1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 switch (V.getOpcode()) { 2473 default: 2474 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this); 2475 case ISD::Constant: { 2476 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2477 APInt NewVal = CVal & DemandedBits; 2478 if (NewVal != CVal) 2479 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2480 break; 2481 } 2482 case ISD::SRL: 2483 // Only look at single-use SRLs. 2484 if (!V.getNode()->hasOneUse()) 2485 break; 2486 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2487 // See if we can recursively simplify the LHS. 2488 unsigned Amt = RHSC->getZExtValue(); 2489 2490 // Watch out for shift count overflow though. 2491 if (Amt >= DemandedBits.getBitWidth()) 2492 break; 2493 APInt SrcDemandedBits = DemandedBits << Amt; 2494 if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits( 2495 V.getOperand(0), SrcDemandedBits, *this)) 2496 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2497 V.getOperand(1)); 2498 } 2499 break; 2500 } 2501 return SDValue(); 2502 } 2503 2504 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2505 /// use this predicate to simplify operations downstream. 2506 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2507 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2508 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2509 } 2510 2511 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2512 /// this predicate to simplify operations downstream. Mask is known to be zero 2513 /// for bits that V cannot have. 2514 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2515 unsigned Depth) const { 2516 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2517 } 2518 2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2520 /// DemandedElts. We use this predicate to simplify operations downstream. 2521 /// Mask is known to be zero for bits that V cannot have. 2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2523 const APInt &DemandedElts, 2524 unsigned Depth) const { 2525 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2526 } 2527 2528 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2529 /// DemandedElts. We use this predicate to simplify operations downstream. 2530 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2531 unsigned Depth /* = 0 */) const { 2532 APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits()); 2533 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2534 } 2535 2536 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2537 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2540 } 2541 2542 /// isSplatValue - Return true if the vector V has the same value 2543 /// across all DemandedElts. For scalable vectors it does not make 2544 /// sense to specify which elements are demanded or undefined, therefore 2545 /// they are simply ignored. 2546 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2547 APInt &UndefElts, unsigned Depth) const { 2548 unsigned Opcode = V.getOpcode(); 2549 EVT VT = V.getValueType(); 2550 assert(VT.isVector() && "Vector type expected"); 2551 2552 if (!VT.isScalableVector() && !DemandedElts) 2553 return false; // No demanded elts, better to assume we don't know anything. 2554 2555 if (Depth >= MaxRecursionDepth) 2556 return false; // Limit search depth. 2557 2558 // Deal with some common cases here that work for both fixed and scalable 2559 // vector types. 2560 switch (Opcode) { 2561 case ISD::SPLAT_VECTOR: 2562 UndefElts = V.getOperand(0).isUndef() 2563 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2564 : APInt(DemandedElts.getBitWidth(), 0); 2565 return true; 2566 case ISD::ADD: 2567 case ISD::SUB: 2568 case ISD::AND: 2569 case ISD::XOR: 2570 case ISD::OR: { 2571 APInt UndefLHS, UndefRHS; 2572 SDValue LHS = V.getOperand(0); 2573 SDValue RHS = V.getOperand(1); 2574 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2575 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2576 UndefElts = UndefLHS | UndefRHS; 2577 return true; 2578 } 2579 return false; 2580 } 2581 case ISD::ABS: 2582 case ISD::TRUNCATE: 2583 case ISD::SIGN_EXTEND: 2584 case ISD::ZERO_EXTEND: 2585 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2586 default: 2587 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2588 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2589 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2590 break; 2591 } 2592 2593 // We don't support other cases than those above for scalable vectors at 2594 // the moment. 2595 if (VT.isScalableVector()) 2596 return false; 2597 2598 unsigned NumElts = VT.getVectorNumElements(); 2599 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2600 UndefElts = APInt::getZero(NumElts); 2601 2602 switch (Opcode) { 2603 case ISD::BUILD_VECTOR: { 2604 SDValue Scl; 2605 for (unsigned i = 0; i != NumElts; ++i) { 2606 SDValue Op = V.getOperand(i); 2607 if (Op.isUndef()) { 2608 UndefElts.setBit(i); 2609 continue; 2610 } 2611 if (!DemandedElts[i]) 2612 continue; 2613 if (Scl && Scl != Op) 2614 return false; 2615 Scl = Op; 2616 } 2617 return true; 2618 } 2619 case ISD::VECTOR_SHUFFLE: { 2620 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2621 APInt DemandedLHS = APInt::getNullValue(NumElts); 2622 APInt DemandedRHS = APInt::getNullValue(NumElts); 2623 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2624 for (int i = 0; i != (int)NumElts; ++i) { 2625 int M = Mask[i]; 2626 if (M < 0) { 2627 UndefElts.setBit(i); 2628 continue; 2629 } 2630 if (!DemandedElts[i]) 2631 continue; 2632 if (M < (int)NumElts) 2633 DemandedLHS.setBit(M); 2634 else 2635 DemandedRHS.setBit(M - NumElts); 2636 } 2637 2638 // If we aren't demanding either op, assume there's no splat. 2639 // If we are demanding both ops, assume there's no splat. 2640 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2641 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2642 return false; 2643 2644 // See if the demanded elts of the source op is a splat or we only demand 2645 // one element, which should always be a splat. 2646 // TODO: Handle source ops splats with undefs. 2647 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2648 APInt SrcUndefs; 2649 return (SrcElts.countPopulation() == 1) || 2650 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2651 (SrcElts & SrcUndefs).isZero()); 2652 }; 2653 if (!DemandedLHS.isZero()) 2654 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2655 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2656 } 2657 case ISD::EXTRACT_SUBVECTOR: { 2658 // Offset the demanded elts by the subvector index. 2659 SDValue Src = V.getOperand(0); 2660 // We don't support scalable vectors at the moment. 2661 if (Src.getValueType().isScalableVector()) 2662 return false; 2663 uint64_t Idx = V.getConstantOperandVal(1); 2664 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2665 APInt UndefSrcElts; 2666 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2667 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2668 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2669 return true; 2670 } 2671 break; 2672 } 2673 case ISD::ANY_EXTEND_VECTOR_INREG: 2674 case ISD::SIGN_EXTEND_VECTOR_INREG: 2675 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2676 // Widen the demanded elts by the src element count. 2677 SDValue Src = V.getOperand(0); 2678 // We don't support scalable vectors at the moment. 2679 if (Src.getValueType().isScalableVector()) 2680 return false; 2681 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2682 APInt UndefSrcElts; 2683 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2684 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2685 UndefElts = UndefSrcElts.trunc(NumElts); 2686 return true; 2687 } 2688 break; 2689 } 2690 case ISD::BITCAST: { 2691 SDValue Src = V.getOperand(0); 2692 EVT SrcVT = Src.getValueType(); 2693 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2694 unsigned BitWidth = VT.getScalarSizeInBits(); 2695 2696 // Ignore bitcasts from unsupported types. 2697 // TODO: Add fp support? 2698 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2699 break; 2700 2701 // Bitcast 'small element' vector to 'large element' vector. 2702 if ((BitWidth % SrcBitWidth) == 0) { 2703 // See if each sub element is a splat. 2704 unsigned Scale = BitWidth / SrcBitWidth; 2705 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2706 APInt ScaledDemandedElts = 2707 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2708 for (unsigned I = 0; I != Scale; ++I) { 2709 APInt SubUndefElts; 2710 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2711 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2712 SubDemandedElts &= ScaledDemandedElts; 2713 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2714 return false; 2715 2716 // Here we can't do "MatchAnyBits" operation merge for undef bits. 2717 // Because some operation only use part value of the source. 2718 // Take llvm.fshl.* for example: 2719 // t1: v4i32 = Constant:i32<12>, undef:i32, Constant:i32<12>, undef:i32 2720 // t2: v2i64 = bitcast t1 2721 // t5: v2i64 = fshl t3, t4, t2 2722 // We can not convert t2 to {i64 undef, i64 undef} 2723 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts, 2724 /*MatchAllBits=*/true); 2725 } 2726 return true; 2727 } 2728 break; 2729 } 2730 } 2731 2732 return false; 2733 } 2734 2735 /// Helper wrapper to main isSplatValue function. 2736 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2737 EVT VT = V.getValueType(); 2738 assert(VT.isVector() && "Vector type expected"); 2739 2740 APInt UndefElts; 2741 APInt DemandedElts; 2742 2743 // For now we don't support this with scalable vectors. 2744 if (!VT.isScalableVector()) 2745 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2746 return isSplatValue(V, DemandedElts, UndefElts) && 2747 (AllowUndefs || !UndefElts); 2748 } 2749 2750 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2751 V = peekThroughExtractSubvectors(V); 2752 2753 EVT VT = V.getValueType(); 2754 unsigned Opcode = V.getOpcode(); 2755 switch (Opcode) { 2756 default: { 2757 APInt UndefElts; 2758 APInt DemandedElts; 2759 2760 if (!VT.isScalableVector()) 2761 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2762 2763 if (isSplatValue(V, DemandedElts, UndefElts)) { 2764 if (VT.isScalableVector()) { 2765 // DemandedElts and UndefElts are ignored for scalable vectors, since 2766 // the only supported cases are SPLAT_VECTOR nodes. 2767 SplatIdx = 0; 2768 } else { 2769 // Handle case where all demanded elements are UNDEF. 2770 if (DemandedElts.isSubsetOf(UndefElts)) { 2771 SplatIdx = 0; 2772 return getUNDEF(VT); 2773 } 2774 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2775 } 2776 return V; 2777 } 2778 break; 2779 } 2780 case ISD::SPLAT_VECTOR: 2781 SplatIdx = 0; 2782 return V; 2783 case ISD::VECTOR_SHUFFLE: { 2784 if (VT.isScalableVector()) 2785 return SDValue(); 2786 2787 // Check if this is a shuffle node doing a splat. 2788 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2789 // getTargetVShiftNode currently struggles without the splat source. 2790 auto *SVN = cast<ShuffleVectorSDNode>(V); 2791 if (!SVN->isSplat()) 2792 break; 2793 int Idx = SVN->getSplatIndex(); 2794 int NumElts = V.getValueType().getVectorNumElements(); 2795 SplatIdx = Idx % NumElts; 2796 return V.getOperand(Idx / NumElts); 2797 } 2798 } 2799 2800 return SDValue(); 2801 } 2802 2803 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2804 int SplatIdx; 2805 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2806 EVT SVT = SrcVector.getValueType().getScalarType(); 2807 EVT LegalSVT = SVT; 2808 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2809 if (!SVT.isInteger()) 2810 return SDValue(); 2811 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2812 if (LegalSVT.bitsLT(SVT)) 2813 return SDValue(); 2814 } 2815 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2816 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2817 } 2818 return SDValue(); 2819 } 2820 2821 const APInt * 2822 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2823 const APInt &DemandedElts) const { 2824 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2825 V.getOpcode() == ISD::SRA) && 2826 "Unknown shift node"); 2827 unsigned BitWidth = V.getScalarValueSizeInBits(); 2828 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2829 // Shifting more than the bitwidth is not valid. 2830 const APInt &ShAmt = SA->getAPIntValue(); 2831 if (ShAmt.ult(BitWidth)) 2832 return &ShAmt; 2833 } 2834 return nullptr; 2835 } 2836 2837 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2838 SDValue V, const APInt &DemandedElts) const { 2839 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2840 V.getOpcode() == ISD::SRA) && 2841 "Unknown shift node"); 2842 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2843 return ValidAmt; 2844 unsigned BitWidth = V.getScalarValueSizeInBits(); 2845 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2846 if (!BV) 2847 return nullptr; 2848 const APInt *MinShAmt = nullptr; 2849 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2850 if (!DemandedElts[i]) 2851 continue; 2852 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2853 if (!SA) 2854 return nullptr; 2855 // Shifting more than the bitwidth is not valid. 2856 const APInt &ShAmt = SA->getAPIntValue(); 2857 if (ShAmt.uge(BitWidth)) 2858 return nullptr; 2859 if (MinShAmt && MinShAmt->ule(ShAmt)) 2860 continue; 2861 MinShAmt = &ShAmt; 2862 } 2863 return MinShAmt; 2864 } 2865 2866 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2867 SDValue V, const APInt &DemandedElts) const { 2868 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2869 V.getOpcode() == ISD::SRA) && 2870 "Unknown shift node"); 2871 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2872 return ValidAmt; 2873 unsigned BitWidth = V.getScalarValueSizeInBits(); 2874 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2875 if (!BV) 2876 return nullptr; 2877 const APInt *MaxShAmt = nullptr; 2878 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2879 if (!DemandedElts[i]) 2880 continue; 2881 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2882 if (!SA) 2883 return nullptr; 2884 // Shifting more than the bitwidth is not valid. 2885 const APInt &ShAmt = SA->getAPIntValue(); 2886 if (ShAmt.uge(BitWidth)) 2887 return nullptr; 2888 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2889 continue; 2890 MaxShAmt = &ShAmt; 2891 } 2892 return MaxShAmt; 2893 } 2894 2895 /// Determine which bits of Op are known to be either zero or one and return 2896 /// them in Known. For vectors, the known bits are those that are shared by 2897 /// every vector element. 2898 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2899 EVT VT = Op.getValueType(); 2900 2901 // TOOD: Until we have a plan for how to represent demanded elements for 2902 // scalable vectors, we can just bail out for now. 2903 if (Op.getValueType().isScalableVector()) { 2904 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2905 return KnownBits(BitWidth); 2906 } 2907 2908 APInt DemandedElts = VT.isVector() 2909 ? APInt::getAllOnes(VT.getVectorNumElements()) 2910 : APInt(1, 1); 2911 return computeKnownBits(Op, DemandedElts, Depth); 2912 } 2913 2914 /// Determine which bits of Op are known to be either zero or one and return 2915 /// them in Known. The DemandedElts argument allows us to only collect the known 2916 /// bits that are shared by the requested vector elements. 2917 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2918 unsigned Depth) const { 2919 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2920 2921 KnownBits Known(BitWidth); // Don't know anything. 2922 2923 // TOOD: Until we have a plan for how to represent demanded elements for 2924 // scalable vectors, we can just bail out for now. 2925 if (Op.getValueType().isScalableVector()) 2926 return Known; 2927 2928 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2929 // We know all of the bits for a constant! 2930 return KnownBits::makeConstant(C->getAPIntValue()); 2931 } 2932 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2933 // We know all of the bits for a constant fp! 2934 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2935 } 2936 2937 if (Depth >= MaxRecursionDepth) 2938 return Known; // Limit search depth. 2939 2940 KnownBits Known2; 2941 unsigned NumElts = DemandedElts.getBitWidth(); 2942 assert((!Op.getValueType().isVector() || 2943 NumElts == Op.getValueType().getVectorNumElements()) && 2944 "Unexpected vector size"); 2945 2946 if (!DemandedElts) 2947 return Known; // No demanded elts, better to assume we don't know anything. 2948 2949 unsigned Opcode = Op.getOpcode(); 2950 switch (Opcode) { 2951 case ISD::BUILD_VECTOR: 2952 // Collect the known bits that are shared by every demanded vector element. 2953 Known.Zero.setAllBits(); Known.One.setAllBits(); 2954 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2955 if (!DemandedElts[i]) 2956 continue; 2957 2958 SDValue SrcOp = Op.getOperand(i); 2959 Known2 = computeKnownBits(SrcOp, Depth + 1); 2960 2961 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2962 if (SrcOp.getValueSizeInBits() != BitWidth) { 2963 assert(SrcOp.getValueSizeInBits() > BitWidth && 2964 "Expected BUILD_VECTOR implicit truncation"); 2965 Known2 = Known2.trunc(BitWidth); 2966 } 2967 2968 // Known bits are the values that are shared by every demanded element. 2969 Known = KnownBits::commonBits(Known, Known2); 2970 2971 // If we don't know any bits, early out. 2972 if (Known.isUnknown()) 2973 break; 2974 } 2975 break; 2976 case ISD::VECTOR_SHUFFLE: { 2977 // Collect the known bits that are shared by every vector element referenced 2978 // by the shuffle. 2979 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2980 Known.Zero.setAllBits(); Known.One.setAllBits(); 2981 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2982 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2983 for (unsigned i = 0; i != NumElts; ++i) { 2984 if (!DemandedElts[i]) 2985 continue; 2986 2987 int M = SVN->getMaskElt(i); 2988 if (M < 0) { 2989 // For UNDEF elements, we don't know anything about the common state of 2990 // the shuffle result. 2991 Known.resetAll(); 2992 DemandedLHS.clearAllBits(); 2993 DemandedRHS.clearAllBits(); 2994 break; 2995 } 2996 2997 if ((unsigned)M < NumElts) 2998 DemandedLHS.setBit((unsigned)M % NumElts); 2999 else 3000 DemandedRHS.setBit((unsigned)M % NumElts); 3001 } 3002 // Known bits are the values that are shared by every demanded element. 3003 if (!!DemandedLHS) { 3004 SDValue LHS = Op.getOperand(0); 3005 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3006 Known = KnownBits::commonBits(Known, Known2); 3007 } 3008 // If we don't know any bits, early out. 3009 if (Known.isUnknown()) 3010 break; 3011 if (!!DemandedRHS) { 3012 SDValue RHS = Op.getOperand(1); 3013 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3014 Known = KnownBits::commonBits(Known, Known2); 3015 } 3016 break; 3017 } 3018 case ISD::CONCAT_VECTORS: { 3019 // Split DemandedElts and test each of the demanded subvectors. 3020 Known.Zero.setAllBits(); Known.One.setAllBits(); 3021 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3022 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3023 unsigned NumSubVectors = Op.getNumOperands(); 3024 for (unsigned i = 0; i != NumSubVectors; ++i) { 3025 APInt DemandedSub = 3026 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3027 if (!!DemandedSub) { 3028 SDValue Sub = Op.getOperand(i); 3029 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3030 Known = KnownBits::commonBits(Known, Known2); 3031 } 3032 // If we don't know any bits, early out. 3033 if (Known.isUnknown()) 3034 break; 3035 } 3036 break; 3037 } 3038 case ISD::INSERT_SUBVECTOR: { 3039 // Demand any elements from the subvector and the remainder from the src its 3040 // inserted into. 3041 SDValue Src = Op.getOperand(0); 3042 SDValue Sub = Op.getOperand(1); 3043 uint64_t Idx = Op.getConstantOperandVal(2); 3044 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3045 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3046 APInt DemandedSrcElts = DemandedElts; 3047 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3048 3049 Known.One.setAllBits(); 3050 Known.Zero.setAllBits(); 3051 if (!!DemandedSubElts) { 3052 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3053 if (Known.isUnknown()) 3054 break; // early-out. 3055 } 3056 if (!!DemandedSrcElts) { 3057 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3058 Known = KnownBits::commonBits(Known, Known2); 3059 } 3060 break; 3061 } 3062 case ISD::EXTRACT_SUBVECTOR: { 3063 // Offset the demanded elts by the subvector index. 3064 SDValue Src = Op.getOperand(0); 3065 // Bail until we can represent demanded elements for scalable vectors. 3066 if (Src.getValueType().isScalableVector()) 3067 break; 3068 uint64_t Idx = Op.getConstantOperandVal(1); 3069 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3070 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3071 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3072 break; 3073 } 3074 case ISD::SCALAR_TO_VECTOR: { 3075 // We know about scalar_to_vector as much as we know about it source, 3076 // which becomes the first element of otherwise unknown vector. 3077 if (DemandedElts != 1) 3078 break; 3079 3080 SDValue N0 = Op.getOperand(0); 3081 Known = computeKnownBits(N0, Depth + 1); 3082 if (N0.getValueSizeInBits() != BitWidth) 3083 Known = Known.trunc(BitWidth); 3084 3085 break; 3086 } 3087 case ISD::BITCAST: { 3088 SDValue N0 = Op.getOperand(0); 3089 EVT SubVT = N0.getValueType(); 3090 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3091 3092 // Ignore bitcasts from unsupported types. 3093 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3094 break; 3095 3096 // Fast handling of 'identity' bitcasts. 3097 if (BitWidth == SubBitWidth) { 3098 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3099 break; 3100 } 3101 3102 bool IsLE = getDataLayout().isLittleEndian(); 3103 3104 // Bitcast 'small element' vector to 'large element' scalar/vector. 3105 if ((BitWidth % SubBitWidth) == 0) { 3106 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3107 3108 // Collect known bits for the (larger) output by collecting the known 3109 // bits from each set of sub elements and shift these into place. 3110 // We need to separately call computeKnownBits for each set of 3111 // sub elements as the knownbits for each is likely to be different. 3112 unsigned SubScale = BitWidth / SubBitWidth; 3113 APInt SubDemandedElts(NumElts * SubScale, 0); 3114 for (unsigned i = 0; i != NumElts; ++i) 3115 if (DemandedElts[i]) 3116 SubDemandedElts.setBit(i * SubScale); 3117 3118 for (unsigned i = 0; i != SubScale; ++i) { 3119 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3120 Depth + 1); 3121 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3122 Known.insertBits(Known2, SubBitWidth * Shifts); 3123 } 3124 } 3125 3126 // Bitcast 'large element' scalar/vector to 'small element' vector. 3127 if ((SubBitWidth % BitWidth) == 0) { 3128 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3129 3130 // Collect known bits for the (smaller) output by collecting the known 3131 // bits from the overlapping larger input elements and extracting the 3132 // sub sections we actually care about. 3133 unsigned SubScale = SubBitWidth / BitWidth; 3134 APInt SubDemandedElts = 3135 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3136 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3137 3138 Known.Zero.setAllBits(); Known.One.setAllBits(); 3139 for (unsigned i = 0; i != NumElts; ++i) 3140 if (DemandedElts[i]) { 3141 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3142 unsigned Offset = (Shifts % SubScale) * BitWidth; 3143 Known = KnownBits::commonBits(Known, 3144 Known2.extractBits(BitWidth, Offset)); 3145 // If we don't know any bits, early out. 3146 if (Known.isUnknown()) 3147 break; 3148 } 3149 } 3150 break; 3151 } 3152 case ISD::AND: 3153 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3154 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3155 3156 Known &= Known2; 3157 break; 3158 case ISD::OR: 3159 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3160 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3161 3162 Known |= Known2; 3163 break; 3164 case ISD::XOR: 3165 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3166 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 3168 Known ^= Known2; 3169 break; 3170 case ISD::MUL: { 3171 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3172 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3173 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3174 // TODO: SelfMultiply can be poison, but not undef. 3175 if (SelfMultiply) 3176 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3177 Op.getOperand(0), DemandedElts, false, Depth + 1); 3178 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3179 3180 // If the multiplication is known not to overflow, the product of a number 3181 // with itself is non-negative. Only do this if we didn't already computed 3182 // the opposite value for the sign bit. 3183 if (Op->getFlags().hasNoSignedWrap() && 3184 Op.getOperand(0) == Op.getOperand(1) && 3185 !Known.isNegative()) 3186 Known.makeNonNegative(); 3187 break; 3188 } 3189 case ISD::MULHU: { 3190 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3191 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3192 Known = KnownBits::mulhu(Known, Known2); 3193 break; 3194 } 3195 case ISD::MULHS: { 3196 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3197 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3198 Known = KnownBits::mulhs(Known, Known2); 3199 break; 3200 } 3201 case ISD::UMUL_LOHI: { 3202 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3203 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3204 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3205 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3206 if (Op.getResNo() == 0) 3207 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3208 else 3209 Known = KnownBits::mulhu(Known, Known2); 3210 break; 3211 } 3212 case ISD::SMUL_LOHI: { 3213 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3214 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3215 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3217 if (Op.getResNo() == 0) 3218 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3219 else 3220 Known = KnownBits::mulhs(Known, Known2); 3221 break; 3222 } 3223 case ISD::UDIV: { 3224 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3225 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3226 Known = KnownBits::udiv(Known, Known2); 3227 break; 3228 } 3229 case ISD::AVGCEILU: { 3230 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3232 Known = Known.zext(BitWidth + 1); 3233 Known2 = Known2.zext(BitWidth + 1); 3234 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3235 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3236 Known = Known.extractBits(BitWidth, 1); 3237 break; 3238 } 3239 case ISD::SELECT: 3240 case ISD::VSELECT: 3241 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3242 // If we don't know any bits, early out. 3243 if (Known.isUnknown()) 3244 break; 3245 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3246 3247 // Only known if known in both the LHS and RHS. 3248 Known = KnownBits::commonBits(Known, Known2); 3249 break; 3250 case ISD::SELECT_CC: 3251 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3252 // If we don't know any bits, early out. 3253 if (Known.isUnknown()) 3254 break; 3255 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3256 3257 // Only known if known in both the LHS and RHS. 3258 Known = KnownBits::commonBits(Known, Known2); 3259 break; 3260 case ISD::SMULO: 3261 case ISD::UMULO: 3262 if (Op.getResNo() != 1) 3263 break; 3264 // The boolean result conforms to getBooleanContents. 3265 // If we know the result of a setcc has the top bits zero, use this info. 3266 // We know that we have an integer-based boolean since these operations 3267 // are only available for integer. 3268 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3269 TargetLowering::ZeroOrOneBooleanContent && 3270 BitWidth > 1) 3271 Known.Zero.setBitsFrom(1); 3272 break; 3273 case ISD::SETCC: 3274 case ISD::SETCCCARRY: 3275 case ISD::STRICT_FSETCC: 3276 case ISD::STRICT_FSETCCS: { 3277 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3278 // If we know the result of a setcc has the top bits zero, use this info. 3279 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3280 TargetLowering::ZeroOrOneBooleanContent && 3281 BitWidth > 1) 3282 Known.Zero.setBitsFrom(1); 3283 break; 3284 } 3285 case ISD::SHL: 3286 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3287 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3288 Known = KnownBits::shl(Known, Known2); 3289 3290 // Minimum shift low bits are known zero. 3291 if (const APInt *ShMinAmt = 3292 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3293 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3294 break; 3295 case ISD::SRL: 3296 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3297 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3298 Known = KnownBits::lshr(Known, Known2); 3299 3300 // Minimum shift high bits are known zero. 3301 if (const APInt *ShMinAmt = 3302 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3303 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3304 break; 3305 case ISD::SRA: 3306 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3307 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3308 Known = KnownBits::ashr(Known, Known2); 3309 // TODO: Add minimum shift high known sign bits. 3310 break; 3311 case ISD::FSHL: 3312 case ISD::FSHR: 3313 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3314 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3315 3316 // For fshl, 0-shift returns the 1st arg. 3317 // For fshr, 0-shift returns the 2nd arg. 3318 if (Amt == 0) { 3319 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3320 DemandedElts, Depth + 1); 3321 break; 3322 } 3323 3324 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3325 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3326 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3327 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3328 if (Opcode == ISD::FSHL) { 3329 Known.One <<= Amt; 3330 Known.Zero <<= Amt; 3331 Known2.One.lshrInPlace(BitWidth - Amt); 3332 Known2.Zero.lshrInPlace(BitWidth - Amt); 3333 } else { 3334 Known.One <<= BitWidth - Amt; 3335 Known.Zero <<= BitWidth - Amt; 3336 Known2.One.lshrInPlace(Amt); 3337 Known2.Zero.lshrInPlace(Amt); 3338 } 3339 Known.One |= Known2.One; 3340 Known.Zero |= Known2.Zero; 3341 } 3342 break; 3343 case ISD::SIGN_EXTEND_INREG: { 3344 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3345 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3346 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3347 break; 3348 } 3349 case ISD::CTTZ: 3350 case ISD::CTTZ_ZERO_UNDEF: { 3351 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3352 // If we have a known 1, its position is our upper bound. 3353 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3354 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3355 Known.Zero.setBitsFrom(LowBits); 3356 break; 3357 } 3358 case ISD::CTLZ: 3359 case ISD::CTLZ_ZERO_UNDEF: { 3360 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3361 // If we have a known 1, its position is our upper bound. 3362 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3363 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3364 Known.Zero.setBitsFrom(LowBits); 3365 break; 3366 } 3367 case ISD::CTPOP: { 3368 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3369 // If we know some of the bits are zero, they can't be one. 3370 unsigned PossibleOnes = Known2.countMaxPopulation(); 3371 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3372 break; 3373 } 3374 case ISD::PARITY: { 3375 // Parity returns 0 everywhere but the LSB. 3376 Known.Zero.setBitsFrom(1); 3377 break; 3378 } 3379 case ISD::LOAD: { 3380 LoadSDNode *LD = cast<LoadSDNode>(Op); 3381 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3382 if (ISD::isNON_EXTLoad(LD) && Cst) { 3383 // Determine any common known bits from the loaded constant pool value. 3384 Type *CstTy = Cst->getType(); 3385 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3386 // If its a vector splat, then we can (quickly) reuse the scalar path. 3387 // NOTE: We assume all elements match and none are UNDEF. 3388 if (CstTy->isVectorTy()) { 3389 if (const Constant *Splat = Cst->getSplatValue()) { 3390 Cst = Splat; 3391 CstTy = Cst->getType(); 3392 } 3393 } 3394 // TODO - do we need to handle different bitwidths? 3395 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3396 // Iterate across all vector elements finding common known bits. 3397 Known.One.setAllBits(); 3398 Known.Zero.setAllBits(); 3399 for (unsigned i = 0; i != NumElts; ++i) { 3400 if (!DemandedElts[i]) 3401 continue; 3402 if (Constant *Elt = Cst->getAggregateElement(i)) { 3403 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3404 const APInt &Value = CInt->getValue(); 3405 Known.One &= Value; 3406 Known.Zero &= ~Value; 3407 continue; 3408 } 3409 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3410 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3411 Known.One &= Value; 3412 Known.Zero &= ~Value; 3413 continue; 3414 } 3415 } 3416 Known.One.clearAllBits(); 3417 Known.Zero.clearAllBits(); 3418 break; 3419 } 3420 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3421 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3422 Known = KnownBits::makeConstant(CInt->getValue()); 3423 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3424 Known = 3425 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3426 } 3427 } 3428 } 3429 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3430 // If this is a ZEXTLoad and we are looking at the loaded value. 3431 EVT VT = LD->getMemoryVT(); 3432 unsigned MemBits = VT.getScalarSizeInBits(); 3433 Known.Zero.setBitsFrom(MemBits); 3434 } else if (const MDNode *Ranges = LD->getRanges()) { 3435 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3436 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3437 } 3438 break; 3439 } 3440 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3441 EVT InVT = Op.getOperand(0).getValueType(); 3442 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3443 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3444 Known = Known.zext(BitWidth); 3445 break; 3446 } 3447 case ISD::ZERO_EXTEND: { 3448 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3449 Known = Known.zext(BitWidth); 3450 break; 3451 } 3452 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3453 EVT InVT = Op.getOperand(0).getValueType(); 3454 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3455 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3456 // If the sign bit is known to be zero or one, then sext will extend 3457 // it to the top bits, else it will just zext. 3458 Known = Known.sext(BitWidth); 3459 break; 3460 } 3461 case ISD::SIGN_EXTEND: { 3462 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3463 // If the sign bit is known to be zero or one, then sext will extend 3464 // it to the top bits, else it will just zext. 3465 Known = Known.sext(BitWidth); 3466 break; 3467 } 3468 case ISD::ANY_EXTEND_VECTOR_INREG: { 3469 EVT InVT = Op.getOperand(0).getValueType(); 3470 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3471 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3472 Known = Known.anyext(BitWidth); 3473 break; 3474 } 3475 case ISD::ANY_EXTEND: { 3476 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3477 Known = Known.anyext(BitWidth); 3478 break; 3479 } 3480 case ISD::TRUNCATE: { 3481 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3482 Known = Known.trunc(BitWidth); 3483 break; 3484 } 3485 case ISD::AssertZext: { 3486 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3487 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3488 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3489 Known.Zero |= (~InMask); 3490 Known.One &= (~Known.Zero); 3491 break; 3492 } 3493 case ISD::AssertAlign: { 3494 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3495 assert(LogOfAlign != 0); 3496 3497 // TODO: Should use maximum with source 3498 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3499 // well as clearing one bits. 3500 Known.Zero.setLowBits(LogOfAlign); 3501 Known.One.clearLowBits(LogOfAlign); 3502 break; 3503 } 3504 case ISD::FGETSIGN: 3505 // All bits are zero except the low bit. 3506 Known.Zero.setBitsFrom(1); 3507 break; 3508 case ISD::USUBO: 3509 case ISD::SSUBO: 3510 case ISD::SUBCARRY: 3511 case ISD::SSUBO_CARRY: 3512 if (Op.getResNo() == 1) { 3513 // If we know the result of a setcc has the top bits zero, use this info. 3514 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3515 TargetLowering::ZeroOrOneBooleanContent && 3516 BitWidth > 1) 3517 Known.Zero.setBitsFrom(1); 3518 break; 3519 } 3520 LLVM_FALLTHROUGH; 3521 case ISD::SUB: 3522 case ISD::SUBC: { 3523 assert(Op.getResNo() == 0 && 3524 "We only compute knownbits for the difference here."); 3525 3526 // TODO: Compute influence of the carry operand. 3527 if (Opcode == ISD::SUBCARRY || Opcode == ISD::SSUBO_CARRY) 3528 break; 3529 3530 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3531 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3532 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3533 Known, Known2); 3534 break; 3535 } 3536 case ISD::UADDO: 3537 case ISD::SADDO: 3538 case ISD::ADDCARRY: 3539 case ISD::SADDO_CARRY: 3540 if (Op.getResNo() == 1) { 3541 // If we know the result of a setcc has the top bits zero, use this info. 3542 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3543 TargetLowering::ZeroOrOneBooleanContent && 3544 BitWidth > 1) 3545 Known.Zero.setBitsFrom(1); 3546 break; 3547 } 3548 LLVM_FALLTHROUGH; 3549 case ISD::ADD: 3550 case ISD::ADDC: 3551 case ISD::ADDE: { 3552 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3553 3554 // With ADDE and ADDCARRY, a carry bit may be added in. 3555 KnownBits Carry(1); 3556 if (Opcode == ISD::ADDE) 3557 // Can't track carry from glue, set carry to unknown. 3558 Carry.resetAll(); 3559 else if (Opcode == ISD::ADDCARRY || Opcode == ISD::SADDO_CARRY) 3560 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3561 // the trouble (how often will we find a known carry bit). And I haven't 3562 // tested this very much yet, but something like this might work: 3563 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3564 // Carry = Carry.zextOrTrunc(1, false); 3565 Carry.resetAll(); 3566 else 3567 Carry.setAllZero(); 3568 3569 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3570 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3571 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3572 break; 3573 } 3574 case ISD::SREM: { 3575 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3576 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3577 Known = KnownBits::srem(Known, Known2); 3578 break; 3579 } 3580 case ISD::UREM: { 3581 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3582 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3583 Known = KnownBits::urem(Known, Known2); 3584 break; 3585 } 3586 case ISD::EXTRACT_ELEMENT: { 3587 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3588 const unsigned Index = Op.getConstantOperandVal(1); 3589 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3590 3591 // Remove low part of known bits mask 3592 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3593 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3594 3595 // Remove high part of known bit mask 3596 Known = Known.trunc(EltBitWidth); 3597 break; 3598 } 3599 case ISD::EXTRACT_VECTOR_ELT: { 3600 SDValue InVec = Op.getOperand(0); 3601 SDValue EltNo = Op.getOperand(1); 3602 EVT VecVT = InVec.getValueType(); 3603 // computeKnownBits not yet implemented for scalable vectors. 3604 if (VecVT.isScalableVector()) 3605 break; 3606 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3607 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3608 3609 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3610 // anything about the extended bits. 3611 if (BitWidth > EltBitWidth) 3612 Known = Known.trunc(EltBitWidth); 3613 3614 // If we know the element index, just demand that vector element, else for 3615 // an unknown element index, ignore DemandedElts and demand them all. 3616 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3617 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3618 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3619 DemandedSrcElts = 3620 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3621 3622 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3623 if (BitWidth > EltBitWidth) 3624 Known = Known.anyext(BitWidth); 3625 break; 3626 } 3627 case ISD::INSERT_VECTOR_ELT: { 3628 // If we know the element index, split the demand between the 3629 // source vector and the inserted element, otherwise assume we need 3630 // the original demanded vector elements and the value. 3631 SDValue InVec = Op.getOperand(0); 3632 SDValue InVal = Op.getOperand(1); 3633 SDValue EltNo = Op.getOperand(2); 3634 bool DemandedVal = true; 3635 APInt DemandedVecElts = DemandedElts; 3636 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3637 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3638 unsigned EltIdx = CEltNo->getZExtValue(); 3639 DemandedVal = !!DemandedElts[EltIdx]; 3640 DemandedVecElts.clearBit(EltIdx); 3641 } 3642 Known.One.setAllBits(); 3643 Known.Zero.setAllBits(); 3644 if (DemandedVal) { 3645 Known2 = computeKnownBits(InVal, Depth + 1); 3646 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3647 } 3648 if (!!DemandedVecElts) { 3649 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3650 Known = KnownBits::commonBits(Known, Known2); 3651 } 3652 break; 3653 } 3654 case ISD::BITREVERSE: { 3655 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3656 Known = Known2.reverseBits(); 3657 break; 3658 } 3659 case ISD::BSWAP: { 3660 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3661 Known = Known2.byteSwap(); 3662 break; 3663 } 3664 case ISD::ABS: { 3665 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known = Known2.abs(); 3667 break; 3668 } 3669 case ISD::USUBSAT: { 3670 // The result of usubsat will never be larger than the LHS. 3671 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3672 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3673 break; 3674 } 3675 case ISD::UMIN: { 3676 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3677 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3678 Known = KnownBits::umin(Known, Known2); 3679 break; 3680 } 3681 case ISD::UMAX: { 3682 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3683 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3684 Known = KnownBits::umax(Known, Known2); 3685 break; 3686 } 3687 case ISD::SMIN: 3688 case ISD::SMAX: { 3689 // If we have a clamp pattern, we know that the number of sign bits will be 3690 // the minimum of the clamp min/max range. 3691 bool IsMax = (Opcode == ISD::SMAX); 3692 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3693 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3694 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3695 CstHigh = 3696 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3697 if (CstLow && CstHigh) { 3698 if (!IsMax) 3699 std::swap(CstLow, CstHigh); 3700 3701 const APInt &ValueLow = CstLow->getAPIntValue(); 3702 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3703 if (ValueLow.sle(ValueHigh)) { 3704 unsigned LowSignBits = ValueLow.getNumSignBits(); 3705 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3706 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3707 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3708 Known.One.setHighBits(MinSignBits); 3709 break; 3710 } 3711 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3712 Known.Zero.setHighBits(MinSignBits); 3713 break; 3714 } 3715 } 3716 } 3717 3718 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3719 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3720 if (IsMax) 3721 Known = KnownBits::smax(Known, Known2); 3722 else 3723 Known = KnownBits::smin(Known, Known2); 3724 3725 // For SMAX, if CstLow is non-negative we know the result will be 3726 // non-negative and thus all sign bits are 0. 3727 // TODO: There's an equivalent of this for smin with negative constant for 3728 // known ones. 3729 if (IsMax && CstLow) { 3730 const APInt &ValueLow = CstLow->getAPIntValue(); 3731 if (ValueLow.isNonNegative()) { 3732 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3733 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3734 } 3735 } 3736 3737 break; 3738 } 3739 case ISD::FP_TO_UINT_SAT: { 3740 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3741 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3742 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3743 break; 3744 } 3745 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3746 if (Op.getResNo() == 1) { 3747 // The boolean result conforms to getBooleanContents. 3748 // If we know the result of a setcc has the top bits zero, use this info. 3749 // We know that we have an integer-based boolean since these operations 3750 // are only available for integer. 3751 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3752 TargetLowering::ZeroOrOneBooleanContent && 3753 BitWidth > 1) 3754 Known.Zero.setBitsFrom(1); 3755 break; 3756 } 3757 LLVM_FALLTHROUGH; 3758 case ISD::ATOMIC_CMP_SWAP: 3759 case ISD::ATOMIC_SWAP: 3760 case ISD::ATOMIC_LOAD_ADD: 3761 case ISD::ATOMIC_LOAD_SUB: 3762 case ISD::ATOMIC_LOAD_AND: 3763 case ISD::ATOMIC_LOAD_CLR: 3764 case ISD::ATOMIC_LOAD_OR: 3765 case ISD::ATOMIC_LOAD_XOR: 3766 case ISD::ATOMIC_LOAD_NAND: 3767 case ISD::ATOMIC_LOAD_MIN: 3768 case ISD::ATOMIC_LOAD_MAX: 3769 case ISD::ATOMIC_LOAD_UMIN: 3770 case ISD::ATOMIC_LOAD_UMAX: 3771 case ISD::ATOMIC_LOAD: { 3772 unsigned MemBits = 3773 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3774 // If we are looking at the loaded value. 3775 if (Op.getResNo() == 0) { 3776 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3777 Known.Zero.setBitsFrom(MemBits); 3778 } 3779 break; 3780 } 3781 case ISD::FrameIndex: 3782 case ISD::TargetFrameIndex: 3783 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3784 Known, getMachineFunction()); 3785 break; 3786 3787 default: 3788 if (Opcode < ISD::BUILTIN_OP_END) 3789 break; 3790 LLVM_FALLTHROUGH; 3791 case ISD::INTRINSIC_WO_CHAIN: 3792 case ISD::INTRINSIC_W_CHAIN: 3793 case ISD::INTRINSIC_VOID: 3794 // Allow the target to implement this method for its nodes. 3795 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3796 break; 3797 } 3798 3799 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3800 return Known; 3801 } 3802 3803 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3804 SDValue N1) const { 3805 // X + 0 never overflow 3806 if (isNullConstant(N1)) 3807 return OFK_Never; 3808 3809 KnownBits N1Known = computeKnownBits(N1); 3810 if (N1Known.Zero.getBoolValue()) { 3811 KnownBits N0Known = computeKnownBits(N0); 3812 3813 bool overflow; 3814 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3815 if (!overflow) 3816 return OFK_Never; 3817 } 3818 3819 // mulhi + 1 never overflow 3820 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3821 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3822 return OFK_Never; 3823 3824 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3825 KnownBits N0Known = computeKnownBits(N0); 3826 3827 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3828 return OFK_Never; 3829 } 3830 3831 return OFK_Sometime; 3832 } 3833 3834 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3835 EVT OpVT = Val.getValueType(); 3836 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3837 3838 // Is the constant a known power of 2? 3839 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3840 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3841 3842 // A left-shift of a constant one will have exactly one bit set because 3843 // shifting the bit off the end is undefined. 3844 if (Val.getOpcode() == ISD::SHL) { 3845 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3846 if (C && C->getAPIntValue() == 1) 3847 return true; 3848 } 3849 3850 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3851 // one bit set. 3852 if (Val.getOpcode() == ISD::SRL) { 3853 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3854 if (C && C->getAPIntValue().isSignMask()) 3855 return true; 3856 } 3857 3858 // Are all operands of a build vector constant powers of two? 3859 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3860 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3861 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3862 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3863 return false; 3864 })) 3865 return true; 3866 3867 // Is the operand of a splat vector a constant power of two? 3868 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3869 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3870 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3871 return true; 3872 3873 // More could be done here, though the above checks are enough 3874 // to handle some common cases. 3875 3876 // Fall back to computeKnownBits to catch other known cases. 3877 KnownBits Known = computeKnownBits(Val); 3878 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3879 } 3880 3881 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3882 EVT VT = Op.getValueType(); 3883 3884 // TODO: Assume we don't know anything for now. 3885 if (VT.isScalableVector()) 3886 return 1; 3887 3888 APInt DemandedElts = VT.isVector() 3889 ? APInt::getAllOnes(VT.getVectorNumElements()) 3890 : APInt(1, 1); 3891 return ComputeNumSignBits(Op, DemandedElts, Depth); 3892 } 3893 3894 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3895 unsigned Depth) const { 3896 EVT VT = Op.getValueType(); 3897 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3898 unsigned VTBits = VT.getScalarSizeInBits(); 3899 unsigned NumElts = DemandedElts.getBitWidth(); 3900 unsigned Tmp, Tmp2; 3901 unsigned FirstAnswer = 1; 3902 3903 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3904 const APInt &Val = C->getAPIntValue(); 3905 return Val.getNumSignBits(); 3906 } 3907 3908 if (Depth >= MaxRecursionDepth) 3909 return 1; // Limit search depth. 3910 3911 if (!DemandedElts || VT.isScalableVector()) 3912 return 1; // No demanded elts, better to assume we don't know anything. 3913 3914 unsigned Opcode = Op.getOpcode(); 3915 switch (Opcode) { 3916 default: break; 3917 case ISD::AssertSext: 3918 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3919 return VTBits-Tmp+1; 3920 case ISD::AssertZext: 3921 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3922 return VTBits-Tmp; 3923 3924 case ISD::BUILD_VECTOR: 3925 Tmp = VTBits; 3926 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3927 if (!DemandedElts[i]) 3928 continue; 3929 3930 SDValue SrcOp = Op.getOperand(i); 3931 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3932 3933 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3934 if (SrcOp.getValueSizeInBits() != VTBits) { 3935 assert(SrcOp.getValueSizeInBits() > VTBits && 3936 "Expected BUILD_VECTOR implicit truncation"); 3937 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3938 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3939 } 3940 Tmp = std::min(Tmp, Tmp2); 3941 } 3942 return Tmp; 3943 3944 case ISD::VECTOR_SHUFFLE: { 3945 // Collect the minimum number of sign bits that are shared by every vector 3946 // element referenced by the shuffle. 3947 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3948 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3949 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3950 for (unsigned i = 0; i != NumElts; ++i) { 3951 int M = SVN->getMaskElt(i); 3952 if (!DemandedElts[i]) 3953 continue; 3954 // For UNDEF elements, we don't know anything about the common state of 3955 // the shuffle result. 3956 if (M < 0) 3957 return 1; 3958 if ((unsigned)M < NumElts) 3959 DemandedLHS.setBit((unsigned)M % NumElts); 3960 else 3961 DemandedRHS.setBit((unsigned)M % NumElts); 3962 } 3963 Tmp = std::numeric_limits<unsigned>::max(); 3964 if (!!DemandedLHS) 3965 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3966 if (!!DemandedRHS) { 3967 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3968 Tmp = std::min(Tmp, Tmp2); 3969 } 3970 // If we don't know anything, early out and try computeKnownBits fall-back. 3971 if (Tmp == 1) 3972 break; 3973 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3974 return Tmp; 3975 } 3976 3977 case ISD::BITCAST: { 3978 SDValue N0 = Op.getOperand(0); 3979 EVT SrcVT = N0.getValueType(); 3980 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3981 3982 // Ignore bitcasts from unsupported types.. 3983 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3984 break; 3985 3986 // Fast handling of 'identity' bitcasts. 3987 if (VTBits == SrcBits) 3988 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3989 3990 bool IsLE = getDataLayout().isLittleEndian(); 3991 3992 // Bitcast 'large element' scalar/vector to 'small element' vector. 3993 if ((SrcBits % VTBits) == 0) { 3994 assert(VT.isVector() && "Expected bitcast to vector"); 3995 3996 unsigned Scale = SrcBits / VTBits; 3997 APInt SrcDemandedElts = 3998 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3999 4000 // Fast case - sign splat can be simply split across the small elements. 4001 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 4002 if (Tmp == SrcBits) 4003 return VTBits; 4004 4005 // Slow case - determine how far the sign extends into each sub-element. 4006 Tmp2 = VTBits; 4007 for (unsigned i = 0; i != NumElts; ++i) 4008 if (DemandedElts[i]) { 4009 unsigned SubOffset = i % Scale; 4010 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4011 SubOffset = SubOffset * VTBits; 4012 if (Tmp <= SubOffset) 4013 return 1; 4014 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4015 } 4016 return Tmp2; 4017 } 4018 break; 4019 } 4020 4021 case ISD::FP_TO_SINT_SAT: 4022 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4023 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4024 return VTBits - Tmp + 1; 4025 case ISD::SIGN_EXTEND: 4026 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4027 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4028 case ISD::SIGN_EXTEND_INREG: 4029 // Max of the input and what this extends. 4030 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4031 Tmp = VTBits-Tmp+1; 4032 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4033 return std::max(Tmp, Tmp2); 4034 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4035 SDValue Src = Op.getOperand(0); 4036 EVT SrcVT = Src.getValueType(); 4037 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4038 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4039 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4040 } 4041 case ISD::SRA: 4042 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4043 // SRA X, C -> adds C sign bits. 4044 if (const APInt *ShAmt = 4045 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4046 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4047 return Tmp; 4048 case ISD::SHL: 4049 if (const APInt *ShAmt = 4050 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4051 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4052 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4053 if (ShAmt->ult(Tmp)) 4054 return Tmp - ShAmt->getZExtValue(); 4055 } 4056 break; 4057 case ISD::AND: 4058 case ISD::OR: 4059 case ISD::XOR: // NOT is handled here. 4060 // Logical binary ops preserve the number of sign bits at the worst. 4061 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4062 if (Tmp != 1) { 4063 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4064 FirstAnswer = std::min(Tmp, Tmp2); 4065 // We computed what we know about the sign bits as our first 4066 // answer. Now proceed to the generic code that uses 4067 // computeKnownBits, and pick whichever answer is better. 4068 } 4069 break; 4070 4071 case ISD::SELECT: 4072 case ISD::VSELECT: 4073 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4074 if (Tmp == 1) return 1; // Early out. 4075 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4076 return std::min(Tmp, Tmp2); 4077 case ISD::SELECT_CC: 4078 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4079 if (Tmp == 1) return 1; // Early out. 4080 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4081 return std::min(Tmp, Tmp2); 4082 4083 case ISD::SMIN: 4084 case ISD::SMAX: { 4085 // If we have a clamp pattern, we know that the number of sign bits will be 4086 // the minimum of the clamp min/max range. 4087 bool IsMax = (Opcode == ISD::SMAX); 4088 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4089 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4090 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4091 CstHigh = 4092 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4093 if (CstLow && CstHigh) { 4094 if (!IsMax) 4095 std::swap(CstLow, CstHigh); 4096 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4097 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4098 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4099 return std::min(Tmp, Tmp2); 4100 } 4101 } 4102 4103 // Fallback - just get the minimum number of sign bits of the operands. 4104 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4105 if (Tmp == 1) 4106 return 1; // Early out. 4107 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4108 return std::min(Tmp, Tmp2); 4109 } 4110 case ISD::UMIN: 4111 case ISD::UMAX: 4112 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4113 if (Tmp == 1) 4114 return 1; // Early out. 4115 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4116 return std::min(Tmp, Tmp2); 4117 case ISD::SADDO: 4118 case ISD::UADDO: 4119 case ISD::SADDO_CARRY: 4120 case ISD::ADDCARRY: 4121 case ISD::SSUBO: 4122 case ISD::USUBO: 4123 case ISD::SSUBO_CARRY: 4124 case ISD::SUBCARRY: 4125 case ISD::SMULO: 4126 case ISD::UMULO: 4127 if (Op.getResNo() != 1) 4128 break; 4129 // The boolean result conforms to getBooleanContents. Fall through. 4130 // If setcc returns 0/-1, all bits are sign bits. 4131 // We know that we have an integer-based boolean since these operations 4132 // are only available for integer. 4133 if (TLI->getBooleanContents(VT.isVector(), false) == 4134 TargetLowering::ZeroOrNegativeOneBooleanContent) 4135 return VTBits; 4136 break; 4137 case ISD::SETCC: 4138 case ISD::SETCCCARRY: 4139 case ISD::STRICT_FSETCC: 4140 case ISD::STRICT_FSETCCS: { 4141 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4142 // If setcc returns 0/-1, all bits are sign bits. 4143 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4144 TargetLowering::ZeroOrNegativeOneBooleanContent) 4145 return VTBits; 4146 break; 4147 } 4148 case ISD::ROTL: 4149 case ISD::ROTR: 4150 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4151 4152 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4153 if (Tmp == VTBits) 4154 return VTBits; 4155 4156 if (ConstantSDNode *C = 4157 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4158 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4159 4160 // Handle rotate right by N like a rotate left by 32-N. 4161 if (Opcode == ISD::ROTR) 4162 RotAmt = (VTBits - RotAmt) % VTBits; 4163 4164 // If we aren't rotating out all of the known-in sign bits, return the 4165 // number that are left. This handles rotl(sext(x), 1) for example. 4166 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4167 } 4168 break; 4169 case ISD::ADD: 4170 case ISD::ADDC: 4171 // Add can have at most one carry bit. Thus we know that the output 4172 // is, at worst, one more bit than the inputs. 4173 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4174 if (Tmp == 1) return 1; // Early out. 4175 4176 // Special case decrementing a value (ADD X, -1): 4177 if (ConstantSDNode *CRHS = 4178 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4179 if (CRHS->isAllOnes()) { 4180 KnownBits Known = 4181 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4182 4183 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4184 // sign bits set. 4185 if ((Known.Zero | 1).isAllOnes()) 4186 return VTBits; 4187 4188 // If we are subtracting one from a positive number, there is no carry 4189 // out of the result. 4190 if (Known.isNonNegative()) 4191 return Tmp; 4192 } 4193 4194 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4195 if (Tmp2 == 1) return 1; // Early out. 4196 return std::min(Tmp, Tmp2) - 1; 4197 case ISD::SUB: 4198 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4199 if (Tmp2 == 1) return 1; // Early out. 4200 4201 // Handle NEG. 4202 if (ConstantSDNode *CLHS = 4203 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4204 if (CLHS->isZero()) { 4205 KnownBits Known = 4206 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4207 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4208 // sign bits set. 4209 if ((Known.Zero | 1).isAllOnes()) 4210 return VTBits; 4211 4212 // If the input is known to be positive (the sign bit is known clear), 4213 // the output of the NEG has the same number of sign bits as the input. 4214 if (Known.isNonNegative()) 4215 return Tmp2; 4216 4217 // Otherwise, we treat this like a SUB. 4218 } 4219 4220 // Sub can have at most one carry bit. Thus we know that the output 4221 // is, at worst, one more bit than the inputs. 4222 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4223 if (Tmp == 1) return 1; // Early out. 4224 return std::min(Tmp, Tmp2) - 1; 4225 case ISD::MUL: { 4226 // The output of the Mul can be at most twice the valid bits in the inputs. 4227 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4228 if (SignBitsOp0 == 1) 4229 break; 4230 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4231 if (SignBitsOp1 == 1) 4232 break; 4233 unsigned OutValidBits = 4234 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4235 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4236 } 4237 case ISD::SREM: 4238 // The sign bit is the LHS's sign bit, except when the result of the 4239 // remainder is zero. The magnitude of the result should be less than or 4240 // equal to the magnitude of the LHS. Therefore, the result should have 4241 // at least as many sign bits as the left hand side. 4242 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4243 case ISD::TRUNCATE: { 4244 // Check if the sign bits of source go down as far as the truncated value. 4245 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4246 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4247 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4248 return NumSrcSignBits - (NumSrcBits - VTBits); 4249 break; 4250 } 4251 case ISD::EXTRACT_ELEMENT: { 4252 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4253 const int BitWidth = Op.getValueSizeInBits(); 4254 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4255 4256 // Get reverse index (starting from 1), Op1 value indexes elements from 4257 // little end. Sign starts at big end. 4258 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4259 4260 // If the sign portion ends in our element the subtraction gives correct 4261 // result. Otherwise it gives either negative or > bitwidth result 4262 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4263 } 4264 case ISD::INSERT_VECTOR_ELT: { 4265 // If we know the element index, split the demand between the 4266 // source vector and the inserted element, otherwise assume we need 4267 // the original demanded vector elements and the value. 4268 SDValue InVec = Op.getOperand(0); 4269 SDValue InVal = Op.getOperand(1); 4270 SDValue EltNo = Op.getOperand(2); 4271 bool DemandedVal = true; 4272 APInt DemandedVecElts = DemandedElts; 4273 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4274 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4275 unsigned EltIdx = CEltNo->getZExtValue(); 4276 DemandedVal = !!DemandedElts[EltIdx]; 4277 DemandedVecElts.clearBit(EltIdx); 4278 } 4279 Tmp = std::numeric_limits<unsigned>::max(); 4280 if (DemandedVal) { 4281 // TODO - handle implicit truncation of inserted elements. 4282 if (InVal.getScalarValueSizeInBits() != VTBits) 4283 break; 4284 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4285 Tmp = std::min(Tmp, Tmp2); 4286 } 4287 if (!!DemandedVecElts) { 4288 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4289 Tmp = std::min(Tmp, Tmp2); 4290 } 4291 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4292 return Tmp; 4293 } 4294 case ISD::EXTRACT_VECTOR_ELT: { 4295 SDValue InVec = Op.getOperand(0); 4296 SDValue EltNo = Op.getOperand(1); 4297 EVT VecVT = InVec.getValueType(); 4298 // ComputeNumSignBits not yet implemented for scalable vectors. 4299 if (VecVT.isScalableVector()) 4300 break; 4301 const unsigned BitWidth = Op.getValueSizeInBits(); 4302 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4303 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4304 4305 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4306 // anything about sign bits. But if the sizes match we can derive knowledge 4307 // about sign bits from the vector operand. 4308 if (BitWidth != EltBitWidth) 4309 break; 4310 4311 // If we know the element index, just demand that vector element, else for 4312 // an unknown element index, ignore DemandedElts and demand them all. 4313 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4314 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4315 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4316 DemandedSrcElts = 4317 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4318 4319 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4320 } 4321 case ISD::EXTRACT_SUBVECTOR: { 4322 // Offset the demanded elts by the subvector index. 4323 SDValue Src = Op.getOperand(0); 4324 // Bail until we can represent demanded elements for scalable vectors. 4325 if (Src.getValueType().isScalableVector()) 4326 break; 4327 uint64_t Idx = Op.getConstantOperandVal(1); 4328 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4329 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4330 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4331 } 4332 case ISD::CONCAT_VECTORS: { 4333 // Determine the minimum number of sign bits across all demanded 4334 // elts of the input vectors. Early out if the result is already 1. 4335 Tmp = std::numeric_limits<unsigned>::max(); 4336 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4337 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4338 unsigned NumSubVectors = Op.getNumOperands(); 4339 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4340 APInt DemandedSub = 4341 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4342 if (!DemandedSub) 4343 continue; 4344 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4345 Tmp = std::min(Tmp, Tmp2); 4346 } 4347 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4348 return Tmp; 4349 } 4350 case ISD::INSERT_SUBVECTOR: { 4351 // Demand any elements from the subvector and the remainder from the src its 4352 // inserted into. 4353 SDValue Src = Op.getOperand(0); 4354 SDValue Sub = Op.getOperand(1); 4355 uint64_t Idx = Op.getConstantOperandVal(2); 4356 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4357 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4358 APInt DemandedSrcElts = DemandedElts; 4359 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4360 4361 Tmp = std::numeric_limits<unsigned>::max(); 4362 if (!!DemandedSubElts) { 4363 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4364 if (Tmp == 1) 4365 return 1; // early-out 4366 } 4367 if (!!DemandedSrcElts) { 4368 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4369 Tmp = std::min(Tmp, Tmp2); 4370 } 4371 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4372 return Tmp; 4373 } 4374 case ISD::ATOMIC_CMP_SWAP: 4375 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4376 case ISD::ATOMIC_SWAP: 4377 case ISD::ATOMIC_LOAD_ADD: 4378 case ISD::ATOMIC_LOAD_SUB: 4379 case ISD::ATOMIC_LOAD_AND: 4380 case ISD::ATOMIC_LOAD_CLR: 4381 case ISD::ATOMIC_LOAD_OR: 4382 case ISD::ATOMIC_LOAD_XOR: 4383 case ISD::ATOMIC_LOAD_NAND: 4384 case ISD::ATOMIC_LOAD_MIN: 4385 case ISD::ATOMIC_LOAD_MAX: 4386 case ISD::ATOMIC_LOAD_UMIN: 4387 case ISD::ATOMIC_LOAD_UMAX: 4388 case ISD::ATOMIC_LOAD: { 4389 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4390 // If we are looking at the loaded value. 4391 if (Op.getResNo() == 0) { 4392 if (Tmp == VTBits) 4393 return 1; // early-out 4394 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4395 return VTBits - Tmp + 1; 4396 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4397 return VTBits - Tmp; 4398 } 4399 break; 4400 } 4401 } 4402 4403 // If we are looking at the loaded value of the SDNode. 4404 if (Op.getResNo() == 0) { 4405 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4406 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4407 unsigned ExtType = LD->getExtensionType(); 4408 switch (ExtType) { 4409 default: break; 4410 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4411 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4412 return VTBits - Tmp + 1; 4413 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4414 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4415 return VTBits - Tmp; 4416 case ISD::NON_EXTLOAD: 4417 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4418 // We only need to handle vectors - computeKnownBits should handle 4419 // scalar cases. 4420 Type *CstTy = Cst->getType(); 4421 if (CstTy->isVectorTy() && 4422 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4423 VTBits == CstTy->getScalarSizeInBits()) { 4424 Tmp = VTBits; 4425 for (unsigned i = 0; i != NumElts; ++i) { 4426 if (!DemandedElts[i]) 4427 continue; 4428 if (Constant *Elt = Cst->getAggregateElement(i)) { 4429 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4430 const APInt &Value = CInt->getValue(); 4431 Tmp = std::min(Tmp, Value.getNumSignBits()); 4432 continue; 4433 } 4434 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4435 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4436 Tmp = std::min(Tmp, Value.getNumSignBits()); 4437 continue; 4438 } 4439 } 4440 // Unknown type. Conservatively assume no bits match sign bit. 4441 return 1; 4442 } 4443 return Tmp; 4444 } 4445 } 4446 break; 4447 } 4448 } 4449 } 4450 4451 // Allow the target to implement this method for its nodes. 4452 if (Opcode >= ISD::BUILTIN_OP_END || 4453 Opcode == ISD::INTRINSIC_WO_CHAIN || 4454 Opcode == ISD::INTRINSIC_W_CHAIN || 4455 Opcode == ISD::INTRINSIC_VOID) { 4456 unsigned NumBits = 4457 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4458 if (NumBits > 1) 4459 FirstAnswer = std::max(FirstAnswer, NumBits); 4460 } 4461 4462 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4463 // use this information. 4464 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4465 return std::max(FirstAnswer, Known.countMinSignBits()); 4466 } 4467 4468 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4469 unsigned Depth) const { 4470 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4471 return Op.getScalarValueSizeInBits() - SignBits + 1; 4472 } 4473 4474 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4475 const APInt &DemandedElts, 4476 unsigned Depth) const { 4477 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4478 return Op.getScalarValueSizeInBits() - SignBits + 1; 4479 } 4480 4481 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4482 unsigned Depth) const { 4483 // Early out for FREEZE. 4484 if (Op.getOpcode() == ISD::FREEZE) 4485 return true; 4486 4487 // TODO: Assume we don't know anything for now. 4488 EVT VT = Op.getValueType(); 4489 if (VT.isScalableVector()) 4490 return false; 4491 4492 APInt DemandedElts = VT.isVector() 4493 ? APInt::getAllOnes(VT.getVectorNumElements()) 4494 : APInt(1, 1); 4495 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4496 } 4497 4498 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4499 const APInt &DemandedElts, 4500 bool PoisonOnly, 4501 unsigned Depth) const { 4502 unsigned Opcode = Op.getOpcode(); 4503 4504 // Early out for FREEZE. 4505 if (Opcode == ISD::FREEZE) 4506 return true; 4507 4508 if (Depth >= MaxRecursionDepth) 4509 return false; // Limit search depth. 4510 4511 if (isIntOrFPConstant(Op)) 4512 return true; 4513 4514 switch (Opcode) { 4515 case ISD::UNDEF: 4516 return PoisonOnly; 4517 4518 case ISD::BUILD_VECTOR: 4519 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4520 // this shouldn't affect the result. 4521 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4522 if (!DemandedElts[i]) 4523 continue; 4524 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4525 Depth + 1)) 4526 return false; 4527 } 4528 return true; 4529 4530 // TODO: Search for noundef attributes from library functions. 4531 4532 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4533 4534 default: 4535 // Allow the target to implement this method for its nodes. 4536 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4537 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4538 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4539 Op, DemandedElts, *this, PoisonOnly, Depth); 4540 break; 4541 } 4542 4543 return false; 4544 } 4545 4546 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4547 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4548 !isa<ConstantSDNode>(Op.getOperand(1))) 4549 return false; 4550 4551 if (Op.getOpcode() == ISD::OR && 4552 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4553 return false; 4554 4555 return true; 4556 } 4557 4558 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4559 // If we're told that NaNs won't happen, assume they won't. 4560 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4561 return true; 4562 4563 if (Depth >= MaxRecursionDepth) 4564 return false; // Limit search depth. 4565 4566 // TODO: Handle vectors. 4567 // If the value is a constant, we can obviously see if it is a NaN or not. 4568 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4569 return !C->getValueAPF().isNaN() || 4570 (SNaN && !C->getValueAPF().isSignaling()); 4571 } 4572 4573 unsigned Opcode = Op.getOpcode(); 4574 switch (Opcode) { 4575 case ISD::FADD: 4576 case ISD::FSUB: 4577 case ISD::FMUL: 4578 case ISD::FDIV: 4579 case ISD::FREM: 4580 case ISD::FSIN: 4581 case ISD::FCOS: { 4582 if (SNaN) 4583 return true; 4584 // TODO: Need isKnownNeverInfinity 4585 return false; 4586 } 4587 case ISD::FCANONICALIZE: 4588 case ISD::FEXP: 4589 case ISD::FEXP2: 4590 case ISD::FTRUNC: 4591 case ISD::FFLOOR: 4592 case ISD::FCEIL: 4593 case ISD::FROUND: 4594 case ISD::FROUNDEVEN: 4595 case ISD::FRINT: 4596 case ISD::FNEARBYINT: { 4597 if (SNaN) 4598 return true; 4599 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4600 } 4601 case ISD::FABS: 4602 case ISD::FNEG: 4603 case ISD::FCOPYSIGN: { 4604 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4605 } 4606 case ISD::SELECT: 4607 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4608 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4609 case ISD::FP_EXTEND: 4610 case ISD::FP_ROUND: { 4611 if (SNaN) 4612 return true; 4613 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4614 } 4615 case ISD::SINT_TO_FP: 4616 case ISD::UINT_TO_FP: 4617 return true; 4618 case ISD::FMA: 4619 case ISD::FMAD: { 4620 if (SNaN) 4621 return true; 4622 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4623 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4624 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4625 } 4626 case ISD::FSQRT: // Need is known positive 4627 case ISD::FLOG: 4628 case ISD::FLOG2: 4629 case ISD::FLOG10: 4630 case ISD::FPOWI: 4631 case ISD::FPOW: { 4632 if (SNaN) 4633 return true; 4634 // TODO: Refine on operand 4635 return false; 4636 } 4637 case ISD::FMINNUM: 4638 case ISD::FMAXNUM: { 4639 // Only one needs to be known not-nan, since it will be returned if the 4640 // other ends up being one. 4641 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4642 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4643 } 4644 case ISD::FMINNUM_IEEE: 4645 case ISD::FMAXNUM_IEEE: { 4646 if (SNaN) 4647 return true; 4648 // This can return a NaN if either operand is an sNaN, or if both operands 4649 // are NaN. 4650 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4651 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4652 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4653 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4654 } 4655 case ISD::FMINIMUM: 4656 case ISD::FMAXIMUM: { 4657 // TODO: Does this quiet or return the origina NaN as-is? 4658 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4659 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4660 } 4661 case ISD::EXTRACT_VECTOR_ELT: { 4662 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4663 } 4664 default: 4665 if (Opcode >= ISD::BUILTIN_OP_END || 4666 Opcode == ISD::INTRINSIC_WO_CHAIN || 4667 Opcode == ISD::INTRINSIC_W_CHAIN || 4668 Opcode == ISD::INTRINSIC_VOID) { 4669 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4670 } 4671 4672 return false; 4673 } 4674 } 4675 4676 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4677 assert(Op.getValueType().isFloatingPoint() && 4678 "Floating point type expected"); 4679 4680 // If the value is a constant, we can obviously see if it is a zero or not. 4681 // TODO: Add BuildVector support. 4682 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4683 return !C->isZero(); 4684 return false; 4685 } 4686 4687 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4688 assert(!Op.getValueType().isFloatingPoint() && 4689 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4690 4691 // If the value is a constant, we can obviously see if it is a zero or not. 4692 if (ISD::matchUnaryPredicate(Op, 4693 [](ConstantSDNode *C) { return !C->isZero(); })) 4694 return true; 4695 4696 // TODO: Recognize more cases here. 4697 switch (Op.getOpcode()) { 4698 default: break; 4699 case ISD::OR: 4700 if (isKnownNeverZero(Op.getOperand(1)) || 4701 isKnownNeverZero(Op.getOperand(0))) 4702 return true; 4703 break; 4704 } 4705 4706 return false; 4707 } 4708 4709 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4710 // Check the obvious case. 4711 if (A == B) return true; 4712 4713 // For for negative and positive zero. 4714 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4715 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4716 if (CA->isZero() && CB->isZero()) return true; 4717 4718 // Otherwise they may not be equal. 4719 return false; 4720 } 4721 4722 // Only bits set in Mask must be negated, other bits may be arbitrary. 4723 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4724 if (isBitwiseNot(V, AllowUndefs)) 4725 return V.getOperand(0); 4726 4727 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4728 // bits in the non-extended part. 4729 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4730 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4731 return SDValue(); 4732 SDValue ExtArg = V.getOperand(0); 4733 if (ExtArg.getScalarValueSizeInBits() >= 4734 MaskC->getAPIntValue().getActiveBits() && 4735 isBitwiseNot(ExtArg, AllowUndefs) && 4736 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4737 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4738 return ExtArg.getOperand(0).getOperand(0); 4739 return SDValue(); 4740 } 4741 4742 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4743 // Match masked merge pattern (X & ~M) op (Y & M) 4744 // Including degenerate case (X & ~M) op M 4745 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4746 SDValue Other) { 4747 if (SDValue NotOperand = 4748 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4749 if (Other == NotOperand) 4750 return true; 4751 if (Other->getOpcode() == ISD::AND) 4752 return NotOperand == Other->getOperand(0) || 4753 NotOperand == Other->getOperand(1); 4754 } 4755 return false; 4756 }; 4757 if (A->getOpcode() == ISD::AND) 4758 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4759 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4760 return false; 4761 } 4762 4763 // FIXME: unify with llvm::haveNoCommonBitsSet. 4764 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4765 assert(A.getValueType() == B.getValueType() && 4766 "Values must have the same type"); 4767 if (haveNoCommonBitsSetCommutative(A, B) || 4768 haveNoCommonBitsSetCommutative(B, A)) 4769 return true; 4770 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4771 computeKnownBits(B)); 4772 } 4773 4774 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4775 SelectionDAG &DAG) { 4776 if (cast<ConstantSDNode>(Step)->isZero()) 4777 return DAG.getConstant(0, DL, VT); 4778 4779 return SDValue(); 4780 } 4781 4782 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4783 ArrayRef<SDValue> Ops, 4784 SelectionDAG &DAG) { 4785 int NumOps = Ops.size(); 4786 assert(NumOps != 0 && "Can't build an empty vector!"); 4787 assert(!VT.isScalableVector() && 4788 "BUILD_VECTOR cannot be used with scalable types"); 4789 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4790 "Incorrect element count in BUILD_VECTOR!"); 4791 4792 // BUILD_VECTOR of UNDEFs is UNDEF. 4793 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4794 return DAG.getUNDEF(VT); 4795 4796 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4797 SDValue IdentitySrc; 4798 bool IsIdentity = true; 4799 for (int i = 0; i != NumOps; ++i) { 4800 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4801 Ops[i].getOperand(0).getValueType() != VT || 4802 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4803 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4804 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4805 IsIdentity = false; 4806 break; 4807 } 4808 IdentitySrc = Ops[i].getOperand(0); 4809 } 4810 if (IsIdentity) 4811 return IdentitySrc; 4812 4813 return SDValue(); 4814 } 4815 4816 /// Try to simplify vector concatenation to an input value, undef, or build 4817 /// vector. 4818 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4819 ArrayRef<SDValue> Ops, 4820 SelectionDAG &DAG) { 4821 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4822 assert(llvm::all_of(Ops, 4823 [Ops](SDValue Op) { 4824 return Ops[0].getValueType() == Op.getValueType(); 4825 }) && 4826 "Concatenation of vectors with inconsistent value types!"); 4827 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4828 VT.getVectorElementCount() && 4829 "Incorrect element count in vector concatenation!"); 4830 4831 if (Ops.size() == 1) 4832 return Ops[0]; 4833 4834 // Concat of UNDEFs is UNDEF. 4835 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4836 return DAG.getUNDEF(VT); 4837 4838 // Scan the operands and look for extract operations from a single source 4839 // that correspond to insertion at the same location via this concatenation: 4840 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4841 SDValue IdentitySrc; 4842 bool IsIdentity = true; 4843 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4844 SDValue Op = Ops[i]; 4845 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4846 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4847 Op.getOperand(0).getValueType() != VT || 4848 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4849 Op.getConstantOperandVal(1) != IdentityIndex) { 4850 IsIdentity = false; 4851 break; 4852 } 4853 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4854 "Unexpected identity source vector for concat of extracts"); 4855 IdentitySrc = Op.getOperand(0); 4856 } 4857 if (IsIdentity) { 4858 assert(IdentitySrc && "Failed to set source vector of extracts"); 4859 return IdentitySrc; 4860 } 4861 4862 // The code below this point is only designed to work for fixed width 4863 // vectors, so we bail out for now. 4864 if (VT.isScalableVector()) 4865 return SDValue(); 4866 4867 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4868 // simplified to one big BUILD_VECTOR. 4869 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4870 EVT SVT = VT.getScalarType(); 4871 SmallVector<SDValue, 16> Elts; 4872 for (SDValue Op : Ops) { 4873 EVT OpVT = Op.getValueType(); 4874 if (Op.isUndef()) 4875 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4876 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4877 Elts.append(Op->op_begin(), Op->op_end()); 4878 else 4879 return SDValue(); 4880 } 4881 4882 // BUILD_VECTOR requires all inputs to be of the same type, find the 4883 // maximum type and extend them all. 4884 for (SDValue Op : Elts) 4885 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4886 4887 if (SVT.bitsGT(VT.getScalarType())) { 4888 for (SDValue &Op : Elts) { 4889 if (Op.isUndef()) 4890 Op = DAG.getUNDEF(SVT); 4891 else 4892 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4893 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4894 : DAG.getSExtOrTrunc(Op, DL, SVT); 4895 } 4896 } 4897 4898 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4899 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4900 return V; 4901 } 4902 4903 /// Gets or creates the specified node. 4904 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4905 FoldingSetNodeID ID; 4906 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4907 void *IP = nullptr; 4908 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4909 return SDValue(E, 0); 4910 4911 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4912 getVTList(VT)); 4913 CSEMap.InsertNode(N, IP); 4914 4915 InsertNode(N); 4916 SDValue V = SDValue(N, 0); 4917 NewSDValueDbgMsg(V, "Creating new node: ", this); 4918 return V; 4919 } 4920 4921 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4922 SDValue Operand) { 4923 SDNodeFlags Flags; 4924 if (Inserter) 4925 Flags = Inserter->getFlags(); 4926 return getNode(Opcode, DL, VT, Operand, Flags); 4927 } 4928 4929 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4930 SDValue Operand, const SDNodeFlags Flags) { 4931 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4932 "Operand is DELETED_NODE!"); 4933 // Constant fold unary operations with an integer constant operand. Even 4934 // opaque constant will be folded, because the folding of unary operations 4935 // doesn't create new constants with different values. Nevertheless, the 4936 // opaque flag is preserved during folding to prevent future folding with 4937 // other constants. 4938 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4939 const APInt &Val = C->getAPIntValue(); 4940 switch (Opcode) { 4941 default: break; 4942 case ISD::SIGN_EXTEND: 4943 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4944 C->isTargetOpcode(), C->isOpaque()); 4945 case ISD::TRUNCATE: 4946 if (C->isOpaque()) 4947 break; 4948 LLVM_FALLTHROUGH; 4949 case ISD::ZERO_EXTEND: 4950 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4951 C->isTargetOpcode(), C->isOpaque()); 4952 case ISD::ANY_EXTEND: 4953 // Some targets like RISCV prefer to sign extend some types. 4954 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4955 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4956 C->isTargetOpcode(), C->isOpaque()); 4957 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4958 C->isTargetOpcode(), C->isOpaque()); 4959 case ISD::UINT_TO_FP: 4960 case ISD::SINT_TO_FP: { 4961 APFloat apf(EVTToAPFloatSemantics(VT), 4962 APInt::getZero(VT.getSizeInBits())); 4963 (void)apf.convertFromAPInt(Val, 4964 Opcode==ISD::SINT_TO_FP, 4965 APFloat::rmNearestTiesToEven); 4966 return getConstantFP(apf, DL, VT); 4967 } 4968 case ISD::BITCAST: 4969 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4970 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4971 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4972 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4973 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4974 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4975 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4976 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4977 break; 4978 case ISD::ABS: 4979 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4980 C->isOpaque()); 4981 case ISD::BITREVERSE: 4982 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4983 C->isOpaque()); 4984 case ISD::BSWAP: 4985 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4986 C->isOpaque()); 4987 case ISD::CTPOP: 4988 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4989 C->isOpaque()); 4990 case ISD::CTLZ: 4991 case ISD::CTLZ_ZERO_UNDEF: 4992 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4993 C->isOpaque()); 4994 case ISD::CTTZ: 4995 case ISD::CTTZ_ZERO_UNDEF: 4996 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4997 C->isOpaque()); 4998 case ISD::FP16_TO_FP: 4999 case ISD::BF16_TO_FP: { 5000 bool Ignored; 5001 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 5002 : APFloat::BFloat(), 5003 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 5004 5005 // This can return overflow, underflow, or inexact; we don't care. 5006 // FIXME need to be more flexible about rounding mode. 5007 (void)FPV.convert(EVTToAPFloatSemantics(VT), 5008 APFloat::rmNearestTiesToEven, &Ignored); 5009 return getConstantFP(FPV, DL, VT); 5010 } 5011 case ISD::STEP_VECTOR: { 5012 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 5013 return V; 5014 break; 5015 } 5016 } 5017 } 5018 5019 // Constant fold unary operations with a floating point constant operand. 5020 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5021 APFloat V = C->getValueAPF(); // make copy 5022 switch (Opcode) { 5023 case ISD::FNEG: 5024 V.changeSign(); 5025 return getConstantFP(V, DL, VT); 5026 case ISD::FABS: 5027 V.clearSign(); 5028 return getConstantFP(V, DL, VT); 5029 case ISD::FCEIL: { 5030 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5031 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5032 return getConstantFP(V, DL, VT); 5033 break; 5034 } 5035 case ISD::FTRUNC: { 5036 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5037 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5038 return getConstantFP(V, DL, VT); 5039 break; 5040 } 5041 case ISD::FFLOOR: { 5042 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5043 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5044 return getConstantFP(V, DL, VT); 5045 break; 5046 } 5047 case ISD::FP_EXTEND: { 5048 bool ignored; 5049 // This can return overflow, underflow, or inexact; we don't care. 5050 // FIXME need to be more flexible about rounding mode. 5051 (void)V.convert(EVTToAPFloatSemantics(VT), 5052 APFloat::rmNearestTiesToEven, &ignored); 5053 return getConstantFP(V, DL, VT); 5054 } 5055 case ISD::FP_TO_SINT: 5056 case ISD::FP_TO_UINT: { 5057 bool ignored; 5058 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5059 // FIXME need to be more flexible about rounding mode. 5060 APFloat::opStatus s = 5061 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5062 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5063 break; 5064 return getConstant(IntVal, DL, VT); 5065 } 5066 case ISD::BITCAST: 5067 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5068 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5069 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5070 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5071 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5072 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5073 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5074 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5075 break; 5076 case ISD::FP_TO_FP16: 5077 case ISD::FP_TO_BF16: { 5078 bool Ignored; 5079 // This can return overflow, underflow, or inexact; we don't care. 5080 // FIXME need to be more flexible about rounding mode. 5081 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5082 : APFloat::BFloat(), 5083 APFloat::rmNearestTiesToEven, &Ignored); 5084 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5085 } 5086 } 5087 } 5088 5089 // Constant fold unary operations with a vector integer or float operand. 5090 switch (Opcode) { 5091 default: 5092 // FIXME: Entirely reasonable to perform folding of other unary 5093 // operations here as the need arises. 5094 break; 5095 case ISD::FNEG: 5096 case ISD::FABS: 5097 case ISD::FCEIL: 5098 case ISD::FTRUNC: 5099 case ISD::FFLOOR: 5100 case ISD::FP_EXTEND: 5101 case ISD::FP_TO_SINT: 5102 case ISD::FP_TO_UINT: 5103 case ISD::TRUNCATE: 5104 case ISD::ANY_EXTEND: 5105 case ISD::ZERO_EXTEND: 5106 case ISD::SIGN_EXTEND: 5107 case ISD::UINT_TO_FP: 5108 case ISD::SINT_TO_FP: 5109 case ISD::ABS: 5110 case ISD::BITREVERSE: 5111 case ISD::BSWAP: 5112 case ISD::CTLZ: 5113 case ISD::CTLZ_ZERO_UNDEF: 5114 case ISD::CTTZ: 5115 case ISD::CTTZ_ZERO_UNDEF: 5116 case ISD::CTPOP: { 5117 SDValue Ops = {Operand}; 5118 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5119 return Fold; 5120 } 5121 } 5122 5123 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5124 switch (Opcode) { 5125 case ISD::STEP_VECTOR: 5126 assert(VT.isScalableVector() && 5127 "STEP_VECTOR can only be used with scalable types"); 5128 assert(OpOpcode == ISD::TargetConstant && 5129 VT.getVectorElementType() == Operand.getValueType() && 5130 "Unexpected step operand"); 5131 break; 5132 case ISD::FREEZE: 5133 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5134 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5135 return Operand; 5136 break; 5137 case ISD::TokenFactor: 5138 case ISD::MERGE_VALUES: 5139 case ISD::CONCAT_VECTORS: 5140 return Operand; // Factor, merge or concat of one node? No need. 5141 case ISD::BUILD_VECTOR: { 5142 // Attempt to simplify BUILD_VECTOR. 5143 SDValue Ops[] = {Operand}; 5144 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5145 return V; 5146 break; 5147 } 5148 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5149 case ISD::FP_EXTEND: 5150 assert(VT.isFloatingPoint() && 5151 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5152 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5153 assert((!VT.isVector() || 5154 VT.getVectorElementCount() == 5155 Operand.getValueType().getVectorElementCount()) && 5156 "Vector element count mismatch!"); 5157 assert(Operand.getValueType().bitsLT(VT) && 5158 "Invalid fpext node, dst < src!"); 5159 if (Operand.isUndef()) 5160 return getUNDEF(VT); 5161 break; 5162 case ISD::FP_TO_SINT: 5163 case ISD::FP_TO_UINT: 5164 if (Operand.isUndef()) 5165 return getUNDEF(VT); 5166 break; 5167 case ISD::SINT_TO_FP: 5168 case ISD::UINT_TO_FP: 5169 // [us]itofp(undef) = 0, because the result value is bounded. 5170 if (Operand.isUndef()) 5171 return getConstantFP(0.0, DL, VT); 5172 break; 5173 case ISD::SIGN_EXTEND: 5174 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5175 "Invalid SIGN_EXTEND!"); 5176 assert(VT.isVector() == Operand.getValueType().isVector() && 5177 "SIGN_EXTEND result type type should be vector iff the operand " 5178 "type is vector!"); 5179 if (Operand.getValueType() == VT) return Operand; // noop extension 5180 assert((!VT.isVector() || 5181 VT.getVectorElementCount() == 5182 Operand.getValueType().getVectorElementCount()) && 5183 "Vector element count mismatch!"); 5184 assert(Operand.getValueType().bitsLT(VT) && 5185 "Invalid sext node, dst < src!"); 5186 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5187 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5188 if (OpOpcode == ISD::UNDEF) 5189 // sext(undef) = 0, because the top bits will all be the same. 5190 return getConstant(0, DL, VT); 5191 break; 5192 case ISD::ZERO_EXTEND: 5193 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5194 "Invalid ZERO_EXTEND!"); 5195 assert(VT.isVector() == Operand.getValueType().isVector() && 5196 "ZERO_EXTEND result type type should be vector iff the operand " 5197 "type is vector!"); 5198 if (Operand.getValueType() == VT) return Operand; // noop extension 5199 assert((!VT.isVector() || 5200 VT.getVectorElementCount() == 5201 Operand.getValueType().getVectorElementCount()) && 5202 "Vector element count mismatch!"); 5203 assert(Operand.getValueType().bitsLT(VT) && 5204 "Invalid zext node, dst < src!"); 5205 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5206 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5207 if (OpOpcode == ISD::UNDEF) 5208 // zext(undef) = 0, because the top bits will be zero. 5209 return getConstant(0, DL, VT); 5210 break; 5211 case ISD::ANY_EXTEND: 5212 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5213 "Invalid ANY_EXTEND!"); 5214 assert(VT.isVector() == Operand.getValueType().isVector() && 5215 "ANY_EXTEND result type type should be vector iff the operand " 5216 "type is vector!"); 5217 if (Operand.getValueType() == VT) return Operand; // noop extension 5218 assert((!VT.isVector() || 5219 VT.getVectorElementCount() == 5220 Operand.getValueType().getVectorElementCount()) && 5221 "Vector element count mismatch!"); 5222 assert(Operand.getValueType().bitsLT(VT) && 5223 "Invalid anyext node, dst < src!"); 5224 5225 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5226 OpOpcode == ISD::ANY_EXTEND) 5227 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5228 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5229 if (OpOpcode == ISD::UNDEF) 5230 return getUNDEF(VT); 5231 5232 // (ext (trunc x)) -> x 5233 if (OpOpcode == ISD::TRUNCATE) { 5234 SDValue OpOp = Operand.getOperand(0); 5235 if (OpOp.getValueType() == VT) { 5236 transferDbgValues(Operand, OpOp); 5237 return OpOp; 5238 } 5239 } 5240 break; 5241 case ISD::TRUNCATE: 5242 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5243 "Invalid TRUNCATE!"); 5244 assert(VT.isVector() == Operand.getValueType().isVector() && 5245 "TRUNCATE result type type should be vector iff the operand " 5246 "type is vector!"); 5247 if (Operand.getValueType() == VT) return Operand; // noop truncate 5248 assert((!VT.isVector() || 5249 VT.getVectorElementCount() == 5250 Operand.getValueType().getVectorElementCount()) && 5251 "Vector element count mismatch!"); 5252 assert(Operand.getValueType().bitsGT(VT) && 5253 "Invalid truncate node, src < dst!"); 5254 if (OpOpcode == ISD::TRUNCATE) 5255 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5256 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5257 OpOpcode == ISD::ANY_EXTEND) { 5258 // If the source is smaller than the dest, we still need an extend. 5259 if (Operand.getOperand(0).getValueType().getScalarType() 5260 .bitsLT(VT.getScalarType())) 5261 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5262 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5263 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5264 return Operand.getOperand(0); 5265 } 5266 if (OpOpcode == ISD::UNDEF) 5267 return getUNDEF(VT); 5268 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5269 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5270 break; 5271 case ISD::ANY_EXTEND_VECTOR_INREG: 5272 case ISD::ZERO_EXTEND_VECTOR_INREG: 5273 case ISD::SIGN_EXTEND_VECTOR_INREG: 5274 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5275 assert(Operand.getValueType().bitsLE(VT) && 5276 "The input must be the same size or smaller than the result."); 5277 assert(VT.getVectorMinNumElements() < 5278 Operand.getValueType().getVectorMinNumElements() && 5279 "The destination vector type must have fewer lanes than the input."); 5280 break; 5281 case ISD::ABS: 5282 assert(VT.isInteger() && VT == Operand.getValueType() && 5283 "Invalid ABS!"); 5284 if (OpOpcode == ISD::UNDEF) 5285 return getConstant(0, DL, VT); 5286 break; 5287 case ISD::BSWAP: 5288 assert(VT.isInteger() && VT == Operand.getValueType() && 5289 "Invalid BSWAP!"); 5290 assert((VT.getScalarSizeInBits() % 16 == 0) && 5291 "BSWAP types must be a multiple of 16 bits!"); 5292 if (OpOpcode == ISD::UNDEF) 5293 return getUNDEF(VT); 5294 // bswap(bswap(X)) -> X. 5295 if (OpOpcode == ISD::BSWAP) 5296 return Operand.getOperand(0); 5297 break; 5298 case ISD::BITREVERSE: 5299 assert(VT.isInteger() && VT == Operand.getValueType() && 5300 "Invalid BITREVERSE!"); 5301 if (OpOpcode == ISD::UNDEF) 5302 return getUNDEF(VT); 5303 break; 5304 case ISD::BITCAST: 5305 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5306 "Cannot BITCAST between types of different sizes!"); 5307 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5308 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5309 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5310 if (OpOpcode == ISD::UNDEF) 5311 return getUNDEF(VT); 5312 break; 5313 case ISD::SCALAR_TO_VECTOR: 5314 assert(VT.isVector() && !Operand.getValueType().isVector() && 5315 (VT.getVectorElementType() == Operand.getValueType() || 5316 (VT.getVectorElementType().isInteger() && 5317 Operand.getValueType().isInteger() && 5318 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5319 "Illegal SCALAR_TO_VECTOR node!"); 5320 if (OpOpcode == ISD::UNDEF) 5321 return getUNDEF(VT); 5322 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5323 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5324 isa<ConstantSDNode>(Operand.getOperand(1)) && 5325 Operand.getConstantOperandVal(1) == 0 && 5326 Operand.getOperand(0).getValueType() == VT) 5327 return Operand.getOperand(0); 5328 break; 5329 case ISD::FNEG: 5330 // Negation of an unknown bag of bits is still completely undefined. 5331 if (OpOpcode == ISD::UNDEF) 5332 return getUNDEF(VT); 5333 5334 if (OpOpcode == ISD::FNEG) // --X -> X 5335 return Operand.getOperand(0); 5336 break; 5337 case ISD::FABS: 5338 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5339 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5340 break; 5341 case ISD::VSCALE: 5342 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5343 break; 5344 case ISD::CTPOP: 5345 if (Operand.getValueType().getScalarType() == MVT::i1) 5346 return Operand; 5347 break; 5348 case ISD::CTLZ: 5349 case ISD::CTTZ: 5350 if (Operand.getValueType().getScalarType() == MVT::i1) 5351 return getNOT(DL, Operand, Operand.getValueType()); 5352 break; 5353 case ISD::VECREDUCE_ADD: 5354 if (Operand.getValueType().getScalarType() == MVT::i1) 5355 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5356 break; 5357 case ISD::VECREDUCE_SMIN: 5358 case ISD::VECREDUCE_UMAX: 5359 if (Operand.getValueType().getScalarType() == MVT::i1) 5360 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5361 break; 5362 case ISD::VECREDUCE_SMAX: 5363 case ISD::VECREDUCE_UMIN: 5364 if (Operand.getValueType().getScalarType() == MVT::i1) 5365 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5366 break; 5367 } 5368 5369 SDNode *N; 5370 SDVTList VTs = getVTList(VT); 5371 SDValue Ops[] = {Operand}; 5372 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5373 FoldingSetNodeID ID; 5374 AddNodeIDNode(ID, Opcode, VTs, Ops); 5375 void *IP = nullptr; 5376 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5377 E->intersectFlagsWith(Flags); 5378 return SDValue(E, 0); 5379 } 5380 5381 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5382 N->setFlags(Flags); 5383 createOperands(N, Ops); 5384 CSEMap.InsertNode(N, IP); 5385 } else { 5386 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5387 createOperands(N, Ops); 5388 } 5389 5390 InsertNode(N); 5391 SDValue V = SDValue(N, 0); 5392 NewSDValueDbgMsg(V, "Creating new node: ", this); 5393 return V; 5394 } 5395 5396 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5397 const APInt &C2) { 5398 switch (Opcode) { 5399 case ISD::ADD: return C1 + C2; 5400 case ISD::SUB: return C1 - C2; 5401 case ISD::MUL: return C1 * C2; 5402 case ISD::AND: return C1 & C2; 5403 case ISD::OR: return C1 | C2; 5404 case ISD::XOR: return C1 ^ C2; 5405 case ISD::SHL: return C1 << C2; 5406 case ISD::SRL: return C1.lshr(C2); 5407 case ISD::SRA: return C1.ashr(C2); 5408 case ISD::ROTL: return C1.rotl(C2); 5409 case ISD::ROTR: return C1.rotr(C2); 5410 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5411 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5412 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5413 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5414 case ISD::SADDSAT: return C1.sadd_sat(C2); 5415 case ISD::UADDSAT: return C1.uadd_sat(C2); 5416 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5417 case ISD::USUBSAT: return C1.usub_sat(C2); 5418 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5419 case ISD::USHLSAT: return C1.ushl_sat(C2); 5420 case ISD::UDIV: 5421 if (!C2.getBoolValue()) 5422 break; 5423 return C1.udiv(C2); 5424 case ISD::UREM: 5425 if (!C2.getBoolValue()) 5426 break; 5427 return C1.urem(C2); 5428 case ISD::SDIV: 5429 if (!C2.getBoolValue()) 5430 break; 5431 return C1.sdiv(C2); 5432 case ISD::SREM: 5433 if (!C2.getBoolValue()) 5434 break; 5435 return C1.srem(C2); 5436 case ISD::MULHS: { 5437 unsigned FullWidth = C1.getBitWidth() * 2; 5438 APInt C1Ext = C1.sext(FullWidth); 5439 APInt C2Ext = C2.sext(FullWidth); 5440 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5441 } 5442 case ISD::MULHU: { 5443 unsigned FullWidth = C1.getBitWidth() * 2; 5444 APInt C1Ext = C1.zext(FullWidth); 5445 APInt C2Ext = C2.zext(FullWidth); 5446 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5447 } 5448 case ISD::AVGFLOORS: { 5449 unsigned FullWidth = C1.getBitWidth() + 1; 5450 APInt C1Ext = C1.sext(FullWidth); 5451 APInt C2Ext = C2.sext(FullWidth); 5452 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5453 } 5454 case ISD::AVGFLOORU: { 5455 unsigned FullWidth = C1.getBitWidth() + 1; 5456 APInt C1Ext = C1.zext(FullWidth); 5457 APInt C2Ext = C2.zext(FullWidth); 5458 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5459 } 5460 case ISD::AVGCEILS: { 5461 unsigned FullWidth = C1.getBitWidth() + 1; 5462 APInt C1Ext = C1.sext(FullWidth); 5463 APInt C2Ext = C2.sext(FullWidth); 5464 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5465 } 5466 case ISD::AVGCEILU: { 5467 unsigned FullWidth = C1.getBitWidth() + 1; 5468 APInt C1Ext = C1.zext(FullWidth); 5469 APInt C2Ext = C2.zext(FullWidth); 5470 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5471 } 5472 } 5473 return llvm::None; 5474 } 5475 5476 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5477 const GlobalAddressSDNode *GA, 5478 const SDNode *N2) { 5479 if (GA->getOpcode() != ISD::GlobalAddress) 5480 return SDValue(); 5481 if (!TLI->isOffsetFoldingLegal(GA)) 5482 return SDValue(); 5483 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5484 if (!C2) 5485 return SDValue(); 5486 int64_t Offset = C2->getSExtValue(); 5487 switch (Opcode) { 5488 case ISD::ADD: break; 5489 case ISD::SUB: Offset = -uint64_t(Offset); break; 5490 default: return SDValue(); 5491 } 5492 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5493 GA->getOffset() + uint64_t(Offset)); 5494 } 5495 5496 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5497 switch (Opcode) { 5498 case ISD::SDIV: 5499 case ISD::UDIV: 5500 case ISD::SREM: 5501 case ISD::UREM: { 5502 // If a divisor is zero/undef or any element of a divisor vector is 5503 // zero/undef, the whole op is undef. 5504 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5505 SDValue Divisor = Ops[1]; 5506 if (Divisor.isUndef() || isNullConstant(Divisor)) 5507 return true; 5508 5509 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5510 llvm::any_of(Divisor->op_values(), 5511 [](SDValue V) { return V.isUndef() || 5512 isNullConstant(V); }); 5513 // TODO: Handle signed overflow. 5514 } 5515 // TODO: Handle oversized shifts. 5516 default: 5517 return false; 5518 } 5519 } 5520 5521 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5522 EVT VT, ArrayRef<SDValue> Ops) { 5523 // If the opcode is a target-specific ISD node, there's nothing we can 5524 // do here and the operand rules may not line up with the below, so 5525 // bail early. 5526 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5527 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5528 // foldCONCAT_VECTORS in getNode before this is called. 5529 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5530 return SDValue(); 5531 5532 unsigned NumOps = Ops.size(); 5533 if (NumOps == 0) 5534 return SDValue(); 5535 5536 if (isUndef(Opcode, Ops)) 5537 return getUNDEF(VT); 5538 5539 // Handle binops special cases. 5540 if (NumOps == 2) { 5541 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5542 return CFP; 5543 5544 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5545 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5546 if (C1->isOpaque() || C2->isOpaque()) 5547 return SDValue(); 5548 5549 Optional<APInt> FoldAttempt = 5550 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5551 if (!FoldAttempt) 5552 return SDValue(); 5553 5554 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 5555 assert((!Folded || !VT.isVector()) && 5556 "Can't fold vectors ops with scalar operands"); 5557 return Folded; 5558 } 5559 } 5560 5561 // fold (add Sym, c) -> Sym+c 5562 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5563 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5564 if (TLI->isCommutativeBinOp(Opcode)) 5565 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5566 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5567 } 5568 5569 // This is for vector folding only from here on. 5570 if (!VT.isVector()) 5571 return SDValue(); 5572 5573 ElementCount NumElts = VT.getVectorElementCount(); 5574 5575 // See if we can fold through bitcasted integer ops. 5576 // TODO: Can we handle undef elements? 5577 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5578 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5579 Ops[0].getOpcode() == ISD::BITCAST && 5580 Ops[1].getOpcode() == ISD::BITCAST) { 5581 SDValue N1 = peekThroughBitcasts(Ops[0]); 5582 SDValue N2 = peekThroughBitcasts(Ops[1]); 5583 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5584 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5585 EVT BVVT = N1.getValueType(); 5586 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5587 bool IsLE = getDataLayout().isLittleEndian(); 5588 unsigned EltBits = VT.getScalarSizeInBits(); 5589 SmallVector<APInt> RawBits1, RawBits2; 5590 BitVector UndefElts1, UndefElts2; 5591 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5592 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5593 UndefElts1.none() && UndefElts2.none()) { 5594 SmallVector<APInt> RawBits; 5595 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5596 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5597 if (!Fold) 5598 break; 5599 RawBits.push_back(*Fold); 5600 } 5601 if (RawBits.size() == NumElts.getFixedValue()) { 5602 // We have constant folded, but we need to cast this again back to 5603 // the original (possibly legalized) type. 5604 SmallVector<APInt> DstBits; 5605 BitVector DstUndefs; 5606 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5607 DstBits, RawBits, DstUndefs, 5608 BitVector(RawBits.size(), false)); 5609 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5610 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5611 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5612 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5613 if (DstUndefs[I]) 5614 continue; 5615 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5616 } 5617 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5618 } 5619 } 5620 } 5621 } 5622 5623 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5624 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5625 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5626 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5627 APInt RHSVal; 5628 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5629 APInt NewStep = Opcode == ISD::MUL 5630 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5631 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5632 return getStepVector(DL, VT, NewStep); 5633 } 5634 } 5635 5636 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5637 return !Op.getValueType().isVector() || 5638 Op.getValueType().getVectorElementCount() == NumElts; 5639 }; 5640 5641 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5642 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5643 Op.getOpcode() == ISD::BUILD_VECTOR || 5644 Op.getOpcode() == ISD::SPLAT_VECTOR; 5645 }; 5646 5647 // All operands must be vector types with the same number of elements as 5648 // the result type and must be either UNDEF or a build/splat vector 5649 // or UNDEF scalars. 5650 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5651 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5652 return SDValue(); 5653 5654 // If we are comparing vectors, then the result needs to be a i1 boolean that 5655 // is then extended back to the legal result type depending on how booleans 5656 // are represented. 5657 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5658 ISD::NodeType ExtendCode = 5659 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5660 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5661 : ISD::SIGN_EXTEND; 5662 5663 // Find legal integer scalar type for constant promotion and 5664 // ensure that its scalar size is at least as large as source. 5665 EVT LegalSVT = VT.getScalarType(); 5666 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5667 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5668 if (LegalSVT.bitsLT(VT.getScalarType())) 5669 return SDValue(); 5670 } 5671 5672 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5673 // only have one operand to check. For fixed-length vector types we may have 5674 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5675 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5676 5677 // Constant fold each scalar lane separately. 5678 SmallVector<SDValue, 4> ScalarResults; 5679 for (unsigned I = 0; I != NumVectorElts; I++) { 5680 SmallVector<SDValue, 4> ScalarOps; 5681 for (SDValue Op : Ops) { 5682 EVT InSVT = Op.getValueType().getScalarType(); 5683 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5684 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5685 if (Op.isUndef()) 5686 ScalarOps.push_back(getUNDEF(InSVT)); 5687 else 5688 ScalarOps.push_back(Op); 5689 continue; 5690 } 5691 5692 SDValue ScalarOp = 5693 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5694 EVT ScalarVT = ScalarOp.getValueType(); 5695 5696 // Build vector (integer) scalar operands may need implicit 5697 // truncation - do this before constant folding. 5698 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5699 // Don't create illegally-typed nodes unless they're constants or undef 5700 // - if we fail to constant fold we can't guarantee the (dead) nodes 5701 // we're creating will be cleaned up before being visited for 5702 // legalization. 5703 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5704 !isa<ConstantSDNode>(ScalarOp) && 5705 TLI->getTypeAction(*getContext(), InSVT) != 5706 TargetLowering::TypeLegal) 5707 return SDValue(); 5708 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5709 } 5710 5711 ScalarOps.push_back(ScalarOp); 5712 } 5713 5714 // Constant fold the scalar operands. 5715 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5716 5717 // Legalize the (integer) scalar constant if necessary. 5718 if (LegalSVT != SVT) 5719 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5720 5721 // Scalar folding only succeeded if the result is a constant or UNDEF. 5722 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5723 ScalarResult.getOpcode() != ISD::ConstantFP) 5724 return SDValue(); 5725 ScalarResults.push_back(ScalarResult); 5726 } 5727 5728 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5729 : getBuildVector(VT, DL, ScalarResults); 5730 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5731 return V; 5732 } 5733 5734 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5735 EVT VT, SDValue N1, SDValue N2) { 5736 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5737 // should. That will require dealing with a potentially non-default 5738 // rounding mode, checking the "opStatus" return value from the APFloat 5739 // math calculations, and possibly other variations. 5740 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5741 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5742 if (N1CFP && N2CFP) { 5743 APFloat C1 = N1CFP->getValueAPF(); // make copy 5744 const APFloat &C2 = N2CFP->getValueAPF(); 5745 switch (Opcode) { 5746 case ISD::FADD: 5747 C1.add(C2, APFloat::rmNearestTiesToEven); 5748 return getConstantFP(C1, DL, VT); 5749 case ISD::FSUB: 5750 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5751 return getConstantFP(C1, DL, VT); 5752 case ISD::FMUL: 5753 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5754 return getConstantFP(C1, DL, VT); 5755 case ISD::FDIV: 5756 C1.divide(C2, APFloat::rmNearestTiesToEven); 5757 return getConstantFP(C1, DL, VT); 5758 case ISD::FREM: 5759 C1.mod(C2); 5760 return getConstantFP(C1, DL, VT); 5761 case ISD::FCOPYSIGN: 5762 C1.copySign(C2); 5763 return getConstantFP(C1, DL, VT); 5764 case ISD::FMINNUM: 5765 return getConstantFP(minnum(C1, C2), DL, VT); 5766 case ISD::FMAXNUM: 5767 return getConstantFP(maxnum(C1, C2), DL, VT); 5768 case ISD::FMINIMUM: 5769 return getConstantFP(minimum(C1, C2), DL, VT); 5770 case ISD::FMAXIMUM: 5771 return getConstantFP(maximum(C1, C2), DL, VT); 5772 default: break; 5773 } 5774 } 5775 if (N1CFP && Opcode == ISD::FP_ROUND) { 5776 APFloat C1 = N1CFP->getValueAPF(); // make copy 5777 bool Unused; 5778 // This can return overflow, underflow, or inexact; we don't care. 5779 // FIXME need to be more flexible about rounding mode. 5780 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5781 &Unused); 5782 return getConstantFP(C1, DL, VT); 5783 } 5784 5785 switch (Opcode) { 5786 case ISD::FSUB: 5787 // -0.0 - undef --> undef (consistent with "fneg undef") 5788 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5789 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5790 return getUNDEF(VT); 5791 LLVM_FALLTHROUGH; 5792 5793 case ISD::FADD: 5794 case ISD::FMUL: 5795 case ISD::FDIV: 5796 case ISD::FREM: 5797 // If both operands are undef, the result is undef. If 1 operand is undef, 5798 // the result is NaN. This should match the behavior of the IR optimizer. 5799 if (N1.isUndef() && N2.isUndef()) 5800 return getUNDEF(VT); 5801 if (N1.isUndef() || N2.isUndef()) 5802 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5803 } 5804 return SDValue(); 5805 } 5806 5807 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5808 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5809 5810 // There's no need to assert on a byte-aligned pointer. All pointers are at 5811 // least byte aligned. 5812 if (A == Align(1)) 5813 return Val; 5814 5815 FoldingSetNodeID ID; 5816 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5817 ID.AddInteger(A.value()); 5818 5819 void *IP = nullptr; 5820 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5821 return SDValue(E, 0); 5822 5823 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5824 Val.getValueType(), A); 5825 createOperands(N, {Val}); 5826 5827 CSEMap.InsertNode(N, IP); 5828 InsertNode(N); 5829 5830 SDValue V(N, 0); 5831 NewSDValueDbgMsg(V, "Creating new node: ", this); 5832 return V; 5833 } 5834 5835 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5836 SDValue N1, SDValue N2) { 5837 SDNodeFlags Flags; 5838 if (Inserter) 5839 Flags = Inserter->getFlags(); 5840 return getNode(Opcode, DL, VT, N1, N2, Flags); 5841 } 5842 5843 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5844 SDValue &N2) const { 5845 if (!TLI->isCommutativeBinOp(Opcode)) 5846 return; 5847 5848 // Canonicalize: 5849 // binop(const, nonconst) -> binop(nonconst, const) 5850 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5851 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5852 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5853 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5854 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5855 std::swap(N1, N2); 5856 5857 // Canonicalize: 5858 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5859 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5860 N2.getOpcode() == ISD::STEP_VECTOR) 5861 std::swap(N1, N2); 5862 } 5863 5864 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5865 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5866 assert(N1.getOpcode() != ISD::DELETED_NODE && 5867 N2.getOpcode() != ISD::DELETED_NODE && 5868 "Operand is DELETED_NODE!"); 5869 5870 canonicalizeCommutativeBinop(Opcode, N1, N2); 5871 5872 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5873 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5874 5875 // Don't allow undefs in vector splats - we might be returning N2 when folding 5876 // to zero etc. 5877 ConstantSDNode *N2CV = 5878 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5879 5880 switch (Opcode) { 5881 default: break; 5882 case ISD::TokenFactor: 5883 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5884 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5885 // Fold trivial token factors. 5886 if (N1.getOpcode() == ISD::EntryToken) return N2; 5887 if (N2.getOpcode() == ISD::EntryToken) return N1; 5888 if (N1 == N2) return N1; 5889 break; 5890 case ISD::BUILD_VECTOR: { 5891 // Attempt to simplify BUILD_VECTOR. 5892 SDValue Ops[] = {N1, N2}; 5893 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5894 return V; 5895 break; 5896 } 5897 case ISD::CONCAT_VECTORS: { 5898 SDValue Ops[] = {N1, N2}; 5899 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5900 return V; 5901 break; 5902 } 5903 case ISD::AND: 5904 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5905 assert(N1.getValueType() == N2.getValueType() && 5906 N1.getValueType() == VT && "Binary operator types must match!"); 5907 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5908 // worth handling here. 5909 if (N2CV && N2CV->isZero()) 5910 return N2; 5911 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5912 return N1; 5913 break; 5914 case ISD::OR: 5915 case ISD::XOR: 5916 case ISD::ADD: 5917 case ISD::SUB: 5918 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5919 assert(N1.getValueType() == N2.getValueType() && 5920 N1.getValueType() == VT && "Binary operator types must match!"); 5921 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5922 // it's worth handling here. 5923 if (N2CV && N2CV->isZero()) 5924 return N1; 5925 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5926 VT.getVectorElementType() == MVT::i1) 5927 return getNode(ISD::XOR, DL, VT, N1, N2); 5928 break; 5929 case ISD::MUL: 5930 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5931 assert(N1.getValueType() == N2.getValueType() && 5932 N1.getValueType() == VT && "Binary operator types must match!"); 5933 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5934 return getNode(ISD::AND, DL, VT, N1, N2); 5935 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5936 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5937 const APInt &N2CImm = N2C->getAPIntValue(); 5938 return getVScale(DL, VT, MulImm * N2CImm); 5939 } 5940 break; 5941 case ISD::UDIV: 5942 case ISD::UREM: 5943 case ISD::MULHU: 5944 case ISD::MULHS: 5945 case ISD::SDIV: 5946 case ISD::SREM: 5947 case ISD::SADDSAT: 5948 case ISD::SSUBSAT: 5949 case ISD::UADDSAT: 5950 case ISD::USUBSAT: 5951 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5952 assert(N1.getValueType() == N2.getValueType() && 5953 N1.getValueType() == VT && "Binary operator types must match!"); 5954 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5955 // fold (add_sat x, y) -> (or x, y) for bool types. 5956 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5957 return getNode(ISD::OR, DL, VT, N1, N2); 5958 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5959 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5960 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5961 } 5962 break; 5963 case ISD::SMIN: 5964 case ISD::UMAX: 5965 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5966 assert(N1.getValueType() == N2.getValueType() && 5967 N1.getValueType() == VT && "Binary operator types must match!"); 5968 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5969 return getNode(ISD::OR, DL, VT, N1, N2); 5970 break; 5971 case ISD::SMAX: 5972 case ISD::UMIN: 5973 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5974 assert(N1.getValueType() == N2.getValueType() && 5975 N1.getValueType() == VT && "Binary operator types must match!"); 5976 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5977 return getNode(ISD::AND, DL, VT, N1, N2); 5978 break; 5979 case ISD::FADD: 5980 case ISD::FSUB: 5981 case ISD::FMUL: 5982 case ISD::FDIV: 5983 case ISD::FREM: 5984 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5985 assert(N1.getValueType() == N2.getValueType() && 5986 N1.getValueType() == VT && "Binary operator types must match!"); 5987 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5988 return V; 5989 break; 5990 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5991 assert(N1.getValueType() == VT && 5992 N1.getValueType().isFloatingPoint() && 5993 N2.getValueType().isFloatingPoint() && 5994 "Invalid FCOPYSIGN!"); 5995 break; 5996 case ISD::SHL: 5997 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5998 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5999 const APInt &ShiftImm = N2C->getAPIntValue(); 6000 return getVScale(DL, VT, MulImm << ShiftImm); 6001 } 6002 LLVM_FALLTHROUGH; 6003 case ISD::SRA: 6004 case ISD::SRL: 6005 if (SDValue V = simplifyShift(N1, N2)) 6006 return V; 6007 LLVM_FALLTHROUGH; 6008 case ISD::ROTL: 6009 case ISD::ROTR: 6010 assert(VT == N1.getValueType() && 6011 "Shift operators return type must be the same as their first arg"); 6012 assert(VT.isInteger() && N2.getValueType().isInteger() && 6013 "Shifts only work on integers"); 6014 assert((!VT.isVector() || VT == N2.getValueType()) && 6015 "Vector shift amounts must be in the same as their first arg"); 6016 // Verify that the shift amount VT is big enough to hold valid shift 6017 // amounts. This catches things like trying to shift an i1024 value by an 6018 // i8, which is easy to fall into in generic code that uses 6019 // TLI.getShiftAmount(). 6020 assert(N2.getValueType().getScalarSizeInBits() >= 6021 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6022 "Invalid use of small shift amount with oversized value!"); 6023 6024 // Always fold shifts of i1 values so the code generator doesn't need to 6025 // handle them. Since we know the size of the shift has to be less than the 6026 // size of the value, the shift/rotate count is guaranteed to be zero. 6027 if (VT == MVT::i1) 6028 return N1; 6029 if (N2CV && N2CV->isZero()) 6030 return N1; 6031 break; 6032 case ISD::FP_ROUND: 6033 assert(VT.isFloatingPoint() && 6034 N1.getValueType().isFloatingPoint() && 6035 VT.bitsLE(N1.getValueType()) && 6036 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6037 "Invalid FP_ROUND!"); 6038 if (N1.getValueType() == VT) return N1; // noop conversion. 6039 break; 6040 case ISD::AssertSext: 6041 case ISD::AssertZext: { 6042 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6043 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6044 assert(VT.isInteger() && EVT.isInteger() && 6045 "Cannot *_EXTEND_INREG FP types"); 6046 assert(!EVT.isVector() && 6047 "AssertSExt/AssertZExt type should be the vector element type " 6048 "rather than the vector type!"); 6049 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6050 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6051 break; 6052 } 6053 case ISD::SIGN_EXTEND_INREG: { 6054 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6055 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6056 assert(VT.isInteger() && EVT.isInteger() && 6057 "Cannot *_EXTEND_INREG FP types"); 6058 assert(EVT.isVector() == VT.isVector() && 6059 "SIGN_EXTEND_INREG type should be vector iff the operand " 6060 "type is vector!"); 6061 assert((!EVT.isVector() || 6062 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6063 "Vector element counts must match in SIGN_EXTEND_INREG"); 6064 assert(EVT.bitsLE(VT) && "Not extending!"); 6065 if (EVT == VT) return N1; // Not actually extending 6066 6067 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6068 unsigned FromBits = EVT.getScalarSizeInBits(); 6069 Val <<= Val.getBitWidth() - FromBits; 6070 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6071 return getConstant(Val, DL, ConstantVT); 6072 }; 6073 6074 if (N1C) { 6075 const APInt &Val = N1C->getAPIntValue(); 6076 return SignExtendInReg(Val, VT); 6077 } 6078 6079 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6080 SmallVector<SDValue, 8> Ops; 6081 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6082 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6083 SDValue Op = N1.getOperand(i); 6084 if (Op.isUndef()) { 6085 Ops.push_back(getUNDEF(OpVT)); 6086 continue; 6087 } 6088 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6089 APInt Val = C->getAPIntValue(); 6090 Ops.push_back(SignExtendInReg(Val, OpVT)); 6091 } 6092 return getBuildVector(VT, DL, Ops); 6093 } 6094 break; 6095 } 6096 case ISD::FP_TO_SINT_SAT: 6097 case ISD::FP_TO_UINT_SAT: { 6098 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6099 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6100 assert(N1.getValueType().isVector() == VT.isVector() && 6101 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6102 "vector!"); 6103 assert((!VT.isVector() || VT.getVectorNumElements() == 6104 N1.getValueType().getVectorNumElements()) && 6105 "Vector element counts must match in FP_TO_*INT_SAT"); 6106 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6107 "Type to saturate to must be a scalar."); 6108 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6109 "Not extending!"); 6110 break; 6111 } 6112 case ISD::EXTRACT_VECTOR_ELT: 6113 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6114 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6115 element type of the vector."); 6116 6117 // Extract from an undefined value or using an undefined index is undefined. 6118 if (N1.isUndef() || N2.isUndef()) 6119 return getUNDEF(VT); 6120 6121 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6122 // vectors. For scalable vectors we will provide appropriate support for 6123 // dealing with arbitrary indices. 6124 if (N2C && N1.getValueType().isFixedLengthVector() && 6125 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6126 return getUNDEF(VT); 6127 6128 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6129 // expanding copies of large vectors from registers. This only works for 6130 // fixed length vectors, since we need to know the exact number of 6131 // elements. 6132 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6133 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6134 unsigned Factor = 6135 N1.getOperand(0).getValueType().getVectorNumElements(); 6136 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6137 N1.getOperand(N2C->getZExtValue() / Factor), 6138 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6139 } 6140 6141 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6142 // lowering is expanding large vector constants. 6143 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6144 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6145 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6146 N1.getValueType().isFixedLengthVector()) && 6147 "BUILD_VECTOR used for scalable vectors"); 6148 unsigned Index = 6149 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6150 SDValue Elt = N1.getOperand(Index); 6151 6152 if (VT != Elt.getValueType()) 6153 // If the vector element type is not legal, the BUILD_VECTOR operands 6154 // are promoted and implicitly truncated, and the result implicitly 6155 // extended. Make that explicit here. 6156 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6157 6158 return Elt; 6159 } 6160 6161 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6162 // operations are lowered to scalars. 6163 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6164 // If the indices are the same, return the inserted element else 6165 // if the indices are known different, extract the element from 6166 // the original vector. 6167 SDValue N1Op2 = N1.getOperand(2); 6168 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6169 6170 if (N1Op2C && N2C) { 6171 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6172 if (VT == N1.getOperand(1).getValueType()) 6173 return N1.getOperand(1); 6174 if (VT.isFloatingPoint()) { 6175 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits()); 6176 return getFPExtendOrRound(N1.getOperand(1), DL, VT); 6177 } 6178 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6179 } 6180 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6181 } 6182 } 6183 6184 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6185 // when vector types are scalarized and v1iX is legal. 6186 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6187 // Here we are completely ignoring the extract element index (N2), 6188 // which is fine for fixed width vectors, since any index other than 0 6189 // is undefined anyway. However, this cannot be ignored for scalable 6190 // vectors - in theory we could support this, but we don't want to do this 6191 // without a profitability check. 6192 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6193 N1.getValueType().isFixedLengthVector() && 6194 N1.getValueType().getVectorNumElements() == 1) { 6195 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6196 N1.getOperand(1)); 6197 } 6198 break; 6199 case ISD::EXTRACT_ELEMENT: 6200 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6201 assert(!N1.getValueType().isVector() && !VT.isVector() && 6202 (N1.getValueType().isInteger() == VT.isInteger()) && 6203 N1.getValueType() != VT && 6204 "Wrong types for EXTRACT_ELEMENT!"); 6205 6206 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6207 // 64-bit integers into 32-bit parts. Instead of building the extract of 6208 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6209 if (N1.getOpcode() == ISD::BUILD_PAIR) 6210 return N1.getOperand(N2C->getZExtValue()); 6211 6212 // EXTRACT_ELEMENT of a constant int is also very common. 6213 if (N1C) { 6214 unsigned ElementSize = VT.getSizeInBits(); 6215 unsigned Shift = ElementSize * N2C->getZExtValue(); 6216 const APInt &Val = N1C->getAPIntValue(); 6217 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6218 } 6219 break; 6220 case ISD::EXTRACT_SUBVECTOR: { 6221 EVT N1VT = N1.getValueType(); 6222 assert(VT.isVector() && N1VT.isVector() && 6223 "Extract subvector VTs must be vectors!"); 6224 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6225 "Extract subvector VTs must have the same element type!"); 6226 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6227 "Cannot extract a scalable vector from a fixed length vector!"); 6228 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6229 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6230 "Extract subvector must be from larger vector to smaller vector!"); 6231 assert(N2C && "Extract subvector index must be a constant"); 6232 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6233 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6234 N1VT.getVectorMinNumElements()) && 6235 "Extract subvector overflow!"); 6236 assert(N2C->getAPIntValue().getBitWidth() == 6237 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6238 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6239 6240 // Trivial extraction. 6241 if (VT == N1VT) 6242 return N1; 6243 6244 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6245 if (N1.isUndef()) 6246 return getUNDEF(VT); 6247 6248 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6249 // the concat have the same type as the extract. 6250 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6251 VT == N1.getOperand(0).getValueType()) { 6252 unsigned Factor = VT.getVectorMinNumElements(); 6253 return N1.getOperand(N2C->getZExtValue() / Factor); 6254 } 6255 6256 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6257 // during shuffle legalization. 6258 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6259 VT == N1.getOperand(1).getValueType()) 6260 return N1.getOperand(1); 6261 break; 6262 } 6263 } 6264 6265 // Perform trivial constant folding. 6266 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6267 return SV; 6268 6269 // Canonicalize an UNDEF to the RHS, even over a constant. 6270 if (N1.isUndef()) { 6271 if (TLI->isCommutativeBinOp(Opcode)) { 6272 std::swap(N1, N2); 6273 } else { 6274 switch (Opcode) { 6275 case ISD::SUB: 6276 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6277 case ISD::SIGN_EXTEND_INREG: 6278 case ISD::UDIV: 6279 case ISD::SDIV: 6280 case ISD::UREM: 6281 case ISD::SREM: 6282 case ISD::SSUBSAT: 6283 case ISD::USUBSAT: 6284 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6285 } 6286 } 6287 } 6288 6289 // Fold a bunch of operators when the RHS is undef. 6290 if (N2.isUndef()) { 6291 switch (Opcode) { 6292 case ISD::XOR: 6293 if (N1.isUndef()) 6294 // Handle undef ^ undef -> 0 special case. This is a common 6295 // idiom (misuse). 6296 return getConstant(0, DL, VT); 6297 LLVM_FALLTHROUGH; 6298 case ISD::ADD: 6299 case ISD::SUB: 6300 case ISD::UDIV: 6301 case ISD::SDIV: 6302 case ISD::UREM: 6303 case ISD::SREM: 6304 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6305 case ISD::MUL: 6306 case ISD::AND: 6307 case ISD::SSUBSAT: 6308 case ISD::USUBSAT: 6309 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6310 case ISD::OR: 6311 case ISD::SADDSAT: 6312 case ISD::UADDSAT: 6313 return getAllOnesConstant(DL, VT); 6314 } 6315 } 6316 6317 // Memoize this node if possible. 6318 SDNode *N; 6319 SDVTList VTs = getVTList(VT); 6320 SDValue Ops[] = {N1, N2}; 6321 if (VT != MVT::Glue) { 6322 FoldingSetNodeID ID; 6323 AddNodeIDNode(ID, Opcode, VTs, Ops); 6324 void *IP = nullptr; 6325 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6326 E->intersectFlagsWith(Flags); 6327 return SDValue(E, 0); 6328 } 6329 6330 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6331 N->setFlags(Flags); 6332 createOperands(N, Ops); 6333 CSEMap.InsertNode(N, IP); 6334 } else { 6335 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6336 createOperands(N, Ops); 6337 } 6338 6339 InsertNode(N); 6340 SDValue V = SDValue(N, 0); 6341 NewSDValueDbgMsg(V, "Creating new node: ", this); 6342 return V; 6343 } 6344 6345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6346 SDValue N1, SDValue N2, SDValue N3) { 6347 SDNodeFlags Flags; 6348 if (Inserter) 6349 Flags = Inserter->getFlags(); 6350 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6351 } 6352 6353 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6354 SDValue N1, SDValue N2, SDValue N3, 6355 const SDNodeFlags Flags) { 6356 assert(N1.getOpcode() != ISD::DELETED_NODE && 6357 N2.getOpcode() != ISD::DELETED_NODE && 6358 N3.getOpcode() != ISD::DELETED_NODE && 6359 "Operand is DELETED_NODE!"); 6360 // Perform various simplifications. 6361 switch (Opcode) { 6362 case ISD::FMA: { 6363 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6364 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6365 N3.getValueType() == VT && "FMA types must match!"); 6366 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6367 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6368 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6369 if (N1CFP && N2CFP && N3CFP) { 6370 APFloat V1 = N1CFP->getValueAPF(); 6371 const APFloat &V2 = N2CFP->getValueAPF(); 6372 const APFloat &V3 = N3CFP->getValueAPF(); 6373 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6374 return getConstantFP(V1, DL, VT); 6375 } 6376 break; 6377 } 6378 case ISD::BUILD_VECTOR: { 6379 // Attempt to simplify BUILD_VECTOR. 6380 SDValue Ops[] = {N1, N2, N3}; 6381 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6382 return V; 6383 break; 6384 } 6385 case ISD::CONCAT_VECTORS: { 6386 SDValue Ops[] = {N1, N2, N3}; 6387 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6388 return V; 6389 break; 6390 } 6391 case ISD::SETCC: { 6392 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6393 assert(N1.getValueType() == N2.getValueType() && 6394 "SETCC operands must have the same type!"); 6395 assert(VT.isVector() == N1.getValueType().isVector() && 6396 "SETCC type should be vector iff the operand type is vector!"); 6397 assert((!VT.isVector() || VT.getVectorElementCount() == 6398 N1.getValueType().getVectorElementCount()) && 6399 "SETCC vector element counts must match!"); 6400 // Use FoldSetCC to simplify SETCC's. 6401 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6402 return V; 6403 // Vector constant folding. 6404 SDValue Ops[] = {N1, N2, N3}; 6405 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6406 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6407 return V; 6408 } 6409 break; 6410 } 6411 case ISD::SELECT: 6412 case ISD::VSELECT: 6413 if (SDValue V = simplifySelect(N1, N2, N3)) 6414 return V; 6415 break; 6416 case ISD::VECTOR_SHUFFLE: 6417 llvm_unreachable("should use getVectorShuffle constructor!"); 6418 case ISD::VECTOR_SPLICE: { 6419 if (cast<ConstantSDNode>(N3)->isNullValue()) 6420 return N1; 6421 break; 6422 } 6423 case ISD::INSERT_VECTOR_ELT: { 6424 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6425 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6426 // for scalable vectors where we will generate appropriate code to 6427 // deal with out-of-bounds cases correctly. 6428 if (N3C && N1.getValueType().isFixedLengthVector() && 6429 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6430 return getUNDEF(VT); 6431 6432 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6433 if (N3.isUndef()) 6434 return getUNDEF(VT); 6435 6436 // If the inserted element is an UNDEF, just use the input vector. 6437 if (N2.isUndef()) 6438 return N1; 6439 6440 break; 6441 } 6442 case ISD::INSERT_SUBVECTOR: { 6443 // Inserting undef into undef is still undef. 6444 if (N1.isUndef() && N2.isUndef()) 6445 return getUNDEF(VT); 6446 6447 EVT N2VT = N2.getValueType(); 6448 assert(VT == N1.getValueType() && 6449 "Dest and insert subvector source types must match!"); 6450 assert(VT.isVector() && N2VT.isVector() && 6451 "Insert subvector VTs must be vectors!"); 6452 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6453 "Cannot insert a scalable vector into a fixed length vector!"); 6454 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6455 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6456 "Insert subvector must be from smaller vector to larger vector!"); 6457 assert(isa<ConstantSDNode>(N3) && 6458 "Insert subvector index must be constant"); 6459 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6460 (N2VT.getVectorMinNumElements() + 6461 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6462 VT.getVectorMinNumElements()) && 6463 "Insert subvector overflow!"); 6464 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6465 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6466 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6467 6468 // Trivial insertion. 6469 if (VT == N2VT) 6470 return N2; 6471 6472 // If this is an insert of an extracted vector into an undef vector, we 6473 // can just use the input to the extract. 6474 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6475 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6476 return N2.getOperand(0); 6477 break; 6478 } 6479 case ISD::BITCAST: 6480 // Fold bit_convert nodes from a type to themselves. 6481 if (N1.getValueType() == VT) 6482 return N1; 6483 break; 6484 } 6485 6486 // Memoize node if it doesn't produce a flag. 6487 SDNode *N; 6488 SDVTList VTs = getVTList(VT); 6489 SDValue Ops[] = {N1, N2, N3}; 6490 if (VT != MVT::Glue) { 6491 FoldingSetNodeID ID; 6492 AddNodeIDNode(ID, Opcode, VTs, Ops); 6493 void *IP = nullptr; 6494 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6495 E->intersectFlagsWith(Flags); 6496 return SDValue(E, 0); 6497 } 6498 6499 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6500 N->setFlags(Flags); 6501 createOperands(N, Ops); 6502 CSEMap.InsertNode(N, IP); 6503 } else { 6504 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6505 createOperands(N, Ops); 6506 } 6507 6508 InsertNode(N); 6509 SDValue V = SDValue(N, 0); 6510 NewSDValueDbgMsg(V, "Creating new node: ", this); 6511 return V; 6512 } 6513 6514 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6515 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6516 SDValue Ops[] = { N1, N2, N3, N4 }; 6517 return getNode(Opcode, DL, VT, Ops); 6518 } 6519 6520 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6521 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6522 SDValue N5) { 6523 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6524 return getNode(Opcode, DL, VT, Ops); 6525 } 6526 6527 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6528 /// the incoming stack arguments to be loaded from the stack. 6529 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6530 SmallVector<SDValue, 8> ArgChains; 6531 6532 // Include the original chain at the beginning of the list. When this is 6533 // used by target LowerCall hooks, this helps legalize find the 6534 // CALLSEQ_BEGIN node. 6535 ArgChains.push_back(Chain); 6536 6537 // Add a chain value for each stack argument. 6538 for (SDNode *U : getEntryNode().getNode()->uses()) 6539 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6540 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6541 if (FI->getIndex() < 0) 6542 ArgChains.push_back(SDValue(L, 1)); 6543 6544 // Build a tokenfactor for all the chains. 6545 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6546 } 6547 6548 /// getMemsetValue - Vectorized representation of the memset value 6549 /// operand. 6550 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6551 const SDLoc &dl) { 6552 assert(!Value.isUndef()); 6553 6554 unsigned NumBits = VT.getScalarSizeInBits(); 6555 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6556 assert(C->getAPIntValue().getBitWidth() == 8); 6557 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6558 if (VT.isInteger()) { 6559 bool IsOpaque = VT.getSizeInBits() > 64 || 6560 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6561 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6562 } 6563 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6564 VT); 6565 } 6566 6567 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6568 EVT IntVT = VT.getScalarType(); 6569 if (!IntVT.isInteger()) 6570 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6571 6572 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6573 if (NumBits > 8) { 6574 // Use a multiplication with 0x010101... to extend the input to the 6575 // required length. 6576 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6577 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6578 DAG.getConstant(Magic, dl, IntVT)); 6579 } 6580 6581 if (VT != Value.getValueType() && !VT.isInteger()) 6582 Value = DAG.getBitcast(VT.getScalarType(), Value); 6583 if (VT != Value.getValueType()) 6584 Value = DAG.getSplatBuildVector(VT, dl, Value); 6585 6586 return Value; 6587 } 6588 6589 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6590 /// used when a memcpy is turned into a memset when the source is a constant 6591 /// string ptr. 6592 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6593 const TargetLowering &TLI, 6594 const ConstantDataArraySlice &Slice) { 6595 // Handle vector with all elements zero. 6596 if (Slice.Array == nullptr) { 6597 if (VT.isInteger()) 6598 return DAG.getConstant(0, dl, VT); 6599 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6600 return DAG.getConstantFP(0.0, dl, VT); 6601 if (VT.isVector()) { 6602 unsigned NumElts = VT.getVectorNumElements(); 6603 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6604 return DAG.getNode(ISD::BITCAST, dl, VT, 6605 DAG.getConstant(0, dl, 6606 EVT::getVectorVT(*DAG.getContext(), 6607 EltVT, NumElts))); 6608 } 6609 llvm_unreachable("Expected type!"); 6610 } 6611 6612 assert(!VT.isVector() && "Can't handle vector type here!"); 6613 unsigned NumVTBits = VT.getSizeInBits(); 6614 unsigned NumVTBytes = NumVTBits / 8; 6615 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6616 6617 APInt Val(NumVTBits, 0); 6618 if (DAG.getDataLayout().isLittleEndian()) { 6619 for (unsigned i = 0; i != NumBytes; ++i) 6620 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6621 } else { 6622 for (unsigned i = 0; i != NumBytes; ++i) 6623 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6624 } 6625 6626 // If the "cost" of materializing the integer immediate is less than the cost 6627 // of a load, then it is cost effective to turn the load into the immediate. 6628 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6629 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6630 return DAG.getConstant(Val, dl, VT); 6631 return SDValue(); 6632 } 6633 6634 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6635 const SDLoc &DL, 6636 const SDNodeFlags Flags) { 6637 EVT VT = Base.getValueType(); 6638 SDValue Index; 6639 6640 if (Offset.isScalable()) 6641 Index = getVScale(DL, Base.getValueType(), 6642 APInt(Base.getValueSizeInBits().getFixedSize(), 6643 Offset.getKnownMinSize())); 6644 else 6645 Index = getConstant(Offset.getFixedSize(), DL, VT); 6646 6647 return getMemBasePlusOffset(Base, Index, DL, Flags); 6648 } 6649 6650 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6651 const SDLoc &DL, 6652 const SDNodeFlags Flags) { 6653 assert(Offset.getValueType().isInteger()); 6654 EVT BasePtrVT = Ptr.getValueType(); 6655 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6656 } 6657 6658 /// Returns true if memcpy source is constant data. 6659 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6660 uint64_t SrcDelta = 0; 6661 GlobalAddressSDNode *G = nullptr; 6662 if (Src.getOpcode() == ISD::GlobalAddress) 6663 G = cast<GlobalAddressSDNode>(Src); 6664 else if (Src.getOpcode() == ISD::ADD && 6665 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6666 Src.getOperand(1).getOpcode() == ISD::Constant) { 6667 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6668 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6669 } 6670 if (!G) 6671 return false; 6672 6673 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6674 SrcDelta + G->getOffset()); 6675 } 6676 6677 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6678 SelectionDAG &DAG) { 6679 // On Darwin, -Os means optimize for size without hurting performance, so 6680 // only really optimize for size when -Oz (MinSize) is used. 6681 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6682 return MF.getFunction().hasMinSize(); 6683 return DAG.shouldOptForSize(); 6684 } 6685 6686 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6687 SmallVector<SDValue, 32> &OutChains, unsigned From, 6688 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6689 SmallVector<SDValue, 16> &OutStoreChains) { 6690 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6691 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6692 SmallVector<SDValue, 16> GluedLoadChains; 6693 for (unsigned i = From; i < To; ++i) { 6694 OutChains.push_back(OutLoadChains[i]); 6695 GluedLoadChains.push_back(OutLoadChains[i]); 6696 } 6697 6698 // Chain for all loads. 6699 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6700 GluedLoadChains); 6701 6702 for (unsigned i = From; i < To; ++i) { 6703 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6704 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6705 ST->getBasePtr(), ST->getMemoryVT(), 6706 ST->getMemOperand()); 6707 OutChains.push_back(NewStore); 6708 } 6709 } 6710 6711 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6712 SDValue Chain, SDValue Dst, SDValue Src, 6713 uint64_t Size, Align Alignment, 6714 bool isVol, bool AlwaysInline, 6715 MachinePointerInfo DstPtrInfo, 6716 MachinePointerInfo SrcPtrInfo, 6717 const AAMDNodes &AAInfo) { 6718 // Turn a memcpy of undef to nop. 6719 // FIXME: We need to honor volatile even is Src is undef. 6720 if (Src.isUndef()) 6721 return Chain; 6722 6723 // Expand memcpy to a series of load and store ops if the size operand falls 6724 // below a certain threshold. 6725 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6726 // rather than maybe a humongous number of loads and stores. 6727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6728 const DataLayout &DL = DAG.getDataLayout(); 6729 LLVMContext &C = *DAG.getContext(); 6730 std::vector<EVT> MemOps; 6731 bool DstAlignCanChange = false; 6732 MachineFunction &MF = DAG.getMachineFunction(); 6733 MachineFrameInfo &MFI = MF.getFrameInfo(); 6734 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6735 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6736 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6737 DstAlignCanChange = true; 6738 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6739 if (!SrcAlign || Alignment > *SrcAlign) 6740 SrcAlign = Alignment; 6741 assert(SrcAlign && "SrcAlign must be set"); 6742 ConstantDataArraySlice Slice; 6743 // If marked as volatile, perform a copy even when marked as constant. 6744 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6745 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6746 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6747 const MemOp Op = isZeroConstant 6748 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6749 /*IsZeroMemset*/ true, isVol) 6750 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6751 *SrcAlign, isVol, CopyFromConstant); 6752 if (!TLI.findOptimalMemOpLowering( 6753 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6754 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6755 return SDValue(); 6756 6757 if (DstAlignCanChange) { 6758 Type *Ty = MemOps[0].getTypeForEVT(C); 6759 Align NewAlign = DL.getABITypeAlign(Ty); 6760 6761 // Don't promote to an alignment that would require dynamic stack 6762 // realignment. 6763 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6764 if (!TRI->hasStackRealignment(MF)) 6765 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6766 NewAlign = NewAlign.previous(); 6767 6768 if (NewAlign > Alignment) { 6769 // Give the stack frame object a larger alignment if needed. 6770 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6771 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6772 Alignment = NewAlign; 6773 } 6774 } 6775 6776 // Prepare AAInfo for loads/stores after lowering this memcpy. 6777 AAMDNodes NewAAInfo = AAInfo; 6778 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6779 6780 MachineMemOperand::Flags MMOFlags = 6781 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6782 SmallVector<SDValue, 16> OutLoadChains; 6783 SmallVector<SDValue, 16> OutStoreChains; 6784 SmallVector<SDValue, 32> OutChains; 6785 unsigned NumMemOps = MemOps.size(); 6786 uint64_t SrcOff = 0, DstOff = 0; 6787 for (unsigned i = 0; i != NumMemOps; ++i) { 6788 EVT VT = MemOps[i]; 6789 unsigned VTSize = VT.getSizeInBits() / 8; 6790 SDValue Value, Store; 6791 6792 if (VTSize > Size) { 6793 // Issuing an unaligned load / store pair that overlaps with the previous 6794 // pair. Adjust the offset accordingly. 6795 assert(i == NumMemOps-1 && i != 0); 6796 SrcOff -= VTSize - Size; 6797 DstOff -= VTSize - Size; 6798 } 6799 6800 if (CopyFromConstant && 6801 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6802 // It's unlikely a store of a vector immediate can be done in a single 6803 // instruction. It would require a load from a constantpool first. 6804 // We only handle zero vectors here. 6805 // FIXME: Handle other cases where store of vector immediate is done in 6806 // a single instruction. 6807 ConstantDataArraySlice SubSlice; 6808 if (SrcOff < Slice.Length) { 6809 SubSlice = Slice; 6810 SubSlice.move(SrcOff); 6811 } else { 6812 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6813 SubSlice.Array = nullptr; 6814 SubSlice.Offset = 0; 6815 SubSlice.Length = VTSize; 6816 } 6817 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6818 if (Value.getNode()) { 6819 Store = DAG.getStore( 6820 Chain, dl, Value, 6821 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6822 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6823 OutChains.push_back(Store); 6824 } 6825 } 6826 6827 if (!Store.getNode()) { 6828 // The type might not be legal for the target. This should only happen 6829 // if the type is smaller than a legal type, as on PPC, so the right 6830 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6831 // to Load/Store if NVT==VT. 6832 // FIXME does the case above also need this? 6833 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6834 assert(NVT.bitsGE(VT)); 6835 6836 bool isDereferenceable = 6837 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6838 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6839 if (isDereferenceable) 6840 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6841 6842 Value = DAG.getExtLoad( 6843 ISD::EXTLOAD, dl, NVT, Chain, 6844 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6845 SrcPtrInfo.getWithOffset(SrcOff), VT, 6846 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6847 OutLoadChains.push_back(Value.getValue(1)); 6848 6849 Store = DAG.getTruncStore( 6850 Chain, dl, Value, 6851 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6852 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6853 OutStoreChains.push_back(Store); 6854 } 6855 SrcOff += VTSize; 6856 DstOff += VTSize; 6857 Size -= VTSize; 6858 } 6859 6860 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6861 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6862 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6863 6864 if (NumLdStInMemcpy) { 6865 // It may be that memcpy might be converted to memset if it's memcpy 6866 // of constants. In such a case, we won't have loads and stores, but 6867 // just stores. In the absence of loads, there is nothing to gang up. 6868 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6869 // If target does not care, just leave as it. 6870 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6871 OutChains.push_back(OutLoadChains[i]); 6872 OutChains.push_back(OutStoreChains[i]); 6873 } 6874 } else { 6875 // Ld/St less than/equal limit set by target. 6876 if (NumLdStInMemcpy <= GluedLdStLimit) { 6877 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6878 NumLdStInMemcpy, OutLoadChains, 6879 OutStoreChains); 6880 } else { 6881 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6882 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6883 unsigned GlueIter = 0; 6884 6885 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6886 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6887 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6888 6889 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6890 OutLoadChains, OutStoreChains); 6891 GlueIter += GluedLdStLimit; 6892 } 6893 6894 // Residual ld/st. 6895 if (RemainingLdStInMemcpy) { 6896 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6897 RemainingLdStInMemcpy, OutLoadChains, 6898 OutStoreChains); 6899 } 6900 } 6901 } 6902 } 6903 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6904 } 6905 6906 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6907 SDValue Chain, SDValue Dst, SDValue Src, 6908 uint64_t Size, Align Alignment, 6909 bool isVol, bool AlwaysInline, 6910 MachinePointerInfo DstPtrInfo, 6911 MachinePointerInfo SrcPtrInfo, 6912 const AAMDNodes &AAInfo) { 6913 // Turn a memmove of undef to nop. 6914 // FIXME: We need to honor volatile even is Src is undef. 6915 if (Src.isUndef()) 6916 return Chain; 6917 6918 // Expand memmove to a series of load and store ops if the size operand falls 6919 // below a certain threshold. 6920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6921 const DataLayout &DL = DAG.getDataLayout(); 6922 LLVMContext &C = *DAG.getContext(); 6923 std::vector<EVT> MemOps; 6924 bool DstAlignCanChange = false; 6925 MachineFunction &MF = DAG.getMachineFunction(); 6926 MachineFrameInfo &MFI = MF.getFrameInfo(); 6927 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6928 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6929 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6930 DstAlignCanChange = true; 6931 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6932 if (!SrcAlign || Alignment > *SrcAlign) 6933 SrcAlign = Alignment; 6934 assert(SrcAlign && "SrcAlign must be set"); 6935 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6936 if (!TLI.findOptimalMemOpLowering( 6937 MemOps, Limit, 6938 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6939 /*IsVolatile*/ true), 6940 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6941 MF.getFunction().getAttributes())) 6942 return SDValue(); 6943 6944 if (DstAlignCanChange) { 6945 Type *Ty = MemOps[0].getTypeForEVT(C); 6946 Align NewAlign = DL.getABITypeAlign(Ty); 6947 if (NewAlign > Alignment) { 6948 // Give the stack frame object a larger alignment if needed. 6949 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6950 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6951 Alignment = NewAlign; 6952 } 6953 } 6954 6955 // Prepare AAInfo for loads/stores after lowering this memmove. 6956 AAMDNodes NewAAInfo = AAInfo; 6957 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6958 6959 MachineMemOperand::Flags MMOFlags = 6960 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6961 uint64_t SrcOff = 0, DstOff = 0; 6962 SmallVector<SDValue, 8> LoadValues; 6963 SmallVector<SDValue, 8> LoadChains; 6964 SmallVector<SDValue, 8> OutChains; 6965 unsigned NumMemOps = MemOps.size(); 6966 for (unsigned i = 0; i < NumMemOps; i++) { 6967 EVT VT = MemOps[i]; 6968 unsigned VTSize = VT.getSizeInBits() / 8; 6969 SDValue Value; 6970 6971 bool isDereferenceable = 6972 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6973 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6974 if (isDereferenceable) 6975 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6976 6977 Value = DAG.getLoad( 6978 VT, dl, Chain, 6979 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6980 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6981 LoadValues.push_back(Value); 6982 LoadChains.push_back(Value.getValue(1)); 6983 SrcOff += VTSize; 6984 } 6985 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6986 OutChains.clear(); 6987 for (unsigned i = 0; i < NumMemOps; i++) { 6988 EVT VT = MemOps[i]; 6989 unsigned VTSize = VT.getSizeInBits() / 8; 6990 SDValue Store; 6991 6992 Store = DAG.getStore( 6993 Chain, dl, LoadValues[i], 6994 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6995 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6996 OutChains.push_back(Store); 6997 DstOff += VTSize; 6998 } 6999 7000 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7001 } 7002 7003 /// Lower the call to 'memset' intrinsic function into a series of store 7004 /// operations. 7005 /// 7006 /// \param DAG Selection DAG where lowered code is placed. 7007 /// \param dl Link to corresponding IR location. 7008 /// \param Chain Control flow dependency. 7009 /// \param Dst Pointer to destination memory location. 7010 /// \param Src Value of byte to write into the memory. 7011 /// \param Size Number of bytes to write. 7012 /// \param Alignment Alignment of the destination in bytes. 7013 /// \param isVol True if destination is volatile. 7014 /// \param AlwaysInline Makes sure no function call is generated. 7015 /// \param DstPtrInfo IR information on the memory pointer. 7016 /// \returns New head in the control flow, if lowering was successful, empty 7017 /// SDValue otherwise. 7018 /// 7019 /// The function tries to replace 'llvm.memset' intrinsic with several store 7020 /// operations and value calculation code. This is usually profitable for small 7021 /// memory size or when the semantic requires inlining. 7022 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7023 SDValue Chain, SDValue Dst, SDValue Src, 7024 uint64_t Size, Align Alignment, bool isVol, 7025 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7026 const AAMDNodes &AAInfo) { 7027 // Turn a memset of undef to nop. 7028 // FIXME: We need to honor volatile even is Src is undef. 7029 if (Src.isUndef()) 7030 return Chain; 7031 7032 // Expand memset to a series of load/store ops if the size operand 7033 // falls below a certain threshold. 7034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7035 std::vector<EVT> MemOps; 7036 bool DstAlignCanChange = false; 7037 MachineFunction &MF = DAG.getMachineFunction(); 7038 MachineFrameInfo &MFI = MF.getFrameInfo(); 7039 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7040 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7041 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7042 DstAlignCanChange = true; 7043 bool IsZeroVal = 7044 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7045 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7046 7047 if (!TLI.findOptimalMemOpLowering( 7048 MemOps, Limit, 7049 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7050 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7051 return SDValue(); 7052 7053 if (DstAlignCanChange) { 7054 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7055 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7056 if (NewAlign > Alignment) { 7057 // Give the stack frame object a larger alignment if needed. 7058 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7059 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7060 Alignment = NewAlign; 7061 } 7062 } 7063 7064 SmallVector<SDValue, 8> OutChains; 7065 uint64_t DstOff = 0; 7066 unsigned NumMemOps = MemOps.size(); 7067 7068 // Find the largest store and generate the bit pattern for it. 7069 EVT LargestVT = MemOps[0]; 7070 for (unsigned i = 1; i < NumMemOps; i++) 7071 if (MemOps[i].bitsGT(LargestVT)) 7072 LargestVT = MemOps[i]; 7073 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7074 7075 // Prepare AAInfo for loads/stores after lowering this memset. 7076 AAMDNodes NewAAInfo = AAInfo; 7077 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7078 7079 for (unsigned i = 0; i < NumMemOps; i++) { 7080 EVT VT = MemOps[i]; 7081 unsigned VTSize = VT.getSizeInBits() / 8; 7082 if (VTSize > Size) { 7083 // Issuing an unaligned load / store pair that overlaps with the previous 7084 // pair. Adjust the offset accordingly. 7085 assert(i == NumMemOps-1 && i != 0); 7086 DstOff -= VTSize - Size; 7087 } 7088 7089 // If this store is smaller than the largest store see whether we can get 7090 // the smaller value for free with a truncate. 7091 SDValue Value = MemSetValue; 7092 if (VT.bitsLT(LargestVT)) { 7093 if (!LargestVT.isVector() && !VT.isVector() && 7094 TLI.isTruncateFree(LargestVT, VT)) 7095 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7096 else 7097 Value = getMemsetValue(Src, VT, DAG, dl); 7098 } 7099 assert(Value.getValueType() == VT && "Value with wrong type."); 7100 SDValue Store = DAG.getStore( 7101 Chain, dl, Value, 7102 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7103 DstPtrInfo.getWithOffset(DstOff), Alignment, 7104 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7105 NewAAInfo); 7106 OutChains.push_back(Store); 7107 DstOff += VT.getSizeInBits() / 8; 7108 Size -= VTSize; 7109 } 7110 7111 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7112 } 7113 7114 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7115 unsigned AS) { 7116 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7117 // pointer operands can be losslessly bitcasted to pointers of address space 0 7118 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7119 report_fatal_error("cannot lower memory intrinsic in address space " + 7120 Twine(AS)); 7121 } 7122 } 7123 7124 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7125 SDValue Src, SDValue Size, Align Alignment, 7126 bool isVol, bool AlwaysInline, bool isTailCall, 7127 MachinePointerInfo DstPtrInfo, 7128 MachinePointerInfo SrcPtrInfo, 7129 const AAMDNodes &AAInfo) { 7130 // Check to see if we should lower the memcpy to loads and stores first. 7131 // For cases within the target-specified limits, this is the best choice. 7132 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7133 if (ConstantSize) { 7134 // Memcpy with size zero? Just return the original chain. 7135 if (ConstantSize->isZero()) 7136 return Chain; 7137 7138 SDValue Result = getMemcpyLoadsAndStores( 7139 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7140 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7141 if (Result.getNode()) 7142 return Result; 7143 } 7144 7145 // Then check to see if we should lower the memcpy with target-specific 7146 // code. If the target chooses to do this, this is the next best. 7147 if (TSI) { 7148 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7149 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7150 DstPtrInfo, SrcPtrInfo); 7151 if (Result.getNode()) 7152 return Result; 7153 } 7154 7155 // If we really need inline code and the target declined to provide it, 7156 // use a (potentially long) sequence of loads and stores. 7157 if (AlwaysInline) { 7158 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7159 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7160 ConstantSize->getZExtValue(), Alignment, 7161 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7162 } 7163 7164 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7165 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7166 7167 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7168 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7169 // respect volatile, so they may do things like read or write memory 7170 // beyond the given memory regions. But fixing this isn't easy, and most 7171 // people don't care. 7172 7173 // Emit a library call. 7174 TargetLowering::ArgListTy Args; 7175 TargetLowering::ArgListEntry Entry; 7176 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7177 Entry.Node = Dst; Args.push_back(Entry); 7178 Entry.Node = Src; Args.push_back(Entry); 7179 7180 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7181 Entry.Node = Size; Args.push_back(Entry); 7182 // FIXME: pass in SDLoc 7183 TargetLowering::CallLoweringInfo CLI(*this); 7184 CLI.setDebugLoc(dl) 7185 .setChain(Chain) 7186 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7187 Dst.getValueType().getTypeForEVT(*getContext()), 7188 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7189 TLI->getPointerTy(getDataLayout())), 7190 std::move(Args)) 7191 .setDiscardResult() 7192 .setTailCall(isTailCall); 7193 7194 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7195 return CallResult.second; 7196 } 7197 7198 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7199 SDValue Dst, SDValue Src, SDValue Size, 7200 Type *SizeTy, unsigned ElemSz, 7201 bool isTailCall, 7202 MachinePointerInfo DstPtrInfo, 7203 MachinePointerInfo SrcPtrInfo) { 7204 // Emit a library call. 7205 TargetLowering::ArgListTy Args; 7206 TargetLowering::ArgListEntry Entry; 7207 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7208 Entry.Node = Dst; 7209 Args.push_back(Entry); 7210 7211 Entry.Node = Src; 7212 Args.push_back(Entry); 7213 7214 Entry.Ty = SizeTy; 7215 Entry.Node = Size; 7216 Args.push_back(Entry); 7217 7218 RTLIB::Libcall LibraryCall = 7219 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7220 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7221 report_fatal_error("Unsupported element size"); 7222 7223 TargetLowering::CallLoweringInfo CLI(*this); 7224 CLI.setDebugLoc(dl) 7225 .setChain(Chain) 7226 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7227 Type::getVoidTy(*getContext()), 7228 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7229 TLI->getPointerTy(getDataLayout())), 7230 std::move(Args)) 7231 .setDiscardResult() 7232 .setTailCall(isTailCall); 7233 7234 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7235 return CallResult.second; 7236 } 7237 7238 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7239 SDValue Src, SDValue Size, Align Alignment, 7240 bool isVol, bool isTailCall, 7241 MachinePointerInfo DstPtrInfo, 7242 MachinePointerInfo SrcPtrInfo, 7243 const AAMDNodes &AAInfo) { 7244 // Check to see if we should lower the memmove to loads and stores first. 7245 // For cases within the target-specified limits, this is the best choice. 7246 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7247 if (ConstantSize) { 7248 // Memmove with size zero? Just return the original chain. 7249 if (ConstantSize->isZero()) 7250 return Chain; 7251 7252 SDValue Result = getMemmoveLoadsAndStores( 7253 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7254 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7255 if (Result.getNode()) 7256 return Result; 7257 } 7258 7259 // Then check to see if we should lower the memmove with target-specific 7260 // code. If the target chooses to do this, this is the next best. 7261 if (TSI) { 7262 SDValue Result = 7263 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7264 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7265 if (Result.getNode()) 7266 return Result; 7267 } 7268 7269 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7270 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7271 7272 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7273 // not be safe. See memcpy above for more details. 7274 7275 // Emit a library call. 7276 TargetLowering::ArgListTy Args; 7277 TargetLowering::ArgListEntry Entry; 7278 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7279 Entry.Node = Dst; Args.push_back(Entry); 7280 Entry.Node = Src; Args.push_back(Entry); 7281 7282 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7283 Entry.Node = Size; Args.push_back(Entry); 7284 // FIXME: pass in SDLoc 7285 TargetLowering::CallLoweringInfo CLI(*this); 7286 CLI.setDebugLoc(dl) 7287 .setChain(Chain) 7288 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7289 Dst.getValueType().getTypeForEVT(*getContext()), 7290 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7291 TLI->getPointerTy(getDataLayout())), 7292 std::move(Args)) 7293 .setDiscardResult() 7294 .setTailCall(isTailCall); 7295 7296 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7297 return CallResult.second; 7298 } 7299 7300 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7301 SDValue Dst, SDValue Src, SDValue Size, 7302 Type *SizeTy, unsigned ElemSz, 7303 bool isTailCall, 7304 MachinePointerInfo DstPtrInfo, 7305 MachinePointerInfo SrcPtrInfo) { 7306 // Emit a library call. 7307 TargetLowering::ArgListTy Args; 7308 TargetLowering::ArgListEntry Entry; 7309 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7310 Entry.Node = Dst; 7311 Args.push_back(Entry); 7312 7313 Entry.Node = Src; 7314 Args.push_back(Entry); 7315 7316 Entry.Ty = SizeTy; 7317 Entry.Node = Size; 7318 Args.push_back(Entry); 7319 7320 RTLIB::Libcall LibraryCall = 7321 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7322 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7323 report_fatal_error("Unsupported element size"); 7324 7325 TargetLowering::CallLoweringInfo CLI(*this); 7326 CLI.setDebugLoc(dl) 7327 .setChain(Chain) 7328 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7329 Type::getVoidTy(*getContext()), 7330 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7331 TLI->getPointerTy(getDataLayout())), 7332 std::move(Args)) 7333 .setDiscardResult() 7334 .setTailCall(isTailCall); 7335 7336 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7337 return CallResult.second; 7338 } 7339 7340 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7341 SDValue Src, SDValue Size, Align Alignment, 7342 bool isVol, bool AlwaysInline, bool isTailCall, 7343 MachinePointerInfo DstPtrInfo, 7344 const AAMDNodes &AAInfo) { 7345 // Check to see if we should lower the memset to stores first. 7346 // For cases within the target-specified limits, this is the best choice. 7347 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7348 if (ConstantSize) { 7349 // Memset with size zero? Just return the original chain. 7350 if (ConstantSize->isZero()) 7351 return Chain; 7352 7353 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7354 ConstantSize->getZExtValue(), Alignment, 7355 isVol, false, DstPtrInfo, AAInfo); 7356 7357 if (Result.getNode()) 7358 return Result; 7359 } 7360 7361 // Then check to see if we should lower the memset with target-specific 7362 // code. If the target chooses to do this, this is the next best. 7363 if (TSI) { 7364 SDValue Result = TSI->EmitTargetCodeForMemset( 7365 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7366 if (Result.getNode()) 7367 return Result; 7368 } 7369 7370 // If we really need inline code and the target declined to provide it, 7371 // use a (potentially long) sequence of loads and stores. 7372 if (AlwaysInline) { 7373 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7374 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7375 ConstantSize->getZExtValue(), Alignment, 7376 isVol, true, DstPtrInfo, AAInfo); 7377 assert(Result && 7378 "getMemsetStores must return a valid sequence when AlwaysInline"); 7379 return Result; 7380 } 7381 7382 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7383 7384 // Emit a library call. 7385 auto &Ctx = *getContext(); 7386 const auto& DL = getDataLayout(); 7387 7388 TargetLowering::CallLoweringInfo CLI(*this); 7389 // FIXME: pass in SDLoc 7390 CLI.setDebugLoc(dl).setChain(Chain); 7391 7392 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7393 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7394 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7395 7396 // Helper function to create an Entry from Node and Type. 7397 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7398 TargetLowering::ArgListEntry Entry; 7399 Entry.Node = Node; 7400 Entry.Ty = Ty; 7401 return Entry; 7402 }; 7403 7404 // If zeroing out and bzero is present, use it. 7405 if (SrcIsZero && BzeroName) { 7406 TargetLowering::ArgListTy Args; 7407 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7408 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7409 CLI.setLibCallee( 7410 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7411 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7412 } else { 7413 TargetLowering::ArgListTy Args; 7414 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7415 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7416 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7417 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7418 Dst.getValueType().getTypeForEVT(Ctx), 7419 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7420 TLI->getPointerTy(DL)), 7421 std::move(Args)); 7422 } 7423 7424 CLI.setDiscardResult().setTailCall(isTailCall); 7425 7426 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7427 return CallResult.second; 7428 } 7429 7430 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7431 SDValue Dst, SDValue Value, SDValue Size, 7432 Type *SizeTy, unsigned ElemSz, 7433 bool isTailCall, 7434 MachinePointerInfo DstPtrInfo) { 7435 // Emit a library call. 7436 TargetLowering::ArgListTy Args; 7437 TargetLowering::ArgListEntry Entry; 7438 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7439 Entry.Node = Dst; 7440 Args.push_back(Entry); 7441 7442 Entry.Ty = Type::getInt8Ty(*getContext()); 7443 Entry.Node = Value; 7444 Args.push_back(Entry); 7445 7446 Entry.Ty = SizeTy; 7447 Entry.Node = Size; 7448 Args.push_back(Entry); 7449 7450 RTLIB::Libcall LibraryCall = 7451 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7452 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7453 report_fatal_error("Unsupported element size"); 7454 7455 TargetLowering::CallLoweringInfo CLI(*this); 7456 CLI.setDebugLoc(dl) 7457 .setChain(Chain) 7458 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7459 Type::getVoidTy(*getContext()), 7460 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7461 TLI->getPointerTy(getDataLayout())), 7462 std::move(Args)) 7463 .setDiscardResult() 7464 .setTailCall(isTailCall); 7465 7466 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7467 return CallResult.second; 7468 } 7469 7470 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7471 SDVTList VTList, ArrayRef<SDValue> Ops, 7472 MachineMemOperand *MMO) { 7473 FoldingSetNodeID ID; 7474 ID.AddInteger(MemVT.getRawBits()); 7475 AddNodeIDNode(ID, Opcode, VTList, Ops); 7476 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7477 ID.AddInteger(MMO->getFlags()); 7478 void* IP = nullptr; 7479 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7480 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7481 return SDValue(E, 0); 7482 } 7483 7484 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7485 VTList, MemVT, MMO); 7486 createOperands(N, Ops); 7487 7488 CSEMap.InsertNode(N, IP); 7489 InsertNode(N); 7490 return SDValue(N, 0); 7491 } 7492 7493 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7494 EVT MemVT, SDVTList VTs, SDValue Chain, 7495 SDValue Ptr, SDValue Cmp, SDValue Swp, 7496 MachineMemOperand *MMO) { 7497 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7498 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7499 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7500 7501 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7502 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7503 } 7504 7505 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7506 SDValue Chain, SDValue Ptr, SDValue Val, 7507 MachineMemOperand *MMO) { 7508 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7509 Opcode == ISD::ATOMIC_LOAD_SUB || 7510 Opcode == ISD::ATOMIC_LOAD_AND || 7511 Opcode == ISD::ATOMIC_LOAD_CLR || 7512 Opcode == ISD::ATOMIC_LOAD_OR || 7513 Opcode == ISD::ATOMIC_LOAD_XOR || 7514 Opcode == ISD::ATOMIC_LOAD_NAND || 7515 Opcode == ISD::ATOMIC_LOAD_MIN || 7516 Opcode == ISD::ATOMIC_LOAD_MAX || 7517 Opcode == ISD::ATOMIC_LOAD_UMIN || 7518 Opcode == ISD::ATOMIC_LOAD_UMAX || 7519 Opcode == ISD::ATOMIC_LOAD_FADD || 7520 Opcode == ISD::ATOMIC_LOAD_FSUB || 7521 Opcode == ISD::ATOMIC_LOAD_FMAX || 7522 Opcode == ISD::ATOMIC_LOAD_FMIN || 7523 Opcode == ISD::ATOMIC_SWAP || 7524 Opcode == ISD::ATOMIC_STORE) && 7525 "Invalid Atomic Op"); 7526 7527 EVT VT = Val.getValueType(); 7528 7529 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7530 getVTList(VT, MVT::Other); 7531 SDValue Ops[] = {Chain, Ptr, Val}; 7532 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7533 } 7534 7535 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7536 EVT VT, SDValue Chain, SDValue Ptr, 7537 MachineMemOperand *MMO) { 7538 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7539 7540 SDVTList VTs = getVTList(VT, MVT::Other); 7541 SDValue Ops[] = {Chain, Ptr}; 7542 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7543 } 7544 7545 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7546 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7547 if (Ops.size() == 1) 7548 return Ops[0]; 7549 7550 SmallVector<EVT, 4> VTs; 7551 VTs.reserve(Ops.size()); 7552 for (const SDValue &Op : Ops) 7553 VTs.push_back(Op.getValueType()); 7554 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7555 } 7556 7557 SDValue SelectionDAG::getMemIntrinsicNode( 7558 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7559 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7560 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7561 if (!Size && MemVT.isScalableVector()) 7562 Size = MemoryLocation::UnknownSize; 7563 else if (!Size) 7564 Size = MemVT.getStoreSize(); 7565 7566 MachineFunction &MF = getMachineFunction(); 7567 MachineMemOperand *MMO = 7568 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7569 7570 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7571 } 7572 7573 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7574 SDVTList VTList, 7575 ArrayRef<SDValue> Ops, EVT MemVT, 7576 MachineMemOperand *MMO) { 7577 assert((Opcode == ISD::INTRINSIC_VOID || 7578 Opcode == ISD::INTRINSIC_W_CHAIN || 7579 Opcode == ISD::PREFETCH || 7580 ((int)Opcode <= std::numeric_limits<int>::max() && 7581 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7582 "Opcode is not a memory-accessing opcode!"); 7583 7584 // Memoize the node unless it returns a flag. 7585 MemIntrinsicSDNode *N; 7586 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7587 FoldingSetNodeID ID; 7588 AddNodeIDNode(ID, Opcode, VTList, Ops); 7589 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7590 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7591 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7592 ID.AddInteger(MMO->getFlags()); 7593 void *IP = nullptr; 7594 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7595 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7596 return SDValue(E, 0); 7597 } 7598 7599 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7600 VTList, MemVT, MMO); 7601 createOperands(N, Ops); 7602 7603 CSEMap.InsertNode(N, IP); 7604 } else { 7605 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7606 VTList, MemVT, MMO); 7607 createOperands(N, Ops); 7608 } 7609 InsertNode(N); 7610 SDValue V(N, 0); 7611 NewSDValueDbgMsg(V, "Creating new node: ", this); 7612 return V; 7613 } 7614 7615 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7616 SDValue Chain, int FrameIndex, 7617 int64_t Size, int64_t Offset) { 7618 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7619 const auto VTs = getVTList(MVT::Other); 7620 SDValue Ops[2] = { 7621 Chain, 7622 getFrameIndex(FrameIndex, 7623 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7624 true)}; 7625 7626 FoldingSetNodeID ID; 7627 AddNodeIDNode(ID, Opcode, VTs, Ops); 7628 ID.AddInteger(FrameIndex); 7629 ID.AddInteger(Size); 7630 ID.AddInteger(Offset); 7631 void *IP = nullptr; 7632 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7633 return SDValue(E, 0); 7634 7635 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7636 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7637 createOperands(N, Ops); 7638 CSEMap.InsertNode(N, IP); 7639 InsertNode(N); 7640 SDValue V(N, 0); 7641 NewSDValueDbgMsg(V, "Creating new node: ", this); 7642 return V; 7643 } 7644 7645 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7646 uint64_t Guid, uint64_t Index, 7647 uint32_t Attr) { 7648 const unsigned Opcode = ISD::PSEUDO_PROBE; 7649 const auto VTs = getVTList(MVT::Other); 7650 SDValue Ops[] = {Chain}; 7651 FoldingSetNodeID ID; 7652 AddNodeIDNode(ID, Opcode, VTs, Ops); 7653 ID.AddInteger(Guid); 7654 ID.AddInteger(Index); 7655 void *IP = nullptr; 7656 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7657 return SDValue(E, 0); 7658 7659 auto *N = newSDNode<PseudoProbeSDNode>( 7660 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7661 createOperands(N, Ops); 7662 CSEMap.InsertNode(N, IP); 7663 InsertNode(N); 7664 SDValue V(N, 0); 7665 NewSDValueDbgMsg(V, "Creating new node: ", this); 7666 return V; 7667 } 7668 7669 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7670 /// MachinePointerInfo record from it. This is particularly useful because the 7671 /// code generator has many cases where it doesn't bother passing in a 7672 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7673 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7674 SelectionDAG &DAG, SDValue Ptr, 7675 int64_t Offset = 0) { 7676 // If this is FI+Offset, we can model it. 7677 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7678 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7679 FI->getIndex(), Offset); 7680 7681 // If this is (FI+Offset1)+Offset2, we can model it. 7682 if (Ptr.getOpcode() != ISD::ADD || 7683 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7684 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7685 return Info; 7686 7687 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7688 return MachinePointerInfo::getFixedStack( 7689 DAG.getMachineFunction(), FI, 7690 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7691 } 7692 7693 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7694 /// MachinePointerInfo record from it. This is particularly useful because the 7695 /// code generator has many cases where it doesn't bother passing in a 7696 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7697 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7698 SelectionDAG &DAG, SDValue Ptr, 7699 SDValue OffsetOp) { 7700 // If the 'Offset' value isn't a constant, we can't handle this. 7701 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7702 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7703 if (OffsetOp.isUndef()) 7704 return InferPointerInfo(Info, DAG, Ptr); 7705 return Info; 7706 } 7707 7708 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7709 EVT VT, const SDLoc &dl, SDValue Chain, 7710 SDValue Ptr, SDValue Offset, 7711 MachinePointerInfo PtrInfo, EVT MemVT, 7712 Align Alignment, 7713 MachineMemOperand::Flags MMOFlags, 7714 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7715 assert(Chain.getValueType() == MVT::Other && 7716 "Invalid chain type"); 7717 7718 MMOFlags |= MachineMemOperand::MOLoad; 7719 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7720 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7721 // clients. 7722 if (PtrInfo.V.isNull()) 7723 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7724 7725 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7726 MachineFunction &MF = getMachineFunction(); 7727 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7728 Alignment, AAInfo, Ranges); 7729 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7730 } 7731 7732 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7733 EVT VT, const SDLoc &dl, SDValue Chain, 7734 SDValue Ptr, SDValue Offset, EVT MemVT, 7735 MachineMemOperand *MMO) { 7736 if (VT == MemVT) { 7737 ExtType = ISD::NON_EXTLOAD; 7738 } else if (ExtType == ISD::NON_EXTLOAD) { 7739 assert(VT == MemVT && "Non-extending load from different memory type!"); 7740 } else { 7741 // Extending load. 7742 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7743 "Should only be an extending load, not truncating!"); 7744 assert(VT.isInteger() == MemVT.isInteger() && 7745 "Cannot convert from FP to Int or Int -> FP!"); 7746 assert(VT.isVector() == MemVT.isVector() && 7747 "Cannot use an ext load to convert to or from a vector!"); 7748 assert((!VT.isVector() || 7749 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7750 "Cannot use an ext load to change the number of vector elements!"); 7751 } 7752 7753 bool Indexed = AM != ISD::UNINDEXED; 7754 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7755 7756 SDVTList VTs = Indexed ? 7757 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7758 SDValue Ops[] = { Chain, Ptr, Offset }; 7759 FoldingSetNodeID ID; 7760 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7761 ID.AddInteger(MemVT.getRawBits()); 7762 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7763 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7764 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7765 ID.AddInteger(MMO->getFlags()); 7766 void *IP = nullptr; 7767 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7768 cast<LoadSDNode>(E)->refineAlignment(MMO); 7769 return SDValue(E, 0); 7770 } 7771 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7772 ExtType, MemVT, MMO); 7773 createOperands(N, Ops); 7774 7775 CSEMap.InsertNode(N, IP); 7776 InsertNode(N); 7777 SDValue V(N, 0); 7778 NewSDValueDbgMsg(V, "Creating new node: ", this); 7779 return V; 7780 } 7781 7782 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7783 SDValue Ptr, MachinePointerInfo PtrInfo, 7784 MaybeAlign Alignment, 7785 MachineMemOperand::Flags MMOFlags, 7786 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7787 SDValue Undef = getUNDEF(Ptr.getValueType()); 7788 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7789 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7790 } 7791 7792 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7793 SDValue Ptr, MachineMemOperand *MMO) { 7794 SDValue Undef = getUNDEF(Ptr.getValueType()); 7795 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7796 VT, MMO); 7797 } 7798 7799 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7800 EVT VT, SDValue Chain, SDValue Ptr, 7801 MachinePointerInfo PtrInfo, EVT MemVT, 7802 MaybeAlign Alignment, 7803 MachineMemOperand::Flags MMOFlags, 7804 const AAMDNodes &AAInfo) { 7805 SDValue Undef = getUNDEF(Ptr.getValueType()); 7806 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7807 MemVT, Alignment, MMOFlags, AAInfo); 7808 } 7809 7810 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7811 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7812 MachineMemOperand *MMO) { 7813 SDValue Undef = getUNDEF(Ptr.getValueType()); 7814 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7815 MemVT, MMO); 7816 } 7817 7818 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7819 SDValue Base, SDValue Offset, 7820 ISD::MemIndexedMode AM) { 7821 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7822 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7823 // Don't propagate the invariant or dereferenceable flags. 7824 auto MMOFlags = 7825 LD->getMemOperand()->getFlags() & 7826 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7827 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7828 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7829 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7830 } 7831 7832 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7833 SDValue Ptr, MachinePointerInfo PtrInfo, 7834 Align Alignment, 7835 MachineMemOperand::Flags MMOFlags, 7836 const AAMDNodes &AAInfo) { 7837 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7838 7839 MMOFlags |= MachineMemOperand::MOStore; 7840 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7841 7842 if (PtrInfo.V.isNull()) 7843 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7844 7845 MachineFunction &MF = getMachineFunction(); 7846 uint64_t Size = 7847 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7848 MachineMemOperand *MMO = 7849 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7850 return getStore(Chain, dl, Val, Ptr, MMO); 7851 } 7852 7853 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7854 SDValue Ptr, MachineMemOperand *MMO) { 7855 assert(Chain.getValueType() == MVT::Other && 7856 "Invalid chain type"); 7857 EVT VT = Val.getValueType(); 7858 SDVTList VTs = getVTList(MVT::Other); 7859 SDValue Undef = getUNDEF(Ptr.getValueType()); 7860 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7861 FoldingSetNodeID ID; 7862 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7863 ID.AddInteger(VT.getRawBits()); 7864 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7865 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7866 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7867 ID.AddInteger(MMO->getFlags()); 7868 void *IP = nullptr; 7869 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7870 cast<StoreSDNode>(E)->refineAlignment(MMO); 7871 return SDValue(E, 0); 7872 } 7873 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7874 ISD::UNINDEXED, false, VT, MMO); 7875 createOperands(N, Ops); 7876 7877 CSEMap.InsertNode(N, IP); 7878 InsertNode(N); 7879 SDValue V(N, 0); 7880 NewSDValueDbgMsg(V, "Creating new node: ", this); 7881 return V; 7882 } 7883 7884 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7885 SDValue Ptr, MachinePointerInfo PtrInfo, 7886 EVT SVT, Align Alignment, 7887 MachineMemOperand::Flags MMOFlags, 7888 const AAMDNodes &AAInfo) { 7889 assert(Chain.getValueType() == MVT::Other && 7890 "Invalid chain type"); 7891 7892 MMOFlags |= MachineMemOperand::MOStore; 7893 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7894 7895 if (PtrInfo.V.isNull()) 7896 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7897 7898 MachineFunction &MF = getMachineFunction(); 7899 MachineMemOperand *MMO = MF.getMachineMemOperand( 7900 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7901 Alignment, AAInfo); 7902 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7903 } 7904 7905 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7906 SDValue Ptr, EVT SVT, 7907 MachineMemOperand *MMO) { 7908 EVT VT = Val.getValueType(); 7909 7910 assert(Chain.getValueType() == MVT::Other && 7911 "Invalid chain type"); 7912 if (VT == SVT) 7913 return getStore(Chain, dl, Val, Ptr, MMO); 7914 7915 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7916 "Should only be a truncating store, not extending!"); 7917 assert(VT.isInteger() == SVT.isInteger() && 7918 "Can't do FP-INT conversion!"); 7919 assert(VT.isVector() == SVT.isVector() && 7920 "Cannot use trunc store to convert to or from a vector!"); 7921 assert((!VT.isVector() || 7922 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7923 "Cannot use trunc store to change the number of vector elements!"); 7924 7925 SDVTList VTs = getVTList(MVT::Other); 7926 SDValue Undef = getUNDEF(Ptr.getValueType()); 7927 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7928 FoldingSetNodeID ID; 7929 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7930 ID.AddInteger(SVT.getRawBits()); 7931 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7932 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7933 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7934 ID.AddInteger(MMO->getFlags()); 7935 void *IP = nullptr; 7936 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7937 cast<StoreSDNode>(E)->refineAlignment(MMO); 7938 return SDValue(E, 0); 7939 } 7940 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7941 ISD::UNINDEXED, true, SVT, MMO); 7942 createOperands(N, Ops); 7943 7944 CSEMap.InsertNode(N, IP); 7945 InsertNode(N); 7946 SDValue V(N, 0); 7947 NewSDValueDbgMsg(V, "Creating new node: ", this); 7948 return V; 7949 } 7950 7951 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7952 SDValue Base, SDValue Offset, 7953 ISD::MemIndexedMode AM) { 7954 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7955 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7956 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7957 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7958 FoldingSetNodeID ID; 7959 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7960 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7961 ID.AddInteger(ST->getRawSubclassData()); 7962 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7963 ID.AddInteger(ST->getMemOperand()->getFlags()); 7964 void *IP = nullptr; 7965 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7966 return SDValue(E, 0); 7967 7968 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7969 ST->isTruncatingStore(), ST->getMemoryVT(), 7970 ST->getMemOperand()); 7971 createOperands(N, Ops); 7972 7973 CSEMap.InsertNode(N, IP); 7974 InsertNode(N); 7975 SDValue V(N, 0); 7976 NewSDValueDbgMsg(V, "Creating new node: ", this); 7977 return V; 7978 } 7979 7980 SDValue SelectionDAG::getLoadVP( 7981 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7982 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7983 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7984 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7985 const MDNode *Ranges, bool IsExpanding) { 7986 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7987 7988 MMOFlags |= MachineMemOperand::MOLoad; 7989 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7990 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7991 // clients. 7992 if (PtrInfo.V.isNull()) 7993 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7994 7995 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7996 MachineFunction &MF = getMachineFunction(); 7997 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7998 Alignment, AAInfo, Ranges); 7999 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 8000 MMO, IsExpanding); 8001 } 8002 8003 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 8004 ISD::LoadExtType ExtType, EVT VT, 8005 const SDLoc &dl, SDValue Chain, SDValue Ptr, 8006 SDValue Offset, SDValue Mask, SDValue EVL, 8007 EVT MemVT, MachineMemOperand *MMO, 8008 bool IsExpanding) { 8009 bool Indexed = AM != ISD::UNINDEXED; 8010 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8011 8012 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8013 : getVTList(VT, MVT::Other); 8014 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 8015 FoldingSetNodeID ID; 8016 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 8017 ID.AddInteger(VT.getRawBits()); 8018 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 8019 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8020 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8021 ID.AddInteger(MMO->getFlags()); 8022 void *IP = nullptr; 8023 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8024 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8025 return SDValue(E, 0); 8026 } 8027 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8028 ExtType, IsExpanding, MemVT, MMO); 8029 createOperands(N, Ops); 8030 8031 CSEMap.InsertNode(N, IP); 8032 InsertNode(N); 8033 SDValue V(N, 0); 8034 NewSDValueDbgMsg(V, "Creating new node: ", this); 8035 return V; 8036 } 8037 8038 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8039 SDValue Ptr, SDValue Mask, SDValue EVL, 8040 MachinePointerInfo PtrInfo, 8041 MaybeAlign Alignment, 8042 MachineMemOperand::Flags MMOFlags, 8043 const AAMDNodes &AAInfo, const MDNode *Ranges, 8044 bool IsExpanding) { 8045 SDValue Undef = getUNDEF(Ptr.getValueType()); 8046 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8047 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8048 IsExpanding); 8049 } 8050 8051 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8052 SDValue Ptr, SDValue Mask, SDValue EVL, 8053 MachineMemOperand *MMO, bool IsExpanding) { 8054 SDValue Undef = getUNDEF(Ptr.getValueType()); 8055 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8056 Mask, EVL, VT, MMO, IsExpanding); 8057 } 8058 8059 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8060 EVT VT, SDValue Chain, SDValue Ptr, 8061 SDValue Mask, SDValue EVL, 8062 MachinePointerInfo PtrInfo, EVT MemVT, 8063 MaybeAlign Alignment, 8064 MachineMemOperand::Flags MMOFlags, 8065 const AAMDNodes &AAInfo, bool IsExpanding) { 8066 SDValue Undef = getUNDEF(Ptr.getValueType()); 8067 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8068 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8069 IsExpanding); 8070 } 8071 8072 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8073 EVT VT, SDValue Chain, SDValue Ptr, 8074 SDValue Mask, SDValue EVL, EVT MemVT, 8075 MachineMemOperand *MMO, bool IsExpanding) { 8076 SDValue Undef = getUNDEF(Ptr.getValueType()); 8077 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8078 EVL, MemVT, MMO, IsExpanding); 8079 } 8080 8081 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8082 SDValue Base, SDValue Offset, 8083 ISD::MemIndexedMode AM) { 8084 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8085 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8086 // Don't propagate the invariant or dereferenceable flags. 8087 auto MMOFlags = 8088 LD->getMemOperand()->getFlags() & 8089 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8090 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8091 LD->getChain(), Base, Offset, LD->getMask(), 8092 LD->getVectorLength(), LD->getPointerInfo(), 8093 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8094 nullptr, LD->isExpandingLoad()); 8095 } 8096 8097 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8098 SDValue Ptr, SDValue Offset, SDValue Mask, 8099 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8100 ISD::MemIndexedMode AM, bool IsTruncating, 8101 bool IsCompressing) { 8102 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8103 bool Indexed = AM != ISD::UNINDEXED; 8104 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8105 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8106 : getVTList(MVT::Other); 8107 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8108 FoldingSetNodeID ID; 8109 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8110 ID.AddInteger(MemVT.getRawBits()); 8111 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8112 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8113 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8114 ID.AddInteger(MMO->getFlags()); 8115 void *IP = nullptr; 8116 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8117 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8118 return SDValue(E, 0); 8119 } 8120 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8121 IsTruncating, IsCompressing, MemVT, MMO); 8122 createOperands(N, Ops); 8123 8124 CSEMap.InsertNode(N, IP); 8125 InsertNode(N); 8126 SDValue V(N, 0); 8127 NewSDValueDbgMsg(V, "Creating new node: ", this); 8128 return V; 8129 } 8130 8131 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8132 SDValue Val, SDValue Ptr, SDValue Mask, 8133 SDValue EVL, MachinePointerInfo PtrInfo, 8134 EVT SVT, Align Alignment, 8135 MachineMemOperand::Flags MMOFlags, 8136 const AAMDNodes &AAInfo, 8137 bool IsCompressing) { 8138 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8139 8140 MMOFlags |= MachineMemOperand::MOStore; 8141 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8142 8143 if (PtrInfo.V.isNull()) 8144 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8145 8146 MachineFunction &MF = getMachineFunction(); 8147 MachineMemOperand *MMO = MF.getMachineMemOperand( 8148 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8149 Alignment, AAInfo); 8150 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8151 IsCompressing); 8152 } 8153 8154 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8155 SDValue Val, SDValue Ptr, SDValue Mask, 8156 SDValue EVL, EVT SVT, 8157 MachineMemOperand *MMO, 8158 bool IsCompressing) { 8159 EVT VT = Val.getValueType(); 8160 8161 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8162 if (VT == SVT) 8163 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8164 EVL, VT, MMO, ISD::UNINDEXED, 8165 /*IsTruncating*/ false, IsCompressing); 8166 8167 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8168 "Should only be a truncating store, not extending!"); 8169 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8170 assert(VT.isVector() == SVT.isVector() && 8171 "Cannot use trunc store to convert to or from a vector!"); 8172 assert((!VT.isVector() || 8173 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8174 "Cannot use trunc store to change the number of vector elements!"); 8175 8176 SDVTList VTs = getVTList(MVT::Other); 8177 SDValue Undef = getUNDEF(Ptr.getValueType()); 8178 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8179 FoldingSetNodeID ID; 8180 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8181 ID.AddInteger(SVT.getRawBits()); 8182 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8183 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8184 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8185 ID.AddInteger(MMO->getFlags()); 8186 void *IP = nullptr; 8187 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8188 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8189 return SDValue(E, 0); 8190 } 8191 auto *N = 8192 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8193 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8194 createOperands(N, Ops); 8195 8196 CSEMap.InsertNode(N, IP); 8197 InsertNode(N); 8198 SDValue V(N, 0); 8199 NewSDValueDbgMsg(V, "Creating new node: ", this); 8200 return V; 8201 } 8202 8203 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8204 SDValue Base, SDValue Offset, 8205 ISD::MemIndexedMode AM) { 8206 auto *ST = cast<VPStoreSDNode>(OrigStore); 8207 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8208 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8209 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8210 Offset, ST->getMask(), ST->getVectorLength()}; 8211 FoldingSetNodeID ID; 8212 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8213 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8214 ID.AddInteger(ST->getRawSubclassData()); 8215 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8216 ID.AddInteger(ST->getMemOperand()->getFlags()); 8217 void *IP = nullptr; 8218 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8219 return SDValue(E, 0); 8220 8221 auto *N = newSDNode<VPStoreSDNode>( 8222 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8223 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8224 createOperands(N, Ops); 8225 8226 CSEMap.InsertNode(N, IP); 8227 InsertNode(N); 8228 SDValue V(N, 0); 8229 NewSDValueDbgMsg(V, "Creating new node: ", this); 8230 return V; 8231 } 8232 8233 SDValue SelectionDAG::getStridedLoadVP( 8234 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8235 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8236 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8237 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8238 const MDNode *Ranges, bool IsExpanding) { 8239 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8240 8241 MMOFlags |= MachineMemOperand::MOLoad; 8242 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8243 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8244 // clients. 8245 if (PtrInfo.V.isNull()) 8246 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8247 8248 uint64_t Size = MemoryLocation::UnknownSize; 8249 MachineFunction &MF = getMachineFunction(); 8250 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8251 Alignment, AAInfo, Ranges); 8252 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8253 EVL, MemVT, MMO, IsExpanding); 8254 } 8255 8256 SDValue SelectionDAG::getStridedLoadVP( 8257 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8258 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8259 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8260 bool Indexed = AM != ISD::UNINDEXED; 8261 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8262 8263 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8264 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8265 : getVTList(VT, MVT::Other); 8266 FoldingSetNodeID ID; 8267 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8268 ID.AddInteger(VT.getRawBits()); 8269 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8270 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8271 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8272 8273 void *IP = nullptr; 8274 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8275 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8276 return SDValue(E, 0); 8277 } 8278 8279 auto *N = 8280 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8281 ExtType, IsExpanding, MemVT, MMO); 8282 createOperands(N, Ops); 8283 CSEMap.InsertNode(N, IP); 8284 InsertNode(N); 8285 SDValue V(N, 0); 8286 NewSDValueDbgMsg(V, "Creating new node: ", this); 8287 return V; 8288 } 8289 8290 SDValue SelectionDAG::getStridedLoadVP( 8291 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8292 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8293 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8294 const MDNode *Ranges, bool IsExpanding) { 8295 SDValue Undef = getUNDEF(Ptr.getValueType()); 8296 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8297 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8298 MMOFlags, AAInfo, Ranges, IsExpanding); 8299 } 8300 8301 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8302 SDValue Ptr, SDValue Stride, 8303 SDValue Mask, SDValue EVL, 8304 MachineMemOperand *MMO, 8305 bool IsExpanding) { 8306 SDValue Undef = getUNDEF(Ptr.getValueType()); 8307 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8308 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8309 } 8310 8311 SDValue SelectionDAG::getExtStridedLoadVP( 8312 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8313 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8314 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8315 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8316 bool IsExpanding) { 8317 SDValue Undef = getUNDEF(Ptr.getValueType()); 8318 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8319 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8320 MMOFlags, AAInfo, nullptr, IsExpanding); 8321 } 8322 8323 SDValue SelectionDAG::getExtStridedLoadVP( 8324 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8325 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8326 MachineMemOperand *MMO, bool IsExpanding) { 8327 SDValue Undef = getUNDEF(Ptr.getValueType()); 8328 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8329 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8330 } 8331 8332 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8333 SDValue Base, SDValue Offset, 8334 ISD::MemIndexedMode AM) { 8335 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8336 assert(SLD->getOffset().isUndef() && 8337 "Strided load is already a indexed load!"); 8338 // Don't propagate the invariant or dereferenceable flags. 8339 auto MMOFlags = 8340 SLD->getMemOperand()->getFlags() & 8341 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8342 return getStridedLoadVP( 8343 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8344 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8345 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8346 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8347 } 8348 8349 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8350 SDValue Val, SDValue Ptr, 8351 SDValue Offset, SDValue Stride, 8352 SDValue Mask, SDValue EVL, EVT MemVT, 8353 MachineMemOperand *MMO, 8354 ISD::MemIndexedMode AM, 8355 bool IsTruncating, bool IsCompressing) { 8356 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8357 bool Indexed = AM != ISD::UNINDEXED; 8358 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8359 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8360 : getVTList(MVT::Other); 8361 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8362 FoldingSetNodeID ID; 8363 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8364 ID.AddInteger(MemVT.getRawBits()); 8365 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8366 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8367 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8368 void *IP = nullptr; 8369 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8370 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8371 return SDValue(E, 0); 8372 } 8373 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8374 VTs, AM, IsTruncating, 8375 IsCompressing, MemVT, MMO); 8376 createOperands(N, Ops); 8377 8378 CSEMap.InsertNode(N, IP); 8379 InsertNode(N); 8380 SDValue V(N, 0); 8381 NewSDValueDbgMsg(V, "Creating new node: ", this); 8382 return V; 8383 } 8384 8385 SDValue SelectionDAG::getTruncStridedStoreVP( 8386 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8387 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8388 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8389 bool IsCompressing) { 8390 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8391 8392 MMOFlags |= MachineMemOperand::MOStore; 8393 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8394 8395 if (PtrInfo.V.isNull()) 8396 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8397 8398 MachineFunction &MF = getMachineFunction(); 8399 MachineMemOperand *MMO = MF.getMachineMemOperand( 8400 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8401 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8402 MMO, IsCompressing); 8403 } 8404 8405 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8406 SDValue Val, SDValue Ptr, 8407 SDValue Stride, SDValue Mask, 8408 SDValue EVL, EVT SVT, 8409 MachineMemOperand *MMO, 8410 bool IsCompressing) { 8411 EVT VT = Val.getValueType(); 8412 8413 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8414 if (VT == SVT) 8415 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8416 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8417 /*IsTruncating*/ false, IsCompressing); 8418 8419 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8420 "Should only be a truncating store, not extending!"); 8421 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8422 assert(VT.isVector() == SVT.isVector() && 8423 "Cannot use trunc store to convert to or from a vector!"); 8424 assert((!VT.isVector() || 8425 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8426 "Cannot use trunc store to change the number of vector elements!"); 8427 8428 SDVTList VTs = getVTList(MVT::Other); 8429 SDValue Undef = getUNDEF(Ptr.getValueType()); 8430 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8431 FoldingSetNodeID ID; 8432 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8433 ID.AddInteger(SVT.getRawBits()); 8434 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8435 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8436 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8437 void *IP = nullptr; 8438 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8439 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8440 return SDValue(E, 0); 8441 } 8442 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8443 VTs, ISD::UNINDEXED, true, 8444 IsCompressing, SVT, MMO); 8445 createOperands(N, Ops); 8446 8447 CSEMap.InsertNode(N, IP); 8448 InsertNode(N); 8449 SDValue V(N, 0); 8450 NewSDValueDbgMsg(V, "Creating new node: ", this); 8451 return V; 8452 } 8453 8454 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8455 const SDLoc &DL, SDValue Base, 8456 SDValue Offset, 8457 ISD::MemIndexedMode AM) { 8458 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8459 assert(SST->getOffset().isUndef() && 8460 "Strided store is already an indexed store!"); 8461 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8462 SDValue Ops[] = { 8463 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8464 SST->getMask(), SST->getVectorLength()}; 8465 FoldingSetNodeID ID; 8466 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8467 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8468 ID.AddInteger(SST->getRawSubclassData()); 8469 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8470 void *IP = nullptr; 8471 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8472 return SDValue(E, 0); 8473 8474 auto *N = newSDNode<VPStridedStoreSDNode>( 8475 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8476 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8477 createOperands(N, Ops); 8478 8479 CSEMap.InsertNode(N, IP); 8480 InsertNode(N); 8481 SDValue V(N, 0); 8482 NewSDValueDbgMsg(V, "Creating new node: ", this); 8483 return V; 8484 } 8485 8486 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8487 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8488 ISD::MemIndexType IndexType) { 8489 assert(Ops.size() == 6 && "Incompatible number of operands"); 8490 8491 FoldingSetNodeID ID; 8492 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8493 ID.AddInteger(VT.getRawBits()); 8494 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8495 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8496 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8497 ID.AddInteger(MMO->getFlags()); 8498 void *IP = nullptr; 8499 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8500 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8501 return SDValue(E, 0); 8502 } 8503 8504 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8505 VT, MMO, IndexType); 8506 createOperands(N, Ops); 8507 8508 assert(N->getMask().getValueType().getVectorElementCount() == 8509 N->getValueType(0).getVectorElementCount() && 8510 "Vector width mismatch between mask and data"); 8511 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8512 N->getValueType(0).getVectorElementCount().isScalable() && 8513 "Scalable flags of index and data do not match"); 8514 assert(ElementCount::isKnownGE( 8515 N->getIndex().getValueType().getVectorElementCount(), 8516 N->getValueType(0).getVectorElementCount()) && 8517 "Vector width mismatch between index and data"); 8518 assert(isa<ConstantSDNode>(N->getScale()) && 8519 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8520 "Scale should be a constant power of 2"); 8521 8522 CSEMap.InsertNode(N, IP); 8523 InsertNode(N); 8524 SDValue V(N, 0); 8525 NewSDValueDbgMsg(V, "Creating new node: ", this); 8526 return V; 8527 } 8528 8529 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8530 ArrayRef<SDValue> Ops, 8531 MachineMemOperand *MMO, 8532 ISD::MemIndexType IndexType) { 8533 assert(Ops.size() == 7 && "Incompatible number of operands"); 8534 8535 FoldingSetNodeID ID; 8536 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8537 ID.AddInteger(VT.getRawBits()); 8538 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8539 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8540 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8541 ID.AddInteger(MMO->getFlags()); 8542 void *IP = nullptr; 8543 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8544 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8545 return SDValue(E, 0); 8546 } 8547 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8548 VT, MMO, IndexType); 8549 createOperands(N, Ops); 8550 8551 assert(N->getMask().getValueType().getVectorElementCount() == 8552 N->getValue().getValueType().getVectorElementCount() && 8553 "Vector width mismatch between mask and data"); 8554 assert( 8555 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8556 N->getValue().getValueType().getVectorElementCount().isScalable() && 8557 "Scalable flags of index and data do not match"); 8558 assert(ElementCount::isKnownGE( 8559 N->getIndex().getValueType().getVectorElementCount(), 8560 N->getValue().getValueType().getVectorElementCount()) && 8561 "Vector width mismatch between index and data"); 8562 assert(isa<ConstantSDNode>(N->getScale()) && 8563 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8564 "Scale should be a constant power of 2"); 8565 8566 CSEMap.InsertNode(N, IP); 8567 InsertNode(N); 8568 SDValue V(N, 0); 8569 NewSDValueDbgMsg(V, "Creating new node: ", this); 8570 return V; 8571 } 8572 8573 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8574 SDValue Base, SDValue Offset, SDValue Mask, 8575 SDValue PassThru, EVT MemVT, 8576 MachineMemOperand *MMO, 8577 ISD::MemIndexedMode AM, 8578 ISD::LoadExtType ExtTy, bool isExpanding) { 8579 bool Indexed = AM != ISD::UNINDEXED; 8580 assert((Indexed || Offset.isUndef()) && 8581 "Unindexed masked load with an offset!"); 8582 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8583 : getVTList(VT, MVT::Other); 8584 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8585 FoldingSetNodeID ID; 8586 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8587 ID.AddInteger(MemVT.getRawBits()); 8588 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8589 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8590 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8591 ID.AddInteger(MMO->getFlags()); 8592 void *IP = nullptr; 8593 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8594 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8595 return SDValue(E, 0); 8596 } 8597 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8598 AM, ExtTy, isExpanding, MemVT, MMO); 8599 createOperands(N, Ops); 8600 8601 CSEMap.InsertNode(N, IP); 8602 InsertNode(N); 8603 SDValue V(N, 0); 8604 NewSDValueDbgMsg(V, "Creating new node: ", this); 8605 return V; 8606 } 8607 8608 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8609 SDValue Base, SDValue Offset, 8610 ISD::MemIndexedMode AM) { 8611 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8612 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8613 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8614 Offset, LD->getMask(), LD->getPassThru(), 8615 LD->getMemoryVT(), LD->getMemOperand(), AM, 8616 LD->getExtensionType(), LD->isExpandingLoad()); 8617 } 8618 8619 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8620 SDValue Val, SDValue Base, SDValue Offset, 8621 SDValue Mask, EVT MemVT, 8622 MachineMemOperand *MMO, 8623 ISD::MemIndexedMode AM, bool IsTruncating, 8624 bool IsCompressing) { 8625 assert(Chain.getValueType() == MVT::Other && 8626 "Invalid chain type"); 8627 bool Indexed = AM != ISD::UNINDEXED; 8628 assert((Indexed || Offset.isUndef()) && 8629 "Unindexed masked store with an offset!"); 8630 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8631 : getVTList(MVT::Other); 8632 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8633 FoldingSetNodeID ID; 8634 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8635 ID.AddInteger(MemVT.getRawBits()); 8636 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8637 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8638 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8639 ID.AddInteger(MMO->getFlags()); 8640 void *IP = nullptr; 8641 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8642 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8643 return SDValue(E, 0); 8644 } 8645 auto *N = 8646 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8647 IsTruncating, IsCompressing, MemVT, MMO); 8648 createOperands(N, Ops); 8649 8650 CSEMap.InsertNode(N, IP); 8651 InsertNode(N); 8652 SDValue V(N, 0); 8653 NewSDValueDbgMsg(V, "Creating new node: ", this); 8654 return V; 8655 } 8656 8657 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8658 SDValue Base, SDValue Offset, 8659 ISD::MemIndexedMode AM) { 8660 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8661 assert(ST->getOffset().isUndef() && 8662 "Masked store is already a indexed store!"); 8663 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8664 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8665 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8666 } 8667 8668 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8669 ArrayRef<SDValue> Ops, 8670 MachineMemOperand *MMO, 8671 ISD::MemIndexType IndexType, 8672 ISD::LoadExtType ExtTy) { 8673 assert(Ops.size() == 6 && "Incompatible number of operands"); 8674 8675 FoldingSetNodeID ID; 8676 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8677 ID.AddInteger(MemVT.getRawBits()); 8678 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8679 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8680 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8681 ID.AddInteger(MMO->getFlags()); 8682 void *IP = nullptr; 8683 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8684 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8685 return SDValue(E, 0); 8686 } 8687 8688 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8689 VTs, MemVT, MMO, IndexType, ExtTy); 8690 createOperands(N, Ops); 8691 8692 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8693 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8694 assert(N->getMask().getValueType().getVectorElementCount() == 8695 N->getValueType(0).getVectorElementCount() && 8696 "Vector width mismatch between mask and data"); 8697 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8698 N->getValueType(0).getVectorElementCount().isScalable() && 8699 "Scalable flags of index and data do not match"); 8700 assert(ElementCount::isKnownGE( 8701 N->getIndex().getValueType().getVectorElementCount(), 8702 N->getValueType(0).getVectorElementCount()) && 8703 "Vector width mismatch between index and data"); 8704 assert(isa<ConstantSDNode>(N->getScale()) && 8705 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8706 "Scale should be a constant power of 2"); 8707 8708 CSEMap.InsertNode(N, IP); 8709 InsertNode(N); 8710 SDValue V(N, 0); 8711 NewSDValueDbgMsg(V, "Creating new node: ", this); 8712 return V; 8713 } 8714 8715 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8716 ArrayRef<SDValue> Ops, 8717 MachineMemOperand *MMO, 8718 ISD::MemIndexType IndexType, 8719 bool IsTrunc) { 8720 assert(Ops.size() == 6 && "Incompatible number of operands"); 8721 8722 FoldingSetNodeID ID; 8723 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8724 ID.AddInteger(MemVT.getRawBits()); 8725 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8726 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8727 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8728 ID.AddInteger(MMO->getFlags()); 8729 void *IP = nullptr; 8730 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8731 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8732 return SDValue(E, 0); 8733 } 8734 8735 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8736 VTs, MemVT, MMO, IndexType, IsTrunc); 8737 createOperands(N, Ops); 8738 8739 assert(N->getMask().getValueType().getVectorElementCount() == 8740 N->getValue().getValueType().getVectorElementCount() && 8741 "Vector width mismatch between mask and data"); 8742 assert( 8743 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8744 N->getValue().getValueType().getVectorElementCount().isScalable() && 8745 "Scalable flags of index and data do not match"); 8746 assert(ElementCount::isKnownGE( 8747 N->getIndex().getValueType().getVectorElementCount(), 8748 N->getValue().getValueType().getVectorElementCount()) && 8749 "Vector width mismatch between index and data"); 8750 assert(isa<ConstantSDNode>(N->getScale()) && 8751 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8752 "Scale should be a constant power of 2"); 8753 8754 CSEMap.InsertNode(N, IP); 8755 InsertNode(N); 8756 SDValue V(N, 0); 8757 NewSDValueDbgMsg(V, "Creating new node: ", this); 8758 return V; 8759 } 8760 8761 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8762 // select undef, T, F --> T (if T is a constant), otherwise F 8763 // select, ?, undef, F --> F 8764 // select, ?, T, undef --> T 8765 if (Cond.isUndef()) 8766 return isConstantValueOfAnyType(T) ? T : F; 8767 if (T.isUndef()) 8768 return F; 8769 if (F.isUndef()) 8770 return T; 8771 8772 // select true, T, F --> T 8773 // select false, T, F --> F 8774 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8775 return CondC->isZero() ? F : T; 8776 8777 // TODO: This should simplify VSELECT with constant condition using something 8778 // like this (but check boolean contents to be complete?): 8779 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8780 // return T; 8781 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8782 // return F; 8783 8784 // select ?, T, T --> T 8785 if (T == F) 8786 return T; 8787 8788 return SDValue(); 8789 } 8790 8791 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8792 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8793 if (X.isUndef()) 8794 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8795 // shift X, undef --> undef (because it may shift by the bitwidth) 8796 if (Y.isUndef()) 8797 return getUNDEF(X.getValueType()); 8798 8799 // shift 0, Y --> 0 8800 // shift X, 0 --> X 8801 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8802 return X; 8803 8804 // shift X, C >= bitwidth(X) --> undef 8805 // All vector elements must be too big (or undef) to avoid partial undefs. 8806 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8807 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8808 }; 8809 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8810 return getUNDEF(X.getValueType()); 8811 8812 return SDValue(); 8813 } 8814 8815 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8816 SDNodeFlags Flags) { 8817 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8818 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8819 // operation is poison. That result can be relaxed to undef. 8820 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8821 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8822 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8823 (YC && YC->getValueAPF().isNaN()); 8824 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8825 (YC && YC->getValueAPF().isInfinity()); 8826 8827 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8828 return getUNDEF(X.getValueType()); 8829 8830 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8831 return getUNDEF(X.getValueType()); 8832 8833 if (!YC) 8834 return SDValue(); 8835 8836 // X + -0.0 --> X 8837 if (Opcode == ISD::FADD) 8838 if (YC->getValueAPF().isNegZero()) 8839 return X; 8840 8841 // X - +0.0 --> X 8842 if (Opcode == ISD::FSUB) 8843 if (YC->getValueAPF().isPosZero()) 8844 return X; 8845 8846 // X * 1.0 --> X 8847 // X / 1.0 --> X 8848 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8849 if (YC->getValueAPF().isExactlyValue(1.0)) 8850 return X; 8851 8852 // X * 0.0 --> 0.0 8853 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8854 if (YC->getValueAPF().isZero()) 8855 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8856 8857 return SDValue(); 8858 } 8859 8860 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8861 SDValue Ptr, SDValue SV, unsigned Align) { 8862 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8863 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8864 } 8865 8866 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8867 ArrayRef<SDUse> Ops) { 8868 switch (Ops.size()) { 8869 case 0: return getNode(Opcode, DL, VT); 8870 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8871 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8872 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8873 default: break; 8874 } 8875 8876 // Copy from an SDUse array into an SDValue array for use with 8877 // the regular getNode logic. 8878 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8879 return getNode(Opcode, DL, VT, NewOps); 8880 } 8881 8882 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8883 ArrayRef<SDValue> Ops) { 8884 SDNodeFlags Flags; 8885 if (Inserter) 8886 Flags = Inserter->getFlags(); 8887 return getNode(Opcode, DL, VT, Ops, Flags); 8888 } 8889 8890 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8891 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8892 unsigned NumOps = Ops.size(); 8893 switch (NumOps) { 8894 case 0: return getNode(Opcode, DL, VT); 8895 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8896 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8897 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8898 default: break; 8899 } 8900 8901 #ifndef NDEBUG 8902 for (auto &Op : Ops) 8903 assert(Op.getOpcode() != ISD::DELETED_NODE && 8904 "Operand is DELETED_NODE!"); 8905 #endif 8906 8907 switch (Opcode) { 8908 default: break; 8909 case ISD::BUILD_VECTOR: 8910 // Attempt to simplify BUILD_VECTOR. 8911 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8912 return V; 8913 break; 8914 case ISD::CONCAT_VECTORS: 8915 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8916 return V; 8917 break; 8918 case ISD::SELECT_CC: 8919 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8920 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8921 "LHS and RHS of condition must have same type!"); 8922 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8923 "True and False arms of SelectCC must have same type!"); 8924 assert(Ops[2].getValueType() == VT && 8925 "select_cc node must be of same type as true and false value!"); 8926 break; 8927 case ISD::BR_CC: 8928 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8929 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8930 "LHS/RHS of comparison should match types!"); 8931 break; 8932 case ISD::VP_ADD: 8933 case ISD::VP_SUB: 8934 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8935 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8936 Opcode = ISD::VP_XOR; 8937 break; 8938 case ISD::VP_MUL: 8939 // If it is VP_MUL mask operation then turn it to VP_AND 8940 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8941 Opcode = ISD::VP_AND; 8942 break; 8943 case ISD::VP_REDUCE_MUL: 8944 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8945 if (VT == MVT::i1) 8946 Opcode = ISD::VP_REDUCE_AND; 8947 break; 8948 case ISD::VP_REDUCE_ADD: 8949 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8950 if (VT == MVT::i1) 8951 Opcode = ISD::VP_REDUCE_XOR; 8952 break; 8953 case ISD::VP_REDUCE_SMAX: 8954 case ISD::VP_REDUCE_UMIN: 8955 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8956 // VP_REDUCE_AND. 8957 if (VT == MVT::i1) 8958 Opcode = ISD::VP_REDUCE_AND; 8959 break; 8960 case ISD::VP_REDUCE_SMIN: 8961 case ISD::VP_REDUCE_UMAX: 8962 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8963 // VP_REDUCE_OR. 8964 if (VT == MVT::i1) 8965 Opcode = ISD::VP_REDUCE_OR; 8966 break; 8967 } 8968 8969 // Memoize nodes. 8970 SDNode *N; 8971 SDVTList VTs = getVTList(VT); 8972 8973 if (VT != MVT::Glue) { 8974 FoldingSetNodeID ID; 8975 AddNodeIDNode(ID, Opcode, VTs, Ops); 8976 void *IP = nullptr; 8977 8978 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8979 return SDValue(E, 0); 8980 8981 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8982 createOperands(N, Ops); 8983 8984 CSEMap.InsertNode(N, IP); 8985 } else { 8986 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8987 createOperands(N, Ops); 8988 } 8989 8990 N->setFlags(Flags); 8991 InsertNode(N); 8992 SDValue V(N, 0); 8993 NewSDValueDbgMsg(V, "Creating new node: ", this); 8994 return V; 8995 } 8996 8997 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8998 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8999 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 9000 } 9001 9002 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9003 ArrayRef<SDValue> Ops) { 9004 SDNodeFlags Flags; 9005 if (Inserter) 9006 Flags = Inserter->getFlags(); 9007 return getNode(Opcode, DL, VTList, Ops, Flags); 9008 } 9009 9010 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9011 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9012 if (VTList.NumVTs == 1) 9013 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 9014 9015 #ifndef NDEBUG 9016 for (auto &Op : Ops) 9017 assert(Op.getOpcode() != ISD::DELETED_NODE && 9018 "Operand is DELETED_NODE!"); 9019 #endif 9020 9021 switch (Opcode) { 9022 case ISD::STRICT_FP_EXTEND: 9023 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9024 "Invalid STRICT_FP_EXTEND!"); 9025 assert(VTList.VTs[0].isFloatingPoint() && 9026 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9027 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9028 "STRICT_FP_EXTEND result type should be vector iff the operand " 9029 "type is vector!"); 9030 assert((!VTList.VTs[0].isVector() || 9031 VTList.VTs[0].getVectorNumElements() == 9032 Ops[1].getValueType().getVectorNumElements()) && 9033 "Vector element count mismatch!"); 9034 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9035 "Invalid fpext node, dst <= src!"); 9036 break; 9037 case ISD::STRICT_FP_ROUND: 9038 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9039 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9040 "STRICT_FP_ROUND result type should be vector iff the operand " 9041 "type is vector!"); 9042 assert((!VTList.VTs[0].isVector() || 9043 VTList.VTs[0].getVectorNumElements() == 9044 Ops[1].getValueType().getVectorNumElements()) && 9045 "Vector element count mismatch!"); 9046 assert(VTList.VTs[0].isFloatingPoint() && 9047 Ops[1].getValueType().isFloatingPoint() && 9048 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9049 isa<ConstantSDNode>(Ops[2]) && 9050 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9051 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9052 "Invalid STRICT_FP_ROUND!"); 9053 break; 9054 #if 0 9055 // FIXME: figure out how to safely handle things like 9056 // int foo(int x) { return 1 << (x & 255); } 9057 // int bar() { return foo(256); } 9058 case ISD::SRA_PARTS: 9059 case ISD::SRL_PARTS: 9060 case ISD::SHL_PARTS: 9061 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9062 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9063 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9064 else if (N3.getOpcode() == ISD::AND) 9065 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9066 // If the and is only masking out bits that cannot effect the shift, 9067 // eliminate the and. 9068 unsigned NumBits = VT.getScalarSizeInBits()*2; 9069 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9070 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9071 } 9072 break; 9073 #endif 9074 } 9075 9076 // Memoize the node unless it returns a flag. 9077 SDNode *N; 9078 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9079 FoldingSetNodeID ID; 9080 AddNodeIDNode(ID, Opcode, VTList, Ops); 9081 void *IP = nullptr; 9082 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9083 return SDValue(E, 0); 9084 9085 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9086 createOperands(N, Ops); 9087 CSEMap.InsertNode(N, IP); 9088 } else { 9089 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9090 createOperands(N, Ops); 9091 } 9092 9093 N->setFlags(Flags); 9094 InsertNode(N); 9095 SDValue V(N, 0); 9096 NewSDValueDbgMsg(V, "Creating new node: ", this); 9097 return V; 9098 } 9099 9100 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9101 SDVTList VTList) { 9102 return getNode(Opcode, DL, VTList, None); 9103 } 9104 9105 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9106 SDValue N1) { 9107 SDValue Ops[] = { N1 }; 9108 return getNode(Opcode, DL, VTList, Ops); 9109 } 9110 9111 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9112 SDValue N1, SDValue N2) { 9113 SDValue Ops[] = { N1, N2 }; 9114 return getNode(Opcode, DL, VTList, Ops); 9115 } 9116 9117 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9118 SDValue N1, SDValue N2, SDValue N3) { 9119 SDValue Ops[] = { N1, N2, N3 }; 9120 return getNode(Opcode, DL, VTList, Ops); 9121 } 9122 9123 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9124 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9125 SDValue Ops[] = { N1, N2, N3, N4 }; 9126 return getNode(Opcode, DL, VTList, Ops); 9127 } 9128 9129 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9130 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9131 SDValue N5) { 9132 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9133 return getNode(Opcode, DL, VTList, Ops); 9134 } 9135 9136 SDVTList SelectionDAG::getVTList(EVT VT) { 9137 return makeVTList(SDNode::getValueTypeList(VT), 1); 9138 } 9139 9140 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9141 FoldingSetNodeID ID; 9142 ID.AddInteger(2U); 9143 ID.AddInteger(VT1.getRawBits()); 9144 ID.AddInteger(VT2.getRawBits()); 9145 9146 void *IP = nullptr; 9147 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9148 if (!Result) { 9149 EVT *Array = Allocator.Allocate<EVT>(2); 9150 Array[0] = VT1; 9151 Array[1] = VT2; 9152 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9153 VTListMap.InsertNode(Result, IP); 9154 } 9155 return Result->getSDVTList(); 9156 } 9157 9158 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9159 FoldingSetNodeID ID; 9160 ID.AddInteger(3U); 9161 ID.AddInteger(VT1.getRawBits()); 9162 ID.AddInteger(VT2.getRawBits()); 9163 ID.AddInteger(VT3.getRawBits()); 9164 9165 void *IP = nullptr; 9166 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9167 if (!Result) { 9168 EVT *Array = Allocator.Allocate<EVT>(3); 9169 Array[0] = VT1; 9170 Array[1] = VT2; 9171 Array[2] = VT3; 9172 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9173 VTListMap.InsertNode(Result, IP); 9174 } 9175 return Result->getSDVTList(); 9176 } 9177 9178 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9179 FoldingSetNodeID ID; 9180 ID.AddInteger(4U); 9181 ID.AddInteger(VT1.getRawBits()); 9182 ID.AddInteger(VT2.getRawBits()); 9183 ID.AddInteger(VT3.getRawBits()); 9184 ID.AddInteger(VT4.getRawBits()); 9185 9186 void *IP = nullptr; 9187 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9188 if (!Result) { 9189 EVT *Array = Allocator.Allocate<EVT>(4); 9190 Array[0] = VT1; 9191 Array[1] = VT2; 9192 Array[2] = VT3; 9193 Array[3] = VT4; 9194 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9195 VTListMap.InsertNode(Result, IP); 9196 } 9197 return Result->getSDVTList(); 9198 } 9199 9200 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9201 unsigned NumVTs = VTs.size(); 9202 FoldingSetNodeID ID; 9203 ID.AddInteger(NumVTs); 9204 for (unsigned index = 0; index < NumVTs; index++) { 9205 ID.AddInteger(VTs[index].getRawBits()); 9206 } 9207 9208 void *IP = nullptr; 9209 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9210 if (!Result) { 9211 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9212 llvm::copy(VTs, Array); 9213 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9214 VTListMap.InsertNode(Result, IP); 9215 } 9216 return Result->getSDVTList(); 9217 } 9218 9219 9220 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9221 /// specified operands. If the resultant node already exists in the DAG, 9222 /// this does not modify the specified node, instead it returns the node that 9223 /// already exists. If the resultant node does not exist in the DAG, the 9224 /// input node is returned. As a degenerate case, if you specify the same 9225 /// input operands as the node already has, the input node is returned. 9226 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9227 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9228 9229 // Check to see if there is no change. 9230 if (Op == N->getOperand(0)) return N; 9231 9232 // See if the modified node already exists. 9233 void *InsertPos = nullptr; 9234 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9235 return Existing; 9236 9237 // Nope it doesn't. Remove the node from its current place in the maps. 9238 if (InsertPos) 9239 if (!RemoveNodeFromCSEMaps(N)) 9240 InsertPos = nullptr; 9241 9242 // Now we update the operands. 9243 N->OperandList[0].set(Op); 9244 9245 updateDivergence(N); 9246 // If this gets put into a CSE map, add it. 9247 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9248 return N; 9249 } 9250 9251 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9252 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9253 9254 // Check to see if there is no change. 9255 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9256 return N; // No operands changed, just return the input node. 9257 9258 // See if the modified node already exists. 9259 void *InsertPos = nullptr; 9260 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9261 return Existing; 9262 9263 // Nope it doesn't. Remove the node from its current place in the maps. 9264 if (InsertPos) 9265 if (!RemoveNodeFromCSEMaps(N)) 9266 InsertPos = nullptr; 9267 9268 // Now we update the operands. 9269 if (N->OperandList[0] != Op1) 9270 N->OperandList[0].set(Op1); 9271 if (N->OperandList[1] != Op2) 9272 N->OperandList[1].set(Op2); 9273 9274 updateDivergence(N); 9275 // If this gets put into a CSE map, add it. 9276 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9277 return N; 9278 } 9279 9280 SDNode *SelectionDAG:: 9281 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9282 SDValue Ops[] = { Op1, Op2, Op3 }; 9283 return UpdateNodeOperands(N, Ops); 9284 } 9285 9286 SDNode *SelectionDAG:: 9287 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9288 SDValue Op3, SDValue Op4) { 9289 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9290 return UpdateNodeOperands(N, Ops); 9291 } 9292 9293 SDNode *SelectionDAG:: 9294 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9295 SDValue Op3, SDValue Op4, SDValue Op5) { 9296 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9297 return UpdateNodeOperands(N, Ops); 9298 } 9299 9300 SDNode *SelectionDAG:: 9301 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9302 unsigned NumOps = Ops.size(); 9303 assert(N->getNumOperands() == NumOps && 9304 "Update with wrong number of operands"); 9305 9306 // If no operands changed just return the input node. 9307 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9308 return N; 9309 9310 // See if the modified node already exists. 9311 void *InsertPos = nullptr; 9312 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9313 return Existing; 9314 9315 // Nope it doesn't. Remove the node from its current place in the maps. 9316 if (InsertPos) 9317 if (!RemoveNodeFromCSEMaps(N)) 9318 InsertPos = nullptr; 9319 9320 // Now we update the operands. 9321 for (unsigned i = 0; i != NumOps; ++i) 9322 if (N->OperandList[i] != Ops[i]) 9323 N->OperandList[i].set(Ops[i]); 9324 9325 updateDivergence(N); 9326 // If this gets put into a CSE map, add it. 9327 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9328 return N; 9329 } 9330 9331 /// DropOperands - Release the operands and set this node to have 9332 /// zero operands. 9333 void SDNode::DropOperands() { 9334 // Unlike the code in MorphNodeTo that does this, we don't need to 9335 // watch for dead nodes here. 9336 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9337 SDUse &Use = *I++; 9338 Use.set(SDValue()); 9339 } 9340 } 9341 9342 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9343 ArrayRef<MachineMemOperand *> NewMemRefs) { 9344 if (NewMemRefs.empty()) { 9345 N->clearMemRefs(); 9346 return; 9347 } 9348 9349 // Check if we can avoid allocating by storing a single reference directly. 9350 if (NewMemRefs.size() == 1) { 9351 N->MemRefs = NewMemRefs[0]; 9352 N->NumMemRefs = 1; 9353 return; 9354 } 9355 9356 MachineMemOperand **MemRefsBuffer = 9357 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9358 llvm::copy(NewMemRefs, MemRefsBuffer); 9359 N->MemRefs = MemRefsBuffer; 9360 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9361 } 9362 9363 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9364 /// machine opcode. 9365 /// 9366 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9367 EVT VT) { 9368 SDVTList VTs = getVTList(VT); 9369 return SelectNodeTo(N, MachineOpc, VTs, None); 9370 } 9371 9372 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9373 EVT VT, SDValue Op1) { 9374 SDVTList VTs = getVTList(VT); 9375 SDValue Ops[] = { Op1 }; 9376 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9377 } 9378 9379 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9380 EVT VT, SDValue Op1, 9381 SDValue Op2) { 9382 SDVTList VTs = getVTList(VT); 9383 SDValue Ops[] = { Op1, Op2 }; 9384 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9385 } 9386 9387 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9388 EVT VT, SDValue Op1, 9389 SDValue Op2, SDValue Op3) { 9390 SDVTList VTs = getVTList(VT); 9391 SDValue Ops[] = { Op1, Op2, Op3 }; 9392 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9393 } 9394 9395 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9396 EVT VT, ArrayRef<SDValue> Ops) { 9397 SDVTList VTs = getVTList(VT); 9398 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9399 } 9400 9401 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9402 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9403 SDVTList VTs = getVTList(VT1, VT2); 9404 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9405 } 9406 9407 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9408 EVT VT1, EVT VT2) { 9409 SDVTList VTs = getVTList(VT1, VT2); 9410 return SelectNodeTo(N, MachineOpc, VTs, None); 9411 } 9412 9413 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9414 EVT VT1, EVT VT2, EVT VT3, 9415 ArrayRef<SDValue> Ops) { 9416 SDVTList VTs = getVTList(VT1, VT2, VT3); 9417 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9418 } 9419 9420 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9421 EVT VT1, EVT VT2, 9422 SDValue Op1, SDValue Op2) { 9423 SDVTList VTs = getVTList(VT1, VT2); 9424 SDValue Ops[] = { Op1, Op2 }; 9425 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9426 } 9427 9428 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9429 SDVTList VTs,ArrayRef<SDValue> Ops) { 9430 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9431 // Reset the NodeID to -1. 9432 New->setNodeId(-1); 9433 if (New != N) { 9434 ReplaceAllUsesWith(N, New); 9435 RemoveDeadNode(N); 9436 } 9437 return New; 9438 } 9439 9440 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9441 /// the line number information on the merged node since it is not possible to 9442 /// preserve the information that operation is associated with multiple lines. 9443 /// This will make the debugger working better at -O0, were there is a higher 9444 /// probability having other instructions associated with that line. 9445 /// 9446 /// For IROrder, we keep the smaller of the two 9447 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9448 DebugLoc NLoc = N->getDebugLoc(); 9449 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9450 N->setDebugLoc(DebugLoc()); 9451 } 9452 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9453 N->setIROrder(Order); 9454 return N; 9455 } 9456 9457 /// MorphNodeTo - This *mutates* the specified node to have the specified 9458 /// return type, opcode, and operands. 9459 /// 9460 /// Note that MorphNodeTo returns the resultant node. If there is already a 9461 /// node of the specified opcode and operands, it returns that node instead of 9462 /// the current one. Note that the SDLoc need not be the same. 9463 /// 9464 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9465 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9466 /// node, and because it doesn't require CSE recalculation for any of 9467 /// the node's users. 9468 /// 9469 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9470 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9471 /// the legalizer which maintain worklists that would need to be updated when 9472 /// deleting things. 9473 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9474 SDVTList VTs, ArrayRef<SDValue> Ops) { 9475 // If an identical node already exists, use it. 9476 void *IP = nullptr; 9477 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9478 FoldingSetNodeID ID; 9479 AddNodeIDNode(ID, Opc, VTs, Ops); 9480 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9481 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9482 } 9483 9484 if (!RemoveNodeFromCSEMaps(N)) 9485 IP = nullptr; 9486 9487 // Start the morphing. 9488 N->NodeType = Opc; 9489 N->ValueList = VTs.VTs; 9490 N->NumValues = VTs.NumVTs; 9491 9492 // Clear the operands list, updating used nodes to remove this from their 9493 // use list. Keep track of any operands that become dead as a result. 9494 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9495 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9496 SDUse &Use = *I++; 9497 SDNode *Used = Use.getNode(); 9498 Use.set(SDValue()); 9499 if (Used->use_empty()) 9500 DeadNodeSet.insert(Used); 9501 } 9502 9503 // For MachineNode, initialize the memory references information. 9504 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9505 MN->clearMemRefs(); 9506 9507 // Swap for an appropriately sized array from the recycler. 9508 removeOperands(N); 9509 createOperands(N, Ops); 9510 9511 // Delete any nodes that are still dead after adding the uses for the 9512 // new operands. 9513 if (!DeadNodeSet.empty()) { 9514 SmallVector<SDNode *, 16> DeadNodes; 9515 for (SDNode *N : DeadNodeSet) 9516 if (N->use_empty()) 9517 DeadNodes.push_back(N); 9518 RemoveDeadNodes(DeadNodes); 9519 } 9520 9521 if (IP) 9522 CSEMap.InsertNode(N, IP); // Memoize the new node. 9523 return N; 9524 } 9525 9526 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9527 unsigned OrigOpc = Node->getOpcode(); 9528 unsigned NewOpc; 9529 switch (OrigOpc) { 9530 default: 9531 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9532 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9533 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9534 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9535 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9536 #include "llvm/IR/ConstrainedOps.def" 9537 } 9538 9539 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9540 9541 // We're taking this node out of the chain, so we need to re-link things. 9542 SDValue InputChain = Node->getOperand(0); 9543 SDValue OutputChain = SDValue(Node, 1); 9544 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9545 9546 SmallVector<SDValue, 3> Ops; 9547 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9548 Ops.push_back(Node->getOperand(i)); 9549 9550 SDVTList VTs = getVTList(Node->getValueType(0)); 9551 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9552 9553 // MorphNodeTo can operate in two ways: if an existing node with the 9554 // specified operands exists, it can just return it. Otherwise, it 9555 // updates the node in place to have the requested operands. 9556 if (Res == Node) { 9557 // If we updated the node in place, reset the node ID. To the isel, 9558 // this should be just like a newly allocated machine node. 9559 Res->setNodeId(-1); 9560 } else { 9561 ReplaceAllUsesWith(Node, Res); 9562 RemoveDeadNode(Node); 9563 } 9564 9565 return Res; 9566 } 9567 9568 /// getMachineNode - These are used for target selectors to create a new node 9569 /// with specified return type(s), MachineInstr opcode, and operands. 9570 /// 9571 /// Note that getMachineNode returns the resultant node. If there is already a 9572 /// node of the specified opcode and operands, it returns that node instead of 9573 /// the current one. 9574 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9575 EVT VT) { 9576 SDVTList VTs = getVTList(VT); 9577 return getMachineNode(Opcode, dl, VTs, None); 9578 } 9579 9580 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9581 EVT VT, SDValue Op1) { 9582 SDVTList VTs = getVTList(VT); 9583 SDValue Ops[] = { Op1 }; 9584 return getMachineNode(Opcode, dl, VTs, Ops); 9585 } 9586 9587 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9588 EVT VT, SDValue Op1, SDValue Op2) { 9589 SDVTList VTs = getVTList(VT); 9590 SDValue Ops[] = { Op1, Op2 }; 9591 return getMachineNode(Opcode, dl, VTs, Ops); 9592 } 9593 9594 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9595 EVT VT, SDValue Op1, SDValue Op2, 9596 SDValue Op3) { 9597 SDVTList VTs = getVTList(VT); 9598 SDValue Ops[] = { Op1, Op2, Op3 }; 9599 return getMachineNode(Opcode, dl, VTs, Ops); 9600 } 9601 9602 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9603 EVT VT, ArrayRef<SDValue> Ops) { 9604 SDVTList VTs = getVTList(VT); 9605 return getMachineNode(Opcode, dl, VTs, Ops); 9606 } 9607 9608 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9609 EVT VT1, EVT VT2, SDValue Op1, 9610 SDValue Op2) { 9611 SDVTList VTs = getVTList(VT1, VT2); 9612 SDValue Ops[] = { Op1, Op2 }; 9613 return getMachineNode(Opcode, dl, VTs, Ops); 9614 } 9615 9616 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9617 EVT VT1, EVT VT2, SDValue Op1, 9618 SDValue Op2, SDValue Op3) { 9619 SDVTList VTs = getVTList(VT1, VT2); 9620 SDValue Ops[] = { Op1, Op2, Op3 }; 9621 return getMachineNode(Opcode, dl, VTs, Ops); 9622 } 9623 9624 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9625 EVT VT1, EVT VT2, 9626 ArrayRef<SDValue> Ops) { 9627 SDVTList VTs = getVTList(VT1, VT2); 9628 return getMachineNode(Opcode, dl, VTs, Ops); 9629 } 9630 9631 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9632 EVT VT1, EVT VT2, EVT VT3, 9633 SDValue Op1, SDValue Op2) { 9634 SDVTList VTs = getVTList(VT1, VT2, VT3); 9635 SDValue Ops[] = { Op1, Op2 }; 9636 return getMachineNode(Opcode, dl, VTs, Ops); 9637 } 9638 9639 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9640 EVT VT1, EVT VT2, EVT VT3, 9641 SDValue Op1, SDValue Op2, 9642 SDValue Op3) { 9643 SDVTList VTs = getVTList(VT1, VT2, VT3); 9644 SDValue Ops[] = { Op1, Op2, Op3 }; 9645 return getMachineNode(Opcode, dl, VTs, Ops); 9646 } 9647 9648 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9649 EVT VT1, EVT VT2, EVT VT3, 9650 ArrayRef<SDValue> Ops) { 9651 SDVTList VTs = getVTList(VT1, VT2, VT3); 9652 return getMachineNode(Opcode, dl, VTs, Ops); 9653 } 9654 9655 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9656 ArrayRef<EVT> ResultTys, 9657 ArrayRef<SDValue> Ops) { 9658 SDVTList VTs = getVTList(ResultTys); 9659 return getMachineNode(Opcode, dl, VTs, Ops); 9660 } 9661 9662 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9663 SDVTList VTs, 9664 ArrayRef<SDValue> Ops) { 9665 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9666 MachineSDNode *N; 9667 void *IP = nullptr; 9668 9669 if (DoCSE) { 9670 FoldingSetNodeID ID; 9671 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9672 IP = nullptr; 9673 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9674 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9675 } 9676 } 9677 9678 // Allocate a new MachineSDNode. 9679 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9680 createOperands(N, Ops); 9681 9682 if (DoCSE) 9683 CSEMap.InsertNode(N, IP); 9684 9685 InsertNode(N); 9686 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9687 return N; 9688 } 9689 9690 /// getTargetExtractSubreg - A convenience function for creating 9691 /// TargetOpcode::EXTRACT_SUBREG nodes. 9692 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9693 SDValue Operand) { 9694 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9695 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9696 VT, Operand, SRIdxVal); 9697 return SDValue(Subreg, 0); 9698 } 9699 9700 /// getTargetInsertSubreg - A convenience function for creating 9701 /// TargetOpcode::INSERT_SUBREG nodes. 9702 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9703 SDValue Operand, SDValue Subreg) { 9704 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9705 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9706 VT, Operand, Subreg, SRIdxVal); 9707 return SDValue(Result, 0); 9708 } 9709 9710 /// getNodeIfExists - Get the specified node if it's already available, or 9711 /// else return NULL. 9712 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9713 ArrayRef<SDValue> Ops) { 9714 SDNodeFlags Flags; 9715 if (Inserter) 9716 Flags = Inserter->getFlags(); 9717 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9718 } 9719 9720 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9721 ArrayRef<SDValue> Ops, 9722 const SDNodeFlags Flags) { 9723 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9724 FoldingSetNodeID ID; 9725 AddNodeIDNode(ID, Opcode, VTList, Ops); 9726 void *IP = nullptr; 9727 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9728 E->intersectFlagsWith(Flags); 9729 return E; 9730 } 9731 } 9732 return nullptr; 9733 } 9734 9735 /// doesNodeExist - Check if a node exists without modifying its flags. 9736 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9737 ArrayRef<SDValue> Ops) { 9738 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9739 FoldingSetNodeID ID; 9740 AddNodeIDNode(ID, Opcode, VTList, Ops); 9741 void *IP = nullptr; 9742 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9743 return true; 9744 } 9745 return false; 9746 } 9747 9748 /// getDbgValue - Creates a SDDbgValue node. 9749 /// 9750 /// SDNode 9751 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9752 SDNode *N, unsigned R, bool IsIndirect, 9753 const DebugLoc &DL, unsigned O) { 9754 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9755 "Expected inlined-at fields to agree"); 9756 return new (DbgInfo->getAlloc()) 9757 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9758 {}, IsIndirect, DL, O, 9759 /*IsVariadic=*/false); 9760 } 9761 9762 /// Constant 9763 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9764 DIExpression *Expr, 9765 const Value *C, 9766 const DebugLoc &DL, unsigned O) { 9767 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9768 "Expected inlined-at fields to agree"); 9769 return new (DbgInfo->getAlloc()) 9770 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9771 /*IsIndirect=*/false, DL, O, 9772 /*IsVariadic=*/false); 9773 } 9774 9775 /// FrameIndex 9776 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9777 DIExpression *Expr, unsigned FI, 9778 bool IsIndirect, 9779 const DebugLoc &DL, 9780 unsigned O) { 9781 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9782 "Expected inlined-at fields to agree"); 9783 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9784 } 9785 9786 /// FrameIndex with dependencies 9787 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9788 DIExpression *Expr, unsigned FI, 9789 ArrayRef<SDNode *> Dependencies, 9790 bool IsIndirect, 9791 const DebugLoc &DL, 9792 unsigned O) { 9793 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9794 "Expected inlined-at fields to agree"); 9795 return new (DbgInfo->getAlloc()) 9796 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9797 Dependencies, IsIndirect, DL, O, 9798 /*IsVariadic=*/false); 9799 } 9800 9801 /// VReg 9802 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9803 unsigned VReg, bool IsIndirect, 9804 const DebugLoc &DL, unsigned O) { 9805 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9806 "Expected inlined-at fields to agree"); 9807 return new (DbgInfo->getAlloc()) 9808 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9809 {}, IsIndirect, DL, O, 9810 /*IsVariadic=*/false); 9811 } 9812 9813 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9814 ArrayRef<SDDbgOperand> Locs, 9815 ArrayRef<SDNode *> Dependencies, 9816 bool IsIndirect, const DebugLoc &DL, 9817 unsigned O, bool IsVariadic) { 9818 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9819 "Expected inlined-at fields to agree"); 9820 return new (DbgInfo->getAlloc()) 9821 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9822 DL, O, IsVariadic); 9823 } 9824 9825 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9826 unsigned OffsetInBits, unsigned SizeInBits, 9827 bool InvalidateDbg) { 9828 SDNode *FromNode = From.getNode(); 9829 SDNode *ToNode = To.getNode(); 9830 assert(FromNode && ToNode && "Can't modify dbg values"); 9831 9832 // PR35338 9833 // TODO: assert(From != To && "Redundant dbg value transfer"); 9834 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9835 if (From == To || FromNode == ToNode) 9836 return; 9837 9838 if (!FromNode->getHasDebugValue()) 9839 return; 9840 9841 SDDbgOperand FromLocOp = 9842 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9843 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9844 9845 SmallVector<SDDbgValue *, 2> ClonedDVs; 9846 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9847 if (Dbg->isInvalidated()) 9848 continue; 9849 9850 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9851 9852 // Create a new location ops vector that is equal to the old vector, but 9853 // with each instance of FromLocOp replaced with ToLocOp. 9854 bool Changed = false; 9855 auto NewLocOps = Dbg->copyLocationOps(); 9856 std::replace_if( 9857 NewLocOps.begin(), NewLocOps.end(), 9858 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9859 bool Match = Op == FromLocOp; 9860 Changed |= Match; 9861 return Match; 9862 }, 9863 ToLocOp); 9864 // Ignore this SDDbgValue if we didn't find a matching location. 9865 if (!Changed) 9866 continue; 9867 9868 DIVariable *Var = Dbg->getVariable(); 9869 auto *Expr = Dbg->getExpression(); 9870 // If a fragment is requested, update the expression. 9871 if (SizeInBits) { 9872 // When splitting a larger (e.g., sign-extended) value whose 9873 // lower bits are described with an SDDbgValue, do not attempt 9874 // to transfer the SDDbgValue to the upper bits. 9875 if (auto FI = Expr->getFragmentInfo()) 9876 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9877 continue; 9878 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9879 SizeInBits); 9880 if (!Fragment) 9881 continue; 9882 Expr = *Fragment; 9883 } 9884 9885 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9886 // Clone the SDDbgValue and move it to To. 9887 SDDbgValue *Clone = getDbgValueList( 9888 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9889 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9890 Dbg->isVariadic()); 9891 ClonedDVs.push_back(Clone); 9892 9893 if (InvalidateDbg) { 9894 // Invalidate value and indicate the SDDbgValue should not be emitted. 9895 Dbg->setIsInvalidated(); 9896 Dbg->setIsEmitted(); 9897 } 9898 } 9899 9900 for (SDDbgValue *Dbg : ClonedDVs) { 9901 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9902 "Transferred DbgValues should depend on the new SDNode"); 9903 AddDbgValue(Dbg, false); 9904 } 9905 } 9906 9907 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9908 if (!N.getHasDebugValue()) 9909 return; 9910 9911 SmallVector<SDDbgValue *, 2> ClonedDVs; 9912 for (auto DV : GetDbgValues(&N)) { 9913 if (DV->isInvalidated()) 9914 continue; 9915 switch (N.getOpcode()) { 9916 default: 9917 break; 9918 case ISD::ADD: 9919 SDValue N0 = N.getOperand(0); 9920 SDValue N1 = N.getOperand(1); 9921 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9922 isConstantIntBuildVectorOrConstantInt(N1)) { 9923 uint64_t Offset = N.getConstantOperandVal(1); 9924 9925 // Rewrite an ADD constant node into a DIExpression. Since we are 9926 // performing arithmetic to compute the variable's *value* in the 9927 // DIExpression, we need to mark the expression with a 9928 // DW_OP_stack_value. 9929 auto *DIExpr = DV->getExpression(); 9930 auto NewLocOps = DV->copyLocationOps(); 9931 bool Changed = false; 9932 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9933 // We're not given a ResNo to compare against because the whole 9934 // node is going away. We know that any ISD::ADD only has one 9935 // result, so we can assume any node match is using the result. 9936 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9937 NewLocOps[i].getSDNode() != &N) 9938 continue; 9939 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9940 SmallVector<uint64_t, 3> ExprOps; 9941 DIExpression::appendOffset(ExprOps, Offset); 9942 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9943 Changed = true; 9944 } 9945 (void)Changed; 9946 assert(Changed && "Salvage target doesn't use N"); 9947 9948 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9949 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9950 NewLocOps, AdditionalDependencies, 9951 DV->isIndirect(), DV->getDebugLoc(), 9952 DV->getOrder(), DV->isVariadic()); 9953 ClonedDVs.push_back(Clone); 9954 DV->setIsInvalidated(); 9955 DV->setIsEmitted(); 9956 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9957 N0.getNode()->dumprFull(this); 9958 dbgs() << " into " << *DIExpr << '\n'); 9959 } 9960 } 9961 } 9962 9963 for (SDDbgValue *Dbg : ClonedDVs) { 9964 assert(!Dbg->getSDNodes().empty() && 9965 "Salvaged DbgValue should depend on a new SDNode"); 9966 AddDbgValue(Dbg, false); 9967 } 9968 } 9969 9970 /// Creates a SDDbgLabel node. 9971 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9972 const DebugLoc &DL, unsigned O) { 9973 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9974 "Expected inlined-at fields to agree"); 9975 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9976 } 9977 9978 namespace { 9979 9980 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9981 /// pointed to by a use iterator is deleted, increment the use iterator 9982 /// so that it doesn't dangle. 9983 /// 9984 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9985 SDNode::use_iterator &UI; 9986 SDNode::use_iterator &UE; 9987 9988 void NodeDeleted(SDNode *N, SDNode *E) override { 9989 // Increment the iterator as needed. 9990 while (UI != UE && N == *UI) 9991 ++UI; 9992 } 9993 9994 public: 9995 RAUWUpdateListener(SelectionDAG &d, 9996 SDNode::use_iterator &ui, 9997 SDNode::use_iterator &ue) 9998 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9999 }; 10000 10001 } // end anonymous namespace 10002 10003 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10004 /// This can cause recursive merging of nodes in the DAG. 10005 /// 10006 /// This version assumes From has a single result value. 10007 /// 10008 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 10009 SDNode *From = FromN.getNode(); 10010 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 10011 "Cannot replace with this method!"); 10012 assert(From != To.getNode() && "Cannot replace uses of with self"); 10013 10014 // Preserve Debug Values 10015 transferDbgValues(FromN, To); 10016 10017 // Iterate over all the existing uses of From. New uses will be added 10018 // to the beginning of the use list, which we avoid visiting. 10019 // This specifically avoids visiting uses of From that arise while the 10020 // replacement is happening, because any such uses would be the result 10021 // of CSE: If an existing node looks like From after one of its operands 10022 // is replaced by To, we don't want to replace of all its users with To 10023 // too. See PR3018 for more info. 10024 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10025 RAUWUpdateListener Listener(*this, UI, UE); 10026 while (UI != UE) { 10027 SDNode *User = *UI; 10028 10029 // This node is about to morph, remove its old self from the CSE maps. 10030 RemoveNodeFromCSEMaps(User); 10031 10032 // A user can appear in a use list multiple times, and when this 10033 // happens the uses are usually next to each other in the list. 10034 // To help reduce the number of CSE recomputations, process all 10035 // the uses of this user that we can find this way. 10036 do { 10037 SDUse &Use = UI.getUse(); 10038 ++UI; 10039 Use.set(To); 10040 if (To->isDivergent() != From->isDivergent()) 10041 updateDivergence(User); 10042 } while (UI != UE && *UI == User); 10043 // Now that we have modified User, add it back to the CSE maps. If it 10044 // already exists there, recursively merge the results together. 10045 AddModifiedNodeToCSEMaps(User); 10046 } 10047 10048 // If we just RAUW'd the root, take note. 10049 if (FromN == getRoot()) 10050 setRoot(To); 10051 } 10052 10053 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10054 /// This can cause recursive merging of nodes in the DAG. 10055 /// 10056 /// This version assumes that for each value of From, there is a 10057 /// corresponding value in To in the same position with the same type. 10058 /// 10059 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10060 #ifndef NDEBUG 10061 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10062 assert((!From->hasAnyUseOfValue(i) || 10063 From->getValueType(i) == To->getValueType(i)) && 10064 "Cannot use this version of ReplaceAllUsesWith!"); 10065 #endif 10066 10067 // Handle the trivial case. 10068 if (From == To) 10069 return; 10070 10071 // Preserve Debug Info. Only do this if there's a use. 10072 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10073 if (From->hasAnyUseOfValue(i)) { 10074 assert((i < To->getNumValues()) && "Invalid To location"); 10075 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10076 } 10077 10078 // Iterate over just the existing users of From. See the comments in 10079 // the ReplaceAllUsesWith above. 10080 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10081 RAUWUpdateListener Listener(*this, UI, UE); 10082 while (UI != UE) { 10083 SDNode *User = *UI; 10084 10085 // This node is about to morph, remove its old self from the CSE maps. 10086 RemoveNodeFromCSEMaps(User); 10087 10088 // A user can appear in a use list multiple times, and when this 10089 // happens the uses are usually next to each other in the list. 10090 // To help reduce the number of CSE recomputations, process all 10091 // the uses of this user that we can find this way. 10092 do { 10093 SDUse &Use = UI.getUse(); 10094 ++UI; 10095 Use.setNode(To); 10096 if (To->isDivergent() != From->isDivergent()) 10097 updateDivergence(User); 10098 } while (UI != UE && *UI == User); 10099 10100 // Now that we have modified User, add it back to the CSE maps. If it 10101 // already exists there, recursively merge the results together. 10102 AddModifiedNodeToCSEMaps(User); 10103 } 10104 10105 // If we just RAUW'd the root, take note. 10106 if (From == getRoot().getNode()) 10107 setRoot(SDValue(To, getRoot().getResNo())); 10108 } 10109 10110 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10111 /// This can cause recursive merging of nodes in the DAG. 10112 /// 10113 /// This version can replace From with any result values. To must match the 10114 /// number and types of values returned by From. 10115 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10116 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10117 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10118 10119 // Preserve Debug Info. 10120 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10121 transferDbgValues(SDValue(From, i), To[i]); 10122 10123 // Iterate over just the existing users of From. See the comments in 10124 // the ReplaceAllUsesWith above. 10125 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10126 RAUWUpdateListener Listener(*this, UI, UE); 10127 while (UI != UE) { 10128 SDNode *User = *UI; 10129 10130 // This node is about to morph, remove its old self from the CSE maps. 10131 RemoveNodeFromCSEMaps(User); 10132 10133 // A user can appear in a use list multiple times, and when this happens the 10134 // uses are usually next to each other in the list. To help reduce the 10135 // number of CSE and divergence recomputations, process all the uses of this 10136 // user that we can find this way. 10137 bool To_IsDivergent = false; 10138 do { 10139 SDUse &Use = UI.getUse(); 10140 const SDValue &ToOp = To[Use.getResNo()]; 10141 ++UI; 10142 Use.set(ToOp); 10143 To_IsDivergent |= ToOp->isDivergent(); 10144 } while (UI != UE && *UI == User); 10145 10146 if (To_IsDivergent != From->isDivergent()) 10147 updateDivergence(User); 10148 10149 // Now that we have modified User, add it back to the CSE maps. If it 10150 // already exists there, recursively merge the results together. 10151 AddModifiedNodeToCSEMaps(User); 10152 } 10153 10154 // If we just RAUW'd the root, take note. 10155 if (From == getRoot().getNode()) 10156 setRoot(SDValue(To[getRoot().getResNo()])); 10157 } 10158 10159 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10160 /// uses of other values produced by From.getNode() alone. The Deleted 10161 /// vector is handled the same way as for ReplaceAllUsesWith. 10162 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10163 // Handle the really simple, really trivial case efficiently. 10164 if (From == To) return; 10165 10166 // Handle the simple, trivial, case efficiently. 10167 if (From.getNode()->getNumValues() == 1) { 10168 ReplaceAllUsesWith(From, To); 10169 return; 10170 } 10171 10172 // Preserve Debug Info. 10173 transferDbgValues(From, To); 10174 10175 // Iterate over just the existing users of From. See the comments in 10176 // the ReplaceAllUsesWith above. 10177 SDNode::use_iterator UI = From.getNode()->use_begin(), 10178 UE = From.getNode()->use_end(); 10179 RAUWUpdateListener Listener(*this, UI, UE); 10180 while (UI != UE) { 10181 SDNode *User = *UI; 10182 bool UserRemovedFromCSEMaps = false; 10183 10184 // A user can appear in a use list multiple times, and when this 10185 // happens the uses are usually next to each other in the list. 10186 // To help reduce the number of CSE recomputations, process all 10187 // the uses of this user that we can find this way. 10188 do { 10189 SDUse &Use = UI.getUse(); 10190 10191 // Skip uses of different values from the same node. 10192 if (Use.getResNo() != From.getResNo()) { 10193 ++UI; 10194 continue; 10195 } 10196 10197 // If this node hasn't been modified yet, it's still in the CSE maps, 10198 // so remove its old self from the CSE maps. 10199 if (!UserRemovedFromCSEMaps) { 10200 RemoveNodeFromCSEMaps(User); 10201 UserRemovedFromCSEMaps = true; 10202 } 10203 10204 ++UI; 10205 Use.set(To); 10206 if (To->isDivergent() != From->isDivergent()) 10207 updateDivergence(User); 10208 } while (UI != UE && *UI == User); 10209 // We are iterating over all uses of the From node, so if a use 10210 // doesn't use the specific value, no changes are made. 10211 if (!UserRemovedFromCSEMaps) 10212 continue; 10213 10214 // Now that we have modified User, add it back to the CSE maps. If it 10215 // already exists there, recursively merge the results together. 10216 AddModifiedNodeToCSEMaps(User); 10217 } 10218 10219 // If we just RAUW'd the root, take note. 10220 if (From == getRoot()) 10221 setRoot(To); 10222 } 10223 10224 namespace { 10225 10226 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10227 /// to record information about a use. 10228 struct UseMemo { 10229 SDNode *User; 10230 unsigned Index; 10231 SDUse *Use; 10232 }; 10233 10234 /// operator< - Sort Memos by User. 10235 bool operator<(const UseMemo &L, const UseMemo &R) { 10236 return (intptr_t)L.User < (intptr_t)R.User; 10237 } 10238 10239 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10240 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10241 /// the node already has been taken care of recursively. 10242 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10243 SmallVector<UseMemo, 4> &Uses; 10244 10245 void NodeDeleted(SDNode *N, SDNode *E) override { 10246 for (UseMemo &Memo : Uses) 10247 if (Memo.User == N) 10248 Memo.User = nullptr; 10249 } 10250 10251 public: 10252 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10253 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10254 }; 10255 10256 } // end anonymous namespace 10257 10258 bool SelectionDAG::calculateDivergence(SDNode *N) { 10259 if (TLI->isSDNodeAlwaysUniform(N)) { 10260 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10261 "Conflicting divergence information!"); 10262 return false; 10263 } 10264 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10265 return true; 10266 for (auto &Op : N->ops()) { 10267 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10268 return true; 10269 } 10270 return false; 10271 } 10272 10273 void SelectionDAG::updateDivergence(SDNode *N) { 10274 SmallVector<SDNode *, 16> Worklist(1, N); 10275 do { 10276 N = Worklist.pop_back_val(); 10277 bool IsDivergent = calculateDivergence(N); 10278 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10279 N->SDNodeBits.IsDivergent = IsDivergent; 10280 llvm::append_range(Worklist, N->uses()); 10281 } 10282 } while (!Worklist.empty()); 10283 } 10284 10285 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10286 DenseMap<SDNode *, unsigned> Degree; 10287 Order.reserve(AllNodes.size()); 10288 for (auto &N : allnodes()) { 10289 unsigned NOps = N.getNumOperands(); 10290 Degree[&N] = NOps; 10291 if (0 == NOps) 10292 Order.push_back(&N); 10293 } 10294 for (size_t I = 0; I != Order.size(); ++I) { 10295 SDNode *N = Order[I]; 10296 for (auto U : N->uses()) { 10297 unsigned &UnsortedOps = Degree[U]; 10298 if (0 == --UnsortedOps) 10299 Order.push_back(U); 10300 } 10301 } 10302 } 10303 10304 #ifndef NDEBUG 10305 void SelectionDAG::VerifyDAGDivergence() { 10306 std::vector<SDNode *> TopoOrder; 10307 CreateTopologicalOrder(TopoOrder); 10308 for (auto *N : TopoOrder) { 10309 assert(calculateDivergence(N) == N->isDivergent() && 10310 "Divergence bit inconsistency detected"); 10311 } 10312 } 10313 #endif 10314 10315 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10316 /// uses of other values produced by From.getNode() alone. The same value 10317 /// may appear in both the From and To list. The Deleted vector is 10318 /// handled the same way as for ReplaceAllUsesWith. 10319 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10320 const SDValue *To, 10321 unsigned Num){ 10322 // Handle the simple, trivial case efficiently. 10323 if (Num == 1) 10324 return ReplaceAllUsesOfValueWith(*From, *To); 10325 10326 transferDbgValues(*From, *To); 10327 10328 // Read up all the uses and make records of them. This helps 10329 // processing new uses that are introduced during the 10330 // replacement process. 10331 SmallVector<UseMemo, 4> Uses; 10332 for (unsigned i = 0; i != Num; ++i) { 10333 unsigned FromResNo = From[i].getResNo(); 10334 SDNode *FromNode = From[i].getNode(); 10335 for (SDNode::use_iterator UI = FromNode->use_begin(), 10336 E = FromNode->use_end(); UI != E; ++UI) { 10337 SDUse &Use = UI.getUse(); 10338 if (Use.getResNo() == FromResNo) { 10339 UseMemo Memo = { *UI, i, &Use }; 10340 Uses.push_back(Memo); 10341 } 10342 } 10343 } 10344 10345 // Sort the uses, so that all the uses from a given User are together. 10346 llvm::sort(Uses); 10347 RAUOVWUpdateListener Listener(*this, Uses); 10348 10349 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10350 UseIndex != UseIndexEnd; ) { 10351 // We know that this user uses some value of From. If it is the right 10352 // value, update it. 10353 SDNode *User = Uses[UseIndex].User; 10354 // If the node has been deleted by recursive CSE updates when updating 10355 // another node, then just skip this entry. 10356 if (User == nullptr) { 10357 ++UseIndex; 10358 continue; 10359 } 10360 10361 // This node is about to morph, remove its old self from the CSE maps. 10362 RemoveNodeFromCSEMaps(User); 10363 10364 // The Uses array is sorted, so all the uses for a given User 10365 // are next to each other in the list. 10366 // To help reduce the number of CSE recomputations, process all 10367 // the uses of this user that we can find this way. 10368 do { 10369 unsigned i = Uses[UseIndex].Index; 10370 SDUse &Use = *Uses[UseIndex].Use; 10371 ++UseIndex; 10372 10373 Use.set(To[i]); 10374 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10375 10376 // Now that we have modified User, add it back to the CSE maps. If it 10377 // already exists there, recursively merge the results together. 10378 AddModifiedNodeToCSEMaps(User); 10379 } 10380 } 10381 10382 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10383 /// based on their topological order. It returns the maximum id and a vector 10384 /// of the SDNodes* in assigned order by reference. 10385 unsigned SelectionDAG::AssignTopologicalOrder() { 10386 unsigned DAGSize = 0; 10387 10388 // SortedPos tracks the progress of the algorithm. Nodes before it are 10389 // sorted, nodes after it are unsorted. When the algorithm completes 10390 // it is at the end of the list. 10391 allnodes_iterator SortedPos = allnodes_begin(); 10392 10393 // Visit all the nodes. Move nodes with no operands to the front of 10394 // the list immediately. Annotate nodes that do have operands with their 10395 // operand count. Before we do this, the Node Id fields of the nodes 10396 // may contain arbitrary values. After, the Node Id fields for nodes 10397 // before SortedPos will contain the topological sort index, and the 10398 // Node Id fields for nodes At SortedPos and after will contain the 10399 // count of outstanding operands. 10400 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10401 checkForCycles(&N, this); 10402 unsigned Degree = N.getNumOperands(); 10403 if (Degree == 0) { 10404 // A node with no uses, add it to the result array immediately. 10405 N.setNodeId(DAGSize++); 10406 allnodes_iterator Q(&N); 10407 if (Q != SortedPos) 10408 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10409 assert(SortedPos != AllNodes.end() && "Overran node list"); 10410 ++SortedPos; 10411 } else { 10412 // Temporarily use the Node Id as scratch space for the degree count. 10413 N.setNodeId(Degree); 10414 } 10415 } 10416 10417 // Visit all the nodes. As we iterate, move nodes into sorted order, 10418 // such that by the time the end is reached all nodes will be sorted. 10419 for (SDNode &Node : allnodes()) { 10420 SDNode *N = &Node; 10421 checkForCycles(N, this); 10422 // N is in sorted position, so all its uses have one less operand 10423 // that needs to be sorted. 10424 for (SDNode *P : N->uses()) { 10425 unsigned Degree = P->getNodeId(); 10426 assert(Degree != 0 && "Invalid node degree"); 10427 --Degree; 10428 if (Degree == 0) { 10429 // All of P's operands are sorted, so P may sorted now. 10430 P->setNodeId(DAGSize++); 10431 if (P->getIterator() != SortedPos) 10432 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10433 assert(SortedPos != AllNodes.end() && "Overran node list"); 10434 ++SortedPos; 10435 } else { 10436 // Update P's outstanding operand count. 10437 P->setNodeId(Degree); 10438 } 10439 } 10440 if (Node.getIterator() == SortedPos) { 10441 #ifndef NDEBUG 10442 allnodes_iterator I(N); 10443 SDNode *S = &*++I; 10444 dbgs() << "Overran sorted position:\n"; 10445 S->dumprFull(this); dbgs() << "\n"; 10446 dbgs() << "Checking if this is due to cycles\n"; 10447 checkForCycles(this, true); 10448 #endif 10449 llvm_unreachable(nullptr); 10450 } 10451 } 10452 10453 assert(SortedPos == AllNodes.end() && 10454 "Topological sort incomplete!"); 10455 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10456 "First node in topological sort is not the entry token!"); 10457 assert(AllNodes.front().getNodeId() == 0 && 10458 "First node in topological sort has non-zero id!"); 10459 assert(AllNodes.front().getNumOperands() == 0 && 10460 "First node in topological sort has operands!"); 10461 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10462 "Last node in topologic sort has unexpected id!"); 10463 assert(AllNodes.back().use_empty() && 10464 "Last node in topologic sort has users!"); 10465 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10466 return DAGSize; 10467 } 10468 10469 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10470 /// value is produced by SD. 10471 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10472 for (SDNode *SD : DB->getSDNodes()) { 10473 if (!SD) 10474 continue; 10475 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10476 SD->setHasDebugValue(true); 10477 } 10478 DbgInfo->add(DB, isParameter); 10479 } 10480 10481 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10482 10483 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10484 SDValue NewMemOpChain) { 10485 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10486 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10487 // The new memory operation must have the same position as the old load in 10488 // terms of memory dependency. Create a TokenFactor for the old load and new 10489 // memory operation and update uses of the old load's output chain to use that 10490 // TokenFactor. 10491 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10492 return NewMemOpChain; 10493 10494 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10495 OldChain, NewMemOpChain); 10496 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10497 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10498 return TokenFactor; 10499 } 10500 10501 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10502 SDValue NewMemOp) { 10503 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10504 SDValue OldChain = SDValue(OldLoad, 1); 10505 SDValue NewMemOpChain = NewMemOp.getValue(1); 10506 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10507 } 10508 10509 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10510 Function **OutFunction) { 10511 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10512 10513 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10514 auto *Module = MF->getFunction().getParent(); 10515 auto *Function = Module->getFunction(Symbol); 10516 10517 if (OutFunction != nullptr) 10518 *OutFunction = Function; 10519 10520 if (Function != nullptr) { 10521 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10522 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10523 } 10524 10525 std::string ErrorStr; 10526 raw_string_ostream ErrorFormatter(ErrorStr); 10527 ErrorFormatter << "Undefined external symbol "; 10528 ErrorFormatter << '"' << Symbol << '"'; 10529 report_fatal_error(Twine(ErrorFormatter.str())); 10530 } 10531 10532 //===----------------------------------------------------------------------===// 10533 // SDNode Class 10534 //===----------------------------------------------------------------------===// 10535 10536 bool llvm::isNullConstant(SDValue V) { 10537 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10538 return Const != nullptr && Const->isZero(); 10539 } 10540 10541 bool llvm::isNullFPConstant(SDValue V) { 10542 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10543 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10544 } 10545 10546 bool llvm::isAllOnesConstant(SDValue V) { 10547 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10548 return Const != nullptr && Const->isAllOnes(); 10549 } 10550 10551 bool llvm::isOneConstant(SDValue V) { 10552 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10553 return Const != nullptr && Const->isOne(); 10554 } 10555 10556 bool llvm::isMinSignedConstant(SDValue V) { 10557 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10558 return Const != nullptr && Const->isMinSignedValue(); 10559 } 10560 10561 SDValue llvm::peekThroughBitcasts(SDValue V) { 10562 while (V.getOpcode() == ISD::BITCAST) 10563 V = V.getOperand(0); 10564 return V; 10565 } 10566 10567 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10568 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10569 V = V.getOperand(0); 10570 return V; 10571 } 10572 10573 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10574 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10575 V = V.getOperand(0); 10576 return V; 10577 } 10578 10579 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10580 if (V.getOpcode() != ISD::XOR) 10581 return false; 10582 V = peekThroughBitcasts(V.getOperand(1)); 10583 unsigned NumBits = V.getScalarValueSizeInBits(); 10584 ConstantSDNode *C = 10585 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10586 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10587 } 10588 10589 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10590 bool AllowTruncation) { 10591 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10592 return CN; 10593 10594 // SplatVectors can truncate their operands. Ignore that case here unless 10595 // AllowTruncation is set. 10596 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10597 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10598 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10599 EVT CVT = CN->getValueType(0); 10600 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10601 if (AllowTruncation || CVT == VecEltVT) 10602 return CN; 10603 } 10604 } 10605 10606 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10607 BitVector UndefElements; 10608 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10609 10610 // BuildVectors can truncate their operands. Ignore that case here unless 10611 // AllowTruncation is set. 10612 if (CN && (UndefElements.none() || AllowUndefs)) { 10613 EVT CVT = CN->getValueType(0); 10614 EVT NSVT = N.getValueType().getScalarType(); 10615 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10616 if (AllowTruncation || (CVT == NSVT)) 10617 return CN; 10618 } 10619 } 10620 10621 return nullptr; 10622 } 10623 10624 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10625 bool AllowUndefs, 10626 bool AllowTruncation) { 10627 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10628 return CN; 10629 10630 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10631 BitVector UndefElements; 10632 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10633 10634 // BuildVectors can truncate their operands. Ignore that case here unless 10635 // AllowTruncation is set. 10636 if (CN && (UndefElements.none() || AllowUndefs)) { 10637 EVT CVT = CN->getValueType(0); 10638 EVT NSVT = N.getValueType().getScalarType(); 10639 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10640 if (AllowTruncation || (CVT == NSVT)) 10641 return CN; 10642 } 10643 } 10644 10645 return nullptr; 10646 } 10647 10648 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10649 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10650 return CN; 10651 10652 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10653 BitVector UndefElements; 10654 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10655 if (CN && (UndefElements.none() || AllowUndefs)) 10656 return CN; 10657 } 10658 10659 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10660 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10661 return CN; 10662 10663 return nullptr; 10664 } 10665 10666 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10667 const APInt &DemandedElts, 10668 bool AllowUndefs) { 10669 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10670 return CN; 10671 10672 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10673 BitVector UndefElements; 10674 ConstantFPSDNode *CN = 10675 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10676 if (CN && (UndefElements.none() || AllowUndefs)) 10677 return CN; 10678 } 10679 10680 return nullptr; 10681 } 10682 10683 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10684 // TODO: may want to use peekThroughBitcast() here. 10685 ConstantSDNode *C = 10686 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10687 return C && C->isZero(); 10688 } 10689 10690 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10691 ConstantSDNode *C = 10692 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 10693 return C && C->isOne(); 10694 } 10695 10696 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10697 N = peekThroughBitcasts(N); 10698 unsigned BitWidth = N.getScalarValueSizeInBits(); 10699 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10700 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10701 } 10702 10703 HandleSDNode::~HandleSDNode() { 10704 DropOperands(); 10705 } 10706 10707 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10708 const DebugLoc &DL, 10709 const GlobalValue *GA, EVT VT, 10710 int64_t o, unsigned TF) 10711 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10712 TheGlobal = GA; 10713 } 10714 10715 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10716 EVT VT, unsigned SrcAS, 10717 unsigned DestAS) 10718 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10719 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10720 10721 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10722 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10723 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10724 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10725 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10726 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10727 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10728 10729 // We check here that the size of the memory operand fits within the size of 10730 // the MMO. This is because the MMO might indicate only a possible address 10731 // range instead of specifying the affected memory addresses precisely. 10732 // TODO: Make MachineMemOperands aware of scalable vectors. 10733 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10734 "Size mismatch!"); 10735 } 10736 10737 /// Profile - Gather unique data for the node. 10738 /// 10739 void SDNode::Profile(FoldingSetNodeID &ID) const { 10740 AddNodeIDNode(ID, this); 10741 } 10742 10743 namespace { 10744 10745 struct EVTArray { 10746 std::vector<EVT> VTs; 10747 10748 EVTArray() { 10749 VTs.reserve(MVT::VALUETYPE_SIZE); 10750 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10751 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10752 } 10753 }; 10754 10755 } // end anonymous namespace 10756 10757 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10758 static ManagedStatic<EVTArray> SimpleVTArray; 10759 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10760 10761 /// getValueTypeList - Return a pointer to the specified value type. 10762 /// 10763 const EVT *SDNode::getValueTypeList(EVT VT) { 10764 if (VT.isExtended()) { 10765 sys::SmartScopedLock<true> Lock(*VTMutex); 10766 return &(*EVTs->insert(VT).first); 10767 } 10768 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10769 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10770 } 10771 10772 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10773 /// indicated value. This method ignores uses of other values defined by this 10774 /// operation. 10775 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10776 assert(Value < getNumValues() && "Bad value!"); 10777 10778 // TODO: Only iterate over uses of a given value of the node 10779 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10780 if (UI.getUse().getResNo() == Value) { 10781 if (NUses == 0) 10782 return false; 10783 --NUses; 10784 } 10785 } 10786 10787 // Found exactly the right number of uses? 10788 return NUses == 0; 10789 } 10790 10791 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10792 /// value. This method ignores uses of other values defined by this operation. 10793 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10794 assert(Value < getNumValues() && "Bad value!"); 10795 10796 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10797 if (UI.getUse().getResNo() == Value) 10798 return true; 10799 10800 return false; 10801 } 10802 10803 /// isOnlyUserOf - Return true if this node is the only use of N. 10804 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10805 bool Seen = false; 10806 for (const SDNode *User : N->uses()) { 10807 if (User == this) 10808 Seen = true; 10809 else 10810 return false; 10811 } 10812 10813 return Seen; 10814 } 10815 10816 /// Return true if the only users of N are contained in Nodes. 10817 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10818 bool Seen = false; 10819 for (const SDNode *User : N->uses()) { 10820 if (llvm::is_contained(Nodes, User)) 10821 Seen = true; 10822 else 10823 return false; 10824 } 10825 10826 return Seen; 10827 } 10828 10829 /// isOperand - Return true if this node is an operand of N. 10830 bool SDValue::isOperandOf(const SDNode *N) const { 10831 return is_contained(N->op_values(), *this); 10832 } 10833 10834 bool SDNode::isOperandOf(const SDNode *N) const { 10835 return any_of(N->op_values(), 10836 [this](SDValue Op) { return this == Op.getNode(); }); 10837 } 10838 10839 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10840 /// be a chain) reaches the specified operand without crossing any 10841 /// side-effecting instructions on any chain path. In practice, this looks 10842 /// through token factors and non-volatile loads. In order to remain efficient, 10843 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10844 /// 10845 /// Note that we only need to examine chains when we're searching for 10846 /// side-effects; SelectionDAG requires that all side-effects are represented 10847 /// by chains, even if another operand would force a specific ordering. This 10848 /// constraint is necessary to allow transformations like splitting loads. 10849 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10850 unsigned Depth) const { 10851 if (*this == Dest) return true; 10852 10853 // Don't search too deeply, we just want to be able to see through 10854 // TokenFactor's etc. 10855 if (Depth == 0) return false; 10856 10857 // If this is a token factor, all inputs to the TF happen in parallel. 10858 if (getOpcode() == ISD::TokenFactor) { 10859 // First, try a shallow search. 10860 if (is_contained((*this)->ops(), Dest)) { 10861 // We found the chain we want as an operand of this TokenFactor. 10862 // Essentially, we reach the chain without side-effects if we could 10863 // serialize the TokenFactor into a simple chain of operations with 10864 // Dest as the last operation. This is automatically true if the 10865 // chain has one use: there are no other ordering constraints. 10866 // If the chain has more than one use, we give up: some other 10867 // use of Dest might force a side-effect between Dest and the current 10868 // node. 10869 if (Dest.hasOneUse()) 10870 return true; 10871 } 10872 // Next, try a deep search: check whether every operand of the TokenFactor 10873 // reaches Dest. 10874 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10875 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10876 }); 10877 } 10878 10879 // Loads don't have side effects, look through them. 10880 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10881 if (Ld->isUnordered()) 10882 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10883 } 10884 return false; 10885 } 10886 10887 bool SDNode::hasPredecessor(const SDNode *N) const { 10888 SmallPtrSet<const SDNode *, 32> Visited; 10889 SmallVector<const SDNode *, 16> Worklist; 10890 Worklist.push_back(this); 10891 return hasPredecessorHelper(N, Visited, Worklist); 10892 } 10893 10894 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10895 this->Flags.intersectWith(Flags); 10896 } 10897 10898 SDValue 10899 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10900 ArrayRef<ISD::NodeType> CandidateBinOps, 10901 bool AllowPartials) { 10902 // The pattern must end in an extract from index 0. 10903 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10904 !isNullConstant(Extract->getOperand(1))) 10905 return SDValue(); 10906 10907 // Match against one of the candidate binary ops. 10908 SDValue Op = Extract->getOperand(0); 10909 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10910 return Op.getOpcode() == unsigned(BinOp); 10911 })) 10912 return SDValue(); 10913 10914 // Floating-point reductions may require relaxed constraints on the final step 10915 // of the reduction because they may reorder intermediate operations. 10916 unsigned CandidateBinOp = Op.getOpcode(); 10917 if (Op.getValueType().isFloatingPoint()) { 10918 SDNodeFlags Flags = Op->getFlags(); 10919 switch (CandidateBinOp) { 10920 case ISD::FADD: 10921 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10922 return SDValue(); 10923 break; 10924 default: 10925 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10926 } 10927 } 10928 10929 // Matching failed - attempt to see if we did enough stages that a partial 10930 // reduction from a subvector is possible. 10931 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10932 if (!AllowPartials || !Op) 10933 return SDValue(); 10934 EVT OpVT = Op.getValueType(); 10935 EVT OpSVT = OpVT.getScalarType(); 10936 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10937 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10938 return SDValue(); 10939 BinOp = (ISD::NodeType)CandidateBinOp; 10940 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10941 getVectorIdxConstant(0, SDLoc(Op))); 10942 }; 10943 10944 // At each stage, we're looking for something that looks like: 10945 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10946 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10947 // i32 undef, i32 undef, i32 undef, i32 undef> 10948 // %a = binop <8 x i32> %op, %s 10949 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10950 // we expect something like: 10951 // <4,5,6,7,u,u,u,u> 10952 // <2,3,u,u,u,u,u,u> 10953 // <1,u,u,u,u,u,u,u> 10954 // While a partial reduction match would be: 10955 // <2,3,u,u,u,u,u,u> 10956 // <1,u,u,u,u,u,u,u> 10957 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10958 SDValue PrevOp; 10959 for (unsigned i = 0; i < Stages; ++i) { 10960 unsigned MaskEnd = (1 << i); 10961 10962 if (Op.getOpcode() != CandidateBinOp) 10963 return PartialReduction(PrevOp, MaskEnd); 10964 10965 SDValue Op0 = Op.getOperand(0); 10966 SDValue Op1 = Op.getOperand(1); 10967 10968 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10969 if (Shuffle) { 10970 Op = Op1; 10971 } else { 10972 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10973 Op = Op0; 10974 } 10975 10976 // The first operand of the shuffle should be the same as the other operand 10977 // of the binop. 10978 if (!Shuffle || Shuffle->getOperand(0) != Op) 10979 return PartialReduction(PrevOp, MaskEnd); 10980 10981 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10982 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10983 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10984 return PartialReduction(PrevOp, MaskEnd); 10985 10986 PrevOp = Op; 10987 } 10988 10989 // Handle subvector reductions, which tend to appear after the shuffle 10990 // reduction stages. 10991 while (Op.getOpcode() == CandidateBinOp) { 10992 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10993 SDValue Op0 = Op.getOperand(0); 10994 SDValue Op1 = Op.getOperand(1); 10995 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10996 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10997 Op0.getOperand(0) != Op1.getOperand(0)) 10998 break; 10999 SDValue Src = Op0.getOperand(0); 11000 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 11001 if (NumSrcElts != (2 * NumElts)) 11002 break; 11003 if (!(Op0.getConstantOperandAPInt(1) == 0 && 11004 Op1.getConstantOperandAPInt(1) == NumElts) && 11005 !(Op1.getConstantOperandAPInt(1) == 0 && 11006 Op0.getConstantOperandAPInt(1) == NumElts)) 11007 break; 11008 Op = Src; 11009 } 11010 11011 BinOp = (ISD::NodeType)CandidateBinOp; 11012 return Op; 11013 } 11014 11015 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 11016 assert(N->getNumValues() == 1 && 11017 "Can't unroll a vector with multiple results!"); 11018 11019 EVT VT = N->getValueType(0); 11020 unsigned NE = VT.getVectorNumElements(); 11021 EVT EltVT = VT.getVectorElementType(); 11022 SDLoc dl(N); 11023 11024 SmallVector<SDValue, 8> Scalars; 11025 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11026 11027 // If ResNE is 0, fully unroll the vector op. 11028 if (ResNE == 0) 11029 ResNE = NE; 11030 else if (NE > ResNE) 11031 NE = ResNE; 11032 11033 unsigned i; 11034 for (i= 0; i != NE; ++i) { 11035 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11036 SDValue Operand = N->getOperand(j); 11037 EVT OperandVT = Operand.getValueType(); 11038 if (OperandVT.isVector()) { 11039 // A vector operand; extract a single element. 11040 EVT OperandEltVT = OperandVT.getVectorElementType(); 11041 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11042 Operand, getVectorIdxConstant(i, dl)); 11043 } else { 11044 // A scalar operand; just use it as is. 11045 Operands[j] = Operand; 11046 } 11047 } 11048 11049 switch (N->getOpcode()) { 11050 default: { 11051 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11052 N->getFlags())); 11053 break; 11054 } 11055 case ISD::VSELECT: 11056 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11057 break; 11058 case ISD::SHL: 11059 case ISD::SRA: 11060 case ISD::SRL: 11061 case ISD::ROTL: 11062 case ISD::ROTR: 11063 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11064 getShiftAmountOperand(Operands[0].getValueType(), 11065 Operands[1]))); 11066 break; 11067 case ISD::SIGN_EXTEND_INREG: { 11068 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11069 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11070 Operands[0], 11071 getValueType(ExtVT))); 11072 } 11073 } 11074 } 11075 11076 for (; i < ResNE; ++i) 11077 Scalars.push_back(getUNDEF(EltVT)); 11078 11079 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11080 return getBuildVector(VecVT, dl, Scalars); 11081 } 11082 11083 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11084 SDNode *N, unsigned ResNE) { 11085 unsigned Opcode = N->getOpcode(); 11086 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11087 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11088 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11089 "Expected an overflow opcode"); 11090 11091 EVT ResVT = N->getValueType(0); 11092 EVT OvVT = N->getValueType(1); 11093 EVT ResEltVT = ResVT.getVectorElementType(); 11094 EVT OvEltVT = OvVT.getVectorElementType(); 11095 SDLoc dl(N); 11096 11097 // If ResNE is 0, fully unroll the vector op. 11098 unsigned NE = ResVT.getVectorNumElements(); 11099 if (ResNE == 0) 11100 ResNE = NE; 11101 else if (NE > ResNE) 11102 NE = ResNE; 11103 11104 SmallVector<SDValue, 8> LHSScalars; 11105 SmallVector<SDValue, 8> RHSScalars; 11106 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11107 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11108 11109 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11110 SDVTList VTs = getVTList(ResEltVT, SVT); 11111 SmallVector<SDValue, 8> ResScalars; 11112 SmallVector<SDValue, 8> OvScalars; 11113 for (unsigned i = 0; i < NE; ++i) { 11114 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11115 SDValue Ov = 11116 getSelect(dl, OvEltVT, Res.getValue(1), 11117 getBoolConstant(true, dl, OvEltVT, ResVT), 11118 getConstant(0, dl, OvEltVT)); 11119 11120 ResScalars.push_back(Res); 11121 OvScalars.push_back(Ov); 11122 } 11123 11124 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11125 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11126 11127 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11128 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11129 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11130 getBuildVector(NewOvVT, dl, OvScalars)); 11131 } 11132 11133 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11134 LoadSDNode *Base, 11135 unsigned Bytes, 11136 int Dist) const { 11137 if (LD->isVolatile() || Base->isVolatile()) 11138 return false; 11139 // TODO: probably too restrictive for atomics, revisit 11140 if (!LD->isSimple()) 11141 return false; 11142 if (LD->isIndexed() || Base->isIndexed()) 11143 return false; 11144 if (LD->getChain() != Base->getChain()) 11145 return false; 11146 EVT VT = LD->getValueType(0); 11147 if (VT.getSizeInBits() / 8 != Bytes) 11148 return false; 11149 11150 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11151 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11152 11153 int64_t Offset = 0; 11154 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11155 return (Dist * Bytes == Offset); 11156 return false; 11157 } 11158 11159 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11160 /// if it cannot be inferred. 11161 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11162 // If this is a GlobalAddress + cst, return the alignment. 11163 const GlobalValue *GV = nullptr; 11164 int64_t GVOffset = 0; 11165 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11166 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11167 KnownBits Known(PtrWidth); 11168 llvm::computeKnownBits(GV, Known, getDataLayout()); 11169 unsigned AlignBits = Known.countMinTrailingZeros(); 11170 if (AlignBits) 11171 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11172 } 11173 11174 // If this is a direct reference to a stack slot, use information about the 11175 // stack slot's alignment. 11176 int FrameIdx = INT_MIN; 11177 int64_t FrameOffset = 0; 11178 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11179 FrameIdx = FI->getIndex(); 11180 } else if (isBaseWithConstantOffset(Ptr) && 11181 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11182 // Handle FI+Cst 11183 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11184 FrameOffset = Ptr.getConstantOperandVal(1); 11185 } 11186 11187 if (FrameIdx != INT_MIN) { 11188 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11189 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11190 } 11191 11192 return None; 11193 } 11194 11195 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11196 /// which is split (or expanded) into two not necessarily identical pieces. 11197 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11198 // Currently all types are split in half. 11199 EVT LoVT, HiVT; 11200 if (!VT.isVector()) 11201 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11202 else 11203 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11204 11205 return std::make_pair(LoVT, HiVT); 11206 } 11207 11208 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11209 /// type, dependent on an enveloping VT that has been split into two identical 11210 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11211 std::pair<EVT, EVT> 11212 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11213 bool *HiIsEmpty) const { 11214 EVT EltTp = VT.getVectorElementType(); 11215 // Examples: 11216 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11217 // custom VL=9 with enveloping VL=8/8 yields 8/1 11218 // custom VL=10 with enveloping VL=8/8 yields 8/2 11219 // etc. 11220 ElementCount VTNumElts = VT.getVectorElementCount(); 11221 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11222 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11223 "Mixing fixed width and scalable vectors when enveloping a type"); 11224 EVT LoVT, HiVT; 11225 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11226 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11227 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11228 *HiIsEmpty = false; 11229 } else { 11230 // Flag that hi type has zero storage size, but return split envelop type 11231 // (this would be easier if vector types with zero elements were allowed). 11232 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11233 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11234 *HiIsEmpty = true; 11235 } 11236 return std::make_pair(LoVT, HiVT); 11237 } 11238 11239 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11240 /// low/high part. 11241 std::pair<SDValue, SDValue> 11242 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11243 const EVT &HiVT) { 11244 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11245 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11246 "Splitting vector with an invalid mixture of fixed and scalable " 11247 "vector types"); 11248 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11249 N.getValueType().getVectorMinNumElements() && 11250 "More vector elements requested than available!"); 11251 SDValue Lo, Hi; 11252 Lo = 11253 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11254 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11255 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11256 // IDX with the runtime scaling factor of the result vector type. For 11257 // fixed-width result vectors, that runtime scaling factor is 1. 11258 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11259 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11260 return std::make_pair(Lo, Hi); 11261 } 11262 11263 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11264 const SDLoc &DL) { 11265 // Split the vector length parameter. 11266 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11267 EVT VT = N.getValueType(); 11268 assert(VecVT.getVectorElementCount().isKnownEven() && 11269 "Expecting the mask to be an evenly-sized vector"); 11270 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11271 SDValue HalfNumElts = 11272 VecVT.isFixedLengthVector() 11273 ? getConstant(HalfMinNumElts, DL, VT) 11274 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11275 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11276 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11277 return std::make_pair(Lo, Hi); 11278 } 11279 11280 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11281 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11282 EVT VT = N.getValueType(); 11283 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11284 NextPowerOf2(VT.getVectorNumElements())); 11285 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11286 getVectorIdxConstant(0, DL)); 11287 } 11288 11289 void SelectionDAG::ExtractVectorElements(SDValue Op, 11290 SmallVectorImpl<SDValue> &Args, 11291 unsigned Start, unsigned Count, 11292 EVT EltVT) { 11293 EVT VT = Op.getValueType(); 11294 if (Count == 0) 11295 Count = VT.getVectorNumElements(); 11296 if (EltVT == EVT()) 11297 EltVT = VT.getVectorElementType(); 11298 SDLoc SL(Op); 11299 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11300 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11301 getVectorIdxConstant(i, SL))); 11302 } 11303 } 11304 11305 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11306 unsigned GlobalAddressSDNode::getAddressSpace() const { 11307 return getGlobal()->getType()->getAddressSpace(); 11308 } 11309 11310 Type *ConstantPoolSDNode::getType() const { 11311 if (isMachineConstantPoolEntry()) 11312 return Val.MachineCPVal->getType(); 11313 return Val.ConstVal->getType(); 11314 } 11315 11316 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11317 unsigned &SplatBitSize, 11318 bool &HasAnyUndefs, 11319 unsigned MinSplatBits, 11320 bool IsBigEndian) const { 11321 EVT VT = getValueType(0); 11322 assert(VT.isVector() && "Expected a vector type"); 11323 unsigned VecWidth = VT.getSizeInBits(); 11324 if (MinSplatBits > VecWidth) 11325 return false; 11326 11327 // FIXME: The widths are based on this node's type, but build vectors can 11328 // truncate their operands. 11329 SplatValue = APInt(VecWidth, 0); 11330 SplatUndef = APInt(VecWidth, 0); 11331 11332 // Get the bits. Bits with undefined values (when the corresponding element 11333 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11334 // in SplatValue. If any of the values are not constant, give up and return 11335 // false. 11336 unsigned int NumOps = getNumOperands(); 11337 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11338 unsigned EltWidth = VT.getScalarSizeInBits(); 11339 11340 for (unsigned j = 0; j < NumOps; ++j) { 11341 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11342 SDValue OpVal = getOperand(i); 11343 unsigned BitPos = j * EltWidth; 11344 11345 if (OpVal.isUndef()) 11346 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11347 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11348 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11349 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11350 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11351 else 11352 return false; 11353 } 11354 11355 // The build_vector is all constants or undefs. Find the smallest element 11356 // size that splats the vector. 11357 HasAnyUndefs = (SplatUndef != 0); 11358 11359 // FIXME: This does not work for vectors with elements less than 8 bits. 11360 while (VecWidth > 8) { 11361 unsigned HalfSize = VecWidth / 2; 11362 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11363 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11364 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11365 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11366 11367 // If the two halves do not match (ignoring undef bits), stop here. 11368 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11369 MinSplatBits > HalfSize) 11370 break; 11371 11372 SplatValue = HighValue | LowValue; 11373 SplatUndef = HighUndef & LowUndef; 11374 11375 VecWidth = HalfSize; 11376 } 11377 11378 SplatBitSize = VecWidth; 11379 return true; 11380 } 11381 11382 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11383 BitVector *UndefElements) const { 11384 unsigned NumOps = getNumOperands(); 11385 if (UndefElements) { 11386 UndefElements->clear(); 11387 UndefElements->resize(NumOps); 11388 } 11389 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11390 if (!DemandedElts) 11391 return SDValue(); 11392 SDValue Splatted; 11393 for (unsigned i = 0; i != NumOps; ++i) { 11394 if (!DemandedElts[i]) 11395 continue; 11396 SDValue Op = getOperand(i); 11397 if (Op.isUndef()) { 11398 if (UndefElements) 11399 (*UndefElements)[i] = true; 11400 } else if (!Splatted) { 11401 Splatted = Op; 11402 } else if (Splatted != Op) { 11403 return SDValue(); 11404 } 11405 } 11406 11407 if (!Splatted) { 11408 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11409 assert(getOperand(FirstDemandedIdx).isUndef() && 11410 "Can only have a splat without a constant for all undefs."); 11411 return getOperand(FirstDemandedIdx); 11412 } 11413 11414 return Splatted; 11415 } 11416 11417 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11418 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11419 return getSplatValue(DemandedElts, UndefElements); 11420 } 11421 11422 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11423 SmallVectorImpl<SDValue> &Sequence, 11424 BitVector *UndefElements) const { 11425 unsigned NumOps = getNumOperands(); 11426 Sequence.clear(); 11427 if (UndefElements) { 11428 UndefElements->clear(); 11429 UndefElements->resize(NumOps); 11430 } 11431 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11432 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11433 return false; 11434 11435 // Set the undefs even if we don't find a sequence (like getSplatValue). 11436 if (UndefElements) 11437 for (unsigned I = 0; I != NumOps; ++I) 11438 if (DemandedElts[I] && getOperand(I).isUndef()) 11439 (*UndefElements)[I] = true; 11440 11441 // Iteratively widen the sequence length looking for repetitions. 11442 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11443 Sequence.append(SeqLen, SDValue()); 11444 for (unsigned I = 0; I != NumOps; ++I) { 11445 if (!DemandedElts[I]) 11446 continue; 11447 SDValue &SeqOp = Sequence[I % SeqLen]; 11448 SDValue Op = getOperand(I); 11449 if (Op.isUndef()) { 11450 if (!SeqOp) 11451 SeqOp = Op; 11452 continue; 11453 } 11454 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11455 Sequence.clear(); 11456 break; 11457 } 11458 SeqOp = Op; 11459 } 11460 if (!Sequence.empty()) 11461 return true; 11462 } 11463 11464 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11465 return false; 11466 } 11467 11468 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11469 BitVector *UndefElements) const { 11470 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11471 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11472 } 11473 11474 ConstantSDNode * 11475 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11476 BitVector *UndefElements) const { 11477 return dyn_cast_or_null<ConstantSDNode>( 11478 getSplatValue(DemandedElts, UndefElements)); 11479 } 11480 11481 ConstantSDNode * 11482 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11483 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11484 } 11485 11486 ConstantFPSDNode * 11487 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11488 BitVector *UndefElements) const { 11489 return dyn_cast_or_null<ConstantFPSDNode>( 11490 getSplatValue(DemandedElts, UndefElements)); 11491 } 11492 11493 ConstantFPSDNode * 11494 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11495 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11496 } 11497 11498 int32_t 11499 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11500 uint32_t BitWidth) const { 11501 if (ConstantFPSDNode *CN = 11502 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11503 bool IsExact; 11504 APSInt IntVal(BitWidth); 11505 const APFloat &APF = CN->getValueAPF(); 11506 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11507 APFloat::opOK || 11508 !IsExact) 11509 return -1; 11510 11511 return IntVal.exactLogBase2(); 11512 } 11513 return -1; 11514 } 11515 11516 bool BuildVectorSDNode::getConstantRawBits( 11517 bool IsLittleEndian, unsigned DstEltSizeInBits, 11518 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11519 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11520 if (!isConstant()) 11521 return false; 11522 11523 unsigned NumSrcOps = getNumOperands(); 11524 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11525 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11526 "Invalid bitcast scale"); 11527 11528 // Extract raw src bits. 11529 SmallVector<APInt> SrcBitElements(NumSrcOps, 11530 APInt::getNullValue(SrcEltSizeInBits)); 11531 BitVector SrcUndeElements(NumSrcOps, false); 11532 11533 for (unsigned I = 0; I != NumSrcOps; ++I) { 11534 SDValue Op = getOperand(I); 11535 if (Op.isUndef()) { 11536 SrcUndeElements.set(I); 11537 continue; 11538 } 11539 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11540 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11541 assert((CInt || CFP) && "Unknown constant"); 11542 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11543 : CFP->getValueAPF().bitcastToAPInt(); 11544 } 11545 11546 // Recast to dst width. 11547 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11548 SrcBitElements, UndefElements, SrcUndeElements); 11549 return true; 11550 } 11551 11552 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11553 unsigned DstEltSizeInBits, 11554 SmallVectorImpl<APInt> &DstBitElements, 11555 ArrayRef<APInt> SrcBitElements, 11556 BitVector &DstUndefElements, 11557 const BitVector &SrcUndefElements) { 11558 unsigned NumSrcOps = SrcBitElements.size(); 11559 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11560 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11561 "Invalid bitcast scale"); 11562 assert(NumSrcOps == SrcUndefElements.size() && 11563 "Vector size mismatch"); 11564 11565 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11566 DstUndefElements.clear(); 11567 DstUndefElements.resize(NumDstOps, false); 11568 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11569 11570 // Concatenate src elements constant bits together into dst element. 11571 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11572 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11573 for (unsigned I = 0; I != NumDstOps; ++I) { 11574 DstUndefElements.set(I); 11575 APInt &DstBits = DstBitElements[I]; 11576 for (unsigned J = 0; J != Scale; ++J) { 11577 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11578 if (SrcUndefElements[Idx]) 11579 continue; 11580 DstUndefElements.reset(I); 11581 const APInt &SrcBits = SrcBitElements[Idx]; 11582 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11583 "Illegal constant bitwidths"); 11584 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11585 } 11586 } 11587 return; 11588 } 11589 11590 // Split src element constant bits into dst elements. 11591 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11592 for (unsigned I = 0; I != NumSrcOps; ++I) { 11593 if (SrcUndefElements[I]) { 11594 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11595 continue; 11596 } 11597 const APInt &SrcBits = SrcBitElements[I]; 11598 for (unsigned J = 0; J != Scale; ++J) { 11599 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11600 APInt &DstBits = DstBitElements[Idx]; 11601 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11602 } 11603 } 11604 } 11605 11606 bool BuildVectorSDNode::isConstant() const { 11607 for (const SDValue &Op : op_values()) { 11608 unsigned Opc = Op.getOpcode(); 11609 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11610 return false; 11611 } 11612 return true; 11613 } 11614 11615 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11616 // Find the first non-undef value in the shuffle mask. 11617 unsigned i, e; 11618 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11619 /* search */; 11620 11621 // If all elements are undefined, this shuffle can be considered a splat 11622 // (although it should eventually get simplified away completely). 11623 if (i == e) 11624 return true; 11625 11626 // Make sure all remaining elements are either undef or the same as the first 11627 // non-undef value. 11628 for (int Idx = Mask[i]; i != e; ++i) 11629 if (Mask[i] >= 0 && Mask[i] != Idx) 11630 return false; 11631 return true; 11632 } 11633 11634 // Returns the SDNode if it is a constant integer BuildVector 11635 // or constant integer. 11636 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11637 if (isa<ConstantSDNode>(N)) 11638 return N.getNode(); 11639 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11640 return N.getNode(); 11641 // Treat a GlobalAddress supporting constant offset folding as a 11642 // constant integer. 11643 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11644 if (GA->getOpcode() == ISD::GlobalAddress && 11645 TLI->isOffsetFoldingLegal(GA)) 11646 return GA; 11647 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11648 isa<ConstantSDNode>(N.getOperand(0))) 11649 return N.getNode(); 11650 return nullptr; 11651 } 11652 11653 // Returns the SDNode if it is a constant float BuildVector 11654 // or constant float. 11655 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11656 if (isa<ConstantFPSDNode>(N)) 11657 return N.getNode(); 11658 11659 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11660 return N.getNode(); 11661 11662 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11663 isa<ConstantFPSDNode>(N.getOperand(0))) 11664 return N.getNode(); 11665 11666 return nullptr; 11667 } 11668 11669 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11670 assert(!Node->OperandList && "Node already has operands"); 11671 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11672 "too many operands to fit into SDNode"); 11673 SDUse *Ops = OperandRecycler.allocate( 11674 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11675 11676 bool IsDivergent = false; 11677 for (unsigned I = 0; I != Vals.size(); ++I) { 11678 Ops[I].setUser(Node); 11679 Ops[I].setInitial(Vals[I]); 11680 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11681 IsDivergent |= Ops[I].getNode()->isDivergent(); 11682 } 11683 Node->NumOperands = Vals.size(); 11684 Node->OperandList = Ops; 11685 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11686 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11687 Node->SDNodeBits.IsDivergent = IsDivergent; 11688 } 11689 checkForCycles(Node); 11690 } 11691 11692 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11693 SmallVectorImpl<SDValue> &Vals) { 11694 size_t Limit = SDNode::getMaxNumOperands(); 11695 while (Vals.size() > Limit) { 11696 unsigned SliceIdx = Vals.size() - Limit; 11697 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11698 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11699 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11700 Vals.emplace_back(NewTF); 11701 } 11702 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11703 } 11704 11705 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11706 EVT VT, SDNodeFlags Flags) { 11707 switch (Opcode) { 11708 default: 11709 return SDValue(); 11710 case ISD::ADD: 11711 case ISD::OR: 11712 case ISD::XOR: 11713 case ISD::UMAX: 11714 return getConstant(0, DL, VT); 11715 case ISD::MUL: 11716 return getConstant(1, DL, VT); 11717 case ISD::AND: 11718 case ISD::UMIN: 11719 return getAllOnesConstant(DL, VT); 11720 case ISD::SMAX: 11721 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11722 case ISD::SMIN: 11723 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11724 case ISD::FADD: 11725 return getConstantFP(-0.0, DL, VT); 11726 case ISD::FMUL: 11727 return getConstantFP(1.0, DL, VT); 11728 case ISD::FMINNUM: 11729 case ISD::FMAXNUM: { 11730 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11731 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11732 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11733 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11734 APFloat::getLargest(Semantics); 11735 if (Opcode == ISD::FMAXNUM) 11736 NeutralAF.changeSign(); 11737 11738 return getConstantFP(NeutralAF, DL, VT); 11739 } 11740 } 11741 } 11742 11743 #ifndef NDEBUG 11744 static void checkForCyclesHelper(const SDNode *N, 11745 SmallPtrSetImpl<const SDNode*> &Visited, 11746 SmallPtrSetImpl<const SDNode*> &Checked, 11747 const llvm::SelectionDAG *DAG) { 11748 // If this node has already been checked, don't check it again. 11749 if (Checked.count(N)) 11750 return; 11751 11752 // If a node has already been visited on this depth-first walk, reject it as 11753 // a cycle. 11754 if (!Visited.insert(N).second) { 11755 errs() << "Detected cycle in SelectionDAG\n"; 11756 dbgs() << "Offending node:\n"; 11757 N->dumprFull(DAG); dbgs() << "\n"; 11758 abort(); 11759 } 11760 11761 for (const SDValue &Op : N->op_values()) 11762 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11763 11764 Checked.insert(N); 11765 Visited.erase(N); 11766 } 11767 #endif 11768 11769 void llvm::checkForCycles(const llvm::SDNode *N, 11770 const llvm::SelectionDAG *DAG, 11771 bool force) { 11772 #ifndef NDEBUG 11773 bool check = force; 11774 #ifdef EXPENSIVE_CHECKS 11775 check = true; 11776 #endif // EXPENSIVE_CHECKS 11777 if (check) { 11778 assert(N && "Checking nonexistent SDNode"); 11779 SmallPtrSet<const SDNode*, 32> visited; 11780 SmallPtrSet<const SDNode*, 32> checked; 11781 checkForCyclesHelper(N, visited, checked, DAG); 11782 } 11783 #endif // !NDEBUG 11784 } 11785 11786 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11787 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11788 } 11789