5142                                  unsigned Alignment,
5143                                  MachineMemOperand::Flags MMOFlags,
5144                                  const AAMDNodes &AAInfo) {
5145   SDValue Undef = getUNDEF(Ptr.getValueType());
5146   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5147                  MemVT, Alignment, MMOFlags, AAInfo);
5148 }
5149 
5150 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5151                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5152                                  MachineMemOperand *MMO) {
5153   SDValue Undef = getUNDEF(Ptr.getValueType());
5154   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5155                  MemVT, MMO);
5156 }
5157 
5158 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5159                                      SDValue Base, SDValue Offset,
5160                                      ISD::MemIndexedMode AM) {
5161   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5162   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5163   // Don't propagate the invariant or dereferenceable flags.
5164   auto MMOFlags =
5165       LD->getMemOperand()->getFlags() &
5166       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5167   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5168                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5169                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
5170                  LD->getAAInfo());
5171 }
5172 
5173 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5174                                SDValue Ptr, MachinePointerInfo PtrInfo,
5175                                unsigned Alignment,
5176                                MachineMemOperand::Flags MMOFlags,
5177                                const AAMDNodes &AAInfo) {
5178   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5179   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5180     Alignment = getEVTAlignment(Val.getValueType());
5181 
5182   MMOFlags |= MachineMemOperand::MOStore;
5183   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5184 
5185   if (PtrInfo.V.isNull())
5186     PtrInfo = InferPointerInfo(*this, Ptr);
5187 
5188   MachineFunction &MF = getMachineFunction();
5189   MachineMemOperand *MMO = MF.getMachineMemOperand(
5190       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
5191   return getStore(Chain, dl, Val, Ptr, MMO);
5192 }
5193 
5194 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5195                                SDValue Ptr, MachineMemOperand *MMO) {
5196   assert(Chain.getValueType() == MVT::Other &&
5197         "Invalid chain type");
5198   EVT VT = Val.getValueType();
5199   SDVTList VTs = getVTList(MVT::Other);
5200   SDValue Undef = getUNDEF(Ptr.getValueType());
5201   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5202   FoldingSetNodeID ID;
5203   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5204   ID.AddInteger(VT.getRawBits());
5205   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5206       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
5207   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5208   void *IP = nullptr;
5209   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5210     cast<StoreSDNode>(E)->refineAlignment(MMO);
5211     return SDValue(E, 0);
5212   }
5213   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5214                                    ISD::UNINDEXED, false, VT, MMO);
5215   createOperands(N, Ops);
5216 
5217   CSEMap.InsertNode(N, IP);
5218   InsertNode(N);
5219   return SDValue(N, 0);
5220 }
5221 
5222 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5223                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5224                                     EVT SVT, unsigned Alignment,
5225                                     MachineMemOperand::Flags MMOFlags,
5226                                     const AAMDNodes &AAInfo) {
5227   assert(Chain.getValueType() == MVT::Other &&
5228         "Invalid chain type");
5229   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5230     Alignment = getEVTAlignment(SVT);
5231 
5232   MMOFlags |= MachineMemOperand::MOStore;
5233   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5234 
5235   if (PtrInfo.V.isNull())
5236     PtrInfo = InferPointerInfo(*this, Ptr);
5237 
5238   MachineFunction &MF = getMachineFunction();
5239   MachineMemOperand *MMO = MF.getMachineMemOperand(
5240       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
5241   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5242 }
5243 
5244 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5245                                     SDValue Ptr, EVT SVT,
5246                                     MachineMemOperand *MMO) {
5247   EVT VT = Val.getValueType();
5248 
5249   assert(Chain.getValueType() == MVT::Other &&
5250         "Invalid chain type");
5251   if (VT == SVT)
5252     return getStore(Chain, dl, Val, Ptr, MMO);
5253 
5254   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5255          "Should only be a truncating store, not extending!");
5256   assert(VT.isInteger() == SVT.isInteger() &&
5257          "Can't do FP-INT conversion!");
5258   assert(VT.isVector() == SVT.isVector() &&
5259          "Cannot use trunc store to convert to or from a vector!");
5260   assert((!VT.isVector() ||
5261           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5262          "Cannot use trunc store to change the number of vector elements!");
5263 
5264   SDVTList VTs = getVTList(MVT::Other);
5265   SDValue Undef = getUNDEF(Ptr.getValueType());
5266   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5267   FoldingSetNodeID ID;
5268   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5269   ID.AddInteger(SVT.getRawBits());
5270   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5271       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
5272   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5273   void *IP = nullptr;
5274   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5275     cast<StoreSDNode>(E)->refineAlignment(MMO);
5276     return SDValue(E, 0);
5277   }
5278   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5279                                    ISD::UNINDEXED, true, SVT, MMO);
5280   createOperands(N, Ops);
5281 
5282   CSEMap.InsertNode(N, IP);
5283   InsertNode(N);
5284   return SDValue(N, 0);
5285 }
5286 
5287 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
5288                                       SDValue Base, SDValue Offset,
5289                                       ISD::MemIndexedMode AM) {
5290   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
5291   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
5292   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
5293   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
5294   FoldingSetNodeID ID;
5295   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5296   ID.AddInteger(ST->getMemoryVT().getRawBits());
5297   ID.AddInteger(ST->getRawSubclassData());
5298   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
5299   void *IP = nullptr;
5300   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
5301     return SDValue(E, 0);
5302 
5303   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5304                                    ST->isTruncatingStore(), ST->getMemoryVT(),
5305                                    ST->getMemOperand());
5306   createOperands(N, Ops);
5307 
5308   CSEMap.InsertNode(N, IP);
5309   InsertNode(N);
5310   return SDValue(N, 0);
5311 }
5312 
5313 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5314                                     SDValue Ptr, SDValue Mask, SDValue Src0,
5315                                     EVT MemVT, MachineMemOperand *MMO,
5316                                     ISD::LoadExtType ExtTy) {
5317 
5318   SDVTList VTs = getVTList(VT, MVT::Other);
5319   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
5320   FoldingSetNodeID ID;
5321   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
5322   ID.AddInteger(VT.getRawBits());
5323   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
5324       dl.getIROrder(), VTs, ExtTy, MemVT, MMO));
5325   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5326   void *IP = nullptr;
5327   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5328     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
5329     return SDValue(E, 0);
5330   }
5331   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5332                                         ExtTy, MemVT, MMO);
5333   createOperands(N, Ops);
5334 
5335   CSEMap.InsertNode(N, IP);
5336   InsertNode(N);
5337   return SDValue(N, 0);
5338 }
5339 
5340 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
5341                                      SDValue Val, SDValue Ptr, SDValue Mask,
5342                                      EVT MemVT, MachineMemOperand *MMO,
5343                                      bool isTrunc, bool isCompress) {
5344   assert(Chain.getValueType() == MVT::Other &&
5345         "Invalid chain type");
5346   EVT VT = Val.getValueType();
5347   SDVTList VTs = getVTList(MVT::Other);
5348   SDValue Ops[] = { Chain, Ptr, Mask, Val };
5349   FoldingSetNodeID ID;
5350   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
5351   ID.AddInteger(VT.getRawBits());
5352   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
5353       dl.getIROrder(), VTs, isTrunc, isCompress, MemVT, MMO));
5354   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5355   void *IP = nullptr;
5356   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5357     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
5358     return SDValue(E, 0);
5359   }
5360   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5361                                          isTrunc, isCompress, MemVT, MMO);
5362   createOperands(N, Ops);
5363 
5364   CSEMap.InsertNode(N, IP);
5365   InsertNode(N);
5366   return SDValue(N, 0);
5367 }
5368 
5369 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
5370                                       ArrayRef<SDValue> Ops,
5371                                       MachineMemOperand *MMO) {
5372   assert(Ops.size() == 5 && "Incompatible number of operands");
5373 
5374   FoldingSetNodeID ID;
5375   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
5376   ID.AddInteger(VT.getRawBits());
5377   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
5378       dl.getIROrder(), VTs, VT, MMO));
5379   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5380   void *IP = nullptr;
5381   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5382     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
5383     return SDValue(E, 0);
5384   }
5385 
5386   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5387                                           VTs, VT, MMO);
5388   createOperands(N, Ops);
5389 
5390   assert(N->getValue().getValueType() == N->getValueType(0) &&
5391          "Incompatible type of the PassThru value in MaskedGatherSDNode");
5392   assert(N->getMask().getValueType().getVectorNumElements() ==
5393              N->getValueType(0).getVectorNumElements() &&
5394          "Vector width mismatch between mask and data");
5395   assert(N->getIndex().getValueType().getVectorNumElements() ==
5396              N->getValueType(0).getVectorNumElements() &&
5397          "Vector width mismatch between index and data");
5398 
5399   CSEMap.InsertNode(N, IP);
5400   InsertNode(N);
5401   return SDValue(N, 0);
5402 }
5403 
5404 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
5405                                        ArrayRef<SDValue> Ops,
5406                                        MachineMemOperand *MMO) {
5407   assert(Ops.size() == 5 && "Incompatible number of operands");
5408 
5409   FoldingSetNodeID ID;
5410   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
5411   ID.AddInteger(VT.getRawBits());
5412   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
5413       dl.getIROrder(), VTs, VT, MMO));
5414   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5415   void *IP = nullptr;
5416   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5417     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
5418     return SDValue(E, 0);
5419   }
5420   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5421                                            VTs, VT, MMO);
5422   createOperands(N, Ops);
5423 
5424   assert(N->getMask().getValueType().getVectorNumElements() ==
5425              N->getValue().getValueType().getVectorNumElements() &&
5426          "Vector width mismatch between mask and data");
5427   assert(N->getIndex().getValueType().getVectorNumElements() ==
5428              N->getValue().getValueType().getVectorNumElements() &&
5429          "Vector width mismatch between index and data");
5430 
5431   CSEMap.InsertNode(N, IP);
5432   InsertNode(N);
5433   return SDValue(N, 0);
5434 }
5435 
5436 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
5437                                SDValue Ptr, SDValue SV, unsigned Align) {
5438   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
5439   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
5440 }
5441 
5442 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5443                               ArrayRef<SDUse> Ops) {
5444   switch (Ops.size()) {
5445   case 0: return getNode(Opcode, DL, VT);
5446   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
5447   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
5448   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5449   default: break;
5450   }
5451 
5452   // Copy from an SDUse array into an SDValue array for use with
5453   // the regular getNode logic.
5454   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
5455   return getNode(Opcode, DL, VT, NewOps);
5456 }
5457 
5458 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5459                               ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) {
5460   unsigned NumOps = Ops.size();
5461   switch (NumOps) {
5462   case 0: return getNode(Opcode, DL, VT);
5463   case 1: return getNode(Opcode, DL, VT, Ops[0]);
5464   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
5465   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5466   default: break;
5467   }
5468 
5469   switch (Opcode) {
5470   default: break;
5471   case ISD::CONCAT_VECTORS: {
5472     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5473     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5474       return V;
5475     break;
5476   }
5477   case ISD::SELECT_CC: {
5478     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
5479     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
5480            "LHS and RHS of condition must have same type!");
5481     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5482            "True and False arms of SelectCC must have same type!");
5483     assert(Ops[2].getValueType() == VT &&
5484            "select_cc node must be of same type as true and false value!");
5485     break;
5486   }
5487   case ISD::BR_CC: {
5488     assert(NumOps == 5 && "BR_CC takes 5 operands!");
5489     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5490            "LHS/RHS of comparison should match types!");
5491     break;
5492   }
5493   }
5494 
5495   // Memoize nodes.
5496   SDNode *N;
5497   SDVTList VTs = getVTList(VT);
5498 
5499   if (VT != MVT::Glue) {
5500     FoldingSetNodeID ID;
5501     AddNodeIDNode(ID, Opcode, VTs, Ops);
5502     void *IP = nullptr;
5503 
5504     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5505       return SDValue(E, 0);
5506 
5507     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5508     createOperands(N, Ops);
5509 
5510     CSEMap.InsertNode(N, IP);
5511   } else {
5512     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5513     createOperands(N, Ops);
5514   }
5515 
5516   InsertNode(N);
5517   return SDValue(N, 0);
5518 }
5519 
5520 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5521                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
5522   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
5523 }
5524 
5525 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5526                               ArrayRef<SDValue> Ops) {
5527   if (VTList.NumVTs == 1)
5528     return getNode(Opcode, DL, VTList.VTs[0], Ops);
5529 
5530 #if 0
5531   switch (Opcode) {
5532   // FIXME: figure out how to safely handle things like
5533   // int foo(int x) { return 1 << (x & 255); }
5534   // int bar() { return foo(256); }
5535   case ISD::SRA_PARTS:
5536   case ISD::SRL_PARTS:
5537   case ISD::SHL_PARTS:
5538     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5539         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
5540       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5541     else if (N3.getOpcode() == ISD::AND)
5542       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
5543         // If the and is only masking out bits that cannot effect the shift,
5544         // eliminate the and.
5545         unsigned NumBits = VT.getScalarSizeInBits()*2;
5546         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
5547           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5548       }
5549     break;
5550   }
5551 #endif
5552 
5553   // Memoize the node unless it returns a flag.
5554   SDNode *N;
5555   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5556     FoldingSetNodeID ID;
5557     AddNodeIDNode(ID, Opcode, VTList, Ops);
5558     void *IP = nullptr;
5559     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5560       return SDValue(E, 0);
5561 
5562     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5563     createOperands(N, Ops);
5564     CSEMap.InsertNode(N, IP);
5565   } else {
5566     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5567     createOperands(N, Ops);
5568   }
5569   InsertNode(N);
5570   return SDValue(N, 0);
5571 }
5572 
5573 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5574                               SDVTList VTList) {
5575   return getNode(Opcode, DL, VTList, None);
5576 }
5577 
5578 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5579                               SDValue N1) {
5580   SDValue Ops[] = { N1 };
5581   return getNode(Opcode, DL, VTList, Ops);
5582 }
5583 
5584 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5585                               SDValue N1, SDValue N2) {
5586   SDValue Ops[] = { N1, N2 };
5587   return getNode(Opcode, DL, VTList, Ops);
5588 }
5589 
5590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5591                               SDValue N1, SDValue N2, SDValue N3) {
5592   SDValue Ops[] = { N1, N2, N3 };
5593   return getNode(Opcode, DL, VTList, Ops);
5594 }
5595 
5596 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5597                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5598   SDValue Ops[] = { N1, N2, N3, N4 };
5599   return getNode(Opcode, DL, VTList, Ops);
5600 }
5601 
5602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5603                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5604                               SDValue N5) {
5605   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5606   return getNode(Opcode, DL, VTList, Ops);
5607 }
5608 
5609 SDVTList SelectionDAG::getVTList(EVT VT) {
5610   return makeVTList(SDNode::getValueTypeList(VT), 1);
5611 }
5612 
5613 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
5614   FoldingSetNodeID ID;
5615   ID.AddInteger(2U);
5616   ID.AddInteger(VT1.getRawBits());
5617   ID.AddInteger(VT2.getRawBits());
5618 
5619   void *IP = nullptr;
5620   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5621   if (!Result) {
5622     EVT *Array = Allocator.Allocate<EVT>(2);
5623     Array[0] = VT1;
5624     Array[1] = VT2;
5625     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
5626     VTListMap.InsertNode(Result, IP);
5627   }
5628   return Result->getSDVTList();
5629 }
5630 
5631 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
5632   FoldingSetNodeID ID;
5633   ID.AddInteger(3U);
5634   ID.AddInteger(VT1.getRawBits());
5635   ID.AddInteger(VT2.getRawBits());
5636   ID.AddInteger(VT3.getRawBits());
5637 
5638   void *IP = nullptr;
5639   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5640   if (!Result) {
5641     EVT *Array = Allocator.Allocate<EVT>(3);
5642     Array[0] = VT1;
5643     Array[1] = VT2;
5644     Array[2] = VT3;
5645     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
5646     VTListMap.InsertNode(Result, IP);
5647   }
5648   return Result->getSDVTList();
5649 }
5650 
5651 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
5652   FoldingSetNodeID ID;
5653   ID.AddInteger(4U);
5654   ID.AddInteger(VT1.getRawBits());
5655   ID.AddInteger(VT2.getRawBits());
5656   ID.AddInteger(VT3.getRawBits());
5657   ID.AddInteger(VT4.getRawBits());
5658 
5659   void *IP = nullptr;
5660   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5661   if (!Result) {
5662     EVT *Array = Allocator.Allocate<EVT>(4);
5663     Array[0] = VT1;
5664     Array[1] = VT2;
5665     Array[2] = VT3;
5666     Array[3] = VT4;
5667     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
5668     VTListMap.InsertNode(Result, IP);
5669   }
5670   return Result->getSDVTList();
5671 }
5672 
5673 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
5674   unsigned NumVTs = VTs.size();
5675   FoldingSetNodeID ID;
5676   ID.AddInteger(NumVTs);
5677   for (unsigned index = 0; index < NumVTs; index++) {
5678     ID.AddInteger(VTs[index].getRawBits());
5679   }
5680 
5681   void *IP = nullptr;
5682   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5683   if (!Result) {
5684     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
5685     std::copy(VTs.begin(), VTs.end(), Array);
5686     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
5687     VTListMap.InsertNode(Result, IP);
5688   }
5689   return Result->getSDVTList();
5690 }
5691 
5692 
5693 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
5694 /// specified operands.  If the resultant node already exists in the DAG,
5695 /// this does not modify the specified node, instead it returns the node that
5696 /// already exists.  If the resultant node does not exist in the DAG, the
5697 /// input node is returned.  As a degenerate case, if you specify the same
5698 /// input operands as the node already has, the input node is returned.
5699 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
5700   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
5701 
5702   // Check to see if there is no change.
5703   if (Op == N->getOperand(0)) return N;
5704 
5705   // See if the modified node already exists.
5706   void *InsertPos = nullptr;
5707   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
5708     return Existing;
5709 
5710   // Nope it doesn't.  Remove the node from its current place in the maps.
5711   if (InsertPos)
5712     if (!RemoveNodeFromCSEMaps(N))
5713       InsertPos = nullptr;
5714 
5715   // Now we update the operands.
5716   N->OperandList[0].set(Op);
5717 
5718   // If this gets put into a CSE map, add it.
5719   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5720   return N;
5721 }
5722 
5723 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
5724   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
5725 
5726   // Check to see if there is no change.
5727   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
5728     return N;   // No operands changed, just return the input node.
5729 
5730   // See if the modified node already exists.
5731   void *InsertPos = nullptr;
5732   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
5733     return Existing;
5734 
5735   // Nope it doesn't.  Remove the node from its current place in the maps.
5736   if (InsertPos)
5737     if (!RemoveNodeFromCSEMaps(N))
5738       InsertPos = nullptr;
5739 
5740   // Now we update the operands.
5741   if (N->OperandList[0] != Op1)
5742     N->OperandList[0].set(Op1);
5743   if (N->OperandList[1] != Op2)
5744     N->OperandList[1].set(Op2);
5745 
5746   // If this gets put into a CSE map, add it.
5747   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5748   return N;
5749 }
5750 
5751 SDNode *SelectionDAG::
5752 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
5753   SDValue Ops[] = { Op1, Op2, Op3 };
5754   return UpdateNodeOperands(N, Ops);
5755 }
5756 
5757 SDNode *SelectionDAG::
5758 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5759                    SDValue Op3, SDValue Op4) {
5760   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
5761   return UpdateNodeOperands(N, Ops);
5762 }
5763 
5764 SDNode *SelectionDAG::
5765 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5766                    SDValue Op3, SDValue Op4, SDValue Op5) {
5767   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
5768   return UpdateNodeOperands(N, Ops);
5769 }
5770 
5771 SDNode *SelectionDAG::
5772 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
5773   unsigned NumOps = Ops.size();
5774   assert(N->getNumOperands() == NumOps &&
5775          "Update with wrong number of operands");
5776 
5777   // If no operands changed just return the input node.
5778   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
5779     return N;
5780 
5781   // See if the modified node already exists.
5782   void *InsertPos = nullptr;
5783   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
5784     return Existing;
5785 
5786   // Nope it doesn't.  Remove the node from its current place in the maps.
5787   if (InsertPos)
5788     if (!RemoveNodeFromCSEMaps(N))
5789       InsertPos = nullptr;
5790 
5791   // Now we update the operands.
5792   for (unsigned i = 0; i != NumOps; ++i)
5793     if (N->OperandList[i] != Ops[i])
5794       N->OperandList[i].set(Ops[i]);
5795 
5796   // If this gets put into a CSE map, add it.
5797   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5798   return N;
5799 }
5800 
5801 /// DropOperands - Release the operands and set this node to have
5802 /// zero operands.
5803 void SDNode::DropOperands() {
5804   // Unlike the code in MorphNodeTo that does this, we don't need to
5805   // watch for dead nodes here.
5806   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
5807     SDUse &Use = *I++;
5808     Use.set(SDValue());
5809   }
5810 }
5811 
5812 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
5813 /// machine opcode.
5814 ///
5815 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5816                                    EVT VT) {
5817   SDVTList VTs = getVTList(VT);
5818   return SelectNodeTo(N, MachineOpc, VTs, None);
5819 }
5820 
5821 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5822                                    EVT VT, SDValue Op1) {
5823   SDVTList VTs = getVTList(VT);
5824   SDValue Ops[] = { Op1 };
5825   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5826 }
5827 
5828 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5829                                    EVT VT, SDValue Op1,
5830                                    SDValue Op2) {
5831   SDVTList VTs = getVTList(VT);
5832   SDValue Ops[] = { Op1, Op2 };
5833   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5834 }
5835 
5836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5837                                    EVT VT, SDValue Op1,
5838                                    SDValue Op2, SDValue Op3) {
5839   SDVTList VTs = getVTList(VT);
5840   SDValue Ops[] = { Op1, Op2, Op3 };
5841   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5842 }
5843 
5844 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5845                                    EVT VT, ArrayRef<SDValue> Ops) {
5846   SDVTList VTs = getVTList(VT);
5847   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5848 }
5849 
5850 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5851                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
5852   SDVTList VTs = getVTList(VT1, VT2);
5853   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5854 }
5855 
5856 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5857                                    EVT VT1, EVT VT2) {
5858   SDVTList VTs = getVTList(VT1, VT2);
5859   return SelectNodeTo(N, MachineOpc, VTs, None);
5860 }
5861 
5862 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5863                                    EVT VT1, EVT VT2, EVT VT3,
5864                                    ArrayRef<SDValue> Ops) {
5865   SDVTList VTs = getVTList(VT1, VT2, VT3);
5866   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5867 }
5868 
5869 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5870                                    EVT VT1, EVT VT2, EVT VT3, EVT VT4,
5871                                    ArrayRef<SDValue> Ops) {
5872   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5873   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5874 }
5875 
5876 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5877                                    EVT VT1, EVT VT2,
5878                                    SDValue Op1) {
5879   SDVTList VTs = getVTList(VT1, VT2);
5880   SDValue Ops[] = { Op1 };
5881   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5882 }
5883 
5884 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5885                                    EVT VT1, EVT VT2,
5886                                    SDValue Op1, SDValue Op2) {
5887   SDVTList VTs = getVTList(VT1, VT2);
5888   SDValue Ops[] = { Op1, Op2 };
5889   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5890 }
5891 
5892 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5893                                    EVT VT1, EVT VT2,
5894                                    SDValue Op1, SDValue Op2,
5895                                    SDValue Op3) {
5896   SDVTList VTs = getVTList(VT1, VT2);
5897   SDValue Ops[] = { Op1, Op2, Op3 };
5898   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5899 }
5900 
5901 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5902                                    EVT VT1, EVT VT2, EVT VT3,
5903                                    SDValue Op1, SDValue Op2,
5904                                    SDValue Op3) {
5905   SDVTList VTs = getVTList(VT1, VT2, VT3);
5906   SDValue Ops[] = { Op1, Op2, Op3 };
5907   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5908 }
5909 
5910 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5911                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
5912   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
5913   // Reset the NodeID to -1.
5914   New->setNodeId(-1);
5915   if (New != N) {
5916     ReplaceAllUsesWith(N, New);
5917     RemoveDeadNode(N);
5918   }
5919   return New;
5920 }
5921 
5922 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
5923 /// the line number information on the merged node since it is not possible to
5924 /// preserve the information that operation is associated with multiple lines.
5925 /// This will make the debugger working better at -O0, were there is a higher
5926 /// probability having other instructions associated with that line.
5927 ///
5928 /// For IROrder, we keep the smaller of the two
5929 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) {
5930   DebugLoc NLoc = N->getDebugLoc();
5931   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
5932     N->setDebugLoc(DebugLoc());
5933   }
5934   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
5935   N->setIROrder(Order);
5936   return N;
5937 }
5938 
5939 /// MorphNodeTo - This *mutates* the specified node to have the specified
5940 /// return type, opcode, and operands.
5941 ///
5942 /// Note that MorphNodeTo returns the resultant node.  If there is already a
5943 /// node of the specified opcode and operands, it returns that node instead of
5944 /// the current one.  Note that the SDLoc need not be the same.
5945 ///
5946 /// Using MorphNodeTo is faster than creating a new node and swapping it in
5947 /// with ReplaceAllUsesWith both because it often avoids allocating a new
5948 /// node, and because it doesn't require CSE recalculation for any of
5949 /// the node's users.
5950 ///
5951 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
5952 /// As a consequence it isn't appropriate to use from within the DAG combiner or
5953 /// the legalizer which maintain worklists that would need to be updated when
5954 /// deleting things.
5955 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
5956                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
5957   // If an identical node already exists, use it.
5958   void *IP = nullptr;
5959   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
5960     FoldingSetNodeID ID;
5961     AddNodeIDNode(ID, Opc, VTs, Ops);
5962     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
5963       return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
5964   }
5965 
5966   if (!RemoveNodeFromCSEMaps(N))
5967     IP = nullptr;
5968 
5969   // Start the morphing.
5970   N->NodeType = Opc;
5971   N->ValueList = VTs.VTs;
5972   N->NumValues = VTs.NumVTs;
5973 
5974   // Clear the operands list, updating used nodes to remove this from their
5975   // use list.  Keep track of any operands that become dead as a result.
5976   SmallPtrSet<SDNode*, 16> DeadNodeSet;
5977   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
5978     SDUse &Use = *I++;
5979     SDNode *Used = Use.getNode();
5980     Use.set(SDValue());
5981     if (Used->use_empty())
5982       DeadNodeSet.insert(Used);
5983   }
5984 
5985   // For MachineNode, initialize the memory references information.
5986   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
5987     MN->setMemRefs(nullptr, nullptr);
5988 
5989   // Swap for an appropriately sized array from the recycler.
5990   removeOperands(N);
5991   createOperands(N, Ops);
5992 
5993   // Delete any nodes that are still dead after adding the uses for the
5994   // new operands.
5995   if (!DeadNodeSet.empty()) {
5996     SmallVector<SDNode *, 16> DeadNodes;
5997     for (SDNode *N : DeadNodeSet)
5998       if (N->use_empty())
5999         DeadNodes.push_back(N);
6000     RemoveDeadNodes(DeadNodes);
6001   }
6002 
6003   if (IP)
6004     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6005   return N;
6006 }
6007 
6008 
6009 /// getMachineNode - These are used for target selectors to create a new node
6010 /// with specified return type(s), MachineInstr opcode, and operands.
6011 ///
6012 /// Note that getMachineNode returns the resultant node.  If there is already a
6013 /// node of the specified opcode and operands, it returns that node instead of
6014 /// the current one.
6015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6016                                             EVT VT) {
6017   SDVTList VTs = getVTList(VT);
6018   return getMachineNode(Opcode, dl, VTs, None);
6019 }
6020 
6021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6022                                             EVT VT, SDValue Op1) {
6023   SDVTList VTs = getVTList(VT);
6024   SDValue Ops[] = { Op1 };
6025   return getMachineNode(Opcode, dl, VTs, Ops);
6026 }
6027 
6028 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6029                                             EVT VT, SDValue Op1, SDValue Op2) {
6030   SDVTList VTs = getVTList(VT);
6031   SDValue Ops[] = { Op1, Op2 };
6032   return getMachineNode(Opcode, dl, VTs, Ops);
6033 }
6034 
6035 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6036                                             EVT VT, SDValue Op1, SDValue Op2,
6037                                             SDValue Op3) {
6038   SDVTList VTs = getVTList(VT);
6039   SDValue Ops[] = { Op1, Op2, Op3 };
6040   return getMachineNode(Opcode, dl, VTs, Ops);
6041 }
6042 
6043 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6044                                             EVT VT, ArrayRef<SDValue> Ops) {
6045   SDVTList VTs = getVTList(VT);
6046   return getMachineNode(Opcode, dl, VTs, Ops);
6047 }
6048 
6049 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6050                                             EVT VT1, EVT VT2) {
6051   SDVTList VTs = getVTList(VT1, VT2);
6052   return getMachineNode(Opcode, dl, VTs, None);
6053 }
6054 
6055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6056                                             EVT VT1, EVT VT2, SDValue Op1) {
6057   SDVTList VTs = getVTList(VT1, VT2);
6058   SDValue Ops[] = { Op1 };
6059   return getMachineNode(Opcode, dl, VTs, Ops);
6060 }
6061 
6062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6063                                             EVT VT1, EVT VT2, SDValue Op1,
6064                                             SDValue Op2) {
6065   SDVTList VTs = getVTList(VT1, VT2);
6066   SDValue Ops[] = { Op1, Op2 };
6067   return getMachineNode(Opcode, dl, VTs, Ops);
6068 }
6069 
6070 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6071                                             EVT VT1, EVT VT2, SDValue Op1,
6072                                             SDValue Op2, SDValue Op3) {
6073   SDVTList VTs = getVTList(VT1, VT2);
6074   SDValue Ops[] = { Op1, Op2, Op3 };
6075   return getMachineNode(Opcode, dl, VTs, Ops);
6076 }
6077 
6078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6079                                             EVT VT1, EVT VT2,
6080                                             ArrayRef<SDValue> Ops) {
6081   SDVTList VTs = getVTList(VT1, VT2);
6082   return getMachineNode(Opcode, dl, VTs, Ops);
6083 }
6084 
6085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6086                                             EVT VT1, EVT VT2, EVT VT3,
6087                                             SDValue Op1, SDValue Op2) {
6088   SDVTList VTs = getVTList(VT1, VT2, VT3);
6089   SDValue Ops[] = { Op1, Op2 };
6090   return getMachineNode(Opcode, dl, VTs, Ops);
6091 }
6092 
6093 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6094                                             EVT VT1, EVT VT2, EVT VT3,
6095                                             SDValue Op1, SDValue Op2,
6096                                             SDValue Op3) {
6097   SDVTList VTs = getVTList(VT1, VT2, VT3);
6098   SDValue Ops[] = { Op1, Op2, Op3 };
6099   return getMachineNode(Opcode, dl, VTs, Ops);
6100 }
6101 
6102 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6103                                             EVT VT1, EVT VT2, EVT VT3,
6104                                             ArrayRef<SDValue> Ops) {
6105   SDVTList VTs = getVTList(VT1, VT2, VT3);
6106   return getMachineNode(Opcode, dl, VTs, Ops);
6107 }
6108 
6109 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6110                                             EVT VT1, EVT VT2, EVT VT3, EVT VT4,
6111                                             ArrayRef<SDValue> Ops) {
6112   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
6113   return getMachineNode(Opcode, dl, VTs, Ops);
6114 }
6115 
6116 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6117                                             ArrayRef<EVT> ResultTys,
6118                                             ArrayRef<SDValue> Ops) {
6119   SDVTList VTs = getVTList(ResultTys);
6120   return getMachineNode(Opcode, dl, VTs, Ops);
6121 }
6122 
6123 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6124                                             SDVTList VTs,
6125                                             ArrayRef<SDValue> Ops) {
6126   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6127   MachineSDNode *N;
6128   void *IP = nullptr;
6129 
6130   if (DoCSE) {
6131     FoldingSetNodeID ID;
6132     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6133     IP = nullptr;
6134     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6135       return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
6136     }
6137   }
6138 
6139   // Allocate a new MachineSDNode.
6140   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6141   createOperands(N, Ops);
6142 
6143   if (DoCSE)
6144     CSEMap.InsertNode(N, IP);
6145 
6146   InsertNode(N);
6147   return N;
6148 }
6149 
6150 /// getTargetExtractSubreg - A convenience function for creating
6151 /// TargetOpcode::EXTRACT_SUBREG nodes.
6152 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6153                                              SDValue Operand) {
6154   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6155   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6156                                   VT, Operand, SRIdxVal);
6157   return SDValue(Subreg, 0);
6158 }
6159 
6160 /// getTargetInsertSubreg - A convenience function for creating
6161 /// TargetOpcode::INSERT_SUBREG nodes.
6162 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6163                                             SDValue Operand, SDValue Subreg) {
6164   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6165   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6166                                   VT, Operand, Subreg, SRIdxVal);
6167   return SDValue(Result, 0);
6168 }
6169 
6170 /// getNodeIfExists - Get the specified node if it's already available, or
6171 /// else return NULL.
6172 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6173                                       ArrayRef<SDValue> Ops,
6174                                       const SDNodeFlags *Flags) {
6175   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6176     FoldingSetNodeID ID;
6177     AddNodeIDNode(ID, Opcode, VTList, Ops);
6178     void *IP = nullptr;
6179     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6180       if (Flags)
6181         E->intersectFlagsWith(Flags);
6182       return E;
6183     }
6184   }
6185   return nullptr;
6186 }
6187 
6188 /// getDbgValue - Creates a SDDbgValue node.
6189 ///
6190 /// SDNode
6191 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
6192                                       unsigned R, bool IsIndirect, uint64_t Off,
6193                                       const DebugLoc &DL, unsigned O) {
6194   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6195          "Expected inlined-at fields to agree");
6196   return new (DbgInfo->getAlloc())
6197       SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
6198 }
6199 
6200 /// Constant
6201 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
6202                                               const Value *C, uint64_t Off,
6203                                               const DebugLoc &DL, unsigned O) {
6204   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6205          "Expected inlined-at fields to agree");
6206   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O);
6207 }
6208 
6209 /// FrameIndex
6210 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
6211                                                 unsigned FI, uint64_t Off,
6212                                                 const DebugLoc &DL,
6213                                                 unsigned O) {
6214   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6215          "Expected inlined-at fields to agree");
6216   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O);
6217 }
6218 
6219 namespace {
6220 
6221 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6222 /// pointed to by a use iterator is deleted, increment the use iterator
6223 /// so that it doesn't dangle.
6224 ///
6225 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6226   SDNode::use_iterator &UI;
6227   SDNode::use_iterator &UE;
6228 
6229   void NodeDeleted(SDNode *N, SDNode *E) override {
6230     // Increment the iterator as needed.
6231     while (UI != UE && N == *UI)
6232       ++UI;
6233   }
6234 
6235 public:
6236   RAUWUpdateListener(SelectionDAG &d,
6237                      SDNode::use_iterator &ui,
6238                      SDNode::use_iterator &ue)
6239     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6240 };
6241 
6242 }
6243 
6244 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6245 /// This can cause recursive merging of nodes in the DAG.
6246 ///
6247 /// This version assumes From has a single result value.
6248 ///
6249 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6250   SDNode *From = FromN.getNode();
6251   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6252          "Cannot replace with this method!");
6253   assert(From != To.getNode() && "Cannot replace uses of with self");
6254 
6255   // Preserve Debug Values
6256   TransferDbgValues(FromN, To);
6257 
6258   // Iterate over all the existing uses of From. New uses will be added
6259   // to the beginning of the use list, which we avoid visiting.
6260   // This specifically avoids visiting uses of From that arise while the
6261   // replacement is happening, because any such uses would be the result
6262   // of CSE: If an existing node looks like From after one of its operands
6263   // is replaced by To, we don't want to replace of all its users with To
6264   // too. See PR3018 for more info.
6265   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6266   RAUWUpdateListener Listener(*this, UI, UE);
6267   while (UI != UE) {
6268     SDNode *User = *UI;
6269 
6270     // This node is about to morph, remove its old self from the CSE maps.
6271     RemoveNodeFromCSEMaps(User);
6272 
6273     // A user can appear in a use list multiple times, and when this
6274     // happens the uses are usually next to each other in the list.
6275     // To help reduce the number of CSE recomputations, process all
6276     // the uses of this user that we can find this way.
6277     do {
6278       SDUse &Use = UI.getUse();
6279       ++UI;
6280       Use.set(To);
6281     } while (UI != UE && *UI == User);
6282 
6283     // Now that we have modified User, add it back to the CSE maps.  If it
6284     // already exists there, recursively merge the results together.
6285     AddModifiedNodeToCSEMaps(User);
6286   }
6287 
6288 
6289   // If we just RAUW'd the root, take note.
6290   if (FromN == getRoot())
6291     setRoot(To);
6292 }
6293 
6294 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6295 /// This can cause recursive merging of nodes in the DAG.
6296 ///
6297 /// This version assumes that for each value of From, there is a
6298 /// corresponding value in To in the same position with the same type.
6299 ///
6300 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
6301 #ifndef NDEBUG
6302   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6303     assert((!From->hasAnyUseOfValue(i) ||
6304             From->getValueType(i) == To->getValueType(i)) &&
6305            "Cannot use this version of ReplaceAllUsesWith!");
6306 #endif
6307 
6308   // Handle the trivial case.
6309   if (From == To)
6310     return;
6311 
6312   // Preserve Debug Info. Only do this if there's a use.
6313   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6314     if (From->hasAnyUseOfValue(i)) {
6315       assert((i < To->getNumValues()) && "Invalid To location");
6316       TransferDbgValues(SDValue(From, i), SDValue(To, i));
6317     }
6318 
6319   // Iterate over just the existing users of From. See the comments in
6320   // the ReplaceAllUsesWith above.
6321   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6322   RAUWUpdateListener Listener(*this, UI, UE);
6323   while (UI != UE) {
6324     SDNode *User = *UI;
6325 
6326     // This node is about to morph, remove its old self from the CSE maps.
6327     RemoveNodeFromCSEMaps(User);
6328 
6329     // A user can appear in a use list multiple times, and when this
6330     // happens the uses are usually next to each other in the list.
6331     // To help reduce the number of CSE recomputations, process all
6332     // the uses of this user that we can find this way.
6333     do {
6334       SDUse &Use = UI.getUse();
6335       ++UI;
6336       Use.setNode(To);
6337     } while (UI != UE && *UI == User);
6338 
6339     // Now that we have modified User, add it back to the CSE maps.  If it
6340     // already exists there, recursively merge the results together.
6341     AddModifiedNodeToCSEMaps(User);
6342   }
6343 
6344   // If we just RAUW'd the root, take note.
6345   if (From == getRoot().getNode())
6346     setRoot(SDValue(To, getRoot().getResNo()));
6347 }
6348 
6349 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6350 /// This can cause recursive merging of nodes in the DAG.
6351 ///
6352 /// This version can replace From with any result values.  To must match the
6353 /// number and types of values returned by From.
6354 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
6355   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
6356     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
6357 
6358   // Preserve Debug Info.
6359   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6360     TransferDbgValues(SDValue(From, i), *To);
6361 
6362   // Iterate over just the existing users of From. See the comments in
6363   // the ReplaceAllUsesWith above.
6364   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6365   RAUWUpdateListener Listener(*this, UI, UE);
6366   while (UI != UE) {
6367     SDNode *User = *UI;
6368 
6369     // This node is about to morph, remove its old self from the CSE maps.
6370     RemoveNodeFromCSEMaps(User);
6371 
6372     // A user can appear in a use list multiple times, and when this
6373     // happens the uses are usually next to each other in the list.
6374     // To help reduce the number of CSE recomputations, process all
6375     // the uses of this user that we can find this way.
6376     do {
6377       SDUse &Use = UI.getUse();
6378       const SDValue &ToOp = To[Use.getResNo()];
6379       ++UI;
6380       Use.set(ToOp);
6381     } while (UI != UE && *UI == User);
6382 
6383     // Now that we have modified User, add it back to the CSE maps.  If it
6384     // already exists there, recursively merge the results together.
6385     AddModifiedNodeToCSEMaps(User);
6386   }
6387 
6388   // If we just RAUW'd the root, take note.
6389   if (From == getRoot().getNode())
6390     setRoot(SDValue(To[getRoot().getResNo()]));
6391 }
6392 
6393 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
6394 /// uses of other values produced by From.getNode() alone.  The Deleted
6395 /// vector is handled the same way as for ReplaceAllUsesWith.
6396 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
6397   // Handle the really simple, really trivial case efficiently.
6398   if (From == To) return;
6399 
6400   // Handle the simple, trivial, case efficiently.
6401   if (From.getNode()->getNumValues() == 1) {
6402     ReplaceAllUsesWith(From, To);
6403     return;
6404   }
6405 
6406   // Preserve Debug Info.
6407   TransferDbgValues(From, To);
6408 
6409   // Iterate over just the existing users of From. See the comments in
6410   // the ReplaceAllUsesWith above.
6411   SDNode::use_iterator UI = From.getNode()->use_begin(),
6412                        UE = From.getNode()->use_end();
6413   RAUWUpdateListener Listener(*this, UI, UE);
6414   while (UI != UE) {
6415     SDNode *User = *UI;
6416     bool UserRemovedFromCSEMaps = false;
6417 
6418     // A user can appear in a use list multiple times, and when this
6419     // happens the uses are usually next to each other in the list.
6420     // To help reduce the number of CSE recomputations, process all
6421     // the uses of this user that we can find this way.
6422     do {
6423       SDUse &Use = UI.getUse();
6424 
6425       // Skip uses of different values from the same node.
6426       if (Use.getResNo() != From.getResNo()) {
6427         ++UI;
6428         continue;
6429       }
6430 
6431       // If this node hasn't been modified yet, it's still in the CSE maps,
6432       // so remove its old self from the CSE maps.
6433       if (!UserRemovedFromCSEMaps) {
6434         RemoveNodeFromCSEMaps(User);
6435         UserRemovedFromCSEMaps = true;
6436       }
6437 
6438       ++UI;
6439       Use.set(To);
6440     } while (UI != UE && *UI == User);
6441 
6442     // We are iterating over all uses of the From node, so if a use
6443     // doesn't use the specific value, no changes are made.
6444     if (!UserRemovedFromCSEMaps)
6445       continue;
6446 
6447     // Now that we have modified User, add it back to the CSE maps.  If it
6448     // already exists there, recursively merge the results together.
6449     AddModifiedNodeToCSEMaps(User);
6450   }
6451 
6452   // If we just RAUW'd the root, take note.
6453   if (From == getRoot())
6454     setRoot(To);
6455 }
6456 
6457 namespace {
6458   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
6459   /// to record information about a use.
6460   struct UseMemo {
6461     SDNode *User;
6462     unsigned Index;
6463     SDUse *Use;
6464   };
6465 
6466   /// operator< - Sort Memos by User.
6467   bool operator<(const UseMemo &L, const UseMemo &R) {
6468     return (intptr_t)L.User < (intptr_t)R.User;
6469   }
6470 }
6471 
6472 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
6473 /// uses of other values produced by From.getNode() alone.  The same value
6474 /// may appear in both the From and To list.  The Deleted vector is
6475 /// handled the same way as for ReplaceAllUsesWith.
6476 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
6477                                               const SDValue *To,
6478                                               unsigned Num){
6479   // Handle the simple, trivial case efficiently.
6480   if (Num == 1)
6481     return ReplaceAllUsesOfValueWith(*From, *To);
6482 
6483   TransferDbgValues(*From, *To);
6484 
6485   // Read up all the uses and make records of them. This helps
6486   // processing new uses that are introduced during the
6487   // replacement process.
6488   SmallVector<UseMemo, 4> Uses;
6489   for (unsigned i = 0; i != Num; ++i) {
6490     unsigned FromResNo = From[i].getResNo();
6491     SDNode *FromNode = From[i].getNode();
6492     for (SDNode::use_iterator UI = FromNode->use_begin(),
6493          E = FromNode->use_end(); UI != E; ++UI) {
6494       SDUse &Use = UI.getUse();
6495       if (Use.getResNo() == FromResNo) {
6496         UseMemo Memo = { *UI, i, &Use };
6497         Uses.push_back(Memo);
6498       }
6499     }
6500   }
6501 
6502   // Sort the uses, so that all the uses from a given User are together.
6503   std::sort(Uses.begin(), Uses.end());
6504 
6505   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
6506        UseIndex != UseIndexEnd; ) {
6507     // We know that this user uses some value of From.  If it is the right
6508     // value, update it.
6509     SDNode *User = Uses[UseIndex].User;
6510 
6511     // This node is about to morph, remove its old self from the CSE maps.
6512     RemoveNodeFromCSEMaps(User);
6513 
6514     // The Uses array is sorted, so all the uses for a given User
6515     // are next to each other in the list.
6516     // To help reduce the number of CSE recomputations, process all
6517     // the uses of this user that we can find this way.
6518     do {
6519       unsigned i = Uses[UseIndex].Index;
6520       SDUse &Use = *Uses[UseIndex].Use;
6521       ++UseIndex;
6522 
6523       Use.set(To[i]);
6524     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
6525 
6526     // Now that we have modified User, add it back to the CSE maps.  If it
6527     // already exists there, recursively merge the results together.
6528     AddModifiedNodeToCSEMaps(User);
6529   }
6530 }
6531 
6532 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
6533 /// based on their topological order. It returns the maximum id and a vector
6534 /// of the SDNodes* in assigned order by reference.
6535 unsigned SelectionDAG::AssignTopologicalOrder() {
6536 
6537   unsigned DAGSize = 0;
6538 
6539   // SortedPos tracks the progress of the algorithm. Nodes before it are
6540   // sorted, nodes after it are unsorted. When the algorithm completes
6541   // it is at the end of the list.
6542   allnodes_iterator SortedPos = allnodes_begin();
6543 
6544   // Visit all the nodes. Move nodes with no operands to the front of
6545   // the list immediately. Annotate nodes that do have operands with their
6546   // operand count. Before we do this, the Node Id fields of the nodes
6547   // may contain arbitrary values. After, the Node Id fields for nodes
6548   // before SortedPos will contain the topological sort index, and the
6549   // Node Id fields for nodes At SortedPos and after will contain the
6550   // count of outstanding operands.
6551   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
6552     SDNode *N = &*I++;
6553     checkForCycles(N, this);
6554     unsigned Degree = N->getNumOperands();
6555     if (Degree == 0) {
6556       // A node with no uses, add it to the result array immediately.
6557       N->setNodeId(DAGSize++);
6558       allnodes_iterator Q(N);
6559       if (Q != SortedPos)
6560         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
6561       assert(SortedPos != AllNodes.end() && "Overran node list");
6562       ++SortedPos;
6563     } else {
6564       // Temporarily use the Node Id as scratch space for the degree count.
6565       N->setNodeId(Degree);
6566     }
6567   }
6568 
6569   // Visit all the nodes. As we iterate, move nodes into sorted order,
6570   // such that by the time the end is reached all nodes will be sorted.
6571   for (SDNode &Node : allnodes()) {
6572     SDNode *N = &Node;
6573     checkForCycles(N, this);
6574     // N is in sorted position, so all its uses have one less operand
6575     // that needs to be sorted.
6576     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6577          UI != UE; ++UI) {
6578       SDNode *P = *UI;
6579       unsigned Degree = P->getNodeId();
6580       assert(Degree != 0 && "Invalid node degree");
6581       --Degree;
6582       if (Degree == 0) {
6583         // All of P's operands are sorted, so P may sorted now.
6584         P->setNodeId(DAGSize++);
6585         if (P->getIterator() != SortedPos)
6586           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
6587         assert(SortedPos != AllNodes.end() && "Overran node list");
6588         ++SortedPos;
6589       } else {
6590         // Update P's outstanding operand count.
6591         P->setNodeId(Degree);
6592       }
6593     }
6594     if (Node.getIterator() == SortedPos) {
6595 #ifndef NDEBUG
6596       allnodes_iterator I(N);
6597       SDNode *S = &*++I;
6598       dbgs() << "Overran sorted position:\n";
6599       S->dumprFull(this); dbgs() << "\n";
6600       dbgs() << "Checking if this is due to cycles\n";
6601       checkForCycles(this, true);
6602 #endif
6603       llvm_unreachable(nullptr);
6604     }
6605   }
6606 
6607   assert(SortedPos == AllNodes.end() &&
6608          "Topological sort incomplete!");
6609   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
6610          "First node in topological sort is not the entry token!");
6611   assert(AllNodes.front().getNodeId() == 0 &&
6612          "First node in topological sort has non-zero id!");
6613   assert(AllNodes.front().getNumOperands() == 0 &&
6614          "First node in topological sort has operands!");
6615   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
6616          "Last node in topologic sort has unexpected id!");
6617   assert(AllNodes.back().use_empty() &&
6618          "Last node in topologic sort has users!");
6619   assert(DAGSize == allnodes_size() && "Node count mismatch!");
6620   return DAGSize;
6621 }
6622 
6623 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
6624 /// value is produced by SD.
6625 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
6626   if (SD) {
6627     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
6628     SD->setHasDebugValue(true);
6629   }
6630   DbgInfo->add(DB, SD, isParameter);
6631 }
6632 
6633 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
6634 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
6635   if (From == To || !From.getNode()->getHasDebugValue())
6636     return;
6637   SDNode *FromNode = From.getNode();
6638   SDNode *ToNode = To.getNode();
6639   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
6640   SmallVector<SDDbgValue *, 2> ClonedDVs;
6641   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
6642        I != E; ++I) {
6643     SDDbgValue *Dbg = *I;
6644     // Only add Dbgvalues attached to same ResNo.
6645     if (Dbg->getKind() == SDDbgValue::SDNODE &&
6646         Dbg->getSDNode() == From.getNode() &&
6647         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
6648       assert(FromNode != ToNode &&
6649              "Should not transfer Debug Values intranode");
6650       SDDbgValue *Clone =
6651           getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
6652                       To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
6653                       Dbg->getDebugLoc(), Dbg->getOrder());
6654       ClonedDVs.push_back(Clone);
6655       Dbg->setIsInvalidated();
6656     }
6657   }
6658   for (SDDbgValue *I : ClonedDVs)
6659     AddDbgValue(I, ToNode, false);
6660 }
6661 
6662 //===----------------------------------------------------------------------===//
6663 //                              SDNode Class
6664 //===----------------------------------------------------------------------===//
6665 
6666 bool llvm::isNullConstant(SDValue V) {
6667   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6668   return Const != nullptr && Const->isNullValue();
6669 }
6670 
6671 bool llvm::isNullFPConstant(SDValue V) {
6672   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
6673   return Const != nullptr && Const->isZero() && !Const->isNegative();
6674 }
6675 
6676 bool llvm::isAllOnesConstant(SDValue V) {
6677   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6678   return Const != nullptr && Const->isAllOnesValue();
6679 }
6680 
6681 bool llvm::isOneConstant(SDValue V) {
6682   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6683   return Const != nullptr && Const->isOne();
6684 }
6685 
6686 bool llvm::isBitwiseNot(SDValue V) {
6687   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
6688 }
6689 
6690 HandleSDNode::~HandleSDNode() {
6691   DropOperands();
6692 }
6693 
6694 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
6695                                          const DebugLoc &DL,
6696                                          const GlobalValue *GA, EVT VT,
6697                                          int64_t o, unsigned char TF)
6698     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
6699   TheGlobal = GA;
6700 }
6701 
6702 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
6703                                          EVT VT, unsigned SrcAS,
6704                                          unsigned DestAS)
6705     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
6706       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
6707 
6708 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
6709                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
6710     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
6711   MemSDNodeBits.IsVolatile = MMO->isVolatile();
6712   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
6713   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
6714   MemSDNodeBits.IsInvariant = MMO->isInvariant();
6715 
6716   // We check here that the size of the memory operand fits within the size of
6717   // the MMO. This is because the MMO might indicate only a possible address
6718   // range instead of specifying the affected memory addresses precisely.
6719   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
6720 }
6721 
6722 /// Profile - Gather unique data for the node.
6723 ///
6724 void SDNode::Profile(FoldingSetNodeID &ID) const {
6725   AddNodeIDNode(ID, this);
6726 }
6727 
6728 namespace {
6729   struct EVTArray {
6730     std::vector<EVT> VTs;
6731 
6732     EVTArray() {
6733       VTs.reserve(MVT::LAST_VALUETYPE);
6734       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
6735         VTs.push_back(MVT((MVT::SimpleValueType)i));
6736     }
6737   };
6738 }
6739 
6740 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
6741 static ManagedStatic<EVTArray> SimpleVTArray;
6742 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
6743 
6744 /// getValueTypeList - Return a pointer to the specified value type.
6745 ///
6746 const EVT *SDNode::getValueTypeList(EVT VT) {
6747   if (VT.isExtended()) {
6748     sys::SmartScopedLock<true> Lock(*VTMutex);
6749     return &(*EVTs->insert(VT).first);
6750   } else {
6751     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
6752            "Value type out of range!");
6753     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
6754   }
6755 }
6756 
6757 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
6758 /// indicated value.  This method ignores uses of other values defined by this
6759 /// operation.
6760 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
6761   assert(Value < getNumValues() && "Bad value!");
6762 
6763   // TODO: Only iterate over uses of a given value of the node
6764   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
6765     if (UI.getUse().getResNo() == Value) {
6766       if (NUses == 0)
6767         return false;
6768       --NUses;
6769     }
6770   }
6771 
6772   // Found exactly the right number of uses?
6773   return NUses == 0;
6774 }
6775 
6776 
6777 /// hasAnyUseOfValue - Return true if there are any use of the indicated
6778 /// value. This method ignores uses of other values defined by this operation.
6779 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
6780   assert(Value < getNumValues() && "Bad value!");
6781 
6782   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
6783     if (UI.getUse().getResNo() == Value)
6784       return true;
6785 
6786   return false;
6787 }
6788 
6789 
6790 /// isOnlyUserOf - Return true if this node is the only use of N.
6791 ///
6792 bool SDNode::isOnlyUserOf(const SDNode *N) const {
6793   bool Seen = false;
6794   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
6795     SDNode *User = *I;
6796     if (User == this)
6797       Seen = true;
6798     else
6799       return false;
6800   }
6801 
6802   return Seen;
6803 }
6804 
6805 /// isOperand - Return true if this node is an operand of N.
6806 ///
6807 bool SDValue::isOperandOf(const SDNode *N) const {
6808   for (const SDValue &Op : N->op_values())
6809     if (*this == Op)
6810       return true;
6811   return false;
6812 }
6813 
6814 bool SDNode::isOperandOf(const SDNode *N) const {
6815   for (const SDValue &Op : N->op_values())
6816     if (this == Op.getNode())
6817       return true;
6818   return false;
6819 }
6820 
6821 /// reachesChainWithoutSideEffects - Return true if this operand (which must
6822 /// be a chain) reaches the specified operand without crossing any
6823 /// side-effecting instructions on any chain path.  In practice, this looks
6824 /// through token factors and non-volatile loads.  In order to remain efficient,
6825 /// this only looks a couple of nodes in, it does not do an exhaustive search.
6826 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
6827                                                unsigned Depth) const {
6828   if (*this == Dest) return true;
6829 
6830   // Don't search too deeply, we just want to be able to see through
6831   // TokenFactor's etc.
6832   if (Depth == 0) return false;
6833 
6834   // If this is a token factor, all inputs to the TF happen in parallel.  If any
6835   // of the operands of the TF does not reach dest, then we cannot do the xform.
6836   if (getOpcode() == ISD::TokenFactor) {
6837     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6838       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
6839         return false;
6840     return true;
6841   }
6842 
6843   // Loads don't have side effects, look through them.
6844   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
6845     if (!Ld->isVolatile())
6846       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
6847   }
6848   return false;
6849 }
6850 
6851 bool SDNode::hasPredecessor(const SDNode *N) const {
6852   SmallPtrSet<const SDNode *, 32> Visited;
6853   SmallVector<const SDNode *, 16> Worklist;
6854   Worklist.push_back(this);
6855   return hasPredecessorHelper(N, Visited, Worklist);
6856 }
6857 
6858 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
6859   assert(Num < NumOperands && "Invalid child # of SDNode!");
6860   return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
6861 }
6862 
6863 const SDNodeFlags *SDNode::getFlags() const {
6864   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
6865     return &FlagsNode->Flags;
6866   return nullptr;
6867 }
6868 
6869 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
6870   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
6871     FlagsNode->Flags.intersectWith(Flags);
6872 }
6873 
6874 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6875   assert(N->getNumValues() == 1 &&
6876          "Can't unroll a vector with multiple results!");
6877 
6878   EVT VT = N->getValueType(0);
6879   unsigned NE = VT.getVectorNumElements();
6880   EVT EltVT = VT.getVectorElementType();
6881   SDLoc dl(N);
6882 
6883   SmallVector<SDValue, 8> Scalars;
6884   SmallVector<SDValue, 4> Operands(N->getNumOperands());
6885 
6886   // If ResNE is 0, fully unroll the vector op.
6887   if (ResNE == 0)
6888     ResNE = NE;
6889   else if (NE > ResNE)
6890     NE = ResNE;
6891 
6892   unsigned i;
6893   for (i= 0; i != NE; ++i) {
6894     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6895       SDValue Operand = N->getOperand(j);
6896       EVT OperandVT = Operand.getValueType();
6897       if (OperandVT.isVector()) {
6898         // A vector operand; extract a single element.
6899         EVT OperandEltVT = OperandVT.getVectorElementType();
6900         Operands[j] =
6901             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
6902                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
6903       } else {
6904         // A scalar operand; just use it as is.
6905         Operands[j] = Operand;
6906       }
6907     }
6908 
6909     switch (N->getOpcode()) {
6910     default: {
6911       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
6912                                 N->getFlags()));
6913       break;
6914     }
6915     case ISD::VSELECT:
6916       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
6917       break;
6918     case ISD::SHL:
6919     case ISD::SRA:
6920     case ISD::SRL:
6921     case ISD::ROTL:
6922     case ISD::ROTR:
6923       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6924                                getShiftAmountOperand(Operands[0].getValueType(),
6925                                                      Operands[1])));
6926       break;
6927     case ISD::SIGN_EXTEND_INREG:
6928     case ISD::FP_ROUND_INREG: {
6929       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6930       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6931                                 Operands[0],
6932                                 getValueType(ExtVT)));
6933     }
6934     }
6935   }
6936 
6937   for (; i < ResNE; ++i)
6938     Scalars.push_back(getUNDEF(EltVT));
6939 
6940   return getNode(ISD::BUILD_VECTOR, dl,
6941                  EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars);
6942 }
6943 
6944 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
6945                                                   LoadSDNode *Base,
6946                                                   unsigned Bytes,
6947                                                   int Dist) const {
6948   if (LD->isVolatile() || Base->isVolatile())
6949     return false;
6950   if (LD->isIndexed() || Base->isIndexed())
6951     return false;
6952   if (LD->getChain() != Base->getChain())
6953     return false;
6954   EVT VT = LD->getValueType(0);
6955   if (VT.getSizeInBits() / 8 != Bytes)
6956     return false;
6957 
6958   SDValue Loc = LD->getOperand(1);
6959   SDValue BaseLoc = Base->getOperand(1);
6960   if (Loc.getOpcode() == ISD::FrameIndex) {
6961     if (BaseLoc.getOpcode() != ISD::FrameIndex)
6962       return false;
6963     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
6964     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6965     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6966     int FS  = MFI.getObjectSize(FI);
6967     int BFS = MFI.getObjectSize(BFI);
6968     if (FS != BFS || FS != (int)Bytes) return false;
6969     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
6970   }
6971 
6972   // Handle X + C.
6973   if (isBaseWithConstantOffset(Loc)) {
6974     int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
6975     if (Loc.getOperand(0) == BaseLoc) {
6976       // If the base location is a simple address with no offset itself, then
6977       // the second load's first add operand should be the base address.
6978       if (LocOffset == Dist * (int)Bytes)
6979         return true;
6980     } else if (isBaseWithConstantOffset(BaseLoc)) {
6981       // The base location itself has an offset, so subtract that value from the
6982       // second load's offset before comparing to distance * size.
6983       int64_t BOffset =
6984         cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
6985       if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
6986         if ((LocOffset - BOffset) == Dist * (int)Bytes)
6987           return true;
6988       }
6989     }
6990   }
6991   const GlobalValue *GV1 = nullptr;
6992   const GlobalValue *GV2 = nullptr;
6993   int64_t Offset1 = 0;
6994   int64_t Offset2 = 0;
6995   bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6996   bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6997   if (isGA1 && isGA2 && GV1 == GV2)
6998     return Offset1 == (Offset2 + Dist*Bytes);
6999   return false;
7000 }
7001 
7002 
7003 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7004 /// it cannot be inferred.
7005 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7006   // If this is a GlobalAddress + cst, return the alignment.
7007   const GlobalValue *GV;
7008   int64_t GVOffset = 0;
7009   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7010     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7011     APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
7012     llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
7013                            getDataLayout());
7014     unsigned AlignBits = KnownZero.countTrailingOnes();
7015     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7016     if (Align)
7017       return MinAlign(Align, GVOffset);
7018   }
7019 
7020   // If this is a direct reference to a stack slot, use information about the
7021   // stack slot's alignment.
7022   int FrameIdx = 1 << 31;
7023   int64_t FrameOffset = 0;
7024   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7025     FrameIdx = FI->getIndex();
7026   } else if (isBaseWithConstantOffset(Ptr) &&
7027              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7028     // Handle FI+Cst
7029     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7030     FrameOffset = Ptr.getConstantOperandVal(1);
7031   }
7032 
7033   if (FrameIdx != (1 << 31)) {
7034     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7035     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7036                                     FrameOffset);
7037     return FIInfoAlign;
7038   }
7039 
7040   return 0;
7041 }
7042 
7043 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7044 /// which is split (or expanded) into two not necessarily identical pieces.
7045 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7046   // Currently all types are split in half.
7047   EVT LoVT, HiVT;
7048   if (!VT.isVector()) {
7049     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7050   } else {
7051     unsigned NumElements = VT.getVectorNumElements();
7052     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7053     LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
7054                                    NumElements/2);
7055   }
7056   return std::make_pair(LoVT, HiVT);
7057 }
7058 
7059 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7060 /// low/high part.
7061 std::pair<SDValue, SDValue>
7062 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7063                           const EVT &HiVT) {
7064   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7065          N.getValueType().getVectorNumElements() &&
7066          "More vector elements requested than available!");
7067   SDValue Lo, Hi;
7068   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7069                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7070   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7071                getConstant(LoVT.getVectorNumElements(), DL,
7072                            TLI->getVectorIdxTy(getDataLayout())));
7073   return std::make_pair(Lo, Hi);
7074 }
7075 
7076 void SelectionDAG::ExtractVectorElements(SDValue Op,
7077                                          SmallVectorImpl<SDValue> &Args,
7078                                          unsigned Start, unsigned Count) {
7079   EVT VT = Op.getValueType();
7080   if (Count == 0)
7081     Count = VT.getVectorNumElements();
7082 
7083   EVT EltVT = VT.getVectorElementType();
7084   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7085   SDLoc SL(Op);
7086   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7087     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7088                            Op, getConstant(i, SL, IdxTy)));
7089   }
7090 }
7091 
7092 // getAddressSpace - Return the address space this GlobalAddress belongs to.
7093 unsigned GlobalAddressSDNode::getAddressSpace() const {
7094   return getGlobal()->getType()->getAddressSpace();
7095 }
7096 
7097 
7098 Type *ConstantPoolSDNode::getType() const {
7099   if (isMachineConstantPoolEntry())
7100     return Val.MachineCPVal->getType();
7101   return Val.ConstVal->getType();
7102 }
7103 
7104 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
7105                                         APInt &SplatUndef,
7106                                         unsigned &SplatBitSize,
7107                                         bool &HasAnyUndefs,
7108                                         unsigned MinSplatBits,
7109                                         bool isBigEndian) const {
7110   EVT VT = getValueType(0);
7111   assert(VT.isVector() && "Expected a vector type");
7112   unsigned sz = VT.getSizeInBits();
7113   if (MinSplatBits > sz)
7114     return false;
7115 
7116   SplatValue = APInt(sz, 0);
7117   SplatUndef = APInt(sz, 0);
7118 
7119   // Get the bits.  Bits with undefined values (when the corresponding element
7120   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7121   // in SplatValue.  If any of the values are not constant, give up and return
7122   // false.
7123   unsigned int nOps = getNumOperands();
7124   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
7125   unsigned EltBitSize = VT.getScalarSizeInBits();
7126 
7127   for (unsigned j = 0; j < nOps; ++j) {
7128     unsigned i = isBigEndian ? nOps-1-j : j;
7129     SDValue OpVal = getOperand(i);
7130     unsigned BitPos = j * EltBitSize;
7131 
7132     if (OpVal.isUndef())
7133       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
7134     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
7135       SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
7136                     zextOrTrunc(sz) << BitPos;
7137     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7138       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
7139      else
7140       return false;
7141   }
7142 
7143   // The build_vector is all constants or undefs.  Find the smallest element
7144   // size that splats the vector.
7145 
7146   HasAnyUndefs = (SplatUndef != 0);
7147   while (sz > 8) {
7148 
7149     unsigned HalfSize = sz / 2;
7150     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7151     APInt LowValue = SplatValue.trunc(HalfSize);
7152     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7153     APInt LowUndef = SplatUndef.trunc(HalfSize);
7154 
7155     // If the two halves do not match (ignoring undef bits), stop here.
7156     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7157         MinSplatBits > HalfSize)
7158       break;
7159 
7160     SplatValue = HighValue | LowValue;
7161     SplatUndef = HighUndef & LowUndef;
7162 
7163     sz = HalfSize;
7164   }
7165 
7166   SplatBitSize = sz;
7167   return true;
7168 }
7169 
7170 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7171   if (UndefElements) {
7172     UndefElements->clear();
7173     UndefElements->resize(getNumOperands());
7174   }
7175   SDValue Splatted;
7176   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7177     SDValue Op = getOperand(i);
7178     if (Op.isUndef()) {
7179       if (UndefElements)
7180         (*UndefElements)[i] = true;
7181     } else if (!Splatted) {
7182       Splatted = Op;
7183     } else if (Splatted != Op) {
7184       return SDValue();
7185     }
7186   }
7187 
7188   if (!Splatted) {
7189     assert(getOperand(0).isUndef() &&
7190            "Can only have a splat without a constant for all undefs.");
7191     return getOperand(0);
7192   }
7193 
7194   return Splatted;
7195 }
7196 
7197 ConstantSDNode *
7198 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7199   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7200 }
7201 
7202 ConstantFPSDNode *
7203 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7204   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7205 }
7206 
7207 int32_t
7208 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7209                                                    uint32_t BitWidth) const {
7210   if (ConstantFPSDNode *CN =
7211           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7212     bool IsExact;
7213     APSInt IntVal(BitWidth);
7214     const APFloat &APF = CN->getValueAPF();
7215     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7216             APFloat::opOK ||
7217         !IsExact)
7218       return -1;
7219 
7220     return IntVal.exactLogBase2();
7221   }
7222   return -1;
7223 }
7224 
7225 bool BuildVectorSDNode::isConstant() const {
7226   for (const SDValue &Op : op_values()) {
7227     unsigned Opc = Op.getOpcode();
7228     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7229       return false;
7230   }
7231   return true;
7232 }
7233 
7234 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
7235   // Find the first non-undef value in the shuffle mask.
7236   unsigned i, e;
7237   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
7238     /* search */;
7239 
7240   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
7241 
7242   // Make sure all remaining elements are either undef or the same as the first
7243   // non-undef value.
7244   for (int Idx = Mask[i]; i != e; ++i)
7245     if (Mask[i] >= 0 && Mask[i] != Idx)
7246       return false;
7247   return true;
7248 }
7249 
7250 // \brief Returns the SDNode if it is a constant integer BuildVector
7251 // or constant integer.
7252 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
7253   if (isa<ConstantSDNode>(N))
7254     return N.getNode();
7255   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
7256     return N.getNode();
7257   // Treat a GlobalAddress supporting constant offset folding as a
7258   // constant integer.
7259   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
7260     if (GA->getOpcode() == ISD::GlobalAddress &&
7261         TLI->isOffsetFoldingLegal(GA))
7262       return GA;
7263   return nullptr;
7264 }
7265 
7266 #ifndef NDEBUG
7267 static void checkForCyclesHelper(const SDNode *N,
7268                                  SmallPtrSetImpl<const SDNode*> &Visited,
7269                                  SmallPtrSetImpl<const SDNode*> &Checked,
7270                                  const llvm::SelectionDAG *DAG) {
7271   // If this node has already been checked, don't check it again.
7272   if (Checked.count(N))
7273     return;
7274 
7275   // If a node has already been visited on this depth-first walk, reject it as
7276   // a cycle.
7277   if (!Visited.insert(N).second) {
7278     errs() << "Detected cycle in SelectionDAG\n";
7279     dbgs() << "Offending node:\n";
7280     N->dumprFull(DAG); dbgs() << "\n";
7281     abort();
7282   }
7283 
7284   for (const SDValue &Op : N->op_values())
7285     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
7286 
7287   Checked.insert(N);
7288   Visited.erase(N);
7289 }
7290 #endif
7291 
7292 void llvm::checkForCycles(const llvm::SDNode *N,
7293                           const llvm::SelectionDAG *DAG,
7294                           bool force) {
7295 #ifndef NDEBUG
7296   bool check = force;
7297 #ifdef EXPENSIVE_CHECKS
7298   check = true;
7299 #endif  // EXPENSIVE_CHECKS
7300   if (check) {
7301     assert(N && "Checking nonexistent SDNode");
7302     SmallPtrSet<const SDNode*, 32> visited;
7303     SmallPtrSet<const SDNode*, 32> checked;
7304     checkForCyclesHelper(N, visited, checked, DAG);
7305   }
7306 #endif  // !NDEBUG
7307 }
7308 
7309 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
7310   checkForCycles(DAG->getRoot().getNode(), DAG, force);
7311 }
7312