1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlign().value()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 Align SelectionDAG::getEVTAlign(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlign(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 EVT OpVT = Op.getValueType(); 1171 assert(VT.isInteger() && OpVT.isInteger() && 1172 "Cannot getZeroExtendInReg FP types"); 1173 assert(VT.isVector() == OpVT.isVector() && 1174 "getZeroExtendInReg type should be vector iff the operand " 1175 "type is vector!"); 1176 assert((!VT.isVector() || 1177 VT.getVectorNumElements() == OpVT.getVectorNumElements()) && 1178 "Vector element counts must match in getZeroExtendInReg"); 1179 assert(VT.bitsLE(OpVT) && "Not extending!"); 1180 if (OpVT == VT) 1181 return Op; 1182 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1183 VT.getScalarSizeInBits()); 1184 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZExtOrTrunc(Op, DL, VT); 1191 } 1192 1193 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1194 // Only unsigned pointer semantics are supported right now. In the future this 1195 // might delegate to TLI to check pointer signedness. 1196 return getZeroExtendInReg(Op, DL, VT); 1197 } 1198 1199 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1200 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1201 EVT EltVT = VT.getScalarType(); 1202 SDValue NegOne = 1203 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1204 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1205 } 1206 1207 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1208 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1209 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1210 } 1211 1212 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1213 EVT OpVT) { 1214 if (!V) 1215 return getConstant(0, DL, VT); 1216 1217 switch (TLI->getBooleanContents(OpVT)) { 1218 case TargetLowering::ZeroOrOneBooleanContent: 1219 case TargetLowering::UndefinedBooleanContent: 1220 return getConstant(1, DL, VT); 1221 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1222 return getAllOnesConstant(DL, VT); 1223 } 1224 llvm_unreachable("Unexpected boolean content enum!"); 1225 } 1226 1227 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1228 bool isT, bool isO) { 1229 EVT EltVT = VT.getScalarType(); 1230 assert((EltVT.getSizeInBits() >= 64 || 1231 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1232 "getConstant with a uint64_t value that doesn't fit in the type!"); 1233 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1234 } 1235 1236 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1237 bool isT, bool isO) { 1238 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1239 } 1240 1241 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1242 EVT VT, bool isT, bool isO) { 1243 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1244 1245 EVT EltVT = VT.getScalarType(); 1246 const ConstantInt *Elt = &Val; 1247 1248 // In some cases the vector type is legal but the element type is illegal and 1249 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1250 // inserted value (the type does not need to match the vector element type). 1251 // Any extra bits introduced will be truncated away. 1252 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1253 TargetLowering::TypePromoteInteger) { 1254 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1255 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1256 Elt = ConstantInt::get(*getContext(), NewVal); 1257 } 1258 // In other cases the element type is illegal and needs to be expanded, for 1259 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1260 // the value into n parts and use a vector type with n-times the elements. 1261 // Then bitcast to the type requested. 1262 // Legalizing constants too early makes the DAGCombiner's job harder so we 1263 // only legalize if the DAG tells us we must produce legal types. 1264 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1265 TLI->getTypeAction(*getContext(), EltVT) == 1266 TargetLowering::TypeExpandInteger) { 1267 const APInt &NewVal = Elt->getValue(); 1268 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1269 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1270 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1271 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1272 1273 // Check the temporary vector is the correct size. If this fails then 1274 // getTypeToTransformTo() probably returned a type whose size (in bits) 1275 // isn't a power-of-2 factor of the requested type size. 1276 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1277 1278 SmallVector<SDValue, 2> EltParts; 1279 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1280 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1281 .zextOrTrunc(ViaEltSizeInBits), DL, 1282 ViaEltVT, isT, isO)); 1283 } 1284 1285 // EltParts is currently in little endian order. If we actually want 1286 // big-endian order then reverse it now. 1287 if (getDataLayout().isBigEndian()) 1288 std::reverse(EltParts.begin(), EltParts.end()); 1289 1290 // The elements must be reversed when the element order is different 1291 // to the endianness of the elements (because the BITCAST is itself a 1292 // vector shuffle in this situation). However, we do not need any code to 1293 // perform this reversal because getConstant() is producing a vector 1294 // splat. 1295 // This situation occurs in MIPS MSA. 1296 1297 SmallVector<SDValue, 8> Ops; 1298 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1299 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1300 1301 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1302 return V; 1303 } 1304 1305 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1306 "APInt size does not match type size!"); 1307 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1308 FoldingSetNodeID ID; 1309 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1310 ID.AddPointer(Elt); 1311 ID.AddBoolean(isO); 1312 void *IP = nullptr; 1313 SDNode *N = nullptr; 1314 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1315 if (!VT.isVector()) 1316 return SDValue(N, 0); 1317 1318 if (!N) { 1319 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1320 CSEMap.InsertNode(N, IP); 1321 InsertNode(N); 1322 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1323 } 1324 1325 SDValue Result(N, 0); 1326 if (VT.isScalableVector()) 1327 Result = getSplatVector(VT, DL, Result); 1328 else if (VT.isVector()) 1329 Result = getSplatBuildVector(VT, DL, Result); 1330 1331 return Result; 1332 } 1333 1334 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1335 bool isTarget) { 1336 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1337 } 1338 1339 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1340 const SDLoc &DL, bool LegalTypes) { 1341 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1342 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1343 return getConstant(Val, DL, ShiftVT); 1344 } 1345 1346 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1347 bool isTarget) { 1348 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1349 } 1350 1351 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1352 bool isTarget) { 1353 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1354 } 1355 1356 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1357 EVT VT, bool isTarget) { 1358 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1359 1360 EVT EltVT = VT.getScalarType(); 1361 1362 // Do the map lookup using the actual bit pattern for the floating point 1363 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1364 // we don't have issues with SNANs. 1365 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1366 FoldingSetNodeID ID; 1367 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1368 ID.AddPointer(&V); 1369 void *IP = nullptr; 1370 SDNode *N = nullptr; 1371 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1372 if (!VT.isVector()) 1373 return SDValue(N, 0); 1374 1375 if (!N) { 1376 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 } 1380 1381 SDValue Result(N, 0); 1382 if (VT.isVector()) 1383 Result = getSplatBuildVector(VT, DL, Result); 1384 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1385 return Result; 1386 } 1387 1388 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1389 bool isTarget) { 1390 EVT EltVT = VT.getScalarType(); 1391 if (EltVT == MVT::f32) 1392 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1393 else if (EltVT == MVT::f64) 1394 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1395 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1396 EltVT == MVT::f16) { 1397 bool Ignored; 1398 APFloat APF = APFloat(Val); 1399 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1400 &Ignored); 1401 return getConstantFP(APF, DL, VT, isTarget); 1402 } else 1403 llvm_unreachable("Unsupported type in getConstantFP"); 1404 } 1405 1406 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1407 EVT VT, int64_t Offset, bool isTargetGA, 1408 unsigned TargetFlags) { 1409 assert((TargetFlags == 0 || isTargetGA) && 1410 "Cannot set target flags on target-independent globals"); 1411 1412 // Truncate (with sign-extension) the offset value to the pointer size. 1413 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1414 if (BitWidth < 64) 1415 Offset = SignExtend64(Offset, BitWidth); 1416 1417 unsigned Opc; 1418 if (GV->isThreadLocal()) 1419 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1420 else 1421 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1422 1423 FoldingSetNodeID ID; 1424 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1425 ID.AddPointer(GV); 1426 ID.AddInteger(Offset); 1427 ID.AddInteger(TargetFlags); 1428 void *IP = nullptr; 1429 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1430 return SDValue(E, 0); 1431 1432 auto *N = newSDNode<GlobalAddressSDNode>( 1433 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1434 CSEMap.InsertNode(N, IP); 1435 InsertNode(N); 1436 return SDValue(N, 0); 1437 } 1438 1439 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1440 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1441 FoldingSetNodeID ID; 1442 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1443 ID.AddInteger(FI); 1444 void *IP = nullptr; 1445 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1446 return SDValue(E, 0); 1447 1448 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1449 CSEMap.InsertNode(N, IP); 1450 InsertNode(N); 1451 return SDValue(N, 0); 1452 } 1453 1454 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1455 unsigned TargetFlags) { 1456 assert((TargetFlags == 0 || isTarget) && 1457 "Cannot set target flags on target-independent jump tables"); 1458 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1459 FoldingSetNodeID ID; 1460 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1461 ID.AddInteger(JTI); 1462 ID.AddInteger(TargetFlags); 1463 void *IP = nullptr; 1464 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1465 return SDValue(E, 0); 1466 1467 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1468 CSEMap.InsertNode(N, IP); 1469 InsertNode(N); 1470 return SDValue(N, 0); 1471 } 1472 1473 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1474 MaybeAlign Alignment, int Offset, 1475 bool isTarget, unsigned TargetFlags) { 1476 assert((TargetFlags == 0 || isTarget) && 1477 "Cannot set target flags on target-independent globals"); 1478 if (!Alignment) 1479 Alignment = shouldOptForSize() 1480 ? getDataLayout().getABITypeAlign(C->getType()) 1481 : getDataLayout().getPrefTypeAlign(C->getType()); 1482 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1483 FoldingSetNodeID ID; 1484 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1485 ID.AddInteger(Alignment->value()); 1486 ID.AddInteger(Offset); 1487 ID.AddPointer(C); 1488 ID.AddInteger(TargetFlags); 1489 void *IP = nullptr; 1490 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1491 return SDValue(E, 0); 1492 1493 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1494 TargetFlags); 1495 CSEMap.InsertNode(N, IP); 1496 InsertNode(N); 1497 SDValue V = SDValue(N, 0); 1498 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1499 return V; 1500 } 1501 1502 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1503 MaybeAlign Alignment, int Offset, 1504 bool isTarget, unsigned TargetFlags) { 1505 assert((TargetFlags == 0 || isTarget) && 1506 "Cannot set target flags on target-independent globals"); 1507 if (!Alignment) 1508 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1509 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1512 ID.AddInteger(Alignment->value()); 1513 ID.AddInteger(Offset); 1514 C->addSelectionDAGCSEId(ID); 1515 ID.AddInteger(TargetFlags); 1516 void *IP = nullptr; 1517 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1518 return SDValue(E, 0); 1519 1520 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1521 TargetFlags); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 return SDValue(N, 0); 1525 } 1526 1527 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1528 unsigned TargetFlags) { 1529 FoldingSetNodeID ID; 1530 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1531 ID.AddInteger(Index); 1532 ID.AddInteger(Offset); 1533 ID.AddInteger(TargetFlags); 1534 void *IP = nullptr; 1535 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1536 return SDValue(E, 0); 1537 1538 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1539 CSEMap.InsertNode(N, IP); 1540 InsertNode(N); 1541 return SDValue(N, 0); 1542 } 1543 1544 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1545 FoldingSetNodeID ID; 1546 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1547 ID.AddPointer(MBB); 1548 void *IP = nullptr; 1549 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1550 return SDValue(E, 0); 1551 1552 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1553 CSEMap.InsertNode(N, IP); 1554 InsertNode(N); 1555 return SDValue(N, 0); 1556 } 1557 1558 SDValue SelectionDAG::getValueType(EVT VT) { 1559 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1560 ValueTypeNodes.size()) 1561 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1562 1563 SDNode *&N = VT.isExtended() ? 1564 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1565 1566 if (N) return SDValue(N, 0); 1567 N = newSDNode<VTSDNode>(VT); 1568 InsertNode(N); 1569 return SDValue(N, 0); 1570 } 1571 1572 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1573 SDNode *&N = ExternalSymbols[Sym]; 1574 if (N) return SDValue(N, 0); 1575 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1576 InsertNode(N); 1577 return SDValue(N, 0); 1578 } 1579 1580 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1581 SDNode *&N = MCSymbols[Sym]; 1582 if (N) 1583 return SDValue(N, 0); 1584 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1585 InsertNode(N); 1586 return SDValue(N, 0); 1587 } 1588 1589 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1590 unsigned TargetFlags) { 1591 SDNode *&N = 1592 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1593 if (N) return SDValue(N, 0); 1594 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1595 InsertNode(N); 1596 return SDValue(N, 0); 1597 } 1598 1599 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1600 if ((unsigned)Cond >= CondCodeNodes.size()) 1601 CondCodeNodes.resize(Cond+1); 1602 1603 if (!CondCodeNodes[Cond]) { 1604 auto *N = newSDNode<CondCodeSDNode>(Cond); 1605 CondCodeNodes[Cond] = N; 1606 InsertNode(N); 1607 } 1608 1609 return SDValue(CondCodeNodes[Cond], 0); 1610 } 1611 1612 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1613 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1614 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1615 std::swap(N1, N2); 1616 ShuffleVectorSDNode::commuteMask(M); 1617 } 1618 1619 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1620 SDValue N2, ArrayRef<int> Mask) { 1621 assert(VT.getVectorNumElements() == Mask.size() && 1622 "Must have the same number of vector elements as mask elements!"); 1623 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1624 "Invalid VECTOR_SHUFFLE"); 1625 1626 // Canonicalize shuffle undef, undef -> undef 1627 if (N1.isUndef() && N2.isUndef()) 1628 return getUNDEF(VT); 1629 1630 // Validate that all indices in Mask are within the range of the elements 1631 // input to the shuffle. 1632 int NElts = Mask.size(); 1633 assert(llvm::all_of(Mask, 1634 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1635 "Index out of range"); 1636 1637 // Copy the mask so we can do any needed cleanup. 1638 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1639 1640 // Canonicalize shuffle v, v -> v, undef 1641 if (N1 == N2) { 1642 N2 = getUNDEF(VT); 1643 for (int i = 0; i != NElts; ++i) 1644 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1645 } 1646 1647 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1648 if (N1.isUndef()) 1649 commuteShuffle(N1, N2, MaskVec); 1650 1651 if (TLI->hasVectorBlend()) { 1652 // If shuffling a splat, try to blend the splat instead. We do this here so 1653 // that even when this arises during lowering we don't have to re-handle it. 1654 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1655 BitVector UndefElements; 1656 SDValue Splat = BV->getSplatValue(&UndefElements); 1657 if (!Splat) 1658 return; 1659 1660 for (int i = 0; i < NElts; ++i) { 1661 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1662 continue; 1663 1664 // If this input comes from undef, mark it as such. 1665 if (UndefElements[MaskVec[i] - Offset]) { 1666 MaskVec[i] = -1; 1667 continue; 1668 } 1669 1670 // If we can blend a non-undef lane, use that instead. 1671 if (!UndefElements[i]) 1672 MaskVec[i] = i + Offset; 1673 } 1674 }; 1675 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1676 BlendSplat(N1BV, 0); 1677 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1678 BlendSplat(N2BV, NElts); 1679 } 1680 1681 // Canonicalize all index into lhs, -> shuffle lhs, undef 1682 // Canonicalize all index into rhs, -> shuffle rhs, undef 1683 bool AllLHS = true, AllRHS = true; 1684 bool N2Undef = N2.isUndef(); 1685 for (int i = 0; i != NElts; ++i) { 1686 if (MaskVec[i] >= NElts) { 1687 if (N2Undef) 1688 MaskVec[i] = -1; 1689 else 1690 AllLHS = false; 1691 } else if (MaskVec[i] >= 0) { 1692 AllRHS = false; 1693 } 1694 } 1695 if (AllLHS && AllRHS) 1696 return getUNDEF(VT); 1697 if (AllLHS && !N2Undef) 1698 N2 = getUNDEF(VT); 1699 if (AllRHS) { 1700 N1 = getUNDEF(VT); 1701 commuteShuffle(N1, N2, MaskVec); 1702 } 1703 // Reset our undef status after accounting for the mask. 1704 N2Undef = N2.isUndef(); 1705 // Re-check whether both sides ended up undef. 1706 if (N1.isUndef() && N2Undef) 1707 return getUNDEF(VT); 1708 1709 // If Identity shuffle return that node. 1710 bool Identity = true, AllSame = true; 1711 for (int i = 0; i != NElts; ++i) { 1712 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1713 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1714 } 1715 if (Identity && NElts) 1716 return N1; 1717 1718 // Shuffling a constant splat doesn't change the result. 1719 if (N2Undef) { 1720 SDValue V = N1; 1721 1722 // Look through any bitcasts. We check that these don't change the number 1723 // (and size) of elements and just changes their types. 1724 while (V.getOpcode() == ISD::BITCAST) 1725 V = V->getOperand(0); 1726 1727 // A splat should always show up as a build vector node. 1728 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1729 BitVector UndefElements; 1730 SDValue Splat = BV->getSplatValue(&UndefElements); 1731 // If this is a splat of an undef, shuffling it is also undef. 1732 if (Splat && Splat.isUndef()) 1733 return getUNDEF(VT); 1734 1735 bool SameNumElts = 1736 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1737 1738 // We only have a splat which can skip shuffles if there is a splatted 1739 // value and no undef lanes rearranged by the shuffle. 1740 if (Splat && UndefElements.none()) { 1741 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1742 // number of elements match or the value splatted is a zero constant. 1743 if (SameNumElts) 1744 return N1; 1745 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1746 if (C->isNullValue()) 1747 return N1; 1748 } 1749 1750 // If the shuffle itself creates a splat, build the vector directly. 1751 if (AllSame && SameNumElts) { 1752 EVT BuildVT = BV->getValueType(0); 1753 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1754 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1755 1756 // We may have jumped through bitcasts, so the type of the 1757 // BUILD_VECTOR may not match the type of the shuffle. 1758 if (BuildVT != VT) 1759 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1760 return NewBV; 1761 } 1762 } 1763 } 1764 1765 FoldingSetNodeID ID; 1766 SDValue Ops[2] = { N1, N2 }; 1767 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1768 for (int i = 0; i != NElts; ++i) 1769 ID.AddInteger(MaskVec[i]); 1770 1771 void* IP = nullptr; 1772 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1773 return SDValue(E, 0); 1774 1775 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1776 // SDNode doesn't have access to it. This memory will be "leaked" when 1777 // the node is deallocated, but recovered when the NodeAllocator is released. 1778 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1779 llvm::copy(MaskVec, MaskAlloc); 1780 1781 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1782 dl.getDebugLoc(), MaskAlloc); 1783 createOperands(N, Ops); 1784 1785 CSEMap.InsertNode(N, IP); 1786 InsertNode(N); 1787 SDValue V = SDValue(N, 0); 1788 NewSDValueDbgMsg(V, "Creating new node: ", this); 1789 return V; 1790 } 1791 1792 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1793 EVT VT = SV.getValueType(0); 1794 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1795 ShuffleVectorSDNode::commuteMask(MaskVec); 1796 1797 SDValue Op0 = SV.getOperand(0); 1798 SDValue Op1 = SV.getOperand(1); 1799 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1800 } 1801 1802 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1803 FoldingSetNodeID ID; 1804 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1805 ID.AddInteger(RegNo); 1806 void *IP = nullptr; 1807 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1808 return SDValue(E, 0); 1809 1810 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1811 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1818 FoldingSetNodeID ID; 1819 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1820 ID.AddPointer(RegMask); 1821 void *IP = nullptr; 1822 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1823 return SDValue(E, 0); 1824 1825 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1826 CSEMap.InsertNode(N, IP); 1827 InsertNode(N); 1828 return SDValue(N, 0); 1829 } 1830 1831 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1832 MCSymbol *Label) { 1833 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1834 } 1835 1836 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1837 SDValue Root, MCSymbol *Label) { 1838 FoldingSetNodeID ID; 1839 SDValue Ops[] = { Root }; 1840 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1841 ID.AddPointer(Label); 1842 void *IP = nullptr; 1843 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1844 return SDValue(E, 0); 1845 1846 auto *N = 1847 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1848 createOperands(N, Ops); 1849 1850 CSEMap.InsertNode(N, IP); 1851 InsertNode(N); 1852 return SDValue(N, 0); 1853 } 1854 1855 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1856 int64_t Offset, bool isTarget, 1857 unsigned TargetFlags) { 1858 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1859 1860 FoldingSetNodeID ID; 1861 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1862 ID.AddPointer(BA); 1863 ID.AddInteger(Offset); 1864 ID.AddInteger(TargetFlags); 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1870 CSEMap.InsertNode(N, IP); 1871 InsertNode(N); 1872 return SDValue(N, 0); 1873 } 1874 1875 SDValue SelectionDAG::getSrcValue(const Value *V) { 1876 FoldingSetNodeID ID; 1877 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1878 ID.AddPointer(V); 1879 1880 void *IP = nullptr; 1881 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1882 return SDValue(E, 0); 1883 1884 auto *N = newSDNode<SrcValueSDNode>(V); 1885 CSEMap.InsertNode(N, IP); 1886 InsertNode(N); 1887 return SDValue(N, 0); 1888 } 1889 1890 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1891 FoldingSetNodeID ID; 1892 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1893 ID.AddPointer(MD); 1894 1895 void *IP = nullptr; 1896 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1897 return SDValue(E, 0); 1898 1899 auto *N = newSDNode<MDNodeSDNode>(MD); 1900 CSEMap.InsertNode(N, IP); 1901 InsertNode(N); 1902 return SDValue(N, 0); 1903 } 1904 1905 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1906 if (VT == V.getValueType()) 1907 return V; 1908 1909 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1910 } 1911 1912 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1913 unsigned SrcAS, unsigned DestAS) { 1914 SDValue Ops[] = {Ptr}; 1915 FoldingSetNodeID ID; 1916 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1917 ID.AddInteger(SrcAS); 1918 ID.AddInteger(DestAS); 1919 1920 void *IP = nullptr; 1921 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1922 return SDValue(E, 0); 1923 1924 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1925 VT, SrcAS, DestAS); 1926 createOperands(N, Ops); 1927 1928 CSEMap.InsertNode(N, IP); 1929 InsertNode(N); 1930 return SDValue(N, 0); 1931 } 1932 1933 SDValue SelectionDAG::getFreeze(SDValue V) { 1934 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1935 } 1936 1937 /// getShiftAmountOperand - Return the specified value casted to 1938 /// the target's desired shift amount type. 1939 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1940 EVT OpTy = Op.getValueType(); 1941 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1942 if (OpTy == ShTy || OpTy.isVector()) return Op; 1943 1944 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1945 } 1946 1947 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1948 SDLoc dl(Node); 1949 const TargetLowering &TLI = getTargetLoweringInfo(); 1950 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1951 EVT VT = Node->getValueType(0); 1952 SDValue Tmp1 = Node->getOperand(0); 1953 SDValue Tmp2 = Node->getOperand(1); 1954 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1955 1956 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1957 Tmp2, MachinePointerInfo(V)); 1958 SDValue VAList = VAListLoad; 1959 1960 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1961 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1962 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1963 1964 VAList = 1965 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1966 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1967 } 1968 1969 // Increment the pointer, VAList, to the next vaarg 1970 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1971 getConstant(getDataLayout().getTypeAllocSize( 1972 VT.getTypeForEVT(*getContext())), 1973 dl, VAList.getValueType())); 1974 // Store the incremented VAList to the legalized pointer 1975 Tmp1 = 1976 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1977 // Load the actual argument out of the pointer VAList 1978 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1979 } 1980 1981 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1982 SDLoc dl(Node); 1983 const TargetLowering &TLI = getTargetLoweringInfo(); 1984 // This defaults to loading a pointer from the input and storing it to the 1985 // output, returning the chain. 1986 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1987 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1988 SDValue Tmp1 = 1989 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1990 Node->getOperand(2), MachinePointerInfo(VS)); 1991 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1992 MachinePointerInfo(VD)); 1993 } 1994 1995 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 1996 MachineFrameInfo &MFI = MF->getFrameInfo(); 1997 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false); 1998 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1999 } 2000 2001 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2002 Type *Ty = VT.getTypeForEVT(*getContext()); 2003 Align StackAlign = 2004 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2005 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2006 } 2007 2008 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2009 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2010 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2011 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2012 const DataLayout &DL = getDataLayout(); 2013 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2014 return CreateStackTemporary(Bytes, Align); 2015 } 2016 2017 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2018 ISD::CondCode Cond, const SDLoc &dl) { 2019 EVT OpVT = N1.getValueType(); 2020 2021 // These setcc operations always fold. 2022 switch (Cond) { 2023 default: break; 2024 case ISD::SETFALSE: 2025 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2026 case ISD::SETTRUE: 2027 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2028 2029 case ISD::SETOEQ: 2030 case ISD::SETOGT: 2031 case ISD::SETOGE: 2032 case ISD::SETOLT: 2033 case ISD::SETOLE: 2034 case ISD::SETONE: 2035 case ISD::SETO: 2036 case ISD::SETUO: 2037 case ISD::SETUEQ: 2038 case ISD::SETUNE: 2039 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2040 break; 2041 } 2042 2043 if (OpVT.isInteger()) { 2044 // For EQ and NE, we can always pick a value for the undef to make the 2045 // predicate pass or fail, so we can return undef. 2046 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2047 // icmp eq/ne X, undef -> undef. 2048 if ((N1.isUndef() || N2.isUndef()) && 2049 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2050 return getUNDEF(VT); 2051 2052 // If both operands are undef, we can return undef for int comparison. 2053 // icmp undef, undef -> undef. 2054 if (N1.isUndef() && N2.isUndef()) 2055 return getUNDEF(VT); 2056 2057 // icmp X, X -> true/false 2058 // icmp X, undef -> true/false because undef could be X. 2059 if (N1 == N2) 2060 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2061 } 2062 2063 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2064 const APInt &C2 = N2C->getAPIntValue(); 2065 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2066 const APInt &C1 = N1C->getAPIntValue(); 2067 2068 switch (Cond) { 2069 default: llvm_unreachable("Unknown integer setcc!"); 2070 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2071 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2072 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2073 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2074 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2075 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2076 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2077 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2078 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2079 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2080 } 2081 } 2082 } 2083 2084 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2085 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2086 2087 if (N1CFP && N2CFP) { 2088 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2089 switch (Cond) { 2090 default: break; 2091 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2092 return getUNDEF(VT); 2093 LLVM_FALLTHROUGH; 2094 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2095 OpVT); 2096 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2097 return getUNDEF(VT); 2098 LLVM_FALLTHROUGH; 2099 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2100 R==APFloat::cmpLessThan, dl, VT, 2101 OpVT); 2102 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2103 return getUNDEF(VT); 2104 LLVM_FALLTHROUGH; 2105 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2106 OpVT); 2107 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2108 return getUNDEF(VT); 2109 LLVM_FALLTHROUGH; 2110 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2111 VT, OpVT); 2112 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2113 return getUNDEF(VT); 2114 LLVM_FALLTHROUGH; 2115 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2116 R==APFloat::cmpEqual, dl, VT, 2117 OpVT); 2118 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2119 return getUNDEF(VT); 2120 LLVM_FALLTHROUGH; 2121 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2122 R==APFloat::cmpEqual, dl, VT, OpVT); 2123 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2124 OpVT); 2125 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2126 OpVT); 2127 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2128 R==APFloat::cmpEqual, dl, VT, 2129 OpVT); 2130 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2131 OpVT); 2132 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2133 R==APFloat::cmpLessThan, dl, VT, 2134 OpVT); 2135 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2136 R==APFloat::cmpUnordered, dl, VT, 2137 OpVT); 2138 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2139 VT, OpVT); 2140 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2141 OpVT); 2142 } 2143 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2144 // Ensure that the constant occurs on the RHS. 2145 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2146 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2147 return SDValue(); 2148 return getSetCC(dl, VT, N2, N1, SwappedCond); 2149 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2150 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2151 // If an operand is known to be a nan (or undef that could be a nan), we can 2152 // fold it. 2153 // Choosing NaN for the undef will always make unordered comparison succeed 2154 // and ordered comparison fails. 2155 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2156 switch (ISD::getUnorderedFlavor(Cond)) { 2157 default: 2158 llvm_unreachable("Unknown flavor!"); 2159 case 0: // Known false. 2160 return getBoolConstant(false, dl, VT, OpVT); 2161 case 1: // Known true. 2162 return getBoolConstant(true, dl, VT, OpVT); 2163 case 2: // Undefined. 2164 return getUNDEF(VT); 2165 } 2166 } 2167 2168 // Could not fold it. 2169 return SDValue(); 2170 } 2171 2172 /// See if the specified operand can be simplified with the knowledge that only 2173 /// the bits specified by DemandedBits are used. 2174 /// TODO: really we should be making this into the DAG equivalent of 2175 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2176 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2177 EVT VT = V.getValueType(); 2178 APInt DemandedElts = VT.isVector() 2179 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2180 : APInt(1, 1); 2181 return GetDemandedBits(V, DemandedBits, DemandedElts); 2182 } 2183 2184 /// See if the specified operand can be simplified with the knowledge that only 2185 /// the bits specified by DemandedBits are used in the elements specified by 2186 /// DemandedElts. 2187 /// TODO: really we should be making this into the DAG equivalent of 2188 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2189 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2190 const APInt &DemandedElts) { 2191 switch (V.getOpcode()) { 2192 default: 2193 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2194 *this, 0); 2195 break; 2196 case ISD::Constant: { 2197 auto *CV = cast<ConstantSDNode>(V.getNode()); 2198 assert(CV && "Const value should be ConstSDNode."); 2199 const APInt &CVal = CV->getAPIntValue(); 2200 APInt NewVal = CVal & DemandedBits; 2201 if (NewVal != CVal) 2202 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2203 break; 2204 } 2205 case ISD::SRL: 2206 // Only look at single-use SRLs. 2207 if (!V.getNode()->hasOneUse()) 2208 break; 2209 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2210 // See if we can recursively simplify the LHS. 2211 unsigned Amt = RHSC->getZExtValue(); 2212 2213 // Watch out for shift count overflow though. 2214 if (Amt >= DemandedBits.getBitWidth()) 2215 break; 2216 APInt SrcDemandedBits = DemandedBits << Amt; 2217 if (SDValue SimplifyLHS = 2218 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2219 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2220 V.getOperand(1)); 2221 } 2222 break; 2223 case ISD::AND: { 2224 // X & -1 -> X (ignoring bits which aren't demanded). 2225 // Also handle the case where masked out bits in X are known to be zero. 2226 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2227 const APInt &AndVal = RHSC->getAPIntValue(); 2228 if (DemandedBits.isSubsetOf(AndVal) || 2229 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2230 AndVal)) 2231 return V.getOperand(0); 2232 } 2233 break; 2234 } 2235 } 2236 return SDValue(); 2237 } 2238 2239 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2240 /// use this predicate to simplify operations downstream. 2241 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2242 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2243 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2244 } 2245 2246 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2247 /// this predicate to simplify operations downstream. Mask is known to be zero 2248 /// for bits that V cannot have. 2249 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2250 unsigned Depth) const { 2251 EVT VT = V.getValueType(); 2252 APInt DemandedElts = VT.isVector() 2253 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2254 : APInt(1, 1); 2255 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2256 } 2257 2258 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2259 /// DemandedElts. We use this predicate to simplify operations downstream. 2260 /// Mask is known to be zero for bits that V cannot have. 2261 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2262 const APInt &DemandedElts, 2263 unsigned Depth) const { 2264 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2265 } 2266 2267 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2268 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2269 unsigned Depth) const { 2270 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2271 } 2272 2273 /// isSplatValue - Return true if the vector V has the same value 2274 /// across all DemandedElts. For scalable vectors it does not make 2275 /// sense to specify which elements are demanded or undefined, therefore 2276 /// they are simply ignored. 2277 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2278 APInt &UndefElts) { 2279 EVT VT = V.getValueType(); 2280 assert(VT.isVector() && "Vector type expected"); 2281 2282 if (!VT.isScalableVector() && !DemandedElts) 2283 return false; // No demanded elts, better to assume we don't know anything. 2284 2285 // Deal with some common cases here that work for both fixed and scalable 2286 // vector types. 2287 switch (V.getOpcode()) { 2288 case ISD::SPLAT_VECTOR: 2289 return true; 2290 case ISD::ADD: 2291 case ISD::SUB: 2292 case ISD::AND: { 2293 APInt UndefLHS, UndefRHS; 2294 SDValue LHS = V.getOperand(0); 2295 SDValue RHS = V.getOperand(1); 2296 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2297 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2298 UndefElts = UndefLHS | UndefRHS; 2299 return true; 2300 } 2301 break; 2302 } 2303 } 2304 2305 // We don't support other cases than those above for scalable vectors at 2306 // the moment. 2307 if (VT.isScalableVector()) 2308 return false; 2309 2310 unsigned NumElts = VT.getVectorNumElements(); 2311 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2312 UndefElts = APInt::getNullValue(NumElts); 2313 2314 switch (V.getOpcode()) { 2315 case ISD::BUILD_VECTOR: { 2316 SDValue Scl; 2317 for (unsigned i = 0; i != NumElts; ++i) { 2318 SDValue Op = V.getOperand(i); 2319 if (Op.isUndef()) { 2320 UndefElts.setBit(i); 2321 continue; 2322 } 2323 if (!DemandedElts[i]) 2324 continue; 2325 if (Scl && Scl != Op) 2326 return false; 2327 Scl = Op; 2328 } 2329 return true; 2330 } 2331 case ISD::VECTOR_SHUFFLE: { 2332 // Check if this is a shuffle node doing a splat. 2333 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2334 int SplatIndex = -1; 2335 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2336 for (int i = 0; i != (int)NumElts; ++i) { 2337 int M = Mask[i]; 2338 if (M < 0) { 2339 UndefElts.setBit(i); 2340 continue; 2341 } 2342 if (!DemandedElts[i]) 2343 continue; 2344 if (0 <= SplatIndex && SplatIndex != M) 2345 return false; 2346 SplatIndex = M; 2347 } 2348 return true; 2349 } 2350 case ISD::EXTRACT_SUBVECTOR: { 2351 // Offset the demanded elts by the subvector index. 2352 SDValue Src = V.getOperand(0); 2353 uint64_t Idx = V.getConstantOperandVal(1); 2354 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2355 APInt UndefSrcElts; 2356 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2357 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2358 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2359 return true; 2360 } 2361 break; 2362 } 2363 } 2364 2365 return false; 2366 } 2367 2368 /// Helper wrapper to main isSplatValue function. 2369 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2370 EVT VT = V.getValueType(); 2371 assert(VT.isVector() && "Vector type expected"); 2372 2373 APInt UndefElts; 2374 APInt DemandedElts; 2375 2376 // For now we don't support this with scalable vectors. 2377 if (!VT.isScalableVector()) 2378 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2379 return isSplatValue(V, DemandedElts, UndefElts) && 2380 (AllowUndefs || !UndefElts); 2381 } 2382 2383 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2384 V = peekThroughExtractSubvectors(V); 2385 2386 EVT VT = V.getValueType(); 2387 unsigned Opcode = V.getOpcode(); 2388 switch (Opcode) { 2389 default: { 2390 APInt UndefElts; 2391 APInt DemandedElts; 2392 2393 if (!VT.isScalableVector()) 2394 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2395 2396 if (isSplatValue(V, DemandedElts, UndefElts)) { 2397 if (VT.isScalableVector()) { 2398 // DemandedElts and UndefElts are ignored for scalable vectors, since 2399 // the only supported cases are SPLAT_VECTOR nodes. 2400 SplatIdx = 0; 2401 } else { 2402 // Handle case where all demanded elements are UNDEF. 2403 if (DemandedElts.isSubsetOf(UndefElts)) { 2404 SplatIdx = 0; 2405 return getUNDEF(VT); 2406 } 2407 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2408 } 2409 return V; 2410 } 2411 break; 2412 } 2413 case ISD::SPLAT_VECTOR: 2414 SplatIdx = 0; 2415 return V; 2416 case ISD::VECTOR_SHUFFLE: { 2417 if (VT.isScalableVector()) 2418 return SDValue(); 2419 2420 // Check if this is a shuffle node doing a splat. 2421 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2422 // getTargetVShiftNode currently struggles without the splat source. 2423 auto *SVN = cast<ShuffleVectorSDNode>(V); 2424 if (!SVN->isSplat()) 2425 break; 2426 int Idx = SVN->getSplatIndex(); 2427 int NumElts = V.getValueType().getVectorNumElements(); 2428 SplatIdx = Idx % NumElts; 2429 return V.getOperand(Idx / NumElts); 2430 } 2431 } 2432 2433 return SDValue(); 2434 } 2435 2436 SDValue SelectionDAG::getSplatValue(SDValue V) { 2437 int SplatIdx; 2438 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2439 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2440 SrcVector.getValueType().getScalarType(), SrcVector, 2441 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2442 return SDValue(); 2443 } 2444 2445 const APInt * 2446 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2447 const APInt &DemandedElts) const { 2448 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2449 V.getOpcode() == ISD::SRA) && 2450 "Unknown shift node"); 2451 unsigned BitWidth = V.getScalarValueSizeInBits(); 2452 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2453 // Shifting more than the bitwidth is not valid. 2454 const APInt &ShAmt = SA->getAPIntValue(); 2455 if (ShAmt.ult(BitWidth)) 2456 return &ShAmt; 2457 } 2458 return nullptr; 2459 } 2460 2461 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2462 SDValue V, const APInt &DemandedElts) const { 2463 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2464 V.getOpcode() == ISD::SRA) && 2465 "Unknown shift node"); 2466 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2467 return ValidAmt; 2468 unsigned BitWidth = V.getScalarValueSizeInBits(); 2469 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2470 if (!BV) 2471 return nullptr; 2472 const APInt *MinShAmt = nullptr; 2473 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2474 if (!DemandedElts[i]) 2475 continue; 2476 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2477 if (!SA) 2478 return nullptr; 2479 // Shifting more than the bitwidth is not valid. 2480 const APInt &ShAmt = SA->getAPIntValue(); 2481 if (ShAmt.uge(BitWidth)) 2482 return nullptr; 2483 if (MinShAmt && MinShAmt->ule(ShAmt)) 2484 continue; 2485 MinShAmt = &ShAmt; 2486 } 2487 return MinShAmt; 2488 } 2489 2490 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2491 SDValue V, const APInt &DemandedElts) const { 2492 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2493 V.getOpcode() == ISD::SRA) && 2494 "Unknown shift node"); 2495 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2496 return ValidAmt; 2497 unsigned BitWidth = V.getScalarValueSizeInBits(); 2498 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2499 if (!BV) 2500 return nullptr; 2501 const APInt *MaxShAmt = nullptr; 2502 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2503 if (!DemandedElts[i]) 2504 continue; 2505 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2506 if (!SA) 2507 return nullptr; 2508 // Shifting more than the bitwidth is not valid. 2509 const APInt &ShAmt = SA->getAPIntValue(); 2510 if (ShAmt.uge(BitWidth)) 2511 return nullptr; 2512 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2513 continue; 2514 MaxShAmt = &ShAmt; 2515 } 2516 return MaxShAmt; 2517 } 2518 2519 /// Determine which bits of Op are known to be either zero or one and return 2520 /// them in Known. For vectors, the known bits are those that are shared by 2521 /// every vector element. 2522 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2523 EVT VT = Op.getValueType(); 2524 APInt DemandedElts = VT.isVector() 2525 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2526 : APInt(1, 1); 2527 return computeKnownBits(Op, DemandedElts, Depth); 2528 } 2529 2530 /// Determine which bits of Op are known to be either zero or one and return 2531 /// them in Known. The DemandedElts argument allows us to only collect the known 2532 /// bits that are shared by the requested vector elements. 2533 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2534 unsigned Depth) const { 2535 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2536 2537 KnownBits Known(BitWidth); // Don't know anything. 2538 2539 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2540 // We know all of the bits for a constant! 2541 Known.One = C->getAPIntValue(); 2542 Known.Zero = ~Known.One; 2543 return Known; 2544 } 2545 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2546 // We know all of the bits for a constant fp! 2547 Known.One = C->getValueAPF().bitcastToAPInt(); 2548 Known.Zero = ~Known.One; 2549 return Known; 2550 } 2551 2552 if (Depth >= MaxRecursionDepth) 2553 return Known; // Limit search depth. 2554 2555 KnownBits Known2; 2556 unsigned NumElts = DemandedElts.getBitWidth(); 2557 assert((!Op.getValueType().isVector() || 2558 NumElts == Op.getValueType().getVectorNumElements()) && 2559 "Unexpected vector size"); 2560 2561 if (!DemandedElts) 2562 return Known; // No demanded elts, better to assume we don't know anything. 2563 2564 unsigned Opcode = Op.getOpcode(); 2565 switch (Opcode) { 2566 case ISD::BUILD_VECTOR: 2567 // Collect the known bits that are shared by every demanded vector element. 2568 Known.Zero.setAllBits(); Known.One.setAllBits(); 2569 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2570 if (!DemandedElts[i]) 2571 continue; 2572 2573 SDValue SrcOp = Op.getOperand(i); 2574 Known2 = computeKnownBits(SrcOp, Depth + 1); 2575 2576 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2577 if (SrcOp.getValueSizeInBits() != BitWidth) { 2578 assert(SrcOp.getValueSizeInBits() > BitWidth && 2579 "Expected BUILD_VECTOR implicit truncation"); 2580 Known2 = Known2.trunc(BitWidth); 2581 } 2582 2583 // Known bits are the values that are shared by every demanded element. 2584 Known.One &= Known2.One; 2585 Known.Zero &= Known2.Zero; 2586 2587 // If we don't know any bits, early out. 2588 if (Known.isUnknown()) 2589 break; 2590 } 2591 break; 2592 case ISD::VECTOR_SHUFFLE: { 2593 // Collect the known bits that are shared by every vector element referenced 2594 // by the shuffle. 2595 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2596 Known.Zero.setAllBits(); Known.One.setAllBits(); 2597 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2598 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2599 for (unsigned i = 0; i != NumElts; ++i) { 2600 if (!DemandedElts[i]) 2601 continue; 2602 2603 int M = SVN->getMaskElt(i); 2604 if (M < 0) { 2605 // For UNDEF elements, we don't know anything about the common state of 2606 // the shuffle result. 2607 Known.resetAll(); 2608 DemandedLHS.clearAllBits(); 2609 DemandedRHS.clearAllBits(); 2610 break; 2611 } 2612 2613 if ((unsigned)M < NumElts) 2614 DemandedLHS.setBit((unsigned)M % NumElts); 2615 else 2616 DemandedRHS.setBit((unsigned)M % NumElts); 2617 } 2618 // Known bits are the values that are shared by every demanded element. 2619 if (!!DemandedLHS) { 2620 SDValue LHS = Op.getOperand(0); 2621 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2622 Known.One &= Known2.One; 2623 Known.Zero &= Known2.Zero; 2624 } 2625 // If we don't know any bits, early out. 2626 if (Known.isUnknown()) 2627 break; 2628 if (!!DemandedRHS) { 2629 SDValue RHS = Op.getOperand(1); 2630 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2631 Known.One &= Known2.One; 2632 Known.Zero &= Known2.Zero; 2633 } 2634 break; 2635 } 2636 case ISD::CONCAT_VECTORS: { 2637 // Split DemandedElts and test each of the demanded subvectors. 2638 Known.Zero.setAllBits(); Known.One.setAllBits(); 2639 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2640 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2641 unsigned NumSubVectors = Op.getNumOperands(); 2642 for (unsigned i = 0; i != NumSubVectors; ++i) { 2643 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2644 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2645 if (!!DemandedSub) { 2646 SDValue Sub = Op.getOperand(i); 2647 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2648 Known.One &= Known2.One; 2649 Known.Zero &= Known2.Zero; 2650 } 2651 // If we don't know any bits, early out. 2652 if (Known.isUnknown()) 2653 break; 2654 } 2655 break; 2656 } 2657 case ISD::INSERT_SUBVECTOR: { 2658 // Demand any elements from the subvector and the remainder from the src its 2659 // inserted into. 2660 SDValue Src = Op.getOperand(0); 2661 SDValue Sub = Op.getOperand(1); 2662 uint64_t Idx = Op.getConstantOperandVal(2); 2663 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2664 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2665 APInt DemandedSrcElts = DemandedElts; 2666 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2667 2668 Known.One.setAllBits(); 2669 Known.Zero.setAllBits(); 2670 if (!!DemandedSubElts) { 2671 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2672 if (Known.isUnknown()) 2673 break; // early-out. 2674 } 2675 if (!!DemandedSrcElts) { 2676 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2677 Known.One &= Known2.One; 2678 Known.Zero &= Known2.Zero; 2679 } 2680 break; 2681 } 2682 case ISD::EXTRACT_SUBVECTOR: { 2683 // Offset the demanded elts by the subvector index. 2684 SDValue Src = Op.getOperand(0); 2685 uint64_t Idx = Op.getConstantOperandVal(1); 2686 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2687 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2688 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2689 break; 2690 } 2691 case ISD::SCALAR_TO_VECTOR: { 2692 // We know about scalar_to_vector as much as we know about it source, 2693 // which becomes the first element of otherwise unknown vector. 2694 if (DemandedElts != 1) 2695 break; 2696 2697 SDValue N0 = Op.getOperand(0); 2698 Known = computeKnownBits(N0, Depth + 1); 2699 if (N0.getValueSizeInBits() != BitWidth) 2700 Known = Known.trunc(BitWidth); 2701 2702 break; 2703 } 2704 case ISD::BITCAST: { 2705 SDValue N0 = Op.getOperand(0); 2706 EVT SubVT = N0.getValueType(); 2707 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2708 2709 // Ignore bitcasts from unsupported types. 2710 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2711 break; 2712 2713 // Fast handling of 'identity' bitcasts. 2714 if (BitWidth == SubBitWidth) { 2715 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2716 break; 2717 } 2718 2719 bool IsLE = getDataLayout().isLittleEndian(); 2720 2721 // Bitcast 'small element' vector to 'large element' scalar/vector. 2722 if ((BitWidth % SubBitWidth) == 0) { 2723 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2724 2725 // Collect known bits for the (larger) output by collecting the known 2726 // bits from each set of sub elements and shift these into place. 2727 // We need to separately call computeKnownBits for each set of 2728 // sub elements as the knownbits for each is likely to be different. 2729 unsigned SubScale = BitWidth / SubBitWidth; 2730 APInt SubDemandedElts(NumElts * SubScale, 0); 2731 for (unsigned i = 0; i != NumElts; ++i) 2732 if (DemandedElts[i]) 2733 SubDemandedElts.setBit(i * SubScale); 2734 2735 for (unsigned i = 0; i != SubScale; ++i) { 2736 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2737 Depth + 1); 2738 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2739 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2740 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2741 } 2742 } 2743 2744 // Bitcast 'large element' scalar/vector to 'small element' vector. 2745 if ((SubBitWidth % BitWidth) == 0) { 2746 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2747 2748 // Collect known bits for the (smaller) output by collecting the known 2749 // bits from the overlapping larger input elements and extracting the 2750 // sub sections we actually care about. 2751 unsigned SubScale = SubBitWidth / BitWidth; 2752 APInt SubDemandedElts(NumElts / SubScale, 0); 2753 for (unsigned i = 0; i != NumElts; ++i) 2754 if (DemandedElts[i]) 2755 SubDemandedElts.setBit(i / SubScale); 2756 2757 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2758 2759 Known.Zero.setAllBits(); Known.One.setAllBits(); 2760 for (unsigned i = 0; i != NumElts; ++i) 2761 if (DemandedElts[i]) { 2762 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2763 unsigned Offset = (Shifts % SubScale) * BitWidth; 2764 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2765 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2766 // If we don't know any bits, early out. 2767 if (Known.isUnknown()) 2768 break; 2769 } 2770 } 2771 break; 2772 } 2773 case ISD::AND: 2774 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2775 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2776 2777 Known &= Known2; 2778 break; 2779 case ISD::OR: 2780 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2781 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2782 2783 Known |= Known2; 2784 break; 2785 case ISD::XOR: 2786 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2787 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2788 2789 Known ^= Known2; 2790 break; 2791 case ISD::MUL: { 2792 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2793 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2794 2795 // If low bits are zero in either operand, output low known-0 bits. 2796 // Also compute a conservative estimate for high known-0 bits. 2797 // More trickiness is possible, but this is sufficient for the 2798 // interesting case of alignment computation. 2799 unsigned TrailZ = Known.countMinTrailingZeros() + 2800 Known2.countMinTrailingZeros(); 2801 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2802 Known2.countMinLeadingZeros(), 2803 BitWidth) - BitWidth; 2804 2805 Known.resetAll(); 2806 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2807 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2808 break; 2809 } 2810 case ISD::UDIV: { 2811 // For the purposes of computing leading zeros we can conservatively 2812 // treat a udiv as a logical right shift by the power of 2 known to 2813 // be less than the denominator. 2814 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2815 unsigned LeadZ = Known2.countMinLeadingZeros(); 2816 2817 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2818 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2819 if (RHSMaxLeadingZeros != BitWidth) 2820 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2821 2822 Known.Zero.setHighBits(LeadZ); 2823 break; 2824 } 2825 case ISD::SELECT: 2826 case ISD::VSELECT: 2827 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2828 // If we don't know any bits, early out. 2829 if (Known.isUnknown()) 2830 break; 2831 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2832 2833 // Only known if known in both the LHS and RHS. 2834 Known.One &= Known2.One; 2835 Known.Zero &= Known2.Zero; 2836 break; 2837 case ISD::SELECT_CC: 2838 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2839 // If we don't know any bits, early out. 2840 if (Known.isUnknown()) 2841 break; 2842 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2843 2844 // Only known if known in both the LHS and RHS. 2845 Known.One &= Known2.One; 2846 Known.Zero &= Known2.Zero; 2847 break; 2848 case ISD::SMULO: 2849 case ISD::UMULO: 2850 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2851 if (Op.getResNo() != 1) 2852 break; 2853 // The boolean result conforms to getBooleanContents. 2854 // If we know the result of a setcc has the top bits zero, use this info. 2855 // We know that we have an integer-based boolean since these operations 2856 // are only available for integer. 2857 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2858 TargetLowering::ZeroOrOneBooleanContent && 2859 BitWidth > 1) 2860 Known.Zero.setBitsFrom(1); 2861 break; 2862 case ISD::SETCC: 2863 case ISD::STRICT_FSETCC: 2864 case ISD::STRICT_FSETCCS: { 2865 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2866 // If we know the result of a setcc has the top bits zero, use this info. 2867 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2868 TargetLowering::ZeroOrOneBooleanContent && 2869 BitWidth > 1) 2870 Known.Zero.setBitsFrom(1); 2871 break; 2872 } 2873 case ISD::SHL: 2874 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2875 2876 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2877 unsigned Shift = ShAmt->getZExtValue(); 2878 Known.Zero <<= Shift; 2879 Known.One <<= Shift; 2880 // Low bits are known zero. 2881 Known.Zero.setLowBits(Shift); 2882 break; 2883 } 2884 2885 // No matter the shift amount, the trailing zeros will stay zero. 2886 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2887 Known.One.clearAllBits(); 2888 2889 // Minimum shift low bits are known zero. 2890 if (const APInt *ShMinAmt = 2891 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2892 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2893 break; 2894 case ISD::SRL: 2895 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2896 2897 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2898 unsigned Shift = ShAmt->getZExtValue(); 2899 Known.Zero.lshrInPlace(Shift); 2900 Known.One.lshrInPlace(Shift); 2901 // High bits are known zero. 2902 Known.Zero.setHighBits(Shift); 2903 break; 2904 } 2905 2906 // No matter the shift amount, the leading zeros will stay zero. 2907 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2908 Known.One.clearAllBits(); 2909 2910 // Minimum shift high bits are known zero. 2911 if (const APInt *ShMinAmt = 2912 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2913 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2914 break; 2915 case ISD::SRA: 2916 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2917 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2918 unsigned Shift = ShAmt->getZExtValue(); 2919 // Sign extend known zero/one bit (else is unknown). 2920 Known.Zero.ashrInPlace(Shift); 2921 Known.One.ashrInPlace(Shift); 2922 } 2923 break; 2924 case ISD::FSHL: 2925 case ISD::FSHR: 2926 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2927 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2928 2929 // For fshl, 0-shift returns the 1st arg. 2930 // For fshr, 0-shift returns the 2nd arg. 2931 if (Amt == 0) { 2932 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2933 DemandedElts, Depth + 1); 2934 break; 2935 } 2936 2937 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2938 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2939 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2940 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2941 if (Opcode == ISD::FSHL) { 2942 Known.One <<= Amt; 2943 Known.Zero <<= Amt; 2944 Known2.One.lshrInPlace(BitWidth - Amt); 2945 Known2.Zero.lshrInPlace(BitWidth - Amt); 2946 } else { 2947 Known.One <<= BitWidth - Amt; 2948 Known.Zero <<= BitWidth - Amt; 2949 Known2.One.lshrInPlace(Amt); 2950 Known2.Zero.lshrInPlace(Amt); 2951 } 2952 Known.One |= Known2.One; 2953 Known.Zero |= Known2.Zero; 2954 } 2955 break; 2956 case ISD::SIGN_EXTEND_INREG: { 2957 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2958 unsigned EBits = EVT.getScalarSizeInBits(); 2959 2960 // Sign extension. Compute the demanded bits in the result that are not 2961 // present in the input. 2962 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2963 2964 APInt InSignMask = APInt::getSignMask(EBits); 2965 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2966 2967 // If the sign extended bits are demanded, we know that the sign 2968 // bit is demanded. 2969 InSignMask = InSignMask.zext(BitWidth); 2970 if (NewBits.getBoolValue()) 2971 InputDemandedBits |= InSignMask; 2972 2973 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2974 Known.One &= InputDemandedBits; 2975 Known.Zero &= InputDemandedBits; 2976 2977 // If the sign bit of the input is known set or clear, then we know the 2978 // top bits of the result. 2979 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2980 Known.Zero |= NewBits; 2981 Known.One &= ~NewBits; 2982 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2983 Known.One |= NewBits; 2984 Known.Zero &= ~NewBits; 2985 } else { // Input sign bit unknown 2986 Known.Zero &= ~NewBits; 2987 Known.One &= ~NewBits; 2988 } 2989 break; 2990 } 2991 case ISD::CTTZ: 2992 case ISD::CTTZ_ZERO_UNDEF: { 2993 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2994 // If we have a known 1, its position is our upper bound. 2995 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2996 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2997 Known.Zero.setBitsFrom(LowBits); 2998 break; 2999 } 3000 case ISD::CTLZ: 3001 case ISD::CTLZ_ZERO_UNDEF: { 3002 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3003 // If we have a known 1, its position is our upper bound. 3004 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3005 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3006 Known.Zero.setBitsFrom(LowBits); 3007 break; 3008 } 3009 case ISD::CTPOP: { 3010 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3011 // If we know some of the bits are zero, they can't be one. 3012 unsigned PossibleOnes = Known2.countMaxPopulation(); 3013 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3014 break; 3015 } 3016 case ISD::LOAD: { 3017 LoadSDNode *LD = cast<LoadSDNode>(Op); 3018 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3019 if (ISD::isNON_EXTLoad(LD) && Cst) { 3020 // Determine any common known bits from the loaded constant pool value. 3021 Type *CstTy = Cst->getType(); 3022 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3023 // If its a vector splat, then we can (quickly) reuse the scalar path. 3024 // NOTE: We assume all elements match and none are UNDEF. 3025 if (CstTy->isVectorTy()) { 3026 if (const Constant *Splat = Cst->getSplatValue()) { 3027 Cst = Splat; 3028 CstTy = Cst->getType(); 3029 } 3030 } 3031 // TODO - do we need to handle different bitwidths? 3032 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3033 // Iterate across all vector elements finding common known bits. 3034 Known.One.setAllBits(); 3035 Known.Zero.setAllBits(); 3036 for (unsigned i = 0; i != NumElts; ++i) { 3037 if (!DemandedElts[i]) 3038 continue; 3039 if (Constant *Elt = Cst->getAggregateElement(i)) { 3040 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3041 const APInt &Value = CInt->getValue(); 3042 Known.One &= Value; 3043 Known.Zero &= ~Value; 3044 continue; 3045 } 3046 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3047 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3048 Known.One &= Value; 3049 Known.Zero &= ~Value; 3050 continue; 3051 } 3052 } 3053 Known.One.clearAllBits(); 3054 Known.Zero.clearAllBits(); 3055 break; 3056 } 3057 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3058 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3059 const APInt &Value = CInt->getValue(); 3060 Known.One = Value; 3061 Known.Zero = ~Value; 3062 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3063 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3064 Known.One = Value; 3065 Known.Zero = ~Value; 3066 } 3067 } 3068 } 3069 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3070 // If this is a ZEXTLoad and we are looking at the loaded value. 3071 EVT VT = LD->getMemoryVT(); 3072 unsigned MemBits = VT.getScalarSizeInBits(); 3073 Known.Zero.setBitsFrom(MemBits); 3074 } else if (const MDNode *Ranges = LD->getRanges()) { 3075 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3076 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3077 } 3078 break; 3079 } 3080 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3081 EVT InVT = Op.getOperand(0).getValueType(); 3082 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3083 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3084 Known = Known.zext(BitWidth); 3085 break; 3086 } 3087 case ISD::ZERO_EXTEND: { 3088 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3089 Known = Known.zext(BitWidth); 3090 break; 3091 } 3092 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3093 EVT InVT = Op.getOperand(0).getValueType(); 3094 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3095 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3096 // If the sign bit is known to be zero or one, then sext will extend 3097 // it to the top bits, else it will just zext. 3098 Known = Known.sext(BitWidth); 3099 break; 3100 } 3101 case ISD::SIGN_EXTEND: { 3102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3103 // If the sign bit is known to be zero or one, then sext will extend 3104 // it to the top bits, else it will just zext. 3105 Known = Known.sext(BitWidth); 3106 break; 3107 } 3108 case ISD::ANY_EXTEND_VECTOR_INREG: { 3109 EVT InVT = Op.getOperand(0).getValueType(); 3110 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3111 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3112 Known = Known.anyext(BitWidth); 3113 break; 3114 } 3115 case ISD::ANY_EXTEND: { 3116 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3117 Known = Known.anyext(BitWidth); 3118 break; 3119 } 3120 case ISD::TRUNCATE: { 3121 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3122 Known = Known.trunc(BitWidth); 3123 break; 3124 } 3125 case ISD::AssertZext: { 3126 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3127 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3128 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3129 Known.Zero |= (~InMask); 3130 Known.One &= (~Known.Zero); 3131 break; 3132 } 3133 case ISD::FGETSIGN: 3134 // All bits are zero except the low bit. 3135 Known.Zero.setBitsFrom(1); 3136 break; 3137 case ISD::USUBO: 3138 case ISD::SSUBO: 3139 if (Op.getResNo() == 1) { 3140 // If we know the result of a setcc has the top bits zero, use this info. 3141 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3142 TargetLowering::ZeroOrOneBooleanContent && 3143 BitWidth > 1) 3144 Known.Zero.setBitsFrom(1); 3145 break; 3146 } 3147 LLVM_FALLTHROUGH; 3148 case ISD::SUB: 3149 case ISD::SUBC: { 3150 assert(Op.getResNo() == 0 && 3151 "We only compute knownbits for the difference here."); 3152 3153 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3155 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3156 Known, Known2); 3157 break; 3158 } 3159 case ISD::UADDO: 3160 case ISD::SADDO: 3161 case ISD::ADDCARRY: 3162 if (Op.getResNo() == 1) { 3163 // If we know the result of a setcc has the top bits zero, use this info. 3164 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3165 TargetLowering::ZeroOrOneBooleanContent && 3166 BitWidth > 1) 3167 Known.Zero.setBitsFrom(1); 3168 break; 3169 } 3170 LLVM_FALLTHROUGH; 3171 case ISD::ADD: 3172 case ISD::ADDC: 3173 case ISD::ADDE: { 3174 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3175 3176 // With ADDE and ADDCARRY, a carry bit may be added in. 3177 KnownBits Carry(1); 3178 if (Opcode == ISD::ADDE) 3179 // Can't track carry from glue, set carry to unknown. 3180 Carry.resetAll(); 3181 else if (Opcode == ISD::ADDCARRY) 3182 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3183 // the trouble (how often will we find a known carry bit). And I haven't 3184 // tested this very much yet, but something like this might work: 3185 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3186 // Carry = Carry.zextOrTrunc(1, false); 3187 Carry.resetAll(); 3188 else 3189 Carry.setAllZero(); 3190 3191 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3192 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3193 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3194 break; 3195 } 3196 case ISD::SREM: 3197 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3198 const APInt &RA = Rem->getAPIntValue().abs(); 3199 if (RA.isPowerOf2()) { 3200 APInt LowBits = RA - 1; 3201 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3202 3203 // The low bits of the first operand are unchanged by the srem. 3204 Known.Zero = Known2.Zero & LowBits; 3205 Known.One = Known2.One & LowBits; 3206 3207 // If the first operand is non-negative or has all low bits zero, then 3208 // the upper bits are all zero. 3209 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3210 Known.Zero |= ~LowBits; 3211 3212 // If the first operand is negative and not all low bits are zero, then 3213 // the upper bits are all one. 3214 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3215 Known.One |= ~LowBits; 3216 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3217 } 3218 } 3219 break; 3220 case ISD::UREM: { 3221 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3222 const APInt &RA = Rem->getAPIntValue(); 3223 if (RA.isPowerOf2()) { 3224 APInt LowBits = (RA - 1); 3225 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3226 3227 // The upper bits are all zero, the lower ones are unchanged. 3228 Known.Zero = Known2.Zero | ~LowBits; 3229 Known.One = Known2.One & LowBits; 3230 break; 3231 } 3232 } 3233 3234 // Since the result is less than or equal to either operand, any leading 3235 // zero bits in either operand must also exist in the result. 3236 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3237 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3238 3239 uint32_t Leaders = 3240 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3241 Known.resetAll(); 3242 Known.Zero.setHighBits(Leaders); 3243 break; 3244 } 3245 case ISD::EXTRACT_ELEMENT: { 3246 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3247 const unsigned Index = Op.getConstantOperandVal(1); 3248 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3249 3250 // Remove low part of known bits mask 3251 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3252 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3253 3254 // Remove high part of known bit mask 3255 Known = Known.trunc(EltBitWidth); 3256 break; 3257 } 3258 case ISD::EXTRACT_VECTOR_ELT: { 3259 SDValue InVec = Op.getOperand(0); 3260 SDValue EltNo = Op.getOperand(1); 3261 EVT VecVT = InVec.getValueType(); 3262 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3263 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3264 3265 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3266 // anything about the extended bits. 3267 if (BitWidth > EltBitWidth) 3268 Known = Known.trunc(EltBitWidth); 3269 3270 // If we know the element index, just demand that vector element, else for 3271 // an unknown element index, ignore DemandedElts and demand them all. 3272 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3273 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3274 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3275 DemandedSrcElts = 3276 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3277 3278 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3279 if (BitWidth > EltBitWidth) 3280 Known = Known.anyext(BitWidth); 3281 break; 3282 } 3283 case ISD::INSERT_VECTOR_ELT: { 3284 // If we know the element index, split the demand between the 3285 // source vector and the inserted element, otherwise assume we need 3286 // the original demanded vector elements and the value. 3287 SDValue InVec = Op.getOperand(0); 3288 SDValue InVal = Op.getOperand(1); 3289 SDValue EltNo = Op.getOperand(2); 3290 bool DemandedVal = true; 3291 APInt DemandedVecElts = DemandedElts; 3292 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3293 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3294 unsigned EltIdx = CEltNo->getZExtValue(); 3295 DemandedVal = !!DemandedElts[EltIdx]; 3296 DemandedVecElts.clearBit(EltIdx); 3297 } 3298 Known.One.setAllBits(); 3299 Known.Zero.setAllBits(); 3300 if (DemandedVal) { 3301 Known2 = computeKnownBits(InVal, Depth + 1); 3302 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3303 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3304 } 3305 if (!!DemandedVecElts) { 3306 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3307 Known.One &= Known2.One; 3308 Known.Zero &= Known2.Zero; 3309 } 3310 break; 3311 } 3312 case ISD::BITREVERSE: { 3313 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3314 Known.Zero = Known2.Zero.reverseBits(); 3315 Known.One = Known2.One.reverseBits(); 3316 break; 3317 } 3318 case ISD::BSWAP: { 3319 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3320 Known.Zero = Known2.Zero.byteSwap(); 3321 Known.One = Known2.One.byteSwap(); 3322 break; 3323 } 3324 case ISD::ABS: { 3325 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3326 3327 // If the source's MSB is zero then we know the rest of the bits already. 3328 if (Known2.isNonNegative()) { 3329 Known.Zero = Known2.Zero; 3330 Known.One = Known2.One; 3331 break; 3332 } 3333 3334 // We only know that the absolute values's MSB will be zero iff there is 3335 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3336 Known2.One.clearSignBit(); 3337 if (Known2.One.getBoolValue()) { 3338 Known.Zero = APInt::getSignMask(BitWidth); 3339 break; 3340 } 3341 break; 3342 } 3343 case ISD::UMIN: { 3344 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3345 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3346 3347 // UMIN - we know that the result will have the maximum of the 3348 // known zero leading bits of the inputs. 3349 unsigned LeadZero = Known.countMinLeadingZeros(); 3350 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3351 3352 Known.Zero &= Known2.Zero; 3353 Known.One &= Known2.One; 3354 Known.Zero.setHighBits(LeadZero); 3355 break; 3356 } 3357 case ISD::UMAX: { 3358 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3359 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3360 3361 // UMAX - we know that the result will have the maximum of the 3362 // known one leading bits of the inputs. 3363 unsigned LeadOne = Known.countMinLeadingOnes(); 3364 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3365 3366 Known.Zero &= Known2.Zero; 3367 Known.One &= Known2.One; 3368 Known.One.setHighBits(LeadOne); 3369 break; 3370 } 3371 case ISD::SMIN: 3372 case ISD::SMAX: { 3373 // If we have a clamp pattern, we know that the number of sign bits will be 3374 // the minimum of the clamp min/max range. 3375 bool IsMax = (Opcode == ISD::SMAX); 3376 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3377 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3378 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3379 CstHigh = 3380 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3381 if (CstLow && CstHigh) { 3382 if (!IsMax) 3383 std::swap(CstLow, CstHigh); 3384 3385 const APInt &ValueLow = CstLow->getAPIntValue(); 3386 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3387 if (ValueLow.sle(ValueHigh)) { 3388 unsigned LowSignBits = ValueLow.getNumSignBits(); 3389 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3390 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3391 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3392 Known.One.setHighBits(MinSignBits); 3393 break; 3394 } 3395 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3396 Known.Zero.setHighBits(MinSignBits); 3397 break; 3398 } 3399 } 3400 } 3401 3402 // Fallback - just get the shared known bits of the operands. 3403 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3404 if (Known.isUnknown()) break; // Early-out 3405 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3406 Known.Zero &= Known2.Zero; 3407 Known.One &= Known2.One; 3408 break; 3409 } 3410 case ISD::FrameIndex: 3411 case ISD::TargetFrameIndex: 3412 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3413 break; 3414 3415 default: 3416 if (Opcode < ISD::BUILTIN_OP_END) 3417 break; 3418 LLVM_FALLTHROUGH; 3419 case ISD::INTRINSIC_WO_CHAIN: 3420 case ISD::INTRINSIC_W_CHAIN: 3421 case ISD::INTRINSIC_VOID: 3422 // Allow the target to implement this method for its nodes. 3423 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3424 break; 3425 } 3426 3427 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3428 return Known; 3429 } 3430 3431 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3432 SDValue N1) const { 3433 // X + 0 never overflow 3434 if (isNullConstant(N1)) 3435 return OFK_Never; 3436 3437 KnownBits N1Known = computeKnownBits(N1); 3438 if (N1Known.Zero.getBoolValue()) { 3439 KnownBits N0Known = computeKnownBits(N0); 3440 3441 bool overflow; 3442 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3443 if (!overflow) 3444 return OFK_Never; 3445 } 3446 3447 // mulhi + 1 never overflow 3448 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3449 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3450 return OFK_Never; 3451 3452 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3453 KnownBits N0Known = computeKnownBits(N0); 3454 3455 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3456 return OFK_Never; 3457 } 3458 3459 return OFK_Sometime; 3460 } 3461 3462 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3463 EVT OpVT = Val.getValueType(); 3464 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3465 3466 // Is the constant a known power of 2? 3467 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3468 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3469 3470 // A left-shift of a constant one will have exactly one bit set because 3471 // shifting the bit off the end is undefined. 3472 if (Val.getOpcode() == ISD::SHL) { 3473 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3474 if (C && C->getAPIntValue() == 1) 3475 return true; 3476 } 3477 3478 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3479 // one bit set. 3480 if (Val.getOpcode() == ISD::SRL) { 3481 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3482 if (C && C->getAPIntValue().isSignMask()) 3483 return true; 3484 } 3485 3486 // Are all operands of a build vector constant powers of two? 3487 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3488 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3489 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3490 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3491 return false; 3492 })) 3493 return true; 3494 3495 // More could be done here, though the above checks are enough 3496 // to handle some common cases. 3497 3498 // Fall back to computeKnownBits to catch other known cases. 3499 KnownBits Known = computeKnownBits(Val); 3500 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3501 } 3502 3503 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3504 EVT VT = Op.getValueType(); 3505 APInt DemandedElts = VT.isVector() 3506 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3507 : APInt(1, 1); 3508 return ComputeNumSignBits(Op, DemandedElts, Depth); 3509 } 3510 3511 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3512 unsigned Depth) const { 3513 EVT VT = Op.getValueType(); 3514 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3515 unsigned VTBits = VT.getScalarSizeInBits(); 3516 unsigned NumElts = DemandedElts.getBitWidth(); 3517 unsigned Tmp, Tmp2; 3518 unsigned FirstAnswer = 1; 3519 3520 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3521 const APInt &Val = C->getAPIntValue(); 3522 return Val.getNumSignBits(); 3523 } 3524 3525 if (Depth >= MaxRecursionDepth) 3526 return 1; // Limit search depth. 3527 3528 if (!DemandedElts) 3529 return 1; // No demanded elts, better to assume we don't know anything. 3530 3531 unsigned Opcode = Op.getOpcode(); 3532 switch (Opcode) { 3533 default: break; 3534 case ISD::AssertSext: 3535 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3536 return VTBits-Tmp+1; 3537 case ISD::AssertZext: 3538 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3539 return VTBits-Tmp; 3540 3541 case ISD::BUILD_VECTOR: 3542 Tmp = VTBits; 3543 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3544 if (!DemandedElts[i]) 3545 continue; 3546 3547 SDValue SrcOp = Op.getOperand(i); 3548 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3549 3550 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3551 if (SrcOp.getValueSizeInBits() != VTBits) { 3552 assert(SrcOp.getValueSizeInBits() > VTBits && 3553 "Expected BUILD_VECTOR implicit truncation"); 3554 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3555 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3556 } 3557 Tmp = std::min(Tmp, Tmp2); 3558 } 3559 return Tmp; 3560 3561 case ISD::VECTOR_SHUFFLE: { 3562 // Collect the minimum number of sign bits that are shared by every vector 3563 // element referenced by the shuffle. 3564 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3565 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3566 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3567 for (unsigned i = 0; i != NumElts; ++i) { 3568 int M = SVN->getMaskElt(i); 3569 if (!DemandedElts[i]) 3570 continue; 3571 // For UNDEF elements, we don't know anything about the common state of 3572 // the shuffle result. 3573 if (M < 0) 3574 return 1; 3575 if ((unsigned)M < NumElts) 3576 DemandedLHS.setBit((unsigned)M % NumElts); 3577 else 3578 DemandedRHS.setBit((unsigned)M % NumElts); 3579 } 3580 Tmp = std::numeric_limits<unsigned>::max(); 3581 if (!!DemandedLHS) 3582 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3583 if (!!DemandedRHS) { 3584 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3585 Tmp = std::min(Tmp, Tmp2); 3586 } 3587 // If we don't know anything, early out and try computeKnownBits fall-back. 3588 if (Tmp == 1) 3589 break; 3590 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3591 return Tmp; 3592 } 3593 3594 case ISD::BITCAST: { 3595 SDValue N0 = Op.getOperand(0); 3596 EVT SrcVT = N0.getValueType(); 3597 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3598 3599 // Ignore bitcasts from unsupported types.. 3600 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3601 break; 3602 3603 // Fast handling of 'identity' bitcasts. 3604 if (VTBits == SrcBits) 3605 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3606 3607 bool IsLE = getDataLayout().isLittleEndian(); 3608 3609 // Bitcast 'large element' scalar/vector to 'small element' vector. 3610 if ((SrcBits % VTBits) == 0) { 3611 assert(VT.isVector() && "Expected bitcast to vector"); 3612 3613 unsigned Scale = SrcBits / VTBits; 3614 APInt SrcDemandedElts(NumElts / Scale, 0); 3615 for (unsigned i = 0; i != NumElts; ++i) 3616 if (DemandedElts[i]) 3617 SrcDemandedElts.setBit(i / Scale); 3618 3619 // Fast case - sign splat can be simply split across the small elements. 3620 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3621 if (Tmp == SrcBits) 3622 return VTBits; 3623 3624 // Slow case - determine how far the sign extends into each sub-element. 3625 Tmp2 = VTBits; 3626 for (unsigned i = 0; i != NumElts; ++i) 3627 if (DemandedElts[i]) { 3628 unsigned SubOffset = i % Scale; 3629 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3630 SubOffset = SubOffset * VTBits; 3631 if (Tmp <= SubOffset) 3632 return 1; 3633 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3634 } 3635 return Tmp2; 3636 } 3637 break; 3638 } 3639 3640 case ISD::SIGN_EXTEND: 3641 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3642 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3643 case ISD::SIGN_EXTEND_INREG: 3644 // Max of the input and what this extends. 3645 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3646 Tmp = VTBits-Tmp+1; 3647 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3648 return std::max(Tmp, Tmp2); 3649 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3650 SDValue Src = Op.getOperand(0); 3651 EVT SrcVT = Src.getValueType(); 3652 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3653 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3654 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3655 } 3656 case ISD::SRA: 3657 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3658 // SRA X, C -> adds C sign bits. 3659 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3660 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3661 else if (const APInt *ShAmt = 3662 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3663 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3664 return Tmp; 3665 case ISD::SHL: 3666 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3667 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3668 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3669 if (ShAmt->ult(Tmp)) 3670 return Tmp - ShAmt->getZExtValue(); 3671 } else if (const APInt *ShAmt = 3672 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3673 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3674 if (ShAmt->ult(Tmp)) 3675 return Tmp - ShAmt->getZExtValue(); 3676 } 3677 break; 3678 case ISD::AND: 3679 case ISD::OR: 3680 case ISD::XOR: // NOT is handled here. 3681 // Logical binary ops preserve the number of sign bits at the worst. 3682 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3683 if (Tmp != 1) { 3684 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3685 FirstAnswer = std::min(Tmp, Tmp2); 3686 // We computed what we know about the sign bits as our first 3687 // answer. Now proceed to the generic code that uses 3688 // computeKnownBits, and pick whichever answer is better. 3689 } 3690 break; 3691 3692 case ISD::SELECT: 3693 case ISD::VSELECT: 3694 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3695 if (Tmp == 1) return 1; // Early out. 3696 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3697 return std::min(Tmp, Tmp2); 3698 case ISD::SELECT_CC: 3699 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3700 if (Tmp == 1) return 1; // Early out. 3701 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3702 return std::min(Tmp, Tmp2); 3703 3704 case ISD::SMIN: 3705 case ISD::SMAX: { 3706 // If we have a clamp pattern, we know that the number of sign bits will be 3707 // the minimum of the clamp min/max range. 3708 bool IsMax = (Opcode == ISD::SMAX); 3709 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3710 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3711 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3712 CstHigh = 3713 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3714 if (CstLow && CstHigh) { 3715 if (!IsMax) 3716 std::swap(CstLow, CstHigh); 3717 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3718 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3719 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3720 return std::min(Tmp, Tmp2); 3721 } 3722 } 3723 3724 // Fallback - just get the minimum number of sign bits of the operands. 3725 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3726 if (Tmp == 1) 3727 return 1; // Early out. 3728 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3729 return std::min(Tmp, Tmp2); 3730 } 3731 case ISD::UMIN: 3732 case ISD::UMAX: 3733 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3734 if (Tmp == 1) 3735 return 1; // Early out. 3736 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3737 return std::min(Tmp, Tmp2); 3738 case ISD::SADDO: 3739 case ISD::UADDO: 3740 case ISD::SSUBO: 3741 case ISD::USUBO: 3742 case ISD::SMULO: 3743 case ISD::UMULO: 3744 if (Op.getResNo() != 1) 3745 break; 3746 // The boolean result conforms to getBooleanContents. Fall through. 3747 // If setcc returns 0/-1, all bits are sign bits. 3748 // We know that we have an integer-based boolean since these operations 3749 // are only available for integer. 3750 if (TLI->getBooleanContents(VT.isVector(), false) == 3751 TargetLowering::ZeroOrNegativeOneBooleanContent) 3752 return VTBits; 3753 break; 3754 case ISD::SETCC: 3755 case ISD::STRICT_FSETCC: 3756 case ISD::STRICT_FSETCCS: { 3757 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3758 // If setcc returns 0/-1, all bits are sign bits. 3759 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3760 TargetLowering::ZeroOrNegativeOneBooleanContent) 3761 return VTBits; 3762 break; 3763 } 3764 case ISD::ROTL: 3765 case ISD::ROTR: 3766 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3767 3768 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3769 if (Tmp == VTBits) 3770 return VTBits; 3771 3772 if (ConstantSDNode *C = 3773 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3774 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3775 3776 // Handle rotate right by N like a rotate left by 32-N. 3777 if (Opcode == ISD::ROTR) 3778 RotAmt = (VTBits - RotAmt) % VTBits; 3779 3780 // If we aren't rotating out all of the known-in sign bits, return the 3781 // number that are left. This handles rotl(sext(x), 1) for example. 3782 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3783 } 3784 break; 3785 case ISD::ADD: 3786 case ISD::ADDC: 3787 // Add can have at most one carry bit. Thus we know that the output 3788 // is, at worst, one more bit than the inputs. 3789 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3790 if (Tmp == 1) return 1; // Early out. 3791 3792 // Special case decrementing a value (ADD X, -1): 3793 if (ConstantSDNode *CRHS = 3794 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3795 if (CRHS->isAllOnesValue()) { 3796 KnownBits Known = 3797 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3798 3799 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3800 // sign bits set. 3801 if ((Known.Zero | 1).isAllOnesValue()) 3802 return VTBits; 3803 3804 // If we are subtracting one from a positive number, there is no carry 3805 // out of the result. 3806 if (Known.isNonNegative()) 3807 return Tmp; 3808 } 3809 3810 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3811 if (Tmp2 == 1) return 1; // Early out. 3812 return std::min(Tmp, Tmp2) - 1; 3813 case ISD::SUB: 3814 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3815 if (Tmp2 == 1) return 1; // Early out. 3816 3817 // Handle NEG. 3818 if (ConstantSDNode *CLHS = 3819 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3820 if (CLHS->isNullValue()) { 3821 KnownBits Known = 3822 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3823 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3824 // sign bits set. 3825 if ((Known.Zero | 1).isAllOnesValue()) 3826 return VTBits; 3827 3828 // If the input is known to be positive (the sign bit is known clear), 3829 // the output of the NEG has the same number of sign bits as the input. 3830 if (Known.isNonNegative()) 3831 return Tmp2; 3832 3833 // Otherwise, we treat this like a SUB. 3834 } 3835 3836 // Sub can have at most one carry bit. Thus we know that the output 3837 // is, at worst, one more bit than the inputs. 3838 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3839 if (Tmp == 1) return 1; // Early out. 3840 return std::min(Tmp, Tmp2) - 1; 3841 case ISD::MUL: { 3842 // The output of the Mul can be at most twice the valid bits in the inputs. 3843 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3844 if (SignBitsOp0 == 1) 3845 break; 3846 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3847 if (SignBitsOp1 == 1) 3848 break; 3849 unsigned OutValidBits = 3850 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3851 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3852 } 3853 case ISD::TRUNCATE: { 3854 // Check if the sign bits of source go down as far as the truncated value. 3855 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3856 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3857 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3858 return NumSrcSignBits - (NumSrcBits - VTBits); 3859 break; 3860 } 3861 case ISD::EXTRACT_ELEMENT: { 3862 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3863 const int BitWidth = Op.getValueSizeInBits(); 3864 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3865 3866 // Get reverse index (starting from 1), Op1 value indexes elements from 3867 // little end. Sign starts at big end. 3868 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3869 3870 // If the sign portion ends in our element the subtraction gives correct 3871 // result. Otherwise it gives either negative or > bitwidth result 3872 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3873 } 3874 case ISD::INSERT_VECTOR_ELT: { 3875 // If we know the element index, split the demand between the 3876 // source vector and the inserted element, otherwise assume we need 3877 // the original demanded vector elements and the value. 3878 SDValue InVec = Op.getOperand(0); 3879 SDValue InVal = Op.getOperand(1); 3880 SDValue EltNo = Op.getOperand(2); 3881 bool DemandedVal = true; 3882 APInt DemandedVecElts = DemandedElts; 3883 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3884 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3885 unsigned EltIdx = CEltNo->getZExtValue(); 3886 DemandedVal = !!DemandedElts[EltIdx]; 3887 DemandedVecElts.clearBit(EltIdx); 3888 } 3889 Tmp = std::numeric_limits<unsigned>::max(); 3890 if (DemandedVal) { 3891 // TODO - handle implicit truncation of inserted elements. 3892 if (InVal.getScalarValueSizeInBits() != VTBits) 3893 break; 3894 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3895 Tmp = std::min(Tmp, Tmp2); 3896 } 3897 if (!!DemandedVecElts) { 3898 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3899 Tmp = std::min(Tmp, Tmp2); 3900 } 3901 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3902 return Tmp; 3903 } 3904 case ISD::EXTRACT_VECTOR_ELT: { 3905 SDValue InVec = Op.getOperand(0); 3906 SDValue EltNo = Op.getOperand(1); 3907 EVT VecVT = InVec.getValueType(); 3908 const unsigned BitWidth = Op.getValueSizeInBits(); 3909 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3910 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3911 3912 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3913 // anything about sign bits. But if the sizes match we can derive knowledge 3914 // about sign bits from the vector operand. 3915 if (BitWidth != EltBitWidth) 3916 break; 3917 3918 // If we know the element index, just demand that vector element, else for 3919 // an unknown element index, ignore DemandedElts and demand them all. 3920 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3921 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3922 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3923 DemandedSrcElts = 3924 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3925 3926 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3927 } 3928 case ISD::EXTRACT_SUBVECTOR: { 3929 // Offset the demanded elts by the subvector index. 3930 SDValue Src = Op.getOperand(0); 3931 uint64_t Idx = Op.getConstantOperandVal(1); 3932 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3933 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3934 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3935 } 3936 case ISD::CONCAT_VECTORS: { 3937 // Determine the minimum number of sign bits across all demanded 3938 // elts of the input vectors. Early out if the result is already 1. 3939 Tmp = std::numeric_limits<unsigned>::max(); 3940 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3941 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3942 unsigned NumSubVectors = Op.getNumOperands(); 3943 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3944 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3945 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3946 if (!DemandedSub) 3947 continue; 3948 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3949 Tmp = std::min(Tmp, Tmp2); 3950 } 3951 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3952 return Tmp; 3953 } 3954 case ISD::INSERT_SUBVECTOR: { 3955 // Demand any elements from the subvector and the remainder from the src its 3956 // inserted into. 3957 SDValue Src = Op.getOperand(0); 3958 SDValue Sub = Op.getOperand(1); 3959 uint64_t Idx = Op.getConstantOperandVal(2); 3960 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3961 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3962 APInt DemandedSrcElts = DemandedElts; 3963 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3964 3965 Tmp = std::numeric_limits<unsigned>::max(); 3966 if (!!DemandedSubElts) { 3967 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3968 if (Tmp == 1) 3969 return 1; // early-out 3970 } 3971 if (!!DemandedSrcElts) { 3972 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3973 Tmp = std::min(Tmp, Tmp2); 3974 } 3975 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3976 return Tmp; 3977 } 3978 } 3979 3980 // If we are looking at the loaded value of the SDNode. 3981 if (Op.getResNo() == 0) { 3982 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3983 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3984 unsigned ExtType = LD->getExtensionType(); 3985 switch (ExtType) { 3986 default: break; 3987 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3988 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3989 return VTBits - Tmp + 1; 3990 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3991 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3992 return VTBits - Tmp; 3993 case ISD::NON_EXTLOAD: 3994 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3995 // We only need to handle vectors - computeKnownBits should handle 3996 // scalar cases. 3997 Type *CstTy = Cst->getType(); 3998 if (CstTy->isVectorTy() && 3999 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4000 Tmp = VTBits; 4001 for (unsigned i = 0; i != NumElts; ++i) { 4002 if (!DemandedElts[i]) 4003 continue; 4004 if (Constant *Elt = Cst->getAggregateElement(i)) { 4005 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4006 const APInt &Value = CInt->getValue(); 4007 Tmp = std::min(Tmp, Value.getNumSignBits()); 4008 continue; 4009 } 4010 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4011 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4012 Tmp = std::min(Tmp, Value.getNumSignBits()); 4013 continue; 4014 } 4015 } 4016 // Unknown type. Conservatively assume no bits match sign bit. 4017 return 1; 4018 } 4019 return Tmp; 4020 } 4021 } 4022 break; 4023 } 4024 } 4025 } 4026 4027 // Allow the target to implement this method for its nodes. 4028 if (Opcode >= ISD::BUILTIN_OP_END || 4029 Opcode == ISD::INTRINSIC_WO_CHAIN || 4030 Opcode == ISD::INTRINSIC_W_CHAIN || 4031 Opcode == ISD::INTRINSIC_VOID) { 4032 unsigned NumBits = 4033 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4034 if (NumBits > 1) 4035 FirstAnswer = std::max(FirstAnswer, NumBits); 4036 } 4037 4038 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4039 // use this information. 4040 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4041 4042 APInt Mask; 4043 if (Known.isNonNegative()) { // sign bit is 0 4044 Mask = Known.Zero; 4045 } else if (Known.isNegative()) { // sign bit is 1; 4046 Mask = Known.One; 4047 } else { 4048 // Nothing known. 4049 return FirstAnswer; 4050 } 4051 4052 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4053 // the number of identical bits in the top of the input value. 4054 Mask <<= Mask.getBitWidth()-VTBits; 4055 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4056 } 4057 4058 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4059 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4060 !isa<ConstantSDNode>(Op.getOperand(1))) 4061 return false; 4062 4063 if (Op.getOpcode() == ISD::OR && 4064 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4065 return false; 4066 4067 return true; 4068 } 4069 4070 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4071 // If we're told that NaNs won't happen, assume they won't. 4072 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4073 return true; 4074 4075 if (Depth >= MaxRecursionDepth) 4076 return false; // Limit search depth. 4077 4078 // TODO: Handle vectors. 4079 // If the value is a constant, we can obviously see if it is a NaN or not. 4080 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4081 return !C->getValueAPF().isNaN() || 4082 (SNaN && !C->getValueAPF().isSignaling()); 4083 } 4084 4085 unsigned Opcode = Op.getOpcode(); 4086 switch (Opcode) { 4087 case ISD::FADD: 4088 case ISD::FSUB: 4089 case ISD::FMUL: 4090 case ISD::FDIV: 4091 case ISD::FREM: 4092 case ISD::FSIN: 4093 case ISD::FCOS: { 4094 if (SNaN) 4095 return true; 4096 // TODO: Need isKnownNeverInfinity 4097 return false; 4098 } 4099 case ISD::FCANONICALIZE: 4100 case ISD::FEXP: 4101 case ISD::FEXP2: 4102 case ISD::FTRUNC: 4103 case ISD::FFLOOR: 4104 case ISD::FCEIL: 4105 case ISD::FROUND: 4106 case ISD::FRINT: 4107 case ISD::FNEARBYINT: { 4108 if (SNaN) 4109 return true; 4110 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4111 } 4112 case ISD::FABS: 4113 case ISD::FNEG: 4114 case ISD::FCOPYSIGN: { 4115 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4116 } 4117 case ISD::SELECT: 4118 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4119 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4120 case ISD::FP_EXTEND: 4121 case ISD::FP_ROUND: { 4122 if (SNaN) 4123 return true; 4124 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4125 } 4126 case ISD::SINT_TO_FP: 4127 case ISD::UINT_TO_FP: 4128 return true; 4129 case ISD::FMA: 4130 case ISD::FMAD: { 4131 if (SNaN) 4132 return true; 4133 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4134 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4135 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4136 } 4137 case ISD::FSQRT: // Need is known positive 4138 case ISD::FLOG: 4139 case ISD::FLOG2: 4140 case ISD::FLOG10: 4141 case ISD::FPOWI: 4142 case ISD::FPOW: { 4143 if (SNaN) 4144 return true; 4145 // TODO: Refine on operand 4146 return false; 4147 } 4148 case ISD::FMINNUM: 4149 case ISD::FMAXNUM: { 4150 // Only one needs to be known not-nan, since it will be returned if the 4151 // other ends up being one. 4152 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4153 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4154 } 4155 case ISD::FMINNUM_IEEE: 4156 case ISD::FMAXNUM_IEEE: { 4157 if (SNaN) 4158 return true; 4159 // This can return a NaN if either operand is an sNaN, or if both operands 4160 // are NaN. 4161 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4162 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4163 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4164 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4165 } 4166 case ISD::FMINIMUM: 4167 case ISD::FMAXIMUM: { 4168 // TODO: Does this quiet or return the origina NaN as-is? 4169 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4170 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4171 } 4172 case ISD::EXTRACT_VECTOR_ELT: { 4173 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4174 } 4175 default: 4176 if (Opcode >= ISD::BUILTIN_OP_END || 4177 Opcode == ISD::INTRINSIC_WO_CHAIN || 4178 Opcode == ISD::INTRINSIC_W_CHAIN || 4179 Opcode == ISD::INTRINSIC_VOID) { 4180 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4181 } 4182 4183 return false; 4184 } 4185 } 4186 4187 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4188 assert(Op.getValueType().isFloatingPoint() && 4189 "Floating point type expected"); 4190 4191 // If the value is a constant, we can obviously see if it is a zero or not. 4192 // TODO: Add BuildVector support. 4193 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4194 return !C->isZero(); 4195 return false; 4196 } 4197 4198 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4199 assert(!Op.getValueType().isFloatingPoint() && 4200 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4201 4202 // If the value is a constant, we can obviously see if it is a zero or not. 4203 if (ISD::matchUnaryPredicate( 4204 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4205 return true; 4206 4207 // TODO: Recognize more cases here. 4208 switch (Op.getOpcode()) { 4209 default: break; 4210 case ISD::OR: 4211 if (isKnownNeverZero(Op.getOperand(1)) || 4212 isKnownNeverZero(Op.getOperand(0))) 4213 return true; 4214 break; 4215 } 4216 4217 return false; 4218 } 4219 4220 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4221 // Check the obvious case. 4222 if (A == B) return true; 4223 4224 // For for negative and positive zero. 4225 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4226 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4227 if (CA->isZero() && CB->isZero()) return true; 4228 4229 // Otherwise they may not be equal. 4230 return false; 4231 } 4232 4233 // FIXME: unify with llvm::haveNoCommonBitsSet. 4234 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4235 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4236 assert(A.getValueType() == B.getValueType() && 4237 "Values must have the same type"); 4238 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4239 } 4240 4241 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4242 ArrayRef<SDValue> Ops, 4243 SelectionDAG &DAG) { 4244 int NumOps = Ops.size(); 4245 assert(NumOps != 0 && "Can't build an empty vector!"); 4246 assert(!VT.isScalableVector() && 4247 "BUILD_VECTOR cannot be used with scalable types"); 4248 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4249 "Incorrect element count in BUILD_VECTOR!"); 4250 4251 // BUILD_VECTOR of UNDEFs is UNDEF. 4252 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4253 return DAG.getUNDEF(VT); 4254 4255 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4256 SDValue IdentitySrc; 4257 bool IsIdentity = true; 4258 for (int i = 0; i != NumOps; ++i) { 4259 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4260 Ops[i].getOperand(0).getValueType() != VT || 4261 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4262 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4263 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4264 IsIdentity = false; 4265 break; 4266 } 4267 IdentitySrc = Ops[i].getOperand(0); 4268 } 4269 if (IsIdentity) 4270 return IdentitySrc; 4271 4272 return SDValue(); 4273 } 4274 4275 /// Try to simplify vector concatenation to an input value, undef, or build 4276 /// vector. 4277 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4278 ArrayRef<SDValue> Ops, 4279 SelectionDAG &DAG) { 4280 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4281 assert(llvm::all_of(Ops, 4282 [Ops](SDValue Op) { 4283 return Ops[0].getValueType() == Op.getValueType(); 4284 }) && 4285 "Concatenation of vectors with inconsistent value types!"); 4286 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4287 VT.getVectorNumElements() && 4288 "Incorrect element count in vector concatenation!"); 4289 4290 if (Ops.size() == 1) 4291 return Ops[0]; 4292 4293 // Concat of UNDEFs is UNDEF. 4294 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4295 return DAG.getUNDEF(VT); 4296 4297 // Scan the operands and look for extract operations from a single source 4298 // that correspond to insertion at the same location via this concatenation: 4299 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4300 SDValue IdentitySrc; 4301 bool IsIdentity = true; 4302 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4303 SDValue Op = Ops[i]; 4304 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4305 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4306 Op.getOperand(0).getValueType() != VT || 4307 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4308 Op.getConstantOperandVal(1) != IdentityIndex) { 4309 IsIdentity = false; 4310 break; 4311 } 4312 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4313 "Unexpected identity source vector for concat of extracts"); 4314 IdentitySrc = Op.getOperand(0); 4315 } 4316 if (IsIdentity) { 4317 assert(IdentitySrc && "Failed to set source vector of extracts"); 4318 return IdentitySrc; 4319 } 4320 4321 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4322 // simplified to one big BUILD_VECTOR. 4323 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4324 EVT SVT = VT.getScalarType(); 4325 SmallVector<SDValue, 16> Elts; 4326 for (SDValue Op : Ops) { 4327 EVT OpVT = Op.getValueType(); 4328 if (Op.isUndef()) 4329 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4330 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4331 Elts.append(Op->op_begin(), Op->op_end()); 4332 else 4333 return SDValue(); 4334 } 4335 4336 // BUILD_VECTOR requires all inputs to be of the same type, find the 4337 // maximum type and extend them all. 4338 for (SDValue Op : Elts) 4339 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4340 4341 if (SVT.bitsGT(VT.getScalarType())) 4342 for (SDValue &Op : Elts) 4343 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4344 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4345 : DAG.getSExtOrTrunc(Op, DL, SVT); 4346 4347 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4348 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4349 return V; 4350 } 4351 4352 /// Gets or creates the specified node. 4353 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4354 FoldingSetNodeID ID; 4355 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4356 void *IP = nullptr; 4357 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4358 return SDValue(E, 0); 4359 4360 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4361 getVTList(VT)); 4362 CSEMap.InsertNode(N, IP); 4363 4364 InsertNode(N); 4365 SDValue V = SDValue(N, 0); 4366 NewSDValueDbgMsg(V, "Creating new node: ", this); 4367 return V; 4368 } 4369 4370 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4371 SDValue Operand, const SDNodeFlags Flags) { 4372 // Constant fold unary operations with an integer constant operand. Even 4373 // opaque constant will be folded, because the folding of unary operations 4374 // doesn't create new constants with different values. Nevertheless, the 4375 // opaque flag is preserved during folding to prevent future folding with 4376 // other constants. 4377 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4378 const APInt &Val = C->getAPIntValue(); 4379 switch (Opcode) { 4380 default: break; 4381 case ISD::SIGN_EXTEND: 4382 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4383 C->isTargetOpcode(), C->isOpaque()); 4384 case ISD::TRUNCATE: 4385 if (C->isOpaque()) 4386 break; 4387 LLVM_FALLTHROUGH; 4388 case ISD::ANY_EXTEND: 4389 case ISD::ZERO_EXTEND: 4390 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4391 C->isTargetOpcode(), C->isOpaque()); 4392 case ISD::UINT_TO_FP: 4393 case ISD::SINT_TO_FP: { 4394 APFloat apf(EVTToAPFloatSemantics(VT), 4395 APInt::getNullValue(VT.getSizeInBits())); 4396 (void)apf.convertFromAPInt(Val, 4397 Opcode==ISD::SINT_TO_FP, 4398 APFloat::rmNearestTiesToEven); 4399 return getConstantFP(apf, DL, VT); 4400 } 4401 case ISD::BITCAST: 4402 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4403 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4404 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4405 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4406 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4407 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4408 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4409 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4410 break; 4411 case ISD::ABS: 4412 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4413 C->isOpaque()); 4414 case ISD::BITREVERSE: 4415 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4416 C->isOpaque()); 4417 case ISD::BSWAP: 4418 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4419 C->isOpaque()); 4420 case ISD::CTPOP: 4421 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4422 C->isOpaque()); 4423 case ISD::CTLZ: 4424 case ISD::CTLZ_ZERO_UNDEF: 4425 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4426 C->isOpaque()); 4427 case ISD::CTTZ: 4428 case ISD::CTTZ_ZERO_UNDEF: 4429 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4430 C->isOpaque()); 4431 case ISD::FP16_TO_FP: { 4432 bool Ignored; 4433 APFloat FPV(APFloat::IEEEhalf(), 4434 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4435 4436 // This can return overflow, underflow, or inexact; we don't care. 4437 // FIXME need to be more flexible about rounding mode. 4438 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4439 APFloat::rmNearestTiesToEven, &Ignored); 4440 return getConstantFP(FPV, DL, VT); 4441 } 4442 } 4443 } 4444 4445 // Constant fold unary operations with a floating point constant operand. 4446 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4447 APFloat V = C->getValueAPF(); // make copy 4448 switch (Opcode) { 4449 case ISD::FNEG: 4450 V.changeSign(); 4451 return getConstantFP(V, DL, VT); 4452 case ISD::FABS: 4453 V.clearSign(); 4454 return getConstantFP(V, DL, VT); 4455 case ISD::FCEIL: { 4456 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4457 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4458 return getConstantFP(V, DL, VT); 4459 break; 4460 } 4461 case ISD::FTRUNC: { 4462 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4463 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4464 return getConstantFP(V, DL, VT); 4465 break; 4466 } 4467 case ISD::FFLOOR: { 4468 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4469 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4470 return getConstantFP(V, DL, VT); 4471 break; 4472 } 4473 case ISD::FP_EXTEND: { 4474 bool ignored; 4475 // This can return overflow, underflow, or inexact; we don't care. 4476 // FIXME need to be more flexible about rounding mode. 4477 (void)V.convert(EVTToAPFloatSemantics(VT), 4478 APFloat::rmNearestTiesToEven, &ignored); 4479 return getConstantFP(V, DL, VT); 4480 } 4481 case ISD::FP_TO_SINT: 4482 case ISD::FP_TO_UINT: { 4483 bool ignored; 4484 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4485 // FIXME need to be more flexible about rounding mode. 4486 APFloat::opStatus s = 4487 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4488 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4489 break; 4490 return getConstant(IntVal, DL, VT); 4491 } 4492 case ISD::BITCAST: 4493 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4494 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4495 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4496 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4497 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4498 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4499 break; 4500 case ISD::FP_TO_FP16: { 4501 bool Ignored; 4502 // This can return overflow, underflow, or inexact; we don't care. 4503 // FIXME need to be more flexible about rounding mode. 4504 (void)V.convert(APFloat::IEEEhalf(), 4505 APFloat::rmNearestTiesToEven, &Ignored); 4506 return getConstant(V.bitcastToAPInt(), DL, VT); 4507 } 4508 } 4509 } 4510 4511 // Constant fold unary operations with a vector integer or float operand. 4512 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4513 if (BV->isConstant()) { 4514 switch (Opcode) { 4515 default: 4516 // FIXME: Entirely reasonable to perform folding of other unary 4517 // operations here as the need arises. 4518 break; 4519 case ISD::FNEG: 4520 case ISD::FABS: 4521 case ISD::FCEIL: 4522 case ISD::FTRUNC: 4523 case ISD::FFLOOR: 4524 case ISD::FP_EXTEND: 4525 case ISD::FP_TO_SINT: 4526 case ISD::FP_TO_UINT: 4527 case ISD::TRUNCATE: 4528 case ISD::ANY_EXTEND: 4529 case ISD::ZERO_EXTEND: 4530 case ISD::SIGN_EXTEND: 4531 case ISD::UINT_TO_FP: 4532 case ISD::SINT_TO_FP: 4533 case ISD::ABS: 4534 case ISD::BITREVERSE: 4535 case ISD::BSWAP: 4536 case ISD::CTLZ: 4537 case ISD::CTLZ_ZERO_UNDEF: 4538 case ISD::CTTZ: 4539 case ISD::CTTZ_ZERO_UNDEF: 4540 case ISD::CTPOP: { 4541 SDValue Ops = { Operand }; 4542 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4543 return Fold; 4544 } 4545 } 4546 } 4547 } 4548 4549 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4550 switch (Opcode) { 4551 case ISD::FREEZE: 4552 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4553 break; 4554 case ISD::TokenFactor: 4555 case ISD::MERGE_VALUES: 4556 case ISD::CONCAT_VECTORS: 4557 return Operand; // Factor, merge or concat of one node? No need. 4558 case ISD::BUILD_VECTOR: { 4559 // Attempt to simplify BUILD_VECTOR. 4560 SDValue Ops[] = {Operand}; 4561 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4562 return V; 4563 break; 4564 } 4565 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4566 case ISD::FP_EXTEND: 4567 assert(VT.isFloatingPoint() && 4568 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4569 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4570 assert((!VT.isVector() || 4571 VT.getVectorNumElements() == 4572 Operand.getValueType().getVectorNumElements()) && 4573 "Vector element count mismatch!"); 4574 assert(Operand.getValueType().bitsLT(VT) && 4575 "Invalid fpext node, dst < src!"); 4576 if (Operand.isUndef()) 4577 return getUNDEF(VT); 4578 break; 4579 case ISD::FP_TO_SINT: 4580 case ISD::FP_TO_UINT: 4581 if (Operand.isUndef()) 4582 return getUNDEF(VT); 4583 break; 4584 case ISD::SINT_TO_FP: 4585 case ISD::UINT_TO_FP: 4586 // [us]itofp(undef) = 0, because the result value is bounded. 4587 if (Operand.isUndef()) 4588 return getConstantFP(0.0, DL, VT); 4589 break; 4590 case ISD::SIGN_EXTEND: 4591 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4592 "Invalid SIGN_EXTEND!"); 4593 assert(VT.isVector() == Operand.getValueType().isVector() && 4594 "SIGN_EXTEND result type type should be vector iff the operand " 4595 "type is vector!"); 4596 if (Operand.getValueType() == VT) return Operand; // noop extension 4597 assert((!VT.isVector() || 4598 VT.getVectorElementCount() == 4599 Operand.getValueType().getVectorElementCount()) && 4600 "Vector element count mismatch!"); 4601 assert(Operand.getValueType().bitsLT(VT) && 4602 "Invalid sext node, dst < src!"); 4603 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4604 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4605 else if (OpOpcode == ISD::UNDEF) 4606 // sext(undef) = 0, because the top bits will all be the same. 4607 return getConstant(0, DL, VT); 4608 break; 4609 case ISD::ZERO_EXTEND: 4610 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4611 "Invalid ZERO_EXTEND!"); 4612 assert(VT.isVector() == Operand.getValueType().isVector() && 4613 "ZERO_EXTEND result type type should be vector iff the operand " 4614 "type is vector!"); 4615 if (Operand.getValueType() == VT) return Operand; // noop extension 4616 assert((!VT.isVector() || 4617 VT.getVectorElementCount() == 4618 Operand.getValueType().getVectorElementCount()) && 4619 "Vector element count mismatch!"); 4620 assert(Operand.getValueType().bitsLT(VT) && 4621 "Invalid zext node, dst < src!"); 4622 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4623 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4624 else if (OpOpcode == ISD::UNDEF) 4625 // zext(undef) = 0, because the top bits will be zero. 4626 return getConstant(0, DL, VT); 4627 break; 4628 case ISD::ANY_EXTEND: 4629 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4630 "Invalid ANY_EXTEND!"); 4631 assert(VT.isVector() == Operand.getValueType().isVector() && 4632 "ANY_EXTEND result type type should be vector iff the operand " 4633 "type is vector!"); 4634 if (Operand.getValueType() == VT) return Operand; // noop extension 4635 assert((!VT.isVector() || 4636 VT.getVectorElementCount() == 4637 Operand.getValueType().getVectorElementCount()) && 4638 "Vector element count mismatch!"); 4639 assert(Operand.getValueType().bitsLT(VT) && 4640 "Invalid anyext node, dst < src!"); 4641 4642 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4643 OpOpcode == ISD::ANY_EXTEND) 4644 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4645 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4646 else if (OpOpcode == ISD::UNDEF) 4647 return getUNDEF(VT); 4648 4649 // (ext (trunc x)) -> x 4650 if (OpOpcode == ISD::TRUNCATE) { 4651 SDValue OpOp = Operand.getOperand(0); 4652 if (OpOp.getValueType() == VT) { 4653 transferDbgValues(Operand, OpOp); 4654 return OpOp; 4655 } 4656 } 4657 break; 4658 case ISD::TRUNCATE: 4659 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4660 "Invalid TRUNCATE!"); 4661 assert(VT.isVector() == Operand.getValueType().isVector() && 4662 "TRUNCATE result type type should be vector iff the operand " 4663 "type is vector!"); 4664 if (Operand.getValueType() == VT) return Operand; // noop truncate 4665 assert((!VT.isVector() || 4666 VT.getVectorElementCount() == 4667 Operand.getValueType().getVectorElementCount()) && 4668 "Vector element count mismatch!"); 4669 assert(Operand.getValueType().bitsGT(VT) && 4670 "Invalid truncate node, src < dst!"); 4671 if (OpOpcode == ISD::TRUNCATE) 4672 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4673 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4674 OpOpcode == ISD::ANY_EXTEND) { 4675 // If the source is smaller than the dest, we still need an extend. 4676 if (Operand.getOperand(0).getValueType().getScalarType() 4677 .bitsLT(VT.getScalarType())) 4678 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4679 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4680 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4681 return Operand.getOperand(0); 4682 } 4683 if (OpOpcode == ISD::UNDEF) 4684 return getUNDEF(VT); 4685 break; 4686 case ISD::ANY_EXTEND_VECTOR_INREG: 4687 case ISD::ZERO_EXTEND_VECTOR_INREG: 4688 case ISD::SIGN_EXTEND_VECTOR_INREG: 4689 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4690 assert(Operand.getValueType().bitsLE(VT) && 4691 "The input must be the same size or smaller than the result."); 4692 assert(VT.getVectorNumElements() < 4693 Operand.getValueType().getVectorNumElements() && 4694 "The destination vector type must have fewer lanes than the input."); 4695 break; 4696 case ISD::ABS: 4697 assert(VT.isInteger() && VT == Operand.getValueType() && 4698 "Invalid ABS!"); 4699 if (OpOpcode == ISD::UNDEF) 4700 return getUNDEF(VT); 4701 break; 4702 case ISD::BSWAP: 4703 assert(VT.isInteger() && VT == Operand.getValueType() && 4704 "Invalid BSWAP!"); 4705 assert((VT.getScalarSizeInBits() % 16 == 0) && 4706 "BSWAP types must be a multiple of 16 bits!"); 4707 if (OpOpcode == ISD::UNDEF) 4708 return getUNDEF(VT); 4709 break; 4710 case ISD::BITREVERSE: 4711 assert(VT.isInteger() && VT == Operand.getValueType() && 4712 "Invalid BITREVERSE!"); 4713 if (OpOpcode == ISD::UNDEF) 4714 return getUNDEF(VT); 4715 break; 4716 case ISD::BITCAST: 4717 // Basic sanity checking. 4718 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4719 "Cannot BITCAST between types of different sizes!"); 4720 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4721 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4722 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4723 if (OpOpcode == ISD::UNDEF) 4724 return getUNDEF(VT); 4725 break; 4726 case ISD::SCALAR_TO_VECTOR: 4727 assert(VT.isVector() && !Operand.getValueType().isVector() && 4728 (VT.getVectorElementType() == Operand.getValueType() || 4729 (VT.getVectorElementType().isInteger() && 4730 Operand.getValueType().isInteger() && 4731 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4732 "Illegal SCALAR_TO_VECTOR node!"); 4733 if (OpOpcode == ISD::UNDEF) 4734 return getUNDEF(VT); 4735 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4736 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4737 isa<ConstantSDNode>(Operand.getOperand(1)) && 4738 Operand.getConstantOperandVal(1) == 0 && 4739 Operand.getOperand(0).getValueType() == VT) 4740 return Operand.getOperand(0); 4741 break; 4742 case ISD::FNEG: 4743 // Negation of an unknown bag of bits is still completely undefined. 4744 if (OpOpcode == ISD::UNDEF) 4745 return getUNDEF(VT); 4746 4747 if (OpOpcode == ISD::FNEG) // --X -> X 4748 return Operand.getOperand(0); 4749 break; 4750 case ISD::FABS: 4751 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4752 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4753 break; 4754 } 4755 4756 SDNode *N; 4757 SDVTList VTs = getVTList(VT); 4758 SDValue Ops[] = {Operand}; 4759 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4760 FoldingSetNodeID ID; 4761 AddNodeIDNode(ID, Opcode, VTs, Ops); 4762 void *IP = nullptr; 4763 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4764 E->intersectFlagsWith(Flags); 4765 return SDValue(E, 0); 4766 } 4767 4768 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4769 N->setFlags(Flags); 4770 createOperands(N, Ops); 4771 CSEMap.InsertNode(N, IP); 4772 } else { 4773 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4774 createOperands(N, Ops); 4775 } 4776 4777 InsertNode(N); 4778 SDValue V = SDValue(N, 0); 4779 NewSDValueDbgMsg(V, "Creating new node: ", this); 4780 return V; 4781 } 4782 4783 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4784 const APInt &C2) { 4785 switch (Opcode) { 4786 case ISD::ADD: return C1 + C2; 4787 case ISD::SUB: return C1 - C2; 4788 case ISD::MUL: return C1 * C2; 4789 case ISD::AND: return C1 & C2; 4790 case ISD::OR: return C1 | C2; 4791 case ISD::XOR: return C1 ^ C2; 4792 case ISD::SHL: return C1 << C2; 4793 case ISD::SRL: return C1.lshr(C2); 4794 case ISD::SRA: return C1.ashr(C2); 4795 case ISD::ROTL: return C1.rotl(C2); 4796 case ISD::ROTR: return C1.rotr(C2); 4797 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4798 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4799 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4800 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4801 case ISD::SADDSAT: return C1.sadd_sat(C2); 4802 case ISD::UADDSAT: return C1.uadd_sat(C2); 4803 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4804 case ISD::USUBSAT: return C1.usub_sat(C2); 4805 case ISD::UDIV: 4806 if (!C2.getBoolValue()) 4807 break; 4808 return C1.udiv(C2); 4809 case ISD::UREM: 4810 if (!C2.getBoolValue()) 4811 break; 4812 return C1.urem(C2); 4813 case ISD::SDIV: 4814 if (!C2.getBoolValue()) 4815 break; 4816 return C1.sdiv(C2); 4817 case ISD::SREM: 4818 if (!C2.getBoolValue()) 4819 break; 4820 return C1.srem(C2); 4821 } 4822 return llvm::None; 4823 } 4824 4825 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4826 const GlobalAddressSDNode *GA, 4827 const SDNode *N2) { 4828 if (GA->getOpcode() != ISD::GlobalAddress) 4829 return SDValue(); 4830 if (!TLI->isOffsetFoldingLegal(GA)) 4831 return SDValue(); 4832 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4833 if (!C2) 4834 return SDValue(); 4835 int64_t Offset = C2->getSExtValue(); 4836 switch (Opcode) { 4837 case ISD::ADD: break; 4838 case ISD::SUB: Offset = -uint64_t(Offset); break; 4839 default: return SDValue(); 4840 } 4841 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4842 GA->getOffset() + uint64_t(Offset)); 4843 } 4844 4845 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4846 switch (Opcode) { 4847 case ISD::SDIV: 4848 case ISD::UDIV: 4849 case ISD::SREM: 4850 case ISD::UREM: { 4851 // If a divisor is zero/undef or any element of a divisor vector is 4852 // zero/undef, the whole op is undef. 4853 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4854 SDValue Divisor = Ops[1]; 4855 if (Divisor.isUndef() || isNullConstant(Divisor)) 4856 return true; 4857 4858 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4859 llvm::any_of(Divisor->op_values(), 4860 [](SDValue V) { return V.isUndef() || 4861 isNullConstant(V); }); 4862 // TODO: Handle signed overflow. 4863 } 4864 // TODO: Handle oversized shifts. 4865 default: 4866 return false; 4867 } 4868 } 4869 4870 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4871 EVT VT, ArrayRef<SDValue> Ops) { 4872 // If the opcode is a target-specific ISD node, there's nothing we can 4873 // do here and the operand rules may not line up with the below, so 4874 // bail early. 4875 if (Opcode >= ISD::BUILTIN_OP_END) 4876 return SDValue(); 4877 4878 // For now, the array Ops should only contain two values. 4879 // This enforcement will be removed once this function is merged with 4880 // FoldConstantVectorArithmetic 4881 if (Ops.size() != 2) 4882 return SDValue(); 4883 4884 if (isUndef(Opcode, Ops)) 4885 return getUNDEF(VT); 4886 4887 SDNode *N1 = Ops[0].getNode(); 4888 SDNode *N2 = Ops[1].getNode(); 4889 4890 // Handle the case of two scalars. 4891 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4892 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4893 if (C1->isOpaque() || C2->isOpaque()) 4894 return SDValue(); 4895 4896 Optional<APInt> FoldAttempt = 4897 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4898 if (!FoldAttempt) 4899 return SDValue(); 4900 4901 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4902 assert((!Folded || !VT.isVector()) && 4903 "Can't fold vectors ops with scalar operands"); 4904 return Folded; 4905 } 4906 } 4907 4908 // fold (add Sym, c) -> Sym+c 4909 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4910 return FoldSymbolOffset(Opcode, VT, GA, N2); 4911 if (TLI->isCommutativeBinOp(Opcode)) 4912 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4913 return FoldSymbolOffset(Opcode, VT, GA, N1); 4914 4915 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4916 // vector width, however we should be able to do constant folds involving 4917 // splat vector nodes too. 4918 if (VT.isScalableVector()) 4919 return SDValue(); 4920 4921 // For fixed width vectors, extract each constant element and fold them 4922 // individually. Either input may be an undef value. 4923 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4924 if (!BV1 && !N1->isUndef()) 4925 return SDValue(); 4926 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4927 if (!BV2 && !N2->isUndef()) 4928 return SDValue(); 4929 // If both operands are undef, that's handled the same way as scalars. 4930 if (!BV1 && !BV2) 4931 return SDValue(); 4932 4933 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4934 "Vector binop with different number of elements in operands?"); 4935 4936 EVT SVT = VT.getScalarType(); 4937 EVT LegalSVT = SVT; 4938 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4939 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4940 if (LegalSVT.bitsLT(SVT)) 4941 return SDValue(); 4942 } 4943 SmallVector<SDValue, 4> Outputs; 4944 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4945 for (unsigned I = 0; I != NumOps; ++I) { 4946 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4947 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4948 if (SVT.isInteger()) { 4949 if (V1->getValueType(0).bitsGT(SVT)) 4950 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4951 if (V2->getValueType(0).bitsGT(SVT)) 4952 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4953 } 4954 4955 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4956 return SDValue(); 4957 4958 // Fold one vector element. 4959 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4960 if (LegalSVT != SVT) 4961 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4962 4963 // Scalar folding only succeeded if the result is a constant or UNDEF. 4964 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4965 ScalarResult.getOpcode() != ISD::ConstantFP) 4966 return SDValue(); 4967 Outputs.push_back(ScalarResult); 4968 } 4969 4970 assert(VT.getVectorNumElements() == Outputs.size() && 4971 "Vector size mismatch!"); 4972 4973 // We may have a vector type but a scalar result. Create a splat. 4974 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4975 4976 // Build a big vector out of the scalar elements we generated. 4977 return getBuildVector(VT, SDLoc(), Outputs); 4978 } 4979 4980 // TODO: Merge with FoldConstantArithmetic 4981 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4982 const SDLoc &DL, EVT VT, 4983 ArrayRef<SDValue> Ops, 4984 const SDNodeFlags Flags) { 4985 // If the opcode is a target-specific ISD node, there's nothing we can 4986 // do here and the operand rules may not line up with the below, so 4987 // bail early. 4988 if (Opcode >= ISD::BUILTIN_OP_END) 4989 return SDValue(); 4990 4991 if (isUndef(Opcode, Ops)) 4992 return getUNDEF(VT); 4993 4994 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4995 if (!VT.isVector()) 4996 return SDValue(); 4997 4998 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4999 // vector width, however we should be able to do constant folds involving 5000 // splat vector nodes too. 5001 if (VT.isScalableVector()) 5002 return SDValue(); 5003 5004 // From this point onwards all vectors are assumed to be fixed width. 5005 unsigned NumElts = VT.getVectorNumElements(); 5006 5007 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5008 return !Op.getValueType().isVector() || 5009 Op.getValueType().getVectorNumElements() == NumElts; 5010 }; 5011 5012 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5013 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5014 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5015 (BV && BV->isConstant()); 5016 }; 5017 5018 // All operands must be vector types with the same number of elements as 5019 // the result type and must be either UNDEF or a build vector of constant 5020 // or UNDEF scalars. 5021 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5022 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5023 return SDValue(); 5024 5025 // If we are comparing vectors, then the result needs to be a i1 boolean 5026 // that is then sign-extended back to the legal result type. 5027 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5028 5029 // Find legal integer scalar type for constant promotion and 5030 // ensure that its scalar size is at least as large as source. 5031 EVT LegalSVT = VT.getScalarType(); 5032 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5033 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5034 if (LegalSVT.bitsLT(VT.getScalarType())) 5035 return SDValue(); 5036 } 5037 5038 // Constant fold each scalar lane separately. 5039 SmallVector<SDValue, 4> ScalarResults; 5040 for (unsigned i = 0; i != NumElts; i++) { 5041 SmallVector<SDValue, 4> ScalarOps; 5042 for (SDValue Op : Ops) { 5043 EVT InSVT = Op.getValueType().getScalarType(); 5044 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5045 if (!InBV) { 5046 // We've checked that this is UNDEF or a constant of some kind. 5047 if (Op.isUndef()) 5048 ScalarOps.push_back(getUNDEF(InSVT)); 5049 else 5050 ScalarOps.push_back(Op); 5051 continue; 5052 } 5053 5054 SDValue ScalarOp = InBV->getOperand(i); 5055 EVT ScalarVT = ScalarOp.getValueType(); 5056 5057 // Build vector (integer) scalar operands may need implicit 5058 // truncation - do this before constant folding. 5059 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5060 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5061 5062 ScalarOps.push_back(ScalarOp); 5063 } 5064 5065 // Constant fold the scalar operands. 5066 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5067 5068 // Legalize the (integer) scalar constant if necessary. 5069 if (LegalSVT != SVT) 5070 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5071 5072 // Scalar folding only succeeded if the result is a constant or UNDEF. 5073 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5074 ScalarResult.getOpcode() != ISD::ConstantFP) 5075 return SDValue(); 5076 ScalarResults.push_back(ScalarResult); 5077 } 5078 5079 SDValue V = getBuildVector(VT, DL, ScalarResults); 5080 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5081 return V; 5082 } 5083 5084 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5085 EVT VT, SDValue N1, SDValue N2) { 5086 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5087 // should. That will require dealing with a potentially non-default 5088 // rounding mode, checking the "opStatus" return value from the APFloat 5089 // math calculations, and possibly other variations. 5090 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5091 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5092 if (N1CFP && N2CFP) { 5093 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5094 switch (Opcode) { 5095 case ISD::FADD: 5096 C1.add(C2, APFloat::rmNearestTiesToEven); 5097 return getConstantFP(C1, DL, VT); 5098 case ISD::FSUB: 5099 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5100 return getConstantFP(C1, DL, VT); 5101 case ISD::FMUL: 5102 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5103 return getConstantFP(C1, DL, VT); 5104 case ISD::FDIV: 5105 C1.divide(C2, APFloat::rmNearestTiesToEven); 5106 return getConstantFP(C1, DL, VT); 5107 case ISD::FREM: 5108 C1.mod(C2); 5109 return getConstantFP(C1, DL, VT); 5110 case ISD::FCOPYSIGN: 5111 C1.copySign(C2); 5112 return getConstantFP(C1, DL, VT); 5113 default: break; 5114 } 5115 } 5116 if (N1CFP && Opcode == ISD::FP_ROUND) { 5117 APFloat C1 = N1CFP->getValueAPF(); // make copy 5118 bool Unused; 5119 // This can return overflow, underflow, or inexact; we don't care. 5120 // FIXME need to be more flexible about rounding mode. 5121 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5122 &Unused); 5123 return getConstantFP(C1, DL, VT); 5124 } 5125 5126 switch (Opcode) { 5127 case ISD::FSUB: 5128 // -0.0 - undef --> undef (consistent with "fneg undef") 5129 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5130 return getUNDEF(VT); 5131 LLVM_FALLTHROUGH; 5132 5133 case ISD::FADD: 5134 case ISD::FMUL: 5135 case ISD::FDIV: 5136 case ISD::FREM: 5137 // If both operands are undef, the result is undef. If 1 operand is undef, 5138 // the result is NaN. This should match the behavior of the IR optimizer. 5139 if (N1.isUndef() && N2.isUndef()) 5140 return getUNDEF(VT); 5141 if (N1.isUndef() || N2.isUndef()) 5142 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5143 } 5144 return SDValue(); 5145 } 5146 5147 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5148 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5149 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5150 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5151 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5152 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5153 5154 // Canonicalize constant to RHS if commutative. 5155 if (TLI->isCommutativeBinOp(Opcode)) { 5156 if (N1C && !N2C) { 5157 std::swap(N1C, N2C); 5158 std::swap(N1, N2); 5159 } else if (N1CFP && !N2CFP) { 5160 std::swap(N1CFP, N2CFP); 5161 std::swap(N1, N2); 5162 } 5163 } 5164 5165 switch (Opcode) { 5166 default: break; 5167 case ISD::TokenFactor: 5168 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5169 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5170 // Fold trivial token factors. 5171 if (N1.getOpcode() == ISD::EntryToken) return N2; 5172 if (N2.getOpcode() == ISD::EntryToken) return N1; 5173 if (N1 == N2) return N1; 5174 break; 5175 case ISD::BUILD_VECTOR: { 5176 // Attempt to simplify BUILD_VECTOR. 5177 SDValue Ops[] = {N1, N2}; 5178 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5179 return V; 5180 break; 5181 } 5182 case ISD::CONCAT_VECTORS: { 5183 SDValue Ops[] = {N1, N2}; 5184 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5185 return V; 5186 break; 5187 } 5188 case ISD::AND: 5189 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5190 assert(N1.getValueType() == N2.getValueType() && 5191 N1.getValueType() == VT && "Binary operator types must match!"); 5192 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5193 // worth handling here. 5194 if (N2C && N2C->isNullValue()) 5195 return N2; 5196 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5197 return N1; 5198 break; 5199 case ISD::OR: 5200 case ISD::XOR: 5201 case ISD::ADD: 5202 case ISD::SUB: 5203 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5204 assert(N1.getValueType() == N2.getValueType() && 5205 N1.getValueType() == VT && "Binary operator types must match!"); 5206 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5207 // it's worth handling here. 5208 if (N2C && N2C->isNullValue()) 5209 return N1; 5210 break; 5211 case ISD::MUL: 5212 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5213 assert(N1.getValueType() == N2.getValueType() && 5214 N1.getValueType() == VT && "Binary operator types must match!"); 5215 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5216 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5217 APInt N2CImm = N2C->getAPIntValue(); 5218 return getVScale(DL, VT, MulImm * N2CImm); 5219 } 5220 break; 5221 case ISD::UDIV: 5222 case ISD::UREM: 5223 case ISD::MULHU: 5224 case ISD::MULHS: 5225 case ISD::SDIV: 5226 case ISD::SREM: 5227 case ISD::SMIN: 5228 case ISD::SMAX: 5229 case ISD::UMIN: 5230 case ISD::UMAX: 5231 case ISD::SADDSAT: 5232 case ISD::SSUBSAT: 5233 case ISD::UADDSAT: 5234 case ISD::USUBSAT: 5235 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5236 assert(N1.getValueType() == N2.getValueType() && 5237 N1.getValueType() == VT && "Binary operator types must match!"); 5238 break; 5239 case ISD::FADD: 5240 case ISD::FSUB: 5241 case ISD::FMUL: 5242 case ISD::FDIV: 5243 case ISD::FREM: 5244 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5245 assert(N1.getValueType() == N2.getValueType() && 5246 N1.getValueType() == VT && "Binary operator types must match!"); 5247 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5248 return V; 5249 break; 5250 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5251 assert(N1.getValueType() == VT && 5252 N1.getValueType().isFloatingPoint() && 5253 N2.getValueType().isFloatingPoint() && 5254 "Invalid FCOPYSIGN!"); 5255 break; 5256 case ISD::SHL: 5257 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5258 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5259 APInt ShiftImm = N2C->getAPIntValue(); 5260 return getVScale(DL, VT, MulImm << ShiftImm); 5261 } 5262 LLVM_FALLTHROUGH; 5263 case ISD::SRA: 5264 case ISD::SRL: 5265 if (SDValue V = simplifyShift(N1, N2)) 5266 return V; 5267 LLVM_FALLTHROUGH; 5268 case ISD::ROTL: 5269 case ISD::ROTR: 5270 assert(VT == N1.getValueType() && 5271 "Shift operators return type must be the same as their first arg"); 5272 assert(VT.isInteger() && N2.getValueType().isInteger() && 5273 "Shifts only work on integers"); 5274 assert((!VT.isVector() || VT == N2.getValueType()) && 5275 "Vector shift amounts must be in the same as their first arg"); 5276 // Verify that the shift amount VT is big enough to hold valid shift 5277 // amounts. This catches things like trying to shift an i1024 value by an 5278 // i8, which is easy to fall into in generic code that uses 5279 // TLI.getShiftAmount(). 5280 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5281 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5282 "Invalid use of small shift amount with oversized value!"); 5283 5284 // Always fold shifts of i1 values so the code generator doesn't need to 5285 // handle them. Since we know the size of the shift has to be less than the 5286 // size of the value, the shift/rotate count is guaranteed to be zero. 5287 if (VT == MVT::i1) 5288 return N1; 5289 if (N2C && N2C->isNullValue()) 5290 return N1; 5291 break; 5292 case ISD::FP_ROUND: 5293 assert(VT.isFloatingPoint() && 5294 N1.getValueType().isFloatingPoint() && 5295 VT.bitsLE(N1.getValueType()) && 5296 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5297 "Invalid FP_ROUND!"); 5298 if (N1.getValueType() == VT) return N1; // noop conversion. 5299 break; 5300 case ISD::AssertSext: 5301 case ISD::AssertZext: { 5302 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5303 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5304 assert(VT.isInteger() && EVT.isInteger() && 5305 "Cannot *_EXTEND_INREG FP types"); 5306 assert(!EVT.isVector() && 5307 "AssertSExt/AssertZExt type should be the vector element type " 5308 "rather than the vector type!"); 5309 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5310 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5311 break; 5312 } 5313 case ISD::SIGN_EXTEND_INREG: { 5314 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5315 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5316 assert(VT.isInteger() && EVT.isInteger() && 5317 "Cannot *_EXTEND_INREG FP types"); 5318 assert(EVT.isVector() == VT.isVector() && 5319 "SIGN_EXTEND_INREG type should be vector iff the operand " 5320 "type is vector!"); 5321 assert((!EVT.isVector() || 5322 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5323 "Vector element counts must match in SIGN_EXTEND_INREG"); 5324 assert(EVT.bitsLE(VT) && "Not extending!"); 5325 if (EVT == VT) return N1; // Not actually extending 5326 5327 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5328 unsigned FromBits = EVT.getScalarSizeInBits(); 5329 Val <<= Val.getBitWidth() - FromBits; 5330 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5331 return getConstant(Val, DL, ConstantVT); 5332 }; 5333 5334 if (N1C) { 5335 const APInt &Val = N1C->getAPIntValue(); 5336 return SignExtendInReg(Val, VT); 5337 } 5338 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5339 SmallVector<SDValue, 8> Ops; 5340 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5341 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5342 SDValue Op = N1.getOperand(i); 5343 if (Op.isUndef()) { 5344 Ops.push_back(getUNDEF(OpVT)); 5345 continue; 5346 } 5347 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5348 APInt Val = C->getAPIntValue(); 5349 Ops.push_back(SignExtendInReg(Val, OpVT)); 5350 } 5351 return getBuildVector(VT, DL, Ops); 5352 } 5353 break; 5354 } 5355 case ISD::EXTRACT_VECTOR_ELT: 5356 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5357 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5358 element type of the vector."); 5359 5360 // Extract from an undefined value or using an undefined index is undefined. 5361 if (N1.isUndef() || N2.isUndef()) 5362 return getUNDEF(VT); 5363 5364 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5365 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5366 return getUNDEF(VT); 5367 5368 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5369 // expanding copies of large vectors from registers. 5370 if (N2C && 5371 N1.getOpcode() == ISD::CONCAT_VECTORS && 5372 N1.getNumOperands() > 0) { 5373 unsigned Factor = 5374 N1.getOperand(0).getValueType().getVectorNumElements(); 5375 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5376 N1.getOperand(N2C->getZExtValue() / Factor), 5377 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5378 } 5379 5380 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5381 // expanding large vector constants. 5382 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5383 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5384 5385 if (VT != Elt.getValueType()) 5386 // If the vector element type is not legal, the BUILD_VECTOR operands 5387 // are promoted and implicitly truncated, and the result implicitly 5388 // extended. Make that explicit here. 5389 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5390 5391 return Elt; 5392 } 5393 5394 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5395 // operations are lowered to scalars. 5396 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5397 // If the indices are the same, return the inserted element else 5398 // if the indices are known different, extract the element from 5399 // the original vector. 5400 SDValue N1Op2 = N1.getOperand(2); 5401 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5402 5403 if (N1Op2C && N2C) { 5404 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5405 if (VT == N1.getOperand(1).getValueType()) 5406 return N1.getOperand(1); 5407 else 5408 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5409 } 5410 5411 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5412 } 5413 } 5414 5415 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5416 // when vector types are scalarized and v1iX is legal. 5417 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5418 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5419 N1.getValueType().getVectorNumElements() == 1) { 5420 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5421 N1.getOperand(1)); 5422 } 5423 break; 5424 case ISD::EXTRACT_ELEMENT: 5425 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5426 assert(!N1.getValueType().isVector() && !VT.isVector() && 5427 (N1.getValueType().isInteger() == VT.isInteger()) && 5428 N1.getValueType() != VT && 5429 "Wrong types for EXTRACT_ELEMENT!"); 5430 5431 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5432 // 64-bit integers into 32-bit parts. Instead of building the extract of 5433 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5434 if (N1.getOpcode() == ISD::BUILD_PAIR) 5435 return N1.getOperand(N2C->getZExtValue()); 5436 5437 // EXTRACT_ELEMENT of a constant int is also very common. 5438 if (N1C) { 5439 unsigned ElementSize = VT.getSizeInBits(); 5440 unsigned Shift = ElementSize * N2C->getZExtValue(); 5441 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5442 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5443 } 5444 break; 5445 case ISD::EXTRACT_SUBVECTOR: 5446 assert(VT.isVector() && N1.getValueType().isVector() && 5447 "Extract subvector VTs must be a vectors!"); 5448 assert(VT.getVectorElementType() == 5449 N1.getValueType().getVectorElementType() && 5450 "Extract subvector VTs must have the same element type!"); 5451 assert(VT.getVectorNumElements() <= 5452 N1.getValueType().getVectorNumElements() && 5453 "Extract subvector must be from larger vector to smaller vector!"); 5454 assert(N2C && "Extract subvector index must be a constant"); 5455 assert(VT.getVectorNumElements() + N2C->getZExtValue() <= 5456 N1.getValueType().getVectorNumElements() && 5457 "Extract subvector overflow!"); 5458 5459 // Trivial extraction. 5460 if (VT == N1.getValueType()) 5461 return N1; 5462 5463 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5464 if (N1.isUndef()) 5465 return getUNDEF(VT); 5466 5467 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5468 // the concat have the same type as the extract. 5469 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5470 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5471 unsigned Factor = VT.getVectorNumElements(); 5472 return N1.getOperand(N2C->getZExtValue() / Factor); 5473 } 5474 5475 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5476 // during shuffle legalization. 5477 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5478 VT == N1.getOperand(1).getValueType()) 5479 return N1.getOperand(1); 5480 break; 5481 } 5482 5483 // Perform trivial constant folding. 5484 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5485 return SV; 5486 5487 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5488 return V; 5489 5490 // Canonicalize an UNDEF to the RHS, even over a constant. 5491 if (N1.isUndef()) { 5492 if (TLI->isCommutativeBinOp(Opcode)) { 5493 std::swap(N1, N2); 5494 } else { 5495 switch (Opcode) { 5496 case ISD::SIGN_EXTEND_INREG: 5497 case ISD::SUB: 5498 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5499 case ISD::UDIV: 5500 case ISD::SDIV: 5501 case ISD::UREM: 5502 case ISD::SREM: 5503 case ISD::SSUBSAT: 5504 case ISD::USUBSAT: 5505 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5506 } 5507 } 5508 } 5509 5510 // Fold a bunch of operators when the RHS is undef. 5511 if (N2.isUndef()) { 5512 switch (Opcode) { 5513 case ISD::XOR: 5514 if (N1.isUndef()) 5515 // Handle undef ^ undef -> 0 special case. This is a common 5516 // idiom (misuse). 5517 return getConstant(0, DL, VT); 5518 LLVM_FALLTHROUGH; 5519 case ISD::ADD: 5520 case ISD::SUB: 5521 case ISD::UDIV: 5522 case ISD::SDIV: 5523 case ISD::UREM: 5524 case ISD::SREM: 5525 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5526 case ISD::MUL: 5527 case ISD::AND: 5528 case ISD::SSUBSAT: 5529 case ISD::USUBSAT: 5530 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5531 case ISD::OR: 5532 case ISD::SADDSAT: 5533 case ISD::UADDSAT: 5534 return getAllOnesConstant(DL, VT); 5535 } 5536 } 5537 5538 // Memoize this node if possible. 5539 SDNode *N; 5540 SDVTList VTs = getVTList(VT); 5541 SDValue Ops[] = {N1, N2}; 5542 if (VT != MVT::Glue) { 5543 FoldingSetNodeID ID; 5544 AddNodeIDNode(ID, Opcode, VTs, Ops); 5545 void *IP = nullptr; 5546 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5547 E->intersectFlagsWith(Flags); 5548 return SDValue(E, 0); 5549 } 5550 5551 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5552 N->setFlags(Flags); 5553 createOperands(N, Ops); 5554 CSEMap.InsertNode(N, IP); 5555 } else { 5556 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5557 createOperands(N, Ops); 5558 } 5559 5560 InsertNode(N); 5561 SDValue V = SDValue(N, 0); 5562 NewSDValueDbgMsg(V, "Creating new node: ", this); 5563 return V; 5564 } 5565 5566 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5567 SDValue N1, SDValue N2, SDValue N3, 5568 const SDNodeFlags Flags) { 5569 // Perform various simplifications. 5570 switch (Opcode) { 5571 case ISD::FMA: { 5572 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5573 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5574 N3.getValueType() == VT && "FMA types must match!"); 5575 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5576 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5577 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5578 if (N1CFP && N2CFP && N3CFP) { 5579 APFloat V1 = N1CFP->getValueAPF(); 5580 const APFloat &V2 = N2CFP->getValueAPF(); 5581 const APFloat &V3 = N3CFP->getValueAPF(); 5582 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5583 return getConstantFP(V1, DL, VT); 5584 } 5585 break; 5586 } 5587 case ISD::BUILD_VECTOR: { 5588 // Attempt to simplify BUILD_VECTOR. 5589 SDValue Ops[] = {N1, N2, N3}; 5590 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5591 return V; 5592 break; 5593 } 5594 case ISD::CONCAT_VECTORS: { 5595 SDValue Ops[] = {N1, N2, N3}; 5596 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5597 return V; 5598 break; 5599 } 5600 case ISD::SETCC: { 5601 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5602 assert(N1.getValueType() == N2.getValueType() && 5603 "SETCC operands must have the same type!"); 5604 assert(VT.isVector() == N1.getValueType().isVector() && 5605 "SETCC type should be vector iff the operand type is vector!"); 5606 assert((!VT.isVector() || VT.getVectorElementCount() == 5607 N1.getValueType().getVectorElementCount()) && 5608 "SETCC vector element counts must match!"); 5609 // Use FoldSetCC to simplify SETCC's. 5610 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5611 return V; 5612 // Vector constant folding. 5613 SDValue Ops[] = {N1, N2, N3}; 5614 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5615 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5616 return V; 5617 } 5618 break; 5619 } 5620 case ISD::SELECT: 5621 case ISD::VSELECT: 5622 if (SDValue V = simplifySelect(N1, N2, N3)) 5623 return V; 5624 break; 5625 case ISD::VECTOR_SHUFFLE: 5626 llvm_unreachable("should use getVectorShuffle constructor!"); 5627 case ISD::INSERT_VECTOR_ELT: { 5628 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5629 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5630 // for scalable vectors where we will generate appropriate code to 5631 // deal with out-of-bounds cases correctly. 5632 if (N3C && N1.getValueType().isFixedLengthVector() && 5633 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5634 return getUNDEF(VT); 5635 5636 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5637 if (N3.isUndef()) 5638 return getUNDEF(VT); 5639 5640 // If the inserted element is an UNDEF, just use the input vector. 5641 if (N2.isUndef()) 5642 return N1; 5643 5644 break; 5645 } 5646 case ISD::INSERT_SUBVECTOR: { 5647 // Inserting undef into undef is still undef. 5648 if (N1.isUndef() && N2.isUndef()) 5649 return getUNDEF(VT); 5650 assert(VT.isVector() && N1.getValueType().isVector() && 5651 N2.getValueType().isVector() && 5652 "Insert subvector VTs must be a vectors"); 5653 assert(VT == N1.getValueType() && 5654 "Dest and insert subvector source types must match!"); 5655 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5656 "Insert subvector must be from smaller vector to larger vector!"); 5657 assert(isa<ConstantSDNode>(N3) && 5658 "Insert subvector index must be constant"); 5659 assert(N2.getValueType().getVectorNumElements() + 5660 cast<ConstantSDNode>(N3)->getZExtValue() <= 5661 VT.getVectorNumElements() && 5662 "Insert subvector overflow!"); 5663 5664 // Trivial insertion. 5665 if (VT == N2.getValueType()) 5666 return N2; 5667 5668 // If this is an insert of an extracted vector into an undef vector, we 5669 // can just use the input to the extract. 5670 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5671 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5672 return N2.getOperand(0); 5673 break; 5674 } 5675 case ISD::BITCAST: 5676 // Fold bit_convert nodes from a type to themselves. 5677 if (N1.getValueType() == VT) 5678 return N1; 5679 break; 5680 } 5681 5682 // Memoize node if it doesn't produce a flag. 5683 SDNode *N; 5684 SDVTList VTs = getVTList(VT); 5685 SDValue Ops[] = {N1, N2, N3}; 5686 if (VT != MVT::Glue) { 5687 FoldingSetNodeID ID; 5688 AddNodeIDNode(ID, Opcode, VTs, Ops); 5689 void *IP = nullptr; 5690 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5691 E->intersectFlagsWith(Flags); 5692 return SDValue(E, 0); 5693 } 5694 5695 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5696 N->setFlags(Flags); 5697 createOperands(N, Ops); 5698 CSEMap.InsertNode(N, IP); 5699 } else { 5700 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5701 createOperands(N, Ops); 5702 } 5703 5704 InsertNode(N); 5705 SDValue V = SDValue(N, 0); 5706 NewSDValueDbgMsg(V, "Creating new node: ", this); 5707 return V; 5708 } 5709 5710 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5711 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5712 SDValue Ops[] = { N1, N2, N3, N4 }; 5713 return getNode(Opcode, DL, VT, Ops); 5714 } 5715 5716 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5717 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5718 SDValue N5) { 5719 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5720 return getNode(Opcode, DL, VT, Ops); 5721 } 5722 5723 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5724 /// the incoming stack arguments to be loaded from the stack. 5725 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5726 SmallVector<SDValue, 8> ArgChains; 5727 5728 // Include the original chain at the beginning of the list. When this is 5729 // used by target LowerCall hooks, this helps legalize find the 5730 // CALLSEQ_BEGIN node. 5731 ArgChains.push_back(Chain); 5732 5733 // Add a chain value for each stack argument. 5734 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5735 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5736 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5737 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5738 if (FI->getIndex() < 0) 5739 ArgChains.push_back(SDValue(L, 1)); 5740 5741 // Build a tokenfactor for all the chains. 5742 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5743 } 5744 5745 /// getMemsetValue - Vectorized representation of the memset value 5746 /// operand. 5747 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5748 const SDLoc &dl) { 5749 assert(!Value.isUndef()); 5750 5751 unsigned NumBits = VT.getScalarSizeInBits(); 5752 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5753 assert(C->getAPIntValue().getBitWidth() == 8); 5754 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5755 if (VT.isInteger()) { 5756 bool IsOpaque = VT.getSizeInBits() > 64 || 5757 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5758 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5759 } 5760 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5761 VT); 5762 } 5763 5764 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5765 EVT IntVT = VT.getScalarType(); 5766 if (!IntVT.isInteger()) 5767 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5768 5769 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5770 if (NumBits > 8) { 5771 // Use a multiplication with 0x010101... to extend the input to the 5772 // required length. 5773 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5774 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5775 DAG.getConstant(Magic, dl, IntVT)); 5776 } 5777 5778 if (VT != Value.getValueType() && !VT.isInteger()) 5779 Value = DAG.getBitcast(VT.getScalarType(), Value); 5780 if (VT != Value.getValueType()) 5781 Value = DAG.getSplatBuildVector(VT, dl, Value); 5782 5783 return Value; 5784 } 5785 5786 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5787 /// used when a memcpy is turned into a memset when the source is a constant 5788 /// string ptr. 5789 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5790 const TargetLowering &TLI, 5791 const ConstantDataArraySlice &Slice) { 5792 // Handle vector with all elements zero. 5793 if (Slice.Array == nullptr) { 5794 if (VT.isInteger()) 5795 return DAG.getConstant(0, dl, VT); 5796 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5797 return DAG.getConstantFP(0.0, dl, VT); 5798 else if (VT.isVector()) { 5799 unsigned NumElts = VT.getVectorNumElements(); 5800 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5801 return DAG.getNode(ISD::BITCAST, dl, VT, 5802 DAG.getConstant(0, dl, 5803 EVT::getVectorVT(*DAG.getContext(), 5804 EltVT, NumElts))); 5805 } else 5806 llvm_unreachable("Expected type!"); 5807 } 5808 5809 assert(!VT.isVector() && "Can't handle vector type here!"); 5810 unsigned NumVTBits = VT.getSizeInBits(); 5811 unsigned NumVTBytes = NumVTBits / 8; 5812 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5813 5814 APInt Val(NumVTBits, 0); 5815 if (DAG.getDataLayout().isLittleEndian()) { 5816 for (unsigned i = 0; i != NumBytes; ++i) 5817 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5818 } else { 5819 for (unsigned i = 0; i != NumBytes; ++i) 5820 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5821 } 5822 5823 // If the "cost" of materializing the integer immediate is less than the cost 5824 // of a load, then it is cost effective to turn the load into the immediate. 5825 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5826 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5827 return DAG.getConstant(Val, dl, VT); 5828 return SDValue(nullptr, 0); 5829 } 5830 5831 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5832 const SDLoc &DL, 5833 const SDNodeFlags Flags) { 5834 EVT VT = Base.getValueType(); 5835 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5836 } 5837 5838 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5839 const SDLoc &DL, 5840 const SDNodeFlags Flags) { 5841 assert(Offset.getValueType().isInteger()); 5842 EVT BasePtrVT = Ptr.getValueType(); 5843 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5844 } 5845 5846 /// Returns true if memcpy source is constant data. 5847 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5848 uint64_t SrcDelta = 0; 5849 GlobalAddressSDNode *G = nullptr; 5850 if (Src.getOpcode() == ISD::GlobalAddress) 5851 G = cast<GlobalAddressSDNode>(Src); 5852 else if (Src.getOpcode() == ISD::ADD && 5853 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5854 Src.getOperand(1).getOpcode() == ISD::Constant) { 5855 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5856 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5857 } 5858 if (!G) 5859 return false; 5860 5861 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5862 SrcDelta + G->getOffset()); 5863 } 5864 5865 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5866 SelectionDAG &DAG) { 5867 // On Darwin, -Os means optimize for size without hurting performance, so 5868 // only really optimize for size when -Oz (MinSize) is used. 5869 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5870 return MF.getFunction().hasMinSize(); 5871 return DAG.shouldOptForSize(); 5872 } 5873 5874 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5875 SmallVector<SDValue, 32> &OutChains, unsigned From, 5876 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5877 SmallVector<SDValue, 16> &OutStoreChains) { 5878 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5879 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5880 SmallVector<SDValue, 16> GluedLoadChains; 5881 for (unsigned i = From; i < To; ++i) { 5882 OutChains.push_back(OutLoadChains[i]); 5883 GluedLoadChains.push_back(OutLoadChains[i]); 5884 } 5885 5886 // Chain for all loads. 5887 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5888 GluedLoadChains); 5889 5890 for (unsigned i = From; i < To; ++i) { 5891 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5892 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5893 ST->getBasePtr(), ST->getMemoryVT(), 5894 ST->getMemOperand()); 5895 OutChains.push_back(NewStore); 5896 } 5897 } 5898 5899 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5900 SDValue Chain, SDValue Dst, SDValue Src, 5901 uint64_t Size, Align Alignment, 5902 bool isVol, bool AlwaysInline, 5903 MachinePointerInfo DstPtrInfo, 5904 MachinePointerInfo SrcPtrInfo) { 5905 // Turn a memcpy of undef to nop. 5906 // FIXME: We need to honor volatile even is Src is undef. 5907 if (Src.isUndef()) 5908 return Chain; 5909 5910 // Expand memcpy to a series of load and store ops if the size operand falls 5911 // below a certain threshold. 5912 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5913 // rather than maybe a humongous number of loads and stores. 5914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5915 const DataLayout &DL = DAG.getDataLayout(); 5916 LLVMContext &C = *DAG.getContext(); 5917 std::vector<EVT> MemOps; 5918 bool DstAlignCanChange = false; 5919 MachineFunction &MF = DAG.getMachineFunction(); 5920 MachineFrameInfo &MFI = MF.getFrameInfo(); 5921 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5922 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5923 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5924 DstAlignCanChange = true; 5925 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 5926 if (!SrcAlign || Alignment > *SrcAlign) 5927 SrcAlign = Alignment; 5928 assert(SrcAlign && "SrcAlign must be set"); 5929 ConstantDataArraySlice Slice; 5930 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5931 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5932 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5933 const MemOp Op = isZeroConstant 5934 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5935 /*IsZeroMemset*/ true, isVol) 5936 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5937 *SrcAlign, isVol, CopyFromConstant); 5938 if (!TLI.findOptimalMemOpLowering( 5939 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5940 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5941 return SDValue(); 5942 5943 if (DstAlignCanChange) { 5944 Type *Ty = MemOps[0].getTypeForEVT(C); 5945 Align NewAlign = DL.getABITypeAlign(Ty); 5946 5947 // Don't promote to an alignment that would require dynamic stack 5948 // realignment. 5949 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5950 if (!TRI->needsStackRealignment(MF)) 5951 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 5952 NewAlign = NewAlign / 2; 5953 5954 if (NewAlign > Alignment) { 5955 // Give the stack frame object a larger alignment if needed. 5956 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 5957 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5958 Alignment = NewAlign; 5959 } 5960 } 5961 5962 MachineMemOperand::Flags MMOFlags = 5963 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5964 SmallVector<SDValue, 16> OutLoadChains; 5965 SmallVector<SDValue, 16> OutStoreChains; 5966 SmallVector<SDValue, 32> OutChains; 5967 unsigned NumMemOps = MemOps.size(); 5968 uint64_t SrcOff = 0, DstOff = 0; 5969 for (unsigned i = 0; i != NumMemOps; ++i) { 5970 EVT VT = MemOps[i]; 5971 unsigned VTSize = VT.getSizeInBits() / 8; 5972 SDValue Value, Store; 5973 5974 if (VTSize > Size) { 5975 // Issuing an unaligned load / store pair that overlaps with the previous 5976 // pair. Adjust the offset accordingly. 5977 assert(i == NumMemOps-1 && i != 0); 5978 SrcOff -= VTSize - Size; 5979 DstOff -= VTSize - Size; 5980 } 5981 5982 if (CopyFromConstant && 5983 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5984 // It's unlikely a store of a vector immediate can be done in a single 5985 // instruction. It would require a load from a constantpool first. 5986 // We only handle zero vectors here. 5987 // FIXME: Handle other cases where store of vector immediate is done in 5988 // a single instruction. 5989 ConstantDataArraySlice SubSlice; 5990 if (SrcOff < Slice.Length) { 5991 SubSlice = Slice; 5992 SubSlice.move(SrcOff); 5993 } else { 5994 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5995 SubSlice.Array = nullptr; 5996 SubSlice.Offset = 0; 5997 SubSlice.Length = VTSize; 5998 } 5999 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6000 if (Value.getNode()) { 6001 Store = DAG.getStore( 6002 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6003 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6004 OutChains.push_back(Store); 6005 } 6006 } 6007 6008 if (!Store.getNode()) { 6009 // The type might not be legal for the target. This should only happen 6010 // if the type is smaller than a legal type, as on PPC, so the right 6011 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6012 // to Load/Store if NVT==VT. 6013 // FIXME does the case above also need this? 6014 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6015 assert(NVT.bitsGE(VT)); 6016 6017 bool isDereferenceable = 6018 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6019 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6020 if (isDereferenceable) 6021 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6022 6023 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6024 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6025 SrcPtrInfo.getWithOffset(SrcOff), VT, 6026 commonAlignment(*SrcAlign, SrcOff).value(), 6027 SrcMMOFlags); 6028 OutLoadChains.push_back(Value.getValue(1)); 6029 6030 Store = DAG.getTruncStore( 6031 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6032 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6033 OutStoreChains.push_back(Store); 6034 } 6035 SrcOff += VTSize; 6036 DstOff += VTSize; 6037 Size -= VTSize; 6038 } 6039 6040 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6041 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6042 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6043 6044 if (NumLdStInMemcpy) { 6045 // It may be that memcpy might be converted to memset if it's memcpy 6046 // of constants. In such a case, we won't have loads and stores, but 6047 // just stores. In the absence of loads, there is nothing to gang up. 6048 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6049 // If target does not care, just leave as it. 6050 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6051 OutChains.push_back(OutLoadChains[i]); 6052 OutChains.push_back(OutStoreChains[i]); 6053 } 6054 } else { 6055 // Ld/St less than/equal limit set by target. 6056 if (NumLdStInMemcpy <= GluedLdStLimit) { 6057 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6058 NumLdStInMemcpy, OutLoadChains, 6059 OutStoreChains); 6060 } else { 6061 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6062 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6063 unsigned GlueIter = 0; 6064 6065 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6066 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6067 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6068 6069 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6070 OutLoadChains, OutStoreChains); 6071 GlueIter += GluedLdStLimit; 6072 } 6073 6074 // Residual ld/st. 6075 if (RemainingLdStInMemcpy) { 6076 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6077 RemainingLdStInMemcpy, OutLoadChains, 6078 OutStoreChains); 6079 } 6080 } 6081 } 6082 } 6083 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6084 } 6085 6086 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6087 SDValue Chain, SDValue Dst, SDValue Src, 6088 uint64_t Size, Align Alignment, 6089 bool isVol, bool AlwaysInline, 6090 MachinePointerInfo DstPtrInfo, 6091 MachinePointerInfo SrcPtrInfo) { 6092 // Turn a memmove of undef to nop. 6093 // FIXME: We need to honor volatile even is Src is undef. 6094 if (Src.isUndef()) 6095 return Chain; 6096 6097 // Expand memmove to a series of load and store ops if the size operand falls 6098 // below a certain threshold. 6099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6100 const DataLayout &DL = DAG.getDataLayout(); 6101 LLVMContext &C = *DAG.getContext(); 6102 std::vector<EVT> MemOps; 6103 bool DstAlignCanChange = false; 6104 MachineFunction &MF = DAG.getMachineFunction(); 6105 MachineFrameInfo &MFI = MF.getFrameInfo(); 6106 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6107 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6108 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6109 DstAlignCanChange = true; 6110 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6111 if (!SrcAlign || Alignment > *SrcAlign) 6112 SrcAlign = Alignment; 6113 assert(SrcAlign && "SrcAlign must be set"); 6114 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6115 if (!TLI.findOptimalMemOpLowering( 6116 MemOps, Limit, 6117 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6118 /*IsVolatile*/ true), 6119 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6120 MF.getFunction().getAttributes())) 6121 return SDValue(); 6122 6123 if (DstAlignCanChange) { 6124 Type *Ty = MemOps[0].getTypeForEVT(C); 6125 Align NewAlign = DL.getABITypeAlign(Ty); 6126 if (NewAlign > Alignment) { 6127 // Give the stack frame object a larger alignment if needed. 6128 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6129 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6130 Alignment = NewAlign; 6131 } 6132 } 6133 6134 MachineMemOperand::Flags MMOFlags = 6135 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6136 uint64_t SrcOff = 0, DstOff = 0; 6137 SmallVector<SDValue, 8> LoadValues; 6138 SmallVector<SDValue, 8> LoadChains; 6139 SmallVector<SDValue, 8> OutChains; 6140 unsigned NumMemOps = MemOps.size(); 6141 for (unsigned i = 0; i < NumMemOps; i++) { 6142 EVT VT = MemOps[i]; 6143 unsigned VTSize = VT.getSizeInBits() / 8; 6144 SDValue Value; 6145 6146 bool isDereferenceable = 6147 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6148 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6149 if (isDereferenceable) 6150 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6151 6152 Value = DAG.getLoad( 6153 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6154 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6155 LoadValues.push_back(Value); 6156 LoadChains.push_back(Value.getValue(1)); 6157 SrcOff += VTSize; 6158 } 6159 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6160 OutChains.clear(); 6161 for (unsigned i = 0; i < NumMemOps; i++) { 6162 EVT VT = MemOps[i]; 6163 unsigned VTSize = VT.getSizeInBits() / 8; 6164 SDValue Store; 6165 6166 Store = DAG.getStore( 6167 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6168 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6169 OutChains.push_back(Store); 6170 DstOff += VTSize; 6171 } 6172 6173 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6174 } 6175 6176 /// Lower the call to 'memset' intrinsic function into a series of store 6177 /// operations. 6178 /// 6179 /// \param DAG Selection DAG where lowered code is placed. 6180 /// \param dl Link to corresponding IR location. 6181 /// \param Chain Control flow dependency. 6182 /// \param Dst Pointer to destination memory location. 6183 /// \param Src Value of byte to write into the memory. 6184 /// \param Size Number of bytes to write. 6185 /// \param Alignment Alignment of the destination in bytes. 6186 /// \param isVol True if destination is volatile. 6187 /// \param DstPtrInfo IR information on the memory pointer. 6188 /// \returns New head in the control flow, if lowering was successful, empty 6189 /// SDValue otherwise. 6190 /// 6191 /// The function tries to replace 'llvm.memset' intrinsic with several store 6192 /// operations and value calculation code. This is usually profitable for small 6193 /// memory size. 6194 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6195 SDValue Chain, SDValue Dst, SDValue Src, 6196 uint64_t Size, Align Alignment, bool isVol, 6197 MachinePointerInfo DstPtrInfo) { 6198 // Turn a memset of undef to nop. 6199 // FIXME: We need to honor volatile even is Src is undef. 6200 if (Src.isUndef()) 6201 return Chain; 6202 6203 // Expand memset to a series of load/store ops if the size operand 6204 // falls below a certain threshold. 6205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6206 std::vector<EVT> MemOps; 6207 bool DstAlignCanChange = false; 6208 MachineFunction &MF = DAG.getMachineFunction(); 6209 MachineFrameInfo &MFI = MF.getFrameInfo(); 6210 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6211 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6212 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6213 DstAlignCanChange = true; 6214 bool IsZeroVal = 6215 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6216 if (!TLI.findOptimalMemOpLowering( 6217 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6218 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6219 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6220 return SDValue(); 6221 6222 if (DstAlignCanChange) { 6223 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6224 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6225 if (NewAlign > Alignment) { 6226 // Give the stack frame object a larger alignment if needed. 6227 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6228 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6229 Alignment = NewAlign; 6230 } 6231 } 6232 6233 SmallVector<SDValue, 8> OutChains; 6234 uint64_t DstOff = 0; 6235 unsigned NumMemOps = MemOps.size(); 6236 6237 // Find the largest store and generate the bit pattern for it. 6238 EVT LargestVT = MemOps[0]; 6239 for (unsigned i = 1; i < NumMemOps; i++) 6240 if (MemOps[i].bitsGT(LargestVT)) 6241 LargestVT = MemOps[i]; 6242 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6243 6244 for (unsigned i = 0; i < NumMemOps; i++) { 6245 EVT VT = MemOps[i]; 6246 unsigned VTSize = VT.getSizeInBits() / 8; 6247 if (VTSize > Size) { 6248 // Issuing an unaligned load / store pair that overlaps with the previous 6249 // pair. Adjust the offset accordingly. 6250 assert(i == NumMemOps-1 && i != 0); 6251 DstOff -= VTSize - Size; 6252 } 6253 6254 // If this store is smaller than the largest store see whether we can get 6255 // the smaller value for free with a truncate. 6256 SDValue Value = MemSetValue; 6257 if (VT.bitsLT(LargestVT)) { 6258 if (!LargestVT.isVector() && !VT.isVector() && 6259 TLI.isTruncateFree(LargestVT, VT)) 6260 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6261 else 6262 Value = getMemsetValue(Src, VT, DAG, dl); 6263 } 6264 assert(Value.getValueType() == VT && "Value with wrong type."); 6265 SDValue Store = DAG.getStore( 6266 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6267 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6268 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6269 OutChains.push_back(Store); 6270 DstOff += VT.getSizeInBits() / 8; 6271 Size -= VTSize; 6272 } 6273 6274 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6275 } 6276 6277 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6278 unsigned AS) { 6279 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6280 // pointer operands can be losslessly bitcasted to pointers of address space 0 6281 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6282 report_fatal_error("cannot lower memory intrinsic in address space " + 6283 Twine(AS)); 6284 } 6285 } 6286 6287 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6288 SDValue Src, SDValue Size, Align Alignment, 6289 bool isVol, bool AlwaysInline, bool isTailCall, 6290 MachinePointerInfo DstPtrInfo, 6291 MachinePointerInfo SrcPtrInfo) { 6292 // Check to see if we should lower the memcpy to loads and stores first. 6293 // For cases within the target-specified limits, this is the best choice. 6294 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6295 if (ConstantSize) { 6296 // Memcpy with size zero? Just return the original chain. 6297 if (ConstantSize->isNullValue()) 6298 return Chain; 6299 6300 SDValue Result = getMemcpyLoadsAndStores( 6301 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6302 isVol, false, DstPtrInfo, SrcPtrInfo); 6303 if (Result.getNode()) 6304 return Result; 6305 } 6306 6307 // Then check to see if we should lower the memcpy with target-specific 6308 // code. If the target chooses to do this, this is the next best. 6309 if (TSI) { 6310 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6311 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6312 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6313 if (Result.getNode()) 6314 return Result; 6315 } 6316 6317 // If we really need inline code and the target declined to provide it, 6318 // use a (potentially long) sequence of loads and stores. 6319 if (AlwaysInline) { 6320 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6321 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6322 ConstantSize->getZExtValue(), Alignment, 6323 isVol, true, DstPtrInfo, SrcPtrInfo); 6324 } 6325 6326 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6327 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6328 6329 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6330 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6331 // respect volatile, so they may do things like read or write memory 6332 // beyond the given memory regions. But fixing this isn't easy, and most 6333 // people don't care. 6334 6335 // Emit a library call. 6336 TargetLowering::ArgListTy Args; 6337 TargetLowering::ArgListEntry Entry; 6338 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6339 Entry.Node = Dst; Args.push_back(Entry); 6340 Entry.Node = Src; Args.push_back(Entry); 6341 6342 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6343 Entry.Node = Size; Args.push_back(Entry); 6344 // FIXME: pass in SDLoc 6345 TargetLowering::CallLoweringInfo CLI(*this); 6346 CLI.setDebugLoc(dl) 6347 .setChain(Chain) 6348 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6349 Dst.getValueType().getTypeForEVT(*getContext()), 6350 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6351 TLI->getPointerTy(getDataLayout())), 6352 std::move(Args)) 6353 .setDiscardResult() 6354 .setTailCall(isTailCall); 6355 6356 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6357 return CallResult.second; 6358 } 6359 6360 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6361 SDValue Dst, unsigned DstAlign, 6362 SDValue Src, unsigned SrcAlign, 6363 SDValue Size, Type *SizeTy, 6364 unsigned ElemSz, bool isTailCall, 6365 MachinePointerInfo DstPtrInfo, 6366 MachinePointerInfo SrcPtrInfo) { 6367 // Emit a library call. 6368 TargetLowering::ArgListTy Args; 6369 TargetLowering::ArgListEntry Entry; 6370 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6371 Entry.Node = Dst; 6372 Args.push_back(Entry); 6373 6374 Entry.Node = Src; 6375 Args.push_back(Entry); 6376 6377 Entry.Ty = SizeTy; 6378 Entry.Node = Size; 6379 Args.push_back(Entry); 6380 6381 RTLIB::Libcall LibraryCall = 6382 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6383 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6384 report_fatal_error("Unsupported element size"); 6385 6386 TargetLowering::CallLoweringInfo CLI(*this); 6387 CLI.setDebugLoc(dl) 6388 .setChain(Chain) 6389 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6390 Type::getVoidTy(*getContext()), 6391 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6392 TLI->getPointerTy(getDataLayout())), 6393 std::move(Args)) 6394 .setDiscardResult() 6395 .setTailCall(isTailCall); 6396 6397 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6398 return CallResult.second; 6399 } 6400 6401 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6402 SDValue Src, SDValue Size, Align Alignment, 6403 bool isVol, bool isTailCall, 6404 MachinePointerInfo DstPtrInfo, 6405 MachinePointerInfo SrcPtrInfo) { 6406 // Check to see if we should lower the memmove to loads and stores first. 6407 // For cases within the target-specified limits, this is the best choice. 6408 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6409 if (ConstantSize) { 6410 // Memmove with size zero? Just return the original chain. 6411 if (ConstantSize->isNullValue()) 6412 return Chain; 6413 6414 SDValue Result = getMemmoveLoadsAndStores( 6415 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6416 isVol, false, DstPtrInfo, SrcPtrInfo); 6417 if (Result.getNode()) 6418 return Result; 6419 } 6420 6421 // Then check to see if we should lower the memmove with target-specific 6422 // code. If the target chooses to do this, this is the next best. 6423 if (TSI) { 6424 SDValue Result = TSI->EmitTargetCodeForMemmove( 6425 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6426 SrcPtrInfo); 6427 if (Result.getNode()) 6428 return Result; 6429 } 6430 6431 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6432 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6433 6434 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6435 // not be safe. See memcpy above for more details. 6436 6437 // Emit a library call. 6438 TargetLowering::ArgListTy Args; 6439 TargetLowering::ArgListEntry Entry; 6440 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6441 Entry.Node = Dst; Args.push_back(Entry); 6442 Entry.Node = Src; Args.push_back(Entry); 6443 6444 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6445 Entry.Node = Size; Args.push_back(Entry); 6446 // FIXME: pass in SDLoc 6447 TargetLowering::CallLoweringInfo CLI(*this); 6448 CLI.setDebugLoc(dl) 6449 .setChain(Chain) 6450 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6451 Dst.getValueType().getTypeForEVT(*getContext()), 6452 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6453 TLI->getPointerTy(getDataLayout())), 6454 std::move(Args)) 6455 .setDiscardResult() 6456 .setTailCall(isTailCall); 6457 6458 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6459 return CallResult.second; 6460 } 6461 6462 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6463 SDValue Dst, unsigned DstAlign, 6464 SDValue Src, unsigned SrcAlign, 6465 SDValue Size, Type *SizeTy, 6466 unsigned ElemSz, bool isTailCall, 6467 MachinePointerInfo DstPtrInfo, 6468 MachinePointerInfo SrcPtrInfo) { 6469 // Emit a library call. 6470 TargetLowering::ArgListTy Args; 6471 TargetLowering::ArgListEntry Entry; 6472 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6473 Entry.Node = Dst; 6474 Args.push_back(Entry); 6475 6476 Entry.Node = Src; 6477 Args.push_back(Entry); 6478 6479 Entry.Ty = SizeTy; 6480 Entry.Node = Size; 6481 Args.push_back(Entry); 6482 6483 RTLIB::Libcall LibraryCall = 6484 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6485 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6486 report_fatal_error("Unsupported element size"); 6487 6488 TargetLowering::CallLoweringInfo CLI(*this); 6489 CLI.setDebugLoc(dl) 6490 .setChain(Chain) 6491 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6492 Type::getVoidTy(*getContext()), 6493 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6494 TLI->getPointerTy(getDataLayout())), 6495 std::move(Args)) 6496 .setDiscardResult() 6497 .setTailCall(isTailCall); 6498 6499 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6500 return CallResult.second; 6501 } 6502 6503 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6504 SDValue Src, SDValue Size, Align Alignment, 6505 bool isVol, bool isTailCall, 6506 MachinePointerInfo DstPtrInfo) { 6507 // Check to see if we should lower the memset to stores first. 6508 // For cases within the target-specified limits, this is the best choice. 6509 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6510 if (ConstantSize) { 6511 // Memset with size zero? Just return the original chain. 6512 if (ConstantSize->isNullValue()) 6513 return Chain; 6514 6515 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6516 ConstantSize->getZExtValue(), Alignment, 6517 isVol, DstPtrInfo); 6518 6519 if (Result.getNode()) 6520 return Result; 6521 } 6522 6523 // Then check to see if we should lower the memset with target-specific 6524 // code. If the target chooses to do this, this is the next best. 6525 if (TSI) { 6526 SDValue Result = TSI->EmitTargetCodeForMemset( 6527 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6528 if (Result.getNode()) 6529 return Result; 6530 } 6531 6532 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6533 6534 // Emit a library call. 6535 TargetLowering::ArgListTy Args; 6536 TargetLowering::ArgListEntry Entry; 6537 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6538 Args.push_back(Entry); 6539 Entry.Node = Src; 6540 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6541 Args.push_back(Entry); 6542 Entry.Node = Size; 6543 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6544 Args.push_back(Entry); 6545 6546 // FIXME: pass in SDLoc 6547 TargetLowering::CallLoweringInfo CLI(*this); 6548 CLI.setDebugLoc(dl) 6549 .setChain(Chain) 6550 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6551 Dst.getValueType().getTypeForEVT(*getContext()), 6552 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6553 TLI->getPointerTy(getDataLayout())), 6554 std::move(Args)) 6555 .setDiscardResult() 6556 .setTailCall(isTailCall); 6557 6558 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6559 return CallResult.second; 6560 } 6561 6562 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6563 SDValue Dst, unsigned DstAlign, 6564 SDValue Value, SDValue Size, Type *SizeTy, 6565 unsigned ElemSz, bool isTailCall, 6566 MachinePointerInfo DstPtrInfo) { 6567 // Emit a library call. 6568 TargetLowering::ArgListTy Args; 6569 TargetLowering::ArgListEntry Entry; 6570 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6571 Entry.Node = Dst; 6572 Args.push_back(Entry); 6573 6574 Entry.Ty = Type::getInt8Ty(*getContext()); 6575 Entry.Node = Value; 6576 Args.push_back(Entry); 6577 6578 Entry.Ty = SizeTy; 6579 Entry.Node = Size; 6580 Args.push_back(Entry); 6581 6582 RTLIB::Libcall LibraryCall = 6583 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6584 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6585 report_fatal_error("Unsupported element size"); 6586 6587 TargetLowering::CallLoweringInfo CLI(*this); 6588 CLI.setDebugLoc(dl) 6589 .setChain(Chain) 6590 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6591 Type::getVoidTy(*getContext()), 6592 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6593 TLI->getPointerTy(getDataLayout())), 6594 std::move(Args)) 6595 .setDiscardResult() 6596 .setTailCall(isTailCall); 6597 6598 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6599 return CallResult.second; 6600 } 6601 6602 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6603 SDVTList VTList, ArrayRef<SDValue> Ops, 6604 MachineMemOperand *MMO) { 6605 FoldingSetNodeID ID; 6606 ID.AddInteger(MemVT.getRawBits()); 6607 AddNodeIDNode(ID, Opcode, VTList, Ops); 6608 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6609 void* IP = nullptr; 6610 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6611 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6612 return SDValue(E, 0); 6613 } 6614 6615 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6616 VTList, MemVT, MMO); 6617 createOperands(N, Ops); 6618 6619 CSEMap.InsertNode(N, IP); 6620 InsertNode(N); 6621 return SDValue(N, 0); 6622 } 6623 6624 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6625 EVT MemVT, SDVTList VTs, SDValue Chain, 6626 SDValue Ptr, SDValue Cmp, SDValue Swp, 6627 MachineMemOperand *MMO) { 6628 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6629 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6630 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6631 6632 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6633 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6634 } 6635 6636 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6637 SDValue Chain, SDValue Ptr, SDValue Val, 6638 MachineMemOperand *MMO) { 6639 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6640 Opcode == ISD::ATOMIC_LOAD_SUB || 6641 Opcode == ISD::ATOMIC_LOAD_AND || 6642 Opcode == ISD::ATOMIC_LOAD_CLR || 6643 Opcode == ISD::ATOMIC_LOAD_OR || 6644 Opcode == ISD::ATOMIC_LOAD_XOR || 6645 Opcode == ISD::ATOMIC_LOAD_NAND || 6646 Opcode == ISD::ATOMIC_LOAD_MIN || 6647 Opcode == ISD::ATOMIC_LOAD_MAX || 6648 Opcode == ISD::ATOMIC_LOAD_UMIN || 6649 Opcode == ISD::ATOMIC_LOAD_UMAX || 6650 Opcode == ISD::ATOMIC_LOAD_FADD || 6651 Opcode == ISD::ATOMIC_LOAD_FSUB || 6652 Opcode == ISD::ATOMIC_SWAP || 6653 Opcode == ISD::ATOMIC_STORE) && 6654 "Invalid Atomic Op"); 6655 6656 EVT VT = Val.getValueType(); 6657 6658 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6659 getVTList(VT, MVT::Other); 6660 SDValue Ops[] = {Chain, Ptr, Val}; 6661 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6662 } 6663 6664 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6665 EVT VT, SDValue Chain, SDValue Ptr, 6666 MachineMemOperand *MMO) { 6667 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6668 6669 SDVTList VTs = getVTList(VT, MVT::Other); 6670 SDValue Ops[] = {Chain, Ptr}; 6671 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6672 } 6673 6674 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6675 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6676 if (Ops.size() == 1) 6677 return Ops[0]; 6678 6679 SmallVector<EVT, 4> VTs; 6680 VTs.reserve(Ops.size()); 6681 for (unsigned i = 0; i < Ops.size(); ++i) 6682 VTs.push_back(Ops[i].getValueType()); 6683 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6684 } 6685 6686 SDValue SelectionDAG::getMemIntrinsicNode( 6687 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6688 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6689 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6690 if (!Size && MemVT.isScalableVector()) 6691 Size = MemoryLocation::UnknownSize; 6692 else if (!Size) 6693 Size = MemVT.getStoreSize(); 6694 6695 MachineFunction &MF = getMachineFunction(); 6696 MachineMemOperand *MMO = 6697 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6698 6699 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6700 } 6701 6702 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6703 SDVTList VTList, 6704 ArrayRef<SDValue> Ops, EVT MemVT, 6705 MachineMemOperand *MMO) { 6706 assert((Opcode == ISD::INTRINSIC_VOID || 6707 Opcode == ISD::INTRINSIC_W_CHAIN || 6708 Opcode == ISD::PREFETCH || 6709 ((int)Opcode <= std::numeric_limits<int>::max() && 6710 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6711 "Opcode is not a memory-accessing opcode!"); 6712 6713 // Memoize the node unless it returns a flag. 6714 MemIntrinsicSDNode *N; 6715 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6716 FoldingSetNodeID ID; 6717 AddNodeIDNode(ID, Opcode, VTList, Ops); 6718 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6719 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6720 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6721 void *IP = nullptr; 6722 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6723 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6724 return SDValue(E, 0); 6725 } 6726 6727 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6728 VTList, MemVT, MMO); 6729 createOperands(N, Ops); 6730 6731 CSEMap.InsertNode(N, IP); 6732 } else { 6733 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6734 VTList, MemVT, MMO); 6735 createOperands(N, Ops); 6736 } 6737 InsertNode(N); 6738 SDValue V(N, 0); 6739 NewSDValueDbgMsg(V, "Creating new node: ", this); 6740 return V; 6741 } 6742 6743 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6744 SDValue Chain, int FrameIndex, 6745 int64_t Size, int64_t Offset) { 6746 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6747 const auto VTs = getVTList(MVT::Other); 6748 SDValue Ops[2] = { 6749 Chain, 6750 getFrameIndex(FrameIndex, 6751 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6752 true)}; 6753 6754 FoldingSetNodeID ID; 6755 AddNodeIDNode(ID, Opcode, VTs, Ops); 6756 ID.AddInteger(FrameIndex); 6757 ID.AddInteger(Size); 6758 ID.AddInteger(Offset); 6759 void *IP = nullptr; 6760 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6761 return SDValue(E, 0); 6762 6763 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6764 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6765 createOperands(N, Ops); 6766 CSEMap.InsertNode(N, IP); 6767 InsertNode(N); 6768 SDValue V(N, 0); 6769 NewSDValueDbgMsg(V, "Creating new node: ", this); 6770 return V; 6771 } 6772 6773 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6774 /// MachinePointerInfo record from it. This is particularly useful because the 6775 /// code generator has many cases where it doesn't bother passing in a 6776 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6777 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6778 SelectionDAG &DAG, SDValue Ptr, 6779 int64_t Offset = 0) { 6780 // If this is FI+Offset, we can model it. 6781 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6782 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6783 FI->getIndex(), Offset); 6784 6785 // If this is (FI+Offset1)+Offset2, we can model it. 6786 if (Ptr.getOpcode() != ISD::ADD || 6787 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6788 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6789 return Info; 6790 6791 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6792 return MachinePointerInfo::getFixedStack( 6793 DAG.getMachineFunction(), FI, 6794 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6795 } 6796 6797 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6798 /// MachinePointerInfo record from it. This is particularly useful because the 6799 /// code generator has many cases where it doesn't bother passing in a 6800 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6801 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6802 SelectionDAG &DAG, SDValue Ptr, 6803 SDValue OffsetOp) { 6804 // If the 'Offset' value isn't a constant, we can't handle this. 6805 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6806 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6807 if (OffsetOp.isUndef()) 6808 return InferPointerInfo(Info, DAG, Ptr); 6809 return Info; 6810 } 6811 6812 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6813 EVT VT, const SDLoc &dl, SDValue Chain, 6814 SDValue Ptr, SDValue Offset, 6815 MachinePointerInfo PtrInfo, EVT MemVT, 6816 Align Alignment, 6817 MachineMemOperand::Flags MMOFlags, 6818 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6819 assert(Chain.getValueType() == MVT::Other && 6820 "Invalid chain type"); 6821 6822 MMOFlags |= MachineMemOperand::MOLoad; 6823 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6824 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6825 // clients. 6826 if (PtrInfo.V.isNull()) 6827 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6828 6829 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6830 MachineFunction &MF = getMachineFunction(); 6831 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6832 Alignment, AAInfo, Ranges); 6833 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6834 } 6835 6836 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6837 EVT VT, const SDLoc &dl, SDValue Chain, 6838 SDValue Ptr, SDValue Offset, EVT MemVT, 6839 MachineMemOperand *MMO) { 6840 if (VT == MemVT) { 6841 ExtType = ISD::NON_EXTLOAD; 6842 } else if (ExtType == ISD::NON_EXTLOAD) { 6843 assert(VT == MemVT && "Non-extending load from different memory type!"); 6844 } else { 6845 // Extending load. 6846 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6847 "Should only be an extending load, not truncating!"); 6848 assert(VT.isInteger() == MemVT.isInteger() && 6849 "Cannot convert from FP to Int or Int -> FP!"); 6850 assert(VT.isVector() == MemVT.isVector() && 6851 "Cannot use an ext load to convert to or from a vector!"); 6852 assert((!VT.isVector() || 6853 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6854 "Cannot use an ext load to change the number of vector elements!"); 6855 } 6856 6857 bool Indexed = AM != ISD::UNINDEXED; 6858 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6859 6860 SDVTList VTs = Indexed ? 6861 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6862 SDValue Ops[] = { Chain, Ptr, Offset }; 6863 FoldingSetNodeID ID; 6864 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6865 ID.AddInteger(MemVT.getRawBits()); 6866 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6867 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6868 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6869 void *IP = nullptr; 6870 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6871 cast<LoadSDNode>(E)->refineAlignment(MMO); 6872 return SDValue(E, 0); 6873 } 6874 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6875 ExtType, MemVT, MMO); 6876 createOperands(N, Ops); 6877 6878 CSEMap.InsertNode(N, IP); 6879 InsertNode(N); 6880 SDValue V(N, 0); 6881 NewSDValueDbgMsg(V, "Creating new node: ", this); 6882 return V; 6883 } 6884 6885 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6886 SDValue Ptr, MachinePointerInfo PtrInfo, 6887 MaybeAlign Alignment, 6888 MachineMemOperand::Flags MMOFlags, 6889 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6890 SDValue Undef = getUNDEF(Ptr.getValueType()); 6891 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6892 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6893 } 6894 6895 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6896 SDValue Ptr, MachineMemOperand *MMO) { 6897 SDValue Undef = getUNDEF(Ptr.getValueType()); 6898 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6899 VT, MMO); 6900 } 6901 6902 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6903 EVT VT, SDValue Chain, SDValue Ptr, 6904 MachinePointerInfo PtrInfo, EVT MemVT, 6905 MaybeAlign Alignment, 6906 MachineMemOperand::Flags MMOFlags, 6907 const AAMDNodes &AAInfo) { 6908 SDValue Undef = getUNDEF(Ptr.getValueType()); 6909 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6910 MemVT, Alignment, MMOFlags, AAInfo); 6911 } 6912 6913 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6914 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6915 MachineMemOperand *MMO) { 6916 SDValue Undef = getUNDEF(Ptr.getValueType()); 6917 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6918 MemVT, MMO); 6919 } 6920 6921 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6922 SDValue Base, SDValue Offset, 6923 ISD::MemIndexedMode AM) { 6924 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6925 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6926 // Don't propagate the invariant or dereferenceable flags. 6927 auto MMOFlags = 6928 LD->getMemOperand()->getFlags() & 6929 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6930 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6931 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6932 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6933 LD->getAAInfo()); 6934 } 6935 6936 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6937 SDValue Ptr, MachinePointerInfo PtrInfo, 6938 Align Alignment, 6939 MachineMemOperand::Flags MMOFlags, 6940 const AAMDNodes &AAInfo) { 6941 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6942 6943 MMOFlags |= MachineMemOperand::MOStore; 6944 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6945 6946 if (PtrInfo.V.isNull()) 6947 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6948 6949 MachineFunction &MF = getMachineFunction(); 6950 uint64_t Size = 6951 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 6952 MachineMemOperand *MMO = 6953 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 6954 return getStore(Chain, dl, Val, Ptr, MMO); 6955 } 6956 6957 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6958 SDValue Ptr, MachineMemOperand *MMO) { 6959 assert(Chain.getValueType() == MVT::Other && 6960 "Invalid chain type"); 6961 EVT VT = Val.getValueType(); 6962 SDVTList VTs = getVTList(MVT::Other); 6963 SDValue Undef = getUNDEF(Ptr.getValueType()); 6964 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6965 FoldingSetNodeID ID; 6966 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6967 ID.AddInteger(VT.getRawBits()); 6968 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6969 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6970 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6971 void *IP = nullptr; 6972 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6973 cast<StoreSDNode>(E)->refineAlignment(MMO); 6974 return SDValue(E, 0); 6975 } 6976 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6977 ISD::UNINDEXED, false, VT, MMO); 6978 createOperands(N, Ops); 6979 6980 CSEMap.InsertNode(N, IP); 6981 InsertNode(N); 6982 SDValue V(N, 0); 6983 NewSDValueDbgMsg(V, "Creating new node: ", this); 6984 return V; 6985 } 6986 6987 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6988 SDValue Ptr, MachinePointerInfo PtrInfo, 6989 EVT SVT, Align Alignment, 6990 MachineMemOperand::Flags MMOFlags, 6991 const AAMDNodes &AAInfo) { 6992 assert(Chain.getValueType() == MVT::Other && 6993 "Invalid chain type"); 6994 6995 MMOFlags |= MachineMemOperand::MOStore; 6996 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6997 6998 if (PtrInfo.V.isNull()) 6999 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7000 7001 MachineFunction &MF = getMachineFunction(); 7002 MachineMemOperand *MMO = MF.getMachineMemOperand( 7003 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7004 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7005 } 7006 7007 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7008 SDValue Ptr, EVT SVT, 7009 MachineMemOperand *MMO) { 7010 EVT VT = Val.getValueType(); 7011 7012 assert(Chain.getValueType() == MVT::Other && 7013 "Invalid chain type"); 7014 if (VT == SVT) 7015 return getStore(Chain, dl, Val, Ptr, MMO); 7016 7017 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7018 "Should only be a truncating store, not extending!"); 7019 assert(VT.isInteger() == SVT.isInteger() && 7020 "Can't do FP-INT conversion!"); 7021 assert(VT.isVector() == SVT.isVector() && 7022 "Cannot use trunc store to convert to or from a vector!"); 7023 assert((!VT.isVector() || 7024 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7025 "Cannot use trunc store to change the number of vector elements!"); 7026 7027 SDVTList VTs = getVTList(MVT::Other); 7028 SDValue Undef = getUNDEF(Ptr.getValueType()); 7029 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7030 FoldingSetNodeID ID; 7031 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7032 ID.AddInteger(SVT.getRawBits()); 7033 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7034 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7035 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7036 void *IP = nullptr; 7037 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7038 cast<StoreSDNode>(E)->refineAlignment(MMO); 7039 return SDValue(E, 0); 7040 } 7041 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7042 ISD::UNINDEXED, true, SVT, MMO); 7043 createOperands(N, Ops); 7044 7045 CSEMap.InsertNode(N, IP); 7046 InsertNode(N); 7047 SDValue V(N, 0); 7048 NewSDValueDbgMsg(V, "Creating new node: ", this); 7049 return V; 7050 } 7051 7052 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7053 SDValue Base, SDValue Offset, 7054 ISD::MemIndexedMode AM) { 7055 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7056 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7057 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7058 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7059 FoldingSetNodeID ID; 7060 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7061 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7062 ID.AddInteger(ST->getRawSubclassData()); 7063 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7064 void *IP = nullptr; 7065 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7066 return SDValue(E, 0); 7067 7068 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7069 ST->isTruncatingStore(), ST->getMemoryVT(), 7070 ST->getMemOperand()); 7071 createOperands(N, Ops); 7072 7073 CSEMap.InsertNode(N, IP); 7074 InsertNode(N); 7075 SDValue V(N, 0); 7076 NewSDValueDbgMsg(V, "Creating new node: ", this); 7077 return V; 7078 } 7079 7080 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7081 SDValue Base, SDValue Offset, SDValue Mask, 7082 SDValue PassThru, EVT MemVT, 7083 MachineMemOperand *MMO, 7084 ISD::MemIndexedMode AM, 7085 ISD::LoadExtType ExtTy, bool isExpanding) { 7086 bool Indexed = AM != ISD::UNINDEXED; 7087 assert((Indexed || Offset.isUndef()) && 7088 "Unindexed masked load with an offset!"); 7089 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7090 : getVTList(VT, MVT::Other); 7091 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7092 FoldingSetNodeID ID; 7093 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7094 ID.AddInteger(MemVT.getRawBits()); 7095 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7096 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7097 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7098 void *IP = nullptr; 7099 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7100 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7101 return SDValue(E, 0); 7102 } 7103 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7104 AM, ExtTy, isExpanding, MemVT, MMO); 7105 createOperands(N, Ops); 7106 7107 CSEMap.InsertNode(N, IP); 7108 InsertNode(N); 7109 SDValue V(N, 0); 7110 NewSDValueDbgMsg(V, "Creating new node: ", this); 7111 return V; 7112 } 7113 7114 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7115 SDValue Base, SDValue Offset, 7116 ISD::MemIndexedMode AM) { 7117 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7118 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7119 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7120 Offset, LD->getMask(), LD->getPassThru(), 7121 LD->getMemoryVT(), LD->getMemOperand(), AM, 7122 LD->getExtensionType(), LD->isExpandingLoad()); 7123 } 7124 7125 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7126 SDValue Val, SDValue Base, SDValue Offset, 7127 SDValue Mask, EVT MemVT, 7128 MachineMemOperand *MMO, 7129 ISD::MemIndexedMode AM, bool IsTruncating, 7130 bool IsCompressing) { 7131 assert(Chain.getValueType() == MVT::Other && 7132 "Invalid chain type"); 7133 bool Indexed = AM != ISD::UNINDEXED; 7134 assert((Indexed || Offset.isUndef()) && 7135 "Unindexed masked store with an offset!"); 7136 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7137 : getVTList(MVT::Other); 7138 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7139 FoldingSetNodeID ID; 7140 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7141 ID.AddInteger(MemVT.getRawBits()); 7142 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7143 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7144 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7145 void *IP = nullptr; 7146 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7147 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7148 return SDValue(E, 0); 7149 } 7150 auto *N = 7151 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7152 IsTruncating, IsCompressing, MemVT, MMO); 7153 createOperands(N, Ops); 7154 7155 CSEMap.InsertNode(N, IP); 7156 InsertNode(N); 7157 SDValue V(N, 0); 7158 NewSDValueDbgMsg(V, "Creating new node: ", this); 7159 return V; 7160 } 7161 7162 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7163 SDValue Base, SDValue Offset, 7164 ISD::MemIndexedMode AM) { 7165 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7166 assert(ST->getOffset().isUndef() && 7167 "Masked store is already a indexed store!"); 7168 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7169 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7170 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7171 } 7172 7173 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7174 ArrayRef<SDValue> Ops, 7175 MachineMemOperand *MMO, 7176 ISD::MemIndexType IndexType) { 7177 assert(Ops.size() == 6 && "Incompatible number of operands"); 7178 7179 FoldingSetNodeID ID; 7180 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7181 ID.AddInteger(VT.getRawBits()); 7182 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7183 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7184 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7185 void *IP = nullptr; 7186 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7187 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7188 return SDValue(E, 0); 7189 } 7190 7191 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7192 VTs, VT, MMO, IndexType); 7193 createOperands(N, Ops); 7194 7195 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7196 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7197 assert(N->getMask().getValueType().getVectorNumElements() == 7198 N->getValueType(0).getVectorNumElements() && 7199 "Vector width mismatch between mask and data"); 7200 assert(N->getIndex().getValueType().getVectorNumElements() >= 7201 N->getValueType(0).getVectorNumElements() && 7202 "Vector width mismatch between index and data"); 7203 assert(isa<ConstantSDNode>(N->getScale()) && 7204 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7205 "Scale should be a constant power of 2"); 7206 7207 CSEMap.InsertNode(N, IP); 7208 InsertNode(N); 7209 SDValue V(N, 0); 7210 NewSDValueDbgMsg(V, "Creating new node: ", this); 7211 return V; 7212 } 7213 7214 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7215 ArrayRef<SDValue> Ops, 7216 MachineMemOperand *MMO, 7217 ISD::MemIndexType IndexType) { 7218 assert(Ops.size() == 6 && "Incompatible number of operands"); 7219 7220 FoldingSetNodeID ID; 7221 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7222 ID.AddInteger(VT.getRawBits()); 7223 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7224 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7225 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7226 void *IP = nullptr; 7227 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7228 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7229 return SDValue(E, 0); 7230 } 7231 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7232 VTs, VT, MMO, IndexType); 7233 createOperands(N, Ops); 7234 7235 assert(N->getMask().getValueType().getVectorNumElements() == 7236 N->getValue().getValueType().getVectorNumElements() && 7237 "Vector width mismatch between mask and data"); 7238 assert(N->getIndex().getValueType().getVectorNumElements() >= 7239 N->getValue().getValueType().getVectorNumElements() && 7240 "Vector width mismatch between index and data"); 7241 assert(isa<ConstantSDNode>(N->getScale()) && 7242 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7243 "Scale should be a constant power of 2"); 7244 7245 CSEMap.InsertNode(N, IP); 7246 InsertNode(N); 7247 SDValue V(N, 0); 7248 NewSDValueDbgMsg(V, "Creating new node: ", this); 7249 return V; 7250 } 7251 7252 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7253 // select undef, T, F --> T (if T is a constant), otherwise F 7254 // select, ?, undef, F --> F 7255 // select, ?, T, undef --> T 7256 if (Cond.isUndef()) 7257 return isConstantValueOfAnyType(T) ? T : F; 7258 if (T.isUndef()) 7259 return F; 7260 if (F.isUndef()) 7261 return T; 7262 7263 // select true, T, F --> T 7264 // select false, T, F --> F 7265 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7266 return CondC->isNullValue() ? F : T; 7267 7268 // TODO: This should simplify VSELECT with constant condition using something 7269 // like this (but check boolean contents to be complete?): 7270 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7271 // return T; 7272 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7273 // return F; 7274 7275 // select ?, T, T --> T 7276 if (T == F) 7277 return T; 7278 7279 return SDValue(); 7280 } 7281 7282 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7283 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7284 if (X.isUndef()) 7285 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7286 // shift X, undef --> undef (because it may shift by the bitwidth) 7287 if (Y.isUndef()) 7288 return getUNDEF(X.getValueType()); 7289 7290 // shift 0, Y --> 0 7291 // shift X, 0 --> X 7292 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7293 return X; 7294 7295 // shift X, C >= bitwidth(X) --> undef 7296 // All vector elements must be too big (or undef) to avoid partial undefs. 7297 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7298 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7299 }; 7300 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7301 return getUNDEF(X.getValueType()); 7302 7303 return SDValue(); 7304 } 7305 7306 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7307 SDNodeFlags Flags) { 7308 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7309 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7310 // operation is poison. That result can be relaxed to undef. 7311 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7312 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7313 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7314 (YC && YC->getValueAPF().isNaN()); 7315 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7316 (YC && YC->getValueAPF().isInfinity()); 7317 7318 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7319 return getUNDEF(X.getValueType()); 7320 7321 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7322 return getUNDEF(X.getValueType()); 7323 7324 if (!YC) 7325 return SDValue(); 7326 7327 // X + -0.0 --> X 7328 if (Opcode == ISD::FADD) 7329 if (YC->getValueAPF().isNegZero()) 7330 return X; 7331 7332 // X - +0.0 --> X 7333 if (Opcode == ISD::FSUB) 7334 if (YC->getValueAPF().isPosZero()) 7335 return X; 7336 7337 // X * 1.0 --> X 7338 // X / 1.0 --> X 7339 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7340 if (YC->getValueAPF().isExactlyValue(1.0)) 7341 return X; 7342 7343 return SDValue(); 7344 } 7345 7346 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7347 SDValue Ptr, SDValue SV, unsigned Align) { 7348 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7349 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7350 } 7351 7352 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7353 ArrayRef<SDUse> Ops) { 7354 switch (Ops.size()) { 7355 case 0: return getNode(Opcode, DL, VT); 7356 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7357 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7358 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7359 default: break; 7360 } 7361 7362 // Copy from an SDUse array into an SDValue array for use with 7363 // the regular getNode logic. 7364 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7365 return getNode(Opcode, DL, VT, NewOps); 7366 } 7367 7368 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7369 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7370 unsigned NumOps = Ops.size(); 7371 switch (NumOps) { 7372 case 0: return getNode(Opcode, DL, VT); 7373 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7374 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7375 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7376 default: break; 7377 } 7378 7379 switch (Opcode) { 7380 default: break; 7381 case ISD::BUILD_VECTOR: 7382 // Attempt to simplify BUILD_VECTOR. 7383 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7384 return V; 7385 break; 7386 case ISD::CONCAT_VECTORS: 7387 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7388 return V; 7389 break; 7390 case ISD::SELECT_CC: 7391 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7392 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7393 "LHS and RHS of condition must have same type!"); 7394 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7395 "True and False arms of SelectCC must have same type!"); 7396 assert(Ops[2].getValueType() == VT && 7397 "select_cc node must be of same type as true and false value!"); 7398 break; 7399 case ISD::BR_CC: 7400 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7401 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7402 "LHS/RHS of comparison should match types!"); 7403 break; 7404 } 7405 7406 // Memoize nodes. 7407 SDNode *N; 7408 SDVTList VTs = getVTList(VT); 7409 7410 if (VT != MVT::Glue) { 7411 FoldingSetNodeID ID; 7412 AddNodeIDNode(ID, Opcode, VTs, Ops); 7413 void *IP = nullptr; 7414 7415 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7416 return SDValue(E, 0); 7417 7418 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7419 createOperands(N, Ops); 7420 7421 CSEMap.InsertNode(N, IP); 7422 } else { 7423 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7424 createOperands(N, Ops); 7425 } 7426 7427 InsertNode(N); 7428 SDValue V(N, 0); 7429 NewSDValueDbgMsg(V, "Creating new node: ", this); 7430 return V; 7431 } 7432 7433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7434 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7435 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7436 } 7437 7438 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7439 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7440 if (VTList.NumVTs == 1) 7441 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7442 7443 switch (Opcode) { 7444 case ISD::STRICT_FP_EXTEND: 7445 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7446 "Invalid STRICT_FP_EXTEND!"); 7447 assert(VTList.VTs[0].isFloatingPoint() && 7448 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7449 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7450 "STRICT_FP_EXTEND result type should be vector iff the operand " 7451 "type is vector!"); 7452 assert((!VTList.VTs[0].isVector() || 7453 VTList.VTs[0].getVectorNumElements() == 7454 Ops[1].getValueType().getVectorNumElements()) && 7455 "Vector element count mismatch!"); 7456 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7457 "Invalid fpext node, dst <= src!"); 7458 break; 7459 case ISD::STRICT_FP_ROUND: 7460 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7461 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7462 "STRICT_FP_ROUND result type should be vector iff the operand " 7463 "type is vector!"); 7464 assert((!VTList.VTs[0].isVector() || 7465 VTList.VTs[0].getVectorNumElements() == 7466 Ops[1].getValueType().getVectorNumElements()) && 7467 "Vector element count mismatch!"); 7468 assert(VTList.VTs[0].isFloatingPoint() && 7469 Ops[1].getValueType().isFloatingPoint() && 7470 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7471 isa<ConstantSDNode>(Ops[2]) && 7472 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7473 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7474 "Invalid STRICT_FP_ROUND!"); 7475 break; 7476 #if 0 7477 // FIXME: figure out how to safely handle things like 7478 // int foo(int x) { return 1 << (x & 255); } 7479 // int bar() { return foo(256); } 7480 case ISD::SRA_PARTS: 7481 case ISD::SRL_PARTS: 7482 case ISD::SHL_PARTS: 7483 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7484 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7485 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7486 else if (N3.getOpcode() == ISD::AND) 7487 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7488 // If the and is only masking out bits that cannot effect the shift, 7489 // eliminate the and. 7490 unsigned NumBits = VT.getScalarSizeInBits()*2; 7491 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7492 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7493 } 7494 break; 7495 #endif 7496 } 7497 7498 // Memoize the node unless it returns a flag. 7499 SDNode *N; 7500 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7501 FoldingSetNodeID ID; 7502 AddNodeIDNode(ID, Opcode, VTList, Ops); 7503 void *IP = nullptr; 7504 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7505 return SDValue(E, 0); 7506 7507 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7508 N->setFlags(Flags); 7509 createOperands(N, Ops); 7510 CSEMap.InsertNode(N, IP); 7511 } else { 7512 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7513 createOperands(N, Ops); 7514 } 7515 InsertNode(N); 7516 SDValue V(N, 0); 7517 NewSDValueDbgMsg(V, "Creating new node: ", this); 7518 return V; 7519 } 7520 7521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7522 SDVTList VTList) { 7523 return getNode(Opcode, DL, VTList, None); 7524 } 7525 7526 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7527 SDValue N1) { 7528 SDValue Ops[] = { N1 }; 7529 return getNode(Opcode, DL, VTList, Ops); 7530 } 7531 7532 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7533 SDValue N1, SDValue N2) { 7534 SDValue Ops[] = { N1, N2 }; 7535 return getNode(Opcode, DL, VTList, Ops); 7536 } 7537 7538 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7539 SDValue N1, SDValue N2, SDValue N3) { 7540 SDValue Ops[] = { N1, N2, N3 }; 7541 return getNode(Opcode, DL, VTList, Ops); 7542 } 7543 7544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7545 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7546 SDValue Ops[] = { N1, N2, N3, N4 }; 7547 return getNode(Opcode, DL, VTList, Ops); 7548 } 7549 7550 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7551 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7552 SDValue N5) { 7553 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7554 return getNode(Opcode, DL, VTList, Ops); 7555 } 7556 7557 SDVTList SelectionDAG::getVTList(EVT VT) { 7558 return makeVTList(SDNode::getValueTypeList(VT), 1); 7559 } 7560 7561 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7562 FoldingSetNodeID ID; 7563 ID.AddInteger(2U); 7564 ID.AddInteger(VT1.getRawBits()); 7565 ID.AddInteger(VT2.getRawBits()); 7566 7567 void *IP = nullptr; 7568 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7569 if (!Result) { 7570 EVT *Array = Allocator.Allocate<EVT>(2); 7571 Array[0] = VT1; 7572 Array[1] = VT2; 7573 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7574 VTListMap.InsertNode(Result, IP); 7575 } 7576 return Result->getSDVTList(); 7577 } 7578 7579 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7580 FoldingSetNodeID ID; 7581 ID.AddInteger(3U); 7582 ID.AddInteger(VT1.getRawBits()); 7583 ID.AddInteger(VT2.getRawBits()); 7584 ID.AddInteger(VT3.getRawBits()); 7585 7586 void *IP = nullptr; 7587 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7588 if (!Result) { 7589 EVT *Array = Allocator.Allocate<EVT>(3); 7590 Array[0] = VT1; 7591 Array[1] = VT2; 7592 Array[2] = VT3; 7593 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7594 VTListMap.InsertNode(Result, IP); 7595 } 7596 return Result->getSDVTList(); 7597 } 7598 7599 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7600 FoldingSetNodeID ID; 7601 ID.AddInteger(4U); 7602 ID.AddInteger(VT1.getRawBits()); 7603 ID.AddInteger(VT2.getRawBits()); 7604 ID.AddInteger(VT3.getRawBits()); 7605 ID.AddInteger(VT4.getRawBits()); 7606 7607 void *IP = nullptr; 7608 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7609 if (!Result) { 7610 EVT *Array = Allocator.Allocate<EVT>(4); 7611 Array[0] = VT1; 7612 Array[1] = VT2; 7613 Array[2] = VT3; 7614 Array[3] = VT4; 7615 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7616 VTListMap.InsertNode(Result, IP); 7617 } 7618 return Result->getSDVTList(); 7619 } 7620 7621 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7622 unsigned NumVTs = VTs.size(); 7623 FoldingSetNodeID ID; 7624 ID.AddInteger(NumVTs); 7625 for (unsigned index = 0; index < NumVTs; index++) { 7626 ID.AddInteger(VTs[index].getRawBits()); 7627 } 7628 7629 void *IP = nullptr; 7630 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7631 if (!Result) { 7632 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7633 llvm::copy(VTs, Array); 7634 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7635 VTListMap.InsertNode(Result, IP); 7636 } 7637 return Result->getSDVTList(); 7638 } 7639 7640 7641 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7642 /// specified operands. If the resultant node already exists in the DAG, 7643 /// this does not modify the specified node, instead it returns the node that 7644 /// already exists. If the resultant node does not exist in the DAG, the 7645 /// input node is returned. As a degenerate case, if you specify the same 7646 /// input operands as the node already has, the input node is returned. 7647 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7648 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7649 7650 // Check to see if there is no change. 7651 if (Op == N->getOperand(0)) return N; 7652 7653 // See if the modified node already exists. 7654 void *InsertPos = nullptr; 7655 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7656 return Existing; 7657 7658 // Nope it doesn't. Remove the node from its current place in the maps. 7659 if (InsertPos) 7660 if (!RemoveNodeFromCSEMaps(N)) 7661 InsertPos = nullptr; 7662 7663 // Now we update the operands. 7664 N->OperandList[0].set(Op); 7665 7666 updateDivergence(N); 7667 // If this gets put into a CSE map, add it. 7668 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7669 return N; 7670 } 7671 7672 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7673 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7674 7675 // Check to see if there is no change. 7676 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7677 return N; // No operands changed, just return the input node. 7678 7679 // See if the modified node already exists. 7680 void *InsertPos = nullptr; 7681 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7682 return Existing; 7683 7684 // Nope it doesn't. Remove the node from its current place in the maps. 7685 if (InsertPos) 7686 if (!RemoveNodeFromCSEMaps(N)) 7687 InsertPos = nullptr; 7688 7689 // Now we update the operands. 7690 if (N->OperandList[0] != Op1) 7691 N->OperandList[0].set(Op1); 7692 if (N->OperandList[1] != Op2) 7693 N->OperandList[1].set(Op2); 7694 7695 updateDivergence(N); 7696 // If this gets put into a CSE map, add it. 7697 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7698 return N; 7699 } 7700 7701 SDNode *SelectionDAG:: 7702 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7703 SDValue Ops[] = { Op1, Op2, Op3 }; 7704 return UpdateNodeOperands(N, Ops); 7705 } 7706 7707 SDNode *SelectionDAG:: 7708 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7709 SDValue Op3, SDValue Op4) { 7710 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7711 return UpdateNodeOperands(N, Ops); 7712 } 7713 7714 SDNode *SelectionDAG:: 7715 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7716 SDValue Op3, SDValue Op4, SDValue Op5) { 7717 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7718 return UpdateNodeOperands(N, Ops); 7719 } 7720 7721 SDNode *SelectionDAG:: 7722 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7723 unsigned NumOps = Ops.size(); 7724 assert(N->getNumOperands() == NumOps && 7725 "Update with wrong number of operands"); 7726 7727 // If no operands changed just return the input node. 7728 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7729 return N; 7730 7731 // See if the modified node already exists. 7732 void *InsertPos = nullptr; 7733 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7734 return Existing; 7735 7736 // Nope it doesn't. Remove the node from its current place in the maps. 7737 if (InsertPos) 7738 if (!RemoveNodeFromCSEMaps(N)) 7739 InsertPos = nullptr; 7740 7741 // Now we update the operands. 7742 for (unsigned i = 0; i != NumOps; ++i) 7743 if (N->OperandList[i] != Ops[i]) 7744 N->OperandList[i].set(Ops[i]); 7745 7746 updateDivergence(N); 7747 // If this gets put into a CSE map, add it. 7748 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7749 return N; 7750 } 7751 7752 /// DropOperands - Release the operands and set this node to have 7753 /// zero operands. 7754 void SDNode::DropOperands() { 7755 // Unlike the code in MorphNodeTo that does this, we don't need to 7756 // watch for dead nodes here. 7757 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7758 SDUse &Use = *I++; 7759 Use.set(SDValue()); 7760 } 7761 } 7762 7763 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7764 ArrayRef<MachineMemOperand *> NewMemRefs) { 7765 if (NewMemRefs.empty()) { 7766 N->clearMemRefs(); 7767 return; 7768 } 7769 7770 // Check if we can avoid allocating by storing a single reference directly. 7771 if (NewMemRefs.size() == 1) { 7772 N->MemRefs = NewMemRefs[0]; 7773 N->NumMemRefs = 1; 7774 return; 7775 } 7776 7777 MachineMemOperand **MemRefsBuffer = 7778 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7779 llvm::copy(NewMemRefs, MemRefsBuffer); 7780 N->MemRefs = MemRefsBuffer; 7781 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7782 } 7783 7784 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7785 /// machine opcode. 7786 /// 7787 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7788 EVT VT) { 7789 SDVTList VTs = getVTList(VT); 7790 return SelectNodeTo(N, MachineOpc, VTs, None); 7791 } 7792 7793 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7794 EVT VT, SDValue Op1) { 7795 SDVTList VTs = getVTList(VT); 7796 SDValue Ops[] = { Op1 }; 7797 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7798 } 7799 7800 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7801 EVT VT, SDValue Op1, 7802 SDValue Op2) { 7803 SDVTList VTs = getVTList(VT); 7804 SDValue Ops[] = { Op1, Op2 }; 7805 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7806 } 7807 7808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7809 EVT VT, SDValue Op1, 7810 SDValue Op2, SDValue Op3) { 7811 SDVTList VTs = getVTList(VT); 7812 SDValue Ops[] = { Op1, Op2, Op3 }; 7813 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7814 } 7815 7816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7817 EVT VT, ArrayRef<SDValue> Ops) { 7818 SDVTList VTs = getVTList(VT); 7819 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7820 } 7821 7822 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7823 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7824 SDVTList VTs = getVTList(VT1, VT2); 7825 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7826 } 7827 7828 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7829 EVT VT1, EVT VT2) { 7830 SDVTList VTs = getVTList(VT1, VT2); 7831 return SelectNodeTo(N, MachineOpc, VTs, None); 7832 } 7833 7834 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7835 EVT VT1, EVT VT2, EVT VT3, 7836 ArrayRef<SDValue> Ops) { 7837 SDVTList VTs = getVTList(VT1, VT2, VT3); 7838 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7839 } 7840 7841 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7842 EVT VT1, EVT VT2, 7843 SDValue Op1, SDValue Op2) { 7844 SDVTList VTs = getVTList(VT1, VT2); 7845 SDValue Ops[] = { Op1, Op2 }; 7846 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7847 } 7848 7849 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7850 SDVTList VTs,ArrayRef<SDValue> Ops) { 7851 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7852 // Reset the NodeID to -1. 7853 New->setNodeId(-1); 7854 if (New != N) { 7855 ReplaceAllUsesWith(N, New); 7856 RemoveDeadNode(N); 7857 } 7858 return New; 7859 } 7860 7861 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7862 /// the line number information on the merged node since it is not possible to 7863 /// preserve the information that operation is associated with multiple lines. 7864 /// This will make the debugger working better at -O0, were there is a higher 7865 /// probability having other instructions associated with that line. 7866 /// 7867 /// For IROrder, we keep the smaller of the two 7868 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7869 DebugLoc NLoc = N->getDebugLoc(); 7870 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7871 N->setDebugLoc(DebugLoc()); 7872 } 7873 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7874 N->setIROrder(Order); 7875 return N; 7876 } 7877 7878 /// MorphNodeTo - This *mutates* the specified node to have the specified 7879 /// return type, opcode, and operands. 7880 /// 7881 /// Note that MorphNodeTo returns the resultant node. If there is already a 7882 /// node of the specified opcode and operands, it returns that node instead of 7883 /// the current one. Note that the SDLoc need not be the same. 7884 /// 7885 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7886 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7887 /// node, and because it doesn't require CSE recalculation for any of 7888 /// the node's users. 7889 /// 7890 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7891 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7892 /// the legalizer which maintain worklists that would need to be updated when 7893 /// deleting things. 7894 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7895 SDVTList VTs, ArrayRef<SDValue> Ops) { 7896 // If an identical node already exists, use it. 7897 void *IP = nullptr; 7898 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7899 FoldingSetNodeID ID; 7900 AddNodeIDNode(ID, Opc, VTs, Ops); 7901 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7902 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7903 } 7904 7905 if (!RemoveNodeFromCSEMaps(N)) 7906 IP = nullptr; 7907 7908 // Start the morphing. 7909 N->NodeType = Opc; 7910 N->ValueList = VTs.VTs; 7911 N->NumValues = VTs.NumVTs; 7912 7913 // Clear the operands list, updating used nodes to remove this from their 7914 // use list. Keep track of any operands that become dead as a result. 7915 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7916 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7917 SDUse &Use = *I++; 7918 SDNode *Used = Use.getNode(); 7919 Use.set(SDValue()); 7920 if (Used->use_empty()) 7921 DeadNodeSet.insert(Used); 7922 } 7923 7924 // For MachineNode, initialize the memory references information. 7925 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7926 MN->clearMemRefs(); 7927 7928 // Swap for an appropriately sized array from the recycler. 7929 removeOperands(N); 7930 createOperands(N, Ops); 7931 7932 // Delete any nodes that are still dead after adding the uses for the 7933 // new operands. 7934 if (!DeadNodeSet.empty()) { 7935 SmallVector<SDNode *, 16> DeadNodes; 7936 for (SDNode *N : DeadNodeSet) 7937 if (N->use_empty()) 7938 DeadNodes.push_back(N); 7939 RemoveDeadNodes(DeadNodes); 7940 } 7941 7942 if (IP) 7943 CSEMap.InsertNode(N, IP); // Memoize the new node. 7944 return N; 7945 } 7946 7947 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7948 unsigned OrigOpc = Node->getOpcode(); 7949 unsigned NewOpc; 7950 switch (OrigOpc) { 7951 default: 7952 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7953 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7954 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7955 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7956 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7957 #include "llvm/IR/ConstrainedOps.def" 7958 } 7959 7960 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7961 7962 // We're taking this node out of the chain, so we need to re-link things. 7963 SDValue InputChain = Node->getOperand(0); 7964 SDValue OutputChain = SDValue(Node, 1); 7965 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7966 7967 SmallVector<SDValue, 3> Ops; 7968 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7969 Ops.push_back(Node->getOperand(i)); 7970 7971 SDVTList VTs = getVTList(Node->getValueType(0)); 7972 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7973 7974 // MorphNodeTo can operate in two ways: if an existing node with the 7975 // specified operands exists, it can just return it. Otherwise, it 7976 // updates the node in place to have the requested operands. 7977 if (Res == Node) { 7978 // If we updated the node in place, reset the node ID. To the isel, 7979 // this should be just like a newly allocated machine node. 7980 Res->setNodeId(-1); 7981 } else { 7982 ReplaceAllUsesWith(Node, Res); 7983 RemoveDeadNode(Node); 7984 } 7985 7986 return Res; 7987 } 7988 7989 /// getMachineNode - These are used for target selectors to create a new node 7990 /// with specified return type(s), MachineInstr opcode, and operands. 7991 /// 7992 /// Note that getMachineNode returns the resultant node. If there is already a 7993 /// node of the specified opcode and operands, it returns that node instead of 7994 /// the current one. 7995 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7996 EVT VT) { 7997 SDVTList VTs = getVTList(VT); 7998 return getMachineNode(Opcode, dl, VTs, None); 7999 } 8000 8001 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8002 EVT VT, SDValue Op1) { 8003 SDVTList VTs = getVTList(VT); 8004 SDValue Ops[] = { Op1 }; 8005 return getMachineNode(Opcode, dl, VTs, Ops); 8006 } 8007 8008 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8009 EVT VT, SDValue Op1, SDValue Op2) { 8010 SDVTList VTs = getVTList(VT); 8011 SDValue Ops[] = { Op1, Op2 }; 8012 return getMachineNode(Opcode, dl, VTs, Ops); 8013 } 8014 8015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8016 EVT VT, SDValue Op1, SDValue Op2, 8017 SDValue Op3) { 8018 SDVTList VTs = getVTList(VT); 8019 SDValue Ops[] = { Op1, Op2, Op3 }; 8020 return getMachineNode(Opcode, dl, VTs, Ops); 8021 } 8022 8023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8024 EVT VT, ArrayRef<SDValue> Ops) { 8025 SDVTList VTs = getVTList(VT); 8026 return getMachineNode(Opcode, dl, VTs, Ops); 8027 } 8028 8029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8030 EVT VT1, EVT VT2, SDValue Op1, 8031 SDValue Op2) { 8032 SDVTList VTs = getVTList(VT1, VT2); 8033 SDValue Ops[] = { Op1, Op2 }; 8034 return getMachineNode(Opcode, dl, VTs, Ops); 8035 } 8036 8037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8038 EVT VT1, EVT VT2, SDValue Op1, 8039 SDValue Op2, SDValue Op3) { 8040 SDVTList VTs = getVTList(VT1, VT2); 8041 SDValue Ops[] = { Op1, Op2, Op3 }; 8042 return getMachineNode(Opcode, dl, VTs, Ops); 8043 } 8044 8045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8046 EVT VT1, EVT VT2, 8047 ArrayRef<SDValue> Ops) { 8048 SDVTList VTs = getVTList(VT1, VT2); 8049 return getMachineNode(Opcode, dl, VTs, Ops); 8050 } 8051 8052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8053 EVT VT1, EVT VT2, EVT VT3, 8054 SDValue Op1, SDValue Op2) { 8055 SDVTList VTs = getVTList(VT1, VT2, VT3); 8056 SDValue Ops[] = { Op1, Op2 }; 8057 return getMachineNode(Opcode, dl, VTs, Ops); 8058 } 8059 8060 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8061 EVT VT1, EVT VT2, EVT VT3, 8062 SDValue Op1, SDValue Op2, 8063 SDValue Op3) { 8064 SDVTList VTs = getVTList(VT1, VT2, VT3); 8065 SDValue Ops[] = { Op1, Op2, Op3 }; 8066 return getMachineNode(Opcode, dl, VTs, Ops); 8067 } 8068 8069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8070 EVT VT1, EVT VT2, EVT VT3, 8071 ArrayRef<SDValue> Ops) { 8072 SDVTList VTs = getVTList(VT1, VT2, VT3); 8073 return getMachineNode(Opcode, dl, VTs, Ops); 8074 } 8075 8076 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8077 ArrayRef<EVT> ResultTys, 8078 ArrayRef<SDValue> Ops) { 8079 SDVTList VTs = getVTList(ResultTys); 8080 return getMachineNode(Opcode, dl, VTs, Ops); 8081 } 8082 8083 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8084 SDVTList VTs, 8085 ArrayRef<SDValue> Ops) { 8086 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8087 MachineSDNode *N; 8088 void *IP = nullptr; 8089 8090 if (DoCSE) { 8091 FoldingSetNodeID ID; 8092 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8093 IP = nullptr; 8094 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8095 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8096 } 8097 } 8098 8099 // Allocate a new MachineSDNode. 8100 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8101 createOperands(N, Ops); 8102 8103 if (DoCSE) 8104 CSEMap.InsertNode(N, IP); 8105 8106 InsertNode(N); 8107 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8108 return N; 8109 } 8110 8111 /// getTargetExtractSubreg - A convenience function for creating 8112 /// TargetOpcode::EXTRACT_SUBREG nodes. 8113 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8114 SDValue Operand) { 8115 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8116 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8117 VT, Operand, SRIdxVal); 8118 return SDValue(Subreg, 0); 8119 } 8120 8121 /// getTargetInsertSubreg - A convenience function for creating 8122 /// TargetOpcode::INSERT_SUBREG nodes. 8123 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8124 SDValue Operand, SDValue Subreg) { 8125 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8126 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8127 VT, Operand, Subreg, SRIdxVal); 8128 return SDValue(Result, 0); 8129 } 8130 8131 /// getNodeIfExists - Get the specified node if it's already available, or 8132 /// else return NULL. 8133 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8134 ArrayRef<SDValue> Ops, 8135 const SDNodeFlags Flags) { 8136 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8137 FoldingSetNodeID ID; 8138 AddNodeIDNode(ID, Opcode, VTList, Ops); 8139 void *IP = nullptr; 8140 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8141 E->intersectFlagsWith(Flags); 8142 return E; 8143 } 8144 } 8145 return nullptr; 8146 } 8147 8148 /// getDbgValue - Creates a SDDbgValue node. 8149 /// 8150 /// SDNode 8151 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8152 SDNode *N, unsigned R, bool IsIndirect, 8153 const DebugLoc &DL, unsigned O) { 8154 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8155 "Expected inlined-at fields to agree"); 8156 return new (DbgInfo->getAlloc()) 8157 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8158 } 8159 8160 /// Constant 8161 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8162 DIExpression *Expr, 8163 const Value *C, 8164 const DebugLoc &DL, unsigned O) { 8165 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8166 "Expected inlined-at fields to agree"); 8167 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8168 } 8169 8170 /// FrameIndex 8171 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8172 DIExpression *Expr, unsigned FI, 8173 bool IsIndirect, 8174 const DebugLoc &DL, 8175 unsigned O) { 8176 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8177 "Expected inlined-at fields to agree"); 8178 return new (DbgInfo->getAlloc()) 8179 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8180 } 8181 8182 /// VReg 8183 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8184 DIExpression *Expr, 8185 unsigned VReg, bool IsIndirect, 8186 const DebugLoc &DL, unsigned O) { 8187 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8188 "Expected inlined-at fields to agree"); 8189 return new (DbgInfo->getAlloc()) 8190 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8191 } 8192 8193 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8194 unsigned OffsetInBits, unsigned SizeInBits, 8195 bool InvalidateDbg) { 8196 SDNode *FromNode = From.getNode(); 8197 SDNode *ToNode = To.getNode(); 8198 assert(FromNode && ToNode && "Can't modify dbg values"); 8199 8200 // PR35338 8201 // TODO: assert(From != To && "Redundant dbg value transfer"); 8202 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8203 if (From == To || FromNode == ToNode) 8204 return; 8205 8206 if (!FromNode->getHasDebugValue()) 8207 return; 8208 8209 SmallVector<SDDbgValue *, 2> ClonedDVs; 8210 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8211 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8212 continue; 8213 8214 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8215 8216 // Just transfer the dbg value attached to From. 8217 if (Dbg->getResNo() != From.getResNo()) 8218 continue; 8219 8220 DIVariable *Var = Dbg->getVariable(); 8221 auto *Expr = Dbg->getExpression(); 8222 // If a fragment is requested, update the expression. 8223 if (SizeInBits) { 8224 // When splitting a larger (e.g., sign-extended) value whose 8225 // lower bits are described with an SDDbgValue, do not attempt 8226 // to transfer the SDDbgValue to the upper bits. 8227 if (auto FI = Expr->getFragmentInfo()) 8228 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8229 continue; 8230 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8231 SizeInBits); 8232 if (!Fragment) 8233 continue; 8234 Expr = *Fragment; 8235 } 8236 // Clone the SDDbgValue and move it to To. 8237 SDDbgValue *Clone = getDbgValue( 8238 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8239 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8240 ClonedDVs.push_back(Clone); 8241 8242 if (InvalidateDbg) { 8243 // Invalidate value and indicate the SDDbgValue should not be emitted. 8244 Dbg->setIsInvalidated(); 8245 Dbg->setIsEmitted(); 8246 } 8247 } 8248 8249 for (SDDbgValue *Dbg : ClonedDVs) 8250 AddDbgValue(Dbg, ToNode, false); 8251 } 8252 8253 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8254 if (!N.getHasDebugValue()) 8255 return; 8256 8257 SmallVector<SDDbgValue *, 2> ClonedDVs; 8258 for (auto DV : GetDbgValues(&N)) { 8259 if (DV->isInvalidated()) 8260 continue; 8261 switch (N.getOpcode()) { 8262 default: 8263 break; 8264 case ISD::ADD: 8265 SDValue N0 = N.getOperand(0); 8266 SDValue N1 = N.getOperand(1); 8267 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8268 isConstantIntBuildVectorOrConstantInt(N1)) { 8269 uint64_t Offset = N.getConstantOperandVal(1); 8270 // Rewrite an ADD constant node into a DIExpression. Since we are 8271 // performing arithmetic to compute the variable's *value* in the 8272 // DIExpression, we need to mark the expression with a 8273 // DW_OP_stack_value. 8274 auto *DIExpr = DV->getExpression(); 8275 DIExpr = 8276 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8277 SDDbgValue *Clone = 8278 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8279 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8280 ClonedDVs.push_back(Clone); 8281 DV->setIsInvalidated(); 8282 DV->setIsEmitted(); 8283 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8284 N0.getNode()->dumprFull(this); 8285 dbgs() << " into " << *DIExpr << '\n'); 8286 } 8287 } 8288 } 8289 8290 for (SDDbgValue *Dbg : ClonedDVs) 8291 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8292 } 8293 8294 /// Creates a SDDbgLabel node. 8295 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8296 const DebugLoc &DL, unsigned O) { 8297 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8298 "Expected inlined-at fields to agree"); 8299 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8300 } 8301 8302 namespace { 8303 8304 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8305 /// pointed to by a use iterator is deleted, increment the use iterator 8306 /// so that it doesn't dangle. 8307 /// 8308 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8309 SDNode::use_iterator &UI; 8310 SDNode::use_iterator &UE; 8311 8312 void NodeDeleted(SDNode *N, SDNode *E) override { 8313 // Increment the iterator as needed. 8314 while (UI != UE && N == *UI) 8315 ++UI; 8316 } 8317 8318 public: 8319 RAUWUpdateListener(SelectionDAG &d, 8320 SDNode::use_iterator &ui, 8321 SDNode::use_iterator &ue) 8322 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8323 }; 8324 8325 } // end anonymous namespace 8326 8327 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8328 /// This can cause recursive merging of nodes in the DAG. 8329 /// 8330 /// This version assumes From has a single result value. 8331 /// 8332 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8333 SDNode *From = FromN.getNode(); 8334 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8335 "Cannot replace with this method!"); 8336 assert(From != To.getNode() && "Cannot replace uses of with self"); 8337 8338 // Preserve Debug Values 8339 transferDbgValues(FromN, To); 8340 8341 // Iterate over all the existing uses of From. New uses will be added 8342 // to the beginning of the use list, which we avoid visiting. 8343 // This specifically avoids visiting uses of From that arise while the 8344 // replacement is happening, because any such uses would be the result 8345 // of CSE: If an existing node looks like From after one of its operands 8346 // is replaced by To, we don't want to replace of all its users with To 8347 // too. See PR3018 for more info. 8348 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8349 RAUWUpdateListener Listener(*this, UI, UE); 8350 while (UI != UE) { 8351 SDNode *User = *UI; 8352 8353 // This node is about to morph, remove its old self from the CSE maps. 8354 RemoveNodeFromCSEMaps(User); 8355 8356 // A user can appear in a use list multiple times, and when this 8357 // happens the uses are usually next to each other in the list. 8358 // To help reduce the number of CSE recomputations, process all 8359 // the uses of this user that we can find this way. 8360 do { 8361 SDUse &Use = UI.getUse(); 8362 ++UI; 8363 Use.set(To); 8364 if (To->isDivergent() != From->isDivergent()) 8365 updateDivergence(User); 8366 } while (UI != UE && *UI == User); 8367 // Now that we have modified User, add it back to the CSE maps. If it 8368 // already exists there, recursively merge the results together. 8369 AddModifiedNodeToCSEMaps(User); 8370 } 8371 8372 // If we just RAUW'd the root, take note. 8373 if (FromN == getRoot()) 8374 setRoot(To); 8375 } 8376 8377 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8378 /// This can cause recursive merging of nodes in the DAG. 8379 /// 8380 /// This version assumes that for each value of From, there is a 8381 /// corresponding value in To in the same position with the same type. 8382 /// 8383 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8384 #ifndef NDEBUG 8385 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8386 assert((!From->hasAnyUseOfValue(i) || 8387 From->getValueType(i) == To->getValueType(i)) && 8388 "Cannot use this version of ReplaceAllUsesWith!"); 8389 #endif 8390 8391 // Handle the trivial case. 8392 if (From == To) 8393 return; 8394 8395 // Preserve Debug Info. Only do this if there's a use. 8396 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8397 if (From->hasAnyUseOfValue(i)) { 8398 assert((i < To->getNumValues()) && "Invalid To location"); 8399 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8400 } 8401 8402 // Iterate over just the existing users of From. See the comments in 8403 // the ReplaceAllUsesWith above. 8404 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8405 RAUWUpdateListener Listener(*this, UI, UE); 8406 while (UI != UE) { 8407 SDNode *User = *UI; 8408 8409 // This node is about to morph, remove its old self from the CSE maps. 8410 RemoveNodeFromCSEMaps(User); 8411 8412 // A user can appear in a use list multiple times, and when this 8413 // happens the uses are usually next to each other in the list. 8414 // To help reduce the number of CSE recomputations, process all 8415 // the uses of this user that we can find this way. 8416 do { 8417 SDUse &Use = UI.getUse(); 8418 ++UI; 8419 Use.setNode(To); 8420 if (To->isDivergent() != From->isDivergent()) 8421 updateDivergence(User); 8422 } while (UI != UE && *UI == User); 8423 8424 // Now that we have modified User, add it back to the CSE maps. If it 8425 // already exists there, recursively merge the results together. 8426 AddModifiedNodeToCSEMaps(User); 8427 } 8428 8429 // If we just RAUW'd the root, take note. 8430 if (From == getRoot().getNode()) 8431 setRoot(SDValue(To, getRoot().getResNo())); 8432 } 8433 8434 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8435 /// This can cause recursive merging of nodes in the DAG. 8436 /// 8437 /// This version can replace From with any result values. To must match the 8438 /// number and types of values returned by From. 8439 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8440 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8441 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8442 8443 // Preserve Debug Info. 8444 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8445 transferDbgValues(SDValue(From, i), To[i]); 8446 8447 // Iterate over just the existing users of From. See the comments in 8448 // the ReplaceAllUsesWith above. 8449 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8450 RAUWUpdateListener Listener(*this, UI, UE); 8451 while (UI != UE) { 8452 SDNode *User = *UI; 8453 8454 // This node is about to morph, remove its old self from the CSE maps. 8455 RemoveNodeFromCSEMaps(User); 8456 8457 // A user can appear in a use list multiple times, and when this happens the 8458 // uses are usually next to each other in the list. To help reduce the 8459 // number of CSE and divergence recomputations, process all the uses of this 8460 // user that we can find this way. 8461 bool To_IsDivergent = false; 8462 do { 8463 SDUse &Use = UI.getUse(); 8464 const SDValue &ToOp = To[Use.getResNo()]; 8465 ++UI; 8466 Use.set(ToOp); 8467 To_IsDivergent |= ToOp->isDivergent(); 8468 } while (UI != UE && *UI == User); 8469 8470 if (To_IsDivergent != From->isDivergent()) 8471 updateDivergence(User); 8472 8473 // Now that we have modified User, add it back to the CSE maps. If it 8474 // already exists there, recursively merge the results together. 8475 AddModifiedNodeToCSEMaps(User); 8476 } 8477 8478 // If we just RAUW'd the root, take note. 8479 if (From == getRoot().getNode()) 8480 setRoot(SDValue(To[getRoot().getResNo()])); 8481 } 8482 8483 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8484 /// uses of other values produced by From.getNode() alone. The Deleted 8485 /// vector is handled the same way as for ReplaceAllUsesWith. 8486 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8487 // Handle the really simple, really trivial case efficiently. 8488 if (From == To) return; 8489 8490 // Handle the simple, trivial, case efficiently. 8491 if (From.getNode()->getNumValues() == 1) { 8492 ReplaceAllUsesWith(From, To); 8493 return; 8494 } 8495 8496 // Preserve Debug Info. 8497 transferDbgValues(From, To); 8498 8499 // Iterate over just the existing users of From. See the comments in 8500 // the ReplaceAllUsesWith above. 8501 SDNode::use_iterator UI = From.getNode()->use_begin(), 8502 UE = From.getNode()->use_end(); 8503 RAUWUpdateListener Listener(*this, UI, UE); 8504 while (UI != UE) { 8505 SDNode *User = *UI; 8506 bool UserRemovedFromCSEMaps = false; 8507 8508 // A user can appear in a use list multiple times, and when this 8509 // happens the uses are usually next to each other in the list. 8510 // To help reduce the number of CSE recomputations, process all 8511 // the uses of this user that we can find this way. 8512 do { 8513 SDUse &Use = UI.getUse(); 8514 8515 // Skip uses of different values from the same node. 8516 if (Use.getResNo() != From.getResNo()) { 8517 ++UI; 8518 continue; 8519 } 8520 8521 // If this node hasn't been modified yet, it's still in the CSE maps, 8522 // so remove its old self from the CSE maps. 8523 if (!UserRemovedFromCSEMaps) { 8524 RemoveNodeFromCSEMaps(User); 8525 UserRemovedFromCSEMaps = true; 8526 } 8527 8528 ++UI; 8529 Use.set(To); 8530 if (To->isDivergent() != From->isDivergent()) 8531 updateDivergence(User); 8532 } while (UI != UE && *UI == User); 8533 // We are iterating over all uses of the From node, so if a use 8534 // doesn't use the specific value, no changes are made. 8535 if (!UserRemovedFromCSEMaps) 8536 continue; 8537 8538 // Now that we have modified User, add it back to the CSE maps. If it 8539 // already exists there, recursively merge the results together. 8540 AddModifiedNodeToCSEMaps(User); 8541 } 8542 8543 // If we just RAUW'd the root, take note. 8544 if (From == getRoot()) 8545 setRoot(To); 8546 } 8547 8548 namespace { 8549 8550 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8551 /// to record information about a use. 8552 struct UseMemo { 8553 SDNode *User; 8554 unsigned Index; 8555 SDUse *Use; 8556 }; 8557 8558 /// operator< - Sort Memos by User. 8559 bool operator<(const UseMemo &L, const UseMemo &R) { 8560 return (intptr_t)L.User < (intptr_t)R.User; 8561 } 8562 8563 } // end anonymous namespace 8564 8565 void SelectionDAG::updateDivergence(SDNode * N) 8566 { 8567 if (TLI->isSDNodeAlwaysUniform(N)) 8568 return; 8569 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8570 for (auto &Op : N->ops()) { 8571 if (Op.Val.getValueType() != MVT::Other) 8572 IsDivergent |= Op.getNode()->isDivergent(); 8573 } 8574 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8575 N->SDNodeBits.IsDivergent = IsDivergent; 8576 for (auto U : N->uses()) { 8577 updateDivergence(U); 8578 } 8579 } 8580 } 8581 8582 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8583 DenseMap<SDNode *, unsigned> Degree; 8584 Order.reserve(AllNodes.size()); 8585 for (auto &N : allnodes()) { 8586 unsigned NOps = N.getNumOperands(); 8587 Degree[&N] = NOps; 8588 if (0 == NOps) 8589 Order.push_back(&N); 8590 } 8591 for (size_t I = 0; I != Order.size(); ++I) { 8592 SDNode *N = Order[I]; 8593 for (auto U : N->uses()) { 8594 unsigned &UnsortedOps = Degree[U]; 8595 if (0 == --UnsortedOps) 8596 Order.push_back(U); 8597 } 8598 } 8599 } 8600 8601 #ifndef NDEBUG 8602 void SelectionDAG::VerifyDAGDiverence() { 8603 std::vector<SDNode *> TopoOrder; 8604 CreateTopologicalOrder(TopoOrder); 8605 const TargetLowering &TLI = getTargetLoweringInfo(); 8606 DenseMap<const SDNode *, bool> DivergenceMap; 8607 for (auto &N : allnodes()) { 8608 DivergenceMap[&N] = false; 8609 } 8610 for (auto N : TopoOrder) { 8611 bool IsDivergent = DivergenceMap[N]; 8612 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8613 for (auto &Op : N->ops()) { 8614 if (Op.Val.getValueType() != MVT::Other) 8615 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8616 } 8617 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8618 DivergenceMap[N] = true; 8619 } 8620 } 8621 for (auto &N : allnodes()) { 8622 (void)N; 8623 assert(DivergenceMap[&N] == N.isDivergent() && 8624 "Divergence bit inconsistency detected\n"); 8625 } 8626 } 8627 #endif 8628 8629 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8630 /// uses of other values produced by From.getNode() alone. The same value 8631 /// may appear in both the From and To list. The Deleted vector is 8632 /// handled the same way as for ReplaceAllUsesWith. 8633 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8634 const SDValue *To, 8635 unsigned Num){ 8636 // Handle the simple, trivial case efficiently. 8637 if (Num == 1) 8638 return ReplaceAllUsesOfValueWith(*From, *To); 8639 8640 transferDbgValues(*From, *To); 8641 8642 // Read up all the uses and make records of them. This helps 8643 // processing new uses that are introduced during the 8644 // replacement process. 8645 SmallVector<UseMemo, 4> Uses; 8646 for (unsigned i = 0; i != Num; ++i) { 8647 unsigned FromResNo = From[i].getResNo(); 8648 SDNode *FromNode = From[i].getNode(); 8649 for (SDNode::use_iterator UI = FromNode->use_begin(), 8650 E = FromNode->use_end(); UI != E; ++UI) { 8651 SDUse &Use = UI.getUse(); 8652 if (Use.getResNo() == FromResNo) { 8653 UseMemo Memo = { *UI, i, &Use }; 8654 Uses.push_back(Memo); 8655 } 8656 } 8657 } 8658 8659 // Sort the uses, so that all the uses from a given User are together. 8660 llvm::sort(Uses); 8661 8662 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8663 UseIndex != UseIndexEnd; ) { 8664 // We know that this user uses some value of From. If it is the right 8665 // value, update it. 8666 SDNode *User = Uses[UseIndex].User; 8667 8668 // This node is about to morph, remove its old self from the CSE maps. 8669 RemoveNodeFromCSEMaps(User); 8670 8671 // The Uses array is sorted, so all the uses for a given User 8672 // are next to each other in the list. 8673 // To help reduce the number of CSE recomputations, process all 8674 // the uses of this user that we can find this way. 8675 do { 8676 unsigned i = Uses[UseIndex].Index; 8677 SDUse &Use = *Uses[UseIndex].Use; 8678 ++UseIndex; 8679 8680 Use.set(To[i]); 8681 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8682 8683 // Now that we have modified User, add it back to the CSE maps. If it 8684 // already exists there, recursively merge the results together. 8685 AddModifiedNodeToCSEMaps(User); 8686 } 8687 } 8688 8689 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8690 /// based on their topological order. It returns the maximum id and a vector 8691 /// of the SDNodes* in assigned order by reference. 8692 unsigned SelectionDAG::AssignTopologicalOrder() { 8693 unsigned DAGSize = 0; 8694 8695 // SortedPos tracks the progress of the algorithm. Nodes before it are 8696 // sorted, nodes after it are unsorted. When the algorithm completes 8697 // it is at the end of the list. 8698 allnodes_iterator SortedPos = allnodes_begin(); 8699 8700 // Visit all the nodes. Move nodes with no operands to the front of 8701 // the list immediately. Annotate nodes that do have operands with their 8702 // operand count. Before we do this, the Node Id fields of the nodes 8703 // may contain arbitrary values. After, the Node Id fields for nodes 8704 // before SortedPos will contain the topological sort index, and the 8705 // Node Id fields for nodes At SortedPos and after will contain the 8706 // count of outstanding operands. 8707 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8708 SDNode *N = &*I++; 8709 checkForCycles(N, this); 8710 unsigned Degree = N->getNumOperands(); 8711 if (Degree == 0) { 8712 // A node with no uses, add it to the result array immediately. 8713 N->setNodeId(DAGSize++); 8714 allnodes_iterator Q(N); 8715 if (Q != SortedPos) 8716 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8717 assert(SortedPos != AllNodes.end() && "Overran node list"); 8718 ++SortedPos; 8719 } else { 8720 // Temporarily use the Node Id as scratch space for the degree count. 8721 N->setNodeId(Degree); 8722 } 8723 } 8724 8725 // Visit all the nodes. As we iterate, move nodes into sorted order, 8726 // such that by the time the end is reached all nodes will be sorted. 8727 for (SDNode &Node : allnodes()) { 8728 SDNode *N = &Node; 8729 checkForCycles(N, this); 8730 // N is in sorted position, so all its uses have one less operand 8731 // that needs to be sorted. 8732 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8733 UI != UE; ++UI) { 8734 SDNode *P = *UI; 8735 unsigned Degree = P->getNodeId(); 8736 assert(Degree != 0 && "Invalid node degree"); 8737 --Degree; 8738 if (Degree == 0) { 8739 // All of P's operands are sorted, so P may sorted now. 8740 P->setNodeId(DAGSize++); 8741 if (P->getIterator() != SortedPos) 8742 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8743 assert(SortedPos != AllNodes.end() && "Overran node list"); 8744 ++SortedPos; 8745 } else { 8746 // Update P's outstanding operand count. 8747 P->setNodeId(Degree); 8748 } 8749 } 8750 if (Node.getIterator() == SortedPos) { 8751 #ifndef NDEBUG 8752 allnodes_iterator I(N); 8753 SDNode *S = &*++I; 8754 dbgs() << "Overran sorted position:\n"; 8755 S->dumprFull(this); dbgs() << "\n"; 8756 dbgs() << "Checking if this is due to cycles\n"; 8757 checkForCycles(this, true); 8758 #endif 8759 llvm_unreachable(nullptr); 8760 } 8761 } 8762 8763 assert(SortedPos == AllNodes.end() && 8764 "Topological sort incomplete!"); 8765 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8766 "First node in topological sort is not the entry token!"); 8767 assert(AllNodes.front().getNodeId() == 0 && 8768 "First node in topological sort has non-zero id!"); 8769 assert(AllNodes.front().getNumOperands() == 0 && 8770 "First node in topological sort has operands!"); 8771 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8772 "Last node in topologic sort has unexpected id!"); 8773 assert(AllNodes.back().use_empty() && 8774 "Last node in topologic sort has users!"); 8775 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8776 return DAGSize; 8777 } 8778 8779 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8780 /// value is produced by SD. 8781 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8782 if (SD) { 8783 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8784 SD->setHasDebugValue(true); 8785 } 8786 DbgInfo->add(DB, SD, isParameter); 8787 } 8788 8789 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8790 DbgInfo->add(DB); 8791 } 8792 8793 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8794 SDValue NewMemOp) { 8795 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8796 // The new memory operation must have the same position as the old load in 8797 // terms of memory dependency. Create a TokenFactor for the old load and new 8798 // memory operation and update uses of the old load's output chain to use that 8799 // TokenFactor. 8800 SDValue OldChain = SDValue(OldLoad, 1); 8801 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8802 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8803 return NewChain; 8804 8805 SDValue TokenFactor = 8806 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8807 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8808 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8809 return TokenFactor; 8810 } 8811 8812 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8813 Function **OutFunction) { 8814 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8815 8816 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8817 auto *Module = MF->getFunction().getParent(); 8818 auto *Function = Module->getFunction(Symbol); 8819 8820 if (OutFunction != nullptr) 8821 *OutFunction = Function; 8822 8823 if (Function != nullptr) { 8824 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8825 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8826 } 8827 8828 std::string ErrorStr; 8829 raw_string_ostream ErrorFormatter(ErrorStr); 8830 8831 ErrorFormatter << "Undefined external symbol "; 8832 ErrorFormatter << '"' << Symbol << '"'; 8833 ErrorFormatter.flush(); 8834 8835 report_fatal_error(ErrorStr); 8836 } 8837 8838 //===----------------------------------------------------------------------===// 8839 // SDNode Class 8840 //===----------------------------------------------------------------------===// 8841 8842 bool llvm::isNullConstant(SDValue V) { 8843 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8844 return Const != nullptr && Const->isNullValue(); 8845 } 8846 8847 bool llvm::isNullFPConstant(SDValue V) { 8848 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8849 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8850 } 8851 8852 bool llvm::isAllOnesConstant(SDValue V) { 8853 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8854 return Const != nullptr && Const->isAllOnesValue(); 8855 } 8856 8857 bool llvm::isOneConstant(SDValue V) { 8858 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8859 return Const != nullptr && Const->isOne(); 8860 } 8861 8862 SDValue llvm::peekThroughBitcasts(SDValue V) { 8863 while (V.getOpcode() == ISD::BITCAST) 8864 V = V.getOperand(0); 8865 return V; 8866 } 8867 8868 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8869 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8870 V = V.getOperand(0); 8871 return V; 8872 } 8873 8874 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8875 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8876 V = V.getOperand(0); 8877 return V; 8878 } 8879 8880 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8881 if (V.getOpcode() != ISD::XOR) 8882 return false; 8883 V = peekThroughBitcasts(V.getOperand(1)); 8884 unsigned NumBits = V.getScalarValueSizeInBits(); 8885 ConstantSDNode *C = 8886 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8887 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8888 } 8889 8890 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8891 bool AllowTruncation) { 8892 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8893 return CN; 8894 8895 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8896 BitVector UndefElements; 8897 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8898 8899 // BuildVectors can truncate their operands. Ignore that case here unless 8900 // AllowTruncation is set. 8901 if (CN && (UndefElements.none() || AllowUndefs)) { 8902 EVT CVT = CN->getValueType(0); 8903 EVT NSVT = N.getValueType().getScalarType(); 8904 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8905 if (AllowTruncation || (CVT == NSVT)) 8906 return CN; 8907 } 8908 } 8909 8910 return nullptr; 8911 } 8912 8913 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8914 bool AllowUndefs, 8915 bool AllowTruncation) { 8916 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8917 return CN; 8918 8919 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8920 BitVector UndefElements; 8921 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8922 8923 // BuildVectors can truncate their operands. Ignore that case here unless 8924 // AllowTruncation is set. 8925 if (CN && (UndefElements.none() || AllowUndefs)) { 8926 EVT CVT = CN->getValueType(0); 8927 EVT NSVT = N.getValueType().getScalarType(); 8928 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8929 if (AllowTruncation || (CVT == NSVT)) 8930 return CN; 8931 } 8932 } 8933 8934 return nullptr; 8935 } 8936 8937 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8938 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8939 return CN; 8940 8941 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8942 BitVector UndefElements; 8943 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8944 if (CN && (UndefElements.none() || AllowUndefs)) 8945 return CN; 8946 } 8947 8948 return nullptr; 8949 } 8950 8951 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8952 const APInt &DemandedElts, 8953 bool AllowUndefs) { 8954 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8955 return CN; 8956 8957 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8958 BitVector UndefElements; 8959 ConstantFPSDNode *CN = 8960 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8961 if (CN && (UndefElements.none() || AllowUndefs)) 8962 return CN; 8963 } 8964 8965 return nullptr; 8966 } 8967 8968 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8969 // TODO: may want to use peekThroughBitcast() here. 8970 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8971 return C && C->isNullValue(); 8972 } 8973 8974 bool llvm::isOneOrOneSplat(SDValue N) { 8975 // TODO: may want to use peekThroughBitcast() here. 8976 unsigned BitWidth = N.getScalarValueSizeInBits(); 8977 ConstantSDNode *C = isConstOrConstSplat(N); 8978 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8979 } 8980 8981 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8982 N = peekThroughBitcasts(N); 8983 unsigned BitWidth = N.getScalarValueSizeInBits(); 8984 ConstantSDNode *C = isConstOrConstSplat(N); 8985 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8986 } 8987 8988 HandleSDNode::~HandleSDNode() { 8989 DropOperands(); 8990 } 8991 8992 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8993 const DebugLoc &DL, 8994 const GlobalValue *GA, EVT VT, 8995 int64_t o, unsigned TF) 8996 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8997 TheGlobal = GA; 8998 } 8999 9000 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9001 EVT VT, unsigned SrcAS, 9002 unsigned DestAS) 9003 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9004 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9005 9006 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9007 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9008 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9009 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9010 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9011 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9012 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9013 9014 // We check here that the size of the memory operand fits within the size of 9015 // the MMO. This is because the MMO might indicate only a possible address 9016 // range instead of specifying the affected memory addresses precisely. 9017 // TODO: Make MachineMemOperands aware of scalable vectors. 9018 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9019 "Size mismatch!"); 9020 } 9021 9022 /// Profile - Gather unique data for the node. 9023 /// 9024 void SDNode::Profile(FoldingSetNodeID &ID) const { 9025 AddNodeIDNode(ID, this); 9026 } 9027 9028 namespace { 9029 9030 struct EVTArray { 9031 std::vector<EVT> VTs; 9032 9033 EVTArray() { 9034 VTs.reserve(MVT::LAST_VALUETYPE); 9035 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9036 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9037 } 9038 }; 9039 9040 } // end anonymous namespace 9041 9042 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9043 static ManagedStatic<EVTArray> SimpleVTArray; 9044 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9045 9046 /// getValueTypeList - Return a pointer to the specified value type. 9047 /// 9048 const EVT *SDNode::getValueTypeList(EVT VT) { 9049 if (VT.isExtended()) { 9050 sys::SmartScopedLock<true> Lock(*VTMutex); 9051 return &(*EVTs->insert(VT).first); 9052 } else { 9053 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9054 "Value type out of range!"); 9055 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9056 } 9057 } 9058 9059 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9060 /// indicated value. This method ignores uses of other values defined by this 9061 /// operation. 9062 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9063 assert(Value < getNumValues() && "Bad value!"); 9064 9065 // TODO: Only iterate over uses of a given value of the node 9066 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9067 if (UI.getUse().getResNo() == Value) { 9068 if (NUses == 0) 9069 return false; 9070 --NUses; 9071 } 9072 } 9073 9074 // Found exactly the right number of uses? 9075 return NUses == 0; 9076 } 9077 9078 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9079 /// value. This method ignores uses of other values defined by this operation. 9080 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9081 assert(Value < getNumValues() && "Bad value!"); 9082 9083 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9084 if (UI.getUse().getResNo() == Value) 9085 return true; 9086 9087 return false; 9088 } 9089 9090 /// isOnlyUserOf - Return true if this node is the only use of N. 9091 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9092 bool Seen = false; 9093 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9094 SDNode *User = *I; 9095 if (User == this) 9096 Seen = true; 9097 else 9098 return false; 9099 } 9100 9101 return Seen; 9102 } 9103 9104 /// Return true if the only users of N are contained in Nodes. 9105 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9106 bool Seen = false; 9107 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9108 SDNode *User = *I; 9109 if (llvm::any_of(Nodes, 9110 [&User](const SDNode *Node) { return User == Node; })) 9111 Seen = true; 9112 else 9113 return false; 9114 } 9115 9116 return Seen; 9117 } 9118 9119 /// isOperand - Return true if this node is an operand of N. 9120 bool SDValue::isOperandOf(const SDNode *N) const { 9121 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9122 } 9123 9124 bool SDNode::isOperandOf(const SDNode *N) const { 9125 return any_of(N->op_values(), 9126 [this](SDValue Op) { return this == Op.getNode(); }); 9127 } 9128 9129 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9130 /// be a chain) reaches the specified operand without crossing any 9131 /// side-effecting instructions on any chain path. In practice, this looks 9132 /// through token factors and non-volatile loads. In order to remain efficient, 9133 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9134 /// 9135 /// Note that we only need to examine chains when we're searching for 9136 /// side-effects; SelectionDAG requires that all side-effects are represented 9137 /// by chains, even if another operand would force a specific ordering. This 9138 /// constraint is necessary to allow transformations like splitting loads. 9139 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9140 unsigned Depth) const { 9141 if (*this == Dest) return true; 9142 9143 // Don't search too deeply, we just want to be able to see through 9144 // TokenFactor's etc. 9145 if (Depth == 0) return false; 9146 9147 // If this is a token factor, all inputs to the TF happen in parallel. 9148 if (getOpcode() == ISD::TokenFactor) { 9149 // First, try a shallow search. 9150 if (is_contained((*this)->ops(), Dest)) { 9151 // We found the chain we want as an operand of this TokenFactor. 9152 // Essentially, we reach the chain without side-effects if we could 9153 // serialize the TokenFactor into a simple chain of operations with 9154 // Dest as the last operation. This is automatically true if the 9155 // chain has one use: there are no other ordering constraints. 9156 // If the chain has more than one use, we give up: some other 9157 // use of Dest might force a side-effect between Dest and the current 9158 // node. 9159 if (Dest.hasOneUse()) 9160 return true; 9161 } 9162 // Next, try a deep search: check whether every operand of the TokenFactor 9163 // reaches Dest. 9164 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9165 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9166 }); 9167 } 9168 9169 // Loads don't have side effects, look through them. 9170 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9171 if (Ld->isUnordered()) 9172 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9173 } 9174 return false; 9175 } 9176 9177 bool SDNode::hasPredecessor(const SDNode *N) const { 9178 SmallPtrSet<const SDNode *, 32> Visited; 9179 SmallVector<const SDNode *, 16> Worklist; 9180 Worklist.push_back(this); 9181 return hasPredecessorHelper(N, Visited, Worklist); 9182 } 9183 9184 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9185 this->Flags.intersectWith(Flags); 9186 } 9187 9188 SDValue 9189 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9190 ArrayRef<ISD::NodeType> CandidateBinOps, 9191 bool AllowPartials) { 9192 // The pattern must end in an extract from index 0. 9193 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9194 !isNullConstant(Extract->getOperand(1))) 9195 return SDValue(); 9196 9197 // Match against one of the candidate binary ops. 9198 SDValue Op = Extract->getOperand(0); 9199 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9200 return Op.getOpcode() == unsigned(BinOp); 9201 })) 9202 return SDValue(); 9203 9204 // Floating-point reductions may require relaxed constraints on the final step 9205 // of the reduction because they may reorder intermediate operations. 9206 unsigned CandidateBinOp = Op.getOpcode(); 9207 if (Op.getValueType().isFloatingPoint()) { 9208 SDNodeFlags Flags = Op->getFlags(); 9209 switch (CandidateBinOp) { 9210 case ISD::FADD: 9211 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9212 return SDValue(); 9213 break; 9214 default: 9215 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9216 } 9217 } 9218 9219 // Matching failed - attempt to see if we did enough stages that a partial 9220 // reduction from a subvector is possible. 9221 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9222 if (!AllowPartials || !Op) 9223 return SDValue(); 9224 EVT OpVT = Op.getValueType(); 9225 EVT OpSVT = OpVT.getScalarType(); 9226 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9227 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9228 return SDValue(); 9229 BinOp = (ISD::NodeType)CandidateBinOp; 9230 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9231 getVectorIdxConstant(0, SDLoc(Op))); 9232 }; 9233 9234 // At each stage, we're looking for something that looks like: 9235 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9236 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9237 // i32 undef, i32 undef, i32 undef, i32 undef> 9238 // %a = binop <8 x i32> %op, %s 9239 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9240 // we expect something like: 9241 // <4,5,6,7,u,u,u,u> 9242 // <2,3,u,u,u,u,u,u> 9243 // <1,u,u,u,u,u,u,u> 9244 // While a partial reduction match would be: 9245 // <2,3,u,u,u,u,u,u> 9246 // <1,u,u,u,u,u,u,u> 9247 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9248 SDValue PrevOp; 9249 for (unsigned i = 0; i < Stages; ++i) { 9250 unsigned MaskEnd = (1 << i); 9251 9252 if (Op.getOpcode() != CandidateBinOp) 9253 return PartialReduction(PrevOp, MaskEnd); 9254 9255 SDValue Op0 = Op.getOperand(0); 9256 SDValue Op1 = Op.getOperand(1); 9257 9258 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9259 if (Shuffle) { 9260 Op = Op1; 9261 } else { 9262 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9263 Op = Op0; 9264 } 9265 9266 // The first operand of the shuffle should be the same as the other operand 9267 // of the binop. 9268 if (!Shuffle || Shuffle->getOperand(0) != Op) 9269 return PartialReduction(PrevOp, MaskEnd); 9270 9271 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9272 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9273 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9274 return PartialReduction(PrevOp, MaskEnd); 9275 9276 PrevOp = Op; 9277 } 9278 9279 BinOp = (ISD::NodeType)CandidateBinOp; 9280 return Op; 9281 } 9282 9283 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9284 assert(N->getNumValues() == 1 && 9285 "Can't unroll a vector with multiple results!"); 9286 9287 EVT VT = N->getValueType(0); 9288 unsigned NE = VT.getVectorNumElements(); 9289 EVT EltVT = VT.getVectorElementType(); 9290 SDLoc dl(N); 9291 9292 SmallVector<SDValue, 8> Scalars; 9293 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9294 9295 // If ResNE is 0, fully unroll the vector op. 9296 if (ResNE == 0) 9297 ResNE = NE; 9298 else if (NE > ResNE) 9299 NE = ResNE; 9300 9301 unsigned i; 9302 for (i= 0; i != NE; ++i) { 9303 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9304 SDValue Operand = N->getOperand(j); 9305 EVT OperandVT = Operand.getValueType(); 9306 if (OperandVT.isVector()) { 9307 // A vector operand; extract a single element. 9308 EVT OperandEltVT = OperandVT.getVectorElementType(); 9309 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9310 Operand, getVectorIdxConstant(i, dl)); 9311 } else { 9312 // A scalar operand; just use it as is. 9313 Operands[j] = Operand; 9314 } 9315 } 9316 9317 switch (N->getOpcode()) { 9318 default: { 9319 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9320 N->getFlags())); 9321 break; 9322 } 9323 case ISD::VSELECT: 9324 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9325 break; 9326 case ISD::SHL: 9327 case ISD::SRA: 9328 case ISD::SRL: 9329 case ISD::ROTL: 9330 case ISD::ROTR: 9331 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9332 getShiftAmountOperand(Operands[0].getValueType(), 9333 Operands[1]))); 9334 break; 9335 case ISD::SIGN_EXTEND_INREG: { 9336 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9337 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9338 Operands[0], 9339 getValueType(ExtVT))); 9340 } 9341 } 9342 } 9343 9344 for (; i < ResNE; ++i) 9345 Scalars.push_back(getUNDEF(EltVT)); 9346 9347 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9348 return getBuildVector(VecVT, dl, Scalars); 9349 } 9350 9351 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9352 SDNode *N, unsigned ResNE) { 9353 unsigned Opcode = N->getOpcode(); 9354 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9355 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9356 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9357 "Expected an overflow opcode"); 9358 9359 EVT ResVT = N->getValueType(0); 9360 EVT OvVT = N->getValueType(1); 9361 EVT ResEltVT = ResVT.getVectorElementType(); 9362 EVT OvEltVT = OvVT.getVectorElementType(); 9363 SDLoc dl(N); 9364 9365 // If ResNE is 0, fully unroll the vector op. 9366 unsigned NE = ResVT.getVectorNumElements(); 9367 if (ResNE == 0) 9368 ResNE = NE; 9369 else if (NE > ResNE) 9370 NE = ResNE; 9371 9372 SmallVector<SDValue, 8> LHSScalars; 9373 SmallVector<SDValue, 8> RHSScalars; 9374 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9375 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9376 9377 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9378 SDVTList VTs = getVTList(ResEltVT, SVT); 9379 SmallVector<SDValue, 8> ResScalars; 9380 SmallVector<SDValue, 8> OvScalars; 9381 for (unsigned i = 0; i < NE; ++i) { 9382 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9383 SDValue Ov = 9384 getSelect(dl, OvEltVT, Res.getValue(1), 9385 getBoolConstant(true, dl, OvEltVT, ResVT), 9386 getConstant(0, dl, OvEltVT)); 9387 9388 ResScalars.push_back(Res); 9389 OvScalars.push_back(Ov); 9390 } 9391 9392 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9393 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9394 9395 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9396 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9397 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9398 getBuildVector(NewOvVT, dl, OvScalars)); 9399 } 9400 9401 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9402 LoadSDNode *Base, 9403 unsigned Bytes, 9404 int Dist) const { 9405 if (LD->isVolatile() || Base->isVolatile()) 9406 return false; 9407 // TODO: probably too restrictive for atomics, revisit 9408 if (!LD->isSimple()) 9409 return false; 9410 if (LD->isIndexed() || Base->isIndexed()) 9411 return false; 9412 if (LD->getChain() != Base->getChain()) 9413 return false; 9414 EVT VT = LD->getValueType(0); 9415 if (VT.getSizeInBits() / 8 != Bytes) 9416 return false; 9417 9418 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9419 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9420 9421 int64_t Offset = 0; 9422 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9423 return (Dist * Bytes == Offset); 9424 return false; 9425 } 9426 9427 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9428 /// if it cannot be inferred. 9429 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9430 // If this is a GlobalAddress + cst, return the alignment. 9431 const GlobalValue *GV = nullptr; 9432 int64_t GVOffset = 0; 9433 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9434 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9435 KnownBits Known(PtrWidth); 9436 llvm::computeKnownBits(GV, Known, getDataLayout()); 9437 unsigned AlignBits = Known.countMinTrailingZeros(); 9438 if (AlignBits) 9439 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9440 } 9441 9442 // If this is a direct reference to a stack slot, use information about the 9443 // stack slot's alignment. 9444 int FrameIdx = INT_MIN; 9445 int64_t FrameOffset = 0; 9446 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9447 FrameIdx = FI->getIndex(); 9448 } else if (isBaseWithConstantOffset(Ptr) && 9449 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9450 // Handle FI+Cst 9451 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9452 FrameOffset = Ptr.getConstantOperandVal(1); 9453 } 9454 9455 if (FrameIdx != INT_MIN) { 9456 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9457 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9458 } 9459 9460 return None; 9461 } 9462 9463 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9464 /// which is split (or expanded) into two not necessarily identical pieces. 9465 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9466 // Currently all types are split in half. 9467 EVT LoVT, HiVT; 9468 if (!VT.isVector()) 9469 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9470 else 9471 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9472 9473 return std::make_pair(LoVT, HiVT); 9474 } 9475 9476 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9477 /// type, dependent on an enveloping VT that has been split into two identical 9478 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9479 std::pair<EVT, EVT> 9480 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9481 bool *HiIsEmpty) const { 9482 EVT EltTp = VT.getVectorElementType(); 9483 bool IsScalable = VT.isScalableVector(); 9484 // Examples: 9485 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9486 // custom VL=9 with enveloping VL=8/8 yields 8/1 9487 // custom VL=10 with enveloping VL=8/8 yields 8/2 9488 // etc. 9489 unsigned VTNumElts = VT.getVectorNumElements(); 9490 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9491 EVT LoVT, HiVT; 9492 if (VTNumElts > EnvNumElts) { 9493 LoVT = EnvVT; 9494 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9495 IsScalable); 9496 *HiIsEmpty = false; 9497 } else { 9498 // Flag that hi type has zero storage size, but return split envelop type 9499 // (this would be easier if vector types with zero elements were allowed). 9500 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9501 HiVT = EnvVT; 9502 *HiIsEmpty = true; 9503 } 9504 return std::make_pair(LoVT, HiVT); 9505 } 9506 9507 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9508 /// low/high part. 9509 std::pair<SDValue, SDValue> 9510 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9511 const EVT &HiVT) { 9512 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9513 N.getValueType().getVectorNumElements() && 9514 "More vector elements requested than available!"); 9515 SDValue Lo, Hi; 9516 Lo = 9517 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9518 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9519 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9520 return std::make_pair(Lo, Hi); 9521 } 9522 9523 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9524 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9525 EVT VT = N.getValueType(); 9526 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9527 NextPowerOf2(VT.getVectorNumElements())); 9528 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9529 getVectorIdxConstant(0, DL)); 9530 } 9531 9532 void SelectionDAG::ExtractVectorElements(SDValue Op, 9533 SmallVectorImpl<SDValue> &Args, 9534 unsigned Start, unsigned Count, 9535 EVT EltVT) { 9536 EVT VT = Op.getValueType(); 9537 if (Count == 0) 9538 Count = VT.getVectorNumElements(); 9539 if (EltVT == EVT()) 9540 EltVT = VT.getVectorElementType(); 9541 SDLoc SL(Op); 9542 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9543 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9544 getVectorIdxConstant(i, SL))); 9545 } 9546 } 9547 9548 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9549 unsigned GlobalAddressSDNode::getAddressSpace() const { 9550 return getGlobal()->getType()->getAddressSpace(); 9551 } 9552 9553 Type *ConstantPoolSDNode::getType() const { 9554 if (isMachineConstantPoolEntry()) 9555 return Val.MachineCPVal->getType(); 9556 return Val.ConstVal->getType(); 9557 } 9558 9559 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9560 unsigned &SplatBitSize, 9561 bool &HasAnyUndefs, 9562 unsigned MinSplatBits, 9563 bool IsBigEndian) const { 9564 EVT VT = getValueType(0); 9565 assert(VT.isVector() && "Expected a vector type"); 9566 unsigned VecWidth = VT.getSizeInBits(); 9567 if (MinSplatBits > VecWidth) 9568 return false; 9569 9570 // FIXME: The widths are based on this node's type, but build vectors can 9571 // truncate their operands. 9572 SplatValue = APInt(VecWidth, 0); 9573 SplatUndef = APInt(VecWidth, 0); 9574 9575 // Get the bits. Bits with undefined values (when the corresponding element 9576 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9577 // in SplatValue. If any of the values are not constant, give up and return 9578 // false. 9579 unsigned int NumOps = getNumOperands(); 9580 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9581 unsigned EltWidth = VT.getScalarSizeInBits(); 9582 9583 for (unsigned j = 0; j < NumOps; ++j) { 9584 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9585 SDValue OpVal = getOperand(i); 9586 unsigned BitPos = j * EltWidth; 9587 9588 if (OpVal.isUndef()) 9589 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9590 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9591 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9592 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9593 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9594 else 9595 return false; 9596 } 9597 9598 // The build_vector is all constants or undefs. Find the smallest element 9599 // size that splats the vector. 9600 HasAnyUndefs = (SplatUndef != 0); 9601 9602 // FIXME: This does not work for vectors with elements less than 8 bits. 9603 while (VecWidth > 8) { 9604 unsigned HalfSize = VecWidth / 2; 9605 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9606 APInt LowValue = SplatValue.trunc(HalfSize); 9607 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9608 APInt LowUndef = SplatUndef.trunc(HalfSize); 9609 9610 // If the two halves do not match (ignoring undef bits), stop here. 9611 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9612 MinSplatBits > HalfSize) 9613 break; 9614 9615 SplatValue = HighValue | LowValue; 9616 SplatUndef = HighUndef & LowUndef; 9617 9618 VecWidth = HalfSize; 9619 } 9620 9621 SplatBitSize = VecWidth; 9622 return true; 9623 } 9624 9625 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9626 BitVector *UndefElements) const { 9627 if (UndefElements) { 9628 UndefElements->clear(); 9629 UndefElements->resize(getNumOperands()); 9630 } 9631 assert(getNumOperands() == DemandedElts.getBitWidth() && 9632 "Unexpected vector size"); 9633 if (!DemandedElts) 9634 return SDValue(); 9635 SDValue Splatted; 9636 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9637 if (!DemandedElts[i]) 9638 continue; 9639 SDValue Op = getOperand(i); 9640 if (Op.isUndef()) { 9641 if (UndefElements) 9642 (*UndefElements)[i] = true; 9643 } else if (!Splatted) { 9644 Splatted = Op; 9645 } else if (Splatted != Op) { 9646 return SDValue(); 9647 } 9648 } 9649 9650 if (!Splatted) { 9651 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9652 assert(getOperand(FirstDemandedIdx).isUndef() && 9653 "Can only have a splat without a constant for all undefs."); 9654 return getOperand(FirstDemandedIdx); 9655 } 9656 9657 return Splatted; 9658 } 9659 9660 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9661 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9662 return getSplatValue(DemandedElts, UndefElements); 9663 } 9664 9665 ConstantSDNode * 9666 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9667 BitVector *UndefElements) const { 9668 return dyn_cast_or_null<ConstantSDNode>( 9669 getSplatValue(DemandedElts, UndefElements)); 9670 } 9671 9672 ConstantSDNode * 9673 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9674 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9675 } 9676 9677 ConstantFPSDNode * 9678 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9679 BitVector *UndefElements) const { 9680 return dyn_cast_or_null<ConstantFPSDNode>( 9681 getSplatValue(DemandedElts, UndefElements)); 9682 } 9683 9684 ConstantFPSDNode * 9685 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9686 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9687 } 9688 9689 int32_t 9690 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9691 uint32_t BitWidth) const { 9692 if (ConstantFPSDNode *CN = 9693 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9694 bool IsExact; 9695 APSInt IntVal(BitWidth); 9696 const APFloat &APF = CN->getValueAPF(); 9697 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9698 APFloat::opOK || 9699 !IsExact) 9700 return -1; 9701 9702 return IntVal.exactLogBase2(); 9703 } 9704 return -1; 9705 } 9706 9707 bool BuildVectorSDNode::isConstant() const { 9708 for (const SDValue &Op : op_values()) { 9709 unsigned Opc = Op.getOpcode(); 9710 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9711 return false; 9712 } 9713 return true; 9714 } 9715 9716 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9717 // Find the first non-undef value in the shuffle mask. 9718 unsigned i, e; 9719 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9720 /* search */; 9721 9722 // If all elements are undefined, this shuffle can be considered a splat 9723 // (although it should eventually get simplified away completely). 9724 if (i == e) 9725 return true; 9726 9727 // Make sure all remaining elements are either undef or the same as the first 9728 // non-undef value. 9729 for (int Idx = Mask[i]; i != e; ++i) 9730 if (Mask[i] >= 0 && Mask[i] != Idx) 9731 return false; 9732 return true; 9733 } 9734 9735 // Returns the SDNode if it is a constant integer BuildVector 9736 // or constant integer. 9737 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9738 if (isa<ConstantSDNode>(N)) 9739 return N.getNode(); 9740 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9741 return N.getNode(); 9742 // Treat a GlobalAddress supporting constant offset folding as a 9743 // constant integer. 9744 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9745 if (GA->getOpcode() == ISD::GlobalAddress && 9746 TLI->isOffsetFoldingLegal(GA)) 9747 return GA; 9748 return nullptr; 9749 } 9750 9751 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9752 if (isa<ConstantFPSDNode>(N)) 9753 return N.getNode(); 9754 9755 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9756 return N.getNode(); 9757 9758 return nullptr; 9759 } 9760 9761 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9762 assert(!Node->OperandList && "Node already has operands"); 9763 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9764 "too many operands to fit into SDNode"); 9765 SDUse *Ops = OperandRecycler.allocate( 9766 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9767 9768 bool IsDivergent = false; 9769 for (unsigned I = 0; I != Vals.size(); ++I) { 9770 Ops[I].setUser(Node); 9771 Ops[I].setInitial(Vals[I]); 9772 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9773 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9774 } 9775 Node->NumOperands = Vals.size(); 9776 Node->OperandList = Ops; 9777 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9778 if (!TLI->isSDNodeAlwaysUniform(Node)) 9779 Node->SDNodeBits.IsDivergent = IsDivergent; 9780 checkForCycles(Node); 9781 } 9782 9783 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9784 SmallVectorImpl<SDValue> &Vals) { 9785 size_t Limit = SDNode::getMaxNumOperands(); 9786 while (Vals.size() > Limit) { 9787 unsigned SliceIdx = Vals.size() - Limit; 9788 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9789 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9790 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9791 Vals.emplace_back(NewTF); 9792 } 9793 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9794 } 9795 9796 #ifndef NDEBUG 9797 static void checkForCyclesHelper(const SDNode *N, 9798 SmallPtrSetImpl<const SDNode*> &Visited, 9799 SmallPtrSetImpl<const SDNode*> &Checked, 9800 const llvm::SelectionDAG *DAG) { 9801 // If this node has already been checked, don't check it again. 9802 if (Checked.count(N)) 9803 return; 9804 9805 // If a node has already been visited on this depth-first walk, reject it as 9806 // a cycle. 9807 if (!Visited.insert(N).second) { 9808 errs() << "Detected cycle in SelectionDAG\n"; 9809 dbgs() << "Offending node:\n"; 9810 N->dumprFull(DAG); dbgs() << "\n"; 9811 abort(); 9812 } 9813 9814 for (const SDValue &Op : N->op_values()) 9815 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9816 9817 Checked.insert(N); 9818 Visited.erase(N); 9819 } 9820 #endif 9821 9822 void llvm::checkForCycles(const llvm::SDNode *N, 9823 const llvm::SelectionDAG *DAG, 9824 bool force) { 9825 #ifndef NDEBUG 9826 bool check = force; 9827 #ifdef EXPENSIVE_CHECKS 9828 check = true; 9829 #endif // EXPENSIVE_CHECKS 9830 if (check) { 9831 assert(N && "Checking nonexistent SDNode"); 9832 SmallPtrSet<const SDNode*, 32> visited; 9833 SmallPtrSet<const SDNode*, 32> checked; 9834 checkForCyclesHelper(N, visited, checked, DAG); 9835 } 9836 #endif // !NDEBUG 9837 } 9838 9839 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9840 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9841 } 9842