1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/CodeGen/ISDOpcodes.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/RuntimeLibcalls.h" 35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CodeGen.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/KnownBits.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/ManagedStatic.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/Mutex.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <cstdlib> 70 #include <limits> 71 #include <set> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 /// makeVTList - Return an instance of the SDVTList struct initialized with the 79 /// specified members. 80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 81 SDVTList Res = {VTs, NumVTs}; 82 return Res; 83 } 84 85 // Default null implementations of the callbacks. 86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 89 90 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 91 92 #define DEBUG_TYPE "selectiondag" 93 94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 95 cl::Hidden, cl::init(true), 96 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 97 98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 99 cl::desc("Number limit for gluing ld/st of memcpy."), 100 cl::Hidden, cl::init(0)); 101 102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // ConstantFPSDNode Class 108 //===----------------------------------------------------------------------===// 109 110 /// isExactlyValue - We don't rely on operator== working on double values, as 111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 112 /// As such, this method can be used to do an exact bit-for-bit comparison of 113 /// two floating point values. 114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 115 return getValueAPF().bitwiseIsEqual(V); 116 } 117 118 bool ConstantFPSDNode::isValueValidForType(EVT VT, 119 const APFloat& Val) { 120 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 121 122 // convert modifies in place, so make a copy. 123 APFloat Val2 = APFloat(Val); 124 bool losesInfo; 125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 126 APFloat::rmNearestTiesToEven, 127 &losesInfo); 128 return !losesInfo; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // ISD Namespace 133 //===----------------------------------------------------------------------===// 134 135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 136 auto *BV = dyn_cast<BuildVectorSDNode>(N); 137 if (!BV) 138 return false; 139 140 APInt SplatUndef; 141 unsigned SplatBitSize; 142 bool HasUndefs; 143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 145 EltSize) && 146 EltSize == SplatBitSize; 147 } 148 149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 150 // specializations of the more general isConstantSplatVector()? 151 152 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 153 // Look through a bit convert. 154 while (N->getOpcode() == ISD::BITCAST) 155 N = N->getOperand(0).getNode(); 156 157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 158 159 unsigned i = 0, e = N->getNumOperands(); 160 161 // Skip over all of the undef values. 162 while (i != e && N->getOperand(i).isUndef()) 163 ++i; 164 165 // Do not accept an all-undef vector. 166 if (i == e) return false; 167 168 // Do not accept build_vectors that aren't all constants or which have non-~0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target and 172 // a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all ones, not whether the individual 175 // constants are. 176 SDValue NotZero = N->getOperand(i); 177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 179 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 180 return false; 181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 183 return false; 184 } else 185 return false; 186 187 // Okay, we have at least one ~0 value, check to see if the rest match or are 188 // undefs. Even with the above element type twiddling, this should be OK, as 189 // the same type legalization should have applied to all the elements. 190 for (++i; i != e; ++i) 191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 192 return false; 193 return true; 194 } 195 196 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 197 // Look through a bit convert. 198 while (N->getOpcode() == ISD::BITCAST) 199 N = N->getOperand(0).getNode(); 200 201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 202 203 bool IsAllUndef = true; 204 for (const SDValue &Op : N->op_values()) { 205 if (Op.isUndef()) 206 continue; 207 IsAllUndef = false; 208 // Do not accept build_vectors that aren't all constants or which have non-0 209 // elements. We have to be a bit careful here, as the type of the constant 210 // may not be the same as the type of the vector elements due to type 211 // legalization (the elements are promoted to a legal type for the target 212 // and a vector of a type may be legal when the base element type is not). 213 // We only want to check enough bits to cover the vector elements, because 214 // we care if the resultant vector is all zeros, not whether the individual 215 // constants are. 216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 218 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 219 return false; 220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 222 return false; 223 } else 224 return false; 225 } 226 227 // Do not accept an all-undef vector. 228 if (IsAllUndef) 229 return false; 230 return true; 231 } 232 233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 234 if (N->getOpcode() != ISD::BUILD_VECTOR) 235 return false; 236 237 for (const SDValue &Op : N->op_values()) { 238 if (Op.isUndef()) 239 continue; 240 if (!isa<ConstantSDNode>(Op)) 241 return false; 242 } 243 return true; 244 } 245 246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 247 if (N->getOpcode() != ISD::BUILD_VECTOR) 248 return false; 249 250 for (const SDValue &Op : N->op_values()) { 251 if (Op.isUndef()) 252 continue; 253 if (!isa<ConstantFPSDNode>(Op)) 254 return false; 255 } 256 return true; 257 } 258 259 bool ISD::allOperandsUndef(const SDNode *N) { 260 // Return false if the node has no operands. 261 // This is "logically inconsistent" with the definition of "all" but 262 // is probably the desired behavior. 263 if (N->getNumOperands() == 0) 264 return false; 265 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 266 } 267 268 bool ISD::matchUnaryPredicate(SDValue Op, 269 std::function<bool(ConstantSDNode *)> Match, 270 bool AllowUndefs) { 271 // FIXME: Add support for scalar UNDEF cases? 272 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 273 return Match(Cst); 274 275 // FIXME: Add support for vector UNDEF cases? 276 if (ISD::BUILD_VECTOR != Op.getOpcode()) 277 return false; 278 279 EVT SVT = Op.getValueType().getScalarType(); 280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 281 if (AllowUndefs && Op.getOperand(i).isUndef()) { 282 if (!Match(nullptr)) 283 return false; 284 continue; 285 } 286 287 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 288 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::matchBinaryPredicate( 295 SDValue LHS, SDValue RHS, 296 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 297 bool AllowUndefs, bool AllowTypeMismatch) { 298 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 299 return false; 300 301 // TODO: Add support for scalar UNDEF cases? 302 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 303 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 304 return Match(LHSCst, RHSCst); 305 306 // TODO: Add support for vector UNDEF cases? 307 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 308 ISD::BUILD_VECTOR != RHS.getOpcode()) 309 return false; 310 311 EVT SVT = LHS.getValueType().getScalarType(); 312 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 313 SDValue LHSOp = LHS.getOperand(i); 314 SDValue RHSOp = RHS.getOperand(i); 315 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 316 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 317 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 318 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 319 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 320 return false; 321 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 322 LHSOp.getValueType() != RHSOp.getValueType())) 323 return false; 324 if (!Match(LHSCst, RHSCst)) 325 return false; 326 } 327 return true; 328 } 329 330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 331 switch (ExtType) { 332 case ISD::EXTLOAD: 333 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 334 case ISD::SEXTLOAD: 335 return ISD::SIGN_EXTEND; 336 case ISD::ZEXTLOAD: 337 return ISD::ZERO_EXTEND; 338 default: 339 break; 340 } 341 342 llvm_unreachable("Invalid LoadExtType"); 343 } 344 345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 346 // To perform this operation, we just need to swap the L and G bits of the 347 // operation. 348 unsigned OldL = (Operation >> 2) & 1; 349 unsigned OldG = (Operation >> 1) & 1; 350 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 351 (OldL << 1) | // New G bit 352 (OldG << 2)); // New L bit. 353 } 354 355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 356 unsigned Operation = Op; 357 if (isInteger) 358 Operation ^= 7; // Flip L, G, E bits, but not U. 359 else 360 Operation ^= 15; // Flip all of the condition bits. 361 362 if (Operation > ISD::SETTRUE2) 363 Operation &= ~8; // Don't let N and U bits get set. 364 365 return ISD::CondCode(Operation); 366 } 367 368 /// For an integer comparison, return 1 if the comparison is a signed operation 369 /// and 2 if the result is an unsigned comparison. Return zero if the operation 370 /// does not depend on the sign of the input (setne and seteq). 371 static int isSignedOp(ISD::CondCode Opcode) { 372 switch (Opcode) { 373 default: llvm_unreachable("Illegal integer setcc operation!"); 374 case ISD::SETEQ: 375 case ISD::SETNE: return 0; 376 case ISD::SETLT: 377 case ISD::SETLE: 378 case ISD::SETGT: 379 case ISD::SETGE: return 1; 380 case ISD::SETULT: 381 case ISD::SETULE: 382 case ISD::SETUGT: 383 case ISD::SETUGE: return 2; 384 } 385 } 386 387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 388 bool IsInteger) { 389 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 390 // Cannot fold a signed integer setcc with an unsigned integer setcc. 391 return ISD::SETCC_INVALID; 392 393 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 394 395 // If the N and U bits get set, then the resultant comparison DOES suddenly 396 // care about orderedness, and it is true when ordered. 397 if (Op > ISD::SETTRUE2) 398 Op &= ~16; // Clear the U bit if the N bit is set. 399 400 // Canonicalize illegal integer setcc's. 401 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 402 Op = ISD::SETNE; 403 404 return ISD::CondCode(Op); 405 } 406 407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 408 bool IsInteger) { 409 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 410 // Cannot fold a signed setcc with an unsigned setcc. 411 return ISD::SETCC_INVALID; 412 413 // Combine all of the condition bits. 414 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger) { 418 switch (Result) { 419 default: break; 420 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 421 case ISD::SETOEQ: // SETEQ & SETU[LG]E 422 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 423 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 424 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 425 } 426 } 427 428 return Result; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // SDNode Profile Support 433 //===----------------------------------------------------------------------===// 434 435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 437 ID.AddInteger(OpC); 438 } 439 440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 441 /// solely with their pointer. 442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 443 ID.AddPointer(VTList.VTs); 444 } 445 446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 447 static void AddNodeIDOperands(FoldingSetNodeID &ID, 448 ArrayRef<SDValue> Ops) { 449 for (auto& Op : Ops) { 450 ID.AddPointer(Op.getNode()); 451 ID.AddInteger(Op.getResNo()); 452 } 453 } 454 455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 456 static void AddNodeIDOperands(FoldingSetNodeID &ID, 457 ArrayRef<SDUse> Ops) { 458 for (auto& Op : Ops) { 459 ID.AddPointer(Op.getNode()); 460 ID.AddInteger(Op.getResNo()); 461 } 462 } 463 464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 465 SDVTList VTList, ArrayRef<SDValue> OpList) { 466 AddNodeIDOpcode(ID, OpC); 467 AddNodeIDValueTypes(ID, VTList); 468 AddNodeIDOperands(ID, OpList); 469 } 470 471 /// If this is an SDNode with special info, add this info to the NodeID data. 472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 473 switch (N->getOpcode()) { 474 case ISD::TargetExternalSymbol: 475 case ISD::ExternalSymbol: 476 case ISD::MCSymbol: 477 llvm_unreachable("Should only be used on nodes with operands"); 478 default: break; // Normal nodes don't need extra info. 479 case ISD::TargetConstant: 480 case ISD::Constant: { 481 const ConstantSDNode *C = cast<ConstantSDNode>(N); 482 ID.AddPointer(C->getConstantIntValue()); 483 ID.AddBoolean(C->isOpaque()); 484 break; 485 } 486 case ISD::TargetConstantFP: 487 case ISD::ConstantFP: 488 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 489 break; 490 case ISD::TargetGlobalAddress: 491 case ISD::GlobalAddress: 492 case ISD::TargetGlobalTLSAddress: 493 case ISD::GlobalTLSAddress: { 494 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 495 ID.AddPointer(GA->getGlobal()); 496 ID.AddInteger(GA->getOffset()); 497 ID.AddInteger(GA->getTargetFlags()); 498 break; 499 } 500 case ISD::BasicBlock: 501 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 502 break; 503 case ISD::Register: 504 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 505 break; 506 case ISD::RegisterMask: 507 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 508 break; 509 case ISD::SRCVALUE: 510 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 511 break; 512 case ISD::FrameIndex: 513 case ISD::TargetFrameIndex: 514 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 515 break; 516 case ISD::LIFETIME_START: 517 case ISD::LIFETIME_END: 518 if (cast<LifetimeSDNode>(N)->hasOffset()) { 519 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 520 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 521 } 522 break; 523 case ISD::JumpTable: 524 case ISD::TargetJumpTable: 525 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 526 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 527 break; 528 case ISD::ConstantPool: 529 case ISD::TargetConstantPool: { 530 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 531 ID.AddInteger(CP->getAlignment()); 532 ID.AddInteger(CP->getOffset()); 533 if (CP->isMachineConstantPoolEntry()) 534 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 535 else 536 ID.AddPointer(CP->getConstVal()); 537 ID.AddInteger(CP->getTargetFlags()); 538 break; 539 } 540 case ISD::TargetIndex: { 541 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 542 ID.AddInteger(TI->getIndex()); 543 ID.AddInteger(TI->getOffset()); 544 ID.AddInteger(TI->getTargetFlags()); 545 break; 546 } 547 case ISD::LOAD: { 548 const LoadSDNode *LD = cast<LoadSDNode>(N); 549 ID.AddInteger(LD->getMemoryVT().getRawBits()); 550 ID.AddInteger(LD->getRawSubclassData()); 551 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 552 break; 553 } 554 case ISD::STORE: { 555 const StoreSDNode *ST = cast<StoreSDNode>(N); 556 ID.AddInteger(ST->getMemoryVT().getRawBits()); 557 ID.AddInteger(ST->getRawSubclassData()); 558 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 559 break; 560 } 561 case ISD::MLOAD: { 562 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 563 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 564 ID.AddInteger(MLD->getRawSubclassData()); 565 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 566 break; 567 } 568 case ISD::MSTORE: { 569 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 570 ID.AddInteger(MST->getMemoryVT().getRawBits()); 571 ID.AddInteger(MST->getRawSubclassData()); 572 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 573 break; 574 } 575 case ISD::MGATHER: { 576 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 577 ID.AddInteger(MG->getMemoryVT().getRawBits()); 578 ID.AddInteger(MG->getRawSubclassData()); 579 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 580 break; 581 } 582 case ISD::MSCATTER: { 583 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 584 ID.AddInteger(MS->getMemoryVT().getRawBits()); 585 ID.AddInteger(MS->getRawSubclassData()); 586 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 587 break; 588 } 589 case ISD::ATOMIC_CMP_SWAP: 590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 591 case ISD::ATOMIC_SWAP: 592 case ISD::ATOMIC_LOAD_ADD: 593 case ISD::ATOMIC_LOAD_SUB: 594 case ISD::ATOMIC_LOAD_AND: 595 case ISD::ATOMIC_LOAD_CLR: 596 case ISD::ATOMIC_LOAD_OR: 597 case ISD::ATOMIC_LOAD_XOR: 598 case ISD::ATOMIC_LOAD_NAND: 599 case ISD::ATOMIC_LOAD_MIN: 600 case ISD::ATOMIC_LOAD_MAX: 601 case ISD::ATOMIC_LOAD_UMIN: 602 case ISD::ATOMIC_LOAD_UMAX: 603 case ISD::ATOMIC_LOAD: 604 case ISD::ATOMIC_STORE: { 605 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 606 ID.AddInteger(AT->getMemoryVT().getRawBits()); 607 ID.AddInteger(AT->getRawSubclassData()); 608 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 609 break; 610 } 611 case ISD::PREFETCH: { 612 const MemSDNode *PF = cast<MemSDNode>(N); 613 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 614 break; 615 } 616 case ISD::VECTOR_SHUFFLE: { 617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 618 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 619 i != e; ++i) 620 ID.AddInteger(SVN->getMaskElt(i)); 621 break; 622 } 623 case ISD::TargetBlockAddress: 624 case ISD::BlockAddress: { 625 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 626 ID.AddPointer(BA->getBlockAddress()); 627 ID.AddInteger(BA->getOffset()); 628 ID.AddInteger(BA->getTargetFlags()); 629 break; 630 } 631 } // end switch (N->getOpcode()) 632 633 // Target specific memory nodes could also have address spaces to check. 634 if (N->isTargetMemoryOpcode()) 635 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 636 } 637 638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 639 /// data. 640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 641 AddNodeIDOpcode(ID, N->getOpcode()); 642 // Add the return value info. 643 AddNodeIDValueTypes(ID, N->getVTList()); 644 // Add the operand info. 645 AddNodeIDOperands(ID, N->ops()); 646 647 // Handle SDNode leafs with special info. 648 AddNodeIDCustom(ID, N); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // SelectionDAG Class 653 //===----------------------------------------------------------------------===// 654 655 /// doNotCSE - Return true if CSE should not be performed for this node. 656 static bool doNotCSE(SDNode *N) { 657 if (N->getValueType(0) == MVT::Glue) 658 return true; // Never CSE anything that produces a flag. 659 660 switch (N->getOpcode()) { 661 default: break; 662 case ISD::HANDLENODE: 663 case ISD::EH_LABEL: 664 return true; // Never CSE these nodes. 665 } 666 667 // Check that remaining values produced are not flags. 668 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 669 if (N->getValueType(i) == MVT::Glue) 670 return true; // Never CSE anything that produces a flag. 671 672 return false; 673 } 674 675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 676 /// SelectionDAG. 677 void SelectionDAG::RemoveDeadNodes() { 678 // Create a dummy node (which is not added to allnodes), that adds a reference 679 // to the root node, preventing it from being deleted. 680 HandleSDNode Dummy(getRoot()); 681 682 SmallVector<SDNode*, 128> DeadNodes; 683 684 // Add all obviously-dead nodes to the DeadNodes worklist. 685 for (SDNode &Node : allnodes()) 686 if (Node.use_empty()) 687 DeadNodes.push_back(&Node); 688 689 RemoveDeadNodes(DeadNodes); 690 691 // If the root changed (e.g. it was a dead load, update the root). 692 setRoot(Dummy.getValue()); 693 } 694 695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 696 /// given list, and any nodes that become unreachable as a result. 697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 698 699 // Process the worklist, deleting the nodes and adding their uses to the 700 // worklist. 701 while (!DeadNodes.empty()) { 702 SDNode *N = DeadNodes.pop_back_val(); 703 // Skip to next node if we've already managed to delete the node. This could 704 // happen if replacing a node causes a node previously added to the node to 705 // be deleted. 706 if (N->getOpcode() == ISD::DELETED_NODE) 707 continue; 708 709 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 710 DUL->NodeDeleted(N, nullptr); 711 712 // Take the node out of the appropriate CSE map. 713 RemoveNodeFromCSEMaps(N); 714 715 // Next, brutally remove the operand list. This is safe to do, as there are 716 // no cycles in the graph. 717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 718 SDUse &Use = *I++; 719 SDNode *Operand = Use.getNode(); 720 Use.set(SDValue()); 721 722 // Now that we removed this operand, see if there are no uses of it left. 723 if (Operand->use_empty()) 724 DeadNodes.push_back(Operand); 725 } 726 727 DeallocateNode(N); 728 } 729 } 730 731 void SelectionDAG::RemoveDeadNode(SDNode *N){ 732 SmallVector<SDNode*, 16> DeadNodes(1, N); 733 734 // Create a dummy node that adds a reference to the root node, preventing 735 // it from being deleted. (This matters if the root is an operand of the 736 // dead node.) 737 HandleSDNode Dummy(getRoot()); 738 739 RemoveDeadNodes(DeadNodes); 740 } 741 742 void SelectionDAG::DeleteNode(SDNode *N) { 743 // First take this out of the appropriate CSE map. 744 RemoveNodeFromCSEMaps(N); 745 746 // Finally, remove uses due to operands of this node, remove from the 747 // AllNodes list, and delete the node. 748 DeleteNodeNotInCSEMaps(N); 749 } 750 751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 752 assert(N->getIterator() != AllNodes.begin() && 753 "Cannot delete the entry node!"); 754 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 755 756 // Drop all of the operands and decrement used node's use counts. 757 N->DropOperands(); 758 759 DeallocateNode(N); 760 } 761 762 void SDDbgInfo::erase(const SDNode *Node) { 763 DbgValMapType::iterator I = DbgValMap.find(Node); 764 if (I == DbgValMap.end()) 765 return; 766 for (auto &Val: I->second) 767 Val->setIsInvalidated(); 768 DbgValMap.erase(I); 769 } 770 771 void SelectionDAG::DeallocateNode(SDNode *N) { 772 // If we have operands, deallocate them. 773 removeOperands(N); 774 775 NodeAllocator.Deallocate(AllNodes.remove(N)); 776 777 // Set the opcode to DELETED_NODE to help catch bugs when node 778 // memory is reallocated. 779 // FIXME: There are places in SDag that have grown a dependency on the opcode 780 // value in the released node. 781 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 782 N->NodeType = ISD::DELETED_NODE; 783 784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 785 // them and forget about that node. 786 DbgInfo->erase(N); 787 } 788 789 #ifndef NDEBUG 790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 791 static void VerifySDNode(SDNode *N) { 792 switch (N->getOpcode()) { 793 default: 794 break; 795 case ISD::BUILD_PAIR: { 796 EVT VT = N->getValueType(0); 797 assert(N->getNumValues() == 1 && "Too many results!"); 798 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 799 "Wrong return type!"); 800 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 801 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 802 "Mismatched operand types!"); 803 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 804 "Wrong operand type!"); 805 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 806 "Wrong return type size"); 807 break; 808 } 809 case ISD::BUILD_VECTOR: { 810 assert(N->getNumValues() == 1 && "Too many results!"); 811 assert(N->getValueType(0).isVector() && "Wrong return type!"); 812 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 813 "Wrong number of operands!"); 814 EVT EltVT = N->getValueType(0).getVectorElementType(); 815 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 816 assert((I->getValueType() == EltVT || 817 (EltVT.isInteger() && I->getValueType().isInteger() && 818 EltVT.bitsLE(I->getValueType()))) && 819 "Wrong operand type!"); 820 assert(I->getValueType() == N->getOperand(0).getValueType() && 821 "Operands must all have the same type"); 822 } 823 break; 824 } 825 } 826 } 827 #endif // NDEBUG 828 829 /// Insert a newly allocated node into the DAG. 830 /// 831 /// Handles insertion into the all nodes list and CSE map, as well as 832 /// verification and other common operations when a new node is allocated. 833 void SelectionDAG::InsertNode(SDNode *N) { 834 AllNodes.push_back(N); 835 #ifndef NDEBUG 836 N->PersistentId = NextPersistentId++; 837 VerifySDNode(N); 838 #endif 839 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 840 DUL->NodeInserted(N); 841 } 842 843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 844 /// correspond to it. This is useful when we're about to delete or repurpose 845 /// the node. We don't want future request for structurally identical nodes 846 /// to return N anymore. 847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 848 bool Erased = false; 849 switch (N->getOpcode()) { 850 case ISD::HANDLENODE: return false; // noop. 851 case ISD::CONDCODE: 852 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 853 "Cond code doesn't exist!"); 854 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 855 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 856 break; 857 case ISD::ExternalSymbol: 858 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 859 break; 860 case ISD::TargetExternalSymbol: { 861 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 862 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 863 ESN->getSymbol(), ESN->getTargetFlags())); 864 break; 865 } 866 case ISD::MCSymbol: { 867 auto *MCSN = cast<MCSymbolSDNode>(N); 868 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 869 break; 870 } 871 case ISD::VALUETYPE: { 872 EVT VT = cast<VTSDNode>(N)->getVT(); 873 if (VT.isExtended()) { 874 Erased = ExtendedValueTypeNodes.erase(VT); 875 } else { 876 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 877 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 878 } 879 break; 880 } 881 default: 882 // Remove it from the CSE Map. 883 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 884 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 885 Erased = CSEMap.RemoveNode(N); 886 break; 887 } 888 #ifndef NDEBUG 889 // Verify that the node was actually in one of the CSE maps, unless it has a 890 // flag result (which cannot be CSE'd) or is one of the special cases that are 891 // not subject to CSE. 892 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 893 !N->isMachineOpcode() && !doNotCSE(N)) { 894 N->dump(this); 895 dbgs() << "\n"; 896 llvm_unreachable("Node is not in map!"); 897 } 898 #endif 899 return Erased; 900 } 901 902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 903 /// maps and modified in place. Add it back to the CSE maps, unless an identical 904 /// node already exists, in which case transfer all its users to the existing 905 /// node. This transfer can potentially trigger recursive merging. 906 void 907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 908 // For node types that aren't CSE'd, just act as if no identical node 909 // already exists. 910 if (!doNotCSE(N)) { 911 SDNode *Existing = CSEMap.GetOrInsertNode(N); 912 if (Existing != N) { 913 // If there was already an existing matching node, use ReplaceAllUsesWith 914 // to replace the dead one with the existing one. This can cause 915 // recursive merging of other unrelated nodes down the line. 916 ReplaceAllUsesWith(N, Existing); 917 918 // N is now dead. Inform the listeners and delete it. 919 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 920 DUL->NodeDeleted(N, Existing); 921 DeleteNodeNotInCSEMaps(N); 922 return; 923 } 924 } 925 926 // If the node doesn't already exist, we updated it. Inform listeners. 927 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 928 DUL->NodeUpdated(N); 929 } 930 931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 932 /// were replaced with those specified. If this node is never memoized, 933 /// return null, otherwise return a pointer to the slot it would take. If a 934 /// node already exists with these operands, the slot will be non-null. 935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 936 void *&InsertPos) { 937 if (doNotCSE(N)) 938 return nullptr; 939 940 SDValue Ops[] = { Op }; 941 FoldingSetNodeID ID; 942 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 943 AddNodeIDCustom(ID, N); 944 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 945 if (Node) 946 Node->intersectFlagsWith(N->getFlags()); 947 return Node; 948 } 949 950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 951 /// were replaced with those specified. If this node is never memoized, 952 /// return null, otherwise return a pointer to the slot it would take. If a 953 /// node already exists with these operands, the slot will be non-null. 954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 955 SDValue Op1, SDValue Op2, 956 void *&InsertPos) { 957 if (doNotCSE(N)) 958 return nullptr; 959 960 SDValue Ops[] = { Op1, Op2 }; 961 FoldingSetNodeID ID; 962 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 963 AddNodeIDCustom(ID, N); 964 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 965 if (Node) 966 Node->intersectFlagsWith(N->getFlags()); 967 return Node; 968 } 969 970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 971 /// were replaced with those specified. If this node is never memoized, 972 /// return null, otherwise return a pointer to the slot it would take. If a 973 /// node already exists with these operands, the slot will be non-null. 974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 975 void *&InsertPos) { 976 if (doNotCSE(N)) 977 return nullptr; 978 979 FoldingSetNodeID ID; 980 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 981 AddNodeIDCustom(ID, N); 982 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 983 if (Node) 984 Node->intersectFlagsWith(N->getFlags()); 985 return Node; 986 } 987 988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 989 Type *Ty = VT == MVT::iPTR ? 990 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 991 VT.getTypeForEVT(*getContext()); 992 993 return getDataLayout().getABITypeAlignment(Ty); 994 } 995 996 // EntryNode could meaningfully have debug info if we can find it... 997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 998 : TM(tm), OptLevel(OL), 999 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1000 Root(getEntryNode()) { 1001 InsertNode(&EntryNode); 1002 DbgInfo = new SDDbgInfo(); 1003 } 1004 1005 void SelectionDAG::init(MachineFunction &NewMF, 1006 OptimizationRemarkEmitter &NewORE, 1007 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1008 LegacyDivergenceAnalysis * Divergence) { 1009 MF = &NewMF; 1010 SDAGISelPass = PassPtr; 1011 ORE = &NewORE; 1012 TLI = getSubtarget().getTargetLowering(); 1013 TSI = getSubtarget().getSelectionDAGInfo(); 1014 LibInfo = LibraryInfo; 1015 Context = &MF->getFunction().getContext(); 1016 DA = Divergence; 1017 } 1018 1019 SelectionDAG::~SelectionDAG() { 1020 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1021 allnodes_clear(); 1022 OperandRecycler.clear(OperandAllocator); 1023 delete DbgInfo; 1024 } 1025 1026 void SelectionDAG::allnodes_clear() { 1027 assert(&*AllNodes.begin() == &EntryNode); 1028 AllNodes.remove(AllNodes.begin()); 1029 while (!AllNodes.empty()) 1030 DeallocateNode(&AllNodes.front()); 1031 #ifndef NDEBUG 1032 NextPersistentId = 0; 1033 #endif 1034 } 1035 1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1037 void *&InsertPos) { 1038 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1039 if (N) { 1040 switch (N->getOpcode()) { 1041 default: break; 1042 case ISD::Constant: 1043 case ISD::ConstantFP: 1044 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1045 "debug location. Use another overload."); 1046 } 1047 } 1048 return N; 1049 } 1050 1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1052 const SDLoc &DL, void *&InsertPos) { 1053 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1054 if (N) { 1055 switch (N->getOpcode()) { 1056 case ISD::Constant: 1057 case ISD::ConstantFP: 1058 // Erase debug location from the node if the node is used at several 1059 // different places. Do not propagate one location to all uses as it 1060 // will cause a worse single stepping debugging experience. 1061 if (N->getDebugLoc() != DL.getDebugLoc()) 1062 N->setDebugLoc(DebugLoc()); 1063 break; 1064 default: 1065 // When the node's point of use is located earlier in the instruction 1066 // sequence than its prior point of use, update its debug info to the 1067 // earlier location. 1068 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1069 N->setDebugLoc(DL.getDebugLoc()); 1070 break; 1071 } 1072 } 1073 return N; 1074 } 1075 1076 void SelectionDAG::clear() { 1077 allnodes_clear(); 1078 OperandRecycler.clear(OperandAllocator); 1079 OperandAllocator.Reset(); 1080 CSEMap.clear(); 1081 1082 ExtendedValueTypeNodes.clear(); 1083 ExternalSymbols.clear(); 1084 TargetExternalSymbols.clear(); 1085 MCSymbols.clear(); 1086 SDCallSiteDbgInfo.clear(); 1087 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1088 static_cast<CondCodeSDNode*>(nullptr)); 1089 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1090 static_cast<SDNode*>(nullptr)); 1091 1092 EntryNode.UseList = nullptr; 1093 InsertNode(&EntryNode); 1094 Root = getEntryNode(); 1095 DbgInfo->clear(); 1096 } 1097 1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1099 return VT.bitsGT(Op.getValueType()) 1100 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1101 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1102 } 1103 1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1105 return VT.bitsGT(Op.getValueType()) ? 1106 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1107 getNode(ISD::TRUNCATE, DL, VT, Op); 1108 } 1109 1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) ? 1112 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1113 getNode(ISD::TRUNCATE, DL, VT, Op); 1114 } 1115 1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1117 return VT.bitsGT(Op.getValueType()) ? 1118 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1119 getNode(ISD::TRUNCATE, DL, VT, Op); 1120 } 1121 1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1123 EVT OpVT) { 1124 if (VT.bitsLE(Op.getValueType())) 1125 return getNode(ISD::TRUNCATE, SL, VT, Op); 1126 1127 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1128 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1129 } 1130 1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1132 assert(!VT.isVector() && 1133 "getZeroExtendInReg should use the vector element type instead of " 1134 "the vector type!"); 1135 if (Op.getValueType().getScalarType() == VT) return Op; 1136 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1137 APInt Imm = APInt::getLowBitsSet(BitWidth, 1138 VT.getSizeInBits()); 1139 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1140 getConstant(Imm, DL, Op.getValueType())); 1141 } 1142 1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 // Only unsigned pointer semantics are supported right now. In the future this 1145 // might delegate to TLI to check pointer signedness. 1146 return getZExtOrTrunc(Op, DL, VT); 1147 } 1148 1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1150 // Only unsigned pointer semantics are supported right now. In the future this 1151 // might delegate to TLI to check pointer signedness. 1152 return getZeroExtendInReg(Op, DL, VT); 1153 } 1154 1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1157 EVT EltVT = VT.getScalarType(); 1158 SDValue NegOne = 1159 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1160 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1161 } 1162 1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1164 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1165 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1166 } 1167 1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1169 EVT OpVT) { 1170 if (!V) 1171 return getConstant(0, DL, VT); 1172 1173 switch (TLI->getBooleanContents(OpVT)) { 1174 case TargetLowering::ZeroOrOneBooleanContent: 1175 case TargetLowering::UndefinedBooleanContent: 1176 return getConstant(1, DL, VT); 1177 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1178 return getAllOnesConstant(DL, VT); 1179 } 1180 llvm_unreachable("Unexpected boolean content enum!"); 1181 } 1182 1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1184 bool isT, bool isO) { 1185 EVT EltVT = VT.getScalarType(); 1186 assert((EltVT.getSizeInBits() >= 64 || 1187 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1188 "getConstant with a uint64_t value that doesn't fit in the type!"); 1189 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1190 } 1191 1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1193 bool isT, bool isO) { 1194 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1195 } 1196 1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1198 EVT VT, bool isT, bool isO) { 1199 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1200 1201 EVT EltVT = VT.getScalarType(); 1202 const ConstantInt *Elt = &Val; 1203 1204 // In some cases the vector type is legal but the element type is illegal and 1205 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1206 // inserted value (the type does not need to match the vector element type). 1207 // Any extra bits introduced will be truncated away. 1208 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1209 TargetLowering::TypePromoteInteger) { 1210 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1211 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1212 Elt = ConstantInt::get(*getContext(), NewVal); 1213 } 1214 // In other cases the element type is illegal and needs to be expanded, for 1215 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1216 // the value into n parts and use a vector type with n-times the elements. 1217 // Then bitcast to the type requested. 1218 // Legalizing constants too early makes the DAGCombiner's job harder so we 1219 // only legalize if the DAG tells us we must produce legal types. 1220 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1221 TLI->getTypeAction(*getContext(), EltVT) == 1222 TargetLowering::TypeExpandInteger) { 1223 const APInt &NewVal = Elt->getValue(); 1224 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1225 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1226 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1227 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1228 1229 // Check the temporary vector is the correct size. If this fails then 1230 // getTypeToTransformTo() probably returned a type whose size (in bits) 1231 // isn't a power-of-2 factor of the requested type size. 1232 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1233 1234 SmallVector<SDValue, 2> EltParts; 1235 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1236 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1237 .zextOrTrunc(ViaEltSizeInBits), DL, 1238 ViaEltVT, isT, isO)); 1239 } 1240 1241 // EltParts is currently in little endian order. If we actually want 1242 // big-endian order then reverse it now. 1243 if (getDataLayout().isBigEndian()) 1244 std::reverse(EltParts.begin(), EltParts.end()); 1245 1246 // The elements must be reversed when the element order is different 1247 // to the endianness of the elements (because the BITCAST is itself a 1248 // vector shuffle in this situation). However, we do not need any code to 1249 // perform this reversal because getConstant() is producing a vector 1250 // splat. 1251 // This situation occurs in MIPS MSA. 1252 1253 SmallVector<SDValue, 8> Ops; 1254 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1255 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1256 1257 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1258 return V; 1259 } 1260 1261 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1262 "APInt size does not match type size!"); 1263 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1264 FoldingSetNodeID ID; 1265 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1266 ID.AddPointer(Elt); 1267 ID.AddBoolean(isO); 1268 void *IP = nullptr; 1269 SDNode *N = nullptr; 1270 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1271 if (!VT.isVector()) 1272 return SDValue(N, 0); 1273 1274 if (!N) { 1275 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1276 CSEMap.InsertNode(N, IP); 1277 InsertNode(N); 1278 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1279 } 1280 1281 SDValue Result(N, 0); 1282 if (VT.isVector()) 1283 Result = getSplatBuildVector(VT, DL, Result); 1284 1285 return Result; 1286 } 1287 1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1289 bool isTarget) { 1290 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1291 } 1292 1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1294 const SDLoc &DL, bool LegalTypes) { 1295 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1296 return getConstant(Val, DL, ShiftVT); 1297 } 1298 1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1300 bool isTarget) { 1301 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1302 } 1303 1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1305 EVT VT, bool isTarget) { 1306 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1307 1308 EVT EltVT = VT.getScalarType(); 1309 1310 // Do the map lookup using the actual bit pattern for the floating point 1311 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1312 // we don't have issues with SNANs. 1313 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1316 ID.AddPointer(&V); 1317 void *IP = nullptr; 1318 SDNode *N = nullptr; 1319 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1320 if (!VT.isVector()) 1321 return SDValue(N, 0); 1322 1323 if (!N) { 1324 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1325 CSEMap.InsertNode(N, IP); 1326 InsertNode(N); 1327 } 1328 1329 SDValue Result(N, 0); 1330 if (VT.isVector()) 1331 Result = getSplatBuildVector(VT, DL, Result); 1332 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1333 return Result; 1334 } 1335 1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1337 bool isTarget) { 1338 EVT EltVT = VT.getScalarType(); 1339 if (EltVT == MVT::f32) 1340 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1341 else if (EltVT == MVT::f64) 1342 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1343 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1344 EltVT == MVT::f16) { 1345 bool Ignored; 1346 APFloat APF = APFloat(Val); 1347 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1348 &Ignored); 1349 return getConstantFP(APF, DL, VT, isTarget); 1350 } else 1351 llvm_unreachable("Unsupported type in getConstantFP"); 1352 } 1353 1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1355 EVT VT, int64_t Offset, bool isTargetGA, 1356 unsigned TargetFlags) { 1357 assert((TargetFlags == 0 || isTargetGA) && 1358 "Cannot set target flags on target-independent globals"); 1359 1360 // Truncate (with sign-extension) the offset value to the pointer size. 1361 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1362 if (BitWidth < 64) 1363 Offset = SignExtend64(Offset, BitWidth); 1364 1365 unsigned Opc; 1366 if (GV->isThreadLocal()) 1367 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1368 else 1369 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1370 1371 FoldingSetNodeID ID; 1372 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1373 ID.AddPointer(GV); 1374 ID.AddInteger(Offset); 1375 ID.AddInteger(TargetFlags); 1376 void *IP = nullptr; 1377 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1378 return SDValue(E, 0); 1379 1380 auto *N = newSDNode<GlobalAddressSDNode>( 1381 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1382 CSEMap.InsertNode(N, IP); 1383 InsertNode(N); 1384 return SDValue(N, 0); 1385 } 1386 1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1388 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1389 FoldingSetNodeID ID; 1390 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1391 ID.AddInteger(FI); 1392 void *IP = nullptr; 1393 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1394 return SDValue(E, 0); 1395 1396 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1397 CSEMap.InsertNode(N, IP); 1398 InsertNode(N); 1399 return SDValue(N, 0); 1400 } 1401 1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1403 unsigned TargetFlags) { 1404 assert((TargetFlags == 0 || isTarget) && 1405 "Cannot set target flags on target-independent jump tables"); 1406 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1407 FoldingSetNodeID ID; 1408 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1409 ID.AddInteger(JTI); 1410 ID.AddInteger(TargetFlags); 1411 void *IP = nullptr; 1412 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1413 return SDValue(E, 0); 1414 1415 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1416 CSEMap.InsertNode(N, IP); 1417 InsertNode(N); 1418 return SDValue(N, 0); 1419 } 1420 1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1422 unsigned Alignment, int Offset, 1423 bool isTarget, 1424 unsigned TargetFlags) { 1425 assert((TargetFlags == 0 || isTarget) && 1426 "Cannot set target flags on target-independent globals"); 1427 if (Alignment == 0) 1428 Alignment = MF->getFunction().hasOptSize() 1429 ? getDataLayout().getABITypeAlignment(C->getType()) 1430 : getDataLayout().getPrefTypeAlignment(C->getType()); 1431 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1432 FoldingSetNodeID ID; 1433 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1434 ID.AddInteger(Alignment); 1435 ID.AddInteger(Offset); 1436 ID.AddPointer(C); 1437 ID.AddInteger(TargetFlags); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1443 TargetFlags); 1444 CSEMap.InsertNode(N, IP); 1445 InsertNode(N); 1446 return SDValue(N, 0); 1447 } 1448 1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1450 unsigned Alignment, int Offset, 1451 bool isTarget, 1452 unsigned TargetFlags) { 1453 assert((TargetFlags == 0 || isTarget) && 1454 "Cannot set target flags on target-independent globals"); 1455 if (Alignment == 0) 1456 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1457 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1458 FoldingSetNodeID ID; 1459 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1460 ID.AddInteger(Alignment); 1461 ID.AddInteger(Offset); 1462 C->addSelectionDAGCSEId(ID); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1469 TargetFlags); 1470 CSEMap.InsertNode(N, IP); 1471 InsertNode(N); 1472 return SDValue(N, 0); 1473 } 1474 1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1476 unsigned TargetFlags) { 1477 FoldingSetNodeID ID; 1478 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1479 ID.AddInteger(Index); 1480 ID.AddInteger(Offset); 1481 ID.AddInteger(TargetFlags); 1482 void *IP = nullptr; 1483 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1484 return SDValue(E, 0); 1485 1486 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1487 CSEMap.InsertNode(N, IP); 1488 InsertNode(N); 1489 return SDValue(N, 0); 1490 } 1491 1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1495 ID.AddPointer(MBB); 1496 void *IP = nullptr; 1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1498 return SDValue(E, 0); 1499 1500 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1501 CSEMap.InsertNode(N, IP); 1502 InsertNode(N); 1503 return SDValue(N, 0); 1504 } 1505 1506 SDValue SelectionDAG::getValueType(EVT VT) { 1507 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1508 ValueTypeNodes.size()) 1509 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1510 1511 SDNode *&N = VT.isExtended() ? 1512 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1513 1514 if (N) return SDValue(N, 0); 1515 N = newSDNode<VTSDNode>(VT); 1516 InsertNode(N); 1517 return SDValue(N, 0); 1518 } 1519 1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1521 SDNode *&N = ExternalSymbols[Sym]; 1522 if (N) return SDValue(N, 0); 1523 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1529 SDNode *&N = MCSymbols[Sym]; 1530 if (N) 1531 return SDValue(N, 0); 1532 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1533 InsertNode(N); 1534 return SDValue(N, 0); 1535 } 1536 1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1538 unsigned TargetFlags) { 1539 SDNode *&N = 1540 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1541 if (N) return SDValue(N, 0); 1542 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1548 if ((unsigned)Cond >= CondCodeNodes.size()) 1549 CondCodeNodes.resize(Cond+1); 1550 1551 if (!CondCodeNodes[Cond]) { 1552 auto *N = newSDNode<CondCodeSDNode>(Cond); 1553 CondCodeNodes[Cond] = N; 1554 InsertNode(N); 1555 } 1556 1557 return SDValue(CondCodeNodes[Cond], 0); 1558 } 1559 1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1563 std::swap(N1, N2); 1564 ShuffleVectorSDNode::commuteMask(M); 1565 } 1566 1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1568 SDValue N2, ArrayRef<int> Mask) { 1569 assert(VT.getVectorNumElements() == Mask.size() && 1570 "Must have the same number of vector elements as mask elements!"); 1571 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1572 "Invalid VECTOR_SHUFFLE"); 1573 1574 // Canonicalize shuffle undef, undef -> undef 1575 if (N1.isUndef() && N2.isUndef()) 1576 return getUNDEF(VT); 1577 1578 // Validate that all indices in Mask are within the range of the elements 1579 // input to the shuffle. 1580 int NElts = Mask.size(); 1581 assert(llvm::all_of(Mask, 1582 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1583 "Index out of range"); 1584 1585 // Copy the mask so we can do any needed cleanup. 1586 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1587 1588 // Canonicalize shuffle v, v -> v, undef 1589 if (N1 == N2) { 1590 N2 = getUNDEF(VT); 1591 for (int i = 0; i != NElts; ++i) 1592 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1593 } 1594 1595 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1596 if (N1.isUndef()) 1597 commuteShuffle(N1, N2, MaskVec); 1598 1599 if (TLI->hasVectorBlend()) { 1600 // If shuffling a splat, try to blend the splat instead. We do this here so 1601 // that even when this arises during lowering we don't have to re-handle it. 1602 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1603 BitVector UndefElements; 1604 SDValue Splat = BV->getSplatValue(&UndefElements); 1605 if (!Splat) 1606 return; 1607 1608 for (int i = 0; i < NElts; ++i) { 1609 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1610 continue; 1611 1612 // If this input comes from undef, mark it as such. 1613 if (UndefElements[MaskVec[i] - Offset]) { 1614 MaskVec[i] = -1; 1615 continue; 1616 } 1617 1618 // If we can blend a non-undef lane, use that instead. 1619 if (!UndefElements[i]) 1620 MaskVec[i] = i + Offset; 1621 } 1622 }; 1623 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1624 BlendSplat(N1BV, 0); 1625 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1626 BlendSplat(N2BV, NElts); 1627 } 1628 1629 // Canonicalize all index into lhs, -> shuffle lhs, undef 1630 // Canonicalize all index into rhs, -> shuffle rhs, undef 1631 bool AllLHS = true, AllRHS = true; 1632 bool N2Undef = N2.isUndef(); 1633 for (int i = 0; i != NElts; ++i) { 1634 if (MaskVec[i] >= NElts) { 1635 if (N2Undef) 1636 MaskVec[i] = -1; 1637 else 1638 AllLHS = false; 1639 } else if (MaskVec[i] >= 0) { 1640 AllRHS = false; 1641 } 1642 } 1643 if (AllLHS && AllRHS) 1644 return getUNDEF(VT); 1645 if (AllLHS && !N2Undef) 1646 N2 = getUNDEF(VT); 1647 if (AllRHS) { 1648 N1 = getUNDEF(VT); 1649 commuteShuffle(N1, N2, MaskVec); 1650 } 1651 // Reset our undef status after accounting for the mask. 1652 N2Undef = N2.isUndef(); 1653 // Re-check whether both sides ended up undef. 1654 if (N1.isUndef() && N2Undef) 1655 return getUNDEF(VT); 1656 1657 // If Identity shuffle return that node. 1658 bool Identity = true, AllSame = true; 1659 for (int i = 0; i != NElts; ++i) { 1660 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1661 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1662 } 1663 if (Identity && NElts) 1664 return N1; 1665 1666 // Shuffling a constant splat doesn't change the result. 1667 if (N2Undef) { 1668 SDValue V = N1; 1669 1670 // Look through any bitcasts. We check that these don't change the number 1671 // (and size) of elements and just changes their types. 1672 while (V.getOpcode() == ISD::BITCAST) 1673 V = V->getOperand(0); 1674 1675 // A splat should always show up as a build vector node. 1676 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1677 BitVector UndefElements; 1678 SDValue Splat = BV->getSplatValue(&UndefElements); 1679 // If this is a splat of an undef, shuffling it is also undef. 1680 if (Splat && Splat.isUndef()) 1681 return getUNDEF(VT); 1682 1683 bool SameNumElts = 1684 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1685 1686 // We only have a splat which can skip shuffles if there is a splatted 1687 // value and no undef lanes rearranged by the shuffle. 1688 if (Splat && UndefElements.none()) { 1689 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1690 // number of elements match or the value splatted is a zero constant. 1691 if (SameNumElts) 1692 return N1; 1693 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1694 if (C->isNullValue()) 1695 return N1; 1696 } 1697 1698 // If the shuffle itself creates a splat, build the vector directly. 1699 if (AllSame && SameNumElts) { 1700 EVT BuildVT = BV->getValueType(0); 1701 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1702 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1703 1704 // We may have jumped through bitcasts, so the type of the 1705 // BUILD_VECTOR may not match the type of the shuffle. 1706 if (BuildVT != VT) 1707 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1708 return NewBV; 1709 } 1710 } 1711 } 1712 1713 FoldingSetNodeID ID; 1714 SDValue Ops[2] = { N1, N2 }; 1715 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1716 for (int i = 0; i != NElts; ++i) 1717 ID.AddInteger(MaskVec[i]); 1718 1719 void* IP = nullptr; 1720 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1721 return SDValue(E, 0); 1722 1723 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1724 // SDNode doesn't have access to it. This memory will be "leaked" when 1725 // the node is deallocated, but recovered when the NodeAllocator is released. 1726 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1727 llvm::copy(MaskVec, MaskAlloc); 1728 1729 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1730 dl.getDebugLoc(), MaskAlloc); 1731 createOperands(N, Ops); 1732 1733 CSEMap.InsertNode(N, IP); 1734 InsertNode(N); 1735 SDValue V = SDValue(N, 0); 1736 NewSDValueDbgMsg(V, "Creating new node: ", this); 1737 return V; 1738 } 1739 1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1741 EVT VT = SV.getValueType(0); 1742 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1743 ShuffleVectorSDNode::commuteMask(MaskVec); 1744 1745 SDValue Op0 = SV.getOperand(0); 1746 SDValue Op1 = SV.getOperand(1); 1747 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1748 } 1749 1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1751 FoldingSetNodeID ID; 1752 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1753 ID.AddInteger(RegNo); 1754 void *IP = nullptr; 1755 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1756 return SDValue(E, 0); 1757 1758 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1759 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1760 CSEMap.InsertNode(N, IP); 1761 InsertNode(N); 1762 return SDValue(N, 0); 1763 } 1764 1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1766 FoldingSetNodeID ID; 1767 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1768 ID.AddPointer(RegMask); 1769 void *IP = nullptr; 1770 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1771 return SDValue(E, 0); 1772 1773 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1774 CSEMap.InsertNode(N, IP); 1775 InsertNode(N); 1776 return SDValue(N, 0); 1777 } 1778 1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1780 MCSymbol *Label) { 1781 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1782 } 1783 1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1785 SDValue Root, MCSymbol *Label) { 1786 FoldingSetNodeID ID; 1787 SDValue Ops[] = { Root }; 1788 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1789 ID.AddPointer(Label); 1790 void *IP = nullptr; 1791 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1792 return SDValue(E, 0); 1793 1794 auto *N = 1795 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1796 createOperands(N, Ops); 1797 1798 CSEMap.InsertNode(N, IP); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1804 int64_t Offset, bool isTarget, 1805 unsigned TargetFlags) { 1806 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1807 1808 FoldingSetNodeID ID; 1809 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1810 ID.AddPointer(BA); 1811 ID.AddInteger(Offset); 1812 ID.AddInteger(TargetFlags); 1813 void *IP = nullptr; 1814 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1815 return SDValue(E, 0); 1816 1817 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1818 CSEMap.InsertNode(N, IP); 1819 InsertNode(N); 1820 return SDValue(N, 0); 1821 } 1822 1823 SDValue SelectionDAG::getSrcValue(const Value *V) { 1824 assert((!V || V->getType()->isPointerTy()) && 1825 "SrcValue is not a pointer?"); 1826 1827 FoldingSetNodeID ID; 1828 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1829 ID.AddPointer(V); 1830 1831 void *IP = nullptr; 1832 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1833 return SDValue(E, 0); 1834 1835 auto *N = newSDNode<SrcValueSDNode>(V); 1836 CSEMap.InsertNode(N, IP); 1837 InsertNode(N); 1838 return SDValue(N, 0); 1839 } 1840 1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1842 FoldingSetNodeID ID; 1843 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1844 ID.AddPointer(MD); 1845 1846 void *IP = nullptr; 1847 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1848 return SDValue(E, 0); 1849 1850 auto *N = newSDNode<MDNodeSDNode>(MD); 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1857 if (VT == V.getValueType()) 1858 return V; 1859 1860 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1861 } 1862 1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1864 unsigned SrcAS, unsigned DestAS) { 1865 SDValue Ops[] = {Ptr}; 1866 FoldingSetNodeID ID; 1867 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1868 ID.AddInteger(SrcAS); 1869 ID.AddInteger(DestAS); 1870 1871 void *IP = nullptr; 1872 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1873 return SDValue(E, 0); 1874 1875 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1876 VT, SrcAS, DestAS); 1877 createOperands(N, Ops); 1878 1879 CSEMap.InsertNode(N, IP); 1880 InsertNode(N); 1881 return SDValue(N, 0); 1882 } 1883 1884 /// getShiftAmountOperand - Return the specified value casted to 1885 /// the target's desired shift amount type. 1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1887 EVT OpTy = Op.getValueType(); 1888 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1889 if (OpTy == ShTy || OpTy.isVector()) return Op; 1890 1891 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1892 } 1893 1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1895 SDLoc dl(Node); 1896 const TargetLowering &TLI = getTargetLoweringInfo(); 1897 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1898 EVT VT = Node->getValueType(0); 1899 SDValue Tmp1 = Node->getOperand(0); 1900 SDValue Tmp2 = Node->getOperand(1); 1901 unsigned Align = Node->getConstantOperandVal(3); 1902 1903 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1904 Tmp2, MachinePointerInfo(V)); 1905 SDValue VAList = VAListLoad; 1906 1907 if (Align > TLI.getMinStackArgumentAlignment()) { 1908 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1909 1910 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1911 getConstant(Align - 1, dl, VAList.getValueType())); 1912 1913 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1914 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1915 } 1916 1917 // Increment the pointer, VAList, to the next vaarg 1918 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1919 getConstant(getDataLayout().getTypeAllocSize( 1920 VT.getTypeForEVT(*getContext())), 1921 dl, VAList.getValueType())); 1922 // Store the incremented VAList to the legalized pointer 1923 Tmp1 = 1924 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1925 // Load the actual argument out of the pointer VAList 1926 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1927 } 1928 1929 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1930 SDLoc dl(Node); 1931 const TargetLowering &TLI = getTargetLoweringInfo(); 1932 // This defaults to loading a pointer from the input and storing it to the 1933 // output, returning the chain. 1934 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1935 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1936 SDValue Tmp1 = 1937 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1938 Node->getOperand(2), MachinePointerInfo(VS)); 1939 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1940 MachinePointerInfo(VD)); 1941 } 1942 1943 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1944 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1945 unsigned ByteSize = VT.getStoreSize(); 1946 Type *Ty = VT.getTypeForEVT(*getContext()); 1947 unsigned StackAlign = 1948 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1949 1950 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1951 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1952 } 1953 1954 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1955 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1956 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1957 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1958 const DataLayout &DL = getDataLayout(); 1959 unsigned Align = 1960 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1961 1962 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1963 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1964 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1965 } 1966 1967 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1968 ISD::CondCode Cond, const SDLoc &dl) { 1969 EVT OpVT = N1.getValueType(); 1970 1971 // These setcc operations always fold. 1972 switch (Cond) { 1973 default: break; 1974 case ISD::SETFALSE: 1975 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1976 case ISD::SETTRUE: 1977 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1978 1979 case ISD::SETOEQ: 1980 case ISD::SETOGT: 1981 case ISD::SETOGE: 1982 case ISD::SETOLT: 1983 case ISD::SETOLE: 1984 case ISD::SETONE: 1985 case ISD::SETO: 1986 case ISD::SETUO: 1987 case ISD::SETUEQ: 1988 case ISD::SETUNE: 1989 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 1990 break; 1991 } 1992 1993 if (OpVT.isInteger()) { 1994 // For EQ and NE, we can always pick a value for the undef to make the 1995 // predicate pass or fail, so we can return undef. 1996 // Matches behavior in llvm::ConstantFoldCompareInstruction. 1997 // icmp eq/ne X, undef -> undef. 1998 if ((N1.isUndef() || N2.isUndef()) && 1999 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2000 return getUNDEF(VT); 2001 2002 // If both operands are undef, we can return undef for int comparison. 2003 // icmp undef, undef -> undef. 2004 if (N1.isUndef() && N2.isUndef()) 2005 return getUNDEF(VT); 2006 2007 // icmp X, X -> true/false 2008 // icmp X, undef -> true/false because undef could be X. 2009 if (N1 == N2) 2010 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2011 } 2012 2013 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2014 const APInt &C2 = N2C->getAPIntValue(); 2015 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2016 const APInt &C1 = N1C->getAPIntValue(); 2017 2018 switch (Cond) { 2019 default: llvm_unreachable("Unknown integer setcc!"); 2020 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2021 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2022 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2023 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2024 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2025 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2026 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2027 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2028 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2029 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2030 } 2031 } 2032 } 2033 2034 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2035 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2036 2037 if (N1CFP && N2CFP) { 2038 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2039 switch (Cond) { 2040 default: break; 2041 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2042 return getUNDEF(VT); 2043 LLVM_FALLTHROUGH; 2044 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2045 OpVT); 2046 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2047 return getUNDEF(VT); 2048 LLVM_FALLTHROUGH; 2049 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2050 R==APFloat::cmpLessThan, dl, VT, 2051 OpVT); 2052 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2053 return getUNDEF(VT); 2054 LLVM_FALLTHROUGH; 2055 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2056 OpVT); 2057 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2058 return getUNDEF(VT); 2059 LLVM_FALLTHROUGH; 2060 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2061 VT, OpVT); 2062 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2063 return getUNDEF(VT); 2064 LLVM_FALLTHROUGH; 2065 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2066 R==APFloat::cmpEqual, dl, VT, 2067 OpVT); 2068 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2069 return getUNDEF(VT); 2070 LLVM_FALLTHROUGH; 2071 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2072 R==APFloat::cmpEqual, dl, VT, OpVT); 2073 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2074 OpVT); 2075 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2076 OpVT); 2077 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2078 R==APFloat::cmpEqual, dl, VT, 2079 OpVT); 2080 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2081 OpVT); 2082 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2083 R==APFloat::cmpLessThan, dl, VT, 2084 OpVT); 2085 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2086 R==APFloat::cmpUnordered, dl, VT, 2087 OpVT); 2088 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2089 VT, OpVT); 2090 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2091 OpVT); 2092 } 2093 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2094 // Ensure that the constant occurs on the RHS. 2095 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2096 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2097 return SDValue(); 2098 return getSetCC(dl, VT, N2, N1, SwappedCond); 2099 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2100 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2101 // If an operand is known to be a nan (or undef that could be a nan), we can 2102 // fold it. 2103 // Choosing NaN for the undef will always make unordered comparison succeed 2104 // and ordered comparison fails. 2105 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2106 switch (ISD::getUnorderedFlavor(Cond)) { 2107 default: 2108 llvm_unreachable("Unknown flavor!"); 2109 case 0: // Known false. 2110 return getBoolConstant(false, dl, VT, OpVT); 2111 case 1: // Known true. 2112 return getBoolConstant(true, dl, VT, OpVT); 2113 case 2: // Undefined. 2114 return getUNDEF(VT); 2115 } 2116 } 2117 2118 // Could not fold it. 2119 return SDValue(); 2120 } 2121 2122 /// See if the specified operand can be simplified with the knowledge that only 2123 /// the bits specified by DemandedBits are used. 2124 /// TODO: really we should be making this into the DAG equivalent of 2125 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2126 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2127 EVT VT = V.getValueType(); 2128 APInt DemandedElts = VT.isVector() 2129 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2130 : APInt(1, 1); 2131 return GetDemandedBits(V, DemandedBits, DemandedElts); 2132 } 2133 2134 /// See if the specified operand can be simplified with the knowledge that only 2135 /// the bits specified by DemandedBits are used in the elements specified by 2136 /// DemandedElts. 2137 /// TODO: really we should be making this into the DAG equivalent of 2138 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2139 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2140 const APInt &DemandedElts) { 2141 switch (V.getOpcode()) { 2142 default: 2143 break; 2144 case ISD::Constant: { 2145 auto *CV = cast<ConstantSDNode>(V.getNode()); 2146 assert(CV && "Const value should be ConstSDNode."); 2147 const APInt &CVal = CV->getAPIntValue(); 2148 APInt NewVal = CVal & DemandedBits; 2149 if (NewVal != CVal) 2150 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2151 break; 2152 } 2153 case ISD::OR: 2154 case ISD::XOR: 2155 case ISD::SIGN_EXTEND_INREG: 2156 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2157 *this, 0); 2158 case ISD::SRL: 2159 // Only look at single-use SRLs. 2160 if (!V.getNode()->hasOneUse()) 2161 break; 2162 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2163 // See if we can recursively simplify the LHS. 2164 unsigned Amt = RHSC->getZExtValue(); 2165 2166 // Watch out for shift count overflow though. 2167 if (Amt >= DemandedBits.getBitWidth()) 2168 break; 2169 APInt SrcDemandedBits = DemandedBits << Amt; 2170 if (SDValue SimplifyLHS = 2171 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2172 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2173 V.getOperand(1)); 2174 } 2175 break; 2176 case ISD::AND: { 2177 // X & -1 -> X (ignoring bits which aren't demanded). 2178 // Also handle the case where masked out bits in X are known to be zero. 2179 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2180 const APInt &AndVal = RHSC->getAPIntValue(); 2181 if (DemandedBits.isSubsetOf(AndVal) || 2182 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2183 AndVal)) 2184 return V.getOperand(0); 2185 } 2186 break; 2187 } 2188 case ISD::ANY_EXTEND: { 2189 SDValue Src = V.getOperand(0); 2190 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2191 // Being conservative here - only peek through if we only demand bits in the 2192 // non-extended source (even though the extended bits are technically 2193 // undef). 2194 if (DemandedBits.getActiveBits() > SrcBitWidth) 2195 break; 2196 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2197 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2198 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2199 break; 2200 } 2201 } 2202 return SDValue(); 2203 } 2204 2205 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2206 /// use this predicate to simplify operations downstream. 2207 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2208 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2209 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2210 } 2211 2212 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2213 /// this predicate to simplify operations downstream. Mask is known to be zero 2214 /// for bits that V cannot have. 2215 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2216 unsigned Depth) const { 2217 EVT VT = V.getValueType(); 2218 APInt DemandedElts = VT.isVector() 2219 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2220 : APInt(1, 1); 2221 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2222 } 2223 2224 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2225 /// DemandedElts. We use this predicate to simplify operations downstream. 2226 /// Mask is known to be zero for bits that V cannot have. 2227 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2228 const APInt &DemandedElts, 2229 unsigned Depth) const { 2230 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2231 } 2232 2233 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2234 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2235 unsigned Depth) const { 2236 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2237 } 2238 2239 /// isSplatValue - Return true if the vector V has the same value 2240 /// across all DemandedElts. 2241 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2242 APInt &UndefElts) { 2243 if (!DemandedElts) 2244 return false; // No demanded elts, better to assume we don't know anything. 2245 2246 EVT VT = V.getValueType(); 2247 assert(VT.isVector() && "Vector type expected"); 2248 2249 unsigned NumElts = VT.getVectorNumElements(); 2250 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2251 UndefElts = APInt::getNullValue(NumElts); 2252 2253 switch (V.getOpcode()) { 2254 case ISD::BUILD_VECTOR: { 2255 SDValue Scl; 2256 for (unsigned i = 0; i != NumElts; ++i) { 2257 SDValue Op = V.getOperand(i); 2258 if (Op.isUndef()) { 2259 UndefElts.setBit(i); 2260 continue; 2261 } 2262 if (!DemandedElts[i]) 2263 continue; 2264 if (Scl && Scl != Op) 2265 return false; 2266 Scl = Op; 2267 } 2268 return true; 2269 } 2270 case ISD::VECTOR_SHUFFLE: { 2271 // Check if this is a shuffle node doing a splat. 2272 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2273 int SplatIndex = -1; 2274 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2275 for (int i = 0; i != (int)NumElts; ++i) { 2276 int M = Mask[i]; 2277 if (M < 0) { 2278 UndefElts.setBit(i); 2279 continue; 2280 } 2281 if (!DemandedElts[i]) 2282 continue; 2283 if (0 <= SplatIndex && SplatIndex != M) 2284 return false; 2285 SplatIndex = M; 2286 } 2287 return true; 2288 } 2289 case ISD::EXTRACT_SUBVECTOR: { 2290 SDValue Src = V.getOperand(0); 2291 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2292 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2293 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2294 // Offset the demanded elts by the subvector index. 2295 uint64_t Idx = SubIdx->getZExtValue(); 2296 APInt UndefSrcElts; 2297 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2298 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2299 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2300 return true; 2301 } 2302 } 2303 break; 2304 } 2305 case ISD::ADD: 2306 case ISD::SUB: 2307 case ISD::AND: { 2308 APInt UndefLHS, UndefRHS; 2309 SDValue LHS = V.getOperand(0); 2310 SDValue RHS = V.getOperand(1); 2311 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2312 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2313 UndefElts = UndefLHS | UndefRHS; 2314 return true; 2315 } 2316 break; 2317 } 2318 } 2319 2320 return false; 2321 } 2322 2323 /// Helper wrapper to main isSplatValue function. 2324 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2325 EVT VT = V.getValueType(); 2326 assert(VT.isVector() && "Vector type expected"); 2327 unsigned NumElts = VT.getVectorNumElements(); 2328 2329 APInt UndefElts; 2330 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2331 return isSplatValue(V, DemandedElts, UndefElts) && 2332 (AllowUndefs || !UndefElts); 2333 } 2334 2335 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2336 V = peekThroughExtractSubvectors(V); 2337 2338 EVT VT = V.getValueType(); 2339 unsigned Opcode = V.getOpcode(); 2340 switch (Opcode) { 2341 default: { 2342 APInt UndefElts; 2343 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2344 if (isSplatValue(V, DemandedElts, UndefElts)) { 2345 // Handle case where all demanded elements are UNDEF. 2346 if (DemandedElts.isSubsetOf(UndefElts)) { 2347 SplatIdx = 0; 2348 return getUNDEF(VT); 2349 } 2350 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2351 return V; 2352 } 2353 break; 2354 } 2355 case ISD::VECTOR_SHUFFLE: { 2356 // Check if this is a shuffle node doing a splat. 2357 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2358 // getTargetVShiftNode currently struggles without the splat source. 2359 auto *SVN = cast<ShuffleVectorSDNode>(V); 2360 if (!SVN->isSplat()) 2361 break; 2362 int Idx = SVN->getSplatIndex(); 2363 int NumElts = V.getValueType().getVectorNumElements(); 2364 SplatIdx = Idx % NumElts; 2365 return V.getOperand(Idx / NumElts); 2366 } 2367 } 2368 2369 return SDValue(); 2370 } 2371 2372 SDValue SelectionDAG::getSplatValue(SDValue V) { 2373 int SplatIdx; 2374 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2375 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2376 SrcVector.getValueType().getScalarType(), SrcVector, 2377 getIntPtrConstant(SplatIdx, SDLoc(V))); 2378 return SDValue(); 2379 } 2380 2381 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2382 /// is less than the element bit-width of the shift node, return it. 2383 static const APInt *getValidShiftAmountConstant(SDValue V) { 2384 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2385 // Shifting more than the bitwidth is not valid. 2386 const APInt &ShAmt = SA->getAPIntValue(); 2387 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2388 return &ShAmt; 2389 } 2390 return nullptr; 2391 } 2392 2393 /// Determine which bits of Op are known to be either zero or one and return 2394 /// them in Known. For vectors, the known bits are those that are shared by 2395 /// every vector element. 2396 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2397 EVT VT = Op.getValueType(); 2398 APInt DemandedElts = VT.isVector() 2399 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2400 : APInt(1, 1); 2401 return computeKnownBits(Op, DemandedElts, Depth); 2402 } 2403 2404 /// Determine which bits of Op are known to be either zero or one and return 2405 /// them in Known. The DemandedElts argument allows us to only collect the known 2406 /// bits that are shared by the requested vector elements. 2407 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2408 unsigned Depth) const { 2409 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2410 2411 KnownBits Known(BitWidth); // Don't know anything. 2412 2413 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2414 // We know all of the bits for a constant! 2415 Known.One = C->getAPIntValue(); 2416 Known.Zero = ~Known.One; 2417 return Known; 2418 } 2419 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2420 // We know all of the bits for a constant fp! 2421 Known.One = C->getValueAPF().bitcastToAPInt(); 2422 Known.Zero = ~Known.One; 2423 return Known; 2424 } 2425 2426 if (Depth >= 6) 2427 return Known; // Limit search depth. 2428 2429 KnownBits Known2; 2430 unsigned NumElts = DemandedElts.getBitWidth(); 2431 assert((!Op.getValueType().isVector() || 2432 NumElts == Op.getValueType().getVectorNumElements()) && 2433 "Unexpected vector size"); 2434 2435 if (!DemandedElts) 2436 return Known; // No demanded elts, better to assume we don't know anything. 2437 2438 unsigned Opcode = Op.getOpcode(); 2439 switch (Opcode) { 2440 case ISD::BUILD_VECTOR: 2441 // Collect the known bits that are shared by every demanded vector element. 2442 Known.Zero.setAllBits(); Known.One.setAllBits(); 2443 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2444 if (!DemandedElts[i]) 2445 continue; 2446 2447 SDValue SrcOp = Op.getOperand(i); 2448 Known2 = computeKnownBits(SrcOp, Depth + 1); 2449 2450 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2451 if (SrcOp.getValueSizeInBits() != BitWidth) { 2452 assert(SrcOp.getValueSizeInBits() > BitWidth && 2453 "Expected BUILD_VECTOR implicit truncation"); 2454 Known2 = Known2.trunc(BitWidth); 2455 } 2456 2457 // Known bits are the values that are shared by every demanded element. 2458 Known.One &= Known2.One; 2459 Known.Zero &= Known2.Zero; 2460 2461 // If we don't know any bits, early out. 2462 if (Known.isUnknown()) 2463 break; 2464 } 2465 break; 2466 case ISD::VECTOR_SHUFFLE: { 2467 // Collect the known bits that are shared by every vector element referenced 2468 // by the shuffle. 2469 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2470 Known.Zero.setAllBits(); Known.One.setAllBits(); 2471 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2472 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2473 for (unsigned i = 0; i != NumElts; ++i) { 2474 if (!DemandedElts[i]) 2475 continue; 2476 2477 int M = SVN->getMaskElt(i); 2478 if (M < 0) { 2479 // For UNDEF elements, we don't know anything about the common state of 2480 // the shuffle result. 2481 Known.resetAll(); 2482 DemandedLHS.clearAllBits(); 2483 DemandedRHS.clearAllBits(); 2484 break; 2485 } 2486 2487 if ((unsigned)M < NumElts) 2488 DemandedLHS.setBit((unsigned)M % NumElts); 2489 else 2490 DemandedRHS.setBit((unsigned)M % NumElts); 2491 } 2492 // Known bits are the values that are shared by every demanded element. 2493 if (!!DemandedLHS) { 2494 SDValue LHS = Op.getOperand(0); 2495 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2496 Known.One &= Known2.One; 2497 Known.Zero &= Known2.Zero; 2498 } 2499 // If we don't know any bits, early out. 2500 if (Known.isUnknown()) 2501 break; 2502 if (!!DemandedRHS) { 2503 SDValue RHS = Op.getOperand(1); 2504 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2505 Known.One &= Known2.One; 2506 Known.Zero &= Known2.Zero; 2507 } 2508 break; 2509 } 2510 case ISD::CONCAT_VECTORS: { 2511 // Split DemandedElts and test each of the demanded subvectors. 2512 Known.Zero.setAllBits(); Known.One.setAllBits(); 2513 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2514 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2515 unsigned NumSubVectors = Op.getNumOperands(); 2516 for (unsigned i = 0; i != NumSubVectors; ++i) { 2517 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2518 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2519 if (!!DemandedSub) { 2520 SDValue Sub = Op.getOperand(i); 2521 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2522 Known.One &= Known2.One; 2523 Known.Zero &= Known2.Zero; 2524 } 2525 // If we don't know any bits, early out. 2526 if (Known.isUnknown()) 2527 break; 2528 } 2529 break; 2530 } 2531 case ISD::INSERT_SUBVECTOR: { 2532 // If we know the element index, demand any elements from the subvector and 2533 // the remainder from the src its inserted into, otherwise demand them all. 2534 SDValue Src = Op.getOperand(0); 2535 SDValue Sub = Op.getOperand(1); 2536 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2537 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2538 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2539 Known.One.setAllBits(); 2540 Known.Zero.setAllBits(); 2541 uint64_t Idx = SubIdx->getZExtValue(); 2542 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2543 if (!!DemandedSubElts) { 2544 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2545 if (Known.isUnknown()) 2546 break; // early-out. 2547 } 2548 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2549 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2550 if (!!DemandedSrcElts) { 2551 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2552 Known.One &= Known2.One; 2553 Known.Zero &= Known2.Zero; 2554 } 2555 } else { 2556 Known = computeKnownBits(Sub, Depth + 1); 2557 if (Known.isUnknown()) 2558 break; // early-out. 2559 Known2 = computeKnownBits(Src, Depth + 1); 2560 Known.One &= Known2.One; 2561 Known.Zero &= Known2.Zero; 2562 } 2563 break; 2564 } 2565 case ISD::EXTRACT_SUBVECTOR: { 2566 // If we know the element index, just demand that subvector elements, 2567 // otherwise demand them all. 2568 SDValue Src = Op.getOperand(0); 2569 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2570 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2571 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2572 // Offset the demanded elts by the subvector index. 2573 uint64_t Idx = SubIdx->getZExtValue(); 2574 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2575 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2576 } else { 2577 Known = computeKnownBits(Src, Depth + 1); 2578 } 2579 break; 2580 } 2581 case ISD::SCALAR_TO_VECTOR: { 2582 // We know about scalar_to_vector as much as we know about it source, 2583 // which becomes the first element of otherwise unknown vector. 2584 if (DemandedElts != 1) 2585 break; 2586 2587 SDValue N0 = Op.getOperand(0); 2588 Known = computeKnownBits(N0, Depth + 1); 2589 if (N0.getValueSizeInBits() != BitWidth) 2590 Known = Known.trunc(BitWidth); 2591 2592 break; 2593 } 2594 case ISD::BITCAST: { 2595 SDValue N0 = Op.getOperand(0); 2596 EVT SubVT = N0.getValueType(); 2597 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2598 2599 // Ignore bitcasts from unsupported types. 2600 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2601 break; 2602 2603 // Fast handling of 'identity' bitcasts. 2604 if (BitWidth == SubBitWidth) { 2605 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2606 break; 2607 } 2608 2609 bool IsLE = getDataLayout().isLittleEndian(); 2610 2611 // Bitcast 'small element' vector to 'large element' scalar/vector. 2612 if ((BitWidth % SubBitWidth) == 0) { 2613 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2614 2615 // Collect known bits for the (larger) output by collecting the known 2616 // bits from each set of sub elements and shift these into place. 2617 // We need to separately call computeKnownBits for each set of 2618 // sub elements as the knownbits for each is likely to be different. 2619 unsigned SubScale = BitWidth / SubBitWidth; 2620 APInt SubDemandedElts(NumElts * SubScale, 0); 2621 for (unsigned i = 0; i != NumElts; ++i) 2622 if (DemandedElts[i]) 2623 SubDemandedElts.setBit(i * SubScale); 2624 2625 for (unsigned i = 0; i != SubScale; ++i) { 2626 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2627 Depth + 1); 2628 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2629 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2630 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2631 } 2632 } 2633 2634 // Bitcast 'large element' scalar/vector to 'small element' vector. 2635 if ((SubBitWidth % BitWidth) == 0) { 2636 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2637 2638 // Collect known bits for the (smaller) output by collecting the known 2639 // bits from the overlapping larger input elements and extracting the 2640 // sub sections we actually care about. 2641 unsigned SubScale = SubBitWidth / BitWidth; 2642 APInt SubDemandedElts(NumElts / SubScale, 0); 2643 for (unsigned i = 0; i != NumElts; ++i) 2644 if (DemandedElts[i]) 2645 SubDemandedElts.setBit(i / SubScale); 2646 2647 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2648 2649 Known.Zero.setAllBits(); Known.One.setAllBits(); 2650 for (unsigned i = 0; i != NumElts; ++i) 2651 if (DemandedElts[i]) { 2652 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2653 unsigned Offset = (Shifts % SubScale) * BitWidth; 2654 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2655 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2656 // If we don't know any bits, early out. 2657 if (Known.isUnknown()) 2658 break; 2659 } 2660 } 2661 break; 2662 } 2663 case ISD::AND: 2664 // If either the LHS or the RHS are Zero, the result is zero. 2665 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2666 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2667 2668 // Output known-1 bits are only known if set in both the LHS & RHS. 2669 Known.One &= Known2.One; 2670 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2671 Known.Zero |= Known2.Zero; 2672 break; 2673 case ISD::OR: 2674 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2675 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2676 2677 // Output known-0 bits are only known if clear in both the LHS & RHS. 2678 Known.Zero &= Known2.Zero; 2679 // Output known-1 are known to be set if set in either the LHS | RHS. 2680 Known.One |= Known2.One; 2681 break; 2682 case ISD::XOR: { 2683 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2684 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2685 2686 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2687 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2688 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2689 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2690 Known.Zero = KnownZeroOut; 2691 break; 2692 } 2693 case ISD::MUL: { 2694 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2695 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2696 2697 // If low bits are zero in either operand, output low known-0 bits. 2698 // Also compute a conservative estimate for high known-0 bits. 2699 // More trickiness is possible, but this is sufficient for the 2700 // interesting case of alignment computation. 2701 unsigned TrailZ = Known.countMinTrailingZeros() + 2702 Known2.countMinTrailingZeros(); 2703 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2704 Known2.countMinLeadingZeros(), 2705 BitWidth) - BitWidth; 2706 2707 Known.resetAll(); 2708 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2709 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2710 break; 2711 } 2712 case ISD::UDIV: { 2713 // For the purposes of computing leading zeros we can conservatively 2714 // treat a udiv as a logical right shift by the power of 2 known to 2715 // be less than the denominator. 2716 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2717 unsigned LeadZ = Known2.countMinLeadingZeros(); 2718 2719 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2720 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2721 if (RHSMaxLeadingZeros != BitWidth) 2722 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2723 2724 Known.Zero.setHighBits(LeadZ); 2725 break; 2726 } 2727 case ISD::SELECT: 2728 case ISD::VSELECT: 2729 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2730 // If we don't know any bits, early out. 2731 if (Known.isUnknown()) 2732 break; 2733 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2734 2735 // Only known if known in both the LHS and RHS. 2736 Known.One &= Known2.One; 2737 Known.Zero &= Known2.Zero; 2738 break; 2739 case ISD::SELECT_CC: 2740 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2741 // If we don't know any bits, early out. 2742 if (Known.isUnknown()) 2743 break; 2744 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2745 2746 // Only known if known in both the LHS and RHS. 2747 Known.One &= Known2.One; 2748 Known.Zero &= Known2.Zero; 2749 break; 2750 case ISD::SMULO: 2751 case ISD::UMULO: 2752 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2753 if (Op.getResNo() != 1) 2754 break; 2755 // The boolean result conforms to getBooleanContents. 2756 // If we know the result of a setcc has the top bits zero, use this info. 2757 // We know that we have an integer-based boolean since these operations 2758 // are only available for integer. 2759 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2760 TargetLowering::ZeroOrOneBooleanContent && 2761 BitWidth > 1) 2762 Known.Zero.setBitsFrom(1); 2763 break; 2764 case ISD::SETCC: 2765 // If we know the result of a setcc has the top bits zero, use this info. 2766 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2767 TargetLowering::ZeroOrOneBooleanContent && 2768 BitWidth > 1) 2769 Known.Zero.setBitsFrom(1); 2770 break; 2771 case ISD::SHL: 2772 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2773 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2774 unsigned Shift = ShAmt->getZExtValue(); 2775 Known.Zero <<= Shift; 2776 Known.One <<= Shift; 2777 // Low bits are known zero. 2778 Known.Zero.setLowBits(Shift); 2779 } 2780 break; 2781 case ISD::SRL: 2782 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2783 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2784 unsigned Shift = ShAmt->getZExtValue(); 2785 Known.Zero.lshrInPlace(Shift); 2786 Known.One.lshrInPlace(Shift); 2787 // High bits are known zero. 2788 Known.Zero.setHighBits(Shift); 2789 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2790 // If the shift amount is a vector of constants see if we can bound 2791 // the number of upper zero bits. 2792 unsigned ShiftAmountMin = BitWidth; 2793 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2794 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2795 const APInt &ShAmt = C->getAPIntValue(); 2796 if (ShAmt.ult(BitWidth)) { 2797 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2798 ShAmt.getZExtValue()); 2799 continue; 2800 } 2801 } 2802 // Don't know anything. 2803 ShiftAmountMin = 0; 2804 break; 2805 } 2806 2807 Known.Zero.setHighBits(ShiftAmountMin); 2808 } 2809 break; 2810 case ISD::SRA: 2811 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2812 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2813 unsigned Shift = ShAmt->getZExtValue(); 2814 // Sign extend known zero/one bit (else is unknown). 2815 Known.Zero.ashrInPlace(Shift); 2816 Known.One.ashrInPlace(Shift); 2817 } 2818 break; 2819 case ISD::FSHL: 2820 case ISD::FSHR: 2821 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2822 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2823 2824 // For fshl, 0-shift returns the 1st arg. 2825 // For fshr, 0-shift returns the 2nd arg. 2826 if (Amt == 0) { 2827 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2828 DemandedElts, Depth + 1); 2829 break; 2830 } 2831 2832 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2833 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2834 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2835 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2836 if (Opcode == ISD::FSHL) { 2837 Known.One <<= Amt; 2838 Known.Zero <<= Amt; 2839 Known2.One.lshrInPlace(BitWidth - Amt); 2840 Known2.Zero.lshrInPlace(BitWidth - Amt); 2841 } else { 2842 Known.One <<= BitWidth - Amt; 2843 Known.Zero <<= BitWidth - Amt; 2844 Known2.One.lshrInPlace(Amt); 2845 Known2.Zero.lshrInPlace(Amt); 2846 } 2847 Known.One |= Known2.One; 2848 Known.Zero |= Known2.Zero; 2849 } 2850 break; 2851 case ISD::SIGN_EXTEND_INREG: { 2852 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2853 unsigned EBits = EVT.getScalarSizeInBits(); 2854 2855 // Sign extension. Compute the demanded bits in the result that are not 2856 // present in the input. 2857 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2858 2859 APInt InSignMask = APInt::getSignMask(EBits); 2860 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2861 2862 // If the sign extended bits are demanded, we know that the sign 2863 // bit is demanded. 2864 InSignMask = InSignMask.zext(BitWidth); 2865 if (NewBits.getBoolValue()) 2866 InputDemandedBits |= InSignMask; 2867 2868 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2869 Known.One &= InputDemandedBits; 2870 Known.Zero &= InputDemandedBits; 2871 2872 // If the sign bit of the input is known set or clear, then we know the 2873 // top bits of the result. 2874 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2875 Known.Zero |= NewBits; 2876 Known.One &= ~NewBits; 2877 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2878 Known.One |= NewBits; 2879 Known.Zero &= ~NewBits; 2880 } else { // Input sign bit unknown 2881 Known.Zero &= ~NewBits; 2882 Known.One &= ~NewBits; 2883 } 2884 break; 2885 } 2886 case ISD::CTTZ: 2887 case ISD::CTTZ_ZERO_UNDEF: { 2888 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2889 // If we have a known 1, its position is our upper bound. 2890 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2891 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2892 Known.Zero.setBitsFrom(LowBits); 2893 break; 2894 } 2895 case ISD::CTLZ: 2896 case ISD::CTLZ_ZERO_UNDEF: { 2897 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2898 // If we have a known 1, its position is our upper bound. 2899 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2900 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2901 Known.Zero.setBitsFrom(LowBits); 2902 break; 2903 } 2904 case ISD::CTPOP: { 2905 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2906 // If we know some of the bits are zero, they can't be one. 2907 unsigned PossibleOnes = Known2.countMaxPopulation(); 2908 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2909 break; 2910 } 2911 case ISD::LOAD: { 2912 LoadSDNode *LD = cast<LoadSDNode>(Op); 2913 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 2914 if (ISD::isNON_EXTLoad(LD) && Cst) { 2915 // Determine any common known bits from the loaded constant pool value. 2916 Type *CstTy = Cst->getType(); 2917 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 2918 // If its a vector splat, then we can (quickly) reuse the scalar path. 2919 // NOTE: We assume all elements match and none are UNDEF. 2920 if (CstTy->isVectorTy()) { 2921 if (const Constant *Splat = Cst->getSplatValue()) { 2922 Cst = Splat; 2923 CstTy = Cst->getType(); 2924 } 2925 } 2926 // TODO - do we need to handle different bitwidths? 2927 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 2928 // Iterate across all vector elements finding common known bits. 2929 Known.One.setAllBits(); 2930 Known.Zero.setAllBits(); 2931 for (unsigned i = 0; i != NumElts; ++i) { 2932 if (!DemandedElts[i]) 2933 continue; 2934 if (Constant *Elt = Cst->getAggregateElement(i)) { 2935 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 2936 const APInt &Value = CInt->getValue(); 2937 Known.One &= Value; 2938 Known.Zero &= ~Value; 2939 continue; 2940 } 2941 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 2942 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2943 Known.One &= Value; 2944 Known.Zero &= ~Value; 2945 continue; 2946 } 2947 } 2948 Known.One.clearAllBits(); 2949 Known.Zero.clearAllBits(); 2950 break; 2951 } 2952 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 2953 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 2954 const APInt &Value = CInt->getValue(); 2955 Known.One = Value; 2956 Known.Zero = ~Value; 2957 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 2958 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2959 Known.One = Value; 2960 Known.Zero = ~Value; 2961 } 2962 } 2963 } 2964 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2965 // If this is a ZEXTLoad and we are looking at the loaded value. 2966 EVT VT = LD->getMemoryVT(); 2967 unsigned MemBits = VT.getScalarSizeInBits(); 2968 Known.Zero.setBitsFrom(MemBits); 2969 } else if (const MDNode *Ranges = LD->getRanges()) { 2970 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2971 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2972 } 2973 break; 2974 } 2975 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2976 EVT InVT = Op.getOperand(0).getValueType(); 2977 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2978 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2979 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2980 break; 2981 } 2982 case ISD::ZERO_EXTEND: { 2983 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2984 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2985 break; 2986 } 2987 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2988 EVT InVT = Op.getOperand(0).getValueType(); 2989 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2990 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2991 // If the sign bit is known to be zero or one, then sext will extend 2992 // it to the top bits, else it will just zext. 2993 Known = Known.sext(BitWidth); 2994 break; 2995 } 2996 case ISD::SIGN_EXTEND: { 2997 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2998 // If the sign bit is known to be zero or one, then sext will extend 2999 // it to the top bits, else it will just zext. 3000 Known = Known.sext(BitWidth); 3001 break; 3002 } 3003 case ISD::ANY_EXTEND: { 3004 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3005 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3006 break; 3007 } 3008 case ISD::TRUNCATE: { 3009 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known = Known.trunc(BitWidth); 3011 break; 3012 } 3013 case ISD::AssertZext: { 3014 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3015 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3016 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3017 Known.Zero |= (~InMask); 3018 Known.One &= (~Known.Zero); 3019 break; 3020 } 3021 case ISD::FGETSIGN: 3022 // All bits are zero except the low bit. 3023 Known.Zero.setBitsFrom(1); 3024 break; 3025 case ISD::USUBO: 3026 case ISD::SSUBO: 3027 if (Op.getResNo() == 1) { 3028 // If we know the result of a setcc has the top bits zero, use this info. 3029 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3030 TargetLowering::ZeroOrOneBooleanContent && 3031 BitWidth > 1) 3032 Known.Zero.setBitsFrom(1); 3033 break; 3034 } 3035 LLVM_FALLTHROUGH; 3036 case ISD::SUB: 3037 case ISD::SUBC: { 3038 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3040 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3041 Known, Known2); 3042 break; 3043 } 3044 case ISD::UADDO: 3045 case ISD::SADDO: 3046 case ISD::ADDCARRY: 3047 if (Op.getResNo() == 1) { 3048 // If we know the result of a setcc has the top bits zero, use this info. 3049 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3050 TargetLowering::ZeroOrOneBooleanContent && 3051 BitWidth > 1) 3052 Known.Zero.setBitsFrom(1); 3053 break; 3054 } 3055 LLVM_FALLTHROUGH; 3056 case ISD::ADD: 3057 case ISD::ADDC: 3058 case ISD::ADDE: { 3059 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3060 3061 // With ADDE and ADDCARRY, a carry bit may be added in. 3062 KnownBits Carry(1); 3063 if (Opcode == ISD::ADDE) 3064 // Can't track carry from glue, set carry to unknown. 3065 Carry.resetAll(); 3066 else if (Opcode == ISD::ADDCARRY) 3067 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3068 // the trouble (how often will we find a known carry bit). And I haven't 3069 // tested this very much yet, but something like this might work: 3070 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3071 // Carry = Carry.zextOrTrunc(1, false); 3072 Carry.resetAll(); 3073 else 3074 Carry.setAllZero(); 3075 3076 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3077 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3078 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3079 break; 3080 } 3081 case ISD::SREM: 3082 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3083 const APInt &RA = Rem->getAPIntValue().abs(); 3084 if (RA.isPowerOf2()) { 3085 APInt LowBits = RA - 1; 3086 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3087 3088 // The low bits of the first operand are unchanged by the srem. 3089 Known.Zero = Known2.Zero & LowBits; 3090 Known.One = Known2.One & LowBits; 3091 3092 // If the first operand is non-negative or has all low bits zero, then 3093 // the upper bits are all zero. 3094 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3095 Known.Zero |= ~LowBits; 3096 3097 // If the first operand is negative and not all low bits are zero, then 3098 // the upper bits are all one. 3099 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3100 Known.One |= ~LowBits; 3101 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3102 } 3103 } 3104 break; 3105 case ISD::UREM: { 3106 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3107 const APInt &RA = Rem->getAPIntValue(); 3108 if (RA.isPowerOf2()) { 3109 APInt LowBits = (RA - 1); 3110 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3111 3112 // The upper bits are all zero, the lower ones are unchanged. 3113 Known.Zero = Known2.Zero | ~LowBits; 3114 Known.One = Known2.One & LowBits; 3115 break; 3116 } 3117 } 3118 3119 // Since the result is less than or equal to either operand, any leading 3120 // zero bits in either operand must also exist in the result. 3121 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3122 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3123 3124 uint32_t Leaders = 3125 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3126 Known.resetAll(); 3127 Known.Zero.setHighBits(Leaders); 3128 break; 3129 } 3130 case ISD::EXTRACT_ELEMENT: { 3131 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3132 const unsigned Index = Op.getConstantOperandVal(1); 3133 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3134 3135 // Remove low part of known bits mask 3136 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3137 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3138 3139 // Remove high part of known bit mask 3140 Known = Known.trunc(EltBitWidth); 3141 break; 3142 } 3143 case ISD::EXTRACT_VECTOR_ELT: { 3144 SDValue InVec = Op.getOperand(0); 3145 SDValue EltNo = Op.getOperand(1); 3146 EVT VecVT = InVec.getValueType(); 3147 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3148 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3149 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3150 // anything about the extended bits. 3151 if (BitWidth > EltBitWidth) 3152 Known = Known.trunc(EltBitWidth); 3153 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3154 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3155 // If we know the element index, just demand that vector element. 3156 unsigned Idx = ConstEltNo->getZExtValue(); 3157 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3158 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3159 } else { 3160 // Unknown element index, so ignore DemandedElts and demand them all. 3161 Known = computeKnownBits(InVec, Depth + 1); 3162 } 3163 if (BitWidth > EltBitWidth) 3164 Known = Known.zext(BitWidth, false /* => any extend */); 3165 break; 3166 } 3167 case ISD::INSERT_VECTOR_ELT: { 3168 SDValue InVec = Op.getOperand(0); 3169 SDValue InVal = Op.getOperand(1); 3170 SDValue EltNo = Op.getOperand(2); 3171 3172 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3173 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3174 // If we know the element index, split the demand between the 3175 // source vector and the inserted element. 3176 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3177 unsigned EltIdx = CEltNo->getZExtValue(); 3178 3179 // If we demand the inserted element then add its common known bits. 3180 if (DemandedElts[EltIdx]) { 3181 Known2 = computeKnownBits(InVal, Depth + 1); 3182 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3183 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3184 } 3185 3186 // If we demand the source vector then add its common known bits, ensuring 3187 // that we don't demand the inserted element. 3188 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3189 if (!!VectorElts) { 3190 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3191 Known.One &= Known2.One; 3192 Known.Zero &= Known2.Zero; 3193 } 3194 } else { 3195 // Unknown element index, so ignore DemandedElts and demand them all. 3196 Known = computeKnownBits(InVec, Depth + 1); 3197 Known2 = computeKnownBits(InVal, Depth + 1); 3198 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3199 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3200 } 3201 break; 3202 } 3203 case ISD::BITREVERSE: { 3204 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3205 Known.Zero = Known2.Zero.reverseBits(); 3206 Known.One = Known2.One.reverseBits(); 3207 break; 3208 } 3209 case ISD::BSWAP: { 3210 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3211 Known.Zero = Known2.Zero.byteSwap(); 3212 Known.One = Known2.One.byteSwap(); 3213 break; 3214 } 3215 case ISD::ABS: { 3216 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3217 3218 // If the source's MSB is zero then we know the rest of the bits already. 3219 if (Known2.isNonNegative()) { 3220 Known.Zero = Known2.Zero; 3221 Known.One = Known2.One; 3222 break; 3223 } 3224 3225 // We only know that the absolute values's MSB will be zero iff there is 3226 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3227 Known2.One.clearSignBit(); 3228 if (Known2.One.getBoolValue()) { 3229 Known.Zero = APInt::getSignMask(BitWidth); 3230 break; 3231 } 3232 break; 3233 } 3234 case ISD::UMIN: { 3235 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3236 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3237 3238 // UMIN - we know that the result will have the maximum of the 3239 // known zero leading bits of the inputs. 3240 unsigned LeadZero = Known.countMinLeadingZeros(); 3241 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3242 3243 Known.Zero &= Known2.Zero; 3244 Known.One &= Known2.One; 3245 Known.Zero.setHighBits(LeadZero); 3246 break; 3247 } 3248 case ISD::UMAX: { 3249 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3250 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3251 3252 // UMAX - we know that the result will have the maximum of the 3253 // known one leading bits of the inputs. 3254 unsigned LeadOne = Known.countMinLeadingOnes(); 3255 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3256 3257 Known.Zero &= Known2.Zero; 3258 Known.One &= Known2.One; 3259 Known.One.setHighBits(LeadOne); 3260 break; 3261 } 3262 case ISD::SMIN: 3263 case ISD::SMAX: { 3264 // If we have a clamp pattern, we know that the number of sign bits will be 3265 // the minimum of the clamp min/max range. 3266 bool IsMax = (Opcode == ISD::SMAX); 3267 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3268 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3269 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3270 CstHigh = 3271 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3272 if (CstLow && CstHigh) { 3273 if (!IsMax) 3274 std::swap(CstLow, CstHigh); 3275 3276 const APInt &ValueLow = CstLow->getAPIntValue(); 3277 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3278 if (ValueLow.sle(ValueHigh)) { 3279 unsigned LowSignBits = ValueLow.getNumSignBits(); 3280 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3281 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3282 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3283 Known.One.setHighBits(MinSignBits); 3284 break; 3285 } 3286 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3287 Known.Zero.setHighBits(MinSignBits); 3288 break; 3289 } 3290 } 3291 } 3292 3293 // Fallback - just get the shared known bits of the operands. 3294 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3295 if (Known.isUnknown()) break; // Early-out 3296 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3297 Known.Zero &= Known2.Zero; 3298 Known.One &= Known2.One; 3299 break; 3300 } 3301 case ISD::FrameIndex: 3302 case ISD::TargetFrameIndex: 3303 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3304 break; 3305 3306 default: 3307 if (Opcode < ISD::BUILTIN_OP_END) 3308 break; 3309 LLVM_FALLTHROUGH; 3310 case ISD::INTRINSIC_WO_CHAIN: 3311 case ISD::INTRINSIC_W_CHAIN: 3312 case ISD::INTRINSIC_VOID: 3313 // Allow the target to implement this method for its nodes. 3314 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3315 break; 3316 } 3317 3318 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3319 return Known; 3320 } 3321 3322 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3323 SDValue N1) const { 3324 // X + 0 never overflow 3325 if (isNullConstant(N1)) 3326 return OFK_Never; 3327 3328 KnownBits N1Known = computeKnownBits(N1); 3329 if (N1Known.Zero.getBoolValue()) { 3330 KnownBits N0Known = computeKnownBits(N0); 3331 3332 bool overflow; 3333 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3334 if (!overflow) 3335 return OFK_Never; 3336 } 3337 3338 // mulhi + 1 never overflow 3339 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3340 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3341 return OFK_Never; 3342 3343 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3344 KnownBits N0Known = computeKnownBits(N0); 3345 3346 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3347 return OFK_Never; 3348 } 3349 3350 return OFK_Sometime; 3351 } 3352 3353 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3354 EVT OpVT = Val.getValueType(); 3355 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3356 3357 // Is the constant a known power of 2? 3358 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3359 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3360 3361 // A left-shift of a constant one will have exactly one bit set because 3362 // shifting the bit off the end is undefined. 3363 if (Val.getOpcode() == ISD::SHL) { 3364 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3365 if (C && C->getAPIntValue() == 1) 3366 return true; 3367 } 3368 3369 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3370 // one bit set. 3371 if (Val.getOpcode() == ISD::SRL) { 3372 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3373 if (C && C->getAPIntValue().isSignMask()) 3374 return true; 3375 } 3376 3377 // Are all operands of a build vector constant powers of two? 3378 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3379 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3380 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3381 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3382 return false; 3383 })) 3384 return true; 3385 3386 // More could be done here, though the above checks are enough 3387 // to handle some common cases. 3388 3389 // Fall back to computeKnownBits to catch other known cases. 3390 KnownBits Known = computeKnownBits(Val); 3391 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3392 } 3393 3394 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3395 EVT VT = Op.getValueType(); 3396 APInt DemandedElts = VT.isVector() 3397 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3398 : APInt(1, 1); 3399 return ComputeNumSignBits(Op, DemandedElts, Depth); 3400 } 3401 3402 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3403 unsigned Depth) const { 3404 EVT VT = Op.getValueType(); 3405 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3406 unsigned VTBits = VT.getScalarSizeInBits(); 3407 unsigned NumElts = DemandedElts.getBitWidth(); 3408 unsigned Tmp, Tmp2; 3409 unsigned FirstAnswer = 1; 3410 3411 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3412 const APInt &Val = C->getAPIntValue(); 3413 return Val.getNumSignBits(); 3414 } 3415 3416 if (Depth >= 6) 3417 return 1; // Limit search depth. 3418 3419 if (!DemandedElts) 3420 return 1; // No demanded elts, better to assume we don't know anything. 3421 3422 unsigned Opcode = Op.getOpcode(); 3423 switch (Opcode) { 3424 default: break; 3425 case ISD::AssertSext: 3426 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3427 return VTBits-Tmp+1; 3428 case ISD::AssertZext: 3429 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3430 return VTBits-Tmp; 3431 3432 case ISD::BUILD_VECTOR: 3433 Tmp = VTBits; 3434 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3435 if (!DemandedElts[i]) 3436 continue; 3437 3438 SDValue SrcOp = Op.getOperand(i); 3439 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3440 3441 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3442 if (SrcOp.getValueSizeInBits() != VTBits) { 3443 assert(SrcOp.getValueSizeInBits() > VTBits && 3444 "Expected BUILD_VECTOR implicit truncation"); 3445 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3446 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3447 } 3448 Tmp = std::min(Tmp, Tmp2); 3449 } 3450 return Tmp; 3451 3452 case ISD::VECTOR_SHUFFLE: { 3453 // Collect the minimum number of sign bits that are shared by every vector 3454 // element referenced by the shuffle. 3455 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3456 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3457 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3458 for (unsigned i = 0; i != NumElts; ++i) { 3459 int M = SVN->getMaskElt(i); 3460 if (!DemandedElts[i]) 3461 continue; 3462 // For UNDEF elements, we don't know anything about the common state of 3463 // the shuffle result. 3464 if (M < 0) 3465 return 1; 3466 if ((unsigned)M < NumElts) 3467 DemandedLHS.setBit((unsigned)M % NumElts); 3468 else 3469 DemandedRHS.setBit((unsigned)M % NumElts); 3470 } 3471 Tmp = std::numeric_limits<unsigned>::max(); 3472 if (!!DemandedLHS) 3473 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3474 if (!!DemandedRHS) { 3475 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3476 Tmp = std::min(Tmp, Tmp2); 3477 } 3478 // If we don't know anything, early out and try computeKnownBits fall-back. 3479 if (Tmp == 1) 3480 break; 3481 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3482 return Tmp; 3483 } 3484 3485 case ISD::BITCAST: { 3486 SDValue N0 = Op.getOperand(0); 3487 EVT SrcVT = N0.getValueType(); 3488 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3489 3490 // Ignore bitcasts from unsupported types.. 3491 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3492 break; 3493 3494 // Fast handling of 'identity' bitcasts. 3495 if (VTBits == SrcBits) 3496 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3497 3498 bool IsLE = getDataLayout().isLittleEndian(); 3499 3500 // Bitcast 'large element' scalar/vector to 'small element' vector. 3501 if ((SrcBits % VTBits) == 0) { 3502 assert(VT.isVector() && "Expected bitcast to vector"); 3503 3504 unsigned Scale = SrcBits / VTBits; 3505 APInt SrcDemandedElts(NumElts / Scale, 0); 3506 for (unsigned i = 0; i != NumElts; ++i) 3507 if (DemandedElts[i]) 3508 SrcDemandedElts.setBit(i / Scale); 3509 3510 // Fast case - sign splat can be simply split across the small elements. 3511 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3512 if (Tmp == SrcBits) 3513 return VTBits; 3514 3515 // Slow case - determine how far the sign extends into each sub-element. 3516 Tmp2 = VTBits; 3517 for (unsigned i = 0; i != NumElts; ++i) 3518 if (DemandedElts[i]) { 3519 unsigned SubOffset = i % Scale; 3520 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3521 SubOffset = SubOffset * VTBits; 3522 if (Tmp <= SubOffset) 3523 return 1; 3524 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3525 } 3526 return Tmp2; 3527 } 3528 break; 3529 } 3530 3531 case ISD::SIGN_EXTEND: 3532 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3533 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3534 case ISD::SIGN_EXTEND_INREG: 3535 // Max of the input and what this extends. 3536 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3537 Tmp = VTBits-Tmp+1; 3538 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3539 return std::max(Tmp, Tmp2); 3540 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3541 SDValue Src = Op.getOperand(0); 3542 EVT SrcVT = Src.getValueType(); 3543 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3544 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3545 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3546 } 3547 3548 case ISD::SRA: 3549 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3550 // SRA X, C -> adds C sign bits. 3551 if (ConstantSDNode *C = 3552 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3553 APInt ShiftVal = C->getAPIntValue(); 3554 ShiftVal += Tmp; 3555 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3556 } 3557 return Tmp; 3558 case ISD::SHL: 3559 if (ConstantSDNode *C = 3560 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3561 // shl destroys sign bits. 3562 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3563 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3564 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3565 return Tmp - C->getZExtValue(); 3566 } 3567 break; 3568 case ISD::AND: 3569 case ISD::OR: 3570 case ISD::XOR: // NOT is handled here. 3571 // Logical binary ops preserve the number of sign bits at the worst. 3572 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3573 if (Tmp != 1) { 3574 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3575 FirstAnswer = std::min(Tmp, Tmp2); 3576 // We computed what we know about the sign bits as our first 3577 // answer. Now proceed to the generic code that uses 3578 // computeKnownBits, and pick whichever answer is better. 3579 } 3580 break; 3581 3582 case ISD::SELECT: 3583 case ISD::VSELECT: 3584 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3585 if (Tmp == 1) return 1; // Early out. 3586 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3587 return std::min(Tmp, Tmp2); 3588 case ISD::SELECT_CC: 3589 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3590 if (Tmp == 1) return 1; // Early out. 3591 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3592 return std::min(Tmp, Tmp2); 3593 3594 case ISD::SMIN: 3595 case ISD::SMAX: { 3596 // If we have a clamp pattern, we know that the number of sign bits will be 3597 // the minimum of the clamp min/max range. 3598 bool IsMax = (Opcode == ISD::SMAX); 3599 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3600 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3601 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3602 CstHigh = 3603 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3604 if (CstLow && CstHigh) { 3605 if (!IsMax) 3606 std::swap(CstLow, CstHigh); 3607 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3608 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3609 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3610 return std::min(Tmp, Tmp2); 3611 } 3612 } 3613 3614 // Fallback - just get the minimum number of sign bits of the operands. 3615 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3616 if (Tmp == 1) 3617 return 1; // Early out. 3618 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3619 return std::min(Tmp, Tmp2); 3620 } 3621 case ISD::UMIN: 3622 case ISD::UMAX: 3623 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3624 if (Tmp == 1) 3625 return 1; // Early out. 3626 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3627 return std::min(Tmp, Tmp2); 3628 case ISD::SADDO: 3629 case ISD::UADDO: 3630 case ISD::SSUBO: 3631 case ISD::USUBO: 3632 case ISD::SMULO: 3633 case ISD::UMULO: 3634 if (Op.getResNo() != 1) 3635 break; 3636 // The boolean result conforms to getBooleanContents. Fall through. 3637 // If setcc returns 0/-1, all bits are sign bits. 3638 // We know that we have an integer-based boolean since these operations 3639 // are only available for integer. 3640 if (TLI->getBooleanContents(VT.isVector(), false) == 3641 TargetLowering::ZeroOrNegativeOneBooleanContent) 3642 return VTBits; 3643 break; 3644 case ISD::SETCC: 3645 // If setcc returns 0/-1, all bits are sign bits. 3646 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3647 TargetLowering::ZeroOrNegativeOneBooleanContent) 3648 return VTBits; 3649 break; 3650 case ISD::ROTL: 3651 case ISD::ROTR: 3652 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3653 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3654 3655 // Handle rotate right by N like a rotate left by 32-N. 3656 if (Opcode == ISD::ROTR) 3657 RotAmt = (VTBits - RotAmt) % VTBits; 3658 3659 // If we aren't rotating out all of the known-in sign bits, return the 3660 // number that are left. This handles rotl(sext(x), 1) for example. 3661 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3662 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3663 } 3664 break; 3665 case ISD::ADD: 3666 case ISD::ADDC: 3667 // Add can have at most one carry bit. Thus we know that the output 3668 // is, at worst, one more bit than the inputs. 3669 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3670 if (Tmp == 1) return 1; // Early out. 3671 3672 // Special case decrementing a value (ADD X, -1): 3673 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3674 if (CRHS->isAllOnesValue()) { 3675 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3676 3677 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3678 // sign bits set. 3679 if ((Known.Zero | 1).isAllOnesValue()) 3680 return VTBits; 3681 3682 // If we are subtracting one from a positive number, there is no carry 3683 // out of the result. 3684 if (Known.isNonNegative()) 3685 return Tmp; 3686 } 3687 3688 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3689 if (Tmp2 == 1) return 1; 3690 return std::min(Tmp, Tmp2)-1; 3691 3692 case ISD::SUB: 3693 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3694 if (Tmp2 == 1) return 1; 3695 3696 // Handle NEG. 3697 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3698 if (CLHS->isNullValue()) { 3699 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3700 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3701 // sign bits set. 3702 if ((Known.Zero | 1).isAllOnesValue()) 3703 return VTBits; 3704 3705 // If the input is known to be positive (the sign bit is known clear), 3706 // the output of the NEG has the same number of sign bits as the input. 3707 if (Known.isNonNegative()) 3708 return Tmp2; 3709 3710 // Otherwise, we treat this like a SUB. 3711 } 3712 3713 // Sub can have at most one carry bit. Thus we know that the output 3714 // is, at worst, one more bit than the inputs. 3715 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3716 if (Tmp == 1) return 1; // Early out. 3717 return std::min(Tmp, Tmp2)-1; 3718 case ISD::TRUNCATE: { 3719 // Check if the sign bits of source go down as far as the truncated value. 3720 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3721 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3722 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3723 return NumSrcSignBits - (NumSrcBits - VTBits); 3724 break; 3725 } 3726 case ISD::EXTRACT_ELEMENT: { 3727 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3728 const int BitWidth = Op.getValueSizeInBits(); 3729 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3730 3731 // Get reverse index (starting from 1), Op1 value indexes elements from 3732 // little end. Sign starts at big end. 3733 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3734 3735 // If the sign portion ends in our element the subtraction gives correct 3736 // result. Otherwise it gives either negative or > bitwidth result 3737 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3738 } 3739 case ISD::INSERT_VECTOR_ELT: { 3740 SDValue InVec = Op.getOperand(0); 3741 SDValue InVal = Op.getOperand(1); 3742 SDValue EltNo = Op.getOperand(2); 3743 3744 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3745 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3746 // If we know the element index, split the demand between the 3747 // source vector and the inserted element. 3748 unsigned EltIdx = CEltNo->getZExtValue(); 3749 3750 // If we demand the inserted element then get its sign bits. 3751 Tmp = std::numeric_limits<unsigned>::max(); 3752 if (DemandedElts[EltIdx]) { 3753 // TODO - handle implicit truncation of inserted elements. 3754 if (InVal.getScalarValueSizeInBits() != VTBits) 3755 break; 3756 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3757 } 3758 3759 // If we demand the source vector then get its sign bits, and determine 3760 // the minimum. 3761 APInt VectorElts = DemandedElts; 3762 VectorElts.clearBit(EltIdx); 3763 if (!!VectorElts) { 3764 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3765 Tmp = std::min(Tmp, Tmp2); 3766 } 3767 } else { 3768 // Unknown element index, so ignore DemandedElts and demand them all. 3769 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3770 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3771 Tmp = std::min(Tmp, Tmp2); 3772 } 3773 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3774 return Tmp; 3775 } 3776 case ISD::EXTRACT_VECTOR_ELT: { 3777 SDValue InVec = Op.getOperand(0); 3778 SDValue EltNo = Op.getOperand(1); 3779 EVT VecVT = InVec.getValueType(); 3780 const unsigned BitWidth = Op.getValueSizeInBits(); 3781 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3782 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3783 3784 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3785 // anything about sign bits. But if the sizes match we can derive knowledge 3786 // about sign bits from the vector operand. 3787 if (BitWidth != EltBitWidth) 3788 break; 3789 3790 // If we know the element index, just demand that vector element, else for 3791 // an unknown element index, ignore DemandedElts and demand them all. 3792 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3793 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3794 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3795 DemandedSrcElts = 3796 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3797 3798 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3799 } 3800 case ISD::EXTRACT_SUBVECTOR: { 3801 // If we know the element index, just demand that subvector elements, 3802 // otherwise demand them all. 3803 SDValue Src = Op.getOperand(0); 3804 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3805 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3806 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3807 // Offset the demanded elts by the subvector index. 3808 uint64_t Idx = SubIdx->getZExtValue(); 3809 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3810 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3811 } 3812 return ComputeNumSignBits(Src, Depth + 1); 3813 } 3814 case ISD::CONCAT_VECTORS: { 3815 // Determine the minimum number of sign bits across all demanded 3816 // elts of the input vectors. Early out if the result is already 1. 3817 Tmp = std::numeric_limits<unsigned>::max(); 3818 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3819 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3820 unsigned NumSubVectors = Op.getNumOperands(); 3821 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3822 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3823 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3824 if (!DemandedSub) 3825 continue; 3826 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3827 Tmp = std::min(Tmp, Tmp2); 3828 } 3829 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3830 return Tmp; 3831 } 3832 case ISD::INSERT_SUBVECTOR: { 3833 // If we know the element index, demand any elements from the subvector and 3834 // the remainder from the src its inserted into, otherwise demand them all. 3835 SDValue Src = Op.getOperand(0); 3836 SDValue Sub = Op.getOperand(1); 3837 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3838 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3839 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3840 Tmp = std::numeric_limits<unsigned>::max(); 3841 uint64_t Idx = SubIdx->getZExtValue(); 3842 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3843 if (!!DemandedSubElts) { 3844 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3845 if (Tmp == 1) return 1; // early-out 3846 } 3847 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3848 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3849 if (!!DemandedSrcElts) { 3850 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3851 Tmp = std::min(Tmp, Tmp2); 3852 } 3853 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3854 return Tmp; 3855 } 3856 3857 // Not able to determine the index so just assume worst case. 3858 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3859 if (Tmp == 1) return 1; // early-out 3860 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3861 Tmp = std::min(Tmp, Tmp2); 3862 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3863 return Tmp; 3864 } 3865 } 3866 3867 // If we are looking at the loaded value of the SDNode. 3868 if (Op.getResNo() == 0) { 3869 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3870 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3871 unsigned ExtType = LD->getExtensionType(); 3872 switch (ExtType) { 3873 default: break; 3874 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3875 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3876 return VTBits - Tmp + 1; 3877 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3878 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3879 return VTBits - Tmp; 3880 case ISD::NON_EXTLOAD: 3881 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3882 // We only need to handle vectors - computeKnownBits should handle 3883 // scalar cases. 3884 Type *CstTy = Cst->getType(); 3885 if (CstTy->isVectorTy() && 3886 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3887 Tmp = VTBits; 3888 for (unsigned i = 0; i != NumElts; ++i) { 3889 if (!DemandedElts[i]) 3890 continue; 3891 if (Constant *Elt = Cst->getAggregateElement(i)) { 3892 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3893 const APInt &Value = CInt->getValue(); 3894 Tmp = std::min(Tmp, Value.getNumSignBits()); 3895 continue; 3896 } 3897 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3898 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3899 Tmp = std::min(Tmp, Value.getNumSignBits()); 3900 continue; 3901 } 3902 } 3903 // Unknown type. Conservatively assume no bits match sign bit. 3904 return 1; 3905 } 3906 return Tmp; 3907 } 3908 } 3909 break; 3910 } 3911 } 3912 } 3913 3914 // Allow the target to implement this method for its nodes. 3915 if (Opcode >= ISD::BUILTIN_OP_END || 3916 Opcode == ISD::INTRINSIC_WO_CHAIN || 3917 Opcode == ISD::INTRINSIC_W_CHAIN || 3918 Opcode == ISD::INTRINSIC_VOID) { 3919 unsigned NumBits = 3920 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3921 if (NumBits > 1) 3922 FirstAnswer = std::max(FirstAnswer, NumBits); 3923 } 3924 3925 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3926 // use this information. 3927 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3928 3929 APInt Mask; 3930 if (Known.isNonNegative()) { // sign bit is 0 3931 Mask = Known.Zero; 3932 } else if (Known.isNegative()) { // sign bit is 1; 3933 Mask = Known.One; 3934 } else { 3935 // Nothing known. 3936 return FirstAnswer; 3937 } 3938 3939 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3940 // the number of identical bits in the top of the input value. 3941 Mask = ~Mask; 3942 Mask <<= Mask.getBitWidth()-VTBits; 3943 // Return # leading zeros. We use 'min' here in case Val was zero before 3944 // shifting. We don't want to return '64' as for an i32 "0". 3945 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3946 } 3947 3948 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3949 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3950 !isa<ConstantSDNode>(Op.getOperand(1))) 3951 return false; 3952 3953 if (Op.getOpcode() == ISD::OR && 3954 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3955 return false; 3956 3957 return true; 3958 } 3959 3960 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3961 // If we're told that NaNs won't happen, assume they won't. 3962 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3963 return true; 3964 3965 if (Depth >= 6) 3966 return false; // Limit search depth. 3967 3968 // TODO: Handle vectors. 3969 // If the value is a constant, we can obviously see if it is a NaN or not. 3970 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3971 return !C->getValueAPF().isNaN() || 3972 (SNaN && !C->getValueAPF().isSignaling()); 3973 } 3974 3975 unsigned Opcode = Op.getOpcode(); 3976 switch (Opcode) { 3977 case ISD::FADD: 3978 case ISD::FSUB: 3979 case ISD::FMUL: 3980 case ISD::FDIV: 3981 case ISD::FREM: 3982 case ISD::FSIN: 3983 case ISD::FCOS: { 3984 if (SNaN) 3985 return true; 3986 // TODO: Need isKnownNeverInfinity 3987 return false; 3988 } 3989 case ISD::FCANONICALIZE: 3990 case ISD::FEXP: 3991 case ISD::FEXP2: 3992 case ISD::FTRUNC: 3993 case ISD::FFLOOR: 3994 case ISD::FCEIL: 3995 case ISD::FROUND: 3996 case ISD::FRINT: 3997 case ISD::FNEARBYINT: { 3998 if (SNaN) 3999 return true; 4000 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4001 } 4002 case ISD::FABS: 4003 case ISD::FNEG: 4004 case ISD::FCOPYSIGN: { 4005 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4006 } 4007 case ISD::SELECT: 4008 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4009 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4010 case ISD::FP_EXTEND: 4011 case ISD::FP_ROUND: { 4012 if (SNaN) 4013 return true; 4014 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4015 } 4016 case ISD::SINT_TO_FP: 4017 case ISD::UINT_TO_FP: 4018 return true; 4019 case ISD::FMA: 4020 case ISD::FMAD: { 4021 if (SNaN) 4022 return true; 4023 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4024 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4025 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4026 } 4027 case ISD::FSQRT: // Need is known positive 4028 case ISD::FLOG: 4029 case ISD::FLOG2: 4030 case ISD::FLOG10: 4031 case ISD::FPOWI: 4032 case ISD::FPOW: { 4033 if (SNaN) 4034 return true; 4035 // TODO: Refine on operand 4036 return false; 4037 } 4038 case ISD::FMINNUM: 4039 case ISD::FMAXNUM: { 4040 // Only one needs to be known not-nan, since it will be returned if the 4041 // other ends up being one. 4042 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4043 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4044 } 4045 case ISD::FMINNUM_IEEE: 4046 case ISD::FMAXNUM_IEEE: { 4047 if (SNaN) 4048 return true; 4049 // This can return a NaN if either operand is an sNaN, or if both operands 4050 // are NaN. 4051 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4052 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4053 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4054 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4055 } 4056 case ISD::FMINIMUM: 4057 case ISD::FMAXIMUM: { 4058 // TODO: Does this quiet or return the origina NaN as-is? 4059 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4060 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4061 } 4062 case ISD::EXTRACT_VECTOR_ELT: { 4063 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4064 } 4065 default: 4066 if (Opcode >= ISD::BUILTIN_OP_END || 4067 Opcode == ISD::INTRINSIC_WO_CHAIN || 4068 Opcode == ISD::INTRINSIC_W_CHAIN || 4069 Opcode == ISD::INTRINSIC_VOID) { 4070 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4071 } 4072 4073 return false; 4074 } 4075 } 4076 4077 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4078 assert(Op.getValueType().isFloatingPoint() && 4079 "Floating point type expected"); 4080 4081 // If the value is a constant, we can obviously see if it is a zero or not. 4082 // TODO: Add BuildVector support. 4083 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4084 return !C->isZero(); 4085 return false; 4086 } 4087 4088 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4089 assert(!Op.getValueType().isFloatingPoint() && 4090 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4091 4092 // If the value is a constant, we can obviously see if it is a zero or not. 4093 if (ISD::matchUnaryPredicate( 4094 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4095 return true; 4096 4097 // TODO: Recognize more cases here. 4098 switch (Op.getOpcode()) { 4099 default: break; 4100 case ISD::OR: 4101 if (isKnownNeverZero(Op.getOperand(1)) || 4102 isKnownNeverZero(Op.getOperand(0))) 4103 return true; 4104 break; 4105 } 4106 4107 return false; 4108 } 4109 4110 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4111 // Check the obvious case. 4112 if (A == B) return true; 4113 4114 // For for negative and positive zero. 4115 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4116 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4117 if (CA->isZero() && CB->isZero()) return true; 4118 4119 // Otherwise they may not be equal. 4120 return false; 4121 } 4122 4123 // FIXME: unify with llvm::haveNoCommonBitsSet. 4124 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4125 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4126 assert(A.getValueType() == B.getValueType() && 4127 "Values must have the same type"); 4128 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4129 } 4130 4131 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4132 ArrayRef<SDValue> Ops, 4133 SelectionDAG &DAG) { 4134 int NumOps = Ops.size(); 4135 assert(NumOps != 0 && "Can't build an empty vector!"); 4136 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4137 "Incorrect element count in BUILD_VECTOR!"); 4138 4139 // BUILD_VECTOR of UNDEFs is UNDEF. 4140 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4141 return DAG.getUNDEF(VT); 4142 4143 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4144 SDValue IdentitySrc; 4145 bool IsIdentity = true; 4146 for (int i = 0; i != NumOps; ++i) { 4147 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4148 Ops[i].getOperand(0).getValueType() != VT || 4149 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4150 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4151 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4152 IsIdentity = false; 4153 break; 4154 } 4155 IdentitySrc = Ops[i].getOperand(0); 4156 } 4157 if (IsIdentity) 4158 return IdentitySrc; 4159 4160 return SDValue(); 4161 } 4162 4163 /// Try to simplify vector concatenation to an input value, undef, or build 4164 /// vector. 4165 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4166 ArrayRef<SDValue> Ops, 4167 SelectionDAG &DAG) { 4168 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4169 assert(llvm::all_of(Ops, 4170 [Ops](SDValue Op) { 4171 return Ops[0].getValueType() == Op.getValueType(); 4172 }) && 4173 "Concatenation of vectors with inconsistent value types!"); 4174 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4175 VT.getVectorNumElements() && 4176 "Incorrect element count in vector concatenation!"); 4177 4178 if (Ops.size() == 1) 4179 return Ops[0]; 4180 4181 // Concat of UNDEFs is UNDEF. 4182 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4183 return DAG.getUNDEF(VT); 4184 4185 // Scan the operands and look for extract operations from a single source 4186 // that correspond to insertion at the same location via this concatenation: 4187 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4188 SDValue IdentitySrc; 4189 bool IsIdentity = true; 4190 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4191 SDValue Op = Ops[i]; 4192 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4193 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4194 Op.getOperand(0).getValueType() != VT || 4195 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4196 !isa<ConstantSDNode>(Op.getOperand(1)) || 4197 Op.getConstantOperandVal(1) != IdentityIndex) { 4198 IsIdentity = false; 4199 break; 4200 } 4201 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4202 "Unexpected identity source vector for concat of extracts"); 4203 IdentitySrc = Op.getOperand(0); 4204 } 4205 if (IsIdentity) { 4206 assert(IdentitySrc && "Failed to set source vector of extracts"); 4207 return IdentitySrc; 4208 } 4209 4210 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4211 // simplified to one big BUILD_VECTOR. 4212 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4213 EVT SVT = VT.getScalarType(); 4214 SmallVector<SDValue, 16> Elts; 4215 for (SDValue Op : Ops) { 4216 EVT OpVT = Op.getValueType(); 4217 if (Op.isUndef()) 4218 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4219 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4220 Elts.append(Op->op_begin(), Op->op_end()); 4221 else 4222 return SDValue(); 4223 } 4224 4225 // BUILD_VECTOR requires all inputs to be of the same type, find the 4226 // maximum type and extend them all. 4227 for (SDValue Op : Elts) 4228 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4229 4230 if (SVT.bitsGT(VT.getScalarType())) 4231 for (SDValue &Op : Elts) 4232 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4233 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4234 : DAG.getSExtOrTrunc(Op, DL, SVT); 4235 4236 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4237 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4238 return V; 4239 } 4240 4241 /// Gets or creates the specified node. 4242 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4243 FoldingSetNodeID ID; 4244 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4245 void *IP = nullptr; 4246 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4247 return SDValue(E, 0); 4248 4249 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4250 getVTList(VT)); 4251 CSEMap.InsertNode(N, IP); 4252 4253 InsertNode(N); 4254 SDValue V = SDValue(N, 0); 4255 NewSDValueDbgMsg(V, "Creating new node: ", this); 4256 return V; 4257 } 4258 4259 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4260 SDValue Operand, const SDNodeFlags Flags) { 4261 // Constant fold unary operations with an integer constant operand. Even 4262 // opaque constant will be folded, because the folding of unary operations 4263 // doesn't create new constants with different values. Nevertheless, the 4264 // opaque flag is preserved during folding to prevent future folding with 4265 // other constants. 4266 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4267 const APInt &Val = C->getAPIntValue(); 4268 switch (Opcode) { 4269 default: break; 4270 case ISD::SIGN_EXTEND: 4271 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4272 C->isTargetOpcode(), C->isOpaque()); 4273 case ISD::TRUNCATE: 4274 if (C->isOpaque()) 4275 break; 4276 LLVM_FALLTHROUGH; 4277 case ISD::ANY_EXTEND: 4278 case ISD::ZERO_EXTEND: 4279 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4280 C->isTargetOpcode(), C->isOpaque()); 4281 case ISD::UINT_TO_FP: 4282 case ISD::SINT_TO_FP: { 4283 APFloat apf(EVTToAPFloatSemantics(VT), 4284 APInt::getNullValue(VT.getSizeInBits())); 4285 (void)apf.convertFromAPInt(Val, 4286 Opcode==ISD::SINT_TO_FP, 4287 APFloat::rmNearestTiesToEven); 4288 return getConstantFP(apf, DL, VT); 4289 } 4290 case ISD::BITCAST: 4291 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4292 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4293 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4294 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4295 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4296 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4297 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4298 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4299 break; 4300 case ISD::ABS: 4301 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4302 C->isOpaque()); 4303 case ISD::BITREVERSE: 4304 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4305 C->isOpaque()); 4306 case ISD::BSWAP: 4307 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4308 C->isOpaque()); 4309 case ISD::CTPOP: 4310 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4311 C->isOpaque()); 4312 case ISD::CTLZ: 4313 case ISD::CTLZ_ZERO_UNDEF: 4314 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4315 C->isOpaque()); 4316 case ISD::CTTZ: 4317 case ISD::CTTZ_ZERO_UNDEF: 4318 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4319 C->isOpaque()); 4320 case ISD::FP16_TO_FP: { 4321 bool Ignored; 4322 APFloat FPV(APFloat::IEEEhalf(), 4323 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4324 4325 // This can return overflow, underflow, or inexact; we don't care. 4326 // FIXME need to be more flexible about rounding mode. 4327 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4328 APFloat::rmNearestTiesToEven, &Ignored); 4329 return getConstantFP(FPV, DL, VT); 4330 } 4331 } 4332 } 4333 4334 // Constant fold unary operations with a floating point constant operand. 4335 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4336 APFloat V = C->getValueAPF(); // make copy 4337 switch (Opcode) { 4338 case ISD::FNEG: 4339 V.changeSign(); 4340 return getConstantFP(V, DL, VT); 4341 case ISD::FABS: 4342 V.clearSign(); 4343 return getConstantFP(V, DL, VT); 4344 case ISD::FCEIL: { 4345 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4346 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4347 return getConstantFP(V, DL, VT); 4348 break; 4349 } 4350 case ISD::FTRUNC: { 4351 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4352 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4353 return getConstantFP(V, DL, VT); 4354 break; 4355 } 4356 case ISD::FFLOOR: { 4357 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4358 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4359 return getConstantFP(V, DL, VT); 4360 break; 4361 } 4362 case ISD::FP_EXTEND: { 4363 bool ignored; 4364 // This can return overflow, underflow, or inexact; we don't care. 4365 // FIXME need to be more flexible about rounding mode. 4366 (void)V.convert(EVTToAPFloatSemantics(VT), 4367 APFloat::rmNearestTiesToEven, &ignored); 4368 return getConstantFP(V, DL, VT); 4369 } 4370 case ISD::FP_TO_SINT: 4371 case ISD::FP_TO_UINT: { 4372 bool ignored; 4373 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4374 // FIXME need to be more flexible about rounding mode. 4375 APFloat::opStatus s = 4376 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4377 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4378 break; 4379 return getConstant(IntVal, DL, VT); 4380 } 4381 case ISD::BITCAST: 4382 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4383 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4384 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4385 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4386 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4387 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4388 break; 4389 case ISD::FP_TO_FP16: { 4390 bool Ignored; 4391 // This can return overflow, underflow, or inexact; we don't care. 4392 // FIXME need to be more flexible about rounding mode. 4393 (void)V.convert(APFloat::IEEEhalf(), 4394 APFloat::rmNearestTiesToEven, &Ignored); 4395 return getConstant(V.bitcastToAPInt(), DL, VT); 4396 } 4397 } 4398 } 4399 4400 // Constant fold unary operations with a vector integer or float operand. 4401 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4402 if (BV->isConstant()) { 4403 switch (Opcode) { 4404 default: 4405 // FIXME: Entirely reasonable to perform folding of other unary 4406 // operations here as the need arises. 4407 break; 4408 case ISD::FNEG: 4409 case ISD::FABS: 4410 case ISD::FCEIL: 4411 case ISD::FTRUNC: 4412 case ISD::FFLOOR: 4413 case ISD::FP_EXTEND: 4414 case ISD::FP_TO_SINT: 4415 case ISD::FP_TO_UINT: 4416 case ISD::TRUNCATE: 4417 case ISD::ANY_EXTEND: 4418 case ISD::ZERO_EXTEND: 4419 case ISD::SIGN_EXTEND: 4420 case ISD::UINT_TO_FP: 4421 case ISD::SINT_TO_FP: 4422 case ISD::ABS: 4423 case ISD::BITREVERSE: 4424 case ISD::BSWAP: 4425 case ISD::CTLZ: 4426 case ISD::CTLZ_ZERO_UNDEF: 4427 case ISD::CTTZ: 4428 case ISD::CTTZ_ZERO_UNDEF: 4429 case ISD::CTPOP: { 4430 SDValue Ops = { Operand }; 4431 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4432 return Fold; 4433 } 4434 } 4435 } 4436 } 4437 4438 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4439 switch (Opcode) { 4440 case ISD::TokenFactor: 4441 case ISD::MERGE_VALUES: 4442 case ISD::CONCAT_VECTORS: 4443 return Operand; // Factor, merge or concat of one node? No need. 4444 case ISD::BUILD_VECTOR: { 4445 // Attempt to simplify BUILD_VECTOR. 4446 SDValue Ops[] = {Operand}; 4447 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4448 return V; 4449 break; 4450 } 4451 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4452 case ISD::FP_EXTEND: 4453 assert(VT.isFloatingPoint() && 4454 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4455 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4456 assert((!VT.isVector() || 4457 VT.getVectorNumElements() == 4458 Operand.getValueType().getVectorNumElements()) && 4459 "Vector element count mismatch!"); 4460 assert(Operand.getValueType().bitsLT(VT) && 4461 "Invalid fpext node, dst < src!"); 4462 if (Operand.isUndef()) 4463 return getUNDEF(VT); 4464 break; 4465 case ISD::FP_TO_SINT: 4466 case ISD::FP_TO_UINT: 4467 if (Operand.isUndef()) 4468 return getUNDEF(VT); 4469 break; 4470 case ISD::SINT_TO_FP: 4471 case ISD::UINT_TO_FP: 4472 // [us]itofp(undef) = 0, because the result value is bounded. 4473 if (Operand.isUndef()) 4474 return getConstantFP(0.0, DL, VT); 4475 break; 4476 case ISD::SIGN_EXTEND: 4477 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4478 "Invalid SIGN_EXTEND!"); 4479 assert(VT.isVector() == Operand.getValueType().isVector() && 4480 "SIGN_EXTEND result type type should be vector iff the operand " 4481 "type is vector!"); 4482 if (Operand.getValueType() == VT) return Operand; // noop extension 4483 assert((!VT.isVector() || 4484 VT.getVectorNumElements() == 4485 Operand.getValueType().getVectorNumElements()) && 4486 "Vector element count mismatch!"); 4487 assert(Operand.getValueType().bitsLT(VT) && 4488 "Invalid sext node, dst < src!"); 4489 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4490 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4491 else if (OpOpcode == ISD::UNDEF) 4492 // sext(undef) = 0, because the top bits will all be the same. 4493 return getConstant(0, DL, VT); 4494 break; 4495 case ISD::ZERO_EXTEND: 4496 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4497 "Invalid ZERO_EXTEND!"); 4498 assert(VT.isVector() == Operand.getValueType().isVector() && 4499 "ZERO_EXTEND result type type should be vector iff the operand " 4500 "type is vector!"); 4501 if (Operand.getValueType() == VT) return Operand; // noop extension 4502 assert((!VT.isVector() || 4503 VT.getVectorNumElements() == 4504 Operand.getValueType().getVectorNumElements()) && 4505 "Vector element count mismatch!"); 4506 assert(Operand.getValueType().bitsLT(VT) && 4507 "Invalid zext node, dst < src!"); 4508 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4509 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4510 else if (OpOpcode == ISD::UNDEF) 4511 // zext(undef) = 0, because the top bits will be zero. 4512 return getConstant(0, DL, VT); 4513 break; 4514 case ISD::ANY_EXTEND: 4515 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4516 "Invalid ANY_EXTEND!"); 4517 assert(VT.isVector() == Operand.getValueType().isVector() && 4518 "ANY_EXTEND result type type should be vector iff the operand " 4519 "type is vector!"); 4520 if (Operand.getValueType() == VT) return Operand; // noop extension 4521 assert((!VT.isVector() || 4522 VT.getVectorNumElements() == 4523 Operand.getValueType().getVectorNumElements()) && 4524 "Vector element count mismatch!"); 4525 assert(Operand.getValueType().bitsLT(VT) && 4526 "Invalid anyext node, dst < src!"); 4527 4528 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4529 OpOpcode == ISD::ANY_EXTEND) 4530 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4531 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4532 else if (OpOpcode == ISD::UNDEF) 4533 return getUNDEF(VT); 4534 4535 // (ext (trunc x)) -> x 4536 if (OpOpcode == ISD::TRUNCATE) { 4537 SDValue OpOp = Operand.getOperand(0); 4538 if (OpOp.getValueType() == VT) { 4539 transferDbgValues(Operand, OpOp); 4540 return OpOp; 4541 } 4542 } 4543 break; 4544 case ISD::TRUNCATE: 4545 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4546 "Invalid TRUNCATE!"); 4547 assert(VT.isVector() == Operand.getValueType().isVector() && 4548 "TRUNCATE result type type should be vector iff the operand " 4549 "type is vector!"); 4550 if (Operand.getValueType() == VT) return Operand; // noop truncate 4551 assert((!VT.isVector() || 4552 VT.getVectorNumElements() == 4553 Operand.getValueType().getVectorNumElements()) && 4554 "Vector element count mismatch!"); 4555 assert(Operand.getValueType().bitsGT(VT) && 4556 "Invalid truncate node, src < dst!"); 4557 if (OpOpcode == ISD::TRUNCATE) 4558 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4559 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4560 OpOpcode == ISD::ANY_EXTEND) { 4561 // If the source is smaller than the dest, we still need an extend. 4562 if (Operand.getOperand(0).getValueType().getScalarType() 4563 .bitsLT(VT.getScalarType())) 4564 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4565 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4566 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4567 return Operand.getOperand(0); 4568 } 4569 if (OpOpcode == ISD::UNDEF) 4570 return getUNDEF(VT); 4571 break; 4572 case ISD::ANY_EXTEND_VECTOR_INREG: 4573 case ISD::ZERO_EXTEND_VECTOR_INREG: 4574 case ISD::SIGN_EXTEND_VECTOR_INREG: 4575 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4576 assert(Operand.getValueType().bitsLE(VT) && 4577 "The input must be the same size or smaller than the result."); 4578 assert(VT.getVectorNumElements() < 4579 Operand.getValueType().getVectorNumElements() && 4580 "The destination vector type must have fewer lanes than the input."); 4581 break; 4582 case ISD::ABS: 4583 assert(VT.isInteger() && VT == Operand.getValueType() && 4584 "Invalid ABS!"); 4585 if (OpOpcode == ISD::UNDEF) 4586 return getUNDEF(VT); 4587 break; 4588 case ISD::BSWAP: 4589 assert(VT.isInteger() && VT == Operand.getValueType() && 4590 "Invalid BSWAP!"); 4591 assert((VT.getScalarSizeInBits() % 16 == 0) && 4592 "BSWAP types must be a multiple of 16 bits!"); 4593 if (OpOpcode == ISD::UNDEF) 4594 return getUNDEF(VT); 4595 break; 4596 case ISD::BITREVERSE: 4597 assert(VT.isInteger() && VT == Operand.getValueType() && 4598 "Invalid BITREVERSE!"); 4599 if (OpOpcode == ISD::UNDEF) 4600 return getUNDEF(VT); 4601 break; 4602 case ISD::BITCAST: 4603 // Basic sanity checking. 4604 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4605 "Cannot BITCAST between types of different sizes!"); 4606 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4607 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4608 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4609 if (OpOpcode == ISD::UNDEF) 4610 return getUNDEF(VT); 4611 break; 4612 case ISD::SCALAR_TO_VECTOR: 4613 assert(VT.isVector() && !Operand.getValueType().isVector() && 4614 (VT.getVectorElementType() == Operand.getValueType() || 4615 (VT.getVectorElementType().isInteger() && 4616 Operand.getValueType().isInteger() && 4617 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4618 "Illegal SCALAR_TO_VECTOR node!"); 4619 if (OpOpcode == ISD::UNDEF) 4620 return getUNDEF(VT); 4621 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4622 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4623 isa<ConstantSDNode>(Operand.getOperand(1)) && 4624 Operand.getConstantOperandVal(1) == 0 && 4625 Operand.getOperand(0).getValueType() == VT) 4626 return Operand.getOperand(0); 4627 break; 4628 case ISD::FNEG: 4629 // Negation of an unknown bag of bits is still completely undefined. 4630 if (OpOpcode == ISD::UNDEF) 4631 return getUNDEF(VT); 4632 4633 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4634 if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 4635 OpOpcode == ISD::FSUB) 4636 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4637 Operand.getOperand(0), Flags); 4638 if (OpOpcode == ISD::FNEG) // --X -> X 4639 return Operand.getOperand(0); 4640 break; 4641 case ISD::FABS: 4642 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4643 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4644 break; 4645 } 4646 4647 SDNode *N; 4648 SDVTList VTs = getVTList(VT); 4649 SDValue Ops[] = {Operand}; 4650 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4651 FoldingSetNodeID ID; 4652 AddNodeIDNode(ID, Opcode, VTs, Ops); 4653 void *IP = nullptr; 4654 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4655 E->intersectFlagsWith(Flags); 4656 return SDValue(E, 0); 4657 } 4658 4659 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4660 N->setFlags(Flags); 4661 createOperands(N, Ops); 4662 CSEMap.InsertNode(N, IP); 4663 } else { 4664 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4665 createOperands(N, Ops); 4666 } 4667 4668 InsertNode(N); 4669 SDValue V = SDValue(N, 0); 4670 NewSDValueDbgMsg(V, "Creating new node: ", this); 4671 return V; 4672 } 4673 4674 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4675 const APInt &C2) { 4676 switch (Opcode) { 4677 case ISD::ADD: return std::make_pair(C1 + C2, true); 4678 case ISD::SUB: return std::make_pair(C1 - C2, true); 4679 case ISD::MUL: return std::make_pair(C1 * C2, true); 4680 case ISD::AND: return std::make_pair(C1 & C2, true); 4681 case ISD::OR: return std::make_pair(C1 | C2, true); 4682 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4683 case ISD::SHL: return std::make_pair(C1 << C2, true); 4684 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4685 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4686 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4687 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4688 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4689 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4690 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4691 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4692 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4693 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4694 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4695 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4696 case ISD::UDIV: 4697 if (!C2.getBoolValue()) 4698 break; 4699 return std::make_pair(C1.udiv(C2), true); 4700 case ISD::UREM: 4701 if (!C2.getBoolValue()) 4702 break; 4703 return std::make_pair(C1.urem(C2), true); 4704 case ISD::SDIV: 4705 if (!C2.getBoolValue()) 4706 break; 4707 return std::make_pair(C1.sdiv(C2), true); 4708 case ISD::SREM: 4709 if (!C2.getBoolValue()) 4710 break; 4711 return std::make_pair(C1.srem(C2), true); 4712 } 4713 return std::make_pair(APInt(1, 0), false); 4714 } 4715 4716 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4717 EVT VT, const ConstantSDNode *C1, 4718 const ConstantSDNode *C2) { 4719 if (C1->isOpaque() || C2->isOpaque()) 4720 return SDValue(); 4721 4722 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4723 C2->getAPIntValue()); 4724 if (!Folded.second) 4725 return SDValue(); 4726 return getConstant(Folded.first, DL, VT); 4727 } 4728 4729 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4730 const GlobalAddressSDNode *GA, 4731 const SDNode *N2) { 4732 if (GA->getOpcode() != ISD::GlobalAddress) 4733 return SDValue(); 4734 if (!TLI->isOffsetFoldingLegal(GA)) 4735 return SDValue(); 4736 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4737 if (!C2) 4738 return SDValue(); 4739 int64_t Offset = C2->getSExtValue(); 4740 switch (Opcode) { 4741 case ISD::ADD: break; 4742 case ISD::SUB: Offset = -uint64_t(Offset); break; 4743 default: return SDValue(); 4744 } 4745 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4746 GA->getOffset() + uint64_t(Offset)); 4747 } 4748 4749 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4750 switch (Opcode) { 4751 case ISD::SDIV: 4752 case ISD::UDIV: 4753 case ISD::SREM: 4754 case ISD::UREM: { 4755 // If a divisor is zero/undef or any element of a divisor vector is 4756 // zero/undef, the whole op is undef. 4757 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4758 SDValue Divisor = Ops[1]; 4759 if (Divisor.isUndef() || isNullConstant(Divisor)) 4760 return true; 4761 4762 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4763 llvm::any_of(Divisor->op_values(), 4764 [](SDValue V) { return V.isUndef() || 4765 isNullConstant(V); }); 4766 // TODO: Handle signed overflow. 4767 } 4768 // TODO: Handle oversized shifts. 4769 default: 4770 return false; 4771 } 4772 } 4773 4774 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4775 EVT VT, SDNode *N1, SDNode *N2) { 4776 // If the opcode is a target-specific ISD node, there's nothing we can 4777 // do here and the operand rules may not line up with the below, so 4778 // bail early. 4779 if (Opcode >= ISD::BUILTIN_OP_END) 4780 return SDValue(); 4781 4782 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4783 return getUNDEF(VT); 4784 4785 // Handle the case of two scalars. 4786 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4787 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4788 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4789 assert((!Folded || !VT.isVector()) && 4790 "Can't fold vectors ops with scalar operands"); 4791 return Folded; 4792 } 4793 } 4794 4795 // fold (add Sym, c) -> Sym+c 4796 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4797 return FoldSymbolOffset(Opcode, VT, GA, N2); 4798 if (TLI->isCommutativeBinOp(Opcode)) 4799 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4800 return FoldSymbolOffset(Opcode, VT, GA, N1); 4801 4802 // For vectors, extract each constant element and fold them individually. 4803 // Either input may be an undef value. 4804 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4805 if (!BV1 && !N1->isUndef()) 4806 return SDValue(); 4807 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4808 if (!BV2 && !N2->isUndef()) 4809 return SDValue(); 4810 // If both operands are undef, that's handled the same way as scalars. 4811 if (!BV1 && !BV2) 4812 return SDValue(); 4813 4814 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4815 "Vector binop with different number of elements in operands?"); 4816 4817 EVT SVT = VT.getScalarType(); 4818 EVT LegalSVT = SVT; 4819 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4820 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4821 if (LegalSVT.bitsLT(SVT)) 4822 return SDValue(); 4823 } 4824 SmallVector<SDValue, 4> Outputs; 4825 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4826 for (unsigned I = 0; I != NumOps; ++I) { 4827 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4828 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4829 if (SVT.isInteger()) { 4830 if (V1->getValueType(0).bitsGT(SVT)) 4831 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4832 if (V2->getValueType(0).bitsGT(SVT)) 4833 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4834 } 4835 4836 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4837 return SDValue(); 4838 4839 // Fold one vector element. 4840 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4841 if (LegalSVT != SVT) 4842 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4843 4844 // Scalar folding only succeeded if the result is a constant or UNDEF. 4845 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4846 ScalarResult.getOpcode() != ISD::ConstantFP) 4847 return SDValue(); 4848 Outputs.push_back(ScalarResult); 4849 } 4850 4851 assert(VT.getVectorNumElements() == Outputs.size() && 4852 "Vector size mismatch!"); 4853 4854 // We may have a vector type but a scalar result. Create a splat. 4855 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4856 4857 // Build a big vector out of the scalar elements we generated. 4858 return getBuildVector(VT, SDLoc(), Outputs); 4859 } 4860 4861 // TODO: Merge with FoldConstantArithmetic 4862 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4863 const SDLoc &DL, EVT VT, 4864 ArrayRef<SDValue> Ops, 4865 const SDNodeFlags Flags) { 4866 // If the opcode is a target-specific ISD node, there's nothing we can 4867 // do here and the operand rules may not line up with the below, so 4868 // bail early. 4869 if (Opcode >= ISD::BUILTIN_OP_END) 4870 return SDValue(); 4871 4872 if (isUndef(Opcode, Ops)) 4873 return getUNDEF(VT); 4874 4875 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4876 if (!VT.isVector()) 4877 return SDValue(); 4878 4879 unsigned NumElts = VT.getVectorNumElements(); 4880 4881 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4882 return !Op.getValueType().isVector() || 4883 Op.getValueType().getVectorNumElements() == NumElts; 4884 }; 4885 4886 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4887 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4888 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4889 (BV && BV->isConstant()); 4890 }; 4891 4892 // All operands must be vector types with the same number of elements as 4893 // the result type and must be either UNDEF or a build vector of constant 4894 // or UNDEF scalars. 4895 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4896 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4897 return SDValue(); 4898 4899 // If we are comparing vectors, then the result needs to be a i1 boolean 4900 // that is then sign-extended back to the legal result type. 4901 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4902 4903 // Find legal integer scalar type for constant promotion and 4904 // ensure that its scalar size is at least as large as source. 4905 EVT LegalSVT = VT.getScalarType(); 4906 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4907 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4908 if (LegalSVT.bitsLT(VT.getScalarType())) 4909 return SDValue(); 4910 } 4911 4912 // Constant fold each scalar lane separately. 4913 SmallVector<SDValue, 4> ScalarResults; 4914 for (unsigned i = 0; i != NumElts; i++) { 4915 SmallVector<SDValue, 4> ScalarOps; 4916 for (SDValue Op : Ops) { 4917 EVT InSVT = Op.getValueType().getScalarType(); 4918 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4919 if (!InBV) { 4920 // We've checked that this is UNDEF or a constant of some kind. 4921 if (Op.isUndef()) 4922 ScalarOps.push_back(getUNDEF(InSVT)); 4923 else 4924 ScalarOps.push_back(Op); 4925 continue; 4926 } 4927 4928 SDValue ScalarOp = InBV->getOperand(i); 4929 EVT ScalarVT = ScalarOp.getValueType(); 4930 4931 // Build vector (integer) scalar operands may need implicit 4932 // truncation - do this before constant folding. 4933 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4934 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4935 4936 ScalarOps.push_back(ScalarOp); 4937 } 4938 4939 // Constant fold the scalar operands. 4940 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4941 4942 // Legalize the (integer) scalar constant if necessary. 4943 if (LegalSVT != SVT) 4944 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4945 4946 // Scalar folding only succeeded if the result is a constant or UNDEF. 4947 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4948 ScalarResult.getOpcode() != ISD::ConstantFP) 4949 return SDValue(); 4950 ScalarResults.push_back(ScalarResult); 4951 } 4952 4953 SDValue V = getBuildVector(VT, DL, ScalarResults); 4954 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4955 return V; 4956 } 4957 4958 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4959 EVT VT, SDValue N1, SDValue N2) { 4960 // TODO: We don't do any constant folding for strict FP opcodes here, but we 4961 // should. That will require dealing with a potentially non-default 4962 // rounding mode, checking the "opStatus" return value from the APFloat 4963 // math calculations, and possibly other variations. 4964 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4965 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4966 if (N1CFP && N2CFP) { 4967 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 4968 switch (Opcode) { 4969 case ISD::FADD: 4970 C1.add(C2, APFloat::rmNearestTiesToEven); 4971 return getConstantFP(C1, DL, VT); 4972 case ISD::FSUB: 4973 C1.subtract(C2, APFloat::rmNearestTiesToEven); 4974 return getConstantFP(C1, DL, VT); 4975 case ISD::FMUL: 4976 C1.multiply(C2, APFloat::rmNearestTiesToEven); 4977 return getConstantFP(C1, DL, VT); 4978 case ISD::FDIV: 4979 C1.divide(C2, APFloat::rmNearestTiesToEven); 4980 return getConstantFP(C1, DL, VT); 4981 case ISD::FREM: 4982 C1.mod(C2); 4983 return getConstantFP(C1, DL, VT); 4984 case ISD::FCOPYSIGN: 4985 C1.copySign(C2); 4986 return getConstantFP(C1, DL, VT); 4987 default: break; 4988 } 4989 } 4990 if (N1CFP && Opcode == ISD::FP_ROUND) { 4991 APFloat C1 = N1CFP->getValueAPF(); // make copy 4992 bool Unused; 4993 // This can return overflow, underflow, or inexact; we don't care. 4994 // FIXME need to be more flexible about rounding mode. 4995 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 4996 &Unused); 4997 return getConstantFP(C1, DL, VT); 4998 } 4999 5000 switch (Opcode) { 5001 case ISD::FADD: 5002 case ISD::FSUB: 5003 case ISD::FMUL: 5004 case ISD::FDIV: 5005 case ISD::FREM: 5006 // If both operands are undef, the result is undef. If 1 operand is undef, 5007 // the result is NaN. This should match the behavior of the IR optimizer. 5008 if (N1.isUndef() && N2.isUndef()) 5009 return getUNDEF(VT); 5010 if (N1.isUndef() || N2.isUndef()) 5011 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5012 } 5013 return SDValue(); 5014 } 5015 5016 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5017 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5018 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5019 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5020 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5021 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5022 5023 // Canonicalize constant to RHS if commutative. 5024 if (TLI->isCommutativeBinOp(Opcode)) { 5025 if (N1C && !N2C) { 5026 std::swap(N1C, N2C); 5027 std::swap(N1, N2); 5028 } else if (N1CFP && !N2CFP) { 5029 std::swap(N1CFP, N2CFP); 5030 std::swap(N1, N2); 5031 } 5032 } 5033 5034 switch (Opcode) { 5035 default: break; 5036 case ISD::TokenFactor: 5037 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5038 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5039 // Fold trivial token factors. 5040 if (N1.getOpcode() == ISD::EntryToken) return N2; 5041 if (N2.getOpcode() == ISD::EntryToken) return N1; 5042 if (N1 == N2) return N1; 5043 break; 5044 case ISD::BUILD_VECTOR: { 5045 // Attempt to simplify BUILD_VECTOR. 5046 SDValue Ops[] = {N1, N2}; 5047 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5048 return V; 5049 break; 5050 } 5051 case ISD::CONCAT_VECTORS: { 5052 SDValue Ops[] = {N1, N2}; 5053 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5054 return V; 5055 break; 5056 } 5057 case ISD::AND: 5058 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5059 assert(N1.getValueType() == N2.getValueType() && 5060 N1.getValueType() == VT && "Binary operator types must match!"); 5061 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5062 // worth handling here. 5063 if (N2C && N2C->isNullValue()) 5064 return N2; 5065 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5066 return N1; 5067 break; 5068 case ISD::OR: 5069 case ISD::XOR: 5070 case ISD::ADD: 5071 case ISD::SUB: 5072 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5073 assert(N1.getValueType() == N2.getValueType() && 5074 N1.getValueType() == VT && "Binary operator types must match!"); 5075 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5076 // it's worth handling here. 5077 if (N2C && N2C->isNullValue()) 5078 return N1; 5079 break; 5080 case ISD::UDIV: 5081 case ISD::UREM: 5082 case ISD::MULHU: 5083 case ISD::MULHS: 5084 case ISD::MUL: 5085 case ISD::SDIV: 5086 case ISD::SREM: 5087 case ISD::SMIN: 5088 case ISD::SMAX: 5089 case ISD::UMIN: 5090 case ISD::UMAX: 5091 case ISD::SADDSAT: 5092 case ISD::SSUBSAT: 5093 case ISD::UADDSAT: 5094 case ISD::USUBSAT: 5095 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5096 assert(N1.getValueType() == N2.getValueType() && 5097 N1.getValueType() == VT && "Binary operator types must match!"); 5098 break; 5099 case ISD::FADD: 5100 case ISD::FSUB: 5101 case ISD::FMUL: 5102 case ISD::FDIV: 5103 case ISD::FREM: 5104 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5105 assert(N1.getValueType() == N2.getValueType() && 5106 N1.getValueType() == VT && "Binary operator types must match!"); 5107 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5108 return V; 5109 break; 5110 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5111 assert(N1.getValueType() == VT && 5112 N1.getValueType().isFloatingPoint() && 5113 N2.getValueType().isFloatingPoint() && 5114 "Invalid FCOPYSIGN!"); 5115 break; 5116 case ISD::SHL: 5117 case ISD::SRA: 5118 case ISD::SRL: 5119 if (SDValue V = simplifyShift(N1, N2)) 5120 return V; 5121 LLVM_FALLTHROUGH; 5122 case ISD::ROTL: 5123 case ISD::ROTR: 5124 assert(VT == N1.getValueType() && 5125 "Shift operators return type must be the same as their first arg"); 5126 assert(VT.isInteger() && N2.getValueType().isInteger() && 5127 "Shifts only work on integers"); 5128 assert((!VT.isVector() || VT == N2.getValueType()) && 5129 "Vector shift amounts must be in the same as their first arg"); 5130 // Verify that the shift amount VT is big enough to hold valid shift 5131 // amounts. This catches things like trying to shift an i1024 value by an 5132 // i8, which is easy to fall into in generic code that uses 5133 // TLI.getShiftAmount(). 5134 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5135 "Invalid use of small shift amount with oversized value!"); 5136 5137 // Always fold shifts of i1 values so the code generator doesn't need to 5138 // handle them. Since we know the size of the shift has to be less than the 5139 // size of the value, the shift/rotate count is guaranteed to be zero. 5140 if (VT == MVT::i1) 5141 return N1; 5142 if (N2C && N2C->isNullValue()) 5143 return N1; 5144 break; 5145 case ISD::FP_ROUND_INREG: { 5146 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5147 assert(VT == N1.getValueType() && "Not an inreg round!"); 5148 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 5149 "Cannot FP_ROUND_INREG integer types"); 5150 assert(EVT.isVector() == VT.isVector() && 5151 "FP_ROUND_INREG type should be vector iff the operand " 5152 "type is vector!"); 5153 assert((!EVT.isVector() || 5154 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5155 "Vector element counts must match in FP_ROUND_INREG"); 5156 assert(EVT.bitsLE(VT) && "Not rounding down!"); 5157 (void)EVT; 5158 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 5159 break; 5160 } 5161 case ISD::FP_ROUND: 5162 assert(VT.isFloatingPoint() && 5163 N1.getValueType().isFloatingPoint() && 5164 VT.bitsLE(N1.getValueType()) && 5165 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5166 "Invalid FP_ROUND!"); 5167 if (N1.getValueType() == VT) return N1; // noop conversion. 5168 break; 5169 case ISD::AssertSext: 5170 case ISD::AssertZext: { 5171 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5172 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5173 assert(VT.isInteger() && EVT.isInteger() && 5174 "Cannot *_EXTEND_INREG FP types"); 5175 assert(!EVT.isVector() && 5176 "AssertSExt/AssertZExt type should be the vector element type " 5177 "rather than the vector type!"); 5178 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5179 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5180 break; 5181 } 5182 case ISD::SIGN_EXTEND_INREG: { 5183 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5184 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5185 assert(VT.isInteger() && EVT.isInteger() && 5186 "Cannot *_EXTEND_INREG FP types"); 5187 assert(EVT.isVector() == VT.isVector() && 5188 "SIGN_EXTEND_INREG type should be vector iff the operand " 5189 "type is vector!"); 5190 assert((!EVT.isVector() || 5191 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5192 "Vector element counts must match in SIGN_EXTEND_INREG"); 5193 assert(EVT.bitsLE(VT) && "Not extending!"); 5194 if (EVT == VT) return N1; // Not actually extending 5195 5196 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5197 unsigned FromBits = EVT.getScalarSizeInBits(); 5198 Val <<= Val.getBitWidth() - FromBits; 5199 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5200 return getConstant(Val, DL, ConstantVT); 5201 }; 5202 5203 if (N1C) { 5204 const APInt &Val = N1C->getAPIntValue(); 5205 return SignExtendInReg(Val, VT); 5206 } 5207 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5208 SmallVector<SDValue, 8> Ops; 5209 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5210 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5211 SDValue Op = N1.getOperand(i); 5212 if (Op.isUndef()) { 5213 Ops.push_back(getUNDEF(OpVT)); 5214 continue; 5215 } 5216 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5217 APInt Val = C->getAPIntValue(); 5218 Ops.push_back(SignExtendInReg(Val, OpVT)); 5219 } 5220 return getBuildVector(VT, DL, Ops); 5221 } 5222 break; 5223 } 5224 case ISD::EXTRACT_VECTOR_ELT: 5225 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5226 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5227 element type of the vector."); 5228 5229 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 5230 if (N1.isUndef()) 5231 return getUNDEF(VT); 5232 5233 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5234 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5235 return getUNDEF(VT); 5236 5237 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5238 // expanding copies of large vectors from registers. 5239 if (N2C && 5240 N1.getOpcode() == ISD::CONCAT_VECTORS && 5241 N1.getNumOperands() > 0) { 5242 unsigned Factor = 5243 N1.getOperand(0).getValueType().getVectorNumElements(); 5244 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5245 N1.getOperand(N2C->getZExtValue() / Factor), 5246 getConstant(N2C->getZExtValue() % Factor, DL, 5247 N2.getValueType())); 5248 } 5249 5250 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5251 // expanding large vector constants. 5252 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5253 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5254 5255 if (VT != Elt.getValueType()) 5256 // If the vector element type is not legal, the BUILD_VECTOR operands 5257 // are promoted and implicitly truncated, and the result implicitly 5258 // extended. Make that explicit here. 5259 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5260 5261 return Elt; 5262 } 5263 5264 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5265 // operations are lowered to scalars. 5266 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5267 // If the indices are the same, return the inserted element else 5268 // if the indices are known different, extract the element from 5269 // the original vector. 5270 SDValue N1Op2 = N1.getOperand(2); 5271 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5272 5273 if (N1Op2C && N2C) { 5274 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5275 if (VT == N1.getOperand(1).getValueType()) 5276 return N1.getOperand(1); 5277 else 5278 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5279 } 5280 5281 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5282 } 5283 } 5284 5285 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5286 // when vector types are scalarized and v1iX is legal. 5287 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5288 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5289 N1.getValueType().getVectorNumElements() == 1) { 5290 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5291 N1.getOperand(1)); 5292 } 5293 break; 5294 case ISD::EXTRACT_ELEMENT: 5295 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5296 assert(!N1.getValueType().isVector() && !VT.isVector() && 5297 (N1.getValueType().isInteger() == VT.isInteger()) && 5298 N1.getValueType() != VT && 5299 "Wrong types for EXTRACT_ELEMENT!"); 5300 5301 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5302 // 64-bit integers into 32-bit parts. Instead of building the extract of 5303 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5304 if (N1.getOpcode() == ISD::BUILD_PAIR) 5305 return N1.getOperand(N2C->getZExtValue()); 5306 5307 // EXTRACT_ELEMENT of a constant int is also very common. 5308 if (N1C) { 5309 unsigned ElementSize = VT.getSizeInBits(); 5310 unsigned Shift = ElementSize * N2C->getZExtValue(); 5311 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5312 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5313 } 5314 break; 5315 case ISD::EXTRACT_SUBVECTOR: 5316 if (VT.isSimple() && N1.getValueType().isSimple()) { 5317 assert(VT.isVector() && N1.getValueType().isVector() && 5318 "Extract subvector VTs must be a vectors!"); 5319 assert(VT.getVectorElementType() == 5320 N1.getValueType().getVectorElementType() && 5321 "Extract subvector VTs must have the same element type!"); 5322 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5323 "Extract subvector must be from larger vector to smaller vector!"); 5324 5325 if (N2C) { 5326 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5327 <= N1.getValueType().getVectorNumElements()) 5328 && "Extract subvector overflow!"); 5329 } 5330 5331 // Trivial extraction. 5332 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5333 return N1; 5334 5335 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5336 if (N1.isUndef()) 5337 return getUNDEF(VT); 5338 5339 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5340 // the concat have the same type as the extract. 5341 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5342 N1.getNumOperands() > 0 && 5343 VT == N1.getOperand(0).getValueType()) { 5344 unsigned Factor = VT.getVectorNumElements(); 5345 return N1.getOperand(N2C->getZExtValue() / Factor); 5346 } 5347 5348 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5349 // during shuffle legalization. 5350 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5351 VT == N1.getOperand(1).getValueType()) 5352 return N1.getOperand(1); 5353 } 5354 break; 5355 } 5356 5357 // Perform trivial constant folding. 5358 if (SDValue SV = 5359 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5360 return SV; 5361 5362 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5363 return V; 5364 5365 // Canonicalize an UNDEF to the RHS, even over a constant. 5366 if (N1.isUndef()) { 5367 if (TLI->isCommutativeBinOp(Opcode)) { 5368 std::swap(N1, N2); 5369 } else { 5370 switch (Opcode) { 5371 case ISD::FP_ROUND_INREG: 5372 case ISD::SIGN_EXTEND_INREG: 5373 case ISD::SUB: 5374 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5375 case ISD::UDIV: 5376 case ISD::SDIV: 5377 case ISD::UREM: 5378 case ISD::SREM: 5379 case ISD::SSUBSAT: 5380 case ISD::USUBSAT: 5381 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5382 } 5383 } 5384 } 5385 5386 // Fold a bunch of operators when the RHS is undef. 5387 if (N2.isUndef()) { 5388 switch (Opcode) { 5389 case ISD::XOR: 5390 if (N1.isUndef()) 5391 // Handle undef ^ undef -> 0 special case. This is a common 5392 // idiom (misuse). 5393 return getConstant(0, DL, VT); 5394 LLVM_FALLTHROUGH; 5395 case ISD::ADD: 5396 case ISD::SUB: 5397 case ISD::UDIV: 5398 case ISD::SDIV: 5399 case ISD::UREM: 5400 case ISD::SREM: 5401 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5402 case ISD::MUL: 5403 case ISD::AND: 5404 case ISD::SSUBSAT: 5405 case ISD::USUBSAT: 5406 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5407 case ISD::OR: 5408 case ISD::SADDSAT: 5409 case ISD::UADDSAT: 5410 return getAllOnesConstant(DL, VT); 5411 } 5412 } 5413 5414 // Memoize this node if possible. 5415 SDNode *N; 5416 SDVTList VTs = getVTList(VT); 5417 SDValue Ops[] = {N1, N2}; 5418 if (VT != MVT::Glue) { 5419 FoldingSetNodeID ID; 5420 AddNodeIDNode(ID, Opcode, VTs, Ops); 5421 void *IP = nullptr; 5422 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5423 E->intersectFlagsWith(Flags); 5424 return SDValue(E, 0); 5425 } 5426 5427 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5428 N->setFlags(Flags); 5429 createOperands(N, Ops); 5430 CSEMap.InsertNode(N, IP); 5431 } else { 5432 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5433 createOperands(N, Ops); 5434 } 5435 5436 InsertNode(N); 5437 SDValue V = SDValue(N, 0); 5438 NewSDValueDbgMsg(V, "Creating new node: ", this); 5439 return V; 5440 } 5441 5442 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5443 SDValue N1, SDValue N2, SDValue N3, 5444 const SDNodeFlags Flags) { 5445 // Perform various simplifications. 5446 switch (Opcode) { 5447 case ISD::FMA: { 5448 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5449 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5450 N3.getValueType() == VT && "FMA types must match!"); 5451 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5452 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5453 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5454 if (N1CFP && N2CFP && N3CFP) { 5455 APFloat V1 = N1CFP->getValueAPF(); 5456 const APFloat &V2 = N2CFP->getValueAPF(); 5457 const APFloat &V3 = N3CFP->getValueAPF(); 5458 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5459 return getConstantFP(V1, DL, VT); 5460 } 5461 break; 5462 } 5463 case ISD::BUILD_VECTOR: { 5464 // Attempt to simplify BUILD_VECTOR. 5465 SDValue Ops[] = {N1, N2, N3}; 5466 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5467 return V; 5468 break; 5469 } 5470 case ISD::CONCAT_VECTORS: { 5471 SDValue Ops[] = {N1, N2, N3}; 5472 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5473 return V; 5474 break; 5475 } 5476 case ISD::SETCC: { 5477 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5478 assert(N1.getValueType() == N2.getValueType() && 5479 "SETCC operands must have the same type!"); 5480 assert(VT.isVector() == N1.getValueType().isVector() && 5481 "SETCC type should be vector iff the operand type is vector!"); 5482 assert((!VT.isVector() || 5483 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5484 "SETCC vector element counts must match!"); 5485 // Use FoldSetCC to simplify SETCC's. 5486 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5487 return V; 5488 // Vector constant folding. 5489 SDValue Ops[] = {N1, N2, N3}; 5490 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5491 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5492 return V; 5493 } 5494 break; 5495 } 5496 case ISD::SELECT: 5497 case ISD::VSELECT: 5498 if (SDValue V = simplifySelect(N1, N2, N3)) 5499 return V; 5500 break; 5501 case ISD::VECTOR_SHUFFLE: 5502 llvm_unreachable("should use getVectorShuffle constructor!"); 5503 case ISD::INSERT_VECTOR_ELT: { 5504 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5505 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5506 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5507 return getUNDEF(VT); 5508 break; 5509 } 5510 case ISD::INSERT_SUBVECTOR: { 5511 // Inserting undef into undef is still undef. 5512 if (N1.isUndef() && N2.isUndef()) 5513 return getUNDEF(VT); 5514 SDValue Index = N3; 5515 if (VT.isSimple() && N1.getValueType().isSimple() 5516 && N2.getValueType().isSimple()) { 5517 assert(VT.isVector() && N1.getValueType().isVector() && 5518 N2.getValueType().isVector() && 5519 "Insert subvector VTs must be a vectors"); 5520 assert(VT == N1.getValueType() && 5521 "Dest and insert subvector source types must match!"); 5522 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5523 "Insert subvector must be from smaller vector to larger vector!"); 5524 if (isa<ConstantSDNode>(Index)) { 5525 assert((N2.getValueType().getVectorNumElements() + 5526 cast<ConstantSDNode>(Index)->getZExtValue() 5527 <= VT.getVectorNumElements()) 5528 && "Insert subvector overflow!"); 5529 } 5530 5531 // Trivial insertion. 5532 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5533 return N2; 5534 5535 // If this is an insert of an extracted vector into an undef vector, we 5536 // can just use the input to the extract. 5537 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5538 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5539 return N2.getOperand(0); 5540 } 5541 break; 5542 } 5543 case ISD::BITCAST: 5544 // Fold bit_convert nodes from a type to themselves. 5545 if (N1.getValueType() == VT) 5546 return N1; 5547 break; 5548 } 5549 5550 // Memoize node if it doesn't produce a flag. 5551 SDNode *N; 5552 SDVTList VTs = getVTList(VT); 5553 SDValue Ops[] = {N1, N2, N3}; 5554 if (VT != MVT::Glue) { 5555 FoldingSetNodeID ID; 5556 AddNodeIDNode(ID, Opcode, VTs, Ops); 5557 void *IP = nullptr; 5558 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5559 E->intersectFlagsWith(Flags); 5560 return SDValue(E, 0); 5561 } 5562 5563 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5564 N->setFlags(Flags); 5565 createOperands(N, Ops); 5566 CSEMap.InsertNode(N, IP); 5567 } else { 5568 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5569 createOperands(N, Ops); 5570 } 5571 5572 InsertNode(N); 5573 SDValue V = SDValue(N, 0); 5574 NewSDValueDbgMsg(V, "Creating new node: ", this); 5575 return V; 5576 } 5577 5578 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5579 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5580 SDValue Ops[] = { N1, N2, N3, N4 }; 5581 return getNode(Opcode, DL, VT, Ops); 5582 } 5583 5584 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5585 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5586 SDValue N5) { 5587 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5588 return getNode(Opcode, DL, VT, Ops); 5589 } 5590 5591 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5592 /// the incoming stack arguments to be loaded from the stack. 5593 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5594 SmallVector<SDValue, 8> ArgChains; 5595 5596 // Include the original chain at the beginning of the list. When this is 5597 // used by target LowerCall hooks, this helps legalize find the 5598 // CALLSEQ_BEGIN node. 5599 ArgChains.push_back(Chain); 5600 5601 // Add a chain value for each stack argument. 5602 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5603 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5604 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5605 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5606 if (FI->getIndex() < 0) 5607 ArgChains.push_back(SDValue(L, 1)); 5608 5609 // Build a tokenfactor for all the chains. 5610 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5611 } 5612 5613 /// getMemsetValue - Vectorized representation of the memset value 5614 /// operand. 5615 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5616 const SDLoc &dl) { 5617 assert(!Value.isUndef()); 5618 5619 unsigned NumBits = VT.getScalarSizeInBits(); 5620 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5621 assert(C->getAPIntValue().getBitWidth() == 8); 5622 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5623 if (VT.isInteger()) { 5624 bool IsOpaque = VT.getSizeInBits() > 64 || 5625 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5626 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5627 } 5628 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5629 VT); 5630 } 5631 5632 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5633 EVT IntVT = VT.getScalarType(); 5634 if (!IntVT.isInteger()) 5635 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5636 5637 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5638 if (NumBits > 8) { 5639 // Use a multiplication with 0x010101... to extend the input to the 5640 // required length. 5641 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5642 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5643 DAG.getConstant(Magic, dl, IntVT)); 5644 } 5645 5646 if (VT != Value.getValueType() && !VT.isInteger()) 5647 Value = DAG.getBitcast(VT.getScalarType(), Value); 5648 if (VT != Value.getValueType()) 5649 Value = DAG.getSplatBuildVector(VT, dl, Value); 5650 5651 return Value; 5652 } 5653 5654 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5655 /// used when a memcpy is turned into a memset when the source is a constant 5656 /// string ptr. 5657 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5658 const TargetLowering &TLI, 5659 const ConstantDataArraySlice &Slice) { 5660 // Handle vector with all elements zero. 5661 if (Slice.Array == nullptr) { 5662 if (VT.isInteger()) 5663 return DAG.getConstant(0, dl, VT); 5664 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5665 return DAG.getConstantFP(0.0, dl, VT); 5666 else if (VT.isVector()) { 5667 unsigned NumElts = VT.getVectorNumElements(); 5668 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5669 return DAG.getNode(ISD::BITCAST, dl, VT, 5670 DAG.getConstant(0, dl, 5671 EVT::getVectorVT(*DAG.getContext(), 5672 EltVT, NumElts))); 5673 } else 5674 llvm_unreachable("Expected type!"); 5675 } 5676 5677 assert(!VT.isVector() && "Can't handle vector type here!"); 5678 unsigned NumVTBits = VT.getSizeInBits(); 5679 unsigned NumVTBytes = NumVTBits / 8; 5680 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5681 5682 APInt Val(NumVTBits, 0); 5683 if (DAG.getDataLayout().isLittleEndian()) { 5684 for (unsigned i = 0; i != NumBytes; ++i) 5685 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5686 } else { 5687 for (unsigned i = 0; i != NumBytes; ++i) 5688 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5689 } 5690 5691 // If the "cost" of materializing the integer immediate is less than the cost 5692 // of a load, then it is cost effective to turn the load into the immediate. 5693 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5694 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5695 return DAG.getConstant(Val, dl, VT); 5696 return SDValue(nullptr, 0); 5697 } 5698 5699 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5700 const SDLoc &DL) { 5701 EVT VT = Base.getValueType(); 5702 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5703 } 5704 5705 /// Returns true if memcpy source is constant data. 5706 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5707 uint64_t SrcDelta = 0; 5708 GlobalAddressSDNode *G = nullptr; 5709 if (Src.getOpcode() == ISD::GlobalAddress) 5710 G = cast<GlobalAddressSDNode>(Src); 5711 else if (Src.getOpcode() == ISD::ADD && 5712 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5713 Src.getOperand(1).getOpcode() == ISD::Constant) { 5714 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5715 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5716 } 5717 if (!G) 5718 return false; 5719 5720 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5721 SrcDelta + G->getOffset()); 5722 } 5723 5724 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5725 // On Darwin, -Os means optimize for size without hurting performance, so 5726 // only really optimize for size when -Oz (MinSize) is used. 5727 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5728 return MF.getFunction().hasMinSize(); 5729 return MF.getFunction().hasOptSize(); 5730 } 5731 5732 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5733 SmallVector<SDValue, 32> &OutChains, unsigned From, 5734 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5735 SmallVector<SDValue, 16> &OutStoreChains) { 5736 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5737 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5738 SmallVector<SDValue, 16> GluedLoadChains; 5739 for (unsigned i = From; i < To; ++i) { 5740 OutChains.push_back(OutLoadChains[i]); 5741 GluedLoadChains.push_back(OutLoadChains[i]); 5742 } 5743 5744 // Chain for all loads. 5745 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5746 GluedLoadChains); 5747 5748 for (unsigned i = From; i < To; ++i) { 5749 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5750 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5751 ST->getBasePtr(), ST->getMemoryVT(), 5752 ST->getMemOperand()); 5753 OutChains.push_back(NewStore); 5754 } 5755 } 5756 5757 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5758 SDValue Chain, SDValue Dst, SDValue Src, 5759 uint64_t Size, unsigned Align, 5760 bool isVol, bool AlwaysInline, 5761 MachinePointerInfo DstPtrInfo, 5762 MachinePointerInfo SrcPtrInfo) { 5763 // Turn a memcpy of undef to nop. 5764 // FIXME: We need to honor volatile even is Src is undef. 5765 if (Src.isUndef()) 5766 return Chain; 5767 5768 // Expand memcpy to a series of load and store ops if the size operand falls 5769 // below a certain threshold. 5770 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5771 // rather than maybe a humongous number of loads and stores. 5772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5773 const DataLayout &DL = DAG.getDataLayout(); 5774 LLVMContext &C = *DAG.getContext(); 5775 std::vector<EVT> MemOps; 5776 bool DstAlignCanChange = false; 5777 MachineFunction &MF = DAG.getMachineFunction(); 5778 MachineFrameInfo &MFI = MF.getFrameInfo(); 5779 bool OptSize = shouldLowerMemFuncForSize(MF); 5780 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5781 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5782 DstAlignCanChange = true; 5783 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5784 if (Align > SrcAlign) 5785 SrcAlign = Align; 5786 ConstantDataArraySlice Slice; 5787 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5788 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5789 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5790 5791 if (!TLI.findOptimalMemOpLowering( 5792 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), 5793 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5794 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5795 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5796 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5797 return SDValue(); 5798 5799 if (DstAlignCanChange) { 5800 Type *Ty = MemOps[0].getTypeForEVT(C); 5801 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5802 5803 // Don't promote to an alignment that would require dynamic stack 5804 // realignment. 5805 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5806 if (!TRI->needsStackRealignment(MF)) 5807 while (NewAlign > Align && 5808 DL.exceedsNaturalStackAlignment(llvm::Align(NewAlign))) 5809 NewAlign /= 2; 5810 5811 if (NewAlign > Align) { 5812 // Give the stack frame object a larger alignment if needed. 5813 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5814 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5815 Align = NewAlign; 5816 } 5817 } 5818 5819 MachineMemOperand::Flags MMOFlags = 5820 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5821 SmallVector<SDValue, 16> OutLoadChains; 5822 SmallVector<SDValue, 16> OutStoreChains; 5823 SmallVector<SDValue, 32> OutChains; 5824 unsigned NumMemOps = MemOps.size(); 5825 uint64_t SrcOff = 0, DstOff = 0; 5826 for (unsigned i = 0; i != NumMemOps; ++i) { 5827 EVT VT = MemOps[i]; 5828 unsigned VTSize = VT.getSizeInBits() / 8; 5829 SDValue Value, Store; 5830 5831 if (VTSize > Size) { 5832 // Issuing an unaligned load / store pair that overlaps with the previous 5833 // pair. Adjust the offset accordingly. 5834 assert(i == NumMemOps-1 && i != 0); 5835 SrcOff -= VTSize - Size; 5836 DstOff -= VTSize - Size; 5837 } 5838 5839 if (CopyFromConstant && 5840 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5841 // It's unlikely a store of a vector immediate can be done in a single 5842 // instruction. It would require a load from a constantpool first. 5843 // We only handle zero vectors here. 5844 // FIXME: Handle other cases where store of vector immediate is done in 5845 // a single instruction. 5846 ConstantDataArraySlice SubSlice; 5847 if (SrcOff < Slice.Length) { 5848 SubSlice = Slice; 5849 SubSlice.move(SrcOff); 5850 } else { 5851 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5852 SubSlice.Array = nullptr; 5853 SubSlice.Offset = 0; 5854 SubSlice.Length = VTSize; 5855 } 5856 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5857 if (Value.getNode()) { 5858 Store = DAG.getStore(Chain, dl, Value, 5859 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5860 DstPtrInfo.getWithOffset(DstOff), Align, 5861 MMOFlags); 5862 OutChains.push_back(Store); 5863 } 5864 } 5865 5866 if (!Store.getNode()) { 5867 // The type might not be legal for the target. This should only happen 5868 // if the type is smaller than a legal type, as on PPC, so the right 5869 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5870 // to Load/Store if NVT==VT. 5871 // FIXME does the case above also need this? 5872 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5873 assert(NVT.bitsGE(VT)); 5874 5875 bool isDereferenceable = 5876 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5877 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5878 if (isDereferenceable) 5879 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5880 5881 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5882 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5883 SrcPtrInfo.getWithOffset(SrcOff), VT, 5884 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5885 OutLoadChains.push_back(Value.getValue(1)); 5886 5887 Store = DAG.getTruncStore( 5888 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5889 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5890 OutStoreChains.push_back(Store); 5891 } 5892 SrcOff += VTSize; 5893 DstOff += VTSize; 5894 Size -= VTSize; 5895 } 5896 5897 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5898 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5899 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5900 5901 if (NumLdStInMemcpy) { 5902 // It may be that memcpy might be converted to memset if it's memcpy 5903 // of constants. In such a case, we won't have loads and stores, but 5904 // just stores. In the absence of loads, there is nothing to gang up. 5905 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5906 // If target does not care, just leave as it. 5907 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5908 OutChains.push_back(OutLoadChains[i]); 5909 OutChains.push_back(OutStoreChains[i]); 5910 } 5911 } else { 5912 // Ld/St less than/equal limit set by target. 5913 if (NumLdStInMemcpy <= GluedLdStLimit) { 5914 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5915 NumLdStInMemcpy, OutLoadChains, 5916 OutStoreChains); 5917 } else { 5918 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5919 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5920 unsigned GlueIter = 0; 5921 5922 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5923 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5924 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5925 5926 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5927 OutLoadChains, OutStoreChains); 5928 GlueIter += GluedLdStLimit; 5929 } 5930 5931 // Residual ld/st. 5932 if (RemainingLdStInMemcpy) { 5933 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5934 RemainingLdStInMemcpy, OutLoadChains, 5935 OutStoreChains); 5936 } 5937 } 5938 } 5939 } 5940 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5941 } 5942 5943 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5944 SDValue Chain, SDValue Dst, SDValue Src, 5945 uint64_t Size, unsigned Align, 5946 bool isVol, bool AlwaysInline, 5947 MachinePointerInfo DstPtrInfo, 5948 MachinePointerInfo SrcPtrInfo) { 5949 // Turn a memmove of undef to nop. 5950 // FIXME: We need to honor volatile even is Src is undef. 5951 if (Src.isUndef()) 5952 return Chain; 5953 5954 // Expand memmove to a series of load and store ops if the size operand falls 5955 // below a certain threshold. 5956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5957 const DataLayout &DL = DAG.getDataLayout(); 5958 LLVMContext &C = *DAG.getContext(); 5959 std::vector<EVT> MemOps; 5960 bool DstAlignCanChange = false; 5961 MachineFunction &MF = DAG.getMachineFunction(); 5962 MachineFrameInfo &MFI = MF.getFrameInfo(); 5963 bool OptSize = shouldLowerMemFuncForSize(MF); 5964 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5965 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5966 DstAlignCanChange = true; 5967 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5968 if (Align > SrcAlign) 5969 SrcAlign = Align; 5970 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5971 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 5972 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 5973 // correct code. 5974 bool AllowOverlap = false; 5975 if (!TLI.findOptimalMemOpLowering( 5976 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 5977 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 5978 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 5979 MF.getFunction().getAttributes())) 5980 return SDValue(); 5981 5982 if (DstAlignCanChange) { 5983 Type *Ty = MemOps[0].getTypeForEVT(C); 5984 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5985 if (NewAlign > Align) { 5986 // Give the stack frame object a larger alignment if needed. 5987 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5988 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5989 Align = NewAlign; 5990 } 5991 } 5992 5993 MachineMemOperand::Flags MMOFlags = 5994 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5995 uint64_t SrcOff = 0, DstOff = 0; 5996 SmallVector<SDValue, 8> LoadValues; 5997 SmallVector<SDValue, 8> LoadChains; 5998 SmallVector<SDValue, 8> OutChains; 5999 unsigned NumMemOps = MemOps.size(); 6000 for (unsigned i = 0; i < NumMemOps; i++) { 6001 EVT VT = MemOps[i]; 6002 unsigned VTSize = VT.getSizeInBits() / 8; 6003 SDValue Value; 6004 6005 bool isDereferenceable = 6006 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6007 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6008 if (isDereferenceable) 6009 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6010 6011 Value = 6012 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6013 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6014 LoadValues.push_back(Value); 6015 LoadChains.push_back(Value.getValue(1)); 6016 SrcOff += VTSize; 6017 } 6018 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6019 OutChains.clear(); 6020 for (unsigned i = 0; i < NumMemOps; i++) { 6021 EVT VT = MemOps[i]; 6022 unsigned VTSize = VT.getSizeInBits() / 8; 6023 SDValue Store; 6024 6025 Store = DAG.getStore(Chain, dl, LoadValues[i], 6026 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6027 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6028 OutChains.push_back(Store); 6029 DstOff += VTSize; 6030 } 6031 6032 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6033 } 6034 6035 /// Lower the call to 'memset' intrinsic function into a series of store 6036 /// operations. 6037 /// 6038 /// \param DAG Selection DAG where lowered code is placed. 6039 /// \param dl Link to corresponding IR location. 6040 /// \param Chain Control flow dependency. 6041 /// \param Dst Pointer to destination memory location. 6042 /// \param Src Value of byte to write into the memory. 6043 /// \param Size Number of bytes to write. 6044 /// \param Align Alignment of the destination in bytes. 6045 /// \param isVol True if destination is volatile. 6046 /// \param DstPtrInfo IR information on the memory pointer. 6047 /// \returns New head in the control flow, if lowering was successful, empty 6048 /// SDValue otherwise. 6049 /// 6050 /// The function tries to replace 'llvm.memset' intrinsic with several store 6051 /// operations and value calculation code. This is usually profitable for small 6052 /// memory size. 6053 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6054 SDValue Chain, SDValue Dst, SDValue Src, 6055 uint64_t Size, unsigned Align, bool isVol, 6056 MachinePointerInfo DstPtrInfo) { 6057 // Turn a memset of undef to nop. 6058 // FIXME: We need to honor volatile even is Src is undef. 6059 if (Src.isUndef()) 6060 return Chain; 6061 6062 // Expand memset to a series of load/store ops if the size operand 6063 // falls below a certain threshold. 6064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6065 std::vector<EVT> MemOps; 6066 bool DstAlignCanChange = false; 6067 MachineFunction &MF = DAG.getMachineFunction(); 6068 MachineFrameInfo &MFI = MF.getFrameInfo(); 6069 bool OptSize = shouldLowerMemFuncForSize(MF); 6070 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6071 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6072 DstAlignCanChange = true; 6073 bool IsZeroVal = 6074 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6075 if (!TLI.findOptimalMemOpLowering( 6076 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6077 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6078 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6079 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6080 MF.getFunction().getAttributes())) 6081 return SDValue(); 6082 6083 if (DstAlignCanChange) { 6084 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6085 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6086 if (NewAlign > Align) { 6087 // Give the stack frame object a larger alignment if needed. 6088 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6089 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6090 Align = NewAlign; 6091 } 6092 } 6093 6094 SmallVector<SDValue, 8> OutChains; 6095 uint64_t DstOff = 0; 6096 unsigned NumMemOps = MemOps.size(); 6097 6098 // Find the largest store and generate the bit pattern for it. 6099 EVT LargestVT = MemOps[0]; 6100 for (unsigned i = 1; i < NumMemOps; i++) 6101 if (MemOps[i].bitsGT(LargestVT)) 6102 LargestVT = MemOps[i]; 6103 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6104 6105 for (unsigned i = 0; i < NumMemOps; i++) { 6106 EVT VT = MemOps[i]; 6107 unsigned VTSize = VT.getSizeInBits() / 8; 6108 if (VTSize > Size) { 6109 // Issuing an unaligned load / store pair that overlaps with the previous 6110 // pair. Adjust the offset accordingly. 6111 assert(i == NumMemOps-1 && i != 0); 6112 DstOff -= VTSize - Size; 6113 } 6114 6115 // If this store is smaller than the largest store see whether we can get 6116 // the smaller value for free with a truncate. 6117 SDValue Value = MemSetValue; 6118 if (VT.bitsLT(LargestVT)) { 6119 if (!LargestVT.isVector() && !VT.isVector() && 6120 TLI.isTruncateFree(LargestVT, VT)) 6121 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6122 else 6123 Value = getMemsetValue(Src, VT, DAG, dl); 6124 } 6125 assert(Value.getValueType() == VT && "Value with wrong type."); 6126 SDValue Store = DAG.getStore( 6127 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6128 DstPtrInfo.getWithOffset(DstOff), Align, 6129 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6130 OutChains.push_back(Store); 6131 DstOff += VT.getSizeInBits() / 8; 6132 Size -= VTSize; 6133 } 6134 6135 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6136 } 6137 6138 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6139 unsigned AS) { 6140 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6141 // pointer operands can be losslessly bitcasted to pointers of address space 0 6142 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6143 report_fatal_error("cannot lower memory intrinsic in address space " + 6144 Twine(AS)); 6145 } 6146 } 6147 6148 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6149 SDValue Src, SDValue Size, unsigned Align, 6150 bool isVol, bool AlwaysInline, bool isTailCall, 6151 MachinePointerInfo DstPtrInfo, 6152 MachinePointerInfo SrcPtrInfo) { 6153 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6154 6155 // Check to see if we should lower the memcpy to loads and stores first. 6156 // For cases within the target-specified limits, this is the best choice. 6157 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6158 if (ConstantSize) { 6159 // Memcpy with size zero? Just return the original chain. 6160 if (ConstantSize->isNullValue()) 6161 return Chain; 6162 6163 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6164 ConstantSize->getZExtValue(),Align, 6165 isVol, false, DstPtrInfo, SrcPtrInfo); 6166 if (Result.getNode()) 6167 return Result; 6168 } 6169 6170 // Then check to see if we should lower the memcpy with target-specific 6171 // code. If the target chooses to do this, this is the next best. 6172 if (TSI) { 6173 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6174 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6175 DstPtrInfo, SrcPtrInfo); 6176 if (Result.getNode()) 6177 return Result; 6178 } 6179 6180 // If we really need inline code and the target declined to provide it, 6181 // use a (potentially long) sequence of loads and stores. 6182 if (AlwaysInline) { 6183 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6184 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6185 ConstantSize->getZExtValue(), Align, isVol, 6186 true, DstPtrInfo, SrcPtrInfo); 6187 } 6188 6189 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6190 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6191 6192 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6193 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6194 // respect volatile, so they may do things like read or write memory 6195 // beyond the given memory regions. But fixing this isn't easy, and most 6196 // people don't care. 6197 6198 // Emit a library call. 6199 TargetLowering::ArgListTy Args; 6200 TargetLowering::ArgListEntry Entry; 6201 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6202 Entry.Node = Dst; Args.push_back(Entry); 6203 Entry.Node = Src; Args.push_back(Entry); 6204 6205 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6206 Entry.Node = Size; Args.push_back(Entry); 6207 // FIXME: pass in SDLoc 6208 TargetLowering::CallLoweringInfo CLI(*this); 6209 CLI.setDebugLoc(dl) 6210 .setChain(Chain) 6211 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6212 Dst.getValueType().getTypeForEVT(*getContext()), 6213 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6214 TLI->getPointerTy(getDataLayout())), 6215 std::move(Args)) 6216 .setDiscardResult() 6217 .setTailCall(isTailCall); 6218 6219 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6220 return CallResult.second; 6221 } 6222 6223 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6224 SDValue Dst, unsigned DstAlign, 6225 SDValue Src, unsigned SrcAlign, 6226 SDValue Size, Type *SizeTy, 6227 unsigned ElemSz, bool isTailCall, 6228 MachinePointerInfo DstPtrInfo, 6229 MachinePointerInfo SrcPtrInfo) { 6230 // Emit a library call. 6231 TargetLowering::ArgListTy Args; 6232 TargetLowering::ArgListEntry Entry; 6233 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6234 Entry.Node = Dst; 6235 Args.push_back(Entry); 6236 6237 Entry.Node = Src; 6238 Args.push_back(Entry); 6239 6240 Entry.Ty = SizeTy; 6241 Entry.Node = Size; 6242 Args.push_back(Entry); 6243 6244 RTLIB::Libcall LibraryCall = 6245 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6246 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6247 report_fatal_error("Unsupported element size"); 6248 6249 TargetLowering::CallLoweringInfo CLI(*this); 6250 CLI.setDebugLoc(dl) 6251 .setChain(Chain) 6252 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6253 Type::getVoidTy(*getContext()), 6254 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6255 TLI->getPointerTy(getDataLayout())), 6256 std::move(Args)) 6257 .setDiscardResult() 6258 .setTailCall(isTailCall); 6259 6260 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6261 return CallResult.second; 6262 } 6263 6264 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6265 SDValue Src, SDValue Size, unsigned Align, 6266 bool isVol, bool isTailCall, 6267 MachinePointerInfo DstPtrInfo, 6268 MachinePointerInfo SrcPtrInfo) { 6269 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6270 6271 // Check to see if we should lower the memmove to loads and stores first. 6272 // For cases within the target-specified limits, this is the best choice. 6273 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6274 if (ConstantSize) { 6275 // Memmove with size zero? Just return the original chain. 6276 if (ConstantSize->isNullValue()) 6277 return Chain; 6278 6279 SDValue Result = 6280 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6281 ConstantSize->getZExtValue(), Align, isVol, 6282 false, DstPtrInfo, SrcPtrInfo); 6283 if (Result.getNode()) 6284 return Result; 6285 } 6286 6287 // Then check to see if we should lower the memmove with target-specific 6288 // code. If the target chooses to do this, this is the next best. 6289 if (TSI) { 6290 SDValue Result = TSI->EmitTargetCodeForMemmove( 6291 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6292 if (Result.getNode()) 6293 return Result; 6294 } 6295 6296 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6297 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6298 6299 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6300 // not be safe. See memcpy above for more details. 6301 6302 // Emit a library call. 6303 TargetLowering::ArgListTy Args; 6304 TargetLowering::ArgListEntry Entry; 6305 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6306 Entry.Node = Dst; Args.push_back(Entry); 6307 Entry.Node = Src; Args.push_back(Entry); 6308 6309 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6310 Entry.Node = Size; Args.push_back(Entry); 6311 // FIXME: pass in SDLoc 6312 TargetLowering::CallLoweringInfo CLI(*this); 6313 CLI.setDebugLoc(dl) 6314 .setChain(Chain) 6315 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6316 Dst.getValueType().getTypeForEVT(*getContext()), 6317 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6318 TLI->getPointerTy(getDataLayout())), 6319 std::move(Args)) 6320 .setDiscardResult() 6321 .setTailCall(isTailCall); 6322 6323 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6324 return CallResult.second; 6325 } 6326 6327 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6328 SDValue Dst, unsigned DstAlign, 6329 SDValue Src, unsigned SrcAlign, 6330 SDValue Size, Type *SizeTy, 6331 unsigned ElemSz, bool isTailCall, 6332 MachinePointerInfo DstPtrInfo, 6333 MachinePointerInfo SrcPtrInfo) { 6334 // Emit a library call. 6335 TargetLowering::ArgListTy Args; 6336 TargetLowering::ArgListEntry Entry; 6337 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6338 Entry.Node = Dst; 6339 Args.push_back(Entry); 6340 6341 Entry.Node = Src; 6342 Args.push_back(Entry); 6343 6344 Entry.Ty = SizeTy; 6345 Entry.Node = Size; 6346 Args.push_back(Entry); 6347 6348 RTLIB::Libcall LibraryCall = 6349 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6350 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6351 report_fatal_error("Unsupported element size"); 6352 6353 TargetLowering::CallLoweringInfo CLI(*this); 6354 CLI.setDebugLoc(dl) 6355 .setChain(Chain) 6356 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6357 Type::getVoidTy(*getContext()), 6358 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6359 TLI->getPointerTy(getDataLayout())), 6360 std::move(Args)) 6361 .setDiscardResult() 6362 .setTailCall(isTailCall); 6363 6364 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6365 return CallResult.second; 6366 } 6367 6368 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6369 SDValue Src, SDValue Size, unsigned Align, 6370 bool isVol, bool isTailCall, 6371 MachinePointerInfo DstPtrInfo) { 6372 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6373 6374 // Check to see if we should lower the memset to stores first. 6375 // For cases within the target-specified limits, this is the best choice. 6376 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6377 if (ConstantSize) { 6378 // Memset with size zero? Just return the original chain. 6379 if (ConstantSize->isNullValue()) 6380 return Chain; 6381 6382 SDValue Result = 6383 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6384 Align, isVol, DstPtrInfo); 6385 6386 if (Result.getNode()) 6387 return Result; 6388 } 6389 6390 // Then check to see if we should lower the memset with target-specific 6391 // code. If the target chooses to do this, this is the next best. 6392 if (TSI) { 6393 SDValue Result = TSI->EmitTargetCodeForMemset( 6394 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6395 if (Result.getNode()) 6396 return Result; 6397 } 6398 6399 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6400 6401 // Emit a library call. 6402 TargetLowering::ArgListTy Args; 6403 TargetLowering::ArgListEntry Entry; 6404 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6405 Args.push_back(Entry); 6406 Entry.Node = Src; 6407 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6408 Args.push_back(Entry); 6409 Entry.Node = Size; 6410 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6411 Args.push_back(Entry); 6412 6413 // FIXME: pass in SDLoc 6414 TargetLowering::CallLoweringInfo CLI(*this); 6415 CLI.setDebugLoc(dl) 6416 .setChain(Chain) 6417 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6418 Dst.getValueType().getTypeForEVT(*getContext()), 6419 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6420 TLI->getPointerTy(getDataLayout())), 6421 std::move(Args)) 6422 .setDiscardResult() 6423 .setTailCall(isTailCall); 6424 6425 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6426 return CallResult.second; 6427 } 6428 6429 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6430 SDValue Dst, unsigned DstAlign, 6431 SDValue Value, SDValue Size, Type *SizeTy, 6432 unsigned ElemSz, bool isTailCall, 6433 MachinePointerInfo DstPtrInfo) { 6434 // Emit a library call. 6435 TargetLowering::ArgListTy Args; 6436 TargetLowering::ArgListEntry Entry; 6437 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6438 Entry.Node = Dst; 6439 Args.push_back(Entry); 6440 6441 Entry.Ty = Type::getInt8Ty(*getContext()); 6442 Entry.Node = Value; 6443 Args.push_back(Entry); 6444 6445 Entry.Ty = SizeTy; 6446 Entry.Node = Size; 6447 Args.push_back(Entry); 6448 6449 RTLIB::Libcall LibraryCall = 6450 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6451 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6452 report_fatal_error("Unsupported element size"); 6453 6454 TargetLowering::CallLoweringInfo CLI(*this); 6455 CLI.setDebugLoc(dl) 6456 .setChain(Chain) 6457 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6458 Type::getVoidTy(*getContext()), 6459 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6460 TLI->getPointerTy(getDataLayout())), 6461 std::move(Args)) 6462 .setDiscardResult() 6463 .setTailCall(isTailCall); 6464 6465 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6466 return CallResult.second; 6467 } 6468 6469 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6470 SDVTList VTList, ArrayRef<SDValue> Ops, 6471 MachineMemOperand *MMO) { 6472 FoldingSetNodeID ID; 6473 ID.AddInteger(MemVT.getRawBits()); 6474 AddNodeIDNode(ID, Opcode, VTList, Ops); 6475 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6476 void* IP = nullptr; 6477 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6478 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6479 return SDValue(E, 0); 6480 } 6481 6482 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6483 VTList, MemVT, MMO); 6484 createOperands(N, Ops); 6485 6486 CSEMap.InsertNode(N, IP); 6487 InsertNode(N); 6488 return SDValue(N, 0); 6489 } 6490 6491 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6492 EVT MemVT, SDVTList VTs, SDValue Chain, 6493 SDValue Ptr, SDValue Cmp, SDValue Swp, 6494 MachineMemOperand *MMO) { 6495 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6496 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6497 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6498 6499 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6500 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6501 } 6502 6503 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6504 SDValue Chain, SDValue Ptr, SDValue Val, 6505 MachineMemOperand *MMO) { 6506 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6507 Opcode == ISD::ATOMIC_LOAD_SUB || 6508 Opcode == ISD::ATOMIC_LOAD_AND || 6509 Opcode == ISD::ATOMIC_LOAD_CLR || 6510 Opcode == ISD::ATOMIC_LOAD_OR || 6511 Opcode == ISD::ATOMIC_LOAD_XOR || 6512 Opcode == ISD::ATOMIC_LOAD_NAND || 6513 Opcode == ISD::ATOMIC_LOAD_MIN || 6514 Opcode == ISD::ATOMIC_LOAD_MAX || 6515 Opcode == ISD::ATOMIC_LOAD_UMIN || 6516 Opcode == ISD::ATOMIC_LOAD_UMAX || 6517 Opcode == ISD::ATOMIC_LOAD_FADD || 6518 Opcode == ISD::ATOMIC_LOAD_FSUB || 6519 Opcode == ISD::ATOMIC_SWAP || 6520 Opcode == ISD::ATOMIC_STORE) && 6521 "Invalid Atomic Op"); 6522 6523 EVT VT = Val.getValueType(); 6524 6525 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6526 getVTList(VT, MVT::Other); 6527 SDValue Ops[] = {Chain, Ptr, Val}; 6528 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6529 } 6530 6531 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6532 EVT VT, SDValue Chain, SDValue Ptr, 6533 MachineMemOperand *MMO) { 6534 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6535 6536 SDVTList VTs = getVTList(VT, MVT::Other); 6537 SDValue Ops[] = {Chain, Ptr}; 6538 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6539 } 6540 6541 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6542 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6543 if (Ops.size() == 1) 6544 return Ops[0]; 6545 6546 SmallVector<EVT, 4> VTs; 6547 VTs.reserve(Ops.size()); 6548 for (unsigned i = 0; i < Ops.size(); ++i) 6549 VTs.push_back(Ops[i].getValueType()); 6550 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6551 } 6552 6553 SDValue SelectionDAG::getMemIntrinsicNode( 6554 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6555 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6556 MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) { 6557 if (Align == 0) // Ensure that codegen never sees alignment 0 6558 Align = getEVTAlignment(MemVT); 6559 6560 if (!Size) 6561 Size = MemVT.getStoreSize(); 6562 6563 MachineFunction &MF = getMachineFunction(); 6564 MachineMemOperand *MMO = 6565 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6566 6567 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6568 } 6569 6570 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6571 SDVTList VTList, 6572 ArrayRef<SDValue> Ops, EVT MemVT, 6573 MachineMemOperand *MMO) { 6574 assert((Opcode == ISD::INTRINSIC_VOID || 6575 Opcode == ISD::INTRINSIC_W_CHAIN || 6576 Opcode == ISD::PREFETCH || 6577 Opcode == ISD::LIFETIME_START || 6578 Opcode == ISD::LIFETIME_END || 6579 ((int)Opcode <= std::numeric_limits<int>::max() && 6580 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6581 "Opcode is not a memory-accessing opcode!"); 6582 6583 // Memoize the node unless it returns a flag. 6584 MemIntrinsicSDNode *N; 6585 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6586 FoldingSetNodeID ID; 6587 AddNodeIDNode(ID, Opcode, VTList, Ops); 6588 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6589 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6590 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6591 void *IP = nullptr; 6592 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6593 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6594 return SDValue(E, 0); 6595 } 6596 6597 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6598 VTList, MemVT, MMO); 6599 createOperands(N, Ops); 6600 6601 CSEMap.InsertNode(N, IP); 6602 } else { 6603 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6604 VTList, MemVT, MMO); 6605 createOperands(N, Ops); 6606 } 6607 InsertNode(N); 6608 SDValue V(N, 0); 6609 NewSDValueDbgMsg(V, "Creating new node: ", this); 6610 return V; 6611 } 6612 6613 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6614 SDValue Chain, int FrameIndex, 6615 int64_t Size, int64_t Offset) { 6616 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6617 const auto VTs = getVTList(MVT::Other); 6618 SDValue Ops[2] = { 6619 Chain, 6620 getFrameIndex(FrameIndex, 6621 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6622 true)}; 6623 6624 FoldingSetNodeID ID; 6625 AddNodeIDNode(ID, Opcode, VTs, Ops); 6626 ID.AddInteger(FrameIndex); 6627 ID.AddInteger(Size); 6628 ID.AddInteger(Offset); 6629 void *IP = nullptr; 6630 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6631 return SDValue(E, 0); 6632 6633 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6634 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6635 createOperands(N, Ops); 6636 CSEMap.InsertNode(N, IP); 6637 InsertNode(N); 6638 SDValue V(N, 0); 6639 NewSDValueDbgMsg(V, "Creating new node: ", this); 6640 return V; 6641 } 6642 6643 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6644 /// MachinePointerInfo record from it. This is particularly useful because the 6645 /// code generator has many cases where it doesn't bother passing in a 6646 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6647 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6648 SelectionDAG &DAG, SDValue Ptr, 6649 int64_t Offset = 0) { 6650 // If this is FI+Offset, we can model it. 6651 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6652 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6653 FI->getIndex(), Offset); 6654 6655 // If this is (FI+Offset1)+Offset2, we can model it. 6656 if (Ptr.getOpcode() != ISD::ADD || 6657 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6658 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6659 return Info; 6660 6661 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6662 return MachinePointerInfo::getFixedStack( 6663 DAG.getMachineFunction(), FI, 6664 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6665 } 6666 6667 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6668 /// MachinePointerInfo record from it. This is particularly useful because the 6669 /// code generator has many cases where it doesn't bother passing in a 6670 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6671 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6672 SelectionDAG &DAG, SDValue Ptr, 6673 SDValue OffsetOp) { 6674 // If the 'Offset' value isn't a constant, we can't handle this. 6675 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6676 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6677 if (OffsetOp.isUndef()) 6678 return InferPointerInfo(Info, DAG, Ptr); 6679 return Info; 6680 } 6681 6682 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6683 EVT VT, const SDLoc &dl, SDValue Chain, 6684 SDValue Ptr, SDValue Offset, 6685 MachinePointerInfo PtrInfo, EVT MemVT, 6686 unsigned Alignment, 6687 MachineMemOperand::Flags MMOFlags, 6688 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6689 assert(Chain.getValueType() == MVT::Other && 6690 "Invalid chain type"); 6691 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6692 Alignment = getEVTAlignment(MemVT); 6693 6694 MMOFlags |= MachineMemOperand::MOLoad; 6695 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6696 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6697 // clients. 6698 if (PtrInfo.V.isNull()) 6699 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6700 6701 MachineFunction &MF = getMachineFunction(); 6702 MachineMemOperand *MMO = MF.getMachineMemOperand( 6703 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6704 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6705 } 6706 6707 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6708 EVT VT, const SDLoc &dl, SDValue Chain, 6709 SDValue Ptr, SDValue Offset, EVT MemVT, 6710 MachineMemOperand *MMO) { 6711 if (VT == MemVT) { 6712 ExtType = ISD::NON_EXTLOAD; 6713 } else if (ExtType == ISD::NON_EXTLOAD) { 6714 assert(VT == MemVT && "Non-extending load from different memory type!"); 6715 } else { 6716 // Extending load. 6717 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6718 "Should only be an extending load, not truncating!"); 6719 assert(VT.isInteger() == MemVT.isInteger() && 6720 "Cannot convert from FP to Int or Int -> FP!"); 6721 assert(VT.isVector() == MemVT.isVector() && 6722 "Cannot use an ext load to convert to or from a vector!"); 6723 assert((!VT.isVector() || 6724 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6725 "Cannot use an ext load to change the number of vector elements!"); 6726 } 6727 6728 bool Indexed = AM != ISD::UNINDEXED; 6729 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6730 6731 SDVTList VTs = Indexed ? 6732 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6733 SDValue Ops[] = { Chain, Ptr, Offset }; 6734 FoldingSetNodeID ID; 6735 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6736 ID.AddInteger(MemVT.getRawBits()); 6737 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6738 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6739 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6740 void *IP = nullptr; 6741 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6742 cast<LoadSDNode>(E)->refineAlignment(MMO); 6743 return SDValue(E, 0); 6744 } 6745 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6746 ExtType, MemVT, MMO); 6747 createOperands(N, Ops); 6748 6749 CSEMap.InsertNode(N, IP); 6750 InsertNode(N); 6751 SDValue V(N, 0); 6752 NewSDValueDbgMsg(V, "Creating new node: ", this); 6753 return V; 6754 } 6755 6756 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6757 SDValue Ptr, MachinePointerInfo PtrInfo, 6758 unsigned Alignment, 6759 MachineMemOperand::Flags MMOFlags, 6760 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6761 SDValue Undef = getUNDEF(Ptr.getValueType()); 6762 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6763 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6764 } 6765 6766 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6767 SDValue Ptr, MachineMemOperand *MMO) { 6768 SDValue Undef = getUNDEF(Ptr.getValueType()); 6769 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6770 VT, MMO); 6771 } 6772 6773 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6774 EVT VT, SDValue Chain, SDValue Ptr, 6775 MachinePointerInfo PtrInfo, EVT MemVT, 6776 unsigned Alignment, 6777 MachineMemOperand::Flags MMOFlags, 6778 const AAMDNodes &AAInfo) { 6779 SDValue Undef = getUNDEF(Ptr.getValueType()); 6780 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6781 MemVT, Alignment, MMOFlags, AAInfo); 6782 } 6783 6784 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6785 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6786 MachineMemOperand *MMO) { 6787 SDValue Undef = getUNDEF(Ptr.getValueType()); 6788 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6789 MemVT, MMO); 6790 } 6791 6792 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6793 SDValue Base, SDValue Offset, 6794 ISD::MemIndexedMode AM) { 6795 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6796 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6797 // Don't propagate the invariant or dereferenceable flags. 6798 auto MMOFlags = 6799 LD->getMemOperand()->getFlags() & 6800 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6801 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6802 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6803 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6804 LD->getAAInfo()); 6805 } 6806 6807 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6808 SDValue Ptr, MachinePointerInfo PtrInfo, 6809 unsigned Alignment, 6810 MachineMemOperand::Flags MMOFlags, 6811 const AAMDNodes &AAInfo) { 6812 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6813 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6814 Alignment = getEVTAlignment(Val.getValueType()); 6815 6816 MMOFlags |= MachineMemOperand::MOStore; 6817 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6818 6819 if (PtrInfo.V.isNull()) 6820 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6821 6822 MachineFunction &MF = getMachineFunction(); 6823 MachineMemOperand *MMO = MF.getMachineMemOperand( 6824 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6825 return getStore(Chain, dl, Val, Ptr, MMO); 6826 } 6827 6828 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6829 SDValue Ptr, MachineMemOperand *MMO) { 6830 assert(Chain.getValueType() == MVT::Other && 6831 "Invalid chain type"); 6832 EVT VT = Val.getValueType(); 6833 SDVTList VTs = getVTList(MVT::Other); 6834 SDValue Undef = getUNDEF(Ptr.getValueType()); 6835 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6836 FoldingSetNodeID ID; 6837 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6838 ID.AddInteger(VT.getRawBits()); 6839 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6840 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6841 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6842 void *IP = nullptr; 6843 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6844 cast<StoreSDNode>(E)->refineAlignment(MMO); 6845 return SDValue(E, 0); 6846 } 6847 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6848 ISD::UNINDEXED, false, VT, MMO); 6849 createOperands(N, Ops); 6850 6851 CSEMap.InsertNode(N, IP); 6852 InsertNode(N); 6853 SDValue V(N, 0); 6854 NewSDValueDbgMsg(V, "Creating new node: ", this); 6855 return V; 6856 } 6857 6858 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6859 SDValue Ptr, MachinePointerInfo PtrInfo, 6860 EVT SVT, unsigned Alignment, 6861 MachineMemOperand::Flags MMOFlags, 6862 const AAMDNodes &AAInfo) { 6863 assert(Chain.getValueType() == MVT::Other && 6864 "Invalid chain type"); 6865 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6866 Alignment = getEVTAlignment(SVT); 6867 6868 MMOFlags |= MachineMemOperand::MOStore; 6869 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6870 6871 if (PtrInfo.V.isNull()) 6872 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6873 6874 MachineFunction &MF = getMachineFunction(); 6875 MachineMemOperand *MMO = MF.getMachineMemOperand( 6876 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6877 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6878 } 6879 6880 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6881 SDValue Ptr, EVT SVT, 6882 MachineMemOperand *MMO) { 6883 EVT VT = Val.getValueType(); 6884 6885 assert(Chain.getValueType() == MVT::Other && 6886 "Invalid chain type"); 6887 if (VT == SVT) 6888 return getStore(Chain, dl, Val, Ptr, MMO); 6889 6890 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6891 "Should only be a truncating store, not extending!"); 6892 assert(VT.isInteger() == SVT.isInteger() && 6893 "Can't do FP-INT conversion!"); 6894 assert(VT.isVector() == SVT.isVector() && 6895 "Cannot use trunc store to convert to or from a vector!"); 6896 assert((!VT.isVector() || 6897 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6898 "Cannot use trunc store to change the number of vector elements!"); 6899 6900 SDVTList VTs = getVTList(MVT::Other); 6901 SDValue Undef = getUNDEF(Ptr.getValueType()); 6902 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6903 FoldingSetNodeID ID; 6904 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6905 ID.AddInteger(SVT.getRawBits()); 6906 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6907 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6908 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6909 void *IP = nullptr; 6910 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6911 cast<StoreSDNode>(E)->refineAlignment(MMO); 6912 return SDValue(E, 0); 6913 } 6914 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6915 ISD::UNINDEXED, true, SVT, MMO); 6916 createOperands(N, Ops); 6917 6918 CSEMap.InsertNode(N, IP); 6919 InsertNode(N); 6920 SDValue V(N, 0); 6921 NewSDValueDbgMsg(V, "Creating new node: ", this); 6922 return V; 6923 } 6924 6925 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6926 SDValue Base, SDValue Offset, 6927 ISD::MemIndexedMode AM) { 6928 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6929 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6930 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6931 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6932 FoldingSetNodeID ID; 6933 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6934 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6935 ID.AddInteger(ST->getRawSubclassData()); 6936 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6937 void *IP = nullptr; 6938 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6939 return SDValue(E, 0); 6940 6941 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6942 ST->isTruncatingStore(), ST->getMemoryVT(), 6943 ST->getMemOperand()); 6944 createOperands(N, Ops); 6945 6946 CSEMap.InsertNode(N, IP); 6947 InsertNode(N); 6948 SDValue V(N, 0); 6949 NewSDValueDbgMsg(V, "Creating new node: ", this); 6950 return V; 6951 } 6952 6953 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6954 SDValue Ptr, SDValue Mask, SDValue PassThru, 6955 EVT MemVT, MachineMemOperand *MMO, 6956 ISD::LoadExtType ExtTy, bool isExpanding) { 6957 SDVTList VTs = getVTList(VT, MVT::Other); 6958 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6959 FoldingSetNodeID ID; 6960 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6961 ID.AddInteger(MemVT.getRawBits()); 6962 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6963 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6964 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6965 void *IP = nullptr; 6966 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6967 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6968 return SDValue(E, 0); 6969 } 6970 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6971 ExtTy, isExpanding, MemVT, MMO); 6972 createOperands(N, Ops); 6973 6974 CSEMap.InsertNode(N, IP); 6975 InsertNode(N); 6976 SDValue V(N, 0); 6977 NewSDValueDbgMsg(V, "Creating new node: ", this); 6978 return V; 6979 } 6980 6981 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6982 SDValue Val, SDValue Ptr, SDValue Mask, 6983 EVT MemVT, MachineMemOperand *MMO, 6984 bool IsTruncating, bool IsCompressing) { 6985 assert(Chain.getValueType() == MVT::Other && 6986 "Invalid chain type"); 6987 SDVTList VTs = getVTList(MVT::Other); 6988 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6989 FoldingSetNodeID ID; 6990 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6991 ID.AddInteger(MemVT.getRawBits()); 6992 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6993 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6994 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6995 void *IP = nullptr; 6996 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6997 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6998 return SDValue(E, 0); 6999 } 7000 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7001 IsTruncating, IsCompressing, MemVT, MMO); 7002 createOperands(N, Ops); 7003 7004 CSEMap.InsertNode(N, IP); 7005 InsertNode(N); 7006 SDValue V(N, 0); 7007 NewSDValueDbgMsg(V, "Creating new node: ", this); 7008 return V; 7009 } 7010 7011 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7012 ArrayRef<SDValue> Ops, 7013 MachineMemOperand *MMO, 7014 ISD::MemIndexType IndexType) { 7015 assert(Ops.size() == 6 && "Incompatible number of operands"); 7016 7017 FoldingSetNodeID ID; 7018 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7019 ID.AddInteger(VT.getRawBits()); 7020 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7021 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7022 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7023 void *IP = nullptr; 7024 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7025 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7026 return SDValue(E, 0); 7027 } 7028 7029 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7030 VTs, VT, MMO, IndexType); 7031 createOperands(N, Ops); 7032 7033 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7034 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7035 assert(N->getMask().getValueType().getVectorNumElements() == 7036 N->getValueType(0).getVectorNumElements() && 7037 "Vector width mismatch between mask and data"); 7038 assert(N->getIndex().getValueType().getVectorNumElements() >= 7039 N->getValueType(0).getVectorNumElements() && 7040 "Vector width mismatch between index and data"); 7041 assert(isa<ConstantSDNode>(N->getScale()) && 7042 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7043 "Scale should be a constant power of 2"); 7044 7045 CSEMap.InsertNode(N, IP); 7046 InsertNode(N); 7047 SDValue V(N, 0); 7048 NewSDValueDbgMsg(V, "Creating new node: ", this); 7049 return V; 7050 } 7051 7052 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7053 ArrayRef<SDValue> Ops, 7054 MachineMemOperand *MMO, 7055 ISD::MemIndexType IndexType) { 7056 assert(Ops.size() == 6 && "Incompatible number of operands"); 7057 7058 FoldingSetNodeID ID; 7059 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7060 ID.AddInteger(VT.getRawBits()); 7061 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7062 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7063 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7064 void *IP = nullptr; 7065 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7066 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7067 return SDValue(E, 0); 7068 } 7069 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7070 VTs, VT, MMO, IndexType); 7071 createOperands(N, Ops); 7072 7073 assert(N->getMask().getValueType().getVectorNumElements() == 7074 N->getValue().getValueType().getVectorNumElements() && 7075 "Vector width mismatch between mask and data"); 7076 assert(N->getIndex().getValueType().getVectorNumElements() >= 7077 N->getValue().getValueType().getVectorNumElements() && 7078 "Vector width mismatch between index and data"); 7079 assert(isa<ConstantSDNode>(N->getScale()) && 7080 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7081 "Scale should be a constant power of 2"); 7082 7083 CSEMap.InsertNode(N, IP); 7084 InsertNode(N); 7085 SDValue V(N, 0); 7086 NewSDValueDbgMsg(V, "Creating new node: ", this); 7087 return V; 7088 } 7089 7090 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7091 // select undef, T, F --> T (if T is a constant), otherwise F 7092 // select, ?, undef, F --> F 7093 // select, ?, T, undef --> T 7094 if (Cond.isUndef()) 7095 return isConstantValueOfAnyType(T) ? T : F; 7096 if (T.isUndef()) 7097 return F; 7098 if (F.isUndef()) 7099 return T; 7100 7101 // select true, T, F --> T 7102 // select false, T, F --> F 7103 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7104 return CondC->isNullValue() ? F : T; 7105 7106 // TODO: This should simplify VSELECT with constant condition using something 7107 // like this (but check boolean contents to be complete?): 7108 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7109 // return T; 7110 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7111 // return F; 7112 7113 // select ?, T, T --> T 7114 if (T == F) 7115 return T; 7116 7117 return SDValue(); 7118 } 7119 7120 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7121 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7122 if (X.isUndef()) 7123 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7124 // shift X, undef --> undef (because it may shift by the bitwidth) 7125 if (Y.isUndef()) 7126 return getUNDEF(X.getValueType()); 7127 7128 // shift 0, Y --> 0 7129 // shift X, 0 --> X 7130 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7131 return X; 7132 7133 // shift X, C >= bitwidth(X) --> undef 7134 // All vector elements must be too big (or undef) to avoid partial undefs. 7135 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7136 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7137 }; 7138 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7139 return getUNDEF(X.getValueType()); 7140 7141 return SDValue(); 7142 } 7143 7144 // TODO: Use fast-math-flags to enable more simplifications. 7145 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7146 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7147 if (!YC) 7148 return SDValue(); 7149 7150 // X + -0.0 --> X 7151 if (Opcode == ISD::FADD) 7152 if (YC->getValueAPF().isNegZero()) 7153 return X; 7154 7155 // X - +0.0 --> X 7156 if (Opcode == ISD::FSUB) 7157 if (YC->getValueAPF().isPosZero()) 7158 return X; 7159 7160 // X * 1.0 --> X 7161 // X / 1.0 --> X 7162 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7163 if (YC->getValueAPF().isExactlyValue(1.0)) 7164 return X; 7165 7166 return SDValue(); 7167 } 7168 7169 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7170 SDValue Ptr, SDValue SV, unsigned Align) { 7171 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7172 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7173 } 7174 7175 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7176 ArrayRef<SDUse> Ops) { 7177 switch (Ops.size()) { 7178 case 0: return getNode(Opcode, DL, VT); 7179 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7180 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7181 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7182 default: break; 7183 } 7184 7185 // Copy from an SDUse array into an SDValue array for use with 7186 // the regular getNode logic. 7187 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7188 return getNode(Opcode, DL, VT, NewOps); 7189 } 7190 7191 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7192 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7193 unsigned NumOps = Ops.size(); 7194 switch (NumOps) { 7195 case 0: return getNode(Opcode, DL, VT); 7196 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7197 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7198 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7199 default: break; 7200 } 7201 7202 switch (Opcode) { 7203 default: break; 7204 case ISD::BUILD_VECTOR: 7205 // Attempt to simplify BUILD_VECTOR. 7206 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7207 return V; 7208 break; 7209 case ISD::CONCAT_VECTORS: 7210 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7211 return V; 7212 break; 7213 case ISD::SELECT_CC: 7214 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7215 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7216 "LHS and RHS of condition must have same type!"); 7217 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7218 "True and False arms of SelectCC must have same type!"); 7219 assert(Ops[2].getValueType() == VT && 7220 "select_cc node must be of same type as true and false value!"); 7221 break; 7222 case ISD::BR_CC: 7223 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7224 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7225 "LHS/RHS of comparison should match types!"); 7226 break; 7227 } 7228 7229 // Memoize nodes. 7230 SDNode *N; 7231 SDVTList VTs = getVTList(VT); 7232 7233 if (VT != MVT::Glue) { 7234 FoldingSetNodeID ID; 7235 AddNodeIDNode(ID, Opcode, VTs, Ops); 7236 void *IP = nullptr; 7237 7238 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7239 return SDValue(E, 0); 7240 7241 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7242 createOperands(N, Ops); 7243 7244 CSEMap.InsertNode(N, IP); 7245 } else { 7246 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7247 createOperands(N, Ops); 7248 } 7249 7250 InsertNode(N); 7251 SDValue V(N, 0); 7252 NewSDValueDbgMsg(V, "Creating new node: ", this); 7253 return V; 7254 } 7255 7256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7257 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7258 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7259 } 7260 7261 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7262 ArrayRef<SDValue> Ops) { 7263 if (VTList.NumVTs == 1) 7264 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7265 7266 #if 0 7267 switch (Opcode) { 7268 // FIXME: figure out how to safely handle things like 7269 // int foo(int x) { return 1 << (x & 255); } 7270 // int bar() { return foo(256); } 7271 case ISD::SRA_PARTS: 7272 case ISD::SRL_PARTS: 7273 case ISD::SHL_PARTS: 7274 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7275 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7276 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7277 else if (N3.getOpcode() == ISD::AND) 7278 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7279 // If the and is only masking out bits that cannot effect the shift, 7280 // eliminate the and. 7281 unsigned NumBits = VT.getScalarSizeInBits()*2; 7282 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7283 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7284 } 7285 break; 7286 } 7287 #endif 7288 7289 // Memoize the node unless it returns a flag. 7290 SDNode *N; 7291 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7292 FoldingSetNodeID ID; 7293 AddNodeIDNode(ID, Opcode, VTList, Ops); 7294 void *IP = nullptr; 7295 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7296 return SDValue(E, 0); 7297 7298 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7299 createOperands(N, Ops); 7300 CSEMap.InsertNode(N, IP); 7301 } else { 7302 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7303 createOperands(N, Ops); 7304 } 7305 InsertNode(N); 7306 SDValue V(N, 0); 7307 NewSDValueDbgMsg(V, "Creating new node: ", this); 7308 return V; 7309 } 7310 7311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7312 SDVTList VTList) { 7313 return getNode(Opcode, DL, VTList, None); 7314 } 7315 7316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7317 SDValue N1) { 7318 SDValue Ops[] = { N1 }; 7319 return getNode(Opcode, DL, VTList, Ops); 7320 } 7321 7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7323 SDValue N1, SDValue N2) { 7324 SDValue Ops[] = { N1, N2 }; 7325 return getNode(Opcode, DL, VTList, Ops); 7326 } 7327 7328 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7329 SDValue N1, SDValue N2, SDValue N3) { 7330 SDValue Ops[] = { N1, N2, N3 }; 7331 return getNode(Opcode, DL, VTList, Ops); 7332 } 7333 7334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7335 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7336 SDValue Ops[] = { N1, N2, N3, N4 }; 7337 return getNode(Opcode, DL, VTList, Ops); 7338 } 7339 7340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7341 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7342 SDValue N5) { 7343 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7344 return getNode(Opcode, DL, VTList, Ops); 7345 } 7346 7347 SDVTList SelectionDAG::getVTList(EVT VT) { 7348 return makeVTList(SDNode::getValueTypeList(VT), 1); 7349 } 7350 7351 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7352 FoldingSetNodeID ID; 7353 ID.AddInteger(2U); 7354 ID.AddInteger(VT1.getRawBits()); 7355 ID.AddInteger(VT2.getRawBits()); 7356 7357 void *IP = nullptr; 7358 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7359 if (!Result) { 7360 EVT *Array = Allocator.Allocate<EVT>(2); 7361 Array[0] = VT1; 7362 Array[1] = VT2; 7363 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7364 VTListMap.InsertNode(Result, IP); 7365 } 7366 return Result->getSDVTList(); 7367 } 7368 7369 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7370 FoldingSetNodeID ID; 7371 ID.AddInteger(3U); 7372 ID.AddInteger(VT1.getRawBits()); 7373 ID.AddInteger(VT2.getRawBits()); 7374 ID.AddInteger(VT3.getRawBits()); 7375 7376 void *IP = nullptr; 7377 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7378 if (!Result) { 7379 EVT *Array = Allocator.Allocate<EVT>(3); 7380 Array[0] = VT1; 7381 Array[1] = VT2; 7382 Array[2] = VT3; 7383 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7384 VTListMap.InsertNode(Result, IP); 7385 } 7386 return Result->getSDVTList(); 7387 } 7388 7389 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7390 FoldingSetNodeID ID; 7391 ID.AddInteger(4U); 7392 ID.AddInteger(VT1.getRawBits()); 7393 ID.AddInteger(VT2.getRawBits()); 7394 ID.AddInteger(VT3.getRawBits()); 7395 ID.AddInteger(VT4.getRawBits()); 7396 7397 void *IP = nullptr; 7398 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7399 if (!Result) { 7400 EVT *Array = Allocator.Allocate<EVT>(4); 7401 Array[0] = VT1; 7402 Array[1] = VT2; 7403 Array[2] = VT3; 7404 Array[3] = VT4; 7405 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7406 VTListMap.InsertNode(Result, IP); 7407 } 7408 return Result->getSDVTList(); 7409 } 7410 7411 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7412 unsigned NumVTs = VTs.size(); 7413 FoldingSetNodeID ID; 7414 ID.AddInteger(NumVTs); 7415 for (unsigned index = 0; index < NumVTs; index++) { 7416 ID.AddInteger(VTs[index].getRawBits()); 7417 } 7418 7419 void *IP = nullptr; 7420 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7421 if (!Result) { 7422 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7423 llvm::copy(VTs, Array); 7424 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7425 VTListMap.InsertNode(Result, IP); 7426 } 7427 return Result->getSDVTList(); 7428 } 7429 7430 7431 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7432 /// specified operands. If the resultant node already exists in the DAG, 7433 /// this does not modify the specified node, instead it returns the node that 7434 /// already exists. If the resultant node does not exist in the DAG, the 7435 /// input node is returned. As a degenerate case, if you specify the same 7436 /// input operands as the node already has, the input node is returned. 7437 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7438 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7439 7440 // Check to see if there is no change. 7441 if (Op == N->getOperand(0)) return N; 7442 7443 // See if the modified node already exists. 7444 void *InsertPos = nullptr; 7445 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7446 return Existing; 7447 7448 // Nope it doesn't. Remove the node from its current place in the maps. 7449 if (InsertPos) 7450 if (!RemoveNodeFromCSEMaps(N)) 7451 InsertPos = nullptr; 7452 7453 // Now we update the operands. 7454 N->OperandList[0].set(Op); 7455 7456 updateDivergence(N); 7457 // If this gets put into a CSE map, add it. 7458 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7459 return N; 7460 } 7461 7462 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7463 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7464 7465 // Check to see if there is no change. 7466 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7467 return N; // No operands changed, just return the input node. 7468 7469 // See if the modified node already exists. 7470 void *InsertPos = nullptr; 7471 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7472 return Existing; 7473 7474 // Nope it doesn't. Remove the node from its current place in the maps. 7475 if (InsertPos) 7476 if (!RemoveNodeFromCSEMaps(N)) 7477 InsertPos = nullptr; 7478 7479 // Now we update the operands. 7480 if (N->OperandList[0] != Op1) 7481 N->OperandList[0].set(Op1); 7482 if (N->OperandList[1] != Op2) 7483 N->OperandList[1].set(Op2); 7484 7485 updateDivergence(N); 7486 // If this gets put into a CSE map, add it. 7487 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7488 return N; 7489 } 7490 7491 SDNode *SelectionDAG:: 7492 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7493 SDValue Ops[] = { Op1, Op2, Op3 }; 7494 return UpdateNodeOperands(N, Ops); 7495 } 7496 7497 SDNode *SelectionDAG:: 7498 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7499 SDValue Op3, SDValue Op4) { 7500 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7501 return UpdateNodeOperands(N, Ops); 7502 } 7503 7504 SDNode *SelectionDAG:: 7505 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7506 SDValue Op3, SDValue Op4, SDValue Op5) { 7507 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7508 return UpdateNodeOperands(N, Ops); 7509 } 7510 7511 SDNode *SelectionDAG:: 7512 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7513 unsigned NumOps = Ops.size(); 7514 assert(N->getNumOperands() == NumOps && 7515 "Update with wrong number of operands"); 7516 7517 // If no operands changed just return the input node. 7518 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7519 return N; 7520 7521 // See if the modified node already exists. 7522 void *InsertPos = nullptr; 7523 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7524 return Existing; 7525 7526 // Nope it doesn't. Remove the node from its current place in the maps. 7527 if (InsertPos) 7528 if (!RemoveNodeFromCSEMaps(N)) 7529 InsertPos = nullptr; 7530 7531 // Now we update the operands. 7532 for (unsigned i = 0; i != NumOps; ++i) 7533 if (N->OperandList[i] != Ops[i]) 7534 N->OperandList[i].set(Ops[i]); 7535 7536 updateDivergence(N); 7537 // If this gets put into a CSE map, add it. 7538 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7539 return N; 7540 } 7541 7542 /// DropOperands - Release the operands and set this node to have 7543 /// zero operands. 7544 void SDNode::DropOperands() { 7545 // Unlike the code in MorphNodeTo that does this, we don't need to 7546 // watch for dead nodes here. 7547 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7548 SDUse &Use = *I++; 7549 Use.set(SDValue()); 7550 } 7551 } 7552 7553 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7554 ArrayRef<MachineMemOperand *> NewMemRefs) { 7555 if (NewMemRefs.empty()) { 7556 N->clearMemRefs(); 7557 return; 7558 } 7559 7560 // Check if we can avoid allocating by storing a single reference directly. 7561 if (NewMemRefs.size() == 1) { 7562 N->MemRefs = NewMemRefs[0]; 7563 N->NumMemRefs = 1; 7564 return; 7565 } 7566 7567 MachineMemOperand **MemRefsBuffer = 7568 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7569 llvm::copy(NewMemRefs, MemRefsBuffer); 7570 N->MemRefs = MemRefsBuffer; 7571 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7572 } 7573 7574 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7575 /// machine opcode. 7576 /// 7577 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7578 EVT VT) { 7579 SDVTList VTs = getVTList(VT); 7580 return SelectNodeTo(N, MachineOpc, VTs, None); 7581 } 7582 7583 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7584 EVT VT, SDValue Op1) { 7585 SDVTList VTs = getVTList(VT); 7586 SDValue Ops[] = { Op1 }; 7587 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7588 } 7589 7590 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7591 EVT VT, SDValue Op1, 7592 SDValue Op2) { 7593 SDVTList VTs = getVTList(VT); 7594 SDValue Ops[] = { Op1, Op2 }; 7595 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7596 } 7597 7598 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7599 EVT VT, SDValue Op1, 7600 SDValue Op2, SDValue Op3) { 7601 SDVTList VTs = getVTList(VT); 7602 SDValue Ops[] = { Op1, Op2, Op3 }; 7603 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7604 } 7605 7606 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7607 EVT VT, ArrayRef<SDValue> Ops) { 7608 SDVTList VTs = getVTList(VT); 7609 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7610 } 7611 7612 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7613 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7614 SDVTList VTs = getVTList(VT1, VT2); 7615 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7616 } 7617 7618 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7619 EVT VT1, EVT VT2) { 7620 SDVTList VTs = getVTList(VT1, VT2); 7621 return SelectNodeTo(N, MachineOpc, VTs, None); 7622 } 7623 7624 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7625 EVT VT1, EVT VT2, EVT VT3, 7626 ArrayRef<SDValue> Ops) { 7627 SDVTList VTs = getVTList(VT1, VT2, VT3); 7628 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7629 } 7630 7631 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7632 EVT VT1, EVT VT2, 7633 SDValue Op1, SDValue Op2) { 7634 SDVTList VTs = getVTList(VT1, VT2); 7635 SDValue Ops[] = { Op1, Op2 }; 7636 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7637 } 7638 7639 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7640 SDVTList VTs,ArrayRef<SDValue> Ops) { 7641 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7642 // Reset the NodeID to -1. 7643 New->setNodeId(-1); 7644 if (New != N) { 7645 ReplaceAllUsesWith(N, New); 7646 RemoveDeadNode(N); 7647 } 7648 return New; 7649 } 7650 7651 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7652 /// the line number information on the merged node since it is not possible to 7653 /// preserve the information that operation is associated with multiple lines. 7654 /// This will make the debugger working better at -O0, were there is a higher 7655 /// probability having other instructions associated with that line. 7656 /// 7657 /// For IROrder, we keep the smaller of the two 7658 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7659 DebugLoc NLoc = N->getDebugLoc(); 7660 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7661 N->setDebugLoc(DebugLoc()); 7662 } 7663 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7664 N->setIROrder(Order); 7665 return N; 7666 } 7667 7668 /// MorphNodeTo - This *mutates* the specified node to have the specified 7669 /// return type, opcode, and operands. 7670 /// 7671 /// Note that MorphNodeTo returns the resultant node. If there is already a 7672 /// node of the specified opcode and operands, it returns that node instead of 7673 /// the current one. Note that the SDLoc need not be the same. 7674 /// 7675 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7676 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7677 /// node, and because it doesn't require CSE recalculation for any of 7678 /// the node's users. 7679 /// 7680 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7681 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7682 /// the legalizer which maintain worklists that would need to be updated when 7683 /// deleting things. 7684 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7685 SDVTList VTs, ArrayRef<SDValue> Ops) { 7686 // If an identical node already exists, use it. 7687 void *IP = nullptr; 7688 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7689 FoldingSetNodeID ID; 7690 AddNodeIDNode(ID, Opc, VTs, Ops); 7691 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7692 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7693 } 7694 7695 if (!RemoveNodeFromCSEMaps(N)) 7696 IP = nullptr; 7697 7698 // Start the morphing. 7699 N->NodeType = Opc; 7700 N->ValueList = VTs.VTs; 7701 N->NumValues = VTs.NumVTs; 7702 7703 // Clear the operands list, updating used nodes to remove this from their 7704 // use list. Keep track of any operands that become dead as a result. 7705 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7706 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7707 SDUse &Use = *I++; 7708 SDNode *Used = Use.getNode(); 7709 Use.set(SDValue()); 7710 if (Used->use_empty()) 7711 DeadNodeSet.insert(Used); 7712 } 7713 7714 // For MachineNode, initialize the memory references information. 7715 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7716 MN->clearMemRefs(); 7717 7718 // Swap for an appropriately sized array from the recycler. 7719 removeOperands(N); 7720 createOperands(N, Ops); 7721 7722 // Delete any nodes that are still dead after adding the uses for the 7723 // new operands. 7724 if (!DeadNodeSet.empty()) { 7725 SmallVector<SDNode *, 16> DeadNodes; 7726 for (SDNode *N : DeadNodeSet) 7727 if (N->use_empty()) 7728 DeadNodes.push_back(N); 7729 RemoveDeadNodes(DeadNodes); 7730 } 7731 7732 if (IP) 7733 CSEMap.InsertNode(N, IP); // Memoize the new node. 7734 return N; 7735 } 7736 7737 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7738 unsigned OrigOpc = Node->getOpcode(); 7739 unsigned NewOpc; 7740 switch (OrigOpc) { 7741 default: 7742 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7743 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7744 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7745 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7746 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7747 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7748 case ISD::STRICT_FMA: NewOpc = ISD::FMA; break; 7749 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; break; 7750 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7751 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7752 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; break; 7753 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; break; 7754 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; break; 7755 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; break; 7756 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; break; 7757 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; break; 7758 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; break; 7759 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; break; 7760 case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break; 7761 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7762 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7763 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; break; 7764 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; break; 7765 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; break; 7766 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; break; 7767 case ISD::STRICT_FP_ROUND: NewOpc = ISD::FP_ROUND; break; 7768 case ISD::STRICT_FP_EXTEND: NewOpc = ISD::FP_EXTEND; break; 7769 } 7770 7771 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7772 7773 // We're taking this node out of the chain, so we need to re-link things. 7774 SDValue InputChain = Node->getOperand(0); 7775 SDValue OutputChain = SDValue(Node, 1); 7776 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7777 7778 SmallVector<SDValue, 3> Ops; 7779 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7780 Ops.push_back(Node->getOperand(i)); 7781 7782 SDVTList VTs = getVTList(Node->getValueType(0)); 7783 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7784 7785 // MorphNodeTo can operate in two ways: if an existing node with the 7786 // specified operands exists, it can just return it. Otherwise, it 7787 // updates the node in place to have the requested operands. 7788 if (Res == Node) { 7789 // If we updated the node in place, reset the node ID. To the isel, 7790 // this should be just like a newly allocated machine node. 7791 Res->setNodeId(-1); 7792 } else { 7793 ReplaceAllUsesWith(Node, Res); 7794 RemoveDeadNode(Node); 7795 } 7796 7797 return Res; 7798 } 7799 7800 /// getMachineNode - These are used for target selectors to create a new node 7801 /// with specified return type(s), MachineInstr opcode, and operands. 7802 /// 7803 /// Note that getMachineNode returns the resultant node. If there is already a 7804 /// node of the specified opcode and operands, it returns that node instead of 7805 /// the current one. 7806 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7807 EVT VT) { 7808 SDVTList VTs = getVTList(VT); 7809 return getMachineNode(Opcode, dl, VTs, None); 7810 } 7811 7812 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7813 EVT VT, SDValue Op1) { 7814 SDVTList VTs = getVTList(VT); 7815 SDValue Ops[] = { Op1 }; 7816 return getMachineNode(Opcode, dl, VTs, Ops); 7817 } 7818 7819 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7820 EVT VT, SDValue Op1, SDValue Op2) { 7821 SDVTList VTs = getVTList(VT); 7822 SDValue Ops[] = { Op1, Op2 }; 7823 return getMachineNode(Opcode, dl, VTs, Ops); 7824 } 7825 7826 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7827 EVT VT, SDValue Op1, SDValue Op2, 7828 SDValue Op3) { 7829 SDVTList VTs = getVTList(VT); 7830 SDValue Ops[] = { Op1, Op2, Op3 }; 7831 return getMachineNode(Opcode, dl, VTs, Ops); 7832 } 7833 7834 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7835 EVT VT, ArrayRef<SDValue> Ops) { 7836 SDVTList VTs = getVTList(VT); 7837 return getMachineNode(Opcode, dl, VTs, Ops); 7838 } 7839 7840 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7841 EVT VT1, EVT VT2, SDValue Op1, 7842 SDValue Op2) { 7843 SDVTList VTs = getVTList(VT1, VT2); 7844 SDValue Ops[] = { Op1, Op2 }; 7845 return getMachineNode(Opcode, dl, VTs, Ops); 7846 } 7847 7848 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7849 EVT VT1, EVT VT2, SDValue Op1, 7850 SDValue Op2, SDValue Op3) { 7851 SDVTList VTs = getVTList(VT1, VT2); 7852 SDValue Ops[] = { Op1, Op2, Op3 }; 7853 return getMachineNode(Opcode, dl, VTs, Ops); 7854 } 7855 7856 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7857 EVT VT1, EVT VT2, 7858 ArrayRef<SDValue> Ops) { 7859 SDVTList VTs = getVTList(VT1, VT2); 7860 return getMachineNode(Opcode, dl, VTs, Ops); 7861 } 7862 7863 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7864 EVT VT1, EVT VT2, EVT VT3, 7865 SDValue Op1, SDValue Op2) { 7866 SDVTList VTs = getVTList(VT1, VT2, VT3); 7867 SDValue Ops[] = { Op1, Op2 }; 7868 return getMachineNode(Opcode, dl, VTs, Ops); 7869 } 7870 7871 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7872 EVT VT1, EVT VT2, EVT VT3, 7873 SDValue Op1, SDValue Op2, 7874 SDValue Op3) { 7875 SDVTList VTs = getVTList(VT1, VT2, VT3); 7876 SDValue Ops[] = { Op1, Op2, Op3 }; 7877 return getMachineNode(Opcode, dl, VTs, Ops); 7878 } 7879 7880 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7881 EVT VT1, EVT VT2, EVT VT3, 7882 ArrayRef<SDValue> Ops) { 7883 SDVTList VTs = getVTList(VT1, VT2, VT3); 7884 return getMachineNode(Opcode, dl, VTs, Ops); 7885 } 7886 7887 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7888 ArrayRef<EVT> ResultTys, 7889 ArrayRef<SDValue> Ops) { 7890 SDVTList VTs = getVTList(ResultTys); 7891 return getMachineNode(Opcode, dl, VTs, Ops); 7892 } 7893 7894 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7895 SDVTList VTs, 7896 ArrayRef<SDValue> Ops) { 7897 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7898 MachineSDNode *N; 7899 void *IP = nullptr; 7900 7901 if (DoCSE) { 7902 FoldingSetNodeID ID; 7903 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7904 IP = nullptr; 7905 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7906 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7907 } 7908 } 7909 7910 // Allocate a new MachineSDNode. 7911 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7912 createOperands(N, Ops); 7913 7914 if (DoCSE) 7915 CSEMap.InsertNode(N, IP); 7916 7917 InsertNode(N); 7918 return N; 7919 } 7920 7921 /// getTargetExtractSubreg - A convenience function for creating 7922 /// TargetOpcode::EXTRACT_SUBREG nodes. 7923 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7924 SDValue Operand) { 7925 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7926 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7927 VT, Operand, SRIdxVal); 7928 return SDValue(Subreg, 0); 7929 } 7930 7931 /// getTargetInsertSubreg - A convenience function for creating 7932 /// TargetOpcode::INSERT_SUBREG nodes. 7933 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7934 SDValue Operand, SDValue Subreg) { 7935 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7936 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7937 VT, Operand, Subreg, SRIdxVal); 7938 return SDValue(Result, 0); 7939 } 7940 7941 /// getNodeIfExists - Get the specified node if it's already available, or 7942 /// else return NULL. 7943 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7944 ArrayRef<SDValue> Ops, 7945 const SDNodeFlags Flags) { 7946 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7947 FoldingSetNodeID ID; 7948 AddNodeIDNode(ID, Opcode, VTList, Ops); 7949 void *IP = nullptr; 7950 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7951 E->intersectFlagsWith(Flags); 7952 return E; 7953 } 7954 } 7955 return nullptr; 7956 } 7957 7958 /// getDbgValue - Creates a SDDbgValue node. 7959 /// 7960 /// SDNode 7961 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7962 SDNode *N, unsigned R, bool IsIndirect, 7963 const DebugLoc &DL, unsigned O) { 7964 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7965 "Expected inlined-at fields to agree"); 7966 return new (DbgInfo->getAlloc()) 7967 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7968 } 7969 7970 /// Constant 7971 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7972 DIExpression *Expr, 7973 const Value *C, 7974 const DebugLoc &DL, unsigned O) { 7975 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7976 "Expected inlined-at fields to agree"); 7977 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7978 } 7979 7980 /// FrameIndex 7981 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7982 DIExpression *Expr, unsigned FI, 7983 bool IsIndirect, 7984 const DebugLoc &DL, 7985 unsigned O) { 7986 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7987 "Expected inlined-at fields to agree"); 7988 return new (DbgInfo->getAlloc()) 7989 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7990 } 7991 7992 /// VReg 7993 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7994 DIExpression *Expr, 7995 unsigned VReg, bool IsIndirect, 7996 const DebugLoc &DL, unsigned O) { 7997 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7998 "Expected inlined-at fields to agree"); 7999 return new (DbgInfo->getAlloc()) 8000 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8001 } 8002 8003 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8004 unsigned OffsetInBits, unsigned SizeInBits, 8005 bool InvalidateDbg) { 8006 SDNode *FromNode = From.getNode(); 8007 SDNode *ToNode = To.getNode(); 8008 assert(FromNode && ToNode && "Can't modify dbg values"); 8009 8010 // PR35338 8011 // TODO: assert(From != To && "Redundant dbg value transfer"); 8012 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8013 if (From == To || FromNode == ToNode) 8014 return; 8015 8016 if (!FromNode->getHasDebugValue()) 8017 return; 8018 8019 SmallVector<SDDbgValue *, 2> ClonedDVs; 8020 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8021 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8022 continue; 8023 8024 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8025 8026 // Just transfer the dbg value attached to From. 8027 if (Dbg->getResNo() != From.getResNo()) 8028 continue; 8029 8030 DIVariable *Var = Dbg->getVariable(); 8031 auto *Expr = Dbg->getExpression(); 8032 // If a fragment is requested, update the expression. 8033 if (SizeInBits) { 8034 // When splitting a larger (e.g., sign-extended) value whose 8035 // lower bits are described with an SDDbgValue, do not attempt 8036 // to transfer the SDDbgValue to the upper bits. 8037 if (auto FI = Expr->getFragmentInfo()) 8038 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8039 continue; 8040 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8041 SizeInBits); 8042 if (!Fragment) 8043 continue; 8044 Expr = *Fragment; 8045 } 8046 // Clone the SDDbgValue and move it to To. 8047 SDDbgValue *Clone = 8048 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 8049 Dbg->getDebugLoc(), Dbg->getOrder()); 8050 ClonedDVs.push_back(Clone); 8051 8052 if (InvalidateDbg) { 8053 // Invalidate value and indicate the SDDbgValue should not be emitted. 8054 Dbg->setIsInvalidated(); 8055 Dbg->setIsEmitted(); 8056 } 8057 } 8058 8059 for (SDDbgValue *Dbg : ClonedDVs) 8060 AddDbgValue(Dbg, ToNode, false); 8061 } 8062 8063 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8064 if (!N.getHasDebugValue()) 8065 return; 8066 8067 SmallVector<SDDbgValue *, 2> ClonedDVs; 8068 for (auto DV : GetDbgValues(&N)) { 8069 if (DV->isInvalidated()) 8070 continue; 8071 switch (N.getOpcode()) { 8072 default: 8073 break; 8074 case ISD::ADD: 8075 SDValue N0 = N.getOperand(0); 8076 SDValue N1 = N.getOperand(1); 8077 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8078 isConstantIntBuildVectorOrConstantInt(N1)) { 8079 uint64_t Offset = N.getConstantOperandVal(1); 8080 // Rewrite an ADD constant node into a DIExpression. Since we are 8081 // performing arithmetic to compute the variable's *value* in the 8082 // DIExpression, we need to mark the expression with a 8083 // DW_OP_stack_value. 8084 auto *DIExpr = DV->getExpression(); 8085 DIExpr = 8086 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8087 SDDbgValue *Clone = 8088 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8089 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8090 ClonedDVs.push_back(Clone); 8091 DV->setIsInvalidated(); 8092 DV->setIsEmitted(); 8093 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8094 N0.getNode()->dumprFull(this); 8095 dbgs() << " into " << *DIExpr << '\n'); 8096 } 8097 } 8098 } 8099 8100 for (SDDbgValue *Dbg : ClonedDVs) 8101 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8102 } 8103 8104 /// Creates a SDDbgLabel node. 8105 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8106 const DebugLoc &DL, unsigned O) { 8107 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8108 "Expected inlined-at fields to agree"); 8109 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8110 } 8111 8112 namespace { 8113 8114 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8115 /// pointed to by a use iterator is deleted, increment the use iterator 8116 /// so that it doesn't dangle. 8117 /// 8118 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8119 SDNode::use_iterator &UI; 8120 SDNode::use_iterator &UE; 8121 8122 void NodeDeleted(SDNode *N, SDNode *E) override { 8123 // Increment the iterator as needed. 8124 while (UI != UE && N == *UI) 8125 ++UI; 8126 } 8127 8128 public: 8129 RAUWUpdateListener(SelectionDAG &d, 8130 SDNode::use_iterator &ui, 8131 SDNode::use_iterator &ue) 8132 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8133 }; 8134 8135 } // end anonymous namespace 8136 8137 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8138 /// This can cause recursive merging of nodes in the DAG. 8139 /// 8140 /// This version assumes From has a single result value. 8141 /// 8142 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8143 SDNode *From = FromN.getNode(); 8144 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8145 "Cannot replace with this method!"); 8146 assert(From != To.getNode() && "Cannot replace uses of with self"); 8147 8148 // Preserve Debug Values 8149 transferDbgValues(FromN, To); 8150 8151 // Iterate over all the existing uses of From. New uses will be added 8152 // to the beginning of the use list, which we avoid visiting. 8153 // This specifically avoids visiting uses of From that arise while the 8154 // replacement is happening, because any such uses would be the result 8155 // of CSE: If an existing node looks like From after one of its operands 8156 // is replaced by To, we don't want to replace of all its users with To 8157 // too. See PR3018 for more info. 8158 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8159 RAUWUpdateListener Listener(*this, UI, UE); 8160 while (UI != UE) { 8161 SDNode *User = *UI; 8162 8163 // This node is about to morph, remove its old self from the CSE maps. 8164 RemoveNodeFromCSEMaps(User); 8165 8166 // A user can appear in a use list multiple times, and when this 8167 // happens the uses are usually next to each other in the list. 8168 // To help reduce the number of CSE recomputations, process all 8169 // the uses of this user that we can find this way. 8170 do { 8171 SDUse &Use = UI.getUse(); 8172 ++UI; 8173 Use.set(To); 8174 if (To->isDivergent() != From->isDivergent()) 8175 updateDivergence(User); 8176 } while (UI != UE && *UI == User); 8177 // Now that we have modified User, add it back to the CSE maps. If it 8178 // already exists there, recursively merge the results together. 8179 AddModifiedNodeToCSEMaps(User); 8180 } 8181 8182 // If we just RAUW'd the root, take note. 8183 if (FromN == getRoot()) 8184 setRoot(To); 8185 } 8186 8187 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8188 /// This can cause recursive merging of nodes in the DAG. 8189 /// 8190 /// This version assumes that for each value of From, there is a 8191 /// corresponding value in To in the same position with the same type. 8192 /// 8193 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8194 #ifndef NDEBUG 8195 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8196 assert((!From->hasAnyUseOfValue(i) || 8197 From->getValueType(i) == To->getValueType(i)) && 8198 "Cannot use this version of ReplaceAllUsesWith!"); 8199 #endif 8200 8201 // Handle the trivial case. 8202 if (From == To) 8203 return; 8204 8205 // Preserve Debug Info. Only do this if there's a use. 8206 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8207 if (From->hasAnyUseOfValue(i)) { 8208 assert((i < To->getNumValues()) && "Invalid To location"); 8209 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8210 } 8211 8212 // Iterate over just the existing users of From. See the comments in 8213 // the ReplaceAllUsesWith above. 8214 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8215 RAUWUpdateListener Listener(*this, UI, UE); 8216 while (UI != UE) { 8217 SDNode *User = *UI; 8218 8219 // This node is about to morph, remove its old self from the CSE maps. 8220 RemoveNodeFromCSEMaps(User); 8221 8222 // A user can appear in a use list multiple times, and when this 8223 // happens the uses are usually next to each other in the list. 8224 // To help reduce the number of CSE recomputations, process all 8225 // the uses of this user that we can find this way. 8226 do { 8227 SDUse &Use = UI.getUse(); 8228 ++UI; 8229 Use.setNode(To); 8230 if (To->isDivergent() != From->isDivergent()) 8231 updateDivergence(User); 8232 } while (UI != UE && *UI == User); 8233 8234 // Now that we have modified User, add it back to the CSE maps. If it 8235 // already exists there, recursively merge the results together. 8236 AddModifiedNodeToCSEMaps(User); 8237 } 8238 8239 // If we just RAUW'd the root, take note. 8240 if (From == getRoot().getNode()) 8241 setRoot(SDValue(To, getRoot().getResNo())); 8242 } 8243 8244 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8245 /// This can cause recursive merging of nodes in the DAG. 8246 /// 8247 /// This version can replace From with any result values. To must match the 8248 /// number and types of values returned by From. 8249 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8250 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8251 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8252 8253 // Preserve Debug Info. 8254 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8255 transferDbgValues(SDValue(From, i), To[i]); 8256 8257 // Iterate over just the existing users of From. See the comments in 8258 // the ReplaceAllUsesWith above. 8259 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8260 RAUWUpdateListener Listener(*this, UI, UE); 8261 while (UI != UE) { 8262 SDNode *User = *UI; 8263 8264 // This node is about to morph, remove its old self from the CSE maps. 8265 RemoveNodeFromCSEMaps(User); 8266 8267 // A user can appear in a use list multiple times, and when this happens the 8268 // uses are usually next to each other in the list. To help reduce the 8269 // number of CSE and divergence recomputations, process all the uses of this 8270 // user that we can find this way. 8271 bool To_IsDivergent = false; 8272 do { 8273 SDUse &Use = UI.getUse(); 8274 const SDValue &ToOp = To[Use.getResNo()]; 8275 ++UI; 8276 Use.set(ToOp); 8277 To_IsDivergent |= ToOp->isDivergent(); 8278 } while (UI != UE && *UI == User); 8279 8280 if (To_IsDivergent != From->isDivergent()) 8281 updateDivergence(User); 8282 8283 // Now that we have modified User, add it back to the CSE maps. If it 8284 // already exists there, recursively merge the results together. 8285 AddModifiedNodeToCSEMaps(User); 8286 } 8287 8288 // If we just RAUW'd the root, take note. 8289 if (From == getRoot().getNode()) 8290 setRoot(SDValue(To[getRoot().getResNo()])); 8291 } 8292 8293 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8294 /// uses of other values produced by From.getNode() alone. The Deleted 8295 /// vector is handled the same way as for ReplaceAllUsesWith. 8296 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8297 // Handle the really simple, really trivial case efficiently. 8298 if (From == To) return; 8299 8300 // Handle the simple, trivial, case efficiently. 8301 if (From.getNode()->getNumValues() == 1) { 8302 ReplaceAllUsesWith(From, To); 8303 return; 8304 } 8305 8306 // Preserve Debug Info. 8307 transferDbgValues(From, To); 8308 8309 // Iterate over just the existing users of From. See the comments in 8310 // the ReplaceAllUsesWith above. 8311 SDNode::use_iterator UI = From.getNode()->use_begin(), 8312 UE = From.getNode()->use_end(); 8313 RAUWUpdateListener Listener(*this, UI, UE); 8314 while (UI != UE) { 8315 SDNode *User = *UI; 8316 bool UserRemovedFromCSEMaps = false; 8317 8318 // A user can appear in a use list multiple times, and when this 8319 // happens the uses are usually next to each other in the list. 8320 // To help reduce the number of CSE recomputations, process all 8321 // the uses of this user that we can find this way. 8322 do { 8323 SDUse &Use = UI.getUse(); 8324 8325 // Skip uses of different values from the same node. 8326 if (Use.getResNo() != From.getResNo()) { 8327 ++UI; 8328 continue; 8329 } 8330 8331 // If this node hasn't been modified yet, it's still in the CSE maps, 8332 // so remove its old self from the CSE maps. 8333 if (!UserRemovedFromCSEMaps) { 8334 RemoveNodeFromCSEMaps(User); 8335 UserRemovedFromCSEMaps = true; 8336 } 8337 8338 ++UI; 8339 Use.set(To); 8340 if (To->isDivergent() != From->isDivergent()) 8341 updateDivergence(User); 8342 } while (UI != UE && *UI == User); 8343 // We are iterating over all uses of the From node, so if a use 8344 // doesn't use the specific value, no changes are made. 8345 if (!UserRemovedFromCSEMaps) 8346 continue; 8347 8348 // Now that we have modified User, add it back to the CSE maps. If it 8349 // already exists there, recursively merge the results together. 8350 AddModifiedNodeToCSEMaps(User); 8351 } 8352 8353 // If we just RAUW'd the root, take note. 8354 if (From == getRoot()) 8355 setRoot(To); 8356 } 8357 8358 namespace { 8359 8360 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8361 /// to record information about a use. 8362 struct UseMemo { 8363 SDNode *User; 8364 unsigned Index; 8365 SDUse *Use; 8366 }; 8367 8368 /// operator< - Sort Memos by User. 8369 bool operator<(const UseMemo &L, const UseMemo &R) { 8370 return (intptr_t)L.User < (intptr_t)R.User; 8371 } 8372 8373 } // end anonymous namespace 8374 8375 void SelectionDAG::updateDivergence(SDNode * N) 8376 { 8377 if (TLI->isSDNodeAlwaysUniform(N)) 8378 return; 8379 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8380 for (auto &Op : N->ops()) { 8381 if (Op.Val.getValueType() != MVT::Other) 8382 IsDivergent |= Op.getNode()->isDivergent(); 8383 } 8384 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8385 N->SDNodeBits.IsDivergent = IsDivergent; 8386 for (auto U : N->uses()) { 8387 updateDivergence(U); 8388 } 8389 } 8390 } 8391 8392 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8393 DenseMap<SDNode *, unsigned> Degree; 8394 Order.reserve(AllNodes.size()); 8395 for (auto &N : allnodes()) { 8396 unsigned NOps = N.getNumOperands(); 8397 Degree[&N] = NOps; 8398 if (0 == NOps) 8399 Order.push_back(&N); 8400 } 8401 for (size_t I = 0; I != Order.size(); ++I) { 8402 SDNode *N = Order[I]; 8403 for (auto U : N->uses()) { 8404 unsigned &UnsortedOps = Degree[U]; 8405 if (0 == --UnsortedOps) 8406 Order.push_back(U); 8407 } 8408 } 8409 } 8410 8411 #ifndef NDEBUG 8412 void SelectionDAG::VerifyDAGDiverence() { 8413 std::vector<SDNode *> TopoOrder; 8414 CreateTopologicalOrder(TopoOrder); 8415 const TargetLowering &TLI = getTargetLoweringInfo(); 8416 DenseMap<const SDNode *, bool> DivergenceMap; 8417 for (auto &N : allnodes()) { 8418 DivergenceMap[&N] = false; 8419 } 8420 for (auto N : TopoOrder) { 8421 bool IsDivergent = DivergenceMap[N]; 8422 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8423 for (auto &Op : N->ops()) { 8424 if (Op.Val.getValueType() != MVT::Other) 8425 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8426 } 8427 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8428 DivergenceMap[N] = true; 8429 } 8430 } 8431 for (auto &N : allnodes()) { 8432 (void)N; 8433 assert(DivergenceMap[&N] == N.isDivergent() && 8434 "Divergence bit inconsistency detected\n"); 8435 } 8436 } 8437 #endif 8438 8439 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8440 /// uses of other values produced by From.getNode() alone. The same value 8441 /// may appear in both the From and To list. The Deleted vector is 8442 /// handled the same way as for ReplaceAllUsesWith. 8443 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8444 const SDValue *To, 8445 unsigned Num){ 8446 // Handle the simple, trivial case efficiently. 8447 if (Num == 1) 8448 return ReplaceAllUsesOfValueWith(*From, *To); 8449 8450 transferDbgValues(*From, *To); 8451 8452 // Read up all the uses and make records of them. This helps 8453 // processing new uses that are introduced during the 8454 // replacement process. 8455 SmallVector<UseMemo, 4> Uses; 8456 for (unsigned i = 0; i != Num; ++i) { 8457 unsigned FromResNo = From[i].getResNo(); 8458 SDNode *FromNode = From[i].getNode(); 8459 for (SDNode::use_iterator UI = FromNode->use_begin(), 8460 E = FromNode->use_end(); UI != E; ++UI) { 8461 SDUse &Use = UI.getUse(); 8462 if (Use.getResNo() == FromResNo) { 8463 UseMemo Memo = { *UI, i, &Use }; 8464 Uses.push_back(Memo); 8465 } 8466 } 8467 } 8468 8469 // Sort the uses, so that all the uses from a given User are together. 8470 llvm::sort(Uses); 8471 8472 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8473 UseIndex != UseIndexEnd; ) { 8474 // We know that this user uses some value of From. If it is the right 8475 // value, update it. 8476 SDNode *User = Uses[UseIndex].User; 8477 8478 // This node is about to morph, remove its old self from the CSE maps. 8479 RemoveNodeFromCSEMaps(User); 8480 8481 // The Uses array is sorted, so all the uses for a given User 8482 // are next to each other in the list. 8483 // To help reduce the number of CSE recomputations, process all 8484 // the uses of this user that we can find this way. 8485 do { 8486 unsigned i = Uses[UseIndex].Index; 8487 SDUse &Use = *Uses[UseIndex].Use; 8488 ++UseIndex; 8489 8490 Use.set(To[i]); 8491 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8492 8493 // Now that we have modified User, add it back to the CSE maps. If it 8494 // already exists there, recursively merge the results together. 8495 AddModifiedNodeToCSEMaps(User); 8496 } 8497 } 8498 8499 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8500 /// based on their topological order. It returns the maximum id and a vector 8501 /// of the SDNodes* in assigned order by reference. 8502 unsigned SelectionDAG::AssignTopologicalOrder() { 8503 unsigned DAGSize = 0; 8504 8505 // SortedPos tracks the progress of the algorithm. Nodes before it are 8506 // sorted, nodes after it are unsorted. When the algorithm completes 8507 // it is at the end of the list. 8508 allnodes_iterator SortedPos = allnodes_begin(); 8509 8510 // Visit all the nodes. Move nodes with no operands to the front of 8511 // the list immediately. Annotate nodes that do have operands with their 8512 // operand count. Before we do this, the Node Id fields of the nodes 8513 // may contain arbitrary values. After, the Node Id fields for nodes 8514 // before SortedPos will contain the topological sort index, and the 8515 // Node Id fields for nodes At SortedPos and after will contain the 8516 // count of outstanding operands. 8517 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8518 SDNode *N = &*I++; 8519 checkForCycles(N, this); 8520 unsigned Degree = N->getNumOperands(); 8521 if (Degree == 0) { 8522 // A node with no uses, add it to the result array immediately. 8523 N->setNodeId(DAGSize++); 8524 allnodes_iterator Q(N); 8525 if (Q != SortedPos) 8526 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8527 assert(SortedPos != AllNodes.end() && "Overran node list"); 8528 ++SortedPos; 8529 } else { 8530 // Temporarily use the Node Id as scratch space for the degree count. 8531 N->setNodeId(Degree); 8532 } 8533 } 8534 8535 // Visit all the nodes. As we iterate, move nodes into sorted order, 8536 // such that by the time the end is reached all nodes will be sorted. 8537 for (SDNode &Node : allnodes()) { 8538 SDNode *N = &Node; 8539 checkForCycles(N, this); 8540 // N is in sorted position, so all its uses have one less operand 8541 // that needs to be sorted. 8542 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8543 UI != UE; ++UI) { 8544 SDNode *P = *UI; 8545 unsigned Degree = P->getNodeId(); 8546 assert(Degree != 0 && "Invalid node degree"); 8547 --Degree; 8548 if (Degree == 0) { 8549 // All of P's operands are sorted, so P may sorted now. 8550 P->setNodeId(DAGSize++); 8551 if (P->getIterator() != SortedPos) 8552 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8553 assert(SortedPos != AllNodes.end() && "Overran node list"); 8554 ++SortedPos; 8555 } else { 8556 // Update P's outstanding operand count. 8557 P->setNodeId(Degree); 8558 } 8559 } 8560 if (Node.getIterator() == SortedPos) { 8561 #ifndef NDEBUG 8562 allnodes_iterator I(N); 8563 SDNode *S = &*++I; 8564 dbgs() << "Overran sorted position:\n"; 8565 S->dumprFull(this); dbgs() << "\n"; 8566 dbgs() << "Checking if this is due to cycles\n"; 8567 checkForCycles(this, true); 8568 #endif 8569 llvm_unreachable(nullptr); 8570 } 8571 } 8572 8573 assert(SortedPos == AllNodes.end() && 8574 "Topological sort incomplete!"); 8575 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8576 "First node in topological sort is not the entry token!"); 8577 assert(AllNodes.front().getNodeId() == 0 && 8578 "First node in topological sort has non-zero id!"); 8579 assert(AllNodes.front().getNumOperands() == 0 && 8580 "First node in topological sort has operands!"); 8581 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8582 "Last node in topologic sort has unexpected id!"); 8583 assert(AllNodes.back().use_empty() && 8584 "Last node in topologic sort has users!"); 8585 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8586 return DAGSize; 8587 } 8588 8589 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8590 /// value is produced by SD. 8591 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8592 if (SD) { 8593 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8594 SD->setHasDebugValue(true); 8595 } 8596 DbgInfo->add(DB, SD, isParameter); 8597 } 8598 8599 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8600 DbgInfo->add(DB); 8601 } 8602 8603 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8604 SDValue NewMemOp) { 8605 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8606 // The new memory operation must have the same position as the old load in 8607 // terms of memory dependency. Create a TokenFactor for the old load and new 8608 // memory operation and update uses of the old load's output chain to use that 8609 // TokenFactor. 8610 SDValue OldChain = SDValue(OldLoad, 1); 8611 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8612 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8613 return NewChain; 8614 8615 SDValue TokenFactor = 8616 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8617 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8618 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8619 return TokenFactor; 8620 } 8621 8622 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8623 Function **OutFunction) { 8624 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8625 8626 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8627 auto *Module = MF->getFunction().getParent(); 8628 auto *Function = Module->getFunction(Symbol); 8629 8630 if (OutFunction != nullptr) 8631 *OutFunction = Function; 8632 8633 if (Function != nullptr) { 8634 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8635 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8636 } 8637 8638 std::string ErrorStr; 8639 raw_string_ostream ErrorFormatter(ErrorStr); 8640 8641 ErrorFormatter << "Undefined external symbol "; 8642 ErrorFormatter << '"' << Symbol << '"'; 8643 ErrorFormatter.flush(); 8644 8645 report_fatal_error(ErrorStr); 8646 } 8647 8648 //===----------------------------------------------------------------------===// 8649 // SDNode Class 8650 //===----------------------------------------------------------------------===// 8651 8652 bool llvm::isNullConstant(SDValue V) { 8653 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8654 return Const != nullptr && Const->isNullValue(); 8655 } 8656 8657 bool llvm::isNullFPConstant(SDValue V) { 8658 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8659 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8660 } 8661 8662 bool llvm::isAllOnesConstant(SDValue V) { 8663 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8664 return Const != nullptr && Const->isAllOnesValue(); 8665 } 8666 8667 bool llvm::isOneConstant(SDValue V) { 8668 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8669 return Const != nullptr && Const->isOne(); 8670 } 8671 8672 SDValue llvm::peekThroughBitcasts(SDValue V) { 8673 while (V.getOpcode() == ISD::BITCAST) 8674 V = V.getOperand(0); 8675 return V; 8676 } 8677 8678 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8679 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8680 V = V.getOperand(0); 8681 return V; 8682 } 8683 8684 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8685 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8686 V = V.getOperand(0); 8687 return V; 8688 } 8689 8690 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8691 if (V.getOpcode() != ISD::XOR) 8692 return false; 8693 V = peekThroughBitcasts(V.getOperand(1)); 8694 unsigned NumBits = V.getScalarValueSizeInBits(); 8695 ConstantSDNode *C = 8696 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8697 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8698 } 8699 8700 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8701 bool AllowTruncation) { 8702 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8703 return CN; 8704 8705 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8706 BitVector UndefElements; 8707 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8708 8709 // BuildVectors can truncate their operands. Ignore that case here unless 8710 // AllowTruncation is set. 8711 if (CN && (UndefElements.none() || AllowUndefs)) { 8712 EVT CVT = CN->getValueType(0); 8713 EVT NSVT = N.getValueType().getScalarType(); 8714 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8715 if (AllowTruncation || (CVT == NSVT)) 8716 return CN; 8717 } 8718 } 8719 8720 return nullptr; 8721 } 8722 8723 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8724 bool AllowUndefs, 8725 bool AllowTruncation) { 8726 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8727 return CN; 8728 8729 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8730 BitVector UndefElements; 8731 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8732 8733 // BuildVectors can truncate their operands. Ignore that case here unless 8734 // AllowTruncation is set. 8735 if (CN && (UndefElements.none() || AllowUndefs)) { 8736 EVT CVT = CN->getValueType(0); 8737 EVT NSVT = N.getValueType().getScalarType(); 8738 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8739 if (AllowTruncation || (CVT == NSVT)) 8740 return CN; 8741 } 8742 } 8743 8744 return nullptr; 8745 } 8746 8747 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8748 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8749 return CN; 8750 8751 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8752 BitVector UndefElements; 8753 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8754 if (CN && (UndefElements.none() || AllowUndefs)) 8755 return CN; 8756 } 8757 8758 return nullptr; 8759 } 8760 8761 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8762 const APInt &DemandedElts, 8763 bool AllowUndefs) { 8764 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8765 return CN; 8766 8767 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8768 BitVector UndefElements; 8769 ConstantFPSDNode *CN = 8770 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8771 if (CN && (UndefElements.none() || AllowUndefs)) 8772 return CN; 8773 } 8774 8775 return nullptr; 8776 } 8777 8778 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8779 // TODO: may want to use peekThroughBitcast() here. 8780 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8781 return C && C->isNullValue(); 8782 } 8783 8784 bool llvm::isOneOrOneSplat(SDValue N) { 8785 // TODO: may want to use peekThroughBitcast() here. 8786 unsigned BitWidth = N.getScalarValueSizeInBits(); 8787 ConstantSDNode *C = isConstOrConstSplat(N); 8788 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8789 } 8790 8791 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8792 N = peekThroughBitcasts(N); 8793 unsigned BitWidth = N.getScalarValueSizeInBits(); 8794 ConstantSDNode *C = isConstOrConstSplat(N); 8795 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8796 } 8797 8798 HandleSDNode::~HandleSDNode() { 8799 DropOperands(); 8800 } 8801 8802 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8803 const DebugLoc &DL, 8804 const GlobalValue *GA, EVT VT, 8805 int64_t o, unsigned TF) 8806 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8807 TheGlobal = GA; 8808 } 8809 8810 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8811 EVT VT, unsigned SrcAS, 8812 unsigned DestAS) 8813 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8814 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8815 8816 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8817 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8818 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8819 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8820 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8821 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8822 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8823 8824 // We check here that the size of the memory operand fits within the size of 8825 // the MMO. This is because the MMO might indicate only a possible address 8826 // range instead of specifying the affected memory addresses precisely. 8827 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8828 } 8829 8830 /// Profile - Gather unique data for the node. 8831 /// 8832 void SDNode::Profile(FoldingSetNodeID &ID) const { 8833 AddNodeIDNode(ID, this); 8834 } 8835 8836 namespace { 8837 8838 struct EVTArray { 8839 std::vector<EVT> VTs; 8840 8841 EVTArray() { 8842 VTs.reserve(MVT::LAST_VALUETYPE); 8843 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8844 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8845 } 8846 }; 8847 8848 } // end anonymous namespace 8849 8850 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8851 static ManagedStatic<EVTArray> SimpleVTArray; 8852 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8853 8854 /// getValueTypeList - Return a pointer to the specified value type. 8855 /// 8856 const EVT *SDNode::getValueTypeList(EVT VT) { 8857 if (VT.isExtended()) { 8858 sys::SmartScopedLock<true> Lock(*VTMutex); 8859 return &(*EVTs->insert(VT).first); 8860 } else { 8861 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8862 "Value type out of range!"); 8863 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8864 } 8865 } 8866 8867 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8868 /// indicated value. This method ignores uses of other values defined by this 8869 /// operation. 8870 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8871 assert(Value < getNumValues() && "Bad value!"); 8872 8873 // TODO: Only iterate over uses of a given value of the node 8874 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8875 if (UI.getUse().getResNo() == Value) { 8876 if (NUses == 0) 8877 return false; 8878 --NUses; 8879 } 8880 } 8881 8882 // Found exactly the right number of uses? 8883 return NUses == 0; 8884 } 8885 8886 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8887 /// value. This method ignores uses of other values defined by this operation. 8888 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8889 assert(Value < getNumValues() && "Bad value!"); 8890 8891 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8892 if (UI.getUse().getResNo() == Value) 8893 return true; 8894 8895 return false; 8896 } 8897 8898 /// isOnlyUserOf - Return true if this node is the only use of N. 8899 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8900 bool Seen = false; 8901 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8902 SDNode *User = *I; 8903 if (User == this) 8904 Seen = true; 8905 else 8906 return false; 8907 } 8908 8909 return Seen; 8910 } 8911 8912 /// Return true if the only users of N are contained in Nodes. 8913 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8914 bool Seen = false; 8915 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8916 SDNode *User = *I; 8917 if (llvm::any_of(Nodes, 8918 [&User](const SDNode *Node) { return User == Node; })) 8919 Seen = true; 8920 else 8921 return false; 8922 } 8923 8924 return Seen; 8925 } 8926 8927 /// isOperand - Return true if this node is an operand of N. 8928 bool SDValue::isOperandOf(const SDNode *N) const { 8929 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 8930 } 8931 8932 bool SDNode::isOperandOf(const SDNode *N) const { 8933 return any_of(N->op_values(), 8934 [this](SDValue Op) { return this == Op.getNode(); }); 8935 } 8936 8937 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8938 /// be a chain) reaches the specified operand without crossing any 8939 /// side-effecting instructions on any chain path. In practice, this looks 8940 /// through token factors and non-volatile loads. In order to remain efficient, 8941 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8942 /// 8943 /// Note that we only need to examine chains when we're searching for 8944 /// side-effects; SelectionDAG requires that all side-effects are represented 8945 /// by chains, even if another operand would force a specific ordering. This 8946 /// constraint is necessary to allow transformations like splitting loads. 8947 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8948 unsigned Depth) const { 8949 if (*this == Dest) return true; 8950 8951 // Don't search too deeply, we just want to be able to see through 8952 // TokenFactor's etc. 8953 if (Depth == 0) return false; 8954 8955 // If this is a token factor, all inputs to the TF happen in parallel. 8956 if (getOpcode() == ISD::TokenFactor) { 8957 // First, try a shallow search. 8958 if (is_contained((*this)->ops(), Dest)) { 8959 // We found the chain we want as an operand of this TokenFactor. 8960 // Essentially, we reach the chain without side-effects if we could 8961 // serialize the TokenFactor into a simple chain of operations with 8962 // Dest as the last operation. This is automatically true if the 8963 // chain has one use: there are no other ordering constraints. 8964 // If the chain has more than one use, we give up: some other 8965 // use of Dest might force a side-effect between Dest and the current 8966 // node. 8967 if (Dest.hasOneUse()) 8968 return true; 8969 } 8970 // Next, try a deep search: check whether every operand of the TokenFactor 8971 // reaches Dest. 8972 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8973 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8974 }); 8975 } 8976 8977 // Loads don't have side effects, look through them. 8978 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8979 if (!Ld->isVolatile()) 8980 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8981 } 8982 return false; 8983 } 8984 8985 bool SDNode::hasPredecessor(const SDNode *N) const { 8986 SmallPtrSet<const SDNode *, 32> Visited; 8987 SmallVector<const SDNode *, 16> Worklist; 8988 Worklist.push_back(this); 8989 return hasPredecessorHelper(N, Visited, Worklist); 8990 } 8991 8992 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8993 this->Flags.intersectWith(Flags); 8994 } 8995 8996 SDValue 8997 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 8998 ArrayRef<ISD::NodeType> CandidateBinOps, 8999 bool AllowPartials) { 9000 // The pattern must end in an extract from index 0. 9001 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9002 !isNullConstant(Extract->getOperand(1))) 9003 return SDValue(); 9004 9005 SDValue Op = Extract->getOperand(0); 9006 9007 // Match against one of the candidate binary ops. 9008 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9009 return Op.getOpcode() == unsigned(BinOp); 9010 })) 9011 return SDValue(); 9012 unsigned CandidateBinOp = Op.getOpcode(); 9013 9014 // Matching failed - attempt to see if we did enough stages that a partial 9015 // reduction from a subvector is possible. 9016 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9017 if (!AllowPartials || !Op) 9018 return SDValue(); 9019 EVT OpVT = Op.getValueType(); 9020 EVT OpSVT = OpVT.getScalarType(); 9021 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9022 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9023 return SDValue(); 9024 BinOp = (ISD::NodeType)CandidateBinOp; 9025 return getNode( 9026 ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9027 getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout()))); 9028 }; 9029 9030 // At each stage, we're looking for something that looks like: 9031 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9032 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9033 // i32 undef, i32 undef, i32 undef, i32 undef> 9034 // %a = binop <8 x i32> %op, %s 9035 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9036 // we expect something like: 9037 // <4,5,6,7,u,u,u,u> 9038 // <2,3,u,u,u,u,u,u> 9039 // <1,u,u,u,u,u,u,u> 9040 // While a partial reduction match would be: 9041 // <2,3,u,u,u,u,u,u> 9042 // <1,u,u,u,u,u,u,u> 9043 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9044 SDValue PrevOp; 9045 for (unsigned i = 0; i < Stages; ++i) { 9046 unsigned MaskEnd = (1 << i); 9047 9048 if (Op.getOpcode() != CandidateBinOp) 9049 return PartialReduction(PrevOp, MaskEnd); 9050 9051 SDValue Op0 = Op.getOperand(0); 9052 SDValue Op1 = Op.getOperand(1); 9053 9054 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9055 if (Shuffle) { 9056 Op = Op1; 9057 } else { 9058 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9059 Op = Op0; 9060 } 9061 9062 // The first operand of the shuffle should be the same as the other operand 9063 // of the binop. 9064 if (!Shuffle || Shuffle->getOperand(0) != Op) 9065 return PartialReduction(PrevOp, MaskEnd); 9066 9067 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9068 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9069 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9070 return PartialReduction(PrevOp, MaskEnd); 9071 9072 PrevOp = Op; 9073 } 9074 9075 BinOp = (ISD::NodeType)CandidateBinOp; 9076 return Op; 9077 } 9078 9079 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9080 assert(N->getNumValues() == 1 && 9081 "Can't unroll a vector with multiple results!"); 9082 9083 EVT VT = N->getValueType(0); 9084 unsigned NE = VT.getVectorNumElements(); 9085 EVT EltVT = VT.getVectorElementType(); 9086 SDLoc dl(N); 9087 9088 SmallVector<SDValue, 8> Scalars; 9089 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9090 9091 // If ResNE is 0, fully unroll the vector op. 9092 if (ResNE == 0) 9093 ResNE = NE; 9094 else if (NE > ResNE) 9095 NE = ResNE; 9096 9097 unsigned i; 9098 for (i= 0; i != NE; ++i) { 9099 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9100 SDValue Operand = N->getOperand(j); 9101 EVT OperandVT = Operand.getValueType(); 9102 if (OperandVT.isVector()) { 9103 // A vector operand; extract a single element. 9104 EVT OperandEltVT = OperandVT.getVectorElementType(); 9105 Operands[j] = 9106 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9107 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9108 } else { 9109 // A scalar operand; just use it as is. 9110 Operands[j] = Operand; 9111 } 9112 } 9113 9114 switch (N->getOpcode()) { 9115 default: { 9116 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9117 N->getFlags())); 9118 break; 9119 } 9120 case ISD::VSELECT: 9121 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9122 break; 9123 case ISD::SHL: 9124 case ISD::SRA: 9125 case ISD::SRL: 9126 case ISD::ROTL: 9127 case ISD::ROTR: 9128 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9129 getShiftAmountOperand(Operands[0].getValueType(), 9130 Operands[1]))); 9131 break; 9132 case ISD::SIGN_EXTEND_INREG: 9133 case ISD::FP_ROUND_INREG: { 9134 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9135 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9136 Operands[0], 9137 getValueType(ExtVT))); 9138 } 9139 } 9140 } 9141 9142 for (; i < ResNE; ++i) 9143 Scalars.push_back(getUNDEF(EltVT)); 9144 9145 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9146 return getBuildVector(VecVT, dl, Scalars); 9147 } 9148 9149 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9150 SDNode *N, unsigned ResNE) { 9151 unsigned Opcode = N->getOpcode(); 9152 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9153 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9154 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9155 "Expected an overflow opcode"); 9156 9157 EVT ResVT = N->getValueType(0); 9158 EVT OvVT = N->getValueType(1); 9159 EVT ResEltVT = ResVT.getVectorElementType(); 9160 EVT OvEltVT = OvVT.getVectorElementType(); 9161 SDLoc dl(N); 9162 9163 // If ResNE is 0, fully unroll the vector op. 9164 unsigned NE = ResVT.getVectorNumElements(); 9165 if (ResNE == 0) 9166 ResNE = NE; 9167 else if (NE > ResNE) 9168 NE = ResNE; 9169 9170 SmallVector<SDValue, 8> LHSScalars; 9171 SmallVector<SDValue, 8> RHSScalars; 9172 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9173 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9174 9175 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9176 SDVTList VTs = getVTList(ResEltVT, SVT); 9177 SmallVector<SDValue, 8> ResScalars; 9178 SmallVector<SDValue, 8> OvScalars; 9179 for (unsigned i = 0; i < NE; ++i) { 9180 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9181 SDValue Ov = 9182 getSelect(dl, OvEltVT, Res.getValue(1), 9183 getBoolConstant(true, dl, OvEltVT, ResVT), 9184 getConstant(0, dl, OvEltVT)); 9185 9186 ResScalars.push_back(Res); 9187 OvScalars.push_back(Ov); 9188 } 9189 9190 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9191 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9192 9193 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9194 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9195 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9196 getBuildVector(NewOvVT, dl, OvScalars)); 9197 } 9198 9199 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9200 LoadSDNode *Base, 9201 unsigned Bytes, 9202 int Dist) const { 9203 if (LD->isVolatile() || Base->isVolatile()) 9204 return false; 9205 if (LD->isIndexed() || Base->isIndexed()) 9206 return false; 9207 if (LD->getChain() != Base->getChain()) 9208 return false; 9209 EVT VT = LD->getValueType(0); 9210 if (VT.getSizeInBits() / 8 != Bytes) 9211 return false; 9212 9213 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9214 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9215 9216 int64_t Offset = 0; 9217 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9218 return (Dist * Bytes == Offset); 9219 return false; 9220 } 9221 9222 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9223 /// it cannot be inferred. 9224 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9225 // If this is a GlobalAddress + cst, return the alignment. 9226 const GlobalValue *GV; 9227 int64_t GVOffset = 0; 9228 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9229 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9230 KnownBits Known(IdxWidth); 9231 llvm::computeKnownBits(GV, Known, getDataLayout()); 9232 unsigned AlignBits = Known.countMinTrailingZeros(); 9233 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9234 if (Align) 9235 return MinAlign(Align, GVOffset); 9236 } 9237 9238 // If this is a direct reference to a stack slot, use information about the 9239 // stack slot's alignment. 9240 int FrameIdx = INT_MIN; 9241 int64_t FrameOffset = 0; 9242 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9243 FrameIdx = FI->getIndex(); 9244 } else if (isBaseWithConstantOffset(Ptr) && 9245 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9246 // Handle FI+Cst 9247 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9248 FrameOffset = Ptr.getConstantOperandVal(1); 9249 } 9250 9251 if (FrameIdx != INT_MIN) { 9252 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9253 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9254 FrameOffset); 9255 return FIInfoAlign; 9256 } 9257 9258 return 0; 9259 } 9260 9261 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9262 /// which is split (or expanded) into two not necessarily identical pieces. 9263 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9264 // Currently all types are split in half. 9265 EVT LoVT, HiVT; 9266 if (!VT.isVector()) 9267 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9268 else 9269 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9270 9271 return std::make_pair(LoVT, HiVT); 9272 } 9273 9274 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9275 /// low/high part. 9276 std::pair<SDValue, SDValue> 9277 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9278 const EVT &HiVT) { 9279 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9280 N.getValueType().getVectorNumElements() && 9281 "More vector elements requested than available!"); 9282 SDValue Lo, Hi; 9283 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9284 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9285 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9286 getConstant(LoVT.getVectorNumElements(), DL, 9287 TLI->getVectorIdxTy(getDataLayout()))); 9288 return std::make_pair(Lo, Hi); 9289 } 9290 9291 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9292 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9293 EVT VT = N.getValueType(); 9294 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9295 NextPowerOf2(VT.getVectorNumElements())); 9296 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9297 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9298 } 9299 9300 void SelectionDAG::ExtractVectorElements(SDValue Op, 9301 SmallVectorImpl<SDValue> &Args, 9302 unsigned Start, unsigned Count) { 9303 EVT VT = Op.getValueType(); 9304 if (Count == 0) 9305 Count = VT.getVectorNumElements(); 9306 9307 EVT EltVT = VT.getVectorElementType(); 9308 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9309 SDLoc SL(Op); 9310 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9311 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9312 Op, getConstant(i, SL, IdxTy))); 9313 } 9314 } 9315 9316 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9317 unsigned GlobalAddressSDNode::getAddressSpace() const { 9318 return getGlobal()->getType()->getAddressSpace(); 9319 } 9320 9321 Type *ConstantPoolSDNode::getType() const { 9322 if (isMachineConstantPoolEntry()) 9323 return Val.MachineCPVal->getType(); 9324 return Val.ConstVal->getType(); 9325 } 9326 9327 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9328 unsigned &SplatBitSize, 9329 bool &HasAnyUndefs, 9330 unsigned MinSplatBits, 9331 bool IsBigEndian) const { 9332 EVT VT = getValueType(0); 9333 assert(VT.isVector() && "Expected a vector type"); 9334 unsigned VecWidth = VT.getSizeInBits(); 9335 if (MinSplatBits > VecWidth) 9336 return false; 9337 9338 // FIXME: The widths are based on this node's type, but build vectors can 9339 // truncate their operands. 9340 SplatValue = APInt(VecWidth, 0); 9341 SplatUndef = APInt(VecWidth, 0); 9342 9343 // Get the bits. Bits with undefined values (when the corresponding element 9344 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9345 // in SplatValue. If any of the values are not constant, give up and return 9346 // false. 9347 unsigned int NumOps = getNumOperands(); 9348 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9349 unsigned EltWidth = VT.getScalarSizeInBits(); 9350 9351 for (unsigned j = 0; j < NumOps; ++j) { 9352 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9353 SDValue OpVal = getOperand(i); 9354 unsigned BitPos = j * EltWidth; 9355 9356 if (OpVal.isUndef()) 9357 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9358 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9359 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9360 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9361 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9362 else 9363 return false; 9364 } 9365 9366 // The build_vector is all constants or undefs. Find the smallest element 9367 // size that splats the vector. 9368 HasAnyUndefs = (SplatUndef != 0); 9369 9370 // FIXME: This does not work for vectors with elements less than 8 bits. 9371 while (VecWidth > 8) { 9372 unsigned HalfSize = VecWidth / 2; 9373 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9374 APInt LowValue = SplatValue.trunc(HalfSize); 9375 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9376 APInt LowUndef = SplatUndef.trunc(HalfSize); 9377 9378 // If the two halves do not match (ignoring undef bits), stop here. 9379 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9380 MinSplatBits > HalfSize) 9381 break; 9382 9383 SplatValue = HighValue | LowValue; 9384 SplatUndef = HighUndef & LowUndef; 9385 9386 VecWidth = HalfSize; 9387 } 9388 9389 SplatBitSize = VecWidth; 9390 return true; 9391 } 9392 9393 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9394 BitVector *UndefElements) const { 9395 if (UndefElements) { 9396 UndefElements->clear(); 9397 UndefElements->resize(getNumOperands()); 9398 } 9399 assert(getNumOperands() == DemandedElts.getBitWidth() && 9400 "Unexpected vector size"); 9401 if (!DemandedElts) 9402 return SDValue(); 9403 SDValue Splatted; 9404 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9405 if (!DemandedElts[i]) 9406 continue; 9407 SDValue Op = getOperand(i); 9408 if (Op.isUndef()) { 9409 if (UndefElements) 9410 (*UndefElements)[i] = true; 9411 } else if (!Splatted) { 9412 Splatted = Op; 9413 } else if (Splatted != Op) { 9414 return SDValue(); 9415 } 9416 } 9417 9418 if (!Splatted) { 9419 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9420 assert(getOperand(FirstDemandedIdx).isUndef() && 9421 "Can only have a splat without a constant for all undefs."); 9422 return getOperand(FirstDemandedIdx); 9423 } 9424 9425 return Splatted; 9426 } 9427 9428 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9429 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9430 return getSplatValue(DemandedElts, UndefElements); 9431 } 9432 9433 ConstantSDNode * 9434 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9435 BitVector *UndefElements) const { 9436 return dyn_cast_or_null<ConstantSDNode>( 9437 getSplatValue(DemandedElts, UndefElements)); 9438 } 9439 9440 ConstantSDNode * 9441 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9442 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9443 } 9444 9445 ConstantFPSDNode * 9446 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9447 BitVector *UndefElements) const { 9448 return dyn_cast_or_null<ConstantFPSDNode>( 9449 getSplatValue(DemandedElts, UndefElements)); 9450 } 9451 9452 ConstantFPSDNode * 9453 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9454 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9455 } 9456 9457 int32_t 9458 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9459 uint32_t BitWidth) const { 9460 if (ConstantFPSDNode *CN = 9461 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9462 bool IsExact; 9463 APSInt IntVal(BitWidth); 9464 const APFloat &APF = CN->getValueAPF(); 9465 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9466 APFloat::opOK || 9467 !IsExact) 9468 return -1; 9469 9470 return IntVal.exactLogBase2(); 9471 } 9472 return -1; 9473 } 9474 9475 bool BuildVectorSDNode::isConstant() const { 9476 for (const SDValue &Op : op_values()) { 9477 unsigned Opc = Op.getOpcode(); 9478 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9479 return false; 9480 } 9481 return true; 9482 } 9483 9484 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9485 // Find the first non-undef value in the shuffle mask. 9486 unsigned i, e; 9487 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9488 /* search */; 9489 9490 // If all elements are undefined, this shuffle can be considered a splat 9491 // (although it should eventually get simplified away completely). 9492 if (i == e) 9493 return true; 9494 9495 // Make sure all remaining elements are either undef or the same as the first 9496 // non-undef value. 9497 for (int Idx = Mask[i]; i != e; ++i) 9498 if (Mask[i] >= 0 && Mask[i] != Idx) 9499 return false; 9500 return true; 9501 } 9502 9503 // Returns the SDNode if it is a constant integer BuildVector 9504 // or constant integer. 9505 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9506 if (isa<ConstantSDNode>(N)) 9507 return N.getNode(); 9508 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9509 return N.getNode(); 9510 // Treat a GlobalAddress supporting constant offset folding as a 9511 // constant integer. 9512 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9513 if (GA->getOpcode() == ISD::GlobalAddress && 9514 TLI->isOffsetFoldingLegal(GA)) 9515 return GA; 9516 return nullptr; 9517 } 9518 9519 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9520 if (isa<ConstantFPSDNode>(N)) 9521 return N.getNode(); 9522 9523 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9524 return N.getNode(); 9525 9526 return nullptr; 9527 } 9528 9529 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9530 assert(!Node->OperandList && "Node already has operands"); 9531 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9532 "too many operands to fit into SDNode"); 9533 SDUse *Ops = OperandRecycler.allocate( 9534 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9535 9536 bool IsDivergent = false; 9537 for (unsigned I = 0; I != Vals.size(); ++I) { 9538 Ops[I].setUser(Node); 9539 Ops[I].setInitial(Vals[I]); 9540 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9541 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9542 } 9543 Node->NumOperands = Vals.size(); 9544 Node->OperandList = Ops; 9545 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9546 if (!TLI->isSDNodeAlwaysUniform(Node)) 9547 Node->SDNodeBits.IsDivergent = IsDivergent; 9548 checkForCycles(Node); 9549 } 9550 9551 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9552 SmallVectorImpl<SDValue> &Vals) { 9553 size_t Limit = SDNode::getMaxNumOperands(); 9554 while (Vals.size() > Limit) { 9555 unsigned SliceIdx = Vals.size() - Limit; 9556 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9557 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9558 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9559 Vals.emplace_back(NewTF); 9560 } 9561 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9562 } 9563 9564 #ifndef NDEBUG 9565 static void checkForCyclesHelper(const SDNode *N, 9566 SmallPtrSetImpl<const SDNode*> &Visited, 9567 SmallPtrSetImpl<const SDNode*> &Checked, 9568 const llvm::SelectionDAG *DAG) { 9569 // If this node has already been checked, don't check it again. 9570 if (Checked.count(N)) 9571 return; 9572 9573 // If a node has already been visited on this depth-first walk, reject it as 9574 // a cycle. 9575 if (!Visited.insert(N).second) { 9576 errs() << "Detected cycle in SelectionDAG\n"; 9577 dbgs() << "Offending node:\n"; 9578 N->dumprFull(DAG); dbgs() << "\n"; 9579 abort(); 9580 } 9581 9582 for (const SDValue &Op : N->op_values()) 9583 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9584 9585 Checked.insert(N); 9586 Visited.erase(N); 9587 } 9588 #endif 9589 9590 void llvm::checkForCycles(const llvm::SDNode *N, 9591 const llvm::SelectionDAG *DAG, 9592 bool force) { 9593 #ifndef NDEBUG 9594 bool check = force; 9595 #ifdef EXPENSIVE_CHECKS 9596 check = true; 9597 #endif // EXPENSIVE_CHECKS 9598 if (check) { 9599 assert(N && "Checking nonexistent SDNode"); 9600 SmallPtrSet<const SDNode*, 32> visited; 9601 SmallPtrSet<const SDNode*, 32> checked; 9602 checkForCyclesHelper(N, visited, checked, DAG); 9603 } 9604 #endif // !NDEBUG 9605 } 9606 9607 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9608 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9609 } 9610