1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/CodeGen/ISDOpcodes.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/RuntimeLibcalls.h" 35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CodeGen.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/KnownBits.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/ManagedStatic.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/Mutex.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <cstdlib> 70 #include <limits> 71 #include <set> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 /// makeVTList - Return an instance of the SDVTList struct initialized with the 79 /// specified members. 80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 81 SDVTList Res = {VTs, NumVTs}; 82 return Res; 83 } 84 85 // Default null implementations of the callbacks. 86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 89 90 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 91 92 #define DEBUG_TYPE "selectiondag" 93 94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 95 cl::Hidden, cl::init(true), 96 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 97 98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 99 cl::desc("Number limit for gluing ld/st of memcpy."), 100 cl::Hidden, cl::init(0)); 101 102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // ConstantFPSDNode Class 108 //===----------------------------------------------------------------------===// 109 110 /// isExactlyValue - We don't rely on operator== working on double values, as 111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 112 /// As such, this method can be used to do an exact bit-for-bit comparison of 113 /// two floating point values. 114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 115 return getValueAPF().bitwiseIsEqual(V); 116 } 117 118 bool ConstantFPSDNode::isValueValidForType(EVT VT, 119 const APFloat& Val) { 120 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 121 122 // convert modifies in place, so make a copy. 123 APFloat Val2 = APFloat(Val); 124 bool losesInfo; 125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 126 APFloat::rmNearestTiesToEven, 127 &losesInfo); 128 return !losesInfo; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // ISD Namespace 133 //===----------------------------------------------------------------------===// 134 135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 136 auto *BV = dyn_cast<BuildVectorSDNode>(N); 137 if (!BV) 138 return false; 139 140 APInt SplatUndef; 141 unsigned SplatBitSize; 142 bool HasUndefs; 143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 145 EltSize) && 146 EltSize == SplatBitSize; 147 } 148 149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 150 // specializations of the more general isConstantSplatVector()? 151 152 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 153 // Look through a bit convert. 154 while (N->getOpcode() == ISD::BITCAST) 155 N = N->getOperand(0).getNode(); 156 157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 158 159 unsigned i = 0, e = N->getNumOperands(); 160 161 // Skip over all of the undef values. 162 while (i != e && N->getOperand(i).isUndef()) 163 ++i; 164 165 // Do not accept an all-undef vector. 166 if (i == e) return false; 167 168 // Do not accept build_vectors that aren't all constants or which have non-~0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target and 172 // a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all ones, not whether the individual 175 // constants are. 176 SDValue NotZero = N->getOperand(i); 177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 179 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 180 return false; 181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 183 return false; 184 } else 185 return false; 186 187 // Okay, we have at least one ~0 value, check to see if the rest match or are 188 // undefs. Even with the above element type twiddling, this should be OK, as 189 // the same type legalization should have applied to all the elements. 190 for (++i; i != e; ++i) 191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 192 return false; 193 return true; 194 } 195 196 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 197 // Look through a bit convert. 198 while (N->getOpcode() == ISD::BITCAST) 199 N = N->getOperand(0).getNode(); 200 201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 202 203 bool IsAllUndef = true; 204 for (const SDValue &Op : N->op_values()) { 205 if (Op.isUndef()) 206 continue; 207 IsAllUndef = false; 208 // Do not accept build_vectors that aren't all constants or which have non-0 209 // elements. We have to be a bit careful here, as the type of the constant 210 // may not be the same as the type of the vector elements due to type 211 // legalization (the elements are promoted to a legal type for the target 212 // and a vector of a type may be legal when the base element type is not). 213 // We only want to check enough bits to cover the vector elements, because 214 // we care if the resultant vector is all zeros, not whether the individual 215 // constants are. 216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 218 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 219 return false; 220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 222 return false; 223 } else 224 return false; 225 } 226 227 // Do not accept an all-undef vector. 228 if (IsAllUndef) 229 return false; 230 return true; 231 } 232 233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 234 if (N->getOpcode() != ISD::BUILD_VECTOR) 235 return false; 236 237 for (const SDValue &Op : N->op_values()) { 238 if (Op.isUndef()) 239 continue; 240 if (!isa<ConstantSDNode>(Op)) 241 return false; 242 } 243 return true; 244 } 245 246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 247 if (N->getOpcode() != ISD::BUILD_VECTOR) 248 return false; 249 250 for (const SDValue &Op : N->op_values()) { 251 if (Op.isUndef()) 252 continue; 253 if (!isa<ConstantFPSDNode>(Op)) 254 return false; 255 } 256 return true; 257 } 258 259 bool ISD::allOperandsUndef(const SDNode *N) { 260 // Return false if the node has no operands. 261 // This is "logically inconsistent" with the definition of "all" but 262 // is probably the desired behavior. 263 if (N->getNumOperands() == 0) 264 return false; 265 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 266 } 267 268 bool ISD::matchUnaryPredicate(SDValue Op, 269 std::function<bool(ConstantSDNode *)> Match, 270 bool AllowUndefs) { 271 // FIXME: Add support for scalar UNDEF cases? 272 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 273 return Match(Cst); 274 275 // FIXME: Add support for vector UNDEF cases? 276 if (ISD::BUILD_VECTOR != Op.getOpcode()) 277 return false; 278 279 EVT SVT = Op.getValueType().getScalarType(); 280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 281 if (AllowUndefs && Op.getOperand(i).isUndef()) { 282 if (!Match(nullptr)) 283 return false; 284 continue; 285 } 286 287 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 288 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::matchBinaryPredicate( 295 SDValue LHS, SDValue RHS, 296 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 297 bool AllowUndefs) { 298 if (LHS.getValueType() != RHS.getValueType()) 299 return false; 300 301 // TODO: Add support for scalar UNDEF cases? 302 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 303 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 304 return Match(LHSCst, RHSCst); 305 306 // TODO: Add support for vector UNDEF cases? 307 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 308 ISD::BUILD_VECTOR != RHS.getOpcode()) 309 return false; 310 311 EVT SVT = LHS.getValueType().getScalarType(); 312 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 313 SDValue LHSOp = LHS.getOperand(i); 314 SDValue RHSOp = RHS.getOperand(i); 315 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 316 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 317 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 318 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 319 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 320 return false; 321 if (LHSOp.getValueType() != SVT || 322 LHSOp.getValueType() != RHSOp.getValueType()) 323 return false; 324 if (!Match(LHSCst, RHSCst)) 325 return false; 326 } 327 return true; 328 } 329 330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 331 switch (ExtType) { 332 case ISD::EXTLOAD: 333 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 334 case ISD::SEXTLOAD: 335 return ISD::SIGN_EXTEND; 336 case ISD::ZEXTLOAD: 337 return ISD::ZERO_EXTEND; 338 default: 339 break; 340 } 341 342 llvm_unreachable("Invalid LoadExtType"); 343 } 344 345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 346 // To perform this operation, we just need to swap the L and G bits of the 347 // operation. 348 unsigned OldL = (Operation >> 2) & 1; 349 unsigned OldG = (Operation >> 1) & 1; 350 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 351 (OldL << 1) | // New G bit 352 (OldG << 2)); // New L bit. 353 } 354 355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 356 unsigned Operation = Op; 357 if (isInteger) 358 Operation ^= 7; // Flip L, G, E bits, but not U. 359 else 360 Operation ^= 15; // Flip all of the condition bits. 361 362 if (Operation > ISD::SETTRUE2) 363 Operation &= ~8; // Don't let N and U bits get set. 364 365 return ISD::CondCode(Operation); 366 } 367 368 /// For an integer comparison, return 1 if the comparison is a signed operation 369 /// and 2 if the result is an unsigned comparison. Return zero if the operation 370 /// does not depend on the sign of the input (setne and seteq). 371 static int isSignedOp(ISD::CondCode Opcode) { 372 switch (Opcode) { 373 default: llvm_unreachable("Illegal integer setcc operation!"); 374 case ISD::SETEQ: 375 case ISD::SETNE: return 0; 376 case ISD::SETLT: 377 case ISD::SETLE: 378 case ISD::SETGT: 379 case ISD::SETGE: return 1; 380 case ISD::SETULT: 381 case ISD::SETULE: 382 case ISD::SETUGT: 383 case ISD::SETUGE: return 2; 384 } 385 } 386 387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 388 bool IsInteger) { 389 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 390 // Cannot fold a signed integer setcc with an unsigned integer setcc. 391 return ISD::SETCC_INVALID; 392 393 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 394 395 // If the N and U bits get set, then the resultant comparison DOES suddenly 396 // care about orderedness, and it is true when ordered. 397 if (Op > ISD::SETTRUE2) 398 Op &= ~16; // Clear the U bit if the N bit is set. 399 400 // Canonicalize illegal integer setcc's. 401 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 402 Op = ISD::SETNE; 403 404 return ISD::CondCode(Op); 405 } 406 407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 408 bool IsInteger) { 409 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 410 // Cannot fold a signed setcc with an unsigned setcc. 411 return ISD::SETCC_INVALID; 412 413 // Combine all of the condition bits. 414 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger) { 418 switch (Result) { 419 default: break; 420 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 421 case ISD::SETOEQ: // SETEQ & SETU[LG]E 422 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 423 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 424 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 425 } 426 } 427 428 return Result; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // SDNode Profile Support 433 //===----------------------------------------------------------------------===// 434 435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 437 ID.AddInteger(OpC); 438 } 439 440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 441 /// solely with their pointer. 442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 443 ID.AddPointer(VTList.VTs); 444 } 445 446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 447 static void AddNodeIDOperands(FoldingSetNodeID &ID, 448 ArrayRef<SDValue> Ops) { 449 for (auto& Op : Ops) { 450 ID.AddPointer(Op.getNode()); 451 ID.AddInteger(Op.getResNo()); 452 } 453 } 454 455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 456 static void AddNodeIDOperands(FoldingSetNodeID &ID, 457 ArrayRef<SDUse> Ops) { 458 for (auto& Op : Ops) { 459 ID.AddPointer(Op.getNode()); 460 ID.AddInteger(Op.getResNo()); 461 } 462 } 463 464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 465 SDVTList VTList, ArrayRef<SDValue> OpList) { 466 AddNodeIDOpcode(ID, OpC); 467 AddNodeIDValueTypes(ID, VTList); 468 AddNodeIDOperands(ID, OpList); 469 } 470 471 /// If this is an SDNode with special info, add this info to the NodeID data. 472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 473 switch (N->getOpcode()) { 474 case ISD::TargetExternalSymbol: 475 case ISD::ExternalSymbol: 476 case ISD::MCSymbol: 477 llvm_unreachable("Should only be used on nodes with operands"); 478 default: break; // Normal nodes don't need extra info. 479 case ISD::TargetConstant: 480 case ISD::Constant: { 481 const ConstantSDNode *C = cast<ConstantSDNode>(N); 482 ID.AddPointer(C->getConstantIntValue()); 483 ID.AddBoolean(C->isOpaque()); 484 break; 485 } 486 case ISD::TargetConstantFP: 487 case ISD::ConstantFP: 488 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 489 break; 490 case ISD::TargetGlobalAddress: 491 case ISD::GlobalAddress: 492 case ISD::TargetGlobalTLSAddress: 493 case ISD::GlobalTLSAddress: { 494 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 495 ID.AddPointer(GA->getGlobal()); 496 ID.AddInteger(GA->getOffset()); 497 ID.AddInteger(GA->getTargetFlags()); 498 break; 499 } 500 case ISD::BasicBlock: 501 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 502 break; 503 case ISD::Register: 504 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 505 break; 506 case ISD::RegisterMask: 507 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 508 break; 509 case ISD::SRCVALUE: 510 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 511 break; 512 case ISD::FrameIndex: 513 case ISD::TargetFrameIndex: 514 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 515 break; 516 case ISD::LIFETIME_START: 517 case ISD::LIFETIME_END: 518 if (cast<LifetimeSDNode>(N)->hasOffset()) { 519 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 520 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 521 } 522 break; 523 case ISD::JumpTable: 524 case ISD::TargetJumpTable: 525 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 526 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 527 break; 528 case ISD::ConstantPool: 529 case ISD::TargetConstantPool: { 530 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 531 ID.AddInteger(CP->getAlignment()); 532 ID.AddInteger(CP->getOffset()); 533 if (CP->isMachineConstantPoolEntry()) 534 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 535 else 536 ID.AddPointer(CP->getConstVal()); 537 ID.AddInteger(CP->getTargetFlags()); 538 break; 539 } 540 case ISD::TargetIndex: { 541 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 542 ID.AddInteger(TI->getIndex()); 543 ID.AddInteger(TI->getOffset()); 544 ID.AddInteger(TI->getTargetFlags()); 545 break; 546 } 547 case ISD::LOAD: { 548 const LoadSDNode *LD = cast<LoadSDNode>(N); 549 ID.AddInteger(LD->getMemoryVT().getRawBits()); 550 ID.AddInteger(LD->getRawSubclassData()); 551 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 552 break; 553 } 554 case ISD::STORE: { 555 const StoreSDNode *ST = cast<StoreSDNode>(N); 556 ID.AddInteger(ST->getMemoryVT().getRawBits()); 557 ID.AddInteger(ST->getRawSubclassData()); 558 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 559 break; 560 } 561 case ISD::MLOAD: { 562 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 563 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 564 ID.AddInteger(MLD->getRawSubclassData()); 565 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 566 break; 567 } 568 case ISD::MSTORE: { 569 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 570 ID.AddInteger(MST->getMemoryVT().getRawBits()); 571 ID.AddInteger(MST->getRawSubclassData()); 572 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 573 break; 574 } 575 case ISD::MGATHER: { 576 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 577 ID.AddInteger(MG->getMemoryVT().getRawBits()); 578 ID.AddInteger(MG->getRawSubclassData()); 579 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 580 break; 581 } 582 case ISD::MSCATTER: { 583 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 584 ID.AddInteger(MS->getMemoryVT().getRawBits()); 585 ID.AddInteger(MS->getRawSubclassData()); 586 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 587 break; 588 } 589 case ISD::ATOMIC_CMP_SWAP: 590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 591 case ISD::ATOMIC_SWAP: 592 case ISD::ATOMIC_LOAD_ADD: 593 case ISD::ATOMIC_LOAD_SUB: 594 case ISD::ATOMIC_LOAD_AND: 595 case ISD::ATOMIC_LOAD_CLR: 596 case ISD::ATOMIC_LOAD_OR: 597 case ISD::ATOMIC_LOAD_XOR: 598 case ISD::ATOMIC_LOAD_NAND: 599 case ISD::ATOMIC_LOAD_MIN: 600 case ISD::ATOMIC_LOAD_MAX: 601 case ISD::ATOMIC_LOAD_UMIN: 602 case ISD::ATOMIC_LOAD_UMAX: 603 case ISD::ATOMIC_LOAD: 604 case ISD::ATOMIC_STORE: { 605 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 606 ID.AddInteger(AT->getMemoryVT().getRawBits()); 607 ID.AddInteger(AT->getRawSubclassData()); 608 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 609 break; 610 } 611 case ISD::PREFETCH: { 612 const MemSDNode *PF = cast<MemSDNode>(N); 613 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 614 break; 615 } 616 case ISD::VECTOR_SHUFFLE: { 617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 618 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 619 i != e; ++i) 620 ID.AddInteger(SVN->getMaskElt(i)); 621 break; 622 } 623 case ISD::TargetBlockAddress: 624 case ISD::BlockAddress: { 625 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 626 ID.AddPointer(BA->getBlockAddress()); 627 ID.AddInteger(BA->getOffset()); 628 ID.AddInteger(BA->getTargetFlags()); 629 break; 630 } 631 } // end switch (N->getOpcode()) 632 633 // Target specific memory nodes could also have address spaces to check. 634 if (N->isTargetMemoryOpcode()) 635 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 636 } 637 638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 639 /// data. 640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 641 AddNodeIDOpcode(ID, N->getOpcode()); 642 // Add the return value info. 643 AddNodeIDValueTypes(ID, N->getVTList()); 644 // Add the operand info. 645 AddNodeIDOperands(ID, N->ops()); 646 647 // Handle SDNode leafs with special info. 648 AddNodeIDCustom(ID, N); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // SelectionDAG Class 653 //===----------------------------------------------------------------------===// 654 655 /// doNotCSE - Return true if CSE should not be performed for this node. 656 static bool doNotCSE(SDNode *N) { 657 if (N->getValueType(0) == MVT::Glue) 658 return true; // Never CSE anything that produces a flag. 659 660 switch (N->getOpcode()) { 661 default: break; 662 case ISD::HANDLENODE: 663 case ISD::EH_LABEL: 664 return true; // Never CSE these nodes. 665 } 666 667 // Check that remaining values produced are not flags. 668 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 669 if (N->getValueType(i) == MVT::Glue) 670 return true; // Never CSE anything that produces a flag. 671 672 return false; 673 } 674 675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 676 /// SelectionDAG. 677 void SelectionDAG::RemoveDeadNodes() { 678 // Create a dummy node (which is not added to allnodes), that adds a reference 679 // to the root node, preventing it from being deleted. 680 HandleSDNode Dummy(getRoot()); 681 682 SmallVector<SDNode*, 128> DeadNodes; 683 684 // Add all obviously-dead nodes to the DeadNodes worklist. 685 for (SDNode &Node : allnodes()) 686 if (Node.use_empty()) 687 DeadNodes.push_back(&Node); 688 689 RemoveDeadNodes(DeadNodes); 690 691 // If the root changed (e.g. it was a dead load, update the root). 692 setRoot(Dummy.getValue()); 693 } 694 695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 696 /// given list, and any nodes that become unreachable as a result. 697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 698 699 // Process the worklist, deleting the nodes and adding their uses to the 700 // worklist. 701 while (!DeadNodes.empty()) { 702 SDNode *N = DeadNodes.pop_back_val(); 703 // Skip to next node if we've already managed to delete the node. This could 704 // happen if replacing a node causes a node previously added to the node to 705 // be deleted. 706 if (N->getOpcode() == ISD::DELETED_NODE) 707 continue; 708 709 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 710 DUL->NodeDeleted(N, nullptr); 711 712 // Take the node out of the appropriate CSE map. 713 RemoveNodeFromCSEMaps(N); 714 715 // Next, brutally remove the operand list. This is safe to do, as there are 716 // no cycles in the graph. 717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 718 SDUse &Use = *I++; 719 SDNode *Operand = Use.getNode(); 720 Use.set(SDValue()); 721 722 // Now that we removed this operand, see if there are no uses of it left. 723 if (Operand->use_empty()) 724 DeadNodes.push_back(Operand); 725 } 726 727 DeallocateNode(N); 728 } 729 } 730 731 void SelectionDAG::RemoveDeadNode(SDNode *N){ 732 SmallVector<SDNode*, 16> DeadNodes(1, N); 733 734 // Create a dummy node that adds a reference to the root node, preventing 735 // it from being deleted. (This matters if the root is an operand of the 736 // dead node.) 737 HandleSDNode Dummy(getRoot()); 738 739 RemoveDeadNodes(DeadNodes); 740 } 741 742 void SelectionDAG::DeleteNode(SDNode *N) { 743 // First take this out of the appropriate CSE map. 744 RemoveNodeFromCSEMaps(N); 745 746 // Finally, remove uses due to operands of this node, remove from the 747 // AllNodes list, and delete the node. 748 DeleteNodeNotInCSEMaps(N); 749 } 750 751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 752 assert(N->getIterator() != AllNodes.begin() && 753 "Cannot delete the entry node!"); 754 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 755 756 // Drop all of the operands and decrement used node's use counts. 757 N->DropOperands(); 758 759 DeallocateNode(N); 760 } 761 762 void SDDbgInfo::erase(const SDNode *Node) { 763 DbgValMapType::iterator I = DbgValMap.find(Node); 764 if (I == DbgValMap.end()) 765 return; 766 for (auto &Val: I->second) 767 Val->setIsInvalidated(); 768 DbgValMap.erase(I); 769 } 770 771 void SelectionDAG::DeallocateNode(SDNode *N) { 772 // If we have operands, deallocate them. 773 removeOperands(N); 774 775 NodeAllocator.Deallocate(AllNodes.remove(N)); 776 777 // Set the opcode to DELETED_NODE to help catch bugs when node 778 // memory is reallocated. 779 // FIXME: There are places in SDag that have grown a dependency on the opcode 780 // value in the released node. 781 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 782 N->NodeType = ISD::DELETED_NODE; 783 784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 785 // them and forget about that node. 786 DbgInfo->erase(N); 787 } 788 789 #ifndef NDEBUG 790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 791 static void VerifySDNode(SDNode *N) { 792 switch (N->getOpcode()) { 793 default: 794 break; 795 case ISD::BUILD_PAIR: { 796 EVT VT = N->getValueType(0); 797 assert(N->getNumValues() == 1 && "Too many results!"); 798 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 799 "Wrong return type!"); 800 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 801 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 802 "Mismatched operand types!"); 803 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 804 "Wrong operand type!"); 805 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 806 "Wrong return type size"); 807 break; 808 } 809 case ISD::BUILD_VECTOR: { 810 assert(N->getNumValues() == 1 && "Too many results!"); 811 assert(N->getValueType(0).isVector() && "Wrong return type!"); 812 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 813 "Wrong number of operands!"); 814 EVT EltVT = N->getValueType(0).getVectorElementType(); 815 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 816 assert((I->getValueType() == EltVT || 817 (EltVT.isInteger() && I->getValueType().isInteger() && 818 EltVT.bitsLE(I->getValueType()))) && 819 "Wrong operand type!"); 820 assert(I->getValueType() == N->getOperand(0).getValueType() && 821 "Operands must all have the same type"); 822 } 823 break; 824 } 825 } 826 } 827 #endif // NDEBUG 828 829 /// Insert a newly allocated node into the DAG. 830 /// 831 /// Handles insertion into the all nodes list and CSE map, as well as 832 /// verification and other common operations when a new node is allocated. 833 void SelectionDAG::InsertNode(SDNode *N) { 834 AllNodes.push_back(N); 835 #ifndef NDEBUG 836 N->PersistentId = NextPersistentId++; 837 VerifySDNode(N); 838 #endif 839 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 840 DUL->NodeInserted(N); 841 } 842 843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 844 /// correspond to it. This is useful when we're about to delete or repurpose 845 /// the node. We don't want future request for structurally identical nodes 846 /// to return N anymore. 847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 848 bool Erased = false; 849 switch (N->getOpcode()) { 850 case ISD::HANDLENODE: return false; // noop. 851 case ISD::CONDCODE: 852 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 853 "Cond code doesn't exist!"); 854 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 855 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 856 break; 857 case ISD::ExternalSymbol: 858 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 859 break; 860 case ISD::TargetExternalSymbol: { 861 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 862 Erased = TargetExternalSymbols.erase( 863 std::pair<std::string,unsigned char>(ESN->getSymbol(), 864 ESN->getTargetFlags())); 865 break; 866 } 867 case ISD::MCSymbol: { 868 auto *MCSN = cast<MCSymbolSDNode>(N); 869 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 870 break; 871 } 872 case ISD::VALUETYPE: { 873 EVT VT = cast<VTSDNode>(N)->getVT(); 874 if (VT.isExtended()) { 875 Erased = ExtendedValueTypeNodes.erase(VT); 876 } else { 877 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 878 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 879 } 880 break; 881 } 882 default: 883 // Remove it from the CSE Map. 884 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 885 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 886 Erased = CSEMap.RemoveNode(N); 887 break; 888 } 889 #ifndef NDEBUG 890 // Verify that the node was actually in one of the CSE maps, unless it has a 891 // flag result (which cannot be CSE'd) or is one of the special cases that are 892 // not subject to CSE. 893 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 894 !N->isMachineOpcode() && !doNotCSE(N)) { 895 N->dump(this); 896 dbgs() << "\n"; 897 llvm_unreachable("Node is not in map!"); 898 } 899 #endif 900 return Erased; 901 } 902 903 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 904 /// maps and modified in place. Add it back to the CSE maps, unless an identical 905 /// node already exists, in which case transfer all its users to the existing 906 /// node. This transfer can potentially trigger recursive merging. 907 void 908 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 909 // For node types that aren't CSE'd, just act as if no identical node 910 // already exists. 911 if (!doNotCSE(N)) { 912 SDNode *Existing = CSEMap.GetOrInsertNode(N); 913 if (Existing != N) { 914 // If there was already an existing matching node, use ReplaceAllUsesWith 915 // to replace the dead one with the existing one. This can cause 916 // recursive merging of other unrelated nodes down the line. 917 ReplaceAllUsesWith(N, Existing); 918 919 // N is now dead. Inform the listeners and delete it. 920 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 921 DUL->NodeDeleted(N, Existing); 922 DeleteNodeNotInCSEMaps(N); 923 return; 924 } 925 } 926 927 // If the node doesn't already exist, we updated it. Inform listeners. 928 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 929 DUL->NodeUpdated(N); 930 } 931 932 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 933 /// were replaced with those specified. If this node is never memoized, 934 /// return null, otherwise return a pointer to the slot it would take. If a 935 /// node already exists with these operands, the slot will be non-null. 936 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 937 void *&InsertPos) { 938 if (doNotCSE(N)) 939 return nullptr; 940 941 SDValue Ops[] = { Op }; 942 FoldingSetNodeID ID; 943 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 944 AddNodeIDCustom(ID, N); 945 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 946 if (Node) 947 Node->intersectFlagsWith(N->getFlags()); 948 return Node; 949 } 950 951 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 952 /// were replaced with those specified. If this node is never memoized, 953 /// return null, otherwise return a pointer to the slot it would take. If a 954 /// node already exists with these operands, the slot will be non-null. 955 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 956 SDValue Op1, SDValue Op2, 957 void *&InsertPos) { 958 if (doNotCSE(N)) 959 return nullptr; 960 961 SDValue Ops[] = { Op1, Op2 }; 962 FoldingSetNodeID ID; 963 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 964 AddNodeIDCustom(ID, N); 965 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 966 if (Node) 967 Node->intersectFlagsWith(N->getFlags()); 968 return Node; 969 } 970 971 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 972 /// were replaced with those specified. If this node is never memoized, 973 /// return null, otherwise return a pointer to the slot it would take. If a 974 /// node already exists with these operands, the slot will be non-null. 975 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 976 void *&InsertPos) { 977 if (doNotCSE(N)) 978 return nullptr; 979 980 FoldingSetNodeID ID; 981 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 982 AddNodeIDCustom(ID, N); 983 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 984 if (Node) 985 Node->intersectFlagsWith(N->getFlags()); 986 return Node; 987 } 988 989 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 990 Type *Ty = VT == MVT::iPTR ? 991 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 992 VT.getTypeForEVT(*getContext()); 993 994 return getDataLayout().getABITypeAlignment(Ty); 995 } 996 997 // EntryNode could meaningfully have debug info if we can find it... 998 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 999 : TM(tm), OptLevel(OL), 1000 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1001 Root(getEntryNode()) { 1002 InsertNode(&EntryNode); 1003 DbgInfo = new SDDbgInfo(); 1004 } 1005 1006 void SelectionDAG::init(MachineFunction &NewMF, 1007 OptimizationRemarkEmitter &NewORE, 1008 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1009 LegacyDivergenceAnalysis * Divergence) { 1010 MF = &NewMF; 1011 SDAGISelPass = PassPtr; 1012 ORE = &NewORE; 1013 TLI = getSubtarget().getTargetLowering(); 1014 TSI = getSubtarget().getSelectionDAGInfo(); 1015 LibInfo = LibraryInfo; 1016 Context = &MF->getFunction().getContext(); 1017 DA = Divergence; 1018 } 1019 1020 SelectionDAG::~SelectionDAG() { 1021 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1022 allnodes_clear(); 1023 OperandRecycler.clear(OperandAllocator); 1024 delete DbgInfo; 1025 } 1026 1027 void SelectionDAG::allnodes_clear() { 1028 assert(&*AllNodes.begin() == &EntryNode); 1029 AllNodes.remove(AllNodes.begin()); 1030 while (!AllNodes.empty()) 1031 DeallocateNode(&AllNodes.front()); 1032 #ifndef NDEBUG 1033 NextPersistentId = 0; 1034 #endif 1035 } 1036 1037 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1038 void *&InsertPos) { 1039 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1040 if (N) { 1041 switch (N->getOpcode()) { 1042 default: break; 1043 case ISD::Constant: 1044 case ISD::ConstantFP: 1045 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1046 "debug location. Use another overload."); 1047 } 1048 } 1049 return N; 1050 } 1051 1052 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1053 const SDLoc &DL, void *&InsertPos) { 1054 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1055 if (N) { 1056 switch (N->getOpcode()) { 1057 case ISD::Constant: 1058 case ISD::ConstantFP: 1059 // Erase debug location from the node if the node is used at several 1060 // different places. Do not propagate one location to all uses as it 1061 // will cause a worse single stepping debugging experience. 1062 if (N->getDebugLoc() != DL.getDebugLoc()) 1063 N->setDebugLoc(DebugLoc()); 1064 break; 1065 default: 1066 // When the node's point of use is located earlier in the instruction 1067 // sequence than its prior point of use, update its debug info to the 1068 // earlier location. 1069 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1070 N->setDebugLoc(DL.getDebugLoc()); 1071 break; 1072 } 1073 } 1074 return N; 1075 } 1076 1077 void SelectionDAG::clear() { 1078 allnodes_clear(); 1079 OperandRecycler.clear(OperandAllocator); 1080 OperandAllocator.Reset(); 1081 CSEMap.clear(); 1082 1083 ExtendedValueTypeNodes.clear(); 1084 ExternalSymbols.clear(); 1085 TargetExternalSymbols.clear(); 1086 MCSymbols.clear(); 1087 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1088 static_cast<CondCodeSDNode*>(nullptr)); 1089 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1090 static_cast<SDNode*>(nullptr)); 1091 1092 EntryNode.UseList = nullptr; 1093 InsertNode(&EntryNode); 1094 Root = getEntryNode(); 1095 DbgInfo->clear(); 1096 } 1097 1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1099 return VT.bitsGT(Op.getValueType()) 1100 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1101 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1102 } 1103 1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1105 return VT.bitsGT(Op.getValueType()) ? 1106 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1107 getNode(ISD::TRUNCATE, DL, VT, Op); 1108 } 1109 1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) ? 1112 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1113 getNode(ISD::TRUNCATE, DL, VT, Op); 1114 } 1115 1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1117 return VT.bitsGT(Op.getValueType()) ? 1118 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1119 getNode(ISD::TRUNCATE, DL, VT, Op); 1120 } 1121 1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1123 EVT OpVT) { 1124 if (VT.bitsLE(Op.getValueType())) 1125 return getNode(ISD::TRUNCATE, SL, VT, Op); 1126 1127 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1128 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1129 } 1130 1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1132 assert(!VT.isVector() && 1133 "getZeroExtendInReg should use the vector element type instead of " 1134 "the vector type!"); 1135 if (Op.getValueType().getScalarType() == VT) return Op; 1136 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1137 APInt Imm = APInt::getLowBitsSet(BitWidth, 1138 VT.getSizeInBits()); 1139 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1140 getConstant(Imm, DL, Op.getValueType())); 1141 } 1142 1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 // Only unsigned pointer semantics are supported right now. In the future this 1145 // might delegate to TLI to check pointer signedness. 1146 return getZExtOrTrunc(Op, DL, VT); 1147 } 1148 1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1150 // Only unsigned pointer semantics are supported right now. In the future this 1151 // might delegate to TLI to check pointer signedness. 1152 return getZeroExtendInReg(Op, DL, VT); 1153 } 1154 1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1157 EVT EltVT = VT.getScalarType(); 1158 SDValue NegOne = 1159 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1160 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1161 } 1162 1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1164 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1165 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1166 } 1167 1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1169 EVT OpVT) { 1170 if (!V) 1171 return getConstant(0, DL, VT); 1172 1173 switch (TLI->getBooleanContents(OpVT)) { 1174 case TargetLowering::ZeroOrOneBooleanContent: 1175 case TargetLowering::UndefinedBooleanContent: 1176 return getConstant(1, DL, VT); 1177 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1178 return getAllOnesConstant(DL, VT); 1179 } 1180 llvm_unreachable("Unexpected boolean content enum!"); 1181 } 1182 1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1184 bool isT, bool isO) { 1185 EVT EltVT = VT.getScalarType(); 1186 assert((EltVT.getSizeInBits() >= 64 || 1187 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1188 "getConstant with a uint64_t value that doesn't fit in the type!"); 1189 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1190 } 1191 1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1193 bool isT, bool isO) { 1194 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1195 } 1196 1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1198 EVT VT, bool isT, bool isO) { 1199 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1200 1201 EVT EltVT = VT.getScalarType(); 1202 const ConstantInt *Elt = &Val; 1203 1204 // In some cases the vector type is legal but the element type is illegal and 1205 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1206 // inserted value (the type does not need to match the vector element type). 1207 // Any extra bits introduced will be truncated away. 1208 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1209 TargetLowering::TypePromoteInteger) { 1210 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1211 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1212 Elt = ConstantInt::get(*getContext(), NewVal); 1213 } 1214 // In other cases the element type is illegal and needs to be expanded, for 1215 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1216 // the value into n parts and use a vector type with n-times the elements. 1217 // Then bitcast to the type requested. 1218 // Legalizing constants too early makes the DAGCombiner's job harder so we 1219 // only legalize if the DAG tells us we must produce legal types. 1220 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1221 TLI->getTypeAction(*getContext(), EltVT) == 1222 TargetLowering::TypeExpandInteger) { 1223 const APInt &NewVal = Elt->getValue(); 1224 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1225 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1226 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1227 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1228 1229 // Check the temporary vector is the correct size. If this fails then 1230 // getTypeToTransformTo() probably returned a type whose size (in bits) 1231 // isn't a power-of-2 factor of the requested type size. 1232 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1233 1234 SmallVector<SDValue, 2> EltParts; 1235 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1236 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1237 .zextOrTrunc(ViaEltSizeInBits), DL, 1238 ViaEltVT, isT, isO)); 1239 } 1240 1241 // EltParts is currently in little endian order. If we actually want 1242 // big-endian order then reverse it now. 1243 if (getDataLayout().isBigEndian()) 1244 std::reverse(EltParts.begin(), EltParts.end()); 1245 1246 // The elements must be reversed when the element order is different 1247 // to the endianness of the elements (because the BITCAST is itself a 1248 // vector shuffle in this situation). However, we do not need any code to 1249 // perform this reversal because getConstant() is producing a vector 1250 // splat. 1251 // This situation occurs in MIPS MSA. 1252 1253 SmallVector<SDValue, 8> Ops; 1254 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1255 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1256 1257 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1258 return V; 1259 } 1260 1261 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1262 "APInt size does not match type size!"); 1263 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1264 FoldingSetNodeID ID; 1265 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1266 ID.AddPointer(Elt); 1267 ID.AddBoolean(isO); 1268 void *IP = nullptr; 1269 SDNode *N = nullptr; 1270 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1271 if (!VT.isVector()) 1272 return SDValue(N, 0); 1273 1274 if (!N) { 1275 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1276 CSEMap.InsertNode(N, IP); 1277 InsertNode(N); 1278 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1279 } 1280 1281 SDValue Result(N, 0); 1282 if (VT.isVector()) 1283 Result = getSplatBuildVector(VT, DL, Result); 1284 1285 return Result; 1286 } 1287 1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1289 bool isTarget) { 1290 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1291 } 1292 1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1294 const SDLoc &DL, bool LegalTypes) { 1295 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1296 return getConstant(Val, DL, ShiftVT); 1297 } 1298 1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1300 bool isTarget) { 1301 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1302 } 1303 1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1305 EVT VT, bool isTarget) { 1306 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1307 1308 EVT EltVT = VT.getScalarType(); 1309 1310 // Do the map lookup using the actual bit pattern for the floating point 1311 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1312 // we don't have issues with SNANs. 1313 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1316 ID.AddPointer(&V); 1317 void *IP = nullptr; 1318 SDNode *N = nullptr; 1319 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1320 if (!VT.isVector()) 1321 return SDValue(N, 0); 1322 1323 if (!N) { 1324 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1325 CSEMap.InsertNode(N, IP); 1326 InsertNode(N); 1327 } 1328 1329 SDValue Result(N, 0); 1330 if (VT.isVector()) 1331 Result = getSplatBuildVector(VT, DL, Result); 1332 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1333 return Result; 1334 } 1335 1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1337 bool isTarget) { 1338 EVT EltVT = VT.getScalarType(); 1339 if (EltVT == MVT::f32) 1340 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1341 else if (EltVT == MVT::f64) 1342 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1343 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1344 EltVT == MVT::f16) { 1345 bool Ignored; 1346 APFloat APF = APFloat(Val); 1347 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1348 &Ignored); 1349 return getConstantFP(APF, DL, VT, isTarget); 1350 } else 1351 llvm_unreachable("Unsupported type in getConstantFP"); 1352 } 1353 1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1355 EVT VT, int64_t Offset, bool isTargetGA, 1356 unsigned char TargetFlags) { 1357 assert((TargetFlags == 0 || isTargetGA) && 1358 "Cannot set target flags on target-independent globals"); 1359 1360 // Truncate (with sign-extension) the offset value to the pointer size. 1361 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1362 if (BitWidth < 64) 1363 Offset = SignExtend64(Offset, BitWidth); 1364 1365 unsigned Opc; 1366 if (GV->isThreadLocal()) 1367 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1368 else 1369 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1370 1371 FoldingSetNodeID ID; 1372 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1373 ID.AddPointer(GV); 1374 ID.AddInteger(Offset); 1375 ID.AddInteger(TargetFlags); 1376 void *IP = nullptr; 1377 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1378 return SDValue(E, 0); 1379 1380 auto *N = newSDNode<GlobalAddressSDNode>( 1381 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1382 CSEMap.InsertNode(N, IP); 1383 InsertNode(N); 1384 return SDValue(N, 0); 1385 } 1386 1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1388 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1389 FoldingSetNodeID ID; 1390 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1391 ID.AddInteger(FI); 1392 void *IP = nullptr; 1393 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1394 return SDValue(E, 0); 1395 1396 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1397 CSEMap.InsertNode(N, IP); 1398 InsertNode(N); 1399 return SDValue(N, 0); 1400 } 1401 1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1403 unsigned char TargetFlags) { 1404 assert((TargetFlags == 0 || isTarget) && 1405 "Cannot set target flags on target-independent jump tables"); 1406 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1407 FoldingSetNodeID ID; 1408 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1409 ID.AddInteger(JTI); 1410 ID.AddInteger(TargetFlags); 1411 void *IP = nullptr; 1412 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1413 return SDValue(E, 0); 1414 1415 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1416 CSEMap.InsertNode(N, IP); 1417 InsertNode(N); 1418 return SDValue(N, 0); 1419 } 1420 1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1422 unsigned Alignment, int Offset, 1423 bool isTarget, 1424 unsigned char TargetFlags) { 1425 assert((TargetFlags == 0 || isTarget) && 1426 "Cannot set target flags on target-independent globals"); 1427 if (Alignment == 0) 1428 Alignment = MF->getFunction().hasOptSize() 1429 ? getDataLayout().getABITypeAlignment(C->getType()) 1430 : getDataLayout().getPrefTypeAlignment(C->getType()); 1431 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1432 FoldingSetNodeID ID; 1433 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1434 ID.AddInteger(Alignment); 1435 ID.AddInteger(Offset); 1436 ID.AddPointer(C); 1437 ID.AddInteger(TargetFlags); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1443 TargetFlags); 1444 CSEMap.InsertNode(N, IP); 1445 InsertNode(N); 1446 return SDValue(N, 0); 1447 } 1448 1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1450 unsigned Alignment, int Offset, 1451 bool isTarget, 1452 unsigned char TargetFlags) { 1453 assert((TargetFlags == 0 || isTarget) && 1454 "Cannot set target flags on target-independent globals"); 1455 if (Alignment == 0) 1456 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1457 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1458 FoldingSetNodeID ID; 1459 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1460 ID.AddInteger(Alignment); 1461 ID.AddInteger(Offset); 1462 C->addSelectionDAGCSEId(ID); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1469 TargetFlags); 1470 CSEMap.InsertNode(N, IP); 1471 InsertNode(N); 1472 return SDValue(N, 0); 1473 } 1474 1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1476 unsigned char TargetFlags) { 1477 FoldingSetNodeID ID; 1478 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1479 ID.AddInteger(Index); 1480 ID.AddInteger(Offset); 1481 ID.AddInteger(TargetFlags); 1482 void *IP = nullptr; 1483 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1484 return SDValue(E, 0); 1485 1486 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1487 CSEMap.InsertNode(N, IP); 1488 InsertNode(N); 1489 return SDValue(N, 0); 1490 } 1491 1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1495 ID.AddPointer(MBB); 1496 void *IP = nullptr; 1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1498 return SDValue(E, 0); 1499 1500 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1501 CSEMap.InsertNode(N, IP); 1502 InsertNode(N); 1503 return SDValue(N, 0); 1504 } 1505 1506 SDValue SelectionDAG::getValueType(EVT VT) { 1507 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1508 ValueTypeNodes.size()) 1509 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1510 1511 SDNode *&N = VT.isExtended() ? 1512 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1513 1514 if (N) return SDValue(N, 0); 1515 N = newSDNode<VTSDNode>(VT); 1516 InsertNode(N); 1517 return SDValue(N, 0); 1518 } 1519 1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1521 SDNode *&N = ExternalSymbols[Sym]; 1522 if (N) return SDValue(N, 0); 1523 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1529 SDNode *&N = MCSymbols[Sym]; 1530 if (N) 1531 return SDValue(N, 0); 1532 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1533 InsertNode(N); 1534 return SDValue(N, 0); 1535 } 1536 1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1538 unsigned char TargetFlags) { 1539 SDNode *&N = 1540 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1541 TargetFlags)]; 1542 if (N) return SDValue(N, 0); 1543 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1544 InsertNode(N); 1545 return SDValue(N, 0); 1546 } 1547 1548 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1549 if ((unsigned)Cond >= CondCodeNodes.size()) 1550 CondCodeNodes.resize(Cond+1); 1551 1552 if (!CondCodeNodes[Cond]) { 1553 auto *N = newSDNode<CondCodeSDNode>(Cond); 1554 CondCodeNodes[Cond] = N; 1555 InsertNode(N); 1556 } 1557 1558 return SDValue(CondCodeNodes[Cond], 0); 1559 } 1560 1561 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1562 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1563 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1564 std::swap(N1, N2); 1565 ShuffleVectorSDNode::commuteMask(M); 1566 } 1567 1568 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1569 SDValue N2, ArrayRef<int> Mask) { 1570 assert(VT.getVectorNumElements() == Mask.size() && 1571 "Must have the same number of vector elements as mask elements!"); 1572 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1573 "Invalid VECTOR_SHUFFLE"); 1574 1575 // Canonicalize shuffle undef, undef -> undef 1576 if (N1.isUndef() && N2.isUndef()) 1577 return getUNDEF(VT); 1578 1579 // Validate that all indices in Mask are within the range of the elements 1580 // input to the shuffle. 1581 int NElts = Mask.size(); 1582 assert(llvm::all_of(Mask, 1583 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1584 "Index out of range"); 1585 1586 // Copy the mask so we can do any needed cleanup. 1587 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1588 1589 // Canonicalize shuffle v, v -> v, undef 1590 if (N1 == N2) { 1591 N2 = getUNDEF(VT); 1592 for (int i = 0; i != NElts; ++i) 1593 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1594 } 1595 1596 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1597 if (N1.isUndef()) 1598 commuteShuffle(N1, N2, MaskVec); 1599 1600 if (TLI->hasVectorBlend()) { 1601 // If shuffling a splat, try to blend the splat instead. We do this here so 1602 // that even when this arises during lowering we don't have to re-handle it. 1603 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1604 BitVector UndefElements; 1605 SDValue Splat = BV->getSplatValue(&UndefElements); 1606 if (!Splat) 1607 return; 1608 1609 for (int i = 0; i < NElts; ++i) { 1610 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1611 continue; 1612 1613 // If this input comes from undef, mark it as such. 1614 if (UndefElements[MaskVec[i] - Offset]) { 1615 MaskVec[i] = -1; 1616 continue; 1617 } 1618 1619 // If we can blend a non-undef lane, use that instead. 1620 if (!UndefElements[i]) 1621 MaskVec[i] = i + Offset; 1622 } 1623 }; 1624 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1625 BlendSplat(N1BV, 0); 1626 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1627 BlendSplat(N2BV, NElts); 1628 } 1629 1630 // Canonicalize all index into lhs, -> shuffle lhs, undef 1631 // Canonicalize all index into rhs, -> shuffle rhs, undef 1632 bool AllLHS = true, AllRHS = true; 1633 bool N2Undef = N2.isUndef(); 1634 for (int i = 0; i != NElts; ++i) { 1635 if (MaskVec[i] >= NElts) { 1636 if (N2Undef) 1637 MaskVec[i] = -1; 1638 else 1639 AllLHS = false; 1640 } else if (MaskVec[i] >= 0) { 1641 AllRHS = false; 1642 } 1643 } 1644 if (AllLHS && AllRHS) 1645 return getUNDEF(VT); 1646 if (AllLHS && !N2Undef) 1647 N2 = getUNDEF(VT); 1648 if (AllRHS) { 1649 N1 = getUNDEF(VT); 1650 commuteShuffle(N1, N2, MaskVec); 1651 } 1652 // Reset our undef status after accounting for the mask. 1653 N2Undef = N2.isUndef(); 1654 // Re-check whether both sides ended up undef. 1655 if (N1.isUndef() && N2Undef) 1656 return getUNDEF(VT); 1657 1658 // If Identity shuffle return that node. 1659 bool Identity = true, AllSame = true; 1660 for (int i = 0; i != NElts; ++i) { 1661 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1662 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1663 } 1664 if (Identity && NElts) 1665 return N1; 1666 1667 // Shuffling a constant splat doesn't change the result. 1668 if (N2Undef) { 1669 SDValue V = N1; 1670 1671 // Look through any bitcasts. We check that these don't change the number 1672 // (and size) of elements and just changes their types. 1673 while (V.getOpcode() == ISD::BITCAST) 1674 V = V->getOperand(0); 1675 1676 // A splat should always show up as a build vector node. 1677 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1678 BitVector UndefElements; 1679 SDValue Splat = BV->getSplatValue(&UndefElements); 1680 // If this is a splat of an undef, shuffling it is also undef. 1681 if (Splat && Splat.isUndef()) 1682 return getUNDEF(VT); 1683 1684 bool SameNumElts = 1685 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1686 1687 // We only have a splat which can skip shuffles if there is a splatted 1688 // value and no undef lanes rearranged by the shuffle. 1689 if (Splat && UndefElements.none()) { 1690 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1691 // number of elements match or the value splatted is a zero constant. 1692 if (SameNumElts) 1693 return N1; 1694 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1695 if (C->isNullValue()) 1696 return N1; 1697 } 1698 1699 // If the shuffle itself creates a splat, build the vector directly. 1700 if (AllSame && SameNumElts) { 1701 EVT BuildVT = BV->getValueType(0); 1702 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1703 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1704 1705 // We may have jumped through bitcasts, so the type of the 1706 // BUILD_VECTOR may not match the type of the shuffle. 1707 if (BuildVT != VT) 1708 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1709 return NewBV; 1710 } 1711 } 1712 } 1713 1714 FoldingSetNodeID ID; 1715 SDValue Ops[2] = { N1, N2 }; 1716 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1717 for (int i = 0; i != NElts; ++i) 1718 ID.AddInteger(MaskVec[i]); 1719 1720 void* IP = nullptr; 1721 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1722 return SDValue(E, 0); 1723 1724 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1725 // SDNode doesn't have access to it. This memory will be "leaked" when 1726 // the node is deallocated, but recovered when the NodeAllocator is released. 1727 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1728 llvm::copy(MaskVec, MaskAlloc); 1729 1730 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1731 dl.getDebugLoc(), MaskAlloc); 1732 createOperands(N, Ops); 1733 1734 CSEMap.InsertNode(N, IP); 1735 InsertNode(N); 1736 SDValue V = SDValue(N, 0); 1737 NewSDValueDbgMsg(V, "Creating new node: ", this); 1738 return V; 1739 } 1740 1741 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1742 EVT VT = SV.getValueType(0); 1743 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1744 ShuffleVectorSDNode::commuteMask(MaskVec); 1745 1746 SDValue Op0 = SV.getOperand(0); 1747 SDValue Op1 = SV.getOperand(1); 1748 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1749 } 1750 1751 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1752 FoldingSetNodeID ID; 1753 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1754 ID.AddInteger(RegNo); 1755 void *IP = nullptr; 1756 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1757 return SDValue(E, 0); 1758 1759 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1760 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1761 CSEMap.InsertNode(N, IP); 1762 InsertNode(N); 1763 return SDValue(N, 0); 1764 } 1765 1766 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1767 FoldingSetNodeID ID; 1768 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1769 ID.AddPointer(RegMask); 1770 void *IP = nullptr; 1771 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1772 return SDValue(E, 0); 1773 1774 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1775 CSEMap.InsertNode(N, IP); 1776 InsertNode(N); 1777 return SDValue(N, 0); 1778 } 1779 1780 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1781 MCSymbol *Label) { 1782 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1783 } 1784 1785 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1786 SDValue Root, MCSymbol *Label) { 1787 FoldingSetNodeID ID; 1788 SDValue Ops[] = { Root }; 1789 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1790 ID.AddPointer(Label); 1791 void *IP = nullptr; 1792 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1793 return SDValue(E, 0); 1794 1795 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1796 createOperands(N, Ops); 1797 1798 CSEMap.InsertNode(N, IP); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1804 int64_t Offset, 1805 bool isTarget, 1806 unsigned char TargetFlags) { 1807 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1808 1809 FoldingSetNodeID ID; 1810 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1811 ID.AddPointer(BA); 1812 ID.AddInteger(Offset); 1813 ID.AddInteger(TargetFlags); 1814 void *IP = nullptr; 1815 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1816 return SDValue(E, 0); 1817 1818 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1819 CSEMap.InsertNode(N, IP); 1820 InsertNode(N); 1821 return SDValue(N, 0); 1822 } 1823 1824 SDValue SelectionDAG::getSrcValue(const Value *V) { 1825 assert((!V || V->getType()->isPointerTy()) && 1826 "SrcValue is not a pointer?"); 1827 1828 FoldingSetNodeID ID; 1829 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1830 ID.AddPointer(V); 1831 1832 void *IP = nullptr; 1833 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1834 return SDValue(E, 0); 1835 1836 auto *N = newSDNode<SrcValueSDNode>(V); 1837 CSEMap.InsertNode(N, IP); 1838 InsertNode(N); 1839 return SDValue(N, 0); 1840 } 1841 1842 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1843 FoldingSetNodeID ID; 1844 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1845 ID.AddPointer(MD); 1846 1847 void *IP = nullptr; 1848 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1849 return SDValue(E, 0); 1850 1851 auto *N = newSDNode<MDNodeSDNode>(MD); 1852 CSEMap.InsertNode(N, IP); 1853 InsertNode(N); 1854 return SDValue(N, 0); 1855 } 1856 1857 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1858 if (VT == V.getValueType()) 1859 return V; 1860 1861 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1862 } 1863 1864 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1865 unsigned SrcAS, unsigned DestAS) { 1866 SDValue Ops[] = {Ptr}; 1867 FoldingSetNodeID ID; 1868 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1869 ID.AddInteger(SrcAS); 1870 ID.AddInteger(DestAS); 1871 1872 void *IP = nullptr; 1873 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1874 return SDValue(E, 0); 1875 1876 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1877 VT, SrcAS, DestAS); 1878 createOperands(N, Ops); 1879 1880 CSEMap.InsertNode(N, IP); 1881 InsertNode(N); 1882 return SDValue(N, 0); 1883 } 1884 1885 /// getShiftAmountOperand - Return the specified value casted to 1886 /// the target's desired shift amount type. 1887 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1888 EVT OpTy = Op.getValueType(); 1889 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1890 if (OpTy == ShTy || OpTy.isVector()) return Op; 1891 1892 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1893 } 1894 1895 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1896 SDLoc dl(Node); 1897 const TargetLowering &TLI = getTargetLoweringInfo(); 1898 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1899 EVT VT = Node->getValueType(0); 1900 SDValue Tmp1 = Node->getOperand(0); 1901 SDValue Tmp2 = Node->getOperand(1); 1902 unsigned Align = Node->getConstantOperandVal(3); 1903 1904 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1905 Tmp2, MachinePointerInfo(V)); 1906 SDValue VAList = VAListLoad; 1907 1908 if (Align > TLI.getMinStackArgumentAlignment()) { 1909 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1910 1911 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1912 getConstant(Align - 1, dl, VAList.getValueType())); 1913 1914 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1915 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1916 } 1917 1918 // Increment the pointer, VAList, to the next vaarg 1919 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1920 getConstant(getDataLayout().getTypeAllocSize( 1921 VT.getTypeForEVT(*getContext())), 1922 dl, VAList.getValueType())); 1923 // Store the incremented VAList to the legalized pointer 1924 Tmp1 = 1925 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1926 // Load the actual argument out of the pointer VAList 1927 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1928 } 1929 1930 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1931 SDLoc dl(Node); 1932 const TargetLowering &TLI = getTargetLoweringInfo(); 1933 // This defaults to loading a pointer from the input and storing it to the 1934 // output, returning the chain. 1935 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1936 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1937 SDValue Tmp1 = 1938 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1939 Node->getOperand(2), MachinePointerInfo(VS)); 1940 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1941 MachinePointerInfo(VD)); 1942 } 1943 1944 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1945 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1946 unsigned ByteSize = VT.getStoreSize(); 1947 Type *Ty = VT.getTypeForEVT(*getContext()); 1948 unsigned StackAlign = 1949 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1950 1951 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1952 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1953 } 1954 1955 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1956 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1957 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1958 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1959 const DataLayout &DL = getDataLayout(); 1960 unsigned Align = 1961 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1962 1963 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1964 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1965 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1966 } 1967 1968 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1969 ISD::CondCode Cond, const SDLoc &dl) { 1970 EVT OpVT = N1.getValueType(); 1971 1972 // These setcc operations always fold. 1973 switch (Cond) { 1974 default: break; 1975 case ISD::SETFALSE: 1976 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1977 case ISD::SETTRUE: 1978 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1979 1980 case ISD::SETOEQ: 1981 case ISD::SETOGT: 1982 case ISD::SETOGE: 1983 case ISD::SETOLT: 1984 case ISD::SETOLE: 1985 case ISD::SETONE: 1986 case ISD::SETO: 1987 case ISD::SETUO: 1988 case ISD::SETUEQ: 1989 case ISD::SETUNE: 1990 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 1991 break; 1992 } 1993 1994 if (OpVT.isInteger()) { 1995 // For EQ and NE, we can always pick a value for the undef to make the 1996 // predicate pass or fail, so we can return undef. 1997 // Matches behavior in llvm::ConstantFoldCompareInstruction. 1998 // icmp eq/ne X, undef -> undef. 1999 if ((N1.isUndef() || N2.isUndef()) && 2000 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2001 return getUNDEF(VT); 2002 2003 // If both operands are undef, we can return undef for int comparison. 2004 // icmp undef, undef -> undef. 2005 if (N1.isUndef() && N2.isUndef()) 2006 return getUNDEF(VT); 2007 2008 // icmp X, X -> true/false 2009 // icmp X, undef -> true/false because undef could be X. 2010 if (N1 == N2) 2011 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2012 } 2013 2014 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2015 const APInt &C2 = N2C->getAPIntValue(); 2016 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2017 const APInt &C1 = N1C->getAPIntValue(); 2018 2019 switch (Cond) { 2020 default: llvm_unreachable("Unknown integer setcc!"); 2021 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2022 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2023 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2024 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2025 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2026 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2027 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2028 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2029 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2030 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2031 } 2032 } 2033 } 2034 2035 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2036 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2037 2038 if (N1CFP && N2CFP) { 2039 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2040 switch (Cond) { 2041 default: break; 2042 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2043 return getUNDEF(VT); 2044 LLVM_FALLTHROUGH; 2045 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2046 OpVT); 2047 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2048 return getUNDEF(VT); 2049 LLVM_FALLTHROUGH; 2050 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2051 R==APFloat::cmpLessThan, dl, VT, 2052 OpVT); 2053 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2054 return getUNDEF(VT); 2055 LLVM_FALLTHROUGH; 2056 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2057 OpVT); 2058 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2059 return getUNDEF(VT); 2060 LLVM_FALLTHROUGH; 2061 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2062 VT, OpVT); 2063 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2064 return getUNDEF(VT); 2065 LLVM_FALLTHROUGH; 2066 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2067 R==APFloat::cmpEqual, dl, VT, 2068 OpVT); 2069 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2070 return getUNDEF(VT); 2071 LLVM_FALLTHROUGH; 2072 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2073 R==APFloat::cmpEqual, dl, VT, OpVT); 2074 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2075 OpVT); 2076 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2077 OpVT); 2078 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2079 R==APFloat::cmpEqual, dl, VT, 2080 OpVT); 2081 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2082 OpVT); 2083 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2084 R==APFloat::cmpLessThan, dl, VT, 2085 OpVT); 2086 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2087 R==APFloat::cmpUnordered, dl, VT, 2088 OpVT); 2089 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2090 VT, OpVT); 2091 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2092 OpVT); 2093 } 2094 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2095 // Ensure that the constant occurs on the RHS. 2096 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2097 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2098 return SDValue(); 2099 return getSetCC(dl, VT, N2, N1, SwappedCond); 2100 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2101 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2102 // If an operand is known to be a nan (or undef that could be a nan), we can 2103 // fold it. 2104 // Choosing NaN for the undef will always make unordered comparison succeed 2105 // and ordered comparison fails. 2106 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2107 switch (ISD::getUnorderedFlavor(Cond)) { 2108 default: 2109 llvm_unreachable("Unknown flavor!"); 2110 case 0: // Known false. 2111 return getBoolConstant(false, dl, VT, OpVT); 2112 case 1: // Known true. 2113 return getBoolConstant(true, dl, VT, OpVT); 2114 case 2: // Undefined. 2115 return getUNDEF(VT); 2116 } 2117 } 2118 2119 // Could not fold it. 2120 return SDValue(); 2121 } 2122 2123 /// See if the specified operand can be simplified with the knowledge that only 2124 /// the bits specified by Mask are used. 2125 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 2126 switch (V.getOpcode()) { 2127 default: 2128 break; 2129 case ISD::Constant: { 2130 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 2131 assert(CV && "Const value should be ConstSDNode."); 2132 const APInt &CVal = CV->getAPIntValue(); 2133 APInt NewVal = CVal & Mask; 2134 if (NewVal != CVal) 2135 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2136 break; 2137 } 2138 case ISD::OR: 2139 case ISD::XOR: 2140 // If the LHS or RHS don't contribute bits to the or, drop them. 2141 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2142 return V.getOperand(1); 2143 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2144 return V.getOperand(0); 2145 break; 2146 case ISD::SRL: 2147 // Only look at single-use SRLs. 2148 if (!V.getNode()->hasOneUse()) 2149 break; 2150 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2151 // See if we can recursively simplify the LHS. 2152 unsigned Amt = RHSC->getZExtValue(); 2153 2154 // Watch out for shift count overflow though. 2155 if (Amt >= Mask.getBitWidth()) 2156 break; 2157 APInt NewMask = Mask << Amt; 2158 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2159 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2160 V.getOperand(1)); 2161 } 2162 break; 2163 case ISD::AND: { 2164 // X & -1 -> X (ignoring bits which aren't demanded). 2165 // Also handle the case where masked out bits in X are known to be zero. 2166 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2167 const APInt &AndVal = RHSC->getAPIntValue(); 2168 if (Mask.isSubsetOf(AndVal) || 2169 Mask.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal)) 2170 return V.getOperand(0); 2171 } 2172 break; 2173 } 2174 case ISD::ANY_EXTEND: { 2175 SDValue Src = V.getOperand(0); 2176 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2177 // Being conservative here - only peek through if we only demand bits in the 2178 // non-extended source (even though the extended bits are technically undef). 2179 if (Mask.getActiveBits() > SrcBitWidth) 2180 break; 2181 APInt SrcMask = Mask.trunc(SrcBitWidth); 2182 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2183 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2184 break; 2185 } 2186 case ISD::SIGN_EXTEND_INREG: 2187 EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT(); 2188 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2189 2190 // If none of the extended bits are demanded, eliminate the sextinreg. 2191 if (Mask.getActiveBits() <= ExVTBits) 2192 return V.getOperand(0); 2193 2194 break; 2195 } 2196 return SDValue(); 2197 } 2198 2199 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2200 /// use this predicate to simplify operations downstream. 2201 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2202 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2203 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2204 } 2205 2206 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2207 /// this predicate to simplify operations downstream. Mask is known to be zero 2208 /// for bits that V cannot have. 2209 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2210 unsigned Depth) const { 2211 return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero); 2212 } 2213 2214 /// isSplatValue - Return true if the vector V has the same value 2215 /// across all DemandedElts. 2216 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2217 APInt &UndefElts) { 2218 if (!DemandedElts) 2219 return false; // No demanded elts, better to assume we don't know anything. 2220 2221 EVT VT = V.getValueType(); 2222 assert(VT.isVector() && "Vector type expected"); 2223 2224 unsigned NumElts = VT.getVectorNumElements(); 2225 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2226 UndefElts = APInt::getNullValue(NumElts); 2227 2228 switch (V.getOpcode()) { 2229 case ISD::BUILD_VECTOR: { 2230 SDValue Scl; 2231 for (unsigned i = 0; i != NumElts; ++i) { 2232 SDValue Op = V.getOperand(i); 2233 if (Op.isUndef()) { 2234 UndefElts.setBit(i); 2235 continue; 2236 } 2237 if (!DemandedElts[i]) 2238 continue; 2239 if (Scl && Scl != Op) 2240 return false; 2241 Scl = Op; 2242 } 2243 return true; 2244 } 2245 case ISD::VECTOR_SHUFFLE: { 2246 // Check if this is a shuffle node doing a splat. 2247 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2248 int SplatIndex = -1; 2249 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2250 for (int i = 0; i != (int)NumElts; ++i) { 2251 int M = Mask[i]; 2252 if (M < 0) { 2253 UndefElts.setBit(i); 2254 continue; 2255 } 2256 if (!DemandedElts[i]) 2257 continue; 2258 if (0 <= SplatIndex && SplatIndex != M) 2259 return false; 2260 SplatIndex = M; 2261 } 2262 return true; 2263 } 2264 case ISD::EXTRACT_SUBVECTOR: { 2265 SDValue Src = V.getOperand(0); 2266 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2267 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2268 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2269 // Offset the demanded elts by the subvector index. 2270 uint64_t Idx = SubIdx->getZExtValue(); 2271 APInt UndefSrcElts; 2272 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2273 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2274 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2275 return true; 2276 } 2277 } 2278 break; 2279 } 2280 case ISD::ADD: 2281 case ISD::SUB: 2282 case ISD::AND: { 2283 APInt UndefLHS, UndefRHS; 2284 SDValue LHS = V.getOperand(0); 2285 SDValue RHS = V.getOperand(1); 2286 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2287 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2288 UndefElts = UndefLHS | UndefRHS; 2289 return true; 2290 } 2291 break; 2292 } 2293 } 2294 2295 return false; 2296 } 2297 2298 /// Helper wrapper to main isSplatValue function. 2299 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2300 EVT VT = V.getValueType(); 2301 assert(VT.isVector() && "Vector type expected"); 2302 unsigned NumElts = VT.getVectorNumElements(); 2303 2304 APInt UndefElts; 2305 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2306 return isSplatValue(V, DemandedElts, UndefElts) && 2307 (AllowUndefs || !UndefElts); 2308 } 2309 2310 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2311 V = peekThroughExtractSubvectors(V); 2312 2313 EVT VT = V.getValueType(); 2314 unsigned Opcode = V.getOpcode(); 2315 switch (Opcode) { 2316 default: { 2317 APInt UndefElts; 2318 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2319 if (isSplatValue(V, DemandedElts, UndefElts)) { 2320 // Handle case where all demanded elements are UNDEF. 2321 if (DemandedElts.isSubsetOf(UndefElts)) { 2322 SplatIdx = 0; 2323 return getUNDEF(VT); 2324 } 2325 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2326 return V; 2327 } 2328 break; 2329 } 2330 case ISD::VECTOR_SHUFFLE: { 2331 // Check if this is a shuffle node doing a splat. 2332 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2333 // getTargetVShiftNode currently struggles without the splat source. 2334 auto *SVN = cast<ShuffleVectorSDNode>(V); 2335 if (!SVN->isSplat()) 2336 break; 2337 int Idx = SVN->getSplatIndex(); 2338 int NumElts = V.getValueType().getVectorNumElements(); 2339 SplatIdx = Idx % NumElts; 2340 return V.getOperand(Idx / NumElts); 2341 } 2342 } 2343 2344 return SDValue(); 2345 } 2346 2347 SDValue SelectionDAG::getSplatValue(SDValue V) { 2348 int SplatIdx; 2349 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2350 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2351 SrcVector.getValueType().getScalarType(), SrcVector, 2352 getIntPtrConstant(SplatIdx, SDLoc(V))); 2353 return SDValue(); 2354 } 2355 2356 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2357 /// is less than the element bit-width of the shift node, return it. 2358 static const APInt *getValidShiftAmountConstant(SDValue V) { 2359 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2360 // Shifting more than the bitwidth is not valid. 2361 const APInt &ShAmt = SA->getAPIntValue(); 2362 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2363 return &ShAmt; 2364 } 2365 return nullptr; 2366 } 2367 2368 /// Determine which bits of Op are known to be either zero or one and return 2369 /// them in Known. For vectors, the known bits are those that are shared by 2370 /// every vector element. 2371 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2372 EVT VT = Op.getValueType(); 2373 APInt DemandedElts = VT.isVector() 2374 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2375 : APInt(1, 1); 2376 return computeKnownBits(Op, DemandedElts, Depth); 2377 } 2378 2379 /// Determine which bits of Op are known to be either zero or one and return 2380 /// them in Known. The DemandedElts argument allows us to only collect the known 2381 /// bits that are shared by the requested vector elements. 2382 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2383 unsigned Depth) const { 2384 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2385 2386 KnownBits Known(BitWidth); // Don't know anything. 2387 2388 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2389 // We know all of the bits for a constant! 2390 Known.One = C->getAPIntValue(); 2391 Known.Zero = ~Known.One; 2392 return Known; 2393 } 2394 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2395 // We know all of the bits for a constant fp! 2396 Known.One = C->getValueAPF().bitcastToAPInt(); 2397 Known.Zero = ~Known.One; 2398 return Known; 2399 } 2400 2401 if (Depth == 6) 2402 return Known; // Limit search depth. 2403 2404 KnownBits Known2; 2405 unsigned NumElts = DemandedElts.getBitWidth(); 2406 assert((!Op.getValueType().isVector() || 2407 NumElts == Op.getValueType().getVectorNumElements()) && 2408 "Unexpected vector size"); 2409 2410 if (!DemandedElts) 2411 return Known; // No demanded elts, better to assume we don't know anything. 2412 2413 unsigned Opcode = Op.getOpcode(); 2414 switch (Opcode) { 2415 case ISD::BUILD_VECTOR: 2416 // Collect the known bits that are shared by every demanded vector element. 2417 Known.Zero.setAllBits(); Known.One.setAllBits(); 2418 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2419 if (!DemandedElts[i]) 2420 continue; 2421 2422 SDValue SrcOp = Op.getOperand(i); 2423 Known2 = computeKnownBits(SrcOp, Depth + 1); 2424 2425 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2426 if (SrcOp.getValueSizeInBits() != BitWidth) { 2427 assert(SrcOp.getValueSizeInBits() > BitWidth && 2428 "Expected BUILD_VECTOR implicit truncation"); 2429 Known2 = Known2.trunc(BitWidth); 2430 } 2431 2432 // Known bits are the values that are shared by every demanded element. 2433 Known.One &= Known2.One; 2434 Known.Zero &= Known2.Zero; 2435 2436 // If we don't know any bits, early out. 2437 if (Known.isUnknown()) 2438 break; 2439 } 2440 break; 2441 case ISD::VECTOR_SHUFFLE: { 2442 // Collect the known bits that are shared by every vector element referenced 2443 // by the shuffle. 2444 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2445 Known.Zero.setAllBits(); Known.One.setAllBits(); 2446 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2447 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2448 for (unsigned i = 0; i != NumElts; ++i) { 2449 if (!DemandedElts[i]) 2450 continue; 2451 2452 int M = SVN->getMaskElt(i); 2453 if (M < 0) { 2454 // For UNDEF elements, we don't know anything about the common state of 2455 // the shuffle result. 2456 Known.resetAll(); 2457 DemandedLHS.clearAllBits(); 2458 DemandedRHS.clearAllBits(); 2459 break; 2460 } 2461 2462 if ((unsigned)M < NumElts) 2463 DemandedLHS.setBit((unsigned)M % NumElts); 2464 else 2465 DemandedRHS.setBit((unsigned)M % NumElts); 2466 } 2467 // Known bits are the values that are shared by every demanded element. 2468 if (!!DemandedLHS) { 2469 SDValue LHS = Op.getOperand(0); 2470 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2471 Known.One &= Known2.One; 2472 Known.Zero &= Known2.Zero; 2473 } 2474 // If we don't know any bits, early out. 2475 if (Known.isUnknown()) 2476 break; 2477 if (!!DemandedRHS) { 2478 SDValue RHS = Op.getOperand(1); 2479 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2480 Known.One &= Known2.One; 2481 Known.Zero &= Known2.Zero; 2482 } 2483 break; 2484 } 2485 case ISD::CONCAT_VECTORS: { 2486 // Split DemandedElts and test each of the demanded subvectors. 2487 Known.Zero.setAllBits(); Known.One.setAllBits(); 2488 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2489 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2490 unsigned NumSubVectors = Op.getNumOperands(); 2491 for (unsigned i = 0; i != NumSubVectors; ++i) { 2492 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2493 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2494 if (!!DemandedSub) { 2495 SDValue Sub = Op.getOperand(i); 2496 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2497 Known.One &= Known2.One; 2498 Known.Zero &= Known2.Zero; 2499 } 2500 // If we don't know any bits, early out. 2501 if (Known.isUnknown()) 2502 break; 2503 } 2504 break; 2505 } 2506 case ISD::INSERT_SUBVECTOR: { 2507 // If we know the element index, demand any elements from the subvector and 2508 // the remainder from the src its inserted into, otherwise demand them all. 2509 SDValue Src = Op.getOperand(0); 2510 SDValue Sub = Op.getOperand(1); 2511 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2512 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2513 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2514 Known.One.setAllBits(); 2515 Known.Zero.setAllBits(); 2516 uint64_t Idx = SubIdx->getZExtValue(); 2517 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2518 if (!!DemandedSubElts) { 2519 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2520 if (Known.isUnknown()) 2521 break; // early-out. 2522 } 2523 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2524 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2525 if (!!DemandedSrcElts) { 2526 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2527 Known.One &= Known2.One; 2528 Known.Zero &= Known2.Zero; 2529 } 2530 } else { 2531 Known = computeKnownBits(Sub, Depth + 1); 2532 if (Known.isUnknown()) 2533 break; // early-out. 2534 Known2 = computeKnownBits(Src, Depth + 1); 2535 Known.One &= Known2.One; 2536 Known.Zero &= Known2.Zero; 2537 } 2538 break; 2539 } 2540 case ISD::EXTRACT_SUBVECTOR: { 2541 // If we know the element index, just demand that subvector elements, 2542 // otherwise demand them all. 2543 SDValue Src = Op.getOperand(0); 2544 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2545 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2546 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2547 // Offset the demanded elts by the subvector index. 2548 uint64_t Idx = SubIdx->getZExtValue(); 2549 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2550 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2551 } else { 2552 Known = computeKnownBits(Src, Depth + 1); 2553 } 2554 break; 2555 } 2556 case ISD::SCALAR_TO_VECTOR: { 2557 // We know about scalar_to_vector as much as we know about it source, 2558 // which becomes the first element of otherwise unknown vector. 2559 if (DemandedElts != 1) 2560 break; 2561 2562 SDValue N0 = Op.getOperand(0); 2563 Known = computeKnownBits(N0, Depth + 1); 2564 if (N0.getValueSizeInBits() != BitWidth) 2565 Known = Known.trunc(BitWidth); 2566 2567 break; 2568 } 2569 case ISD::BITCAST: { 2570 SDValue N0 = Op.getOperand(0); 2571 EVT SubVT = N0.getValueType(); 2572 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2573 2574 // Ignore bitcasts from unsupported types. 2575 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2576 break; 2577 2578 // Fast handling of 'identity' bitcasts. 2579 if (BitWidth == SubBitWidth) { 2580 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2581 break; 2582 } 2583 2584 bool IsLE = getDataLayout().isLittleEndian(); 2585 2586 // Bitcast 'small element' vector to 'large element' scalar/vector. 2587 if ((BitWidth % SubBitWidth) == 0) { 2588 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2589 2590 // Collect known bits for the (larger) output by collecting the known 2591 // bits from each set of sub elements and shift these into place. 2592 // We need to separately call computeKnownBits for each set of 2593 // sub elements as the knownbits for each is likely to be different. 2594 unsigned SubScale = BitWidth / SubBitWidth; 2595 APInt SubDemandedElts(NumElts * SubScale, 0); 2596 for (unsigned i = 0; i != NumElts; ++i) 2597 if (DemandedElts[i]) 2598 SubDemandedElts.setBit(i * SubScale); 2599 2600 for (unsigned i = 0; i != SubScale; ++i) { 2601 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2602 Depth + 1); 2603 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2604 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2605 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2606 } 2607 } 2608 2609 // Bitcast 'large element' scalar/vector to 'small element' vector. 2610 if ((SubBitWidth % BitWidth) == 0) { 2611 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2612 2613 // Collect known bits for the (smaller) output by collecting the known 2614 // bits from the overlapping larger input elements and extracting the 2615 // sub sections we actually care about. 2616 unsigned SubScale = SubBitWidth / BitWidth; 2617 APInt SubDemandedElts(NumElts / SubScale, 0); 2618 for (unsigned i = 0; i != NumElts; ++i) 2619 if (DemandedElts[i]) 2620 SubDemandedElts.setBit(i / SubScale); 2621 2622 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2623 2624 Known.Zero.setAllBits(); Known.One.setAllBits(); 2625 for (unsigned i = 0; i != NumElts; ++i) 2626 if (DemandedElts[i]) { 2627 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2628 unsigned Offset = (Shifts % SubScale) * BitWidth; 2629 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2630 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2631 // If we don't know any bits, early out. 2632 if (Known.isUnknown()) 2633 break; 2634 } 2635 } 2636 break; 2637 } 2638 case ISD::AND: 2639 // If either the LHS or the RHS are Zero, the result is zero. 2640 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2641 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2642 2643 // Output known-1 bits are only known if set in both the LHS & RHS. 2644 Known.One &= Known2.One; 2645 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2646 Known.Zero |= Known2.Zero; 2647 break; 2648 case ISD::OR: 2649 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2650 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2651 2652 // Output known-0 bits are only known if clear in both the LHS & RHS. 2653 Known.Zero &= Known2.Zero; 2654 // Output known-1 are known to be set if set in either the LHS | RHS. 2655 Known.One |= Known2.One; 2656 break; 2657 case ISD::XOR: { 2658 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2659 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2660 2661 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2662 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2663 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2664 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2665 Known.Zero = KnownZeroOut; 2666 break; 2667 } 2668 case ISD::MUL: { 2669 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2670 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2671 2672 // If low bits are zero in either operand, output low known-0 bits. 2673 // Also compute a conservative estimate for high known-0 bits. 2674 // More trickiness is possible, but this is sufficient for the 2675 // interesting case of alignment computation. 2676 unsigned TrailZ = Known.countMinTrailingZeros() + 2677 Known2.countMinTrailingZeros(); 2678 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2679 Known2.countMinLeadingZeros(), 2680 BitWidth) - BitWidth; 2681 2682 Known.resetAll(); 2683 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2684 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2685 break; 2686 } 2687 case ISD::UDIV: { 2688 // For the purposes of computing leading zeros we can conservatively 2689 // treat a udiv as a logical right shift by the power of 2 known to 2690 // be less than the denominator. 2691 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2692 unsigned LeadZ = Known2.countMinLeadingZeros(); 2693 2694 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2695 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2696 if (RHSMaxLeadingZeros != BitWidth) 2697 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2698 2699 Known.Zero.setHighBits(LeadZ); 2700 break; 2701 } 2702 case ISD::SELECT: 2703 case ISD::VSELECT: 2704 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2705 // If we don't know any bits, early out. 2706 if (Known.isUnknown()) 2707 break; 2708 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2709 2710 // Only known if known in both the LHS and RHS. 2711 Known.One &= Known2.One; 2712 Known.Zero &= Known2.Zero; 2713 break; 2714 case ISD::SELECT_CC: 2715 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2716 // If we don't know any bits, early out. 2717 if (Known.isUnknown()) 2718 break; 2719 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2720 2721 // Only known if known in both the LHS and RHS. 2722 Known.One &= Known2.One; 2723 Known.Zero &= Known2.Zero; 2724 break; 2725 case ISD::SMULO: 2726 case ISD::UMULO: 2727 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2728 if (Op.getResNo() != 1) 2729 break; 2730 // The boolean result conforms to getBooleanContents. 2731 // If we know the result of a setcc has the top bits zero, use this info. 2732 // We know that we have an integer-based boolean since these operations 2733 // are only available for integer. 2734 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2735 TargetLowering::ZeroOrOneBooleanContent && 2736 BitWidth > 1) 2737 Known.Zero.setBitsFrom(1); 2738 break; 2739 case ISD::SETCC: 2740 // If we know the result of a setcc has the top bits zero, use this info. 2741 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2742 TargetLowering::ZeroOrOneBooleanContent && 2743 BitWidth > 1) 2744 Known.Zero.setBitsFrom(1); 2745 break; 2746 case ISD::SHL: 2747 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2748 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2749 unsigned Shift = ShAmt->getZExtValue(); 2750 Known.Zero <<= Shift; 2751 Known.One <<= Shift; 2752 // Low bits are known zero. 2753 Known.Zero.setLowBits(Shift); 2754 } 2755 break; 2756 case ISD::SRL: 2757 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2758 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2759 unsigned Shift = ShAmt->getZExtValue(); 2760 Known.Zero.lshrInPlace(Shift); 2761 Known.One.lshrInPlace(Shift); 2762 // High bits are known zero. 2763 Known.Zero.setHighBits(Shift); 2764 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2765 // If the shift amount is a vector of constants see if we can bound 2766 // the number of upper zero bits. 2767 unsigned ShiftAmountMin = BitWidth; 2768 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2769 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2770 const APInt &ShAmt = C->getAPIntValue(); 2771 if (ShAmt.ult(BitWidth)) { 2772 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2773 ShAmt.getZExtValue()); 2774 continue; 2775 } 2776 } 2777 // Don't know anything. 2778 ShiftAmountMin = 0; 2779 break; 2780 } 2781 2782 Known.Zero.setHighBits(ShiftAmountMin); 2783 } 2784 break; 2785 case ISD::SRA: 2786 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2787 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2788 unsigned Shift = ShAmt->getZExtValue(); 2789 // Sign extend known zero/one bit (else is unknown). 2790 Known.Zero.ashrInPlace(Shift); 2791 Known.One.ashrInPlace(Shift); 2792 } 2793 break; 2794 case ISD::FSHL: 2795 case ISD::FSHR: 2796 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2797 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2798 2799 // For fshl, 0-shift returns the 1st arg. 2800 // For fshr, 0-shift returns the 2nd arg. 2801 if (Amt == 0) { 2802 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2803 DemandedElts, Depth + 1); 2804 break; 2805 } 2806 2807 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2808 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2809 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2810 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2811 if (Opcode == ISD::FSHL) { 2812 Known.One <<= Amt; 2813 Known.Zero <<= Amt; 2814 Known2.One.lshrInPlace(BitWidth - Amt); 2815 Known2.Zero.lshrInPlace(BitWidth - Amt); 2816 } else { 2817 Known.One <<= BitWidth - Amt; 2818 Known.Zero <<= BitWidth - Amt; 2819 Known2.One.lshrInPlace(Amt); 2820 Known2.Zero.lshrInPlace(Amt); 2821 } 2822 Known.One |= Known2.One; 2823 Known.Zero |= Known2.Zero; 2824 } 2825 break; 2826 case ISD::SIGN_EXTEND_INREG: { 2827 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2828 unsigned EBits = EVT.getScalarSizeInBits(); 2829 2830 // Sign extension. Compute the demanded bits in the result that are not 2831 // present in the input. 2832 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2833 2834 APInt InSignMask = APInt::getSignMask(EBits); 2835 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2836 2837 // If the sign extended bits are demanded, we know that the sign 2838 // bit is demanded. 2839 InSignMask = InSignMask.zext(BitWidth); 2840 if (NewBits.getBoolValue()) 2841 InputDemandedBits |= InSignMask; 2842 2843 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2844 Known.One &= InputDemandedBits; 2845 Known.Zero &= InputDemandedBits; 2846 2847 // If the sign bit of the input is known set or clear, then we know the 2848 // top bits of the result. 2849 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2850 Known.Zero |= NewBits; 2851 Known.One &= ~NewBits; 2852 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2853 Known.One |= NewBits; 2854 Known.Zero &= ~NewBits; 2855 } else { // Input sign bit unknown 2856 Known.Zero &= ~NewBits; 2857 Known.One &= ~NewBits; 2858 } 2859 break; 2860 } 2861 case ISD::CTTZ: 2862 case ISD::CTTZ_ZERO_UNDEF: { 2863 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2864 // If we have a known 1, its position is our upper bound. 2865 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2866 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2867 Known.Zero.setBitsFrom(LowBits); 2868 break; 2869 } 2870 case ISD::CTLZ: 2871 case ISD::CTLZ_ZERO_UNDEF: { 2872 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2873 // If we have a known 1, its position is our upper bound. 2874 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2875 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2876 Known.Zero.setBitsFrom(LowBits); 2877 break; 2878 } 2879 case ISD::CTPOP: { 2880 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2881 // If we know some of the bits are zero, they can't be one. 2882 unsigned PossibleOnes = Known2.countMaxPopulation(); 2883 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2884 break; 2885 } 2886 case ISD::LOAD: { 2887 LoadSDNode *LD = cast<LoadSDNode>(Op); 2888 // If this is a ZEXTLoad and we are looking at the loaded value. 2889 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2890 EVT VT = LD->getMemoryVT(); 2891 unsigned MemBits = VT.getScalarSizeInBits(); 2892 Known.Zero.setBitsFrom(MemBits); 2893 } else if (const MDNode *Ranges = LD->getRanges()) { 2894 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2895 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2896 } 2897 break; 2898 } 2899 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2900 EVT InVT = Op.getOperand(0).getValueType(); 2901 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2902 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2903 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2904 break; 2905 } 2906 case ISD::ZERO_EXTEND: { 2907 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2908 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2909 break; 2910 } 2911 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2912 EVT InVT = Op.getOperand(0).getValueType(); 2913 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2914 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2915 // If the sign bit is known to be zero or one, then sext will extend 2916 // it to the top bits, else it will just zext. 2917 Known = Known.sext(BitWidth); 2918 break; 2919 } 2920 case ISD::SIGN_EXTEND: { 2921 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2922 // If the sign bit is known to be zero or one, then sext will extend 2923 // it to the top bits, else it will just zext. 2924 Known = Known.sext(BitWidth); 2925 break; 2926 } 2927 case ISD::ANY_EXTEND: { 2928 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2929 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 2930 break; 2931 } 2932 case ISD::TRUNCATE: { 2933 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2934 Known = Known.trunc(BitWidth); 2935 break; 2936 } 2937 case ISD::AssertZext: { 2938 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2939 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2940 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2941 Known.Zero |= (~InMask); 2942 Known.One &= (~Known.Zero); 2943 break; 2944 } 2945 case ISD::FGETSIGN: 2946 // All bits are zero except the low bit. 2947 Known.Zero.setBitsFrom(1); 2948 break; 2949 case ISD::USUBO: 2950 case ISD::SSUBO: 2951 if (Op.getResNo() == 1) { 2952 // If we know the result of a setcc has the top bits zero, use this info. 2953 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2954 TargetLowering::ZeroOrOneBooleanContent && 2955 BitWidth > 1) 2956 Known.Zero.setBitsFrom(1); 2957 break; 2958 } 2959 LLVM_FALLTHROUGH; 2960 case ISD::SUB: 2961 case ISD::SUBC: { 2962 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2963 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2964 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 2965 Known, Known2); 2966 break; 2967 } 2968 case ISD::UADDO: 2969 case ISD::SADDO: 2970 case ISD::ADDCARRY: 2971 if (Op.getResNo() == 1) { 2972 // If we know the result of a setcc has the top bits zero, use this info. 2973 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2974 TargetLowering::ZeroOrOneBooleanContent && 2975 BitWidth > 1) 2976 Known.Zero.setBitsFrom(1); 2977 break; 2978 } 2979 LLVM_FALLTHROUGH; 2980 case ISD::ADD: 2981 case ISD::ADDC: 2982 case ISD::ADDE: { 2983 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 2984 2985 // With ADDE and ADDCARRY, a carry bit may be added in. 2986 KnownBits Carry(1); 2987 if (Opcode == ISD::ADDE) 2988 // Can't track carry from glue, set carry to unknown. 2989 Carry.resetAll(); 2990 else if (Opcode == ISD::ADDCARRY) 2991 // TODO: Compute known bits for the carry operand. Not sure if it is worth 2992 // the trouble (how often will we find a known carry bit). And I haven't 2993 // tested this very much yet, but something like this might work: 2994 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 2995 // Carry = Carry.zextOrTrunc(1, false); 2996 Carry.resetAll(); 2997 else 2998 Carry.setAllZero(); 2999 3000 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3001 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3002 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3003 break; 3004 } 3005 case ISD::SREM: 3006 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3007 const APInt &RA = Rem->getAPIntValue().abs(); 3008 if (RA.isPowerOf2()) { 3009 APInt LowBits = RA - 1; 3010 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3011 3012 // The low bits of the first operand are unchanged by the srem. 3013 Known.Zero = Known2.Zero & LowBits; 3014 Known.One = Known2.One & LowBits; 3015 3016 // If the first operand is non-negative or has all low bits zero, then 3017 // the upper bits are all zero. 3018 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 3019 Known.Zero |= ~LowBits; 3020 3021 // If the first operand is negative and not all low bits are zero, then 3022 // the upper bits are all one. 3023 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 3024 Known.One |= ~LowBits; 3025 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3026 } 3027 } 3028 break; 3029 case ISD::UREM: { 3030 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3031 const APInt &RA = Rem->getAPIntValue(); 3032 if (RA.isPowerOf2()) { 3033 APInt LowBits = (RA - 1); 3034 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3035 3036 // The upper bits are all zero, the lower ones are unchanged. 3037 Known.Zero = Known2.Zero | ~LowBits; 3038 Known.One = Known2.One & LowBits; 3039 break; 3040 } 3041 } 3042 3043 // Since the result is less than or equal to either operand, any leading 3044 // zero bits in either operand must also exist in the result. 3045 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3046 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3047 3048 uint32_t Leaders = 3049 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3050 Known.resetAll(); 3051 Known.Zero.setHighBits(Leaders); 3052 break; 3053 } 3054 case ISD::EXTRACT_ELEMENT: { 3055 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3056 const unsigned Index = Op.getConstantOperandVal(1); 3057 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3058 3059 // Remove low part of known bits mask 3060 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3061 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3062 3063 // Remove high part of known bit mask 3064 Known = Known.trunc(EltBitWidth); 3065 break; 3066 } 3067 case ISD::EXTRACT_VECTOR_ELT: { 3068 SDValue InVec = Op.getOperand(0); 3069 SDValue EltNo = Op.getOperand(1); 3070 EVT VecVT = InVec.getValueType(); 3071 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3072 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3073 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3074 // anything about the extended bits. 3075 if (BitWidth > EltBitWidth) 3076 Known = Known.trunc(EltBitWidth); 3077 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3078 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3079 // If we know the element index, just demand that vector element. 3080 unsigned Idx = ConstEltNo->getZExtValue(); 3081 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3082 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3083 } else { 3084 // Unknown element index, so ignore DemandedElts and demand them all. 3085 Known = computeKnownBits(InVec, Depth + 1); 3086 } 3087 if (BitWidth > EltBitWidth) 3088 Known = Known.zext(BitWidth, false /* => any extend */); 3089 break; 3090 } 3091 case ISD::INSERT_VECTOR_ELT: { 3092 SDValue InVec = Op.getOperand(0); 3093 SDValue InVal = Op.getOperand(1); 3094 SDValue EltNo = Op.getOperand(2); 3095 3096 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3097 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3098 // If we know the element index, split the demand between the 3099 // source vector and the inserted element. 3100 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3101 unsigned EltIdx = CEltNo->getZExtValue(); 3102 3103 // If we demand the inserted element then add its common known bits. 3104 if (DemandedElts[EltIdx]) { 3105 Known2 = computeKnownBits(InVal, Depth + 1); 3106 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3107 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3108 } 3109 3110 // If we demand the source vector then add its common known bits, ensuring 3111 // that we don't demand the inserted element. 3112 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3113 if (!!VectorElts) { 3114 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3115 Known.One &= Known2.One; 3116 Known.Zero &= Known2.Zero; 3117 } 3118 } else { 3119 // Unknown element index, so ignore DemandedElts and demand them all. 3120 Known = computeKnownBits(InVec, Depth + 1); 3121 Known2 = computeKnownBits(InVal, Depth + 1); 3122 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3123 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3124 } 3125 break; 3126 } 3127 case ISD::BITREVERSE: { 3128 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3129 Known.Zero = Known2.Zero.reverseBits(); 3130 Known.One = Known2.One.reverseBits(); 3131 break; 3132 } 3133 case ISD::BSWAP: { 3134 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3135 Known.Zero = Known2.Zero.byteSwap(); 3136 Known.One = Known2.One.byteSwap(); 3137 break; 3138 } 3139 case ISD::ABS: { 3140 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3141 3142 // If the source's MSB is zero then we know the rest of the bits already. 3143 if (Known2.isNonNegative()) { 3144 Known.Zero = Known2.Zero; 3145 Known.One = Known2.One; 3146 break; 3147 } 3148 3149 // We only know that the absolute values's MSB will be zero iff there is 3150 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3151 Known2.One.clearSignBit(); 3152 if (Known2.One.getBoolValue()) { 3153 Known.Zero = APInt::getSignMask(BitWidth); 3154 break; 3155 } 3156 break; 3157 } 3158 case ISD::UMIN: { 3159 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3161 3162 // UMIN - we know that the result will have the maximum of the 3163 // known zero leading bits of the inputs. 3164 unsigned LeadZero = Known.countMinLeadingZeros(); 3165 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3166 3167 Known.Zero &= Known2.Zero; 3168 Known.One &= Known2.One; 3169 Known.Zero.setHighBits(LeadZero); 3170 break; 3171 } 3172 case ISD::UMAX: { 3173 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3174 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3175 3176 // UMAX - we know that the result will have the maximum of the 3177 // known one leading bits of the inputs. 3178 unsigned LeadOne = Known.countMinLeadingOnes(); 3179 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3180 3181 Known.Zero &= Known2.Zero; 3182 Known.One &= Known2.One; 3183 Known.One.setHighBits(LeadOne); 3184 break; 3185 } 3186 case ISD::SMIN: 3187 case ISD::SMAX: { 3188 // If we have a clamp pattern, we know that the number of sign bits will be 3189 // the minimum of the clamp min/max range. 3190 bool IsMax = (Opcode == ISD::SMAX); 3191 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3192 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3193 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3194 CstHigh = 3195 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3196 if (CstLow && CstHigh) { 3197 if (!IsMax) 3198 std::swap(CstLow, CstHigh); 3199 3200 const APInt &ValueLow = CstLow->getAPIntValue(); 3201 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3202 if (ValueLow.sle(ValueHigh)) { 3203 unsigned LowSignBits = ValueLow.getNumSignBits(); 3204 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3205 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3206 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3207 Known.One.setHighBits(MinSignBits); 3208 break; 3209 } 3210 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3211 Known.Zero.setHighBits(MinSignBits); 3212 break; 3213 } 3214 } 3215 } 3216 3217 // Fallback - just get the shared known bits of the operands. 3218 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3219 if (Known.isUnknown()) break; // Early-out 3220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3221 Known.Zero &= Known2.Zero; 3222 Known.One &= Known2.One; 3223 break; 3224 } 3225 case ISD::FrameIndex: 3226 case ISD::TargetFrameIndex: 3227 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3228 break; 3229 3230 default: 3231 if (Opcode < ISD::BUILTIN_OP_END) 3232 break; 3233 LLVM_FALLTHROUGH; 3234 case ISD::INTRINSIC_WO_CHAIN: 3235 case ISD::INTRINSIC_W_CHAIN: 3236 case ISD::INTRINSIC_VOID: 3237 // Allow the target to implement this method for its nodes. 3238 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3239 break; 3240 } 3241 3242 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3243 return Known; 3244 } 3245 3246 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3247 SDValue N1) const { 3248 // X + 0 never overflow 3249 if (isNullConstant(N1)) 3250 return OFK_Never; 3251 3252 KnownBits N1Known = computeKnownBits(N1); 3253 if (N1Known.Zero.getBoolValue()) { 3254 KnownBits N0Known = computeKnownBits(N0); 3255 3256 bool overflow; 3257 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3258 if (!overflow) 3259 return OFK_Never; 3260 } 3261 3262 // mulhi + 1 never overflow 3263 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3264 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3265 return OFK_Never; 3266 3267 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3268 KnownBits N0Known = computeKnownBits(N0); 3269 3270 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3271 return OFK_Never; 3272 } 3273 3274 return OFK_Sometime; 3275 } 3276 3277 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3278 EVT OpVT = Val.getValueType(); 3279 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3280 3281 // Is the constant a known power of 2? 3282 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3283 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3284 3285 // A left-shift of a constant one will have exactly one bit set because 3286 // shifting the bit off the end is undefined. 3287 if (Val.getOpcode() == ISD::SHL) { 3288 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3289 if (C && C->getAPIntValue() == 1) 3290 return true; 3291 } 3292 3293 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3294 // one bit set. 3295 if (Val.getOpcode() == ISD::SRL) { 3296 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3297 if (C && C->getAPIntValue().isSignMask()) 3298 return true; 3299 } 3300 3301 // Are all operands of a build vector constant powers of two? 3302 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3303 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3304 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3305 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3306 return false; 3307 })) 3308 return true; 3309 3310 // More could be done here, though the above checks are enough 3311 // to handle some common cases. 3312 3313 // Fall back to computeKnownBits to catch other known cases. 3314 KnownBits Known = computeKnownBits(Val); 3315 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3316 } 3317 3318 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3319 EVT VT = Op.getValueType(); 3320 APInt DemandedElts = VT.isVector() 3321 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3322 : APInt(1, 1); 3323 return ComputeNumSignBits(Op, DemandedElts, Depth); 3324 } 3325 3326 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3327 unsigned Depth) const { 3328 EVT VT = Op.getValueType(); 3329 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3330 unsigned VTBits = VT.getScalarSizeInBits(); 3331 unsigned NumElts = DemandedElts.getBitWidth(); 3332 unsigned Tmp, Tmp2; 3333 unsigned FirstAnswer = 1; 3334 3335 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3336 const APInt &Val = C->getAPIntValue(); 3337 return Val.getNumSignBits(); 3338 } 3339 3340 if (Depth == 6) 3341 return 1; // Limit search depth. 3342 3343 if (!DemandedElts) 3344 return 1; // No demanded elts, better to assume we don't know anything. 3345 3346 unsigned Opcode = Op.getOpcode(); 3347 switch (Opcode) { 3348 default: break; 3349 case ISD::AssertSext: 3350 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3351 return VTBits-Tmp+1; 3352 case ISD::AssertZext: 3353 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3354 return VTBits-Tmp; 3355 3356 case ISD::BUILD_VECTOR: 3357 Tmp = VTBits; 3358 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3359 if (!DemandedElts[i]) 3360 continue; 3361 3362 SDValue SrcOp = Op.getOperand(i); 3363 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3364 3365 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3366 if (SrcOp.getValueSizeInBits() != VTBits) { 3367 assert(SrcOp.getValueSizeInBits() > VTBits && 3368 "Expected BUILD_VECTOR implicit truncation"); 3369 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3370 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3371 } 3372 Tmp = std::min(Tmp, Tmp2); 3373 } 3374 return Tmp; 3375 3376 case ISD::VECTOR_SHUFFLE: { 3377 // Collect the minimum number of sign bits that are shared by every vector 3378 // element referenced by the shuffle. 3379 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3380 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3381 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3382 for (unsigned i = 0; i != NumElts; ++i) { 3383 int M = SVN->getMaskElt(i); 3384 if (!DemandedElts[i]) 3385 continue; 3386 // For UNDEF elements, we don't know anything about the common state of 3387 // the shuffle result. 3388 if (M < 0) 3389 return 1; 3390 if ((unsigned)M < NumElts) 3391 DemandedLHS.setBit((unsigned)M % NumElts); 3392 else 3393 DemandedRHS.setBit((unsigned)M % NumElts); 3394 } 3395 Tmp = std::numeric_limits<unsigned>::max(); 3396 if (!!DemandedLHS) 3397 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3398 if (!!DemandedRHS) { 3399 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3400 Tmp = std::min(Tmp, Tmp2); 3401 } 3402 // If we don't know anything, early out and try computeKnownBits fall-back. 3403 if (Tmp == 1) 3404 break; 3405 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3406 return Tmp; 3407 } 3408 3409 case ISD::BITCAST: { 3410 SDValue N0 = Op.getOperand(0); 3411 EVT SrcVT = N0.getValueType(); 3412 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3413 3414 // Ignore bitcasts from unsupported types.. 3415 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3416 break; 3417 3418 // Fast handling of 'identity' bitcasts. 3419 if (VTBits == SrcBits) 3420 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3421 3422 bool IsLE = getDataLayout().isLittleEndian(); 3423 3424 // Bitcast 'large element' scalar/vector to 'small element' vector. 3425 if ((SrcBits % VTBits) == 0) { 3426 assert(VT.isVector() && "Expected bitcast to vector"); 3427 3428 unsigned Scale = SrcBits / VTBits; 3429 APInt SrcDemandedElts(NumElts / Scale, 0); 3430 for (unsigned i = 0; i != NumElts; ++i) 3431 if (DemandedElts[i]) 3432 SrcDemandedElts.setBit(i / Scale); 3433 3434 // Fast case - sign splat can be simply split across the small elements. 3435 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3436 if (Tmp == SrcBits) 3437 return VTBits; 3438 3439 // Slow case - determine how far the sign extends into each sub-element. 3440 Tmp2 = VTBits; 3441 for (unsigned i = 0; i != NumElts; ++i) 3442 if (DemandedElts[i]) { 3443 unsigned SubOffset = i % Scale; 3444 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3445 SubOffset = SubOffset * VTBits; 3446 if (Tmp <= SubOffset) 3447 return 1; 3448 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3449 } 3450 return Tmp2; 3451 } 3452 break; 3453 } 3454 3455 case ISD::SIGN_EXTEND: 3456 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3457 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3458 case ISD::SIGN_EXTEND_INREG: 3459 // Max of the input and what this extends. 3460 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3461 Tmp = VTBits-Tmp+1; 3462 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3463 return std::max(Tmp, Tmp2); 3464 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3465 SDValue Src = Op.getOperand(0); 3466 EVT SrcVT = Src.getValueType(); 3467 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3468 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3469 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3470 } 3471 3472 case ISD::SRA: 3473 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3474 // SRA X, C -> adds C sign bits. 3475 if (ConstantSDNode *C = 3476 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3477 APInt ShiftVal = C->getAPIntValue(); 3478 ShiftVal += Tmp; 3479 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3480 } 3481 return Tmp; 3482 case ISD::SHL: 3483 if (ConstantSDNode *C = 3484 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3485 // shl destroys sign bits. 3486 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3487 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3488 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3489 return Tmp - C->getZExtValue(); 3490 } 3491 break; 3492 case ISD::AND: 3493 case ISD::OR: 3494 case ISD::XOR: // NOT is handled here. 3495 // Logical binary ops preserve the number of sign bits at the worst. 3496 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3497 if (Tmp != 1) { 3498 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3499 FirstAnswer = std::min(Tmp, Tmp2); 3500 // We computed what we know about the sign bits as our first 3501 // answer. Now proceed to the generic code that uses 3502 // computeKnownBits, and pick whichever answer is better. 3503 } 3504 break; 3505 3506 case ISD::SELECT: 3507 case ISD::VSELECT: 3508 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3509 if (Tmp == 1) return 1; // Early out. 3510 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3511 return std::min(Tmp, Tmp2); 3512 case ISD::SELECT_CC: 3513 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3514 if (Tmp == 1) return 1; // Early out. 3515 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3516 return std::min(Tmp, Tmp2); 3517 3518 case ISD::SMIN: 3519 case ISD::SMAX: { 3520 // If we have a clamp pattern, we know that the number of sign bits will be 3521 // the minimum of the clamp min/max range. 3522 bool IsMax = (Opcode == ISD::SMAX); 3523 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3524 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3525 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3526 CstHigh = 3527 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3528 if (CstLow && CstHigh) { 3529 if (!IsMax) 3530 std::swap(CstLow, CstHigh); 3531 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3532 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3533 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3534 return std::min(Tmp, Tmp2); 3535 } 3536 } 3537 3538 // Fallback - just get the minimum number of sign bits of the operands. 3539 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3540 if (Tmp == 1) 3541 return 1; // Early out. 3542 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3543 return std::min(Tmp, Tmp2); 3544 } 3545 case ISD::UMIN: 3546 case ISD::UMAX: 3547 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3548 if (Tmp == 1) 3549 return 1; // Early out. 3550 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3551 return std::min(Tmp, Tmp2); 3552 case ISD::SADDO: 3553 case ISD::UADDO: 3554 case ISD::SSUBO: 3555 case ISD::USUBO: 3556 case ISD::SMULO: 3557 case ISD::UMULO: 3558 if (Op.getResNo() != 1) 3559 break; 3560 // The boolean result conforms to getBooleanContents. Fall through. 3561 // If setcc returns 0/-1, all bits are sign bits. 3562 // We know that we have an integer-based boolean since these operations 3563 // are only available for integer. 3564 if (TLI->getBooleanContents(VT.isVector(), false) == 3565 TargetLowering::ZeroOrNegativeOneBooleanContent) 3566 return VTBits; 3567 break; 3568 case ISD::SETCC: 3569 // If setcc returns 0/-1, all bits are sign bits. 3570 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3571 TargetLowering::ZeroOrNegativeOneBooleanContent) 3572 return VTBits; 3573 break; 3574 case ISD::ROTL: 3575 case ISD::ROTR: 3576 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3577 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3578 3579 // Handle rotate right by N like a rotate left by 32-N. 3580 if (Opcode == ISD::ROTR) 3581 RotAmt = (VTBits - RotAmt) % VTBits; 3582 3583 // If we aren't rotating out all of the known-in sign bits, return the 3584 // number that are left. This handles rotl(sext(x), 1) for example. 3585 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3586 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3587 } 3588 break; 3589 case ISD::ADD: 3590 case ISD::ADDC: 3591 // Add can have at most one carry bit. Thus we know that the output 3592 // is, at worst, one more bit than the inputs. 3593 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3594 if (Tmp == 1) return 1; // Early out. 3595 3596 // Special case decrementing a value (ADD X, -1): 3597 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3598 if (CRHS->isAllOnesValue()) { 3599 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3600 3601 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3602 // sign bits set. 3603 if ((Known.Zero | 1).isAllOnesValue()) 3604 return VTBits; 3605 3606 // If we are subtracting one from a positive number, there is no carry 3607 // out of the result. 3608 if (Known.isNonNegative()) 3609 return Tmp; 3610 } 3611 3612 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3613 if (Tmp2 == 1) return 1; 3614 return std::min(Tmp, Tmp2)-1; 3615 3616 case ISD::SUB: 3617 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3618 if (Tmp2 == 1) return 1; 3619 3620 // Handle NEG. 3621 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3622 if (CLHS->isNullValue()) { 3623 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3624 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3625 // sign bits set. 3626 if ((Known.Zero | 1).isAllOnesValue()) 3627 return VTBits; 3628 3629 // If the input is known to be positive (the sign bit is known clear), 3630 // the output of the NEG has the same number of sign bits as the input. 3631 if (Known.isNonNegative()) 3632 return Tmp2; 3633 3634 // Otherwise, we treat this like a SUB. 3635 } 3636 3637 // Sub can have at most one carry bit. Thus we know that the output 3638 // is, at worst, one more bit than the inputs. 3639 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3640 if (Tmp == 1) return 1; // Early out. 3641 return std::min(Tmp, Tmp2)-1; 3642 case ISD::TRUNCATE: { 3643 // Check if the sign bits of source go down as far as the truncated value. 3644 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3645 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3646 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3647 return NumSrcSignBits - (NumSrcBits - VTBits); 3648 break; 3649 } 3650 case ISD::EXTRACT_ELEMENT: { 3651 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3652 const int BitWidth = Op.getValueSizeInBits(); 3653 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3654 3655 // Get reverse index (starting from 1), Op1 value indexes elements from 3656 // little end. Sign starts at big end. 3657 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3658 3659 // If the sign portion ends in our element the subtraction gives correct 3660 // result. Otherwise it gives either negative or > bitwidth result 3661 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3662 } 3663 case ISD::INSERT_VECTOR_ELT: { 3664 SDValue InVec = Op.getOperand(0); 3665 SDValue InVal = Op.getOperand(1); 3666 SDValue EltNo = Op.getOperand(2); 3667 3668 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3669 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3670 // If we know the element index, split the demand between the 3671 // source vector and the inserted element. 3672 unsigned EltIdx = CEltNo->getZExtValue(); 3673 3674 // If we demand the inserted element then get its sign bits. 3675 Tmp = std::numeric_limits<unsigned>::max(); 3676 if (DemandedElts[EltIdx]) { 3677 // TODO - handle implicit truncation of inserted elements. 3678 if (InVal.getScalarValueSizeInBits() != VTBits) 3679 break; 3680 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3681 } 3682 3683 // If we demand the source vector then get its sign bits, and determine 3684 // the minimum. 3685 APInt VectorElts = DemandedElts; 3686 VectorElts.clearBit(EltIdx); 3687 if (!!VectorElts) { 3688 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3689 Tmp = std::min(Tmp, Tmp2); 3690 } 3691 } else { 3692 // Unknown element index, so ignore DemandedElts and demand them all. 3693 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3694 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3695 Tmp = std::min(Tmp, Tmp2); 3696 } 3697 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3698 return Tmp; 3699 } 3700 case ISD::EXTRACT_VECTOR_ELT: { 3701 SDValue InVec = Op.getOperand(0); 3702 SDValue EltNo = Op.getOperand(1); 3703 EVT VecVT = InVec.getValueType(); 3704 const unsigned BitWidth = Op.getValueSizeInBits(); 3705 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3706 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3707 3708 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3709 // anything about sign bits. But if the sizes match we can derive knowledge 3710 // about sign bits from the vector operand. 3711 if (BitWidth != EltBitWidth) 3712 break; 3713 3714 // If we know the element index, just demand that vector element, else for 3715 // an unknown element index, ignore DemandedElts and demand them all. 3716 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3717 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3718 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3719 DemandedSrcElts = 3720 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3721 3722 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3723 } 3724 case ISD::EXTRACT_SUBVECTOR: { 3725 // If we know the element index, just demand that subvector elements, 3726 // otherwise demand them all. 3727 SDValue Src = Op.getOperand(0); 3728 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3729 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3730 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3731 // Offset the demanded elts by the subvector index. 3732 uint64_t Idx = SubIdx->getZExtValue(); 3733 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3734 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3735 } 3736 return ComputeNumSignBits(Src, Depth + 1); 3737 } 3738 case ISD::CONCAT_VECTORS: { 3739 // Determine the minimum number of sign bits across all demanded 3740 // elts of the input vectors. Early out if the result is already 1. 3741 Tmp = std::numeric_limits<unsigned>::max(); 3742 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3743 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3744 unsigned NumSubVectors = Op.getNumOperands(); 3745 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3746 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3747 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3748 if (!DemandedSub) 3749 continue; 3750 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3751 Tmp = std::min(Tmp, Tmp2); 3752 } 3753 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3754 return Tmp; 3755 } 3756 case ISD::INSERT_SUBVECTOR: { 3757 // If we know the element index, demand any elements from the subvector and 3758 // the remainder from the src its inserted into, otherwise demand them all. 3759 SDValue Src = Op.getOperand(0); 3760 SDValue Sub = Op.getOperand(1); 3761 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3762 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3763 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3764 Tmp = std::numeric_limits<unsigned>::max(); 3765 uint64_t Idx = SubIdx->getZExtValue(); 3766 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3767 if (!!DemandedSubElts) { 3768 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3769 if (Tmp == 1) return 1; // early-out 3770 } 3771 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3772 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3773 if (!!DemandedSrcElts) { 3774 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3775 Tmp = std::min(Tmp, Tmp2); 3776 } 3777 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3778 return Tmp; 3779 } 3780 3781 // Not able to determine the index so just assume worst case. 3782 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3783 if (Tmp == 1) return 1; // early-out 3784 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3785 Tmp = std::min(Tmp, Tmp2); 3786 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3787 return Tmp; 3788 } 3789 } 3790 3791 // If we are looking at the loaded value of the SDNode. 3792 if (Op.getResNo() == 0) { 3793 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3794 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3795 unsigned ExtType = LD->getExtensionType(); 3796 switch (ExtType) { 3797 default: break; 3798 case ISD::SEXTLOAD: // '17' bits known 3799 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3800 return VTBits-Tmp+1; 3801 case ISD::ZEXTLOAD: // '16' bits known 3802 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3803 return VTBits-Tmp; 3804 } 3805 } 3806 } 3807 3808 // Allow the target to implement this method for its nodes. 3809 if (Opcode >= ISD::BUILTIN_OP_END || 3810 Opcode == ISD::INTRINSIC_WO_CHAIN || 3811 Opcode == ISD::INTRINSIC_W_CHAIN || 3812 Opcode == ISD::INTRINSIC_VOID) { 3813 unsigned NumBits = 3814 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3815 if (NumBits > 1) 3816 FirstAnswer = std::max(FirstAnswer, NumBits); 3817 } 3818 3819 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3820 // use this information. 3821 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3822 3823 APInt Mask; 3824 if (Known.isNonNegative()) { // sign bit is 0 3825 Mask = Known.Zero; 3826 } else if (Known.isNegative()) { // sign bit is 1; 3827 Mask = Known.One; 3828 } else { 3829 // Nothing known. 3830 return FirstAnswer; 3831 } 3832 3833 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3834 // the number of identical bits in the top of the input value. 3835 Mask = ~Mask; 3836 Mask <<= Mask.getBitWidth()-VTBits; 3837 // Return # leading zeros. We use 'min' here in case Val was zero before 3838 // shifting. We don't want to return '64' as for an i32 "0". 3839 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3840 } 3841 3842 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3843 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3844 !isa<ConstantSDNode>(Op.getOperand(1))) 3845 return false; 3846 3847 if (Op.getOpcode() == ISD::OR && 3848 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3849 return false; 3850 3851 return true; 3852 } 3853 3854 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3855 // If we're told that NaNs won't happen, assume they won't. 3856 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3857 return true; 3858 3859 if (Depth == 6) 3860 return false; // Limit search depth. 3861 3862 // TODO: Handle vectors. 3863 // If the value is a constant, we can obviously see if it is a NaN or not. 3864 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3865 return !C->getValueAPF().isNaN() || 3866 (SNaN && !C->getValueAPF().isSignaling()); 3867 } 3868 3869 unsigned Opcode = Op.getOpcode(); 3870 switch (Opcode) { 3871 case ISD::FADD: 3872 case ISD::FSUB: 3873 case ISD::FMUL: 3874 case ISD::FDIV: 3875 case ISD::FREM: 3876 case ISD::FSIN: 3877 case ISD::FCOS: { 3878 if (SNaN) 3879 return true; 3880 // TODO: Need isKnownNeverInfinity 3881 return false; 3882 } 3883 case ISD::FCANONICALIZE: 3884 case ISD::FEXP: 3885 case ISD::FEXP2: 3886 case ISD::FTRUNC: 3887 case ISD::FFLOOR: 3888 case ISD::FCEIL: 3889 case ISD::FROUND: 3890 case ISD::FRINT: 3891 case ISD::FNEARBYINT: { 3892 if (SNaN) 3893 return true; 3894 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3895 } 3896 case ISD::FABS: 3897 case ISD::FNEG: 3898 case ISD::FCOPYSIGN: { 3899 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3900 } 3901 case ISD::SELECT: 3902 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3903 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3904 case ISD::FP_EXTEND: 3905 case ISD::FP_ROUND: { 3906 if (SNaN) 3907 return true; 3908 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3909 } 3910 case ISD::SINT_TO_FP: 3911 case ISD::UINT_TO_FP: 3912 return true; 3913 case ISD::FMA: 3914 case ISD::FMAD: { 3915 if (SNaN) 3916 return true; 3917 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 3918 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3919 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3920 } 3921 case ISD::FSQRT: // Need is known positive 3922 case ISD::FLOG: 3923 case ISD::FLOG2: 3924 case ISD::FLOG10: 3925 case ISD::FPOWI: 3926 case ISD::FPOW: { 3927 if (SNaN) 3928 return true; 3929 // TODO: Refine on operand 3930 return false; 3931 } 3932 case ISD::FMINNUM: 3933 case ISD::FMAXNUM: { 3934 // Only one needs to be known not-nan, since it will be returned if the 3935 // other ends up being one. 3936 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 3937 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 3938 } 3939 case ISD::FMINNUM_IEEE: 3940 case ISD::FMAXNUM_IEEE: { 3941 if (SNaN) 3942 return true; 3943 // This can return a NaN if either operand is an sNaN, or if both operands 3944 // are NaN. 3945 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 3946 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 3947 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 3948 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 3949 } 3950 case ISD::FMINIMUM: 3951 case ISD::FMAXIMUM: { 3952 // TODO: Does this quiet or return the origina NaN as-is? 3953 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 3954 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 3955 } 3956 case ISD::EXTRACT_VECTOR_ELT: { 3957 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3958 } 3959 default: 3960 if (Opcode >= ISD::BUILTIN_OP_END || 3961 Opcode == ISD::INTRINSIC_WO_CHAIN || 3962 Opcode == ISD::INTRINSIC_W_CHAIN || 3963 Opcode == ISD::INTRINSIC_VOID) { 3964 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 3965 } 3966 3967 return false; 3968 } 3969 } 3970 3971 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 3972 assert(Op.getValueType().isFloatingPoint() && 3973 "Floating point type expected"); 3974 3975 // If the value is a constant, we can obviously see if it is a zero or not. 3976 // TODO: Add BuildVector support. 3977 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3978 return !C->isZero(); 3979 return false; 3980 } 3981 3982 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3983 assert(!Op.getValueType().isFloatingPoint() && 3984 "Floating point types unsupported - use isKnownNeverZeroFloat"); 3985 3986 // If the value is a constant, we can obviously see if it is a zero or not. 3987 if (ISD::matchUnaryPredicate( 3988 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 3989 return true; 3990 3991 // TODO: Recognize more cases here. 3992 switch (Op.getOpcode()) { 3993 default: break; 3994 case ISD::OR: 3995 if (isKnownNeverZero(Op.getOperand(1)) || 3996 isKnownNeverZero(Op.getOperand(0))) 3997 return true; 3998 break; 3999 } 4000 4001 return false; 4002 } 4003 4004 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4005 // Check the obvious case. 4006 if (A == B) return true; 4007 4008 // For for negative and positive zero. 4009 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4010 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4011 if (CA->isZero() && CB->isZero()) return true; 4012 4013 // Otherwise they may not be equal. 4014 return false; 4015 } 4016 4017 // FIXME: unify with llvm::haveNoCommonBitsSet. 4018 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4019 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4020 assert(A.getValueType() == B.getValueType() && 4021 "Values must have the same type"); 4022 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4023 } 4024 4025 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4026 ArrayRef<SDValue> Ops, 4027 SelectionDAG &DAG) { 4028 int NumOps = Ops.size(); 4029 assert(NumOps != 0 && "Can't build an empty vector!"); 4030 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4031 "Incorrect element count in BUILD_VECTOR!"); 4032 4033 // BUILD_VECTOR of UNDEFs is UNDEF. 4034 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4035 return DAG.getUNDEF(VT); 4036 4037 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4038 SDValue IdentitySrc; 4039 bool IsIdentity = true; 4040 for (int i = 0; i != NumOps; ++i) { 4041 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4042 Ops[i].getOperand(0).getValueType() != VT || 4043 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4044 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4045 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4046 IsIdentity = false; 4047 break; 4048 } 4049 IdentitySrc = Ops[i].getOperand(0); 4050 } 4051 if (IsIdentity) 4052 return IdentitySrc; 4053 4054 return SDValue(); 4055 } 4056 4057 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4058 ArrayRef<SDValue> Ops, 4059 SelectionDAG &DAG) { 4060 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4061 assert(llvm::all_of(Ops, 4062 [Ops](SDValue Op) { 4063 return Ops[0].getValueType() == Op.getValueType(); 4064 }) && 4065 "Concatenation of vectors with inconsistent value types!"); 4066 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4067 VT.getVectorNumElements() && 4068 "Incorrect element count in vector concatenation!"); 4069 4070 if (Ops.size() == 1) 4071 return Ops[0]; 4072 4073 // Concat of UNDEFs is UNDEF. 4074 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4075 return DAG.getUNDEF(VT); 4076 4077 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4078 // simplified to one big BUILD_VECTOR. 4079 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4080 EVT SVT = VT.getScalarType(); 4081 SmallVector<SDValue, 16> Elts; 4082 for (SDValue Op : Ops) { 4083 EVT OpVT = Op.getValueType(); 4084 if (Op.isUndef()) 4085 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4086 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4087 Elts.append(Op->op_begin(), Op->op_end()); 4088 else 4089 return SDValue(); 4090 } 4091 4092 // BUILD_VECTOR requires all inputs to be of the same type, find the 4093 // maximum type and extend them all. 4094 for (SDValue Op : Elts) 4095 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4096 4097 if (SVT.bitsGT(VT.getScalarType())) 4098 for (SDValue &Op : Elts) 4099 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4100 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4101 : DAG.getSExtOrTrunc(Op, DL, SVT); 4102 4103 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4104 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4105 return V; 4106 } 4107 4108 /// Gets or creates the specified node. 4109 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4110 FoldingSetNodeID ID; 4111 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4112 void *IP = nullptr; 4113 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4114 return SDValue(E, 0); 4115 4116 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4117 getVTList(VT)); 4118 CSEMap.InsertNode(N, IP); 4119 4120 InsertNode(N); 4121 SDValue V = SDValue(N, 0); 4122 NewSDValueDbgMsg(V, "Creating new node: ", this); 4123 return V; 4124 } 4125 4126 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4127 SDValue Operand, const SDNodeFlags Flags) { 4128 // Constant fold unary operations with an integer constant operand. Even 4129 // opaque constant will be folded, because the folding of unary operations 4130 // doesn't create new constants with different values. Nevertheless, the 4131 // opaque flag is preserved during folding to prevent future folding with 4132 // other constants. 4133 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4134 const APInt &Val = C->getAPIntValue(); 4135 switch (Opcode) { 4136 default: break; 4137 case ISD::SIGN_EXTEND: 4138 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4139 C->isTargetOpcode(), C->isOpaque()); 4140 case ISD::TRUNCATE: 4141 if (C->isOpaque()) 4142 break; 4143 LLVM_FALLTHROUGH; 4144 case ISD::ANY_EXTEND: 4145 case ISD::ZERO_EXTEND: 4146 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4147 C->isTargetOpcode(), C->isOpaque()); 4148 case ISD::UINT_TO_FP: 4149 case ISD::SINT_TO_FP: { 4150 APFloat apf(EVTToAPFloatSemantics(VT), 4151 APInt::getNullValue(VT.getSizeInBits())); 4152 (void)apf.convertFromAPInt(Val, 4153 Opcode==ISD::SINT_TO_FP, 4154 APFloat::rmNearestTiesToEven); 4155 return getConstantFP(apf, DL, VT); 4156 } 4157 case ISD::BITCAST: 4158 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4159 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4160 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4161 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4162 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4163 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4164 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4165 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4166 break; 4167 case ISD::ABS: 4168 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4169 C->isOpaque()); 4170 case ISD::BITREVERSE: 4171 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4172 C->isOpaque()); 4173 case ISD::BSWAP: 4174 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4175 C->isOpaque()); 4176 case ISD::CTPOP: 4177 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4178 C->isOpaque()); 4179 case ISD::CTLZ: 4180 case ISD::CTLZ_ZERO_UNDEF: 4181 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4182 C->isOpaque()); 4183 case ISD::CTTZ: 4184 case ISD::CTTZ_ZERO_UNDEF: 4185 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4186 C->isOpaque()); 4187 case ISD::FP16_TO_FP: { 4188 bool Ignored; 4189 APFloat FPV(APFloat::IEEEhalf(), 4190 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4191 4192 // This can return overflow, underflow, or inexact; we don't care. 4193 // FIXME need to be more flexible about rounding mode. 4194 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4195 APFloat::rmNearestTiesToEven, &Ignored); 4196 return getConstantFP(FPV, DL, VT); 4197 } 4198 } 4199 } 4200 4201 // Constant fold unary operations with a floating point constant operand. 4202 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4203 APFloat V = C->getValueAPF(); // make copy 4204 switch (Opcode) { 4205 case ISD::FNEG: 4206 V.changeSign(); 4207 return getConstantFP(V, DL, VT); 4208 case ISD::FABS: 4209 V.clearSign(); 4210 return getConstantFP(V, DL, VT); 4211 case ISD::FCEIL: { 4212 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4213 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4214 return getConstantFP(V, DL, VT); 4215 break; 4216 } 4217 case ISD::FTRUNC: { 4218 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4219 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4220 return getConstantFP(V, DL, VT); 4221 break; 4222 } 4223 case ISD::FFLOOR: { 4224 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4225 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4226 return getConstantFP(V, DL, VT); 4227 break; 4228 } 4229 case ISD::FP_EXTEND: { 4230 bool ignored; 4231 // This can return overflow, underflow, or inexact; we don't care. 4232 // FIXME need to be more flexible about rounding mode. 4233 (void)V.convert(EVTToAPFloatSemantics(VT), 4234 APFloat::rmNearestTiesToEven, &ignored); 4235 return getConstantFP(V, DL, VT); 4236 } 4237 case ISD::FP_TO_SINT: 4238 case ISD::FP_TO_UINT: { 4239 bool ignored; 4240 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4241 // FIXME need to be more flexible about rounding mode. 4242 APFloat::opStatus s = 4243 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4244 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4245 break; 4246 return getConstant(IntVal, DL, VT); 4247 } 4248 case ISD::BITCAST: 4249 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4250 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4251 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4252 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4253 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4254 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4255 break; 4256 case ISD::FP_TO_FP16: { 4257 bool Ignored; 4258 // This can return overflow, underflow, or inexact; we don't care. 4259 // FIXME need to be more flexible about rounding mode. 4260 (void)V.convert(APFloat::IEEEhalf(), 4261 APFloat::rmNearestTiesToEven, &Ignored); 4262 return getConstant(V.bitcastToAPInt(), DL, VT); 4263 } 4264 } 4265 } 4266 4267 // Constant fold unary operations with a vector integer or float operand. 4268 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4269 if (BV->isConstant()) { 4270 switch (Opcode) { 4271 default: 4272 // FIXME: Entirely reasonable to perform folding of other unary 4273 // operations here as the need arises. 4274 break; 4275 case ISD::FNEG: 4276 case ISD::FABS: 4277 case ISD::FCEIL: 4278 case ISD::FTRUNC: 4279 case ISD::FFLOOR: 4280 case ISD::FP_EXTEND: 4281 case ISD::FP_TO_SINT: 4282 case ISD::FP_TO_UINT: 4283 case ISD::TRUNCATE: 4284 case ISD::ANY_EXTEND: 4285 case ISD::ZERO_EXTEND: 4286 case ISD::SIGN_EXTEND: 4287 case ISD::UINT_TO_FP: 4288 case ISD::SINT_TO_FP: 4289 case ISD::ABS: 4290 case ISD::BITREVERSE: 4291 case ISD::BSWAP: 4292 case ISD::CTLZ: 4293 case ISD::CTLZ_ZERO_UNDEF: 4294 case ISD::CTTZ: 4295 case ISD::CTTZ_ZERO_UNDEF: 4296 case ISD::CTPOP: { 4297 SDValue Ops = { Operand }; 4298 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4299 return Fold; 4300 } 4301 } 4302 } 4303 } 4304 4305 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4306 switch (Opcode) { 4307 case ISD::TokenFactor: 4308 case ISD::MERGE_VALUES: 4309 case ISD::CONCAT_VECTORS: 4310 return Operand; // Factor, merge or concat of one node? No need. 4311 case ISD::BUILD_VECTOR: { 4312 // Attempt to simplify BUILD_VECTOR. 4313 SDValue Ops[] = {Operand}; 4314 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4315 return V; 4316 break; 4317 } 4318 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4319 case ISD::FP_EXTEND: 4320 assert(VT.isFloatingPoint() && 4321 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4322 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4323 assert((!VT.isVector() || 4324 VT.getVectorNumElements() == 4325 Operand.getValueType().getVectorNumElements()) && 4326 "Vector element count mismatch!"); 4327 assert(Operand.getValueType().bitsLT(VT) && 4328 "Invalid fpext node, dst < src!"); 4329 if (Operand.isUndef()) 4330 return getUNDEF(VT); 4331 break; 4332 case ISD::SIGN_EXTEND: 4333 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4334 "Invalid SIGN_EXTEND!"); 4335 assert(VT.isVector() == Operand.getValueType().isVector() && 4336 "SIGN_EXTEND result type type should be vector iff the operand " 4337 "type is vector!"); 4338 if (Operand.getValueType() == VT) return Operand; // noop extension 4339 assert((!VT.isVector() || 4340 VT.getVectorNumElements() == 4341 Operand.getValueType().getVectorNumElements()) && 4342 "Vector element count mismatch!"); 4343 assert(Operand.getValueType().bitsLT(VT) && 4344 "Invalid sext node, dst < src!"); 4345 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4346 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4347 else if (OpOpcode == ISD::UNDEF) 4348 // sext(undef) = 0, because the top bits will all be the same. 4349 return getConstant(0, DL, VT); 4350 break; 4351 case ISD::ZERO_EXTEND: 4352 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4353 "Invalid ZERO_EXTEND!"); 4354 assert(VT.isVector() == Operand.getValueType().isVector() && 4355 "ZERO_EXTEND result type type should be vector iff the operand " 4356 "type is vector!"); 4357 if (Operand.getValueType() == VT) return Operand; // noop extension 4358 assert((!VT.isVector() || 4359 VT.getVectorNumElements() == 4360 Operand.getValueType().getVectorNumElements()) && 4361 "Vector element count mismatch!"); 4362 assert(Operand.getValueType().bitsLT(VT) && 4363 "Invalid zext node, dst < src!"); 4364 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4365 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4366 else if (OpOpcode == ISD::UNDEF) 4367 // zext(undef) = 0, because the top bits will be zero. 4368 return getConstant(0, DL, VT); 4369 break; 4370 case ISD::ANY_EXTEND: 4371 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4372 "Invalid ANY_EXTEND!"); 4373 assert(VT.isVector() == Operand.getValueType().isVector() && 4374 "ANY_EXTEND result type type should be vector iff the operand " 4375 "type is vector!"); 4376 if (Operand.getValueType() == VT) return Operand; // noop extension 4377 assert((!VT.isVector() || 4378 VT.getVectorNumElements() == 4379 Operand.getValueType().getVectorNumElements()) && 4380 "Vector element count mismatch!"); 4381 assert(Operand.getValueType().bitsLT(VT) && 4382 "Invalid anyext node, dst < src!"); 4383 4384 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4385 OpOpcode == ISD::ANY_EXTEND) 4386 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4387 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4388 else if (OpOpcode == ISD::UNDEF) 4389 return getUNDEF(VT); 4390 4391 // (ext (trunc x)) -> x 4392 if (OpOpcode == ISD::TRUNCATE) { 4393 SDValue OpOp = Operand.getOperand(0); 4394 if (OpOp.getValueType() == VT) { 4395 transferDbgValues(Operand, OpOp); 4396 return OpOp; 4397 } 4398 } 4399 break; 4400 case ISD::TRUNCATE: 4401 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4402 "Invalid TRUNCATE!"); 4403 assert(VT.isVector() == Operand.getValueType().isVector() && 4404 "TRUNCATE result type type should be vector iff the operand " 4405 "type is vector!"); 4406 if (Operand.getValueType() == VT) return Operand; // noop truncate 4407 assert((!VT.isVector() || 4408 VT.getVectorNumElements() == 4409 Operand.getValueType().getVectorNumElements()) && 4410 "Vector element count mismatch!"); 4411 assert(Operand.getValueType().bitsGT(VT) && 4412 "Invalid truncate node, src < dst!"); 4413 if (OpOpcode == ISD::TRUNCATE) 4414 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4415 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4416 OpOpcode == ISD::ANY_EXTEND) { 4417 // If the source is smaller than the dest, we still need an extend. 4418 if (Operand.getOperand(0).getValueType().getScalarType() 4419 .bitsLT(VT.getScalarType())) 4420 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4421 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4422 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4423 return Operand.getOperand(0); 4424 } 4425 if (OpOpcode == ISD::UNDEF) 4426 return getUNDEF(VT); 4427 break; 4428 case ISD::ANY_EXTEND_VECTOR_INREG: 4429 case ISD::ZERO_EXTEND_VECTOR_INREG: 4430 case ISD::SIGN_EXTEND_VECTOR_INREG: 4431 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4432 assert(Operand.getValueType().bitsLE(VT) && 4433 "The input must be the same size or smaller than the result."); 4434 assert(VT.getVectorNumElements() < 4435 Operand.getValueType().getVectorNumElements() && 4436 "The destination vector type must have fewer lanes than the input."); 4437 break; 4438 case ISD::ABS: 4439 assert(VT.isInteger() && VT == Operand.getValueType() && 4440 "Invalid ABS!"); 4441 if (OpOpcode == ISD::UNDEF) 4442 return getUNDEF(VT); 4443 break; 4444 case ISD::BSWAP: 4445 assert(VT.isInteger() && VT == Operand.getValueType() && 4446 "Invalid BSWAP!"); 4447 assert((VT.getScalarSizeInBits() % 16 == 0) && 4448 "BSWAP types must be a multiple of 16 bits!"); 4449 if (OpOpcode == ISD::UNDEF) 4450 return getUNDEF(VT); 4451 break; 4452 case ISD::BITREVERSE: 4453 assert(VT.isInteger() && VT == Operand.getValueType() && 4454 "Invalid BITREVERSE!"); 4455 if (OpOpcode == ISD::UNDEF) 4456 return getUNDEF(VT); 4457 break; 4458 case ISD::BITCAST: 4459 // Basic sanity checking. 4460 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4461 "Cannot BITCAST between types of different sizes!"); 4462 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4463 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4464 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4465 if (OpOpcode == ISD::UNDEF) 4466 return getUNDEF(VT); 4467 break; 4468 case ISD::SCALAR_TO_VECTOR: 4469 assert(VT.isVector() && !Operand.getValueType().isVector() && 4470 (VT.getVectorElementType() == Operand.getValueType() || 4471 (VT.getVectorElementType().isInteger() && 4472 Operand.getValueType().isInteger() && 4473 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4474 "Illegal SCALAR_TO_VECTOR node!"); 4475 if (OpOpcode == ISD::UNDEF) 4476 return getUNDEF(VT); 4477 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4478 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4479 isa<ConstantSDNode>(Operand.getOperand(1)) && 4480 Operand.getConstantOperandVal(1) == 0 && 4481 Operand.getOperand(0).getValueType() == VT) 4482 return Operand.getOperand(0); 4483 break; 4484 case ISD::FNEG: 4485 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4486 if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) && 4487 OpOpcode == ISD::FSUB) 4488 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4489 Operand.getOperand(0), Flags); 4490 if (OpOpcode == ISD::FNEG) // --X -> X 4491 return Operand.getOperand(0); 4492 break; 4493 case ISD::FABS: 4494 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4495 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4496 break; 4497 } 4498 4499 SDNode *N; 4500 SDVTList VTs = getVTList(VT); 4501 SDValue Ops[] = {Operand}; 4502 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4503 FoldingSetNodeID ID; 4504 AddNodeIDNode(ID, Opcode, VTs, Ops); 4505 void *IP = nullptr; 4506 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4507 E->intersectFlagsWith(Flags); 4508 return SDValue(E, 0); 4509 } 4510 4511 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4512 N->setFlags(Flags); 4513 createOperands(N, Ops); 4514 CSEMap.InsertNode(N, IP); 4515 } else { 4516 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4517 createOperands(N, Ops); 4518 } 4519 4520 InsertNode(N); 4521 SDValue V = SDValue(N, 0); 4522 NewSDValueDbgMsg(V, "Creating new node: ", this); 4523 return V; 4524 } 4525 4526 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4527 const APInt &C2) { 4528 switch (Opcode) { 4529 case ISD::ADD: return std::make_pair(C1 + C2, true); 4530 case ISD::SUB: return std::make_pair(C1 - C2, true); 4531 case ISD::MUL: return std::make_pair(C1 * C2, true); 4532 case ISD::AND: return std::make_pair(C1 & C2, true); 4533 case ISD::OR: return std::make_pair(C1 | C2, true); 4534 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4535 case ISD::SHL: return std::make_pair(C1 << C2, true); 4536 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4537 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4538 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4539 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4540 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4541 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4542 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4543 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4544 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4545 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4546 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4547 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4548 case ISD::UDIV: 4549 if (!C2.getBoolValue()) 4550 break; 4551 return std::make_pair(C1.udiv(C2), true); 4552 case ISD::UREM: 4553 if (!C2.getBoolValue()) 4554 break; 4555 return std::make_pair(C1.urem(C2), true); 4556 case ISD::SDIV: 4557 if (!C2.getBoolValue()) 4558 break; 4559 return std::make_pair(C1.sdiv(C2), true); 4560 case ISD::SREM: 4561 if (!C2.getBoolValue()) 4562 break; 4563 return std::make_pair(C1.srem(C2), true); 4564 } 4565 return std::make_pair(APInt(1, 0), false); 4566 } 4567 4568 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4569 EVT VT, const ConstantSDNode *C1, 4570 const ConstantSDNode *C2) { 4571 if (C1->isOpaque() || C2->isOpaque()) 4572 return SDValue(); 4573 4574 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4575 C2->getAPIntValue()); 4576 if (!Folded.second) 4577 return SDValue(); 4578 return getConstant(Folded.first, DL, VT); 4579 } 4580 4581 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4582 const GlobalAddressSDNode *GA, 4583 const SDNode *N2) { 4584 if (GA->getOpcode() != ISD::GlobalAddress) 4585 return SDValue(); 4586 if (!TLI->isOffsetFoldingLegal(GA)) 4587 return SDValue(); 4588 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4589 if (!C2) 4590 return SDValue(); 4591 int64_t Offset = C2->getSExtValue(); 4592 switch (Opcode) { 4593 case ISD::ADD: break; 4594 case ISD::SUB: Offset = -uint64_t(Offset); break; 4595 default: return SDValue(); 4596 } 4597 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4598 GA->getOffset() + uint64_t(Offset)); 4599 } 4600 4601 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4602 switch (Opcode) { 4603 case ISD::SDIV: 4604 case ISD::UDIV: 4605 case ISD::SREM: 4606 case ISD::UREM: { 4607 // If a divisor is zero/undef or any element of a divisor vector is 4608 // zero/undef, the whole op is undef. 4609 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4610 SDValue Divisor = Ops[1]; 4611 if (Divisor.isUndef() || isNullConstant(Divisor)) 4612 return true; 4613 4614 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4615 llvm::any_of(Divisor->op_values(), 4616 [](SDValue V) { return V.isUndef() || 4617 isNullConstant(V); }); 4618 // TODO: Handle signed overflow. 4619 } 4620 // TODO: Handle oversized shifts. 4621 default: 4622 return false; 4623 } 4624 } 4625 4626 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4627 EVT VT, SDNode *N1, SDNode *N2) { 4628 // If the opcode is a target-specific ISD node, there's nothing we can 4629 // do here and the operand rules may not line up with the below, so 4630 // bail early. 4631 if (Opcode >= ISD::BUILTIN_OP_END) 4632 return SDValue(); 4633 4634 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4635 return getUNDEF(VT); 4636 4637 // Handle the case of two scalars. 4638 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4639 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4640 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4641 assert((!Folded || !VT.isVector()) && 4642 "Can't fold vectors ops with scalar operands"); 4643 return Folded; 4644 } 4645 } 4646 4647 // fold (add Sym, c) -> Sym+c 4648 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4649 return FoldSymbolOffset(Opcode, VT, GA, N2); 4650 if (TLI->isCommutativeBinOp(Opcode)) 4651 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4652 return FoldSymbolOffset(Opcode, VT, GA, N1); 4653 4654 // For vectors, extract each constant element and fold them individually. 4655 // Either input may be an undef value. 4656 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4657 if (!BV1 && !N1->isUndef()) 4658 return SDValue(); 4659 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4660 if (!BV2 && !N2->isUndef()) 4661 return SDValue(); 4662 // If both operands are undef, that's handled the same way as scalars. 4663 if (!BV1 && !BV2) 4664 return SDValue(); 4665 4666 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4667 "Vector binop with different number of elements in operands?"); 4668 4669 EVT SVT = VT.getScalarType(); 4670 EVT LegalSVT = SVT; 4671 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4672 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4673 if (LegalSVT.bitsLT(SVT)) 4674 return SDValue(); 4675 } 4676 SmallVector<SDValue, 4> Outputs; 4677 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4678 for (unsigned I = 0; I != NumOps; ++I) { 4679 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4680 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4681 if (SVT.isInteger()) { 4682 if (V1->getValueType(0).bitsGT(SVT)) 4683 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4684 if (V2->getValueType(0).bitsGT(SVT)) 4685 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4686 } 4687 4688 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4689 return SDValue(); 4690 4691 // Fold one vector element. 4692 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4693 if (LegalSVT != SVT) 4694 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4695 4696 // Scalar folding only succeeded if the result is a constant or UNDEF. 4697 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4698 ScalarResult.getOpcode() != ISD::ConstantFP) 4699 return SDValue(); 4700 Outputs.push_back(ScalarResult); 4701 } 4702 4703 assert(VT.getVectorNumElements() == Outputs.size() && 4704 "Vector size mismatch!"); 4705 4706 // We may have a vector type but a scalar result. Create a splat. 4707 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4708 4709 // Build a big vector out of the scalar elements we generated. 4710 return getBuildVector(VT, SDLoc(), Outputs); 4711 } 4712 4713 // TODO: Merge with FoldConstantArithmetic 4714 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4715 const SDLoc &DL, EVT VT, 4716 ArrayRef<SDValue> Ops, 4717 const SDNodeFlags Flags) { 4718 // If the opcode is a target-specific ISD node, there's nothing we can 4719 // do here and the operand rules may not line up with the below, so 4720 // bail early. 4721 if (Opcode >= ISD::BUILTIN_OP_END) 4722 return SDValue(); 4723 4724 if (isUndef(Opcode, Ops)) 4725 return getUNDEF(VT); 4726 4727 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4728 if (!VT.isVector()) 4729 return SDValue(); 4730 4731 unsigned NumElts = VT.getVectorNumElements(); 4732 4733 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4734 return !Op.getValueType().isVector() || 4735 Op.getValueType().getVectorNumElements() == NumElts; 4736 }; 4737 4738 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4739 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4740 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4741 (BV && BV->isConstant()); 4742 }; 4743 4744 // All operands must be vector types with the same number of elements as 4745 // the result type and must be either UNDEF or a build vector of constant 4746 // or UNDEF scalars. 4747 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4748 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4749 return SDValue(); 4750 4751 // If we are comparing vectors, then the result needs to be a i1 boolean 4752 // that is then sign-extended back to the legal result type. 4753 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4754 4755 // Find legal integer scalar type for constant promotion and 4756 // ensure that its scalar size is at least as large as source. 4757 EVT LegalSVT = VT.getScalarType(); 4758 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4759 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4760 if (LegalSVT.bitsLT(VT.getScalarType())) 4761 return SDValue(); 4762 } 4763 4764 // Constant fold each scalar lane separately. 4765 SmallVector<SDValue, 4> ScalarResults; 4766 for (unsigned i = 0; i != NumElts; i++) { 4767 SmallVector<SDValue, 4> ScalarOps; 4768 for (SDValue Op : Ops) { 4769 EVT InSVT = Op.getValueType().getScalarType(); 4770 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4771 if (!InBV) { 4772 // We've checked that this is UNDEF or a constant of some kind. 4773 if (Op.isUndef()) 4774 ScalarOps.push_back(getUNDEF(InSVT)); 4775 else 4776 ScalarOps.push_back(Op); 4777 continue; 4778 } 4779 4780 SDValue ScalarOp = InBV->getOperand(i); 4781 EVT ScalarVT = ScalarOp.getValueType(); 4782 4783 // Build vector (integer) scalar operands may need implicit 4784 // truncation - do this before constant folding. 4785 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4786 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4787 4788 ScalarOps.push_back(ScalarOp); 4789 } 4790 4791 // Constant fold the scalar operands. 4792 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4793 4794 // Legalize the (integer) scalar constant if necessary. 4795 if (LegalSVT != SVT) 4796 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4797 4798 // Scalar folding only succeeded if the result is a constant or UNDEF. 4799 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4800 ScalarResult.getOpcode() != ISD::ConstantFP) 4801 return SDValue(); 4802 ScalarResults.push_back(ScalarResult); 4803 } 4804 4805 SDValue V = getBuildVector(VT, DL, ScalarResults); 4806 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4807 return V; 4808 } 4809 4810 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4811 EVT VT, SDValue N1, SDValue N2) { 4812 // TODO: We don't do any constant folding for strict FP opcodes here, but we 4813 // should. That will require dealing with a potentially non-default 4814 // rounding mode, checking the "opStatus" return value from the APFloat 4815 // math calculations, and possibly other variations. 4816 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4817 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4818 if (N1CFP && N2CFP) { 4819 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 4820 switch (Opcode) { 4821 case ISD::FADD: 4822 C1.add(C2, APFloat::rmNearestTiesToEven); 4823 return getConstantFP(C1, DL, VT); 4824 case ISD::FSUB: 4825 C1.subtract(C2, APFloat::rmNearestTiesToEven); 4826 return getConstantFP(C1, DL, VT); 4827 case ISD::FMUL: 4828 C1.multiply(C2, APFloat::rmNearestTiesToEven); 4829 return getConstantFP(C1, DL, VT); 4830 case ISD::FDIV: 4831 C1.divide(C2, APFloat::rmNearestTiesToEven); 4832 return getConstantFP(C1, DL, VT); 4833 case ISD::FREM: 4834 C1.mod(C2); 4835 return getConstantFP(C1, DL, VT); 4836 case ISD::FCOPYSIGN: 4837 C1.copySign(C2); 4838 return getConstantFP(C1, DL, VT); 4839 default: break; 4840 } 4841 } 4842 if (N1CFP && Opcode == ISD::FP_ROUND) { 4843 APFloat C1 = N1CFP->getValueAPF(); // make copy 4844 bool Unused; 4845 // This can return overflow, underflow, or inexact; we don't care. 4846 // FIXME need to be more flexible about rounding mode. 4847 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 4848 &Unused); 4849 return getConstantFP(C1, DL, VT); 4850 } 4851 4852 switch (Opcode) { 4853 case ISD::FADD: 4854 case ISD::FSUB: 4855 case ISD::FMUL: 4856 case ISD::FDIV: 4857 case ISD::FREM: 4858 // If both operands are undef, the result is undef. If 1 operand is undef, 4859 // the result is NaN. This should match the behavior of the IR optimizer. 4860 if (N1.isUndef() && N2.isUndef()) 4861 return getUNDEF(VT); 4862 if (N1.isUndef() || N2.isUndef()) 4863 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 4864 } 4865 return SDValue(); 4866 } 4867 4868 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4869 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4870 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4871 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4872 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4873 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4874 4875 // Canonicalize constant to RHS if commutative. 4876 if (TLI->isCommutativeBinOp(Opcode)) { 4877 if (N1C && !N2C) { 4878 std::swap(N1C, N2C); 4879 std::swap(N1, N2); 4880 } else if (N1CFP && !N2CFP) { 4881 std::swap(N1CFP, N2CFP); 4882 std::swap(N1, N2); 4883 } 4884 } 4885 4886 switch (Opcode) { 4887 default: break; 4888 case ISD::TokenFactor: 4889 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4890 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4891 // Fold trivial token factors. 4892 if (N1.getOpcode() == ISD::EntryToken) return N2; 4893 if (N2.getOpcode() == ISD::EntryToken) return N1; 4894 if (N1 == N2) return N1; 4895 break; 4896 case ISD::BUILD_VECTOR: { 4897 // Attempt to simplify BUILD_VECTOR. 4898 SDValue Ops[] = {N1, N2}; 4899 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4900 return V; 4901 break; 4902 } 4903 case ISD::CONCAT_VECTORS: { 4904 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4905 SDValue Ops[] = {N1, N2}; 4906 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4907 return V; 4908 break; 4909 } 4910 case ISD::AND: 4911 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4912 assert(N1.getValueType() == N2.getValueType() && 4913 N1.getValueType() == VT && "Binary operator types must match!"); 4914 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4915 // worth handling here. 4916 if (N2C && N2C->isNullValue()) 4917 return N2; 4918 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4919 return N1; 4920 break; 4921 case ISD::OR: 4922 case ISD::XOR: 4923 case ISD::ADD: 4924 case ISD::SUB: 4925 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4926 assert(N1.getValueType() == N2.getValueType() && 4927 N1.getValueType() == VT && "Binary operator types must match!"); 4928 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4929 // it's worth handling here. 4930 if (N2C && N2C->isNullValue()) 4931 return N1; 4932 break; 4933 case ISD::UDIV: 4934 case ISD::UREM: 4935 case ISD::MULHU: 4936 case ISD::MULHS: 4937 case ISD::MUL: 4938 case ISD::SDIV: 4939 case ISD::SREM: 4940 case ISD::SMIN: 4941 case ISD::SMAX: 4942 case ISD::UMIN: 4943 case ISD::UMAX: 4944 case ISD::SADDSAT: 4945 case ISD::SSUBSAT: 4946 case ISD::UADDSAT: 4947 case ISD::USUBSAT: 4948 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4949 assert(N1.getValueType() == N2.getValueType() && 4950 N1.getValueType() == VT && "Binary operator types must match!"); 4951 break; 4952 case ISD::FADD: 4953 case ISD::FSUB: 4954 case ISD::FMUL: 4955 case ISD::FDIV: 4956 case ISD::FREM: 4957 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4958 assert(N1.getValueType() == N2.getValueType() && 4959 N1.getValueType() == VT && "Binary operator types must match!"); 4960 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 4961 return V; 4962 break; 4963 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4964 assert(N1.getValueType() == VT && 4965 N1.getValueType().isFloatingPoint() && 4966 N2.getValueType().isFloatingPoint() && 4967 "Invalid FCOPYSIGN!"); 4968 break; 4969 case ISD::SHL: 4970 case ISD::SRA: 4971 case ISD::SRL: 4972 if (SDValue V = simplifyShift(N1, N2)) 4973 return V; 4974 LLVM_FALLTHROUGH; 4975 case ISD::ROTL: 4976 case ISD::ROTR: 4977 assert(VT == N1.getValueType() && 4978 "Shift operators return type must be the same as their first arg"); 4979 assert(VT.isInteger() && N2.getValueType().isInteger() && 4980 "Shifts only work on integers"); 4981 assert((!VT.isVector() || VT == N2.getValueType()) && 4982 "Vector shift amounts must be in the same as their first arg"); 4983 // Verify that the shift amount VT is big enough to hold valid shift 4984 // amounts. This catches things like trying to shift an i1024 value by an 4985 // i8, which is easy to fall into in generic code that uses 4986 // TLI.getShiftAmount(). 4987 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4988 "Invalid use of small shift amount with oversized value!"); 4989 4990 // Always fold shifts of i1 values so the code generator doesn't need to 4991 // handle them. Since we know the size of the shift has to be less than the 4992 // size of the value, the shift/rotate count is guaranteed to be zero. 4993 if (VT == MVT::i1) 4994 return N1; 4995 if (N2C && N2C->isNullValue()) 4996 return N1; 4997 break; 4998 case ISD::FP_ROUND_INREG: { 4999 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5000 assert(VT == N1.getValueType() && "Not an inreg round!"); 5001 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 5002 "Cannot FP_ROUND_INREG integer types"); 5003 assert(EVT.isVector() == VT.isVector() && 5004 "FP_ROUND_INREG type should be vector iff the operand " 5005 "type is vector!"); 5006 assert((!EVT.isVector() || 5007 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5008 "Vector element counts must match in FP_ROUND_INREG"); 5009 assert(EVT.bitsLE(VT) && "Not rounding down!"); 5010 (void)EVT; 5011 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 5012 break; 5013 } 5014 case ISD::FP_ROUND: 5015 assert(VT.isFloatingPoint() && 5016 N1.getValueType().isFloatingPoint() && 5017 VT.bitsLE(N1.getValueType()) && 5018 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5019 "Invalid FP_ROUND!"); 5020 if (N1.getValueType() == VT) return N1; // noop conversion. 5021 break; 5022 case ISD::AssertSext: 5023 case ISD::AssertZext: { 5024 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5025 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5026 assert(VT.isInteger() && EVT.isInteger() && 5027 "Cannot *_EXTEND_INREG FP types"); 5028 assert(!EVT.isVector() && 5029 "AssertSExt/AssertZExt type should be the vector element type " 5030 "rather than the vector type!"); 5031 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5032 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5033 break; 5034 } 5035 case ISD::SIGN_EXTEND_INREG: { 5036 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5037 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5038 assert(VT.isInteger() && EVT.isInteger() && 5039 "Cannot *_EXTEND_INREG FP types"); 5040 assert(EVT.isVector() == VT.isVector() && 5041 "SIGN_EXTEND_INREG type should be vector iff the operand " 5042 "type is vector!"); 5043 assert((!EVT.isVector() || 5044 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5045 "Vector element counts must match in SIGN_EXTEND_INREG"); 5046 assert(EVT.bitsLE(VT) && "Not extending!"); 5047 if (EVT == VT) return N1; // Not actually extending 5048 5049 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5050 unsigned FromBits = EVT.getScalarSizeInBits(); 5051 Val <<= Val.getBitWidth() - FromBits; 5052 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5053 return getConstant(Val, DL, ConstantVT); 5054 }; 5055 5056 if (N1C) { 5057 const APInt &Val = N1C->getAPIntValue(); 5058 return SignExtendInReg(Val, VT); 5059 } 5060 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5061 SmallVector<SDValue, 8> Ops; 5062 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5063 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5064 SDValue Op = N1.getOperand(i); 5065 if (Op.isUndef()) { 5066 Ops.push_back(getUNDEF(OpVT)); 5067 continue; 5068 } 5069 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5070 APInt Val = C->getAPIntValue(); 5071 Ops.push_back(SignExtendInReg(Val, OpVT)); 5072 } 5073 return getBuildVector(VT, DL, Ops); 5074 } 5075 break; 5076 } 5077 case ISD::EXTRACT_VECTOR_ELT: 5078 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5079 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5080 element type of the vector."); 5081 5082 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 5083 if (N1.isUndef()) 5084 return getUNDEF(VT); 5085 5086 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5087 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5088 return getUNDEF(VT); 5089 5090 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5091 // expanding copies of large vectors from registers. 5092 if (N2C && 5093 N1.getOpcode() == ISD::CONCAT_VECTORS && 5094 N1.getNumOperands() > 0) { 5095 unsigned Factor = 5096 N1.getOperand(0).getValueType().getVectorNumElements(); 5097 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5098 N1.getOperand(N2C->getZExtValue() / Factor), 5099 getConstant(N2C->getZExtValue() % Factor, DL, 5100 N2.getValueType())); 5101 } 5102 5103 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5104 // expanding large vector constants. 5105 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5106 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5107 5108 if (VT != Elt.getValueType()) 5109 // If the vector element type is not legal, the BUILD_VECTOR operands 5110 // are promoted and implicitly truncated, and the result implicitly 5111 // extended. Make that explicit here. 5112 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5113 5114 return Elt; 5115 } 5116 5117 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5118 // operations are lowered to scalars. 5119 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5120 // If the indices are the same, return the inserted element else 5121 // if the indices are known different, extract the element from 5122 // the original vector. 5123 SDValue N1Op2 = N1.getOperand(2); 5124 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5125 5126 if (N1Op2C && N2C) { 5127 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5128 if (VT == N1.getOperand(1).getValueType()) 5129 return N1.getOperand(1); 5130 else 5131 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5132 } 5133 5134 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5135 } 5136 } 5137 5138 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5139 // when vector types are scalarized and v1iX is legal. 5140 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5141 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5142 N1.getValueType().getVectorNumElements() == 1) { 5143 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5144 N1.getOperand(1)); 5145 } 5146 break; 5147 case ISD::EXTRACT_ELEMENT: 5148 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5149 assert(!N1.getValueType().isVector() && !VT.isVector() && 5150 (N1.getValueType().isInteger() == VT.isInteger()) && 5151 N1.getValueType() != VT && 5152 "Wrong types for EXTRACT_ELEMENT!"); 5153 5154 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5155 // 64-bit integers into 32-bit parts. Instead of building the extract of 5156 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5157 if (N1.getOpcode() == ISD::BUILD_PAIR) 5158 return N1.getOperand(N2C->getZExtValue()); 5159 5160 // EXTRACT_ELEMENT of a constant int is also very common. 5161 if (N1C) { 5162 unsigned ElementSize = VT.getSizeInBits(); 5163 unsigned Shift = ElementSize * N2C->getZExtValue(); 5164 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5165 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5166 } 5167 break; 5168 case ISD::EXTRACT_SUBVECTOR: 5169 if (VT.isSimple() && N1.getValueType().isSimple()) { 5170 assert(VT.isVector() && N1.getValueType().isVector() && 5171 "Extract subvector VTs must be a vectors!"); 5172 assert(VT.getVectorElementType() == 5173 N1.getValueType().getVectorElementType() && 5174 "Extract subvector VTs must have the same element type!"); 5175 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5176 "Extract subvector must be from larger vector to smaller vector!"); 5177 5178 if (N2C) { 5179 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5180 <= N1.getValueType().getVectorNumElements()) 5181 && "Extract subvector overflow!"); 5182 } 5183 5184 // Trivial extraction. 5185 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5186 return N1; 5187 5188 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5189 if (N1.isUndef()) 5190 return getUNDEF(VT); 5191 5192 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5193 // the concat have the same type as the extract. 5194 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5195 N1.getNumOperands() > 0 && 5196 VT == N1.getOperand(0).getValueType()) { 5197 unsigned Factor = VT.getVectorNumElements(); 5198 return N1.getOperand(N2C->getZExtValue() / Factor); 5199 } 5200 5201 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5202 // during shuffle legalization. 5203 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5204 VT == N1.getOperand(1).getValueType()) 5205 return N1.getOperand(1); 5206 } 5207 break; 5208 } 5209 5210 // Perform trivial constant folding. 5211 if (SDValue SV = 5212 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5213 return SV; 5214 5215 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5216 return V; 5217 5218 // Canonicalize an UNDEF to the RHS, even over a constant. 5219 if (N1.isUndef()) { 5220 if (TLI->isCommutativeBinOp(Opcode)) { 5221 std::swap(N1, N2); 5222 } else { 5223 switch (Opcode) { 5224 case ISD::FP_ROUND_INREG: 5225 case ISD::SIGN_EXTEND_INREG: 5226 case ISD::SUB: 5227 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5228 case ISD::UDIV: 5229 case ISD::SDIV: 5230 case ISD::UREM: 5231 case ISD::SREM: 5232 case ISD::SSUBSAT: 5233 case ISD::USUBSAT: 5234 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5235 } 5236 } 5237 } 5238 5239 // Fold a bunch of operators when the RHS is undef. 5240 if (N2.isUndef()) { 5241 switch (Opcode) { 5242 case ISD::XOR: 5243 if (N1.isUndef()) 5244 // Handle undef ^ undef -> 0 special case. This is a common 5245 // idiom (misuse). 5246 return getConstant(0, DL, VT); 5247 LLVM_FALLTHROUGH; 5248 case ISD::ADD: 5249 case ISD::SUB: 5250 case ISD::UDIV: 5251 case ISD::SDIV: 5252 case ISD::UREM: 5253 case ISD::SREM: 5254 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5255 case ISD::MUL: 5256 case ISD::AND: 5257 case ISD::SSUBSAT: 5258 case ISD::USUBSAT: 5259 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5260 case ISD::OR: 5261 case ISD::SADDSAT: 5262 case ISD::UADDSAT: 5263 return getAllOnesConstant(DL, VT); 5264 } 5265 } 5266 5267 // Memoize this node if possible. 5268 SDNode *N; 5269 SDVTList VTs = getVTList(VT); 5270 SDValue Ops[] = {N1, N2}; 5271 if (VT != MVT::Glue) { 5272 FoldingSetNodeID ID; 5273 AddNodeIDNode(ID, Opcode, VTs, Ops); 5274 void *IP = nullptr; 5275 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5276 E->intersectFlagsWith(Flags); 5277 return SDValue(E, 0); 5278 } 5279 5280 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5281 N->setFlags(Flags); 5282 createOperands(N, Ops); 5283 CSEMap.InsertNode(N, IP); 5284 } else { 5285 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5286 createOperands(N, Ops); 5287 } 5288 5289 InsertNode(N); 5290 SDValue V = SDValue(N, 0); 5291 NewSDValueDbgMsg(V, "Creating new node: ", this); 5292 return V; 5293 } 5294 5295 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5296 SDValue N1, SDValue N2, SDValue N3, 5297 const SDNodeFlags Flags) { 5298 // Perform various simplifications. 5299 switch (Opcode) { 5300 case ISD::FMA: { 5301 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5302 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5303 N3.getValueType() == VT && "FMA types must match!"); 5304 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5305 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5306 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5307 if (N1CFP && N2CFP && N3CFP) { 5308 APFloat V1 = N1CFP->getValueAPF(); 5309 const APFloat &V2 = N2CFP->getValueAPF(); 5310 const APFloat &V3 = N3CFP->getValueAPF(); 5311 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5312 return getConstantFP(V1, DL, VT); 5313 } 5314 break; 5315 } 5316 case ISD::BUILD_VECTOR: { 5317 // Attempt to simplify BUILD_VECTOR. 5318 SDValue Ops[] = {N1, N2, N3}; 5319 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5320 return V; 5321 break; 5322 } 5323 case ISD::CONCAT_VECTORS: { 5324 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5325 SDValue Ops[] = {N1, N2, N3}; 5326 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5327 return V; 5328 break; 5329 } 5330 case ISD::SETCC: { 5331 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5332 assert(N1.getValueType() == N2.getValueType() && 5333 "SETCC operands must have the same type!"); 5334 assert(VT.isVector() == N1.getValueType().isVector() && 5335 "SETCC type should be vector iff the operand type is vector!"); 5336 assert((!VT.isVector() || 5337 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5338 "SETCC vector element counts must match!"); 5339 // Use FoldSetCC to simplify SETCC's. 5340 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5341 return V; 5342 // Vector constant folding. 5343 SDValue Ops[] = {N1, N2, N3}; 5344 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5345 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5346 return V; 5347 } 5348 break; 5349 } 5350 case ISD::SELECT: 5351 case ISD::VSELECT: 5352 if (SDValue V = simplifySelect(N1, N2, N3)) 5353 return V; 5354 break; 5355 case ISD::VECTOR_SHUFFLE: 5356 llvm_unreachable("should use getVectorShuffle constructor!"); 5357 case ISD::INSERT_VECTOR_ELT: { 5358 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5359 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5360 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5361 return getUNDEF(VT); 5362 break; 5363 } 5364 case ISD::INSERT_SUBVECTOR: { 5365 SDValue Index = N3; 5366 if (VT.isSimple() && N1.getValueType().isSimple() 5367 && N2.getValueType().isSimple()) { 5368 assert(VT.isVector() && N1.getValueType().isVector() && 5369 N2.getValueType().isVector() && 5370 "Insert subvector VTs must be a vectors"); 5371 assert(VT == N1.getValueType() && 5372 "Dest and insert subvector source types must match!"); 5373 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5374 "Insert subvector must be from smaller vector to larger vector!"); 5375 if (isa<ConstantSDNode>(Index)) { 5376 assert((N2.getValueType().getVectorNumElements() + 5377 cast<ConstantSDNode>(Index)->getZExtValue() 5378 <= VT.getVectorNumElements()) 5379 && "Insert subvector overflow!"); 5380 } 5381 5382 // Trivial insertion. 5383 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5384 return N2; 5385 } 5386 break; 5387 } 5388 case ISD::BITCAST: 5389 // Fold bit_convert nodes from a type to themselves. 5390 if (N1.getValueType() == VT) 5391 return N1; 5392 break; 5393 } 5394 5395 // Memoize node if it doesn't produce a flag. 5396 SDNode *N; 5397 SDVTList VTs = getVTList(VT); 5398 SDValue Ops[] = {N1, N2, N3}; 5399 if (VT != MVT::Glue) { 5400 FoldingSetNodeID ID; 5401 AddNodeIDNode(ID, Opcode, VTs, Ops); 5402 void *IP = nullptr; 5403 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5404 E->intersectFlagsWith(Flags); 5405 return SDValue(E, 0); 5406 } 5407 5408 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5409 N->setFlags(Flags); 5410 createOperands(N, Ops); 5411 CSEMap.InsertNode(N, IP); 5412 } else { 5413 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5414 createOperands(N, Ops); 5415 } 5416 5417 InsertNode(N); 5418 SDValue V = SDValue(N, 0); 5419 NewSDValueDbgMsg(V, "Creating new node: ", this); 5420 return V; 5421 } 5422 5423 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5424 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5425 SDValue Ops[] = { N1, N2, N3, N4 }; 5426 return getNode(Opcode, DL, VT, Ops); 5427 } 5428 5429 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5430 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5431 SDValue N5) { 5432 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5433 return getNode(Opcode, DL, VT, Ops); 5434 } 5435 5436 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5437 /// the incoming stack arguments to be loaded from the stack. 5438 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5439 SmallVector<SDValue, 8> ArgChains; 5440 5441 // Include the original chain at the beginning of the list. When this is 5442 // used by target LowerCall hooks, this helps legalize find the 5443 // CALLSEQ_BEGIN node. 5444 ArgChains.push_back(Chain); 5445 5446 // Add a chain value for each stack argument. 5447 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5448 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5449 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5450 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5451 if (FI->getIndex() < 0) 5452 ArgChains.push_back(SDValue(L, 1)); 5453 5454 // Build a tokenfactor for all the chains. 5455 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5456 } 5457 5458 /// getMemsetValue - Vectorized representation of the memset value 5459 /// operand. 5460 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5461 const SDLoc &dl) { 5462 assert(!Value.isUndef()); 5463 5464 unsigned NumBits = VT.getScalarSizeInBits(); 5465 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5466 assert(C->getAPIntValue().getBitWidth() == 8); 5467 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5468 if (VT.isInteger()) { 5469 bool IsOpaque = VT.getSizeInBits() > 64 || 5470 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5471 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5472 } 5473 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5474 VT); 5475 } 5476 5477 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5478 EVT IntVT = VT.getScalarType(); 5479 if (!IntVT.isInteger()) 5480 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5481 5482 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5483 if (NumBits > 8) { 5484 // Use a multiplication with 0x010101... to extend the input to the 5485 // required length. 5486 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5487 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5488 DAG.getConstant(Magic, dl, IntVT)); 5489 } 5490 5491 if (VT != Value.getValueType() && !VT.isInteger()) 5492 Value = DAG.getBitcast(VT.getScalarType(), Value); 5493 if (VT != Value.getValueType()) 5494 Value = DAG.getSplatBuildVector(VT, dl, Value); 5495 5496 return Value; 5497 } 5498 5499 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5500 /// used when a memcpy is turned into a memset when the source is a constant 5501 /// string ptr. 5502 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5503 const TargetLowering &TLI, 5504 const ConstantDataArraySlice &Slice) { 5505 // Handle vector with all elements zero. 5506 if (Slice.Array == nullptr) { 5507 if (VT.isInteger()) 5508 return DAG.getConstant(0, dl, VT); 5509 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5510 return DAG.getConstantFP(0.0, dl, VT); 5511 else if (VT.isVector()) { 5512 unsigned NumElts = VT.getVectorNumElements(); 5513 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5514 return DAG.getNode(ISD::BITCAST, dl, VT, 5515 DAG.getConstant(0, dl, 5516 EVT::getVectorVT(*DAG.getContext(), 5517 EltVT, NumElts))); 5518 } else 5519 llvm_unreachable("Expected type!"); 5520 } 5521 5522 assert(!VT.isVector() && "Can't handle vector type here!"); 5523 unsigned NumVTBits = VT.getSizeInBits(); 5524 unsigned NumVTBytes = NumVTBits / 8; 5525 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5526 5527 APInt Val(NumVTBits, 0); 5528 if (DAG.getDataLayout().isLittleEndian()) { 5529 for (unsigned i = 0; i != NumBytes; ++i) 5530 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5531 } else { 5532 for (unsigned i = 0; i != NumBytes; ++i) 5533 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5534 } 5535 5536 // If the "cost" of materializing the integer immediate is less than the cost 5537 // of a load, then it is cost effective to turn the load into the immediate. 5538 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5539 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5540 return DAG.getConstant(Val, dl, VT); 5541 return SDValue(nullptr, 0); 5542 } 5543 5544 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5545 const SDLoc &DL) { 5546 EVT VT = Base.getValueType(); 5547 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5548 } 5549 5550 /// Returns true if memcpy source is constant data. 5551 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5552 uint64_t SrcDelta = 0; 5553 GlobalAddressSDNode *G = nullptr; 5554 if (Src.getOpcode() == ISD::GlobalAddress) 5555 G = cast<GlobalAddressSDNode>(Src); 5556 else if (Src.getOpcode() == ISD::ADD && 5557 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5558 Src.getOperand(1).getOpcode() == ISD::Constant) { 5559 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5560 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5561 } 5562 if (!G) 5563 return false; 5564 5565 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5566 SrcDelta + G->getOffset()); 5567 } 5568 5569 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5570 // On Darwin, -Os means optimize for size without hurting performance, so 5571 // only really optimize for size when -Oz (MinSize) is used. 5572 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5573 return MF.getFunction().hasMinSize(); 5574 return MF.getFunction().hasOptSize(); 5575 } 5576 5577 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5578 SmallVector<SDValue, 32> &OutChains, unsigned From, 5579 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5580 SmallVector<SDValue, 16> &OutStoreChains) { 5581 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5582 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5583 SmallVector<SDValue, 16> GluedLoadChains; 5584 for (unsigned i = From; i < To; ++i) { 5585 OutChains.push_back(OutLoadChains[i]); 5586 GluedLoadChains.push_back(OutLoadChains[i]); 5587 } 5588 5589 // Chain for all loads. 5590 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5591 GluedLoadChains); 5592 5593 for (unsigned i = From; i < To; ++i) { 5594 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5595 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5596 ST->getBasePtr(), ST->getMemoryVT(), 5597 ST->getMemOperand()); 5598 OutChains.push_back(NewStore); 5599 } 5600 } 5601 5602 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5603 SDValue Chain, SDValue Dst, SDValue Src, 5604 uint64_t Size, unsigned Align, 5605 bool isVol, bool AlwaysInline, 5606 MachinePointerInfo DstPtrInfo, 5607 MachinePointerInfo SrcPtrInfo) { 5608 // Turn a memcpy of undef to nop. 5609 if (Src.isUndef()) 5610 return Chain; 5611 5612 // Expand memcpy to a series of load and store ops if the size operand falls 5613 // below a certain threshold. 5614 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5615 // rather than maybe a humongous number of loads and stores. 5616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5617 const DataLayout &DL = DAG.getDataLayout(); 5618 LLVMContext &C = *DAG.getContext(); 5619 std::vector<EVT> MemOps; 5620 bool DstAlignCanChange = false; 5621 MachineFunction &MF = DAG.getMachineFunction(); 5622 MachineFrameInfo &MFI = MF.getFrameInfo(); 5623 bool OptSize = shouldLowerMemFuncForSize(MF); 5624 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5625 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5626 DstAlignCanChange = true; 5627 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5628 if (Align > SrcAlign) 5629 SrcAlign = Align; 5630 ConstantDataArraySlice Slice; 5631 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5632 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5633 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5634 5635 if (!TLI.findOptimalMemOpLowering(MemOps, Limit, Size, 5636 (DstAlignCanChange ? 0 : Align), 5637 (isZeroConstant ? 0 : SrcAlign), 5638 false, false, CopyFromConstant, true, 5639 DstPtrInfo.getAddrSpace(), 5640 SrcPtrInfo.getAddrSpace(), 5641 MF.getFunction().getAttributes())) 5642 return SDValue(); 5643 5644 if (DstAlignCanChange) { 5645 Type *Ty = MemOps[0].getTypeForEVT(C); 5646 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5647 5648 // Don't promote to an alignment that would require dynamic stack 5649 // realignment. 5650 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5651 if (!TRI->needsStackRealignment(MF)) 5652 while (NewAlign > Align && 5653 DL.exceedsNaturalStackAlignment(NewAlign)) 5654 NewAlign /= 2; 5655 5656 if (NewAlign > Align) { 5657 // Give the stack frame object a larger alignment if needed. 5658 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5659 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5660 Align = NewAlign; 5661 } 5662 } 5663 5664 MachineMemOperand::Flags MMOFlags = 5665 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5666 SmallVector<SDValue, 16> OutLoadChains; 5667 SmallVector<SDValue, 16> OutStoreChains; 5668 SmallVector<SDValue, 32> OutChains; 5669 unsigned NumMemOps = MemOps.size(); 5670 uint64_t SrcOff = 0, DstOff = 0; 5671 for (unsigned i = 0; i != NumMemOps; ++i) { 5672 EVT VT = MemOps[i]; 5673 unsigned VTSize = VT.getSizeInBits() / 8; 5674 SDValue Value, Store; 5675 5676 if (VTSize > Size) { 5677 // Issuing an unaligned load / store pair that overlaps with the previous 5678 // pair. Adjust the offset accordingly. 5679 assert(i == NumMemOps-1 && i != 0); 5680 SrcOff -= VTSize - Size; 5681 DstOff -= VTSize - Size; 5682 } 5683 5684 if (CopyFromConstant && 5685 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5686 // It's unlikely a store of a vector immediate can be done in a single 5687 // instruction. It would require a load from a constantpool first. 5688 // We only handle zero vectors here. 5689 // FIXME: Handle other cases where store of vector immediate is done in 5690 // a single instruction. 5691 ConstantDataArraySlice SubSlice; 5692 if (SrcOff < Slice.Length) { 5693 SubSlice = Slice; 5694 SubSlice.move(SrcOff); 5695 } else { 5696 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5697 SubSlice.Array = nullptr; 5698 SubSlice.Offset = 0; 5699 SubSlice.Length = VTSize; 5700 } 5701 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5702 if (Value.getNode()) { 5703 Store = DAG.getStore(Chain, dl, Value, 5704 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5705 DstPtrInfo.getWithOffset(DstOff), Align, 5706 MMOFlags); 5707 OutChains.push_back(Store); 5708 } 5709 } 5710 5711 if (!Store.getNode()) { 5712 // The type might not be legal for the target. This should only happen 5713 // if the type is smaller than a legal type, as on PPC, so the right 5714 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5715 // to Load/Store if NVT==VT. 5716 // FIXME does the case above also need this? 5717 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5718 assert(NVT.bitsGE(VT)); 5719 5720 bool isDereferenceable = 5721 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5722 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5723 if (isDereferenceable) 5724 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5725 5726 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5727 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5728 SrcPtrInfo.getWithOffset(SrcOff), VT, 5729 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5730 OutLoadChains.push_back(Value.getValue(1)); 5731 5732 Store = DAG.getTruncStore( 5733 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5734 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5735 OutStoreChains.push_back(Store); 5736 } 5737 SrcOff += VTSize; 5738 DstOff += VTSize; 5739 Size -= VTSize; 5740 } 5741 5742 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5743 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5744 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5745 5746 if (NumLdStInMemcpy) { 5747 // It may be that memcpy might be converted to memset if it's memcpy 5748 // of constants. In such a case, we won't have loads and stores, but 5749 // just stores. In the absence of loads, there is nothing to gang up. 5750 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5751 // If target does not care, just leave as it. 5752 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5753 OutChains.push_back(OutLoadChains[i]); 5754 OutChains.push_back(OutStoreChains[i]); 5755 } 5756 } else { 5757 // Ld/St less than/equal limit set by target. 5758 if (NumLdStInMemcpy <= GluedLdStLimit) { 5759 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5760 NumLdStInMemcpy, OutLoadChains, 5761 OutStoreChains); 5762 } else { 5763 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5764 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5765 unsigned GlueIter = 0; 5766 5767 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5768 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5769 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5770 5771 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5772 OutLoadChains, OutStoreChains); 5773 GlueIter += GluedLdStLimit; 5774 } 5775 5776 // Residual ld/st. 5777 if (RemainingLdStInMemcpy) { 5778 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5779 RemainingLdStInMemcpy, OutLoadChains, 5780 OutStoreChains); 5781 } 5782 } 5783 } 5784 } 5785 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5786 } 5787 5788 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5789 SDValue Chain, SDValue Dst, SDValue Src, 5790 uint64_t Size, unsigned Align, 5791 bool isVol, bool AlwaysInline, 5792 MachinePointerInfo DstPtrInfo, 5793 MachinePointerInfo SrcPtrInfo) { 5794 // Turn a memmove of undef to nop. 5795 if (Src.isUndef()) 5796 return Chain; 5797 5798 // Expand memmove to a series of load and store ops if the size operand falls 5799 // below a certain threshold. 5800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5801 const DataLayout &DL = DAG.getDataLayout(); 5802 LLVMContext &C = *DAG.getContext(); 5803 std::vector<EVT> MemOps; 5804 bool DstAlignCanChange = false; 5805 MachineFunction &MF = DAG.getMachineFunction(); 5806 MachineFrameInfo &MFI = MF.getFrameInfo(); 5807 bool OptSize = shouldLowerMemFuncForSize(MF); 5808 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5809 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5810 DstAlignCanChange = true; 5811 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5812 if (Align > SrcAlign) 5813 SrcAlign = Align; 5814 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5815 5816 if (!TLI.findOptimalMemOpLowering(MemOps, Limit, Size, 5817 (DstAlignCanChange ? 0 : Align), SrcAlign, 5818 false, false, false, false, 5819 DstPtrInfo.getAddrSpace(), 5820 SrcPtrInfo.getAddrSpace(), 5821 MF.getFunction().getAttributes())) 5822 return SDValue(); 5823 5824 if (DstAlignCanChange) { 5825 Type *Ty = MemOps[0].getTypeForEVT(C); 5826 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5827 if (NewAlign > Align) { 5828 // Give the stack frame object a larger alignment if needed. 5829 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5830 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5831 Align = NewAlign; 5832 } 5833 } 5834 5835 MachineMemOperand::Flags MMOFlags = 5836 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5837 uint64_t SrcOff = 0, DstOff = 0; 5838 SmallVector<SDValue, 8> LoadValues; 5839 SmallVector<SDValue, 8> LoadChains; 5840 SmallVector<SDValue, 8> OutChains; 5841 unsigned NumMemOps = MemOps.size(); 5842 for (unsigned i = 0; i < NumMemOps; i++) { 5843 EVT VT = MemOps[i]; 5844 unsigned VTSize = VT.getSizeInBits() / 8; 5845 SDValue Value; 5846 5847 bool isDereferenceable = 5848 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5849 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5850 if (isDereferenceable) 5851 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5852 5853 Value = 5854 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5855 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5856 LoadValues.push_back(Value); 5857 LoadChains.push_back(Value.getValue(1)); 5858 SrcOff += VTSize; 5859 } 5860 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5861 OutChains.clear(); 5862 for (unsigned i = 0; i < NumMemOps; i++) { 5863 EVT VT = MemOps[i]; 5864 unsigned VTSize = VT.getSizeInBits() / 8; 5865 SDValue Store; 5866 5867 Store = DAG.getStore(Chain, dl, LoadValues[i], 5868 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5869 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5870 OutChains.push_back(Store); 5871 DstOff += VTSize; 5872 } 5873 5874 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5875 } 5876 5877 /// Lower the call to 'memset' intrinsic function into a series of store 5878 /// operations. 5879 /// 5880 /// \param DAG Selection DAG where lowered code is placed. 5881 /// \param dl Link to corresponding IR location. 5882 /// \param Chain Control flow dependency. 5883 /// \param Dst Pointer to destination memory location. 5884 /// \param Src Value of byte to write into the memory. 5885 /// \param Size Number of bytes to write. 5886 /// \param Align Alignment of the destination in bytes. 5887 /// \param isVol True if destination is volatile. 5888 /// \param DstPtrInfo IR information on the memory pointer. 5889 /// \returns New head in the control flow, if lowering was successful, empty 5890 /// SDValue otherwise. 5891 /// 5892 /// The function tries to replace 'llvm.memset' intrinsic with several store 5893 /// operations and value calculation code. This is usually profitable for small 5894 /// memory size. 5895 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5896 SDValue Chain, SDValue Dst, SDValue Src, 5897 uint64_t Size, unsigned Align, bool isVol, 5898 MachinePointerInfo DstPtrInfo) { 5899 // Turn a memset of undef to nop. 5900 if (Src.isUndef()) 5901 return Chain; 5902 5903 // Expand memset to a series of load/store ops if the size operand 5904 // falls below a certain threshold. 5905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5906 std::vector<EVT> MemOps; 5907 bool DstAlignCanChange = false; 5908 MachineFunction &MF = DAG.getMachineFunction(); 5909 MachineFrameInfo &MFI = MF.getFrameInfo(); 5910 bool OptSize = shouldLowerMemFuncForSize(MF); 5911 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5912 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5913 DstAlignCanChange = true; 5914 bool IsZeroVal = 5915 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5916 if (!TLI.findOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5917 Size, (DstAlignCanChange ? 0 : Align), 0, 5918 true, IsZeroVal, false, true, 5919 DstPtrInfo.getAddrSpace(), ~0u, 5920 MF.getFunction().getAttributes())) 5921 return SDValue(); 5922 5923 if (DstAlignCanChange) { 5924 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5925 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5926 if (NewAlign > Align) { 5927 // Give the stack frame object a larger alignment if needed. 5928 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5929 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5930 Align = NewAlign; 5931 } 5932 } 5933 5934 SmallVector<SDValue, 8> OutChains; 5935 uint64_t DstOff = 0; 5936 unsigned NumMemOps = MemOps.size(); 5937 5938 // Find the largest store and generate the bit pattern for it. 5939 EVT LargestVT = MemOps[0]; 5940 for (unsigned i = 1; i < NumMemOps; i++) 5941 if (MemOps[i].bitsGT(LargestVT)) 5942 LargestVT = MemOps[i]; 5943 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5944 5945 for (unsigned i = 0; i < NumMemOps; i++) { 5946 EVT VT = MemOps[i]; 5947 unsigned VTSize = VT.getSizeInBits() / 8; 5948 if (VTSize > Size) { 5949 // Issuing an unaligned load / store pair that overlaps with the previous 5950 // pair. Adjust the offset accordingly. 5951 assert(i == NumMemOps-1 && i != 0); 5952 DstOff -= VTSize - Size; 5953 } 5954 5955 // If this store is smaller than the largest store see whether we can get 5956 // the smaller value for free with a truncate. 5957 SDValue Value = MemSetValue; 5958 if (VT.bitsLT(LargestVT)) { 5959 if (!LargestVT.isVector() && !VT.isVector() && 5960 TLI.isTruncateFree(LargestVT, VT)) 5961 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5962 else 5963 Value = getMemsetValue(Src, VT, DAG, dl); 5964 } 5965 assert(Value.getValueType() == VT && "Value with wrong type."); 5966 SDValue Store = DAG.getStore( 5967 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5968 DstPtrInfo.getWithOffset(DstOff), Align, 5969 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5970 OutChains.push_back(Store); 5971 DstOff += VT.getSizeInBits() / 8; 5972 Size -= VTSize; 5973 } 5974 5975 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5976 } 5977 5978 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5979 unsigned AS) { 5980 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5981 // pointer operands can be losslessly bitcasted to pointers of address space 0 5982 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5983 report_fatal_error("cannot lower memory intrinsic in address space " + 5984 Twine(AS)); 5985 } 5986 } 5987 5988 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5989 SDValue Src, SDValue Size, unsigned Align, 5990 bool isVol, bool AlwaysInline, bool isTailCall, 5991 MachinePointerInfo DstPtrInfo, 5992 MachinePointerInfo SrcPtrInfo) { 5993 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5994 5995 // Check to see if we should lower the memcpy to loads and stores first. 5996 // For cases within the target-specified limits, this is the best choice. 5997 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5998 if (ConstantSize) { 5999 // Memcpy with size zero? Just return the original chain. 6000 if (ConstantSize->isNullValue()) 6001 return Chain; 6002 6003 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6004 ConstantSize->getZExtValue(),Align, 6005 isVol, false, DstPtrInfo, SrcPtrInfo); 6006 if (Result.getNode()) 6007 return Result; 6008 } 6009 6010 // Then check to see if we should lower the memcpy with target-specific 6011 // code. If the target chooses to do this, this is the next best. 6012 if (TSI) { 6013 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6014 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6015 DstPtrInfo, SrcPtrInfo); 6016 if (Result.getNode()) 6017 return Result; 6018 } 6019 6020 // If we really need inline code and the target declined to provide it, 6021 // use a (potentially long) sequence of loads and stores. 6022 if (AlwaysInline) { 6023 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6024 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6025 ConstantSize->getZExtValue(), Align, isVol, 6026 true, DstPtrInfo, SrcPtrInfo); 6027 } 6028 6029 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6030 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6031 6032 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6033 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6034 // respect volatile, so they may do things like read or write memory 6035 // beyond the given memory regions. But fixing this isn't easy, and most 6036 // people don't care. 6037 6038 // Emit a library call. 6039 TargetLowering::ArgListTy Args; 6040 TargetLowering::ArgListEntry Entry; 6041 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6042 Entry.Node = Dst; Args.push_back(Entry); 6043 Entry.Node = Src; Args.push_back(Entry); 6044 6045 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6046 Entry.Node = Size; Args.push_back(Entry); 6047 // FIXME: pass in SDLoc 6048 TargetLowering::CallLoweringInfo CLI(*this); 6049 CLI.setDebugLoc(dl) 6050 .setChain(Chain) 6051 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6052 Dst.getValueType().getTypeForEVT(*getContext()), 6053 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6054 TLI->getPointerTy(getDataLayout())), 6055 std::move(Args)) 6056 .setDiscardResult() 6057 .setTailCall(isTailCall); 6058 6059 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6060 return CallResult.second; 6061 } 6062 6063 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6064 SDValue Dst, unsigned DstAlign, 6065 SDValue Src, unsigned SrcAlign, 6066 SDValue Size, Type *SizeTy, 6067 unsigned ElemSz, bool isTailCall, 6068 MachinePointerInfo DstPtrInfo, 6069 MachinePointerInfo SrcPtrInfo) { 6070 // Emit a library call. 6071 TargetLowering::ArgListTy Args; 6072 TargetLowering::ArgListEntry Entry; 6073 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6074 Entry.Node = Dst; 6075 Args.push_back(Entry); 6076 6077 Entry.Node = Src; 6078 Args.push_back(Entry); 6079 6080 Entry.Ty = SizeTy; 6081 Entry.Node = Size; 6082 Args.push_back(Entry); 6083 6084 RTLIB::Libcall LibraryCall = 6085 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6086 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6087 report_fatal_error("Unsupported element size"); 6088 6089 TargetLowering::CallLoweringInfo CLI(*this); 6090 CLI.setDebugLoc(dl) 6091 .setChain(Chain) 6092 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6093 Type::getVoidTy(*getContext()), 6094 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6095 TLI->getPointerTy(getDataLayout())), 6096 std::move(Args)) 6097 .setDiscardResult() 6098 .setTailCall(isTailCall); 6099 6100 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6101 return CallResult.second; 6102 } 6103 6104 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6105 SDValue Src, SDValue Size, unsigned Align, 6106 bool isVol, bool isTailCall, 6107 MachinePointerInfo DstPtrInfo, 6108 MachinePointerInfo SrcPtrInfo) { 6109 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6110 6111 // Check to see if we should lower the memmove to loads and stores first. 6112 // For cases within the target-specified limits, this is the best choice. 6113 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6114 if (ConstantSize) { 6115 // Memmove with size zero? Just return the original chain. 6116 if (ConstantSize->isNullValue()) 6117 return Chain; 6118 6119 SDValue Result = 6120 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6121 ConstantSize->getZExtValue(), Align, isVol, 6122 false, DstPtrInfo, SrcPtrInfo); 6123 if (Result.getNode()) 6124 return Result; 6125 } 6126 6127 // Then check to see if we should lower the memmove with target-specific 6128 // code. If the target chooses to do this, this is the next best. 6129 if (TSI) { 6130 SDValue Result = TSI->EmitTargetCodeForMemmove( 6131 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6132 if (Result.getNode()) 6133 return Result; 6134 } 6135 6136 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6137 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6138 6139 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6140 // not be safe. See memcpy above for more details. 6141 6142 // Emit a library call. 6143 TargetLowering::ArgListTy Args; 6144 TargetLowering::ArgListEntry Entry; 6145 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6146 Entry.Node = Dst; Args.push_back(Entry); 6147 Entry.Node = Src; Args.push_back(Entry); 6148 6149 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6150 Entry.Node = Size; Args.push_back(Entry); 6151 // FIXME: pass in SDLoc 6152 TargetLowering::CallLoweringInfo CLI(*this); 6153 CLI.setDebugLoc(dl) 6154 .setChain(Chain) 6155 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6156 Dst.getValueType().getTypeForEVT(*getContext()), 6157 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6158 TLI->getPointerTy(getDataLayout())), 6159 std::move(Args)) 6160 .setDiscardResult() 6161 .setTailCall(isTailCall); 6162 6163 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6164 return CallResult.second; 6165 } 6166 6167 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6168 SDValue Dst, unsigned DstAlign, 6169 SDValue Src, unsigned SrcAlign, 6170 SDValue Size, Type *SizeTy, 6171 unsigned ElemSz, bool isTailCall, 6172 MachinePointerInfo DstPtrInfo, 6173 MachinePointerInfo SrcPtrInfo) { 6174 // Emit a library call. 6175 TargetLowering::ArgListTy Args; 6176 TargetLowering::ArgListEntry Entry; 6177 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6178 Entry.Node = Dst; 6179 Args.push_back(Entry); 6180 6181 Entry.Node = Src; 6182 Args.push_back(Entry); 6183 6184 Entry.Ty = SizeTy; 6185 Entry.Node = Size; 6186 Args.push_back(Entry); 6187 6188 RTLIB::Libcall LibraryCall = 6189 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6190 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6191 report_fatal_error("Unsupported element size"); 6192 6193 TargetLowering::CallLoweringInfo CLI(*this); 6194 CLI.setDebugLoc(dl) 6195 .setChain(Chain) 6196 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6197 Type::getVoidTy(*getContext()), 6198 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6199 TLI->getPointerTy(getDataLayout())), 6200 std::move(Args)) 6201 .setDiscardResult() 6202 .setTailCall(isTailCall); 6203 6204 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6205 return CallResult.second; 6206 } 6207 6208 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6209 SDValue Src, SDValue Size, unsigned Align, 6210 bool isVol, bool isTailCall, 6211 MachinePointerInfo DstPtrInfo) { 6212 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6213 6214 // Check to see if we should lower the memset to stores first. 6215 // For cases within the target-specified limits, this is the best choice. 6216 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6217 if (ConstantSize) { 6218 // Memset with size zero? Just return the original chain. 6219 if (ConstantSize->isNullValue()) 6220 return Chain; 6221 6222 SDValue Result = 6223 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6224 Align, isVol, DstPtrInfo); 6225 6226 if (Result.getNode()) 6227 return Result; 6228 } 6229 6230 // Then check to see if we should lower the memset with target-specific 6231 // code. If the target chooses to do this, this is the next best. 6232 if (TSI) { 6233 SDValue Result = TSI->EmitTargetCodeForMemset( 6234 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6235 if (Result.getNode()) 6236 return Result; 6237 } 6238 6239 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6240 6241 // Emit a library call. 6242 TargetLowering::ArgListTy Args; 6243 TargetLowering::ArgListEntry Entry; 6244 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6245 Args.push_back(Entry); 6246 Entry.Node = Src; 6247 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6248 Args.push_back(Entry); 6249 Entry.Node = Size; 6250 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6251 Args.push_back(Entry); 6252 6253 // FIXME: pass in SDLoc 6254 TargetLowering::CallLoweringInfo CLI(*this); 6255 CLI.setDebugLoc(dl) 6256 .setChain(Chain) 6257 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6258 Dst.getValueType().getTypeForEVT(*getContext()), 6259 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6260 TLI->getPointerTy(getDataLayout())), 6261 std::move(Args)) 6262 .setDiscardResult() 6263 .setTailCall(isTailCall); 6264 6265 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6266 return CallResult.second; 6267 } 6268 6269 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6270 SDValue Dst, unsigned DstAlign, 6271 SDValue Value, SDValue Size, Type *SizeTy, 6272 unsigned ElemSz, bool isTailCall, 6273 MachinePointerInfo DstPtrInfo) { 6274 // Emit a library call. 6275 TargetLowering::ArgListTy Args; 6276 TargetLowering::ArgListEntry Entry; 6277 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6278 Entry.Node = Dst; 6279 Args.push_back(Entry); 6280 6281 Entry.Ty = Type::getInt8Ty(*getContext()); 6282 Entry.Node = Value; 6283 Args.push_back(Entry); 6284 6285 Entry.Ty = SizeTy; 6286 Entry.Node = Size; 6287 Args.push_back(Entry); 6288 6289 RTLIB::Libcall LibraryCall = 6290 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6291 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6292 report_fatal_error("Unsupported element size"); 6293 6294 TargetLowering::CallLoweringInfo CLI(*this); 6295 CLI.setDebugLoc(dl) 6296 .setChain(Chain) 6297 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6298 Type::getVoidTy(*getContext()), 6299 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6300 TLI->getPointerTy(getDataLayout())), 6301 std::move(Args)) 6302 .setDiscardResult() 6303 .setTailCall(isTailCall); 6304 6305 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6306 return CallResult.second; 6307 } 6308 6309 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6310 SDVTList VTList, ArrayRef<SDValue> Ops, 6311 MachineMemOperand *MMO) { 6312 FoldingSetNodeID ID; 6313 ID.AddInteger(MemVT.getRawBits()); 6314 AddNodeIDNode(ID, Opcode, VTList, Ops); 6315 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6316 void* IP = nullptr; 6317 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6318 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6319 return SDValue(E, 0); 6320 } 6321 6322 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6323 VTList, MemVT, MMO); 6324 createOperands(N, Ops); 6325 6326 CSEMap.InsertNode(N, IP); 6327 InsertNode(N); 6328 return SDValue(N, 0); 6329 } 6330 6331 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6332 EVT MemVT, SDVTList VTs, SDValue Chain, 6333 SDValue Ptr, SDValue Cmp, SDValue Swp, 6334 MachineMemOperand *MMO) { 6335 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6336 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6337 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6338 6339 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6340 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6341 } 6342 6343 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6344 SDValue Chain, SDValue Ptr, SDValue Val, 6345 MachineMemOperand *MMO) { 6346 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6347 Opcode == ISD::ATOMIC_LOAD_SUB || 6348 Opcode == ISD::ATOMIC_LOAD_AND || 6349 Opcode == ISD::ATOMIC_LOAD_CLR || 6350 Opcode == ISD::ATOMIC_LOAD_OR || 6351 Opcode == ISD::ATOMIC_LOAD_XOR || 6352 Opcode == ISD::ATOMIC_LOAD_NAND || 6353 Opcode == ISD::ATOMIC_LOAD_MIN || 6354 Opcode == ISD::ATOMIC_LOAD_MAX || 6355 Opcode == ISD::ATOMIC_LOAD_UMIN || 6356 Opcode == ISD::ATOMIC_LOAD_UMAX || 6357 Opcode == ISD::ATOMIC_LOAD_FADD || 6358 Opcode == ISD::ATOMIC_LOAD_FSUB || 6359 Opcode == ISD::ATOMIC_SWAP || 6360 Opcode == ISD::ATOMIC_STORE) && 6361 "Invalid Atomic Op"); 6362 6363 EVT VT = Val.getValueType(); 6364 6365 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6366 getVTList(VT, MVT::Other); 6367 SDValue Ops[] = {Chain, Ptr, Val}; 6368 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6369 } 6370 6371 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6372 EVT VT, SDValue Chain, SDValue Ptr, 6373 MachineMemOperand *MMO) { 6374 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6375 6376 SDVTList VTs = getVTList(VT, MVT::Other); 6377 SDValue Ops[] = {Chain, Ptr}; 6378 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6379 } 6380 6381 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6382 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6383 if (Ops.size() == 1) 6384 return Ops[0]; 6385 6386 SmallVector<EVT, 4> VTs; 6387 VTs.reserve(Ops.size()); 6388 for (unsigned i = 0; i < Ops.size(); ++i) 6389 VTs.push_back(Ops[i].getValueType()); 6390 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6391 } 6392 6393 SDValue SelectionDAG::getMemIntrinsicNode( 6394 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6395 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6396 MachineMemOperand::Flags Flags, unsigned Size) { 6397 if (Align == 0) // Ensure that codegen never sees alignment 0 6398 Align = getEVTAlignment(MemVT); 6399 6400 if (!Size) 6401 Size = MemVT.getStoreSize(); 6402 6403 MachineFunction &MF = getMachineFunction(); 6404 MachineMemOperand *MMO = 6405 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 6406 6407 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6408 } 6409 6410 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6411 SDVTList VTList, 6412 ArrayRef<SDValue> Ops, EVT MemVT, 6413 MachineMemOperand *MMO) { 6414 assert((Opcode == ISD::INTRINSIC_VOID || 6415 Opcode == ISD::INTRINSIC_W_CHAIN || 6416 Opcode == ISD::PREFETCH || 6417 Opcode == ISD::LIFETIME_START || 6418 Opcode == ISD::LIFETIME_END || 6419 ((int)Opcode <= std::numeric_limits<int>::max() && 6420 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6421 "Opcode is not a memory-accessing opcode!"); 6422 6423 // Memoize the node unless it returns a flag. 6424 MemIntrinsicSDNode *N; 6425 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6426 FoldingSetNodeID ID; 6427 AddNodeIDNode(ID, Opcode, VTList, Ops); 6428 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6429 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6430 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6431 void *IP = nullptr; 6432 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6433 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6434 return SDValue(E, 0); 6435 } 6436 6437 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6438 VTList, MemVT, MMO); 6439 createOperands(N, Ops); 6440 6441 CSEMap.InsertNode(N, IP); 6442 } else { 6443 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6444 VTList, MemVT, MMO); 6445 createOperands(N, Ops); 6446 } 6447 InsertNode(N); 6448 return SDValue(N, 0); 6449 } 6450 6451 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6452 SDValue Chain, int FrameIndex, 6453 int64_t Size, int64_t Offset) { 6454 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6455 const auto VTs = getVTList(MVT::Other); 6456 SDValue Ops[2] = { 6457 Chain, 6458 getFrameIndex(FrameIndex, 6459 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6460 true)}; 6461 6462 FoldingSetNodeID ID; 6463 AddNodeIDNode(ID, Opcode, VTs, Ops); 6464 ID.AddInteger(FrameIndex); 6465 ID.AddInteger(Size); 6466 ID.AddInteger(Offset); 6467 void *IP = nullptr; 6468 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6469 return SDValue(E, 0); 6470 6471 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6472 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6473 createOperands(N, Ops); 6474 CSEMap.InsertNode(N, IP); 6475 InsertNode(N); 6476 SDValue V(N, 0); 6477 NewSDValueDbgMsg(V, "Creating new node: ", this); 6478 return V; 6479 } 6480 6481 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6482 /// MachinePointerInfo record from it. This is particularly useful because the 6483 /// code generator has many cases where it doesn't bother passing in a 6484 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6485 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6486 SelectionDAG &DAG, SDValue Ptr, 6487 int64_t Offset = 0) { 6488 // If this is FI+Offset, we can model it. 6489 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6490 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6491 FI->getIndex(), Offset); 6492 6493 // If this is (FI+Offset1)+Offset2, we can model it. 6494 if (Ptr.getOpcode() != ISD::ADD || 6495 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6496 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6497 return Info; 6498 6499 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6500 return MachinePointerInfo::getFixedStack( 6501 DAG.getMachineFunction(), FI, 6502 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6503 } 6504 6505 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6506 /// MachinePointerInfo record from it. This is particularly useful because the 6507 /// code generator has many cases where it doesn't bother passing in a 6508 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6509 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6510 SelectionDAG &DAG, SDValue Ptr, 6511 SDValue OffsetOp) { 6512 // If the 'Offset' value isn't a constant, we can't handle this. 6513 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6514 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6515 if (OffsetOp.isUndef()) 6516 return InferPointerInfo(Info, DAG, Ptr); 6517 return Info; 6518 } 6519 6520 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6521 EVT VT, const SDLoc &dl, SDValue Chain, 6522 SDValue Ptr, SDValue Offset, 6523 MachinePointerInfo PtrInfo, EVT MemVT, 6524 unsigned Alignment, 6525 MachineMemOperand::Flags MMOFlags, 6526 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6527 assert(Chain.getValueType() == MVT::Other && 6528 "Invalid chain type"); 6529 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6530 Alignment = getEVTAlignment(MemVT); 6531 6532 MMOFlags |= MachineMemOperand::MOLoad; 6533 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6534 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6535 // clients. 6536 if (PtrInfo.V.isNull()) 6537 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6538 6539 MachineFunction &MF = getMachineFunction(); 6540 MachineMemOperand *MMO = MF.getMachineMemOperand( 6541 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6542 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6543 } 6544 6545 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6546 EVT VT, const SDLoc &dl, SDValue Chain, 6547 SDValue Ptr, SDValue Offset, EVT MemVT, 6548 MachineMemOperand *MMO) { 6549 if (VT == MemVT) { 6550 ExtType = ISD::NON_EXTLOAD; 6551 } else if (ExtType == ISD::NON_EXTLOAD) { 6552 assert(VT == MemVT && "Non-extending load from different memory type!"); 6553 } else { 6554 // Extending load. 6555 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6556 "Should only be an extending load, not truncating!"); 6557 assert(VT.isInteger() == MemVT.isInteger() && 6558 "Cannot convert from FP to Int or Int -> FP!"); 6559 assert(VT.isVector() == MemVT.isVector() && 6560 "Cannot use an ext load to convert to or from a vector!"); 6561 assert((!VT.isVector() || 6562 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6563 "Cannot use an ext load to change the number of vector elements!"); 6564 } 6565 6566 bool Indexed = AM != ISD::UNINDEXED; 6567 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6568 6569 SDVTList VTs = Indexed ? 6570 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6571 SDValue Ops[] = { Chain, Ptr, Offset }; 6572 FoldingSetNodeID ID; 6573 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6574 ID.AddInteger(MemVT.getRawBits()); 6575 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6576 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6577 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6578 void *IP = nullptr; 6579 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6580 cast<LoadSDNode>(E)->refineAlignment(MMO); 6581 return SDValue(E, 0); 6582 } 6583 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6584 ExtType, MemVT, MMO); 6585 createOperands(N, Ops); 6586 6587 CSEMap.InsertNode(N, IP); 6588 InsertNode(N); 6589 SDValue V(N, 0); 6590 NewSDValueDbgMsg(V, "Creating new node: ", this); 6591 return V; 6592 } 6593 6594 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6595 SDValue Ptr, MachinePointerInfo PtrInfo, 6596 unsigned Alignment, 6597 MachineMemOperand::Flags MMOFlags, 6598 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6599 SDValue Undef = getUNDEF(Ptr.getValueType()); 6600 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6601 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6602 } 6603 6604 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6605 SDValue Ptr, MachineMemOperand *MMO) { 6606 SDValue Undef = getUNDEF(Ptr.getValueType()); 6607 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6608 VT, MMO); 6609 } 6610 6611 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6612 EVT VT, SDValue Chain, SDValue Ptr, 6613 MachinePointerInfo PtrInfo, EVT MemVT, 6614 unsigned Alignment, 6615 MachineMemOperand::Flags MMOFlags, 6616 const AAMDNodes &AAInfo) { 6617 SDValue Undef = getUNDEF(Ptr.getValueType()); 6618 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6619 MemVT, Alignment, MMOFlags, AAInfo); 6620 } 6621 6622 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6623 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6624 MachineMemOperand *MMO) { 6625 SDValue Undef = getUNDEF(Ptr.getValueType()); 6626 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6627 MemVT, MMO); 6628 } 6629 6630 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6631 SDValue Base, SDValue Offset, 6632 ISD::MemIndexedMode AM) { 6633 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6634 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6635 // Don't propagate the invariant or dereferenceable flags. 6636 auto MMOFlags = 6637 LD->getMemOperand()->getFlags() & 6638 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6639 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6640 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6641 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6642 LD->getAAInfo()); 6643 } 6644 6645 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6646 SDValue Ptr, MachinePointerInfo PtrInfo, 6647 unsigned Alignment, 6648 MachineMemOperand::Flags MMOFlags, 6649 const AAMDNodes &AAInfo) { 6650 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6651 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6652 Alignment = getEVTAlignment(Val.getValueType()); 6653 6654 MMOFlags |= MachineMemOperand::MOStore; 6655 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6656 6657 if (PtrInfo.V.isNull()) 6658 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6659 6660 MachineFunction &MF = getMachineFunction(); 6661 MachineMemOperand *MMO = MF.getMachineMemOperand( 6662 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6663 return getStore(Chain, dl, Val, Ptr, MMO); 6664 } 6665 6666 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6667 SDValue Ptr, MachineMemOperand *MMO) { 6668 assert(Chain.getValueType() == MVT::Other && 6669 "Invalid chain type"); 6670 EVT VT = Val.getValueType(); 6671 SDVTList VTs = getVTList(MVT::Other); 6672 SDValue Undef = getUNDEF(Ptr.getValueType()); 6673 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6674 FoldingSetNodeID ID; 6675 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6676 ID.AddInteger(VT.getRawBits()); 6677 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6678 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6679 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6680 void *IP = nullptr; 6681 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6682 cast<StoreSDNode>(E)->refineAlignment(MMO); 6683 return SDValue(E, 0); 6684 } 6685 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6686 ISD::UNINDEXED, false, VT, MMO); 6687 createOperands(N, Ops); 6688 6689 CSEMap.InsertNode(N, IP); 6690 InsertNode(N); 6691 SDValue V(N, 0); 6692 NewSDValueDbgMsg(V, "Creating new node: ", this); 6693 return V; 6694 } 6695 6696 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6697 SDValue Ptr, MachinePointerInfo PtrInfo, 6698 EVT SVT, unsigned Alignment, 6699 MachineMemOperand::Flags MMOFlags, 6700 const AAMDNodes &AAInfo) { 6701 assert(Chain.getValueType() == MVT::Other && 6702 "Invalid chain type"); 6703 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6704 Alignment = getEVTAlignment(SVT); 6705 6706 MMOFlags |= MachineMemOperand::MOStore; 6707 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6708 6709 if (PtrInfo.V.isNull()) 6710 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6711 6712 MachineFunction &MF = getMachineFunction(); 6713 MachineMemOperand *MMO = MF.getMachineMemOperand( 6714 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6715 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6716 } 6717 6718 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6719 SDValue Ptr, EVT SVT, 6720 MachineMemOperand *MMO) { 6721 EVT VT = Val.getValueType(); 6722 6723 assert(Chain.getValueType() == MVT::Other && 6724 "Invalid chain type"); 6725 if (VT == SVT) 6726 return getStore(Chain, dl, Val, Ptr, MMO); 6727 6728 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6729 "Should only be a truncating store, not extending!"); 6730 assert(VT.isInteger() == SVT.isInteger() && 6731 "Can't do FP-INT conversion!"); 6732 assert(VT.isVector() == SVT.isVector() && 6733 "Cannot use trunc store to convert to or from a vector!"); 6734 assert((!VT.isVector() || 6735 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6736 "Cannot use trunc store to change the number of vector elements!"); 6737 6738 SDVTList VTs = getVTList(MVT::Other); 6739 SDValue Undef = getUNDEF(Ptr.getValueType()); 6740 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6741 FoldingSetNodeID ID; 6742 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6743 ID.AddInteger(SVT.getRawBits()); 6744 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6745 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6746 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6747 void *IP = nullptr; 6748 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6749 cast<StoreSDNode>(E)->refineAlignment(MMO); 6750 return SDValue(E, 0); 6751 } 6752 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6753 ISD::UNINDEXED, true, SVT, MMO); 6754 createOperands(N, Ops); 6755 6756 CSEMap.InsertNode(N, IP); 6757 InsertNode(N); 6758 SDValue V(N, 0); 6759 NewSDValueDbgMsg(V, "Creating new node: ", this); 6760 return V; 6761 } 6762 6763 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6764 SDValue Base, SDValue Offset, 6765 ISD::MemIndexedMode AM) { 6766 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6767 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6768 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6769 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6770 FoldingSetNodeID ID; 6771 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6772 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6773 ID.AddInteger(ST->getRawSubclassData()); 6774 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6775 void *IP = nullptr; 6776 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6777 return SDValue(E, 0); 6778 6779 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6780 ST->isTruncatingStore(), ST->getMemoryVT(), 6781 ST->getMemOperand()); 6782 createOperands(N, Ops); 6783 6784 CSEMap.InsertNode(N, IP); 6785 InsertNode(N); 6786 SDValue V(N, 0); 6787 NewSDValueDbgMsg(V, "Creating new node: ", this); 6788 return V; 6789 } 6790 6791 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6792 SDValue Ptr, SDValue Mask, SDValue PassThru, 6793 EVT MemVT, MachineMemOperand *MMO, 6794 ISD::LoadExtType ExtTy, bool isExpanding) { 6795 SDVTList VTs = getVTList(VT, MVT::Other); 6796 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6797 FoldingSetNodeID ID; 6798 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6799 ID.AddInteger(VT.getRawBits()); 6800 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6801 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6802 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6803 void *IP = nullptr; 6804 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6805 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6806 return SDValue(E, 0); 6807 } 6808 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6809 ExtTy, isExpanding, MemVT, MMO); 6810 createOperands(N, Ops); 6811 6812 CSEMap.InsertNode(N, IP); 6813 InsertNode(N); 6814 SDValue V(N, 0); 6815 NewSDValueDbgMsg(V, "Creating new node: ", this); 6816 return V; 6817 } 6818 6819 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6820 SDValue Val, SDValue Ptr, SDValue Mask, 6821 EVT MemVT, MachineMemOperand *MMO, 6822 bool IsTruncating, bool IsCompressing) { 6823 assert(Chain.getValueType() == MVT::Other && 6824 "Invalid chain type"); 6825 EVT VT = Val.getValueType(); 6826 SDVTList VTs = getVTList(MVT::Other); 6827 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6828 FoldingSetNodeID ID; 6829 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6830 ID.AddInteger(VT.getRawBits()); 6831 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6832 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6833 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6834 void *IP = nullptr; 6835 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6836 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6837 return SDValue(E, 0); 6838 } 6839 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6840 IsTruncating, IsCompressing, MemVT, MMO); 6841 createOperands(N, Ops); 6842 6843 CSEMap.InsertNode(N, IP); 6844 InsertNode(N); 6845 SDValue V(N, 0); 6846 NewSDValueDbgMsg(V, "Creating new node: ", this); 6847 return V; 6848 } 6849 6850 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6851 ArrayRef<SDValue> Ops, 6852 MachineMemOperand *MMO) { 6853 assert(Ops.size() == 6 && "Incompatible number of operands"); 6854 6855 FoldingSetNodeID ID; 6856 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6857 ID.AddInteger(VT.getRawBits()); 6858 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6859 dl.getIROrder(), VTs, VT, MMO)); 6860 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6861 void *IP = nullptr; 6862 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6863 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6864 return SDValue(E, 0); 6865 } 6866 6867 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6868 VTs, VT, MMO); 6869 createOperands(N, Ops); 6870 6871 assert(N->getPassThru().getValueType() == N->getValueType(0) && 6872 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6873 assert(N->getMask().getValueType().getVectorNumElements() == 6874 N->getValueType(0).getVectorNumElements() && 6875 "Vector width mismatch between mask and data"); 6876 assert(N->getIndex().getValueType().getVectorNumElements() >= 6877 N->getValueType(0).getVectorNumElements() && 6878 "Vector width mismatch between index and data"); 6879 assert(isa<ConstantSDNode>(N->getScale()) && 6880 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6881 "Scale should be a constant power of 2"); 6882 6883 CSEMap.InsertNode(N, IP); 6884 InsertNode(N); 6885 SDValue V(N, 0); 6886 NewSDValueDbgMsg(V, "Creating new node: ", this); 6887 return V; 6888 } 6889 6890 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6891 ArrayRef<SDValue> Ops, 6892 MachineMemOperand *MMO) { 6893 assert(Ops.size() == 6 && "Incompatible number of operands"); 6894 6895 FoldingSetNodeID ID; 6896 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6897 ID.AddInteger(VT.getRawBits()); 6898 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6899 dl.getIROrder(), VTs, VT, MMO)); 6900 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6901 void *IP = nullptr; 6902 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6903 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6904 return SDValue(E, 0); 6905 } 6906 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6907 VTs, VT, MMO); 6908 createOperands(N, Ops); 6909 6910 assert(N->getMask().getValueType().getVectorNumElements() == 6911 N->getValue().getValueType().getVectorNumElements() && 6912 "Vector width mismatch between mask and data"); 6913 assert(N->getIndex().getValueType().getVectorNumElements() >= 6914 N->getValue().getValueType().getVectorNumElements() && 6915 "Vector width mismatch between index and data"); 6916 assert(isa<ConstantSDNode>(N->getScale()) && 6917 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6918 "Scale should be a constant power of 2"); 6919 6920 CSEMap.InsertNode(N, IP); 6921 InsertNode(N); 6922 SDValue V(N, 0); 6923 NewSDValueDbgMsg(V, "Creating new node: ", this); 6924 return V; 6925 } 6926 6927 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 6928 // select undef, T, F --> T (if T is a constant), otherwise F 6929 // select, ?, undef, F --> F 6930 // select, ?, T, undef --> T 6931 if (Cond.isUndef()) 6932 return isConstantValueOfAnyType(T) ? T : F; 6933 if (T.isUndef()) 6934 return F; 6935 if (F.isUndef()) 6936 return T; 6937 6938 // select true, T, F --> T 6939 // select false, T, F --> F 6940 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 6941 return CondC->isNullValue() ? F : T; 6942 6943 // TODO: This should simplify VSELECT with constant condition using something 6944 // like this (but check boolean contents to be complete?): 6945 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 6946 // return T; 6947 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 6948 // return F; 6949 6950 // select ?, T, T --> T 6951 if (T == F) 6952 return T; 6953 6954 return SDValue(); 6955 } 6956 6957 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 6958 // shift undef, Y --> 0 (can always assume that the undef value is 0) 6959 if (X.isUndef()) 6960 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 6961 // shift X, undef --> undef (because it may shift by the bitwidth) 6962 if (Y.isUndef()) 6963 return getUNDEF(X.getValueType()); 6964 6965 // shift 0, Y --> 0 6966 // shift X, 0 --> X 6967 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 6968 return X; 6969 6970 // shift X, C >= bitwidth(X) --> undef 6971 // All vector elements must be too big (or undef) to avoid partial undefs. 6972 auto isShiftTooBig = [X](ConstantSDNode *Val) { 6973 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 6974 }; 6975 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 6976 return getUNDEF(X.getValueType()); 6977 6978 return SDValue(); 6979 } 6980 6981 // TODO: Use fast-math-flags to enable more simplifications. 6982 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 6983 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 6984 if (!YC) 6985 return SDValue(); 6986 6987 // X + -0.0 --> X 6988 if (Opcode == ISD::FADD) 6989 if (YC->getValueAPF().isNegZero()) 6990 return X; 6991 6992 // X - +0.0 --> X 6993 if (Opcode == ISD::FSUB) 6994 if (YC->getValueAPF().isPosZero()) 6995 return X; 6996 6997 // X * 1.0 --> X 6998 // X / 1.0 --> X 6999 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7000 if (YC->getValueAPF().isExactlyValue(1.0)) 7001 return X; 7002 7003 return SDValue(); 7004 } 7005 7006 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7007 SDValue Ptr, SDValue SV, unsigned Align) { 7008 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7009 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7010 } 7011 7012 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7013 ArrayRef<SDUse> Ops) { 7014 switch (Ops.size()) { 7015 case 0: return getNode(Opcode, DL, VT); 7016 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7017 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7018 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7019 default: break; 7020 } 7021 7022 // Copy from an SDUse array into an SDValue array for use with 7023 // the regular getNode logic. 7024 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7025 return getNode(Opcode, DL, VT, NewOps); 7026 } 7027 7028 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7029 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7030 unsigned NumOps = Ops.size(); 7031 switch (NumOps) { 7032 case 0: return getNode(Opcode, DL, VT); 7033 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7034 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7035 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7036 default: break; 7037 } 7038 7039 switch (Opcode) { 7040 default: break; 7041 case ISD::BUILD_VECTOR: 7042 // Attempt to simplify BUILD_VECTOR. 7043 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7044 return V; 7045 break; 7046 case ISD::CONCAT_VECTORS: 7047 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 7048 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 7049 return V; 7050 break; 7051 case ISD::SELECT_CC: 7052 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7053 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7054 "LHS and RHS of condition must have same type!"); 7055 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7056 "True and False arms of SelectCC must have same type!"); 7057 assert(Ops[2].getValueType() == VT && 7058 "select_cc node must be of same type as true and false value!"); 7059 break; 7060 case ISD::BR_CC: 7061 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7062 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7063 "LHS/RHS of comparison should match types!"); 7064 break; 7065 } 7066 7067 // Memoize nodes. 7068 SDNode *N; 7069 SDVTList VTs = getVTList(VT); 7070 7071 if (VT != MVT::Glue) { 7072 FoldingSetNodeID ID; 7073 AddNodeIDNode(ID, Opcode, VTs, Ops); 7074 void *IP = nullptr; 7075 7076 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7077 return SDValue(E, 0); 7078 7079 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7080 createOperands(N, Ops); 7081 7082 CSEMap.InsertNode(N, IP); 7083 } else { 7084 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7085 createOperands(N, Ops); 7086 } 7087 7088 InsertNode(N); 7089 SDValue V(N, 0); 7090 NewSDValueDbgMsg(V, "Creating new node: ", this); 7091 return V; 7092 } 7093 7094 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7095 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7096 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7097 } 7098 7099 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7100 ArrayRef<SDValue> Ops) { 7101 if (VTList.NumVTs == 1) 7102 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7103 7104 #if 0 7105 switch (Opcode) { 7106 // FIXME: figure out how to safely handle things like 7107 // int foo(int x) { return 1 << (x & 255); } 7108 // int bar() { return foo(256); } 7109 case ISD::SRA_PARTS: 7110 case ISD::SRL_PARTS: 7111 case ISD::SHL_PARTS: 7112 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7113 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7114 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7115 else if (N3.getOpcode() == ISD::AND) 7116 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7117 // If the and is only masking out bits that cannot effect the shift, 7118 // eliminate the and. 7119 unsigned NumBits = VT.getScalarSizeInBits()*2; 7120 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7121 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7122 } 7123 break; 7124 } 7125 #endif 7126 7127 // Memoize the node unless it returns a flag. 7128 SDNode *N; 7129 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7130 FoldingSetNodeID ID; 7131 AddNodeIDNode(ID, Opcode, VTList, Ops); 7132 void *IP = nullptr; 7133 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7134 return SDValue(E, 0); 7135 7136 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7137 createOperands(N, Ops); 7138 CSEMap.InsertNode(N, IP); 7139 } else { 7140 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7141 createOperands(N, Ops); 7142 } 7143 InsertNode(N); 7144 SDValue V(N, 0); 7145 NewSDValueDbgMsg(V, "Creating new node: ", this); 7146 return V; 7147 } 7148 7149 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7150 SDVTList VTList) { 7151 return getNode(Opcode, DL, VTList, None); 7152 } 7153 7154 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7155 SDValue N1) { 7156 SDValue Ops[] = { N1 }; 7157 return getNode(Opcode, DL, VTList, Ops); 7158 } 7159 7160 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7161 SDValue N1, SDValue N2) { 7162 SDValue Ops[] = { N1, N2 }; 7163 return getNode(Opcode, DL, VTList, Ops); 7164 } 7165 7166 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7167 SDValue N1, SDValue N2, SDValue N3) { 7168 SDValue Ops[] = { N1, N2, N3 }; 7169 return getNode(Opcode, DL, VTList, Ops); 7170 } 7171 7172 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7173 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7174 SDValue Ops[] = { N1, N2, N3, N4 }; 7175 return getNode(Opcode, DL, VTList, Ops); 7176 } 7177 7178 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7179 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7180 SDValue N5) { 7181 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7182 return getNode(Opcode, DL, VTList, Ops); 7183 } 7184 7185 SDVTList SelectionDAG::getVTList(EVT VT) { 7186 return makeVTList(SDNode::getValueTypeList(VT), 1); 7187 } 7188 7189 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7190 FoldingSetNodeID ID; 7191 ID.AddInteger(2U); 7192 ID.AddInteger(VT1.getRawBits()); 7193 ID.AddInteger(VT2.getRawBits()); 7194 7195 void *IP = nullptr; 7196 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7197 if (!Result) { 7198 EVT *Array = Allocator.Allocate<EVT>(2); 7199 Array[0] = VT1; 7200 Array[1] = VT2; 7201 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7202 VTListMap.InsertNode(Result, IP); 7203 } 7204 return Result->getSDVTList(); 7205 } 7206 7207 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7208 FoldingSetNodeID ID; 7209 ID.AddInteger(3U); 7210 ID.AddInteger(VT1.getRawBits()); 7211 ID.AddInteger(VT2.getRawBits()); 7212 ID.AddInteger(VT3.getRawBits()); 7213 7214 void *IP = nullptr; 7215 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7216 if (!Result) { 7217 EVT *Array = Allocator.Allocate<EVT>(3); 7218 Array[0] = VT1; 7219 Array[1] = VT2; 7220 Array[2] = VT3; 7221 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7222 VTListMap.InsertNode(Result, IP); 7223 } 7224 return Result->getSDVTList(); 7225 } 7226 7227 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7228 FoldingSetNodeID ID; 7229 ID.AddInteger(4U); 7230 ID.AddInteger(VT1.getRawBits()); 7231 ID.AddInteger(VT2.getRawBits()); 7232 ID.AddInteger(VT3.getRawBits()); 7233 ID.AddInteger(VT4.getRawBits()); 7234 7235 void *IP = nullptr; 7236 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7237 if (!Result) { 7238 EVT *Array = Allocator.Allocate<EVT>(4); 7239 Array[0] = VT1; 7240 Array[1] = VT2; 7241 Array[2] = VT3; 7242 Array[3] = VT4; 7243 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7244 VTListMap.InsertNode(Result, IP); 7245 } 7246 return Result->getSDVTList(); 7247 } 7248 7249 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7250 unsigned NumVTs = VTs.size(); 7251 FoldingSetNodeID ID; 7252 ID.AddInteger(NumVTs); 7253 for (unsigned index = 0; index < NumVTs; index++) { 7254 ID.AddInteger(VTs[index].getRawBits()); 7255 } 7256 7257 void *IP = nullptr; 7258 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7259 if (!Result) { 7260 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7261 llvm::copy(VTs, Array); 7262 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7263 VTListMap.InsertNode(Result, IP); 7264 } 7265 return Result->getSDVTList(); 7266 } 7267 7268 7269 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7270 /// specified operands. If the resultant node already exists in the DAG, 7271 /// this does not modify the specified node, instead it returns the node that 7272 /// already exists. If the resultant node does not exist in the DAG, the 7273 /// input node is returned. As a degenerate case, if you specify the same 7274 /// input operands as the node already has, the input node is returned. 7275 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7276 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7277 7278 // Check to see if there is no change. 7279 if (Op == N->getOperand(0)) return N; 7280 7281 // See if the modified node already exists. 7282 void *InsertPos = nullptr; 7283 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7284 return Existing; 7285 7286 // Nope it doesn't. Remove the node from its current place in the maps. 7287 if (InsertPos) 7288 if (!RemoveNodeFromCSEMaps(N)) 7289 InsertPos = nullptr; 7290 7291 // Now we update the operands. 7292 N->OperandList[0].set(Op); 7293 7294 updateDivergence(N); 7295 // If this gets put into a CSE map, add it. 7296 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7297 return N; 7298 } 7299 7300 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7301 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7302 7303 // Check to see if there is no change. 7304 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7305 return N; // No operands changed, just return the input node. 7306 7307 // See if the modified node already exists. 7308 void *InsertPos = nullptr; 7309 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7310 return Existing; 7311 7312 // Nope it doesn't. Remove the node from its current place in the maps. 7313 if (InsertPos) 7314 if (!RemoveNodeFromCSEMaps(N)) 7315 InsertPos = nullptr; 7316 7317 // Now we update the operands. 7318 if (N->OperandList[0] != Op1) 7319 N->OperandList[0].set(Op1); 7320 if (N->OperandList[1] != Op2) 7321 N->OperandList[1].set(Op2); 7322 7323 updateDivergence(N); 7324 // If this gets put into a CSE map, add it. 7325 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7326 return N; 7327 } 7328 7329 SDNode *SelectionDAG:: 7330 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7331 SDValue Ops[] = { Op1, Op2, Op3 }; 7332 return UpdateNodeOperands(N, Ops); 7333 } 7334 7335 SDNode *SelectionDAG:: 7336 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7337 SDValue Op3, SDValue Op4) { 7338 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7339 return UpdateNodeOperands(N, Ops); 7340 } 7341 7342 SDNode *SelectionDAG:: 7343 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7344 SDValue Op3, SDValue Op4, SDValue Op5) { 7345 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7346 return UpdateNodeOperands(N, Ops); 7347 } 7348 7349 SDNode *SelectionDAG:: 7350 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7351 unsigned NumOps = Ops.size(); 7352 assert(N->getNumOperands() == NumOps && 7353 "Update with wrong number of operands"); 7354 7355 // If no operands changed just return the input node. 7356 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7357 return N; 7358 7359 // See if the modified node already exists. 7360 void *InsertPos = nullptr; 7361 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7362 return Existing; 7363 7364 // Nope it doesn't. Remove the node from its current place in the maps. 7365 if (InsertPos) 7366 if (!RemoveNodeFromCSEMaps(N)) 7367 InsertPos = nullptr; 7368 7369 // Now we update the operands. 7370 for (unsigned i = 0; i != NumOps; ++i) 7371 if (N->OperandList[i] != Ops[i]) 7372 N->OperandList[i].set(Ops[i]); 7373 7374 updateDivergence(N); 7375 // If this gets put into a CSE map, add it. 7376 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7377 return N; 7378 } 7379 7380 /// DropOperands - Release the operands and set this node to have 7381 /// zero operands. 7382 void SDNode::DropOperands() { 7383 // Unlike the code in MorphNodeTo that does this, we don't need to 7384 // watch for dead nodes here. 7385 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7386 SDUse &Use = *I++; 7387 Use.set(SDValue()); 7388 } 7389 } 7390 7391 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7392 ArrayRef<MachineMemOperand *> NewMemRefs) { 7393 if (NewMemRefs.empty()) { 7394 N->clearMemRefs(); 7395 return; 7396 } 7397 7398 // Check if we can avoid allocating by storing a single reference directly. 7399 if (NewMemRefs.size() == 1) { 7400 N->MemRefs = NewMemRefs[0]; 7401 N->NumMemRefs = 1; 7402 return; 7403 } 7404 7405 MachineMemOperand **MemRefsBuffer = 7406 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7407 llvm::copy(NewMemRefs, MemRefsBuffer); 7408 N->MemRefs = MemRefsBuffer; 7409 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7410 } 7411 7412 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7413 /// machine opcode. 7414 /// 7415 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7416 EVT VT) { 7417 SDVTList VTs = getVTList(VT); 7418 return SelectNodeTo(N, MachineOpc, VTs, None); 7419 } 7420 7421 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7422 EVT VT, SDValue Op1) { 7423 SDVTList VTs = getVTList(VT); 7424 SDValue Ops[] = { Op1 }; 7425 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7426 } 7427 7428 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7429 EVT VT, SDValue Op1, 7430 SDValue Op2) { 7431 SDVTList VTs = getVTList(VT); 7432 SDValue Ops[] = { Op1, Op2 }; 7433 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7434 } 7435 7436 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7437 EVT VT, SDValue Op1, 7438 SDValue Op2, SDValue Op3) { 7439 SDVTList VTs = getVTList(VT); 7440 SDValue Ops[] = { Op1, Op2, Op3 }; 7441 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7442 } 7443 7444 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7445 EVT VT, ArrayRef<SDValue> Ops) { 7446 SDVTList VTs = getVTList(VT); 7447 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7448 } 7449 7450 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7451 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7452 SDVTList VTs = getVTList(VT1, VT2); 7453 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7454 } 7455 7456 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7457 EVT VT1, EVT VT2) { 7458 SDVTList VTs = getVTList(VT1, VT2); 7459 return SelectNodeTo(N, MachineOpc, VTs, None); 7460 } 7461 7462 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7463 EVT VT1, EVT VT2, EVT VT3, 7464 ArrayRef<SDValue> Ops) { 7465 SDVTList VTs = getVTList(VT1, VT2, VT3); 7466 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7467 } 7468 7469 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7470 EVT VT1, EVT VT2, 7471 SDValue Op1, SDValue Op2) { 7472 SDVTList VTs = getVTList(VT1, VT2); 7473 SDValue Ops[] = { Op1, Op2 }; 7474 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7475 } 7476 7477 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7478 SDVTList VTs,ArrayRef<SDValue> Ops) { 7479 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7480 // Reset the NodeID to -1. 7481 New->setNodeId(-1); 7482 if (New != N) { 7483 ReplaceAllUsesWith(N, New); 7484 RemoveDeadNode(N); 7485 } 7486 return New; 7487 } 7488 7489 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7490 /// the line number information on the merged node since it is not possible to 7491 /// preserve the information that operation is associated with multiple lines. 7492 /// This will make the debugger working better at -O0, were there is a higher 7493 /// probability having other instructions associated with that line. 7494 /// 7495 /// For IROrder, we keep the smaller of the two 7496 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7497 DebugLoc NLoc = N->getDebugLoc(); 7498 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7499 N->setDebugLoc(DebugLoc()); 7500 } 7501 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7502 N->setIROrder(Order); 7503 return N; 7504 } 7505 7506 /// MorphNodeTo - This *mutates* the specified node to have the specified 7507 /// return type, opcode, and operands. 7508 /// 7509 /// Note that MorphNodeTo returns the resultant node. If there is already a 7510 /// node of the specified opcode and operands, it returns that node instead of 7511 /// the current one. Note that the SDLoc need not be the same. 7512 /// 7513 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7514 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7515 /// node, and because it doesn't require CSE recalculation for any of 7516 /// the node's users. 7517 /// 7518 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7519 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7520 /// the legalizer which maintain worklists that would need to be updated when 7521 /// deleting things. 7522 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7523 SDVTList VTs, ArrayRef<SDValue> Ops) { 7524 // If an identical node already exists, use it. 7525 void *IP = nullptr; 7526 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7527 FoldingSetNodeID ID; 7528 AddNodeIDNode(ID, Opc, VTs, Ops); 7529 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7530 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7531 } 7532 7533 if (!RemoveNodeFromCSEMaps(N)) 7534 IP = nullptr; 7535 7536 // Start the morphing. 7537 N->NodeType = Opc; 7538 N->ValueList = VTs.VTs; 7539 N->NumValues = VTs.NumVTs; 7540 7541 // Clear the operands list, updating used nodes to remove this from their 7542 // use list. Keep track of any operands that become dead as a result. 7543 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7544 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7545 SDUse &Use = *I++; 7546 SDNode *Used = Use.getNode(); 7547 Use.set(SDValue()); 7548 if (Used->use_empty()) 7549 DeadNodeSet.insert(Used); 7550 } 7551 7552 // For MachineNode, initialize the memory references information. 7553 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7554 MN->clearMemRefs(); 7555 7556 // Swap for an appropriately sized array from the recycler. 7557 removeOperands(N); 7558 createOperands(N, Ops); 7559 7560 // Delete any nodes that are still dead after adding the uses for the 7561 // new operands. 7562 if (!DeadNodeSet.empty()) { 7563 SmallVector<SDNode *, 16> DeadNodes; 7564 for (SDNode *N : DeadNodeSet) 7565 if (N->use_empty()) 7566 DeadNodes.push_back(N); 7567 RemoveDeadNodes(DeadNodes); 7568 } 7569 7570 if (IP) 7571 CSEMap.InsertNode(N, IP); // Memoize the new node. 7572 return N; 7573 } 7574 7575 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7576 unsigned OrigOpc = Node->getOpcode(); 7577 unsigned NewOpc; 7578 bool IsUnary = false; 7579 bool IsTernary = false; 7580 switch (OrigOpc) { 7581 default: 7582 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7583 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7584 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7585 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7586 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7587 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7588 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 7589 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 7590 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7591 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7592 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 7593 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 7594 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 7595 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 7596 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 7597 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 7598 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 7599 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 7600 case ISD::STRICT_FNEARBYINT: 7601 NewOpc = ISD::FNEARBYINT; 7602 IsUnary = true; 7603 break; 7604 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7605 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7606 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break; 7607 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break; 7608 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break; 7609 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break; 7610 } 7611 7612 // We're taking this node out of the chain, so we need to re-link things. 7613 SDValue InputChain = Node->getOperand(0); 7614 SDValue OutputChain = SDValue(Node, 1); 7615 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7616 7617 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 7618 SDNode *Res = nullptr; 7619 if (IsUnary) 7620 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 7621 else if (IsTernary) 7622 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7623 Node->getOperand(2), 7624 Node->getOperand(3)}); 7625 else 7626 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7627 Node->getOperand(2) }); 7628 7629 // MorphNodeTo can operate in two ways: if an existing node with the 7630 // specified operands exists, it can just return it. Otherwise, it 7631 // updates the node in place to have the requested operands. 7632 if (Res == Node) { 7633 // If we updated the node in place, reset the node ID. To the isel, 7634 // this should be just like a newly allocated machine node. 7635 Res->setNodeId(-1); 7636 } else { 7637 ReplaceAllUsesWith(Node, Res); 7638 RemoveDeadNode(Node); 7639 } 7640 7641 return Res; 7642 } 7643 7644 /// getMachineNode - These are used for target selectors to create a new node 7645 /// with specified return type(s), MachineInstr opcode, and operands. 7646 /// 7647 /// Note that getMachineNode returns the resultant node. If there is already a 7648 /// node of the specified opcode and operands, it returns that node instead of 7649 /// the current one. 7650 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7651 EVT VT) { 7652 SDVTList VTs = getVTList(VT); 7653 return getMachineNode(Opcode, dl, VTs, None); 7654 } 7655 7656 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7657 EVT VT, SDValue Op1) { 7658 SDVTList VTs = getVTList(VT); 7659 SDValue Ops[] = { Op1 }; 7660 return getMachineNode(Opcode, dl, VTs, Ops); 7661 } 7662 7663 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7664 EVT VT, SDValue Op1, SDValue Op2) { 7665 SDVTList VTs = getVTList(VT); 7666 SDValue Ops[] = { Op1, Op2 }; 7667 return getMachineNode(Opcode, dl, VTs, Ops); 7668 } 7669 7670 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7671 EVT VT, SDValue Op1, SDValue Op2, 7672 SDValue Op3) { 7673 SDVTList VTs = getVTList(VT); 7674 SDValue Ops[] = { Op1, Op2, Op3 }; 7675 return getMachineNode(Opcode, dl, VTs, Ops); 7676 } 7677 7678 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7679 EVT VT, ArrayRef<SDValue> Ops) { 7680 SDVTList VTs = getVTList(VT); 7681 return getMachineNode(Opcode, dl, VTs, Ops); 7682 } 7683 7684 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7685 EVT VT1, EVT VT2, SDValue Op1, 7686 SDValue Op2) { 7687 SDVTList VTs = getVTList(VT1, VT2); 7688 SDValue Ops[] = { Op1, Op2 }; 7689 return getMachineNode(Opcode, dl, VTs, Ops); 7690 } 7691 7692 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7693 EVT VT1, EVT VT2, SDValue Op1, 7694 SDValue Op2, SDValue Op3) { 7695 SDVTList VTs = getVTList(VT1, VT2); 7696 SDValue Ops[] = { Op1, Op2, Op3 }; 7697 return getMachineNode(Opcode, dl, VTs, Ops); 7698 } 7699 7700 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7701 EVT VT1, EVT VT2, 7702 ArrayRef<SDValue> Ops) { 7703 SDVTList VTs = getVTList(VT1, VT2); 7704 return getMachineNode(Opcode, dl, VTs, Ops); 7705 } 7706 7707 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7708 EVT VT1, EVT VT2, EVT VT3, 7709 SDValue Op1, SDValue Op2) { 7710 SDVTList VTs = getVTList(VT1, VT2, VT3); 7711 SDValue Ops[] = { Op1, Op2 }; 7712 return getMachineNode(Opcode, dl, VTs, Ops); 7713 } 7714 7715 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7716 EVT VT1, EVT VT2, EVT VT3, 7717 SDValue Op1, SDValue Op2, 7718 SDValue Op3) { 7719 SDVTList VTs = getVTList(VT1, VT2, VT3); 7720 SDValue Ops[] = { Op1, Op2, Op3 }; 7721 return getMachineNode(Opcode, dl, VTs, Ops); 7722 } 7723 7724 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7725 EVT VT1, EVT VT2, EVT VT3, 7726 ArrayRef<SDValue> Ops) { 7727 SDVTList VTs = getVTList(VT1, VT2, VT3); 7728 return getMachineNode(Opcode, dl, VTs, Ops); 7729 } 7730 7731 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7732 ArrayRef<EVT> ResultTys, 7733 ArrayRef<SDValue> Ops) { 7734 SDVTList VTs = getVTList(ResultTys); 7735 return getMachineNode(Opcode, dl, VTs, Ops); 7736 } 7737 7738 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7739 SDVTList VTs, 7740 ArrayRef<SDValue> Ops) { 7741 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7742 MachineSDNode *N; 7743 void *IP = nullptr; 7744 7745 if (DoCSE) { 7746 FoldingSetNodeID ID; 7747 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7748 IP = nullptr; 7749 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7750 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7751 } 7752 } 7753 7754 // Allocate a new MachineSDNode. 7755 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7756 createOperands(N, Ops); 7757 7758 if (DoCSE) 7759 CSEMap.InsertNode(N, IP); 7760 7761 InsertNode(N); 7762 return N; 7763 } 7764 7765 /// getTargetExtractSubreg - A convenience function for creating 7766 /// TargetOpcode::EXTRACT_SUBREG nodes. 7767 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7768 SDValue Operand) { 7769 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7770 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7771 VT, Operand, SRIdxVal); 7772 return SDValue(Subreg, 0); 7773 } 7774 7775 /// getTargetInsertSubreg - A convenience function for creating 7776 /// TargetOpcode::INSERT_SUBREG nodes. 7777 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7778 SDValue Operand, SDValue Subreg) { 7779 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7780 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7781 VT, Operand, Subreg, SRIdxVal); 7782 return SDValue(Result, 0); 7783 } 7784 7785 /// getNodeIfExists - Get the specified node if it's already available, or 7786 /// else return NULL. 7787 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7788 ArrayRef<SDValue> Ops, 7789 const SDNodeFlags Flags) { 7790 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7791 FoldingSetNodeID ID; 7792 AddNodeIDNode(ID, Opcode, VTList, Ops); 7793 void *IP = nullptr; 7794 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7795 E->intersectFlagsWith(Flags); 7796 return E; 7797 } 7798 } 7799 return nullptr; 7800 } 7801 7802 /// getDbgValue - Creates a SDDbgValue node. 7803 /// 7804 /// SDNode 7805 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7806 SDNode *N, unsigned R, bool IsIndirect, 7807 const DebugLoc &DL, unsigned O) { 7808 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7809 "Expected inlined-at fields to agree"); 7810 return new (DbgInfo->getAlloc()) 7811 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7812 } 7813 7814 /// Constant 7815 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7816 DIExpression *Expr, 7817 const Value *C, 7818 const DebugLoc &DL, unsigned O) { 7819 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7820 "Expected inlined-at fields to agree"); 7821 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7822 } 7823 7824 /// FrameIndex 7825 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7826 DIExpression *Expr, unsigned FI, 7827 bool IsIndirect, 7828 const DebugLoc &DL, 7829 unsigned O) { 7830 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7831 "Expected inlined-at fields to agree"); 7832 return new (DbgInfo->getAlloc()) 7833 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7834 } 7835 7836 /// VReg 7837 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7838 DIExpression *Expr, 7839 unsigned VReg, bool IsIndirect, 7840 const DebugLoc &DL, unsigned O) { 7841 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7842 "Expected inlined-at fields to agree"); 7843 return new (DbgInfo->getAlloc()) 7844 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 7845 } 7846 7847 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7848 unsigned OffsetInBits, unsigned SizeInBits, 7849 bool InvalidateDbg) { 7850 SDNode *FromNode = From.getNode(); 7851 SDNode *ToNode = To.getNode(); 7852 assert(FromNode && ToNode && "Can't modify dbg values"); 7853 7854 // PR35338 7855 // TODO: assert(From != To && "Redundant dbg value transfer"); 7856 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7857 if (From == To || FromNode == ToNode) 7858 return; 7859 7860 if (!FromNode->getHasDebugValue()) 7861 return; 7862 7863 SmallVector<SDDbgValue *, 2> ClonedDVs; 7864 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7865 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7866 continue; 7867 7868 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7869 7870 // Just transfer the dbg value attached to From. 7871 if (Dbg->getResNo() != From.getResNo()) 7872 continue; 7873 7874 DIVariable *Var = Dbg->getVariable(); 7875 auto *Expr = Dbg->getExpression(); 7876 // If a fragment is requested, update the expression. 7877 if (SizeInBits) { 7878 // When splitting a larger (e.g., sign-extended) value whose 7879 // lower bits are described with an SDDbgValue, do not attempt 7880 // to transfer the SDDbgValue to the upper bits. 7881 if (auto FI = Expr->getFragmentInfo()) 7882 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7883 continue; 7884 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7885 SizeInBits); 7886 if (!Fragment) 7887 continue; 7888 Expr = *Fragment; 7889 } 7890 // Clone the SDDbgValue and move it to To. 7891 SDDbgValue *Clone = 7892 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7893 Dbg->getDebugLoc(), Dbg->getOrder()); 7894 ClonedDVs.push_back(Clone); 7895 7896 if (InvalidateDbg) { 7897 // Invalidate value and indicate the SDDbgValue should not be emitted. 7898 Dbg->setIsInvalidated(); 7899 Dbg->setIsEmitted(); 7900 } 7901 } 7902 7903 for (SDDbgValue *Dbg : ClonedDVs) 7904 AddDbgValue(Dbg, ToNode, false); 7905 } 7906 7907 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7908 if (!N.getHasDebugValue()) 7909 return; 7910 7911 SmallVector<SDDbgValue *, 2> ClonedDVs; 7912 for (auto DV : GetDbgValues(&N)) { 7913 if (DV->isInvalidated()) 7914 continue; 7915 switch (N.getOpcode()) { 7916 default: 7917 break; 7918 case ISD::ADD: 7919 SDValue N0 = N.getOperand(0); 7920 SDValue N1 = N.getOperand(1); 7921 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7922 isConstantIntBuildVectorOrConstantInt(N1)) { 7923 uint64_t Offset = N.getConstantOperandVal(1); 7924 // Rewrite an ADD constant node into a DIExpression. Since we are 7925 // performing arithmetic to compute the variable's *value* in the 7926 // DIExpression, we need to mark the expression with a 7927 // DW_OP_stack_value. 7928 auto *DIExpr = DV->getExpression(); 7929 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7930 DIExpression::NoDeref, 7931 DIExpression::WithStackValue); 7932 SDDbgValue *Clone = 7933 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7934 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7935 ClonedDVs.push_back(Clone); 7936 DV->setIsInvalidated(); 7937 DV->setIsEmitted(); 7938 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 7939 N0.getNode()->dumprFull(this); 7940 dbgs() << " into " << *DIExpr << '\n'); 7941 } 7942 } 7943 } 7944 7945 for (SDDbgValue *Dbg : ClonedDVs) 7946 AddDbgValue(Dbg, Dbg->getSDNode(), false); 7947 } 7948 7949 /// Creates a SDDbgLabel node. 7950 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 7951 const DebugLoc &DL, unsigned O) { 7952 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 7953 "Expected inlined-at fields to agree"); 7954 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 7955 } 7956 7957 namespace { 7958 7959 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7960 /// pointed to by a use iterator is deleted, increment the use iterator 7961 /// so that it doesn't dangle. 7962 /// 7963 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7964 SDNode::use_iterator &UI; 7965 SDNode::use_iterator &UE; 7966 7967 void NodeDeleted(SDNode *N, SDNode *E) override { 7968 // Increment the iterator as needed. 7969 while (UI != UE && N == *UI) 7970 ++UI; 7971 } 7972 7973 public: 7974 RAUWUpdateListener(SelectionDAG &d, 7975 SDNode::use_iterator &ui, 7976 SDNode::use_iterator &ue) 7977 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7978 }; 7979 7980 } // end anonymous namespace 7981 7982 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7983 /// This can cause recursive merging of nodes in the DAG. 7984 /// 7985 /// This version assumes From has a single result value. 7986 /// 7987 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7988 SDNode *From = FromN.getNode(); 7989 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7990 "Cannot replace with this method!"); 7991 assert(From != To.getNode() && "Cannot replace uses of with self"); 7992 7993 // Preserve Debug Values 7994 transferDbgValues(FromN, To); 7995 7996 // Iterate over all the existing uses of From. New uses will be added 7997 // to the beginning of the use list, which we avoid visiting. 7998 // This specifically avoids visiting uses of From that arise while the 7999 // replacement is happening, because any such uses would be the result 8000 // of CSE: If an existing node looks like From after one of its operands 8001 // is replaced by To, we don't want to replace of all its users with To 8002 // too. See PR3018 for more info. 8003 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8004 RAUWUpdateListener Listener(*this, UI, UE); 8005 while (UI != UE) { 8006 SDNode *User = *UI; 8007 8008 // This node is about to morph, remove its old self from the CSE maps. 8009 RemoveNodeFromCSEMaps(User); 8010 8011 // A user can appear in a use list multiple times, and when this 8012 // happens the uses are usually next to each other in the list. 8013 // To help reduce the number of CSE recomputations, process all 8014 // the uses of this user that we can find this way. 8015 do { 8016 SDUse &Use = UI.getUse(); 8017 ++UI; 8018 Use.set(To); 8019 if (To->isDivergent() != From->isDivergent()) 8020 updateDivergence(User); 8021 } while (UI != UE && *UI == User); 8022 // Now that we have modified User, add it back to the CSE maps. If it 8023 // already exists there, recursively merge the results together. 8024 AddModifiedNodeToCSEMaps(User); 8025 } 8026 8027 // If we just RAUW'd the root, take note. 8028 if (FromN == getRoot()) 8029 setRoot(To); 8030 } 8031 8032 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8033 /// This can cause recursive merging of nodes in the DAG. 8034 /// 8035 /// This version assumes that for each value of From, there is a 8036 /// corresponding value in To in the same position with the same type. 8037 /// 8038 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8039 #ifndef NDEBUG 8040 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8041 assert((!From->hasAnyUseOfValue(i) || 8042 From->getValueType(i) == To->getValueType(i)) && 8043 "Cannot use this version of ReplaceAllUsesWith!"); 8044 #endif 8045 8046 // Handle the trivial case. 8047 if (From == To) 8048 return; 8049 8050 // Preserve Debug Info. Only do this if there's a use. 8051 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8052 if (From->hasAnyUseOfValue(i)) { 8053 assert((i < To->getNumValues()) && "Invalid To location"); 8054 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8055 } 8056 8057 // Iterate over just the existing users of From. See the comments in 8058 // the ReplaceAllUsesWith above. 8059 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8060 RAUWUpdateListener Listener(*this, UI, UE); 8061 while (UI != UE) { 8062 SDNode *User = *UI; 8063 8064 // This node is about to morph, remove its old self from the CSE maps. 8065 RemoveNodeFromCSEMaps(User); 8066 8067 // A user can appear in a use list multiple times, and when this 8068 // happens the uses are usually next to each other in the list. 8069 // To help reduce the number of CSE recomputations, process all 8070 // the uses of this user that we can find this way. 8071 do { 8072 SDUse &Use = UI.getUse(); 8073 ++UI; 8074 Use.setNode(To); 8075 if (To->isDivergent() != From->isDivergent()) 8076 updateDivergence(User); 8077 } while (UI != UE && *UI == User); 8078 8079 // Now that we have modified User, add it back to the CSE maps. If it 8080 // already exists there, recursively merge the results together. 8081 AddModifiedNodeToCSEMaps(User); 8082 } 8083 8084 // If we just RAUW'd the root, take note. 8085 if (From == getRoot().getNode()) 8086 setRoot(SDValue(To, getRoot().getResNo())); 8087 } 8088 8089 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8090 /// This can cause recursive merging of nodes in the DAG. 8091 /// 8092 /// This version can replace From with any result values. To must match the 8093 /// number and types of values returned by From. 8094 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8095 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8096 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8097 8098 // Preserve Debug Info. 8099 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8100 transferDbgValues(SDValue(From, i), To[i]); 8101 8102 // Iterate over just the existing users of From. See the comments in 8103 // the ReplaceAllUsesWith above. 8104 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8105 RAUWUpdateListener Listener(*this, UI, UE); 8106 while (UI != UE) { 8107 SDNode *User = *UI; 8108 8109 // This node is about to morph, remove its old self from the CSE maps. 8110 RemoveNodeFromCSEMaps(User); 8111 8112 // A user can appear in a use list multiple times, and when this happens the 8113 // uses are usually next to each other in the list. To help reduce the 8114 // number of CSE and divergence recomputations, process all the uses of this 8115 // user that we can find this way. 8116 bool To_IsDivergent = false; 8117 do { 8118 SDUse &Use = UI.getUse(); 8119 const SDValue &ToOp = To[Use.getResNo()]; 8120 ++UI; 8121 Use.set(ToOp); 8122 To_IsDivergent |= ToOp->isDivergent(); 8123 } while (UI != UE && *UI == User); 8124 8125 if (To_IsDivergent != From->isDivergent()) 8126 updateDivergence(User); 8127 8128 // Now that we have modified User, add it back to the CSE maps. If it 8129 // already exists there, recursively merge the results together. 8130 AddModifiedNodeToCSEMaps(User); 8131 } 8132 8133 // If we just RAUW'd the root, take note. 8134 if (From == getRoot().getNode()) 8135 setRoot(SDValue(To[getRoot().getResNo()])); 8136 } 8137 8138 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8139 /// uses of other values produced by From.getNode() alone. The Deleted 8140 /// vector is handled the same way as for ReplaceAllUsesWith. 8141 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8142 // Handle the really simple, really trivial case efficiently. 8143 if (From == To) return; 8144 8145 // Handle the simple, trivial, case efficiently. 8146 if (From.getNode()->getNumValues() == 1) { 8147 ReplaceAllUsesWith(From, To); 8148 return; 8149 } 8150 8151 // Preserve Debug Info. 8152 transferDbgValues(From, To); 8153 8154 // Iterate over just the existing users of From. See the comments in 8155 // the ReplaceAllUsesWith above. 8156 SDNode::use_iterator UI = From.getNode()->use_begin(), 8157 UE = From.getNode()->use_end(); 8158 RAUWUpdateListener Listener(*this, UI, UE); 8159 while (UI != UE) { 8160 SDNode *User = *UI; 8161 bool UserRemovedFromCSEMaps = false; 8162 8163 // A user can appear in a use list multiple times, and when this 8164 // happens the uses are usually next to each other in the list. 8165 // To help reduce the number of CSE recomputations, process all 8166 // the uses of this user that we can find this way. 8167 do { 8168 SDUse &Use = UI.getUse(); 8169 8170 // Skip uses of different values from the same node. 8171 if (Use.getResNo() != From.getResNo()) { 8172 ++UI; 8173 continue; 8174 } 8175 8176 // If this node hasn't been modified yet, it's still in the CSE maps, 8177 // so remove its old self from the CSE maps. 8178 if (!UserRemovedFromCSEMaps) { 8179 RemoveNodeFromCSEMaps(User); 8180 UserRemovedFromCSEMaps = true; 8181 } 8182 8183 ++UI; 8184 Use.set(To); 8185 if (To->isDivergent() != From->isDivergent()) 8186 updateDivergence(User); 8187 } while (UI != UE && *UI == User); 8188 // We are iterating over all uses of the From node, so if a use 8189 // doesn't use the specific value, no changes are made. 8190 if (!UserRemovedFromCSEMaps) 8191 continue; 8192 8193 // Now that we have modified User, add it back to the CSE maps. If it 8194 // already exists there, recursively merge the results together. 8195 AddModifiedNodeToCSEMaps(User); 8196 } 8197 8198 // If we just RAUW'd the root, take note. 8199 if (From == getRoot()) 8200 setRoot(To); 8201 } 8202 8203 namespace { 8204 8205 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8206 /// to record information about a use. 8207 struct UseMemo { 8208 SDNode *User; 8209 unsigned Index; 8210 SDUse *Use; 8211 }; 8212 8213 /// operator< - Sort Memos by User. 8214 bool operator<(const UseMemo &L, const UseMemo &R) { 8215 return (intptr_t)L.User < (intptr_t)R.User; 8216 } 8217 8218 } // end anonymous namespace 8219 8220 void SelectionDAG::updateDivergence(SDNode * N) 8221 { 8222 if (TLI->isSDNodeAlwaysUniform(N)) 8223 return; 8224 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8225 for (auto &Op : N->ops()) { 8226 if (Op.Val.getValueType() != MVT::Other) 8227 IsDivergent |= Op.getNode()->isDivergent(); 8228 } 8229 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8230 N->SDNodeBits.IsDivergent = IsDivergent; 8231 for (auto U : N->uses()) { 8232 updateDivergence(U); 8233 } 8234 } 8235 } 8236 8237 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8238 DenseMap<SDNode *, unsigned> Degree; 8239 Order.reserve(AllNodes.size()); 8240 for (auto &N : allnodes()) { 8241 unsigned NOps = N.getNumOperands(); 8242 Degree[&N] = NOps; 8243 if (0 == NOps) 8244 Order.push_back(&N); 8245 } 8246 for (size_t I = 0; I != Order.size(); ++I) { 8247 SDNode *N = Order[I]; 8248 for (auto U : N->uses()) { 8249 unsigned &UnsortedOps = Degree[U]; 8250 if (0 == --UnsortedOps) 8251 Order.push_back(U); 8252 } 8253 } 8254 } 8255 8256 #ifndef NDEBUG 8257 void SelectionDAG::VerifyDAGDiverence() { 8258 std::vector<SDNode *> TopoOrder; 8259 CreateTopologicalOrder(TopoOrder); 8260 const TargetLowering &TLI = getTargetLoweringInfo(); 8261 DenseMap<const SDNode *, bool> DivergenceMap; 8262 for (auto &N : allnodes()) { 8263 DivergenceMap[&N] = false; 8264 } 8265 for (auto N : TopoOrder) { 8266 bool IsDivergent = DivergenceMap[N]; 8267 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8268 for (auto &Op : N->ops()) { 8269 if (Op.Val.getValueType() != MVT::Other) 8270 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8271 } 8272 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8273 DivergenceMap[N] = true; 8274 } 8275 } 8276 for (auto &N : allnodes()) { 8277 (void)N; 8278 assert(DivergenceMap[&N] == N.isDivergent() && 8279 "Divergence bit inconsistency detected\n"); 8280 } 8281 } 8282 #endif 8283 8284 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8285 /// uses of other values produced by From.getNode() alone. The same value 8286 /// may appear in both the From and To list. The Deleted vector is 8287 /// handled the same way as for ReplaceAllUsesWith. 8288 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8289 const SDValue *To, 8290 unsigned Num){ 8291 // Handle the simple, trivial case efficiently. 8292 if (Num == 1) 8293 return ReplaceAllUsesOfValueWith(*From, *To); 8294 8295 transferDbgValues(*From, *To); 8296 8297 // Read up all the uses and make records of them. This helps 8298 // processing new uses that are introduced during the 8299 // replacement process. 8300 SmallVector<UseMemo, 4> Uses; 8301 for (unsigned i = 0; i != Num; ++i) { 8302 unsigned FromResNo = From[i].getResNo(); 8303 SDNode *FromNode = From[i].getNode(); 8304 for (SDNode::use_iterator UI = FromNode->use_begin(), 8305 E = FromNode->use_end(); UI != E; ++UI) { 8306 SDUse &Use = UI.getUse(); 8307 if (Use.getResNo() == FromResNo) { 8308 UseMemo Memo = { *UI, i, &Use }; 8309 Uses.push_back(Memo); 8310 } 8311 } 8312 } 8313 8314 // Sort the uses, so that all the uses from a given User are together. 8315 llvm::sort(Uses); 8316 8317 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8318 UseIndex != UseIndexEnd; ) { 8319 // We know that this user uses some value of From. If it is the right 8320 // value, update it. 8321 SDNode *User = Uses[UseIndex].User; 8322 8323 // This node is about to morph, remove its old self from the CSE maps. 8324 RemoveNodeFromCSEMaps(User); 8325 8326 // The Uses array is sorted, so all the uses for a given User 8327 // are next to each other in the list. 8328 // To help reduce the number of CSE recomputations, process all 8329 // the uses of this user that we can find this way. 8330 do { 8331 unsigned i = Uses[UseIndex].Index; 8332 SDUse &Use = *Uses[UseIndex].Use; 8333 ++UseIndex; 8334 8335 Use.set(To[i]); 8336 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8337 8338 // Now that we have modified User, add it back to the CSE maps. If it 8339 // already exists there, recursively merge the results together. 8340 AddModifiedNodeToCSEMaps(User); 8341 } 8342 } 8343 8344 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8345 /// based on their topological order. It returns the maximum id and a vector 8346 /// of the SDNodes* in assigned order by reference. 8347 unsigned SelectionDAG::AssignTopologicalOrder() { 8348 unsigned DAGSize = 0; 8349 8350 // SortedPos tracks the progress of the algorithm. Nodes before it are 8351 // sorted, nodes after it are unsorted. When the algorithm completes 8352 // it is at the end of the list. 8353 allnodes_iterator SortedPos = allnodes_begin(); 8354 8355 // Visit all the nodes. Move nodes with no operands to the front of 8356 // the list immediately. Annotate nodes that do have operands with their 8357 // operand count. Before we do this, the Node Id fields of the nodes 8358 // may contain arbitrary values. After, the Node Id fields for nodes 8359 // before SortedPos will contain the topological sort index, and the 8360 // Node Id fields for nodes At SortedPos and after will contain the 8361 // count of outstanding operands. 8362 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8363 SDNode *N = &*I++; 8364 checkForCycles(N, this); 8365 unsigned Degree = N->getNumOperands(); 8366 if (Degree == 0) { 8367 // A node with no uses, add it to the result array immediately. 8368 N->setNodeId(DAGSize++); 8369 allnodes_iterator Q(N); 8370 if (Q != SortedPos) 8371 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8372 assert(SortedPos != AllNodes.end() && "Overran node list"); 8373 ++SortedPos; 8374 } else { 8375 // Temporarily use the Node Id as scratch space for the degree count. 8376 N->setNodeId(Degree); 8377 } 8378 } 8379 8380 // Visit all the nodes. As we iterate, move nodes into sorted order, 8381 // such that by the time the end is reached all nodes will be sorted. 8382 for (SDNode &Node : allnodes()) { 8383 SDNode *N = &Node; 8384 checkForCycles(N, this); 8385 // N is in sorted position, so all its uses have one less operand 8386 // that needs to be sorted. 8387 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8388 UI != UE; ++UI) { 8389 SDNode *P = *UI; 8390 unsigned Degree = P->getNodeId(); 8391 assert(Degree != 0 && "Invalid node degree"); 8392 --Degree; 8393 if (Degree == 0) { 8394 // All of P's operands are sorted, so P may sorted now. 8395 P->setNodeId(DAGSize++); 8396 if (P->getIterator() != SortedPos) 8397 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8398 assert(SortedPos != AllNodes.end() && "Overran node list"); 8399 ++SortedPos; 8400 } else { 8401 // Update P's outstanding operand count. 8402 P->setNodeId(Degree); 8403 } 8404 } 8405 if (Node.getIterator() == SortedPos) { 8406 #ifndef NDEBUG 8407 allnodes_iterator I(N); 8408 SDNode *S = &*++I; 8409 dbgs() << "Overran sorted position:\n"; 8410 S->dumprFull(this); dbgs() << "\n"; 8411 dbgs() << "Checking if this is due to cycles\n"; 8412 checkForCycles(this, true); 8413 #endif 8414 llvm_unreachable(nullptr); 8415 } 8416 } 8417 8418 assert(SortedPos == AllNodes.end() && 8419 "Topological sort incomplete!"); 8420 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8421 "First node in topological sort is not the entry token!"); 8422 assert(AllNodes.front().getNodeId() == 0 && 8423 "First node in topological sort has non-zero id!"); 8424 assert(AllNodes.front().getNumOperands() == 0 && 8425 "First node in topological sort has operands!"); 8426 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8427 "Last node in topologic sort has unexpected id!"); 8428 assert(AllNodes.back().use_empty() && 8429 "Last node in topologic sort has users!"); 8430 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8431 return DAGSize; 8432 } 8433 8434 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8435 /// value is produced by SD. 8436 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8437 if (SD) { 8438 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8439 SD->setHasDebugValue(true); 8440 } 8441 DbgInfo->add(DB, SD, isParameter); 8442 } 8443 8444 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8445 DbgInfo->add(DB); 8446 } 8447 8448 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8449 SDValue NewMemOp) { 8450 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8451 // The new memory operation must have the same position as the old load in 8452 // terms of memory dependency. Create a TokenFactor for the old load and new 8453 // memory operation and update uses of the old load's output chain to use that 8454 // TokenFactor. 8455 SDValue OldChain = SDValue(OldLoad, 1); 8456 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8457 if (!OldLoad->hasAnyUseOfValue(1)) 8458 return NewChain; 8459 8460 SDValue TokenFactor = 8461 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8462 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8463 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8464 return TokenFactor; 8465 } 8466 8467 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8468 Function **OutFunction) { 8469 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8470 8471 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8472 auto *Module = MF->getFunction().getParent(); 8473 auto *Function = Module->getFunction(Symbol); 8474 8475 if (OutFunction != nullptr) 8476 *OutFunction = Function; 8477 8478 if (Function != nullptr) { 8479 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8480 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8481 } 8482 8483 std::string ErrorStr; 8484 raw_string_ostream ErrorFormatter(ErrorStr); 8485 8486 ErrorFormatter << "Undefined external symbol "; 8487 ErrorFormatter << '"' << Symbol << '"'; 8488 ErrorFormatter.flush(); 8489 8490 report_fatal_error(ErrorStr); 8491 } 8492 8493 //===----------------------------------------------------------------------===// 8494 // SDNode Class 8495 //===----------------------------------------------------------------------===// 8496 8497 bool llvm::isNullConstant(SDValue V) { 8498 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8499 return Const != nullptr && Const->isNullValue(); 8500 } 8501 8502 bool llvm::isNullFPConstant(SDValue V) { 8503 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8504 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8505 } 8506 8507 bool llvm::isAllOnesConstant(SDValue V) { 8508 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8509 return Const != nullptr && Const->isAllOnesValue(); 8510 } 8511 8512 bool llvm::isOneConstant(SDValue V) { 8513 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8514 return Const != nullptr && Const->isOne(); 8515 } 8516 8517 SDValue llvm::peekThroughBitcasts(SDValue V) { 8518 while (V.getOpcode() == ISD::BITCAST) 8519 V = V.getOperand(0); 8520 return V; 8521 } 8522 8523 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8524 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8525 V = V.getOperand(0); 8526 return V; 8527 } 8528 8529 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8530 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8531 V = V.getOperand(0); 8532 return V; 8533 } 8534 8535 bool llvm::isBitwiseNot(SDValue V) { 8536 if (V.getOpcode() != ISD::XOR) 8537 return false; 8538 ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1))); 8539 return C && C->isAllOnesValue(); 8540 } 8541 8542 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) { 8543 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8544 return CN; 8545 8546 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8547 BitVector UndefElements; 8548 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8549 8550 // BuildVectors can truncate their operands. Ignore that case here. 8551 if (CN && (UndefElements.none() || AllowUndefs) && 8552 CN->getValueType(0) == N.getValueType().getScalarType()) 8553 return CN; 8554 } 8555 8556 return nullptr; 8557 } 8558 8559 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8560 bool AllowUndefs) { 8561 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8562 return CN; 8563 8564 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8565 BitVector UndefElements; 8566 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8567 8568 // BuildVectors can truncate their operands. Ignore that case here. 8569 if (CN && (UndefElements.none() || AllowUndefs) && 8570 CN->getValueType(0) == N.getValueType().getScalarType()) 8571 return CN; 8572 } 8573 8574 return nullptr; 8575 } 8576 8577 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8578 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8579 return CN; 8580 8581 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8582 BitVector UndefElements; 8583 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8584 if (CN && (UndefElements.none() || AllowUndefs)) 8585 return CN; 8586 } 8587 8588 return nullptr; 8589 } 8590 8591 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8592 const APInt &DemandedElts, 8593 bool AllowUndefs) { 8594 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8595 return CN; 8596 8597 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8598 BitVector UndefElements; 8599 ConstantFPSDNode *CN = 8600 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8601 if (CN && (UndefElements.none() || AllowUndefs)) 8602 return CN; 8603 } 8604 8605 return nullptr; 8606 } 8607 8608 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8609 // TODO: may want to use peekThroughBitcast() here. 8610 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8611 return C && C->isNullValue(); 8612 } 8613 8614 bool llvm::isOneOrOneSplat(SDValue N) { 8615 // TODO: may want to use peekThroughBitcast() here. 8616 unsigned BitWidth = N.getScalarValueSizeInBits(); 8617 ConstantSDNode *C = isConstOrConstSplat(N); 8618 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8619 } 8620 8621 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8622 N = peekThroughBitcasts(N); 8623 unsigned BitWidth = N.getScalarValueSizeInBits(); 8624 ConstantSDNode *C = isConstOrConstSplat(N); 8625 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8626 } 8627 8628 HandleSDNode::~HandleSDNode() { 8629 DropOperands(); 8630 } 8631 8632 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8633 const DebugLoc &DL, 8634 const GlobalValue *GA, EVT VT, 8635 int64_t o, unsigned char TF) 8636 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8637 TheGlobal = GA; 8638 } 8639 8640 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8641 EVT VT, unsigned SrcAS, 8642 unsigned DestAS) 8643 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8644 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8645 8646 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8647 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8648 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8649 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8650 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8651 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8652 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8653 8654 // We check here that the size of the memory operand fits within the size of 8655 // the MMO. This is because the MMO might indicate only a possible address 8656 // range instead of specifying the affected memory addresses precisely. 8657 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8658 } 8659 8660 /// Profile - Gather unique data for the node. 8661 /// 8662 void SDNode::Profile(FoldingSetNodeID &ID) const { 8663 AddNodeIDNode(ID, this); 8664 } 8665 8666 namespace { 8667 8668 struct EVTArray { 8669 std::vector<EVT> VTs; 8670 8671 EVTArray() { 8672 VTs.reserve(MVT::LAST_VALUETYPE); 8673 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8674 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8675 } 8676 }; 8677 8678 } // end anonymous namespace 8679 8680 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8681 static ManagedStatic<EVTArray> SimpleVTArray; 8682 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8683 8684 /// getValueTypeList - Return a pointer to the specified value type. 8685 /// 8686 const EVT *SDNode::getValueTypeList(EVT VT) { 8687 if (VT.isExtended()) { 8688 sys::SmartScopedLock<true> Lock(*VTMutex); 8689 return &(*EVTs->insert(VT).first); 8690 } else { 8691 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8692 "Value type out of range!"); 8693 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8694 } 8695 } 8696 8697 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8698 /// indicated value. This method ignores uses of other values defined by this 8699 /// operation. 8700 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8701 assert(Value < getNumValues() && "Bad value!"); 8702 8703 // TODO: Only iterate over uses of a given value of the node 8704 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8705 if (UI.getUse().getResNo() == Value) { 8706 if (NUses == 0) 8707 return false; 8708 --NUses; 8709 } 8710 } 8711 8712 // Found exactly the right number of uses? 8713 return NUses == 0; 8714 } 8715 8716 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8717 /// value. This method ignores uses of other values defined by this operation. 8718 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8719 assert(Value < getNumValues() && "Bad value!"); 8720 8721 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8722 if (UI.getUse().getResNo() == Value) 8723 return true; 8724 8725 return false; 8726 } 8727 8728 /// isOnlyUserOf - Return true if this node is the only use of N. 8729 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8730 bool Seen = false; 8731 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8732 SDNode *User = *I; 8733 if (User == this) 8734 Seen = true; 8735 else 8736 return false; 8737 } 8738 8739 return Seen; 8740 } 8741 8742 /// Return true if the only users of N are contained in Nodes. 8743 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8744 bool Seen = false; 8745 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8746 SDNode *User = *I; 8747 if (llvm::any_of(Nodes, 8748 [&User](const SDNode *Node) { return User == Node; })) 8749 Seen = true; 8750 else 8751 return false; 8752 } 8753 8754 return Seen; 8755 } 8756 8757 /// isOperand - Return true if this node is an operand of N. 8758 bool SDValue::isOperandOf(const SDNode *N) const { 8759 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 8760 } 8761 8762 bool SDNode::isOperandOf(const SDNode *N) const { 8763 return any_of(N->op_values(), 8764 [this](SDValue Op) { return this == Op.getNode(); }); 8765 } 8766 8767 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8768 /// be a chain) reaches the specified operand without crossing any 8769 /// side-effecting instructions on any chain path. In practice, this looks 8770 /// through token factors and non-volatile loads. In order to remain efficient, 8771 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8772 /// 8773 /// Note that we only need to examine chains when we're searching for 8774 /// side-effects; SelectionDAG requires that all side-effects are represented 8775 /// by chains, even if another operand would force a specific ordering. This 8776 /// constraint is necessary to allow transformations like splitting loads. 8777 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8778 unsigned Depth) const { 8779 if (*this == Dest) return true; 8780 8781 // Don't search too deeply, we just want to be able to see through 8782 // TokenFactor's etc. 8783 if (Depth == 0) return false; 8784 8785 // If this is a token factor, all inputs to the TF happen in parallel. 8786 if (getOpcode() == ISD::TokenFactor) { 8787 // First, try a shallow search. 8788 if (is_contained((*this)->ops(), Dest)) { 8789 // We found the chain we want as an operand of this TokenFactor. 8790 // Essentially, we reach the chain without side-effects if we could 8791 // serialize the TokenFactor into a simple chain of operations with 8792 // Dest as the last operation. This is automatically true if the 8793 // chain has one use: there are no other ordering constraints. 8794 // If the chain has more than one use, we give up: some other 8795 // use of Dest might force a side-effect between Dest and the current 8796 // node. 8797 if (Dest.hasOneUse()) 8798 return true; 8799 } 8800 // Next, try a deep search: check whether every operand of the TokenFactor 8801 // reaches Dest. 8802 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8803 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8804 }); 8805 } 8806 8807 // Loads don't have side effects, look through them. 8808 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8809 if (!Ld->isVolatile()) 8810 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8811 } 8812 return false; 8813 } 8814 8815 bool SDNode::hasPredecessor(const SDNode *N) const { 8816 SmallPtrSet<const SDNode *, 32> Visited; 8817 SmallVector<const SDNode *, 16> Worklist; 8818 Worklist.push_back(this); 8819 return hasPredecessorHelper(N, Visited, Worklist); 8820 } 8821 8822 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8823 this->Flags.intersectWith(Flags); 8824 } 8825 8826 SDValue 8827 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 8828 ArrayRef<ISD::NodeType> CandidateBinOps) { 8829 // The pattern must end in an extract from index 0. 8830 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8831 !isNullConstant(Extract->getOperand(1))) 8832 return SDValue(); 8833 8834 SDValue Op = Extract->getOperand(0); 8835 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 8836 8837 // Match against one of the candidate binary ops. 8838 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 8839 return Op.getOpcode() == unsigned(BinOp); 8840 })) 8841 return SDValue(); 8842 8843 // At each stage, we're looking for something that looks like: 8844 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 8845 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 8846 // i32 undef, i32 undef, i32 undef, i32 undef> 8847 // %a = binop <8 x i32> %op, %s 8848 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 8849 // we expect something like: 8850 // <4,5,6,7,u,u,u,u> 8851 // <2,3,u,u,u,u,u,u> 8852 // <1,u,u,u,u,u,u,u> 8853 unsigned CandidateBinOp = Op.getOpcode(); 8854 for (unsigned i = 0; i < Stages; ++i) { 8855 if (Op.getOpcode() != CandidateBinOp) 8856 return SDValue(); 8857 8858 SDValue Op0 = Op.getOperand(0); 8859 SDValue Op1 = Op.getOperand(1); 8860 8861 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 8862 if (Shuffle) { 8863 Op = Op1; 8864 } else { 8865 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 8866 Op = Op0; 8867 } 8868 8869 // The first operand of the shuffle should be the same as the other operand 8870 // of the binop. 8871 if (!Shuffle || Shuffle->getOperand(0) != Op) 8872 return SDValue(); 8873 8874 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 8875 for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) 8876 if (Shuffle->getMaskElt(Index) != MaskEnd + Index) 8877 return SDValue(); 8878 } 8879 8880 BinOp = (ISD::NodeType)CandidateBinOp; 8881 return Op; 8882 } 8883 8884 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 8885 assert(N->getNumValues() == 1 && 8886 "Can't unroll a vector with multiple results!"); 8887 8888 EVT VT = N->getValueType(0); 8889 unsigned NE = VT.getVectorNumElements(); 8890 EVT EltVT = VT.getVectorElementType(); 8891 SDLoc dl(N); 8892 8893 SmallVector<SDValue, 8> Scalars; 8894 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 8895 8896 // If ResNE is 0, fully unroll the vector op. 8897 if (ResNE == 0) 8898 ResNE = NE; 8899 else if (NE > ResNE) 8900 NE = ResNE; 8901 8902 unsigned i; 8903 for (i= 0; i != NE; ++i) { 8904 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 8905 SDValue Operand = N->getOperand(j); 8906 EVT OperandVT = Operand.getValueType(); 8907 if (OperandVT.isVector()) { 8908 // A vector operand; extract a single element. 8909 EVT OperandEltVT = OperandVT.getVectorElementType(); 8910 Operands[j] = 8911 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 8912 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 8913 } else { 8914 // A scalar operand; just use it as is. 8915 Operands[j] = Operand; 8916 } 8917 } 8918 8919 switch (N->getOpcode()) { 8920 default: { 8921 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 8922 N->getFlags())); 8923 break; 8924 } 8925 case ISD::VSELECT: 8926 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 8927 break; 8928 case ISD::SHL: 8929 case ISD::SRA: 8930 case ISD::SRL: 8931 case ISD::ROTL: 8932 case ISD::ROTR: 8933 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 8934 getShiftAmountOperand(Operands[0].getValueType(), 8935 Operands[1]))); 8936 break; 8937 case ISD::SIGN_EXTEND_INREG: 8938 case ISD::FP_ROUND_INREG: { 8939 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 8940 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 8941 Operands[0], 8942 getValueType(ExtVT))); 8943 } 8944 } 8945 } 8946 8947 for (; i < ResNE; ++i) 8948 Scalars.push_back(getUNDEF(EltVT)); 8949 8950 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 8951 return getBuildVector(VecVT, dl, Scalars); 8952 } 8953 8954 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 8955 SDNode *N, unsigned ResNE) { 8956 unsigned Opcode = N->getOpcode(); 8957 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 8958 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 8959 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 8960 "Expected an overflow opcode"); 8961 8962 EVT ResVT = N->getValueType(0); 8963 EVT OvVT = N->getValueType(1); 8964 EVT ResEltVT = ResVT.getVectorElementType(); 8965 EVT OvEltVT = OvVT.getVectorElementType(); 8966 SDLoc dl(N); 8967 8968 // If ResNE is 0, fully unroll the vector op. 8969 unsigned NE = ResVT.getVectorNumElements(); 8970 if (ResNE == 0) 8971 ResNE = NE; 8972 else if (NE > ResNE) 8973 NE = ResNE; 8974 8975 SmallVector<SDValue, 8> LHSScalars; 8976 SmallVector<SDValue, 8> RHSScalars; 8977 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 8978 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 8979 8980 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 8981 SDVTList VTs = getVTList(ResEltVT, SVT); 8982 SmallVector<SDValue, 8> ResScalars; 8983 SmallVector<SDValue, 8> OvScalars; 8984 for (unsigned i = 0; i < NE; ++i) { 8985 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 8986 SDValue Ov = 8987 getSelect(dl, OvEltVT, Res.getValue(1), 8988 getBoolConstant(true, dl, OvEltVT, ResVT), 8989 getConstant(0, dl, OvEltVT)); 8990 8991 ResScalars.push_back(Res); 8992 OvScalars.push_back(Ov); 8993 } 8994 8995 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 8996 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 8997 8998 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 8999 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9000 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9001 getBuildVector(NewOvVT, dl, OvScalars)); 9002 } 9003 9004 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9005 LoadSDNode *Base, 9006 unsigned Bytes, 9007 int Dist) const { 9008 if (LD->isVolatile() || Base->isVolatile()) 9009 return false; 9010 if (LD->isIndexed() || Base->isIndexed()) 9011 return false; 9012 if (LD->getChain() != Base->getChain()) 9013 return false; 9014 EVT VT = LD->getValueType(0); 9015 if (VT.getSizeInBits() / 8 != Bytes) 9016 return false; 9017 9018 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9019 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9020 9021 int64_t Offset = 0; 9022 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9023 return (Dist * Bytes == Offset); 9024 return false; 9025 } 9026 9027 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9028 /// it cannot be inferred. 9029 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9030 // If this is a GlobalAddress + cst, return the alignment. 9031 const GlobalValue *GV; 9032 int64_t GVOffset = 0; 9033 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9034 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9035 KnownBits Known(IdxWidth); 9036 llvm::computeKnownBits(GV, Known, getDataLayout()); 9037 unsigned AlignBits = Known.countMinTrailingZeros(); 9038 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9039 if (Align) 9040 return MinAlign(Align, GVOffset); 9041 } 9042 9043 // If this is a direct reference to a stack slot, use information about the 9044 // stack slot's alignment. 9045 int FrameIdx = INT_MIN; 9046 int64_t FrameOffset = 0; 9047 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9048 FrameIdx = FI->getIndex(); 9049 } else if (isBaseWithConstantOffset(Ptr) && 9050 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9051 // Handle FI+Cst 9052 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9053 FrameOffset = Ptr.getConstantOperandVal(1); 9054 } 9055 9056 if (FrameIdx != INT_MIN) { 9057 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9058 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9059 FrameOffset); 9060 return FIInfoAlign; 9061 } 9062 9063 return 0; 9064 } 9065 9066 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9067 /// which is split (or expanded) into two not necessarily identical pieces. 9068 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9069 // Currently all types are split in half. 9070 EVT LoVT, HiVT; 9071 if (!VT.isVector()) 9072 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9073 else 9074 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9075 9076 return std::make_pair(LoVT, HiVT); 9077 } 9078 9079 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9080 /// low/high part. 9081 std::pair<SDValue, SDValue> 9082 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9083 const EVT &HiVT) { 9084 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9085 N.getValueType().getVectorNumElements() && 9086 "More vector elements requested than available!"); 9087 SDValue Lo, Hi; 9088 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9089 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9090 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9091 getConstant(LoVT.getVectorNumElements(), DL, 9092 TLI->getVectorIdxTy(getDataLayout()))); 9093 return std::make_pair(Lo, Hi); 9094 } 9095 9096 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9097 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9098 EVT VT = N.getValueType(); 9099 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9100 NextPowerOf2(VT.getVectorNumElements())); 9101 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9102 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9103 } 9104 9105 void SelectionDAG::ExtractVectorElements(SDValue Op, 9106 SmallVectorImpl<SDValue> &Args, 9107 unsigned Start, unsigned Count) { 9108 EVT VT = Op.getValueType(); 9109 if (Count == 0) 9110 Count = VT.getVectorNumElements(); 9111 9112 EVT EltVT = VT.getVectorElementType(); 9113 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9114 SDLoc SL(Op); 9115 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9116 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9117 Op, getConstant(i, SL, IdxTy))); 9118 } 9119 } 9120 9121 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9122 unsigned GlobalAddressSDNode::getAddressSpace() const { 9123 return getGlobal()->getType()->getAddressSpace(); 9124 } 9125 9126 Type *ConstantPoolSDNode::getType() const { 9127 if (isMachineConstantPoolEntry()) 9128 return Val.MachineCPVal->getType(); 9129 return Val.ConstVal->getType(); 9130 } 9131 9132 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9133 unsigned &SplatBitSize, 9134 bool &HasAnyUndefs, 9135 unsigned MinSplatBits, 9136 bool IsBigEndian) const { 9137 EVT VT = getValueType(0); 9138 assert(VT.isVector() && "Expected a vector type"); 9139 unsigned VecWidth = VT.getSizeInBits(); 9140 if (MinSplatBits > VecWidth) 9141 return false; 9142 9143 // FIXME: The widths are based on this node's type, but build vectors can 9144 // truncate their operands. 9145 SplatValue = APInt(VecWidth, 0); 9146 SplatUndef = APInt(VecWidth, 0); 9147 9148 // Get the bits. Bits with undefined values (when the corresponding element 9149 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9150 // in SplatValue. If any of the values are not constant, give up and return 9151 // false. 9152 unsigned int NumOps = getNumOperands(); 9153 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9154 unsigned EltWidth = VT.getScalarSizeInBits(); 9155 9156 for (unsigned j = 0; j < NumOps; ++j) { 9157 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9158 SDValue OpVal = getOperand(i); 9159 unsigned BitPos = j * EltWidth; 9160 9161 if (OpVal.isUndef()) 9162 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9163 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9164 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9165 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9166 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9167 else 9168 return false; 9169 } 9170 9171 // The build_vector is all constants or undefs. Find the smallest element 9172 // size that splats the vector. 9173 HasAnyUndefs = (SplatUndef != 0); 9174 9175 // FIXME: This does not work for vectors with elements less than 8 bits. 9176 while (VecWidth > 8) { 9177 unsigned HalfSize = VecWidth / 2; 9178 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9179 APInt LowValue = SplatValue.trunc(HalfSize); 9180 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9181 APInt LowUndef = SplatUndef.trunc(HalfSize); 9182 9183 // If the two halves do not match (ignoring undef bits), stop here. 9184 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9185 MinSplatBits > HalfSize) 9186 break; 9187 9188 SplatValue = HighValue | LowValue; 9189 SplatUndef = HighUndef & LowUndef; 9190 9191 VecWidth = HalfSize; 9192 } 9193 9194 SplatBitSize = VecWidth; 9195 return true; 9196 } 9197 9198 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9199 BitVector *UndefElements) const { 9200 if (UndefElements) { 9201 UndefElements->clear(); 9202 UndefElements->resize(getNumOperands()); 9203 } 9204 assert(getNumOperands() == DemandedElts.getBitWidth() && 9205 "Unexpected vector size"); 9206 if (!DemandedElts) 9207 return SDValue(); 9208 SDValue Splatted; 9209 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9210 if (!DemandedElts[i]) 9211 continue; 9212 SDValue Op = getOperand(i); 9213 if (Op.isUndef()) { 9214 if (UndefElements) 9215 (*UndefElements)[i] = true; 9216 } else if (!Splatted) { 9217 Splatted = Op; 9218 } else if (Splatted != Op) { 9219 return SDValue(); 9220 } 9221 } 9222 9223 if (!Splatted) { 9224 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9225 assert(getOperand(FirstDemandedIdx).isUndef() && 9226 "Can only have a splat without a constant for all undefs."); 9227 return getOperand(FirstDemandedIdx); 9228 } 9229 9230 return Splatted; 9231 } 9232 9233 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9234 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9235 return getSplatValue(DemandedElts, UndefElements); 9236 } 9237 9238 ConstantSDNode * 9239 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9240 BitVector *UndefElements) const { 9241 return dyn_cast_or_null<ConstantSDNode>( 9242 getSplatValue(DemandedElts, UndefElements)); 9243 } 9244 9245 ConstantSDNode * 9246 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9247 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9248 } 9249 9250 ConstantFPSDNode * 9251 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9252 BitVector *UndefElements) const { 9253 return dyn_cast_or_null<ConstantFPSDNode>( 9254 getSplatValue(DemandedElts, UndefElements)); 9255 } 9256 9257 ConstantFPSDNode * 9258 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9259 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9260 } 9261 9262 int32_t 9263 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9264 uint32_t BitWidth) const { 9265 if (ConstantFPSDNode *CN = 9266 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9267 bool IsExact; 9268 APSInt IntVal(BitWidth); 9269 const APFloat &APF = CN->getValueAPF(); 9270 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9271 APFloat::opOK || 9272 !IsExact) 9273 return -1; 9274 9275 return IntVal.exactLogBase2(); 9276 } 9277 return -1; 9278 } 9279 9280 bool BuildVectorSDNode::isConstant() const { 9281 for (const SDValue &Op : op_values()) { 9282 unsigned Opc = Op.getOpcode(); 9283 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9284 return false; 9285 } 9286 return true; 9287 } 9288 9289 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9290 // Find the first non-undef value in the shuffle mask. 9291 unsigned i, e; 9292 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9293 /* search */; 9294 9295 // If all elements are undefined, this shuffle can be considered a splat 9296 // (although it should eventually get simplified away completely). 9297 if (i == e) 9298 return true; 9299 9300 // Make sure all remaining elements are either undef or the same as the first 9301 // non-undef value. 9302 for (int Idx = Mask[i]; i != e; ++i) 9303 if (Mask[i] >= 0 && Mask[i] != Idx) 9304 return false; 9305 return true; 9306 } 9307 9308 // Returns the SDNode if it is a constant integer BuildVector 9309 // or constant integer. 9310 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9311 if (isa<ConstantSDNode>(N)) 9312 return N.getNode(); 9313 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9314 return N.getNode(); 9315 // Treat a GlobalAddress supporting constant offset folding as a 9316 // constant integer. 9317 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9318 if (GA->getOpcode() == ISD::GlobalAddress && 9319 TLI->isOffsetFoldingLegal(GA)) 9320 return GA; 9321 return nullptr; 9322 } 9323 9324 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9325 if (isa<ConstantFPSDNode>(N)) 9326 return N.getNode(); 9327 9328 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9329 return N.getNode(); 9330 9331 return nullptr; 9332 } 9333 9334 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9335 assert(!Node->OperandList && "Node already has operands"); 9336 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9337 "too many operands to fit into SDNode"); 9338 SDUse *Ops = OperandRecycler.allocate( 9339 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9340 9341 bool IsDivergent = false; 9342 for (unsigned I = 0; I != Vals.size(); ++I) { 9343 Ops[I].setUser(Node); 9344 Ops[I].setInitial(Vals[I]); 9345 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9346 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9347 } 9348 Node->NumOperands = Vals.size(); 9349 Node->OperandList = Ops; 9350 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9351 if (!TLI->isSDNodeAlwaysUniform(Node)) 9352 Node->SDNodeBits.IsDivergent = IsDivergent; 9353 checkForCycles(Node); 9354 } 9355 9356 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9357 SmallVectorImpl<SDValue> &Vals) { 9358 size_t Limit = SDNode::getMaxNumOperands(); 9359 while (Vals.size() > Limit) { 9360 unsigned SliceIdx = Vals.size() - Limit; 9361 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9362 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9363 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9364 Vals.emplace_back(NewTF); 9365 } 9366 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9367 } 9368 9369 #ifndef NDEBUG 9370 static void checkForCyclesHelper(const SDNode *N, 9371 SmallPtrSetImpl<const SDNode*> &Visited, 9372 SmallPtrSetImpl<const SDNode*> &Checked, 9373 const llvm::SelectionDAG *DAG) { 9374 // If this node has already been checked, don't check it again. 9375 if (Checked.count(N)) 9376 return; 9377 9378 // If a node has already been visited on this depth-first walk, reject it as 9379 // a cycle. 9380 if (!Visited.insert(N).second) { 9381 errs() << "Detected cycle in SelectionDAG\n"; 9382 dbgs() << "Offending node:\n"; 9383 N->dumprFull(DAG); dbgs() << "\n"; 9384 abort(); 9385 } 9386 9387 for (const SDValue &Op : N->op_values()) 9388 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9389 9390 Checked.insert(N); 9391 Visited.erase(N); 9392 } 9393 #endif 9394 9395 void llvm::checkForCycles(const llvm::SDNode *N, 9396 const llvm::SelectionDAG *DAG, 9397 bool force) { 9398 #ifndef NDEBUG 9399 bool check = force; 9400 #ifdef EXPENSIVE_CHECKS 9401 check = true; 9402 #endif // EXPENSIVE_CHECKS 9403 if (check) { 9404 assert(N && "Checking nonexistent SDNode"); 9405 SmallPtrSet<const SDNode*, 32> visited; 9406 SmallPtrSet<const SDNode*, 32> checked; 9407 checkForCyclesHelper(N, visited, checked, DAG); 9408 } 9409 #endif // !NDEBUG 9410 } 9411 9412 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9413 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9414 } 9415