1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 410 case ISD::VPSD: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 break; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 421 #define VP_PROPERTY_BINARYOP return true; 422 #define END_REGISTER_VP_SDNODE(VPSD) break; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 return false; 426 } 427 428 bool ISD::isVPReduction(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 /// The operand position of the vector mask. 441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 442 switch (Opcode) { 443 default: 444 return None; 445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 446 case ISD::VPSD: \ 447 return MASKPOS; 448 #include "llvm/IR/VPIntrinsics.def" 449 } 450 } 451 452 /// The operand position of the explicit vector length parameter. 453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 458 case ISD::VPSD: \ 459 return EVLPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 465 switch (ExtType) { 466 case ISD::EXTLOAD: 467 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 468 case ISD::SEXTLOAD: 469 return ISD::SIGN_EXTEND; 470 case ISD::ZEXTLOAD: 471 return ISD::ZERO_EXTEND; 472 default: 473 break; 474 } 475 476 llvm_unreachable("Invalid LoadExtType"); 477 } 478 479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 480 // To perform this operation, we just need to swap the L and G bits of the 481 // operation. 482 unsigned OldL = (Operation >> 2) & 1; 483 unsigned OldG = (Operation >> 1) & 1; 484 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 485 (OldL << 1) | // New G bit 486 (OldG << 2)); // New L bit. 487 } 488 489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 490 unsigned Operation = Op; 491 if (isIntegerLike) 492 Operation ^= 7; // Flip L, G, E bits, but not U. 493 else 494 Operation ^= 15; // Flip all of the condition bits. 495 496 if (Operation > ISD::SETTRUE2) 497 Operation &= ~8; // Don't let N and U bits get set. 498 499 return ISD::CondCode(Operation); 500 } 501 502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 503 return getSetCCInverseImpl(Op, Type.isInteger()); 504 } 505 506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 507 bool isIntegerLike) { 508 return getSetCCInverseImpl(Op, isIntegerLike); 509 } 510 511 /// For an integer comparison, return 1 if the comparison is a signed operation 512 /// and 2 if the result is an unsigned comparison. Return zero if the operation 513 /// does not depend on the sign of the input (setne and seteq). 514 static int isSignedOp(ISD::CondCode Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Illegal integer setcc operation!"); 517 case ISD::SETEQ: 518 case ISD::SETNE: return 0; 519 case ISD::SETLT: 520 case ISD::SETLE: 521 case ISD::SETGT: 522 case ISD::SETGE: return 1; 523 case ISD::SETULT: 524 case ISD::SETULE: 525 case ISD::SETUGT: 526 case ISD::SETUGE: return 2; 527 } 528 } 529 530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 531 EVT Type) { 532 bool IsInteger = Type.isInteger(); 533 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 534 // Cannot fold a signed integer setcc with an unsigned integer setcc. 535 return ISD::SETCC_INVALID; 536 537 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 538 539 // If the N and U bits get set, then the resultant comparison DOES suddenly 540 // care about orderedness, and it is true when ordered. 541 if (Op > ISD::SETTRUE2) 542 Op &= ~16; // Clear the U bit if the N bit is set. 543 544 // Canonicalize illegal integer setcc's. 545 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 546 Op = ISD::SETNE; 547 548 return ISD::CondCode(Op); 549 } 550 551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 552 EVT Type) { 553 bool IsInteger = Type.isInteger(); 554 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 555 // Cannot fold a signed setcc with an unsigned setcc. 556 return ISD::SETCC_INVALID; 557 558 // Combine all of the condition bits. 559 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 560 561 // Canonicalize illegal integer setcc's. 562 if (IsInteger) { 563 switch (Result) { 564 default: break; 565 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 566 case ISD::SETOEQ: // SETEQ & SETU[LG]E 567 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 568 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 569 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 570 } 571 } 572 573 return Result; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // SDNode Profile Support 578 //===----------------------------------------------------------------------===// 579 580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 582 ID.AddInteger(OpC); 583 } 584 585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 586 /// solely with their pointer. 587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 588 ID.AddPointer(VTList.VTs); 589 } 590 591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 592 static void AddNodeIDOperands(FoldingSetNodeID &ID, 593 ArrayRef<SDValue> Ops) { 594 for (auto& Op : Ops) { 595 ID.AddPointer(Op.getNode()); 596 ID.AddInteger(Op.getResNo()); 597 } 598 } 599 600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 601 static void AddNodeIDOperands(FoldingSetNodeID &ID, 602 ArrayRef<SDUse> Ops) { 603 for (auto& Op : Ops) { 604 ID.AddPointer(Op.getNode()); 605 ID.AddInteger(Op.getResNo()); 606 } 607 } 608 609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 610 SDVTList VTList, ArrayRef<SDValue> OpList) { 611 AddNodeIDOpcode(ID, OpC); 612 AddNodeIDValueTypes(ID, VTList); 613 AddNodeIDOperands(ID, OpList); 614 } 615 616 /// If this is an SDNode with special info, add this info to the NodeID data. 617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 618 switch (N->getOpcode()) { 619 case ISD::TargetExternalSymbol: 620 case ISD::ExternalSymbol: 621 case ISD::MCSymbol: 622 llvm_unreachable("Should only be used on nodes with operands"); 623 default: break; // Normal nodes don't need extra info. 624 case ISD::TargetConstant: 625 case ISD::Constant: { 626 const ConstantSDNode *C = cast<ConstantSDNode>(N); 627 ID.AddPointer(C->getConstantIntValue()); 628 ID.AddBoolean(C->isOpaque()); 629 break; 630 } 631 case ISD::TargetConstantFP: 632 case ISD::ConstantFP: 633 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 634 break; 635 case ISD::TargetGlobalAddress: 636 case ISD::GlobalAddress: 637 case ISD::TargetGlobalTLSAddress: 638 case ISD::GlobalTLSAddress: { 639 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 640 ID.AddPointer(GA->getGlobal()); 641 ID.AddInteger(GA->getOffset()); 642 ID.AddInteger(GA->getTargetFlags()); 643 break; 644 } 645 case ISD::BasicBlock: 646 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 647 break; 648 case ISD::Register: 649 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 650 break; 651 case ISD::RegisterMask: 652 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 653 break; 654 case ISD::SRCVALUE: 655 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 656 break; 657 case ISD::FrameIndex: 658 case ISD::TargetFrameIndex: 659 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 660 break; 661 case ISD::LIFETIME_START: 662 case ISD::LIFETIME_END: 663 if (cast<LifetimeSDNode>(N)->hasOffset()) { 664 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 665 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 666 } 667 break; 668 case ISD::PSEUDO_PROBE: 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 670 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 671 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 672 break; 673 case ISD::JumpTable: 674 case ISD::TargetJumpTable: 675 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 676 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 677 break; 678 case ISD::ConstantPool: 679 case ISD::TargetConstantPool: { 680 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 681 ID.AddInteger(CP->getAlign().value()); 682 ID.AddInteger(CP->getOffset()); 683 if (CP->isMachineConstantPoolEntry()) 684 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 685 else 686 ID.AddPointer(CP->getConstVal()); 687 ID.AddInteger(CP->getTargetFlags()); 688 break; 689 } 690 case ISD::TargetIndex: { 691 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 692 ID.AddInteger(TI->getIndex()); 693 ID.AddInteger(TI->getOffset()); 694 ID.AddInteger(TI->getTargetFlags()); 695 break; 696 } 697 case ISD::LOAD: { 698 const LoadSDNode *LD = cast<LoadSDNode>(N); 699 ID.AddInteger(LD->getMemoryVT().getRawBits()); 700 ID.AddInteger(LD->getRawSubclassData()); 701 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 702 break; 703 } 704 case ISD::STORE: { 705 const StoreSDNode *ST = cast<StoreSDNode>(N); 706 ID.AddInteger(ST->getMemoryVT().getRawBits()); 707 ID.AddInteger(ST->getRawSubclassData()); 708 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 709 break; 710 } 711 case ISD::VP_LOAD: { 712 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 713 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 714 ID.AddInteger(ELD->getRawSubclassData()); 715 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 716 break; 717 } 718 case ISD::VP_STORE: { 719 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 720 ID.AddInteger(EST->getMemoryVT().getRawBits()); 721 ID.AddInteger(EST->getRawSubclassData()); 722 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 723 break; 724 } 725 case ISD::VP_GATHER: { 726 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 727 ID.AddInteger(EG->getMemoryVT().getRawBits()); 728 ID.AddInteger(EG->getRawSubclassData()); 729 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 730 break; 731 } 732 case ISD::VP_SCATTER: { 733 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 734 ID.AddInteger(ES->getMemoryVT().getRawBits()); 735 ID.AddInteger(ES->getRawSubclassData()); 736 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::MLOAD: { 740 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 741 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 742 ID.AddInteger(MLD->getRawSubclassData()); 743 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 744 break; 745 } 746 case ISD::MSTORE: { 747 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 748 ID.AddInteger(MST->getMemoryVT().getRawBits()); 749 ID.AddInteger(MST->getRawSubclassData()); 750 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 751 break; 752 } 753 case ISD::MGATHER: { 754 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 755 ID.AddInteger(MG->getMemoryVT().getRawBits()); 756 ID.AddInteger(MG->getRawSubclassData()); 757 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 758 break; 759 } 760 case ISD::MSCATTER: { 761 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 762 ID.AddInteger(MS->getMemoryVT().getRawBits()); 763 ID.AddInteger(MS->getRawSubclassData()); 764 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 765 break; 766 } 767 case ISD::ATOMIC_CMP_SWAP: 768 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 769 case ISD::ATOMIC_SWAP: 770 case ISD::ATOMIC_LOAD_ADD: 771 case ISD::ATOMIC_LOAD_SUB: 772 case ISD::ATOMIC_LOAD_AND: 773 case ISD::ATOMIC_LOAD_CLR: 774 case ISD::ATOMIC_LOAD_OR: 775 case ISD::ATOMIC_LOAD_XOR: 776 case ISD::ATOMIC_LOAD_NAND: 777 case ISD::ATOMIC_LOAD_MIN: 778 case ISD::ATOMIC_LOAD_MAX: 779 case ISD::ATOMIC_LOAD_UMIN: 780 case ISD::ATOMIC_LOAD_UMAX: 781 case ISD::ATOMIC_LOAD: 782 case ISD::ATOMIC_STORE: { 783 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 784 ID.AddInteger(AT->getMemoryVT().getRawBits()); 785 ID.AddInteger(AT->getRawSubclassData()); 786 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 787 break; 788 } 789 case ISD::PREFETCH: { 790 const MemSDNode *PF = cast<MemSDNode>(N); 791 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 792 break; 793 } 794 case ISD::VECTOR_SHUFFLE: { 795 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 796 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 797 i != e; ++i) 798 ID.AddInteger(SVN->getMaskElt(i)); 799 break; 800 } 801 case ISD::TargetBlockAddress: 802 case ISD::BlockAddress: { 803 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 804 ID.AddPointer(BA->getBlockAddress()); 805 ID.AddInteger(BA->getOffset()); 806 ID.AddInteger(BA->getTargetFlags()); 807 break; 808 } 809 } // end switch (N->getOpcode()) 810 811 // Target specific memory nodes could also have address spaces to check. 812 if (N->isTargetMemoryOpcode()) 813 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 814 } 815 816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 817 /// data. 818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 819 AddNodeIDOpcode(ID, N->getOpcode()); 820 // Add the return value info. 821 AddNodeIDValueTypes(ID, N->getVTList()); 822 // Add the operand info. 823 AddNodeIDOperands(ID, N->ops()); 824 825 // Handle SDNode leafs with special info. 826 AddNodeIDCustom(ID, N); 827 } 828 829 //===----------------------------------------------------------------------===// 830 // SelectionDAG Class 831 //===----------------------------------------------------------------------===// 832 833 /// doNotCSE - Return true if CSE should not be performed for this node. 834 static bool doNotCSE(SDNode *N) { 835 if (N->getValueType(0) == MVT::Glue) 836 return true; // Never CSE anything that produces a flag. 837 838 switch (N->getOpcode()) { 839 default: break; 840 case ISD::HANDLENODE: 841 case ISD::EH_LABEL: 842 return true; // Never CSE these nodes. 843 } 844 845 // Check that remaining values produced are not flags. 846 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 847 if (N->getValueType(i) == MVT::Glue) 848 return true; // Never CSE anything that produces a flag. 849 850 return false; 851 } 852 853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 854 /// SelectionDAG. 855 void SelectionDAG::RemoveDeadNodes() { 856 // Create a dummy node (which is not added to allnodes), that adds a reference 857 // to the root node, preventing it from being deleted. 858 HandleSDNode Dummy(getRoot()); 859 860 SmallVector<SDNode*, 128> DeadNodes; 861 862 // Add all obviously-dead nodes to the DeadNodes worklist. 863 for (SDNode &Node : allnodes()) 864 if (Node.use_empty()) 865 DeadNodes.push_back(&Node); 866 867 RemoveDeadNodes(DeadNodes); 868 869 // If the root changed (e.g. it was a dead load, update the root). 870 setRoot(Dummy.getValue()); 871 } 872 873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 874 /// given list, and any nodes that become unreachable as a result. 875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 876 877 // Process the worklist, deleting the nodes and adding their uses to the 878 // worklist. 879 while (!DeadNodes.empty()) { 880 SDNode *N = DeadNodes.pop_back_val(); 881 // Skip to next node if we've already managed to delete the node. This could 882 // happen if replacing a node causes a node previously added to the node to 883 // be deleted. 884 if (N->getOpcode() == ISD::DELETED_NODE) 885 continue; 886 887 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 888 DUL->NodeDeleted(N, nullptr); 889 890 // Take the node out of the appropriate CSE map. 891 RemoveNodeFromCSEMaps(N); 892 893 // Next, brutally remove the operand list. This is safe to do, as there are 894 // no cycles in the graph. 895 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 896 SDUse &Use = *I++; 897 SDNode *Operand = Use.getNode(); 898 Use.set(SDValue()); 899 900 // Now that we removed this operand, see if there are no uses of it left. 901 if (Operand->use_empty()) 902 DeadNodes.push_back(Operand); 903 } 904 905 DeallocateNode(N); 906 } 907 } 908 909 void SelectionDAG::RemoveDeadNode(SDNode *N){ 910 SmallVector<SDNode*, 16> DeadNodes(1, N); 911 912 // Create a dummy node that adds a reference to the root node, preventing 913 // it from being deleted. (This matters if the root is an operand of the 914 // dead node.) 915 HandleSDNode Dummy(getRoot()); 916 917 RemoveDeadNodes(DeadNodes); 918 } 919 920 void SelectionDAG::DeleteNode(SDNode *N) { 921 // First take this out of the appropriate CSE map. 922 RemoveNodeFromCSEMaps(N); 923 924 // Finally, remove uses due to operands of this node, remove from the 925 // AllNodes list, and delete the node. 926 DeleteNodeNotInCSEMaps(N); 927 } 928 929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 930 assert(N->getIterator() != AllNodes.begin() && 931 "Cannot delete the entry node!"); 932 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 933 934 // Drop all of the operands and decrement used node's use counts. 935 N->DropOperands(); 936 937 DeallocateNode(N); 938 } 939 940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 941 assert(!(V->isVariadic() && isParameter)); 942 if (isParameter) 943 ByvalParmDbgValues.push_back(V); 944 else 945 DbgValues.push_back(V); 946 for (const SDNode *Node : V->getSDNodes()) 947 if (Node) 948 DbgValMap[Node].push_back(V); 949 } 950 951 void SDDbgInfo::erase(const SDNode *Node) { 952 DbgValMapType::iterator I = DbgValMap.find(Node); 953 if (I == DbgValMap.end()) 954 return; 955 for (auto &Val: I->second) 956 Val->setIsInvalidated(); 957 DbgValMap.erase(I); 958 } 959 960 void SelectionDAG::DeallocateNode(SDNode *N) { 961 // If we have operands, deallocate them. 962 removeOperands(N); 963 964 NodeAllocator.Deallocate(AllNodes.remove(N)); 965 966 // Set the opcode to DELETED_NODE to help catch bugs when node 967 // memory is reallocated. 968 // FIXME: There are places in SDag that have grown a dependency on the opcode 969 // value in the released node. 970 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 971 N->NodeType = ISD::DELETED_NODE; 972 973 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 974 // them and forget about that node. 975 DbgInfo->erase(N); 976 } 977 978 #ifndef NDEBUG 979 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 980 static void VerifySDNode(SDNode *N) { 981 switch (N->getOpcode()) { 982 default: 983 break; 984 case ISD::BUILD_PAIR: { 985 EVT VT = N->getValueType(0); 986 assert(N->getNumValues() == 1 && "Too many results!"); 987 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 988 "Wrong return type!"); 989 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 990 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 991 "Mismatched operand types!"); 992 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 993 "Wrong operand type!"); 994 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 995 "Wrong return type size"); 996 break; 997 } 998 case ISD::BUILD_VECTOR: { 999 assert(N->getNumValues() == 1 && "Too many results!"); 1000 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1001 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1002 "Wrong number of operands!"); 1003 EVT EltVT = N->getValueType(0).getVectorElementType(); 1004 for (const SDUse &Op : N->ops()) { 1005 assert((Op.getValueType() == EltVT || 1006 (EltVT.isInteger() && Op.getValueType().isInteger() && 1007 EltVT.bitsLE(Op.getValueType()))) && 1008 "Wrong operand type!"); 1009 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1010 "Operands must all have the same type"); 1011 } 1012 break; 1013 } 1014 } 1015 } 1016 #endif // NDEBUG 1017 1018 /// Insert a newly allocated node into the DAG. 1019 /// 1020 /// Handles insertion into the all nodes list and CSE map, as well as 1021 /// verification and other common operations when a new node is allocated. 1022 void SelectionDAG::InsertNode(SDNode *N) { 1023 AllNodes.push_back(N); 1024 #ifndef NDEBUG 1025 N->PersistentId = NextPersistentId++; 1026 VerifySDNode(N); 1027 #endif 1028 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1029 DUL->NodeInserted(N); 1030 } 1031 1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1033 /// correspond to it. This is useful when we're about to delete or repurpose 1034 /// the node. We don't want future request for structurally identical nodes 1035 /// to return N anymore. 1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1037 bool Erased = false; 1038 switch (N->getOpcode()) { 1039 case ISD::HANDLENODE: return false; // noop. 1040 case ISD::CONDCODE: 1041 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1042 "Cond code doesn't exist!"); 1043 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1044 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1045 break; 1046 case ISD::ExternalSymbol: 1047 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1048 break; 1049 case ISD::TargetExternalSymbol: { 1050 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1051 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1052 ESN->getSymbol(), ESN->getTargetFlags())); 1053 break; 1054 } 1055 case ISD::MCSymbol: { 1056 auto *MCSN = cast<MCSymbolSDNode>(N); 1057 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1058 break; 1059 } 1060 case ISD::VALUETYPE: { 1061 EVT VT = cast<VTSDNode>(N)->getVT(); 1062 if (VT.isExtended()) { 1063 Erased = ExtendedValueTypeNodes.erase(VT); 1064 } else { 1065 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1066 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1067 } 1068 break; 1069 } 1070 default: 1071 // Remove it from the CSE Map. 1072 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1073 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1074 Erased = CSEMap.RemoveNode(N); 1075 break; 1076 } 1077 #ifndef NDEBUG 1078 // Verify that the node was actually in one of the CSE maps, unless it has a 1079 // flag result (which cannot be CSE'd) or is one of the special cases that are 1080 // not subject to CSE. 1081 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1082 !N->isMachineOpcode() && !doNotCSE(N)) { 1083 N->dump(this); 1084 dbgs() << "\n"; 1085 llvm_unreachable("Node is not in map!"); 1086 } 1087 #endif 1088 return Erased; 1089 } 1090 1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1093 /// node already exists, in which case transfer all its users to the existing 1094 /// node. This transfer can potentially trigger recursive merging. 1095 void 1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1097 // For node types that aren't CSE'd, just act as if no identical node 1098 // already exists. 1099 if (!doNotCSE(N)) { 1100 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1101 if (Existing != N) { 1102 // If there was already an existing matching node, use ReplaceAllUsesWith 1103 // to replace the dead one with the existing one. This can cause 1104 // recursive merging of other unrelated nodes down the line. 1105 ReplaceAllUsesWith(N, Existing); 1106 1107 // N is now dead. Inform the listeners and delete it. 1108 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1109 DUL->NodeDeleted(N, Existing); 1110 DeleteNodeNotInCSEMaps(N); 1111 return; 1112 } 1113 } 1114 1115 // If the node doesn't already exist, we updated it. Inform listeners. 1116 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1117 DUL->NodeUpdated(N); 1118 } 1119 1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1121 /// were replaced with those specified. If this node is never memoized, 1122 /// return null, otherwise return a pointer to the slot it would take. If a 1123 /// node already exists with these operands, the slot will be non-null. 1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1125 void *&InsertPos) { 1126 if (doNotCSE(N)) 1127 return nullptr; 1128 1129 SDValue Ops[] = { Op }; 1130 FoldingSetNodeID ID; 1131 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1132 AddNodeIDCustom(ID, N); 1133 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1134 if (Node) 1135 Node->intersectFlagsWith(N->getFlags()); 1136 return Node; 1137 } 1138 1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1140 /// were replaced with those specified. If this node is never memoized, 1141 /// return null, otherwise return a pointer to the slot it would take. If a 1142 /// node already exists with these operands, the slot will be non-null. 1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1144 SDValue Op1, SDValue Op2, 1145 void *&InsertPos) { 1146 if (doNotCSE(N)) 1147 return nullptr; 1148 1149 SDValue Ops[] = { Op1, Op2 }; 1150 FoldingSetNodeID ID; 1151 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1152 AddNodeIDCustom(ID, N); 1153 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1154 if (Node) 1155 Node->intersectFlagsWith(N->getFlags()); 1156 return Node; 1157 } 1158 1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1160 /// were replaced with those specified. If this node is never memoized, 1161 /// return null, otherwise return a pointer to the slot it would take. If a 1162 /// node already exists with these operands, the slot will be non-null. 1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1164 void *&InsertPos) { 1165 if (doNotCSE(N)) 1166 return nullptr; 1167 1168 FoldingSetNodeID ID; 1169 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1170 AddNodeIDCustom(ID, N); 1171 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1172 if (Node) 1173 Node->intersectFlagsWith(N->getFlags()); 1174 return Node; 1175 } 1176 1177 Align SelectionDAG::getEVTAlign(EVT VT) const { 1178 Type *Ty = VT == MVT::iPTR ? 1179 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1180 VT.getTypeForEVT(*getContext()); 1181 1182 return getDataLayout().getABITypeAlign(Ty); 1183 } 1184 1185 // EntryNode could meaningfully have debug info if we can find it... 1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1187 : TM(tm), OptLevel(OL), 1188 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1189 Root(getEntryNode()) { 1190 InsertNode(&EntryNode); 1191 DbgInfo = new SDDbgInfo(); 1192 } 1193 1194 void SelectionDAG::init(MachineFunction &NewMF, 1195 OptimizationRemarkEmitter &NewORE, 1196 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1197 LegacyDivergenceAnalysis * Divergence, 1198 ProfileSummaryInfo *PSIin, 1199 BlockFrequencyInfo *BFIin) { 1200 MF = &NewMF; 1201 SDAGISelPass = PassPtr; 1202 ORE = &NewORE; 1203 TLI = getSubtarget().getTargetLowering(); 1204 TSI = getSubtarget().getSelectionDAGInfo(); 1205 LibInfo = LibraryInfo; 1206 Context = &MF->getFunction().getContext(); 1207 DA = Divergence; 1208 PSI = PSIin; 1209 BFI = BFIin; 1210 } 1211 1212 SelectionDAG::~SelectionDAG() { 1213 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1214 allnodes_clear(); 1215 OperandRecycler.clear(OperandAllocator); 1216 delete DbgInfo; 1217 } 1218 1219 bool SelectionDAG::shouldOptForSize() const { 1220 return MF->getFunction().hasOptSize() || 1221 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1222 } 1223 1224 void SelectionDAG::allnodes_clear() { 1225 assert(&*AllNodes.begin() == &EntryNode); 1226 AllNodes.remove(AllNodes.begin()); 1227 while (!AllNodes.empty()) 1228 DeallocateNode(&AllNodes.front()); 1229 #ifndef NDEBUG 1230 NextPersistentId = 0; 1231 #endif 1232 } 1233 1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1235 void *&InsertPos) { 1236 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1237 if (N) { 1238 switch (N->getOpcode()) { 1239 default: break; 1240 case ISD::Constant: 1241 case ISD::ConstantFP: 1242 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1243 "debug location. Use another overload."); 1244 } 1245 } 1246 return N; 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 const SDLoc &DL, void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 case ISD::Constant: 1255 case ISD::ConstantFP: 1256 // Erase debug location from the node if the node is used at several 1257 // different places. Do not propagate one location to all uses as it 1258 // will cause a worse single stepping debugging experience. 1259 if (N->getDebugLoc() != DL.getDebugLoc()) 1260 N->setDebugLoc(DebugLoc()); 1261 break; 1262 default: 1263 // When the node's point of use is located earlier in the instruction 1264 // sequence than its prior point of use, update its debug info to the 1265 // earlier location. 1266 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1267 N->setDebugLoc(DL.getDebugLoc()); 1268 break; 1269 } 1270 } 1271 return N; 1272 } 1273 1274 void SelectionDAG::clear() { 1275 allnodes_clear(); 1276 OperandRecycler.clear(OperandAllocator); 1277 OperandAllocator.Reset(); 1278 CSEMap.clear(); 1279 1280 ExtendedValueTypeNodes.clear(); 1281 ExternalSymbols.clear(); 1282 TargetExternalSymbols.clear(); 1283 MCSymbols.clear(); 1284 SDCallSiteDbgInfo.clear(); 1285 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1286 static_cast<CondCodeSDNode*>(nullptr)); 1287 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1288 static_cast<SDNode*>(nullptr)); 1289 1290 EntryNode.UseList = nullptr; 1291 InsertNode(&EntryNode); 1292 Root = getEntryNode(); 1293 DbgInfo->clear(); 1294 } 1295 1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1297 return VT.bitsGT(Op.getValueType()) 1298 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1299 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1300 } 1301 1302 std::pair<SDValue, SDValue> 1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1304 const SDLoc &DL, EVT VT) { 1305 assert(!VT.bitsEq(Op.getValueType()) && 1306 "Strict no-op FP extend/round not allowed."); 1307 SDValue Res = 1308 VT.bitsGT(Op.getValueType()) 1309 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1310 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1311 {Chain, Op, getIntPtrConstant(0, DL)}); 1312 1313 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1314 } 1315 1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1317 return VT.bitsGT(Op.getValueType()) ? 1318 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1319 getNode(ISD::TRUNCATE, DL, VT, Op); 1320 } 1321 1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1323 return VT.bitsGT(Op.getValueType()) ? 1324 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1325 getNode(ISD::TRUNCATE, DL, VT, Op); 1326 } 1327 1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1329 return VT.bitsGT(Op.getValueType()) ? 1330 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1331 getNode(ISD::TRUNCATE, DL, VT, Op); 1332 } 1333 1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1335 EVT OpVT) { 1336 if (VT.bitsLE(Op.getValueType())) 1337 return getNode(ISD::TRUNCATE, SL, VT, Op); 1338 1339 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1340 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1344 EVT OpVT = Op.getValueType(); 1345 assert(VT.isInteger() && OpVT.isInteger() && 1346 "Cannot getZeroExtendInReg FP types"); 1347 assert(VT.isVector() == OpVT.isVector() && 1348 "getZeroExtendInReg type should be vector iff the operand " 1349 "type is vector!"); 1350 assert((!VT.isVector() || 1351 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1352 "Vector element counts must match in getZeroExtendInReg"); 1353 assert(VT.bitsLE(OpVT) && "Not extending!"); 1354 if (OpVT == VT) 1355 return Op; 1356 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1357 VT.getScalarSizeInBits()); 1358 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1359 } 1360 1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 // Only unsigned pointer semantics are supported right now. In the future this 1363 // might delegate to TLI to check pointer signedness. 1364 return getZExtOrTrunc(Op, DL, VT); 1365 } 1366 1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1368 // Only unsigned pointer semantics are supported right now. In the future this 1369 // might delegate to TLI to check pointer signedness. 1370 return getZeroExtendInReg(Op, DL, VT); 1371 } 1372 1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1375 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1376 } 1377 1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1379 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1380 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1381 } 1382 1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1384 EVT OpVT) { 1385 if (!V) 1386 return getConstant(0, DL, VT); 1387 1388 switch (TLI->getBooleanContents(OpVT)) { 1389 case TargetLowering::ZeroOrOneBooleanContent: 1390 case TargetLowering::UndefinedBooleanContent: 1391 return getConstant(1, DL, VT); 1392 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1393 return getAllOnesConstant(DL, VT); 1394 } 1395 llvm_unreachable("Unexpected boolean content enum!"); 1396 } 1397 1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1399 bool isT, bool isO) { 1400 EVT EltVT = VT.getScalarType(); 1401 assert((EltVT.getSizeInBits() >= 64 || 1402 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1403 "getConstant with a uint64_t value that doesn't fit in the type!"); 1404 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1405 } 1406 1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1408 bool isT, bool isO) { 1409 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1410 } 1411 1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1413 EVT VT, bool isT, bool isO) { 1414 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1415 1416 EVT EltVT = VT.getScalarType(); 1417 const ConstantInt *Elt = &Val; 1418 1419 // In some cases the vector type is legal but the element type is illegal and 1420 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1421 // inserted value (the type does not need to match the vector element type). 1422 // Any extra bits introduced will be truncated away. 1423 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1424 TargetLowering::TypePromoteInteger) { 1425 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1426 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1427 Elt = ConstantInt::get(*getContext(), NewVal); 1428 } 1429 // In other cases the element type is illegal and needs to be expanded, for 1430 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1431 // the value into n parts and use a vector type with n-times the elements. 1432 // Then bitcast to the type requested. 1433 // Legalizing constants too early makes the DAGCombiner's job harder so we 1434 // only legalize if the DAG tells us we must produce legal types. 1435 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1436 TLI->getTypeAction(*getContext(), EltVT) == 1437 TargetLowering::TypeExpandInteger) { 1438 const APInt &NewVal = Elt->getValue(); 1439 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1440 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1441 1442 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1443 if (VT.isScalableVector()) { 1444 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1445 "Can only handle an even split!"); 1446 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1447 1448 SmallVector<SDValue, 2> ScalarParts; 1449 for (unsigned i = 0; i != Parts; ++i) 1450 ScalarParts.push_back(getConstant( 1451 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1452 ViaEltVT, isT, isO)); 1453 1454 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1455 } 1456 1457 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1458 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1459 1460 // Check the temporary vector is the correct size. If this fails then 1461 // getTypeToTransformTo() probably returned a type whose size (in bits) 1462 // isn't a power-of-2 factor of the requested type size. 1463 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1464 1465 SmallVector<SDValue, 2> EltParts; 1466 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1467 EltParts.push_back(getConstant( 1468 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1469 ViaEltVT, isT, isO)); 1470 1471 // EltParts is currently in little endian order. If we actually want 1472 // big-endian order then reverse it now. 1473 if (getDataLayout().isBigEndian()) 1474 std::reverse(EltParts.begin(), EltParts.end()); 1475 1476 // The elements must be reversed when the element order is different 1477 // to the endianness of the elements (because the BITCAST is itself a 1478 // vector shuffle in this situation). However, we do not need any code to 1479 // perform this reversal because getConstant() is producing a vector 1480 // splat. 1481 // This situation occurs in MIPS MSA. 1482 1483 SmallVector<SDValue, 8> Ops; 1484 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1485 llvm::append_range(Ops, EltParts); 1486 1487 SDValue V = 1488 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1489 return V; 1490 } 1491 1492 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1493 "APInt size does not match type size!"); 1494 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1497 ID.AddPointer(Elt); 1498 ID.AddBoolean(isO); 1499 void *IP = nullptr; 1500 SDNode *N = nullptr; 1501 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1502 if (!VT.isVector()) 1503 return SDValue(N, 0); 1504 1505 if (!N) { 1506 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1510 } 1511 1512 SDValue Result(N, 0); 1513 if (VT.isScalableVector()) 1514 Result = getSplatVector(VT, DL, Result); 1515 else if (VT.isVector()) 1516 Result = getSplatBuildVector(VT, DL, Result); 1517 1518 return Result; 1519 } 1520 1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1522 bool isTarget) { 1523 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1524 } 1525 1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1527 const SDLoc &DL, bool LegalTypes) { 1528 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1529 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1530 return getConstant(Val, DL, ShiftVT); 1531 } 1532 1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1534 bool isTarget) { 1535 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1536 } 1537 1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1539 bool isTarget) { 1540 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1541 } 1542 1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1544 EVT VT, bool isTarget) { 1545 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1546 1547 EVT EltVT = VT.getScalarType(); 1548 1549 // Do the map lookup using the actual bit pattern for the floating point 1550 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1551 // we don't have issues with SNANs. 1552 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1553 FoldingSetNodeID ID; 1554 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1555 ID.AddPointer(&V); 1556 void *IP = nullptr; 1557 SDNode *N = nullptr; 1558 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1559 if (!VT.isVector()) 1560 return SDValue(N, 0); 1561 1562 if (!N) { 1563 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1564 CSEMap.InsertNode(N, IP); 1565 InsertNode(N); 1566 } 1567 1568 SDValue Result(N, 0); 1569 if (VT.isScalableVector()) 1570 Result = getSplatVector(VT, DL, Result); 1571 else if (VT.isVector()) 1572 Result = getSplatBuildVector(VT, DL, Result); 1573 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1574 return Result; 1575 } 1576 1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1578 bool isTarget) { 1579 EVT EltVT = VT.getScalarType(); 1580 if (EltVT == MVT::f32) 1581 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f64) 1583 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1584 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1585 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1586 bool Ignored; 1587 APFloat APF = APFloat(Val); 1588 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1589 &Ignored); 1590 return getConstantFP(APF, DL, VT, isTarget); 1591 } 1592 llvm_unreachable("Unsupported type in getConstantFP"); 1593 } 1594 1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1596 EVT VT, int64_t Offset, bool isTargetGA, 1597 unsigned TargetFlags) { 1598 assert((TargetFlags == 0 || isTargetGA) && 1599 "Cannot set target flags on target-independent globals"); 1600 1601 // Truncate (with sign-extension) the offset value to the pointer size. 1602 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1603 if (BitWidth < 64) 1604 Offset = SignExtend64(Offset, BitWidth); 1605 1606 unsigned Opc; 1607 if (GV->isThreadLocal()) 1608 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1609 else 1610 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1611 1612 FoldingSetNodeID ID; 1613 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1614 ID.AddPointer(GV); 1615 ID.AddInteger(Offset); 1616 ID.AddInteger(TargetFlags); 1617 void *IP = nullptr; 1618 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1619 return SDValue(E, 0); 1620 1621 auto *N = newSDNode<GlobalAddressSDNode>( 1622 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1623 CSEMap.InsertNode(N, IP); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1629 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1630 FoldingSetNodeID ID; 1631 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1632 ID.AddInteger(FI); 1633 void *IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1635 return SDValue(E, 0); 1636 1637 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1644 unsigned TargetFlags) { 1645 assert((TargetFlags == 0 || isTarget) && 1646 "Cannot set target flags on target-independent jump tables"); 1647 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(JTI); 1651 ID.AddInteger(TargetFlags); 1652 void *IP = nullptr; 1653 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1654 return SDValue(E, 0); 1655 1656 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1663 MaybeAlign Alignment, int Offset, 1664 bool isTarget, unsigned TargetFlags) { 1665 assert((TargetFlags == 0 || isTarget) && 1666 "Cannot set target flags on target-independent globals"); 1667 if (!Alignment) 1668 Alignment = shouldOptForSize() 1669 ? getDataLayout().getABITypeAlign(C->getType()) 1670 : getDataLayout().getPrefTypeAlign(C->getType()); 1671 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1672 FoldingSetNodeID ID; 1673 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1674 ID.AddInteger(Alignment->value()); 1675 ID.AddInteger(Offset); 1676 ID.AddPointer(C); 1677 ID.AddInteger(TargetFlags); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1683 TargetFlags); 1684 CSEMap.InsertNode(N, IP); 1685 InsertNode(N); 1686 SDValue V = SDValue(N, 0); 1687 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1688 return V; 1689 } 1690 1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1692 MaybeAlign Alignment, int Offset, 1693 bool isTarget, unsigned TargetFlags) { 1694 assert((TargetFlags == 0 || isTarget) && 1695 "Cannot set target flags on target-independent globals"); 1696 if (!Alignment) 1697 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1698 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(Alignment->value()); 1702 ID.AddInteger(Offset); 1703 C->addSelectionDAGCSEId(ID); 1704 ID.AddInteger(TargetFlags); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1710 TargetFlags); 1711 CSEMap.InsertNode(N, IP); 1712 InsertNode(N); 1713 return SDValue(N, 0); 1714 } 1715 1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1717 unsigned TargetFlags) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1720 ID.AddInteger(Index); 1721 ID.AddInteger(Offset); 1722 ID.AddInteger(TargetFlags); 1723 void *IP = nullptr; 1724 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1725 return SDValue(E, 0); 1726 1727 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1734 FoldingSetNodeID ID; 1735 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1736 ID.AddPointer(MBB); 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getValueType(EVT VT) { 1748 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1749 ValueTypeNodes.size()) 1750 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1751 1752 SDNode *&N = VT.isExtended() ? 1753 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1754 1755 if (N) return SDValue(N, 0); 1756 N = newSDNode<VTSDNode>(VT); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1762 SDNode *&N = ExternalSymbols[Sym]; 1763 if (N) return SDValue(N, 0); 1764 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1765 InsertNode(N); 1766 return SDValue(N, 0); 1767 } 1768 1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1770 SDNode *&N = MCSymbols[Sym]; 1771 if (N) 1772 return SDValue(N, 0); 1773 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1779 unsigned TargetFlags) { 1780 SDNode *&N = 1781 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1782 if (N) return SDValue(N, 0); 1783 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1789 if ((unsigned)Cond >= CondCodeNodes.size()) 1790 CondCodeNodes.resize(Cond+1); 1791 1792 if (!CondCodeNodes[Cond]) { 1793 auto *N = newSDNode<CondCodeSDNode>(Cond); 1794 CondCodeNodes[Cond] = N; 1795 InsertNode(N); 1796 } 1797 1798 return SDValue(CondCodeNodes[Cond], 0); 1799 } 1800 1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1802 APInt One(ResVT.getScalarSizeInBits(), 1); 1803 return getStepVector(DL, ResVT, One); 1804 } 1805 1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1807 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1808 if (ResVT.isScalableVector()) 1809 return getNode( 1810 ISD::STEP_VECTOR, DL, ResVT, 1811 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1812 1813 SmallVector<SDValue, 16> OpsStepConstants; 1814 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1815 OpsStepConstants.push_back( 1816 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1817 return getBuildVector(ResVT, DL, OpsStepConstants); 1818 } 1819 1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1823 std::swap(N1, N2); 1824 ShuffleVectorSDNode::commuteMask(M); 1825 } 1826 1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1828 SDValue N2, ArrayRef<int> Mask) { 1829 assert(VT.getVectorNumElements() == Mask.size() && 1830 "Must have the same number of vector elements as mask elements!"); 1831 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1832 "Invalid VECTOR_SHUFFLE"); 1833 1834 // Canonicalize shuffle undef, undef -> undef 1835 if (N1.isUndef() && N2.isUndef()) 1836 return getUNDEF(VT); 1837 1838 // Validate that all indices in Mask are within the range of the elements 1839 // input to the shuffle. 1840 int NElts = Mask.size(); 1841 assert(llvm::all_of(Mask, 1842 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1843 "Index out of range"); 1844 1845 // Copy the mask so we can do any needed cleanup. 1846 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1847 1848 // Canonicalize shuffle v, v -> v, undef 1849 if (N1 == N2) { 1850 N2 = getUNDEF(VT); 1851 for (int i = 0; i != NElts; ++i) 1852 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1853 } 1854 1855 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1856 if (N1.isUndef()) 1857 commuteShuffle(N1, N2, MaskVec); 1858 1859 if (TLI->hasVectorBlend()) { 1860 // If shuffling a splat, try to blend the splat instead. We do this here so 1861 // that even when this arises during lowering we don't have to re-handle it. 1862 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1863 BitVector UndefElements; 1864 SDValue Splat = BV->getSplatValue(&UndefElements); 1865 if (!Splat) 1866 return; 1867 1868 for (int i = 0; i < NElts; ++i) { 1869 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1870 continue; 1871 1872 // If this input comes from undef, mark it as such. 1873 if (UndefElements[MaskVec[i] - Offset]) { 1874 MaskVec[i] = -1; 1875 continue; 1876 } 1877 1878 // If we can blend a non-undef lane, use that instead. 1879 if (!UndefElements[i]) 1880 MaskVec[i] = i + Offset; 1881 } 1882 }; 1883 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1884 BlendSplat(N1BV, 0); 1885 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1886 BlendSplat(N2BV, NElts); 1887 } 1888 1889 // Canonicalize all index into lhs, -> shuffle lhs, undef 1890 // Canonicalize all index into rhs, -> shuffle rhs, undef 1891 bool AllLHS = true, AllRHS = true; 1892 bool N2Undef = N2.isUndef(); 1893 for (int i = 0; i != NElts; ++i) { 1894 if (MaskVec[i] >= NElts) { 1895 if (N2Undef) 1896 MaskVec[i] = -1; 1897 else 1898 AllLHS = false; 1899 } else if (MaskVec[i] >= 0) { 1900 AllRHS = false; 1901 } 1902 } 1903 if (AllLHS && AllRHS) 1904 return getUNDEF(VT); 1905 if (AllLHS && !N2Undef) 1906 N2 = getUNDEF(VT); 1907 if (AllRHS) { 1908 N1 = getUNDEF(VT); 1909 commuteShuffle(N1, N2, MaskVec); 1910 } 1911 // Reset our undef status after accounting for the mask. 1912 N2Undef = N2.isUndef(); 1913 // Re-check whether both sides ended up undef. 1914 if (N1.isUndef() && N2Undef) 1915 return getUNDEF(VT); 1916 1917 // If Identity shuffle return that node. 1918 bool Identity = true, AllSame = true; 1919 for (int i = 0; i != NElts; ++i) { 1920 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1921 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1922 } 1923 if (Identity && NElts) 1924 return N1; 1925 1926 // Shuffling a constant splat doesn't change the result. 1927 if (N2Undef) { 1928 SDValue V = N1; 1929 1930 // Look through any bitcasts. We check that these don't change the number 1931 // (and size) of elements and just changes their types. 1932 while (V.getOpcode() == ISD::BITCAST) 1933 V = V->getOperand(0); 1934 1935 // A splat should always show up as a build vector node. 1936 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1937 BitVector UndefElements; 1938 SDValue Splat = BV->getSplatValue(&UndefElements); 1939 // If this is a splat of an undef, shuffling it is also undef. 1940 if (Splat && Splat.isUndef()) 1941 return getUNDEF(VT); 1942 1943 bool SameNumElts = 1944 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1945 1946 // We only have a splat which can skip shuffles if there is a splatted 1947 // value and no undef lanes rearranged by the shuffle. 1948 if (Splat && UndefElements.none()) { 1949 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1950 // number of elements match or the value splatted is a zero constant. 1951 if (SameNumElts) 1952 return N1; 1953 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1954 if (C->isZero()) 1955 return N1; 1956 } 1957 1958 // If the shuffle itself creates a splat, build the vector directly. 1959 if (AllSame && SameNumElts) { 1960 EVT BuildVT = BV->getValueType(0); 1961 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1962 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1963 1964 // We may have jumped through bitcasts, so the type of the 1965 // BUILD_VECTOR may not match the type of the shuffle. 1966 if (BuildVT != VT) 1967 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1968 return NewBV; 1969 } 1970 } 1971 } 1972 1973 FoldingSetNodeID ID; 1974 SDValue Ops[2] = { N1, N2 }; 1975 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1976 for (int i = 0; i != NElts; ++i) 1977 ID.AddInteger(MaskVec[i]); 1978 1979 void* IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1981 return SDValue(E, 0); 1982 1983 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1984 // SDNode doesn't have access to it. This memory will be "leaked" when 1985 // the node is deallocated, but recovered when the NodeAllocator is released. 1986 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1987 llvm::copy(MaskVec, MaskAlloc); 1988 1989 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1990 dl.getDebugLoc(), MaskAlloc); 1991 createOperands(N, Ops); 1992 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 SDValue V = SDValue(N, 0); 1996 NewSDValueDbgMsg(V, "Creating new node: ", this); 1997 return V; 1998 } 1999 2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2001 EVT VT = SV.getValueType(0); 2002 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2003 ShuffleVectorSDNode::commuteMask(MaskVec); 2004 2005 SDValue Op0 = SV.getOperand(0); 2006 SDValue Op1 = SV.getOperand(1); 2007 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2008 } 2009 2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2013 ID.AddInteger(RegNo); 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2019 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2028 ID.AddPointer(RegMask); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2034 CSEMap.InsertNode(N, IP); 2035 InsertNode(N); 2036 return SDValue(N, 0); 2037 } 2038 2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2040 MCSymbol *Label) { 2041 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2042 } 2043 2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2045 SDValue Root, MCSymbol *Label) { 2046 FoldingSetNodeID ID; 2047 SDValue Ops[] = { Root }; 2048 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2049 ID.AddPointer(Label); 2050 void *IP = nullptr; 2051 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2052 return SDValue(E, 0); 2053 2054 auto *N = 2055 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2056 createOperands(N, Ops); 2057 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2064 int64_t Offset, bool isTarget, 2065 unsigned TargetFlags) { 2066 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2067 2068 FoldingSetNodeID ID; 2069 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2070 ID.AddPointer(BA); 2071 ID.AddInteger(Offset); 2072 ID.AddInteger(TargetFlags); 2073 void *IP = nullptr; 2074 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2075 return SDValue(E, 0); 2076 2077 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getSrcValue(const Value *V) { 2084 FoldingSetNodeID ID; 2085 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2086 ID.AddPointer(V); 2087 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<SrcValueSDNode>(V); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2101 ID.AddPointer(MD); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<MDNodeSDNode>(MD); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2114 if (VT == V.getValueType()) 2115 return V; 2116 2117 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2118 } 2119 2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2121 unsigned SrcAS, unsigned DestAS) { 2122 SDValue Ops[] = {Ptr}; 2123 FoldingSetNodeID ID; 2124 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2125 ID.AddInteger(SrcAS); 2126 ID.AddInteger(DestAS); 2127 2128 void *IP = nullptr; 2129 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2130 return SDValue(E, 0); 2131 2132 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2133 VT, SrcAS, DestAS); 2134 createOperands(N, Ops); 2135 2136 CSEMap.InsertNode(N, IP); 2137 InsertNode(N); 2138 return SDValue(N, 0); 2139 } 2140 2141 SDValue SelectionDAG::getFreeze(SDValue V) { 2142 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2143 } 2144 2145 /// getShiftAmountOperand - Return the specified value casted to 2146 /// the target's desired shift amount type. 2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2148 EVT OpTy = Op.getValueType(); 2149 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2150 if (OpTy == ShTy || OpTy.isVector()) return Op; 2151 2152 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2153 } 2154 2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2156 SDLoc dl(Node); 2157 const TargetLowering &TLI = getTargetLoweringInfo(); 2158 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2159 EVT VT = Node->getValueType(0); 2160 SDValue Tmp1 = Node->getOperand(0); 2161 SDValue Tmp2 = Node->getOperand(1); 2162 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2163 2164 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2165 Tmp2, MachinePointerInfo(V)); 2166 SDValue VAList = VAListLoad; 2167 2168 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2169 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2170 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2171 2172 VAList = 2173 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2174 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2175 } 2176 2177 // Increment the pointer, VAList, to the next vaarg 2178 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2179 getConstant(getDataLayout().getTypeAllocSize( 2180 VT.getTypeForEVT(*getContext())), 2181 dl, VAList.getValueType())); 2182 // Store the incremented VAList to the legalized pointer 2183 Tmp1 = 2184 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2185 // Load the actual argument out of the pointer VAList 2186 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2187 } 2188 2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2190 SDLoc dl(Node); 2191 const TargetLowering &TLI = getTargetLoweringInfo(); 2192 // This defaults to loading a pointer from the input and storing it to the 2193 // output, returning the chain. 2194 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2195 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2196 SDValue Tmp1 = 2197 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2198 Node->getOperand(2), MachinePointerInfo(VS)); 2199 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2200 MachinePointerInfo(VD)); 2201 } 2202 2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2204 const DataLayout &DL = getDataLayout(); 2205 Type *Ty = VT.getTypeForEVT(*getContext()); 2206 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2207 2208 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2209 return RedAlign; 2210 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 const Align StackAlign = TFI->getStackAlign(); 2213 2214 // See if we can choose a smaller ABI alignment in cases where it's an 2215 // illegal vector type that will get broken down. 2216 if (RedAlign > StackAlign) { 2217 EVT IntermediateVT; 2218 MVT RegisterVT; 2219 unsigned NumIntermediates; 2220 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2221 NumIntermediates, RegisterVT); 2222 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2223 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2224 if (RedAlign2 < RedAlign) 2225 RedAlign = RedAlign2; 2226 } 2227 2228 return RedAlign; 2229 } 2230 2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2232 MachineFrameInfo &MFI = MF->getFrameInfo(); 2233 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2234 int StackID = 0; 2235 if (Bytes.isScalable()) 2236 StackID = TFI->getStackIDForScalableVectors(); 2237 // The stack id gives an indication of whether the object is scalable or 2238 // not, so it's safe to pass in the minimum size here. 2239 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2240 false, nullptr, StackID); 2241 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2242 } 2243 2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2245 Type *Ty = VT.getTypeForEVT(*getContext()); 2246 Align StackAlign = 2247 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2248 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2249 } 2250 2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2252 TypeSize VT1Size = VT1.getStoreSize(); 2253 TypeSize VT2Size = VT2.getStoreSize(); 2254 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2255 "Don't know how to choose the maximum size when creating a stack " 2256 "temporary"); 2257 TypeSize Bytes = 2258 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2259 2260 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2261 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2262 const DataLayout &DL = getDataLayout(); 2263 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2264 return CreateStackTemporary(Bytes, Align); 2265 } 2266 2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2268 ISD::CondCode Cond, const SDLoc &dl) { 2269 EVT OpVT = N1.getValueType(); 2270 2271 // These setcc operations always fold. 2272 switch (Cond) { 2273 default: break; 2274 case ISD::SETFALSE: 2275 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2276 case ISD::SETTRUE: 2277 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2278 2279 case ISD::SETOEQ: 2280 case ISD::SETOGT: 2281 case ISD::SETOGE: 2282 case ISD::SETOLT: 2283 case ISD::SETOLE: 2284 case ISD::SETONE: 2285 case ISD::SETO: 2286 case ISD::SETUO: 2287 case ISD::SETUEQ: 2288 case ISD::SETUNE: 2289 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2290 break; 2291 } 2292 2293 if (OpVT.isInteger()) { 2294 // For EQ and NE, we can always pick a value for the undef to make the 2295 // predicate pass or fail, so we can return undef. 2296 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2297 // icmp eq/ne X, undef -> undef. 2298 if ((N1.isUndef() || N2.isUndef()) && 2299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2300 return getUNDEF(VT); 2301 2302 // If both operands are undef, we can return undef for int comparison. 2303 // icmp undef, undef -> undef. 2304 if (N1.isUndef() && N2.isUndef()) 2305 return getUNDEF(VT); 2306 2307 // icmp X, X -> true/false 2308 // icmp X, undef -> true/false because undef could be X. 2309 if (N1 == N2) 2310 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2311 } 2312 2313 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2314 const APInt &C2 = N2C->getAPIntValue(); 2315 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2316 const APInt &C1 = N1C->getAPIntValue(); 2317 2318 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2319 dl, VT, OpVT); 2320 } 2321 } 2322 2323 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2324 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2325 2326 if (N1CFP && N2CFP) { 2327 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2328 switch (Cond) { 2329 default: break; 2330 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2334 OpVT); 2335 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2339 R==APFloat::cmpLessThan, dl, VT, 2340 OpVT); 2341 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2342 return getUNDEF(VT); 2343 LLVM_FALLTHROUGH; 2344 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2345 OpVT); 2346 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2350 VT, OpVT); 2351 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2352 return getUNDEF(VT); 2353 LLVM_FALLTHROUGH; 2354 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2355 R==APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2358 return getUNDEF(VT); 2359 LLVM_FALLTHROUGH; 2360 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpEqual, dl, VT, OpVT); 2362 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2367 R==APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2370 OpVT); 2371 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2372 R==APFloat::cmpLessThan, dl, VT, 2373 OpVT); 2374 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2375 R==APFloat::cmpUnordered, dl, VT, 2376 OpVT); 2377 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2378 VT, OpVT); 2379 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2380 OpVT); 2381 } 2382 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2383 // Ensure that the constant occurs on the RHS. 2384 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2385 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2386 return SDValue(); 2387 return getSetCC(dl, VT, N2, N1, SwappedCond); 2388 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2389 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2390 // If an operand is known to be a nan (or undef that could be a nan), we can 2391 // fold it. 2392 // Choosing NaN for the undef will always make unordered comparison succeed 2393 // and ordered comparison fails. 2394 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2395 switch (ISD::getUnorderedFlavor(Cond)) { 2396 default: 2397 llvm_unreachable("Unknown flavor!"); 2398 case 0: // Known false. 2399 return getBoolConstant(false, dl, VT, OpVT); 2400 case 1: // Known true. 2401 return getBoolConstant(true, dl, VT, OpVT); 2402 case 2: // Undefined. 2403 return getUNDEF(VT); 2404 } 2405 } 2406 2407 // Could not fold it. 2408 return SDValue(); 2409 } 2410 2411 /// See if the specified operand can be simplified with the knowledge that only 2412 /// the bits specified by DemandedBits are used. 2413 /// TODO: really we should be making this into the DAG equivalent of 2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2416 EVT VT = V.getValueType(); 2417 2418 if (VT.isScalableVector()) 2419 return SDValue(); 2420 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnes(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return GetDemandedBits(V, DemandedBits, DemandedElts); 2425 } 2426 2427 /// See if the specified operand can be simplified with the knowledge that only 2428 /// the bits specified by DemandedBits are used in the elements specified by 2429 /// DemandedElts. 2430 /// TODO: really we should be making this into the DAG equivalent of 2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2433 const APInt &DemandedElts) { 2434 switch (V.getOpcode()) { 2435 default: 2436 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2437 *this, 0); 2438 case ISD::Constant: { 2439 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2440 APInt NewVal = CVal & DemandedBits; 2441 if (NewVal != CVal) 2442 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2443 break; 2444 } 2445 case ISD::SRL: 2446 // Only look at single-use SRLs. 2447 if (!V.getNode()->hasOneUse()) 2448 break; 2449 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2450 // See if we can recursively simplify the LHS. 2451 unsigned Amt = RHSC->getZExtValue(); 2452 2453 // Watch out for shift count overflow though. 2454 if (Amt >= DemandedBits.getBitWidth()) 2455 break; 2456 APInt SrcDemandedBits = DemandedBits << Amt; 2457 if (SDValue SimplifyLHS = 2458 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2459 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2460 V.getOperand(1)); 2461 } 2462 break; 2463 } 2464 return SDValue(); 2465 } 2466 2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2468 /// use this predicate to simplify operations downstream. 2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2470 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2471 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2472 } 2473 2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2475 /// this predicate to simplify operations downstream. Mask is known to be zero 2476 /// for bits that V cannot have. 2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2478 unsigned Depth) const { 2479 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2480 } 2481 2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2483 /// DemandedElts. We use this predicate to simplify operations downstream. 2484 /// Mask is known to be zero for bits that V cannot have. 2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2486 const APInt &DemandedElts, 2487 unsigned Depth) const { 2488 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2489 } 2490 2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2495 } 2496 2497 /// isSplatValue - Return true if the vector V has the same value 2498 /// across all DemandedElts. For scalable vectors it does not make 2499 /// sense to specify which elements are demanded or undefined, therefore 2500 /// they are simply ignored. 2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2502 APInt &UndefElts, unsigned Depth) const { 2503 EVT VT = V.getValueType(); 2504 assert(VT.isVector() && "Vector type expected"); 2505 2506 if (!VT.isScalableVector() && !DemandedElts) 2507 return false; // No demanded elts, better to assume we don't know anything. 2508 2509 if (Depth >= MaxRecursionDepth) 2510 return false; // Limit search depth. 2511 2512 // Deal with some common cases here that work for both fixed and scalable 2513 // vector types. 2514 switch (V.getOpcode()) { 2515 case ISD::SPLAT_VECTOR: 2516 UndefElts = V.getOperand(0).isUndef() 2517 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2518 : APInt(DemandedElts.getBitWidth(), 0); 2519 return true; 2520 case ISD::ADD: 2521 case ISD::SUB: 2522 case ISD::AND: 2523 case ISD::XOR: 2524 case ISD::OR: { 2525 APInt UndefLHS, UndefRHS; 2526 SDValue LHS = V.getOperand(0); 2527 SDValue RHS = V.getOperand(1); 2528 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2529 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2530 UndefElts = UndefLHS | UndefRHS; 2531 return true; 2532 } 2533 return false; 2534 } 2535 case ISD::ABS: 2536 case ISD::TRUNCATE: 2537 case ISD::SIGN_EXTEND: 2538 case ISD::ZERO_EXTEND: 2539 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2540 } 2541 2542 // We don't support other cases than those above for scalable vectors at 2543 // the moment. 2544 if (VT.isScalableVector()) 2545 return false; 2546 2547 unsigned NumElts = VT.getVectorNumElements(); 2548 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2549 UndefElts = APInt::getZero(NumElts); 2550 2551 switch (V.getOpcode()) { 2552 case ISD::BUILD_VECTOR: { 2553 SDValue Scl; 2554 for (unsigned i = 0; i != NumElts; ++i) { 2555 SDValue Op = V.getOperand(i); 2556 if (Op.isUndef()) { 2557 UndefElts.setBit(i); 2558 continue; 2559 } 2560 if (!DemandedElts[i]) 2561 continue; 2562 if (Scl && Scl != Op) 2563 return false; 2564 Scl = Op; 2565 } 2566 return true; 2567 } 2568 case ISD::VECTOR_SHUFFLE: { 2569 // Check if this is a shuffle node doing a splat. 2570 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2571 int SplatIndex = -1; 2572 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2573 for (int i = 0; i != (int)NumElts; ++i) { 2574 int M = Mask[i]; 2575 if (M < 0) { 2576 UndefElts.setBit(i); 2577 continue; 2578 } 2579 if (!DemandedElts[i]) 2580 continue; 2581 if (0 <= SplatIndex && SplatIndex != M) 2582 return false; 2583 SplatIndex = M; 2584 } 2585 return true; 2586 } 2587 case ISD::EXTRACT_SUBVECTOR: { 2588 // Offset the demanded elts by the subvector index. 2589 SDValue Src = V.getOperand(0); 2590 // We don't support scalable vectors at the moment. 2591 if (Src.getValueType().isScalableVector()) 2592 return false; 2593 uint64_t Idx = V.getConstantOperandVal(1); 2594 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2595 APInt UndefSrcElts; 2596 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2597 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2598 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2599 return true; 2600 } 2601 break; 2602 } 2603 case ISD::ANY_EXTEND_VECTOR_INREG: 2604 case ISD::SIGN_EXTEND_VECTOR_INREG: 2605 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2606 // Widen the demanded elts by the src element count. 2607 SDValue Src = V.getOperand(0); 2608 // We don't support scalable vectors at the moment. 2609 if (Src.getValueType().isScalableVector()) 2610 return false; 2611 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2612 APInt UndefSrcElts; 2613 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2614 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2615 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2616 return true; 2617 } 2618 break; 2619 } 2620 } 2621 2622 return false; 2623 } 2624 2625 /// Helper wrapper to main isSplatValue function. 2626 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2627 EVT VT = V.getValueType(); 2628 assert(VT.isVector() && "Vector type expected"); 2629 2630 APInt UndefElts; 2631 APInt DemandedElts; 2632 2633 // For now we don't support this with scalable vectors. 2634 if (!VT.isScalableVector()) 2635 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2636 return isSplatValue(V, DemandedElts, UndefElts) && 2637 (AllowUndefs || !UndefElts); 2638 } 2639 2640 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2641 V = peekThroughExtractSubvectors(V); 2642 2643 EVT VT = V.getValueType(); 2644 unsigned Opcode = V.getOpcode(); 2645 switch (Opcode) { 2646 default: { 2647 APInt UndefElts; 2648 APInt DemandedElts; 2649 2650 if (!VT.isScalableVector()) 2651 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2652 2653 if (isSplatValue(V, DemandedElts, UndefElts)) { 2654 if (VT.isScalableVector()) { 2655 // DemandedElts and UndefElts are ignored for scalable vectors, since 2656 // the only supported cases are SPLAT_VECTOR nodes. 2657 SplatIdx = 0; 2658 } else { 2659 // Handle case where all demanded elements are UNDEF. 2660 if (DemandedElts.isSubsetOf(UndefElts)) { 2661 SplatIdx = 0; 2662 return getUNDEF(VT); 2663 } 2664 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2665 } 2666 return V; 2667 } 2668 break; 2669 } 2670 case ISD::SPLAT_VECTOR: 2671 SplatIdx = 0; 2672 return V; 2673 case ISD::VECTOR_SHUFFLE: { 2674 if (VT.isScalableVector()) 2675 return SDValue(); 2676 2677 // Check if this is a shuffle node doing a splat. 2678 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2679 // getTargetVShiftNode currently struggles without the splat source. 2680 auto *SVN = cast<ShuffleVectorSDNode>(V); 2681 if (!SVN->isSplat()) 2682 break; 2683 int Idx = SVN->getSplatIndex(); 2684 int NumElts = V.getValueType().getVectorNumElements(); 2685 SplatIdx = Idx % NumElts; 2686 return V.getOperand(Idx / NumElts); 2687 } 2688 } 2689 2690 return SDValue(); 2691 } 2692 2693 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2694 int SplatIdx; 2695 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2696 EVT SVT = SrcVector.getValueType().getScalarType(); 2697 EVT LegalSVT = SVT; 2698 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2699 if (!SVT.isInteger()) 2700 return SDValue(); 2701 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2702 if (LegalSVT.bitsLT(SVT)) 2703 return SDValue(); 2704 } 2705 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2706 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2707 } 2708 return SDValue(); 2709 } 2710 2711 const APInt * 2712 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2713 const APInt &DemandedElts) const { 2714 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2715 V.getOpcode() == ISD::SRA) && 2716 "Unknown shift node"); 2717 unsigned BitWidth = V.getScalarValueSizeInBits(); 2718 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2719 // Shifting more than the bitwidth is not valid. 2720 const APInt &ShAmt = SA->getAPIntValue(); 2721 if (ShAmt.ult(BitWidth)) 2722 return &ShAmt; 2723 } 2724 return nullptr; 2725 } 2726 2727 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2728 SDValue V, const APInt &DemandedElts) const { 2729 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2730 V.getOpcode() == ISD::SRA) && 2731 "Unknown shift node"); 2732 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2733 return ValidAmt; 2734 unsigned BitWidth = V.getScalarValueSizeInBits(); 2735 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2736 if (!BV) 2737 return nullptr; 2738 const APInt *MinShAmt = nullptr; 2739 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2740 if (!DemandedElts[i]) 2741 continue; 2742 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2743 if (!SA) 2744 return nullptr; 2745 // Shifting more than the bitwidth is not valid. 2746 const APInt &ShAmt = SA->getAPIntValue(); 2747 if (ShAmt.uge(BitWidth)) 2748 return nullptr; 2749 if (MinShAmt && MinShAmt->ule(ShAmt)) 2750 continue; 2751 MinShAmt = &ShAmt; 2752 } 2753 return MinShAmt; 2754 } 2755 2756 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2757 SDValue V, const APInt &DemandedElts) const { 2758 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2759 V.getOpcode() == ISD::SRA) && 2760 "Unknown shift node"); 2761 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2762 return ValidAmt; 2763 unsigned BitWidth = V.getScalarValueSizeInBits(); 2764 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2765 if (!BV) 2766 return nullptr; 2767 const APInt *MaxShAmt = nullptr; 2768 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2769 if (!DemandedElts[i]) 2770 continue; 2771 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2772 if (!SA) 2773 return nullptr; 2774 // Shifting more than the bitwidth is not valid. 2775 const APInt &ShAmt = SA->getAPIntValue(); 2776 if (ShAmt.uge(BitWidth)) 2777 return nullptr; 2778 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2779 continue; 2780 MaxShAmt = &ShAmt; 2781 } 2782 return MaxShAmt; 2783 } 2784 2785 /// Determine which bits of Op are known to be either zero or one and return 2786 /// them in Known. For vectors, the known bits are those that are shared by 2787 /// every vector element. 2788 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2789 EVT VT = Op.getValueType(); 2790 2791 // TOOD: Until we have a plan for how to represent demanded elements for 2792 // scalable vectors, we can just bail out for now. 2793 if (Op.getValueType().isScalableVector()) { 2794 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2795 return KnownBits(BitWidth); 2796 } 2797 2798 APInt DemandedElts = VT.isVector() 2799 ? APInt::getAllOnes(VT.getVectorNumElements()) 2800 : APInt(1, 1); 2801 return computeKnownBits(Op, DemandedElts, Depth); 2802 } 2803 2804 /// Determine which bits of Op are known to be either zero or one and return 2805 /// them in Known. The DemandedElts argument allows us to only collect the known 2806 /// bits that are shared by the requested vector elements. 2807 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2808 unsigned Depth) const { 2809 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2810 2811 KnownBits Known(BitWidth); // Don't know anything. 2812 2813 // TOOD: Until we have a plan for how to represent demanded elements for 2814 // scalable vectors, we can just bail out for now. 2815 if (Op.getValueType().isScalableVector()) 2816 return Known; 2817 2818 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2819 // We know all of the bits for a constant! 2820 return KnownBits::makeConstant(C->getAPIntValue()); 2821 } 2822 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2823 // We know all of the bits for a constant fp! 2824 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2825 } 2826 2827 if (Depth >= MaxRecursionDepth) 2828 return Known; // Limit search depth. 2829 2830 KnownBits Known2; 2831 unsigned NumElts = DemandedElts.getBitWidth(); 2832 assert((!Op.getValueType().isVector() || 2833 NumElts == Op.getValueType().getVectorNumElements()) && 2834 "Unexpected vector size"); 2835 2836 if (!DemandedElts) 2837 return Known; // No demanded elts, better to assume we don't know anything. 2838 2839 unsigned Opcode = Op.getOpcode(); 2840 switch (Opcode) { 2841 case ISD::BUILD_VECTOR: 2842 // Collect the known bits that are shared by every demanded vector element. 2843 Known.Zero.setAllBits(); Known.One.setAllBits(); 2844 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2845 if (!DemandedElts[i]) 2846 continue; 2847 2848 SDValue SrcOp = Op.getOperand(i); 2849 Known2 = computeKnownBits(SrcOp, Depth + 1); 2850 2851 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2852 if (SrcOp.getValueSizeInBits() != BitWidth) { 2853 assert(SrcOp.getValueSizeInBits() > BitWidth && 2854 "Expected BUILD_VECTOR implicit truncation"); 2855 Known2 = Known2.trunc(BitWidth); 2856 } 2857 2858 // Known bits are the values that are shared by every demanded element. 2859 Known = KnownBits::commonBits(Known, Known2); 2860 2861 // If we don't know any bits, early out. 2862 if (Known.isUnknown()) 2863 break; 2864 } 2865 break; 2866 case ISD::VECTOR_SHUFFLE: { 2867 // Collect the known bits that are shared by every vector element referenced 2868 // by the shuffle. 2869 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2870 Known.Zero.setAllBits(); Known.One.setAllBits(); 2871 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2872 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2873 for (unsigned i = 0; i != NumElts; ++i) { 2874 if (!DemandedElts[i]) 2875 continue; 2876 2877 int M = SVN->getMaskElt(i); 2878 if (M < 0) { 2879 // For UNDEF elements, we don't know anything about the common state of 2880 // the shuffle result. 2881 Known.resetAll(); 2882 DemandedLHS.clearAllBits(); 2883 DemandedRHS.clearAllBits(); 2884 break; 2885 } 2886 2887 if ((unsigned)M < NumElts) 2888 DemandedLHS.setBit((unsigned)M % NumElts); 2889 else 2890 DemandedRHS.setBit((unsigned)M % NumElts); 2891 } 2892 // Known bits are the values that are shared by every demanded element. 2893 if (!!DemandedLHS) { 2894 SDValue LHS = Op.getOperand(0); 2895 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2896 Known = KnownBits::commonBits(Known, Known2); 2897 } 2898 // If we don't know any bits, early out. 2899 if (Known.isUnknown()) 2900 break; 2901 if (!!DemandedRHS) { 2902 SDValue RHS = Op.getOperand(1); 2903 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2904 Known = KnownBits::commonBits(Known, Known2); 2905 } 2906 break; 2907 } 2908 case ISD::CONCAT_VECTORS: { 2909 // Split DemandedElts and test each of the demanded subvectors. 2910 Known.Zero.setAllBits(); Known.One.setAllBits(); 2911 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2912 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2913 unsigned NumSubVectors = Op.getNumOperands(); 2914 for (unsigned i = 0; i != NumSubVectors; ++i) { 2915 APInt DemandedSub = 2916 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2917 if (!!DemandedSub) { 2918 SDValue Sub = Op.getOperand(i); 2919 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2920 Known = KnownBits::commonBits(Known, Known2); 2921 } 2922 // If we don't know any bits, early out. 2923 if (Known.isUnknown()) 2924 break; 2925 } 2926 break; 2927 } 2928 case ISD::INSERT_SUBVECTOR: { 2929 // Demand any elements from the subvector and the remainder from the src its 2930 // inserted into. 2931 SDValue Src = Op.getOperand(0); 2932 SDValue Sub = Op.getOperand(1); 2933 uint64_t Idx = Op.getConstantOperandVal(2); 2934 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2935 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2936 APInt DemandedSrcElts = DemandedElts; 2937 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2938 2939 Known.One.setAllBits(); 2940 Known.Zero.setAllBits(); 2941 if (!!DemandedSubElts) { 2942 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2943 if (Known.isUnknown()) 2944 break; // early-out. 2945 } 2946 if (!!DemandedSrcElts) { 2947 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2948 Known = KnownBits::commonBits(Known, Known2); 2949 } 2950 break; 2951 } 2952 case ISD::EXTRACT_SUBVECTOR: { 2953 // Offset the demanded elts by the subvector index. 2954 SDValue Src = Op.getOperand(0); 2955 // Bail until we can represent demanded elements for scalable vectors. 2956 if (Src.getValueType().isScalableVector()) 2957 break; 2958 uint64_t Idx = Op.getConstantOperandVal(1); 2959 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2960 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2961 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2962 break; 2963 } 2964 case ISD::SCALAR_TO_VECTOR: { 2965 // We know about scalar_to_vector as much as we know about it source, 2966 // which becomes the first element of otherwise unknown vector. 2967 if (DemandedElts != 1) 2968 break; 2969 2970 SDValue N0 = Op.getOperand(0); 2971 Known = computeKnownBits(N0, Depth + 1); 2972 if (N0.getValueSizeInBits() != BitWidth) 2973 Known = Known.trunc(BitWidth); 2974 2975 break; 2976 } 2977 case ISD::BITCAST: { 2978 SDValue N0 = Op.getOperand(0); 2979 EVT SubVT = N0.getValueType(); 2980 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2981 2982 // Ignore bitcasts from unsupported types. 2983 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2984 break; 2985 2986 // Fast handling of 'identity' bitcasts. 2987 if (BitWidth == SubBitWidth) { 2988 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2989 break; 2990 } 2991 2992 bool IsLE = getDataLayout().isLittleEndian(); 2993 2994 // Bitcast 'small element' vector to 'large element' scalar/vector. 2995 if ((BitWidth % SubBitWidth) == 0) { 2996 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2997 2998 // Collect known bits for the (larger) output by collecting the known 2999 // bits from each set of sub elements and shift these into place. 3000 // We need to separately call computeKnownBits for each set of 3001 // sub elements as the knownbits for each is likely to be different. 3002 unsigned SubScale = BitWidth / SubBitWidth; 3003 APInt SubDemandedElts(NumElts * SubScale, 0); 3004 for (unsigned i = 0; i != NumElts; ++i) 3005 if (DemandedElts[i]) 3006 SubDemandedElts.setBit(i * SubScale); 3007 3008 for (unsigned i = 0; i != SubScale; ++i) { 3009 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3010 Depth + 1); 3011 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3012 Known.insertBits(Known2, SubBitWidth * Shifts); 3013 } 3014 } 3015 3016 // Bitcast 'large element' scalar/vector to 'small element' vector. 3017 if ((SubBitWidth % BitWidth) == 0) { 3018 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3019 3020 // Collect known bits for the (smaller) output by collecting the known 3021 // bits from the overlapping larger input elements and extracting the 3022 // sub sections we actually care about. 3023 unsigned SubScale = SubBitWidth / BitWidth; 3024 APInt SubDemandedElts = 3025 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3026 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3027 3028 Known.Zero.setAllBits(); Known.One.setAllBits(); 3029 for (unsigned i = 0; i != NumElts; ++i) 3030 if (DemandedElts[i]) { 3031 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3032 unsigned Offset = (Shifts % SubScale) * BitWidth; 3033 Known = KnownBits::commonBits(Known, 3034 Known2.extractBits(BitWidth, Offset)); 3035 // If we don't know any bits, early out. 3036 if (Known.isUnknown()) 3037 break; 3038 } 3039 } 3040 break; 3041 } 3042 case ISD::AND: 3043 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3044 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3045 3046 Known &= Known2; 3047 break; 3048 case ISD::OR: 3049 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3050 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3051 3052 Known |= Known2; 3053 break; 3054 case ISD::XOR: 3055 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3057 3058 Known ^= Known2; 3059 break; 3060 case ISD::MUL: { 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 Known = KnownBits::mul(Known, Known2); 3064 break; 3065 } 3066 case ISD::MULHU: { 3067 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3068 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3069 Known = KnownBits::mulhu(Known, Known2); 3070 break; 3071 } 3072 case ISD::MULHS: { 3073 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3074 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 Known = KnownBits::mulhs(Known, Known2); 3076 break; 3077 } 3078 case ISD::UMUL_LOHI: { 3079 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3080 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3081 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3082 if (Op.getResNo() == 0) 3083 Known = KnownBits::mul(Known, Known2); 3084 else 3085 Known = KnownBits::mulhu(Known, Known2); 3086 break; 3087 } 3088 case ISD::SMUL_LOHI: { 3089 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3090 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3091 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3092 if (Op.getResNo() == 0) 3093 Known = KnownBits::mul(Known, Known2); 3094 else 3095 Known = KnownBits::mulhs(Known, Known2); 3096 break; 3097 } 3098 case ISD::UDIV: { 3099 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3100 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3101 Known = KnownBits::udiv(Known, Known2); 3102 break; 3103 } 3104 case ISD::SELECT: 3105 case ISD::VSELECT: 3106 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3107 // If we don't know any bits, early out. 3108 if (Known.isUnknown()) 3109 break; 3110 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3111 3112 // Only known if known in both the LHS and RHS. 3113 Known = KnownBits::commonBits(Known, Known2); 3114 break; 3115 case ISD::SELECT_CC: 3116 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3117 // If we don't know any bits, early out. 3118 if (Known.isUnknown()) 3119 break; 3120 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3121 3122 // Only known if known in both the LHS and RHS. 3123 Known = KnownBits::commonBits(Known, Known2); 3124 break; 3125 case ISD::SMULO: 3126 case ISD::UMULO: 3127 if (Op.getResNo() != 1) 3128 break; 3129 // The boolean result conforms to getBooleanContents. 3130 // If we know the result of a setcc has the top bits zero, use this info. 3131 // We know that we have an integer-based boolean since these operations 3132 // are only available for integer. 3133 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3134 TargetLowering::ZeroOrOneBooleanContent && 3135 BitWidth > 1) 3136 Known.Zero.setBitsFrom(1); 3137 break; 3138 case ISD::SETCC: 3139 case ISD::STRICT_FSETCC: 3140 case ISD::STRICT_FSETCCS: { 3141 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3142 // If we know the result of a setcc has the top bits zero, use this info. 3143 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3144 TargetLowering::ZeroOrOneBooleanContent && 3145 BitWidth > 1) 3146 Known.Zero.setBitsFrom(1); 3147 break; 3148 } 3149 case ISD::SHL: 3150 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3151 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3152 Known = KnownBits::shl(Known, Known2); 3153 3154 // Minimum shift low bits are known zero. 3155 if (const APInt *ShMinAmt = 3156 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3157 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3158 break; 3159 case ISD::SRL: 3160 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3161 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3162 Known = KnownBits::lshr(Known, Known2); 3163 3164 // Minimum shift high bits are known zero. 3165 if (const APInt *ShMinAmt = 3166 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3167 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3168 break; 3169 case ISD::SRA: 3170 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3171 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3172 Known = KnownBits::ashr(Known, Known2); 3173 // TODO: Add minimum shift high known sign bits. 3174 break; 3175 case ISD::FSHL: 3176 case ISD::FSHR: 3177 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3178 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3179 3180 // For fshl, 0-shift returns the 1st arg. 3181 // For fshr, 0-shift returns the 2nd arg. 3182 if (Amt == 0) { 3183 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3184 DemandedElts, Depth + 1); 3185 break; 3186 } 3187 3188 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3189 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3190 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3191 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3192 if (Opcode == ISD::FSHL) { 3193 Known.One <<= Amt; 3194 Known.Zero <<= Amt; 3195 Known2.One.lshrInPlace(BitWidth - Amt); 3196 Known2.Zero.lshrInPlace(BitWidth - Amt); 3197 } else { 3198 Known.One <<= BitWidth - Amt; 3199 Known.Zero <<= BitWidth - Amt; 3200 Known2.One.lshrInPlace(Amt); 3201 Known2.Zero.lshrInPlace(Amt); 3202 } 3203 Known.One |= Known2.One; 3204 Known.Zero |= Known2.Zero; 3205 } 3206 break; 3207 case ISD::SIGN_EXTEND_INREG: { 3208 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3209 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3210 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3211 break; 3212 } 3213 case ISD::CTTZ: 3214 case ISD::CTTZ_ZERO_UNDEF: { 3215 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 // If we have a known 1, its position is our upper bound. 3217 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3218 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3219 Known.Zero.setBitsFrom(LowBits); 3220 break; 3221 } 3222 case ISD::CTLZ: 3223 case ISD::CTLZ_ZERO_UNDEF: { 3224 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3225 // If we have a known 1, its position is our upper bound. 3226 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3227 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3228 Known.Zero.setBitsFrom(LowBits); 3229 break; 3230 } 3231 case ISD::CTPOP: { 3232 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3233 // If we know some of the bits are zero, they can't be one. 3234 unsigned PossibleOnes = Known2.countMaxPopulation(); 3235 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3236 break; 3237 } 3238 case ISD::PARITY: { 3239 // Parity returns 0 everywhere but the LSB. 3240 Known.Zero.setBitsFrom(1); 3241 break; 3242 } 3243 case ISD::LOAD: { 3244 LoadSDNode *LD = cast<LoadSDNode>(Op); 3245 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3246 if (ISD::isNON_EXTLoad(LD) && Cst) { 3247 // Determine any common known bits from the loaded constant pool value. 3248 Type *CstTy = Cst->getType(); 3249 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3250 // If its a vector splat, then we can (quickly) reuse the scalar path. 3251 // NOTE: We assume all elements match and none are UNDEF. 3252 if (CstTy->isVectorTy()) { 3253 if (const Constant *Splat = Cst->getSplatValue()) { 3254 Cst = Splat; 3255 CstTy = Cst->getType(); 3256 } 3257 } 3258 // TODO - do we need to handle different bitwidths? 3259 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3260 // Iterate across all vector elements finding common known bits. 3261 Known.One.setAllBits(); 3262 Known.Zero.setAllBits(); 3263 for (unsigned i = 0; i != NumElts; ++i) { 3264 if (!DemandedElts[i]) 3265 continue; 3266 if (Constant *Elt = Cst->getAggregateElement(i)) { 3267 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3268 const APInt &Value = CInt->getValue(); 3269 Known.One &= Value; 3270 Known.Zero &= ~Value; 3271 continue; 3272 } 3273 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3274 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3275 Known.One &= Value; 3276 Known.Zero &= ~Value; 3277 continue; 3278 } 3279 } 3280 Known.One.clearAllBits(); 3281 Known.Zero.clearAllBits(); 3282 break; 3283 } 3284 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3285 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3286 Known = KnownBits::makeConstant(CInt->getValue()); 3287 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3288 Known = 3289 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3290 } 3291 } 3292 } 3293 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3294 // If this is a ZEXTLoad and we are looking at the loaded value. 3295 EVT VT = LD->getMemoryVT(); 3296 unsigned MemBits = VT.getScalarSizeInBits(); 3297 Known.Zero.setBitsFrom(MemBits); 3298 } else if (const MDNode *Ranges = LD->getRanges()) { 3299 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3300 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3301 } 3302 break; 3303 } 3304 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3305 EVT InVT = Op.getOperand(0).getValueType(); 3306 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3307 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3308 Known = Known.zext(BitWidth); 3309 break; 3310 } 3311 case ISD::ZERO_EXTEND: { 3312 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3313 Known = Known.zext(BitWidth); 3314 break; 3315 } 3316 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3317 EVT InVT = Op.getOperand(0).getValueType(); 3318 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3319 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3320 // If the sign bit is known to be zero or one, then sext will extend 3321 // it to the top bits, else it will just zext. 3322 Known = Known.sext(BitWidth); 3323 break; 3324 } 3325 case ISD::SIGN_EXTEND: { 3326 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3327 // If the sign bit is known to be zero or one, then sext will extend 3328 // it to the top bits, else it will just zext. 3329 Known = Known.sext(BitWidth); 3330 break; 3331 } 3332 case ISD::ANY_EXTEND_VECTOR_INREG: { 3333 EVT InVT = Op.getOperand(0).getValueType(); 3334 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3335 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3336 Known = Known.anyext(BitWidth); 3337 break; 3338 } 3339 case ISD::ANY_EXTEND: { 3340 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3341 Known = Known.anyext(BitWidth); 3342 break; 3343 } 3344 case ISD::TRUNCATE: { 3345 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3346 Known = Known.trunc(BitWidth); 3347 break; 3348 } 3349 case ISD::AssertZext: { 3350 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3351 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3352 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3353 Known.Zero |= (~InMask); 3354 Known.One &= (~Known.Zero); 3355 break; 3356 } 3357 case ISD::AssertAlign: { 3358 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3359 assert(LogOfAlign != 0); 3360 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3361 // well as clearing one bits. 3362 Known.Zero.setLowBits(LogOfAlign); 3363 Known.One.clearLowBits(LogOfAlign); 3364 break; 3365 } 3366 case ISD::FGETSIGN: 3367 // All bits are zero except the low bit. 3368 Known.Zero.setBitsFrom(1); 3369 break; 3370 case ISD::USUBO: 3371 case ISD::SSUBO: 3372 if (Op.getResNo() == 1) { 3373 // If we know the result of a setcc has the top bits zero, use this info. 3374 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3375 TargetLowering::ZeroOrOneBooleanContent && 3376 BitWidth > 1) 3377 Known.Zero.setBitsFrom(1); 3378 break; 3379 } 3380 LLVM_FALLTHROUGH; 3381 case ISD::SUB: 3382 case ISD::SUBC: { 3383 assert(Op.getResNo() == 0 && 3384 "We only compute knownbits for the difference here."); 3385 3386 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3387 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3388 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3389 Known, Known2); 3390 break; 3391 } 3392 case ISD::UADDO: 3393 case ISD::SADDO: 3394 case ISD::ADDCARRY: 3395 if (Op.getResNo() == 1) { 3396 // If we know the result of a setcc has the top bits zero, use this info. 3397 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3398 TargetLowering::ZeroOrOneBooleanContent && 3399 BitWidth > 1) 3400 Known.Zero.setBitsFrom(1); 3401 break; 3402 } 3403 LLVM_FALLTHROUGH; 3404 case ISD::ADD: 3405 case ISD::ADDC: 3406 case ISD::ADDE: { 3407 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3408 3409 // With ADDE and ADDCARRY, a carry bit may be added in. 3410 KnownBits Carry(1); 3411 if (Opcode == ISD::ADDE) 3412 // Can't track carry from glue, set carry to unknown. 3413 Carry.resetAll(); 3414 else if (Opcode == ISD::ADDCARRY) 3415 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3416 // the trouble (how often will we find a known carry bit). And I haven't 3417 // tested this very much yet, but something like this might work: 3418 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3419 // Carry = Carry.zextOrTrunc(1, false); 3420 Carry.resetAll(); 3421 else 3422 Carry.setAllZero(); 3423 3424 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3425 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3426 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3427 break; 3428 } 3429 case ISD::SREM: { 3430 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3431 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3432 Known = KnownBits::srem(Known, Known2); 3433 break; 3434 } 3435 case ISD::UREM: { 3436 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3437 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3438 Known = KnownBits::urem(Known, Known2); 3439 break; 3440 } 3441 case ISD::EXTRACT_ELEMENT: { 3442 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3443 const unsigned Index = Op.getConstantOperandVal(1); 3444 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3445 3446 // Remove low part of known bits mask 3447 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3448 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3449 3450 // Remove high part of known bit mask 3451 Known = Known.trunc(EltBitWidth); 3452 break; 3453 } 3454 case ISD::EXTRACT_VECTOR_ELT: { 3455 SDValue InVec = Op.getOperand(0); 3456 SDValue EltNo = Op.getOperand(1); 3457 EVT VecVT = InVec.getValueType(); 3458 // computeKnownBits not yet implemented for scalable vectors. 3459 if (VecVT.isScalableVector()) 3460 break; 3461 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3462 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3463 3464 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3465 // anything about the extended bits. 3466 if (BitWidth > EltBitWidth) 3467 Known = Known.trunc(EltBitWidth); 3468 3469 // If we know the element index, just demand that vector element, else for 3470 // an unknown element index, ignore DemandedElts and demand them all. 3471 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3472 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3473 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3474 DemandedSrcElts = 3475 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3476 3477 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3478 if (BitWidth > EltBitWidth) 3479 Known = Known.anyext(BitWidth); 3480 break; 3481 } 3482 case ISD::INSERT_VECTOR_ELT: { 3483 // If we know the element index, split the demand between the 3484 // source vector and the inserted element, otherwise assume we need 3485 // the original demanded vector elements and the value. 3486 SDValue InVec = Op.getOperand(0); 3487 SDValue InVal = Op.getOperand(1); 3488 SDValue EltNo = Op.getOperand(2); 3489 bool DemandedVal = true; 3490 APInt DemandedVecElts = DemandedElts; 3491 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3492 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3493 unsigned EltIdx = CEltNo->getZExtValue(); 3494 DemandedVal = !!DemandedElts[EltIdx]; 3495 DemandedVecElts.clearBit(EltIdx); 3496 } 3497 Known.One.setAllBits(); 3498 Known.Zero.setAllBits(); 3499 if (DemandedVal) { 3500 Known2 = computeKnownBits(InVal, Depth + 1); 3501 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3502 } 3503 if (!!DemandedVecElts) { 3504 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3505 Known = KnownBits::commonBits(Known, Known2); 3506 } 3507 break; 3508 } 3509 case ISD::BITREVERSE: { 3510 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3511 Known = Known2.reverseBits(); 3512 break; 3513 } 3514 case ISD::BSWAP: { 3515 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3516 Known = Known2.byteSwap(); 3517 break; 3518 } 3519 case ISD::ABS: { 3520 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3521 Known = Known2.abs(); 3522 break; 3523 } 3524 case ISD::USUBSAT: { 3525 // The result of usubsat will never be larger than the LHS. 3526 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3527 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3528 break; 3529 } 3530 case ISD::UMIN: { 3531 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3532 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3533 Known = KnownBits::umin(Known, Known2); 3534 break; 3535 } 3536 case ISD::UMAX: { 3537 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3538 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3539 Known = KnownBits::umax(Known, Known2); 3540 break; 3541 } 3542 case ISD::SMIN: 3543 case ISD::SMAX: { 3544 // If we have a clamp pattern, we know that the number of sign bits will be 3545 // the minimum of the clamp min/max range. 3546 bool IsMax = (Opcode == ISD::SMAX); 3547 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3548 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3549 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3550 CstHigh = 3551 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3552 if (CstLow && CstHigh) { 3553 if (!IsMax) 3554 std::swap(CstLow, CstHigh); 3555 3556 const APInt &ValueLow = CstLow->getAPIntValue(); 3557 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3558 if (ValueLow.sle(ValueHigh)) { 3559 unsigned LowSignBits = ValueLow.getNumSignBits(); 3560 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3561 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3562 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3563 Known.One.setHighBits(MinSignBits); 3564 break; 3565 } 3566 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3567 Known.Zero.setHighBits(MinSignBits); 3568 break; 3569 } 3570 } 3571 } 3572 3573 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3574 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3575 if (IsMax) 3576 Known = KnownBits::smax(Known, Known2); 3577 else 3578 Known = KnownBits::smin(Known, Known2); 3579 break; 3580 } 3581 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3582 if (Op.getResNo() == 1) { 3583 // The boolean result conforms to getBooleanContents. 3584 // If we know the result of a setcc has the top bits zero, use this info. 3585 // We know that we have an integer-based boolean since these operations 3586 // are only available for integer. 3587 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3588 TargetLowering::ZeroOrOneBooleanContent && 3589 BitWidth > 1) 3590 Known.Zero.setBitsFrom(1); 3591 break; 3592 } 3593 LLVM_FALLTHROUGH; 3594 case ISD::ATOMIC_CMP_SWAP: 3595 case ISD::ATOMIC_SWAP: 3596 case ISD::ATOMIC_LOAD_ADD: 3597 case ISD::ATOMIC_LOAD_SUB: 3598 case ISD::ATOMIC_LOAD_AND: 3599 case ISD::ATOMIC_LOAD_CLR: 3600 case ISD::ATOMIC_LOAD_OR: 3601 case ISD::ATOMIC_LOAD_XOR: 3602 case ISD::ATOMIC_LOAD_NAND: 3603 case ISD::ATOMIC_LOAD_MIN: 3604 case ISD::ATOMIC_LOAD_MAX: 3605 case ISD::ATOMIC_LOAD_UMIN: 3606 case ISD::ATOMIC_LOAD_UMAX: 3607 case ISD::ATOMIC_LOAD: { 3608 unsigned MemBits = 3609 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3610 // If we are looking at the loaded value. 3611 if (Op.getResNo() == 0) { 3612 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3613 Known.Zero.setBitsFrom(MemBits); 3614 } 3615 break; 3616 } 3617 case ISD::FrameIndex: 3618 case ISD::TargetFrameIndex: 3619 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3620 Known, getMachineFunction()); 3621 break; 3622 3623 default: 3624 if (Opcode < ISD::BUILTIN_OP_END) 3625 break; 3626 LLVM_FALLTHROUGH; 3627 case ISD::INTRINSIC_WO_CHAIN: 3628 case ISD::INTRINSIC_W_CHAIN: 3629 case ISD::INTRINSIC_VOID: 3630 // Allow the target to implement this method for its nodes. 3631 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3632 break; 3633 } 3634 3635 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3636 return Known; 3637 } 3638 3639 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3640 SDValue N1) const { 3641 // X + 0 never overflow 3642 if (isNullConstant(N1)) 3643 return OFK_Never; 3644 3645 KnownBits N1Known = computeKnownBits(N1); 3646 if (N1Known.Zero.getBoolValue()) { 3647 KnownBits N0Known = computeKnownBits(N0); 3648 3649 bool overflow; 3650 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3651 if (!overflow) 3652 return OFK_Never; 3653 } 3654 3655 // mulhi + 1 never overflow 3656 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3657 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3658 return OFK_Never; 3659 3660 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3661 KnownBits N0Known = computeKnownBits(N0); 3662 3663 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3664 return OFK_Never; 3665 } 3666 3667 return OFK_Sometime; 3668 } 3669 3670 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3671 EVT OpVT = Val.getValueType(); 3672 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3673 3674 // Is the constant a known power of 2? 3675 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3676 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3677 3678 // A left-shift of a constant one will have exactly one bit set because 3679 // shifting the bit off the end is undefined. 3680 if (Val.getOpcode() == ISD::SHL) { 3681 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3682 if (C && C->getAPIntValue() == 1) 3683 return true; 3684 } 3685 3686 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3687 // one bit set. 3688 if (Val.getOpcode() == ISD::SRL) { 3689 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3690 if (C && C->getAPIntValue().isSignMask()) 3691 return true; 3692 } 3693 3694 // Are all operands of a build vector constant powers of two? 3695 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3696 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3697 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3698 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3699 return false; 3700 })) 3701 return true; 3702 3703 // Is the operand of a splat vector a constant power of two? 3704 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3705 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3706 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3707 return true; 3708 3709 // More could be done here, though the above checks are enough 3710 // to handle some common cases. 3711 3712 // Fall back to computeKnownBits to catch other known cases. 3713 KnownBits Known = computeKnownBits(Val); 3714 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3715 } 3716 3717 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3718 EVT VT = Op.getValueType(); 3719 3720 // TODO: Assume we don't know anything for now. 3721 if (VT.isScalableVector()) 3722 return 1; 3723 3724 APInt DemandedElts = VT.isVector() 3725 ? APInt::getAllOnes(VT.getVectorNumElements()) 3726 : APInt(1, 1); 3727 return ComputeNumSignBits(Op, DemandedElts, Depth); 3728 } 3729 3730 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3731 unsigned Depth) const { 3732 EVT VT = Op.getValueType(); 3733 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3734 unsigned VTBits = VT.getScalarSizeInBits(); 3735 unsigned NumElts = DemandedElts.getBitWidth(); 3736 unsigned Tmp, Tmp2; 3737 unsigned FirstAnswer = 1; 3738 3739 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3740 const APInt &Val = C->getAPIntValue(); 3741 return Val.getNumSignBits(); 3742 } 3743 3744 if (Depth >= MaxRecursionDepth) 3745 return 1; // Limit search depth. 3746 3747 if (!DemandedElts || VT.isScalableVector()) 3748 return 1; // No demanded elts, better to assume we don't know anything. 3749 3750 unsigned Opcode = Op.getOpcode(); 3751 switch (Opcode) { 3752 default: break; 3753 case ISD::AssertSext: 3754 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3755 return VTBits-Tmp+1; 3756 case ISD::AssertZext: 3757 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3758 return VTBits-Tmp; 3759 3760 case ISD::BUILD_VECTOR: 3761 Tmp = VTBits; 3762 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3763 if (!DemandedElts[i]) 3764 continue; 3765 3766 SDValue SrcOp = Op.getOperand(i); 3767 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3768 3769 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3770 if (SrcOp.getValueSizeInBits() != VTBits) { 3771 assert(SrcOp.getValueSizeInBits() > VTBits && 3772 "Expected BUILD_VECTOR implicit truncation"); 3773 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3774 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3775 } 3776 Tmp = std::min(Tmp, Tmp2); 3777 } 3778 return Tmp; 3779 3780 case ISD::VECTOR_SHUFFLE: { 3781 // Collect the minimum number of sign bits that are shared by every vector 3782 // element referenced by the shuffle. 3783 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3784 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3785 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3786 for (unsigned i = 0; i != NumElts; ++i) { 3787 int M = SVN->getMaskElt(i); 3788 if (!DemandedElts[i]) 3789 continue; 3790 // For UNDEF elements, we don't know anything about the common state of 3791 // the shuffle result. 3792 if (M < 0) 3793 return 1; 3794 if ((unsigned)M < NumElts) 3795 DemandedLHS.setBit((unsigned)M % NumElts); 3796 else 3797 DemandedRHS.setBit((unsigned)M % NumElts); 3798 } 3799 Tmp = std::numeric_limits<unsigned>::max(); 3800 if (!!DemandedLHS) 3801 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3802 if (!!DemandedRHS) { 3803 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3804 Tmp = std::min(Tmp, Tmp2); 3805 } 3806 // If we don't know anything, early out and try computeKnownBits fall-back. 3807 if (Tmp == 1) 3808 break; 3809 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3810 return Tmp; 3811 } 3812 3813 case ISD::BITCAST: { 3814 SDValue N0 = Op.getOperand(0); 3815 EVT SrcVT = N0.getValueType(); 3816 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3817 3818 // Ignore bitcasts from unsupported types.. 3819 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3820 break; 3821 3822 // Fast handling of 'identity' bitcasts. 3823 if (VTBits == SrcBits) 3824 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3825 3826 bool IsLE = getDataLayout().isLittleEndian(); 3827 3828 // Bitcast 'large element' scalar/vector to 'small element' vector. 3829 if ((SrcBits % VTBits) == 0) { 3830 assert(VT.isVector() && "Expected bitcast to vector"); 3831 3832 unsigned Scale = SrcBits / VTBits; 3833 APInt SrcDemandedElts = 3834 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3835 3836 // Fast case - sign splat can be simply split across the small elements. 3837 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3838 if (Tmp == SrcBits) 3839 return VTBits; 3840 3841 // Slow case - determine how far the sign extends into each sub-element. 3842 Tmp2 = VTBits; 3843 for (unsigned i = 0; i != NumElts; ++i) 3844 if (DemandedElts[i]) { 3845 unsigned SubOffset = i % Scale; 3846 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3847 SubOffset = SubOffset * VTBits; 3848 if (Tmp <= SubOffset) 3849 return 1; 3850 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3851 } 3852 return Tmp2; 3853 } 3854 break; 3855 } 3856 3857 case ISD::SIGN_EXTEND: 3858 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3859 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3860 case ISD::SIGN_EXTEND_INREG: 3861 // Max of the input and what this extends. 3862 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3863 Tmp = VTBits-Tmp+1; 3864 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3865 return std::max(Tmp, Tmp2); 3866 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3867 SDValue Src = Op.getOperand(0); 3868 EVT SrcVT = Src.getValueType(); 3869 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3870 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3871 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3872 } 3873 case ISD::SRA: 3874 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3875 // SRA X, C -> adds C sign bits. 3876 if (const APInt *ShAmt = 3877 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3878 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3879 return Tmp; 3880 case ISD::SHL: 3881 if (const APInt *ShAmt = 3882 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3883 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3884 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3885 if (ShAmt->ult(Tmp)) 3886 return Tmp - ShAmt->getZExtValue(); 3887 } 3888 break; 3889 case ISD::AND: 3890 case ISD::OR: 3891 case ISD::XOR: // NOT is handled here. 3892 // Logical binary ops preserve the number of sign bits at the worst. 3893 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3894 if (Tmp != 1) { 3895 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3896 FirstAnswer = std::min(Tmp, Tmp2); 3897 // We computed what we know about the sign bits as our first 3898 // answer. Now proceed to the generic code that uses 3899 // computeKnownBits, and pick whichever answer is better. 3900 } 3901 break; 3902 3903 case ISD::SELECT: 3904 case ISD::VSELECT: 3905 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3906 if (Tmp == 1) return 1; // Early out. 3907 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3908 return std::min(Tmp, Tmp2); 3909 case ISD::SELECT_CC: 3910 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3911 if (Tmp == 1) return 1; // Early out. 3912 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3913 return std::min(Tmp, Tmp2); 3914 3915 case ISD::SMIN: 3916 case ISD::SMAX: { 3917 // If we have a clamp pattern, we know that the number of sign bits will be 3918 // the minimum of the clamp min/max range. 3919 bool IsMax = (Opcode == ISD::SMAX); 3920 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3921 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3922 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3923 CstHigh = 3924 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3925 if (CstLow && CstHigh) { 3926 if (!IsMax) 3927 std::swap(CstLow, CstHigh); 3928 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3929 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3930 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3931 return std::min(Tmp, Tmp2); 3932 } 3933 } 3934 3935 // Fallback - just get the minimum number of sign bits of the operands. 3936 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3937 if (Tmp == 1) 3938 return 1; // Early out. 3939 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3940 return std::min(Tmp, Tmp2); 3941 } 3942 case ISD::UMIN: 3943 case ISD::UMAX: 3944 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3945 if (Tmp == 1) 3946 return 1; // Early out. 3947 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3948 return std::min(Tmp, Tmp2); 3949 case ISD::SADDO: 3950 case ISD::UADDO: 3951 case ISD::SSUBO: 3952 case ISD::USUBO: 3953 case ISD::SMULO: 3954 case ISD::UMULO: 3955 if (Op.getResNo() != 1) 3956 break; 3957 // The boolean result conforms to getBooleanContents. Fall through. 3958 // If setcc returns 0/-1, all bits are sign bits. 3959 // We know that we have an integer-based boolean since these operations 3960 // are only available for integer. 3961 if (TLI->getBooleanContents(VT.isVector(), false) == 3962 TargetLowering::ZeroOrNegativeOneBooleanContent) 3963 return VTBits; 3964 break; 3965 case ISD::SETCC: 3966 case ISD::STRICT_FSETCC: 3967 case ISD::STRICT_FSETCCS: { 3968 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3969 // If setcc returns 0/-1, all bits are sign bits. 3970 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3971 TargetLowering::ZeroOrNegativeOneBooleanContent) 3972 return VTBits; 3973 break; 3974 } 3975 case ISD::ROTL: 3976 case ISD::ROTR: 3977 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3978 3979 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3980 if (Tmp == VTBits) 3981 return VTBits; 3982 3983 if (ConstantSDNode *C = 3984 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3985 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3986 3987 // Handle rotate right by N like a rotate left by 32-N. 3988 if (Opcode == ISD::ROTR) 3989 RotAmt = (VTBits - RotAmt) % VTBits; 3990 3991 // If we aren't rotating out all of the known-in sign bits, return the 3992 // number that are left. This handles rotl(sext(x), 1) for example. 3993 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3994 } 3995 break; 3996 case ISD::ADD: 3997 case ISD::ADDC: 3998 // Add can have at most one carry bit. Thus we know that the output 3999 // is, at worst, one more bit than the inputs. 4000 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4001 if (Tmp == 1) return 1; // Early out. 4002 4003 // Special case decrementing a value (ADD X, -1): 4004 if (ConstantSDNode *CRHS = 4005 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4006 if (CRHS->isAllOnes()) { 4007 KnownBits Known = 4008 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4009 4010 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4011 // sign bits set. 4012 if ((Known.Zero | 1).isAllOnes()) 4013 return VTBits; 4014 4015 // If we are subtracting one from a positive number, there is no carry 4016 // out of the result. 4017 if (Known.isNonNegative()) 4018 return Tmp; 4019 } 4020 4021 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4022 if (Tmp2 == 1) return 1; // Early out. 4023 return std::min(Tmp, Tmp2) - 1; 4024 case ISD::SUB: 4025 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4026 if (Tmp2 == 1) return 1; // Early out. 4027 4028 // Handle NEG. 4029 if (ConstantSDNode *CLHS = 4030 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4031 if (CLHS->isZero()) { 4032 KnownBits Known = 4033 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4034 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4035 // sign bits set. 4036 if ((Known.Zero | 1).isAllOnes()) 4037 return VTBits; 4038 4039 // If the input is known to be positive (the sign bit is known clear), 4040 // the output of the NEG has the same number of sign bits as the input. 4041 if (Known.isNonNegative()) 4042 return Tmp2; 4043 4044 // Otherwise, we treat this like a SUB. 4045 } 4046 4047 // Sub can have at most one carry bit. Thus we know that the output 4048 // is, at worst, one more bit than the inputs. 4049 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4050 if (Tmp == 1) return 1; // Early out. 4051 return std::min(Tmp, Tmp2) - 1; 4052 case ISD::MUL: { 4053 // The output of the Mul can be at most twice the valid bits in the inputs. 4054 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4055 if (SignBitsOp0 == 1) 4056 break; 4057 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4058 if (SignBitsOp1 == 1) 4059 break; 4060 unsigned OutValidBits = 4061 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4062 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4063 } 4064 case ISD::SREM: 4065 // The sign bit is the LHS's sign bit, except when the result of the 4066 // remainder is zero. The magnitude of the result should be less than or 4067 // equal to the magnitude of the LHS. Therefore, the result should have 4068 // at least as many sign bits as the left hand side. 4069 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4070 case ISD::TRUNCATE: { 4071 // Check if the sign bits of source go down as far as the truncated value. 4072 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4073 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4074 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4075 return NumSrcSignBits - (NumSrcBits - VTBits); 4076 break; 4077 } 4078 case ISD::EXTRACT_ELEMENT: { 4079 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4080 const int BitWidth = Op.getValueSizeInBits(); 4081 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4082 4083 // Get reverse index (starting from 1), Op1 value indexes elements from 4084 // little end. Sign starts at big end. 4085 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4086 4087 // If the sign portion ends in our element the subtraction gives correct 4088 // result. Otherwise it gives either negative or > bitwidth result 4089 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4090 } 4091 case ISD::INSERT_VECTOR_ELT: { 4092 // If we know the element index, split the demand between the 4093 // source vector and the inserted element, otherwise assume we need 4094 // the original demanded vector elements and the value. 4095 SDValue InVec = Op.getOperand(0); 4096 SDValue InVal = Op.getOperand(1); 4097 SDValue EltNo = Op.getOperand(2); 4098 bool DemandedVal = true; 4099 APInt DemandedVecElts = DemandedElts; 4100 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4101 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4102 unsigned EltIdx = CEltNo->getZExtValue(); 4103 DemandedVal = !!DemandedElts[EltIdx]; 4104 DemandedVecElts.clearBit(EltIdx); 4105 } 4106 Tmp = std::numeric_limits<unsigned>::max(); 4107 if (DemandedVal) { 4108 // TODO - handle implicit truncation of inserted elements. 4109 if (InVal.getScalarValueSizeInBits() != VTBits) 4110 break; 4111 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4112 Tmp = std::min(Tmp, Tmp2); 4113 } 4114 if (!!DemandedVecElts) { 4115 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4116 Tmp = std::min(Tmp, Tmp2); 4117 } 4118 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4119 return Tmp; 4120 } 4121 case ISD::EXTRACT_VECTOR_ELT: { 4122 SDValue InVec = Op.getOperand(0); 4123 SDValue EltNo = Op.getOperand(1); 4124 EVT VecVT = InVec.getValueType(); 4125 // ComputeNumSignBits not yet implemented for scalable vectors. 4126 if (VecVT.isScalableVector()) 4127 break; 4128 const unsigned BitWidth = Op.getValueSizeInBits(); 4129 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4130 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4131 4132 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4133 // anything about sign bits. But if the sizes match we can derive knowledge 4134 // about sign bits from the vector operand. 4135 if (BitWidth != EltBitWidth) 4136 break; 4137 4138 // If we know the element index, just demand that vector element, else for 4139 // an unknown element index, ignore DemandedElts and demand them all. 4140 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4141 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4142 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4143 DemandedSrcElts = 4144 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4145 4146 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4147 } 4148 case ISD::EXTRACT_SUBVECTOR: { 4149 // Offset the demanded elts by the subvector index. 4150 SDValue Src = Op.getOperand(0); 4151 // Bail until we can represent demanded elements for scalable vectors. 4152 if (Src.getValueType().isScalableVector()) 4153 break; 4154 uint64_t Idx = Op.getConstantOperandVal(1); 4155 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4156 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4157 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4158 } 4159 case ISD::CONCAT_VECTORS: { 4160 // Determine the minimum number of sign bits across all demanded 4161 // elts of the input vectors. Early out if the result is already 1. 4162 Tmp = std::numeric_limits<unsigned>::max(); 4163 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4164 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4165 unsigned NumSubVectors = Op.getNumOperands(); 4166 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4167 APInt DemandedSub = 4168 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4169 if (!DemandedSub) 4170 continue; 4171 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4172 Tmp = std::min(Tmp, Tmp2); 4173 } 4174 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4175 return Tmp; 4176 } 4177 case ISD::INSERT_SUBVECTOR: { 4178 // Demand any elements from the subvector and the remainder from the src its 4179 // inserted into. 4180 SDValue Src = Op.getOperand(0); 4181 SDValue Sub = Op.getOperand(1); 4182 uint64_t Idx = Op.getConstantOperandVal(2); 4183 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4184 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4185 APInt DemandedSrcElts = DemandedElts; 4186 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4187 4188 Tmp = std::numeric_limits<unsigned>::max(); 4189 if (!!DemandedSubElts) { 4190 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4191 if (Tmp == 1) 4192 return 1; // early-out 4193 } 4194 if (!!DemandedSrcElts) { 4195 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4196 Tmp = std::min(Tmp, Tmp2); 4197 } 4198 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4199 return Tmp; 4200 } 4201 case ISD::ATOMIC_CMP_SWAP: 4202 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4203 case ISD::ATOMIC_SWAP: 4204 case ISD::ATOMIC_LOAD_ADD: 4205 case ISD::ATOMIC_LOAD_SUB: 4206 case ISD::ATOMIC_LOAD_AND: 4207 case ISD::ATOMIC_LOAD_CLR: 4208 case ISD::ATOMIC_LOAD_OR: 4209 case ISD::ATOMIC_LOAD_XOR: 4210 case ISD::ATOMIC_LOAD_NAND: 4211 case ISD::ATOMIC_LOAD_MIN: 4212 case ISD::ATOMIC_LOAD_MAX: 4213 case ISD::ATOMIC_LOAD_UMIN: 4214 case ISD::ATOMIC_LOAD_UMAX: 4215 case ISD::ATOMIC_LOAD: { 4216 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4217 // If we are looking at the loaded value. 4218 if (Op.getResNo() == 0) { 4219 if (Tmp == VTBits) 4220 return 1; // early-out 4221 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4222 return VTBits - Tmp + 1; 4223 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4224 return VTBits - Tmp; 4225 } 4226 break; 4227 } 4228 } 4229 4230 // If we are looking at the loaded value of the SDNode. 4231 if (Op.getResNo() == 0) { 4232 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4233 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4234 unsigned ExtType = LD->getExtensionType(); 4235 switch (ExtType) { 4236 default: break; 4237 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4238 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4239 return VTBits - Tmp + 1; 4240 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4241 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4242 return VTBits - Tmp; 4243 case ISD::NON_EXTLOAD: 4244 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4245 // We only need to handle vectors - computeKnownBits should handle 4246 // scalar cases. 4247 Type *CstTy = Cst->getType(); 4248 if (CstTy->isVectorTy() && 4249 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4250 Tmp = VTBits; 4251 for (unsigned i = 0; i != NumElts; ++i) { 4252 if (!DemandedElts[i]) 4253 continue; 4254 if (Constant *Elt = Cst->getAggregateElement(i)) { 4255 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4256 const APInt &Value = CInt->getValue(); 4257 Tmp = std::min(Tmp, Value.getNumSignBits()); 4258 continue; 4259 } 4260 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4261 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4262 Tmp = std::min(Tmp, Value.getNumSignBits()); 4263 continue; 4264 } 4265 } 4266 // Unknown type. Conservatively assume no bits match sign bit. 4267 return 1; 4268 } 4269 return Tmp; 4270 } 4271 } 4272 break; 4273 } 4274 } 4275 } 4276 4277 // Allow the target to implement this method for its nodes. 4278 if (Opcode >= ISD::BUILTIN_OP_END || 4279 Opcode == ISD::INTRINSIC_WO_CHAIN || 4280 Opcode == ISD::INTRINSIC_W_CHAIN || 4281 Opcode == ISD::INTRINSIC_VOID) { 4282 unsigned NumBits = 4283 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4284 if (NumBits > 1) 4285 FirstAnswer = std::max(FirstAnswer, NumBits); 4286 } 4287 4288 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4289 // use this information. 4290 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4291 4292 APInt Mask; 4293 if (Known.isNonNegative()) { // sign bit is 0 4294 Mask = Known.Zero; 4295 } else if (Known.isNegative()) { // sign bit is 1; 4296 Mask = Known.One; 4297 } else { 4298 // Nothing known. 4299 return FirstAnswer; 4300 } 4301 4302 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4303 // the number of identical bits in the top of the input value. 4304 Mask <<= Mask.getBitWidth()-VTBits; 4305 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4306 } 4307 4308 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const { 4309 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4310 return Op.getScalarValueSizeInBits() - SignBits + 1; 4311 } 4312 4313 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, 4314 const APInt &DemandedElts, 4315 unsigned Depth) const { 4316 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4317 return Op.getScalarValueSizeInBits() - SignBits + 1; 4318 } 4319 4320 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4321 unsigned Depth) const { 4322 // Early out for FREEZE. 4323 if (Op.getOpcode() == ISD::FREEZE) 4324 return true; 4325 4326 // TODO: Assume we don't know anything for now. 4327 EVT VT = Op.getValueType(); 4328 if (VT.isScalableVector()) 4329 return false; 4330 4331 APInt DemandedElts = VT.isVector() 4332 ? APInt::getAllOnes(VT.getVectorNumElements()) 4333 : APInt(1, 1); 4334 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4335 } 4336 4337 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4338 const APInt &DemandedElts, 4339 bool PoisonOnly, 4340 unsigned Depth) const { 4341 unsigned Opcode = Op.getOpcode(); 4342 4343 // Early out for FREEZE. 4344 if (Opcode == ISD::FREEZE) 4345 return true; 4346 4347 if (Depth >= MaxRecursionDepth) 4348 return false; // Limit search depth. 4349 4350 if (isIntOrFPConstant(Op)) 4351 return true; 4352 4353 switch (Opcode) { 4354 case ISD::UNDEF: 4355 return PoisonOnly; 4356 4357 case ISD::BUILD_VECTOR: 4358 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4359 // this shouldn't affect the result. 4360 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4361 if (!DemandedElts[i]) 4362 continue; 4363 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4364 Depth + 1)) 4365 return false; 4366 } 4367 return true; 4368 4369 // TODO: Search for noundef attributes from library functions. 4370 4371 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4372 4373 default: 4374 // Allow the target to implement this method for its nodes. 4375 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4376 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4377 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4378 Op, DemandedElts, *this, PoisonOnly, Depth); 4379 break; 4380 } 4381 4382 return false; 4383 } 4384 4385 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4386 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4387 !isa<ConstantSDNode>(Op.getOperand(1))) 4388 return false; 4389 4390 if (Op.getOpcode() == ISD::OR && 4391 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4392 return false; 4393 4394 return true; 4395 } 4396 4397 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4398 // If we're told that NaNs won't happen, assume they won't. 4399 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4400 return true; 4401 4402 if (Depth >= MaxRecursionDepth) 4403 return false; // Limit search depth. 4404 4405 // TODO: Handle vectors. 4406 // If the value is a constant, we can obviously see if it is a NaN or not. 4407 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4408 return !C->getValueAPF().isNaN() || 4409 (SNaN && !C->getValueAPF().isSignaling()); 4410 } 4411 4412 unsigned Opcode = Op.getOpcode(); 4413 switch (Opcode) { 4414 case ISD::FADD: 4415 case ISD::FSUB: 4416 case ISD::FMUL: 4417 case ISD::FDIV: 4418 case ISD::FREM: 4419 case ISD::FSIN: 4420 case ISD::FCOS: { 4421 if (SNaN) 4422 return true; 4423 // TODO: Need isKnownNeverInfinity 4424 return false; 4425 } 4426 case ISD::FCANONICALIZE: 4427 case ISD::FEXP: 4428 case ISD::FEXP2: 4429 case ISD::FTRUNC: 4430 case ISD::FFLOOR: 4431 case ISD::FCEIL: 4432 case ISD::FROUND: 4433 case ISD::FROUNDEVEN: 4434 case ISD::FRINT: 4435 case ISD::FNEARBYINT: { 4436 if (SNaN) 4437 return true; 4438 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4439 } 4440 case ISD::FABS: 4441 case ISD::FNEG: 4442 case ISD::FCOPYSIGN: { 4443 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4444 } 4445 case ISD::SELECT: 4446 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4447 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4448 case ISD::FP_EXTEND: 4449 case ISD::FP_ROUND: { 4450 if (SNaN) 4451 return true; 4452 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4453 } 4454 case ISD::SINT_TO_FP: 4455 case ISD::UINT_TO_FP: 4456 return true; 4457 case ISD::FMA: 4458 case ISD::FMAD: { 4459 if (SNaN) 4460 return true; 4461 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4462 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4463 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4464 } 4465 case ISD::FSQRT: // Need is known positive 4466 case ISD::FLOG: 4467 case ISD::FLOG2: 4468 case ISD::FLOG10: 4469 case ISD::FPOWI: 4470 case ISD::FPOW: { 4471 if (SNaN) 4472 return true; 4473 // TODO: Refine on operand 4474 return false; 4475 } 4476 case ISD::FMINNUM: 4477 case ISD::FMAXNUM: { 4478 // Only one needs to be known not-nan, since it will be returned if the 4479 // other ends up being one. 4480 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4481 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4482 } 4483 case ISD::FMINNUM_IEEE: 4484 case ISD::FMAXNUM_IEEE: { 4485 if (SNaN) 4486 return true; 4487 // This can return a NaN if either operand is an sNaN, or if both operands 4488 // are NaN. 4489 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4490 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4491 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4492 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4493 } 4494 case ISD::FMINIMUM: 4495 case ISD::FMAXIMUM: { 4496 // TODO: Does this quiet or return the origina NaN as-is? 4497 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4498 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4499 } 4500 case ISD::EXTRACT_VECTOR_ELT: { 4501 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4502 } 4503 default: 4504 if (Opcode >= ISD::BUILTIN_OP_END || 4505 Opcode == ISD::INTRINSIC_WO_CHAIN || 4506 Opcode == ISD::INTRINSIC_W_CHAIN || 4507 Opcode == ISD::INTRINSIC_VOID) { 4508 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4509 } 4510 4511 return false; 4512 } 4513 } 4514 4515 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4516 assert(Op.getValueType().isFloatingPoint() && 4517 "Floating point type expected"); 4518 4519 // If the value is a constant, we can obviously see if it is a zero or not. 4520 // TODO: Add BuildVector support. 4521 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4522 return !C->isZero(); 4523 return false; 4524 } 4525 4526 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4527 assert(!Op.getValueType().isFloatingPoint() && 4528 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4529 4530 // If the value is a constant, we can obviously see if it is a zero or not. 4531 if (ISD::matchUnaryPredicate(Op, 4532 [](ConstantSDNode *C) { return !C->isZero(); })) 4533 return true; 4534 4535 // TODO: Recognize more cases here. 4536 switch (Op.getOpcode()) { 4537 default: break; 4538 case ISD::OR: 4539 if (isKnownNeverZero(Op.getOperand(1)) || 4540 isKnownNeverZero(Op.getOperand(0))) 4541 return true; 4542 break; 4543 } 4544 4545 return false; 4546 } 4547 4548 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4549 // Check the obvious case. 4550 if (A == B) return true; 4551 4552 // For for negative and positive zero. 4553 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4554 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4555 if (CA->isZero() && CB->isZero()) return true; 4556 4557 // Otherwise they may not be equal. 4558 return false; 4559 } 4560 4561 // FIXME: unify with llvm::haveNoCommonBitsSet. 4562 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4563 assert(A.getValueType() == B.getValueType() && 4564 "Values must have the same type"); 4565 // Match masked merge pattern (X & ~M) op (Y & M) 4566 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4567 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4568 if (isBitwiseNot(NotM, true)) { 4569 SDValue NotOperand = NotM->getOperand(0); 4570 return NotOperand == And->getOperand(0) || 4571 NotOperand == And->getOperand(1); 4572 } 4573 return false; 4574 }; 4575 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4576 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4577 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4578 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4579 return true; 4580 } 4581 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4582 computeKnownBits(B)); 4583 } 4584 4585 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4586 SelectionDAG &DAG) { 4587 if (cast<ConstantSDNode>(Step)->isZero()) 4588 return DAG.getConstant(0, DL, VT); 4589 4590 return SDValue(); 4591 } 4592 4593 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4594 ArrayRef<SDValue> Ops, 4595 SelectionDAG &DAG) { 4596 int NumOps = Ops.size(); 4597 assert(NumOps != 0 && "Can't build an empty vector!"); 4598 assert(!VT.isScalableVector() && 4599 "BUILD_VECTOR cannot be used with scalable types"); 4600 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4601 "Incorrect element count in BUILD_VECTOR!"); 4602 4603 // BUILD_VECTOR of UNDEFs is UNDEF. 4604 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4605 return DAG.getUNDEF(VT); 4606 4607 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4608 SDValue IdentitySrc; 4609 bool IsIdentity = true; 4610 for (int i = 0; i != NumOps; ++i) { 4611 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4612 Ops[i].getOperand(0).getValueType() != VT || 4613 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4614 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4615 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4616 IsIdentity = false; 4617 break; 4618 } 4619 IdentitySrc = Ops[i].getOperand(0); 4620 } 4621 if (IsIdentity) 4622 return IdentitySrc; 4623 4624 return SDValue(); 4625 } 4626 4627 /// Try to simplify vector concatenation to an input value, undef, or build 4628 /// vector. 4629 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4630 ArrayRef<SDValue> Ops, 4631 SelectionDAG &DAG) { 4632 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4633 assert(llvm::all_of(Ops, 4634 [Ops](SDValue Op) { 4635 return Ops[0].getValueType() == Op.getValueType(); 4636 }) && 4637 "Concatenation of vectors with inconsistent value types!"); 4638 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4639 VT.getVectorElementCount() && 4640 "Incorrect element count in vector concatenation!"); 4641 4642 if (Ops.size() == 1) 4643 return Ops[0]; 4644 4645 // Concat of UNDEFs is UNDEF. 4646 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4647 return DAG.getUNDEF(VT); 4648 4649 // Scan the operands and look for extract operations from a single source 4650 // that correspond to insertion at the same location via this concatenation: 4651 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4652 SDValue IdentitySrc; 4653 bool IsIdentity = true; 4654 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4655 SDValue Op = Ops[i]; 4656 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4657 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4658 Op.getOperand(0).getValueType() != VT || 4659 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4660 Op.getConstantOperandVal(1) != IdentityIndex) { 4661 IsIdentity = false; 4662 break; 4663 } 4664 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4665 "Unexpected identity source vector for concat of extracts"); 4666 IdentitySrc = Op.getOperand(0); 4667 } 4668 if (IsIdentity) { 4669 assert(IdentitySrc && "Failed to set source vector of extracts"); 4670 return IdentitySrc; 4671 } 4672 4673 // The code below this point is only designed to work for fixed width 4674 // vectors, so we bail out for now. 4675 if (VT.isScalableVector()) 4676 return SDValue(); 4677 4678 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4679 // simplified to one big BUILD_VECTOR. 4680 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4681 EVT SVT = VT.getScalarType(); 4682 SmallVector<SDValue, 16> Elts; 4683 for (SDValue Op : Ops) { 4684 EVT OpVT = Op.getValueType(); 4685 if (Op.isUndef()) 4686 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4687 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4688 Elts.append(Op->op_begin(), Op->op_end()); 4689 else 4690 return SDValue(); 4691 } 4692 4693 // BUILD_VECTOR requires all inputs to be of the same type, find the 4694 // maximum type and extend them all. 4695 for (SDValue Op : Elts) 4696 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4697 4698 if (SVT.bitsGT(VT.getScalarType())) { 4699 for (SDValue &Op : Elts) { 4700 if (Op.isUndef()) 4701 Op = DAG.getUNDEF(SVT); 4702 else 4703 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4704 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4705 : DAG.getSExtOrTrunc(Op, DL, SVT); 4706 } 4707 } 4708 4709 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4710 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4711 return V; 4712 } 4713 4714 /// Gets or creates the specified node. 4715 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4716 FoldingSetNodeID ID; 4717 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4718 void *IP = nullptr; 4719 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4720 return SDValue(E, 0); 4721 4722 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4723 getVTList(VT)); 4724 CSEMap.InsertNode(N, IP); 4725 4726 InsertNode(N); 4727 SDValue V = SDValue(N, 0); 4728 NewSDValueDbgMsg(V, "Creating new node: ", this); 4729 return V; 4730 } 4731 4732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4733 SDValue Operand) { 4734 SDNodeFlags Flags; 4735 if (Inserter) 4736 Flags = Inserter->getFlags(); 4737 return getNode(Opcode, DL, VT, Operand, Flags); 4738 } 4739 4740 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4741 SDValue Operand, const SDNodeFlags Flags) { 4742 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4743 "Operand is DELETED_NODE!"); 4744 // Constant fold unary operations with an integer constant operand. Even 4745 // opaque constant will be folded, because the folding of unary operations 4746 // doesn't create new constants with different values. Nevertheless, the 4747 // opaque flag is preserved during folding to prevent future folding with 4748 // other constants. 4749 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4750 const APInt &Val = C->getAPIntValue(); 4751 switch (Opcode) { 4752 default: break; 4753 case ISD::SIGN_EXTEND: 4754 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4755 C->isTargetOpcode(), C->isOpaque()); 4756 case ISD::TRUNCATE: 4757 if (C->isOpaque()) 4758 break; 4759 LLVM_FALLTHROUGH; 4760 case ISD::ZERO_EXTEND: 4761 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4762 C->isTargetOpcode(), C->isOpaque()); 4763 case ISD::ANY_EXTEND: 4764 // Some targets like RISCV prefer to sign extend some types. 4765 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4766 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4767 C->isTargetOpcode(), C->isOpaque()); 4768 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4769 C->isTargetOpcode(), C->isOpaque()); 4770 case ISD::UINT_TO_FP: 4771 case ISD::SINT_TO_FP: { 4772 APFloat apf(EVTToAPFloatSemantics(VT), 4773 APInt::getZero(VT.getSizeInBits())); 4774 (void)apf.convertFromAPInt(Val, 4775 Opcode==ISD::SINT_TO_FP, 4776 APFloat::rmNearestTiesToEven); 4777 return getConstantFP(apf, DL, VT); 4778 } 4779 case ISD::BITCAST: 4780 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4781 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4782 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4783 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4784 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4785 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4786 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4787 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4788 break; 4789 case ISD::ABS: 4790 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4791 C->isOpaque()); 4792 case ISD::BITREVERSE: 4793 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4794 C->isOpaque()); 4795 case ISD::BSWAP: 4796 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4797 C->isOpaque()); 4798 case ISD::CTPOP: 4799 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4800 C->isOpaque()); 4801 case ISD::CTLZ: 4802 case ISD::CTLZ_ZERO_UNDEF: 4803 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4804 C->isOpaque()); 4805 case ISD::CTTZ: 4806 case ISD::CTTZ_ZERO_UNDEF: 4807 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4808 C->isOpaque()); 4809 case ISD::FP16_TO_FP: { 4810 bool Ignored; 4811 APFloat FPV(APFloat::IEEEhalf(), 4812 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4813 4814 // This can return overflow, underflow, or inexact; we don't care. 4815 // FIXME need to be more flexible about rounding mode. 4816 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4817 APFloat::rmNearestTiesToEven, &Ignored); 4818 return getConstantFP(FPV, DL, VT); 4819 } 4820 case ISD::STEP_VECTOR: { 4821 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4822 return V; 4823 break; 4824 } 4825 } 4826 } 4827 4828 // Constant fold unary operations with a floating point constant operand. 4829 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4830 APFloat V = C->getValueAPF(); // make copy 4831 switch (Opcode) { 4832 case ISD::FNEG: 4833 V.changeSign(); 4834 return getConstantFP(V, DL, VT); 4835 case ISD::FABS: 4836 V.clearSign(); 4837 return getConstantFP(V, DL, VT); 4838 case ISD::FCEIL: { 4839 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4840 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4841 return getConstantFP(V, DL, VT); 4842 break; 4843 } 4844 case ISD::FTRUNC: { 4845 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4846 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4847 return getConstantFP(V, DL, VT); 4848 break; 4849 } 4850 case ISD::FFLOOR: { 4851 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4852 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4853 return getConstantFP(V, DL, VT); 4854 break; 4855 } 4856 case ISD::FP_EXTEND: { 4857 bool ignored; 4858 // This can return overflow, underflow, or inexact; we don't care. 4859 // FIXME need to be more flexible about rounding mode. 4860 (void)V.convert(EVTToAPFloatSemantics(VT), 4861 APFloat::rmNearestTiesToEven, &ignored); 4862 return getConstantFP(V, DL, VT); 4863 } 4864 case ISD::FP_TO_SINT: 4865 case ISD::FP_TO_UINT: { 4866 bool ignored; 4867 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4868 // FIXME need to be more flexible about rounding mode. 4869 APFloat::opStatus s = 4870 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4871 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4872 break; 4873 return getConstant(IntVal, DL, VT); 4874 } 4875 case ISD::BITCAST: 4876 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4877 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4878 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4879 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4880 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4881 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4882 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4883 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4884 break; 4885 case ISD::FP_TO_FP16: { 4886 bool Ignored; 4887 // This can return overflow, underflow, or inexact; we don't care. 4888 // FIXME need to be more flexible about rounding mode. 4889 (void)V.convert(APFloat::IEEEhalf(), 4890 APFloat::rmNearestTiesToEven, &Ignored); 4891 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4892 } 4893 } 4894 } 4895 4896 // Constant fold unary operations with a vector integer or float operand. 4897 switch (Opcode) { 4898 default: 4899 // FIXME: Entirely reasonable to perform folding of other unary 4900 // operations here as the need arises. 4901 break; 4902 case ISD::FNEG: 4903 case ISD::FABS: 4904 case ISD::FCEIL: 4905 case ISD::FTRUNC: 4906 case ISD::FFLOOR: 4907 case ISD::FP_EXTEND: 4908 case ISD::FP_TO_SINT: 4909 case ISD::FP_TO_UINT: 4910 case ISD::TRUNCATE: 4911 case ISD::ANY_EXTEND: 4912 case ISD::ZERO_EXTEND: 4913 case ISD::SIGN_EXTEND: 4914 case ISD::UINT_TO_FP: 4915 case ISD::SINT_TO_FP: 4916 case ISD::ABS: 4917 case ISD::BITREVERSE: 4918 case ISD::BSWAP: 4919 case ISD::CTLZ: 4920 case ISD::CTLZ_ZERO_UNDEF: 4921 case ISD::CTTZ: 4922 case ISD::CTTZ_ZERO_UNDEF: 4923 case ISD::CTPOP: { 4924 SDValue Ops = {Operand}; 4925 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4926 return Fold; 4927 } 4928 } 4929 4930 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4931 switch (Opcode) { 4932 case ISD::STEP_VECTOR: 4933 assert(VT.isScalableVector() && 4934 "STEP_VECTOR can only be used with scalable types"); 4935 assert(OpOpcode == ISD::TargetConstant && 4936 VT.getVectorElementType() == Operand.getValueType() && 4937 "Unexpected step operand"); 4938 break; 4939 case ISD::FREEZE: 4940 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4941 break; 4942 case ISD::TokenFactor: 4943 case ISD::MERGE_VALUES: 4944 case ISD::CONCAT_VECTORS: 4945 return Operand; // Factor, merge or concat of one node? No need. 4946 case ISD::BUILD_VECTOR: { 4947 // Attempt to simplify BUILD_VECTOR. 4948 SDValue Ops[] = {Operand}; 4949 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4950 return V; 4951 break; 4952 } 4953 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4954 case ISD::FP_EXTEND: 4955 assert(VT.isFloatingPoint() && 4956 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4957 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4958 assert((!VT.isVector() || 4959 VT.getVectorElementCount() == 4960 Operand.getValueType().getVectorElementCount()) && 4961 "Vector element count mismatch!"); 4962 assert(Operand.getValueType().bitsLT(VT) && 4963 "Invalid fpext node, dst < src!"); 4964 if (Operand.isUndef()) 4965 return getUNDEF(VT); 4966 break; 4967 case ISD::FP_TO_SINT: 4968 case ISD::FP_TO_UINT: 4969 if (Operand.isUndef()) 4970 return getUNDEF(VT); 4971 break; 4972 case ISD::SINT_TO_FP: 4973 case ISD::UINT_TO_FP: 4974 // [us]itofp(undef) = 0, because the result value is bounded. 4975 if (Operand.isUndef()) 4976 return getConstantFP(0.0, DL, VT); 4977 break; 4978 case ISD::SIGN_EXTEND: 4979 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4980 "Invalid SIGN_EXTEND!"); 4981 assert(VT.isVector() == Operand.getValueType().isVector() && 4982 "SIGN_EXTEND result type type should be vector iff the operand " 4983 "type is vector!"); 4984 if (Operand.getValueType() == VT) return Operand; // noop extension 4985 assert((!VT.isVector() || 4986 VT.getVectorElementCount() == 4987 Operand.getValueType().getVectorElementCount()) && 4988 "Vector element count mismatch!"); 4989 assert(Operand.getValueType().bitsLT(VT) && 4990 "Invalid sext node, dst < src!"); 4991 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4992 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4993 if (OpOpcode == ISD::UNDEF) 4994 // sext(undef) = 0, because the top bits will all be the same. 4995 return getConstant(0, DL, VT); 4996 break; 4997 case ISD::ZERO_EXTEND: 4998 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4999 "Invalid ZERO_EXTEND!"); 5000 assert(VT.isVector() == Operand.getValueType().isVector() && 5001 "ZERO_EXTEND result type type should be vector iff the operand " 5002 "type is vector!"); 5003 if (Operand.getValueType() == VT) return Operand; // noop extension 5004 assert((!VT.isVector() || 5005 VT.getVectorElementCount() == 5006 Operand.getValueType().getVectorElementCount()) && 5007 "Vector element count mismatch!"); 5008 assert(Operand.getValueType().bitsLT(VT) && 5009 "Invalid zext node, dst < src!"); 5010 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5011 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5012 if (OpOpcode == ISD::UNDEF) 5013 // zext(undef) = 0, because the top bits will be zero. 5014 return getConstant(0, DL, VT); 5015 break; 5016 case ISD::ANY_EXTEND: 5017 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5018 "Invalid ANY_EXTEND!"); 5019 assert(VT.isVector() == Operand.getValueType().isVector() && 5020 "ANY_EXTEND result type type should be vector iff the operand " 5021 "type is vector!"); 5022 if (Operand.getValueType() == VT) return Operand; // noop extension 5023 assert((!VT.isVector() || 5024 VT.getVectorElementCount() == 5025 Operand.getValueType().getVectorElementCount()) && 5026 "Vector element count mismatch!"); 5027 assert(Operand.getValueType().bitsLT(VT) && 5028 "Invalid anyext node, dst < src!"); 5029 5030 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5031 OpOpcode == ISD::ANY_EXTEND) 5032 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5033 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5034 if (OpOpcode == ISD::UNDEF) 5035 return getUNDEF(VT); 5036 5037 // (ext (trunc x)) -> x 5038 if (OpOpcode == ISD::TRUNCATE) { 5039 SDValue OpOp = Operand.getOperand(0); 5040 if (OpOp.getValueType() == VT) { 5041 transferDbgValues(Operand, OpOp); 5042 return OpOp; 5043 } 5044 } 5045 break; 5046 case ISD::TRUNCATE: 5047 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5048 "Invalid TRUNCATE!"); 5049 assert(VT.isVector() == Operand.getValueType().isVector() && 5050 "TRUNCATE result type type should be vector iff the operand " 5051 "type is vector!"); 5052 if (Operand.getValueType() == VT) return Operand; // noop truncate 5053 assert((!VT.isVector() || 5054 VT.getVectorElementCount() == 5055 Operand.getValueType().getVectorElementCount()) && 5056 "Vector element count mismatch!"); 5057 assert(Operand.getValueType().bitsGT(VT) && 5058 "Invalid truncate node, src < dst!"); 5059 if (OpOpcode == ISD::TRUNCATE) 5060 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5061 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5062 OpOpcode == ISD::ANY_EXTEND) { 5063 // If the source is smaller than the dest, we still need an extend. 5064 if (Operand.getOperand(0).getValueType().getScalarType() 5065 .bitsLT(VT.getScalarType())) 5066 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5067 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5068 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5069 return Operand.getOperand(0); 5070 } 5071 if (OpOpcode == ISD::UNDEF) 5072 return getUNDEF(VT); 5073 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5074 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5075 break; 5076 case ISD::ANY_EXTEND_VECTOR_INREG: 5077 case ISD::ZERO_EXTEND_VECTOR_INREG: 5078 case ISD::SIGN_EXTEND_VECTOR_INREG: 5079 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5080 assert(Operand.getValueType().bitsLE(VT) && 5081 "The input must be the same size or smaller than the result."); 5082 assert(VT.getVectorMinNumElements() < 5083 Operand.getValueType().getVectorMinNumElements() && 5084 "The destination vector type must have fewer lanes than the input."); 5085 break; 5086 case ISD::ABS: 5087 assert(VT.isInteger() && VT == Operand.getValueType() && 5088 "Invalid ABS!"); 5089 if (OpOpcode == ISD::UNDEF) 5090 return getUNDEF(VT); 5091 break; 5092 case ISD::BSWAP: 5093 assert(VT.isInteger() && VT == Operand.getValueType() && 5094 "Invalid BSWAP!"); 5095 assert((VT.getScalarSizeInBits() % 16 == 0) && 5096 "BSWAP types must be a multiple of 16 bits!"); 5097 if (OpOpcode == ISD::UNDEF) 5098 return getUNDEF(VT); 5099 break; 5100 case ISD::BITREVERSE: 5101 assert(VT.isInteger() && VT == Operand.getValueType() && 5102 "Invalid BITREVERSE!"); 5103 if (OpOpcode == ISD::UNDEF) 5104 return getUNDEF(VT); 5105 break; 5106 case ISD::BITCAST: 5107 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5108 "Cannot BITCAST between types of different sizes!"); 5109 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5110 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5111 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5112 if (OpOpcode == ISD::UNDEF) 5113 return getUNDEF(VT); 5114 break; 5115 case ISD::SCALAR_TO_VECTOR: 5116 assert(VT.isVector() && !Operand.getValueType().isVector() && 5117 (VT.getVectorElementType() == Operand.getValueType() || 5118 (VT.getVectorElementType().isInteger() && 5119 Operand.getValueType().isInteger() && 5120 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5121 "Illegal SCALAR_TO_VECTOR node!"); 5122 if (OpOpcode == ISD::UNDEF) 5123 return getUNDEF(VT); 5124 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5125 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5126 isa<ConstantSDNode>(Operand.getOperand(1)) && 5127 Operand.getConstantOperandVal(1) == 0 && 5128 Operand.getOperand(0).getValueType() == VT) 5129 return Operand.getOperand(0); 5130 break; 5131 case ISD::FNEG: 5132 // Negation of an unknown bag of bits is still completely undefined. 5133 if (OpOpcode == ISD::UNDEF) 5134 return getUNDEF(VT); 5135 5136 if (OpOpcode == ISD::FNEG) // --X -> X 5137 return Operand.getOperand(0); 5138 break; 5139 case ISD::FABS: 5140 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5141 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5142 break; 5143 case ISD::VSCALE: 5144 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5145 break; 5146 case ISD::CTPOP: 5147 if (Operand.getValueType().getScalarType() == MVT::i1) 5148 return Operand; 5149 break; 5150 case ISD::CTLZ: 5151 case ISD::CTTZ: 5152 if (Operand.getValueType().getScalarType() == MVT::i1) 5153 return getNOT(DL, Operand, Operand.getValueType()); 5154 break; 5155 case ISD::VECREDUCE_SMIN: 5156 case ISD::VECREDUCE_UMAX: 5157 if (Operand.getValueType().getScalarType() == MVT::i1) 5158 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5159 break; 5160 case ISD::VECREDUCE_SMAX: 5161 case ISD::VECREDUCE_UMIN: 5162 if (Operand.getValueType().getScalarType() == MVT::i1) 5163 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5164 break; 5165 } 5166 5167 SDNode *N; 5168 SDVTList VTs = getVTList(VT); 5169 SDValue Ops[] = {Operand}; 5170 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5171 FoldingSetNodeID ID; 5172 AddNodeIDNode(ID, Opcode, VTs, Ops); 5173 void *IP = nullptr; 5174 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5175 E->intersectFlagsWith(Flags); 5176 return SDValue(E, 0); 5177 } 5178 5179 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5180 N->setFlags(Flags); 5181 createOperands(N, Ops); 5182 CSEMap.InsertNode(N, IP); 5183 } else { 5184 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5185 createOperands(N, Ops); 5186 } 5187 5188 InsertNode(N); 5189 SDValue V = SDValue(N, 0); 5190 NewSDValueDbgMsg(V, "Creating new node: ", this); 5191 return V; 5192 } 5193 5194 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5195 const APInt &C2) { 5196 switch (Opcode) { 5197 case ISD::ADD: return C1 + C2; 5198 case ISD::SUB: return C1 - C2; 5199 case ISD::MUL: return C1 * C2; 5200 case ISD::AND: return C1 & C2; 5201 case ISD::OR: return C1 | C2; 5202 case ISD::XOR: return C1 ^ C2; 5203 case ISD::SHL: return C1 << C2; 5204 case ISD::SRL: return C1.lshr(C2); 5205 case ISD::SRA: return C1.ashr(C2); 5206 case ISD::ROTL: return C1.rotl(C2); 5207 case ISD::ROTR: return C1.rotr(C2); 5208 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5209 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5210 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5211 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5212 case ISD::SADDSAT: return C1.sadd_sat(C2); 5213 case ISD::UADDSAT: return C1.uadd_sat(C2); 5214 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5215 case ISD::USUBSAT: return C1.usub_sat(C2); 5216 case ISD::UDIV: 5217 if (!C2.getBoolValue()) 5218 break; 5219 return C1.udiv(C2); 5220 case ISD::UREM: 5221 if (!C2.getBoolValue()) 5222 break; 5223 return C1.urem(C2); 5224 case ISD::SDIV: 5225 if (!C2.getBoolValue()) 5226 break; 5227 return C1.sdiv(C2); 5228 case ISD::SREM: 5229 if (!C2.getBoolValue()) 5230 break; 5231 return C1.srem(C2); 5232 case ISD::MULHS: { 5233 unsigned FullWidth = C1.getBitWidth() * 2; 5234 APInt C1Ext = C1.sext(FullWidth); 5235 APInt C2Ext = C2.sext(FullWidth); 5236 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5237 } 5238 case ISD::MULHU: { 5239 unsigned FullWidth = C1.getBitWidth() * 2; 5240 APInt C1Ext = C1.zext(FullWidth); 5241 APInt C2Ext = C2.zext(FullWidth); 5242 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5243 } 5244 } 5245 return llvm::None; 5246 } 5247 5248 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5249 const GlobalAddressSDNode *GA, 5250 const SDNode *N2) { 5251 if (GA->getOpcode() != ISD::GlobalAddress) 5252 return SDValue(); 5253 if (!TLI->isOffsetFoldingLegal(GA)) 5254 return SDValue(); 5255 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5256 if (!C2) 5257 return SDValue(); 5258 int64_t Offset = C2->getSExtValue(); 5259 switch (Opcode) { 5260 case ISD::ADD: break; 5261 case ISD::SUB: Offset = -uint64_t(Offset); break; 5262 default: return SDValue(); 5263 } 5264 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5265 GA->getOffset() + uint64_t(Offset)); 5266 } 5267 5268 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5269 switch (Opcode) { 5270 case ISD::SDIV: 5271 case ISD::UDIV: 5272 case ISD::SREM: 5273 case ISD::UREM: { 5274 // If a divisor is zero/undef or any element of a divisor vector is 5275 // zero/undef, the whole op is undef. 5276 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5277 SDValue Divisor = Ops[1]; 5278 if (Divisor.isUndef() || isNullConstant(Divisor)) 5279 return true; 5280 5281 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5282 llvm::any_of(Divisor->op_values(), 5283 [](SDValue V) { return V.isUndef() || 5284 isNullConstant(V); }); 5285 // TODO: Handle signed overflow. 5286 } 5287 // TODO: Handle oversized shifts. 5288 default: 5289 return false; 5290 } 5291 } 5292 5293 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5294 EVT VT, ArrayRef<SDValue> Ops) { 5295 // If the opcode is a target-specific ISD node, there's nothing we can 5296 // do here and the operand rules may not line up with the below, so 5297 // bail early. 5298 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5299 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5300 // foldCONCAT_VECTORS in getNode before this is called. 5301 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5302 return SDValue(); 5303 5304 unsigned NumOps = Ops.size(); 5305 if (NumOps == 0) 5306 return SDValue(); 5307 5308 if (isUndef(Opcode, Ops)) 5309 return getUNDEF(VT); 5310 5311 // Handle binops special cases. 5312 if (NumOps == 2) { 5313 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5314 return CFP; 5315 5316 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5317 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5318 if (C1->isOpaque() || C2->isOpaque()) 5319 return SDValue(); 5320 5321 Optional<APInt> FoldAttempt = 5322 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5323 if (!FoldAttempt) 5324 return SDValue(); 5325 5326 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5327 assert((!Folded || !VT.isVector()) && 5328 "Can't fold vectors ops with scalar operands"); 5329 return Folded; 5330 } 5331 } 5332 5333 // fold (add Sym, c) -> Sym+c 5334 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5335 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5336 if (TLI->isCommutativeBinOp(Opcode)) 5337 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5338 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5339 } 5340 5341 // This is for vector folding only from here on. 5342 if (!VT.isVector()) 5343 return SDValue(); 5344 5345 ElementCount NumElts = VT.getVectorElementCount(); 5346 5347 // See if we can fold through bitcasted integer ops. 5348 // TODO: Can we handle undef elements? 5349 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5350 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5351 Ops[0].getOpcode() == ISD::BITCAST && 5352 Ops[1].getOpcode() == ISD::BITCAST) { 5353 SDValue N1 = peekThroughBitcasts(Ops[0]); 5354 SDValue N2 = peekThroughBitcasts(Ops[1]); 5355 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5356 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5357 EVT BVVT = N1.getValueType(); 5358 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5359 bool IsLE = getDataLayout().isLittleEndian(); 5360 unsigned EltBits = VT.getScalarSizeInBits(); 5361 SmallVector<APInt> RawBits1, RawBits2; 5362 BitVector UndefElts1, UndefElts2; 5363 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5364 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5365 UndefElts1.none() && UndefElts2.none()) { 5366 SmallVector<APInt> RawBits; 5367 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5368 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5369 if (!Fold) 5370 break; 5371 RawBits.push_back(Fold.getValue()); 5372 } 5373 if (RawBits.size() == NumElts.getFixedValue()) { 5374 // We have constant folded, but we need to cast this again back to 5375 // the original (possibly legalized) type. 5376 SmallVector<APInt> DstBits; 5377 BitVector DstUndefs; 5378 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5379 DstBits, RawBits, DstUndefs, 5380 BitVector(RawBits.size(), false)); 5381 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5382 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5383 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5384 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5385 if (DstUndefs[I]) 5386 continue; 5387 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5388 } 5389 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5390 } 5391 } 5392 } 5393 } 5394 5395 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5396 return !Op.getValueType().isVector() || 5397 Op.getValueType().getVectorElementCount() == NumElts; 5398 }; 5399 5400 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5401 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5402 Op.getOpcode() == ISD::BUILD_VECTOR || 5403 Op.getOpcode() == ISD::SPLAT_VECTOR; 5404 }; 5405 5406 // All operands must be vector types with the same number of elements as 5407 // the result type and must be either UNDEF or a build/splat vector 5408 // or UNDEF scalars. 5409 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5410 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5411 return SDValue(); 5412 5413 // If we are comparing vectors, then the result needs to be a i1 boolean 5414 // that is then sign-extended back to the legal result type. 5415 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5416 5417 // Find legal integer scalar type for constant promotion and 5418 // ensure that its scalar size is at least as large as source. 5419 EVT LegalSVT = VT.getScalarType(); 5420 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5421 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5422 if (LegalSVT.bitsLT(VT.getScalarType())) 5423 return SDValue(); 5424 } 5425 5426 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5427 // only have one operand to check. For fixed-length vector types we may have 5428 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5429 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5430 5431 // Constant fold each scalar lane separately. 5432 SmallVector<SDValue, 4> ScalarResults; 5433 for (unsigned I = 0; I != NumVectorElts; I++) { 5434 SmallVector<SDValue, 4> ScalarOps; 5435 for (SDValue Op : Ops) { 5436 EVT InSVT = Op.getValueType().getScalarType(); 5437 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5438 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5439 if (Op.isUndef()) 5440 ScalarOps.push_back(getUNDEF(InSVT)); 5441 else 5442 ScalarOps.push_back(Op); 5443 continue; 5444 } 5445 5446 SDValue ScalarOp = 5447 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5448 EVT ScalarVT = ScalarOp.getValueType(); 5449 5450 // Build vector (integer) scalar operands may need implicit 5451 // truncation - do this before constant folding. 5452 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5453 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5454 5455 ScalarOps.push_back(ScalarOp); 5456 } 5457 5458 // Constant fold the scalar operands. 5459 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5460 5461 // Legalize the (integer) scalar constant if necessary. 5462 if (LegalSVT != SVT) 5463 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5464 5465 // Scalar folding only succeeded if the result is a constant or UNDEF. 5466 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5467 ScalarResult.getOpcode() != ISD::ConstantFP) 5468 return SDValue(); 5469 ScalarResults.push_back(ScalarResult); 5470 } 5471 5472 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5473 : getBuildVector(VT, DL, ScalarResults); 5474 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5475 return V; 5476 } 5477 5478 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5479 EVT VT, SDValue N1, SDValue N2) { 5480 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5481 // should. That will require dealing with a potentially non-default 5482 // rounding mode, checking the "opStatus" return value from the APFloat 5483 // math calculations, and possibly other variations. 5484 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5485 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5486 if (N1CFP && N2CFP) { 5487 APFloat C1 = N1CFP->getValueAPF(); // make copy 5488 const APFloat &C2 = N2CFP->getValueAPF(); 5489 switch (Opcode) { 5490 case ISD::FADD: 5491 C1.add(C2, APFloat::rmNearestTiesToEven); 5492 return getConstantFP(C1, DL, VT); 5493 case ISD::FSUB: 5494 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5495 return getConstantFP(C1, DL, VT); 5496 case ISD::FMUL: 5497 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5498 return getConstantFP(C1, DL, VT); 5499 case ISD::FDIV: 5500 C1.divide(C2, APFloat::rmNearestTiesToEven); 5501 return getConstantFP(C1, DL, VT); 5502 case ISD::FREM: 5503 C1.mod(C2); 5504 return getConstantFP(C1, DL, VT); 5505 case ISD::FCOPYSIGN: 5506 C1.copySign(C2); 5507 return getConstantFP(C1, DL, VT); 5508 case ISD::FMINNUM: 5509 return getConstantFP(minnum(C1, C2), DL, VT); 5510 case ISD::FMAXNUM: 5511 return getConstantFP(maxnum(C1, C2), DL, VT); 5512 case ISD::FMINIMUM: 5513 return getConstantFP(minimum(C1, C2), DL, VT); 5514 case ISD::FMAXIMUM: 5515 return getConstantFP(maximum(C1, C2), DL, VT); 5516 default: break; 5517 } 5518 } 5519 if (N1CFP && Opcode == ISD::FP_ROUND) { 5520 APFloat C1 = N1CFP->getValueAPF(); // make copy 5521 bool Unused; 5522 // This can return overflow, underflow, or inexact; we don't care. 5523 // FIXME need to be more flexible about rounding mode. 5524 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5525 &Unused); 5526 return getConstantFP(C1, DL, VT); 5527 } 5528 5529 switch (Opcode) { 5530 case ISD::FSUB: 5531 // -0.0 - undef --> undef (consistent with "fneg undef") 5532 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5533 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5534 return getUNDEF(VT); 5535 LLVM_FALLTHROUGH; 5536 5537 case ISD::FADD: 5538 case ISD::FMUL: 5539 case ISD::FDIV: 5540 case ISD::FREM: 5541 // If both operands are undef, the result is undef. If 1 operand is undef, 5542 // the result is NaN. This should match the behavior of the IR optimizer. 5543 if (N1.isUndef() && N2.isUndef()) 5544 return getUNDEF(VT); 5545 if (N1.isUndef() || N2.isUndef()) 5546 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5547 } 5548 return SDValue(); 5549 } 5550 5551 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5552 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5553 5554 // There's no need to assert on a byte-aligned pointer. All pointers are at 5555 // least byte aligned. 5556 if (A == Align(1)) 5557 return Val; 5558 5559 FoldingSetNodeID ID; 5560 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5561 ID.AddInteger(A.value()); 5562 5563 void *IP = nullptr; 5564 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5565 return SDValue(E, 0); 5566 5567 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5568 Val.getValueType(), A); 5569 createOperands(N, {Val}); 5570 5571 CSEMap.InsertNode(N, IP); 5572 InsertNode(N); 5573 5574 SDValue V(N, 0); 5575 NewSDValueDbgMsg(V, "Creating new node: ", this); 5576 return V; 5577 } 5578 5579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5580 SDValue N1, SDValue N2) { 5581 SDNodeFlags Flags; 5582 if (Inserter) 5583 Flags = Inserter->getFlags(); 5584 return getNode(Opcode, DL, VT, N1, N2, Flags); 5585 } 5586 5587 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5588 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5589 assert(N1.getOpcode() != ISD::DELETED_NODE && 5590 N2.getOpcode() != ISD::DELETED_NODE && 5591 "Operand is DELETED_NODE!"); 5592 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5593 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5594 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5595 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5596 5597 // Canonicalize constant to RHS if commutative. 5598 if (TLI->isCommutativeBinOp(Opcode)) { 5599 if (N1C && !N2C) { 5600 std::swap(N1C, N2C); 5601 std::swap(N1, N2); 5602 } else if (N1CFP && !N2CFP) { 5603 std::swap(N1CFP, N2CFP); 5604 std::swap(N1, N2); 5605 } 5606 } 5607 5608 switch (Opcode) { 5609 default: break; 5610 case ISD::TokenFactor: 5611 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5612 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5613 // Fold trivial token factors. 5614 if (N1.getOpcode() == ISD::EntryToken) return N2; 5615 if (N2.getOpcode() == ISD::EntryToken) return N1; 5616 if (N1 == N2) return N1; 5617 break; 5618 case ISD::BUILD_VECTOR: { 5619 // Attempt to simplify BUILD_VECTOR. 5620 SDValue Ops[] = {N1, N2}; 5621 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5622 return V; 5623 break; 5624 } 5625 case ISD::CONCAT_VECTORS: { 5626 SDValue Ops[] = {N1, N2}; 5627 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5628 return V; 5629 break; 5630 } 5631 case ISD::AND: 5632 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5633 assert(N1.getValueType() == N2.getValueType() && 5634 N1.getValueType() == VT && "Binary operator types must match!"); 5635 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5636 // worth handling here. 5637 if (N2C && N2C->isZero()) 5638 return N2; 5639 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5640 return N1; 5641 break; 5642 case ISD::OR: 5643 case ISD::XOR: 5644 case ISD::ADD: 5645 case ISD::SUB: 5646 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5647 assert(N1.getValueType() == N2.getValueType() && 5648 N1.getValueType() == VT && "Binary operator types must match!"); 5649 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5650 // it's worth handling here. 5651 if (N2C && N2C->isZero()) 5652 return N1; 5653 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5654 VT.getVectorElementType() == MVT::i1) 5655 return getNode(ISD::XOR, DL, VT, N1, N2); 5656 break; 5657 case ISD::MUL: 5658 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5659 assert(N1.getValueType() == N2.getValueType() && 5660 N1.getValueType() == VT && "Binary operator types must match!"); 5661 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5662 return getNode(ISD::AND, DL, VT, N1, N2); 5663 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5664 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5665 const APInt &N2CImm = N2C->getAPIntValue(); 5666 return getVScale(DL, VT, MulImm * N2CImm); 5667 } 5668 break; 5669 case ISD::UDIV: 5670 case ISD::UREM: 5671 case ISD::MULHU: 5672 case ISD::MULHS: 5673 case ISD::SDIV: 5674 case ISD::SREM: 5675 case ISD::SADDSAT: 5676 case ISD::SSUBSAT: 5677 case ISD::UADDSAT: 5678 case ISD::USUBSAT: 5679 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5680 assert(N1.getValueType() == N2.getValueType() && 5681 N1.getValueType() == VT && "Binary operator types must match!"); 5682 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5683 // fold (add_sat x, y) -> (or x, y) for bool types. 5684 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5685 return getNode(ISD::OR, DL, VT, N1, N2); 5686 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5687 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5688 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5689 } 5690 break; 5691 case ISD::SMIN: 5692 case ISD::UMAX: 5693 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5694 assert(N1.getValueType() == N2.getValueType() && 5695 N1.getValueType() == VT && "Binary operator types must match!"); 5696 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5697 return getNode(ISD::OR, DL, VT, N1, N2); 5698 break; 5699 case ISD::SMAX: 5700 case ISD::UMIN: 5701 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5702 assert(N1.getValueType() == N2.getValueType() && 5703 N1.getValueType() == VT && "Binary operator types must match!"); 5704 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5705 return getNode(ISD::AND, DL, VT, N1, N2); 5706 break; 5707 case ISD::FADD: 5708 case ISD::FSUB: 5709 case ISD::FMUL: 5710 case ISD::FDIV: 5711 case ISD::FREM: 5712 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5713 assert(N1.getValueType() == N2.getValueType() && 5714 N1.getValueType() == VT && "Binary operator types must match!"); 5715 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5716 return V; 5717 break; 5718 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5719 assert(N1.getValueType() == VT && 5720 N1.getValueType().isFloatingPoint() && 5721 N2.getValueType().isFloatingPoint() && 5722 "Invalid FCOPYSIGN!"); 5723 break; 5724 case ISD::SHL: 5725 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5726 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5727 const APInt &ShiftImm = N2C->getAPIntValue(); 5728 return getVScale(DL, VT, MulImm << ShiftImm); 5729 } 5730 LLVM_FALLTHROUGH; 5731 case ISD::SRA: 5732 case ISD::SRL: 5733 if (SDValue V = simplifyShift(N1, N2)) 5734 return V; 5735 LLVM_FALLTHROUGH; 5736 case ISD::ROTL: 5737 case ISD::ROTR: 5738 assert(VT == N1.getValueType() && 5739 "Shift operators return type must be the same as their first arg"); 5740 assert(VT.isInteger() && N2.getValueType().isInteger() && 5741 "Shifts only work on integers"); 5742 assert((!VT.isVector() || VT == N2.getValueType()) && 5743 "Vector shift amounts must be in the same as their first arg"); 5744 // Verify that the shift amount VT is big enough to hold valid shift 5745 // amounts. This catches things like trying to shift an i1024 value by an 5746 // i8, which is easy to fall into in generic code that uses 5747 // TLI.getShiftAmount(). 5748 assert(N2.getValueType().getScalarSizeInBits() >= 5749 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5750 "Invalid use of small shift amount with oversized value!"); 5751 5752 // Always fold shifts of i1 values so the code generator doesn't need to 5753 // handle them. Since we know the size of the shift has to be less than the 5754 // size of the value, the shift/rotate count is guaranteed to be zero. 5755 if (VT == MVT::i1) 5756 return N1; 5757 if (N2C && N2C->isZero()) 5758 return N1; 5759 break; 5760 case ISD::FP_ROUND: 5761 assert(VT.isFloatingPoint() && 5762 N1.getValueType().isFloatingPoint() && 5763 VT.bitsLE(N1.getValueType()) && 5764 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5765 "Invalid FP_ROUND!"); 5766 if (N1.getValueType() == VT) return N1; // noop conversion. 5767 break; 5768 case ISD::AssertSext: 5769 case ISD::AssertZext: { 5770 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5771 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5772 assert(VT.isInteger() && EVT.isInteger() && 5773 "Cannot *_EXTEND_INREG FP types"); 5774 assert(!EVT.isVector() && 5775 "AssertSExt/AssertZExt type should be the vector element type " 5776 "rather than the vector type!"); 5777 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5778 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5779 break; 5780 } 5781 case ISD::SIGN_EXTEND_INREG: { 5782 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5783 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5784 assert(VT.isInteger() && EVT.isInteger() && 5785 "Cannot *_EXTEND_INREG FP types"); 5786 assert(EVT.isVector() == VT.isVector() && 5787 "SIGN_EXTEND_INREG type should be vector iff the operand " 5788 "type is vector!"); 5789 assert((!EVT.isVector() || 5790 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5791 "Vector element counts must match in SIGN_EXTEND_INREG"); 5792 assert(EVT.bitsLE(VT) && "Not extending!"); 5793 if (EVT == VT) return N1; // Not actually extending 5794 5795 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5796 unsigned FromBits = EVT.getScalarSizeInBits(); 5797 Val <<= Val.getBitWidth() - FromBits; 5798 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5799 return getConstant(Val, DL, ConstantVT); 5800 }; 5801 5802 if (N1C) { 5803 const APInt &Val = N1C->getAPIntValue(); 5804 return SignExtendInReg(Val, VT); 5805 } 5806 5807 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5808 SmallVector<SDValue, 8> Ops; 5809 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5810 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5811 SDValue Op = N1.getOperand(i); 5812 if (Op.isUndef()) { 5813 Ops.push_back(getUNDEF(OpVT)); 5814 continue; 5815 } 5816 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5817 APInt Val = C->getAPIntValue(); 5818 Ops.push_back(SignExtendInReg(Val, OpVT)); 5819 } 5820 return getBuildVector(VT, DL, Ops); 5821 } 5822 break; 5823 } 5824 case ISD::FP_TO_SINT_SAT: 5825 case ISD::FP_TO_UINT_SAT: { 5826 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5827 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5828 assert(N1.getValueType().isVector() == VT.isVector() && 5829 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5830 "vector!"); 5831 assert((!VT.isVector() || VT.getVectorNumElements() == 5832 N1.getValueType().getVectorNumElements()) && 5833 "Vector element counts must match in FP_TO_*INT_SAT"); 5834 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5835 "Type to saturate to must be a scalar."); 5836 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5837 "Not extending!"); 5838 break; 5839 } 5840 case ISD::EXTRACT_VECTOR_ELT: 5841 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5842 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5843 element type of the vector."); 5844 5845 // Extract from an undefined value or using an undefined index is undefined. 5846 if (N1.isUndef() || N2.isUndef()) 5847 return getUNDEF(VT); 5848 5849 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5850 // vectors. For scalable vectors we will provide appropriate support for 5851 // dealing with arbitrary indices. 5852 if (N2C && N1.getValueType().isFixedLengthVector() && 5853 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5854 return getUNDEF(VT); 5855 5856 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5857 // expanding copies of large vectors from registers. This only works for 5858 // fixed length vectors, since we need to know the exact number of 5859 // elements. 5860 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5861 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5862 unsigned Factor = 5863 N1.getOperand(0).getValueType().getVectorNumElements(); 5864 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5865 N1.getOperand(N2C->getZExtValue() / Factor), 5866 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5867 } 5868 5869 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5870 // lowering is expanding large vector constants. 5871 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5872 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5873 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5874 N1.getValueType().isFixedLengthVector()) && 5875 "BUILD_VECTOR used for scalable vectors"); 5876 unsigned Index = 5877 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5878 SDValue Elt = N1.getOperand(Index); 5879 5880 if (VT != Elt.getValueType()) 5881 // If the vector element type is not legal, the BUILD_VECTOR operands 5882 // are promoted and implicitly truncated, and the result implicitly 5883 // extended. Make that explicit here. 5884 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5885 5886 return Elt; 5887 } 5888 5889 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5890 // operations are lowered to scalars. 5891 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5892 // If the indices are the same, return the inserted element else 5893 // if the indices are known different, extract the element from 5894 // the original vector. 5895 SDValue N1Op2 = N1.getOperand(2); 5896 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5897 5898 if (N1Op2C && N2C) { 5899 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5900 if (VT == N1.getOperand(1).getValueType()) 5901 return N1.getOperand(1); 5902 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5903 } 5904 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5905 } 5906 } 5907 5908 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5909 // when vector types are scalarized and v1iX is legal. 5910 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5911 // Here we are completely ignoring the extract element index (N2), 5912 // which is fine for fixed width vectors, since any index other than 0 5913 // is undefined anyway. However, this cannot be ignored for scalable 5914 // vectors - in theory we could support this, but we don't want to do this 5915 // without a profitability check. 5916 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5917 N1.getValueType().isFixedLengthVector() && 5918 N1.getValueType().getVectorNumElements() == 1) { 5919 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5920 N1.getOperand(1)); 5921 } 5922 break; 5923 case ISD::EXTRACT_ELEMENT: 5924 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5925 assert(!N1.getValueType().isVector() && !VT.isVector() && 5926 (N1.getValueType().isInteger() == VT.isInteger()) && 5927 N1.getValueType() != VT && 5928 "Wrong types for EXTRACT_ELEMENT!"); 5929 5930 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5931 // 64-bit integers into 32-bit parts. Instead of building the extract of 5932 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5933 if (N1.getOpcode() == ISD::BUILD_PAIR) 5934 return N1.getOperand(N2C->getZExtValue()); 5935 5936 // EXTRACT_ELEMENT of a constant int is also very common. 5937 if (N1C) { 5938 unsigned ElementSize = VT.getSizeInBits(); 5939 unsigned Shift = ElementSize * N2C->getZExtValue(); 5940 const APInt &Val = N1C->getAPIntValue(); 5941 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5942 } 5943 break; 5944 case ISD::EXTRACT_SUBVECTOR: { 5945 EVT N1VT = N1.getValueType(); 5946 assert(VT.isVector() && N1VT.isVector() && 5947 "Extract subvector VTs must be vectors!"); 5948 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5949 "Extract subvector VTs must have the same element type!"); 5950 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5951 "Cannot extract a scalable vector from a fixed length vector!"); 5952 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5953 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5954 "Extract subvector must be from larger vector to smaller vector!"); 5955 assert(N2C && "Extract subvector index must be a constant"); 5956 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5957 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5958 N1VT.getVectorMinNumElements()) && 5959 "Extract subvector overflow!"); 5960 assert(N2C->getAPIntValue().getBitWidth() == 5961 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5962 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5963 5964 // Trivial extraction. 5965 if (VT == N1VT) 5966 return N1; 5967 5968 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5969 if (N1.isUndef()) 5970 return getUNDEF(VT); 5971 5972 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5973 // the concat have the same type as the extract. 5974 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5975 VT == N1.getOperand(0).getValueType()) { 5976 unsigned Factor = VT.getVectorMinNumElements(); 5977 return N1.getOperand(N2C->getZExtValue() / Factor); 5978 } 5979 5980 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5981 // during shuffle legalization. 5982 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5983 VT == N1.getOperand(1).getValueType()) 5984 return N1.getOperand(1); 5985 break; 5986 } 5987 } 5988 5989 // Perform trivial constant folding. 5990 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5991 return SV; 5992 5993 // Canonicalize an UNDEF to the RHS, even over a constant. 5994 if (N1.isUndef()) { 5995 if (TLI->isCommutativeBinOp(Opcode)) { 5996 std::swap(N1, N2); 5997 } else { 5998 switch (Opcode) { 5999 case ISD::SIGN_EXTEND_INREG: 6000 case ISD::SUB: 6001 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6002 case ISD::UDIV: 6003 case ISD::SDIV: 6004 case ISD::UREM: 6005 case ISD::SREM: 6006 case ISD::SSUBSAT: 6007 case ISD::USUBSAT: 6008 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6009 } 6010 } 6011 } 6012 6013 // Fold a bunch of operators when the RHS is undef. 6014 if (N2.isUndef()) { 6015 switch (Opcode) { 6016 case ISD::XOR: 6017 if (N1.isUndef()) 6018 // Handle undef ^ undef -> 0 special case. This is a common 6019 // idiom (misuse). 6020 return getConstant(0, DL, VT); 6021 LLVM_FALLTHROUGH; 6022 case ISD::ADD: 6023 case ISD::SUB: 6024 case ISD::UDIV: 6025 case ISD::SDIV: 6026 case ISD::UREM: 6027 case ISD::SREM: 6028 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6029 case ISD::MUL: 6030 case ISD::AND: 6031 case ISD::SSUBSAT: 6032 case ISD::USUBSAT: 6033 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6034 case ISD::OR: 6035 case ISD::SADDSAT: 6036 case ISD::UADDSAT: 6037 return getAllOnesConstant(DL, VT); 6038 } 6039 } 6040 6041 // Memoize this node if possible. 6042 SDNode *N; 6043 SDVTList VTs = getVTList(VT); 6044 SDValue Ops[] = {N1, N2}; 6045 if (VT != MVT::Glue) { 6046 FoldingSetNodeID ID; 6047 AddNodeIDNode(ID, Opcode, VTs, Ops); 6048 void *IP = nullptr; 6049 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6050 E->intersectFlagsWith(Flags); 6051 return SDValue(E, 0); 6052 } 6053 6054 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6055 N->setFlags(Flags); 6056 createOperands(N, Ops); 6057 CSEMap.InsertNode(N, IP); 6058 } else { 6059 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6060 createOperands(N, Ops); 6061 } 6062 6063 InsertNode(N); 6064 SDValue V = SDValue(N, 0); 6065 NewSDValueDbgMsg(V, "Creating new node: ", this); 6066 return V; 6067 } 6068 6069 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6070 SDValue N1, SDValue N2, SDValue N3) { 6071 SDNodeFlags Flags; 6072 if (Inserter) 6073 Flags = Inserter->getFlags(); 6074 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6075 } 6076 6077 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6078 SDValue N1, SDValue N2, SDValue N3, 6079 const SDNodeFlags Flags) { 6080 assert(N1.getOpcode() != ISD::DELETED_NODE && 6081 N2.getOpcode() != ISD::DELETED_NODE && 6082 N3.getOpcode() != ISD::DELETED_NODE && 6083 "Operand is DELETED_NODE!"); 6084 // Perform various simplifications. 6085 switch (Opcode) { 6086 case ISD::FMA: { 6087 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6088 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6089 N3.getValueType() == VT && "FMA types must match!"); 6090 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6091 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6092 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6093 if (N1CFP && N2CFP && N3CFP) { 6094 APFloat V1 = N1CFP->getValueAPF(); 6095 const APFloat &V2 = N2CFP->getValueAPF(); 6096 const APFloat &V3 = N3CFP->getValueAPF(); 6097 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6098 return getConstantFP(V1, DL, VT); 6099 } 6100 break; 6101 } 6102 case ISD::BUILD_VECTOR: { 6103 // Attempt to simplify BUILD_VECTOR. 6104 SDValue Ops[] = {N1, N2, N3}; 6105 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6106 return V; 6107 break; 6108 } 6109 case ISD::CONCAT_VECTORS: { 6110 SDValue Ops[] = {N1, N2, N3}; 6111 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6112 return V; 6113 break; 6114 } 6115 case ISD::SETCC: { 6116 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6117 assert(N1.getValueType() == N2.getValueType() && 6118 "SETCC operands must have the same type!"); 6119 assert(VT.isVector() == N1.getValueType().isVector() && 6120 "SETCC type should be vector iff the operand type is vector!"); 6121 assert((!VT.isVector() || VT.getVectorElementCount() == 6122 N1.getValueType().getVectorElementCount()) && 6123 "SETCC vector element counts must match!"); 6124 // Use FoldSetCC to simplify SETCC's. 6125 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6126 return V; 6127 // Vector constant folding. 6128 SDValue Ops[] = {N1, N2, N3}; 6129 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6130 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6131 return V; 6132 } 6133 break; 6134 } 6135 case ISD::SELECT: 6136 case ISD::VSELECT: 6137 if (SDValue V = simplifySelect(N1, N2, N3)) 6138 return V; 6139 break; 6140 case ISD::VECTOR_SHUFFLE: 6141 llvm_unreachable("should use getVectorShuffle constructor!"); 6142 case ISD::VECTOR_SPLICE: { 6143 if (cast<ConstantSDNode>(N3)->isNullValue()) 6144 return N1; 6145 break; 6146 } 6147 case ISD::INSERT_VECTOR_ELT: { 6148 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6149 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6150 // for scalable vectors where we will generate appropriate code to 6151 // deal with out-of-bounds cases correctly. 6152 if (N3C && N1.getValueType().isFixedLengthVector() && 6153 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6154 return getUNDEF(VT); 6155 6156 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6157 if (N3.isUndef()) 6158 return getUNDEF(VT); 6159 6160 // If the inserted element is an UNDEF, just use the input vector. 6161 if (N2.isUndef()) 6162 return N1; 6163 6164 break; 6165 } 6166 case ISD::INSERT_SUBVECTOR: { 6167 // Inserting undef into undef is still undef. 6168 if (N1.isUndef() && N2.isUndef()) 6169 return getUNDEF(VT); 6170 6171 EVT N2VT = N2.getValueType(); 6172 assert(VT == N1.getValueType() && 6173 "Dest and insert subvector source types must match!"); 6174 assert(VT.isVector() && N2VT.isVector() && 6175 "Insert subvector VTs must be vectors!"); 6176 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6177 "Cannot insert a scalable vector into a fixed length vector!"); 6178 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6179 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6180 "Insert subvector must be from smaller vector to larger vector!"); 6181 assert(isa<ConstantSDNode>(N3) && 6182 "Insert subvector index must be constant"); 6183 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6184 (N2VT.getVectorMinNumElements() + 6185 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6186 VT.getVectorMinNumElements()) && 6187 "Insert subvector overflow!"); 6188 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6189 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6190 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6191 6192 // Trivial insertion. 6193 if (VT == N2VT) 6194 return N2; 6195 6196 // If this is an insert of an extracted vector into an undef vector, we 6197 // can just use the input to the extract. 6198 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6199 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6200 return N2.getOperand(0); 6201 break; 6202 } 6203 case ISD::BITCAST: 6204 // Fold bit_convert nodes from a type to themselves. 6205 if (N1.getValueType() == VT) 6206 return N1; 6207 break; 6208 } 6209 6210 // Memoize node if it doesn't produce a flag. 6211 SDNode *N; 6212 SDVTList VTs = getVTList(VT); 6213 SDValue Ops[] = {N1, N2, N3}; 6214 if (VT != MVT::Glue) { 6215 FoldingSetNodeID ID; 6216 AddNodeIDNode(ID, Opcode, VTs, Ops); 6217 void *IP = nullptr; 6218 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6219 E->intersectFlagsWith(Flags); 6220 return SDValue(E, 0); 6221 } 6222 6223 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6224 N->setFlags(Flags); 6225 createOperands(N, Ops); 6226 CSEMap.InsertNode(N, IP); 6227 } else { 6228 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6229 createOperands(N, Ops); 6230 } 6231 6232 InsertNode(N); 6233 SDValue V = SDValue(N, 0); 6234 NewSDValueDbgMsg(V, "Creating new node: ", this); 6235 return V; 6236 } 6237 6238 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6239 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6240 SDValue Ops[] = { N1, N2, N3, N4 }; 6241 return getNode(Opcode, DL, VT, Ops); 6242 } 6243 6244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6245 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6246 SDValue N5) { 6247 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6248 return getNode(Opcode, DL, VT, Ops); 6249 } 6250 6251 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6252 /// the incoming stack arguments to be loaded from the stack. 6253 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6254 SmallVector<SDValue, 8> ArgChains; 6255 6256 // Include the original chain at the beginning of the list. When this is 6257 // used by target LowerCall hooks, this helps legalize find the 6258 // CALLSEQ_BEGIN node. 6259 ArgChains.push_back(Chain); 6260 6261 // Add a chain value for each stack argument. 6262 for (SDNode *U : getEntryNode().getNode()->uses()) 6263 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6264 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6265 if (FI->getIndex() < 0) 6266 ArgChains.push_back(SDValue(L, 1)); 6267 6268 // Build a tokenfactor for all the chains. 6269 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6270 } 6271 6272 /// getMemsetValue - Vectorized representation of the memset value 6273 /// operand. 6274 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6275 const SDLoc &dl) { 6276 assert(!Value.isUndef()); 6277 6278 unsigned NumBits = VT.getScalarSizeInBits(); 6279 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6280 assert(C->getAPIntValue().getBitWidth() == 8); 6281 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6282 if (VT.isInteger()) { 6283 bool IsOpaque = VT.getSizeInBits() > 64 || 6284 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6285 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6286 } 6287 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6288 VT); 6289 } 6290 6291 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6292 EVT IntVT = VT.getScalarType(); 6293 if (!IntVT.isInteger()) 6294 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6295 6296 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6297 if (NumBits > 8) { 6298 // Use a multiplication with 0x010101... to extend the input to the 6299 // required length. 6300 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6301 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6302 DAG.getConstant(Magic, dl, IntVT)); 6303 } 6304 6305 if (VT != Value.getValueType() && !VT.isInteger()) 6306 Value = DAG.getBitcast(VT.getScalarType(), Value); 6307 if (VT != Value.getValueType()) 6308 Value = DAG.getSplatBuildVector(VT, dl, Value); 6309 6310 return Value; 6311 } 6312 6313 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6314 /// used when a memcpy is turned into a memset when the source is a constant 6315 /// string ptr. 6316 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6317 const TargetLowering &TLI, 6318 const ConstantDataArraySlice &Slice) { 6319 // Handle vector with all elements zero. 6320 if (Slice.Array == nullptr) { 6321 if (VT.isInteger()) 6322 return DAG.getConstant(0, dl, VT); 6323 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6324 return DAG.getConstantFP(0.0, dl, VT); 6325 if (VT.isVector()) { 6326 unsigned NumElts = VT.getVectorNumElements(); 6327 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6328 return DAG.getNode(ISD::BITCAST, dl, VT, 6329 DAG.getConstant(0, dl, 6330 EVT::getVectorVT(*DAG.getContext(), 6331 EltVT, NumElts))); 6332 } 6333 llvm_unreachable("Expected type!"); 6334 } 6335 6336 assert(!VT.isVector() && "Can't handle vector type here!"); 6337 unsigned NumVTBits = VT.getSizeInBits(); 6338 unsigned NumVTBytes = NumVTBits / 8; 6339 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6340 6341 APInt Val(NumVTBits, 0); 6342 if (DAG.getDataLayout().isLittleEndian()) { 6343 for (unsigned i = 0; i != NumBytes; ++i) 6344 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6345 } else { 6346 for (unsigned i = 0; i != NumBytes; ++i) 6347 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6348 } 6349 6350 // If the "cost" of materializing the integer immediate is less than the cost 6351 // of a load, then it is cost effective to turn the load into the immediate. 6352 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6353 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6354 return DAG.getConstant(Val, dl, VT); 6355 return SDValue(nullptr, 0); 6356 } 6357 6358 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6359 const SDLoc &DL, 6360 const SDNodeFlags Flags) { 6361 EVT VT = Base.getValueType(); 6362 SDValue Index; 6363 6364 if (Offset.isScalable()) 6365 Index = getVScale(DL, Base.getValueType(), 6366 APInt(Base.getValueSizeInBits().getFixedSize(), 6367 Offset.getKnownMinSize())); 6368 else 6369 Index = getConstant(Offset.getFixedSize(), DL, VT); 6370 6371 return getMemBasePlusOffset(Base, Index, DL, Flags); 6372 } 6373 6374 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6375 const SDLoc &DL, 6376 const SDNodeFlags Flags) { 6377 assert(Offset.getValueType().isInteger()); 6378 EVT BasePtrVT = Ptr.getValueType(); 6379 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6380 } 6381 6382 /// Returns true if memcpy source is constant data. 6383 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6384 uint64_t SrcDelta = 0; 6385 GlobalAddressSDNode *G = nullptr; 6386 if (Src.getOpcode() == ISD::GlobalAddress) 6387 G = cast<GlobalAddressSDNode>(Src); 6388 else if (Src.getOpcode() == ISD::ADD && 6389 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6390 Src.getOperand(1).getOpcode() == ISD::Constant) { 6391 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6392 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6393 } 6394 if (!G) 6395 return false; 6396 6397 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6398 SrcDelta + G->getOffset()); 6399 } 6400 6401 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6402 SelectionDAG &DAG) { 6403 // On Darwin, -Os means optimize for size without hurting performance, so 6404 // only really optimize for size when -Oz (MinSize) is used. 6405 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6406 return MF.getFunction().hasMinSize(); 6407 return DAG.shouldOptForSize(); 6408 } 6409 6410 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6411 SmallVector<SDValue, 32> &OutChains, unsigned From, 6412 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6413 SmallVector<SDValue, 16> &OutStoreChains) { 6414 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6415 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6416 SmallVector<SDValue, 16> GluedLoadChains; 6417 for (unsigned i = From; i < To; ++i) { 6418 OutChains.push_back(OutLoadChains[i]); 6419 GluedLoadChains.push_back(OutLoadChains[i]); 6420 } 6421 6422 // Chain for all loads. 6423 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6424 GluedLoadChains); 6425 6426 for (unsigned i = From; i < To; ++i) { 6427 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6428 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6429 ST->getBasePtr(), ST->getMemoryVT(), 6430 ST->getMemOperand()); 6431 OutChains.push_back(NewStore); 6432 } 6433 } 6434 6435 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6436 SDValue Chain, SDValue Dst, SDValue Src, 6437 uint64_t Size, Align Alignment, 6438 bool isVol, bool AlwaysInline, 6439 MachinePointerInfo DstPtrInfo, 6440 MachinePointerInfo SrcPtrInfo, 6441 const AAMDNodes &AAInfo) { 6442 // Turn a memcpy of undef to nop. 6443 // FIXME: We need to honor volatile even is Src is undef. 6444 if (Src.isUndef()) 6445 return Chain; 6446 6447 // Expand memcpy to a series of load and store ops if the size operand falls 6448 // below a certain threshold. 6449 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6450 // rather than maybe a humongous number of loads and stores. 6451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6452 const DataLayout &DL = DAG.getDataLayout(); 6453 LLVMContext &C = *DAG.getContext(); 6454 std::vector<EVT> MemOps; 6455 bool DstAlignCanChange = false; 6456 MachineFunction &MF = DAG.getMachineFunction(); 6457 MachineFrameInfo &MFI = MF.getFrameInfo(); 6458 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6459 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6460 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6461 DstAlignCanChange = true; 6462 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6463 if (!SrcAlign || Alignment > *SrcAlign) 6464 SrcAlign = Alignment; 6465 assert(SrcAlign && "SrcAlign must be set"); 6466 ConstantDataArraySlice Slice; 6467 // If marked as volatile, perform a copy even when marked as constant. 6468 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6469 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6470 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6471 const MemOp Op = isZeroConstant 6472 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6473 /*IsZeroMemset*/ true, isVol) 6474 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6475 *SrcAlign, isVol, CopyFromConstant); 6476 if (!TLI.findOptimalMemOpLowering( 6477 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6478 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6479 return SDValue(); 6480 6481 if (DstAlignCanChange) { 6482 Type *Ty = MemOps[0].getTypeForEVT(C); 6483 Align NewAlign = DL.getABITypeAlign(Ty); 6484 6485 // Don't promote to an alignment that would require dynamic stack 6486 // realignment. 6487 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6488 if (!TRI->hasStackRealignment(MF)) 6489 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6490 NewAlign = NewAlign / 2; 6491 6492 if (NewAlign > Alignment) { 6493 // Give the stack frame object a larger alignment if needed. 6494 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6495 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6496 Alignment = NewAlign; 6497 } 6498 } 6499 6500 // Prepare AAInfo for loads/stores after lowering this memcpy. 6501 AAMDNodes NewAAInfo = AAInfo; 6502 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6503 6504 MachineMemOperand::Flags MMOFlags = 6505 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6506 SmallVector<SDValue, 16> OutLoadChains; 6507 SmallVector<SDValue, 16> OutStoreChains; 6508 SmallVector<SDValue, 32> OutChains; 6509 unsigned NumMemOps = MemOps.size(); 6510 uint64_t SrcOff = 0, DstOff = 0; 6511 for (unsigned i = 0; i != NumMemOps; ++i) { 6512 EVT VT = MemOps[i]; 6513 unsigned VTSize = VT.getSizeInBits() / 8; 6514 SDValue Value, Store; 6515 6516 if (VTSize > Size) { 6517 // Issuing an unaligned load / store pair that overlaps with the previous 6518 // pair. Adjust the offset accordingly. 6519 assert(i == NumMemOps-1 && i != 0); 6520 SrcOff -= VTSize - Size; 6521 DstOff -= VTSize - Size; 6522 } 6523 6524 if (CopyFromConstant && 6525 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6526 // It's unlikely a store of a vector immediate can be done in a single 6527 // instruction. It would require a load from a constantpool first. 6528 // We only handle zero vectors here. 6529 // FIXME: Handle other cases where store of vector immediate is done in 6530 // a single instruction. 6531 ConstantDataArraySlice SubSlice; 6532 if (SrcOff < Slice.Length) { 6533 SubSlice = Slice; 6534 SubSlice.move(SrcOff); 6535 } else { 6536 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6537 SubSlice.Array = nullptr; 6538 SubSlice.Offset = 0; 6539 SubSlice.Length = VTSize; 6540 } 6541 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6542 if (Value.getNode()) { 6543 Store = DAG.getStore( 6544 Chain, dl, Value, 6545 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6546 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6547 OutChains.push_back(Store); 6548 } 6549 } 6550 6551 if (!Store.getNode()) { 6552 // The type might not be legal for the target. This should only happen 6553 // if the type is smaller than a legal type, as on PPC, so the right 6554 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6555 // to Load/Store if NVT==VT. 6556 // FIXME does the case above also need this? 6557 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6558 assert(NVT.bitsGE(VT)); 6559 6560 bool isDereferenceable = 6561 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6562 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6563 if (isDereferenceable) 6564 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6565 6566 Value = DAG.getExtLoad( 6567 ISD::EXTLOAD, dl, NVT, Chain, 6568 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6569 SrcPtrInfo.getWithOffset(SrcOff), VT, 6570 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6571 OutLoadChains.push_back(Value.getValue(1)); 6572 6573 Store = DAG.getTruncStore( 6574 Chain, dl, Value, 6575 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6576 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6577 OutStoreChains.push_back(Store); 6578 } 6579 SrcOff += VTSize; 6580 DstOff += VTSize; 6581 Size -= VTSize; 6582 } 6583 6584 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6585 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6586 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6587 6588 if (NumLdStInMemcpy) { 6589 // It may be that memcpy might be converted to memset if it's memcpy 6590 // of constants. In such a case, we won't have loads and stores, but 6591 // just stores. In the absence of loads, there is nothing to gang up. 6592 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6593 // If target does not care, just leave as it. 6594 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6595 OutChains.push_back(OutLoadChains[i]); 6596 OutChains.push_back(OutStoreChains[i]); 6597 } 6598 } else { 6599 // Ld/St less than/equal limit set by target. 6600 if (NumLdStInMemcpy <= GluedLdStLimit) { 6601 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6602 NumLdStInMemcpy, OutLoadChains, 6603 OutStoreChains); 6604 } else { 6605 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6606 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6607 unsigned GlueIter = 0; 6608 6609 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6610 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6611 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6612 6613 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6614 OutLoadChains, OutStoreChains); 6615 GlueIter += GluedLdStLimit; 6616 } 6617 6618 // Residual ld/st. 6619 if (RemainingLdStInMemcpy) { 6620 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6621 RemainingLdStInMemcpy, OutLoadChains, 6622 OutStoreChains); 6623 } 6624 } 6625 } 6626 } 6627 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6628 } 6629 6630 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6631 SDValue Chain, SDValue Dst, SDValue Src, 6632 uint64_t Size, Align Alignment, 6633 bool isVol, bool AlwaysInline, 6634 MachinePointerInfo DstPtrInfo, 6635 MachinePointerInfo SrcPtrInfo, 6636 const AAMDNodes &AAInfo) { 6637 // Turn a memmove of undef to nop. 6638 // FIXME: We need to honor volatile even is Src is undef. 6639 if (Src.isUndef()) 6640 return Chain; 6641 6642 // Expand memmove to a series of load and store ops if the size operand falls 6643 // below a certain threshold. 6644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6645 const DataLayout &DL = DAG.getDataLayout(); 6646 LLVMContext &C = *DAG.getContext(); 6647 std::vector<EVT> MemOps; 6648 bool DstAlignCanChange = false; 6649 MachineFunction &MF = DAG.getMachineFunction(); 6650 MachineFrameInfo &MFI = MF.getFrameInfo(); 6651 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6652 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6653 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6654 DstAlignCanChange = true; 6655 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6656 if (!SrcAlign || Alignment > *SrcAlign) 6657 SrcAlign = Alignment; 6658 assert(SrcAlign && "SrcAlign must be set"); 6659 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6660 if (!TLI.findOptimalMemOpLowering( 6661 MemOps, Limit, 6662 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6663 /*IsVolatile*/ true), 6664 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6665 MF.getFunction().getAttributes())) 6666 return SDValue(); 6667 6668 if (DstAlignCanChange) { 6669 Type *Ty = MemOps[0].getTypeForEVT(C); 6670 Align NewAlign = DL.getABITypeAlign(Ty); 6671 if (NewAlign > Alignment) { 6672 // Give the stack frame object a larger alignment if needed. 6673 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6674 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6675 Alignment = NewAlign; 6676 } 6677 } 6678 6679 // Prepare AAInfo for loads/stores after lowering this memmove. 6680 AAMDNodes NewAAInfo = AAInfo; 6681 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6682 6683 MachineMemOperand::Flags MMOFlags = 6684 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6685 uint64_t SrcOff = 0, DstOff = 0; 6686 SmallVector<SDValue, 8> LoadValues; 6687 SmallVector<SDValue, 8> LoadChains; 6688 SmallVector<SDValue, 8> OutChains; 6689 unsigned NumMemOps = MemOps.size(); 6690 for (unsigned i = 0; i < NumMemOps; i++) { 6691 EVT VT = MemOps[i]; 6692 unsigned VTSize = VT.getSizeInBits() / 8; 6693 SDValue Value; 6694 6695 bool isDereferenceable = 6696 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6697 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6698 if (isDereferenceable) 6699 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6700 6701 Value = DAG.getLoad( 6702 VT, dl, Chain, 6703 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6704 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6705 LoadValues.push_back(Value); 6706 LoadChains.push_back(Value.getValue(1)); 6707 SrcOff += VTSize; 6708 } 6709 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6710 OutChains.clear(); 6711 for (unsigned i = 0; i < NumMemOps; i++) { 6712 EVT VT = MemOps[i]; 6713 unsigned VTSize = VT.getSizeInBits() / 8; 6714 SDValue Store; 6715 6716 Store = DAG.getStore( 6717 Chain, dl, LoadValues[i], 6718 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6719 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6720 OutChains.push_back(Store); 6721 DstOff += VTSize; 6722 } 6723 6724 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6725 } 6726 6727 /// Lower the call to 'memset' intrinsic function into a series of store 6728 /// operations. 6729 /// 6730 /// \param DAG Selection DAG where lowered code is placed. 6731 /// \param dl Link to corresponding IR location. 6732 /// \param Chain Control flow dependency. 6733 /// \param Dst Pointer to destination memory location. 6734 /// \param Src Value of byte to write into the memory. 6735 /// \param Size Number of bytes to write. 6736 /// \param Alignment Alignment of the destination in bytes. 6737 /// \param isVol True if destination is volatile. 6738 /// \param DstPtrInfo IR information on the memory pointer. 6739 /// \returns New head in the control flow, if lowering was successful, empty 6740 /// SDValue otherwise. 6741 /// 6742 /// The function tries to replace 'llvm.memset' intrinsic with several store 6743 /// operations and value calculation code. This is usually profitable for small 6744 /// memory size. 6745 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6746 SDValue Chain, SDValue Dst, SDValue Src, 6747 uint64_t Size, Align Alignment, bool isVol, 6748 MachinePointerInfo DstPtrInfo, 6749 const AAMDNodes &AAInfo) { 6750 // Turn a memset of undef to nop. 6751 // FIXME: We need to honor volatile even is Src is undef. 6752 if (Src.isUndef()) 6753 return Chain; 6754 6755 // Expand memset to a series of load/store ops if the size operand 6756 // falls below a certain threshold. 6757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6758 std::vector<EVT> MemOps; 6759 bool DstAlignCanChange = false; 6760 MachineFunction &MF = DAG.getMachineFunction(); 6761 MachineFrameInfo &MFI = MF.getFrameInfo(); 6762 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6763 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6764 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6765 DstAlignCanChange = true; 6766 bool IsZeroVal = 6767 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6768 if (!TLI.findOptimalMemOpLowering( 6769 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6770 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6771 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6772 return SDValue(); 6773 6774 if (DstAlignCanChange) { 6775 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6776 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6777 if (NewAlign > Alignment) { 6778 // Give the stack frame object a larger alignment if needed. 6779 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6780 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6781 Alignment = NewAlign; 6782 } 6783 } 6784 6785 SmallVector<SDValue, 8> OutChains; 6786 uint64_t DstOff = 0; 6787 unsigned NumMemOps = MemOps.size(); 6788 6789 // Find the largest store and generate the bit pattern for it. 6790 EVT LargestVT = MemOps[0]; 6791 for (unsigned i = 1; i < NumMemOps; i++) 6792 if (MemOps[i].bitsGT(LargestVT)) 6793 LargestVT = MemOps[i]; 6794 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6795 6796 // Prepare AAInfo for loads/stores after lowering this memset. 6797 AAMDNodes NewAAInfo = AAInfo; 6798 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6799 6800 for (unsigned i = 0; i < NumMemOps; i++) { 6801 EVT VT = MemOps[i]; 6802 unsigned VTSize = VT.getSizeInBits() / 8; 6803 if (VTSize > Size) { 6804 // Issuing an unaligned load / store pair that overlaps with the previous 6805 // pair. Adjust the offset accordingly. 6806 assert(i == NumMemOps-1 && i != 0); 6807 DstOff -= VTSize - Size; 6808 } 6809 6810 // If this store is smaller than the largest store see whether we can get 6811 // the smaller value for free with a truncate. 6812 SDValue Value = MemSetValue; 6813 if (VT.bitsLT(LargestVT)) { 6814 if (!LargestVT.isVector() && !VT.isVector() && 6815 TLI.isTruncateFree(LargestVT, VT)) 6816 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6817 else 6818 Value = getMemsetValue(Src, VT, DAG, dl); 6819 } 6820 assert(Value.getValueType() == VT && "Value with wrong type."); 6821 SDValue Store = DAG.getStore( 6822 Chain, dl, Value, 6823 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6824 DstPtrInfo.getWithOffset(DstOff), Alignment, 6825 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6826 NewAAInfo); 6827 OutChains.push_back(Store); 6828 DstOff += VT.getSizeInBits() / 8; 6829 Size -= VTSize; 6830 } 6831 6832 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6833 } 6834 6835 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6836 unsigned AS) { 6837 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6838 // pointer operands can be losslessly bitcasted to pointers of address space 0 6839 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6840 report_fatal_error("cannot lower memory intrinsic in address space " + 6841 Twine(AS)); 6842 } 6843 } 6844 6845 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6846 SDValue Src, SDValue Size, Align Alignment, 6847 bool isVol, bool AlwaysInline, bool isTailCall, 6848 MachinePointerInfo DstPtrInfo, 6849 MachinePointerInfo SrcPtrInfo, 6850 const AAMDNodes &AAInfo) { 6851 // Check to see if we should lower the memcpy to loads and stores first. 6852 // For cases within the target-specified limits, this is the best choice. 6853 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6854 if (ConstantSize) { 6855 // Memcpy with size zero? Just return the original chain. 6856 if (ConstantSize->isZero()) 6857 return Chain; 6858 6859 SDValue Result = getMemcpyLoadsAndStores( 6860 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6861 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6862 if (Result.getNode()) 6863 return Result; 6864 } 6865 6866 // Then check to see if we should lower the memcpy with target-specific 6867 // code. If the target chooses to do this, this is the next best. 6868 if (TSI) { 6869 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6870 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6871 DstPtrInfo, SrcPtrInfo); 6872 if (Result.getNode()) 6873 return Result; 6874 } 6875 6876 // If we really need inline code and the target declined to provide it, 6877 // use a (potentially long) sequence of loads and stores. 6878 if (AlwaysInline) { 6879 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6880 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6881 ConstantSize->getZExtValue(), Alignment, 6882 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6883 } 6884 6885 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6886 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6887 6888 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6889 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6890 // respect volatile, so they may do things like read or write memory 6891 // beyond the given memory regions. But fixing this isn't easy, and most 6892 // people don't care. 6893 6894 // Emit a library call. 6895 TargetLowering::ArgListTy Args; 6896 TargetLowering::ArgListEntry Entry; 6897 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6898 Entry.Node = Dst; Args.push_back(Entry); 6899 Entry.Node = Src; Args.push_back(Entry); 6900 6901 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6902 Entry.Node = Size; Args.push_back(Entry); 6903 // FIXME: pass in SDLoc 6904 TargetLowering::CallLoweringInfo CLI(*this); 6905 CLI.setDebugLoc(dl) 6906 .setChain(Chain) 6907 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6908 Dst.getValueType().getTypeForEVT(*getContext()), 6909 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6910 TLI->getPointerTy(getDataLayout())), 6911 std::move(Args)) 6912 .setDiscardResult() 6913 .setTailCall(isTailCall); 6914 6915 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6916 return CallResult.second; 6917 } 6918 6919 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6920 SDValue Dst, unsigned DstAlign, 6921 SDValue Src, unsigned SrcAlign, 6922 SDValue Size, Type *SizeTy, 6923 unsigned ElemSz, bool isTailCall, 6924 MachinePointerInfo DstPtrInfo, 6925 MachinePointerInfo SrcPtrInfo) { 6926 // Emit a library call. 6927 TargetLowering::ArgListTy Args; 6928 TargetLowering::ArgListEntry Entry; 6929 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6930 Entry.Node = Dst; 6931 Args.push_back(Entry); 6932 6933 Entry.Node = Src; 6934 Args.push_back(Entry); 6935 6936 Entry.Ty = SizeTy; 6937 Entry.Node = Size; 6938 Args.push_back(Entry); 6939 6940 RTLIB::Libcall LibraryCall = 6941 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6942 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6943 report_fatal_error("Unsupported element size"); 6944 6945 TargetLowering::CallLoweringInfo CLI(*this); 6946 CLI.setDebugLoc(dl) 6947 .setChain(Chain) 6948 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6949 Type::getVoidTy(*getContext()), 6950 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6951 TLI->getPointerTy(getDataLayout())), 6952 std::move(Args)) 6953 .setDiscardResult() 6954 .setTailCall(isTailCall); 6955 6956 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6957 return CallResult.second; 6958 } 6959 6960 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6961 SDValue Src, SDValue Size, Align Alignment, 6962 bool isVol, bool isTailCall, 6963 MachinePointerInfo DstPtrInfo, 6964 MachinePointerInfo SrcPtrInfo, 6965 const AAMDNodes &AAInfo) { 6966 // Check to see if we should lower the memmove to loads and stores first. 6967 // For cases within the target-specified limits, this is the best choice. 6968 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6969 if (ConstantSize) { 6970 // Memmove with size zero? Just return the original chain. 6971 if (ConstantSize->isZero()) 6972 return Chain; 6973 6974 SDValue Result = getMemmoveLoadsAndStores( 6975 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6976 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6977 if (Result.getNode()) 6978 return Result; 6979 } 6980 6981 // Then check to see if we should lower the memmove with target-specific 6982 // code. If the target chooses to do this, this is the next best. 6983 if (TSI) { 6984 SDValue Result = 6985 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6986 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6987 if (Result.getNode()) 6988 return Result; 6989 } 6990 6991 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6992 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6993 6994 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6995 // not be safe. See memcpy above for more details. 6996 6997 // Emit a library call. 6998 TargetLowering::ArgListTy Args; 6999 TargetLowering::ArgListEntry Entry; 7000 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7001 Entry.Node = Dst; Args.push_back(Entry); 7002 Entry.Node = Src; Args.push_back(Entry); 7003 7004 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7005 Entry.Node = Size; Args.push_back(Entry); 7006 // FIXME: pass in SDLoc 7007 TargetLowering::CallLoweringInfo CLI(*this); 7008 CLI.setDebugLoc(dl) 7009 .setChain(Chain) 7010 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7011 Dst.getValueType().getTypeForEVT(*getContext()), 7012 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7013 TLI->getPointerTy(getDataLayout())), 7014 std::move(Args)) 7015 .setDiscardResult() 7016 .setTailCall(isTailCall); 7017 7018 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7019 return CallResult.second; 7020 } 7021 7022 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7023 SDValue Dst, unsigned DstAlign, 7024 SDValue Src, unsigned SrcAlign, 7025 SDValue Size, Type *SizeTy, 7026 unsigned ElemSz, bool isTailCall, 7027 MachinePointerInfo DstPtrInfo, 7028 MachinePointerInfo SrcPtrInfo) { 7029 // Emit a library call. 7030 TargetLowering::ArgListTy Args; 7031 TargetLowering::ArgListEntry Entry; 7032 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7033 Entry.Node = Dst; 7034 Args.push_back(Entry); 7035 7036 Entry.Node = Src; 7037 Args.push_back(Entry); 7038 7039 Entry.Ty = SizeTy; 7040 Entry.Node = Size; 7041 Args.push_back(Entry); 7042 7043 RTLIB::Libcall LibraryCall = 7044 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7045 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7046 report_fatal_error("Unsupported element size"); 7047 7048 TargetLowering::CallLoweringInfo CLI(*this); 7049 CLI.setDebugLoc(dl) 7050 .setChain(Chain) 7051 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7052 Type::getVoidTy(*getContext()), 7053 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7054 TLI->getPointerTy(getDataLayout())), 7055 std::move(Args)) 7056 .setDiscardResult() 7057 .setTailCall(isTailCall); 7058 7059 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7060 return CallResult.second; 7061 } 7062 7063 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7064 SDValue Src, SDValue Size, Align Alignment, 7065 bool isVol, bool isTailCall, 7066 MachinePointerInfo DstPtrInfo, 7067 const AAMDNodes &AAInfo) { 7068 // Check to see if we should lower the memset to stores first. 7069 // For cases within the target-specified limits, this is the best choice. 7070 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7071 if (ConstantSize) { 7072 // Memset with size zero? Just return the original chain. 7073 if (ConstantSize->isZero()) 7074 return Chain; 7075 7076 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7077 ConstantSize->getZExtValue(), Alignment, 7078 isVol, DstPtrInfo, AAInfo); 7079 7080 if (Result.getNode()) 7081 return Result; 7082 } 7083 7084 // Then check to see if we should lower the memset with target-specific 7085 // code. If the target chooses to do this, this is the next best. 7086 if (TSI) { 7087 SDValue Result = TSI->EmitTargetCodeForMemset( 7088 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7089 if (Result.getNode()) 7090 return Result; 7091 } 7092 7093 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7094 7095 // Emit a library call. 7096 TargetLowering::ArgListTy Args; 7097 TargetLowering::ArgListEntry Entry; 7098 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7099 Args.push_back(Entry); 7100 Entry.Node = Src; 7101 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7102 Args.push_back(Entry); 7103 Entry.Node = Size; 7104 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7105 Args.push_back(Entry); 7106 7107 // FIXME: pass in SDLoc 7108 TargetLowering::CallLoweringInfo CLI(*this); 7109 CLI.setDebugLoc(dl) 7110 .setChain(Chain) 7111 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7112 Dst.getValueType().getTypeForEVT(*getContext()), 7113 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7114 TLI->getPointerTy(getDataLayout())), 7115 std::move(Args)) 7116 .setDiscardResult() 7117 .setTailCall(isTailCall); 7118 7119 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7120 return CallResult.second; 7121 } 7122 7123 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7124 SDValue Dst, unsigned DstAlign, 7125 SDValue Value, SDValue Size, Type *SizeTy, 7126 unsigned ElemSz, bool isTailCall, 7127 MachinePointerInfo DstPtrInfo) { 7128 // Emit a library call. 7129 TargetLowering::ArgListTy Args; 7130 TargetLowering::ArgListEntry Entry; 7131 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7132 Entry.Node = Dst; 7133 Args.push_back(Entry); 7134 7135 Entry.Ty = Type::getInt8Ty(*getContext()); 7136 Entry.Node = Value; 7137 Args.push_back(Entry); 7138 7139 Entry.Ty = SizeTy; 7140 Entry.Node = Size; 7141 Args.push_back(Entry); 7142 7143 RTLIB::Libcall LibraryCall = 7144 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7145 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7146 report_fatal_error("Unsupported element size"); 7147 7148 TargetLowering::CallLoweringInfo CLI(*this); 7149 CLI.setDebugLoc(dl) 7150 .setChain(Chain) 7151 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7152 Type::getVoidTy(*getContext()), 7153 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7154 TLI->getPointerTy(getDataLayout())), 7155 std::move(Args)) 7156 .setDiscardResult() 7157 .setTailCall(isTailCall); 7158 7159 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7160 return CallResult.second; 7161 } 7162 7163 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7164 SDVTList VTList, ArrayRef<SDValue> Ops, 7165 MachineMemOperand *MMO) { 7166 FoldingSetNodeID ID; 7167 ID.AddInteger(MemVT.getRawBits()); 7168 AddNodeIDNode(ID, Opcode, VTList, Ops); 7169 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7170 void* IP = nullptr; 7171 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7172 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7173 return SDValue(E, 0); 7174 } 7175 7176 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7177 VTList, MemVT, MMO); 7178 createOperands(N, Ops); 7179 7180 CSEMap.InsertNode(N, IP); 7181 InsertNode(N); 7182 return SDValue(N, 0); 7183 } 7184 7185 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7186 EVT MemVT, SDVTList VTs, SDValue Chain, 7187 SDValue Ptr, SDValue Cmp, SDValue Swp, 7188 MachineMemOperand *MMO) { 7189 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7190 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7191 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7192 7193 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7194 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7195 } 7196 7197 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7198 SDValue Chain, SDValue Ptr, SDValue Val, 7199 MachineMemOperand *MMO) { 7200 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7201 Opcode == ISD::ATOMIC_LOAD_SUB || 7202 Opcode == ISD::ATOMIC_LOAD_AND || 7203 Opcode == ISD::ATOMIC_LOAD_CLR || 7204 Opcode == ISD::ATOMIC_LOAD_OR || 7205 Opcode == ISD::ATOMIC_LOAD_XOR || 7206 Opcode == ISD::ATOMIC_LOAD_NAND || 7207 Opcode == ISD::ATOMIC_LOAD_MIN || 7208 Opcode == ISD::ATOMIC_LOAD_MAX || 7209 Opcode == ISD::ATOMIC_LOAD_UMIN || 7210 Opcode == ISD::ATOMIC_LOAD_UMAX || 7211 Opcode == ISD::ATOMIC_LOAD_FADD || 7212 Opcode == ISD::ATOMIC_LOAD_FSUB || 7213 Opcode == ISD::ATOMIC_SWAP || 7214 Opcode == ISD::ATOMIC_STORE) && 7215 "Invalid Atomic Op"); 7216 7217 EVT VT = Val.getValueType(); 7218 7219 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7220 getVTList(VT, MVT::Other); 7221 SDValue Ops[] = {Chain, Ptr, Val}; 7222 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7223 } 7224 7225 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7226 EVT VT, SDValue Chain, SDValue Ptr, 7227 MachineMemOperand *MMO) { 7228 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7229 7230 SDVTList VTs = getVTList(VT, MVT::Other); 7231 SDValue Ops[] = {Chain, Ptr}; 7232 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7233 } 7234 7235 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7236 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7237 if (Ops.size() == 1) 7238 return Ops[0]; 7239 7240 SmallVector<EVT, 4> VTs; 7241 VTs.reserve(Ops.size()); 7242 for (const SDValue &Op : Ops) 7243 VTs.push_back(Op.getValueType()); 7244 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7245 } 7246 7247 SDValue SelectionDAG::getMemIntrinsicNode( 7248 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7249 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7250 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7251 if (!Size && MemVT.isScalableVector()) 7252 Size = MemoryLocation::UnknownSize; 7253 else if (!Size) 7254 Size = MemVT.getStoreSize(); 7255 7256 MachineFunction &MF = getMachineFunction(); 7257 MachineMemOperand *MMO = 7258 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7259 7260 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7261 } 7262 7263 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7264 SDVTList VTList, 7265 ArrayRef<SDValue> Ops, EVT MemVT, 7266 MachineMemOperand *MMO) { 7267 assert((Opcode == ISD::INTRINSIC_VOID || 7268 Opcode == ISD::INTRINSIC_W_CHAIN || 7269 Opcode == ISD::PREFETCH || 7270 ((int)Opcode <= std::numeric_limits<int>::max() && 7271 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7272 "Opcode is not a memory-accessing opcode!"); 7273 7274 // Memoize the node unless it returns a flag. 7275 MemIntrinsicSDNode *N; 7276 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7277 FoldingSetNodeID ID; 7278 AddNodeIDNode(ID, Opcode, VTList, Ops); 7279 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7280 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7281 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7282 void *IP = nullptr; 7283 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7284 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7285 return SDValue(E, 0); 7286 } 7287 7288 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7289 VTList, MemVT, MMO); 7290 createOperands(N, Ops); 7291 7292 CSEMap.InsertNode(N, IP); 7293 } else { 7294 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7295 VTList, MemVT, MMO); 7296 createOperands(N, Ops); 7297 } 7298 InsertNode(N); 7299 SDValue V(N, 0); 7300 NewSDValueDbgMsg(V, "Creating new node: ", this); 7301 return V; 7302 } 7303 7304 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7305 SDValue Chain, int FrameIndex, 7306 int64_t Size, int64_t Offset) { 7307 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7308 const auto VTs = getVTList(MVT::Other); 7309 SDValue Ops[2] = { 7310 Chain, 7311 getFrameIndex(FrameIndex, 7312 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7313 true)}; 7314 7315 FoldingSetNodeID ID; 7316 AddNodeIDNode(ID, Opcode, VTs, Ops); 7317 ID.AddInteger(FrameIndex); 7318 ID.AddInteger(Size); 7319 ID.AddInteger(Offset); 7320 void *IP = nullptr; 7321 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7322 return SDValue(E, 0); 7323 7324 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7325 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7326 createOperands(N, Ops); 7327 CSEMap.InsertNode(N, IP); 7328 InsertNode(N); 7329 SDValue V(N, 0); 7330 NewSDValueDbgMsg(V, "Creating new node: ", this); 7331 return V; 7332 } 7333 7334 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7335 uint64_t Guid, uint64_t Index, 7336 uint32_t Attr) { 7337 const unsigned Opcode = ISD::PSEUDO_PROBE; 7338 const auto VTs = getVTList(MVT::Other); 7339 SDValue Ops[] = {Chain}; 7340 FoldingSetNodeID ID; 7341 AddNodeIDNode(ID, Opcode, VTs, Ops); 7342 ID.AddInteger(Guid); 7343 ID.AddInteger(Index); 7344 void *IP = nullptr; 7345 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7346 return SDValue(E, 0); 7347 7348 auto *N = newSDNode<PseudoProbeSDNode>( 7349 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7350 createOperands(N, Ops); 7351 CSEMap.InsertNode(N, IP); 7352 InsertNode(N); 7353 SDValue V(N, 0); 7354 NewSDValueDbgMsg(V, "Creating new node: ", this); 7355 return V; 7356 } 7357 7358 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7359 /// MachinePointerInfo record from it. This is particularly useful because the 7360 /// code generator has many cases where it doesn't bother passing in a 7361 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7362 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7363 SelectionDAG &DAG, SDValue Ptr, 7364 int64_t Offset = 0) { 7365 // If this is FI+Offset, we can model it. 7366 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7367 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7368 FI->getIndex(), Offset); 7369 7370 // If this is (FI+Offset1)+Offset2, we can model it. 7371 if (Ptr.getOpcode() != ISD::ADD || 7372 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7373 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7374 return Info; 7375 7376 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7377 return MachinePointerInfo::getFixedStack( 7378 DAG.getMachineFunction(), FI, 7379 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7380 } 7381 7382 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7383 /// MachinePointerInfo record from it. This is particularly useful because the 7384 /// code generator has many cases where it doesn't bother passing in a 7385 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7386 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7387 SelectionDAG &DAG, SDValue Ptr, 7388 SDValue OffsetOp) { 7389 // If the 'Offset' value isn't a constant, we can't handle this. 7390 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7391 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7392 if (OffsetOp.isUndef()) 7393 return InferPointerInfo(Info, DAG, Ptr); 7394 return Info; 7395 } 7396 7397 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7398 EVT VT, const SDLoc &dl, SDValue Chain, 7399 SDValue Ptr, SDValue Offset, 7400 MachinePointerInfo PtrInfo, EVT MemVT, 7401 Align Alignment, 7402 MachineMemOperand::Flags MMOFlags, 7403 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7404 assert(Chain.getValueType() == MVT::Other && 7405 "Invalid chain type"); 7406 7407 MMOFlags |= MachineMemOperand::MOLoad; 7408 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7409 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7410 // clients. 7411 if (PtrInfo.V.isNull()) 7412 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7413 7414 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7415 MachineFunction &MF = getMachineFunction(); 7416 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7417 Alignment, AAInfo, Ranges); 7418 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7419 } 7420 7421 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7422 EVT VT, const SDLoc &dl, SDValue Chain, 7423 SDValue Ptr, SDValue Offset, EVT MemVT, 7424 MachineMemOperand *MMO) { 7425 if (VT == MemVT) { 7426 ExtType = ISD::NON_EXTLOAD; 7427 } else if (ExtType == ISD::NON_EXTLOAD) { 7428 assert(VT == MemVT && "Non-extending load from different memory type!"); 7429 } else { 7430 // Extending load. 7431 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7432 "Should only be an extending load, not truncating!"); 7433 assert(VT.isInteger() == MemVT.isInteger() && 7434 "Cannot convert from FP to Int or Int -> FP!"); 7435 assert(VT.isVector() == MemVT.isVector() && 7436 "Cannot use an ext load to convert to or from a vector!"); 7437 assert((!VT.isVector() || 7438 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7439 "Cannot use an ext load to change the number of vector elements!"); 7440 } 7441 7442 bool Indexed = AM != ISD::UNINDEXED; 7443 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7444 7445 SDVTList VTs = Indexed ? 7446 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7447 SDValue Ops[] = { Chain, Ptr, Offset }; 7448 FoldingSetNodeID ID; 7449 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7450 ID.AddInteger(MemVT.getRawBits()); 7451 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7452 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7453 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7454 void *IP = nullptr; 7455 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7456 cast<LoadSDNode>(E)->refineAlignment(MMO); 7457 return SDValue(E, 0); 7458 } 7459 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7460 ExtType, MemVT, MMO); 7461 createOperands(N, Ops); 7462 7463 CSEMap.InsertNode(N, IP); 7464 InsertNode(N); 7465 SDValue V(N, 0); 7466 NewSDValueDbgMsg(V, "Creating new node: ", this); 7467 return V; 7468 } 7469 7470 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7471 SDValue Ptr, MachinePointerInfo PtrInfo, 7472 MaybeAlign Alignment, 7473 MachineMemOperand::Flags MMOFlags, 7474 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7475 SDValue Undef = getUNDEF(Ptr.getValueType()); 7476 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7477 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7478 } 7479 7480 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7481 SDValue Ptr, MachineMemOperand *MMO) { 7482 SDValue Undef = getUNDEF(Ptr.getValueType()); 7483 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7484 VT, MMO); 7485 } 7486 7487 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7488 EVT VT, SDValue Chain, SDValue Ptr, 7489 MachinePointerInfo PtrInfo, EVT MemVT, 7490 MaybeAlign Alignment, 7491 MachineMemOperand::Flags MMOFlags, 7492 const AAMDNodes &AAInfo) { 7493 SDValue Undef = getUNDEF(Ptr.getValueType()); 7494 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7495 MemVT, Alignment, MMOFlags, AAInfo); 7496 } 7497 7498 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7499 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7500 MachineMemOperand *MMO) { 7501 SDValue Undef = getUNDEF(Ptr.getValueType()); 7502 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7503 MemVT, MMO); 7504 } 7505 7506 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7507 SDValue Base, SDValue Offset, 7508 ISD::MemIndexedMode AM) { 7509 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7510 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7511 // Don't propagate the invariant or dereferenceable flags. 7512 auto MMOFlags = 7513 LD->getMemOperand()->getFlags() & 7514 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7515 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7516 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7517 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7518 } 7519 7520 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7521 SDValue Ptr, MachinePointerInfo PtrInfo, 7522 Align Alignment, 7523 MachineMemOperand::Flags MMOFlags, 7524 const AAMDNodes &AAInfo) { 7525 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7526 7527 MMOFlags |= MachineMemOperand::MOStore; 7528 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7529 7530 if (PtrInfo.V.isNull()) 7531 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7532 7533 MachineFunction &MF = getMachineFunction(); 7534 uint64_t Size = 7535 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7536 MachineMemOperand *MMO = 7537 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7538 return getStore(Chain, dl, Val, Ptr, MMO); 7539 } 7540 7541 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7542 SDValue Ptr, MachineMemOperand *MMO) { 7543 assert(Chain.getValueType() == MVT::Other && 7544 "Invalid chain type"); 7545 EVT VT = Val.getValueType(); 7546 SDVTList VTs = getVTList(MVT::Other); 7547 SDValue Undef = getUNDEF(Ptr.getValueType()); 7548 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7549 FoldingSetNodeID ID; 7550 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7551 ID.AddInteger(VT.getRawBits()); 7552 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7553 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7554 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7555 void *IP = nullptr; 7556 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7557 cast<StoreSDNode>(E)->refineAlignment(MMO); 7558 return SDValue(E, 0); 7559 } 7560 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7561 ISD::UNINDEXED, false, VT, MMO); 7562 createOperands(N, Ops); 7563 7564 CSEMap.InsertNode(N, IP); 7565 InsertNode(N); 7566 SDValue V(N, 0); 7567 NewSDValueDbgMsg(V, "Creating new node: ", this); 7568 return V; 7569 } 7570 7571 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7572 SDValue Ptr, MachinePointerInfo PtrInfo, 7573 EVT SVT, Align Alignment, 7574 MachineMemOperand::Flags MMOFlags, 7575 const AAMDNodes &AAInfo) { 7576 assert(Chain.getValueType() == MVT::Other && 7577 "Invalid chain type"); 7578 7579 MMOFlags |= MachineMemOperand::MOStore; 7580 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7581 7582 if (PtrInfo.V.isNull()) 7583 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7584 7585 MachineFunction &MF = getMachineFunction(); 7586 MachineMemOperand *MMO = MF.getMachineMemOperand( 7587 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7588 Alignment, AAInfo); 7589 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7590 } 7591 7592 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7593 SDValue Ptr, EVT SVT, 7594 MachineMemOperand *MMO) { 7595 EVT VT = Val.getValueType(); 7596 7597 assert(Chain.getValueType() == MVT::Other && 7598 "Invalid chain type"); 7599 if (VT == SVT) 7600 return getStore(Chain, dl, Val, Ptr, MMO); 7601 7602 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7603 "Should only be a truncating store, not extending!"); 7604 assert(VT.isInteger() == SVT.isInteger() && 7605 "Can't do FP-INT conversion!"); 7606 assert(VT.isVector() == SVT.isVector() && 7607 "Cannot use trunc store to convert to or from a vector!"); 7608 assert((!VT.isVector() || 7609 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7610 "Cannot use trunc store to change the number of vector elements!"); 7611 7612 SDVTList VTs = getVTList(MVT::Other); 7613 SDValue Undef = getUNDEF(Ptr.getValueType()); 7614 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7615 FoldingSetNodeID ID; 7616 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7617 ID.AddInteger(SVT.getRawBits()); 7618 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7619 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7620 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7621 void *IP = nullptr; 7622 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7623 cast<StoreSDNode>(E)->refineAlignment(MMO); 7624 return SDValue(E, 0); 7625 } 7626 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7627 ISD::UNINDEXED, true, SVT, MMO); 7628 createOperands(N, Ops); 7629 7630 CSEMap.InsertNode(N, IP); 7631 InsertNode(N); 7632 SDValue V(N, 0); 7633 NewSDValueDbgMsg(V, "Creating new node: ", this); 7634 return V; 7635 } 7636 7637 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7638 SDValue Base, SDValue Offset, 7639 ISD::MemIndexedMode AM) { 7640 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7641 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7642 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7643 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7644 FoldingSetNodeID ID; 7645 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7646 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7647 ID.AddInteger(ST->getRawSubclassData()); 7648 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7649 void *IP = nullptr; 7650 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7651 return SDValue(E, 0); 7652 7653 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7654 ST->isTruncatingStore(), ST->getMemoryVT(), 7655 ST->getMemOperand()); 7656 createOperands(N, Ops); 7657 7658 CSEMap.InsertNode(N, IP); 7659 InsertNode(N); 7660 SDValue V(N, 0); 7661 NewSDValueDbgMsg(V, "Creating new node: ", this); 7662 return V; 7663 } 7664 7665 SDValue SelectionDAG::getLoadVP( 7666 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7667 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7668 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7669 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7670 const MDNode *Ranges, bool IsExpanding) { 7671 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7672 7673 MMOFlags |= MachineMemOperand::MOLoad; 7674 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7675 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7676 // clients. 7677 if (PtrInfo.V.isNull()) 7678 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7679 7680 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7681 MachineFunction &MF = getMachineFunction(); 7682 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7683 Alignment, AAInfo, Ranges); 7684 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7685 MMO, IsExpanding); 7686 } 7687 7688 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7689 ISD::LoadExtType ExtType, EVT VT, 7690 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7691 SDValue Offset, SDValue Mask, SDValue EVL, 7692 EVT MemVT, MachineMemOperand *MMO, 7693 bool IsExpanding) { 7694 if (VT == MemVT) { 7695 ExtType = ISD::NON_EXTLOAD; 7696 } else if (ExtType == ISD::NON_EXTLOAD) { 7697 assert(VT == MemVT && "Non-extending load from different memory type!"); 7698 } else { 7699 // Extending load. 7700 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7701 "Should only be an extending load, not truncating!"); 7702 assert(VT.isInteger() == MemVT.isInteger() && 7703 "Cannot convert from FP to Int or Int -> FP!"); 7704 assert(VT.isVector() == MemVT.isVector() && 7705 "Cannot use an ext load to convert to or from a vector!"); 7706 assert((!VT.isVector() || 7707 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7708 "Cannot use an ext load to change the number of vector elements!"); 7709 } 7710 7711 bool Indexed = AM != ISD::UNINDEXED; 7712 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7713 7714 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7715 : getVTList(VT, MVT::Other); 7716 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7717 FoldingSetNodeID ID; 7718 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7719 ID.AddInteger(VT.getRawBits()); 7720 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7721 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7722 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7723 void *IP = nullptr; 7724 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7725 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7726 return SDValue(E, 0); 7727 } 7728 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7729 ExtType, IsExpanding, MemVT, MMO); 7730 createOperands(N, Ops); 7731 7732 CSEMap.InsertNode(N, IP); 7733 InsertNode(N); 7734 SDValue V(N, 0); 7735 NewSDValueDbgMsg(V, "Creating new node: ", this); 7736 return V; 7737 } 7738 7739 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7740 SDValue Ptr, SDValue Mask, SDValue EVL, 7741 MachinePointerInfo PtrInfo, 7742 MaybeAlign Alignment, 7743 MachineMemOperand::Flags MMOFlags, 7744 const AAMDNodes &AAInfo, const MDNode *Ranges, 7745 bool IsExpanding) { 7746 SDValue Undef = getUNDEF(Ptr.getValueType()); 7747 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7748 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7749 IsExpanding); 7750 } 7751 7752 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7753 SDValue Ptr, SDValue Mask, SDValue EVL, 7754 MachineMemOperand *MMO, bool IsExpanding) { 7755 SDValue Undef = getUNDEF(Ptr.getValueType()); 7756 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7757 Mask, EVL, VT, MMO, IsExpanding); 7758 } 7759 7760 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7761 EVT VT, SDValue Chain, SDValue Ptr, 7762 SDValue Mask, SDValue EVL, 7763 MachinePointerInfo PtrInfo, EVT MemVT, 7764 MaybeAlign Alignment, 7765 MachineMemOperand::Flags MMOFlags, 7766 const AAMDNodes &AAInfo, bool IsExpanding) { 7767 SDValue Undef = getUNDEF(Ptr.getValueType()); 7768 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7769 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7770 IsExpanding); 7771 } 7772 7773 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7774 EVT VT, SDValue Chain, SDValue Ptr, 7775 SDValue Mask, SDValue EVL, EVT MemVT, 7776 MachineMemOperand *MMO, bool IsExpanding) { 7777 SDValue Undef = getUNDEF(Ptr.getValueType()); 7778 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7779 EVL, MemVT, MMO, IsExpanding); 7780 } 7781 7782 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7783 SDValue Base, SDValue Offset, 7784 ISD::MemIndexedMode AM) { 7785 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7786 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7787 // Don't propagate the invariant or dereferenceable flags. 7788 auto MMOFlags = 7789 LD->getMemOperand()->getFlags() & 7790 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7791 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7792 LD->getChain(), Base, Offset, LD->getMask(), 7793 LD->getVectorLength(), LD->getPointerInfo(), 7794 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7795 nullptr, LD->isExpandingLoad()); 7796 } 7797 7798 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7799 SDValue Ptr, SDValue Mask, SDValue EVL, 7800 MachinePointerInfo PtrInfo, Align Alignment, 7801 MachineMemOperand::Flags MMOFlags, 7802 const AAMDNodes &AAInfo, bool IsCompressing) { 7803 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7804 7805 MMOFlags |= MachineMemOperand::MOStore; 7806 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7807 7808 if (PtrInfo.V.isNull()) 7809 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7810 7811 MachineFunction &MF = getMachineFunction(); 7812 uint64_t Size = 7813 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7814 MachineMemOperand *MMO = 7815 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7816 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7817 } 7818 7819 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7820 SDValue Ptr, SDValue Mask, SDValue EVL, 7821 MachineMemOperand *MMO, bool IsCompressing) { 7822 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7823 EVT VT = Val.getValueType(); 7824 SDVTList VTs = getVTList(MVT::Other); 7825 SDValue Undef = getUNDEF(Ptr.getValueType()); 7826 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7827 FoldingSetNodeID ID; 7828 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7829 ID.AddInteger(VT.getRawBits()); 7830 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7831 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7832 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7833 void *IP = nullptr; 7834 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7835 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7836 return SDValue(E, 0); 7837 } 7838 auto *N = 7839 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7840 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7841 createOperands(N, Ops); 7842 7843 CSEMap.InsertNode(N, IP); 7844 InsertNode(N); 7845 SDValue V(N, 0); 7846 NewSDValueDbgMsg(V, "Creating new node: ", this); 7847 return V; 7848 } 7849 7850 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7851 SDValue Val, SDValue Ptr, SDValue Mask, 7852 SDValue EVL, MachinePointerInfo PtrInfo, 7853 EVT SVT, Align Alignment, 7854 MachineMemOperand::Flags MMOFlags, 7855 const AAMDNodes &AAInfo, 7856 bool IsCompressing) { 7857 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7858 7859 MMOFlags |= MachineMemOperand::MOStore; 7860 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7861 7862 if (PtrInfo.V.isNull()) 7863 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7864 7865 MachineFunction &MF = getMachineFunction(); 7866 MachineMemOperand *MMO = MF.getMachineMemOperand( 7867 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7868 Alignment, AAInfo); 7869 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7870 IsCompressing); 7871 } 7872 7873 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7874 SDValue Val, SDValue Ptr, SDValue Mask, 7875 SDValue EVL, EVT SVT, 7876 MachineMemOperand *MMO, 7877 bool IsCompressing) { 7878 EVT VT = Val.getValueType(); 7879 7880 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7881 if (VT == SVT) 7882 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7883 7884 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7885 "Should only be a truncating store, not extending!"); 7886 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7887 assert(VT.isVector() == SVT.isVector() && 7888 "Cannot use trunc store to convert to or from a vector!"); 7889 assert((!VT.isVector() || 7890 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7891 "Cannot use trunc store to change the number of vector elements!"); 7892 7893 SDVTList VTs = getVTList(MVT::Other); 7894 SDValue Undef = getUNDEF(Ptr.getValueType()); 7895 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7896 FoldingSetNodeID ID; 7897 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7898 ID.AddInteger(SVT.getRawBits()); 7899 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7900 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7901 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7902 void *IP = nullptr; 7903 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7904 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7905 return SDValue(E, 0); 7906 } 7907 auto *N = 7908 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7909 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7910 createOperands(N, Ops); 7911 7912 CSEMap.InsertNode(N, IP); 7913 InsertNode(N); 7914 SDValue V(N, 0); 7915 NewSDValueDbgMsg(V, "Creating new node: ", this); 7916 return V; 7917 } 7918 7919 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7920 SDValue Base, SDValue Offset, 7921 ISD::MemIndexedMode AM) { 7922 auto *ST = cast<VPStoreSDNode>(OrigStore); 7923 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7924 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7925 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7926 Offset, ST->getMask(), ST->getVectorLength()}; 7927 FoldingSetNodeID ID; 7928 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7929 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7930 ID.AddInteger(ST->getRawSubclassData()); 7931 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7932 void *IP = nullptr; 7933 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7934 return SDValue(E, 0); 7935 7936 auto *N = newSDNode<VPStoreSDNode>( 7937 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7938 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7939 createOperands(N, Ops); 7940 7941 CSEMap.InsertNode(N, IP); 7942 InsertNode(N); 7943 SDValue V(N, 0); 7944 NewSDValueDbgMsg(V, "Creating new node: ", this); 7945 return V; 7946 } 7947 7948 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7949 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7950 ISD::MemIndexType IndexType) { 7951 assert(Ops.size() == 6 && "Incompatible number of operands"); 7952 7953 FoldingSetNodeID ID; 7954 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7955 ID.AddInteger(VT.getRawBits()); 7956 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7957 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7958 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7959 void *IP = nullptr; 7960 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7961 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7962 return SDValue(E, 0); 7963 } 7964 7965 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7966 VT, MMO, IndexType); 7967 createOperands(N, Ops); 7968 7969 assert(N->getMask().getValueType().getVectorElementCount() == 7970 N->getValueType(0).getVectorElementCount() && 7971 "Vector width mismatch between mask and data"); 7972 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7973 N->getValueType(0).getVectorElementCount().isScalable() && 7974 "Scalable flags of index and data do not match"); 7975 assert(ElementCount::isKnownGE( 7976 N->getIndex().getValueType().getVectorElementCount(), 7977 N->getValueType(0).getVectorElementCount()) && 7978 "Vector width mismatch between index and data"); 7979 assert(isa<ConstantSDNode>(N->getScale()) && 7980 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7981 "Scale should be a constant power of 2"); 7982 7983 CSEMap.InsertNode(N, IP); 7984 InsertNode(N); 7985 SDValue V(N, 0); 7986 NewSDValueDbgMsg(V, "Creating new node: ", this); 7987 return V; 7988 } 7989 7990 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7991 ArrayRef<SDValue> Ops, 7992 MachineMemOperand *MMO, 7993 ISD::MemIndexType IndexType) { 7994 assert(Ops.size() == 7 && "Incompatible number of operands"); 7995 7996 FoldingSetNodeID ID; 7997 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7998 ID.AddInteger(VT.getRawBits()); 7999 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8000 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8001 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8002 void *IP = nullptr; 8003 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8004 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8005 return SDValue(E, 0); 8006 } 8007 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8008 VT, MMO, IndexType); 8009 createOperands(N, Ops); 8010 8011 assert(N->getMask().getValueType().getVectorElementCount() == 8012 N->getValue().getValueType().getVectorElementCount() && 8013 "Vector width mismatch between mask and data"); 8014 assert( 8015 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8016 N->getValue().getValueType().getVectorElementCount().isScalable() && 8017 "Scalable flags of index and data do not match"); 8018 assert(ElementCount::isKnownGE( 8019 N->getIndex().getValueType().getVectorElementCount(), 8020 N->getValue().getValueType().getVectorElementCount()) && 8021 "Vector width mismatch between index and data"); 8022 assert(isa<ConstantSDNode>(N->getScale()) && 8023 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8024 "Scale should be a constant power of 2"); 8025 8026 CSEMap.InsertNode(N, IP); 8027 InsertNode(N); 8028 SDValue V(N, 0); 8029 NewSDValueDbgMsg(V, "Creating new node: ", this); 8030 return V; 8031 } 8032 8033 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8034 SDValue Base, SDValue Offset, SDValue Mask, 8035 SDValue PassThru, EVT MemVT, 8036 MachineMemOperand *MMO, 8037 ISD::MemIndexedMode AM, 8038 ISD::LoadExtType ExtTy, bool isExpanding) { 8039 bool Indexed = AM != ISD::UNINDEXED; 8040 assert((Indexed || Offset.isUndef()) && 8041 "Unindexed masked load with an offset!"); 8042 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8043 : getVTList(VT, MVT::Other); 8044 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8045 FoldingSetNodeID ID; 8046 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8047 ID.AddInteger(MemVT.getRawBits()); 8048 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8049 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8050 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8051 void *IP = nullptr; 8052 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8053 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8054 return SDValue(E, 0); 8055 } 8056 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8057 AM, ExtTy, isExpanding, MemVT, MMO); 8058 createOperands(N, Ops); 8059 8060 CSEMap.InsertNode(N, IP); 8061 InsertNode(N); 8062 SDValue V(N, 0); 8063 NewSDValueDbgMsg(V, "Creating new node: ", this); 8064 return V; 8065 } 8066 8067 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8068 SDValue Base, SDValue Offset, 8069 ISD::MemIndexedMode AM) { 8070 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8071 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8072 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8073 Offset, LD->getMask(), LD->getPassThru(), 8074 LD->getMemoryVT(), LD->getMemOperand(), AM, 8075 LD->getExtensionType(), LD->isExpandingLoad()); 8076 } 8077 8078 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8079 SDValue Val, SDValue Base, SDValue Offset, 8080 SDValue Mask, EVT MemVT, 8081 MachineMemOperand *MMO, 8082 ISD::MemIndexedMode AM, bool IsTruncating, 8083 bool IsCompressing) { 8084 assert(Chain.getValueType() == MVT::Other && 8085 "Invalid chain type"); 8086 bool Indexed = AM != ISD::UNINDEXED; 8087 assert((Indexed || Offset.isUndef()) && 8088 "Unindexed masked store with an offset!"); 8089 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8090 : getVTList(MVT::Other); 8091 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8092 FoldingSetNodeID ID; 8093 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8094 ID.AddInteger(MemVT.getRawBits()); 8095 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8096 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8097 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8098 void *IP = nullptr; 8099 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8100 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8101 return SDValue(E, 0); 8102 } 8103 auto *N = 8104 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8105 IsTruncating, IsCompressing, MemVT, MMO); 8106 createOperands(N, Ops); 8107 8108 CSEMap.InsertNode(N, IP); 8109 InsertNode(N); 8110 SDValue V(N, 0); 8111 NewSDValueDbgMsg(V, "Creating new node: ", this); 8112 return V; 8113 } 8114 8115 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8116 SDValue Base, SDValue Offset, 8117 ISD::MemIndexedMode AM) { 8118 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8119 assert(ST->getOffset().isUndef() && 8120 "Masked store is already a indexed store!"); 8121 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8122 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8123 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8124 } 8125 8126 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8127 ArrayRef<SDValue> Ops, 8128 MachineMemOperand *MMO, 8129 ISD::MemIndexType IndexType, 8130 ISD::LoadExtType ExtTy) { 8131 assert(Ops.size() == 6 && "Incompatible number of operands"); 8132 8133 FoldingSetNodeID ID; 8134 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8135 ID.AddInteger(MemVT.getRawBits()); 8136 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8137 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8138 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8139 void *IP = nullptr; 8140 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8141 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8142 return SDValue(E, 0); 8143 } 8144 8145 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8146 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8147 VTs, MemVT, MMO, IndexType, ExtTy); 8148 createOperands(N, Ops); 8149 8150 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8151 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8152 assert(N->getMask().getValueType().getVectorElementCount() == 8153 N->getValueType(0).getVectorElementCount() && 8154 "Vector width mismatch between mask and data"); 8155 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8156 N->getValueType(0).getVectorElementCount().isScalable() && 8157 "Scalable flags of index and data do not match"); 8158 assert(ElementCount::isKnownGE( 8159 N->getIndex().getValueType().getVectorElementCount(), 8160 N->getValueType(0).getVectorElementCount()) && 8161 "Vector width mismatch between index and data"); 8162 assert(isa<ConstantSDNode>(N->getScale()) && 8163 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8164 "Scale should be a constant power of 2"); 8165 8166 CSEMap.InsertNode(N, IP); 8167 InsertNode(N); 8168 SDValue V(N, 0); 8169 NewSDValueDbgMsg(V, "Creating new node: ", this); 8170 return V; 8171 } 8172 8173 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8174 ArrayRef<SDValue> Ops, 8175 MachineMemOperand *MMO, 8176 ISD::MemIndexType IndexType, 8177 bool IsTrunc) { 8178 assert(Ops.size() == 6 && "Incompatible number of operands"); 8179 8180 FoldingSetNodeID ID; 8181 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8182 ID.AddInteger(MemVT.getRawBits()); 8183 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8184 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8185 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8186 void *IP = nullptr; 8187 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8188 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8189 return SDValue(E, 0); 8190 } 8191 8192 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8193 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8194 VTs, MemVT, MMO, IndexType, IsTrunc); 8195 createOperands(N, Ops); 8196 8197 assert(N->getMask().getValueType().getVectorElementCount() == 8198 N->getValue().getValueType().getVectorElementCount() && 8199 "Vector width mismatch between mask and data"); 8200 assert( 8201 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8202 N->getValue().getValueType().getVectorElementCount().isScalable() && 8203 "Scalable flags of index and data do not match"); 8204 assert(ElementCount::isKnownGE( 8205 N->getIndex().getValueType().getVectorElementCount(), 8206 N->getValue().getValueType().getVectorElementCount()) && 8207 "Vector width mismatch between index and data"); 8208 assert(isa<ConstantSDNode>(N->getScale()) && 8209 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8210 "Scale should be a constant power of 2"); 8211 8212 CSEMap.InsertNode(N, IP); 8213 InsertNode(N); 8214 SDValue V(N, 0); 8215 NewSDValueDbgMsg(V, "Creating new node: ", this); 8216 return V; 8217 } 8218 8219 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8220 // select undef, T, F --> T (if T is a constant), otherwise F 8221 // select, ?, undef, F --> F 8222 // select, ?, T, undef --> T 8223 if (Cond.isUndef()) 8224 return isConstantValueOfAnyType(T) ? T : F; 8225 if (T.isUndef()) 8226 return F; 8227 if (F.isUndef()) 8228 return T; 8229 8230 // select true, T, F --> T 8231 // select false, T, F --> F 8232 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8233 return CondC->isZero() ? F : T; 8234 8235 // TODO: This should simplify VSELECT with constant condition using something 8236 // like this (but check boolean contents to be complete?): 8237 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8238 // return T; 8239 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8240 // return F; 8241 8242 // select ?, T, T --> T 8243 if (T == F) 8244 return T; 8245 8246 return SDValue(); 8247 } 8248 8249 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8250 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8251 if (X.isUndef()) 8252 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8253 // shift X, undef --> undef (because it may shift by the bitwidth) 8254 if (Y.isUndef()) 8255 return getUNDEF(X.getValueType()); 8256 8257 // shift 0, Y --> 0 8258 // shift X, 0 --> X 8259 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8260 return X; 8261 8262 // shift X, C >= bitwidth(X) --> undef 8263 // All vector elements must be too big (or undef) to avoid partial undefs. 8264 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8265 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8266 }; 8267 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8268 return getUNDEF(X.getValueType()); 8269 8270 return SDValue(); 8271 } 8272 8273 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8274 SDNodeFlags Flags) { 8275 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8276 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8277 // operation is poison. That result can be relaxed to undef. 8278 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8279 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8280 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8281 (YC && YC->getValueAPF().isNaN()); 8282 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8283 (YC && YC->getValueAPF().isInfinity()); 8284 8285 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8286 return getUNDEF(X.getValueType()); 8287 8288 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8289 return getUNDEF(X.getValueType()); 8290 8291 if (!YC) 8292 return SDValue(); 8293 8294 // X + -0.0 --> X 8295 if (Opcode == ISD::FADD) 8296 if (YC->getValueAPF().isNegZero()) 8297 return X; 8298 8299 // X - +0.0 --> X 8300 if (Opcode == ISD::FSUB) 8301 if (YC->getValueAPF().isPosZero()) 8302 return X; 8303 8304 // X * 1.0 --> X 8305 // X / 1.0 --> X 8306 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8307 if (YC->getValueAPF().isExactlyValue(1.0)) 8308 return X; 8309 8310 // X * 0.0 --> 0.0 8311 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8312 if (YC->getValueAPF().isZero()) 8313 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8314 8315 return SDValue(); 8316 } 8317 8318 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8319 SDValue Ptr, SDValue SV, unsigned Align) { 8320 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8321 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8322 } 8323 8324 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8325 ArrayRef<SDUse> Ops) { 8326 switch (Ops.size()) { 8327 case 0: return getNode(Opcode, DL, VT); 8328 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8329 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8330 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8331 default: break; 8332 } 8333 8334 // Copy from an SDUse array into an SDValue array for use with 8335 // the regular getNode logic. 8336 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8337 return getNode(Opcode, DL, VT, NewOps); 8338 } 8339 8340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8341 ArrayRef<SDValue> Ops) { 8342 SDNodeFlags Flags; 8343 if (Inserter) 8344 Flags = Inserter->getFlags(); 8345 return getNode(Opcode, DL, VT, Ops, Flags); 8346 } 8347 8348 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8349 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8350 unsigned NumOps = Ops.size(); 8351 switch (NumOps) { 8352 case 0: return getNode(Opcode, DL, VT); 8353 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8354 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8355 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8356 default: break; 8357 } 8358 8359 #ifndef NDEBUG 8360 for (auto &Op : Ops) 8361 assert(Op.getOpcode() != ISD::DELETED_NODE && 8362 "Operand is DELETED_NODE!"); 8363 #endif 8364 8365 switch (Opcode) { 8366 default: break; 8367 case ISD::BUILD_VECTOR: 8368 // Attempt to simplify BUILD_VECTOR. 8369 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8370 return V; 8371 break; 8372 case ISD::CONCAT_VECTORS: 8373 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8374 return V; 8375 break; 8376 case ISD::SELECT_CC: 8377 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8378 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8379 "LHS and RHS of condition must have same type!"); 8380 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8381 "True and False arms of SelectCC must have same type!"); 8382 assert(Ops[2].getValueType() == VT && 8383 "select_cc node must be of same type as true and false value!"); 8384 break; 8385 case ISD::BR_CC: 8386 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8387 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8388 "LHS/RHS of comparison should match types!"); 8389 break; 8390 } 8391 8392 // Memoize nodes. 8393 SDNode *N; 8394 SDVTList VTs = getVTList(VT); 8395 8396 if (VT != MVT::Glue) { 8397 FoldingSetNodeID ID; 8398 AddNodeIDNode(ID, Opcode, VTs, Ops); 8399 void *IP = nullptr; 8400 8401 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8402 return SDValue(E, 0); 8403 8404 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8405 createOperands(N, Ops); 8406 8407 CSEMap.InsertNode(N, IP); 8408 } else { 8409 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8410 createOperands(N, Ops); 8411 } 8412 8413 N->setFlags(Flags); 8414 InsertNode(N); 8415 SDValue V(N, 0); 8416 NewSDValueDbgMsg(V, "Creating new node: ", this); 8417 return V; 8418 } 8419 8420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8421 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8422 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8423 } 8424 8425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8426 ArrayRef<SDValue> Ops) { 8427 SDNodeFlags Flags; 8428 if (Inserter) 8429 Flags = Inserter->getFlags(); 8430 return getNode(Opcode, DL, VTList, Ops, Flags); 8431 } 8432 8433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8434 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8435 if (VTList.NumVTs == 1) 8436 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8437 8438 #ifndef NDEBUG 8439 for (auto &Op : Ops) 8440 assert(Op.getOpcode() != ISD::DELETED_NODE && 8441 "Operand is DELETED_NODE!"); 8442 #endif 8443 8444 switch (Opcode) { 8445 case ISD::STRICT_FP_EXTEND: 8446 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8447 "Invalid STRICT_FP_EXTEND!"); 8448 assert(VTList.VTs[0].isFloatingPoint() && 8449 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8450 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8451 "STRICT_FP_EXTEND result type should be vector iff the operand " 8452 "type is vector!"); 8453 assert((!VTList.VTs[0].isVector() || 8454 VTList.VTs[0].getVectorNumElements() == 8455 Ops[1].getValueType().getVectorNumElements()) && 8456 "Vector element count mismatch!"); 8457 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8458 "Invalid fpext node, dst <= src!"); 8459 break; 8460 case ISD::STRICT_FP_ROUND: 8461 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8462 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8463 "STRICT_FP_ROUND result type should be vector iff the operand " 8464 "type is vector!"); 8465 assert((!VTList.VTs[0].isVector() || 8466 VTList.VTs[0].getVectorNumElements() == 8467 Ops[1].getValueType().getVectorNumElements()) && 8468 "Vector element count mismatch!"); 8469 assert(VTList.VTs[0].isFloatingPoint() && 8470 Ops[1].getValueType().isFloatingPoint() && 8471 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8472 isa<ConstantSDNode>(Ops[2]) && 8473 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8474 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8475 "Invalid STRICT_FP_ROUND!"); 8476 break; 8477 #if 0 8478 // FIXME: figure out how to safely handle things like 8479 // int foo(int x) { return 1 << (x & 255); } 8480 // int bar() { return foo(256); } 8481 case ISD::SRA_PARTS: 8482 case ISD::SRL_PARTS: 8483 case ISD::SHL_PARTS: 8484 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8485 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8486 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8487 else if (N3.getOpcode() == ISD::AND) 8488 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8489 // If the and is only masking out bits that cannot effect the shift, 8490 // eliminate the and. 8491 unsigned NumBits = VT.getScalarSizeInBits()*2; 8492 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8493 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8494 } 8495 break; 8496 #endif 8497 } 8498 8499 // Memoize the node unless it returns a flag. 8500 SDNode *N; 8501 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8502 FoldingSetNodeID ID; 8503 AddNodeIDNode(ID, Opcode, VTList, Ops); 8504 void *IP = nullptr; 8505 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8506 return SDValue(E, 0); 8507 8508 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8509 createOperands(N, Ops); 8510 CSEMap.InsertNode(N, IP); 8511 } else { 8512 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8513 createOperands(N, Ops); 8514 } 8515 8516 N->setFlags(Flags); 8517 InsertNode(N); 8518 SDValue V(N, 0); 8519 NewSDValueDbgMsg(V, "Creating new node: ", this); 8520 return V; 8521 } 8522 8523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8524 SDVTList VTList) { 8525 return getNode(Opcode, DL, VTList, None); 8526 } 8527 8528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8529 SDValue N1) { 8530 SDValue Ops[] = { N1 }; 8531 return getNode(Opcode, DL, VTList, Ops); 8532 } 8533 8534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8535 SDValue N1, SDValue N2) { 8536 SDValue Ops[] = { N1, N2 }; 8537 return getNode(Opcode, DL, VTList, Ops); 8538 } 8539 8540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8541 SDValue N1, SDValue N2, SDValue N3) { 8542 SDValue Ops[] = { N1, N2, N3 }; 8543 return getNode(Opcode, DL, VTList, Ops); 8544 } 8545 8546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8547 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8548 SDValue Ops[] = { N1, N2, N3, N4 }; 8549 return getNode(Opcode, DL, VTList, Ops); 8550 } 8551 8552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8553 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8554 SDValue N5) { 8555 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8556 return getNode(Opcode, DL, VTList, Ops); 8557 } 8558 8559 SDVTList SelectionDAG::getVTList(EVT VT) { 8560 return makeVTList(SDNode::getValueTypeList(VT), 1); 8561 } 8562 8563 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8564 FoldingSetNodeID ID; 8565 ID.AddInteger(2U); 8566 ID.AddInteger(VT1.getRawBits()); 8567 ID.AddInteger(VT2.getRawBits()); 8568 8569 void *IP = nullptr; 8570 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8571 if (!Result) { 8572 EVT *Array = Allocator.Allocate<EVT>(2); 8573 Array[0] = VT1; 8574 Array[1] = VT2; 8575 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8576 VTListMap.InsertNode(Result, IP); 8577 } 8578 return Result->getSDVTList(); 8579 } 8580 8581 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8582 FoldingSetNodeID ID; 8583 ID.AddInteger(3U); 8584 ID.AddInteger(VT1.getRawBits()); 8585 ID.AddInteger(VT2.getRawBits()); 8586 ID.AddInteger(VT3.getRawBits()); 8587 8588 void *IP = nullptr; 8589 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8590 if (!Result) { 8591 EVT *Array = Allocator.Allocate<EVT>(3); 8592 Array[0] = VT1; 8593 Array[1] = VT2; 8594 Array[2] = VT3; 8595 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8596 VTListMap.InsertNode(Result, IP); 8597 } 8598 return Result->getSDVTList(); 8599 } 8600 8601 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8602 FoldingSetNodeID ID; 8603 ID.AddInteger(4U); 8604 ID.AddInteger(VT1.getRawBits()); 8605 ID.AddInteger(VT2.getRawBits()); 8606 ID.AddInteger(VT3.getRawBits()); 8607 ID.AddInteger(VT4.getRawBits()); 8608 8609 void *IP = nullptr; 8610 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8611 if (!Result) { 8612 EVT *Array = Allocator.Allocate<EVT>(4); 8613 Array[0] = VT1; 8614 Array[1] = VT2; 8615 Array[2] = VT3; 8616 Array[3] = VT4; 8617 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8618 VTListMap.InsertNode(Result, IP); 8619 } 8620 return Result->getSDVTList(); 8621 } 8622 8623 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8624 unsigned NumVTs = VTs.size(); 8625 FoldingSetNodeID ID; 8626 ID.AddInteger(NumVTs); 8627 for (unsigned index = 0; index < NumVTs; index++) { 8628 ID.AddInteger(VTs[index].getRawBits()); 8629 } 8630 8631 void *IP = nullptr; 8632 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8633 if (!Result) { 8634 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8635 llvm::copy(VTs, Array); 8636 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8637 VTListMap.InsertNode(Result, IP); 8638 } 8639 return Result->getSDVTList(); 8640 } 8641 8642 8643 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8644 /// specified operands. If the resultant node already exists in the DAG, 8645 /// this does not modify the specified node, instead it returns the node that 8646 /// already exists. If the resultant node does not exist in the DAG, the 8647 /// input node is returned. As a degenerate case, if you specify the same 8648 /// input operands as the node already has, the input node is returned. 8649 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8650 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8651 8652 // Check to see if there is no change. 8653 if (Op == N->getOperand(0)) return N; 8654 8655 // See if the modified node already exists. 8656 void *InsertPos = nullptr; 8657 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8658 return Existing; 8659 8660 // Nope it doesn't. Remove the node from its current place in the maps. 8661 if (InsertPos) 8662 if (!RemoveNodeFromCSEMaps(N)) 8663 InsertPos = nullptr; 8664 8665 // Now we update the operands. 8666 N->OperandList[0].set(Op); 8667 8668 updateDivergence(N); 8669 // If this gets put into a CSE map, add it. 8670 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8671 return N; 8672 } 8673 8674 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8675 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8676 8677 // Check to see if there is no change. 8678 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8679 return N; // No operands changed, just return the input node. 8680 8681 // See if the modified node already exists. 8682 void *InsertPos = nullptr; 8683 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8684 return Existing; 8685 8686 // Nope it doesn't. Remove the node from its current place in the maps. 8687 if (InsertPos) 8688 if (!RemoveNodeFromCSEMaps(N)) 8689 InsertPos = nullptr; 8690 8691 // Now we update the operands. 8692 if (N->OperandList[0] != Op1) 8693 N->OperandList[0].set(Op1); 8694 if (N->OperandList[1] != Op2) 8695 N->OperandList[1].set(Op2); 8696 8697 updateDivergence(N); 8698 // If this gets put into a CSE map, add it. 8699 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8700 return N; 8701 } 8702 8703 SDNode *SelectionDAG:: 8704 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8705 SDValue Ops[] = { Op1, Op2, Op3 }; 8706 return UpdateNodeOperands(N, Ops); 8707 } 8708 8709 SDNode *SelectionDAG:: 8710 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8711 SDValue Op3, SDValue Op4) { 8712 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8713 return UpdateNodeOperands(N, Ops); 8714 } 8715 8716 SDNode *SelectionDAG:: 8717 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8718 SDValue Op3, SDValue Op4, SDValue Op5) { 8719 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8720 return UpdateNodeOperands(N, Ops); 8721 } 8722 8723 SDNode *SelectionDAG:: 8724 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8725 unsigned NumOps = Ops.size(); 8726 assert(N->getNumOperands() == NumOps && 8727 "Update with wrong number of operands"); 8728 8729 // If no operands changed just return the input node. 8730 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8731 return N; 8732 8733 // See if the modified node already exists. 8734 void *InsertPos = nullptr; 8735 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8736 return Existing; 8737 8738 // Nope it doesn't. Remove the node from its current place in the maps. 8739 if (InsertPos) 8740 if (!RemoveNodeFromCSEMaps(N)) 8741 InsertPos = nullptr; 8742 8743 // Now we update the operands. 8744 for (unsigned i = 0; i != NumOps; ++i) 8745 if (N->OperandList[i] != Ops[i]) 8746 N->OperandList[i].set(Ops[i]); 8747 8748 updateDivergence(N); 8749 // If this gets put into a CSE map, add it. 8750 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8751 return N; 8752 } 8753 8754 /// DropOperands - Release the operands and set this node to have 8755 /// zero operands. 8756 void SDNode::DropOperands() { 8757 // Unlike the code in MorphNodeTo that does this, we don't need to 8758 // watch for dead nodes here. 8759 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8760 SDUse &Use = *I++; 8761 Use.set(SDValue()); 8762 } 8763 } 8764 8765 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8766 ArrayRef<MachineMemOperand *> NewMemRefs) { 8767 if (NewMemRefs.empty()) { 8768 N->clearMemRefs(); 8769 return; 8770 } 8771 8772 // Check if we can avoid allocating by storing a single reference directly. 8773 if (NewMemRefs.size() == 1) { 8774 N->MemRefs = NewMemRefs[0]; 8775 N->NumMemRefs = 1; 8776 return; 8777 } 8778 8779 MachineMemOperand **MemRefsBuffer = 8780 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8781 llvm::copy(NewMemRefs, MemRefsBuffer); 8782 N->MemRefs = MemRefsBuffer; 8783 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8784 } 8785 8786 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8787 /// machine opcode. 8788 /// 8789 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8790 EVT VT) { 8791 SDVTList VTs = getVTList(VT); 8792 return SelectNodeTo(N, MachineOpc, VTs, None); 8793 } 8794 8795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8796 EVT VT, SDValue Op1) { 8797 SDVTList VTs = getVTList(VT); 8798 SDValue Ops[] = { Op1 }; 8799 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8800 } 8801 8802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8803 EVT VT, SDValue Op1, 8804 SDValue Op2) { 8805 SDVTList VTs = getVTList(VT); 8806 SDValue Ops[] = { Op1, Op2 }; 8807 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8808 } 8809 8810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8811 EVT VT, SDValue Op1, 8812 SDValue Op2, SDValue Op3) { 8813 SDVTList VTs = getVTList(VT); 8814 SDValue Ops[] = { Op1, Op2, Op3 }; 8815 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8816 } 8817 8818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8819 EVT VT, ArrayRef<SDValue> Ops) { 8820 SDVTList VTs = getVTList(VT); 8821 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8822 } 8823 8824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8825 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8826 SDVTList VTs = getVTList(VT1, VT2); 8827 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8828 } 8829 8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8831 EVT VT1, EVT VT2) { 8832 SDVTList VTs = getVTList(VT1, VT2); 8833 return SelectNodeTo(N, MachineOpc, VTs, None); 8834 } 8835 8836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8837 EVT VT1, EVT VT2, EVT VT3, 8838 ArrayRef<SDValue> Ops) { 8839 SDVTList VTs = getVTList(VT1, VT2, VT3); 8840 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8841 } 8842 8843 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8844 EVT VT1, EVT VT2, 8845 SDValue Op1, SDValue Op2) { 8846 SDVTList VTs = getVTList(VT1, VT2); 8847 SDValue Ops[] = { Op1, Op2 }; 8848 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8849 } 8850 8851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8852 SDVTList VTs,ArrayRef<SDValue> Ops) { 8853 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8854 // Reset the NodeID to -1. 8855 New->setNodeId(-1); 8856 if (New != N) { 8857 ReplaceAllUsesWith(N, New); 8858 RemoveDeadNode(N); 8859 } 8860 return New; 8861 } 8862 8863 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8864 /// the line number information on the merged node since it is not possible to 8865 /// preserve the information that operation is associated with multiple lines. 8866 /// This will make the debugger working better at -O0, were there is a higher 8867 /// probability having other instructions associated with that line. 8868 /// 8869 /// For IROrder, we keep the smaller of the two 8870 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8871 DebugLoc NLoc = N->getDebugLoc(); 8872 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8873 N->setDebugLoc(DebugLoc()); 8874 } 8875 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8876 N->setIROrder(Order); 8877 return N; 8878 } 8879 8880 /// MorphNodeTo - This *mutates* the specified node to have the specified 8881 /// return type, opcode, and operands. 8882 /// 8883 /// Note that MorphNodeTo returns the resultant node. If there is already a 8884 /// node of the specified opcode and operands, it returns that node instead of 8885 /// the current one. Note that the SDLoc need not be the same. 8886 /// 8887 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8888 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8889 /// node, and because it doesn't require CSE recalculation for any of 8890 /// the node's users. 8891 /// 8892 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8893 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8894 /// the legalizer which maintain worklists that would need to be updated when 8895 /// deleting things. 8896 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8897 SDVTList VTs, ArrayRef<SDValue> Ops) { 8898 // If an identical node already exists, use it. 8899 void *IP = nullptr; 8900 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8901 FoldingSetNodeID ID; 8902 AddNodeIDNode(ID, Opc, VTs, Ops); 8903 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8904 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8905 } 8906 8907 if (!RemoveNodeFromCSEMaps(N)) 8908 IP = nullptr; 8909 8910 // Start the morphing. 8911 N->NodeType = Opc; 8912 N->ValueList = VTs.VTs; 8913 N->NumValues = VTs.NumVTs; 8914 8915 // Clear the operands list, updating used nodes to remove this from their 8916 // use list. Keep track of any operands that become dead as a result. 8917 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8918 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8919 SDUse &Use = *I++; 8920 SDNode *Used = Use.getNode(); 8921 Use.set(SDValue()); 8922 if (Used->use_empty()) 8923 DeadNodeSet.insert(Used); 8924 } 8925 8926 // For MachineNode, initialize the memory references information. 8927 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8928 MN->clearMemRefs(); 8929 8930 // Swap for an appropriately sized array from the recycler. 8931 removeOperands(N); 8932 createOperands(N, Ops); 8933 8934 // Delete any nodes that are still dead after adding the uses for the 8935 // new operands. 8936 if (!DeadNodeSet.empty()) { 8937 SmallVector<SDNode *, 16> DeadNodes; 8938 for (SDNode *N : DeadNodeSet) 8939 if (N->use_empty()) 8940 DeadNodes.push_back(N); 8941 RemoveDeadNodes(DeadNodes); 8942 } 8943 8944 if (IP) 8945 CSEMap.InsertNode(N, IP); // Memoize the new node. 8946 return N; 8947 } 8948 8949 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8950 unsigned OrigOpc = Node->getOpcode(); 8951 unsigned NewOpc; 8952 switch (OrigOpc) { 8953 default: 8954 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8955 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8956 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8957 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8958 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8959 #include "llvm/IR/ConstrainedOps.def" 8960 } 8961 8962 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8963 8964 // We're taking this node out of the chain, so we need to re-link things. 8965 SDValue InputChain = Node->getOperand(0); 8966 SDValue OutputChain = SDValue(Node, 1); 8967 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8968 8969 SmallVector<SDValue, 3> Ops; 8970 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8971 Ops.push_back(Node->getOperand(i)); 8972 8973 SDVTList VTs = getVTList(Node->getValueType(0)); 8974 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8975 8976 // MorphNodeTo can operate in two ways: if an existing node with the 8977 // specified operands exists, it can just return it. Otherwise, it 8978 // updates the node in place to have the requested operands. 8979 if (Res == Node) { 8980 // If we updated the node in place, reset the node ID. To the isel, 8981 // this should be just like a newly allocated machine node. 8982 Res->setNodeId(-1); 8983 } else { 8984 ReplaceAllUsesWith(Node, Res); 8985 RemoveDeadNode(Node); 8986 } 8987 8988 return Res; 8989 } 8990 8991 /// getMachineNode - These are used for target selectors to create a new node 8992 /// with specified return type(s), MachineInstr opcode, and operands. 8993 /// 8994 /// Note that getMachineNode returns the resultant node. If there is already a 8995 /// node of the specified opcode and operands, it returns that node instead of 8996 /// the current one. 8997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8998 EVT VT) { 8999 SDVTList VTs = getVTList(VT); 9000 return getMachineNode(Opcode, dl, VTs, None); 9001 } 9002 9003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9004 EVT VT, SDValue Op1) { 9005 SDVTList VTs = getVTList(VT); 9006 SDValue Ops[] = { Op1 }; 9007 return getMachineNode(Opcode, dl, VTs, Ops); 9008 } 9009 9010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9011 EVT VT, SDValue Op1, SDValue Op2) { 9012 SDVTList VTs = getVTList(VT); 9013 SDValue Ops[] = { Op1, Op2 }; 9014 return getMachineNode(Opcode, dl, VTs, Ops); 9015 } 9016 9017 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9018 EVT VT, SDValue Op1, SDValue Op2, 9019 SDValue Op3) { 9020 SDVTList VTs = getVTList(VT); 9021 SDValue Ops[] = { Op1, Op2, Op3 }; 9022 return getMachineNode(Opcode, dl, VTs, Ops); 9023 } 9024 9025 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9026 EVT VT, ArrayRef<SDValue> Ops) { 9027 SDVTList VTs = getVTList(VT); 9028 return getMachineNode(Opcode, dl, VTs, Ops); 9029 } 9030 9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9032 EVT VT1, EVT VT2, SDValue Op1, 9033 SDValue Op2) { 9034 SDVTList VTs = getVTList(VT1, VT2); 9035 SDValue Ops[] = { Op1, Op2 }; 9036 return getMachineNode(Opcode, dl, VTs, Ops); 9037 } 9038 9039 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9040 EVT VT1, EVT VT2, SDValue Op1, 9041 SDValue Op2, SDValue Op3) { 9042 SDVTList VTs = getVTList(VT1, VT2); 9043 SDValue Ops[] = { Op1, Op2, Op3 }; 9044 return getMachineNode(Opcode, dl, VTs, Ops); 9045 } 9046 9047 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9048 EVT VT1, EVT VT2, 9049 ArrayRef<SDValue> Ops) { 9050 SDVTList VTs = getVTList(VT1, VT2); 9051 return getMachineNode(Opcode, dl, VTs, Ops); 9052 } 9053 9054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9055 EVT VT1, EVT VT2, EVT VT3, 9056 SDValue Op1, SDValue Op2) { 9057 SDVTList VTs = getVTList(VT1, VT2, VT3); 9058 SDValue Ops[] = { Op1, Op2 }; 9059 return getMachineNode(Opcode, dl, VTs, Ops); 9060 } 9061 9062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9063 EVT VT1, EVT VT2, EVT VT3, 9064 SDValue Op1, SDValue Op2, 9065 SDValue Op3) { 9066 SDVTList VTs = getVTList(VT1, VT2, VT3); 9067 SDValue Ops[] = { Op1, Op2, Op3 }; 9068 return getMachineNode(Opcode, dl, VTs, Ops); 9069 } 9070 9071 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9072 EVT VT1, EVT VT2, EVT VT3, 9073 ArrayRef<SDValue> Ops) { 9074 SDVTList VTs = getVTList(VT1, VT2, VT3); 9075 return getMachineNode(Opcode, dl, VTs, Ops); 9076 } 9077 9078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9079 ArrayRef<EVT> ResultTys, 9080 ArrayRef<SDValue> Ops) { 9081 SDVTList VTs = getVTList(ResultTys); 9082 return getMachineNode(Opcode, dl, VTs, Ops); 9083 } 9084 9085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9086 SDVTList VTs, 9087 ArrayRef<SDValue> Ops) { 9088 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9089 MachineSDNode *N; 9090 void *IP = nullptr; 9091 9092 if (DoCSE) { 9093 FoldingSetNodeID ID; 9094 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9095 IP = nullptr; 9096 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9097 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9098 } 9099 } 9100 9101 // Allocate a new MachineSDNode. 9102 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9103 createOperands(N, Ops); 9104 9105 if (DoCSE) 9106 CSEMap.InsertNode(N, IP); 9107 9108 InsertNode(N); 9109 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9110 return N; 9111 } 9112 9113 /// getTargetExtractSubreg - A convenience function for creating 9114 /// TargetOpcode::EXTRACT_SUBREG nodes. 9115 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9116 SDValue Operand) { 9117 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9118 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9119 VT, Operand, SRIdxVal); 9120 return SDValue(Subreg, 0); 9121 } 9122 9123 /// getTargetInsertSubreg - A convenience function for creating 9124 /// TargetOpcode::INSERT_SUBREG nodes. 9125 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9126 SDValue Operand, SDValue Subreg) { 9127 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9128 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9129 VT, Operand, Subreg, SRIdxVal); 9130 return SDValue(Result, 0); 9131 } 9132 9133 /// getNodeIfExists - Get the specified node if it's already available, or 9134 /// else return NULL. 9135 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9136 ArrayRef<SDValue> Ops) { 9137 SDNodeFlags Flags; 9138 if (Inserter) 9139 Flags = Inserter->getFlags(); 9140 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9141 } 9142 9143 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9144 ArrayRef<SDValue> Ops, 9145 const SDNodeFlags Flags) { 9146 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9147 FoldingSetNodeID ID; 9148 AddNodeIDNode(ID, Opcode, VTList, Ops); 9149 void *IP = nullptr; 9150 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9151 E->intersectFlagsWith(Flags); 9152 return E; 9153 } 9154 } 9155 return nullptr; 9156 } 9157 9158 /// doesNodeExist - Check if a node exists without modifying its flags. 9159 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9160 ArrayRef<SDValue> Ops) { 9161 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9162 FoldingSetNodeID ID; 9163 AddNodeIDNode(ID, Opcode, VTList, Ops); 9164 void *IP = nullptr; 9165 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9166 return true; 9167 } 9168 return false; 9169 } 9170 9171 /// getDbgValue - Creates a SDDbgValue node. 9172 /// 9173 /// SDNode 9174 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9175 SDNode *N, unsigned R, bool IsIndirect, 9176 const DebugLoc &DL, unsigned O) { 9177 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9178 "Expected inlined-at fields to agree"); 9179 return new (DbgInfo->getAlloc()) 9180 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9181 {}, IsIndirect, DL, O, 9182 /*IsVariadic=*/false); 9183 } 9184 9185 /// Constant 9186 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9187 DIExpression *Expr, 9188 const Value *C, 9189 const DebugLoc &DL, unsigned O) { 9190 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9191 "Expected inlined-at fields to agree"); 9192 return new (DbgInfo->getAlloc()) 9193 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9194 /*IsIndirect=*/false, DL, O, 9195 /*IsVariadic=*/false); 9196 } 9197 9198 /// FrameIndex 9199 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9200 DIExpression *Expr, unsigned FI, 9201 bool IsIndirect, 9202 const DebugLoc &DL, 9203 unsigned O) { 9204 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9205 "Expected inlined-at fields to agree"); 9206 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9207 } 9208 9209 /// FrameIndex with dependencies 9210 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9211 DIExpression *Expr, unsigned FI, 9212 ArrayRef<SDNode *> Dependencies, 9213 bool IsIndirect, 9214 const DebugLoc &DL, 9215 unsigned O) { 9216 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9217 "Expected inlined-at fields to agree"); 9218 return new (DbgInfo->getAlloc()) 9219 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9220 Dependencies, IsIndirect, DL, O, 9221 /*IsVariadic=*/false); 9222 } 9223 9224 /// VReg 9225 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9226 unsigned VReg, bool IsIndirect, 9227 const DebugLoc &DL, unsigned O) { 9228 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9229 "Expected inlined-at fields to agree"); 9230 return new (DbgInfo->getAlloc()) 9231 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9232 {}, IsIndirect, DL, O, 9233 /*IsVariadic=*/false); 9234 } 9235 9236 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9237 ArrayRef<SDDbgOperand> Locs, 9238 ArrayRef<SDNode *> Dependencies, 9239 bool IsIndirect, const DebugLoc &DL, 9240 unsigned O, bool IsVariadic) { 9241 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9242 "Expected inlined-at fields to agree"); 9243 return new (DbgInfo->getAlloc()) 9244 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9245 DL, O, IsVariadic); 9246 } 9247 9248 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9249 unsigned OffsetInBits, unsigned SizeInBits, 9250 bool InvalidateDbg) { 9251 SDNode *FromNode = From.getNode(); 9252 SDNode *ToNode = To.getNode(); 9253 assert(FromNode && ToNode && "Can't modify dbg values"); 9254 9255 // PR35338 9256 // TODO: assert(From != To && "Redundant dbg value transfer"); 9257 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9258 if (From == To || FromNode == ToNode) 9259 return; 9260 9261 if (!FromNode->getHasDebugValue()) 9262 return; 9263 9264 SDDbgOperand FromLocOp = 9265 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9266 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9267 9268 SmallVector<SDDbgValue *, 2> ClonedDVs; 9269 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9270 if (Dbg->isInvalidated()) 9271 continue; 9272 9273 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9274 9275 // Create a new location ops vector that is equal to the old vector, but 9276 // with each instance of FromLocOp replaced with ToLocOp. 9277 bool Changed = false; 9278 auto NewLocOps = Dbg->copyLocationOps(); 9279 std::replace_if( 9280 NewLocOps.begin(), NewLocOps.end(), 9281 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9282 bool Match = Op == FromLocOp; 9283 Changed |= Match; 9284 return Match; 9285 }, 9286 ToLocOp); 9287 // Ignore this SDDbgValue if we didn't find a matching location. 9288 if (!Changed) 9289 continue; 9290 9291 DIVariable *Var = Dbg->getVariable(); 9292 auto *Expr = Dbg->getExpression(); 9293 // If a fragment is requested, update the expression. 9294 if (SizeInBits) { 9295 // When splitting a larger (e.g., sign-extended) value whose 9296 // lower bits are described with an SDDbgValue, do not attempt 9297 // to transfer the SDDbgValue to the upper bits. 9298 if (auto FI = Expr->getFragmentInfo()) 9299 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9300 continue; 9301 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9302 SizeInBits); 9303 if (!Fragment) 9304 continue; 9305 Expr = *Fragment; 9306 } 9307 9308 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9309 // Clone the SDDbgValue and move it to To. 9310 SDDbgValue *Clone = getDbgValueList( 9311 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9312 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9313 Dbg->isVariadic()); 9314 ClonedDVs.push_back(Clone); 9315 9316 if (InvalidateDbg) { 9317 // Invalidate value and indicate the SDDbgValue should not be emitted. 9318 Dbg->setIsInvalidated(); 9319 Dbg->setIsEmitted(); 9320 } 9321 } 9322 9323 for (SDDbgValue *Dbg : ClonedDVs) { 9324 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9325 "Transferred DbgValues should depend on the new SDNode"); 9326 AddDbgValue(Dbg, false); 9327 } 9328 } 9329 9330 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9331 if (!N.getHasDebugValue()) 9332 return; 9333 9334 SmallVector<SDDbgValue *, 2> ClonedDVs; 9335 for (auto DV : GetDbgValues(&N)) { 9336 if (DV->isInvalidated()) 9337 continue; 9338 switch (N.getOpcode()) { 9339 default: 9340 break; 9341 case ISD::ADD: 9342 SDValue N0 = N.getOperand(0); 9343 SDValue N1 = N.getOperand(1); 9344 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9345 isConstantIntBuildVectorOrConstantInt(N1)) { 9346 uint64_t Offset = N.getConstantOperandVal(1); 9347 9348 // Rewrite an ADD constant node into a DIExpression. Since we are 9349 // performing arithmetic to compute the variable's *value* in the 9350 // DIExpression, we need to mark the expression with a 9351 // DW_OP_stack_value. 9352 auto *DIExpr = DV->getExpression(); 9353 auto NewLocOps = DV->copyLocationOps(); 9354 bool Changed = false; 9355 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9356 // We're not given a ResNo to compare against because the whole 9357 // node is going away. We know that any ISD::ADD only has one 9358 // result, so we can assume any node match is using the result. 9359 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9360 NewLocOps[i].getSDNode() != &N) 9361 continue; 9362 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9363 SmallVector<uint64_t, 3> ExprOps; 9364 DIExpression::appendOffset(ExprOps, Offset); 9365 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9366 Changed = true; 9367 } 9368 (void)Changed; 9369 assert(Changed && "Salvage target doesn't use N"); 9370 9371 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9372 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9373 NewLocOps, AdditionalDependencies, 9374 DV->isIndirect(), DV->getDebugLoc(), 9375 DV->getOrder(), DV->isVariadic()); 9376 ClonedDVs.push_back(Clone); 9377 DV->setIsInvalidated(); 9378 DV->setIsEmitted(); 9379 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9380 N0.getNode()->dumprFull(this); 9381 dbgs() << " into " << *DIExpr << '\n'); 9382 } 9383 } 9384 } 9385 9386 for (SDDbgValue *Dbg : ClonedDVs) { 9387 assert(!Dbg->getSDNodes().empty() && 9388 "Salvaged DbgValue should depend on a new SDNode"); 9389 AddDbgValue(Dbg, false); 9390 } 9391 } 9392 9393 /// Creates a SDDbgLabel node. 9394 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9395 const DebugLoc &DL, unsigned O) { 9396 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9397 "Expected inlined-at fields to agree"); 9398 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9399 } 9400 9401 namespace { 9402 9403 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9404 /// pointed to by a use iterator is deleted, increment the use iterator 9405 /// so that it doesn't dangle. 9406 /// 9407 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9408 SDNode::use_iterator &UI; 9409 SDNode::use_iterator &UE; 9410 9411 void NodeDeleted(SDNode *N, SDNode *E) override { 9412 // Increment the iterator as needed. 9413 while (UI != UE && N == *UI) 9414 ++UI; 9415 } 9416 9417 public: 9418 RAUWUpdateListener(SelectionDAG &d, 9419 SDNode::use_iterator &ui, 9420 SDNode::use_iterator &ue) 9421 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9422 }; 9423 9424 } // end anonymous namespace 9425 9426 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9427 /// This can cause recursive merging of nodes in the DAG. 9428 /// 9429 /// This version assumes From has a single result value. 9430 /// 9431 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9432 SDNode *From = FromN.getNode(); 9433 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9434 "Cannot replace with this method!"); 9435 assert(From != To.getNode() && "Cannot replace uses of with self"); 9436 9437 // Preserve Debug Values 9438 transferDbgValues(FromN, To); 9439 9440 // Iterate over all the existing uses of From. New uses will be added 9441 // to the beginning of the use list, which we avoid visiting. 9442 // This specifically avoids visiting uses of From that arise while the 9443 // replacement is happening, because any such uses would be the result 9444 // of CSE: If an existing node looks like From after one of its operands 9445 // is replaced by To, we don't want to replace of all its users with To 9446 // too. See PR3018 for more info. 9447 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9448 RAUWUpdateListener Listener(*this, UI, UE); 9449 while (UI != UE) { 9450 SDNode *User = *UI; 9451 9452 // This node is about to morph, remove its old self from the CSE maps. 9453 RemoveNodeFromCSEMaps(User); 9454 9455 // A user can appear in a use list multiple times, and when this 9456 // happens the uses are usually next to each other in the list. 9457 // To help reduce the number of CSE recomputations, process all 9458 // the uses of this user that we can find this way. 9459 do { 9460 SDUse &Use = UI.getUse(); 9461 ++UI; 9462 Use.set(To); 9463 if (To->isDivergent() != From->isDivergent()) 9464 updateDivergence(User); 9465 } while (UI != UE && *UI == User); 9466 // Now that we have modified User, add it back to the CSE maps. If it 9467 // already exists there, recursively merge the results together. 9468 AddModifiedNodeToCSEMaps(User); 9469 } 9470 9471 // If we just RAUW'd the root, take note. 9472 if (FromN == getRoot()) 9473 setRoot(To); 9474 } 9475 9476 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9477 /// This can cause recursive merging of nodes in the DAG. 9478 /// 9479 /// This version assumes that for each value of From, there is a 9480 /// corresponding value in To in the same position with the same type. 9481 /// 9482 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9483 #ifndef NDEBUG 9484 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9485 assert((!From->hasAnyUseOfValue(i) || 9486 From->getValueType(i) == To->getValueType(i)) && 9487 "Cannot use this version of ReplaceAllUsesWith!"); 9488 #endif 9489 9490 // Handle the trivial case. 9491 if (From == To) 9492 return; 9493 9494 // Preserve Debug Info. Only do this if there's a use. 9495 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9496 if (From->hasAnyUseOfValue(i)) { 9497 assert((i < To->getNumValues()) && "Invalid To location"); 9498 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9499 } 9500 9501 // Iterate over just the existing users of From. See the comments in 9502 // the ReplaceAllUsesWith above. 9503 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9504 RAUWUpdateListener Listener(*this, UI, UE); 9505 while (UI != UE) { 9506 SDNode *User = *UI; 9507 9508 // This node is about to morph, remove its old self from the CSE maps. 9509 RemoveNodeFromCSEMaps(User); 9510 9511 // A user can appear in a use list multiple times, and when this 9512 // happens the uses are usually next to each other in the list. 9513 // To help reduce the number of CSE recomputations, process all 9514 // the uses of this user that we can find this way. 9515 do { 9516 SDUse &Use = UI.getUse(); 9517 ++UI; 9518 Use.setNode(To); 9519 if (To->isDivergent() != From->isDivergent()) 9520 updateDivergence(User); 9521 } while (UI != UE && *UI == User); 9522 9523 // Now that we have modified User, add it back to the CSE maps. If it 9524 // already exists there, recursively merge the results together. 9525 AddModifiedNodeToCSEMaps(User); 9526 } 9527 9528 // If we just RAUW'd the root, take note. 9529 if (From == getRoot().getNode()) 9530 setRoot(SDValue(To, getRoot().getResNo())); 9531 } 9532 9533 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9534 /// This can cause recursive merging of nodes in the DAG. 9535 /// 9536 /// This version can replace From with any result values. To must match the 9537 /// number and types of values returned by From. 9538 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9539 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9540 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9541 9542 // Preserve Debug Info. 9543 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9544 transferDbgValues(SDValue(From, i), To[i]); 9545 9546 // Iterate over just the existing users of From. See the comments in 9547 // the ReplaceAllUsesWith above. 9548 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9549 RAUWUpdateListener Listener(*this, UI, UE); 9550 while (UI != UE) { 9551 SDNode *User = *UI; 9552 9553 // This node is about to morph, remove its old self from the CSE maps. 9554 RemoveNodeFromCSEMaps(User); 9555 9556 // A user can appear in a use list multiple times, and when this happens the 9557 // uses are usually next to each other in the list. To help reduce the 9558 // number of CSE and divergence recomputations, process all the uses of this 9559 // user that we can find this way. 9560 bool To_IsDivergent = false; 9561 do { 9562 SDUse &Use = UI.getUse(); 9563 const SDValue &ToOp = To[Use.getResNo()]; 9564 ++UI; 9565 Use.set(ToOp); 9566 To_IsDivergent |= ToOp->isDivergent(); 9567 } while (UI != UE && *UI == User); 9568 9569 if (To_IsDivergent != From->isDivergent()) 9570 updateDivergence(User); 9571 9572 // Now that we have modified User, add it back to the CSE maps. If it 9573 // already exists there, recursively merge the results together. 9574 AddModifiedNodeToCSEMaps(User); 9575 } 9576 9577 // If we just RAUW'd the root, take note. 9578 if (From == getRoot().getNode()) 9579 setRoot(SDValue(To[getRoot().getResNo()])); 9580 } 9581 9582 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9583 /// uses of other values produced by From.getNode() alone. The Deleted 9584 /// vector is handled the same way as for ReplaceAllUsesWith. 9585 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9586 // Handle the really simple, really trivial case efficiently. 9587 if (From == To) return; 9588 9589 // Handle the simple, trivial, case efficiently. 9590 if (From.getNode()->getNumValues() == 1) { 9591 ReplaceAllUsesWith(From, To); 9592 return; 9593 } 9594 9595 // Preserve Debug Info. 9596 transferDbgValues(From, To); 9597 9598 // Iterate over just the existing users of From. See the comments in 9599 // the ReplaceAllUsesWith above. 9600 SDNode::use_iterator UI = From.getNode()->use_begin(), 9601 UE = From.getNode()->use_end(); 9602 RAUWUpdateListener Listener(*this, UI, UE); 9603 while (UI != UE) { 9604 SDNode *User = *UI; 9605 bool UserRemovedFromCSEMaps = false; 9606 9607 // A user can appear in a use list multiple times, and when this 9608 // happens the uses are usually next to each other in the list. 9609 // To help reduce the number of CSE recomputations, process all 9610 // the uses of this user that we can find this way. 9611 do { 9612 SDUse &Use = UI.getUse(); 9613 9614 // Skip uses of different values from the same node. 9615 if (Use.getResNo() != From.getResNo()) { 9616 ++UI; 9617 continue; 9618 } 9619 9620 // If this node hasn't been modified yet, it's still in the CSE maps, 9621 // so remove its old self from the CSE maps. 9622 if (!UserRemovedFromCSEMaps) { 9623 RemoveNodeFromCSEMaps(User); 9624 UserRemovedFromCSEMaps = true; 9625 } 9626 9627 ++UI; 9628 Use.set(To); 9629 if (To->isDivergent() != From->isDivergent()) 9630 updateDivergence(User); 9631 } while (UI != UE && *UI == User); 9632 // We are iterating over all uses of the From node, so if a use 9633 // doesn't use the specific value, no changes are made. 9634 if (!UserRemovedFromCSEMaps) 9635 continue; 9636 9637 // Now that we have modified User, add it back to the CSE maps. If it 9638 // already exists there, recursively merge the results together. 9639 AddModifiedNodeToCSEMaps(User); 9640 } 9641 9642 // If we just RAUW'd the root, take note. 9643 if (From == getRoot()) 9644 setRoot(To); 9645 } 9646 9647 namespace { 9648 9649 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9650 /// to record information about a use. 9651 struct UseMemo { 9652 SDNode *User; 9653 unsigned Index; 9654 SDUse *Use; 9655 }; 9656 9657 /// operator< - Sort Memos by User. 9658 bool operator<(const UseMemo &L, const UseMemo &R) { 9659 return (intptr_t)L.User < (intptr_t)R.User; 9660 } 9661 9662 } // end anonymous namespace 9663 9664 bool SelectionDAG::calculateDivergence(SDNode *N) { 9665 if (TLI->isSDNodeAlwaysUniform(N)) { 9666 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9667 "Conflicting divergence information!"); 9668 return false; 9669 } 9670 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9671 return true; 9672 for (auto &Op : N->ops()) { 9673 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9674 return true; 9675 } 9676 return false; 9677 } 9678 9679 void SelectionDAG::updateDivergence(SDNode *N) { 9680 SmallVector<SDNode *, 16> Worklist(1, N); 9681 do { 9682 N = Worklist.pop_back_val(); 9683 bool IsDivergent = calculateDivergence(N); 9684 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9685 N->SDNodeBits.IsDivergent = IsDivergent; 9686 llvm::append_range(Worklist, N->uses()); 9687 } 9688 } while (!Worklist.empty()); 9689 } 9690 9691 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9692 DenseMap<SDNode *, unsigned> Degree; 9693 Order.reserve(AllNodes.size()); 9694 for (auto &N : allnodes()) { 9695 unsigned NOps = N.getNumOperands(); 9696 Degree[&N] = NOps; 9697 if (0 == NOps) 9698 Order.push_back(&N); 9699 } 9700 for (size_t I = 0; I != Order.size(); ++I) { 9701 SDNode *N = Order[I]; 9702 for (auto U : N->uses()) { 9703 unsigned &UnsortedOps = Degree[U]; 9704 if (0 == --UnsortedOps) 9705 Order.push_back(U); 9706 } 9707 } 9708 } 9709 9710 #ifndef NDEBUG 9711 void SelectionDAG::VerifyDAGDivergence() { 9712 std::vector<SDNode *> TopoOrder; 9713 CreateTopologicalOrder(TopoOrder); 9714 for (auto *N : TopoOrder) { 9715 assert(calculateDivergence(N) == N->isDivergent() && 9716 "Divergence bit inconsistency detected"); 9717 } 9718 } 9719 #endif 9720 9721 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9722 /// uses of other values produced by From.getNode() alone. The same value 9723 /// may appear in both the From and To list. The Deleted vector is 9724 /// handled the same way as for ReplaceAllUsesWith. 9725 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9726 const SDValue *To, 9727 unsigned Num){ 9728 // Handle the simple, trivial case efficiently. 9729 if (Num == 1) 9730 return ReplaceAllUsesOfValueWith(*From, *To); 9731 9732 transferDbgValues(*From, *To); 9733 9734 // Read up all the uses and make records of them. This helps 9735 // processing new uses that are introduced during the 9736 // replacement process. 9737 SmallVector<UseMemo, 4> Uses; 9738 for (unsigned i = 0; i != Num; ++i) { 9739 unsigned FromResNo = From[i].getResNo(); 9740 SDNode *FromNode = From[i].getNode(); 9741 for (SDNode::use_iterator UI = FromNode->use_begin(), 9742 E = FromNode->use_end(); UI != E; ++UI) { 9743 SDUse &Use = UI.getUse(); 9744 if (Use.getResNo() == FromResNo) { 9745 UseMemo Memo = { *UI, i, &Use }; 9746 Uses.push_back(Memo); 9747 } 9748 } 9749 } 9750 9751 // Sort the uses, so that all the uses from a given User are together. 9752 llvm::sort(Uses); 9753 9754 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9755 UseIndex != UseIndexEnd; ) { 9756 // We know that this user uses some value of From. If it is the right 9757 // value, update it. 9758 SDNode *User = Uses[UseIndex].User; 9759 9760 // This node is about to morph, remove its old self from the CSE maps. 9761 RemoveNodeFromCSEMaps(User); 9762 9763 // The Uses array is sorted, so all the uses for a given User 9764 // are next to each other in the list. 9765 // To help reduce the number of CSE recomputations, process all 9766 // the uses of this user that we can find this way. 9767 do { 9768 unsigned i = Uses[UseIndex].Index; 9769 SDUse &Use = *Uses[UseIndex].Use; 9770 ++UseIndex; 9771 9772 Use.set(To[i]); 9773 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9774 9775 // Now that we have modified User, add it back to the CSE maps. If it 9776 // already exists there, recursively merge the results together. 9777 AddModifiedNodeToCSEMaps(User); 9778 } 9779 } 9780 9781 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9782 /// based on their topological order. It returns the maximum id and a vector 9783 /// of the SDNodes* in assigned order by reference. 9784 unsigned SelectionDAG::AssignTopologicalOrder() { 9785 unsigned DAGSize = 0; 9786 9787 // SortedPos tracks the progress of the algorithm. Nodes before it are 9788 // sorted, nodes after it are unsorted. When the algorithm completes 9789 // it is at the end of the list. 9790 allnodes_iterator SortedPos = allnodes_begin(); 9791 9792 // Visit all the nodes. Move nodes with no operands to the front of 9793 // the list immediately. Annotate nodes that do have operands with their 9794 // operand count. Before we do this, the Node Id fields of the nodes 9795 // may contain arbitrary values. After, the Node Id fields for nodes 9796 // before SortedPos will contain the topological sort index, and the 9797 // Node Id fields for nodes At SortedPos and after will contain the 9798 // count of outstanding operands. 9799 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9800 checkForCycles(&N, this); 9801 unsigned Degree = N.getNumOperands(); 9802 if (Degree == 0) { 9803 // A node with no uses, add it to the result array immediately. 9804 N.setNodeId(DAGSize++); 9805 allnodes_iterator Q(&N); 9806 if (Q != SortedPos) 9807 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9808 assert(SortedPos != AllNodes.end() && "Overran node list"); 9809 ++SortedPos; 9810 } else { 9811 // Temporarily use the Node Id as scratch space for the degree count. 9812 N.setNodeId(Degree); 9813 } 9814 } 9815 9816 // Visit all the nodes. As we iterate, move nodes into sorted order, 9817 // such that by the time the end is reached all nodes will be sorted. 9818 for (SDNode &Node : allnodes()) { 9819 SDNode *N = &Node; 9820 checkForCycles(N, this); 9821 // N is in sorted position, so all its uses have one less operand 9822 // that needs to be sorted. 9823 for (SDNode *P : N->uses()) { 9824 unsigned Degree = P->getNodeId(); 9825 assert(Degree != 0 && "Invalid node degree"); 9826 --Degree; 9827 if (Degree == 0) { 9828 // All of P's operands are sorted, so P may sorted now. 9829 P->setNodeId(DAGSize++); 9830 if (P->getIterator() != SortedPos) 9831 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9832 assert(SortedPos != AllNodes.end() && "Overran node list"); 9833 ++SortedPos; 9834 } else { 9835 // Update P's outstanding operand count. 9836 P->setNodeId(Degree); 9837 } 9838 } 9839 if (Node.getIterator() == SortedPos) { 9840 #ifndef NDEBUG 9841 allnodes_iterator I(N); 9842 SDNode *S = &*++I; 9843 dbgs() << "Overran sorted position:\n"; 9844 S->dumprFull(this); dbgs() << "\n"; 9845 dbgs() << "Checking if this is due to cycles\n"; 9846 checkForCycles(this, true); 9847 #endif 9848 llvm_unreachable(nullptr); 9849 } 9850 } 9851 9852 assert(SortedPos == AllNodes.end() && 9853 "Topological sort incomplete!"); 9854 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9855 "First node in topological sort is not the entry token!"); 9856 assert(AllNodes.front().getNodeId() == 0 && 9857 "First node in topological sort has non-zero id!"); 9858 assert(AllNodes.front().getNumOperands() == 0 && 9859 "First node in topological sort has operands!"); 9860 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9861 "Last node in topologic sort has unexpected id!"); 9862 assert(AllNodes.back().use_empty() && 9863 "Last node in topologic sort has users!"); 9864 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9865 return DAGSize; 9866 } 9867 9868 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9869 /// value is produced by SD. 9870 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9871 for (SDNode *SD : DB->getSDNodes()) { 9872 if (!SD) 9873 continue; 9874 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9875 SD->setHasDebugValue(true); 9876 } 9877 DbgInfo->add(DB, isParameter); 9878 } 9879 9880 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9881 9882 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9883 SDValue NewMemOpChain) { 9884 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9885 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9886 // The new memory operation must have the same position as the old load in 9887 // terms of memory dependency. Create a TokenFactor for the old load and new 9888 // memory operation and update uses of the old load's output chain to use that 9889 // TokenFactor. 9890 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9891 return NewMemOpChain; 9892 9893 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9894 OldChain, NewMemOpChain); 9895 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9896 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9897 return TokenFactor; 9898 } 9899 9900 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9901 SDValue NewMemOp) { 9902 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9903 SDValue OldChain = SDValue(OldLoad, 1); 9904 SDValue NewMemOpChain = NewMemOp.getValue(1); 9905 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9906 } 9907 9908 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9909 Function **OutFunction) { 9910 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9911 9912 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9913 auto *Module = MF->getFunction().getParent(); 9914 auto *Function = Module->getFunction(Symbol); 9915 9916 if (OutFunction != nullptr) 9917 *OutFunction = Function; 9918 9919 if (Function != nullptr) { 9920 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9921 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9922 } 9923 9924 std::string ErrorStr; 9925 raw_string_ostream ErrorFormatter(ErrorStr); 9926 ErrorFormatter << "Undefined external symbol "; 9927 ErrorFormatter << '"' << Symbol << '"'; 9928 report_fatal_error(Twine(ErrorFormatter.str())); 9929 } 9930 9931 //===----------------------------------------------------------------------===// 9932 // SDNode Class 9933 //===----------------------------------------------------------------------===// 9934 9935 bool llvm::isNullConstant(SDValue V) { 9936 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9937 return Const != nullptr && Const->isZero(); 9938 } 9939 9940 bool llvm::isNullFPConstant(SDValue V) { 9941 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9942 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9943 } 9944 9945 bool llvm::isAllOnesConstant(SDValue V) { 9946 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9947 return Const != nullptr && Const->isAllOnes(); 9948 } 9949 9950 bool llvm::isOneConstant(SDValue V) { 9951 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9952 return Const != nullptr && Const->isOne(); 9953 } 9954 9955 SDValue llvm::peekThroughBitcasts(SDValue V) { 9956 while (V.getOpcode() == ISD::BITCAST) 9957 V = V.getOperand(0); 9958 return V; 9959 } 9960 9961 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9962 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9963 V = V.getOperand(0); 9964 return V; 9965 } 9966 9967 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9968 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9969 V = V.getOperand(0); 9970 return V; 9971 } 9972 9973 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9974 if (V.getOpcode() != ISD::XOR) 9975 return false; 9976 V = peekThroughBitcasts(V.getOperand(1)); 9977 unsigned NumBits = V.getScalarValueSizeInBits(); 9978 ConstantSDNode *C = 9979 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9980 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9981 } 9982 9983 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9984 bool AllowTruncation) { 9985 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9986 return CN; 9987 9988 // SplatVectors can truncate their operands. Ignore that case here unless 9989 // AllowTruncation is set. 9990 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9991 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9992 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9993 EVT CVT = CN->getValueType(0); 9994 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9995 if (AllowTruncation || CVT == VecEltVT) 9996 return CN; 9997 } 9998 } 9999 10000 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10001 BitVector UndefElements; 10002 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10003 10004 // BuildVectors can truncate their operands. Ignore that case here unless 10005 // AllowTruncation is set. 10006 if (CN && (UndefElements.none() || AllowUndefs)) { 10007 EVT CVT = CN->getValueType(0); 10008 EVT NSVT = N.getValueType().getScalarType(); 10009 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10010 if (AllowTruncation || (CVT == NSVT)) 10011 return CN; 10012 } 10013 } 10014 10015 return nullptr; 10016 } 10017 10018 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10019 bool AllowUndefs, 10020 bool AllowTruncation) { 10021 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10022 return CN; 10023 10024 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10025 BitVector UndefElements; 10026 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10027 10028 // BuildVectors can truncate their operands. Ignore that case here unless 10029 // AllowTruncation is set. 10030 if (CN && (UndefElements.none() || AllowUndefs)) { 10031 EVT CVT = CN->getValueType(0); 10032 EVT NSVT = N.getValueType().getScalarType(); 10033 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10034 if (AllowTruncation || (CVT == NSVT)) 10035 return CN; 10036 } 10037 } 10038 10039 return nullptr; 10040 } 10041 10042 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10043 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10044 return CN; 10045 10046 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10047 BitVector UndefElements; 10048 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10049 if (CN && (UndefElements.none() || AllowUndefs)) 10050 return CN; 10051 } 10052 10053 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10054 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10055 return CN; 10056 10057 return nullptr; 10058 } 10059 10060 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10061 const APInt &DemandedElts, 10062 bool AllowUndefs) { 10063 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10064 return CN; 10065 10066 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10067 BitVector UndefElements; 10068 ConstantFPSDNode *CN = 10069 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10070 if (CN && (UndefElements.none() || AllowUndefs)) 10071 return CN; 10072 } 10073 10074 return nullptr; 10075 } 10076 10077 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10078 // TODO: may want to use peekThroughBitcast() here. 10079 ConstantSDNode *C = 10080 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10081 return C && C->isZero(); 10082 } 10083 10084 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10085 // TODO: may want to use peekThroughBitcast() here. 10086 unsigned BitWidth = N.getScalarValueSizeInBits(); 10087 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10088 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10089 } 10090 10091 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10092 N = peekThroughBitcasts(N); 10093 unsigned BitWidth = N.getScalarValueSizeInBits(); 10094 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10095 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10096 } 10097 10098 HandleSDNode::~HandleSDNode() { 10099 DropOperands(); 10100 } 10101 10102 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10103 const DebugLoc &DL, 10104 const GlobalValue *GA, EVT VT, 10105 int64_t o, unsigned TF) 10106 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10107 TheGlobal = GA; 10108 } 10109 10110 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10111 EVT VT, unsigned SrcAS, 10112 unsigned DestAS) 10113 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10114 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10115 10116 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10117 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10118 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10119 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10120 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10121 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10122 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10123 10124 // We check here that the size of the memory operand fits within the size of 10125 // the MMO. This is because the MMO might indicate only a possible address 10126 // range instead of specifying the affected memory addresses precisely. 10127 // TODO: Make MachineMemOperands aware of scalable vectors. 10128 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10129 "Size mismatch!"); 10130 } 10131 10132 /// Profile - Gather unique data for the node. 10133 /// 10134 void SDNode::Profile(FoldingSetNodeID &ID) const { 10135 AddNodeIDNode(ID, this); 10136 } 10137 10138 namespace { 10139 10140 struct EVTArray { 10141 std::vector<EVT> VTs; 10142 10143 EVTArray() { 10144 VTs.reserve(MVT::VALUETYPE_SIZE); 10145 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10146 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10147 } 10148 }; 10149 10150 } // end anonymous namespace 10151 10152 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10153 static ManagedStatic<EVTArray> SimpleVTArray; 10154 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10155 10156 /// getValueTypeList - Return a pointer to the specified value type. 10157 /// 10158 const EVT *SDNode::getValueTypeList(EVT VT) { 10159 if (VT.isExtended()) { 10160 sys::SmartScopedLock<true> Lock(*VTMutex); 10161 return &(*EVTs->insert(VT).first); 10162 } 10163 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10164 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10165 } 10166 10167 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10168 /// indicated value. This method ignores uses of other values defined by this 10169 /// operation. 10170 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10171 assert(Value < getNumValues() && "Bad value!"); 10172 10173 // TODO: Only iterate over uses of a given value of the node 10174 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10175 if (UI.getUse().getResNo() == Value) { 10176 if (NUses == 0) 10177 return false; 10178 --NUses; 10179 } 10180 } 10181 10182 // Found exactly the right number of uses? 10183 return NUses == 0; 10184 } 10185 10186 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10187 /// value. This method ignores uses of other values defined by this operation. 10188 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10189 assert(Value < getNumValues() && "Bad value!"); 10190 10191 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10192 if (UI.getUse().getResNo() == Value) 10193 return true; 10194 10195 return false; 10196 } 10197 10198 /// isOnlyUserOf - Return true if this node is the only use of N. 10199 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10200 bool Seen = false; 10201 for (const SDNode *User : N->uses()) { 10202 if (User == this) 10203 Seen = true; 10204 else 10205 return false; 10206 } 10207 10208 return Seen; 10209 } 10210 10211 /// Return true if the only users of N are contained in Nodes. 10212 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10213 bool Seen = false; 10214 for (const SDNode *User : N->uses()) { 10215 if (llvm::is_contained(Nodes, User)) 10216 Seen = true; 10217 else 10218 return false; 10219 } 10220 10221 return Seen; 10222 } 10223 10224 /// isOperand - Return true if this node is an operand of N. 10225 bool SDValue::isOperandOf(const SDNode *N) const { 10226 return is_contained(N->op_values(), *this); 10227 } 10228 10229 bool SDNode::isOperandOf(const SDNode *N) const { 10230 return any_of(N->op_values(), 10231 [this](SDValue Op) { return this == Op.getNode(); }); 10232 } 10233 10234 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10235 /// be a chain) reaches the specified operand without crossing any 10236 /// side-effecting instructions on any chain path. In practice, this looks 10237 /// through token factors and non-volatile loads. In order to remain efficient, 10238 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10239 /// 10240 /// Note that we only need to examine chains when we're searching for 10241 /// side-effects; SelectionDAG requires that all side-effects are represented 10242 /// by chains, even if another operand would force a specific ordering. This 10243 /// constraint is necessary to allow transformations like splitting loads. 10244 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10245 unsigned Depth) const { 10246 if (*this == Dest) return true; 10247 10248 // Don't search too deeply, we just want to be able to see through 10249 // TokenFactor's etc. 10250 if (Depth == 0) return false; 10251 10252 // If this is a token factor, all inputs to the TF happen in parallel. 10253 if (getOpcode() == ISD::TokenFactor) { 10254 // First, try a shallow search. 10255 if (is_contained((*this)->ops(), Dest)) { 10256 // We found the chain we want as an operand of this TokenFactor. 10257 // Essentially, we reach the chain without side-effects if we could 10258 // serialize the TokenFactor into a simple chain of operations with 10259 // Dest as the last operation. This is automatically true if the 10260 // chain has one use: there are no other ordering constraints. 10261 // If the chain has more than one use, we give up: some other 10262 // use of Dest might force a side-effect between Dest and the current 10263 // node. 10264 if (Dest.hasOneUse()) 10265 return true; 10266 } 10267 // Next, try a deep search: check whether every operand of the TokenFactor 10268 // reaches Dest. 10269 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10270 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10271 }); 10272 } 10273 10274 // Loads don't have side effects, look through them. 10275 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10276 if (Ld->isUnordered()) 10277 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10278 } 10279 return false; 10280 } 10281 10282 bool SDNode::hasPredecessor(const SDNode *N) const { 10283 SmallPtrSet<const SDNode *, 32> Visited; 10284 SmallVector<const SDNode *, 16> Worklist; 10285 Worklist.push_back(this); 10286 return hasPredecessorHelper(N, Visited, Worklist); 10287 } 10288 10289 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10290 this->Flags.intersectWith(Flags); 10291 } 10292 10293 SDValue 10294 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10295 ArrayRef<ISD::NodeType> CandidateBinOps, 10296 bool AllowPartials) { 10297 // The pattern must end in an extract from index 0. 10298 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10299 !isNullConstant(Extract->getOperand(1))) 10300 return SDValue(); 10301 10302 // Match against one of the candidate binary ops. 10303 SDValue Op = Extract->getOperand(0); 10304 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10305 return Op.getOpcode() == unsigned(BinOp); 10306 })) 10307 return SDValue(); 10308 10309 // Floating-point reductions may require relaxed constraints on the final step 10310 // of the reduction because they may reorder intermediate operations. 10311 unsigned CandidateBinOp = Op.getOpcode(); 10312 if (Op.getValueType().isFloatingPoint()) { 10313 SDNodeFlags Flags = Op->getFlags(); 10314 switch (CandidateBinOp) { 10315 case ISD::FADD: 10316 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10317 return SDValue(); 10318 break; 10319 default: 10320 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10321 } 10322 } 10323 10324 // Matching failed - attempt to see if we did enough stages that a partial 10325 // reduction from a subvector is possible. 10326 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10327 if (!AllowPartials || !Op) 10328 return SDValue(); 10329 EVT OpVT = Op.getValueType(); 10330 EVT OpSVT = OpVT.getScalarType(); 10331 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10332 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10333 return SDValue(); 10334 BinOp = (ISD::NodeType)CandidateBinOp; 10335 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10336 getVectorIdxConstant(0, SDLoc(Op))); 10337 }; 10338 10339 // At each stage, we're looking for something that looks like: 10340 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10341 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10342 // i32 undef, i32 undef, i32 undef, i32 undef> 10343 // %a = binop <8 x i32> %op, %s 10344 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10345 // we expect something like: 10346 // <4,5,6,7,u,u,u,u> 10347 // <2,3,u,u,u,u,u,u> 10348 // <1,u,u,u,u,u,u,u> 10349 // While a partial reduction match would be: 10350 // <2,3,u,u,u,u,u,u> 10351 // <1,u,u,u,u,u,u,u> 10352 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10353 SDValue PrevOp; 10354 for (unsigned i = 0; i < Stages; ++i) { 10355 unsigned MaskEnd = (1 << i); 10356 10357 if (Op.getOpcode() != CandidateBinOp) 10358 return PartialReduction(PrevOp, MaskEnd); 10359 10360 SDValue Op0 = Op.getOperand(0); 10361 SDValue Op1 = Op.getOperand(1); 10362 10363 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10364 if (Shuffle) { 10365 Op = Op1; 10366 } else { 10367 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10368 Op = Op0; 10369 } 10370 10371 // The first operand of the shuffle should be the same as the other operand 10372 // of the binop. 10373 if (!Shuffle || Shuffle->getOperand(0) != Op) 10374 return PartialReduction(PrevOp, MaskEnd); 10375 10376 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10377 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10378 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10379 return PartialReduction(PrevOp, MaskEnd); 10380 10381 PrevOp = Op; 10382 } 10383 10384 // Handle subvector reductions, which tend to appear after the shuffle 10385 // reduction stages. 10386 while (Op.getOpcode() == CandidateBinOp) { 10387 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10388 SDValue Op0 = Op.getOperand(0); 10389 SDValue Op1 = Op.getOperand(1); 10390 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10391 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10392 Op0.getOperand(0) != Op1.getOperand(0)) 10393 break; 10394 SDValue Src = Op0.getOperand(0); 10395 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10396 if (NumSrcElts != (2 * NumElts)) 10397 break; 10398 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10399 Op1.getConstantOperandAPInt(1) == NumElts) && 10400 !(Op1.getConstantOperandAPInt(1) == 0 && 10401 Op0.getConstantOperandAPInt(1) == NumElts)) 10402 break; 10403 Op = Src; 10404 } 10405 10406 BinOp = (ISD::NodeType)CandidateBinOp; 10407 return Op; 10408 } 10409 10410 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10411 assert(N->getNumValues() == 1 && 10412 "Can't unroll a vector with multiple results!"); 10413 10414 EVT VT = N->getValueType(0); 10415 unsigned NE = VT.getVectorNumElements(); 10416 EVT EltVT = VT.getVectorElementType(); 10417 SDLoc dl(N); 10418 10419 SmallVector<SDValue, 8> Scalars; 10420 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10421 10422 // If ResNE is 0, fully unroll the vector op. 10423 if (ResNE == 0) 10424 ResNE = NE; 10425 else if (NE > ResNE) 10426 NE = ResNE; 10427 10428 unsigned i; 10429 for (i= 0; i != NE; ++i) { 10430 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10431 SDValue Operand = N->getOperand(j); 10432 EVT OperandVT = Operand.getValueType(); 10433 if (OperandVT.isVector()) { 10434 // A vector operand; extract a single element. 10435 EVT OperandEltVT = OperandVT.getVectorElementType(); 10436 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10437 Operand, getVectorIdxConstant(i, dl)); 10438 } else { 10439 // A scalar operand; just use it as is. 10440 Operands[j] = Operand; 10441 } 10442 } 10443 10444 switch (N->getOpcode()) { 10445 default: { 10446 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10447 N->getFlags())); 10448 break; 10449 } 10450 case ISD::VSELECT: 10451 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10452 break; 10453 case ISD::SHL: 10454 case ISD::SRA: 10455 case ISD::SRL: 10456 case ISD::ROTL: 10457 case ISD::ROTR: 10458 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10459 getShiftAmountOperand(Operands[0].getValueType(), 10460 Operands[1]))); 10461 break; 10462 case ISD::SIGN_EXTEND_INREG: { 10463 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10464 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10465 Operands[0], 10466 getValueType(ExtVT))); 10467 } 10468 } 10469 } 10470 10471 for (; i < ResNE; ++i) 10472 Scalars.push_back(getUNDEF(EltVT)); 10473 10474 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10475 return getBuildVector(VecVT, dl, Scalars); 10476 } 10477 10478 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10479 SDNode *N, unsigned ResNE) { 10480 unsigned Opcode = N->getOpcode(); 10481 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10482 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10483 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10484 "Expected an overflow opcode"); 10485 10486 EVT ResVT = N->getValueType(0); 10487 EVT OvVT = N->getValueType(1); 10488 EVT ResEltVT = ResVT.getVectorElementType(); 10489 EVT OvEltVT = OvVT.getVectorElementType(); 10490 SDLoc dl(N); 10491 10492 // If ResNE is 0, fully unroll the vector op. 10493 unsigned NE = ResVT.getVectorNumElements(); 10494 if (ResNE == 0) 10495 ResNE = NE; 10496 else if (NE > ResNE) 10497 NE = ResNE; 10498 10499 SmallVector<SDValue, 8> LHSScalars; 10500 SmallVector<SDValue, 8> RHSScalars; 10501 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10502 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10503 10504 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10505 SDVTList VTs = getVTList(ResEltVT, SVT); 10506 SmallVector<SDValue, 8> ResScalars; 10507 SmallVector<SDValue, 8> OvScalars; 10508 for (unsigned i = 0; i < NE; ++i) { 10509 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10510 SDValue Ov = 10511 getSelect(dl, OvEltVT, Res.getValue(1), 10512 getBoolConstant(true, dl, OvEltVT, ResVT), 10513 getConstant(0, dl, OvEltVT)); 10514 10515 ResScalars.push_back(Res); 10516 OvScalars.push_back(Ov); 10517 } 10518 10519 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10520 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10521 10522 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10523 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10524 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10525 getBuildVector(NewOvVT, dl, OvScalars)); 10526 } 10527 10528 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10529 LoadSDNode *Base, 10530 unsigned Bytes, 10531 int Dist) const { 10532 if (LD->isVolatile() || Base->isVolatile()) 10533 return false; 10534 // TODO: probably too restrictive for atomics, revisit 10535 if (!LD->isSimple()) 10536 return false; 10537 if (LD->isIndexed() || Base->isIndexed()) 10538 return false; 10539 if (LD->getChain() != Base->getChain()) 10540 return false; 10541 EVT VT = LD->getValueType(0); 10542 if (VT.getSizeInBits() / 8 != Bytes) 10543 return false; 10544 10545 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10546 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10547 10548 int64_t Offset = 0; 10549 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10550 return (Dist * Bytes == Offset); 10551 return false; 10552 } 10553 10554 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10555 /// if it cannot be inferred. 10556 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10557 // If this is a GlobalAddress + cst, return the alignment. 10558 const GlobalValue *GV = nullptr; 10559 int64_t GVOffset = 0; 10560 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10561 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10562 KnownBits Known(PtrWidth); 10563 llvm::computeKnownBits(GV, Known, getDataLayout()); 10564 unsigned AlignBits = Known.countMinTrailingZeros(); 10565 if (AlignBits) 10566 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10567 } 10568 10569 // If this is a direct reference to a stack slot, use information about the 10570 // stack slot's alignment. 10571 int FrameIdx = INT_MIN; 10572 int64_t FrameOffset = 0; 10573 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10574 FrameIdx = FI->getIndex(); 10575 } else if (isBaseWithConstantOffset(Ptr) && 10576 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10577 // Handle FI+Cst 10578 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10579 FrameOffset = Ptr.getConstantOperandVal(1); 10580 } 10581 10582 if (FrameIdx != INT_MIN) { 10583 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10584 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10585 } 10586 10587 return None; 10588 } 10589 10590 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10591 /// which is split (or expanded) into two not necessarily identical pieces. 10592 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10593 // Currently all types are split in half. 10594 EVT LoVT, HiVT; 10595 if (!VT.isVector()) 10596 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10597 else 10598 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10599 10600 return std::make_pair(LoVT, HiVT); 10601 } 10602 10603 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10604 /// type, dependent on an enveloping VT that has been split into two identical 10605 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10606 std::pair<EVT, EVT> 10607 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10608 bool *HiIsEmpty) const { 10609 EVT EltTp = VT.getVectorElementType(); 10610 // Examples: 10611 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10612 // custom VL=9 with enveloping VL=8/8 yields 8/1 10613 // custom VL=10 with enveloping VL=8/8 yields 8/2 10614 // etc. 10615 ElementCount VTNumElts = VT.getVectorElementCount(); 10616 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10617 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10618 "Mixing fixed width and scalable vectors when enveloping a type"); 10619 EVT LoVT, HiVT; 10620 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10621 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10622 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10623 *HiIsEmpty = false; 10624 } else { 10625 // Flag that hi type has zero storage size, but return split envelop type 10626 // (this would be easier if vector types with zero elements were allowed). 10627 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10628 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10629 *HiIsEmpty = true; 10630 } 10631 return std::make_pair(LoVT, HiVT); 10632 } 10633 10634 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10635 /// low/high part. 10636 std::pair<SDValue, SDValue> 10637 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10638 const EVT &HiVT) { 10639 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10640 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10641 "Splitting vector with an invalid mixture of fixed and scalable " 10642 "vector types"); 10643 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10644 N.getValueType().getVectorMinNumElements() && 10645 "More vector elements requested than available!"); 10646 SDValue Lo, Hi; 10647 Lo = 10648 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10649 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10650 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10651 // IDX with the runtime scaling factor of the result vector type. For 10652 // fixed-width result vectors, that runtime scaling factor is 1. 10653 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10654 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10655 return std::make_pair(Lo, Hi); 10656 } 10657 10658 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10659 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10660 EVT VT = N.getValueType(); 10661 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10662 NextPowerOf2(VT.getVectorNumElements())); 10663 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10664 getVectorIdxConstant(0, DL)); 10665 } 10666 10667 void SelectionDAG::ExtractVectorElements(SDValue Op, 10668 SmallVectorImpl<SDValue> &Args, 10669 unsigned Start, unsigned Count, 10670 EVT EltVT) { 10671 EVT VT = Op.getValueType(); 10672 if (Count == 0) 10673 Count = VT.getVectorNumElements(); 10674 if (EltVT == EVT()) 10675 EltVT = VT.getVectorElementType(); 10676 SDLoc SL(Op); 10677 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10678 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10679 getVectorIdxConstant(i, SL))); 10680 } 10681 } 10682 10683 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10684 unsigned GlobalAddressSDNode::getAddressSpace() const { 10685 return getGlobal()->getType()->getAddressSpace(); 10686 } 10687 10688 Type *ConstantPoolSDNode::getType() const { 10689 if (isMachineConstantPoolEntry()) 10690 return Val.MachineCPVal->getType(); 10691 return Val.ConstVal->getType(); 10692 } 10693 10694 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10695 unsigned &SplatBitSize, 10696 bool &HasAnyUndefs, 10697 unsigned MinSplatBits, 10698 bool IsBigEndian) const { 10699 EVT VT = getValueType(0); 10700 assert(VT.isVector() && "Expected a vector type"); 10701 unsigned VecWidth = VT.getSizeInBits(); 10702 if (MinSplatBits > VecWidth) 10703 return false; 10704 10705 // FIXME: The widths are based on this node's type, but build vectors can 10706 // truncate their operands. 10707 SplatValue = APInt(VecWidth, 0); 10708 SplatUndef = APInt(VecWidth, 0); 10709 10710 // Get the bits. Bits with undefined values (when the corresponding element 10711 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10712 // in SplatValue. If any of the values are not constant, give up and return 10713 // false. 10714 unsigned int NumOps = getNumOperands(); 10715 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10716 unsigned EltWidth = VT.getScalarSizeInBits(); 10717 10718 for (unsigned j = 0; j < NumOps; ++j) { 10719 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10720 SDValue OpVal = getOperand(i); 10721 unsigned BitPos = j * EltWidth; 10722 10723 if (OpVal.isUndef()) 10724 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10725 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10726 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10727 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10728 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10729 else 10730 return false; 10731 } 10732 10733 // The build_vector is all constants or undefs. Find the smallest element 10734 // size that splats the vector. 10735 HasAnyUndefs = (SplatUndef != 0); 10736 10737 // FIXME: This does not work for vectors with elements less than 8 bits. 10738 while (VecWidth > 8) { 10739 unsigned HalfSize = VecWidth / 2; 10740 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10741 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10742 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10743 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10744 10745 // If the two halves do not match (ignoring undef bits), stop here. 10746 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10747 MinSplatBits > HalfSize) 10748 break; 10749 10750 SplatValue = HighValue | LowValue; 10751 SplatUndef = HighUndef & LowUndef; 10752 10753 VecWidth = HalfSize; 10754 } 10755 10756 SplatBitSize = VecWidth; 10757 return true; 10758 } 10759 10760 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10761 BitVector *UndefElements) const { 10762 unsigned NumOps = getNumOperands(); 10763 if (UndefElements) { 10764 UndefElements->clear(); 10765 UndefElements->resize(NumOps); 10766 } 10767 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10768 if (!DemandedElts) 10769 return SDValue(); 10770 SDValue Splatted; 10771 for (unsigned i = 0; i != NumOps; ++i) { 10772 if (!DemandedElts[i]) 10773 continue; 10774 SDValue Op = getOperand(i); 10775 if (Op.isUndef()) { 10776 if (UndefElements) 10777 (*UndefElements)[i] = true; 10778 } else if (!Splatted) { 10779 Splatted = Op; 10780 } else if (Splatted != Op) { 10781 return SDValue(); 10782 } 10783 } 10784 10785 if (!Splatted) { 10786 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10787 assert(getOperand(FirstDemandedIdx).isUndef() && 10788 "Can only have a splat without a constant for all undefs."); 10789 return getOperand(FirstDemandedIdx); 10790 } 10791 10792 return Splatted; 10793 } 10794 10795 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10796 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10797 return getSplatValue(DemandedElts, UndefElements); 10798 } 10799 10800 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10801 SmallVectorImpl<SDValue> &Sequence, 10802 BitVector *UndefElements) const { 10803 unsigned NumOps = getNumOperands(); 10804 Sequence.clear(); 10805 if (UndefElements) { 10806 UndefElements->clear(); 10807 UndefElements->resize(NumOps); 10808 } 10809 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10810 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10811 return false; 10812 10813 // Set the undefs even if we don't find a sequence (like getSplatValue). 10814 if (UndefElements) 10815 for (unsigned I = 0; I != NumOps; ++I) 10816 if (DemandedElts[I] && getOperand(I).isUndef()) 10817 (*UndefElements)[I] = true; 10818 10819 // Iteratively widen the sequence length looking for repetitions. 10820 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10821 Sequence.append(SeqLen, SDValue()); 10822 for (unsigned I = 0; I != NumOps; ++I) { 10823 if (!DemandedElts[I]) 10824 continue; 10825 SDValue &SeqOp = Sequence[I % SeqLen]; 10826 SDValue Op = getOperand(I); 10827 if (Op.isUndef()) { 10828 if (!SeqOp) 10829 SeqOp = Op; 10830 continue; 10831 } 10832 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10833 Sequence.clear(); 10834 break; 10835 } 10836 SeqOp = Op; 10837 } 10838 if (!Sequence.empty()) 10839 return true; 10840 } 10841 10842 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10843 return false; 10844 } 10845 10846 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10847 BitVector *UndefElements) const { 10848 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10849 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10850 } 10851 10852 ConstantSDNode * 10853 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10854 BitVector *UndefElements) const { 10855 return dyn_cast_or_null<ConstantSDNode>( 10856 getSplatValue(DemandedElts, UndefElements)); 10857 } 10858 10859 ConstantSDNode * 10860 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10861 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10862 } 10863 10864 ConstantFPSDNode * 10865 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10866 BitVector *UndefElements) const { 10867 return dyn_cast_or_null<ConstantFPSDNode>( 10868 getSplatValue(DemandedElts, UndefElements)); 10869 } 10870 10871 ConstantFPSDNode * 10872 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10873 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10874 } 10875 10876 int32_t 10877 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10878 uint32_t BitWidth) const { 10879 if (ConstantFPSDNode *CN = 10880 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10881 bool IsExact; 10882 APSInt IntVal(BitWidth); 10883 const APFloat &APF = CN->getValueAPF(); 10884 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10885 APFloat::opOK || 10886 !IsExact) 10887 return -1; 10888 10889 return IntVal.exactLogBase2(); 10890 } 10891 return -1; 10892 } 10893 10894 bool BuildVectorSDNode::getConstantRawBits( 10895 bool IsLittleEndian, unsigned DstEltSizeInBits, 10896 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10897 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10898 if (!isConstant()) 10899 return false; 10900 10901 unsigned NumSrcOps = getNumOperands(); 10902 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10903 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10904 "Invalid bitcast scale"); 10905 10906 // Extract raw src bits. 10907 SmallVector<APInt> SrcBitElements(NumSrcOps, 10908 APInt::getNullValue(SrcEltSizeInBits)); 10909 BitVector SrcUndeElements(NumSrcOps, false); 10910 10911 for (unsigned I = 0; I != NumSrcOps; ++I) { 10912 SDValue Op = getOperand(I); 10913 if (Op.isUndef()) { 10914 SrcUndeElements.set(I); 10915 continue; 10916 } 10917 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10918 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10919 assert((CInt || CFP) && "Unknown constant"); 10920 SrcBitElements[I] = 10921 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10922 : CFP->getValueAPF().bitcastToAPInt(); 10923 } 10924 10925 // Recast to dst width. 10926 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10927 SrcBitElements, UndefElements, SrcUndeElements); 10928 return true; 10929 } 10930 10931 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10932 unsigned DstEltSizeInBits, 10933 SmallVectorImpl<APInt> &DstBitElements, 10934 ArrayRef<APInt> SrcBitElements, 10935 BitVector &DstUndefElements, 10936 const BitVector &SrcUndefElements) { 10937 unsigned NumSrcOps = SrcBitElements.size(); 10938 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10939 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10940 "Invalid bitcast scale"); 10941 assert(NumSrcOps == SrcUndefElements.size() && 10942 "Vector size mismatch"); 10943 10944 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10945 DstUndefElements.clear(); 10946 DstUndefElements.resize(NumDstOps, false); 10947 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10948 10949 // Concatenate src elements constant bits together into dst element. 10950 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10951 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10952 for (unsigned I = 0; I != NumDstOps; ++I) { 10953 DstUndefElements.set(I); 10954 APInt &DstBits = DstBitElements[I]; 10955 for (unsigned J = 0; J != Scale; ++J) { 10956 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10957 if (SrcUndefElements[Idx]) 10958 continue; 10959 DstUndefElements.reset(I); 10960 const APInt &SrcBits = SrcBitElements[Idx]; 10961 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10962 "Illegal constant bitwidths"); 10963 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10964 } 10965 } 10966 return; 10967 } 10968 10969 // Split src element constant bits into dst elements. 10970 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10971 for (unsigned I = 0; I != NumSrcOps; ++I) { 10972 if (SrcUndefElements[I]) { 10973 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10974 continue; 10975 } 10976 const APInt &SrcBits = SrcBitElements[I]; 10977 for (unsigned J = 0; J != Scale; ++J) { 10978 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10979 APInt &DstBits = DstBitElements[Idx]; 10980 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10981 } 10982 } 10983 } 10984 10985 bool BuildVectorSDNode::isConstant() const { 10986 for (const SDValue &Op : op_values()) { 10987 unsigned Opc = Op.getOpcode(); 10988 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10989 return false; 10990 } 10991 return true; 10992 } 10993 10994 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10995 // Find the first non-undef value in the shuffle mask. 10996 unsigned i, e; 10997 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10998 /* search */; 10999 11000 // If all elements are undefined, this shuffle can be considered a splat 11001 // (although it should eventually get simplified away completely). 11002 if (i == e) 11003 return true; 11004 11005 // Make sure all remaining elements are either undef or the same as the first 11006 // non-undef value. 11007 for (int Idx = Mask[i]; i != e; ++i) 11008 if (Mask[i] >= 0 && Mask[i] != Idx) 11009 return false; 11010 return true; 11011 } 11012 11013 // Returns the SDNode if it is a constant integer BuildVector 11014 // or constant integer. 11015 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11016 if (isa<ConstantSDNode>(N)) 11017 return N.getNode(); 11018 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11019 return N.getNode(); 11020 // Treat a GlobalAddress supporting constant offset folding as a 11021 // constant integer. 11022 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11023 if (GA->getOpcode() == ISD::GlobalAddress && 11024 TLI->isOffsetFoldingLegal(GA)) 11025 return GA; 11026 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11027 isa<ConstantSDNode>(N.getOperand(0))) 11028 return N.getNode(); 11029 return nullptr; 11030 } 11031 11032 // Returns the SDNode if it is a constant float BuildVector 11033 // or constant float. 11034 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11035 if (isa<ConstantFPSDNode>(N)) 11036 return N.getNode(); 11037 11038 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11039 return N.getNode(); 11040 11041 return nullptr; 11042 } 11043 11044 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11045 assert(!Node->OperandList && "Node already has operands"); 11046 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11047 "too many operands to fit into SDNode"); 11048 SDUse *Ops = OperandRecycler.allocate( 11049 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11050 11051 bool IsDivergent = false; 11052 for (unsigned I = 0; I != Vals.size(); ++I) { 11053 Ops[I].setUser(Node); 11054 Ops[I].setInitial(Vals[I]); 11055 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11056 IsDivergent |= Ops[I].getNode()->isDivergent(); 11057 } 11058 Node->NumOperands = Vals.size(); 11059 Node->OperandList = Ops; 11060 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11061 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11062 Node->SDNodeBits.IsDivergent = IsDivergent; 11063 } 11064 checkForCycles(Node); 11065 } 11066 11067 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11068 SmallVectorImpl<SDValue> &Vals) { 11069 size_t Limit = SDNode::getMaxNumOperands(); 11070 while (Vals.size() > Limit) { 11071 unsigned SliceIdx = Vals.size() - Limit; 11072 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11073 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11074 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11075 Vals.emplace_back(NewTF); 11076 } 11077 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11078 } 11079 11080 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11081 EVT VT, SDNodeFlags Flags) { 11082 switch (Opcode) { 11083 default: 11084 return SDValue(); 11085 case ISD::ADD: 11086 case ISD::OR: 11087 case ISD::XOR: 11088 case ISD::UMAX: 11089 return getConstant(0, DL, VT); 11090 case ISD::MUL: 11091 return getConstant(1, DL, VT); 11092 case ISD::AND: 11093 case ISD::UMIN: 11094 return getAllOnesConstant(DL, VT); 11095 case ISD::SMAX: 11096 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11097 case ISD::SMIN: 11098 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11099 case ISD::FADD: 11100 return getConstantFP(-0.0, DL, VT); 11101 case ISD::FMUL: 11102 return getConstantFP(1.0, DL, VT); 11103 case ISD::FMINNUM: 11104 case ISD::FMAXNUM: { 11105 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11106 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11107 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11108 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11109 APFloat::getLargest(Semantics); 11110 if (Opcode == ISD::FMAXNUM) 11111 NeutralAF.changeSign(); 11112 11113 return getConstantFP(NeutralAF, DL, VT); 11114 } 11115 } 11116 } 11117 11118 #ifndef NDEBUG 11119 static void checkForCyclesHelper(const SDNode *N, 11120 SmallPtrSetImpl<const SDNode*> &Visited, 11121 SmallPtrSetImpl<const SDNode*> &Checked, 11122 const llvm::SelectionDAG *DAG) { 11123 // If this node has already been checked, don't check it again. 11124 if (Checked.count(N)) 11125 return; 11126 11127 // If a node has already been visited on this depth-first walk, reject it as 11128 // a cycle. 11129 if (!Visited.insert(N).second) { 11130 errs() << "Detected cycle in SelectionDAG\n"; 11131 dbgs() << "Offending node:\n"; 11132 N->dumprFull(DAG); dbgs() << "\n"; 11133 abort(); 11134 } 11135 11136 for (const SDValue &Op : N->op_values()) 11137 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11138 11139 Checked.insert(N); 11140 Visited.erase(N); 11141 } 11142 #endif 11143 11144 void llvm::checkForCycles(const llvm::SDNode *N, 11145 const llvm::SelectionDAG *DAG, 11146 bool force) { 11147 #ifndef NDEBUG 11148 bool check = force; 11149 #ifdef EXPENSIVE_CHECKS 11150 check = true; 11151 #endif // EXPENSIVE_CHECKS 11152 if (check) { 11153 assert(N && "Checking nonexistent SDNode"); 11154 SmallPtrSet<const SDNode*, 32> visited; 11155 SmallPtrSet<const SDNode*, 32> checked; 11156 checkForCyclesHelper(N, visited, checked, DAG); 11157 } 11158 #endif // !NDEBUG 11159 } 11160 11161 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11162 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11163 } 11164