1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 auto *BV = dyn_cast<BuildVectorSDNode>(N); 143 if (!BV) 144 return false; 145 146 APInt SplatUndef; 147 unsigned SplatBitSize; 148 bool HasUndefs; 149 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 150 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 151 EltSize) && 152 EltSize == SplatBitSize; 153 } 154 155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 156 // specializations of the more general isConstantSplatVector()? 157 158 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 159 // Look through a bit convert. 160 while (N->getOpcode() == ISD::BITCAST) 161 N = N->getOperand(0).getNode(); 162 163 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 164 165 unsigned i = 0, e = N->getNumOperands(); 166 167 // Skip over all of the undef values. 168 while (i != e && N->getOperand(i).isUndef()) 169 ++i; 170 171 // Do not accept an all-undef vector. 172 if (i == e) return false; 173 174 // Do not accept build_vectors that aren't all constants or which have non-~0 175 // elements. We have to be a bit careful here, as the type of the constant 176 // may not be the same as the type of the vector elements due to type 177 // legalization (the elements are promoted to a legal type for the target and 178 // a vector of a type may be legal when the base element type is not). 179 // We only want to check enough bits to cover the vector elements, because 180 // we care if the resultant vector is all ones, not whether the individual 181 // constants are. 182 SDValue NotZero = N->getOperand(i); 183 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 184 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 185 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 186 return false; 187 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 188 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 189 return false; 190 } else 191 return false; 192 193 // Okay, we have at least one ~0 value, check to see if the rest match or are 194 // undefs. Even with the above element type twiddling, this should be OK, as 195 // the same type legalization should have applied to all the elements. 196 for (++i; i != e; ++i) 197 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 198 return false; 199 return true; 200 } 201 202 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 203 // Look through a bit convert. 204 while (N->getOpcode() == ISD::BITCAST) 205 N = N->getOperand(0).getNode(); 206 207 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 208 209 bool IsAllUndef = true; 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 IsAllUndef = false; 214 // Do not accept build_vectors that aren't all constants or which have non-0 215 // elements. We have to be a bit careful here, as the type of the constant 216 // may not be the same as the type of the vector elements due to type 217 // legalization (the elements are promoted to a legal type for the target 218 // and a vector of a type may be legal when the base element type is not). 219 // We only want to check enough bits to cover the vector elements, because 220 // we care if the resultant vector is all zeros, not whether the individual 221 // constants are. 222 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 223 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 224 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 225 return false; 226 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 227 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 228 return false; 229 } else 230 return false; 231 } 232 233 // Do not accept an all-undef vector. 234 if (IsAllUndef) 235 return false; 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 253 if (N->getOpcode() != ISD::BUILD_VECTOR) 254 return false; 255 256 for (const SDValue &Op : N->op_values()) { 257 if (Op.isUndef()) 258 continue; 259 if (!isa<ConstantFPSDNode>(Op)) 260 return false; 261 } 262 return true; 263 } 264 265 bool ISD::allOperandsUndef(const SDNode *N) { 266 // Return false if the node has no operands. 267 // This is "logically inconsistent" with the definition of "all" but 268 // is probably the desired behavior. 269 if (N->getNumOperands() == 0) 270 return false; 271 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 272 } 273 274 bool ISD::matchUnaryPredicate(SDValue Op, 275 std::function<bool(ConstantSDNode *)> Match, 276 bool AllowUndefs) { 277 // FIXME: Add support for scalar UNDEF cases? 278 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 279 return Match(Cst); 280 281 // FIXME: Add support for vector UNDEF cases? 282 if (ISD::BUILD_VECTOR != Op.getOpcode()) 283 return false; 284 285 EVT SVT = Op.getValueType().getScalarType(); 286 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 287 if (AllowUndefs && Op.getOperand(i).isUndef()) { 288 if (!Match(nullptr)) 289 return false; 290 continue; 291 } 292 293 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 294 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 295 return false; 296 } 297 return true; 298 } 299 300 bool ISD::matchBinaryPredicate( 301 SDValue LHS, SDValue RHS, 302 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 303 bool AllowUndefs, bool AllowTypeMismatch) { 304 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 305 return false; 306 307 // TODO: Add support for scalar UNDEF cases? 308 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 309 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 310 return Match(LHSCst, RHSCst); 311 312 // TODO: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 314 ISD::BUILD_VECTOR != RHS.getOpcode()) 315 return false; 316 317 EVT SVT = LHS.getValueType().getScalarType(); 318 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 319 SDValue LHSOp = LHS.getOperand(i); 320 SDValue RHSOp = RHS.getOperand(i); 321 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 322 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 323 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 324 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 325 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 326 return false; 327 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 328 LHSOp.getValueType() != RHSOp.getValueType())) 329 return false; 330 if (!Match(LHSCst, RHSCst)) 331 return false; 332 } 333 return true; 334 } 335 336 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 337 switch (VecReduceOpcode) { 338 default: 339 llvm_unreachable("Expected VECREDUCE opcode"); 340 case ISD::VECREDUCE_FADD: 341 case ISD::VECREDUCE_SEQ_FADD: 342 return ISD::FADD; 343 case ISD::VECREDUCE_FMUL: 344 case ISD::VECREDUCE_SEQ_FMUL: 345 return ISD::FMUL; 346 case ISD::VECREDUCE_ADD: 347 return ISD::ADD; 348 case ISD::VECREDUCE_MUL: 349 return ISD::MUL; 350 case ISD::VECREDUCE_AND: 351 return ISD::AND; 352 case ISD::VECREDUCE_OR: 353 return ISD::OR; 354 case ISD::VECREDUCE_XOR: 355 return ISD::XOR; 356 case ISD::VECREDUCE_SMAX: 357 return ISD::SMAX; 358 case ISD::VECREDUCE_SMIN: 359 return ISD::SMIN; 360 case ISD::VECREDUCE_UMAX: 361 return ISD::UMAX; 362 case ISD::VECREDUCE_UMIN: 363 return ISD::UMIN; 364 case ISD::VECREDUCE_FMAX: 365 return ISD::FMAXNUM; 366 case ISD::VECREDUCE_FMIN: 367 return ISD::FMINNUM; 368 } 369 } 370 371 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 372 switch (ExtType) { 373 case ISD::EXTLOAD: 374 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 375 case ISD::SEXTLOAD: 376 return ISD::SIGN_EXTEND; 377 case ISD::ZEXTLOAD: 378 return ISD::ZERO_EXTEND; 379 default: 380 break; 381 } 382 383 llvm_unreachable("Invalid LoadExtType"); 384 } 385 386 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 387 // To perform this operation, we just need to swap the L and G bits of the 388 // operation. 389 unsigned OldL = (Operation >> 2) & 1; 390 unsigned OldG = (Operation >> 1) & 1; 391 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 392 (OldL << 1) | // New G bit 393 (OldG << 2)); // New L bit. 394 } 395 396 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 397 unsigned Operation = Op; 398 if (isIntegerLike) 399 Operation ^= 7; // Flip L, G, E bits, but not U. 400 else 401 Operation ^= 15; // Flip all of the condition bits. 402 403 if (Operation > ISD::SETTRUE2) 404 Operation &= ~8; // Don't let N and U bits get set. 405 406 return ISD::CondCode(Operation); 407 } 408 409 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 410 return getSetCCInverseImpl(Op, Type.isInteger()); 411 } 412 413 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 414 bool isIntegerLike) { 415 return getSetCCInverseImpl(Op, isIntegerLike); 416 } 417 418 /// For an integer comparison, return 1 if the comparison is a signed operation 419 /// and 2 if the result is an unsigned comparison. Return zero if the operation 420 /// does not depend on the sign of the input (setne and seteq). 421 static int isSignedOp(ISD::CondCode Opcode) { 422 switch (Opcode) { 423 default: llvm_unreachable("Illegal integer setcc operation!"); 424 case ISD::SETEQ: 425 case ISD::SETNE: return 0; 426 case ISD::SETLT: 427 case ISD::SETLE: 428 case ISD::SETGT: 429 case ISD::SETGE: return 1; 430 case ISD::SETULT: 431 case ISD::SETULE: 432 case ISD::SETUGT: 433 case ISD::SETUGE: return 2; 434 } 435 } 436 437 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 438 EVT Type) { 439 bool IsInteger = Type.isInteger(); 440 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 441 // Cannot fold a signed integer setcc with an unsigned integer setcc. 442 return ISD::SETCC_INVALID; 443 444 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 445 446 // If the N and U bits get set, then the resultant comparison DOES suddenly 447 // care about orderedness, and it is true when ordered. 448 if (Op > ISD::SETTRUE2) 449 Op &= ~16; // Clear the U bit if the N bit is set. 450 451 // Canonicalize illegal integer setcc's. 452 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 453 Op = ISD::SETNE; 454 455 return ISD::CondCode(Op); 456 } 457 458 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 459 EVT Type) { 460 bool IsInteger = Type.isInteger(); 461 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 462 // Cannot fold a signed setcc with an unsigned setcc. 463 return ISD::SETCC_INVALID; 464 465 // Combine all of the condition bits. 466 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 467 468 // Canonicalize illegal integer setcc's. 469 if (IsInteger) { 470 switch (Result) { 471 default: break; 472 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 473 case ISD::SETOEQ: // SETEQ & SETU[LG]E 474 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 475 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 476 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 477 } 478 } 479 480 return Result; 481 } 482 483 //===----------------------------------------------------------------------===// 484 // SDNode Profile Support 485 //===----------------------------------------------------------------------===// 486 487 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 488 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 489 ID.AddInteger(OpC); 490 } 491 492 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 493 /// solely with their pointer. 494 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 495 ID.AddPointer(VTList.VTs); 496 } 497 498 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 499 static void AddNodeIDOperands(FoldingSetNodeID &ID, 500 ArrayRef<SDValue> Ops) { 501 for (auto& Op : Ops) { 502 ID.AddPointer(Op.getNode()); 503 ID.AddInteger(Op.getResNo()); 504 } 505 } 506 507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 508 static void AddNodeIDOperands(FoldingSetNodeID &ID, 509 ArrayRef<SDUse> Ops) { 510 for (auto& Op : Ops) { 511 ID.AddPointer(Op.getNode()); 512 ID.AddInteger(Op.getResNo()); 513 } 514 } 515 516 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 517 SDVTList VTList, ArrayRef<SDValue> OpList) { 518 AddNodeIDOpcode(ID, OpC); 519 AddNodeIDValueTypes(ID, VTList); 520 AddNodeIDOperands(ID, OpList); 521 } 522 523 /// If this is an SDNode with special info, add this info to the NodeID data. 524 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 525 switch (N->getOpcode()) { 526 case ISD::TargetExternalSymbol: 527 case ISD::ExternalSymbol: 528 case ISD::MCSymbol: 529 llvm_unreachable("Should only be used on nodes with operands"); 530 default: break; // Normal nodes don't need extra info. 531 case ISD::TargetConstant: 532 case ISD::Constant: { 533 const ConstantSDNode *C = cast<ConstantSDNode>(N); 534 ID.AddPointer(C->getConstantIntValue()); 535 ID.AddBoolean(C->isOpaque()); 536 break; 537 } 538 case ISD::TargetConstantFP: 539 case ISD::ConstantFP: 540 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 541 break; 542 case ISD::TargetGlobalAddress: 543 case ISD::GlobalAddress: 544 case ISD::TargetGlobalTLSAddress: 545 case ISD::GlobalTLSAddress: { 546 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 547 ID.AddPointer(GA->getGlobal()); 548 ID.AddInteger(GA->getOffset()); 549 ID.AddInteger(GA->getTargetFlags()); 550 break; 551 } 552 case ISD::BasicBlock: 553 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 554 break; 555 case ISD::Register: 556 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 557 break; 558 case ISD::RegisterMask: 559 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 560 break; 561 case ISD::SRCVALUE: 562 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 563 break; 564 case ISD::FrameIndex: 565 case ISD::TargetFrameIndex: 566 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 567 break; 568 case ISD::LIFETIME_START: 569 case ISD::LIFETIME_END: 570 if (cast<LifetimeSDNode>(N)->hasOffset()) { 571 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 572 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 573 } 574 break; 575 case ISD::PSEUDO_PROBE: 576 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 577 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 578 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 579 break; 580 case ISD::JumpTable: 581 case ISD::TargetJumpTable: 582 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 583 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 584 break; 585 case ISD::ConstantPool: 586 case ISD::TargetConstantPool: { 587 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 588 ID.AddInteger(CP->getAlign().value()); 589 ID.AddInteger(CP->getOffset()); 590 if (CP->isMachineConstantPoolEntry()) 591 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 592 else 593 ID.AddPointer(CP->getConstVal()); 594 ID.AddInteger(CP->getTargetFlags()); 595 break; 596 } 597 case ISD::TargetIndex: { 598 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 599 ID.AddInteger(TI->getIndex()); 600 ID.AddInteger(TI->getOffset()); 601 ID.AddInteger(TI->getTargetFlags()); 602 break; 603 } 604 case ISD::LOAD: { 605 const LoadSDNode *LD = cast<LoadSDNode>(N); 606 ID.AddInteger(LD->getMemoryVT().getRawBits()); 607 ID.AddInteger(LD->getRawSubclassData()); 608 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 609 break; 610 } 611 case ISD::STORE: { 612 const StoreSDNode *ST = cast<StoreSDNode>(N); 613 ID.AddInteger(ST->getMemoryVT().getRawBits()); 614 ID.AddInteger(ST->getRawSubclassData()); 615 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 616 break; 617 } 618 case ISD::MLOAD: { 619 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 620 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 621 ID.AddInteger(MLD->getRawSubclassData()); 622 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 623 break; 624 } 625 case ISD::MSTORE: { 626 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 627 ID.AddInteger(MST->getMemoryVT().getRawBits()); 628 ID.AddInteger(MST->getRawSubclassData()); 629 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 630 break; 631 } 632 case ISD::MGATHER: { 633 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 634 ID.AddInteger(MG->getMemoryVT().getRawBits()); 635 ID.AddInteger(MG->getRawSubclassData()); 636 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 637 break; 638 } 639 case ISD::MSCATTER: { 640 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 641 ID.AddInteger(MS->getMemoryVT().getRawBits()); 642 ID.AddInteger(MS->getRawSubclassData()); 643 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 644 break; 645 } 646 case ISD::ATOMIC_CMP_SWAP: 647 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 648 case ISD::ATOMIC_SWAP: 649 case ISD::ATOMIC_LOAD_ADD: 650 case ISD::ATOMIC_LOAD_SUB: 651 case ISD::ATOMIC_LOAD_AND: 652 case ISD::ATOMIC_LOAD_CLR: 653 case ISD::ATOMIC_LOAD_OR: 654 case ISD::ATOMIC_LOAD_XOR: 655 case ISD::ATOMIC_LOAD_NAND: 656 case ISD::ATOMIC_LOAD_MIN: 657 case ISD::ATOMIC_LOAD_MAX: 658 case ISD::ATOMIC_LOAD_UMIN: 659 case ISD::ATOMIC_LOAD_UMAX: 660 case ISD::ATOMIC_LOAD: 661 case ISD::ATOMIC_STORE: { 662 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 663 ID.AddInteger(AT->getMemoryVT().getRawBits()); 664 ID.AddInteger(AT->getRawSubclassData()); 665 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 666 break; 667 } 668 case ISD::PREFETCH: { 669 const MemSDNode *PF = cast<MemSDNode>(N); 670 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 671 break; 672 } 673 case ISD::VECTOR_SHUFFLE: { 674 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 675 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 676 i != e; ++i) 677 ID.AddInteger(SVN->getMaskElt(i)); 678 break; 679 } 680 case ISD::TargetBlockAddress: 681 case ISD::BlockAddress: { 682 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 683 ID.AddPointer(BA->getBlockAddress()); 684 ID.AddInteger(BA->getOffset()); 685 ID.AddInteger(BA->getTargetFlags()); 686 break; 687 } 688 } // end switch (N->getOpcode()) 689 690 // Target specific memory nodes could also have address spaces to check. 691 if (N->isTargetMemoryOpcode()) 692 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 693 } 694 695 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 696 /// data. 697 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 698 AddNodeIDOpcode(ID, N->getOpcode()); 699 // Add the return value info. 700 AddNodeIDValueTypes(ID, N->getVTList()); 701 // Add the operand info. 702 AddNodeIDOperands(ID, N->ops()); 703 704 // Handle SDNode leafs with special info. 705 AddNodeIDCustom(ID, N); 706 } 707 708 //===----------------------------------------------------------------------===// 709 // SelectionDAG Class 710 //===----------------------------------------------------------------------===// 711 712 /// doNotCSE - Return true if CSE should not be performed for this node. 713 static bool doNotCSE(SDNode *N) { 714 if (N->getValueType(0) == MVT::Glue) 715 return true; // Never CSE anything that produces a flag. 716 717 switch (N->getOpcode()) { 718 default: break; 719 case ISD::HANDLENODE: 720 case ISD::EH_LABEL: 721 return true; // Never CSE these nodes. 722 } 723 724 // Check that remaining values produced are not flags. 725 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 726 if (N->getValueType(i) == MVT::Glue) 727 return true; // Never CSE anything that produces a flag. 728 729 return false; 730 } 731 732 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 733 /// SelectionDAG. 734 void SelectionDAG::RemoveDeadNodes() { 735 // Create a dummy node (which is not added to allnodes), that adds a reference 736 // to the root node, preventing it from being deleted. 737 HandleSDNode Dummy(getRoot()); 738 739 SmallVector<SDNode*, 128> DeadNodes; 740 741 // Add all obviously-dead nodes to the DeadNodes worklist. 742 for (SDNode &Node : allnodes()) 743 if (Node.use_empty()) 744 DeadNodes.push_back(&Node); 745 746 RemoveDeadNodes(DeadNodes); 747 748 // If the root changed (e.g. it was a dead load, update the root). 749 setRoot(Dummy.getValue()); 750 } 751 752 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 753 /// given list, and any nodes that become unreachable as a result. 754 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 755 756 // Process the worklist, deleting the nodes and adding their uses to the 757 // worklist. 758 while (!DeadNodes.empty()) { 759 SDNode *N = DeadNodes.pop_back_val(); 760 // Skip to next node if we've already managed to delete the node. This could 761 // happen if replacing a node causes a node previously added to the node to 762 // be deleted. 763 if (N->getOpcode() == ISD::DELETED_NODE) 764 continue; 765 766 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 767 DUL->NodeDeleted(N, nullptr); 768 769 // Take the node out of the appropriate CSE map. 770 RemoveNodeFromCSEMaps(N); 771 772 // Next, brutally remove the operand list. This is safe to do, as there are 773 // no cycles in the graph. 774 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 775 SDUse &Use = *I++; 776 SDNode *Operand = Use.getNode(); 777 Use.set(SDValue()); 778 779 // Now that we removed this operand, see if there are no uses of it left. 780 if (Operand->use_empty()) 781 DeadNodes.push_back(Operand); 782 } 783 784 DeallocateNode(N); 785 } 786 } 787 788 void SelectionDAG::RemoveDeadNode(SDNode *N){ 789 SmallVector<SDNode*, 16> DeadNodes(1, N); 790 791 // Create a dummy node that adds a reference to the root node, preventing 792 // it from being deleted. (This matters if the root is an operand of the 793 // dead node.) 794 HandleSDNode Dummy(getRoot()); 795 796 RemoveDeadNodes(DeadNodes); 797 } 798 799 void SelectionDAG::DeleteNode(SDNode *N) { 800 // First take this out of the appropriate CSE map. 801 RemoveNodeFromCSEMaps(N); 802 803 // Finally, remove uses due to operands of this node, remove from the 804 // AllNodes list, and delete the node. 805 DeleteNodeNotInCSEMaps(N); 806 } 807 808 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 809 assert(N->getIterator() != AllNodes.begin() && 810 "Cannot delete the entry node!"); 811 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 812 813 // Drop all of the operands and decrement used node's use counts. 814 N->DropOperands(); 815 816 DeallocateNode(N); 817 } 818 819 void SDDbgInfo::erase(const SDNode *Node) { 820 DbgValMapType::iterator I = DbgValMap.find(Node); 821 if (I == DbgValMap.end()) 822 return; 823 for (auto &Val: I->second) 824 Val->setIsInvalidated(); 825 DbgValMap.erase(I); 826 } 827 828 void SelectionDAG::DeallocateNode(SDNode *N) { 829 // If we have operands, deallocate them. 830 removeOperands(N); 831 832 NodeAllocator.Deallocate(AllNodes.remove(N)); 833 834 // Set the opcode to DELETED_NODE to help catch bugs when node 835 // memory is reallocated. 836 // FIXME: There are places in SDag that have grown a dependency on the opcode 837 // value in the released node. 838 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 839 N->NodeType = ISD::DELETED_NODE; 840 841 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 842 // them and forget about that node. 843 DbgInfo->erase(N); 844 } 845 846 #ifndef NDEBUG 847 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 848 static void VerifySDNode(SDNode *N) { 849 switch (N->getOpcode()) { 850 default: 851 break; 852 case ISD::BUILD_PAIR: { 853 EVT VT = N->getValueType(0); 854 assert(N->getNumValues() == 1 && "Too many results!"); 855 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 856 "Wrong return type!"); 857 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 858 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 859 "Mismatched operand types!"); 860 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 861 "Wrong operand type!"); 862 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 863 "Wrong return type size"); 864 break; 865 } 866 case ISD::BUILD_VECTOR: { 867 assert(N->getNumValues() == 1 && "Too many results!"); 868 assert(N->getValueType(0).isVector() && "Wrong return type!"); 869 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 870 "Wrong number of operands!"); 871 EVT EltVT = N->getValueType(0).getVectorElementType(); 872 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 873 assert((I->getValueType() == EltVT || 874 (EltVT.isInteger() && I->getValueType().isInteger() && 875 EltVT.bitsLE(I->getValueType()))) && 876 "Wrong operand type!"); 877 assert(I->getValueType() == N->getOperand(0).getValueType() && 878 "Operands must all have the same type"); 879 } 880 break; 881 } 882 } 883 } 884 #endif // NDEBUG 885 886 /// Insert a newly allocated node into the DAG. 887 /// 888 /// Handles insertion into the all nodes list and CSE map, as well as 889 /// verification and other common operations when a new node is allocated. 890 void SelectionDAG::InsertNode(SDNode *N) { 891 AllNodes.push_back(N); 892 #ifndef NDEBUG 893 N->PersistentId = NextPersistentId++; 894 VerifySDNode(N); 895 #endif 896 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 897 DUL->NodeInserted(N); 898 } 899 900 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 901 /// correspond to it. This is useful when we're about to delete or repurpose 902 /// the node. We don't want future request for structurally identical nodes 903 /// to return N anymore. 904 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 905 bool Erased = false; 906 switch (N->getOpcode()) { 907 case ISD::HANDLENODE: return false; // noop. 908 case ISD::CONDCODE: 909 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 910 "Cond code doesn't exist!"); 911 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 912 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 913 break; 914 case ISD::ExternalSymbol: 915 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 916 break; 917 case ISD::TargetExternalSymbol: { 918 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 919 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 920 ESN->getSymbol(), ESN->getTargetFlags())); 921 break; 922 } 923 case ISD::MCSymbol: { 924 auto *MCSN = cast<MCSymbolSDNode>(N); 925 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 926 break; 927 } 928 case ISD::VALUETYPE: { 929 EVT VT = cast<VTSDNode>(N)->getVT(); 930 if (VT.isExtended()) { 931 Erased = ExtendedValueTypeNodes.erase(VT); 932 } else { 933 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 934 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 935 } 936 break; 937 } 938 default: 939 // Remove it from the CSE Map. 940 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 941 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 942 Erased = CSEMap.RemoveNode(N); 943 break; 944 } 945 #ifndef NDEBUG 946 // Verify that the node was actually in one of the CSE maps, unless it has a 947 // flag result (which cannot be CSE'd) or is one of the special cases that are 948 // not subject to CSE. 949 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 950 !N->isMachineOpcode() && !doNotCSE(N)) { 951 N->dump(this); 952 dbgs() << "\n"; 953 llvm_unreachable("Node is not in map!"); 954 } 955 #endif 956 return Erased; 957 } 958 959 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 960 /// maps and modified in place. Add it back to the CSE maps, unless an identical 961 /// node already exists, in which case transfer all its users to the existing 962 /// node. This transfer can potentially trigger recursive merging. 963 void 964 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 965 // For node types that aren't CSE'd, just act as if no identical node 966 // already exists. 967 if (!doNotCSE(N)) { 968 SDNode *Existing = CSEMap.GetOrInsertNode(N); 969 if (Existing != N) { 970 // If there was already an existing matching node, use ReplaceAllUsesWith 971 // to replace the dead one with the existing one. This can cause 972 // recursive merging of other unrelated nodes down the line. 973 ReplaceAllUsesWith(N, Existing); 974 975 // N is now dead. Inform the listeners and delete it. 976 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 977 DUL->NodeDeleted(N, Existing); 978 DeleteNodeNotInCSEMaps(N); 979 return; 980 } 981 } 982 983 // If the node doesn't already exist, we updated it. Inform listeners. 984 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 985 DUL->NodeUpdated(N); 986 } 987 988 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 989 /// were replaced with those specified. If this node is never memoized, 990 /// return null, otherwise return a pointer to the slot it would take. If a 991 /// node already exists with these operands, the slot will be non-null. 992 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 993 void *&InsertPos) { 994 if (doNotCSE(N)) 995 return nullptr; 996 997 SDValue Ops[] = { Op }; 998 FoldingSetNodeID ID; 999 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1000 AddNodeIDCustom(ID, N); 1001 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1002 if (Node) 1003 Node->intersectFlagsWith(N->getFlags()); 1004 return Node; 1005 } 1006 1007 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1008 /// were replaced with those specified. If this node is never memoized, 1009 /// return null, otherwise return a pointer to the slot it would take. If a 1010 /// node already exists with these operands, the slot will be non-null. 1011 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1012 SDValue Op1, SDValue Op2, 1013 void *&InsertPos) { 1014 if (doNotCSE(N)) 1015 return nullptr; 1016 1017 SDValue Ops[] = { Op1, Op2 }; 1018 FoldingSetNodeID ID; 1019 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1020 AddNodeIDCustom(ID, N); 1021 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1022 if (Node) 1023 Node->intersectFlagsWith(N->getFlags()); 1024 return Node; 1025 } 1026 1027 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1028 /// were replaced with those specified. If this node is never memoized, 1029 /// return null, otherwise return a pointer to the slot it would take. If a 1030 /// node already exists with these operands, the slot will be non-null. 1031 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1032 void *&InsertPos) { 1033 if (doNotCSE(N)) 1034 return nullptr; 1035 1036 FoldingSetNodeID ID; 1037 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1038 AddNodeIDCustom(ID, N); 1039 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1040 if (Node) 1041 Node->intersectFlagsWith(N->getFlags()); 1042 return Node; 1043 } 1044 1045 Align SelectionDAG::getEVTAlign(EVT VT) const { 1046 Type *Ty = VT == MVT::iPTR ? 1047 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1048 VT.getTypeForEVT(*getContext()); 1049 1050 return getDataLayout().getABITypeAlign(Ty); 1051 } 1052 1053 // EntryNode could meaningfully have debug info if we can find it... 1054 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1055 : TM(tm), OptLevel(OL), 1056 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1057 Root(getEntryNode()) { 1058 InsertNode(&EntryNode); 1059 DbgInfo = new SDDbgInfo(); 1060 } 1061 1062 void SelectionDAG::init(MachineFunction &NewMF, 1063 OptimizationRemarkEmitter &NewORE, 1064 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1065 LegacyDivergenceAnalysis * Divergence, 1066 ProfileSummaryInfo *PSIin, 1067 BlockFrequencyInfo *BFIin) { 1068 MF = &NewMF; 1069 SDAGISelPass = PassPtr; 1070 ORE = &NewORE; 1071 TLI = getSubtarget().getTargetLowering(); 1072 TSI = getSubtarget().getSelectionDAGInfo(); 1073 LibInfo = LibraryInfo; 1074 Context = &MF->getFunction().getContext(); 1075 DA = Divergence; 1076 PSI = PSIin; 1077 BFI = BFIin; 1078 } 1079 1080 SelectionDAG::~SelectionDAG() { 1081 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1082 allnodes_clear(); 1083 OperandRecycler.clear(OperandAllocator); 1084 delete DbgInfo; 1085 } 1086 1087 bool SelectionDAG::shouldOptForSize() const { 1088 return MF->getFunction().hasOptSize() || 1089 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1090 } 1091 1092 void SelectionDAG::allnodes_clear() { 1093 assert(&*AllNodes.begin() == &EntryNode); 1094 AllNodes.remove(AllNodes.begin()); 1095 while (!AllNodes.empty()) 1096 DeallocateNode(&AllNodes.front()); 1097 #ifndef NDEBUG 1098 NextPersistentId = 0; 1099 #endif 1100 } 1101 1102 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1103 void *&InsertPos) { 1104 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1105 if (N) { 1106 switch (N->getOpcode()) { 1107 default: break; 1108 case ISD::Constant: 1109 case ISD::ConstantFP: 1110 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1111 "debug location. Use another overload."); 1112 } 1113 } 1114 return N; 1115 } 1116 1117 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1118 const SDLoc &DL, void *&InsertPos) { 1119 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1120 if (N) { 1121 switch (N->getOpcode()) { 1122 case ISD::Constant: 1123 case ISD::ConstantFP: 1124 // Erase debug location from the node if the node is used at several 1125 // different places. Do not propagate one location to all uses as it 1126 // will cause a worse single stepping debugging experience. 1127 if (N->getDebugLoc() != DL.getDebugLoc()) 1128 N->setDebugLoc(DebugLoc()); 1129 break; 1130 default: 1131 // When the node's point of use is located earlier in the instruction 1132 // sequence than its prior point of use, update its debug info to the 1133 // earlier location. 1134 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1135 N->setDebugLoc(DL.getDebugLoc()); 1136 break; 1137 } 1138 } 1139 return N; 1140 } 1141 1142 void SelectionDAG::clear() { 1143 allnodes_clear(); 1144 OperandRecycler.clear(OperandAllocator); 1145 OperandAllocator.Reset(); 1146 CSEMap.clear(); 1147 1148 ExtendedValueTypeNodes.clear(); 1149 ExternalSymbols.clear(); 1150 TargetExternalSymbols.clear(); 1151 MCSymbols.clear(); 1152 SDCallSiteDbgInfo.clear(); 1153 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1154 static_cast<CondCodeSDNode*>(nullptr)); 1155 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1156 static_cast<SDNode*>(nullptr)); 1157 1158 EntryNode.UseList = nullptr; 1159 InsertNode(&EntryNode); 1160 Root = getEntryNode(); 1161 DbgInfo->clear(); 1162 } 1163 1164 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1165 return VT.bitsGT(Op.getValueType()) 1166 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1167 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1168 } 1169 1170 std::pair<SDValue, SDValue> 1171 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1172 const SDLoc &DL, EVT VT) { 1173 assert(!VT.bitsEq(Op.getValueType()) && 1174 "Strict no-op FP extend/round not allowed."); 1175 SDValue Res = 1176 VT.bitsGT(Op.getValueType()) 1177 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1178 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1179 {Chain, Op, getIntPtrConstant(0, DL)}); 1180 1181 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1182 } 1183 1184 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1185 return VT.bitsGT(Op.getValueType()) ? 1186 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1187 getNode(ISD::TRUNCATE, DL, VT, Op); 1188 } 1189 1190 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1191 return VT.bitsGT(Op.getValueType()) ? 1192 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1193 getNode(ISD::TRUNCATE, DL, VT, Op); 1194 } 1195 1196 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1197 return VT.bitsGT(Op.getValueType()) ? 1198 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1199 getNode(ISD::TRUNCATE, DL, VT, Op); 1200 } 1201 1202 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1203 EVT OpVT) { 1204 if (VT.bitsLE(Op.getValueType())) 1205 return getNode(ISD::TRUNCATE, SL, VT, Op); 1206 1207 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1208 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1209 } 1210 1211 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1212 EVT OpVT = Op.getValueType(); 1213 assert(VT.isInteger() && OpVT.isInteger() && 1214 "Cannot getZeroExtendInReg FP types"); 1215 assert(VT.isVector() == OpVT.isVector() && 1216 "getZeroExtendInReg type should be vector iff the operand " 1217 "type is vector!"); 1218 assert((!VT.isVector() || 1219 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1220 "Vector element counts must match in getZeroExtendInReg"); 1221 assert(VT.bitsLE(OpVT) && "Not extending!"); 1222 if (OpVT == VT) 1223 return Op; 1224 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1225 VT.getScalarSizeInBits()); 1226 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1227 } 1228 1229 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1230 // Only unsigned pointer semantics are supported right now. In the future this 1231 // might delegate to TLI to check pointer signedness. 1232 return getZExtOrTrunc(Op, DL, VT); 1233 } 1234 1235 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1236 // Only unsigned pointer semantics are supported right now. In the future this 1237 // might delegate to TLI to check pointer signedness. 1238 return getZeroExtendInReg(Op, DL, VT); 1239 } 1240 1241 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1242 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1243 EVT EltVT = VT.getScalarType(); 1244 SDValue NegOne = 1245 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1246 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1247 } 1248 1249 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1250 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1251 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1252 } 1253 1254 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1255 EVT OpVT) { 1256 if (!V) 1257 return getConstant(0, DL, VT); 1258 1259 switch (TLI->getBooleanContents(OpVT)) { 1260 case TargetLowering::ZeroOrOneBooleanContent: 1261 case TargetLowering::UndefinedBooleanContent: 1262 return getConstant(1, DL, VT); 1263 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1264 return getAllOnesConstant(DL, VT); 1265 } 1266 llvm_unreachable("Unexpected boolean content enum!"); 1267 } 1268 1269 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1270 bool isT, bool isO) { 1271 EVT EltVT = VT.getScalarType(); 1272 assert((EltVT.getSizeInBits() >= 64 || 1273 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1274 "getConstant with a uint64_t value that doesn't fit in the type!"); 1275 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1276 } 1277 1278 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1279 bool isT, bool isO) { 1280 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1281 } 1282 1283 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1284 EVT VT, bool isT, bool isO) { 1285 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1286 1287 EVT EltVT = VT.getScalarType(); 1288 const ConstantInt *Elt = &Val; 1289 1290 // In some cases the vector type is legal but the element type is illegal and 1291 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1292 // inserted value (the type does not need to match the vector element type). 1293 // Any extra bits introduced will be truncated away. 1294 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1295 TargetLowering::TypePromoteInteger) { 1296 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1297 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1298 Elt = ConstantInt::get(*getContext(), NewVal); 1299 } 1300 // In other cases the element type is illegal and needs to be expanded, for 1301 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1302 // the value into n parts and use a vector type with n-times the elements. 1303 // Then bitcast to the type requested. 1304 // Legalizing constants too early makes the DAGCombiner's job harder so we 1305 // only legalize if the DAG tells us we must produce legal types. 1306 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1307 TLI->getTypeAction(*getContext(), EltVT) == 1308 TargetLowering::TypeExpandInteger) { 1309 const APInt &NewVal = Elt->getValue(); 1310 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1311 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1312 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1313 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1314 1315 // Check the temporary vector is the correct size. If this fails then 1316 // getTypeToTransformTo() probably returned a type whose size (in bits) 1317 // isn't a power-of-2 factor of the requested type size. 1318 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1319 1320 SmallVector<SDValue, 2> EltParts; 1321 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1322 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1323 .zextOrTrunc(ViaEltSizeInBits), DL, 1324 ViaEltVT, isT, isO)); 1325 } 1326 1327 // EltParts is currently in little endian order. If we actually want 1328 // big-endian order then reverse it now. 1329 if (getDataLayout().isBigEndian()) 1330 std::reverse(EltParts.begin(), EltParts.end()); 1331 1332 // The elements must be reversed when the element order is different 1333 // to the endianness of the elements (because the BITCAST is itself a 1334 // vector shuffle in this situation). However, we do not need any code to 1335 // perform this reversal because getConstant() is producing a vector 1336 // splat. 1337 // This situation occurs in MIPS MSA. 1338 1339 SmallVector<SDValue, 8> Ops; 1340 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1341 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1342 1343 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1344 return V; 1345 } 1346 1347 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1348 "APInt size does not match type size!"); 1349 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1350 FoldingSetNodeID ID; 1351 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1352 ID.AddPointer(Elt); 1353 ID.AddBoolean(isO); 1354 void *IP = nullptr; 1355 SDNode *N = nullptr; 1356 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1357 if (!VT.isVector()) 1358 return SDValue(N, 0); 1359 1360 if (!N) { 1361 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1362 CSEMap.InsertNode(N, IP); 1363 InsertNode(N); 1364 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1365 } 1366 1367 SDValue Result(N, 0); 1368 if (VT.isScalableVector()) 1369 Result = getSplatVector(VT, DL, Result); 1370 else if (VT.isVector()) 1371 Result = getSplatBuildVector(VT, DL, Result); 1372 1373 return Result; 1374 } 1375 1376 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1377 bool isTarget) { 1378 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1379 } 1380 1381 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1382 const SDLoc &DL, bool LegalTypes) { 1383 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1384 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1385 return getConstant(Val, DL, ShiftVT); 1386 } 1387 1388 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1389 bool isTarget) { 1390 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1391 } 1392 1393 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1394 bool isTarget) { 1395 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1396 } 1397 1398 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1399 EVT VT, bool isTarget) { 1400 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1401 1402 EVT EltVT = VT.getScalarType(); 1403 1404 // Do the map lookup using the actual bit pattern for the floating point 1405 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1406 // we don't have issues with SNANs. 1407 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1408 FoldingSetNodeID ID; 1409 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1410 ID.AddPointer(&V); 1411 void *IP = nullptr; 1412 SDNode *N = nullptr; 1413 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1414 if (!VT.isVector()) 1415 return SDValue(N, 0); 1416 1417 if (!N) { 1418 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1419 CSEMap.InsertNode(N, IP); 1420 InsertNode(N); 1421 } 1422 1423 SDValue Result(N, 0); 1424 if (VT.isScalableVector()) 1425 Result = getSplatVector(VT, DL, Result); 1426 else if (VT.isVector()) 1427 Result = getSplatBuildVector(VT, DL, Result); 1428 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1429 return Result; 1430 } 1431 1432 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1433 bool isTarget) { 1434 EVT EltVT = VT.getScalarType(); 1435 if (EltVT == MVT::f32) 1436 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1437 else if (EltVT == MVT::f64) 1438 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1439 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1440 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1441 bool Ignored; 1442 APFloat APF = APFloat(Val); 1443 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1444 &Ignored); 1445 return getConstantFP(APF, DL, VT, isTarget); 1446 } else 1447 llvm_unreachable("Unsupported type in getConstantFP"); 1448 } 1449 1450 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1451 EVT VT, int64_t Offset, bool isTargetGA, 1452 unsigned TargetFlags) { 1453 assert((TargetFlags == 0 || isTargetGA) && 1454 "Cannot set target flags on target-independent globals"); 1455 1456 // Truncate (with sign-extension) the offset value to the pointer size. 1457 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1458 if (BitWidth < 64) 1459 Offset = SignExtend64(Offset, BitWidth); 1460 1461 unsigned Opc; 1462 if (GV->isThreadLocal()) 1463 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1464 else 1465 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1466 1467 FoldingSetNodeID ID; 1468 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1469 ID.AddPointer(GV); 1470 ID.AddInteger(Offset); 1471 ID.AddInteger(TargetFlags); 1472 void *IP = nullptr; 1473 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1474 return SDValue(E, 0); 1475 1476 auto *N = newSDNode<GlobalAddressSDNode>( 1477 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1478 CSEMap.InsertNode(N, IP); 1479 InsertNode(N); 1480 return SDValue(N, 0); 1481 } 1482 1483 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1484 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1485 FoldingSetNodeID ID; 1486 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1487 ID.AddInteger(FI); 1488 void *IP = nullptr; 1489 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1490 return SDValue(E, 0); 1491 1492 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1493 CSEMap.InsertNode(N, IP); 1494 InsertNode(N); 1495 return SDValue(N, 0); 1496 } 1497 1498 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1499 unsigned TargetFlags) { 1500 assert((TargetFlags == 0 || isTarget) && 1501 "Cannot set target flags on target-independent jump tables"); 1502 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1503 FoldingSetNodeID ID; 1504 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1505 ID.AddInteger(JTI); 1506 ID.AddInteger(TargetFlags); 1507 void *IP = nullptr; 1508 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1509 return SDValue(E, 0); 1510 1511 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1512 CSEMap.InsertNode(N, IP); 1513 InsertNode(N); 1514 return SDValue(N, 0); 1515 } 1516 1517 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1518 MaybeAlign Alignment, int Offset, 1519 bool isTarget, unsigned TargetFlags) { 1520 assert((TargetFlags == 0 || isTarget) && 1521 "Cannot set target flags on target-independent globals"); 1522 if (!Alignment) 1523 Alignment = shouldOptForSize() 1524 ? getDataLayout().getABITypeAlign(C->getType()) 1525 : getDataLayout().getPrefTypeAlign(C->getType()); 1526 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1527 FoldingSetNodeID ID; 1528 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1529 ID.AddInteger(Alignment->value()); 1530 ID.AddInteger(Offset); 1531 ID.AddPointer(C); 1532 ID.AddInteger(TargetFlags); 1533 void *IP = nullptr; 1534 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1535 return SDValue(E, 0); 1536 1537 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1538 TargetFlags); 1539 CSEMap.InsertNode(N, IP); 1540 InsertNode(N); 1541 SDValue V = SDValue(N, 0); 1542 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1543 return V; 1544 } 1545 1546 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1547 MaybeAlign Alignment, int Offset, 1548 bool isTarget, unsigned TargetFlags) { 1549 assert((TargetFlags == 0 || isTarget) && 1550 "Cannot set target flags on target-independent globals"); 1551 if (!Alignment) 1552 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1553 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1554 FoldingSetNodeID ID; 1555 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1556 ID.AddInteger(Alignment->value()); 1557 ID.AddInteger(Offset); 1558 C->addSelectionDAGCSEId(ID); 1559 ID.AddInteger(TargetFlags); 1560 void *IP = nullptr; 1561 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1562 return SDValue(E, 0); 1563 1564 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1565 TargetFlags); 1566 CSEMap.InsertNode(N, IP); 1567 InsertNode(N); 1568 return SDValue(N, 0); 1569 } 1570 1571 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1572 unsigned TargetFlags) { 1573 FoldingSetNodeID ID; 1574 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1575 ID.AddInteger(Index); 1576 ID.AddInteger(Offset); 1577 ID.AddInteger(TargetFlags); 1578 void *IP = nullptr; 1579 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1580 return SDValue(E, 0); 1581 1582 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1583 CSEMap.InsertNode(N, IP); 1584 InsertNode(N); 1585 return SDValue(N, 0); 1586 } 1587 1588 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1589 FoldingSetNodeID ID; 1590 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1591 ID.AddPointer(MBB); 1592 void *IP = nullptr; 1593 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1594 return SDValue(E, 0); 1595 1596 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1597 CSEMap.InsertNode(N, IP); 1598 InsertNode(N); 1599 return SDValue(N, 0); 1600 } 1601 1602 SDValue SelectionDAG::getValueType(EVT VT) { 1603 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1604 ValueTypeNodes.size()) 1605 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1606 1607 SDNode *&N = VT.isExtended() ? 1608 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1609 1610 if (N) return SDValue(N, 0); 1611 N = newSDNode<VTSDNode>(VT); 1612 InsertNode(N); 1613 return SDValue(N, 0); 1614 } 1615 1616 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1617 SDNode *&N = ExternalSymbols[Sym]; 1618 if (N) return SDValue(N, 0); 1619 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1620 InsertNode(N); 1621 return SDValue(N, 0); 1622 } 1623 1624 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1625 SDNode *&N = MCSymbols[Sym]; 1626 if (N) 1627 return SDValue(N, 0); 1628 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1629 InsertNode(N); 1630 return SDValue(N, 0); 1631 } 1632 1633 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1634 unsigned TargetFlags) { 1635 SDNode *&N = 1636 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1637 if (N) return SDValue(N, 0); 1638 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1644 if ((unsigned)Cond >= CondCodeNodes.size()) 1645 CondCodeNodes.resize(Cond+1); 1646 1647 if (!CondCodeNodes[Cond]) { 1648 auto *N = newSDNode<CondCodeSDNode>(Cond); 1649 CondCodeNodes[Cond] = N; 1650 InsertNode(N); 1651 } 1652 1653 return SDValue(CondCodeNodes[Cond], 0); 1654 } 1655 1656 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1657 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1658 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1659 std::swap(N1, N2); 1660 ShuffleVectorSDNode::commuteMask(M); 1661 } 1662 1663 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1664 SDValue N2, ArrayRef<int> Mask) { 1665 assert(VT.getVectorNumElements() == Mask.size() && 1666 "Must have the same number of vector elements as mask elements!"); 1667 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1668 "Invalid VECTOR_SHUFFLE"); 1669 1670 // Canonicalize shuffle undef, undef -> undef 1671 if (N1.isUndef() && N2.isUndef()) 1672 return getUNDEF(VT); 1673 1674 // Validate that all indices in Mask are within the range of the elements 1675 // input to the shuffle. 1676 int NElts = Mask.size(); 1677 assert(llvm::all_of(Mask, 1678 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1679 "Index out of range"); 1680 1681 // Copy the mask so we can do any needed cleanup. 1682 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1683 1684 // Canonicalize shuffle v, v -> v, undef 1685 if (N1 == N2) { 1686 N2 = getUNDEF(VT); 1687 for (int i = 0; i != NElts; ++i) 1688 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1689 } 1690 1691 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1692 if (N1.isUndef()) 1693 commuteShuffle(N1, N2, MaskVec); 1694 1695 if (TLI->hasVectorBlend()) { 1696 // If shuffling a splat, try to blend the splat instead. We do this here so 1697 // that even when this arises during lowering we don't have to re-handle it. 1698 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1699 BitVector UndefElements; 1700 SDValue Splat = BV->getSplatValue(&UndefElements); 1701 if (!Splat) 1702 return; 1703 1704 for (int i = 0; i < NElts; ++i) { 1705 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1706 continue; 1707 1708 // If this input comes from undef, mark it as such. 1709 if (UndefElements[MaskVec[i] - Offset]) { 1710 MaskVec[i] = -1; 1711 continue; 1712 } 1713 1714 // If we can blend a non-undef lane, use that instead. 1715 if (!UndefElements[i]) 1716 MaskVec[i] = i + Offset; 1717 } 1718 }; 1719 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1720 BlendSplat(N1BV, 0); 1721 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1722 BlendSplat(N2BV, NElts); 1723 } 1724 1725 // Canonicalize all index into lhs, -> shuffle lhs, undef 1726 // Canonicalize all index into rhs, -> shuffle rhs, undef 1727 bool AllLHS = true, AllRHS = true; 1728 bool N2Undef = N2.isUndef(); 1729 for (int i = 0; i != NElts; ++i) { 1730 if (MaskVec[i] >= NElts) { 1731 if (N2Undef) 1732 MaskVec[i] = -1; 1733 else 1734 AllLHS = false; 1735 } else if (MaskVec[i] >= 0) { 1736 AllRHS = false; 1737 } 1738 } 1739 if (AllLHS && AllRHS) 1740 return getUNDEF(VT); 1741 if (AllLHS && !N2Undef) 1742 N2 = getUNDEF(VT); 1743 if (AllRHS) { 1744 N1 = getUNDEF(VT); 1745 commuteShuffle(N1, N2, MaskVec); 1746 } 1747 // Reset our undef status after accounting for the mask. 1748 N2Undef = N2.isUndef(); 1749 // Re-check whether both sides ended up undef. 1750 if (N1.isUndef() && N2Undef) 1751 return getUNDEF(VT); 1752 1753 // If Identity shuffle return that node. 1754 bool Identity = true, AllSame = true; 1755 for (int i = 0; i != NElts; ++i) { 1756 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1757 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1758 } 1759 if (Identity && NElts) 1760 return N1; 1761 1762 // Shuffling a constant splat doesn't change the result. 1763 if (N2Undef) { 1764 SDValue V = N1; 1765 1766 // Look through any bitcasts. We check that these don't change the number 1767 // (and size) of elements and just changes their types. 1768 while (V.getOpcode() == ISD::BITCAST) 1769 V = V->getOperand(0); 1770 1771 // A splat should always show up as a build vector node. 1772 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1773 BitVector UndefElements; 1774 SDValue Splat = BV->getSplatValue(&UndefElements); 1775 // If this is a splat of an undef, shuffling it is also undef. 1776 if (Splat && Splat.isUndef()) 1777 return getUNDEF(VT); 1778 1779 bool SameNumElts = 1780 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1781 1782 // We only have a splat which can skip shuffles if there is a splatted 1783 // value and no undef lanes rearranged by the shuffle. 1784 if (Splat && UndefElements.none()) { 1785 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1786 // number of elements match or the value splatted is a zero constant. 1787 if (SameNumElts) 1788 return N1; 1789 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1790 if (C->isNullValue()) 1791 return N1; 1792 } 1793 1794 // If the shuffle itself creates a splat, build the vector directly. 1795 if (AllSame && SameNumElts) { 1796 EVT BuildVT = BV->getValueType(0); 1797 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1798 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1799 1800 // We may have jumped through bitcasts, so the type of the 1801 // BUILD_VECTOR may not match the type of the shuffle. 1802 if (BuildVT != VT) 1803 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1804 return NewBV; 1805 } 1806 } 1807 } 1808 1809 FoldingSetNodeID ID; 1810 SDValue Ops[2] = { N1, N2 }; 1811 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1812 for (int i = 0; i != NElts; ++i) 1813 ID.AddInteger(MaskVec[i]); 1814 1815 void* IP = nullptr; 1816 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1817 return SDValue(E, 0); 1818 1819 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1820 // SDNode doesn't have access to it. This memory will be "leaked" when 1821 // the node is deallocated, but recovered when the NodeAllocator is released. 1822 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1823 llvm::copy(MaskVec, MaskAlloc); 1824 1825 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1826 dl.getDebugLoc(), MaskAlloc); 1827 createOperands(N, Ops); 1828 1829 CSEMap.InsertNode(N, IP); 1830 InsertNode(N); 1831 SDValue V = SDValue(N, 0); 1832 NewSDValueDbgMsg(V, "Creating new node: ", this); 1833 return V; 1834 } 1835 1836 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1837 EVT VT = SV.getValueType(0); 1838 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1839 ShuffleVectorSDNode::commuteMask(MaskVec); 1840 1841 SDValue Op0 = SV.getOperand(0); 1842 SDValue Op1 = SV.getOperand(1); 1843 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1844 } 1845 1846 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1847 FoldingSetNodeID ID; 1848 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1849 ID.AddInteger(RegNo); 1850 void *IP = nullptr; 1851 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1852 return SDValue(E, 0); 1853 1854 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1855 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1856 CSEMap.InsertNode(N, IP); 1857 InsertNode(N); 1858 return SDValue(N, 0); 1859 } 1860 1861 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1862 FoldingSetNodeID ID; 1863 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1864 ID.AddPointer(RegMask); 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1870 CSEMap.InsertNode(N, IP); 1871 InsertNode(N); 1872 return SDValue(N, 0); 1873 } 1874 1875 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1876 MCSymbol *Label) { 1877 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1878 } 1879 1880 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1881 SDValue Root, MCSymbol *Label) { 1882 FoldingSetNodeID ID; 1883 SDValue Ops[] = { Root }; 1884 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1885 ID.AddPointer(Label); 1886 void *IP = nullptr; 1887 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1888 return SDValue(E, 0); 1889 1890 auto *N = 1891 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1892 createOperands(N, Ops); 1893 1894 CSEMap.InsertNode(N, IP); 1895 InsertNode(N); 1896 return SDValue(N, 0); 1897 } 1898 1899 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1900 int64_t Offset, bool isTarget, 1901 unsigned TargetFlags) { 1902 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1903 1904 FoldingSetNodeID ID; 1905 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1906 ID.AddPointer(BA); 1907 ID.AddInteger(Offset); 1908 ID.AddInteger(TargetFlags); 1909 void *IP = nullptr; 1910 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1911 return SDValue(E, 0); 1912 1913 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1914 CSEMap.InsertNode(N, IP); 1915 InsertNode(N); 1916 return SDValue(N, 0); 1917 } 1918 1919 SDValue SelectionDAG::getSrcValue(const Value *V) { 1920 FoldingSetNodeID ID; 1921 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1922 ID.AddPointer(V); 1923 1924 void *IP = nullptr; 1925 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1926 return SDValue(E, 0); 1927 1928 auto *N = newSDNode<SrcValueSDNode>(V); 1929 CSEMap.InsertNode(N, IP); 1930 InsertNode(N); 1931 return SDValue(N, 0); 1932 } 1933 1934 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1935 FoldingSetNodeID ID; 1936 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1937 ID.AddPointer(MD); 1938 1939 void *IP = nullptr; 1940 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1941 return SDValue(E, 0); 1942 1943 auto *N = newSDNode<MDNodeSDNode>(MD); 1944 CSEMap.InsertNode(N, IP); 1945 InsertNode(N); 1946 return SDValue(N, 0); 1947 } 1948 1949 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1950 if (VT == V.getValueType()) 1951 return V; 1952 1953 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1954 } 1955 1956 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1957 unsigned SrcAS, unsigned DestAS) { 1958 SDValue Ops[] = {Ptr}; 1959 FoldingSetNodeID ID; 1960 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1961 ID.AddInteger(SrcAS); 1962 ID.AddInteger(DestAS); 1963 1964 void *IP = nullptr; 1965 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1966 return SDValue(E, 0); 1967 1968 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1969 VT, SrcAS, DestAS); 1970 createOperands(N, Ops); 1971 1972 CSEMap.InsertNode(N, IP); 1973 InsertNode(N); 1974 return SDValue(N, 0); 1975 } 1976 1977 SDValue SelectionDAG::getFreeze(SDValue V) { 1978 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1979 } 1980 1981 /// getShiftAmountOperand - Return the specified value casted to 1982 /// the target's desired shift amount type. 1983 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1984 EVT OpTy = Op.getValueType(); 1985 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1986 if (OpTy == ShTy || OpTy.isVector()) return Op; 1987 1988 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1989 } 1990 1991 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1992 SDLoc dl(Node); 1993 const TargetLowering &TLI = getTargetLoweringInfo(); 1994 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1995 EVT VT = Node->getValueType(0); 1996 SDValue Tmp1 = Node->getOperand(0); 1997 SDValue Tmp2 = Node->getOperand(1); 1998 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1999 2000 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2001 Tmp2, MachinePointerInfo(V)); 2002 SDValue VAList = VAListLoad; 2003 2004 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2005 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2006 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2007 2008 VAList = 2009 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2010 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2011 } 2012 2013 // Increment the pointer, VAList, to the next vaarg 2014 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2015 getConstant(getDataLayout().getTypeAllocSize( 2016 VT.getTypeForEVT(*getContext())), 2017 dl, VAList.getValueType())); 2018 // Store the incremented VAList to the legalized pointer 2019 Tmp1 = 2020 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2021 // Load the actual argument out of the pointer VAList 2022 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2023 } 2024 2025 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2026 SDLoc dl(Node); 2027 const TargetLowering &TLI = getTargetLoweringInfo(); 2028 // This defaults to loading a pointer from the input and storing it to the 2029 // output, returning the chain. 2030 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2031 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2032 SDValue Tmp1 = 2033 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2034 Node->getOperand(2), MachinePointerInfo(VS)); 2035 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2036 MachinePointerInfo(VD)); 2037 } 2038 2039 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2040 const DataLayout &DL = getDataLayout(); 2041 Type *Ty = VT.getTypeForEVT(*getContext()); 2042 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2043 2044 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2045 return RedAlign; 2046 2047 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2048 const Align StackAlign = TFI->getStackAlign(); 2049 2050 // See if we can choose a smaller ABI alignment in cases where it's an 2051 // illegal vector type that will get broken down. 2052 if (RedAlign > StackAlign) { 2053 EVT IntermediateVT; 2054 MVT RegisterVT; 2055 unsigned NumIntermediates; 2056 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2057 NumIntermediates, RegisterVT); 2058 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2059 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2060 if (RedAlign2 < RedAlign) 2061 RedAlign = RedAlign2; 2062 } 2063 2064 return RedAlign; 2065 } 2066 2067 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2068 MachineFrameInfo &MFI = MF->getFrameInfo(); 2069 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2070 int StackID = 0; 2071 if (Bytes.isScalable()) 2072 StackID = TFI->getStackIDForScalableVectors(); 2073 // The stack id gives an indication of whether the object is scalable or 2074 // not, so it's safe to pass in the minimum size here. 2075 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2076 false, nullptr, StackID); 2077 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2078 } 2079 2080 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2081 Type *Ty = VT.getTypeForEVT(*getContext()); 2082 Align StackAlign = 2083 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2084 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2085 } 2086 2087 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2088 TypeSize VT1Size = VT1.getStoreSize(); 2089 TypeSize VT2Size = VT2.getStoreSize(); 2090 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2091 "Don't know how to choose the maximum size when creating a stack " 2092 "temporary"); 2093 TypeSize Bytes = 2094 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2095 2096 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2097 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2098 const DataLayout &DL = getDataLayout(); 2099 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2100 return CreateStackTemporary(Bytes, Align); 2101 } 2102 2103 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2104 ISD::CondCode Cond, const SDLoc &dl) { 2105 EVT OpVT = N1.getValueType(); 2106 2107 // These setcc operations always fold. 2108 switch (Cond) { 2109 default: break; 2110 case ISD::SETFALSE: 2111 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2112 case ISD::SETTRUE: 2113 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2114 2115 case ISD::SETOEQ: 2116 case ISD::SETOGT: 2117 case ISD::SETOGE: 2118 case ISD::SETOLT: 2119 case ISD::SETOLE: 2120 case ISD::SETONE: 2121 case ISD::SETO: 2122 case ISD::SETUO: 2123 case ISD::SETUEQ: 2124 case ISD::SETUNE: 2125 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2126 break; 2127 } 2128 2129 if (OpVT.isInteger()) { 2130 // For EQ and NE, we can always pick a value for the undef to make the 2131 // predicate pass or fail, so we can return undef. 2132 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2133 // icmp eq/ne X, undef -> undef. 2134 if ((N1.isUndef() || N2.isUndef()) && 2135 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2136 return getUNDEF(VT); 2137 2138 // If both operands are undef, we can return undef for int comparison. 2139 // icmp undef, undef -> undef. 2140 if (N1.isUndef() && N2.isUndef()) 2141 return getUNDEF(VT); 2142 2143 // icmp X, X -> true/false 2144 // icmp X, undef -> true/false because undef could be X. 2145 if (N1 == N2) 2146 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2147 } 2148 2149 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2150 const APInt &C2 = N2C->getAPIntValue(); 2151 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2152 const APInt &C1 = N1C->getAPIntValue(); 2153 2154 switch (Cond) { 2155 default: llvm_unreachable("Unknown integer setcc!"); 2156 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2157 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2158 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2159 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2160 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2161 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2162 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2163 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2164 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2165 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2166 } 2167 } 2168 } 2169 2170 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2171 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2172 2173 if (N1CFP && N2CFP) { 2174 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2175 switch (Cond) { 2176 default: break; 2177 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2178 return getUNDEF(VT); 2179 LLVM_FALLTHROUGH; 2180 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2181 OpVT); 2182 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2183 return getUNDEF(VT); 2184 LLVM_FALLTHROUGH; 2185 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2186 R==APFloat::cmpLessThan, dl, VT, 2187 OpVT); 2188 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2189 return getUNDEF(VT); 2190 LLVM_FALLTHROUGH; 2191 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2192 OpVT); 2193 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2194 return getUNDEF(VT); 2195 LLVM_FALLTHROUGH; 2196 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2197 VT, OpVT); 2198 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2199 return getUNDEF(VT); 2200 LLVM_FALLTHROUGH; 2201 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2202 R==APFloat::cmpEqual, dl, VT, 2203 OpVT); 2204 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2205 return getUNDEF(VT); 2206 LLVM_FALLTHROUGH; 2207 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2208 R==APFloat::cmpEqual, dl, VT, OpVT); 2209 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2210 OpVT); 2211 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2212 OpVT); 2213 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2214 R==APFloat::cmpEqual, dl, VT, 2215 OpVT); 2216 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2217 OpVT); 2218 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2219 R==APFloat::cmpLessThan, dl, VT, 2220 OpVT); 2221 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2222 R==APFloat::cmpUnordered, dl, VT, 2223 OpVT); 2224 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2225 VT, OpVT); 2226 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2227 OpVT); 2228 } 2229 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2230 // Ensure that the constant occurs on the RHS. 2231 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2232 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2233 return SDValue(); 2234 return getSetCC(dl, VT, N2, N1, SwappedCond); 2235 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2236 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2237 // If an operand is known to be a nan (or undef that could be a nan), we can 2238 // fold it. 2239 // Choosing NaN for the undef will always make unordered comparison succeed 2240 // and ordered comparison fails. 2241 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2242 switch (ISD::getUnorderedFlavor(Cond)) { 2243 default: 2244 llvm_unreachable("Unknown flavor!"); 2245 case 0: // Known false. 2246 return getBoolConstant(false, dl, VT, OpVT); 2247 case 1: // Known true. 2248 return getBoolConstant(true, dl, VT, OpVT); 2249 case 2: // Undefined. 2250 return getUNDEF(VT); 2251 } 2252 } 2253 2254 // Could not fold it. 2255 return SDValue(); 2256 } 2257 2258 /// See if the specified operand can be simplified with the knowledge that only 2259 /// the bits specified by DemandedBits are used. 2260 /// TODO: really we should be making this into the DAG equivalent of 2261 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2262 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2263 EVT VT = V.getValueType(); 2264 2265 if (VT.isScalableVector()) 2266 return SDValue(); 2267 2268 APInt DemandedElts = VT.isVector() 2269 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2270 : APInt(1, 1); 2271 return GetDemandedBits(V, DemandedBits, DemandedElts); 2272 } 2273 2274 /// See if the specified operand can be simplified with the knowledge that only 2275 /// the bits specified by DemandedBits are used in the elements specified by 2276 /// DemandedElts. 2277 /// TODO: really we should be making this into the DAG equivalent of 2278 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2279 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2280 const APInt &DemandedElts) { 2281 switch (V.getOpcode()) { 2282 default: 2283 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2284 *this, 0); 2285 case ISD::Constant: { 2286 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2287 APInt NewVal = CVal & DemandedBits; 2288 if (NewVal != CVal) 2289 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2290 break; 2291 } 2292 case ISD::SRL: 2293 // Only look at single-use SRLs. 2294 if (!V.getNode()->hasOneUse()) 2295 break; 2296 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2297 // See if we can recursively simplify the LHS. 2298 unsigned Amt = RHSC->getZExtValue(); 2299 2300 // Watch out for shift count overflow though. 2301 if (Amt >= DemandedBits.getBitWidth()) 2302 break; 2303 APInt SrcDemandedBits = DemandedBits << Amt; 2304 if (SDValue SimplifyLHS = 2305 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2306 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2307 V.getOperand(1)); 2308 } 2309 break; 2310 } 2311 return SDValue(); 2312 } 2313 2314 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2315 /// use this predicate to simplify operations downstream. 2316 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2317 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2318 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2319 } 2320 2321 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2322 /// this predicate to simplify operations downstream. Mask is known to be zero 2323 /// for bits that V cannot have. 2324 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2325 unsigned Depth) const { 2326 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2327 } 2328 2329 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2330 /// DemandedElts. We use this predicate to simplify operations downstream. 2331 /// Mask is known to be zero for bits that V cannot have. 2332 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2333 const APInt &DemandedElts, 2334 unsigned Depth) const { 2335 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2336 } 2337 2338 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2339 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2340 unsigned Depth) const { 2341 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2342 } 2343 2344 /// isSplatValue - Return true if the vector V has the same value 2345 /// across all DemandedElts. For scalable vectors it does not make 2346 /// sense to specify which elements are demanded or undefined, therefore 2347 /// they are simply ignored. 2348 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2349 APInt &UndefElts) { 2350 EVT VT = V.getValueType(); 2351 assert(VT.isVector() && "Vector type expected"); 2352 2353 if (!VT.isScalableVector() && !DemandedElts) 2354 return false; // No demanded elts, better to assume we don't know anything. 2355 2356 // Deal with some common cases here that work for both fixed and scalable 2357 // vector types. 2358 switch (V.getOpcode()) { 2359 case ISD::SPLAT_VECTOR: 2360 UndefElts = V.getOperand(0).isUndef() 2361 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2362 : APInt(DemandedElts.getBitWidth(), 0); 2363 return true; 2364 case ISD::ADD: 2365 case ISD::SUB: 2366 case ISD::AND: { 2367 APInt UndefLHS, UndefRHS; 2368 SDValue LHS = V.getOperand(0); 2369 SDValue RHS = V.getOperand(1); 2370 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2371 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2372 UndefElts = UndefLHS | UndefRHS; 2373 return true; 2374 } 2375 break; 2376 } 2377 case ISD::TRUNCATE: 2378 case ISD::SIGN_EXTEND: 2379 case ISD::ZERO_EXTEND: 2380 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2381 } 2382 2383 // We don't support other cases than those above for scalable vectors at 2384 // the moment. 2385 if (VT.isScalableVector()) 2386 return false; 2387 2388 unsigned NumElts = VT.getVectorNumElements(); 2389 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2390 UndefElts = APInt::getNullValue(NumElts); 2391 2392 switch (V.getOpcode()) { 2393 case ISD::BUILD_VECTOR: { 2394 SDValue Scl; 2395 for (unsigned i = 0; i != NumElts; ++i) { 2396 SDValue Op = V.getOperand(i); 2397 if (Op.isUndef()) { 2398 UndefElts.setBit(i); 2399 continue; 2400 } 2401 if (!DemandedElts[i]) 2402 continue; 2403 if (Scl && Scl != Op) 2404 return false; 2405 Scl = Op; 2406 } 2407 return true; 2408 } 2409 case ISD::VECTOR_SHUFFLE: { 2410 // Check if this is a shuffle node doing a splat. 2411 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2412 int SplatIndex = -1; 2413 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2414 for (int i = 0; i != (int)NumElts; ++i) { 2415 int M = Mask[i]; 2416 if (M < 0) { 2417 UndefElts.setBit(i); 2418 continue; 2419 } 2420 if (!DemandedElts[i]) 2421 continue; 2422 if (0 <= SplatIndex && SplatIndex != M) 2423 return false; 2424 SplatIndex = M; 2425 } 2426 return true; 2427 } 2428 case ISD::EXTRACT_SUBVECTOR: { 2429 // Offset the demanded elts by the subvector index. 2430 SDValue Src = V.getOperand(0); 2431 uint64_t Idx = V.getConstantOperandVal(1); 2432 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2433 APInt UndefSrcElts; 2434 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2435 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2436 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2437 return true; 2438 } 2439 break; 2440 } 2441 } 2442 2443 return false; 2444 } 2445 2446 /// Helper wrapper to main isSplatValue function. 2447 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2448 EVT VT = V.getValueType(); 2449 assert(VT.isVector() && "Vector type expected"); 2450 2451 APInt UndefElts; 2452 APInt DemandedElts; 2453 2454 // For now we don't support this with scalable vectors. 2455 if (!VT.isScalableVector()) 2456 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2457 return isSplatValue(V, DemandedElts, UndefElts) && 2458 (AllowUndefs || !UndefElts); 2459 } 2460 2461 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2462 V = peekThroughExtractSubvectors(V); 2463 2464 EVT VT = V.getValueType(); 2465 unsigned Opcode = V.getOpcode(); 2466 switch (Opcode) { 2467 default: { 2468 APInt UndefElts; 2469 APInt DemandedElts; 2470 2471 if (!VT.isScalableVector()) 2472 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2473 2474 if (isSplatValue(V, DemandedElts, UndefElts)) { 2475 if (VT.isScalableVector()) { 2476 // DemandedElts and UndefElts are ignored for scalable vectors, since 2477 // the only supported cases are SPLAT_VECTOR nodes. 2478 SplatIdx = 0; 2479 } else { 2480 // Handle case where all demanded elements are UNDEF. 2481 if (DemandedElts.isSubsetOf(UndefElts)) { 2482 SplatIdx = 0; 2483 return getUNDEF(VT); 2484 } 2485 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2486 } 2487 return V; 2488 } 2489 break; 2490 } 2491 case ISD::SPLAT_VECTOR: 2492 SplatIdx = 0; 2493 return V; 2494 case ISD::VECTOR_SHUFFLE: { 2495 if (VT.isScalableVector()) 2496 return SDValue(); 2497 2498 // Check if this is a shuffle node doing a splat. 2499 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2500 // getTargetVShiftNode currently struggles without the splat source. 2501 auto *SVN = cast<ShuffleVectorSDNode>(V); 2502 if (!SVN->isSplat()) 2503 break; 2504 int Idx = SVN->getSplatIndex(); 2505 int NumElts = V.getValueType().getVectorNumElements(); 2506 SplatIdx = Idx % NumElts; 2507 return V.getOperand(Idx / NumElts); 2508 } 2509 } 2510 2511 return SDValue(); 2512 } 2513 2514 SDValue SelectionDAG::getSplatValue(SDValue V) { 2515 int SplatIdx; 2516 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2517 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2518 SrcVector.getValueType().getScalarType(), SrcVector, 2519 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2520 return SDValue(); 2521 } 2522 2523 const APInt * 2524 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2525 const APInt &DemandedElts) const { 2526 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2527 V.getOpcode() == ISD::SRA) && 2528 "Unknown shift node"); 2529 unsigned BitWidth = V.getScalarValueSizeInBits(); 2530 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2531 // Shifting more than the bitwidth is not valid. 2532 const APInt &ShAmt = SA->getAPIntValue(); 2533 if (ShAmt.ult(BitWidth)) 2534 return &ShAmt; 2535 } 2536 return nullptr; 2537 } 2538 2539 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2540 SDValue V, const APInt &DemandedElts) const { 2541 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2542 V.getOpcode() == ISD::SRA) && 2543 "Unknown shift node"); 2544 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2545 return ValidAmt; 2546 unsigned BitWidth = V.getScalarValueSizeInBits(); 2547 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2548 if (!BV) 2549 return nullptr; 2550 const APInt *MinShAmt = nullptr; 2551 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2552 if (!DemandedElts[i]) 2553 continue; 2554 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2555 if (!SA) 2556 return nullptr; 2557 // Shifting more than the bitwidth is not valid. 2558 const APInt &ShAmt = SA->getAPIntValue(); 2559 if (ShAmt.uge(BitWidth)) 2560 return nullptr; 2561 if (MinShAmt && MinShAmt->ule(ShAmt)) 2562 continue; 2563 MinShAmt = &ShAmt; 2564 } 2565 return MinShAmt; 2566 } 2567 2568 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2569 SDValue V, const APInt &DemandedElts) const { 2570 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2571 V.getOpcode() == ISD::SRA) && 2572 "Unknown shift node"); 2573 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2574 return ValidAmt; 2575 unsigned BitWidth = V.getScalarValueSizeInBits(); 2576 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2577 if (!BV) 2578 return nullptr; 2579 const APInt *MaxShAmt = nullptr; 2580 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2581 if (!DemandedElts[i]) 2582 continue; 2583 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2584 if (!SA) 2585 return nullptr; 2586 // Shifting more than the bitwidth is not valid. 2587 const APInt &ShAmt = SA->getAPIntValue(); 2588 if (ShAmt.uge(BitWidth)) 2589 return nullptr; 2590 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2591 continue; 2592 MaxShAmt = &ShAmt; 2593 } 2594 return MaxShAmt; 2595 } 2596 2597 /// Determine which bits of Op are known to be either zero or one and return 2598 /// them in Known. For vectors, the known bits are those that are shared by 2599 /// every vector element. 2600 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2601 EVT VT = Op.getValueType(); 2602 2603 // TOOD: Until we have a plan for how to represent demanded elements for 2604 // scalable vectors, we can just bail out for now. 2605 if (Op.getValueType().isScalableVector()) { 2606 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2607 return KnownBits(BitWidth); 2608 } 2609 2610 APInt DemandedElts = VT.isVector() 2611 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2612 : APInt(1, 1); 2613 return computeKnownBits(Op, DemandedElts, Depth); 2614 } 2615 2616 /// Determine which bits of Op are known to be either zero or one and return 2617 /// them in Known. The DemandedElts argument allows us to only collect the known 2618 /// bits that are shared by the requested vector elements. 2619 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2620 unsigned Depth) const { 2621 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2622 2623 KnownBits Known(BitWidth); // Don't know anything. 2624 2625 // TOOD: Until we have a plan for how to represent demanded elements for 2626 // scalable vectors, we can just bail out for now. 2627 if (Op.getValueType().isScalableVector()) 2628 return Known; 2629 2630 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2631 // We know all of the bits for a constant! 2632 return KnownBits::makeConstant(C->getAPIntValue()); 2633 } 2634 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2635 // We know all of the bits for a constant fp! 2636 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2637 } 2638 2639 if (Depth >= MaxRecursionDepth) 2640 return Known; // Limit search depth. 2641 2642 KnownBits Known2; 2643 unsigned NumElts = DemandedElts.getBitWidth(); 2644 assert((!Op.getValueType().isVector() || 2645 NumElts == Op.getValueType().getVectorNumElements()) && 2646 "Unexpected vector size"); 2647 2648 if (!DemandedElts) 2649 return Known; // No demanded elts, better to assume we don't know anything. 2650 2651 unsigned Opcode = Op.getOpcode(); 2652 switch (Opcode) { 2653 case ISD::BUILD_VECTOR: 2654 // Collect the known bits that are shared by every demanded vector element. 2655 Known.Zero.setAllBits(); Known.One.setAllBits(); 2656 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2657 if (!DemandedElts[i]) 2658 continue; 2659 2660 SDValue SrcOp = Op.getOperand(i); 2661 Known2 = computeKnownBits(SrcOp, Depth + 1); 2662 2663 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2664 if (SrcOp.getValueSizeInBits() != BitWidth) { 2665 assert(SrcOp.getValueSizeInBits() > BitWidth && 2666 "Expected BUILD_VECTOR implicit truncation"); 2667 Known2 = Known2.trunc(BitWidth); 2668 } 2669 2670 // Known bits are the values that are shared by every demanded element. 2671 Known = KnownBits::commonBits(Known, Known2); 2672 2673 // If we don't know any bits, early out. 2674 if (Known.isUnknown()) 2675 break; 2676 } 2677 break; 2678 case ISD::VECTOR_SHUFFLE: { 2679 // Collect the known bits that are shared by every vector element referenced 2680 // by the shuffle. 2681 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2682 Known.Zero.setAllBits(); Known.One.setAllBits(); 2683 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2684 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2685 for (unsigned i = 0; i != NumElts; ++i) { 2686 if (!DemandedElts[i]) 2687 continue; 2688 2689 int M = SVN->getMaskElt(i); 2690 if (M < 0) { 2691 // For UNDEF elements, we don't know anything about the common state of 2692 // the shuffle result. 2693 Known.resetAll(); 2694 DemandedLHS.clearAllBits(); 2695 DemandedRHS.clearAllBits(); 2696 break; 2697 } 2698 2699 if ((unsigned)M < NumElts) 2700 DemandedLHS.setBit((unsigned)M % NumElts); 2701 else 2702 DemandedRHS.setBit((unsigned)M % NumElts); 2703 } 2704 // Known bits are the values that are shared by every demanded element. 2705 if (!!DemandedLHS) { 2706 SDValue LHS = Op.getOperand(0); 2707 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2708 Known = KnownBits::commonBits(Known, Known2); 2709 } 2710 // If we don't know any bits, early out. 2711 if (Known.isUnknown()) 2712 break; 2713 if (!!DemandedRHS) { 2714 SDValue RHS = Op.getOperand(1); 2715 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2716 Known = KnownBits::commonBits(Known, Known2); 2717 } 2718 break; 2719 } 2720 case ISD::CONCAT_VECTORS: { 2721 // Split DemandedElts and test each of the demanded subvectors. 2722 Known.Zero.setAllBits(); Known.One.setAllBits(); 2723 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2724 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2725 unsigned NumSubVectors = Op.getNumOperands(); 2726 for (unsigned i = 0; i != NumSubVectors; ++i) { 2727 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2728 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2729 if (!!DemandedSub) { 2730 SDValue Sub = Op.getOperand(i); 2731 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2732 Known = KnownBits::commonBits(Known, Known2); 2733 } 2734 // If we don't know any bits, early out. 2735 if (Known.isUnknown()) 2736 break; 2737 } 2738 break; 2739 } 2740 case ISD::INSERT_SUBVECTOR: { 2741 // Demand any elements from the subvector and the remainder from the src its 2742 // inserted into. 2743 SDValue Src = Op.getOperand(0); 2744 SDValue Sub = Op.getOperand(1); 2745 uint64_t Idx = Op.getConstantOperandVal(2); 2746 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2747 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2748 APInt DemandedSrcElts = DemandedElts; 2749 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2750 2751 Known.One.setAllBits(); 2752 Known.Zero.setAllBits(); 2753 if (!!DemandedSubElts) { 2754 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2755 if (Known.isUnknown()) 2756 break; // early-out. 2757 } 2758 if (!!DemandedSrcElts) { 2759 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2760 Known = KnownBits::commonBits(Known, Known2); 2761 } 2762 break; 2763 } 2764 case ISD::EXTRACT_SUBVECTOR: { 2765 // Offset the demanded elts by the subvector index. 2766 SDValue Src = Op.getOperand(0); 2767 // Bail until we can represent demanded elements for scalable vectors. 2768 if (Src.getValueType().isScalableVector()) 2769 break; 2770 uint64_t Idx = Op.getConstantOperandVal(1); 2771 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2772 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2773 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2774 break; 2775 } 2776 case ISD::SCALAR_TO_VECTOR: { 2777 // We know about scalar_to_vector as much as we know about it source, 2778 // which becomes the first element of otherwise unknown vector. 2779 if (DemandedElts != 1) 2780 break; 2781 2782 SDValue N0 = Op.getOperand(0); 2783 Known = computeKnownBits(N0, Depth + 1); 2784 if (N0.getValueSizeInBits() != BitWidth) 2785 Known = Known.trunc(BitWidth); 2786 2787 break; 2788 } 2789 case ISD::BITCAST: { 2790 SDValue N0 = Op.getOperand(0); 2791 EVT SubVT = N0.getValueType(); 2792 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2793 2794 // Ignore bitcasts from unsupported types. 2795 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2796 break; 2797 2798 // Fast handling of 'identity' bitcasts. 2799 if (BitWidth == SubBitWidth) { 2800 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2801 break; 2802 } 2803 2804 bool IsLE = getDataLayout().isLittleEndian(); 2805 2806 // Bitcast 'small element' vector to 'large element' scalar/vector. 2807 if ((BitWidth % SubBitWidth) == 0) { 2808 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2809 2810 // Collect known bits for the (larger) output by collecting the known 2811 // bits from each set of sub elements and shift these into place. 2812 // We need to separately call computeKnownBits for each set of 2813 // sub elements as the knownbits for each is likely to be different. 2814 unsigned SubScale = BitWidth / SubBitWidth; 2815 APInt SubDemandedElts(NumElts * SubScale, 0); 2816 for (unsigned i = 0; i != NumElts; ++i) 2817 if (DemandedElts[i]) 2818 SubDemandedElts.setBit(i * SubScale); 2819 2820 for (unsigned i = 0; i != SubScale; ++i) { 2821 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2822 Depth + 1); 2823 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2824 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2825 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2826 } 2827 } 2828 2829 // Bitcast 'large element' scalar/vector to 'small element' vector. 2830 if ((SubBitWidth % BitWidth) == 0) { 2831 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2832 2833 // Collect known bits for the (smaller) output by collecting the known 2834 // bits from the overlapping larger input elements and extracting the 2835 // sub sections we actually care about. 2836 unsigned SubScale = SubBitWidth / BitWidth; 2837 APInt SubDemandedElts(NumElts / SubScale, 0); 2838 for (unsigned i = 0; i != NumElts; ++i) 2839 if (DemandedElts[i]) 2840 SubDemandedElts.setBit(i / SubScale); 2841 2842 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2843 2844 Known.Zero.setAllBits(); Known.One.setAllBits(); 2845 for (unsigned i = 0; i != NumElts; ++i) 2846 if (DemandedElts[i]) { 2847 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2848 unsigned Offset = (Shifts % SubScale) * BitWidth; 2849 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2850 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2851 // If we don't know any bits, early out. 2852 if (Known.isUnknown()) 2853 break; 2854 } 2855 } 2856 break; 2857 } 2858 case ISD::AND: 2859 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2860 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2861 2862 Known &= Known2; 2863 break; 2864 case ISD::OR: 2865 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2866 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2867 2868 Known |= Known2; 2869 break; 2870 case ISD::XOR: 2871 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2872 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2873 2874 Known ^= Known2; 2875 break; 2876 case ISD::MUL: { 2877 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2878 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2879 Known = KnownBits::computeForMul(Known, Known2); 2880 break; 2881 } 2882 case ISD::UDIV: { 2883 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2884 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2885 Known = KnownBits::udiv(Known, Known2); 2886 break; 2887 } 2888 case ISD::SELECT: 2889 case ISD::VSELECT: 2890 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2891 // If we don't know any bits, early out. 2892 if (Known.isUnknown()) 2893 break; 2894 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2895 2896 // Only known if known in both the LHS and RHS. 2897 Known = KnownBits::commonBits(Known, Known2); 2898 break; 2899 case ISD::SELECT_CC: 2900 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2901 // If we don't know any bits, early out. 2902 if (Known.isUnknown()) 2903 break; 2904 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2905 2906 // Only known if known in both the LHS and RHS. 2907 Known = KnownBits::commonBits(Known, Known2); 2908 break; 2909 case ISD::SMULO: 2910 case ISD::UMULO: 2911 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2912 if (Op.getResNo() != 1) 2913 break; 2914 // The boolean result conforms to getBooleanContents. 2915 // If we know the result of a setcc has the top bits zero, use this info. 2916 // We know that we have an integer-based boolean since these operations 2917 // are only available for integer. 2918 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2919 TargetLowering::ZeroOrOneBooleanContent && 2920 BitWidth > 1) 2921 Known.Zero.setBitsFrom(1); 2922 break; 2923 case ISD::SETCC: 2924 case ISD::STRICT_FSETCC: 2925 case ISD::STRICT_FSETCCS: { 2926 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2927 // If we know the result of a setcc has the top bits zero, use this info. 2928 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2929 TargetLowering::ZeroOrOneBooleanContent && 2930 BitWidth > 1) 2931 Known.Zero.setBitsFrom(1); 2932 break; 2933 } 2934 case ISD::SHL: 2935 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2936 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2937 Known = KnownBits::shl(Known, Known2); 2938 2939 // Minimum shift low bits are known zero. 2940 if (const APInt *ShMinAmt = 2941 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2942 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2943 break; 2944 case ISD::SRL: 2945 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2946 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2947 Known = KnownBits::lshr(Known, Known2); 2948 2949 // Minimum shift high bits are known zero. 2950 if (const APInt *ShMinAmt = 2951 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2952 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2953 break; 2954 case ISD::SRA: 2955 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2956 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2957 Known = KnownBits::ashr(Known, Known2); 2958 // TODO: Add minimum shift high known sign bits. 2959 break; 2960 case ISD::FSHL: 2961 case ISD::FSHR: 2962 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2963 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2964 2965 // For fshl, 0-shift returns the 1st arg. 2966 // For fshr, 0-shift returns the 2nd arg. 2967 if (Amt == 0) { 2968 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2969 DemandedElts, Depth + 1); 2970 break; 2971 } 2972 2973 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2974 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2975 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2976 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2977 if (Opcode == ISD::FSHL) { 2978 Known.One <<= Amt; 2979 Known.Zero <<= Amt; 2980 Known2.One.lshrInPlace(BitWidth - Amt); 2981 Known2.Zero.lshrInPlace(BitWidth - Amt); 2982 } else { 2983 Known.One <<= BitWidth - Amt; 2984 Known.Zero <<= BitWidth - Amt; 2985 Known2.One.lshrInPlace(Amt); 2986 Known2.Zero.lshrInPlace(Amt); 2987 } 2988 Known.One |= Known2.One; 2989 Known.Zero |= Known2.Zero; 2990 } 2991 break; 2992 case ISD::SIGN_EXTEND_INREG: { 2993 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2994 unsigned EBits = EVT.getScalarSizeInBits(); 2995 2996 // Sign extension. Compute the demanded bits in the result that are not 2997 // present in the input. 2998 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2999 3000 APInt InSignMask = APInt::getSignMask(EBits); 3001 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3002 3003 // If the sign extended bits are demanded, we know that the sign 3004 // bit is demanded. 3005 InSignMask = InSignMask.zext(BitWidth); 3006 if (NewBits.getBoolValue()) 3007 InputDemandedBits |= InSignMask; 3008 3009 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known.One &= InputDemandedBits; 3011 Known.Zero &= InputDemandedBits; 3012 3013 // If the sign bit of the input is known set or clear, then we know the 3014 // top bits of the result. 3015 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3016 Known.Zero |= NewBits; 3017 Known.One &= ~NewBits; 3018 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3019 Known.One |= NewBits; 3020 Known.Zero &= ~NewBits; 3021 } else { // Input sign bit unknown 3022 Known.Zero &= ~NewBits; 3023 Known.One &= ~NewBits; 3024 } 3025 break; 3026 } 3027 case ISD::CTTZ: 3028 case ISD::CTTZ_ZERO_UNDEF: { 3029 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3030 // If we have a known 1, its position is our upper bound. 3031 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3032 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3033 Known.Zero.setBitsFrom(LowBits); 3034 break; 3035 } 3036 case ISD::CTLZ: 3037 case ISD::CTLZ_ZERO_UNDEF: { 3038 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 // If we have a known 1, its position is our upper bound. 3040 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3041 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3042 Known.Zero.setBitsFrom(LowBits); 3043 break; 3044 } 3045 case ISD::CTPOP: { 3046 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3047 // If we know some of the bits are zero, they can't be one. 3048 unsigned PossibleOnes = Known2.countMaxPopulation(); 3049 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3050 break; 3051 } 3052 case ISD::PARITY: { 3053 // Parity returns 0 everywhere but the LSB. 3054 Known.Zero.setBitsFrom(1); 3055 break; 3056 } 3057 case ISD::LOAD: { 3058 LoadSDNode *LD = cast<LoadSDNode>(Op); 3059 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3060 if (ISD::isNON_EXTLoad(LD) && Cst) { 3061 // Determine any common known bits from the loaded constant pool value. 3062 Type *CstTy = Cst->getType(); 3063 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3064 // If its a vector splat, then we can (quickly) reuse the scalar path. 3065 // NOTE: We assume all elements match and none are UNDEF. 3066 if (CstTy->isVectorTy()) { 3067 if (const Constant *Splat = Cst->getSplatValue()) { 3068 Cst = Splat; 3069 CstTy = Cst->getType(); 3070 } 3071 } 3072 // TODO - do we need to handle different bitwidths? 3073 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3074 // Iterate across all vector elements finding common known bits. 3075 Known.One.setAllBits(); 3076 Known.Zero.setAllBits(); 3077 for (unsigned i = 0; i != NumElts; ++i) { 3078 if (!DemandedElts[i]) 3079 continue; 3080 if (Constant *Elt = Cst->getAggregateElement(i)) { 3081 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3082 const APInt &Value = CInt->getValue(); 3083 Known.One &= Value; 3084 Known.Zero &= ~Value; 3085 continue; 3086 } 3087 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3088 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3089 Known.One &= Value; 3090 Known.Zero &= ~Value; 3091 continue; 3092 } 3093 } 3094 Known.One.clearAllBits(); 3095 Known.Zero.clearAllBits(); 3096 break; 3097 } 3098 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3099 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3100 const APInt &Value = CInt->getValue(); 3101 Known.One = Value; 3102 Known.Zero = ~Value; 3103 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3104 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3105 Known.One = Value; 3106 Known.Zero = ~Value; 3107 } 3108 } 3109 } 3110 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3111 // If this is a ZEXTLoad and we are looking at the loaded value. 3112 EVT VT = LD->getMemoryVT(); 3113 unsigned MemBits = VT.getScalarSizeInBits(); 3114 Known.Zero.setBitsFrom(MemBits); 3115 } else if (const MDNode *Ranges = LD->getRanges()) { 3116 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3117 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3118 } 3119 break; 3120 } 3121 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3122 EVT InVT = Op.getOperand(0).getValueType(); 3123 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3124 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3125 Known = Known.zext(BitWidth); 3126 break; 3127 } 3128 case ISD::ZERO_EXTEND: { 3129 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3130 Known = Known.zext(BitWidth); 3131 break; 3132 } 3133 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3134 EVT InVT = Op.getOperand(0).getValueType(); 3135 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3136 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3137 // If the sign bit is known to be zero or one, then sext will extend 3138 // it to the top bits, else it will just zext. 3139 Known = Known.sext(BitWidth); 3140 break; 3141 } 3142 case ISD::SIGN_EXTEND: { 3143 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3144 // If the sign bit is known to be zero or one, then sext will extend 3145 // it to the top bits, else it will just zext. 3146 Known = Known.sext(BitWidth); 3147 break; 3148 } 3149 case ISD::ANY_EXTEND_VECTOR_INREG: { 3150 EVT InVT = Op.getOperand(0).getValueType(); 3151 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3152 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3153 Known = Known.anyext(BitWidth); 3154 break; 3155 } 3156 case ISD::ANY_EXTEND: { 3157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 Known = Known.anyext(BitWidth); 3159 break; 3160 } 3161 case ISD::TRUNCATE: { 3162 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3163 Known = Known.trunc(BitWidth); 3164 break; 3165 } 3166 case ISD::AssertZext: { 3167 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3168 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3169 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3170 Known.Zero |= (~InMask); 3171 Known.One &= (~Known.Zero); 3172 break; 3173 } 3174 case ISD::AssertAlign: { 3175 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3176 assert(LogOfAlign != 0); 3177 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3178 // well as clearing one bits. 3179 Known.Zero.setLowBits(LogOfAlign); 3180 Known.One.clearLowBits(LogOfAlign); 3181 break; 3182 } 3183 case ISD::FGETSIGN: 3184 // All bits are zero except the low bit. 3185 Known.Zero.setBitsFrom(1); 3186 break; 3187 case ISD::USUBO: 3188 case ISD::SSUBO: 3189 if (Op.getResNo() == 1) { 3190 // If we know the result of a setcc has the top bits zero, use this info. 3191 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3192 TargetLowering::ZeroOrOneBooleanContent && 3193 BitWidth > 1) 3194 Known.Zero.setBitsFrom(1); 3195 break; 3196 } 3197 LLVM_FALLTHROUGH; 3198 case ISD::SUB: 3199 case ISD::SUBC: { 3200 assert(Op.getResNo() == 0 && 3201 "We only compute knownbits for the difference here."); 3202 3203 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3204 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3205 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3206 Known, Known2); 3207 break; 3208 } 3209 case ISD::UADDO: 3210 case ISD::SADDO: 3211 case ISD::ADDCARRY: 3212 if (Op.getResNo() == 1) { 3213 // If we know the result of a setcc has the top bits zero, use this info. 3214 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3215 TargetLowering::ZeroOrOneBooleanContent && 3216 BitWidth > 1) 3217 Known.Zero.setBitsFrom(1); 3218 break; 3219 } 3220 LLVM_FALLTHROUGH; 3221 case ISD::ADD: 3222 case ISD::ADDC: 3223 case ISD::ADDE: { 3224 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3225 3226 // With ADDE and ADDCARRY, a carry bit may be added in. 3227 KnownBits Carry(1); 3228 if (Opcode == ISD::ADDE) 3229 // Can't track carry from glue, set carry to unknown. 3230 Carry.resetAll(); 3231 else if (Opcode == ISD::ADDCARRY) 3232 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3233 // the trouble (how often will we find a known carry bit). And I haven't 3234 // tested this very much yet, but something like this might work: 3235 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3236 // Carry = Carry.zextOrTrunc(1, false); 3237 Carry.resetAll(); 3238 else 3239 Carry.setAllZero(); 3240 3241 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3242 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3243 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3244 break; 3245 } 3246 case ISD::SREM: { 3247 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3248 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3249 Known = KnownBits::srem(Known, Known2); 3250 break; 3251 } 3252 case ISD::UREM: { 3253 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3254 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3255 Known = KnownBits::urem(Known, Known2); 3256 break; 3257 } 3258 case ISD::EXTRACT_ELEMENT: { 3259 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3260 const unsigned Index = Op.getConstantOperandVal(1); 3261 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3262 3263 // Remove low part of known bits mask 3264 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3265 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3266 3267 // Remove high part of known bit mask 3268 Known = Known.trunc(EltBitWidth); 3269 break; 3270 } 3271 case ISD::EXTRACT_VECTOR_ELT: { 3272 SDValue InVec = Op.getOperand(0); 3273 SDValue EltNo = Op.getOperand(1); 3274 EVT VecVT = InVec.getValueType(); 3275 // computeKnownBits not yet implemented for scalable vectors. 3276 if (VecVT.isScalableVector()) 3277 break; 3278 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3279 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3280 3281 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3282 // anything about the extended bits. 3283 if (BitWidth > EltBitWidth) 3284 Known = Known.trunc(EltBitWidth); 3285 3286 // If we know the element index, just demand that vector element, else for 3287 // an unknown element index, ignore DemandedElts and demand them all. 3288 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3289 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3290 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3291 DemandedSrcElts = 3292 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3293 3294 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3295 if (BitWidth > EltBitWidth) 3296 Known = Known.anyext(BitWidth); 3297 break; 3298 } 3299 case ISD::INSERT_VECTOR_ELT: { 3300 // If we know the element index, split the demand between the 3301 // source vector and the inserted element, otherwise assume we need 3302 // the original demanded vector elements and the value. 3303 SDValue InVec = Op.getOperand(0); 3304 SDValue InVal = Op.getOperand(1); 3305 SDValue EltNo = Op.getOperand(2); 3306 bool DemandedVal = true; 3307 APInt DemandedVecElts = DemandedElts; 3308 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3309 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3310 unsigned EltIdx = CEltNo->getZExtValue(); 3311 DemandedVal = !!DemandedElts[EltIdx]; 3312 DemandedVecElts.clearBit(EltIdx); 3313 } 3314 Known.One.setAllBits(); 3315 Known.Zero.setAllBits(); 3316 if (DemandedVal) { 3317 Known2 = computeKnownBits(InVal, Depth + 1); 3318 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3319 } 3320 if (!!DemandedVecElts) { 3321 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3322 Known = KnownBits::commonBits(Known, Known2); 3323 } 3324 break; 3325 } 3326 case ISD::BITREVERSE: { 3327 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3328 Known = Known2.reverseBits(); 3329 break; 3330 } 3331 case ISD::BSWAP: { 3332 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 Known = Known2.byteSwap(); 3334 break; 3335 } 3336 case ISD::ABS: { 3337 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3338 Known = Known2.abs(); 3339 break; 3340 } 3341 case ISD::UMIN: { 3342 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3343 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3344 Known = KnownBits::umin(Known, Known2); 3345 break; 3346 } 3347 case ISD::UMAX: { 3348 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3349 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3350 Known = KnownBits::umax(Known, Known2); 3351 break; 3352 } 3353 case ISD::SMIN: 3354 case ISD::SMAX: { 3355 // If we have a clamp pattern, we know that the number of sign bits will be 3356 // the minimum of the clamp min/max range. 3357 bool IsMax = (Opcode == ISD::SMAX); 3358 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3359 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3360 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3361 CstHigh = 3362 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3363 if (CstLow && CstHigh) { 3364 if (!IsMax) 3365 std::swap(CstLow, CstHigh); 3366 3367 const APInt &ValueLow = CstLow->getAPIntValue(); 3368 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3369 if (ValueLow.sle(ValueHigh)) { 3370 unsigned LowSignBits = ValueLow.getNumSignBits(); 3371 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3372 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3373 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3374 Known.One.setHighBits(MinSignBits); 3375 break; 3376 } 3377 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3378 Known.Zero.setHighBits(MinSignBits); 3379 break; 3380 } 3381 } 3382 } 3383 3384 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3385 if (Known.isUnknown()) break; // Early-out 3386 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3387 if (IsMax) 3388 Known = KnownBits::smax(Known, Known2); 3389 else 3390 Known = KnownBits::smin(Known, Known2); 3391 break; 3392 } 3393 case ISD::FrameIndex: 3394 case ISD::TargetFrameIndex: 3395 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3396 Known, getMachineFunction()); 3397 break; 3398 3399 default: 3400 if (Opcode < ISD::BUILTIN_OP_END) 3401 break; 3402 LLVM_FALLTHROUGH; 3403 case ISD::INTRINSIC_WO_CHAIN: 3404 case ISD::INTRINSIC_W_CHAIN: 3405 case ISD::INTRINSIC_VOID: 3406 // Allow the target to implement this method for its nodes. 3407 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3408 break; 3409 } 3410 3411 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3412 return Known; 3413 } 3414 3415 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3416 SDValue N1) const { 3417 // X + 0 never overflow 3418 if (isNullConstant(N1)) 3419 return OFK_Never; 3420 3421 KnownBits N1Known = computeKnownBits(N1); 3422 if (N1Known.Zero.getBoolValue()) { 3423 KnownBits N0Known = computeKnownBits(N0); 3424 3425 bool overflow; 3426 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3427 if (!overflow) 3428 return OFK_Never; 3429 } 3430 3431 // mulhi + 1 never overflow 3432 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3433 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3434 return OFK_Never; 3435 3436 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3437 KnownBits N0Known = computeKnownBits(N0); 3438 3439 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3440 return OFK_Never; 3441 } 3442 3443 return OFK_Sometime; 3444 } 3445 3446 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3447 EVT OpVT = Val.getValueType(); 3448 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3449 3450 // Is the constant a known power of 2? 3451 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3452 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3453 3454 // A left-shift of a constant one will have exactly one bit set because 3455 // shifting the bit off the end is undefined. 3456 if (Val.getOpcode() == ISD::SHL) { 3457 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3458 if (C && C->getAPIntValue() == 1) 3459 return true; 3460 } 3461 3462 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3463 // one bit set. 3464 if (Val.getOpcode() == ISD::SRL) { 3465 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3466 if (C && C->getAPIntValue().isSignMask()) 3467 return true; 3468 } 3469 3470 // Are all operands of a build vector constant powers of two? 3471 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3472 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3473 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3474 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3475 return false; 3476 })) 3477 return true; 3478 3479 // More could be done here, though the above checks are enough 3480 // to handle some common cases. 3481 3482 // Fall back to computeKnownBits to catch other known cases. 3483 KnownBits Known = computeKnownBits(Val); 3484 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3485 } 3486 3487 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3488 EVT VT = Op.getValueType(); 3489 3490 // TODO: Assume we don't know anything for now. 3491 if (VT.isScalableVector()) 3492 return 1; 3493 3494 APInt DemandedElts = VT.isVector() 3495 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3496 : APInt(1, 1); 3497 return ComputeNumSignBits(Op, DemandedElts, Depth); 3498 } 3499 3500 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3501 unsigned Depth) const { 3502 EVT VT = Op.getValueType(); 3503 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3504 unsigned VTBits = VT.getScalarSizeInBits(); 3505 unsigned NumElts = DemandedElts.getBitWidth(); 3506 unsigned Tmp, Tmp2; 3507 unsigned FirstAnswer = 1; 3508 3509 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3510 const APInt &Val = C->getAPIntValue(); 3511 return Val.getNumSignBits(); 3512 } 3513 3514 if (Depth >= MaxRecursionDepth) 3515 return 1; // Limit search depth. 3516 3517 if (!DemandedElts || VT.isScalableVector()) 3518 return 1; // No demanded elts, better to assume we don't know anything. 3519 3520 unsigned Opcode = Op.getOpcode(); 3521 switch (Opcode) { 3522 default: break; 3523 case ISD::AssertSext: 3524 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3525 return VTBits-Tmp+1; 3526 case ISD::AssertZext: 3527 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3528 return VTBits-Tmp; 3529 3530 case ISD::BUILD_VECTOR: 3531 Tmp = VTBits; 3532 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3533 if (!DemandedElts[i]) 3534 continue; 3535 3536 SDValue SrcOp = Op.getOperand(i); 3537 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3538 3539 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3540 if (SrcOp.getValueSizeInBits() != VTBits) { 3541 assert(SrcOp.getValueSizeInBits() > VTBits && 3542 "Expected BUILD_VECTOR implicit truncation"); 3543 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3544 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3545 } 3546 Tmp = std::min(Tmp, Tmp2); 3547 } 3548 return Tmp; 3549 3550 case ISD::VECTOR_SHUFFLE: { 3551 // Collect the minimum number of sign bits that are shared by every vector 3552 // element referenced by the shuffle. 3553 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3554 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3555 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3556 for (unsigned i = 0; i != NumElts; ++i) { 3557 int M = SVN->getMaskElt(i); 3558 if (!DemandedElts[i]) 3559 continue; 3560 // For UNDEF elements, we don't know anything about the common state of 3561 // the shuffle result. 3562 if (M < 0) 3563 return 1; 3564 if ((unsigned)M < NumElts) 3565 DemandedLHS.setBit((unsigned)M % NumElts); 3566 else 3567 DemandedRHS.setBit((unsigned)M % NumElts); 3568 } 3569 Tmp = std::numeric_limits<unsigned>::max(); 3570 if (!!DemandedLHS) 3571 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3572 if (!!DemandedRHS) { 3573 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3574 Tmp = std::min(Tmp, Tmp2); 3575 } 3576 // If we don't know anything, early out and try computeKnownBits fall-back. 3577 if (Tmp == 1) 3578 break; 3579 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3580 return Tmp; 3581 } 3582 3583 case ISD::BITCAST: { 3584 SDValue N0 = Op.getOperand(0); 3585 EVT SrcVT = N0.getValueType(); 3586 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3587 3588 // Ignore bitcasts from unsupported types.. 3589 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3590 break; 3591 3592 // Fast handling of 'identity' bitcasts. 3593 if (VTBits == SrcBits) 3594 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3595 3596 bool IsLE = getDataLayout().isLittleEndian(); 3597 3598 // Bitcast 'large element' scalar/vector to 'small element' vector. 3599 if ((SrcBits % VTBits) == 0) { 3600 assert(VT.isVector() && "Expected bitcast to vector"); 3601 3602 unsigned Scale = SrcBits / VTBits; 3603 APInt SrcDemandedElts(NumElts / Scale, 0); 3604 for (unsigned i = 0; i != NumElts; ++i) 3605 if (DemandedElts[i]) 3606 SrcDemandedElts.setBit(i / Scale); 3607 3608 // Fast case - sign splat can be simply split across the small elements. 3609 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3610 if (Tmp == SrcBits) 3611 return VTBits; 3612 3613 // Slow case - determine how far the sign extends into each sub-element. 3614 Tmp2 = VTBits; 3615 for (unsigned i = 0; i != NumElts; ++i) 3616 if (DemandedElts[i]) { 3617 unsigned SubOffset = i % Scale; 3618 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3619 SubOffset = SubOffset * VTBits; 3620 if (Tmp <= SubOffset) 3621 return 1; 3622 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3623 } 3624 return Tmp2; 3625 } 3626 break; 3627 } 3628 3629 case ISD::SIGN_EXTEND: 3630 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3631 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3632 case ISD::SIGN_EXTEND_INREG: 3633 // Max of the input and what this extends. 3634 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3635 Tmp = VTBits-Tmp+1; 3636 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3637 return std::max(Tmp, Tmp2); 3638 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3639 SDValue Src = Op.getOperand(0); 3640 EVT SrcVT = Src.getValueType(); 3641 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3642 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3643 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3644 } 3645 case ISD::SRA: 3646 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3647 // SRA X, C -> adds C sign bits. 3648 if (const APInt *ShAmt = 3649 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3650 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3651 return Tmp; 3652 case ISD::SHL: 3653 if (const APInt *ShAmt = 3654 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3655 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3656 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3657 if (ShAmt->ult(Tmp)) 3658 return Tmp - ShAmt->getZExtValue(); 3659 } 3660 break; 3661 case ISD::AND: 3662 case ISD::OR: 3663 case ISD::XOR: // NOT is handled here. 3664 // Logical binary ops preserve the number of sign bits at the worst. 3665 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3666 if (Tmp != 1) { 3667 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3668 FirstAnswer = std::min(Tmp, Tmp2); 3669 // We computed what we know about the sign bits as our first 3670 // answer. Now proceed to the generic code that uses 3671 // computeKnownBits, and pick whichever answer is better. 3672 } 3673 break; 3674 3675 case ISD::SELECT: 3676 case ISD::VSELECT: 3677 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3678 if (Tmp == 1) return 1; // Early out. 3679 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3680 return std::min(Tmp, Tmp2); 3681 case ISD::SELECT_CC: 3682 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3683 if (Tmp == 1) return 1; // Early out. 3684 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3685 return std::min(Tmp, Tmp2); 3686 3687 case ISD::SMIN: 3688 case ISD::SMAX: { 3689 // If we have a clamp pattern, we know that the number of sign bits will be 3690 // the minimum of the clamp min/max range. 3691 bool IsMax = (Opcode == ISD::SMAX); 3692 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3693 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3694 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3695 CstHigh = 3696 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3697 if (CstLow && CstHigh) { 3698 if (!IsMax) 3699 std::swap(CstLow, CstHigh); 3700 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3701 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3702 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3703 return std::min(Tmp, Tmp2); 3704 } 3705 } 3706 3707 // Fallback - just get the minimum number of sign bits of the operands. 3708 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3709 if (Tmp == 1) 3710 return 1; // Early out. 3711 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3712 return std::min(Tmp, Tmp2); 3713 } 3714 case ISD::UMIN: 3715 case ISD::UMAX: 3716 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3717 if (Tmp == 1) 3718 return 1; // Early out. 3719 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3720 return std::min(Tmp, Tmp2); 3721 case ISD::SADDO: 3722 case ISD::UADDO: 3723 case ISD::SSUBO: 3724 case ISD::USUBO: 3725 case ISD::SMULO: 3726 case ISD::UMULO: 3727 if (Op.getResNo() != 1) 3728 break; 3729 // The boolean result conforms to getBooleanContents. Fall through. 3730 // If setcc returns 0/-1, all bits are sign bits. 3731 // We know that we have an integer-based boolean since these operations 3732 // are only available for integer. 3733 if (TLI->getBooleanContents(VT.isVector(), false) == 3734 TargetLowering::ZeroOrNegativeOneBooleanContent) 3735 return VTBits; 3736 break; 3737 case ISD::SETCC: 3738 case ISD::STRICT_FSETCC: 3739 case ISD::STRICT_FSETCCS: { 3740 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3741 // If setcc returns 0/-1, all bits are sign bits. 3742 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3743 TargetLowering::ZeroOrNegativeOneBooleanContent) 3744 return VTBits; 3745 break; 3746 } 3747 case ISD::ROTL: 3748 case ISD::ROTR: 3749 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3750 3751 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3752 if (Tmp == VTBits) 3753 return VTBits; 3754 3755 if (ConstantSDNode *C = 3756 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3757 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3758 3759 // Handle rotate right by N like a rotate left by 32-N. 3760 if (Opcode == ISD::ROTR) 3761 RotAmt = (VTBits - RotAmt) % VTBits; 3762 3763 // If we aren't rotating out all of the known-in sign bits, return the 3764 // number that are left. This handles rotl(sext(x), 1) for example. 3765 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3766 } 3767 break; 3768 case ISD::ADD: 3769 case ISD::ADDC: 3770 // Add can have at most one carry bit. Thus we know that the output 3771 // is, at worst, one more bit than the inputs. 3772 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3773 if (Tmp == 1) return 1; // Early out. 3774 3775 // Special case decrementing a value (ADD X, -1): 3776 if (ConstantSDNode *CRHS = 3777 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3778 if (CRHS->isAllOnesValue()) { 3779 KnownBits Known = 3780 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3781 3782 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3783 // sign bits set. 3784 if ((Known.Zero | 1).isAllOnesValue()) 3785 return VTBits; 3786 3787 // If we are subtracting one from a positive number, there is no carry 3788 // out of the result. 3789 if (Known.isNonNegative()) 3790 return Tmp; 3791 } 3792 3793 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3794 if (Tmp2 == 1) return 1; // Early out. 3795 return std::min(Tmp, Tmp2) - 1; 3796 case ISD::SUB: 3797 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3798 if (Tmp2 == 1) return 1; // Early out. 3799 3800 // Handle NEG. 3801 if (ConstantSDNode *CLHS = 3802 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3803 if (CLHS->isNullValue()) { 3804 KnownBits Known = 3805 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3806 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3807 // sign bits set. 3808 if ((Known.Zero | 1).isAllOnesValue()) 3809 return VTBits; 3810 3811 // If the input is known to be positive (the sign bit is known clear), 3812 // the output of the NEG has the same number of sign bits as the input. 3813 if (Known.isNonNegative()) 3814 return Tmp2; 3815 3816 // Otherwise, we treat this like a SUB. 3817 } 3818 3819 // Sub can have at most one carry bit. Thus we know that the output 3820 // is, at worst, one more bit than the inputs. 3821 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3822 if (Tmp == 1) return 1; // Early out. 3823 return std::min(Tmp, Tmp2) - 1; 3824 case ISD::MUL: { 3825 // The output of the Mul can be at most twice the valid bits in the inputs. 3826 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3827 if (SignBitsOp0 == 1) 3828 break; 3829 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3830 if (SignBitsOp1 == 1) 3831 break; 3832 unsigned OutValidBits = 3833 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3834 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3835 } 3836 case ISD::TRUNCATE: { 3837 // Check if the sign bits of source go down as far as the truncated value. 3838 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3839 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3840 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3841 return NumSrcSignBits - (NumSrcBits - VTBits); 3842 break; 3843 } 3844 case ISD::EXTRACT_ELEMENT: { 3845 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3846 const int BitWidth = Op.getValueSizeInBits(); 3847 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3848 3849 // Get reverse index (starting from 1), Op1 value indexes elements from 3850 // little end. Sign starts at big end. 3851 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3852 3853 // If the sign portion ends in our element the subtraction gives correct 3854 // result. Otherwise it gives either negative or > bitwidth result 3855 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3856 } 3857 case ISD::INSERT_VECTOR_ELT: { 3858 // If we know the element index, split the demand between the 3859 // source vector and the inserted element, otherwise assume we need 3860 // the original demanded vector elements and the value. 3861 SDValue InVec = Op.getOperand(0); 3862 SDValue InVal = Op.getOperand(1); 3863 SDValue EltNo = Op.getOperand(2); 3864 bool DemandedVal = true; 3865 APInt DemandedVecElts = DemandedElts; 3866 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3867 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3868 unsigned EltIdx = CEltNo->getZExtValue(); 3869 DemandedVal = !!DemandedElts[EltIdx]; 3870 DemandedVecElts.clearBit(EltIdx); 3871 } 3872 Tmp = std::numeric_limits<unsigned>::max(); 3873 if (DemandedVal) { 3874 // TODO - handle implicit truncation of inserted elements. 3875 if (InVal.getScalarValueSizeInBits() != VTBits) 3876 break; 3877 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3878 Tmp = std::min(Tmp, Tmp2); 3879 } 3880 if (!!DemandedVecElts) { 3881 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3882 Tmp = std::min(Tmp, Tmp2); 3883 } 3884 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3885 return Tmp; 3886 } 3887 case ISD::EXTRACT_VECTOR_ELT: { 3888 SDValue InVec = Op.getOperand(0); 3889 SDValue EltNo = Op.getOperand(1); 3890 EVT VecVT = InVec.getValueType(); 3891 const unsigned BitWidth = Op.getValueSizeInBits(); 3892 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3893 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3894 3895 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3896 // anything about sign bits. But if the sizes match we can derive knowledge 3897 // about sign bits from the vector operand. 3898 if (BitWidth != EltBitWidth) 3899 break; 3900 3901 // If we know the element index, just demand that vector element, else for 3902 // an unknown element index, ignore DemandedElts and demand them all. 3903 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3904 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3905 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3906 DemandedSrcElts = 3907 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3908 3909 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3910 } 3911 case ISD::EXTRACT_SUBVECTOR: { 3912 // Offset the demanded elts by the subvector index. 3913 SDValue Src = Op.getOperand(0); 3914 // Bail until we can represent demanded elements for scalable vectors. 3915 if (Src.getValueType().isScalableVector()) 3916 break; 3917 uint64_t Idx = Op.getConstantOperandVal(1); 3918 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3919 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3920 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3921 } 3922 case ISD::CONCAT_VECTORS: { 3923 // Determine the minimum number of sign bits across all demanded 3924 // elts of the input vectors. Early out if the result is already 1. 3925 Tmp = std::numeric_limits<unsigned>::max(); 3926 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3927 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3928 unsigned NumSubVectors = Op.getNumOperands(); 3929 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3930 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3931 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3932 if (!DemandedSub) 3933 continue; 3934 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3935 Tmp = std::min(Tmp, Tmp2); 3936 } 3937 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3938 return Tmp; 3939 } 3940 case ISD::INSERT_SUBVECTOR: { 3941 // Demand any elements from the subvector and the remainder from the src its 3942 // inserted into. 3943 SDValue Src = Op.getOperand(0); 3944 SDValue Sub = Op.getOperand(1); 3945 uint64_t Idx = Op.getConstantOperandVal(2); 3946 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3947 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3948 APInt DemandedSrcElts = DemandedElts; 3949 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3950 3951 Tmp = std::numeric_limits<unsigned>::max(); 3952 if (!!DemandedSubElts) { 3953 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3954 if (Tmp == 1) 3955 return 1; // early-out 3956 } 3957 if (!!DemandedSrcElts) { 3958 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3959 Tmp = std::min(Tmp, Tmp2); 3960 } 3961 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3962 return Tmp; 3963 } 3964 } 3965 3966 // If we are looking at the loaded value of the SDNode. 3967 if (Op.getResNo() == 0) { 3968 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3969 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3970 unsigned ExtType = LD->getExtensionType(); 3971 switch (ExtType) { 3972 default: break; 3973 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3974 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3975 return VTBits - Tmp + 1; 3976 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3977 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3978 return VTBits - Tmp; 3979 case ISD::NON_EXTLOAD: 3980 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3981 // We only need to handle vectors - computeKnownBits should handle 3982 // scalar cases. 3983 Type *CstTy = Cst->getType(); 3984 if (CstTy->isVectorTy() && 3985 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3986 Tmp = VTBits; 3987 for (unsigned i = 0; i != NumElts; ++i) { 3988 if (!DemandedElts[i]) 3989 continue; 3990 if (Constant *Elt = Cst->getAggregateElement(i)) { 3991 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3992 const APInt &Value = CInt->getValue(); 3993 Tmp = std::min(Tmp, Value.getNumSignBits()); 3994 continue; 3995 } 3996 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3997 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3998 Tmp = std::min(Tmp, Value.getNumSignBits()); 3999 continue; 4000 } 4001 } 4002 // Unknown type. Conservatively assume no bits match sign bit. 4003 return 1; 4004 } 4005 return Tmp; 4006 } 4007 } 4008 break; 4009 } 4010 } 4011 } 4012 4013 // Allow the target to implement this method for its nodes. 4014 if (Opcode >= ISD::BUILTIN_OP_END || 4015 Opcode == ISD::INTRINSIC_WO_CHAIN || 4016 Opcode == ISD::INTRINSIC_W_CHAIN || 4017 Opcode == ISD::INTRINSIC_VOID) { 4018 unsigned NumBits = 4019 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4020 if (NumBits > 1) 4021 FirstAnswer = std::max(FirstAnswer, NumBits); 4022 } 4023 4024 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4025 // use this information. 4026 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4027 4028 APInt Mask; 4029 if (Known.isNonNegative()) { // sign bit is 0 4030 Mask = Known.Zero; 4031 } else if (Known.isNegative()) { // sign bit is 1; 4032 Mask = Known.One; 4033 } else { 4034 // Nothing known. 4035 return FirstAnswer; 4036 } 4037 4038 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4039 // the number of identical bits in the top of the input value. 4040 Mask <<= Mask.getBitWidth()-VTBits; 4041 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4042 } 4043 4044 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4045 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4046 !isa<ConstantSDNode>(Op.getOperand(1))) 4047 return false; 4048 4049 if (Op.getOpcode() == ISD::OR && 4050 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4051 return false; 4052 4053 return true; 4054 } 4055 4056 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4057 // If we're told that NaNs won't happen, assume they won't. 4058 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4059 return true; 4060 4061 if (Depth >= MaxRecursionDepth) 4062 return false; // Limit search depth. 4063 4064 // TODO: Handle vectors. 4065 // If the value is a constant, we can obviously see if it is a NaN or not. 4066 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4067 return !C->getValueAPF().isNaN() || 4068 (SNaN && !C->getValueAPF().isSignaling()); 4069 } 4070 4071 unsigned Opcode = Op.getOpcode(); 4072 switch (Opcode) { 4073 case ISD::FADD: 4074 case ISD::FSUB: 4075 case ISD::FMUL: 4076 case ISD::FDIV: 4077 case ISD::FREM: 4078 case ISD::FSIN: 4079 case ISD::FCOS: { 4080 if (SNaN) 4081 return true; 4082 // TODO: Need isKnownNeverInfinity 4083 return false; 4084 } 4085 case ISD::FCANONICALIZE: 4086 case ISD::FEXP: 4087 case ISD::FEXP2: 4088 case ISD::FTRUNC: 4089 case ISD::FFLOOR: 4090 case ISD::FCEIL: 4091 case ISD::FROUND: 4092 case ISD::FROUNDEVEN: 4093 case ISD::FRINT: 4094 case ISD::FNEARBYINT: { 4095 if (SNaN) 4096 return true; 4097 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4098 } 4099 case ISD::FABS: 4100 case ISD::FNEG: 4101 case ISD::FCOPYSIGN: { 4102 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4103 } 4104 case ISD::SELECT: 4105 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4106 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4107 case ISD::FP_EXTEND: 4108 case ISD::FP_ROUND: { 4109 if (SNaN) 4110 return true; 4111 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4112 } 4113 case ISD::SINT_TO_FP: 4114 case ISD::UINT_TO_FP: 4115 return true; 4116 case ISD::FMA: 4117 case ISD::FMAD: { 4118 if (SNaN) 4119 return true; 4120 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4121 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4122 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4123 } 4124 case ISD::FSQRT: // Need is known positive 4125 case ISD::FLOG: 4126 case ISD::FLOG2: 4127 case ISD::FLOG10: 4128 case ISD::FPOWI: 4129 case ISD::FPOW: { 4130 if (SNaN) 4131 return true; 4132 // TODO: Refine on operand 4133 return false; 4134 } 4135 case ISD::FMINNUM: 4136 case ISD::FMAXNUM: { 4137 // Only one needs to be known not-nan, since it will be returned if the 4138 // other ends up being one. 4139 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4140 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4141 } 4142 case ISD::FMINNUM_IEEE: 4143 case ISD::FMAXNUM_IEEE: { 4144 if (SNaN) 4145 return true; 4146 // This can return a NaN if either operand is an sNaN, or if both operands 4147 // are NaN. 4148 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4149 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4150 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4151 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4152 } 4153 case ISD::FMINIMUM: 4154 case ISD::FMAXIMUM: { 4155 // TODO: Does this quiet or return the origina NaN as-is? 4156 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4157 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4158 } 4159 case ISD::EXTRACT_VECTOR_ELT: { 4160 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4161 } 4162 default: 4163 if (Opcode >= ISD::BUILTIN_OP_END || 4164 Opcode == ISD::INTRINSIC_WO_CHAIN || 4165 Opcode == ISD::INTRINSIC_W_CHAIN || 4166 Opcode == ISD::INTRINSIC_VOID) { 4167 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4168 } 4169 4170 return false; 4171 } 4172 } 4173 4174 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4175 assert(Op.getValueType().isFloatingPoint() && 4176 "Floating point type expected"); 4177 4178 // If the value is a constant, we can obviously see if it is a zero or not. 4179 // TODO: Add BuildVector support. 4180 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4181 return !C->isZero(); 4182 return false; 4183 } 4184 4185 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4186 assert(!Op.getValueType().isFloatingPoint() && 4187 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4188 4189 // If the value is a constant, we can obviously see if it is a zero or not. 4190 if (ISD::matchUnaryPredicate( 4191 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4192 return true; 4193 4194 // TODO: Recognize more cases here. 4195 switch (Op.getOpcode()) { 4196 default: break; 4197 case ISD::OR: 4198 if (isKnownNeverZero(Op.getOperand(1)) || 4199 isKnownNeverZero(Op.getOperand(0))) 4200 return true; 4201 break; 4202 } 4203 4204 return false; 4205 } 4206 4207 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4208 // Check the obvious case. 4209 if (A == B) return true; 4210 4211 // For for negative and positive zero. 4212 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4213 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4214 if (CA->isZero() && CB->isZero()) return true; 4215 4216 // Otherwise they may not be equal. 4217 return false; 4218 } 4219 4220 // FIXME: unify with llvm::haveNoCommonBitsSet. 4221 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4222 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4223 assert(A.getValueType() == B.getValueType() && 4224 "Values must have the same type"); 4225 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4226 } 4227 4228 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4229 ArrayRef<SDValue> Ops, 4230 SelectionDAG &DAG) { 4231 int NumOps = Ops.size(); 4232 assert(NumOps != 0 && "Can't build an empty vector!"); 4233 assert(!VT.isScalableVector() && 4234 "BUILD_VECTOR cannot be used with scalable types"); 4235 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4236 "Incorrect element count in BUILD_VECTOR!"); 4237 4238 // BUILD_VECTOR of UNDEFs is UNDEF. 4239 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4240 return DAG.getUNDEF(VT); 4241 4242 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4243 SDValue IdentitySrc; 4244 bool IsIdentity = true; 4245 for (int i = 0; i != NumOps; ++i) { 4246 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4247 Ops[i].getOperand(0).getValueType() != VT || 4248 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4249 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4250 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4251 IsIdentity = false; 4252 break; 4253 } 4254 IdentitySrc = Ops[i].getOperand(0); 4255 } 4256 if (IsIdentity) 4257 return IdentitySrc; 4258 4259 return SDValue(); 4260 } 4261 4262 /// Try to simplify vector concatenation to an input value, undef, or build 4263 /// vector. 4264 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4265 ArrayRef<SDValue> Ops, 4266 SelectionDAG &DAG) { 4267 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4268 assert(llvm::all_of(Ops, 4269 [Ops](SDValue Op) { 4270 return Ops[0].getValueType() == Op.getValueType(); 4271 }) && 4272 "Concatenation of vectors with inconsistent value types!"); 4273 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4274 VT.getVectorElementCount() && 4275 "Incorrect element count in vector concatenation!"); 4276 4277 if (Ops.size() == 1) 4278 return Ops[0]; 4279 4280 // Concat of UNDEFs is UNDEF. 4281 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4282 return DAG.getUNDEF(VT); 4283 4284 // Scan the operands and look for extract operations from a single source 4285 // that correspond to insertion at the same location via this concatenation: 4286 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4287 SDValue IdentitySrc; 4288 bool IsIdentity = true; 4289 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4290 SDValue Op = Ops[i]; 4291 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4292 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4293 Op.getOperand(0).getValueType() != VT || 4294 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4295 Op.getConstantOperandVal(1) != IdentityIndex) { 4296 IsIdentity = false; 4297 break; 4298 } 4299 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4300 "Unexpected identity source vector for concat of extracts"); 4301 IdentitySrc = Op.getOperand(0); 4302 } 4303 if (IsIdentity) { 4304 assert(IdentitySrc && "Failed to set source vector of extracts"); 4305 return IdentitySrc; 4306 } 4307 4308 // The code below this point is only designed to work for fixed width 4309 // vectors, so we bail out for now. 4310 if (VT.isScalableVector()) 4311 return SDValue(); 4312 4313 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4314 // simplified to one big BUILD_VECTOR. 4315 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4316 EVT SVT = VT.getScalarType(); 4317 SmallVector<SDValue, 16> Elts; 4318 for (SDValue Op : Ops) { 4319 EVT OpVT = Op.getValueType(); 4320 if (Op.isUndef()) 4321 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4322 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4323 Elts.append(Op->op_begin(), Op->op_end()); 4324 else 4325 return SDValue(); 4326 } 4327 4328 // BUILD_VECTOR requires all inputs to be of the same type, find the 4329 // maximum type and extend them all. 4330 for (SDValue Op : Elts) 4331 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4332 4333 if (SVT.bitsGT(VT.getScalarType())) { 4334 for (SDValue &Op : Elts) { 4335 if (Op.isUndef()) 4336 Op = DAG.getUNDEF(SVT); 4337 else 4338 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4339 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4340 : DAG.getSExtOrTrunc(Op, DL, SVT); 4341 } 4342 } 4343 4344 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4345 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4346 return V; 4347 } 4348 4349 /// Gets or creates the specified node. 4350 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4351 FoldingSetNodeID ID; 4352 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4353 void *IP = nullptr; 4354 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4355 return SDValue(E, 0); 4356 4357 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4358 getVTList(VT)); 4359 CSEMap.InsertNode(N, IP); 4360 4361 InsertNode(N); 4362 SDValue V = SDValue(N, 0); 4363 NewSDValueDbgMsg(V, "Creating new node: ", this); 4364 return V; 4365 } 4366 4367 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4368 SDValue Operand) { 4369 SDNodeFlags Flags; 4370 if (Inserter) 4371 Flags = Inserter->getFlags(); 4372 return getNode(Opcode, DL, VT, Operand, Flags); 4373 } 4374 4375 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4376 SDValue Operand, const SDNodeFlags Flags) { 4377 // Constant fold unary operations with an integer constant operand. Even 4378 // opaque constant will be folded, because the folding of unary operations 4379 // doesn't create new constants with different values. Nevertheless, the 4380 // opaque flag is preserved during folding to prevent future folding with 4381 // other constants. 4382 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4383 const APInt &Val = C->getAPIntValue(); 4384 switch (Opcode) { 4385 default: break; 4386 case ISD::SIGN_EXTEND: 4387 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4388 C->isTargetOpcode(), C->isOpaque()); 4389 case ISD::TRUNCATE: 4390 if (C->isOpaque()) 4391 break; 4392 LLVM_FALLTHROUGH; 4393 case ISD::ANY_EXTEND: 4394 case ISD::ZERO_EXTEND: 4395 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4396 C->isTargetOpcode(), C->isOpaque()); 4397 case ISD::UINT_TO_FP: 4398 case ISD::SINT_TO_FP: { 4399 APFloat apf(EVTToAPFloatSemantics(VT), 4400 APInt::getNullValue(VT.getSizeInBits())); 4401 (void)apf.convertFromAPInt(Val, 4402 Opcode==ISD::SINT_TO_FP, 4403 APFloat::rmNearestTiesToEven); 4404 return getConstantFP(apf, DL, VT); 4405 } 4406 case ISD::BITCAST: 4407 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4408 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4409 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4410 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4411 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4412 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4413 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4414 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4415 break; 4416 case ISD::ABS: 4417 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4418 C->isOpaque()); 4419 case ISD::BITREVERSE: 4420 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4421 C->isOpaque()); 4422 case ISD::BSWAP: 4423 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4424 C->isOpaque()); 4425 case ISD::CTPOP: 4426 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4427 C->isOpaque()); 4428 case ISD::CTLZ: 4429 case ISD::CTLZ_ZERO_UNDEF: 4430 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4431 C->isOpaque()); 4432 case ISD::CTTZ: 4433 case ISD::CTTZ_ZERO_UNDEF: 4434 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4435 C->isOpaque()); 4436 case ISD::FP16_TO_FP: { 4437 bool Ignored; 4438 APFloat FPV(APFloat::IEEEhalf(), 4439 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4440 4441 // This can return overflow, underflow, or inexact; we don't care. 4442 // FIXME need to be more flexible about rounding mode. 4443 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4444 APFloat::rmNearestTiesToEven, &Ignored); 4445 return getConstantFP(FPV, DL, VT); 4446 } 4447 } 4448 } 4449 4450 // Constant fold unary operations with a floating point constant operand. 4451 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4452 APFloat V = C->getValueAPF(); // make copy 4453 switch (Opcode) { 4454 case ISD::FNEG: 4455 V.changeSign(); 4456 return getConstantFP(V, DL, VT); 4457 case ISD::FABS: 4458 V.clearSign(); 4459 return getConstantFP(V, DL, VT); 4460 case ISD::FCEIL: { 4461 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4462 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4463 return getConstantFP(V, DL, VT); 4464 break; 4465 } 4466 case ISD::FTRUNC: { 4467 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4468 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4469 return getConstantFP(V, DL, VT); 4470 break; 4471 } 4472 case ISD::FFLOOR: { 4473 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4474 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4475 return getConstantFP(V, DL, VT); 4476 break; 4477 } 4478 case ISD::FP_EXTEND: { 4479 bool ignored; 4480 // This can return overflow, underflow, or inexact; we don't care. 4481 // FIXME need to be more flexible about rounding mode. 4482 (void)V.convert(EVTToAPFloatSemantics(VT), 4483 APFloat::rmNearestTiesToEven, &ignored); 4484 return getConstantFP(V, DL, VT); 4485 } 4486 case ISD::FP_TO_SINT: 4487 case ISD::FP_TO_UINT: { 4488 bool ignored; 4489 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4490 // FIXME need to be more flexible about rounding mode. 4491 APFloat::opStatus s = 4492 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4493 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4494 break; 4495 return getConstant(IntVal, DL, VT); 4496 } 4497 case ISD::BITCAST: 4498 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4499 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4500 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4501 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4502 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4503 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4504 break; 4505 case ISD::FP_TO_FP16: { 4506 bool Ignored; 4507 // This can return overflow, underflow, or inexact; we don't care. 4508 // FIXME need to be more flexible about rounding mode. 4509 (void)V.convert(APFloat::IEEEhalf(), 4510 APFloat::rmNearestTiesToEven, &Ignored); 4511 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4512 } 4513 } 4514 } 4515 4516 // Constant fold unary operations with a vector integer or float operand. 4517 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4518 if (BV->isConstant()) { 4519 switch (Opcode) { 4520 default: 4521 // FIXME: Entirely reasonable to perform folding of other unary 4522 // operations here as the need arises. 4523 break; 4524 case ISD::FNEG: 4525 case ISD::FABS: 4526 case ISD::FCEIL: 4527 case ISD::FTRUNC: 4528 case ISD::FFLOOR: 4529 case ISD::FP_EXTEND: 4530 case ISD::FP_TO_SINT: 4531 case ISD::FP_TO_UINT: 4532 case ISD::TRUNCATE: 4533 case ISD::ANY_EXTEND: 4534 case ISD::ZERO_EXTEND: 4535 case ISD::SIGN_EXTEND: 4536 case ISD::UINT_TO_FP: 4537 case ISD::SINT_TO_FP: 4538 case ISD::ABS: 4539 case ISD::BITREVERSE: 4540 case ISD::BSWAP: 4541 case ISD::CTLZ: 4542 case ISD::CTLZ_ZERO_UNDEF: 4543 case ISD::CTTZ: 4544 case ISD::CTTZ_ZERO_UNDEF: 4545 case ISD::CTPOP: { 4546 SDValue Ops = { Operand }; 4547 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4548 return Fold; 4549 } 4550 } 4551 } 4552 } 4553 4554 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4555 switch (Opcode) { 4556 case ISD::FREEZE: 4557 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4558 break; 4559 case ISD::TokenFactor: 4560 case ISD::MERGE_VALUES: 4561 case ISD::CONCAT_VECTORS: 4562 return Operand; // Factor, merge or concat of one node? No need. 4563 case ISD::BUILD_VECTOR: { 4564 // Attempt to simplify BUILD_VECTOR. 4565 SDValue Ops[] = {Operand}; 4566 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4567 return V; 4568 break; 4569 } 4570 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4571 case ISD::FP_EXTEND: 4572 assert(VT.isFloatingPoint() && 4573 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4574 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4575 assert((!VT.isVector() || 4576 VT.getVectorElementCount() == 4577 Operand.getValueType().getVectorElementCount()) && 4578 "Vector element count mismatch!"); 4579 assert(Operand.getValueType().bitsLT(VT) && 4580 "Invalid fpext node, dst < src!"); 4581 if (Operand.isUndef()) 4582 return getUNDEF(VT); 4583 break; 4584 case ISD::FP_TO_SINT: 4585 case ISD::FP_TO_UINT: 4586 if (Operand.isUndef()) 4587 return getUNDEF(VT); 4588 break; 4589 case ISD::SINT_TO_FP: 4590 case ISD::UINT_TO_FP: 4591 // [us]itofp(undef) = 0, because the result value is bounded. 4592 if (Operand.isUndef()) 4593 return getConstantFP(0.0, DL, VT); 4594 break; 4595 case ISD::SIGN_EXTEND: 4596 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4597 "Invalid SIGN_EXTEND!"); 4598 assert(VT.isVector() == Operand.getValueType().isVector() && 4599 "SIGN_EXTEND result type type should be vector iff the operand " 4600 "type is vector!"); 4601 if (Operand.getValueType() == VT) return Operand; // noop extension 4602 assert((!VT.isVector() || 4603 VT.getVectorElementCount() == 4604 Operand.getValueType().getVectorElementCount()) && 4605 "Vector element count mismatch!"); 4606 assert(Operand.getValueType().bitsLT(VT) && 4607 "Invalid sext node, dst < src!"); 4608 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4609 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4610 else if (OpOpcode == ISD::UNDEF) 4611 // sext(undef) = 0, because the top bits will all be the same. 4612 return getConstant(0, DL, VT); 4613 break; 4614 case ISD::ZERO_EXTEND: 4615 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4616 "Invalid ZERO_EXTEND!"); 4617 assert(VT.isVector() == Operand.getValueType().isVector() && 4618 "ZERO_EXTEND result type type should be vector iff the operand " 4619 "type is vector!"); 4620 if (Operand.getValueType() == VT) return Operand; // noop extension 4621 assert((!VT.isVector() || 4622 VT.getVectorElementCount() == 4623 Operand.getValueType().getVectorElementCount()) && 4624 "Vector element count mismatch!"); 4625 assert(Operand.getValueType().bitsLT(VT) && 4626 "Invalid zext node, dst < src!"); 4627 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4628 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4629 else if (OpOpcode == ISD::UNDEF) 4630 // zext(undef) = 0, because the top bits will be zero. 4631 return getConstant(0, DL, VT); 4632 break; 4633 case ISD::ANY_EXTEND: 4634 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4635 "Invalid ANY_EXTEND!"); 4636 assert(VT.isVector() == Operand.getValueType().isVector() && 4637 "ANY_EXTEND result type type should be vector iff the operand " 4638 "type is vector!"); 4639 if (Operand.getValueType() == VT) return Operand; // noop extension 4640 assert((!VT.isVector() || 4641 VT.getVectorElementCount() == 4642 Operand.getValueType().getVectorElementCount()) && 4643 "Vector element count mismatch!"); 4644 assert(Operand.getValueType().bitsLT(VT) && 4645 "Invalid anyext node, dst < src!"); 4646 4647 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4648 OpOpcode == ISD::ANY_EXTEND) 4649 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4650 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4651 else if (OpOpcode == ISD::UNDEF) 4652 return getUNDEF(VT); 4653 4654 // (ext (trunc x)) -> x 4655 if (OpOpcode == ISD::TRUNCATE) { 4656 SDValue OpOp = Operand.getOperand(0); 4657 if (OpOp.getValueType() == VT) { 4658 transferDbgValues(Operand, OpOp); 4659 return OpOp; 4660 } 4661 } 4662 break; 4663 case ISD::TRUNCATE: 4664 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4665 "Invalid TRUNCATE!"); 4666 assert(VT.isVector() == Operand.getValueType().isVector() && 4667 "TRUNCATE result type type should be vector iff the operand " 4668 "type is vector!"); 4669 if (Operand.getValueType() == VT) return Operand; // noop truncate 4670 assert((!VT.isVector() || 4671 VT.getVectorElementCount() == 4672 Operand.getValueType().getVectorElementCount()) && 4673 "Vector element count mismatch!"); 4674 assert(Operand.getValueType().bitsGT(VT) && 4675 "Invalid truncate node, src < dst!"); 4676 if (OpOpcode == ISD::TRUNCATE) 4677 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4678 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4679 OpOpcode == ISD::ANY_EXTEND) { 4680 // If the source is smaller than the dest, we still need an extend. 4681 if (Operand.getOperand(0).getValueType().getScalarType() 4682 .bitsLT(VT.getScalarType())) 4683 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4684 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4685 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4686 return Operand.getOperand(0); 4687 } 4688 if (OpOpcode == ISD::UNDEF) 4689 return getUNDEF(VT); 4690 break; 4691 case ISD::ANY_EXTEND_VECTOR_INREG: 4692 case ISD::ZERO_EXTEND_VECTOR_INREG: 4693 case ISD::SIGN_EXTEND_VECTOR_INREG: 4694 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4695 assert(Operand.getValueType().bitsLE(VT) && 4696 "The input must be the same size or smaller than the result."); 4697 assert(VT.getVectorNumElements() < 4698 Operand.getValueType().getVectorNumElements() && 4699 "The destination vector type must have fewer lanes than the input."); 4700 break; 4701 case ISD::ABS: 4702 assert(VT.isInteger() && VT == Operand.getValueType() && 4703 "Invalid ABS!"); 4704 if (OpOpcode == ISD::UNDEF) 4705 return getUNDEF(VT); 4706 break; 4707 case ISD::BSWAP: 4708 assert(VT.isInteger() && VT == Operand.getValueType() && 4709 "Invalid BSWAP!"); 4710 assert((VT.getScalarSizeInBits() % 16 == 0) && 4711 "BSWAP types must be a multiple of 16 bits!"); 4712 if (OpOpcode == ISD::UNDEF) 4713 return getUNDEF(VT); 4714 break; 4715 case ISD::BITREVERSE: 4716 assert(VT.isInteger() && VT == Operand.getValueType() && 4717 "Invalid BITREVERSE!"); 4718 if (OpOpcode == ISD::UNDEF) 4719 return getUNDEF(VT); 4720 break; 4721 case ISD::BITCAST: 4722 // Basic sanity checking. 4723 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4724 "Cannot BITCAST between types of different sizes!"); 4725 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4726 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4727 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4728 if (OpOpcode == ISD::UNDEF) 4729 return getUNDEF(VT); 4730 break; 4731 case ISD::SCALAR_TO_VECTOR: 4732 assert(VT.isVector() && !Operand.getValueType().isVector() && 4733 (VT.getVectorElementType() == Operand.getValueType() || 4734 (VT.getVectorElementType().isInteger() && 4735 Operand.getValueType().isInteger() && 4736 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4737 "Illegal SCALAR_TO_VECTOR node!"); 4738 if (OpOpcode == ISD::UNDEF) 4739 return getUNDEF(VT); 4740 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4741 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4742 isa<ConstantSDNode>(Operand.getOperand(1)) && 4743 Operand.getConstantOperandVal(1) == 0 && 4744 Operand.getOperand(0).getValueType() == VT) 4745 return Operand.getOperand(0); 4746 break; 4747 case ISD::FNEG: 4748 // Negation of an unknown bag of bits is still completely undefined. 4749 if (OpOpcode == ISD::UNDEF) 4750 return getUNDEF(VT); 4751 4752 if (OpOpcode == ISD::FNEG) // --X -> X 4753 return Operand.getOperand(0); 4754 break; 4755 case ISD::FABS: 4756 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4757 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4758 break; 4759 case ISD::VSCALE: 4760 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4761 break; 4762 case ISD::VECREDUCE_SMIN: 4763 case ISD::VECREDUCE_UMAX: 4764 if (Operand.getValueType().getScalarType() == MVT::i1) 4765 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4766 break; 4767 case ISD::VECREDUCE_SMAX: 4768 case ISD::VECREDUCE_UMIN: 4769 if (Operand.getValueType().getScalarType() == MVT::i1) 4770 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4771 break; 4772 } 4773 4774 SDNode *N; 4775 SDVTList VTs = getVTList(VT); 4776 SDValue Ops[] = {Operand}; 4777 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4778 FoldingSetNodeID ID; 4779 AddNodeIDNode(ID, Opcode, VTs, Ops); 4780 void *IP = nullptr; 4781 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4782 E->intersectFlagsWith(Flags); 4783 return SDValue(E, 0); 4784 } 4785 4786 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4787 N->setFlags(Flags); 4788 createOperands(N, Ops); 4789 CSEMap.InsertNode(N, IP); 4790 } else { 4791 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4792 createOperands(N, Ops); 4793 } 4794 4795 InsertNode(N); 4796 SDValue V = SDValue(N, 0); 4797 NewSDValueDbgMsg(V, "Creating new node: ", this); 4798 return V; 4799 } 4800 4801 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4802 const APInt &C2) { 4803 switch (Opcode) { 4804 case ISD::ADD: return C1 + C2; 4805 case ISD::SUB: return C1 - C2; 4806 case ISD::MUL: return C1 * C2; 4807 case ISD::AND: return C1 & C2; 4808 case ISD::OR: return C1 | C2; 4809 case ISD::XOR: return C1 ^ C2; 4810 case ISD::SHL: return C1 << C2; 4811 case ISD::SRL: return C1.lshr(C2); 4812 case ISD::SRA: return C1.ashr(C2); 4813 case ISD::ROTL: return C1.rotl(C2); 4814 case ISD::ROTR: return C1.rotr(C2); 4815 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4816 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4817 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4818 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4819 case ISD::SADDSAT: return C1.sadd_sat(C2); 4820 case ISD::UADDSAT: return C1.uadd_sat(C2); 4821 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4822 case ISD::USUBSAT: return C1.usub_sat(C2); 4823 case ISD::UDIV: 4824 if (!C2.getBoolValue()) 4825 break; 4826 return C1.udiv(C2); 4827 case ISD::UREM: 4828 if (!C2.getBoolValue()) 4829 break; 4830 return C1.urem(C2); 4831 case ISD::SDIV: 4832 if (!C2.getBoolValue()) 4833 break; 4834 return C1.sdiv(C2); 4835 case ISD::SREM: 4836 if (!C2.getBoolValue()) 4837 break; 4838 return C1.srem(C2); 4839 } 4840 return llvm::None; 4841 } 4842 4843 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4844 const GlobalAddressSDNode *GA, 4845 const SDNode *N2) { 4846 if (GA->getOpcode() != ISD::GlobalAddress) 4847 return SDValue(); 4848 if (!TLI->isOffsetFoldingLegal(GA)) 4849 return SDValue(); 4850 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4851 if (!C2) 4852 return SDValue(); 4853 int64_t Offset = C2->getSExtValue(); 4854 switch (Opcode) { 4855 case ISD::ADD: break; 4856 case ISD::SUB: Offset = -uint64_t(Offset); break; 4857 default: return SDValue(); 4858 } 4859 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4860 GA->getOffset() + uint64_t(Offset)); 4861 } 4862 4863 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4864 switch (Opcode) { 4865 case ISD::SDIV: 4866 case ISD::UDIV: 4867 case ISD::SREM: 4868 case ISD::UREM: { 4869 // If a divisor is zero/undef or any element of a divisor vector is 4870 // zero/undef, the whole op is undef. 4871 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4872 SDValue Divisor = Ops[1]; 4873 if (Divisor.isUndef() || isNullConstant(Divisor)) 4874 return true; 4875 4876 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4877 llvm::any_of(Divisor->op_values(), 4878 [](SDValue V) { return V.isUndef() || 4879 isNullConstant(V); }); 4880 // TODO: Handle signed overflow. 4881 } 4882 // TODO: Handle oversized shifts. 4883 default: 4884 return false; 4885 } 4886 } 4887 4888 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4889 EVT VT, ArrayRef<SDValue> Ops) { 4890 // If the opcode is a target-specific ISD node, there's nothing we can 4891 // do here and the operand rules may not line up with the below, so 4892 // bail early. 4893 if (Opcode >= ISD::BUILTIN_OP_END) 4894 return SDValue(); 4895 4896 // For now, the array Ops should only contain two values. 4897 // This enforcement will be removed once this function is merged with 4898 // FoldConstantVectorArithmetic 4899 if (Ops.size() != 2) 4900 return SDValue(); 4901 4902 if (isUndef(Opcode, Ops)) 4903 return getUNDEF(VT); 4904 4905 SDNode *N1 = Ops[0].getNode(); 4906 SDNode *N2 = Ops[1].getNode(); 4907 4908 // Handle the case of two scalars. 4909 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4910 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4911 if (C1->isOpaque() || C2->isOpaque()) 4912 return SDValue(); 4913 4914 Optional<APInt> FoldAttempt = 4915 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4916 if (!FoldAttempt) 4917 return SDValue(); 4918 4919 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4920 assert((!Folded || !VT.isVector()) && 4921 "Can't fold vectors ops with scalar operands"); 4922 return Folded; 4923 } 4924 } 4925 4926 // fold (add Sym, c) -> Sym+c 4927 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4928 return FoldSymbolOffset(Opcode, VT, GA, N2); 4929 if (TLI->isCommutativeBinOp(Opcode)) 4930 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4931 return FoldSymbolOffset(Opcode, VT, GA, N1); 4932 4933 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4934 // vector width, however we should be able to do constant folds involving 4935 // splat vector nodes too. 4936 if (VT.isScalableVector()) 4937 return SDValue(); 4938 4939 // For fixed width vectors, extract each constant element and fold them 4940 // individually. Either input may be an undef value. 4941 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4942 if (!BV1 && !N1->isUndef()) 4943 return SDValue(); 4944 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4945 if (!BV2 && !N2->isUndef()) 4946 return SDValue(); 4947 // If both operands are undef, that's handled the same way as scalars. 4948 if (!BV1 && !BV2) 4949 return SDValue(); 4950 4951 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4952 "Vector binop with different number of elements in operands?"); 4953 4954 EVT SVT = VT.getScalarType(); 4955 EVT LegalSVT = SVT; 4956 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4957 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4958 if (LegalSVT.bitsLT(SVT)) 4959 return SDValue(); 4960 } 4961 SmallVector<SDValue, 4> Outputs; 4962 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4963 for (unsigned I = 0; I != NumOps; ++I) { 4964 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4965 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4966 if (SVT.isInteger()) { 4967 if (V1->getValueType(0).bitsGT(SVT)) 4968 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4969 if (V2->getValueType(0).bitsGT(SVT)) 4970 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4971 } 4972 4973 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4974 return SDValue(); 4975 4976 // Fold one vector element. 4977 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4978 if (LegalSVT != SVT) 4979 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4980 4981 // Scalar folding only succeeded if the result is a constant or UNDEF. 4982 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4983 ScalarResult.getOpcode() != ISD::ConstantFP) 4984 return SDValue(); 4985 Outputs.push_back(ScalarResult); 4986 } 4987 4988 assert(VT.getVectorNumElements() == Outputs.size() && 4989 "Vector size mismatch!"); 4990 4991 // We may have a vector type but a scalar result. Create a splat. 4992 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4993 4994 // Build a big vector out of the scalar elements we generated. 4995 return getBuildVector(VT, SDLoc(), Outputs); 4996 } 4997 4998 // TODO: Merge with FoldConstantArithmetic 4999 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5000 const SDLoc &DL, EVT VT, 5001 ArrayRef<SDValue> Ops, 5002 const SDNodeFlags Flags) { 5003 // If the opcode is a target-specific ISD node, there's nothing we can 5004 // do here and the operand rules may not line up with the below, so 5005 // bail early. 5006 if (Opcode >= ISD::BUILTIN_OP_END) 5007 return SDValue(); 5008 5009 if (isUndef(Opcode, Ops)) 5010 return getUNDEF(VT); 5011 5012 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5013 if (!VT.isVector()) 5014 return SDValue(); 5015 5016 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5017 // vector width, however we should be able to do constant folds involving 5018 // splat vector nodes too. 5019 if (VT.isScalableVector()) 5020 return SDValue(); 5021 5022 // From this point onwards all vectors are assumed to be fixed width. 5023 unsigned NumElts = VT.getVectorNumElements(); 5024 5025 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5026 return !Op.getValueType().isVector() || 5027 Op.getValueType().getVectorNumElements() == NumElts; 5028 }; 5029 5030 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5031 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5032 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5033 (BV && BV->isConstant()); 5034 }; 5035 5036 // All operands must be vector types with the same number of elements as 5037 // the result type and must be either UNDEF or a build vector of constant 5038 // or UNDEF scalars. 5039 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5040 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5041 return SDValue(); 5042 5043 // If we are comparing vectors, then the result needs to be a i1 boolean 5044 // that is then sign-extended back to the legal result type. 5045 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5046 5047 // Find legal integer scalar type for constant promotion and 5048 // ensure that its scalar size is at least as large as source. 5049 EVT LegalSVT = VT.getScalarType(); 5050 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5051 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5052 if (LegalSVT.bitsLT(VT.getScalarType())) 5053 return SDValue(); 5054 } 5055 5056 // Constant fold each scalar lane separately. 5057 SmallVector<SDValue, 4> ScalarResults; 5058 for (unsigned i = 0; i != NumElts; i++) { 5059 SmallVector<SDValue, 4> ScalarOps; 5060 for (SDValue Op : Ops) { 5061 EVT InSVT = Op.getValueType().getScalarType(); 5062 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5063 if (!InBV) { 5064 // We've checked that this is UNDEF or a constant of some kind. 5065 if (Op.isUndef()) 5066 ScalarOps.push_back(getUNDEF(InSVT)); 5067 else 5068 ScalarOps.push_back(Op); 5069 continue; 5070 } 5071 5072 SDValue ScalarOp = InBV->getOperand(i); 5073 EVT ScalarVT = ScalarOp.getValueType(); 5074 5075 // Build vector (integer) scalar operands may need implicit 5076 // truncation - do this before constant folding. 5077 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5078 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5079 5080 ScalarOps.push_back(ScalarOp); 5081 } 5082 5083 // Constant fold the scalar operands. 5084 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5085 5086 // Legalize the (integer) scalar constant if necessary. 5087 if (LegalSVT != SVT) 5088 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5089 5090 // Scalar folding only succeeded if the result is a constant or UNDEF. 5091 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5092 ScalarResult.getOpcode() != ISD::ConstantFP) 5093 return SDValue(); 5094 ScalarResults.push_back(ScalarResult); 5095 } 5096 5097 SDValue V = getBuildVector(VT, DL, ScalarResults); 5098 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5099 return V; 5100 } 5101 5102 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5103 EVT VT, SDValue N1, SDValue N2) { 5104 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5105 // should. That will require dealing with a potentially non-default 5106 // rounding mode, checking the "opStatus" return value from the APFloat 5107 // math calculations, and possibly other variations. 5108 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5109 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5110 if (N1CFP && N2CFP) { 5111 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5112 switch (Opcode) { 5113 case ISD::FADD: 5114 C1.add(C2, APFloat::rmNearestTiesToEven); 5115 return getConstantFP(C1, DL, VT); 5116 case ISD::FSUB: 5117 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5118 return getConstantFP(C1, DL, VT); 5119 case ISD::FMUL: 5120 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5121 return getConstantFP(C1, DL, VT); 5122 case ISD::FDIV: 5123 C1.divide(C2, APFloat::rmNearestTiesToEven); 5124 return getConstantFP(C1, DL, VT); 5125 case ISD::FREM: 5126 C1.mod(C2); 5127 return getConstantFP(C1, DL, VT); 5128 case ISD::FCOPYSIGN: 5129 C1.copySign(C2); 5130 return getConstantFP(C1, DL, VT); 5131 default: break; 5132 } 5133 } 5134 if (N1CFP && Opcode == ISD::FP_ROUND) { 5135 APFloat C1 = N1CFP->getValueAPF(); // make copy 5136 bool Unused; 5137 // This can return overflow, underflow, or inexact; we don't care. 5138 // FIXME need to be more flexible about rounding mode. 5139 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5140 &Unused); 5141 return getConstantFP(C1, DL, VT); 5142 } 5143 5144 switch (Opcode) { 5145 case ISD::FSUB: 5146 // -0.0 - undef --> undef (consistent with "fneg undef") 5147 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5148 return getUNDEF(VT); 5149 LLVM_FALLTHROUGH; 5150 5151 case ISD::FADD: 5152 case ISD::FMUL: 5153 case ISD::FDIV: 5154 case ISD::FREM: 5155 // If both operands are undef, the result is undef. If 1 operand is undef, 5156 // the result is NaN. This should match the behavior of the IR optimizer. 5157 if (N1.isUndef() && N2.isUndef()) 5158 return getUNDEF(VT); 5159 if (N1.isUndef() || N2.isUndef()) 5160 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5161 } 5162 return SDValue(); 5163 } 5164 5165 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5166 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5167 5168 // There's no need to assert on a byte-aligned pointer. All pointers are at 5169 // least byte aligned. 5170 if (A == Align(1)) 5171 return Val; 5172 5173 FoldingSetNodeID ID; 5174 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5175 ID.AddInteger(A.value()); 5176 5177 void *IP = nullptr; 5178 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5179 return SDValue(E, 0); 5180 5181 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5182 Val.getValueType(), A); 5183 createOperands(N, {Val}); 5184 5185 CSEMap.InsertNode(N, IP); 5186 InsertNode(N); 5187 5188 SDValue V(N, 0); 5189 NewSDValueDbgMsg(V, "Creating new node: ", this); 5190 return V; 5191 } 5192 5193 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5194 SDValue N1, SDValue N2) { 5195 SDNodeFlags Flags; 5196 if (Inserter) 5197 Flags = Inserter->getFlags(); 5198 return getNode(Opcode, DL, VT, N1, N2, Flags); 5199 } 5200 5201 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5202 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5203 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5204 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5205 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5206 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5207 5208 // Canonicalize constant to RHS if commutative. 5209 if (TLI->isCommutativeBinOp(Opcode)) { 5210 if (N1C && !N2C) { 5211 std::swap(N1C, N2C); 5212 std::swap(N1, N2); 5213 } else if (N1CFP && !N2CFP) { 5214 std::swap(N1CFP, N2CFP); 5215 std::swap(N1, N2); 5216 } 5217 } 5218 5219 switch (Opcode) { 5220 default: break; 5221 case ISD::TokenFactor: 5222 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5223 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5224 // Fold trivial token factors. 5225 if (N1.getOpcode() == ISD::EntryToken) return N2; 5226 if (N2.getOpcode() == ISD::EntryToken) return N1; 5227 if (N1 == N2) return N1; 5228 break; 5229 case ISD::BUILD_VECTOR: { 5230 // Attempt to simplify BUILD_VECTOR. 5231 SDValue Ops[] = {N1, N2}; 5232 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5233 return V; 5234 break; 5235 } 5236 case ISD::CONCAT_VECTORS: { 5237 SDValue Ops[] = {N1, N2}; 5238 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5239 return V; 5240 break; 5241 } 5242 case ISD::AND: 5243 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5244 assert(N1.getValueType() == N2.getValueType() && 5245 N1.getValueType() == VT && "Binary operator types must match!"); 5246 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5247 // worth handling here. 5248 if (N2C && N2C->isNullValue()) 5249 return N2; 5250 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5251 return N1; 5252 break; 5253 case ISD::OR: 5254 case ISD::XOR: 5255 case ISD::ADD: 5256 case ISD::SUB: 5257 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5258 assert(N1.getValueType() == N2.getValueType() && 5259 N1.getValueType() == VT && "Binary operator types must match!"); 5260 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5261 // it's worth handling here. 5262 if (N2C && N2C->isNullValue()) 5263 return N1; 5264 break; 5265 case ISD::MUL: 5266 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5267 assert(N1.getValueType() == N2.getValueType() && 5268 N1.getValueType() == VT && "Binary operator types must match!"); 5269 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5270 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5271 APInt N2CImm = N2C->getAPIntValue(); 5272 return getVScale(DL, VT, MulImm * N2CImm); 5273 } 5274 break; 5275 case ISD::UDIV: 5276 case ISD::UREM: 5277 case ISD::MULHU: 5278 case ISD::MULHS: 5279 case ISD::SDIV: 5280 case ISD::SREM: 5281 case ISD::SADDSAT: 5282 case ISD::SSUBSAT: 5283 case ISD::UADDSAT: 5284 case ISD::USUBSAT: 5285 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5286 assert(N1.getValueType() == N2.getValueType() && 5287 N1.getValueType() == VT && "Binary operator types must match!"); 5288 break; 5289 case ISD::SMIN: 5290 case ISD::UMAX: 5291 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5292 assert(N1.getValueType() == N2.getValueType() && 5293 N1.getValueType() == VT && "Binary operator types must match!"); 5294 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5295 return getNode(ISD::OR, DL, VT, N1, N2); 5296 break; 5297 case ISD::SMAX: 5298 case ISD::UMIN: 5299 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5300 assert(N1.getValueType() == N2.getValueType() && 5301 N1.getValueType() == VT && "Binary operator types must match!"); 5302 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5303 return getNode(ISD::AND, DL, VT, N1, N2); 5304 break; 5305 case ISD::FADD: 5306 case ISD::FSUB: 5307 case ISD::FMUL: 5308 case ISD::FDIV: 5309 case ISD::FREM: 5310 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5311 assert(N1.getValueType() == N2.getValueType() && 5312 N1.getValueType() == VT && "Binary operator types must match!"); 5313 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5314 return V; 5315 break; 5316 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5317 assert(N1.getValueType() == VT && 5318 N1.getValueType().isFloatingPoint() && 5319 N2.getValueType().isFloatingPoint() && 5320 "Invalid FCOPYSIGN!"); 5321 break; 5322 case ISD::SHL: 5323 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5324 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5325 APInt ShiftImm = N2C->getAPIntValue(); 5326 return getVScale(DL, VT, MulImm << ShiftImm); 5327 } 5328 LLVM_FALLTHROUGH; 5329 case ISD::SRA: 5330 case ISD::SRL: 5331 if (SDValue V = simplifyShift(N1, N2)) 5332 return V; 5333 LLVM_FALLTHROUGH; 5334 case ISD::ROTL: 5335 case ISD::ROTR: 5336 assert(VT == N1.getValueType() && 5337 "Shift operators return type must be the same as their first arg"); 5338 assert(VT.isInteger() && N2.getValueType().isInteger() && 5339 "Shifts only work on integers"); 5340 assert((!VT.isVector() || VT == N2.getValueType()) && 5341 "Vector shift amounts must be in the same as their first arg"); 5342 // Verify that the shift amount VT is big enough to hold valid shift 5343 // amounts. This catches things like trying to shift an i1024 value by an 5344 // i8, which is easy to fall into in generic code that uses 5345 // TLI.getShiftAmount(). 5346 assert(N2.getValueType().getScalarSizeInBits() >= 5347 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5348 "Invalid use of small shift amount with oversized value!"); 5349 5350 // Always fold shifts of i1 values so the code generator doesn't need to 5351 // handle them. Since we know the size of the shift has to be less than the 5352 // size of the value, the shift/rotate count is guaranteed to be zero. 5353 if (VT == MVT::i1) 5354 return N1; 5355 if (N2C && N2C->isNullValue()) 5356 return N1; 5357 break; 5358 case ISD::FP_ROUND: 5359 assert(VT.isFloatingPoint() && 5360 N1.getValueType().isFloatingPoint() && 5361 VT.bitsLE(N1.getValueType()) && 5362 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5363 "Invalid FP_ROUND!"); 5364 if (N1.getValueType() == VT) return N1; // noop conversion. 5365 break; 5366 case ISD::AssertSext: 5367 case ISD::AssertZext: { 5368 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5369 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5370 assert(VT.isInteger() && EVT.isInteger() && 5371 "Cannot *_EXTEND_INREG FP types"); 5372 assert(!EVT.isVector() && 5373 "AssertSExt/AssertZExt type should be the vector element type " 5374 "rather than the vector type!"); 5375 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5376 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5377 break; 5378 } 5379 case ISD::SIGN_EXTEND_INREG: { 5380 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5381 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5382 assert(VT.isInteger() && EVT.isInteger() && 5383 "Cannot *_EXTEND_INREG FP types"); 5384 assert(EVT.isVector() == VT.isVector() && 5385 "SIGN_EXTEND_INREG type should be vector iff the operand " 5386 "type is vector!"); 5387 assert((!EVT.isVector() || 5388 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5389 "Vector element counts must match in SIGN_EXTEND_INREG"); 5390 assert(EVT.bitsLE(VT) && "Not extending!"); 5391 if (EVT == VT) return N1; // Not actually extending 5392 5393 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5394 unsigned FromBits = EVT.getScalarSizeInBits(); 5395 Val <<= Val.getBitWidth() - FromBits; 5396 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5397 return getConstant(Val, DL, ConstantVT); 5398 }; 5399 5400 if (N1C) { 5401 const APInt &Val = N1C->getAPIntValue(); 5402 return SignExtendInReg(Val, VT); 5403 } 5404 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5405 SmallVector<SDValue, 8> Ops; 5406 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5407 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5408 SDValue Op = N1.getOperand(i); 5409 if (Op.isUndef()) { 5410 Ops.push_back(getUNDEF(OpVT)); 5411 continue; 5412 } 5413 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5414 APInt Val = C->getAPIntValue(); 5415 Ops.push_back(SignExtendInReg(Val, OpVT)); 5416 } 5417 return getBuildVector(VT, DL, Ops); 5418 } 5419 break; 5420 } 5421 case ISD::EXTRACT_VECTOR_ELT: 5422 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5423 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5424 element type of the vector."); 5425 5426 // Extract from an undefined value or using an undefined index is undefined. 5427 if (N1.isUndef() || N2.isUndef()) 5428 return getUNDEF(VT); 5429 5430 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5431 // vectors. For scalable vectors we will provide appropriate support for 5432 // dealing with arbitrary indices. 5433 if (N2C && N1.getValueType().isFixedLengthVector() && 5434 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5435 return getUNDEF(VT); 5436 5437 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5438 // expanding copies of large vectors from registers. This only works for 5439 // fixed length vectors, since we need to know the exact number of 5440 // elements. 5441 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5442 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5443 unsigned Factor = 5444 N1.getOperand(0).getValueType().getVectorNumElements(); 5445 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5446 N1.getOperand(N2C->getZExtValue() / Factor), 5447 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5448 } 5449 5450 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5451 // lowering is expanding large vector constants. 5452 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5453 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5454 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5455 N1.getValueType().isFixedLengthVector()) && 5456 "BUILD_VECTOR used for scalable vectors"); 5457 unsigned Index = 5458 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5459 SDValue Elt = N1.getOperand(Index); 5460 5461 if (VT != Elt.getValueType()) 5462 // If the vector element type is not legal, the BUILD_VECTOR operands 5463 // are promoted and implicitly truncated, and the result implicitly 5464 // extended. Make that explicit here. 5465 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5466 5467 return Elt; 5468 } 5469 5470 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5471 // operations are lowered to scalars. 5472 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5473 // If the indices are the same, return the inserted element else 5474 // if the indices are known different, extract the element from 5475 // the original vector. 5476 SDValue N1Op2 = N1.getOperand(2); 5477 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5478 5479 if (N1Op2C && N2C) { 5480 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5481 if (VT == N1.getOperand(1).getValueType()) 5482 return N1.getOperand(1); 5483 else 5484 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5485 } 5486 5487 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5488 } 5489 } 5490 5491 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5492 // when vector types are scalarized and v1iX is legal. 5493 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5494 // Here we are completely ignoring the extract element index (N2), 5495 // which is fine for fixed width vectors, since any index other than 0 5496 // is undefined anyway. However, this cannot be ignored for scalable 5497 // vectors - in theory we could support this, but we don't want to do this 5498 // without a profitability check. 5499 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5500 N1.getValueType().isFixedLengthVector() && 5501 N1.getValueType().getVectorNumElements() == 1) { 5502 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5503 N1.getOperand(1)); 5504 } 5505 break; 5506 case ISD::EXTRACT_ELEMENT: 5507 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5508 assert(!N1.getValueType().isVector() && !VT.isVector() && 5509 (N1.getValueType().isInteger() == VT.isInteger()) && 5510 N1.getValueType() != VT && 5511 "Wrong types for EXTRACT_ELEMENT!"); 5512 5513 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5514 // 64-bit integers into 32-bit parts. Instead of building the extract of 5515 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5516 if (N1.getOpcode() == ISD::BUILD_PAIR) 5517 return N1.getOperand(N2C->getZExtValue()); 5518 5519 // EXTRACT_ELEMENT of a constant int is also very common. 5520 if (N1C) { 5521 unsigned ElementSize = VT.getSizeInBits(); 5522 unsigned Shift = ElementSize * N2C->getZExtValue(); 5523 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5524 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5525 } 5526 break; 5527 case ISD::EXTRACT_SUBVECTOR: 5528 EVT N1VT = N1.getValueType(); 5529 assert(VT.isVector() && N1VT.isVector() && 5530 "Extract subvector VTs must be vectors!"); 5531 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5532 "Extract subvector VTs must have the same element type!"); 5533 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5534 "Cannot extract a scalable vector from a fixed length vector!"); 5535 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5536 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5537 "Extract subvector must be from larger vector to smaller vector!"); 5538 assert(N2C && "Extract subvector index must be a constant"); 5539 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5540 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5541 N1VT.getVectorMinNumElements()) && 5542 "Extract subvector overflow!"); 5543 assert(N2C->getAPIntValue().getBitWidth() == 5544 TLI->getVectorIdxTy(getDataLayout()) 5545 .getSizeInBits() 5546 .getFixedSize() && 5547 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5548 5549 // Trivial extraction. 5550 if (VT == N1VT) 5551 return N1; 5552 5553 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5554 if (N1.isUndef()) 5555 return getUNDEF(VT); 5556 5557 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5558 // the concat have the same type as the extract. 5559 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5560 VT == N1.getOperand(0).getValueType()) { 5561 unsigned Factor = VT.getVectorMinNumElements(); 5562 return N1.getOperand(N2C->getZExtValue() / Factor); 5563 } 5564 5565 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5566 // during shuffle legalization. 5567 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5568 VT == N1.getOperand(1).getValueType()) 5569 return N1.getOperand(1); 5570 break; 5571 } 5572 5573 // Perform trivial constant folding. 5574 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5575 return SV; 5576 5577 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5578 return V; 5579 5580 // Canonicalize an UNDEF to the RHS, even over a constant. 5581 if (N1.isUndef()) { 5582 if (TLI->isCommutativeBinOp(Opcode)) { 5583 std::swap(N1, N2); 5584 } else { 5585 switch (Opcode) { 5586 case ISD::SIGN_EXTEND_INREG: 5587 case ISD::SUB: 5588 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5589 case ISD::UDIV: 5590 case ISD::SDIV: 5591 case ISD::UREM: 5592 case ISD::SREM: 5593 case ISD::SSUBSAT: 5594 case ISD::USUBSAT: 5595 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5596 } 5597 } 5598 } 5599 5600 // Fold a bunch of operators when the RHS is undef. 5601 if (N2.isUndef()) { 5602 switch (Opcode) { 5603 case ISD::XOR: 5604 if (N1.isUndef()) 5605 // Handle undef ^ undef -> 0 special case. This is a common 5606 // idiom (misuse). 5607 return getConstant(0, DL, VT); 5608 LLVM_FALLTHROUGH; 5609 case ISD::ADD: 5610 case ISD::SUB: 5611 case ISD::UDIV: 5612 case ISD::SDIV: 5613 case ISD::UREM: 5614 case ISD::SREM: 5615 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5616 case ISD::MUL: 5617 case ISD::AND: 5618 case ISD::SSUBSAT: 5619 case ISD::USUBSAT: 5620 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5621 case ISD::OR: 5622 case ISD::SADDSAT: 5623 case ISD::UADDSAT: 5624 return getAllOnesConstant(DL, VT); 5625 } 5626 } 5627 5628 // Memoize this node if possible. 5629 SDNode *N; 5630 SDVTList VTs = getVTList(VT); 5631 SDValue Ops[] = {N1, N2}; 5632 if (VT != MVT::Glue) { 5633 FoldingSetNodeID ID; 5634 AddNodeIDNode(ID, Opcode, VTs, Ops); 5635 void *IP = nullptr; 5636 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5637 E->intersectFlagsWith(Flags); 5638 return SDValue(E, 0); 5639 } 5640 5641 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5642 N->setFlags(Flags); 5643 createOperands(N, Ops); 5644 CSEMap.InsertNode(N, IP); 5645 } else { 5646 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5647 createOperands(N, Ops); 5648 } 5649 5650 InsertNode(N); 5651 SDValue V = SDValue(N, 0); 5652 NewSDValueDbgMsg(V, "Creating new node: ", this); 5653 return V; 5654 } 5655 5656 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5657 SDValue N1, SDValue N2, SDValue N3) { 5658 SDNodeFlags Flags; 5659 if (Inserter) 5660 Flags = Inserter->getFlags(); 5661 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5662 } 5663 5664 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5665 SDValue N1, SDValue N2, SDValue N3, 5666 const SDNodeFlags Flags) { 5667 // Perform various simplifications. 5668 switch (Opcode) { 5669 case ISD::FMA: { 5670 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5671 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5672 N3.getValueType() == VT && "FMA types must match!"); 5673 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5674 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5675 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5676 if (N1CFP && N2CFP && N3CFP) { 5677 APFloat V1 = N1CFP->getValueAPF(); 5678 const APFloat &V2 = N2CFP->getValueAPF(); 5679 const APFloat &V3 = N3CFP->getValueAPF(); 5680 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5681 return getConstantFP(V1, DL, VT); 5682 } 5683 break; 5684 } 5685 case ISD::BUILD_VECTOR: { 5686 // Attempt to simplify BUILD_VECTOR. 5687 SDValue Ops[] = {N1, N2, N3}; 5688 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5689 return V; 5690 break; 5691 } 5692 case ISD::CONCAT_VECTORS: { 5693 SDValue Ops[] = {N1, N2, N3}; 5694 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5695 return V; 5696 break; 5697 } 5698 case ISD::SETCC: { 5699 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5700 assert(N1.getValueType() == N2.getValueType() && 5701 "SETCC operands must have the same type!"); 5702 assert(VT.isVector() == N1.getValueType().isVector() && 5703 "SETCC type should be vector iff the operand type is vector!"); 5704 assert((!VT.isVector() || VT.getVectorElementCount() == 5705 N1.getValueType().getVectorElementCount()) && 5706 "SETCC vector element counts must match!"); 5707 // Use FoldSetCC to simplify SETCC's. 5708 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5709 return V; 5710 // Vector constant folding. 5711 SDValue Ops[] = {N1, N2, N3}; 5712 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5713 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5714 return V; 5715 } 5716 break; 5717 } 5718 case ISD::SELECT: 5719 case ISD::VSELECT: 5720 if (SDValue V = simplifySelect(N1, N2, N3)) 5721 return V; 5722 break; 5723 case ISD::VECTOR_SHUFFLE: 5724 llvm_unreachable("should use getVectorShuffle constructor!"); 5725 case ISD::INSERT_VECTOR_ELT: { 5726 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5727 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5728 // for scalable vectors where we will generate appropriate code to 5729 // deal with out-of-bounds cases correctly. 5730 if (N3C && N1.getValueType().isFixedLengthVector() && 5731 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5732 return getUNDEF(VT); 5733 5734 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5735 if (N3.isUndef()) 5736 return getUNDEF(VT); 5737 5738 // If the inserted element is an UNDEF, just use the input vector. 5739 if (N2.isUndef()) 5740 return N1; 5741 5742 break; 5743 } 5744 case ISD::INSERT_SUBVECTOR: { 5745 // Inserting undef into undef is still undef. 5746 if (N1.isUndef() && N2.isUndef()) 5747 return getUNDEF(VT); 5748 5749 EVT N2VT = N2.getValueType(); 5750 assert(VT == N1.getValueType() && 5751 "Dest and insert subvector source types must match!"); 5752 assert(VT.isVector() && N2VT.isVector() && 5753 "Insert subvector VTs must be vectors!"); 5754 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5755 "Cannot insert a scalable vector into a fixed length vector!"); 5756 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5757 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5758 "Insert subvector must be from smaller vector to larger vector!"); 5759 assert(isa<ConstantSDNode>(N3) && 5760 "Insert subvector index must be constant"); 5761 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5762 (N2VT.getVectorMinNumElements() + 5763 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5764 VT.getVectorMinNumElements()) && 5765 "Insert subvector overflow!"); 5766 5767 // Trivial insertion. 5768 if (VT == N2VT) 5769 return N2; 5770 5771 // If this is an insert of an extracted vector into an undef vector, we 5772 // can just use the input to the extract. 5773 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5774 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5775 return N2.getOperand(0); 5776 break; 5777 } 5778 case ISD::BITCAST: 5779 // Fold bit_convert nodes from a type to themselves. 5780 if (N1.getValueType() == VT) 5781 return N1; 5782 break; 5783 } 5784 5785 // Memoize node if it doesn't produce a flag. 5786 SDNode *N; 5787 SDVTList VTs = getVTList(VT); 5788 SDValue Ops[] = {N1, N2, N3}; 5789 if (VT != MVT::Glue) { 5790 FoldingSetNodeID ID; 5791 AddNodeIDNode(ID, Opcode, VTs, Ops); 5792 void *IP = nullptr; 5793 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5794 E->intersectFlagsWith(Flags); 5795 return SDValue(E, 0); 5796 } 5797 5798 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5799 N->setFlags(Flags); 5800 createOperands(N, Ops); 5801 CSEMap.InsertNode(N, IP); 5802 } else { 5803 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5804 createOperands(N, Ops); 5805 } 5806 5807 InsertNode(N); 5808 SDValue V = SDValue(N, 0); 5809 NewSDValueDbgMsg(V, "Creating new node: ", this); 5810 return V; 5811 } 5812 5813 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5814 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5815 SDValue Ops[] = { N1, N2, N3, N4 }; 5816 return getNode(Opcode, DL, VT, Ops); 5817 } 5818 5819 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5820 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5821 SDValue N5) { 5822 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5823 return getNode(Opcode, DL, VT, Ops); 5824 } 5825 5826 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5827 /// the incoming stack arguments to be loaded from the stack. 5828 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5829 SmallVector<SDValue, 8> ArgChains; 5830 5831 // Include the original chain at the beginning of the list. When this is 5832 // used by target LowerCall hooks, this helps legalize find the 5833 // CALLSEQ_BEGIN node. 5834 ArgChains.push_back(Chain); 5835 5836 // Add a chain value for each stack argument. 5837 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5838 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5839 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5840 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5841 if (FI->getIndex() < 0) 5842 ArgChains.push_back(SDValue(L, 1)); 5843 5844 // Build a tokenfactor for all the chains. 5845 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5846 } 5847 5848 /// getMemsetValue - Vectorized representation of the memset value 5849 /// operand. 5850 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5851 const SDLoc &dl) { 5852 assert(!Value.isUndef()); 5853 5854 unsigned NumBits = VT.getScalarSizeInBits(); 5855 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5856 assert(C->getAPIntValue().getBitWidth() == 8); 5857 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5858 if (VT.isInteger()) { 5859 bool IsOpaque = VT.getSizeInBits() > 64 || 5860 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5861 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5862 } 5863 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5864 VT); 5865 } 5866 5867 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5868 EVT IntVT = VT.getScalarType(); 5869 if (!IntVT.isInteger()) 5870 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5871 5872 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5873 if (NumBits > 8) { 5874 // Use a multiplication with 0x010101... to extend the input to the 5875 // required length. 5876 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5877 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5878 DAG.getConstant(Magic, dl, IntVT)); 5879 } 5880 5881 if (VT != Value.getValueType() && !VT.isInteger()) 5882 Value = DAG.getBitcast(VT.getScalarType(), Value); 5883 if (VT != Value.getValueType()) 5884 Value = DAG.getSplatBuildVector(VT, dl, Value); 5885 5886 return Value; 5887 } 5888 5889 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5890 /// used when a memcpy is turned into a memset when the source is a constant 5891 /// string ptr. 5892 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5893 const TargetLowering &TLI, 5894 const ConstantDataArraySlice &Slice) { 5895 // Handle vector with all elements zero. 5896 if (Slice.Array == nullptr) { 5897 if (VT.isInteger()) 5898 return DAG.getConstant(0, dl, VT); 5899 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5900 return DAG.getConstantFP(0.0, dl, VT); 5901 else if (VT.isVector()) { 5902 unsigned NumElts = VT.getVectorNumElements(); 5903 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5904 return DAG.getNode(ISD::BITCAST, dl, VT, 5905 DAG.getConstant(0, dl, 5906 EVT::getVectorVT(*DAG.getContext(), 5907 EltVT, NumElts))); 5908 } else 5909 llvm_unreachable("Expected type!"); 5910 } 5911 5912 assert(!VT.isVector() && "Can't handle vector type here!"); 5913 unsigned NumVTBits = VT.getSizeInBits(); 5914 unsigned NumVTBytes = NumVTBits / 8; 5915 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5916 5917 APInt Val(NumVTBits, 0); 5918 if (DAG.getDataLayout().isLittleEndian()) { 5919 for (unsigned i = 0; i != NumBytes; ++i) 5920 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5921 } else { 5922 for (unsigned i = 0; i != NumBytes; ++i) 5923 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5924 } 5925 5926 // If the "cost" of materializing the integer immediate is less than the cost 5927 // of a load, then it is cost effective to turn the load into the immediate. 5928 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5929 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5930 return DAG.getConstant(Val, dl, VT); 5931 return SDValue(nullptr, 0); 5932 } 5933 5934 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5935 const SDLoc &DL, 5936 const SDNodeFlags Flags) { 5937 EVT VT = Base.getValueType(); 5938 SDValue Index; 5939 5940 if (Offset.isScalable()) 5941 Index = getVScale(DL, Base.getValueType(), 5942 APInt(Base.getValueSizeInBits().getFixedSize(), 5943 Offset.getKnownMinSize())); 5944 else 5945 Index = getConstant(Offset.getFixedSize(), DL, VT); 5946 5947 return getMemBasePlusOffset(Base, Index, DL, Flags); 5948 } 5949 5950 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5951 const SDLoc &DL, 5952 const SDNodeFlags Flags) { 5953 assert(Offset.getValueType().isInteger()); 5954 EVT BasePtrVT = Ptr.getValueType(); 5955 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5956 } 5957 5958 /// Returns true if memcpy source is constant data. 5959 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5960 uint64_t SrcDelta = 0; 5961 GlobalAddressSDNode *G = nullptr; 5962 if (Src.getOpcode() == ISD::GlobalAddress) 5963 G = cast<GlobalAddressSDNode>(Src); 5964 else if (Src.getOpcode() == ISD::ADD && 5965 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5966 Src.getOperand(1).getOpcode() == ISD::Constant) { 5967 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5968 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5969 } 5970 if (!G) 5971 return false; 5972 5973 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5974 SrcDelta + G->getOffset()); 5975 } 5976 5977 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5978 SelectionDAG &DAG) { 5979 // On Darwin, -Os means optimize for size without hurting performance, so 5980 // only really optimize for size when -Oz (MinSize) is used. 5981 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5982 return MF.getFunction().hasMinSize(); 5983 return DAG.shouldOptForSize(); 5984 } 5985 5986 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5987 SmallVector<SDValue, 32> &OutChains, unsigned From, 5988 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5989 SmallVector<SDValue, 16> &OutStoreChains) { 5990 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5991 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5992 SmallVector<SDValue, 16> GluedLoadChains; 5993 for (unsigned i = From; i < To; ++i) { 5994 OutChains.push_back(OutLoadChains[i]); 5995 GluedLoadChains.push_back(OutLoadChains[i]); 5996 } 5997 5998 // Chain for all loads. 5999 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6000 GluedLoadChains); 6001 6002 for (unsigned i = From; i < To; ++i) { 6003 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6004 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6005 ST->getBasePtr(), ST->getMemoryVT(), 6006 ST->getMemOperand()); 6007 OutChains.push_back(NewStore); 6008 } 6009 } 6010 6011 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6012 SDValue Chain, SDValue Dst, SDValue Src, 6013 uint64_t Size, Align Alignment, 6014 bool isVol, bool AlwaysInline, 6015 MachinePointerInfo DstPtrInfo, 6016 MachinePointerInfo SrcPtrInfo) { 6017 // Turn a memcpy of undef to nop. 6018 // FIXME: We need to honor volatile even is Src is undef. 6019 if (Src.isUndef()) 6020 return Chain; 6021 6022 // Expand memcpy to a series of load and store ops if the size operand falls 6023 // below a certain threshold. 6024 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6025 // rather than maybe a humongous number of loads and stores. 6026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6027 const DataLayout &DL = DAG.getDataLayout(); 6028 LLVMContext &C = *DAG.getContext(); 6029 std::vector<EVT> MemOps; 6030 bool DstAlignCanChange = false; 6031 MachineFunction &MF = DAG.getMachineFunction(); 6032 MachineFrameInfo &MFI = MF.getFrameInfo(); 6033 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6034 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6035 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6036 DstAlignCanChange = true; 6037 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6038 if (!SrcAlign || Alignment > *SrcAlign) 6039 SrcAlign = Alignment; 6040 assert(SrcAlign && "SrcAlign must be set"); 6041 ConstantDataArraySlice Slice; 6042 // If marked as volatile, perform a copy even when marked as constant. 6043 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6044 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6045 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6046 const MemOp Op = isZeroConstant 6047 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6048 /*IsZeroMemset*/ true, isVol) 6049 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6050 *SrcAlign, isVol, CopyFromConstant); 6051 if (!TLI.findOptimalMemOpLowering( 6052 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6053 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6054 return SDValue(); 6055 6056 if (DstAlignCanChange) { 6057 Type *Ty = MemOps[0].getTypeForEVT(C); 6058 Align NewAlign = DL.getABITypeAlign(Ty); 6059 6060 // Don't promote to an alignment that would require dynamic stack 6061 // realignment. 6062 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6063 if (!TRI->needsStackRealignment(MF)) 6064 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6065 NewAlign = NewAlign / 2; 6066 6067 if (NewAlign > Alignment) { 6068 // Give the stack frame object a larger alignment if needed. 6069 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6070 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6071 Alignment = NewAlign; 6072 } 6073 } 6074 6075 MachineMemOperand::Flags MMOFlags = 6076 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6077 SmallVector<SDValue, 16> OutLoadChains; 6078 SmallVector<SDValue, 16> OutStoreChains; 6079 SmallVector<SDValue, 32> OutChains; 6080 unsigned NumMemOps = MemOps.size(); 6081 uint64_t SrcOff = 0, DstOff = 0; 6082 for (unsigned i = 0; i != NumMemOps; ++i) { 6083 EVT VT = MemOps[i]; 6084 unsigned VTSize = VT.getSizeInBits() / 8; 6085 SDValue Value, Store; 6086 6087 if (VTSize > Size) { 6088 // Issuing an unaligned load / store pair that overlaps with the previous 6089 // pair. Adjust the offset accordingly. 6090 assert(i == NumMemOps-1 && i != 0); 6091 SrcOff -= VTSize - Size; 6092 DstOff -= VTSize - Size; 6093 } 6094 6095 if (CopyFromConstant && 6096 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6097 // It's unlikely a store of a vector immediate can be done in a single 6098 // instruction. It would require a load from a constantpool first. 6099 // We only handle zero vectors here. 6100 // FIXME: Handle other cases where store of vector immediate is done in 6101 // a single instruction. 6102 ConstantDataArraySlice SubSlice; 6103 if (SrcOff < Slice.Length) { 6104 SubSlice = Slice; 6105 SubSlice.move(SrcOff); 6106 } else { 6107 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6108 SubSlice.Array = nullptr; 6109 SubSlice.Offset = 0; 6110 SubSlice.Length = VTSize; 6111 } 6112 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6113 if (Value.getNode()) { 6114 Store = DAG.getStore( 6115 Chain, dl, Value, 6116 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6117 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6118 OutChains.push_back(Store); 6119 } 6120 } 6121 6122 if (!Store.getNode()) { 6123 // The type might not be legal for the target. This should only happen 6124 // if the type is smaller than a legal type, as on PPC, so the right 6125 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6126 // to Load/Store if NVT==VT. 6127 // FIXME does the case above also need this? 6128 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6129 assert(NVT.bitsGE(VT)); 6130 6131 bool isDereferenceable = 6132 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6133 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6134 if (isDereferenceable) 6135 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6136 6137 Value = DAG.getExtLoad( 6138 ISD::EXTLOAD, dl, NVT, Chain, 6139 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6140 SrcPtrInfo.getWithOffset(SrcOff), VT, 6141 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6142 OutLoadChains.push_back(Value.getValue(1)); 6143 6144 Store = DAG.getTruncStore( 6145 Chain, dl, Value, 6146 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6147 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6148 OutStoreChains.push_back(Store); 6149 } 6150 SrcOff += VTSize; 6151 DstOff += VTSize; 6152 Size -= VTSize; 6153 } 6154 6155 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6156 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6157 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6158 6159 if (NumLdStInMemcpy) { 6160 // It may be that memcpy might be converted to memset if it's memcpy 6161 // of constants. In such a case, we won't have loads and stores, but 6162 // just stores. In the absence of loads, there is nothing to gang up. 6163 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6164 // If target does not care, just leave as it. 6165 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6166 OutChains.push_back(OutLoadChains[i]); 6167 OutChains.push_back(OutStoreChains[i]); 6168 } 6169 } else { 6170 // Ld/St less than/equal limit set by target. 6171 if (NumLdStInMemcpy <= GluedLdStLimit) { 6172 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6173 NumLdStInMemcpy, OutLoadChains, 6174 OutStoreChains); 6175 } else { 6176 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6177 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6178 unsigned GlueIter = 0; 6179 6180 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6181 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6182 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6183 6184 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6185 OutLoadChains, OutStoreChains); 6186 GlueIter += GluedLdStLimit; 6187 } 6188 6189 // Residual ld/st. 6190 if (RemainingLdStInMemcpy) { 6191 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6192 RemainingLdStInMemcpy, OutLoadChains, 6193 OutStoreChains); 6194 } 6195 } 6196 } 6197 } 6198 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6199 } 6200 6201 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6202 SDValue Chain, SDValue Dst, SDValue Src, 6203 uint64_t Size, Align Alignment, 6204 bool isVol, bool AlwaysInline, 6205 MachinePointerInfo DstPtrInfo, 6206 MachinePointerInfo SrcPtrInfo) { 6207 // Turn a memmove of undef to nop. 6208 // FIXME: We need to honor volatile even is Src is undef. 6209 if (Src.isUndef()) 6210 return Chain; 6211 6212 // Expand memmove to a series of load and store ops if the size operand falls 6213 // below a certain threshold. 6214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6215 const DataLayout &DL = DAG.getDataLayout(); 6216 LLVMContext &C = *DAG.getContext(); 6217 std::vector<EVT> MemOps; 6218 bool DstAlignCanChange = false; 6219 MachineFunction &MF = DAG.getMachineFunction(); 6220 MachineFrameInfo &MFI = MF.getFrameInfo(); 6221 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6222 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6223 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6224 DstAlignCanChange = true; 6225 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6226 if (!SrcAlign || Alignment > *SrcAlign) 6227 SrcAlign = Alignment; 6228 assert(SrcAlign && "SrcAlign must be set"); 6229 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6230 if (!TLI.findOptimalMemOpLowering( 6231 MemOps, Limit, 6232 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6233 /*IsVolatile*/ true), 6234 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6235 MF.getFunction().getAttributes())) 6236 return SDValue(); 6237 6238 if (DstAlignCanChange) { 6239 Type *Ty = MemOps[0].getTypeForEVT(C); 6240 Align NewAlign = DL.getABITypeAlign(Ty); 6241 if (NewAlign > Alignment) { 6242 // Give the stack frame object a larger alignment if needed. 6243 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6244 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6245 Alignment = NewAlign; 6246 } 6247 } 6248 6249 MachineMemOperand::Flags MMOFlags = 6250 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6251 uint64_t SrcOff = 0, DstOff = 0; 6252 SmallVector<SDValue, 8> LoadValues; 6253 SmallVector<SDValue, 8> LoadChains; 6254 SmallVector<SDValue, 8> OutChains; 6255 unsigned NumMemOps = MemOps.size(); 6256 for (unsigned i = 0; i < NumMemOps; i++) { 6257 EVT VT = MemOps[i]; 6258 unsigned VTSize = VT.getSizeInBits() / 8; 6259 SDValue Value; 6260 6261 bool isDereferenceable = 6262 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6263 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6264 if (isDereferenceable) 6265 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6266 6267 Value = 6268 DAG.getLoad(VT, dl, Chain, 6269 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6270 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6271 LoadValues.push_back(Value); 6272 LoadChains.push_back(Value.getValue(1)); 6273 SrcOff += VTSize; 6274 } 6275 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6276 OutChains.clear(); 6277 for (unsigned i = 0; i < NumMemOps; i++) { 6278 EVT VT = MemOps[i]; 6279 unsigned VTSize = VT.getSizeInBits() / 8; 6280 SDValue Store; 6281 6282 Store = 6283 DAG.getStore(Chain, dl, LoadValues[i], 6284 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6285 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6286 OutChains.push_back(Store); 6287 DstOff += VTSize; 6288 } 6289 6290 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6291 } 6292 6293 /// Lower the call to 'memset' intrinsic function into a series of store 6294 /// operations. 6295 /// 6296 /// \param DAG Selection DAG where lowered code is placed. 6297 /// \param dl Link to corresponding IR location. 6298 /// \param Chain Control flow dependency. 6299 /// \param Dst Pointer to destination memory location. 6300 /// \param Src Value of byte to write into the memory. 6301 /// \param Size Number of bytes to write. 6302 /// \param Alignment Alignment of the destination in bytes. 6303 /// \param isVol True if destination is volatile. 6304 /// \param DstPtrInfo IR information on the memory pointer. 6305 /// \returns New head in the control flow, if lowering was successful, empty 6306 /// SDValue otherwise. 6307 /// 6308 /// The function tries to replace 'llvm.memset' intrinsic with several store 6309 /// operations and value calculation code. This is usually profitable for small 6310 /// memory size. 6311 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6312 SDValue Chain, SDValue Dst, SDValue Src, 6313 uint64_t Size, Align Alignment, bool isVol, 6314 MachinePointerInfo DstPtrInfo) { 6315 // Turn a memset of undef to nop. 6316 // FIXME: We need to honor volatile even is Src is undef. 6317 if (Src.isUndef()) 6318 return Chain; 6319 6320 // Expand memset to a series of load/store ops if the size operand 6321 // falls below a certain threshold. 6322 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6323 std::vector<EVT> MemOps; 6324 bool DstAlignCanChange = false; 6325 MachineFunction &MF = DAG.getMachineFunction(); 6326 MachineFrameInfo &MFI = MF.getFrameInfo(); 6327 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6328 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6329 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6330 DstAlignCanChange = true; 6331 bool IsZeroVal = 6332 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6333 if (!TLI.findOptimalMemOpLowering( 6334 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6335 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6336 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6337 return SDValue(); 6338 6339 if (DstAlignCanChange) { 6340 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6341 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6342 if (NewAlign > Alignment) { 6343 // Give the stack frame object a larger alignment if needed. 6344 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6345 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6346 Alignment = NewAlign; 6347 } 6348 } 6349 6350 SmallVector<SDValue, 8> OutChains; 6351 uint64_t DstOff = 0; 6352 unsigned NumMemOps = MemOps.size(); 6353 6354 // Find the largest store and generate the bit pattern for it. 6355 EVT LargestVT = MemOps[0]; 6356 for (unsigned i = 1; i < NumMemOps; i++) 6357 if (MemOps[i].bitsGT(LargestVT)) 6358 LargestVT = MemOps[i]; 6359 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6360 6361 for (unsigned i = 0; i < NumMemOps; i++) { 6362 EVT VT = MemOps[i]; 6363 unsigned VTSize = VT.getSizeInBits() / 8; 6364 if (VTSize > Size) { 6365 // Issuing an unaligned load / store pair that overlaps with the previous 6366 // pair. Adjust the offset accordingly. 6367 assert(i == NumMemOps-1 && i != 0); 6368 DstOff -= VTSize - Size; 6369 } 6370 6371 // If this store is smaller than the largest store see whether we can get 6372 // the smaller value for free with a truncate. 6373 SDValue Value = MemSetValue; 6374 if (VT.bitsLT(LargestVT)) { 6375 if (!LargestVT.isVector() && !VT.isVector() && 6376 TLI.isTruncateFree(LargestVT, VT)) 6377 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6378 else 6379 Value = getMemsetValue(Src, VT, DAG, dl); 6380 } 6381 assert(Value.getValueType() == VT && "Value with wrong type."); 6382 SDValue Store = DAG.getStore( 6383 Chain, dl, Value, 6384 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6385 DstPtrInfo.getWithOffset(DstOff), Alignment, 6386 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6387 OutChains.push_back(Store); 6388 DstOff += VT.getSizeInBits() / 8; 6389 Size -= VTSize; 6390 } 6391 6392 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6393 } 6394 6395 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6396 unsigned AS) { 6397 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6398 // pointer operands can be losslessly bitcasted to pointers of address space 0 6399 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6400 report_fatal_error("cannot lower memory intrinsic in address space " + 6401 Twine(AS)); 6402 } 6403 } 6404 6405 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6406 SDValue Src, SDValue Size, Align Alignment, 6407 bool isVol, bool AlwaysInline, bool isTailCall, 6408 MachinePointerInfo DstPtrInfo, 6409 MachinePointerInfo SrcPtrInfo) { 6410 // Check to see if we should lower the memcpy to loads and stores first. 6411 // For cases within the target-specified limits, this is the best choice. 6412 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6413 if (ConstantSize) { 6414 // Memcpy with size zero? Just return the original chain. 6415 if (ConstantSize->isNullValue()) 6416 return Chain; 6417 6418 SDValue Result = getMemcpyLoadsAndStores( 6419 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6420 isVol, false, DstPtrInfo, SrcPtrInfo); 6421 if (Result.getNode()) 6422 return Result; 6423 } 6424 6425 // Then check to see if we should lower the memcpy with target-specific 6426 // code. If the target chooses to do this, this is the next best. 6427 if (TSI) { 6428 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6429 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6430 DstPtrInfo, SrcPtrInfo); 6431 if (Result.getNode()) 6432 return Result; 6433 } 6434 6435 // If we really need inline code and the target declined to provide it, 6436 // use a (potentially long) sequence of loads and stores. 6437 if (AlwaysInline) { 6438 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6439 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6440 ConstantSize->getZExtValue(), Alignment, 6441 isVol, true, DstPtrInfo, SrcPtrInfo); 6442 } 6443 6444 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6445 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6446 6447 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6448 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6449 // respect volatile, so they may do things like read or write memory 6450 // beyond the given memory regions. But fixing this isn't easy, and most 6451 // people don't care. 6452 6453 // Emit a library call. 6454 TargetLowering::ArgListTy Args; 6455 TargetLowering::ArgListEntry Entry; 6456 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6457 Entry.Node = Dst; Args.push_back(Entry); 6458 Entry.Node = Src; Args.push_back(Entry); 6459 6460 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6461 Entry.Node = Size; Args.push_back(Entry); 6462 // FIXME: pass in SDLoc 6463 TargetLowering::CallLoweringInfo CLI(*this); 6464 CLI.setDebugLoc(dl) 6465 .setChain(Chain) 6466 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6467 Dst.getValueType().getTypeForEVT(*getContext()), 6468 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6469 TLI->getPointerTy(getDataLayout())), 6470 std::move(Args)) 6471 .setDiscardResult() 6472 .setTailCall(isTailCall); 6473 6474 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6475 return CallResult.second; 6476 } 6477 6478 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6479 SDValue Dst, unsigned DstAlign, 6480 SDValue Src, unsigned SrcAlign, 6481 SDValue Size, Type *SizeTy, 6482 unsigned ElemSz, bool isTailCall, 6483 MachinePointerInfo DstPtrInfo, 6484 MachinePointerInfo SrcPtrInfo) { 6485 // Emit a library call. 6486 TargetLowering::ArgListTy Args; 6487 TargetLowering::ArgListEntry Entry; 6488 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6489 Entry.Node = Dst; 6490 Args.push_back(Entry); 6491 6492 Entry.Node = Src; 6493 Args.push_back(Entry); 6494 6495 Entry.Ty = SizeTy; 6496 Entry.Node = Size; 6497 Args.push_back(Entry); 6498 6499 RTLIB::Libcall LibraryCall = 6500 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6501 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6502 report_fatal_error("Unsupported element size"); 6503 6504 TargetLowering::CallLoweringInfo CLI(*this); 6505 CLI.setDebugLoc(dl) 6506 .setChain(Chain) 6507 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6508 Type::getVoidTy(*getContext()), 6509 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6510 TLI->getPointerTy(getDataLayout())), 6511 std::move(Args)) 6512 .setDiscardResult() 6513 .setTailCall(isTailCall); 6514 6515 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6516 return CallResult.second; 6517 } 6518 6519 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6520 SDValue Src, SDValue Size, Align Alignment, 6521 bool isVol, bool isTailCall, 6522 MachinePointerInfo DstPtrInfo, 6523 MachinePointerInfo SrcPtrInfo) { 6524 // Check to see if we should lower the memmove to loads and stores first. 6525 // For cases within the target-specified limits, this is the best choice. 6526 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6527 if (ConstantSize) { 6528 // Memmove with size zero? Just return the original chain. 6529 if (ConstantSize->isNullValue()) 6530 return Chain; 6531 6532 SDValue Result = getMemmoveLoadsAndStores( 6533 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6534 isVol, false, DstPtrInfo, SrcPtrInfo); 6535 if (Result.getNode()) 6536 return Result; 6537 } 6538 6539 // Then check to see if we should lower the memmove with target-specific 6540 // code. If the target chooses to do this, this is the next best. 6541 if (TSI) { 6542 SDValue Result = 6543 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6544 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6545 if (Result.getNode()) 6546 return Result; 6547 } 6548 6549 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6550 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6551 6552 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6553 // not be safe. See memcpy above for more details. 6554 6555 // Emit a library call. 6556 TargetLowering::ArgListTy Args; 6557 TargetLowering::ArgListEntry Entry; 6558 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6559 Entry.Node = Dst; Args.push_back(Entry); 6560 Entry.Node = Src; Args.push_back(Entry); 6561 6562 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6563 Entry.Node = Size; Args.push_back(Entry); 6564 // FIXME: pass in SDLoc 6565 TargetLowering::CallLoweringInfo CLI(*this); 6566 CLI.setDebugLoc(dl) 6567 .setChain(Chain) 6568 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6569 Dst.getValueType().getTypeForEVT(*getContext()), 6570 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6571 TLI->getPointerTy(getDataLayout())), 6572 std::move(Args)) 6573 .setDiscardResult() 6574 .setTailCall(isTailCall); 6575 6576 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6577 return CallResult.second; 6578 } 6579 6580 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6581 SDValue Dst, unsigned DstAlign, 6582 SDValue Src, unsigned SrcAlign, 6583 SDValue Size, Type *SizeTy, 6584 unsigned ElemSz, bool isTailCall, 6585 MachinePointerInfo DstPtrInfo, 6586 MachinePointerInfo SrcPtrInfo) { 6587 // Emit a library call. 6588 TargetLowering::ArgListTy Args; 6589 TargetLowering::ArgListEntry Entry; 6590 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6591 Entry.Node = Dst; 6592 Args.push_back(Entry); 6593 6594 Entry.Node = Src; 6595 Args.push_back(Entry); 6596 6597 Entry.Ty = SizeTy; 6598 Entry.Node = Size; 6599 Args.push_back(Entry); 6600 6601 RTLIB::Libcall LibraryCall = 6602 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6603 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6604 report_fatal_error("Unsupported element size"); 6605 6606 TargetLowering::CallLoweringInfo CLI(*this); 6607 CLI.setDebugLoc(dl) 6608 .setChain(Chain) 6609 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6610 Type::getVoidTy(*getContext()), 6611 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6612 TLI->getPointerTy(getDataLayout())), 6613 std::move(Args)) 6614 .setDiscardResult() 6615 .setTailCall(isTailCall); 6616 6617 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6618 return CallResult.second; 6619 } 6620 6621 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6622 SDValue Src, SDValue Size, Align Alignment, 6623 bool isVol, bool isTailCall, 6624 MachinePointerInfo DstPtrInfo) { 6625 // Check to see if we should lower the memset to stores first. 6626 // For cases within the target-specified limits, this is the best choice. 6627 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6628 if (ConstantSize) { 6629 // Memset with size zero? Just return the original chain. 6630 if (ConstantSize->isNullValue()) 6631 return Chain; 6632 6633 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6634 ConstantSize->getZExtValue(), Alignment, 6635 isVol, DstPtrInfo); 6636 6637 if (Result.getNode()) 6638 return Result; 6639 } 6640 6641 // Then check to see if we should lower the memset with target-specific 6642 // code. If the target chooses to do this, this is the next best. 6643 if (TSI) { 6644 SDValue Result = TSI->EmitTargetCodeForMemset( 6645 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6646 if (Result.getNode()) 6647 return Result; 6648 } 6649 6650 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6651 6652 // Emit a library call. 6653 TargetLowering::ArgListTy Args; 6654 TargetLowering::ArgListEntry Entry; 6655 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6656 Args.push_back(Entry); 6657 Entry.Node = Src; 6658 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6659 Args.push_back(Entry); 6660 Entry.Node = Size; 6661 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6662 Args.push_back(Entry); 6663 6664 // FIXME: pass in SDLoc 6665 TargetLowering::CallLoweringInfo CLI(*this); 6666 CLI.setDebugLoc(dl) 6667 .setChain(Chain) 6668 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6669 Dst.getValueType().getTypeForEVT(*getContext()), 6670 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6671 TLI->getPointerTy(getDataLayout())), 6672 std::move(Args)) 6673 .setDiscardResult() 6674 .setTailCall(isTailCall); 6675 6676 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6677 return CallResult.second; 6678 } 6679 6680 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6681 SDValue Dst, unsigned DstAlign, 6682 SDValue Value, SDValue Size, Type *SizeTy, 6683 unsigned ElemSz, bool isTailCall, 6684 MachinePointerInfo DstPtrInfo) { 6685 // Emit a library call. 6686 TargetLowering::ArgListTy Args; 6687 TargetLowering::ArgListEntry Entry; 6688 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6689 Entry.Node = Dst; 6690 Args.push_back(Entry); 6691 6692 Entry.Ty = Type::getInt8Ty(*getContext()); 6693 Entry.Node = Value; 6694 Args.push_back(Entry); 6695 6696 Entry.Ty = SizeTy; 6697 Entry.Node = Size; 6698 Args.push_back(Entry); 6699 6700 RTLIB::Libcall LibraryCall = 6701 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6702 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6703 report_fatal_error("Unsupported element size"); 6704 6705 TargetLowering::CallLoweringInfo CLI(*this); 6706 CLI.setDebugLoc(dl) 6707 .setChain(Chain) 6708 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6709 Type::getVoidTy(*getContext()), 6710 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6711 TLI->getPointerTy(getDataLayout())), 6712 std::move(Args)) 6713 .setDiscardResult() 6714 .setTailCall(isTailCall); 6715 6716 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6717 return CallResult.second; 6718 } 6719 6720 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6721 SDVTList VTList, ArrayRef<SDValue> Ops, 6722 MachineMemOperand *MMO) { 6723 FoldingSetNodeID ID; 6724 ID.AddInteger(MemVT.getRawBits()); 6725 AddNodeIDNode(ID, Opcode, VTList, Ops); 6726 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6727 void* IP = nullptr; 6728 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6729 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6730 return SDValue(E, 0); 6731 } 6732 6733 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6734 VTList, MemVT, MMO); 6735 createOperands(N, Ops); 6736 6737 CSEMap.InsertNode(N, IP); 6738 InsertNode(N); 6739 return SDValue(N, 0); 6740 } 6741 6742 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6743 EVT MemVT, SDVTList VTs, SDValue Chain, 6744 SDValue Ptr, SDValue Cmp, SDValue Swp, 6745 MachineMemOperand *MMO) { 6746 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6747 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6748 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6749 6750 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6751 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6752 } 6753 6754 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6755 SDValue Chain, SDValue Ptr, SDValue Val, 6756 MachineMemOperand *MMO) { 6757 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6758 Opcode == ISD::ATOMIC_LOAD_SUB || 6759 Opcode == ISD::ATOMIC_LOAD_AND || 6760 Opcode == ISD::ATOMIC_LOAD_CLR || 6761 Opcode == ISD::ATOMIC_LOAD_OR || 6762 Opcode == ISD::ATOMIC_LOAD_XOR || 6763 Opcode == ISD::ATOMIC_LOAD_NAND || 6764 Opcode == ISD::ATOMIC_LOAD_MIN || 6765 Opcode == ISD::ATOMIC_LOAD_MAX || 6766 Opcode == ISD::ATOMIC_LOAD_UMIN || 6767 Opcode == ISD::ATOMIC_LOAD_UMAX || 6768 Opcode == ISD::ATOMIC_LOAD_FADD || 6769 Opcode == ISD::ATOMIC_LOAD_FSUB || 6770 Opcode == ISD::ATOMIC_SWAP || 6771 Opcode == ISD::ATOMIC_STORE) && 6772 "Invalid Atomic Op"); 6773 6774 EVT VT = Val.getValueType(); 6775 6776 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6777 getVTList(VT, MVT::Other); 6778 SDValue Ops[] = {Chain, Ptr, Val}; 6779 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6780 } 6781 6782 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6783 EVT VT, SDValue Chain, SDValue Ptr, 6784 MachineMemOperand *MMO) { 6785 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6786 6787 SDVTList VTs = getVTList(VT, MVT::Other); 6788 SDValue Ops[] = {Chain, Ptr}; 6789 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6790 } 6791 6792 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6793 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6794 if (Ops.size() == 1) 6795 return Ops[0]; 6796 6797 SmallVector<EVT, 4> VTs; 6798 VTs.reserve(Ops.size()); 6799 for (unsigned i = 0; i < Ops.size(); ++i) 6800 VTs.push_back(Ops[i].getValueType()); 6801 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6802 } 6803 6804 SDValue SelectionDAG::getMemIntrinsicNode( 6805 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6806 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6807 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6808 if (!Size && MemVT.isScalableVector()) 6809 Size = MemoryLocation::UnknownSize; 6810 else if (!Size) 6811 Size = MemVT.getStoreSize(); 6812 6813 MachineFunction &MF = getMachineFunction(); 6814 MachineMemOperand *MMO = 6815 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6816 6817 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6818 } 6819 6820 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6821 SDVTList VTList, 6822 ArrayRef<SDValue> Ops, EVT MemVT, 6823 MachineMemOperand *MMO) { 6824 assert((Opcode == ISD::INTRINSIC_VOID || 6825 Opcode == ISD::INTRINSIC_W_CHAIN || 6826 Opcode == ISD::PREFETCH || 6827 ((int)Opcode <= std::numeric_limits<int>::max() && 6828 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6829 "Opcode is not a memory-accessing opcode!"); 6830 6831 // Memoize the node unless it returns a flag. 6832 MemIntrinsicSDNode *N; 6833 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6834 FoldingSetNodeID ID; 6835 AddNodeIDNode(ID, Opcode, VTList, Ops); 6836 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6837 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6838 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6839 void *IP = nullptr; 6840 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6841 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6842 return SDValue(E, 0); 6843 } 6844 6845 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6846 VTList, MemVT, MMO); 6847 createOperands(N, Ops); 6848 6849 CSEMap.InsertNode(N, IP); 6850 } else { 6851 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6852 VTList, MemVT, MMO); 6853 createOperands(N, Ops); 6854 } 6855 InsertNode(N); 6856 SDValue V(N, 0); 6857 NewSDValueDbgMsg(V, "Creating new node: ", this); 6858 return V; 6859 } 6860 6861 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6862 SDValue Chain, int FrameIndex, 6863 int64_t Size, int64_t Offset) { 6864 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6865 const auto VTs = getVTList(MVT::Other); 6866 SDValue Ops[2] = { 6867 Chain, 6868 getFrameIndex(FrameIndex, 6869 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6870 true)}; 6871 6872 FoldingSetNodeID ID; 6873 AddNodeIDNode(ID, Opcode, VTs, Ops); 6874 ID.AddInteger(FrameIndex); 6875 ID.AddInteger(Size); 6876 ID.AddInteger(Offset); 6877 void *IP = nullptr; 6878 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6879 return SDValue(E, 0); 6880 6881 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6882 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6883 createOperands(N, Ops); 6884 CSEMap.InsertNode(N, IP); 6885 InsertNode(N); 6886 SDValue V(N, 0); 6887 NewSDValueDbgMsg(V, "Creating new node: ", this); 6888 return V; 6889 } 6890 6891 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6892 uint64_t Guid, uint64_t Index, 6893 uint32_t Attr) { 6894 const unsigned Opcode = ISD::PSEUDO_PROBE; 6895 const auto VTs = getVTList(MVT::Other); 6896 SDValue Ops[] = {Chain}; 6897 FoldingSetNodeID ID; 6898 AddNodeIDNode(ID, Opcode, VTs, Ops); 6899 ID.AddInteger(Guid); 6900 ID.AddInteger(Index); 6901 void *IP = nullptr; 6902 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6903 return SDValue(E, 0); 6904 6905 auto *N = newSDNode<PseudoProbeSDNode>( 6906 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 6907 createOperands(N, Ops); 6908 CSEMap.InsertNode(N, IP); 6909 InsertNode(N); 6910 SDValue V(N, 0); 6911 NewSDValueDbgMsg(V, "Creating new node: ", this); 6912 return V; 6913 } 6914 6915 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6916 /// MachinePointerInfo record from it. This is particularly useful because the 6917 /// code generator has many cases where it doesn't bother passing in a 6918 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6919 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6920 SelectionDAG &DAG, SDValue Ptr, 6921 int64_t Offset = 0) { 6922 // If this is FI+Offset, we can model it. 6923 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6924 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6925 FI->getIndex(), Offset); 6926 6927 // If this is (FI+Offset1)+Offset2, we can model it. 6928 if (Ptr.getOpcode() != ISD::ADD || 6929 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6930 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6931 return Info; 6932 6933 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6934 return MachinePointerInfo::getFixedStack( 6935 DAG.getMachineFunction(), FI, 6936 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6937 } 6938 6939 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6940 /// MachinePointerInfo record from it. This is particularly useful because the 6941 /// code generator has many cases where it doesn't bother passing in a 6942 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6943 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6944 SelectionDAG &DAG, SDValue Ptr, 6945 SDValue OffsetOp) { 6946 // If the 'Offset' value isn't a constant, we can't handle this. 6947 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6948 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6949 if (OffsetOp.isUndef()) 6950 return InferPointerInfo(Info, DAG, Ptr); 6951 return Info; 6952 } 6953 6954 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6955 EVT VT, const SDLoc &dl, SDValue Chain, 6956 SDValue Ptr, SDValue Offset, 6957 MachinePointerInfo PtrInfo, EVT MemVT, 6958 Align Alignment, 6959 MachineMemOperand::Flags MMOFlags, 6960 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6961 assert(Chain.getValueType() == MVT::Other && 6962 "Invalid chain type"); 6963 6964 MMOFlags |= MachineMemOperand::MOLoad; 6965 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6966 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6967 // clients. 6968 if (PtrInfo.V.isNull()) 6969 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6970 6971 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6972 MachineFunction &MF = getMachineFunction(); 6973 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6974 Alignment, AAInfo, Ranges); 6975 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6976 } 6977 6978 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6979 EVT VT, const SDLoc &dl, SDValue Chain, 6980 SDValue Ptr, SDValue Offset, EVT MemVT, 6981 MachineMemOperand *MMO) { 6982 if (VT == MemVT) { 6983 ExtType = ISD::NON_EXTLOAD; 6984 } else if (ExtType == ISD::NON_EXTLOAD) { 6985 assert(VT == MemVT && "Non-extending load from different memory type!"); 6986 } else { 6987 // Extending load. 6988 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6989 "Should only be an extending load, not truncating!"); 6990 assert(VT.isInteger() == MemVT.isInteger() && 6991 "Cannot convert from FP to Int or Int -> FP!"); 6992 assert(VT.isVector() == MemVT.isVector() && 6993 "Cannot use an ext load to convert to or from a vector!"); 6994 assert((!VT.isVector() || 6995 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6996 "Cannot use an ext load to change the number of vector elements!"); 6997 } 6998 6999 bool Indexed = AM != ISD::UNINDEXED; 7000 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7001 7002 SDVTList VTs = Indexed ? 7003 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7004 SDValue Ops[] = { Chain, Ptr, Offset }; 7005 FoldingSetNodeID ID; 7006 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7007 ID.AddInteger(MemVT.getRawBits()); 7008 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7009 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7010 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7011 void *IP = nullptr; 7012 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7013 cast<LoadSDNode>(E)->refineAlignment(MMO); 7014 return SDValue(E, 0); 7015 } 7016 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7017 ExtType, MemVT, MMO); 7018 createOperands(N, Ops); 7019 7020 CSEMap.InsertNode(N, IP); 7021 InsertNode(N); 7022 SDValue V(N, 0); 7023 NewSDValueDbgMsg(V, "Creating new node: ", this); 7024 return V; 7025 } 7026 7027 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7028 SDValue Ptr, MachinePointerInfo PtrInfo, 7029 MaybeAlign Alignment, 7030 MachineMemOperand::Flags MMOFlags, 7031 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7032 SDValue Undef = getUNDEF(Ptr.getValueType()); 7033 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7034 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7035 } 7036 7037 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7038 SDValue Ptr, MachineMemOperand *MMO) { 7039 SDValue Undef = getUNDEF(Ptr.getValueType()); 7040 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7041 VT, MMO); 7042 } 7043 7044 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7045 EVT VT, SDValue Chain, SDValue Ptr, 7046 MachinePointerInfo PtrInfo, EVT MemVT, 7047 MaybeAlign Alignment, 7048 MachineMemOperand::Flags MMOFlags, 7049 const AAMDNodes &AAInfo) { 7050 SDValue Undef = getUNDEF(Ptr.getValueType()); 7051 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7052 MemVT, Alignment, MMOFlags, AAInfo); 7053 } 7054 7055 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7056 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7057 MachineMemOperand *MMO) { 7058 SDValue Undef = getUNDEF(Ptr.getValueType()); 7059 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7060 MemVT, MMO); 7061 } 7062 7063 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7064 SDValue Base, SDValue Offset, 7065 ISD::MemIndexedMode AM) { 7066 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7067 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7068 // Don't propagate the invariant or dereferenceable flags. 7069 auto MMOFlags = 7070 LD->getMemOperand()->getFlags() & 7071 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7072 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7073 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7074 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7075 } 7076 7077 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7078 SDValue Ptr, MachinePointerInfo PtrInfo, 7079 Align Alignment, 7080 MachineMemOperand::Flags MMOFlags, 7081 const AAMDNodes &AAInfo) { 7082 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7083 7084 MMOFlags |= MachineMemOperand::MOStore; 7085 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7086 7087 if (PtrInfo.V.isNull()) 7088 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7089 7090 MachineFunction &MF = getMachineFunction(); 7091 uint64_t Size = 7092 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7093 MachineMemOperand *MMO = 7094 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7095 return getStore(Chain, dl, Val, Ptr, MMO); 7096 } 7097 7098 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7099 SDValue Ptr, MachineMemOperand *MMO) { 7100 assert(Chain.getValueType() == MVT::Other && 7101 "Invalid chain type"); 7102 EVT VT = Val.getValueType(); 7103 SDVTList VTs = getVTList(MVT::Other); 7104 SDValue Undef = getUNDEF(Ptr.getValueType()); 7105 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7106 FoldingSetNodeID ID; 7107 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7108 ID.AddInteger(VT.getRawBits()); 7109 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7110 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7111 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7112 void *IP = nullptr; 7113 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7114 cast<StoreSDNode>(E)->refineAlignment(MMO); 7115 return SDValue(E, 0); 7116 } 7117 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7118 ISD::UNINDEXED, false, VT, MMO); 7119 createOperands(N, Ops); 7120 7121 CSEMap.InsertNode(N, IP); 7122 InsertNode(N); 7123 SDValue V(N, 0); 7124 NewSDValueDbgMsg(V, "Creating new node: ", this); 7125 return V; 7126 } 7127 7128 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7129 SDValue Ptr, MachinePointerInfo PtrInfo, 7130 EVT SVT, Align Alignment, 7131 MachineMemOperand::Flags MMOFlags, 7132 const AAMDNodes &AAInfo) { 7133 assert(Chain.getValueType() == MVT::Other && 7134 "Invalid chain type"); 7135 7136 MMOFlags |= MachineMemOperand::MOStore; 7137 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7138 7139 if (PtrInfo.V.isNull()) 7140 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7141 7142 MachineFunction &MF = getMachineFunction(); 7143 MachineMemOperand *MMO = MF.getMachineMemOperand( 7144 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7145 Alignment, AAInfo); 7146 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7147 } 7148 7149 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7150 SDValue Ptr, EVT SVT, 7151 MachineMemOperand *MMO) { 7152 EVT VT = Val.getValueType(); 7153 7154 assert(Chain.getValueType() == MVT::Other && 7155 "Invalid chain type"); 7156 if (VT == SVT) 7157 return getStore(Chain, dl, Val, Ptr, MMO); 7158 7159 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7160 "Should only be a truncating store, not extending!"); 7161 assert(VT.isInteger() == SVT.isInteger() && 7162 "Can't do FP-INT conversion!"); 7163 assert(VT.isVector() == SVT.isVector() && 7164 "Cannot use trunc store to convert to or from a vector!"); 7165 assert((!VT.isVector() || 7166 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7167 "Cannot use trunc store to change the number of vector elements!"); 7168 7169 SDVTList VTs = getVTList(MVT::Other); 7170 SDValue Undef = getUNDEF(Ptr.getValueType()); 7171 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7172 FoldingSetNodeID ID; 7173 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7174 ID.AddInteger(SVT.getRawBits()); 7175 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7176 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7177 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7178 void *IP = nullptr; 7179 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7180 cast<StoreSDNode>(E)->refineAlignment(MMO); 7181 return SDValue(E, 0); 7182 } 7183 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7184 ISD::UNINDEXED, true, SVT, MMO); 7185 createOperands(N, Ops); 7186 7187 CSEMap.InsertNode(N, IP); 7188 InsertNode(N); 7189 SDValue V(N, 0); 7190 NewSDValueDbgMsg(V, "Creating new node: ", this); 7191 return V; 7192 } 7193 7194 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7195 SDValue Base, SDValue Offset, 7196 ISD::MemIndexedMode AM) { 7197 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7198 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7199 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7200 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7201 FoldingSetNodeID ID; 7202 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7203 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7204 ID.AddInteger(ST->getRawSubclassData()); 7205 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7206 void *IP = nullptr; 7207 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7208 return SDValue(E, 0); 7209 7210 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7211 ST->isTruncatingStore(), ST->getMemoryVT(), 7212 ST->getMemOperand()); 7213 createOperands(N, Ops); 7214 7215 CSEMap.InsertNode(N, IP); 7216 InsertNode(N); 7217 SDValue V(N, 0); 7218 NewSDValueDbgMsg(V, "Creating new node: ", this); 7219 return V; 7220 } 7221 7222 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7223 SDValue Base, SDValue Offset, SDValue Mask, 7224 SDValue PassThru, EVT MemVT, 7225 MachineMemOperand *MMO, 7226 ISD::MemIndexedMode AM, 7227 ISD::LoadExtType ExtTy, bool isExpanding) { 7228 bool Indexed = AM != ISD::UNINDEXED; 7229 assert((Indexed || Offset.isUndef()) && 7230 "Unindexed masked load with an offset!"); 7231 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7232 : getVTList(VT, MVT::Other); 7233 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7234 FoldingSetNodeID ID; 7235 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7236 ID.AddInteger(MemVT.getRawBits()); 7237 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7238 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7239 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7240 void *IP = nullptr; 7241 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7242 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7243 return SDValue(E, 0); 7244 } 7245 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7246 AM, ExtTy, isExpanding, MemVT, MMO); 7247 createOperands(N, Ops); 7248 7249 CSEMap.InsertNode(N, IP); 7250 InsertNode(N); 7251 SDValue V(N, 0); 7252 NewSDValueDbgMsg(V, "Creating new node: ", this); 7253 return V; 7254 } 7255 7256 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7257 SDValue Base, SDValue Offset, 7258 ISD::MemIndexedMode AM) { 7259 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7260 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7261 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7262 Offset, LD->getMask(), LD->getPassThru(), 7263 LD->getMemoryVT(), LD->getMemOperand(), AM, 7264 LD->getExtensionType(), LD->isExpandingLoad()); 7265 } 7266 7267 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7268 SDValue Val, SDValue Base, SDValue Offset, 7269 SDValue Mask, EVT MemVT, 7270 MachineMemOperand *MMO, 7271 ISD::MemIndexedMode AM, bool IsTruncating, 7272 bool IsCompressing) { 7273 assert(Chain.getValueType() == MVT::Other && 7274 "Invalid chain type"); 7275 bool Indexed = AM != ISD::UNINDEXED; 7276 assert((Indexed || Offset.isUndef()) && 7277 "Unindexed masked store with an offset!"); 7278 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7279 : getVTList(MVT::Other); 7280 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7281 FoldingSetNodeID ID; 7282 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7283 ID.AddInteger(MemVT.getRawBits()); 7284 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7285 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7286 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7287 void *IP = nullptr; 7288 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7289 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7290 return SDValue(E, 0); 7291 } 7292 auto *N = 7293 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7294 IsTruncating, IsCompressing, MemVT, MMO); 7295 createOperands(N, Ops); 7296 7297 CSEMap.InsertNode(N, IP); 7298 InsertNode(N); 7299 SDValue V(N, 0); 7300 NewSDValueDbgMsg(V, "Creating new node: ", this); 7301 return V; 7302 } 7303 7304 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7305 SDValue Base, SDValue Offset, 7306 ISD::MemIndexedMode AM) { 7307 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7308 assert(ST->getOffset().isUndef() && 7309 "Masked store is already a indexed store!"); 7310 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7311 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7312 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7313 } 7314 7315 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7316 ArrayRef<SDValue> Ops, 7317 MachineMemOperand *MMO, 7318 ISD::MemIndexType IndexType) { 7319 assert(Ops.size() == 6 && "Incompatible number of operands"); 7320 7321 FoldingSetNodeID ID; 7322 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7323 ID.AddInteger(VT.getRawBits()); 7324 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7325 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7326 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7327 void *IP = nullptr; 7328 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7329 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7330 return SDValue(E, 0); 7331 } 7332 7333 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7334 VTs, VT, MMO, IndexType); 7335 createOperands(N, Ops); 7336 7337 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7338 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7339 assert(N->getMask().getValueType().getVectorNumElements() == 7340 N->getValueType(0).getVectorNumElements() && 7341 "Vector width mismatch between mask and data"); 7342 assert(N->getIndex().getValueType().getVectorNumElements() >= 7343 N->getValueType(0).getVectorNumElements() && 7344 "Vector width mismatch between index and data"); 7345 assert(isa<ConstantSDNode>(N->getScale()) && 7346 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7347 "Scale should be a constant power of 2"); 7348 7349 CSEMap.InsertNode(N, IP); 7350 InsertNode(N); 7351 SDValue V(N, 0); 7352 NewSDValueDbgMsg(V, "Creating new node: ", this); 7353 return V; 7354 } 7355 7356 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7357 ArrayRef<SDValue> Ops, 7358 MachineMemOperand *MMO, 7359 ISD::MemIndexType IndexType, 7360 bool IsTrunc) { 7361 assert(Ops.size() == 6 && "Incompatible number of operands"); 7362 7363 FoldingSetNodeID ID; 7364 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7365 ID.AddInteger(VT.getRawBits()); 7366 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7367 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7368 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7369 void *IP = nullptr; 7370 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7371 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7372 return SDValue(E, 0); 7373 } 7374 7375 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7376 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7377 VTs, VT, MMO, IndexType, IsTrunc); 7378 createOperands(N, Ops); 7379 7380 assert(N->getMask().getValueType().getVectorElementCount() == 7381 N->getValue().getValueType().getVectorElementCount() && 7382 "Vector width mismatch between mask and data"); 7383 assert( 7384 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7385 N->getValue().getValueType().getVectorElementCount().isScalable() && 7386 "Scalable flags of index and data do not match"); 7387 assert(ElementCount::isKnownGE( 7388 N->getIndex().getValueType().getVectorElementCount(), 7389 N->getValue().getValueType().getVectorElementCount()) && 7390 "Vector width mismatch between index and data"); 7391 assert(isa<ConstantSDNode>(N->getScale()) && 7392 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7393 "Scale should be a constant power of 2"); 7394 7395 CSEMap.InsertNode(N, IP); 7396 InsertNode(N); 7397 SDValue V(N, 0); 7398 NewSDValueDbgMsg(V, "Creating new node: ", this); 7399 return V; 7400 } 7401 7402 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7403 // select undef, T, F --> T (if T is a constant), otherwise F 7404 // select, ?, undef, F --> F 7405 // select, ?, T, undef --> T 7406 if (Cond.isUndef()) 7407 return isConstantValueOfAnyType(T) ? T : F; 7408 if (T.isUndef()) 7409 return F; 7410 if (F.isUndef()) 7411 return T; 7412 7413 // select true, T, F --> T 7414 // select false, T, F --> F 7415 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7416 return CondC->isNullValue() ? F : T; 7417 7418 // TODO: This should simplify VSELECT with constant condition using something 7419 // like this (but check boolean contents to be complete?): 7420 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7421 // return T; 7422 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7423 // return F; 7424 7425 // select ?, T, T --> T 7426 if (T == F) 7427 return T; 7428 7429 return SDValue(); 7430 } 7431 7432 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7433 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7434 if (X.isUndef()) 7435 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7436 // shift X, undef --> undef (because it may shift by the bitwidth) 7437 if (Y.isUndef()) 7438 return getUNDEF(X.getValueType()); 7439 7440 // shift 0, Y --> 0 7441 // shift X, 0 --> X 7442 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7443 return X; 7444 7445 // shift X, C >= bitwidth(X) --> undef 7446 // All vector elements must be too big (or undef) to avoid partial undefs. 7447 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7448 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7449 }; 7450 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7451 return getUNDEF(X.getValueType()); 7452 7453 return SDValue(); 7454 } 7455 7456 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7457 SDNodeFlags Flags) { 7458 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7459 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7460 // operation is poison. That result can be relaxed to undef. 7461 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7462 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7463 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7464 (YC && YC->getValueAPF().isNaN()); 7465 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7466 (YC && YC->getValueAPF().isInfinity()); 7467 7468 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7469 return getUNDEF(X.getValueType()); 7470 7471 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7472 return getUNDEF(X.getValueType()); 7473 7474 if (!YC) 7475 return SDValue(); 7476 7477 // X + -0.0 --> X 7478 if (Opcode == ISD::FADD) 7479 if (YC->getValueAPF().isNegZero()) 7480 return X; 7481 7482 // X - +0.0 --> X 7483 if (Opcode == ISD::FSUB) 7484 if (YC->getValueAPF().isPosZero()) 7485 return X; 7486 7487 // X * 1.0 --> X 7488 // X / 1.0 --> X 7489 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7490 if (YC->getValueAPF().isExactlyValue(1.0)) 7491 return X; 7492 7493 // X * 0.0 --> 0.0 7494 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7495 if (YC->getValueAPF().isZero()) 7496 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7497 7498 return SDValue(); 7499 } 7500 7501 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7502 SDValue Ptr, SDValue SV, unsigned Align) { 7503 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7504 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7505 } 7506 7507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7508 ArrayRef<SDUse> Ops) { 7509 switch (Ops.size()) { 7510 case 0: return getNode(Opcode, DL, VT); 7511 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7512 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7513 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7514 default: break; 7515 } 7516 7517 // Copy from an SDUse array into an SDValue array for use with 7518 // the regular getNode logic. 7519 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7520 return getNode(Opcode, DL, VT, NewOps); 7521 } 7522 7523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7524 ArrayRef<SDValue> Ops) { 7525 SDNodeFlags Flags; 7526 if (Inserter) 7527 Flags = Inserter->getFlags(); 7528 return getNode(Opcode, DL, VT, Ops, Flags); 7529 } 7530 7531 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7532 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7533 unsigned NumOps = Ops.size(); 7534 switch (NumOps) { 7535 case 0: return getNode(Opcode, DL, VT); 7536 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7537 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7538 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7539 default: break; 7540 } 7541 7542 switch (Opcode) { 7543 default: break; 7544 case ISD::BUILD_VECTOR: 7545 // Attempt to simplify BUILD_VECTOR. 7546 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7547 return V; 7548 break; 7549 case ISD::CONCAT_VECTORS: 7550 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7551 return V; 7552 break; 7553 case ISD::SELECT_CC: 7554 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7555 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7556 "LHS and RHS of condition must have same type!"); 7557 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7558 "True and False arms of SelectCC must have same type!"); 7559 assert(Ops[2].getValueType() == VT && 7560 "select_cc node must be of same type as true and false value!"); 7561 break; 7562 case ISD::BR_CC: 7563 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7564 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7565 "LHS/RHS of comparison should match types!"); 7566 break; 7567 } 7568 7569 // Memoize nodes. 7570 SDNode *N; 7571 SDVTList VTs = getVTList(VT); 7572 7573 if (VT != MVT::Glue) { 7574 FoldingSetNodeID ID; 7575 AddNodeIDNode(ID, Opcode, VTs, Ops); 7576 void *IP = nullptr; 7577 7578 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7579 return SDValue(E, 0); 7580 7581 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7582 createOperands(N, Ops); 7583 7584 CSEMap.InsertNode(N, IP); 7585 } else { 7586 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7587 createOperands(N, Ops); 7588 } 7589 7590 N->setFlags(Flags); 7591 InsertNode(N); 7592 SDValue V(N, 0); 7593 NewSDValueDbgMsg(V, "Creating new node: ", this); 7594 return V; 7595 } 7596 7597 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7598 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7599 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7600 } 7601 7602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7603 ArrayRef<SDValue> Ops) { 7604 SDNodeFlags Flags; 7605 if (Inserter) 7606 Flags = Inserter->getFlags(); 7607 return getNode(Opcode, DL, VTList, Ops, Flags); 7608 } 7609 7610 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7611 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7612 if (VTList.NumVTs == 1) 7613 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7614 7615 switch (Opcode) { 7616 case ISD::STRICT_FP_EXTEND: 7617 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7618 "Invalid STRICT_FP_EXTEND!"); 7619 assert(VTList.VTs[0].isFloatingPoint() && 7620 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7621 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7622 "STRICT_FP_EXTEND result type should be vector iff the operand " 7623 "type is vector!"); 7624 assert((!VTList.VTs[0].isVector() || 7625 VTList.VTs[0].getVectorNumElements() == 7626 Ops[1].getValueType().getVectorNumElements()) && 7627 "Vector element count mismatch!"); 7628 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7629 "Invalid fpext node, dst <= src!"); 7630 break; 7631 case ISD::STRICT_FP_ROUND: 7632 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7633 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7634 "STRICT_FP_ROUND result type should be vector iff the operand " 7635 "type is vector!"); 7636 assert((!VTList.VTs[0].isVector() || 7637 VTList.VTs[0].getVectorNumElements() == 7638 Ops[1].getValueType().getVectorNumElements()) && 7639 "Vector element count mismatch!"); 7640 assert(VTList.VTs[0].isFloatingPoint() && 7641 Ops[1].getValueType().isFloatingPoint() && 7642 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7643 isa<ConstantSDNode>(Ops[2]) && 7644 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7645 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7646 "Invalid STRICT_FP_ROUND!"); 7647 break; 7648 #if 0 7649 // FIXME: figure out how to safely handle things like 7650 // int foo(int x) { return 1 << (x & 255); } 7651 // int bar() { return foo(256); } 7652 case ISD::SRA_PARTS: 7653 case ISD::SRL_PARTS: 7654 case ISD::SHL_PARTS: 7655 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7656 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7657 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7658 else if (N3.getOpcode() == ISD::AND) 7659 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7660 // If the and is only masking out bits that cannot effect the shift, 7661 // eliminate the and. 7662 unsigned NumBits = VT.getScalarSizeInBits()*2; 7663 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7664 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7665 } 7666 break; 7667 #endif 7668 } 7669 7670 // Memoize the node unless it returns a flag. 7671 SDNode *N; 7672 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7673 FoldingSetNodeID ID; 7674 AddNodeIDNode(ID, Opcode, VTList, Ops); 7675 void *IP = nullptr; 7676 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7677 return SDValue(E, 0); 7678 7679 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7680 createOperands(N, Ops); 7681 CSEMap.InsertNode(N, IP); 7682 } else { 7683 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7684 createOperands(N, Ops); 7685 } 7686 7687 N->setFlags(Flags); 7688 InsertNode(N); 7689 SDValue V(N, 0); 7690 NewSDValueDbgMsg(V, "Creating new node: ", this); 7691 return V; 7692 } 7693 7694 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7695 SDVTList VTList) { 7696 return getNode(Opcode, DL, VTList, None); 7697 } 7698 7699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7700 SDValue N1) { 7701 SDValue Ops[] = { N1 }; 7702 return getNode(Opcode, DL, VTList, Ops); 7703 } 7704 7705 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7706 SDValue N1, SDValue N2) { 7707 SDValue Ops[] = { N1, N2 }; 7708 return getNode(Opcode, DL, VTList, Ops); 7709 } 7710 7711 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7712 SDValue N1, SDValue N2, SDValue N3) { 7713 SDValue Ops[] = { N1, N2, N3 }; 7714 return getNode(Opcode, DL, VTList, Ops); 7715 } 7716 7717 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7718 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7719 SDValue Ops[] = { N1, N2, N3, N4 }; 7720 return getNode(Opcode, DL, VTList, Ops); 7721 } 7722 7723 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7724 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7725 SDValue N5) { 7726 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7727 return getNode(Opcode, DL, VTList, Ops); 7728 } 7729 7730 SDVTList SelectionDAG::getVTList(EVT VT) { 7731 return makeVTList(SDNode::getValueTypeList(VT), 1); 7732 } 7733 7734 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7735 FoldingSetNodeID ID; 7736 ID.AddInteger(2U); 7737 ID.AddInteger(VT1.getRawBits()); 7738 ID.AddInteger(VT2.getRawBits()); 7739 7740 void *IP = nullptr; 7741 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7742 if (!Result) { 7743 EVT *Array = Allocator.Allocate<EVT>(2); 7744 Array[0] = VT1; 7745 Array[1] = VT2; 7746 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7747 VTListMap.InsertNode(Result, IP); 7748 } 7749 return Result->getSDVTList(); 7750 } 7751 7752 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7753 FoldingSetNodeID ID; 7754 ID.AddInteger(3U); 7755 ID.AddInteger(VT1.getRawBits()); 7756 ID.AddInteger(VT2.getRawBits()); 7757 ID.AddInteger(VT3.getRawBits()); 7758 7759 void *IP = nullptr; 7760 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7761 if (!Result) { 7762 EVT *Array = Allocator.Allocate<EVT>(3); 7763 Array[0] = VT1; 7764 Array[1] = VT2; 7765 Array[2] = VT3; 7766 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7767 VTListMap.InsertNode(Result, IP); 7768 } 7769 return Result->getSDVTList(); 7770 } 7771 7772 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7773 FoldingSetNodeID ID; 7774 ID.AddInteger(4U); 7775 ID.AddInteger(VT1.getRawBits()); 7776 ID.AddInteger(VT2.getRawBits()); 7777 ID.AddInteger(VT3.getRawBits()); 7778 ID.AddInteger(VT4.getRawBits()); 7779 7780 void *IP = nullptr; 7781 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7782 if (!Result) { 7783 EVT *Array = Allocator.Allocate<EVT>(4); 7784 Array[0] = VT1; 7785 Array[1] = VT2; 7786 Array[2] = VT3; 7787 Array[3] = VT4; 7788 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7789 VTListMap.InsertNode(Result, IP); 7790 } 7791 return Result->getSDVTList(); 7792 } 7793 7794 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7795 unsigned NumVTs = VTs.size(); 7796 FoldingSetNodeID ID; 7797 ID.AddInteger(NumVTs); 7798 for (unsigned index = 0; index < NumVTs; index++) { 7799 ID.AddInteger(VTs[index].getRawBits()); 7800 } 7801 7802 void *IP = nullptr; 7803 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7804 if (!Result) { 7805 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7806 llvm::copy(VTs, Array); 7807 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7808 VTListMap.InsertNode(Result, IP); 7809 } 7810 return Result->getSDVTList(); 7811 } 7812 7813 7814 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7815 /// specified operands. If the resultant node already exists in the DAG, 7816 /// this does not modify the specified node, instead it returns the node that 7817 /// already exists. If the resultant node does not exist in the DAG, the 7818 /// input node is returned. As a degenerate case, if you specify the same 7819 /// input operands as the node already has, the input node is returned. 7820 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7821 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7822 7823 // Check to see if there is no change. 7824 if (Op == N->getOperand(0)) return N; 7825 7826 // See if the modified node already exists. 7827 void *InsertPos = nullptr; 7828 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7829 return Existing; 7830 7831 // Nope it doesn't. Remove the node from its current place in the maps. 7832 if (InsertPos) 7833 if (!RemoveNodeFromCSEMaps(N)) 7834 InsertPos = nullptr; 7835 7836 // Now we update the operands. 7837 N->OperandList[0].set(Op); 7838 7839 updateDivergence(N); 7840 // If this gets put into a CSE map, add it. 7841 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7842 return N; 7843 } 7844 7845 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7846 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7847 7848 // Check to see if there is no change. 7849 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7850 return N; // No operands changed, just return the input node. 7851 7852 // See if the modified node already exists. 7853 void *InsertPos = nullptr; 7854 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7855 return Existing; 7856 7857 // Nope it doesn't. Remove the node from its current place in the maps. 7858 if (InsertPos) 7859 if (!RemoveNodeFromCSEMaps(N)) 7860 InsertPos = nullptr; 7861 7862 // Now we update the operands. 7863 if (N->OperandList[0] != Op1) 7864 N->OperandList[0].set(Op1); 7865 if (N->OperandList[1] != Op2) 7866 N->OperandList[1].set(Op2); 7867 7868 updateDivergence(N); 7869 // If this gets put into a CSE map, add it. 7870 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7871 return N; 7872 } 7873 7874 SDNode *SelectionDAG:: 7875 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7876 SDValue Ops[] = { Op1, Op2, Op3 }; 7877 return UpdateNodeOperands(N, Ops); 7878 } 7879 7880 SDNode *SelectionDAG:: 7881 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7882 SDValue Op3, SDValue Op4) { 7883 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7884 return UpdateNodeOperands(N, Ops); 7885 } 7886 7887 SDNode *SelectionDAG:: 7888 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7889 SDValue Op3, SDValue Op4, SDValue Op5) { 7890 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7891 return UpdateNodeOperands(N, Ops); 7892 } 7893 7894 SDNode *SelectionDAG:: 7895 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7896 unsigned NumOps = Ops.size(); 7897 assert(N->getNumOperands() == NumOps && 7898 "Update with wrong number of operands"); 7899 7900 // If no operands changed just return the input node. 7901 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7902 return N; 7903 7904 // See if the modified node already exists. 7905 void *InsertPos = nullptr; 7906 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7907 return Existing; 7908 7909 // Nope it doesn't. Remove the node from its current place in the maps. 7910 if (InsertPos) 7911 if (!RemoveNodeFromCSEMaps(N)) 7912 InsertPos = nullptr; 7913 7914 // Now we update the operands. 7915 for (unsigned i = 0; i != NumOps; ++i) 7916 if (N->OperandList[i] != Ops[i]) 7917 N->OperandList[i].set(Ops[i]); 7918 7919 updateDivergence(N); 7920 // If this gets put into a CSE map, add it. 7921 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7922 return N; 7923 } 7924 7925 /// DropOperands - Release the operands and set this node to have 7926 /// zero operands. 7927 void SDNode::DropOperands() { 7928 // Unlike the code in MorphNodeTo that does this, we don't need to 7929 // watch for dead nodes here. 7930 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7931 SDUse &Use = *I++; 7932 Use.set(SDValue()); 7933 } 7934 } 7935 7936 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7937 ArrayRef<MachineMemOperand *> NewMemRefs) { 7938 if (NewMemRefs.empty()) { 7939 N->clearMemRefs(); 7940 return; 7941 } 7942 7943 // Check if we can avoid allocating by storing a single reference directly. 7944 if (NewMemRefs.size() == 1) { 7945 N->MemRefs = NewMemRefs[0]; 7946 N->NumMemRefs = 1; 7947 return; 7948 } 7949 7950 MachineMemOperand **MemRefsBuffer = 7951 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7952 llvm::copy(NewMemRefs, MemRefsBuffer); 7953 N->MemRefs = MemRefsBuffer; 7954 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7955 } 7956 7957 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7958 /// machine opcode. 7959 /// 7960 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7961 EVT VT) { 7962 SDVTList VTs = getVTList(VT); 7963 return SelectNodeTo(N, MachineOpc, VTs, None); 7964 } 7965 7966 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7967 EVT VT, SDValue Op1) { 7968 SDVTList VTs = getVTList(VT); 7969 SDValue Ops[] = { Op1 }; 7970 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7971 } 7972 7973 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7974 EVT VT, SDValue Op1, 7975 SDValue Op2) { 7976 SDVTList VTs = getVTList(VT); 7977 SDValue Ops[] = { Op1, Op2 }; 7978 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7979 } 7980 7981 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7982 EVT VT, SDValue Op1, 7983 SDValue Op2, SDValue Op3) { 7984 SDVTList VTs = getVTList(VT); 7985 SDValue Ops[] = { Op1, Op2, Op3 }; 7986 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7987 } 7988 7989 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7990 EVT VT, ArrayRef<SDValue> Ops) { 7991 SDVTList VTs = getVTList(VT); 7992 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7993 } 7994 7995 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7996 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7997 SDVTList VTs = getVTList(VT1, VT2); 7998 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7999 } 8000 8001 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8002 EVT VT1, EVT VT2) { 8003 SDVTList VTs = getVTList(VT1, VT2); 8004 return SelectNodeTo(N, MachineOpc, VTs, None); 8005 } 8006 8007 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8008 EVT VT1, EVT VT2, EVT VT3, 8009 ArrayRef<SDValue> Ops) { 8010 SDVTList VTs = getVTList(VT1, VT2, VT3); 8011 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8012 } 8013 8014 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8015 EVT VT1, EVT VT2, 8016 SDValue Op1, SDValue Op2) { 8017 SDVTList VTs = getVTList(VT1, VT2); 8018 SDValue Ops[] = { Op1, Op2 }; 8019 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8020 } 8021 8022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8023 SDVTList VTs,ArrayRef<SDValue> Ops) { 8024 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8025 // Reset the NodeID to -1. 8026 New->setNodeId(-1); 8027 if (New != N) { 8028 ReplaceAllUsesWith(N, New); 8029 RemoveDeadNode(N); 8030 } 8031 return New; 8032 } 8033 8034 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8035 /// the line number information on the merged node since it is not possible to 8036 /// preserve the information that operation is associated with multiple lines. 8037 /// This will make the debugger working better at -O0, were there is a higher 8038 /// probability having other instructions associated with that line. 8039 /// 8040 /// For IROrder, we keep the smaller of the two 8041 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8042 DebugLoc NLoc = N->getDebugLoc(); 8043 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8044 N->setDebugLoc(DebugLoc()); 8045 } 8046 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8047 N->setIROrder(Order); 8048 return N; 8049 } 8050 8051 /// MorphNodeTo - This *mutates* the specified node to have the specified 8052 /// return type, opcode, and operands. 8053 /// 8054 /// Note that MorphNodeTo returns the resultant node. If there is already a 8055 /// node of the specified opcode and operands, it returns that node instead of 8056 /// the current one. Note that the SDLoc need not be the same. 8057 /// 8058 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8059 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8060 /// node, and because it doesn't require CSE recalculation for any of 8061 /// the node's users. 8062 /// 8063 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8064 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8065 /// the legalizer which maintain worklists that would need to be updated when 8066 /// deleting things. 8067 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8068 SDVTList VTs, ArrayRef<SDValue> Ops) { 8069 // If an identical node already exists, use it. 8070 void *IP = nullptr; 8071 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8072 FoldingSetNodeID ID; 8073 AddNodeIDNode(ID, Opc, VTs, Ops); 8074 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8075 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8076 } 8077 8078 if (!RemoveNodeFromCSEMaps(N)) 8079 IP = nullptr; 8080 8081 // Start the morphing. 8082 N->NodeType = Opc; 8083 N->ValueList = VTs.VTs; 8084 N->NumValues = VTs.NumVTs; 8085 8086 // Clear the operands list, updating used nodes to remove this from their 8087 // use list. Keep track of any operands that become dead as a result. 8088 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8089 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8090 SDUse &Use = *I++; 8091 SDNode *Used = Use.getNode(); 8092 Use.set(SDValue()); 8093 if (Used->use_empty()) 8094 DeadNodeSet.insert(Used); 8095 } 8096 8097 // For MachineNode, initialize the memory references information. 8098 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8099 MN->clearMemRefs(); 8100 8101 // Swap for an appropriately sized array from the recycler. 8102 removeOperands(N); 8103 createOperands(N, Ops); 8104 8105 // Delete any nodes that are still dead after adding the uses for the 8106 // new operands. 8107 if (!DeadNodeSet.empty()) { 8108 SmallVector<SDNode *, 16> DeadNodes; 8109 for (SDNode *N : DeadNodeSet) 8110 if (N->use_empty()) 8111 DeadNodes.push_back(N); 8112 RemoveDeadNodes(DeadNodes); 8113 } 8114 8115 if (IP) 8116 CSEMap.InsertNode(N, IP); // Memoize the new node. 8117 return N; 8118 } 8119 8120 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8121 unsigned OrigOpc = Node->getOpcode(); 8122 unsigned NewOpc; 8123 switch (OrigOpc) { 8124 default: 8125 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8126 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8127 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8128 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8129 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8130 #include "llvm/IR/ConstrainedOps.def" 8131 } 8132 8133 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8134 8135 // We're taking this node out of the chain, so we need to re-link things. 8136 SDValue InputChain = Node->getOperand(0); 8137 SDValue OutputChain = SDValue(Node, 1); 8138 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8139 8140 SmallVector<SDValue, 3> Ops; 8141 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8142 Ops.push_back(Node->getOperand(i)); 8143 8144 SDVTList VTs = getVTList(Node->getValueType(0)); 8145 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8146 8147 // MorphNodeTo can operate in two ways: if an existing node with the 8148 // specified operands exists, it can just return it. Otherwise, it 8149 // updates the node in place to have the requested operands. 8150 if (Res == Node) { 8151 // If we updated the node in place, reset the node ID. To the isel, 8152 // this should be just like a newly allocated machine node. 8153 Res->setNodeId(-1); 8154 } else { 8155 ReplaceAllUsesWith(Node, Res); 8156 RemoveDeadNode(Node); 8157 } 8158 8159 return Res; 8160 } 8161 8162 /// getMachineNode - These are used for target selectors to create a new node 8163 /// with specified return type(s), MachineInstr opcode, and operands. 8164 /// 8165 /// Note that getMachineNode returns the resultant node. If there is already a 8166 /// node of the specified opcode and operands, it returns that node instead of 8167 /// the current one. 8168 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8169 EVT VT) { 8170 SDVTList VTs = getVTList(VT); 8171 return getMachineNode(Opcode, dl, VTs, None); 8172 } 8173 8174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8175 EVT VT, SDValue Op1) { 8176 SDVTList VTs = getVTList(VT); 8177 SDValue Ops[] = { Op1 }; 8178 return getMachineNode(Opcode, dl, VTs, Ops); 8179 } 8180 8181 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8182 EVT VT, SDValue Op1, SDValue Op2) { 8183 SDVTList VTs = getVTList(VT); 8184 SDValue Ops[] = { Op1, Op2 }; 8185 return getMachineNode(Opcode, dl, VTs, Ops); 8186 } 8187 8188 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8189 EVT VT, SDValue Op1, SDValue Op2, 8190 SDValue Op3) { 8191 SDVTList VTs = getVTList(VT); 8192 SDValue Ops[] = { Op1, Op2, Op3 }; 8193 return getMachineNode(Opcode, dl, VTs, Ops); 8194 } 8195 8196 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8197 EVT VT, ArrayRef<SDValue> Ops) { 8198 SDVTList VTs = getVTList(VT); 8199 return getMachineNode(Opcode, dl, VTs, Ops); 8200 } 8201 8202 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8203 EVT VT1, EVT VT2, SDValue Op1, 8204 SDValue Op2) { 8205 SDVTList VTs = getVTList(VT1, VT2); 8206 SDValue Ops[] = { Op1, Op2 }; 8207 return getMachineNode(Opcode, dl, VTs, Ops); 8208 } 8209 8210 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8211 EVT VT1, EVT VT2, SDValue Op1, 8212 SDValue Op2, SDValue Op3) { 8213 SDVTList VTs = getVTList(VT1, VT2); 8214 SDValue Ops[] = { Op1, Op2, Op3 }; 8215 return getMachineNode(Opcode, dl, VTs, Ops); 8216 } 8217 8218 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8219 EVT VT1, EVT VT2, 8220 ArrayRef<SDValue> Ops) { 8221 SDVTList VTs = getVTList(VT1, VT2); 8222 return getMachineNode(Opcode, dl, VTs, Ops); 8223 } 8224 8225 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8226 EVT VT1, EVT VT2, EVT VT3, 8227 SDValue Op1, SDValue Op2) { 8228 SDVTList VTs = getVTList(VT1, VT2, VT3); 8229 SDValue Ops[] = { Op1, Op2 }; 8230 return getMachineNode(Opcode, dl, VTs, Ops); 8231 } 8232 8233 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8234 EVT VT1, EVT VT2, EVT VT3, 8235 SDValue Op1, SDValue Op2, 8236 SDValue Op3) { 8237 SDVTList VTs = getVTList(VT1, VT2, VT3); 8238 SDValue Ops[] = { Op1, Op2, Op3 }; 8239 return getMachineNode(Opcode, dl, VTs, Ops); 8240 } 8241 8242 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8243 EVT VT1, EVT VT2, EVT VT3, 8244 ArrayRef<SDValue> Ops) { 8245 SDVTList VTs = getVTList(VT1, VT2, VT3); 8246 return getMachineNode(Opcode, dl, VTs, Ops); 8247 } 8248 8249 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8250 ArrayRef<EVT> ResultTys, 8251 ArrayRef<SDValue> Ops) { 8252 SDVTList VTs = getVTList(ResultTys); 8253 return getMachineNode(Opcode, dl, VTs, Ops); 8254 } 8255 8256 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8257 SDVTList VTs, 8258 ArrayRef<SDValue> Ops) { 8259 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8260 MachineSDNode *N; 8261 void *IP = nullptr; 8262 8263 if (DoCSE) { 8264 FoldingSetNodeID ID; 8265 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8266 IP = nullptr; 8267 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8268 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8269 } 8270 } 8271 8272 // Allocate a new MachineSDNode. 8273 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8274 createOperands(N, Ops); 8275 8276 if (DoCSE) 8277 CSEMap.InsertNode(N, IP); 8278 8279 InsertNode(N); 8280 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8281 return N; 8282 } 8283 8284 /// getTargetExtractSubreg - A convenience function for creating 8285 /// TargetOpcode::EXTRACT_SUBREG nodes. 8286 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8287 SDValue Operand) { 8288 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8289 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8290 VT, Operand, SRIdxVal); 8291 return SDValue(Subreg, 0); 8292 } 8293 8294 /// getTargetInsertSubreg - A convenience function for creating 8295 /// TargetOpcode::INSERT_SUBREG nodes. 8296 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8297 SDValue Operand, SDValue Subreg) { 8298 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8299 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8300 VT, Operand, Subreg, SRIdxVal); 8301 return SDValue(Result, 0); 8302 } 8303 8304 /// getNodeIfExists - Get the specified node if it's already available, or 8305 /// else return NULL. 8306 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8307 ArrayRef<SDValue> Ops) { 8308 SDNodeFlags Flags; 8309 if (Inserter) 8310 Flags = Inserter->getFlags(); 8311 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8312 } 8313 8314 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8315 ArrayRef<SDValue> Ops, 8316 const SDNodeFlags Flags) { 8317 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8318 FoldingSetNodeID ID; 8319 AddNodeIDNode(ID, Opcode, VTList, Ops); 8320 void *IP = nullptr; 8321 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8322 E->intersectFlagsWith(Flags); 8323 return E; 8324 } 8325 } 8326 return nullptr; 8327 } 8328 8329 /// doesNodeExist - Check if a node exists without modifying its flags. 8330 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8331 ArrayRef<SDValue> Ops) { 8332 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8333 FoldingSetNodeID ID; 8334 AddNodeIDNode(ID, Opcode, VTList, Ops); 8335 void *IP = nullptr; 8336 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8337 return true; 8338 } 8339 return false; 8340 } 8341 8342 /// getDbgValue - Creates a SDDbgValue node. 8343 /// 8344 /// SDNode 8345 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8346 SDNode *N, unsigned R, bool IsIndirect, 8347 const DebugLoc &DL, unsigned O) { 8348 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8349 "Expected inlined-at fields to agree"); 8350 return new (DbgInfo->getAlloc()) 8351 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8352 } 8353 8354 /// Constant 8355 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8356 DIExpression *Expr, 8357 const Value *C, 8358 const DebugLoc &DL, unsigned O) { 8359 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8360 "Expected inlined-at fields to agree"); 8361 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8362 } 8363 8364 /// FrameIndex 8365 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8366 DIExpression *Expr, unsigned FI, 8367 bool IsIndirect, 8368 const DebugLoc &DL, 8369 unsigned O) { 8370 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8371 "Expected inlined-at fields to agree"); 8372 return new (DbgInfo->getAlloc()) 8373 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8374 } 8375 8376 /// VReg 8377 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8378 DIExpression *Expr, 8379 unsigned VReg, bool IsIndirect, 8380 const DebugLoc &DL, unsigned O) { 8381 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8382 "Expected inlined-at fields to agree"); 8383 return new (DbgInfo->getAlloc()) 8384 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8385 } 8386 8387 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8388 unsigned OffsetInBits, unsigned SizeInBits, 8389 bool InvalidateDbg) { 8390 SDNode *FromNode = From.getNode(); 8391 SDNode *ToNode = To.getNode(); 8392 assert(FromNode && ToNode && "Can't modify dbg values"); 8393 8394 // PR35338 8395 // TODO: assert(From != To && "Redundant dbg value transfer"); 8396 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8397 if (From == To || FromNode == ToNode) 8398 return; 8399 8400 if (!FromNode->getHasDebugValue()) 8401 return; 8402 8403 SmallVector<SDDbgValue *, 2> ClonedDVs; 8404 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8405 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8406 continue; 8407 8408 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8409 8410 // Just transfer the dbg value attached to From. 8411 if (Dbg->getResNo() != From.getResNo()) 8412 continue; 8413 8414 DIVariable *Var = Dbg->getVariable(); 8415 auto *Expr = Dbg->getExpression(); 8416 // If a fragment is requested, update the expression. 8417 if (SizeInBits) { 8418 // When splitting a larger (e.g., sign-extended) value whose 8419 // lower bits are described with an SDDbgValue, do not attempt 8420 // to transfer the SDDbgValue to the upper bits. 8421 if (auto FI = Expr->getFragmentInfo()) 8422 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8423 continue; 8424 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8425 SizeInBits); 8426 if (!Fragment) 8427 continue; 8428 Expr = *Fragment; 8429 } 8430 // Clone the SDDbgValue and move it to To. 8431 SDDbgValue *Clone = getDbgValue( 8432 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8433 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8434 ClonedDVs.push_back(Clone); 8435 8436 if (InvalidateDbg) { 8437 // Invalidate value and indicate the SDDbgValue should not be emitted. 8438 Dbg->setIsInvalidated(); 8439 Dbg->setIsEmitted(); 8440 } 8441 } 8442 8443 for (SDDbgValue *Dbg : ClonedDVs) 8444 AddDbgValue(Dbg, ToNode, false); 8445 } 8446 8447 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8448 if (!N.getHasDebugValue()) 8449 return; 8450 8451 SmallVector<SDDbgValue *, 2> ClonedDVs; 8452 for (auto DV : GetDbgValues(&N)) { 8453 if (DV->isInvalidated()) 8454 continue; 8455 switch (N.getOpcode()) { 8456 default: 8457 break; 8458 case ISD::ADD: 8459 SDValue N0 = N.getOperand(0); 8460 SDValue N1 = N.getOperand(1); 8461 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8462 isConstantIntBuildVectorOrConstantInt(N1)) { 8463 uint64_t Offset = N.getConstantOperandVal(1); 8464 // Rewrite an ADD constant node into a DIExpression. Since we are 8465 // performing arithmetic to compute the variable's *value* in the 8466 // DIExpression, we need to mark the expression with a 8467 // DW_OP_stack_value. 8468 auto *DIExpr = DV->getExpression(); 8469 DIExpr = 8470 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8471 SDDbgValue *Clone = 8472 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8473 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8474 ClonedDVs.push_back(Clone); 8475 DV->setIsInvalidated(); 8476 DV->setIsEmitted(); 8477 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8478 N0.getNode()->dumprFull(this); 8479 dbgs() << " into " << *DIExpr << '\n'); 8480 } 8481 } 8482 } 8483 8484 for (SDDbgValue *Dbg : ClonedDVs) 8485 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8486 } 8487 8488 /// Creates a SDDbgLabel node. 8489 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8490 const DebugLoc &DL, unsigned O) { 8491 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8492 "Expected inlined-at fields to agree"); 8493 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8494 } 8495 8496 namespace { 8497 8498 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8499 /// pointed to by a use iterator is deleted, increment the use iterator 8500 /// so that it doesn't dangle. 8501 /// 8502 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8503 SDNode::use_iterator &UI; 8504 SDNode::use_iterator &UE; 8505 8506 void NodeDeleted(SDNode *N, SDNode *E) override { 8507 // Increment the iterator as needed. 8508 while (UI != UE && N == *UI) 8509 ++UI; 8510 } 8511 8512 public: 8513 RAUWUpdateListener(SelectionDAG &d, 8514 SDNode::use_iterator &ui, 8515 SDNode::use_iterator &ue) 8516 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8517 }; 8518 8519 } // end anonymous namespace 8520 8521 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8522 /// This can cause recursive merging of nodes in the DAG. 8523 /// 8524 /// This version assumes From has a single result value. 8525 /// 8526 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8527 SDNode *From = FromN.getNode(); 8528 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8529 "Cannot replace with this method!"); 8530 assert(From != To.getNode() && "Cannot replace uses of with self"); 8531 8532 // Preserve Debug Values 8533 transferDbgValues(FromN, To); 8534 8535 // Iterate over all the existing uses of From. New uses will be added 8536 // to the beginning of the use list, which we avoid visiting. 8537 // This specifically avoids visiting uses of From that arise while the 8538 // replacement is happening, because any such uses would be the result 8539 // of CSE: If an existing node looks like From after one of its operands 8540 // is replaced by To, we don't want to replace of all its users with To 8541 // too. See PR3018 for more info. 8542 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8543 RAUWUpdateListener Listener(*this, UI, UE); 8544 while (UI != UE) { 8545 SDNode *User = *UI; 8546 8547 // This node is about to morph, remove its old self from the CSE maps. 8548 RemoveNodeFromCSEMaps(User); 8549 8550 // A user can appear in a use list multiple times, and when this 8551 // happens the uses are usually next to each other in the list. 8552 // To help reduce the number of CSE recomputations, process all 8553 // the uses of this user that we can find this way. 8554 do { 8555 SDUse &Use = UI.getUse(); 8556 ++UI; 8557 Use.set(To); 8558 if (To->isDivergent() != From->isDivergent()) 8559 updateDivergence(User); 8560 } while (UI != UE && *UI == User); 8561 // Now that we have modified User, add it back to the CSE maps. If it 8562 // already exists there, recursively merge the results together. 8563 AddModifiedNodeToCSEMaps(User); 8564 } 8565 8566 // If we just RAUW'd the root, take note. 8567 if (FromN == getRoot()) 8568 setRoot(To); 8569 } 8570 8571 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8572 /// This can cause recursive merging of nodes in the DAG. 8573 /// 8574 /// This version assumes that for each value of From, there is a 8575 /// corresponding value in To in the same position with the same type. 8576 /// 8577 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8578 #ifndef NDEBUG 8579 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8580 assert((!From->hasAnyUseOfValue(i) || 8581 From->getValueType(i) == To->getValueType(i)) && 8582 "Cannot use this version of ReplaceAllUsesWith!"); 8583 #endif 8584 8585 // Handle the trivial case. 8586 if (From == To) 8587 return; 8588 8589 // Preserve Debug Info. Only do this if there's a use. 8590 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8591 if (From->hasAnyUseOfValue(i)) { 8592 assert((i < To->getNumValues()) && "Invalid To location"); 8593 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8594 } 8595 8596 // Iterate over just the existing users of From. See the comments in 8597 // the ReplaceAllUsesWith above. 8598 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8599 RAUWUpdateListener Listener(*this, UI, UE); 8600 while (UI != UE) { 8601 SDNode *User = *UI; 8602 8603 // This node is about to morph, remove its old self from the CSE maps. 8604 RemoveNodeFromCSEMaps(User); 8605 8606 // A user can appear in a use list multiple times, and when this 8607 // happens the uses are usually next to each other in the list. 8608 // To help reduce the number of CSE recomputations, process all 8609 // the uses of this user that we can find this way. 8610 do { 8611 SDUse &Use = UI.getUse(); 8612 ++UI; 8613 Use.setNode(To); 8614 if (To->isDivergent() != From->isDivergent()) 8615 updateDivergence(User); 8616 } while (UI != UE && *UI == User); 8617 8618 // Now that we have modified User, add it back to the CSE maps. If it 8619 // already exists there, recursively merge the results together. 8620 AddModifiedNodeToCSEMaps(User); 8621 } 8622 8623 // If we just RAUW'd the root, take note. 8624 if (From == getRoot().getNode()) 8625 setRoot(SDValue(To, getRoot().getResNo())); 8626 } 8627 8628 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8629 /// This can cause recursive merging of nodes in the DAG. 8630 /// 8631 /// This version can replace From with any result values. To must match the 8632 /// number and types of values returned by From. 8633 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8634 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8635 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8636 8637 // Preserve Debug Info. 8638 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8639 transferDbgValues(SDValue(From, i), To[i]); 8640 8641 // Iterate over just the existing users of From. See the comments in 8642 // the ReplaceAllUsesWith above. 8643 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8644 RAUWUpdateListener Listener(*this, UI, UE); 8645 while (UI != UE) { 8646 SDNode *User = *UI; 8647 8648 // This node is about to morph, remove its old self from the CSE maps. 8649 RemoveNodeFromCSEMaps(User); 8650 8651 // A user can appear in a use list multiple times, and when this happens the 8652 // uses are usually next to each other in the list. To help reduce the 8653 // number of CSE and divergence recomputations, process all the uses of this 8654 // user that we can find this way. 8655 bool To_IsDivergent = false; 8656 do { 8657 SDUse &Use = UI.getUse(); 8658 const SDValue &ToOp = To[Use.getResNo()]; 8659 ++UI; 8660 Use.set(ToOp); 8661 To_IsDivergent |= ToOp->isDivergent(); 8662 } while (UI != UE && *UI == User); 8663 8664 if (To_IsDivergent != From->isDivergent()) 8665 updateDivergence(User); 8666 8667 // Now that we have modified User, add it back to the CSE maps. If it 8668 // already exists there, recursively merge the results together. 8669 AddModifiedNodeToCSEMaps(User); 8670 } 8671 8672 // If we just RAUW'd the root, take note. 8673 if (From == getRoot().getNode()) 8674 setRoot(SDValue(To[getRoot().getResNo()])); 8675 } 8676 8677 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8678 /// uses of other values produced by From.getNode() alone. The Deleted 8679 /// vector is handled the same way as for ReplaceAllUsesWith. 8680 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8681 // Handle the really simple, really trivial case efficiently. 8682 if (From == To) return; 8683 8684 // Handle the simple, trivial, case efficiently. 8685 if (From.getNode()->getNumValues() == 1) { 8686 ReplaceAllUsesWith(From, To); 8687 return; 8688 } 8689 8690 // Preserve Debug Info. 8691 transferDbgValues(From, To); 8692 8693 // Iterate over just the existing users of From. See the comments in 8694 // the ReplaceAllUsesWith above. 8695 SDNode::use_iterator UI = From.getNode()->use_begin(), 8696 UE = From.getNode()->use_end(); 8697 RAUWUpdateListener Listener(*this, UI, UE); 8698 while (UI != UE) { 8699 SDNode *User = *UI; 8700 bool UserRemovedFromCSEMaps = false; 8701 8702 // A user can appear in a use list multiple times, and when this 8703 // happens the uses are usually next to each other in the list. 8704 // To help reduce the number of CSE recomputations, process all 8705 // the uses of this user that we can find this way. 8706 do { 8707 SDUse &Use = UI.getUse(); 8708 8709 // Skip uses of different values from the same node. 8710 if (Use.getResNo() != From.getResNo()) { 8711 ++UI; 8712 continue; 8713 } 8714 8715 // If this node hasn't been modified yet, it's still in the CSE maps, 8716 // so remove its old self from the CSE maps. 8717 if (!UserRemovedFromCSEMaps) { 8718 RemoveNodeFromCSEMaps(User); 8719 UserRemovedFromCSEMaps = true; 8720 } 8721 8722 ++UI; 8723 Use.set(To); 8724 if (To->isDivergent() != From->isDivergent()) 8725 updateDivergence(User); 8726 } while (UI != UE && *UI == User); 8727 // We are iterating over all uses of the From node, so if a use 8728 // doesn't use the specific value, no changes are made. 8729 if (!UserRemovedFromCSEMaps) 8730 continue; 8731 8732 // Now that we have modified User, add it back to the CSE maps. If it 8733 // already exists there, recursively merge the results together. 8734 AddModifiedNodeToCSEMaps(User); 8735 } 8736 8737 // If we just RAUW'd the root, take note. 8738 if (From == getRoot()) 8739 setRoot(To); 8740 } 8741 8742 namespace { 8743 8744 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8745 /// to record information about a use. 8746 struct UseMemo { 8747 SDNode *User; 8748 unsigned Index; 8749 SDUse *Use; 8750 }; 8751 8752 /// operator< - Sort Memos by User. 8753 bool operator<(const UseMemo &L, const UseMemo &R) { 8754 return (intptr_t)L.User < (intptr_t)R.User; 8755 } 8756 8757 } // end anonymous namespace 8758 8759 bool SelectionDAG::calculateDivergence(SDNode *N) { 8760 if (TLI->isSDNodeAlwaysUniform(N)) { 8761 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8762 "Conflicting divergence information!"); 8763 return false; 8764 } 8765 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8766 return true; 8767 for (auto &Op : N->ops()) { 8768 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8769 return true; 8770 } 8771 return false; 8772 } 8773 8774 void SelectionDAG::updateDivergence(SDNode *N) { 8775 SmallVector<SDNode *, 16> Worklist(1, N); 8776 do { 8777 N = Worklist.pop_back_val(); 8778 bool IsDivergent = calculateDivergence(N); 8779 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8780 N->SDNodeBits.IsDivergent = IsDivergent; 8781 Worklist.insert(Worklist.end(), N->use_begin(), N->use_end()); 8782 } 8783 } while (!Worklist.empty()); 8784 } 8785 8786 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8787 DenseMap<SDNode *, unsigned> Degree; 8788 Order.reserve(AllNodes.size()); 8789 for (auto &N : allnodes()) { 8790 unsigned NOps = N.getNumOperands(); 8791 Degree[&N] = NOps; 8792 if (0 == NOps) 8793 Order.push_back(&N); 8794 } 8795 for (size_t I = 0; I != Order.size(); ++I) { 8796 SDNode *N = Order[I]; 8797 for (auto U : N->uses()) { 8798 unsigned &UnsortedOps = Degree[U]; 8799 if (0 == --UnsortedOps) 8800 Order.push_back(U); 8801 } 8802 } 8803 } 8804 8805 #ifndef NDEBUG 8806 void SelectionDAG::VerifyDAGDiverence() { 8807 std::vector<SDNode *> TopoOrder; 8808 CreateTopologicalOrder(TopoOrder); 8809 for (auto *N : TopoOrder) { 8810 assert(calculateDivergence(N) == N->isDivergent() && 8811 "Divergence bit inconsistency detected"); 8812 } 8813 } 8814 #endif 8815 8816 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8817 /// uses of other values produced by From.getNode() alone. The same value 8818 /// may appear in both the From and To list. The Deleted vector is 8819 /// handled the same way as for ReplaceAllUsesWith. 8820 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8821 const SDValue *To, 8822 unsigned Num){ 8823 // Handle the simple, trivial case efficiently. 8824 if (Num == 1) 8825 return ReplaceAllUsesOfValueWith(*From, *To); 8826 8827 transferDbgValues(*From, *To); 8828 8829 // Read up all the uses and make records of them. This helps 8830 // processing new uses that are introduced during the 8831 // replacement process. 8832 SmallVector<UseMemo, 4> Uses; 8833 for (unsigned i = 0; i != Num; ++i) { 8834 unsigned FromResNo = From[i].getResNo(); 8835 SDNode *FromNode = From[i].getNode(); 8836 for (SDNode::use_iterator UI = FromNode->use_begin(), 8837 E = FromNode->use_end(); UI != E; ++UI) { 8838 SDUse &Use = UI.getUse(); 8839 if (Use.getResNo() == FromResNo) { 8840 UseMemo Memo = { *UI, i, &Use }; 8841 Uses.push_back(Memo); 8842 } 8843 } 8844 } 8845 8846 // Sort the uses, so that all the uses from a given User are together. 8847 llvm::sort(Uses); 8848 8849 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8850 UseIndex != UseIndexEnd; ) { 8851 // We know that this user uses some value of From. If it is the right 8852 // value, update it. 8853 SDNode *User = Uses[UseIndex].User; 8854 8855 // This node is about to morph, remove its old self from the CSE maps. 8856 RemoveNodeFromCSEMaps(User); 8857 8858 // The Uses array is sorted, so all the uses for a given User 8859 // are next to each other in the list. 8860 // To help reduce the number of CSE recomputations, process all 8861 // the uses of this user that we can find this way. 8862 do { 8863 unsigned i = Uses[UseIndex].Index; 8864 SDUse &Use = *Uses[UseIndex].Use; 8865 ++UseIndex; 8866 8867 Use.set(To[i]); 8868 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8869 8870 // Now that we have modified User, add it back to the CSE maps. If it 8871 // already exists there, recursively merge the results together. 8872 AddModifiedNodeToCSEMaps(User); 8873 } 8874 } 8875 8876 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8877 /// based on their topological order. It returns the maximum id and a vector 8878 /// of the SDNodes* in assigned order by reference. 8879 unsigned SelectionDAG::AssignTopologicalOrder() { 8880 unsigned DAGSize = 0; 8881 8882 // SortedPos tracks the progress of the algorithm. Nodes before it are 8883 // sorted, nodes after it are unsorted. When the algorithm completes 8884 // it is at the end of the list. 8885 allnodes_iterator SortedPos = allnodes_begin(); 8886 8887 // Visit all the nodes. Move nodes with no operands to the front of 8888 // the list immediately. Annotate nodes that do have operands with their 8889 // operand count. Before we do this, the Node Id fields of the nodes 8890 // may contain arbitrary values. After, the Node Id fields for nodes 8891 // before SortedPos will contain the topological sort index, and the 8892 // Node Id fields for nodes At SortedPos and after will contain the 8893 // count of outstanding operands. 8894 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8895 SDNode *N = &*I++; 8896 checkForCycles(N, this); 8897 unsigned Degree = N->getNumOperands(); 8898 if (Degree == 0) { 8899 // A node with no uses, add it to the result array immediately. 8900 N->setNodeId(DAGSize++); 8901 allnodes_iterator Q(N); 8902 if (Q != SortedPos) 8903 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8904 assert(SortedPos != AllNodes.end() && "Overran node list"); 8905 ++SortedPos; 8906 } else { 8907 // Temporarily use the Node Id as scratch space for the degree count. 8908 N->setNodeId(Degree); 8909 } 8910 } 8911 8912 // Visit all the nodes. As we iterate, move nodes into sorted order, 8913 // such that by the time the end is reached all nodes will be sorted. 8914 for (SDNode &Node : allnodes()) { 8915 SDNode *N = &Node; 8916 checkForCycles(N, this); 8917 // N is in sorted position, so all its uses have one less operand 8918 // that needs to be sorted. 8919 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8920 UI != UE; ++UI) { 8921 SDNode *P = *UI; 8922 unsigned Degree = P->getNodeId(); 8923 assert(Degree != 0 && "Invalid node degree"); 8924 --Degree; 8925 if (Degree == 0) { 8926 // All of P's operands are sorted, so P may sorted now. 8927 P->setNodeId(DAGSize++); 8928 if (P->getIterator() != SortedPos) 8929 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8930 assert(SortedPos != AllNodes.end() && "Overran node list"); 8931 ++SortedPos; 8932 } else { 8933 // Update P's outstanding operand count. 8934 P->setNodeId(Degree); 8935 } 8936 } 8937 if (Node.getIterator() == SortedPos) { 8938 #ifndef NDEBUG 8939 allnodes_iterator I(N); 8940 SDNode *S = &*++I; 8941 dbgs() << "Overran sorted position:\n"; 8942 S->dumprFull(this); dbgs() << "\n"; 8943 dbgs() << "Checking if this is due to cycles\n"; 8944 checkForCycles(this, true); 8945 #endif 8946 llvm_unreachable(nullptr); 8947 } 8948 } 8949 8950 assert(SortedPos == AllNodes.end() && 8951 "Topological sort incomplete!"); 8952 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8953 "First node in topological sort is not the entry token!"); 8954 assert(AllNodes.front().getNodeId() == 0 && 8955 "First node in topological sort has non-zero id!"); 8956 assert(AllNodes.front().getNumOperands() == 0 && 8957 "First node in topological sort has operands!"); 8958 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8959 "Last node in topologic sort has unexpected id!"); 8960 assert(AllNodes.back().use_empty() && 8961 "Last node in topologic sort has users!"); 8962 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8963 return DAGSize; 8964 } 8965 8966 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8967 /// value is produced by SD. 8968 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8969 if (SD) { 8970 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8971 SD->setHasDebugValue(true); 8972 } 8973 DbgInfo->add(DB, SD, isParameter); 8974 } 8975 8976 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8977 DbgInfo->add(DB); 8978 } 8979 8980 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8981 SDValue NewMemOp) { 8982 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8983 // The new memory operation must have the same position as the old load in 8984 // terms of memory dependency. Create a TokenFactor for the old load and new 8985 // memory operation and update uses of the old load's output chain to use that 8986 // TokenFactor. 8987 SDValue OldChain = SDValue(OldLoad, 1); 8988 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8989 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8990 return NewChain; 8991 8992 SDValue TokenFactor = 8993 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8994 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8995 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8996 return TokenFactor; 8997 } 8998 8999 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9000 Function **OutFunction) { 9001 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9002 9003 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9004 auto *Module = MF->getFunction().getParent(); 9005 auto *Function = Module->getFunction(Symbol); 9006 9007 if (OutFunction != nullptr) 9008 *OutFunction = Function; 9009 9010 if (Function != nullptr) { 9011 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9012 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9013 } 9014 9015 std::string ErrorStr; 9016 raw_string_ostream ErrorFormatter(ErrorStr); 9017 9018 ErrorFormatter << "Undefined external symbol "; 9019 ErrorFormatter << '"' << Symbol << '"'; 9020 ErrorFormatter.flush(); 9021 9022 report_fatal_error(ErrorStr); 9023 } 9024 9025 //===----------------------------------------------------------------------===// 9026 // SDNode Class 9027 //===----------------------------------------------------------------------===// 9028 9029 bool llvm::isNullConstant(SDValue V) { 9030 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9031 return Const != nullptr && Const->isNullValue(); 9032 } 9033 9034 bool llvm::isNullFPConstant(SDValue V) { 9035 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9036 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9037 } 9038 9039 bool llvm::isAllOnesConstant(SDValue V) { 9040 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9041 return Const != nullptr && Const->isAllOnesValue(); 9042 } 9043 9044 bool llvm::isOneConstant(SDValue V) { 9045 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9046 return Const != nullptr && Const->isOne(); 9047 } 9048 9049 SDValue llvm::peekThroughBitcasts(SDValue V) { 9050 while (V.getOpcode() == ISD::BITCAST) 9051 V = V.getOperand(0); 9052 return V; 9053 } 9054 9055 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9056 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9057 V = V.getOperand(0); 9058 return V; 9059 } 9060 9061 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9062 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9063 V = V.getOperand(0); 9064 return V; 9065 } 9066 9067 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9068 if (V.getOpcode() != ISD::XOR) 9069 return false; 9070 V = peekThroughBitcasts(V.getOperand(1)); 9071 unsigned NumBits = V.getScalarValueSizeInBits(); 9072 ConstantSDNode *C = 9073 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9074 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9075 } 9076 9077 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9078 bool AllowTruncation) { 9079 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9080 return CN; 9081 9082 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9083 BitVector UndefElements; 9084 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9085 9086 // BuildVectors can truncate their operands. Ignore that case here unless 9087 // AllowTruncation is set. 9088 if (CN && (UndefElements.none() || AllowUndefs)) { 9089 EVT CVT = CN->getValueType(0); 9090 EVT NSVT = N.getValueType().getScalarType(); 9091 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9092 if (AllowTruncation || (CVT == NSVT)) 9093 return CN; 9094 } 9095 } 9096 9097 return nullptr; 9098 } 9099 9100 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9101 bool AllowUndefs, 9102 bool AllowTruncation) { 9103 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9104 return CN; 9105 9106 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9107 BitVector UndefElements; 9108 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9109 9110 // BuildVectors can truncate their operands. Ignore that case here unless 9111 // AllowTruncation is set. 9112 if (CN && (UndefElements.none() || AllowUndefs)) { 9113 EVT CVT = CN->getValueType(0); 9114 EVT NSVT = N.getValueType().getScalarType(); 9115 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9116 if (AllowTruncation || (CVT == NSVT)) 9117 return CN; 9118 } 9119 } 9120 9121 return nullptr; 9122 } 9123 9124 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9125 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9126 return CN; 9127 9128 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9129 BitVector UndefElements; 9130 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9131 if (CN && (UndefElements.none() || AllowUndefs)) 9132 return CN; 9133 } 9134 9135 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9136 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9137 return CN; 9138 9139 return nullptr; 9140 } 9141 9142 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9143 const APInt &DemandedElts, 9144 bool AllowUndefs) { 9145 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9146 return CN; 9147 9148 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9149 BitVector UndefElements; 9150 ConstantFPSDNode *CN = 9151 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9152 if (CN && (UndefElements.none() || AllowUndefs)) 9153 return CN; 9154 } 9155 9156 return nullptr; 9157 } 9158 9159 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9160 // TODO: may want to use peekThroughBitcast() here. 9161 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9162 return C && C->isNullValue(); 9163 } 9164 9165 bool llvm::isOneOrOneSplat(SDValue N) { 9166 // TODO: may want to use peekThroughBitcast() here. 9167 unsigned BitWidth = N.getScalarValueSizeInBits(); 9168 ConstantSDNode *C = isConstOrConstSplat(N); 9169 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9170 } 9171 9172 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9173 N = peekThroughBitcasts(N); 9174 unsigned BitWidth = N.getScalarValueSizeInBits(); 9175 ConstantSDNode *C = isConstOrConstSplat(N); 9176 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9177 } 9178 9179 HandleSDNode::~HandleSDNode() { 9180 DropOperands(); 9181 } 9182 9183 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9184 const DebugLoc &DL, 9185 const GlobalValue *GA, EVT VT, 9186 int64_t o, unsigned TF) 9187 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9188 TheGlobal = GA; 9189 } 9190 9191 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9192 EVT VT, unsigned SrcAS, 9193 unsigned DestAS) 9194 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9195 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9196 9197 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9198 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9199 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9200 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9201 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9202 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9203 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9204 9205 // We check here that the size of the memory operand fits within the size of 9206 // the MMO. This is because the MMO might indicate only a possible address 9207 // range instead of specifying the affected memory addresses precisely. 9208 // TODO: Make MachineMemOperands aware of scalable vectors. 9209 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9210 "Size mismatch!"); 9211 } 9212 9213 /// Profile - Gather unique data for the node. 9214 /// 9215 void SDNode::Profile(FoldingSetNodeID &ID) const { 9216 AddNodeIDNode(ID, this); 9217 } 9218 9219 namespace { 9220 9221 struct EVTArray { 9222 std::vector<EVT> VTs; 9223 9224 EVTArray() { 9225 VTs.reserve(MVT::LAST_VALUETYPE); 9226 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9227 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9228 } 9229 }; 9230 9231 } // end anonymous namespace 9232 9233 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9234 static ManagedStatic<EVTArray> SimpleVTArray; 9235 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9236 9237 /// getValueTypeList - Return a pointer to the specified value type. 9238 /// 9239 const EVT *SDNode::getValueTypeList(EVT VT) { 9240 if (VT.isExtended()) { 9241 sys::SmartScopedLock<true> Lock(*VTMutex); 9242 return &(*EVTs->insert(VT).first); 9243 } else { 9244 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9245 "Value type out of range!"); 9246 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9247 } 9248 } 9249 9250 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9251 /// indicated value. This method ignores uses of other values defined by this 9252 /// operation. 9253 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9254 assert(Value < getNumValues() && "Bad value!"); 9255 9256 // TODO: Only iterate over uses of a given value of the node 9257 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9258 if (UI.getUse().getResNo() == Value) { 9259 if (NUses == 0) 9260 return false; 9261 --NUses; 9262 } 9263 } 9264 9265 // Found exactly the right number of uses? 9266 return NUses == 0; 9267 } 9268 9269 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9270 /// value. This method ignores uses of other values defined by this operation. 9271 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9272 assert(Value < getNumValues() && "Bad value!"); 9273 9274 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9275 if (UI.getUse().getResNo() == Value) 9276 return true; 9277 9278 return false; 9279 } 9280 9281 /// isOnlyUserOf - Return true if this node is the only use of N. 9282 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9283 bool Seen = false; 9284 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9285 SDNode *User = *I; 9286 if (User == this) 9287 Seen = true; 9288 else 9289 return false; 9290 } 9291 9292 return Seen; 9293 } 9294 9295 /// Return true if the only users of N are contained in Nodes. 9296 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9297 bool Seen = false; 9298 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9299 SDNode *User = *I; 9300 if (llvm::is_contained(Nodes, User)) 9301 Seen = true; 9302 else 9303 return false; 9304 } 9305 9306 return Seen; 9307 } 9308 9309 /// isOperand - Return true if this node is an operand of N. 9310 bool SDValue::isOperandOf(const SDNode *N) const { 9311 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9312 } 9313 9314 bool SDNode::isOperandOf(const SDNode *N) const { 9315 return any_of(N->op_values(), 9316 [this](SDValue Op) { return this == Op.getNode(); }); 9317 } 9318 9319 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9320 /// be a chain) reaches the specified operand without crossing any 9321 /// side-effecting instructions on any chain path. In practice, this looks 9322 /// through token factors and non-volatile loads. In order to remain efficient, 9323 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9324 /// 9325 /// Note that we only need to examine chains when we're searching for 9326 /// side-effects; SelectionDAG requires that all side-effects are represented 9327 /// by chains, even if another operand would force a specific ordering. This 9328 /// constraint is necessary to allow transformations like splitting loads. 9329 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9330 unsigned Depth) const { 9331 if (*this == Dest) return true; 9332 9333 // Don't search too deeply, we just want to be able to see through 9334 // TokenFactor's etc. 9335 if (Depth == 0) return false; 9336 9337 // If this is a token factor, all inputs to the TF happen in parallel. 9338 if (getOpcode() == ISD::TokenFactor) { 9339 // First, try a shallow search. 9340 if (is_contained((*this)->ops(), Dest)) { 9341 // We found the chain we want as an operand of this TokenFactor. 9342 // Essentially, we reach the chain without side-effects if we could 9343 // serialize the TokenFactor into a simple chain of operations with 9344 // Dest as the last operation. This is automatically true if the 9345 // chain has one use: there are no other ordering constraints. 9346 // If the chain has more than one use, we give up: some other 9347 // use of Dest might force a side-effect between Dest and the current 9348 // node. 9349 if (Dest.hasOneUse()) 9350 return true; 9351 } 9352 // Next, try a deep search: check whether every operand of the TokenFactor 9353 // reaches Dest. 9354 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9355 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9356 }); 9357 } 9358 9359 // Loads don't have side effects, look through them. 9360 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9361 if (Ld->isUnordered()) 9362 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9363 } 9364 return false; 9365 } 9366 9367 bool SDNode::hasPredecessor(const SDNode *N) const { 9368 SmallPtrSet<const SDNode *, 32> Visited; 9369 SmallVector<const SDNode *, 16> Worklist; 9370 Worklist.push_back(this); 9371 return hasPredecessorHelper(N, Visited, Worklist); 9372 } 9373 9374 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9375 this->Flags.intersectWith(Flags); 9376 } 9377 9378 SDValue 9379 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9380 ArrayRef<ISD::NodeType> CandidateBinOps, 9381 bool AllowPartials) { 9382 // The pattern must end in an extract from index 0. 9383 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9384 !isNullConstant(Extract->getOperand(1))) 9385 return SDValue(); 9386 9387 // Match against one of the candidate binary ops. 9388 SDValue Op = Extract->getOperand(0); 9389 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9390 return Op.getOpcode() == unsigned(BinOp); 9391 })) 9392 return SDValue(); 9393 9394 // Floating-point reductions may require relaxed constraints on the final step 9395 // of the reduction because they may reorder intermediate operations. 9396 unsigned CandidateBinOp = Op.getOpcode(); 9397 if (Op.getValueType().isFloatingPoint()) { 9398 SDNodeFlags Flags = Op->getFlags(); 9399 switch (CandidateBinOp) { 9400 case ISD::FADD: 9401 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9402 return SDValue(); 9403 break; 9404 default: 9405 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9406 } 9407 } 9408 9409 // Matching failed - attempt to see if we did enough stages that a partial 9410 // reduction from a subvector is possible. 9411 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9412 if (!AllowPartials || !Op) 9413 return SDValue(); 9414 EVT OpVT = Op.getValueType(); 9415 EVT OpSVT = OpVT.getScalarType(); 9416 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9417 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9418 return SDValue(); 9419 BinOp = (ISD::NodeType)CandidateBinOp; 9420 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9421 getVectorIdxConstant(0, SDLoc(Op))); 9422 }; 9423 9424 // At each stage, we're looking for something that looks like: 9425 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9426 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9427 // i32 undef, i32 undef, i32 undef, i32 undef> 9428 // %a = binop <8 x i32> %op, %s 9429 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9430 // we expect something like: 9431 // <4,5,6,7,u,u,u,u> 9432 // <2,3,u,u,u,u,u,u> 9433 // <1,u,u,u,u,u,u,u> 9434 // While a partial reduction match would be: 9435 // <2,3,u,u,u,u,u,u> 9436 // <1,u,u,u,u,u,u,u> 9437 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9438 SDValue PrevOp; 9439 for (unsigned i = 0; i < Stages; ++i) { 9440 unsigned MaskEnd = (1 << i); 9441 9442 if (Op.getOpcode() != CandidateBinOp) 9443 return PartialReduction(PrevOp, MaskEnd); 9444 9445 SDValue Op0 = Op.getOperand(0); 9446 SDValue Op1 = Op.getOperand(1); 9447 9448 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9449 if (Shuffle) { 9450 Op = Op1; 9451 } else { 9452 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9453 Op = Op0; 9454 } 9455 9456 // The first operand of the shuffle should be the same as the other operand 9457 // of the binop. 9458 if (!Shuffle || Shuffle->getOperand(0) != Op) 9459 return PartialReduction(PrevOp, MaskEnd); 9460 9461 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9462 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9463 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9464 return PartialReduction(PrevOp, MaskEnd); 9465 9466 PrevOp = Op; 9467 } 9468 9469 // Handle subvector reductions, which tend to appear after the shuffle 9470 // reduction stages. 9471 while (Op.getOpcode() == CandidateBinOp) { 9472 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9473 SDValue Op0 = Op.getOperand(0); 9474 SDValue Op1 = Op.getOperand(1); 9475 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9476 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9477 Op0.getOperand(0) != Op1.getOperand(0)) 9478 break; 9479 SDValue Src = Op0.getOperand(0); 9480 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9481 if (NumSrcElts != (2 * NumElts)) 9482 break; 9483 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9484 Op1.getConstantOperandAPInt(1) == NumElts) && 9485 !(Op1.getConstantOperandAPInt(1) == 0 && 9486 Op0.getConstantOperandAPInt(1) == NumElts)) 9487 break; 9488 Op = Src; 9489 } 9490 9491 BinOp = (ISD::NodeType)CandidateBinOp; 9492 return Op; 9493 } 9494 9495 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9496 assert(N->getNumValues() == 1 && 9497 "Can't unroll a vector with multiple results!"); 9498 9499 EVT VT = N->getValueType(0); 9500 unsigned NE = VT.getVectorNumElements(); 9501 EVT EltVT = VT.getVectorElementType(); 9502 SDLoc dl(N); 9503 9504 SmallVector<SDValue, 8> Scalars; 9505 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9506 9507 // If ResNE is 0, fully unroll the vector op. 9508 if (ResNE == 0) 9509 ResNE = NE; 9510 else if (NE > ResNE) 9511 NE = ResNE; 9512 9513 unsigned i; 9514 for (i= 0; i != NE; ++i) { 9515 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9516 SDValue Operand = N->getOperand(j); 9517 EVT OperandVT = Operand.getValueType(); 9518 if (OperandVT.isVector()) { 9519 // A vector operand; extract a single element. 9520 EVT OperandEltVT = OperandVT.getVectorElementType(); 9521 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9522 Operand, getVectorIdxConstant(i, dl)); 9523 } else { 9524 // A scalar operand; just use it as is. 9525 Operands[j] = Operand; 9526 } 9527 } 9528 9529 switch (N->getOpcode()) { 9530 default: { 9531 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9532 N->getFlags())); 9533 break; 9534 } 9535 case ISD::VSELECT: 9536 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9537 break; 9538 case ISD::SHL: 9539 case ISD::SRA: 9540 case ISD::SRL: 9541 case ISD::ROTL: 9542 case ISD::ROTR: 9543 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9544 getShiftAmountOperand(Operands[0].getValueType(), 9545 Operands[1]))); 9546 break; 9547 case ISD::SIGN_EXTEND_INREG: { 9548 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9549 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9550 Operands[0], 9551 getValueType(ExtVT))); 9552 } 9553 } 9554 } 9555 9556 for (; i < ResNE; ++i) 9557 Scalars.push_back(getUNDEF(EltVT)); 9558 9559 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9560 return getBuildVector(VecVT, dl, Scalars); 9561 } 9562 9563 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9564 SDNode *N, unsigned ResNE) { 9565 unsigned Opcode = N->getOpcode(); 9566 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9567 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9568 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9569 "Expected an overflow opcode"); 9570 9571 EVT ResVT = N->getValueType(0); 9572 EVT OvVT = N->getValueType(1); 9573 EVT ResEltVT = ResVT.getVectorElementType(); 9574 EVT OvEltVT = OvVT.getVectorElementType(); 9575 SDLoc dl(N); 9576 9577 // If ResNE is 0, fully unroll the vector op. 9578 unsigned NE = ResVT.getVectorNumElements(); 9579 if (ResNE == 0) 9580 ResNE = NE; 9581 else if (NE > ResNE) 9582 NE = ResNE; 9583 9584 SmallVector<SDValue, 8> LHSScalars; 9585 SmallVector<SDValue, 8> RHSScalars; 9586 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9587 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9588 9589 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9590 SDVTList VTs = getVTList(ResEltVT, SVT); 9591 SmallVector<SDValue, 8> ResScalars; 9592 SmallVector<SDValue, 8> OvScalars; 9593 for (unsigned i = 0; i < NE; ++i) { 9594 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9595 SDValue Ov = 9596 getSelect(dl, OvEltVT, Res.getValue(1), 9597 getBoolConstant(true, dl, OvEltVT, ResVT), 9598 getConstant(0, dl, OvEltVT)); 9599 9600 ResScalars.push_back(Res); 9601 OvScalars.push_back(Ov); 9602 } 9603 9604 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9605 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9606 9607 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9608 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9609 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9610 getBuildVector(NewOvVT, dl, OvScalars)); 9611 } 9612 9613 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9614 LoadSDNode *Base, 9615 unsigned Bytes, 9616 int Dist) const { 9617 if (LD->isVolatile() || Base->isVolatile()) 9618 return false; 9619 // TODO: probably too restrictive for atomics, revisit 9620 if (!LD->isSimple()) 9621 return false; 9622 if (LD->isIndexed() || Base->isIndexed()) 9623 return false; 9624 if (LD->getChain() != Base->getChain()) 9625 return false; 9626 EVT VT = LD->getValueType(0); 9627 if (VT.getSizeInBits() / 8 != Bytes) 9628 return false; 9629 9630 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9631 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9632 9633 int64_t Offset = 0; 9634 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9635 return (Dist * Bytes == Offset); 9636 return false; 9637 } 9638 9639 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9640 /// if it cannot be inferred. 9641 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9642 // If this is a GlobalAddress + cst, return the alignment. 9643 const GlobalValue *GV = nullptr; 9644 int64_t GVOffset = 0; 9645 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9646 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9647 KnownBits Known(PtrWidth); 9648 llvm::computeKnownBits(GV, Known, getDataLayout()); 9649 unsigned AlignBits = Known.countMinTrailingZeros(); 9650 if (AlignBits) 9651 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9652 } 9653 9654 // If this is a direct reference to a stack slot, use information about the 9655 // stack slot's alignment. 9656 int FrameIdx = INT_MIN; 9657 int64_t FrameOffset = 0; 9658 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9659 FrameIdx = FI->getIndex(); 9660 } else if (isBaseWithConstantOffset(Ptr) && 9661 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9662 // Handle FI+Cst 9663 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9664 FrameOffset = Ptr.getConstantOperandVal(1); 9665 } 9666 9667 if (FrameIdx != INT_MIN) { 9668 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9669 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9670 } 9671 9672 return None; 9673 } 9674 9675 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9676 /// which is split (or expanded) into two not necessarily identical pieces. 9677 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9678 // Currently all types are split in half. 9679 EVT LoVT, HiVT; 9680 if (!VT.isVector()) 9681 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9682 else 9683 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9684 9685 return std::make_pair(LoVT, HiVT); 9686 } 9687 9688 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9689 /// type, dependent on an enveloping VT that has been split into two identical 9690 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9691 std::pair<EVT, EVT> 9692 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9693 bool *HiIsEmpty) const { 9694 EVT EltTp = VT.getVectorElementType(); 9695 // Examples: 9696 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9697 // custom VL=9 with enveloping VL=8/8 yields 8/1 9698 // custom VL=10 with enveloping VL=8/8 yields 8/2 9699 // etc. 9700 ElementCount VTNumElts = VT.getVectorElementCount(); 9701 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9702 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9703 "Mixing fixed width and scalable vectors when enveloping a type"); 9704 EVT LoVT, HiVT; 9705 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9706 LoVT = EnvVT; 9707 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9708 *HiIsEmpty = false; 9709 } else { 9710 // Flag that hi type has zero storage size, but return split envelop type 9711 // (this would be easier if vector types with zero elements were allowed). 9712 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9713 HiVT = EnvVT; 9714 *HiIsEmpty = true; 9715 } 9716 return std::make_pair(LoVT, HiVT); 9717 } 9718 9719 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9720 /// low/high part. 9721 std::pair<SDValue, SDValue> 9722 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9723 const EVT &HiVT) { 9724 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9725 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9726 "Splitting vector with an invalid mixture of fixed and scalable " 9727 "vector types"); 9728 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9729 N.getValueType().getVectorMinNumElements() && 9730 "More vector elements requested than available!"); 9731 SDValue Lo, Hi; 9732 Lo = 9733 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9734 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9735 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9736 // IDX with the runtime scaling factor of the result vector type. For 9737 // fixed-width result vectors, that runtime scaling factor is 1. 9738 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9739 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9740 return std::make_pair(Lo, Hi); 9741 } 9742 9743 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9744 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9745 EVT VT = N.getValueType(); 9746 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9747 NextPowerOf2(VT.getVectorNumElements())); 9748 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9749 getVectorIdxConstant(0, DL)); 9750 } 9751 9752 void SelectionDAG::ExtractVectorElements(SDValue Op, 9753 SmallVectorImpl<SDValue> &Args, 9754 unsigned Start, unsigned Count, 9755 EVT EltVT) { 9756 EVT VT = Op.getValueType(); 9757 if (Count == 0) 9758 Count = VT.getVectorNumElements(); 9759 if (EltVT == EVT()) 9760 EltVT = VT.getVectorElementType(); 9761 SDLoc SL(Op); 9762 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9763 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9764 getVectorIdxConstant(i, SL))); 9765 } 9766 } 9767 9768 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9769 unsigned GlobalAddressSDNode::getAddressSpace() const { 9770 return getGlobal()->getType()->getAddressSpace(); 9771 } 9772 9773 Type *ConstantPoolSDNode::getType() const { 9774 if (isMachineConstantPoolEntry()) 9775 return Val.MachineCPVal->getType(); 9776 return Val.ConstVal->getType(); 9777 } 9778 9779 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9780 unsigned &SplatBitSize, 9781 bool &HasAnyUndefs, 9782 unsigned MinSplatBits, 9783 bool IsBigEndian) const { 9784 EVT VT = getValueType(0); 9785 assert(VT.isVector() && "Expected a vector type"); 9786 unsigned VecWidth = VT.getSizeInBits(); 9787 if (MinSplatBits > VecWidth) 9788 return false; 9789 9790 // FIXME: The widths are based on this node's type, but build vectors can 9791 // truncate their operands. 9792 SplatValue = APInt(VecWidth, 0); 9793 SplatUndef = APInt(VecWidth, 0); 9794 9795 // Get the bits. Bits with undefined values (when the corresponding element 9796 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9797 // in SplatValue. If any of the values are not constant, give up and return 9798 // false. 9799 unsigned int NumOps = getNumOperands(); 9800 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9801 unsigned EltWidth = VT.getScalarSizeInBits(); 9802 9803 for (unsigned j = 0; j < NumOps; ++j) { 9804 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9805 SDValue OpVal = getOperand(i); 9806 unsigned BitPos = j * EltWidth; 9807 9808 if (OpVal.isUndef()) 9809 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9810 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9811 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9812 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9813 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9814 else 9815 return false; 9816 } 9817 9818 // The build_vector is all constants or undefs. Find the smallest element 9819 // size that splats the vector. 9820 HasAnyUndefs = (SplatUndef != 0); 9821 9822 // FIXME: This does not work for vectors with elements less than 8 bits. 9823 while (VecWidth > 8) { 9824 unsigned HalfSize = VecWidth / 2; 9825 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9826 APInt LowValue = SplatValue.trunc(HalfSize); 9827 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9828 APInt LowUndef = SplatUndef.trunc(HalfSize); 9829 9830 // If the two halves do not match (ignoring undef bits), stop here. 9831 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9832 MinSplatBits > HalfSize) 9833 break; 9834 9835 SplatValue = HighValue | LowValue; 9836 SplatUndef = HighUndef & LowUndef; 9837 9838 VecWidth = HalfSize; 9839 } 9840 9841 SplatBitSize = VecWidth; 9842 return true; 9843 } 9844 9845 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9846 BitVector *UndefElements) const { 9847 unsigned NumOps = getNumOperands(); 9848 if (UndefElements) { 9849 UndefElements->clear(); 9850 UndefElements->resize(NumOps); 9851 } 9852 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9853 if (!DemandedElts) 9854 return SDValue(); 9855 SDValue Splatted; 9856 for (unsigned i = 0; i != NumOps; ++i) { 9857 if (!DemandedElts[i]) 9858 continue; 9859 SDValue Op = getOperand(i); 9860 if (Op.isUndef()) { 9861 if (UndefElements) 9862 (*UndefElements)[i] = true; 9863 } else if (!Splatted) { 9864 Splatted = Op; 9865 } else if (Splatted != Op) { 9866 return SDValue(); 9867 } 9868 } 9869 9870 if (!Splatted) { 9871 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9872 assert(getOperand(FirstDemandedIdx).isUndef() && 9873 "Can only have a splat without a constant for all undefs."); 9874 return getOperand(FirstDemandedIdx); 9875 } 9876 9877 return Splatted; 9878 } 9879 9880 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9881 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9882 return getSplatValue(DemandedElts, UndefElements); 9883 } 9884 9885 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9886 SmallVectorImpl<SDValue> &Sequence, 9887 BitVector *UndefElements) const { 9888 unsigned NumOps = getNumOperands(); 9889 Sequence.clear(); 9890 if (UndefElements) { 9891 UndefElements->clear(); 9892 UndefElements->resize(NumOps); 9893 } 9894 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9895 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9896 return false; 9897 9898 // Set the undefs even if we don't find a sequence (like getSplatValue). 9899 if (UndefElements) 9900 for (unsigned I = 0; I != NumOps; ++I) 9901 if (DemandedElts[I] && getOperand(I).isUndef()) 9902 (*UndefElements)[I] = true; 9903 9904 // Iteratively widen the sequence length looking for repetitions. 9905 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9906 Sequence.append(SeqLen, SDValue()); 9907 for (unsigned I = 0; I != NumOps; ++I) { 9908 if (!DemandedElts[I]) 9909 continue; 9910 SDValue &SeqOp = Sequence[I % SeqLen]; 9911 SDValue Op = getOperand(I); 9912 if (Op.isUndef()) { 9913 if (!SeqOp) 9914 SeqOp = Op; 9915 continue; 9916 } 9917 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9918 Sequence.clear(); 9919 break; 9920 } 9921 SeqOp = Op; 9922 } 9923 if (!Sequence.empty()) 9924 return true; 9925 } 9926 9927 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9928 return false; 9929 } 9930 9931 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 9932 BitVector *UndefElements) const { 9933 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9934 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 9935 } 9936 9937 ConstantSDNode * 9938 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9939 BitVector *UndefElements) const { 9940 return dyn_cast_or_null<ConstantSDNode>( 9941 getSplatValue(DemandedElts, UndefElements)); 9942 } 9943 9944 ConstantSDNode * 9945 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9946 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9947 } 9948 9949 ConstantFPSDNode * 9950 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9951 BitVector *UndefElements) const { 9952 return dyn_cast_or_null<ConstantFPSDNode>( 9953 getSplatValue(DemandedElts, UndefElements)); 9954 } 9955 9956 ConstantFPSDNode * 9957 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9958 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9959 } 9960 9961 int32_t 9962 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9963 uint32_t BitWidth) const { 9964 if (ConstantFPSDNode *CN = 9965 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9966 bool IsExact; 9967 APSInt IntVal(BitWidth); 9968 const APFloat &APF = CN->getValueAPF(); 9969 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9970 APFloat::opOK || 9971 !IsExact) 9972 return -1; 9973 9974 return IntVal.exactLogBase2(); 9975 } 9976 return -1; 9977 } 9978 9979 bool BuildVectorSDNode::isConstant() const { 9980 for (const SDValue &Op : op_values()) { 9981 unsigned Opc = Op.getOpcode(); 9982 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9983 return false; 9984 } 9985 return true; 9986 } 9987 9988 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9989 // Find the first non-undef value in the shuffle mask. 9990 unsigned i, e; 9991 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9992 /* search */; 9993 9994 // If all elements are undefined, this shuffle can be considered a splat 9995 // (although it should eventually get simplified away completely). 9996 if (i == e) 9997 return true; 9998 9999 // Make sure all remaining elements are either undef or the same as the first 10000 // non-undef value. 10001 for (int Idx = Mask[i]; i != e; ++i) 10002 if (Mask[i] >= 0 && Mask[i] != Idx) 10003 return false; 10004 return true; 10005 } 10006 10007 // Returns the SDNode if it is a constant integer BuildVector 10008 // or constant integer. 10009 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 10010 if (isa<ConstantSDNode>(N)) 10011 return N.getNode(); 10012 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10013 return N.getNode(); 10014 // Treat a GlobalAddress supporting constant offset folding as a 10015 // constant integer. 10016 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10017 if (GA->getOpcode() == ISD::GlobalAddress && 10018 TLI->isOffsetFoldingLegal(GA)) 10019 return GA; 10020 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10021 isa<ConstantSDNode>(N.getOperand(0))) 10022 return N.getNode(); 10023 return nullptr; 10024 } 10025 10026 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 10027 if (isa<ConstantFPSDNode>(N)) 10028 return N.getNode(); 10029 10030 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10031 return N.getNode(); 10032 10033 return nullptr; 10034 } 10035 10036 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10037 assert(!Node->OperandList && "Node already has operands"); 10038 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10039 "too many operands to fit into SDNode"); 10040 SDUse *Ops = OperandRecycler.allocate( 10041 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10042 10043 bool IsDivergent = false; 10044 for (unsigned I = 0; I != Vals.size(); ++I) { 10045 Ops[I].setUser(Node); 10046 Ops[I].setInitial(Vals[I]); 10047 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10048 IsDivergent |= Ops[I].getNode()->isDivergent(); 10049 } 10050 Node->NumOperands = Vals.size(); 10051 Node->OperandList = Ops; 10052 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10053 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10054 Node->SDNodeBits.IsDivergent = IsDivergent; 10055 } 10056 checkForCycles(Node); 10057 } 10058 10059 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10060 SmallVectorImpl<SDValue> &Vals) { 10061 size_t Limit = SDNode::getMaxNumOperands(); 10062 while (Vals.size() > Limit) { 10063 unsigned SliceIdx = Vals.size() - Limit; 10064 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10065 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10066 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10067 Vals.emplace_back(NewTF); 10068 } 10069 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10070 } 10071 10072 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10073 EVT VT, SDNodeFlags Flags) { 10074 switch (Opcode) { 10075 default: 10076 return SDValue(); 10077 case ISD::ADD: 10078 case ISD::OR: 10079 case ISD::XOR: 10080 case ISD::UMAX: 10081 return getConstant(0, DL, VT); 10082 case ISD::MUL: 10083 return getConstant(1, DL, VT); 10084 case ISD::AND: 10085 case ISD::UMIN: 10086 return getAllOnesConstant(DL, VT); 10087 case ISD::SMAX: 10088 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10089 case ISD::SMIN: 10090 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10091 case ISD::FADD: 10092 return getConstantFP(-0.0, DL, VT); 10093 case ISD::FMUL: 10094 return getConstantFP(1.0, DL, VT); 10095 case ISD::FMINNUM: 10096 case ISD::FMAXNUM: { 10097 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10098 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10099 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10100 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10101 APFloat::getLargest(Semantics); 10102 if (Opcode == ISD::FMAXNUM) 10103 NeutralAF.changeSign(); 10104 10105 return getConstantFP(NeutralAF, DL, VT); 10106 } 10107 } 10108 } 10109 10110 #ifndef NDEBUG 10111 static void checkForCyclesHelper(const SDNode *N, 10112 SmallPtrSetImpl<const SDNode*> &Visited, 10113 SmallPtrSetImpl<const SDNode*> &Checked, 10114 const llvm::SelectionDAG *DAG) { 10115 // If this node has already been checked, don't check it again. 10116 if (Checked.count(N)) 10117 return; 10118 10119 // If a node has already been visited on this depth-first walk, reject it as 10120 // a cycle. 10121 if (!Visited.insert(N).second) { 10122 errs() << "Detected cycle in SelectionDAG\n"; 10123 dbgs() << "Offending node:\n"; 10124 N->dumprFull(DAG); dbgs() << "\n"; 10125 abort(); 10126 } 10127 10128 for (const SDValue &Op : N->op_values()) 10129 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10130 10131 Checked.insert(N); 10132 Visited.erase(N); 10133 } 10134 #endif 10135 10136 void llvm::checkForCycles(const llvm::SDNode *N, 10137 const llvm::SelectionDAG *DAG, 10138 bool force) { 10139 #ifndef NDEBUG 10140 bool check = force; 10141 #ifdef EXPENSIVE_CHECKS 10142 check = true; 10143 #endif // EXPENSIVE_CHECKS 10144 if (check) { 10145 assert(N && "Checking nonexistent SDNode"); 10146 SmallPtrSet<const SDNode*, 32> visited; 10147 SmallPtrSet<const SDNode*, 32> checked; 10148 checkForCyclesHelper(N, visited, checked, DAG); 10149 } 10150 #endif // !NDEBUG 10151 } 10152 10153 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10154 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10155 } 10156