1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 173 APInt SplatVal; 174 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 175 } 176 177 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 178 179 unsigned i = 0, e = N->getNumOperands(); 180 181 // Skip over all of the undef values. 182 while (i != e && N->getOperand(i).isUndef()) 183 ++i; 184 185 // Do not accept an all-undef vector. 186 if (i == e) return false; 187 188 // Do not accept build_vectors that aren't all constants or which have non-~0 189 // elements. We have to be a bit careful here, as the type of the constant 190 // may not be the same as the type of the vector elements due to type 191 // legalization (the elements are promoted to a legal type for the target and 192 // a vector of a type may be legal when the base element type is not). 193 // We only want to check enough bits to cover the vector elements, because 194 // we care if the resultant vector is all ones, not whether the individual 195 // constants are. 196 SDValue NotZero = N->getOperand(i); 197 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 198 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 199 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 200 return false; 201 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 202 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 203 return false; 204 } else 205 return false; 206 207 // Okay, we have at least one ~0 value, check to see if the rest match or are 208 // undefs. Even with the above element type twiddling, this should be OK, as 209 // the same type legalization should have applied to all the elements. 210 for (++i; i != e; ++i) 211 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 212 return false; 213 return true; 214 } 215 216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 217 // Look through a bit convert. 218 while (N->getOpcode() == ISD::BITCAST) 219 N = N->getOperand(0).getNode(); 220 221 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 222 APInt SplatVal; 223 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 224 } 225 226 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 227 228 bool IsAllUndef = true; 229 for (const SDValue &Op : N->op_values()) { 230 if (Op.isUndef()) 231 continue; 232 IsAllUndef = false; 233 // Do not accept build_vectors that aren't all constants or which have non-0 234 // elements. We have to be a bit careful here, as the type of the constant 235 // may not be the same as the type of the vector elements due to type 236 // legalization (the elements are promoted to a legal type for the target 237 // and a vector of a type may be legal when the base element type is not). 238 // We only want to check enough bits to cover the vector elements, because 239 // we care if the resultant vector is all zeros, not whether the individual 240 // constants are. 241 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 242 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 243 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 244 return false; 245 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 246 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 247 return false; 248 } else 249 return false; 250 } 251 252 // Do not accept an all-undef vector. 253 if (IsAllUndef) 254 return false; 255 return true; 256 } 257 258 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 259 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 260 } 261 262 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 263 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 267 if (N->getOpcode() != ISD::BUILD_VECTOR) 268 return false; 269 270 for (const SDValue &Op : N->op_values()) { 271 if (Op.isUndef()) 272 continue; 273 if (!isa<ConstantSDNode>(Op)) 274 return false; 275 } 276 return true; 277 } 278 279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 280 if (N->getOpcode() != ISD::BUILD_VECTOR) 281 return false; 282 283 for (const SDValue &Op : N->op_values()) { 284 if (Op.isUndef()) 285 continue; 286 if (!isa<ConstantFPSDNode>(Op)) 287 return false; 288 } 289 return true; 290 } 291 292 bool ISD::allOperandsUndef(const SDNode *N) { 293 // Return false if the node has no operands. 294 // This is "logically inconsistent" with the definition of "all" but 295 // is probably the desired behavior. 296 if (N->getNumOperands() == 0) 297 return false; 298 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 299 } 300 301 bool ISD::matchUnaryPredicate(SDValue Op, 302 std::function<bool(ConstantSDNode *)> Match, 303 bool AllowUndefs) { 304 // FIXME: Add support for scalar UNDEF cases? 305 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 306 return Match(Cst); 307 308 // FIXME: Add support for vector UNDEF cases? 309 if (ISD::BUILD_VECTOR != Op.getOpcode()) 310 return false; 311 312 EVT SVT = Op.getValueType().getScalarType(); 313 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 314 if (AllowUndefs && Op.getOperand(i).isUndef()) { 315 if (!Match(nullptr)) 316 return false; 317 continue; 318 } 319 320 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 321 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 322 return false; 323 } 324 return true; 325 } 326 327 bool ISD::matchBinaryPredicate( 328 SDValue LHS, SDValue RHS, 329 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 330 bool AllowUndefs, bool AllowTypeMismatch) { 331 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 332 return false; 333 334 // TODO: Add support for scalar UNDEF cases? 335 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 336 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 337 return Match(LHSCst, RHSCst); 338 339 // TODO: Add support for vector UNDEF cases? 340 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 341 ISD::BUILD_VECTOR != RHS.getOpcode()) 342 return false; 343 344 EVT SVT = LHS.getValueType().getScalarType(); 345 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 346 SDValue LHSOp = LHS.getOperand(i); 347 SDValue RHSOp = RHS.getOperand(i); 348 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 349 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 350 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 351 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 352 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 353 return false; 354 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 355 LHSOp.getValueType() != RHSOp.getValueType())) 356 return false; 357 if (!Match(LHSCst, RHSCst)) 358 return false; 359 } 360 return true; 361 } 362 363 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 364 switch (VecReduceOpcode) { 365 default: 366 llvm_unreachable("Expected VECREDUCE opcode"); 367 case ISD::VECREDUCE_FADD: 368 case ISD::VECREDUCE_SEQ_FADD: 369 return ISD::FADD; 370 case ISD::VECREDUCE_FMUL: 371 case ISD::VECREDUCE_SEQ_FMUL: 372 return ISD::FMUL; 373 case ISD::VECREDUCE_ADD: 374 return ISD::ADD; 375 case ISD::VECREDUCE_MUL: 376 return ISD::MUL; 377 case ISD::VECREDUCE_AND: 378 return ISD::AND; 379 case ISD::VECREDUCE_OR: 380 return ISD::OR; 381 case ISD::VECREDUCE_XOR: 382 return ISD::XOR; 383 case ISD::VECREDUCE_SMAX: 384 return ISD::SMAX; 385 case ISD::VECREDUCE_SMIN: 386 return ISD::SMIN; 387 case ISD::VECREDUCE_UMAX: 388 return ISD::UMAX; 389 case ISD::VECREDUCE_UMIN: 390 return ISD::UMIN; 391 case ISD::VECREDUCE_FMAX: 392 return ISD::FMAXNUM; 393 case ISD::VECREDUCE_FMIN: 394 return ISD::FMINNUM; 395 } 396 } 397 398 bool ISD::isVPOpcode(unsigned Opcode) { 399 switch (Opcode) { 400 default: 401 return false; 402 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 403 case ISD::SDOPC: \ 404 return true; 405 #include "llvm/IR/VPIntrinsics.def" 406 } 407 } 408 409 /// The operand position of the vector mask. 410 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 411 switch (Opcode) { 412 default: 413 return None; 414 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 415 case ISD::SDOPC: \ 416 return MASKPOS; 417 #include "llvm/IR/VPIntrinsics.def" 418 } 419 } 420 421 /// The operand position of the explicit vector length parameter. 422 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 423 switch (Opcode) { 424 default: 425 return None; 426 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 427 case ISD::SDOPC: \ 428 return EVLPOS; 429 #include "llvm/IR/VPIntrinsics.def" 430 } 431 } 432 433 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 434 switch (ExtType) { 435 case ISD::EXTLOAD: 436 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 437 case ISD::SEXTLOAD: 438 return ISD::SIGN_EXTEND; 439 case ISD::ZEXTLOAD: 440 return ISD::ZERO_EXTEND; 441 default: 442 break; 443 } 444 445 llvm_unreachable("Invalid LoadExtType"); 446 } 447 448 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 449 // To perform this operation, we just need to swap the L and G bits of the 450 // operation. 451 unsigned OldL = (Operation >> 2) & 1; 452 unsigned OldG = (Operation >> 1) & 1; 453 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 454 (OldL << 1) | // New G bit 455 (OldG << 2)); // New L bit. 456 } 457 458 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 459 unsigned Operation = Op; 460 if (isIntegerLike) 461 Operation ^= 7; // Flip L, G, E bits, but not U. 462 else 463 Operation ^= 15; // Flip all of the condition bits. 464 465 if (Operation > ISD::SETTRUE2) 466 Operation &= ~8; // Don't let N and U bits get set. 467 468 return ISD::CondCode(Operation); 469 } 470 471 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 472 return getSetCCInverseImpl(Op, Type.isInteger()); 473 } 474 475 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 476 bool isIntegerLike) { 477 return getSetCCInverseImpl(Op, isIntegerLike); 478 } 479 480 /// For an integer comparison, return 1 if the comparison is a signed operation 481 /// and 2 if the result is an unsigned comparison. Return zero if the operation 482 /// does not depend on the sign of the input (setne and seteq). 483 static int isSignedOp(ISD::CondCode Opcode) { 484 switch (Opcode) { 485 default: llvm_unreachable("Illegal integer setcc operation!"); 486 case ISD::SETEQ: 487 case ISD::SETNE: return 0; 488 case ISD::SETLT: 489 case ISD::SETLE: 490 case ISD::SETGT: 491 case ISD::SETGE: return 1; 492 case ISD::SETULT: 493 case ISD::SETULE: 494 case ISD::SETUGT: 495 case ISD::SETUGE: return 2; 496 } 497 } 498 499 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 500 EVT Type) { 501 bool IsInteger = Type.isInteger(); 502 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 503 // Cannot fold a signed integer setcc with an unsigned integer setcc. 504 return ISD::SETCC_INVALID; 505 506 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 507 508 // If the N and U bits get set, then the resultant comparison DOES suddenly 509 // care about orderedness, and it is true when ordered. 510 if (Op > ISD::SETTRUE2) 511 Op &= ~16; // Clear the U bit if the N bit is set. 512 513 // Canonicalize illegal integer setcc's. 514 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 515 Op = ISD::SETNE; 516 517 return ISD::CondCode(Op); 518 } 519 520 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 521 EVT Type) { 522 bool IsInteger = Type.isInteger(); 523 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 524 // Cannot fold a signed setcc with an unsigned setcc. 525 return ISD::SETCC_INVALID; 526 527 // Combine all of the condition bits. 528 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 529 530 // Canonicalize illegal integer setcc's. 531 if (IsInteger) { 532 switch (Result) { 533 default: break; 534 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 535 case ISD::SETOEQ: // SETEQ & SETU[LG]E 536 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 537 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 538 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 539 } 540 } 541 542 return Result; 543 } 544 545 //===----------------------------------------------------------------------===// 546 // SDNode Profile Support 547 //===----------------------------------------------------------------------===// 548 549 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 550 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 551 ID.AddInteger(OpC); 552 } 553 554 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 555 /// solely with their pointer. 556 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 557 ID.AddPointer(VTList.VTs); 558 } 559 560 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 561 static void AddNodeIDOperands(FoldingSetNodeID &ID, 562 ArrayRef<SDValue> Ops) { 563 for (auto& Op : Ops) { 564 ID.AddPointer(Op.getNode()); 565 ID.AddInteger(Op.getResNo()); 566 } 567 } 568 569 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 570 static void AddNodeIDOperands(FoldingSetNodeID &ID, 571 ArrayRef<SDUse> Ops) { 572 for (auto& Op : Ops) { 573 ID.AddPointer(Op.getNode()); 574 ID.AddInteger(Op.getResNo()); 575 } 576 } 577 578 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 579 SDVTList VTList, ArrayRef<SDValue> OpList) { 580 AddNodeIDOpcode(ID, OpC); 581 AddNodeIDValueTypes(ID, VTList); 582 AddNodeIDOperands(ID, OpList); 583 } 584 585 /// If this is an SDNode with special info, add this info to the NodeID data. 586 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 587 switch (N->getOpcode()) { 588 case ISD::TargetExternalSymbol: 589 case ISD::ExternalSymbol: 590 case ISD::MCSymbol: 591 llvm_unreachable("Should only be used on nodes with operands"); 592 default: break; // Normal nodes don't need extra info. 593 case ISD::TargetConstant: 594 case ISD::Constant: { 595 const ConstantSDNode *C = cast<ConstantSDNode>(N); 596 ID.AddPointer(C->getConstantIntValue()); 597 ID.AddBoolean(C->isOpaque()); 598 break; 599 } 600 case ISD::TargetConstantFP: 601 case ISD::ConstantFP: 602 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 603 break; 604 case ISD::TargetGlobalAddress: 605 case ISD::GlobalAddress: 606 case ISD::TargetGlobalTLSAddress: 607 case ISD::GlobalTLSAddress: { 608 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 609 ID.AddPointer(GA->getGlobal()); 610 ID.AddInteger(GA->getOffset()); 611 ID.AddInteger(GA->getTargetFlags()); 612 break; 613 } 614 case ISD::BasicBlock: 615 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 616 break; 617 case ISD::Register: 618 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 619 break; 620 case ISD::RegisterMask: 621 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 622 break; 623 case ISD::SRCVALUE: 624 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 625 break; 626 case ISD::FrameIndex: 627 case ISD::TargetFrameIndex: 628 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 629 break; 630 case ISD::LIFETIME_START: 631 case ISD::LIFETIME_END: 632 if (cast<LifetimeSDNode>(N)->hasOffset()) { 633 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 634 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 635 } 636 break; 637 case ISD::PSEUDO_PROBE: 638 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 639 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 640 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 641 break; 642 case ISD::JumpTable: 643 case ISD::TargetJumpTable: 644 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 645 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 646 break; 647 case ISD::ConstantPool: 648 case ISD::TargetConstantPool: { 649 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 650 ID.AddInteger(CP->getAlign().value()); 651 ID.AddInteger(CP->getOffset()); 652 if (CP->isMachineConstantPoolEntry()) 653 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 654 else 655 ID.AddPointer(CP->getConstVal()); 656 ID.AddInteger(CP->getTargetFlags()); 657 break; 658 } 659 case ISD::TargetIndex: { 660 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 661 ID.AddInteger(TI->getIndex()); 662 ID.AddInteger(TI->getOffset()); 663 ID.AddInteger(TI->getTargetFlags()); 664 break; 665 } 666 case ISD::LOAD: { 667 const LoadSDNode *LD = cast<LoadSDNode>(N); 668 ID.AddInteger(LD->getMemoryVT().getRawBits()); 669 ID.AddInteger(LD->getRawSubclassData()); 670 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 671 break; 672 } 673 case ISD::STORE: { 674 const StoreSDNode *ST = cast<StoreSDNode>(N); 675 ID.AddInteger(ST->getMemoryVT().getRawBits()); 676 ID.AddInteger(ST->getRawSubclassData()); 677 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 678 break; 679 } 680 case ISD::MLOAD: { 681 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 682 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 683 ID.AddInteger(MLD->getRawSubclassData()); 684 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 685 break; 686 } 687 case ISD::MSTORE: { 688 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 689 ID.AddInteger(MST->getMemoryVT().getRawBits()); 690 ID.AddInteger(MST->getRawSubclassData()); 691 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 692 break; 693 } 694 case ISD::MGATHER: { 695 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 696 ID.AddInteger(MG->getMemoryVT().getRawBits()); 697 ID.AddInteger(MG->getRawSubclassData()); 698 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 699 break; 700 } 701 case ISD::MSCATTER: { 702 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 703 ID.AddInteger(MS->getMemoryVT().getRawBits()); 704 ID.AddInteger(MS->getRawSubclassData()); 705 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 706 break; 707 } 708 case ISD::ATOMIC_CMP_SWAP: 709 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 710 case ISD::ATOMIC_SWAP: 711 case ISD::ATOMIC_LOAD_ADD: 712 case ISD::ATOMIC_LOAD_SUB: 713 case ISD::ATOMIC_LOAD_AND: 714 case ISD::ATOMIC_LOAD_CLR: 715 case ISD::ATOMIC_LOAD_OR: 716 case ISD::ATOMIC_LOAD_XOR: 717 case ISD::ATOMIC_LOAD_NAND: 718 case ISD::ATOMIC_LOAD_MIN: 719 case ISD::ATOMIC_LOAD_MAX: 720 case ISD::ATOMIC_LOAD_UMIN: 721 case ISD::ATOMIC_LOAD_UMAX: 722 case ISD::ATOMIC_LOAD: 723 case ISD::ATOMIC_STORE: { 724 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 725 ID.AddInteger(AT->getMemoryVT().getRawBits()); 726 ID.AddInteger(AT->getRawSubclassData()); 727 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 728 break; 729 } 730 case ISD::PREFETCH: { 731 const MemSDNode *PF = cast<MemSDNode>(N); 732 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 733 break; 734 } 735 case ISD::VECTOR_SHUFFLE: { 736 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 737 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 738 i != e; ++i) 739 ID.AddInteger(SVN->getMaskElt(i)); 740 break; 741 } 742 case ISD::TargetBlockAddress: 743 case ISD::BlockAddress: { 744 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 745 ID.AddPointer(BA->getBlockAddress()); 746 ID.AddInteger(BA->getOffset()); 747 ID.AddInteger(BA->getTargetFlags()); 748 break; 749 } 750 } // end switch (N->getOpcode()) 751 752 // Target specific memory nodes could also have address spaces to check. 753 if (N->isTargetMemoryOpcode()) 754 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 755 } 756 757 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 758 /// data. 759 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 760 AddNodeIDOpcode(ID, N->getOpcode()); 761 // Add the return value info. 762 AddNodeIDValueTypes(ID, N->getVTList()); 763 // Add the operand info. 764 AddNodeIDOperands(ID, N->ops()); 765 766 // Handle SDNode leafs with special info. 767 AddNodeIDCustom(ID, N); 768 } 769 770 //===----------------------------------------------------------------------===// 771 // SelectionDAG Class 772 //===----------------------------------------------------------------------===// 773 774 /// doNotCSE - Return true if CSE should not be performed for this node. 775 static bool doNotCSE(SDNode *N) { 776 if (N->getValueType(0) == MVT::Glue) 777 return true; // Never CSE anything that produces a flag. 778 779 switch (N->getOpcode()) { 780 default: break; 781 case ISD::HANDLENODE: 782 case ISD::EH_LABEL: 783 return true; // Never CSE these nodes. 784 } 785 786 // Check that remaining values produced are not flags. 787 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 788 if (N->getValueType(i) == MVT::Glue) 789 return true; // Never CSE anything that produces a flag. 790 791 return false; 792 } 793 794 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 795 /// SelectionDAG. 796 void SelectionDAG::RemoveDeadNodes() { 797 // Create a dummy node (which is not added to allnodes), that adds a reference 798 // to the root node, preventing it from being deleted. 799 HandleSDNode Dummy(getRoot()); 800 801 SmallVector<SDNode*, 128> DeadNodes; 802 803 // Add all obviously-dead nodes to the DeadNodes worklist. 804 for (SDNode &Node : allnodes()) 805 if (Node.use_empty()) 806 DeadNodes.push_back(&Node); 807 808 RemoveDeadNodes(DeadNodes); 809 810 // If the root changed (e.g. it was a dead load, update the root). 811 setRoot(Dummy.getValue()); 812 } 813 814 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 815 /// given list, and any nodes that become unreachable as a result. 816 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 817 818 // Process the worklist, deleting the nodes and adding their uses to the 819 // worklist. 820 while (!DeadNodes.empty()) { 821 SDNode *N = DeadNodes.pop_back_val(); 822 // Skip to next node if we've already managed to delete the node. This could 823 // happen if replacing a node causes a node previously added to the node to 824 // be deleted. 825 if (N->getOpcode() == ISD::DELETED_NODE) 826 continue; 827 828 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 829 DUL->NodeDeleted(N, nullptr); 830 831 // Take the node out of the appropriate CSE map. 832 RemoveNodeFromCSEMaps(N); 833 834 // Next, brutally remove the operand list. This is safe to do, as there are 835 // no cycles in the graph. 836 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 837 SDUse &Use = *I++; 838 SDNode *Operand = Use.getNode(); 839 Use.set(SDValue()); 840 841 // Now that we removed this operand, see if there are no uses of it left. 842 if (Operand->use_empty()) 843 DeadNodes.push_back(Operand); 844 } 845 846 DeallocateNode(N); 847 } 848 } 849 850 void SelectionDAG::RemoveDeadNode(SDNode *N){ 851 SmallVector<SDNode*, 16> DeadNodes(1, N); 852 853 // Create a dummy node that adds a reference to the root node, preventing 854 // it from being deleted. (This matters if the root is an operand of the 855 // dead node.) 856 HandleSDNode Dummy(getRoot()); 857 858 RemoveDeadNodes(DeadNodes); 859 } 860 861 void SelectionDAG::DeleteNode(SDNode *N) { 862 // First take this out of the appropriate CSE map. 863 RemoveNodeFromCSEMaps(N); 864 865 // Finally, remove uses due to operands of this node, remove from the 866 // AllNodes list, and delete the node. 867 DeleteNodeNotInCSEMaps(N); 868 } 869 870 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 871 assert(N->getIterator() != AllNodes.begin() && 872 "Cannot delete the entry node!"); 873 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 874 875 // Drop all of the operands and decrement used node's use counts. 876 N->DropOperands(); 877 878 DeallocateNode(N); 879 } 880 881 void SDDbgInfo::erase(const SDNode *Node) { 882 DbgValMapType::iterator I = DbgValMap.find(Node); 883 if (I == DbgValMap.end()) 884 return; 885 for (auto &Val: I->second) 886 Val->setIsInvalidated(); 887 DbgValMap.erase(I); 888 } 889 890 void SelectionDAG::DeallocateNode(SDNode *N) { 891 // If we have operands, deallocate them. 892 removeOperands(N); 893 894 NodeAllocator.Deallocate(AllNodes.remove(N)); 895 896 // Set the opcode to DELETED_NODE to help catch bugs when node 897 // memory is reallocated. 898 // FIXME: There are places in SDag that have grown a dependency on the opcode 899 // value in the released node. 900 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 901 N->NodeType = ISD::DELETED_NODE; 902 903 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 904 // them and forget about that node. 905 DbgInfo->erase(N); 906 } 907 908 #ifndef NDEBUG 909 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 910 static void VerifySDNode(SDNode *N) { 911 switch (N->getOpcode()) { 912 default: 913 break; 914 case ISD::BUILD_PAIR: { 915 EVT VT = N->getValueType(0); 916 assert(N->getNumValues() == 1 && "Too many results!"); 917 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 918 "Wrong return type!"); 919 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 920 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 921 "Mismatched operand types!"); 922 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 923 "Wrong operand type!"); 924 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 925 "Wrong return type size"); 926 break; 927 } 928 case ISD::BUILD_VECTOR: { 929 assert(N->getNumValues() == 1 && "Too many results!"); 930 assert(N->getValueType(0).isVector() && "Wrong return type!"); 931 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 932 "Wrong number of operands!"); 933 EVT EltVT = N->getValueType(0).getVectorElementType(); 934 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 935 assert((I->getValueType() == EltVT || 936 (EltVT.isInteger() && I->getValueType().isInteger() && 937 EltVT.bitsLE(I->getValueType()))) && 938 "Wrong operand type!"); 939 assert(I->getValueType() == N->getOperand(0).getValueType() && 940 "Operands must all have the same type"); 941 } 942 break; 943 } 944 } 945 } 946 #endif // NDEBUG 947 948 /// Insert a newly allocated node into the DAG. 949 /// 950 /// Handles insertion into the all nodes list and CSE map, as well as 951 /// verification and other common operations when a new node is allocated. 952 void SelectionDAG::InsertNode(SDNode *N) { 953 AllNodes.push_back(N); 954 #ifndef NDEBUG 955 N->PersistentId = NextPersistentId++; 956 VerifySDNode(N); 957 #endif 958 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 959 DUL->NodeInserted(N); 960 } 961 962 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 963 /// correspond to it. This is useful when we're about to delete or repurpose 964 /// the node. We don't want future request for structurally identical nodes 965 /// to return N anymore. 966 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 967 bool Erased = false; 968 switch (N->getOpcode()) { 969 case ISD::HANDLENODE: return false; // noop. 970 case ISD::CONDCODE: 971 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 972 "Cond code doesn't exist!"); 973 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 974 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 975 break; 976 case ISD::ExternalSymbol: 977 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 978 break; 979 case ISD::TargetExternalSymbol: { 980 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 981 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 982 ESN->getSymbol(), ESN->getTargetFlags())); 983 break; 984 } 985 case ISD::MCSymbol: { 986 auto *MCSN = cast<MCSymbolSDNode>(N); 987 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 988 break; 989 } 990 case ISD::VALUETYPE: { 991 EVT VT = cast<VTSDNode>(N)->getVT(); 992 if (VT.isExtended()) { 993 Erased = ExtendedValueTypeNodes.erase(VT); 994 } else { 995 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 996 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 997 } 998 break; 999 } 1000 default: 1001 // Remove it from the CSE Map. 1002 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1003 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1004 Erased = CSEMap.RemoveNode(N); 1005 break; 1006 } 1007 #ifndef NDEBUG 1008 // Verify that the node was actually in one of the CSE maps, unless it has a 1009 // flag result (which cannot be CSE'd) or is one of the special cases that are 1010 // not subject to CSE. 1011 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1012 !N->isMachineOpcode() && !doNotCSE(N)) { 1013 N->dump(this); 1014 dbgs() << "\n"; 1015 llvm_unreachable("Node is not in map!"); 1016 } 1017 #endif 1018 return Erased; 1019 } 1020 1021 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1022 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1023 /// node already exists, in which case transfer all its users to the existing 1024 /// node. This transfer can potentially trigger recursive merging. 1025 void 1026 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1027 // For node types that aren't CSE'd, just act as if no identical node 1028 // already exists. 1029 if (!doNotCSE(N)) { 1030 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1031 if (Existing != N) { 1032 // If there was already an existing matching node, use ReplaceAllUsesWith 1033 // to replace the dead one with the existing one. This can cause 1034 // recursive merging of other unrelated nodes down the line. 1035 ReplaceAllUsesWith(N, Existing); 1036 1037 // N is now dead. Inform the listeners and delete it. 1038 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1039 DUL->NodeDeleted(N, Existing); 1040 DeleteNodeNotInCSEMaps(N); 1041 return; 1042 } 1043 } 1044 1045 // If the node doesn't already exist, we updated it. Inform listeners. 1046 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1047 DUL->NodeUpdated(N); 1048 } 1049 1050 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1051 /// were replaced with those specified. If this node is never memoized, 1052 /// return null, otherwise return a pointer to the slot it would take. If a 1053 /// node already exists with these operands, the slot will be non-null. 1054 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1055 void *&InsertPos) { 1056 if (doNotCSE(N)) 1057 return nullptr; 1058 1059 SDValue Ops[] = { Op }; 1060 FoldingSetNodeID ID; 1061 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1062 AddNodeIDCustom(ID, N); 1063 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1064 if (Node) 1065 Node->intersectFlagsWith(N->getFlags()); 1066 return Node; 1067 } 1068 1069 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1070 /// were replaced with those specified. If this node is never memoized, 1071 /// return null, otherwise return a pointer to the slot it would take. If a 1072 /// node already exists with these operands, the slot will be non-null. 1073 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1074 SDValue Op1, SDValue Op2, 1075 void *&InsertPos) { 1076 if (doNotCSE(N)) 1077 return nullptr; 1078 1079 SDValue Ops[] = { Op1, Op2 }; 1080 FoldingSetNodeID ID; 1081 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1082 AddNodeIDCustom(ID, N); 1083 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1084 if (Node) 1085 Node->intersectFlagsWith(N->getFlags()); 1086 return Node; 1087 } 1088 1089 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1090 /// were replaced with those specified. If this node is never memoized, 1091 /// return null, otherwise return a pointer to the slot it would take. If a 1092 /// node already exists with these operands, the slot will be non-null. 1093 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1094 void *&InsertPos) { 1095 if (doNotCSE(N)) 1096 return nullptr; 1097 1098 FoldingSetNodeID ID; 1099 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1100 AddNodeIDCustom(ID, N); 1101 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1102 if (Node) 1103 Node->intersectFlagsWith(N->getFlags()); 1104 return Node; 1105 } 1106 1107 Align SelectionDAG::getEVTAlign(EVT VT) const { 1108 Type *Ty = VT == MVT::iPTR ? 1109 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1110 VT.getTypeForEVT(*getContext()); 1111 1112 return getDataLayout().getABITypeAlign(Ty); 1113 } 1114 1115 // EntryNode could meaningfully have debug info if we can find it... 1116 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1117 : TM(tm), OptLevel(OL), 1118 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1119 Root(getEntryNode()) { 1120 InsertNode(&EntryNode); 1121 DbgInfo = new SDDbgInfo(); 1122 } 1123 1124 void SelectionDAG::init(MachineFunction &NewMF, 1125 OptimizationRemarkEmitter &NewORE, 1126 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1127 LegacyDivergenceAnalysis * Divergence, 1128 ProfileSummaryInfo *PSIin, 1129 BlockFrequencyInfo *BFIin) { 1130 MF = &NewMF; 1131 SDAGISelPass = PassPtr; 1132 ORE = &NewORE; 1133 TLI = getSubtarget().getTargetLowering(); 1134 TSI = getSubtarget().getSelectionDAGInfo(); 1135 LibInfo = LibraryInfo; 1136 Context = &MF->getFunction().getContext(); 1137 DA = Divergence; 1138 PSI = PSIin; 1139 BFI = BFIin; 1140 } 1141 1142 SelectionDAG::~SelectionDAG() { 1143 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1144 allnodes_clear(); 1145 OperandRecycler.clear(OperandAllocator); 1146 delete DbgInfo; 1147 } 1148 1149 bool SelectionDAG::shouldOptForSize() const { 1150 return MF->getFunction().hasOptSize() || 1151 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1152 } 1153 1154 void SelectionDAG::allnodes_clear() { 1155 assert(&*AllNodes.begin() == &EntryNode); 1156 AllNodes.remove(AllNodes.begin()); 1157 while (!AllNodes.empty()) 1158 DeallocateNode(&AllNodes.front()); 1159 #ifndef NDEBUG 1160 NextPersistentId = 0; 1161 #endif 1162 } 1163 1164 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1165 void *&InsertPos) { 1166 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1167 if (N) { 1168 switch (N->getOpcode()) { 1169 default: break; 1170 case ISD::Constant: 1171 case ISD::ConstantFP: 1172 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1173 "debug location. Use another overload."); 1174 } 1175 } 1176 return N; 1177 } 1178 1179 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1180 const SDLoc &DL, void *&InsertPos) { 1181 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1182 if (N) { 1183 switch (N->getOpcode()) { 1184 case ISD::Constant: 1185 case ISD::ConstantFP: 1186 // Erase debug location from the node if the node is used at several 1187 // different places. Do not propagate one location to all uses as it 1188 // will cause a worse single stepping debugging experience. 1189 if (N->getDebugLoc() != DL.getDebugLoc()) 1190 N->setDebugLoc(DebugLoc()); 1191 break; 1192 default: 1193 // When the node's point of use is located earlier in the instruction 1194 // sequence than its prior point of use, update its debug info to the 1195 // earlier location. 1196 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1197 N->setDebugLoc(DL.getDebugLoc()); 1198 break; 1199 } 1200 } 1201 return N; 1202 } 1203 1204 void SelectionDAG::clear() { 1205 allnodes_clear(); 1206 OperandRecycler.clear(OperandAllocator); 1207 OperandAllocator.Reset(); 1208 CSEMap.clear(); 1209 1210 ExtendedValueTypeNodes.clear(); 1211 ExternalSymbols.clear(); 1212 TargetExternalSymbols.clear(); 1213 MCSymbols.clear(); 1214 SDCallSiteDbgInfo.clear(); 1215 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1216 static_cast<CondCodeSDNode*>(nullptr)); 1217 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1218 static_cast<SDNode*>(nullptr)); 1219 1220 EntryNode.UseList = nullptr; 1221 InsertNode(&EntryNode); 1222 Root = getEntryNode(); 1223 DbgInfo->clear(); 1224 } 1225 1226 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1227 return VT.bitsGT(Op.getValueType()) 1228 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1229 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1230 } 1231 1232 std::pair<SDValue, SDValue> 1233 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1234 const SDLoc &DL, EVT VT) { 1235 assert(!VT.bitsEq(Op.getValueType()) && 1236 "Strict no-op FP extend/round not allowed."); 1237 SDValue Res = 1238 VT.bitsGT(Op.getValueType()) 1239 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1240 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1241 {Chain, Op, getIntPtrConstant(0, DL)}); 1242 1243 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1244 } 1245 1246 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1247 return VT.bitsGT(Op.getValueType()) ? 1248 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1249 getNode(ISD::TRUNCATE, DL, VT, Op); 1250 } 1251 1252 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1253 return VT.bitsGT(Op.getValueType()) ? 1254 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1255 getNode(ISD::TRUNCATE, DL, VT, Op); 1256 } 1257 1258 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1259 return VT.bitsGT(Op.getValueType()) ? 1260 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1261 getNode(ISD::TRUNCATE, DL, VT, Op); 1262 } 1263 1264 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1265 EVT OpVT) { 1266 if (VT.bitsLE(Op.getValueType())) 1267 return getNode(ISD::TRUNCATE, SL, VT, Op); 1268 1269 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1270 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1271 } 1272 1273 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1274 EVT OpVT = Op.getValueType(); 1275 assert(VT.isInteger() && OpVT.isInteger() && 1276 "Cannot getZeroExtendInReg FP types"); 1277 assert(VT.isVector() == OpVT.isVector() && 1278 "getZeroExtendInReg type should be vector iff the operand " 1279 "type is vector!"); 1280 assert((!VT.isVector() || 1281 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1282 "Vector element counts must match in getZeroExtendInReg"); 1283 assert(VT.bitsLE(OpVT) && "Not extending!"); 1284 if (OpVT == VT) 1285 return Op; 1286 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1287 VT.getScalarSizeInBits()); 1288 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1289 } 1290 1291 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1292 // Only unsigned pointer semantics are supported right now. In the future this 1293 // might delegate to TLI to check pointer signedness. 1294 return getZExtOrTrunc(Op, DL, VT); 1295 } 1296 1297 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1298 // Only unsigned pointer semantics are supported right now. In the future this 1299 // might delegate to TLI to check pointer signedness. 1300 return getZeroExtendInReg(Op, DL, VT); 1301 } 1302 1303 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1304 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1305 EVT EltVT = VT.getScalarType(); 1306 SDValue NegOne = 1307 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1308 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1309 } 1310 1311 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1312 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1313 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1314 } 1315 1316 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1317 EVT OpVT) { 1318 if (!V) 1319 return getConstant(0, DL, VT); 1320 1321 switch (TLI->getBooleanContents(OpVT)) { 1322 case TargetLowering::ZeroOrOneBooleanContent: 1323 case TargetLowering::UndefinedBooleanContent: 1324 return getConstant(1, DL, VT); 1325 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1326 return getAllOnesConstant(DL, VT); 1327 } 1328 llvm_unreachable("Unexpected boolean content enum!"); 1329 } 1330 1331 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1332 bool isT, bool isO) { 1333 EVT EltVT = VT.getScalarType(); 1334 assert((EltVT.getSizeInBits() >= 64 || 1335 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1336 "getConstant with a uint64_t value that doesn't fit in the type!"); 1337 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1338 } 1339 1340 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1341 bool isT, bool isO) { 1342 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1343 } 1344 1345 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1346 EVT VT, bool isT, bool isO) { 1347 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1348 1349 EVT EltVT = VT.getScalarType(); 1350 const ConstantInt *Elt = &Val; 1351 1352 // In some cases the vector type is legal but the element type is illegal and 1353 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1354 // inserted value (the type does not need to match the vector element type). 1355 // Any extra bits introduced will be truncated away. 1356 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1357 TargetLowering::TypePromoteInteger) { 1358 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1359 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1360 Elt = ConstantInt::get(*getContext(), NewVal); 1361 } 1362 // In other cases the element type is illegal and needs to be expanded, for 1363 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1364 // the value into n parts and use a vector type with n-times the elements. 1365 // Then bitcast to the type requested. 1366 // Legalizing constants too early makes the DAGCombiner's job harder so we 1367 // only legalize if the DAG tells us we must produce legal types. 1368 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1369 TLI->getTypeAction(*getContext(), EltVT) == 1370 TargetLowering::TypeExpandInteger) { 1371 const APInt &NewVal = Elt->getValue(); 1372 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1373 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1374 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1375 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1376 1377 // Check the temporary vector is the correct size. If this fails then 1378 // getTypeToTransformTo() probably returned a type whose size (in bits) 1379 // isn't a power-of-2 factor of the requested type size. 1380 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1381 1382 SmallVector<SDValue, 2> EltParts; 1383 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1384 EltParts.push_back(getConstant( 1385 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1386 ViaEltVT, isT, isO)); 1387 } 1388 1389 // EltParts is currently in little endian order. If we actually want 1390 // big-endian order then reverse it now. 1391 if (getDataLayout().isBigEndian()) 1392 std::reverse(EltParts.begin(), EltParts.end()); 1393 1394 // The elements must be reversed when the element order is different 1395 // to the endianness of the elements (because the BITCAST is itself a 1396 // vector shuffle in this situation). However, we do not need any code to 1397 // perform this reversal because getConstant() is producing a vector 1398 // splat. 1399 // This situation occurs in MIPS MSA. 1400 1401 SmallVector<SDValue, 8> Ops; 1402 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1403 llvm::append_range(Ops, EltParts); 1404 1405 SDValue V = 1406 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1407 return V; 1408 } 1409 1410 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1411 "APInt size does not match type size!"); 1412 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1413 FoldingSetNodeID ID; 1414 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1415 ID.AddPointer(Elt); 1416 ID.AddBoolean(isO); 1417 void *IP = nullptr; 1418 SDNode *N = nullptr; 1419 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1420 if (!VT.isVector()) 1421 return SDValue(N, 0); 1422 1423 if (!N) { 1424 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1425 CSEMap.InsertNode(N, IP); 1426 InsertNode(N); 1427 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1428 } 1429 1430 SDValue Result(N, 0); 1431 if (VT.isScalableVector()) 1432 Result = getSplatVector(VT, DL, Result); 1433 else if (VT.isVector()) 1434 Result = getSplatBuildVector(VT, DL, Result); 1435 1436 return Result; 1437 } 1438 1439 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1440 bool isTarget) { 1441 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1442 } 1443 1444 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1445 const SDLoc &DL, bool LegalTypes) { 1446 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1447 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1448 return getConstant(Val, DL, ShiftVT); 1449 } 1450 1451 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1452 bool isTarget) { 1453 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1454 } 1455 1456 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1457 bool isTarget) { 1458 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1459 } 1460 1461 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1462 EVT VT, bool isTarget) { 1463 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1464 1465 EVT EltVT = VT.getScalarType(); 1466 1467 // Do the map lookup using the actual bit pattern for the floating point 1468 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1469 // we don't have issues with SNANs. 1470 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1471 FoldingSetNodeID ID; 1472 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1473 ID.AddPointer(&V); 1474 void *IP = nullptr; 1475 SDNode *N = nullptr; 1476 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1477 if (!VT.isVector()) 1478 return SDValue(N, 0); 1479 1480 if (!N) { 1481 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1482 CSEMap.InsertNode(N, IP); 1483 InsertNode(N); 1484 } 1485 1486 SDValue Result(N, 0); 1487 if (VT.isScalableVector()) 1488 Result = getSplatVector(VT, DL, Result); 1489 else if (VT.isVector()) 1490 Result = getSplatBuildVector(VT, DL, Result); 1491 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1492 return Result; 1493 } 1494 1495 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1496 bool isTarget) { 1497 EVT EltVT = VT.getScalarType(); 1498 if (EltVT == MVT::f32) 1499 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1500 else if (EltVT == MVT::f64) 1501 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1502 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1503 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1504 bool Ignored; 1505 APFloat APF = APFloat(Val); 1506 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1507 &Ignored); 1508 return getConstantFP(APF, DL, VT, isTarget); 1509 } else 1510 llvm_unreachable("Unsupported type in getConstantFP"); 1511 } 1512 1513 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1514 EVT VT, int64_t Offset, bool isTargetGA, 1515 unsigned TargetFlags) { 1516 assert((TargetFlags == 0 || isTargetGA) && 1517 "Cannot set target flags on target-independent globals"); 1518 1519 // Truncate (with sign-extension) the offset value to the pointer size. 1520 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1521 if (BitWidth < 64) 1522 Offset = SignExtend64(Offset, BitWidth); 1523 1524 unsigned Opc; 1525 if (GV->isThreadLocal()) 1526 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1527 else 1528 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1529 1530 FoldingSetNodeID ID; 1531 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1532 ID.AddPointer(GV); 1533 ID.AddInteger(Offset); 1534 ID.AddInteger(TargetFlags); 1535 void *IP = nullptr; 1536 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1537 return SDValue(E, 0); 1538 1539 auto *N = newSDNode<GlobalAddressSDNode>( 1540 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1541 CSEMap.InsertNode(N, IP); 1542 InsertNode(N); 1543 return SDValue(N, 0); 1544 } 1545 1546 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1547 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1548 FoldingSetNodeID ID; 1549 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1550 ID.AddInteger(FI); 1551 void *IP = nullptr; 1552 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1553 return SDValue(E, 0); 1554 1555 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1556 CSEMap.InsertNode(N, IP); 1557 InsertNode(N); 1558 return SDValue(N, 0); 1559 } 1560 1561 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1562 unsigned TargetFlags) { 1563 assert((TargetFlags == 0 || isTarget) && 1564 "Cannot set target flags on target-independent jump tables"); 1565 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1566 FoldingSetNodeID ID; 1567 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1568 ID.AddInteger(JTI); 1569 ID.AddInteger(TargetFlags); 1570 void *IP = nullptr; 1571 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1572 return SDValue(E, 0); 1573 1574 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1575 CSEMap.InsertNode(N, IP); 1576 InsertNode(N); 1577 return SDValue(N, 0); 1578 } 1579 1580 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1581 MaybeAlign Alignment, int Offset, 1582 bool isTarget, unsigned TargetFlags) { 1583 assert((TargetFlags == 0 || isTarget) && 1584 "Cannot set target flags on target-independent globals"); 1585 if (!Alignment) 1586 Alignment = shouldOptForSize() 1587 ? getDataLayout().getABITypeAlign(C->getType()) 1588 : getDataLayout().getPrefTypeAlign(C->getType()); 1589 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1590 FoldingSetNodeID ID; 1591 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1592 ID.AddInteger(Alignment->value()); 1593 ID.AddInteger(Offset); 1594 ID.AddPointer(C); 1595 ID.AddInteger(TargetFlags); 1596 void *IP = nullptr; 1597 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1598 return SDValue(E, 0); 1599 1600 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1601 TargetFlags); 1602 CSEMap.InsertNode(N, IP); 1603 InsertNode(N); 1604 SDValue V = SDValue(N, 0); 1605 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1606 return V; 1607 } 1608 1609 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1610 MaybeAlign Alignment, int Offset, 1611 bool isTarget, unsigned TargetFlags) { 1612 assert((TargetFlags == 0 || isTarget) && 1613 "Cannot set target flags on target-independent globals"); 1614 if (!Alignment) 1615 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1616 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1617 FoldingSetNodeID ID; 1618 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1619 ID.AddInteger(Alignment->value()); 1620 ID.AddInteger(Offset); 1621 C->addSelectionDAGCSEId(ID); 1622 ID.AddInteger(TargetFlags); 1623 void *IP = nullptr; 1624 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1625 return SDValue(E, 0); 1626 1627 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1628 TargetFlags); 1629 CSEMap.InsertNode(N, IP); 1630 InsertNode(N); 1631 return SDValue(N, 0); 1632 } 1633 1634 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1635 unsigned TargetFlags) { 1636 FoldingSetNodeID ID; 1637 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1638 ID.AddInteger(Index); 1639 ID.AddInteger(Offset); 1640 ID.AddInteger(TargetFlags); 1641 void *IP = nullptr; 1642 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1643 return SDValue(E, 0); 1644 1645 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1646 CSEMap.InsertNode(N, IP); 1647 InsertNode(N); 1648 return SDValue(N, 0); 1649 } 1650 1651 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1652 FoldingSetNodeID ID; 1653 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1654 ID.AddPointer(MBB); 1655 void *IP = nullptr; 1656 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1657 return SDValue(E, 0); 1658 1659 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1660 CSEMap.InsertNode(N, IP); 1661 InsertNode(N); 1662 return SDValue(N, 0); 1663 } 1664 1665 SDValue SelectionDAG::getValueType(EVT VT) { 1666 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1667 ValueTypeNodes.size()) 1668 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1669 1670 SDNode *&N = VT.isExtended() ? 1671 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1672 1673 if (N) return SDValue(N, 0); 1674 N = newSDNode<VTSDNode>(VT); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1680 SDNode *&N = ExternalSymbols[Sym]; 1681 if (N) return SDValue(N, 0); 1682 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1683 InsertNode(N); 1684 return SDValue(N, 0); 1685 } 1686 1687 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1688 SDNode *&N = MCSymbols[Sym]; 1689 if (N) 1690 return SDValue(N, 0); 1691 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1692 InsertNode(N); 1693 return SDValue(N, 0); 1694 } 1695 1696 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1697 unsigned TargetFlags) { 1698 SDNode *&N = 1699 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1700 if (N) return SDValue(N, 0); 1701 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1702 InsertNode(N); 1703 return SDValue(N, 0); 1704 } 1705 1706 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1707 if ((unsigned)Cond >= CondCodeNodes.size()) 1708 CondCodeNodes.resize(Cond+1); 1709 1710 if (!CondCodeNodes[Cond]) { 1711 auto *N = newSDNode<CondCodeSDNode>(Cond); 1712 CondCodeNodes[Cond] = N; 1713 InsertNode(N); 1714 } 1715 1716 return SDValue(CondCodeNodes[Cond], 0); 1717 } 1718 1719 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1720 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1721 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1722 std::swap(N1, N2); 1723 ShuffleVectorSDNode::commuteMask(M); 1724 } 1725 1726 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1727 SDValue N2, ArrayRef<int> Mask) { 1728 assert(VT.getVectorNumElements() == Mask.size() && 1729 "Must have the same number of vector elements as mask elements!"); 1730 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1731 "Invalid VECTOR_SHUFFLE"); 1732 1733 // Canonicalize shuffle undef, undef -> undef 1734 if (N1.isUndef() && N2.isUndef()) 1735 return getUNDEF(VT); 1736 1737 // Validate that all indices in Mask are within the range of the elements 1738 // input to the shuffle. 1739 int NElts = Mask.size(); 1740 assert(llvm::all_of(Mask, 1741 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1742 "Index out of range"); 1743 1744 // Copy the mask so we can do any needed cleanup. 1745 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1746 1747 // Canonicalize shuffle v, v -> v, undef 1748 if (N1 == N2) { 1749 N2 = getUNDEF(VT); 1750 for (int i = 0; i != NElts; ++i) 1751 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1752 } 1753 1754 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1755 if (N1.isUndef()) 1756 commuteShuffle(N1, N2, MaskVec); 1757 1758 if (TLI->hasVectorBlend()) { 1759 // If shuffling a splat, try to blend the splat instead. We do this here so 1760 // that even when this arises during lowering we don't have to re-handle it. 1761 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1762 BitVector UndefElements; 1763 SDValue Splat = BV->getSplatValue(&UndefElements); 1764 if (!Splat) 1765 return; 1766 1767 for (int i = 0; i < NElts; ++i) { 1768 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1769 continue; 1770 1771 // If this input comes from undef, mark it as such. 1772 if (UndefElements[MaskVec[i] - Offset]) { 1773 MaskVec[i] = -1; 1774 continue; 1775 } 1776 1777 // If we can blend a non-undef lane, use that instead. 1778 if (!UndefElements[i]) 1779 MaskVec[i] = i + Offset; 1780 } 1781 }; 1782 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1783 BlendSplat(N1BV, 0); 1784 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1785 BlendSplat(N2BV, NElts); 1786 } 1787 1788 // Canonicalize all index into lhs, -> shuffle lhs, undef 1789 // Canonicalize all index into rhs, -> shuffle rhs, undef 1790 bool AllLHS = true, AllRHS = true; 1791 bool N2Undef = N2.isUndef(); 1792 for (int i = 0; i != NElts; ++i) { 1793 if (MaskVec[i] >= NElts) { 1794 if (N2Undef) 1795 MaskVec[i] = -1; 1796 else 1797 AllLHS = false; 1798 } else if (MaskVec[i] >= 0) { 1799 AllRHS = false; 1800 } 1801 } 1802 if (AllLHS && AllRHS) 1803 return getUNDEF(VT); 1804 if (AllLHS && !N2Undef) 1805 N2 = getUNDEF(VT); 1806 if (AllRHS) { 1807 N1 = getUNDEF(VT); 1808 commuteShuffle(N1, N2, MaskVec); 1809 } 1810 // Reset our undef status after accounting for the mask. 1811 N2Undef = N2.isUndef(); 1812 // Re-check whether both sides ended up undef. 1813 if (N1.isUndef() && N2Undef) 1814 return getUNDEF(VT); 1815 1816 // If Identity shuffle return that node. 1817 bool Identity = true, AllSame = true; 1818 for (int i = 0; i != NElts; ++i) { 1819 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1820 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1821 } 1822 if (Identity && NElts) 1823 return N1; 1824 1825 // Shuffling a constant splat doesn't change the result. 1826 if (N2Undef) { 1827 SDValue V = N1; 1828 1829 // Look through any bitcasts. We check that these don't change the number 1830 // (and size) of elements and just changes their types. 1831 while (V.getOpcode() == ISD::BITCAST) 1832 V = V->getOperand(0); 1833 1834 // A splat should always show up as a build vector node. 1835 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1836 BitVector UndefElements; 1837 SDValue Splat = BV->getSplatValue(&UndefElements); 1838 // If this is a splat of an undef, shuffling it is also undef. 1839 if (Splat && Splat.isUndef()) 1840 return getUNDEF(VT); 1841 1842 bool SameNumElts = 1843 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1844 1845 // We only have a splat which can skip shuffles if there is a splatted 1846 // value and no undef lanes rearranged by the shuffle. 1847 if (Splat && UndefElements.none()) { 1848 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1849 // number of elements match or the value splatted is a zero constant. 1850 if (SameNumElts) 1851 return N1; 1852 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1853 if (C->isNullValue()) 1854 return N1; 1855 } 1856 1857 // If the shuffle itself creates a splat, build the vector directly. 1858 if (AllSame && SameNumElts) { 1859 EVT BuildVT = BV->getValueType(0); 1860 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1861 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1862 1863 // We may have jumped through bitcasts, so the type of the 1864 // BUILD_VECTOR may not match the type of the shuffle. 1865 if (BuildVT != VT) 1866 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1867 return NewBV; 1868 } 1869 } 1870 } 1871 1872 FoldingSetNodeID ID; 1873 SDValue Ops[2] = { N1, N2 }; 1874 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1875 for (int i = 0; i != NElts; ++i) 1876 ID.AddInteger(MaskVec[i]); 1877 1878 void* IP = nullptr; 1879 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1880 return SDValue(E, 0); 1881 1882 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1883 // SDNode doesn't have access to it. This memory will be "leaked" when 1884 // the node is deallocated, but recovered when the NodeAllocator is released. 1885 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1886 llvm::copy(MaskVec, MaskAlloc); 1887 1888 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1889 dl.getDebugLoc(), MaskAlloc); 1890 createOperands(N, Ops); 1891 1892 CSEMap.InsertNode(N, IP); 1893 InsertNode(N); 1894 SDValue V = SDValue(N, 0); 1895 NewSDValueDbgMsg(V, "Creating new node: ", this); 1896 return V; 1897 } 1898 1899 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1900 EVT VT = SV.getValueType(0); 1901 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1902 ShuffleVectorSDNode::commuteMask(MaskVec); 1903 1904 SDValue Op0 = SV.getOperand(0); 1905 SDValue Op1 = SV.getOperand(1); 1906 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1907 } 1908 1909 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1910 FoldingSetNodeID ID; 1911 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1912 ID.AddInteger(RegNo); 1913 void *IP = nullptr; 1914 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1915 return SDValue(E, 0); 1916 1917 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1918 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1919 CSEMap.InsertNode(N, IP); 1920 InsertNode(N); 1921 return SDValue(N, 0); 1922 } 1923 1924 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1925 FoldingSetNodeID ID; 1926 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1927 ID.AddPointer(RegMask); 1928 void *IP = nullptr; 1929 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1930 return SDValue(E, 0); 1931 1932 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1933 CSEMap.InsertNode(N, IP); 1934 InsertNode(N); 1935 return SDValue(N, 0); 1936 } 1937 1938 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1939 MCSymbol *Label) { 1940 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1941 } 1942 1943 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1944 SDValue Root, MCSymbol *Label) { 1945 FoldingSetNodeID ID; 1946 SDValue Ops[] = { Root }; 1947 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1948 ID.AddPointer(Label); 1949 void *IP = nullptr; 1950 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1951 return SDValue(E, 0); 1952 1953 auto *N = 1954 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1955 createOperands(N, Ops); 1956 1957 CSEMap.InsertNode(N, IP); 1958 InsertNode(N); 1959 return SDValue(N, 0); 1960 } 1961 1962 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1963 int64_t Offset, bool isTarget, 1964 unsigned TargetFlags) { 1965 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1966 1967 FoldingSetNodeID ID; 1968 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1969 ID.AddPointer(BA); 1970 ID.AddInteger(Offset); 1971 ID.AddInteger(TargetFlags); 1972 void *IP = nullptr; 1973 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1974 return SDValue(E, 0); 1975 1976 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1977 CSEMap.InsertNode(N, IP); 1978 InsertNode(N); 1979 return SDValue(N, 0); 1980 } 1981 1982 SDValue SelectionDAG::getSrcValue(const Value *V) { 1983 FoldingSetNodeID ID; 1984 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1985 ID.AddPointer(V); 1986 1987 void *IP = nullptr; 1988 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1989 return SDValue(E, 0); 1990 1991 auto *N = newSDNode<SrcValueSDNode>(V); 1992 CSEMap.InsertNode(N, IP); 1993 InsertNode(N); 1994 return SDValue(N, 0); 1995 } 1996 1997 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1998 FoldingSetNodeID ID; 1999 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2000 ID.AddPointer(MD); 2001 2002 void *IP = nullptr; 2003 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2004 return SDValue(E, 0); 2005 2006 auto *N = newSDNode<MDNodeSDNode>(MD); 2007 CSEMap.InsertNode(N, IP); 2008 InsertNode(N); 2009 return SDValue(N, 0); 2010 } 2011 2012 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2013 if (VT == V.getValueType()) 2014 return V; 2015 2016 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2017 } 2018 2019 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2020 unsigned SrcAS, unsigned DestAS) { 2021 SDValue Ops[] = {Ptr}; 2022 FoldingSetNodeID ID; 2023 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2024 ID.AddInteger(SrcAS); 2025 ID.AddInteger(DestAS); 2026 2027 void *IP = nullptr; 2028 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2029 return SDValue(E, 0); 2030 2031 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2032 VT, SrcAS, DestAS); 2033 createOperands(N, Ops); 2034 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getFreeze(SDValue V) { 2041 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2042 } 2043 2044 /// getShiftAmountOperand - Return the specified value casted to 2045 /// the target's desired shift amount type. 2046 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2047 EVT OpTy = Op.getValueType(); 2048 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2049 if (OpTy == ShTy || OpTy.isVector()) return Op; 2050 2051 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2052 } 2053 2054 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2055 SDLoc dl(Node); 2056 const TargetLowering &TLI = getTargetLoweringInfo(); 2057 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2058 EVT VT = Node->getValueType(0); 2059 SDValue Tmp1 = Node->getOperand(0); 2060 SDValue Tmp2 = Node->getOperand(1); 2061 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2062 2063 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2064 Tmp2, MachinePointerInfo(V)); 2065 SDValue VAList = VAListLoad; 2066 2067 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2068 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2069 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2070 2071 VAList = 2072 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2073 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2074 } 2075 2076 // Increment the pointer, VAList, to the next vaarg 2077 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2078 getConstant(getDataLayout().getTypeAllocSize( 2079 VT.getTypeForEVT(*getContext())), 2080 dl, VAList.getValueType())); 2081 // Store the incremented VAList to the legalized pointer 2082 Tmp1 = 2083 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2084 // Load the actual argument out of the pointer VAList 2085 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2086 } 2087 2088 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2089 SDLoc dl(Node); 2090 const TargetLowering &TLI = getTargetLoweringInfo(); 2091 // This defaults to loading a pointer from the input and storing it to the 2092 // output, returning the chain. 2093 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2094 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2095 SDValue Tmp1 = 2096 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2097 Node->getOperand(2), MachinePointerInfo(VS)); 2098 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2099 MachinePointerInfo(VD)); 2100 } 2101 2102 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2103 const DataLayout &DL = getDataLayout(); 2104 Type *Ty = VT.getTypeForEVT(*getContext()); 2105 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2106 2107 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2108 return RedAlign; 2109 2110 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2111 const Align StackAlign = TFI->getStackAlign(); 2112 2113 // See if we can choose a smaller ABI alignment in cases where it's an 2114 // illegal vector type that will get broken down. 2115 if (RedAlign > StackAlign) { 2116 EVT IntermediateVT; 2117 MVT RegisterVT; 2118 unsigned NumIntermediates; 2119 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2120 NumIntermediates, RegisterVT); 2121 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2122 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2123 if (RedAlign2 < RedAlign) 2124 RedAlign = RedAlign2; 2125 } 2126 2127 return RedAlign; 2128 } 2129 2130 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2131 MachineFrameInfo &MFI = MF->getFrameInfo(); 2132 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2133 int StackID = 0; 2134 if (Bytes.isScalable()) 2135 StackID = TFI->getStackIDForScalableVectors(); 2136 // The stack id gives an indication of whether the object is scalable or 2137 // not, so it's safe to pass in the minimum size here. 2138 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2139 false, nullptr, StackID); 2140 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2141 } 2142 2143 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2144 Type *Ty = VT.getTypeForEVT(*getContext()); 2145 Align StackAlign = 2146 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2147 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2148 } 2149 2150 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2151 TypeSize VT1Size = VT1.getStoreSize(); 2152 TypeSize VT2Size = VT2.getStoreSize(); 2153 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2154 "Don't know how to choose the maximum size when creating a stack " 2155 "temporary"); 2156 TypeSize Bytes = 2157 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2158 2159 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2160 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2161 const DataLayout &DL = getDataLayout(); 2162 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2163 return CreateStackTemporary(Bytes, Align); 2164 } 2165 2166 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2167 ISD::CondCode Cond, const SDLoc &dl) { 2168 EVT OpVT = N1.getValueType(); 2169 2170 // These setcc operations always fold. 2171 switch (Cond) { 2172 default: break; 2173 case ISD::SETFALSE: 2174 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2175 case ISD::SETTRUE: 2176 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2177 2178 case ISD::SETOEQ: 2179 case ISD::SETOGT: 2180 case ISD::SETOGE: 2181 case ISD::SETOLT: 2182 case ISD::SETOLE: 2183 case ISD::SETONE: 2184 case ISD::SETO: 2185 case ISD::SETUO: 2186 case ISD::SETUEQ: 2187 case ISD::SETUNE: 2188 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2189 break; 2190 } 2191 2192 if (OpVT.isInteger()) { 2193 // For EQ and NE, we can always pick a value for the undef to make the 2194 // predicate pass or fail, so we can return undef. 2195 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2196 // icmp eq/ne X, undef -> undef. 2197 if ((N1.isUndef() || N2.isUndef()) && 2198 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2199 return getUNDEF(VT); 2200 2201 // If both operands are undef, we can return undef for int comparison. 2202 // icmp undef, undef -> undef. 2203 if (N1.isUndef() && N2.isUndef()) 2204 return getUNDEF(VT); 2205 2206 // icmp X, X -> true/false 2207 // icmp X, undef -> true/false because undef could be X. 2208 if (N1 == N2) 2209 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2210 } 2211 2212 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2213 const APInt &C2 = N2C->getAPIntValue(); 2214 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2215 const APInt &C1 = N1C->getAPIntValue(); 2216 2217 switch (Cond) { 2218 default: llvm_unreachable("Unknown integer setcc!"); 2219 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2220 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2221 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2222 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2223 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2224 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2225 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2226 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2227 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2228 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2229 } 2230 } 2231 } 2232 2233 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2234 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2235 2236 if (N1CFP && N2CFP) { 2237 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2238 switch (Cond) { 2239 default: break; 2240 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2241 return getUNDEF(VT); 2242 LLVM_FALLTHROUGH; 2243 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2244 OpVT); 2245 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2246 return getUNDEF(VT); 2247 LLVM_FALLTHROUGH; 2248 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2249 R==APFloat::cmpLessThan, dl, VT, 2250 OpVT); 2251 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2252 return getUNDEF(VT); 2253 LLVM_FALLTHROUGH; 2254 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2255 OpVT); 2256 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2257 return getUNDEF(VT); 2258 LLVM_FALLTHROUGH; 2259 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2260 VT, OpVT); 2261 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2262 return getUNDEF(VT); 2263 LLVM_FALLTHROUGH; 2264 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2265 R==APFloat::cmpEqual, dl, VT, 2266 OpVT); 2267 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2268 return getUNDEF(VT); 2269 LLVM_FALLTHROUGH; 2270 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2271 R==APFloat::cmpEqual, dl, VT, OpVT); 2272 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2273 OpVT); 2274 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2275 OpVT); 2276 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2277 R==APFloat::cmpEqual, dl, VT, 2278 OpVT); 2279 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2280 OpVT); 2281 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2282 R==APFloat::cmpLessThan, dl, VT, 2283 OpVT); 2284 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2285 R==APFloat::cmpUnordered, dl, VT, 2286 OpVT); 2287 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2288 VT, OpVT); 2289 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2290 OpVT); 2291 } 2292 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2293 // Ensure that the constant occurs on the RHS. 2294 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2295 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2296 return SDValue(); 2297 return getSetCC(dl, VT, N2, N1, SwappedCond); 2298 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2299 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2300 // If an operand is known to be a nan (or undef that could be a nan), we can 2301 // fold it. 2302 // Choosing NaN for the undef will always make unordered comparison succeed 2303 // and ordered comparison fails. 2304 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2305 switch (ISD::getUnorderedFlavor(Cond)) { 2306 default: 2307 llvm_unreachable("Unknown flavor!"); 2308 case 0: // Known false. 2309 return getBoolConstant(false, dl, VT, OpVT); 2310 case 1: // Known true. 2311 return getBoolConstant(true, dl, VT, OpVT); 2312 case 2: // Undefined. 2313 return getUNDEF(VT); 2314 } 2315 } 2316 2317 // Could not fold it. 2318 return SDValue(); 2319 } 2320 2321 /// See if the specified operand can be simplified with the knowledge that only 2322 /// the bits specified by DemandedBits are used. 2323 /// TODO: really we should be making this into the DAG equivalent of 2324 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2325 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2326 EVT VT = V.getValueType(); 2327 2328 if (VT.isScalableVector()) 2329 return SDValue(); 2330 2331 APInt DemandedElts = VT.isVector() 2332 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2333 : APInt(1, 1); 2334 return GetDemandedBits(V, DemandedBits, DemandedElts); 2335 } 2336 2337 /// See if the specified operand can be simplified with the knowledge that only 2338 /// the bits specified by DemandedBits are used in the elements specified by 2339 /// DemandedElts. 2340 /// TODO: really we should be making this into the DAG equivalent of 2341 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2342 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2343 const APInt &DemandedElts) { 2344 switch (V.getOpcode()) { 2345 default: 2346 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2347 *this, 0); 2348 case ISD::Constant: { 2349 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2350 APInt NewVal = CVal & DemandedBits; 2351 if (NewVal != CVal) 2352 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2353 break; 2354 } 2355 case ISD::SRL: 2356 // Only look at single-use SRLs. 2357 if (!V.getNode()->hasOneUse()) 2358 break; 2359 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2360 // See if we can recursively simplify the LHS. 2361 unsigned Amt = RHSC->getZExtValue(); 2362 2363 // Watch out for shift count overflow though. 2364 if (Amt >= DemandedBits.getBitWidth()) 2365 break; 2366 APInt SrcDemandedBits = DemandedBits << Amt; 2367 if (SDValue SimplifyLHS = 2368 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2369 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2370 V.getOperand(1)); 2371 } 2372 break; 2373 } 2374 return SDValue(); 2375 } 2376 2377 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2378 /// use this predicate to simplify operations downstream. 2379 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2380 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2381 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2382 } 2383 2384 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2385 /// this predicate to simplify operations downstream. Mask is known to be zero 2386 /// for bits that V cannot have. 2387 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2388 unsigned Depth) const { 2389 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2390 } 2391 2392 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2393 /// DemandedElts. We use this predicate to simplify operations downstream. 2394 /// Mask is known to be zero for bits that V cannot have. 2395 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2396 const APInt &DemandedElts, 2397 unsigned Depth) const { 2398 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2399 } 2400 2401 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2402 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2403 unsigned Depth) const { 2404 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2405 } 2406 2407 /// isSplatValue - Return true if the vector V has the same value 2408 /// across all DemandedElts. For scalable vectors it does not make 2409 /// sense to specify which elements are demanded or undefined, therefore 2410 /// they are simply ignored. 2411 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2412 APInt &UndefElts, unsigned Depth) { 2413 EVT VT = V.getValueType(); 2414 assert(VT.isVector() && "Vector type expected"); 2415 2416 if (!VT.isScalableVector() && !DemandedElts) 2417 return false; // No demanded elts, better to assume we don't know anything. 2418 2419 if (Depth >= MaxRecursionDepth) 2420 return false; // Limit search depth. 2421 2422 // Deal with some common cases here that work for both fixed and scalable 2423 // vector types. 2424 switch (V.getOpcode()) { 2425 case ISD::SPLAT_VECTOR: 2426 UndefElts = V.getOperand(0).isUndef() 2427 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2428 : APInt(DemandedElts.getBitWidth(), 0); 2429 return true; 2430 case ISD::ADD: 2431 case ISD::SUB: 2432 case ISD::AND: { 2433 APInt UndefLHS, UndefRHS; 2434 SDValue LHS = V.getOperand(0); 2435 SDValue RHS = V.getOperand(1); 2436 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2437 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2438 UndefElts = UndefLHS | UndefRHS; 2439 return true; 2440 } 2441 break; 2442 } 2443 case ISD::TRUNCATE: 2444 case ISD::SIGN_EXTEND: 2445 case ISD::ZERO_EXTEND: 2446 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2447 } 2448 2449 // We don't support other cases than those above for scalable vectors at 2450 // the moment. 2451 if (VT.isScalableVector()) 2452 return false; 2453 2454 unsigned NumElts = VT.getVectorNumElements(); 2455 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2456 UndefElts = APInt::getNullValue(NumElts); 2457 2458 switch (V.getOpcode()) { 2459 case ISD::BUILD_VECTOR: { 2460 SDValue Scl; 2461 for (unsigned i = 0; i != NumElts; ++i) { 2462 SDValue Op = V.getOperand(i); 2463 if (Op.isUndef()) { 2464 UndefElts.setBit(i); 2465 continue; 2466 } 2467 if (!DemandedElts[i]) 2468 continue; 2469 if (Scl && Scl != Op) 2470 return false; 2471 Scl = Op; 2472 } 2473 return true; 2474 } 2475 case ISD::VECTOR_SHUFFLE: { 2476 // Check if this is a shuffle node doing a splat. 2477 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2478 int SplatIndex = -1; 2479 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2480 for (int i = 0; i != (int)NumElts; ++i) { 2481 int M = Mask[i]; 2482 if (M < 0) { 2483 UndefElts.setBit(i); 2484 continue; 2485 } 2486 if (!DemandedElts[i]) 2487 continue; 2488 if (0 <= SplatIndex && SplatIndex != M) 2489 return false; 2490 SplatIndex = M; 2491 } 2492 return true; 2493 } 2494 case ISD::EXTRACT_SUBVECTOR: { 2495 // Offset the demanded elts by the subvector index. 2496 SDValue Src = V.getOperand(0); 2497 uint64_t Idx = V.getConstantOperandVal(1); 2498 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2499 APInt UndefSrcElts; 2500 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2501 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2502 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2503 return true; 2504 } 2505 break; 2506 } 2507 } 2508 2509 return false; 2510 } 2511 2512 /// Helper wrapper to main isSplatValue function. 2513 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2514 EVT VT = V.getValueType(); 2515 assert(VT.isVector() && "Vector type expected"); 2516 2517 APInt UndefElts; 2518 APInt DemandedElts; 2519 2520 // For now we don't support this with scalable vectors. 2521 if (!VT.isScalableVector()) 2522 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2523 return isSplatValue(V, DemandedElts, UndefElts) && 2524 (AllowUndefs || !UndefElts); 2525 } 2526 2527 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2528 V = peekThroughExtractSubvectors(V); 2529 2530 EVT VT = V.getValueType(); 2531 unsigned Opcode = V.getOpcode(); 2532 switch (Opcode) { 2533 default: { 2534 APInt UndefElts; 2535 APInt DemandedElts; 2536 2537 if (!VT.isScalableVector()) 2538 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2539 2540 if (isSplatValue(V, DemandedElts, UndefElts)) { 2541 if (VT.isScalableVector()) { 2542 // DemandedElts and UndefElts are ignored for scalable vectors, since 2543 // the only supported cases are SPLAT_VECTOR nodes. 2544 SplatIdx = 0; 2545 } else { 2546 // Handle case where all demanded elements are UNDEF. 2547 if (DemandedElts.isSubsetOf(UndefElts)) { 2548 SplatIdx = 0; 2549 return getUNDEF(VT); 2550 } 2551 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2552 } 2553 return V; 2554 } 2555 break; 2556 } 2557 case ISD::SPLAT_VECTOR: 2558 SplatIdx = 0; 2559 return V; 2560 case ISD::VECTOR_SHUFFLE: { 2561 if (VT.isScalableVector()) 2562 return SDValue(); 2563 2564 // Check if this is a shuffle node doing a splat. 2565 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2566 // getTargetVShiftNode currently struggles without the splat source. 2567 auto *SVN = cast<ShuffleVectorSDNode>(V); 2568 if (!SVN->isSplat()) 2569 break; 2570 int Idx = SVN->getSplatIndex(); 2571 int NumElts = V.getValueType().getVectorNumElements(); 2572 SplatIdx = Idx % NumElts; 2573 return V.getOperand(Idx / NumElts); 2574 } 2575 } 2576 2577 return SDValue(); 2578 } 2579 2580 SDValue SelectionDAG::getSplatValue(SDValue V) { 2581 int SplatIdx; 2582 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2583 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2584 SrcVector.getValueType().getScalarType(), SrcVector, 2585 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2586 return SDValue(); 2587 } 2588 2589 const APInt * 2590 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2591 const APInt &DemandedElts) const { 2592 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2593 V.getOpcode() == ISD::SRA) && 2594 "Unknown shift node"); 2595 unsigned BitWidth = V.getScalarValueSizeInBits(); 2596 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2597 // Shifting more than the bitwidth is not valid. 2598 const APInt &ShAmt = SA->getAPIntValue(); 2599 if (ShAmt.ult(BitWidth)) 2600 return &ShAmt; 2601 } 2602 return nullptr; 2603 } 2604 2605 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2606 SDValue V, const APInt &DemandedElts) const { 2607 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2608 V.getOpcode() == ISD::SRA) && 2609 "Unknown shift node"); 2610 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2611 return ValidAmt; 2612 unsigned BitWidth = V.getScalarValueSizeInBits(); 2613 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2614 if (!BV) 2615 return nullptr; 2616 const APInt *MinShAmt = nullptr; 2617 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2618 if (!DemandedElts[i]) 2619 continue; 2620 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2621 if (!SA) 2622 return nullptr; 2623 // Shifting more than the bitwidth is not valid. 2624 const APInt &ShAmt = SA->getAPIntValue(); 2625 if (ShAmt.uge(BitWidth)) 2626 return nullptr; 2627 if (MinShAmt && MinShAmt->ule(ShAmt)) 2628 continue; 2629 MinShAmt = &ShAmt; 2630 } 2631 return MinShAmt; 2632 } 2633 2634 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2635 SDValue V, const APInt &DemandedElts) const { 2636 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2637 V.getOpcode() == ISD::SRA) && 2638 "Unknown shift node"); 2639 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2640 return ValidAmt; 2641 unsigned BitWidth = V.getScalarValueSizeInBits(); 2642 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2643 if (!BV) 2644 return nullptr; 2645 const APInt *MaxShAmt = nullptr; 2646 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2647 if (!DemandedElts[i]) 2648 continue; 2649 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2650 if (!SA) 2651 return nullptr; 2652 // Shifting more than the bitwidth is not valid. 2653 const APInt &ShAmt = SA->getAPIntValue(); 2654 if (ShAmt.uge(BitWidth)) 2655 return nullptr; 2656 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2657 continue; 2658 MaxShAmt = &ShAmt; 2659 } 2660 return MaxShAmt; 2661 } 2662 2663 /// Determine which bits of Op are known to be either zero or one and return 2664 /// them in Known. For vectors, the known bits are those that are shared by 2665 /// every vector element. 2666 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2667 EVT VT = Op.getValueType(); 2668 2669 // TOOD: Until we have a plan for how to represent demanded elements for 2670 // scalable vectors, we can just bail out for now. 2671 if (Op.getValueType().isScalableVector()) { 2672 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2673 return KnownBits(BitWidth); 2674 } 2675 2676 APInt DemandedElts = VT.isVector() 2677 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2678 : APInt(1, 1); 2679 return computeKnownBits(Op, DemandedElts, Depth); 2680 } 2681 2682 /// Determine which bits of Op are known to be either zero or one and return 2683 /// them in Known. The DemandedElts argument allows us to only collect the known 2684 /// bits that are shared by the requested vector elements. 2685 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2686 unsigned Depth) const { 2687 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2688 2689 KnownBits Known(BitWidth); // Don't know anything. 2690 2691 // TOOD: Until we have a plan for how to represent demanded elements for 2692 // scalable vectors, we can just bail out for now. 2693 if (Op.getValueType().isScalableVector()) 2694 return Known; 2695 2696 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2697 // We know all of the bits for a constant! 2698 return KnownBits::makeConstant(C->getAPIntValue()); 2699 } 2700 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2701 // We know all of the bits for a constant fp! 2702 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2703 } 2704 2705 if (Depth >= MaxRecursionDepth) 2706 return Known; // Limit search depth. 2707 2708 KnownBits Known2; 2709 unsigned NumElts = DemandedElts.getBitWidth(); 2710 assert((!Op.getValueType().isVector() || 2711 NumElts == Op.getValueType().getVectorNumElements()) && 2712 "Unexpected vector size"); 2713 2714 if (!DemandedElts) 2715 return Known; // No demanded elts, better to assume we don't know anything. 2716 2717 unsigned Opcode = Op.getOpcode(); 2718 switch (Opcode) { 2719 case ISD::BUILD_VECTOR: 2720 // Collect the known bits that are shared by every demanded vector element. 2721 Known.Zero.setAllBits(); Known.One.setAllBits(); 2722 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2723 if (!DemandedElts[i]) 2724 continue; 2725 2726 SDValue SrcOp = Op.getOperand(i); 2727 Known2 = computeKnownBits(SrcOp, Depth + 1); 2728 2729 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2730 if (SrcOp.getValueSizeInBits() != BitWidth) { 2731 assert(SrcOp.getValueSizeInBits() > BitWidth && 2732 "Expected BUILD_VECTOR implicit truncation"); 2733 Known2 = Known2.trunc(BitWidth); 2734 } 2735 2736 // Known bits are the values that are shared by every demanded element. 2737 Known = KnownBits::commonBits(Known, Known2); 2738 2739 // If we don't know any bits, early out. 2740 if (Known.isUnknown()) 2741 break; 2742 } 2743 break; 2744 case ISD::VECTOR_SHUFFLE: { 2745 // Collect the known bits that are shared by every vector element referenced 2746 // by the shuffle. 2747 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2748 Known.Zero.setAllBits(); Known.One.setAllBits(); 2749 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2750 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2751 for (unsigned i = 0; i != NumElts; ++i) { 2752 if (!DemandedElts[i]) 2753 continue; 2754 2755 int M = SVN->getMaskElt(i); 2756 if (M < 0) { 2757 // For UNDEF elements, we don't know anything about the common state of 2758 // the shuffle result. 2759 Known.resetAll(); 2760 DemandedLHS.clearAllBits(); 2761 DemandedRHS.clearAllBits(); 2762 break; 2763 } 2764 2765 if ((unsigned)M < NumElts) 2766 DemandedLHS.setBit((unsigned)M % NumElts); 2767 else 2768 DemandedRHS.setBit((unsigned)M % NumElts); 2769 } 2770 // Known bits are the values that are shared by every demanded element. 2771 if (!!DemandedLHS) { 2772 SDValue LHS = Op.getOperand(0); 2773 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2774 Known = KnownBits::commonBits(Known, Known2); 2775 } 2776 // If we don't know any bits, early out. 2777 if (Known.isUnknown()) 2778 break; 2779 if (!!DemandedRHS) { 2780 SDValue RHS = Op.getOperand(1); 2781 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2782 Known = KnownBits::commonBits(Known, Known2); 2783 } 2784 break; 2785 } 2786 case ISD::CONCAT_VECTORS: { 2787 // Split DemandedElts and test each of the demanded subvectors. 2788 Known.Zero.setAllBits(); Known.One.setAllBits(); 2789 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2790 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2791 unsigned NumSubVectors = Op.getNumOperands(); 2792 for (unsigned i = 0; i != NumSubVectors; ++i) { 2793 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2794 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2795 if (!!DemandedSub) { 2796 SDValue Sub = Op.getOperand(i); 2797 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2798 Known = KnownBits::commonBits(Known, Known2); 2799 } 2800 // If we don't know any bits, early out. 2801 if (Known.isUnknown()) 2802 break; 2803 } 2804 break; 2805 } 2806 case ISD::INSERT_SUBVECTOR: { 2807 // Demand any elements from the subvector and the remainder from the src its 2808 // inserted into. 2809 SDValue Src = Op.getOperand(0); 2810 SDValue Sub = Op.getOperand(1); 2811 uint64_t Idx = Op.getConstantOperandVal(2); 2812 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2813 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2814 APInt DemandedSrcElts = DemandedElts; 2815 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2816 2817 Known.One.setAllBits(); 2818 Known.Zero.setAllBits(); 2819 if (!!DemandedSubElts) { 2820 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2821 if (Known.isUnknown()) 2822 break; // early-out. 2823 } 2824 if (!!DemandedSrcElts) { 2825 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2826 Known = KnownBits::commonBits(Known, Known2); 2827 } 2828 break; 2829 } 2830 case ISD::EXTRACT_SUBVECTOR: { 2831 // Offset the demanded elts by the subvector index. 2832 SDValue Src = Op.getOperand(0); 2833 // Bail until we can represent demanded elements for scalable vectors. 2834 if (Src.getValueType().isScalableVector()) 2835 break; 2836 uint64_t Idx = Op.getConstantOperandVal(1); 2837 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2838 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2839 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2840 break; 2841 } 2842 case ISD::SCALAR_TO_VECTOR: { 2843 // We know about scalar_to_vector as much as we know about it source, 2844 // which becomes the first element of otherwise unknown vector. 2845 if (DemandedElts != 1) 2846 break; 2847 2848 SDValue N0 = Op.getOperand(0); 2849 Known = computeKnownBits(N0, Depth + 1); 2850 if (N0.getValueSizeInBits() != BitWidth) 2851 Known = Known.trunc(BitWidth); 2852 2853 break; 2854 } 2855 case ISD::BITCAST: { 2856 SDValue N0 = Op.getOperand(0); 2857 EVT SubVT = N0.getValueType(); 2858 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2859 2860 // Ignore bitcasts from unsupported types. 2861 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2862 break; 2863 2864 // Fast handling of 'identity' bitcasts. 2865 if (BitWidth == SubBitWidth) { 2866 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2867 break; 2868 } 2869 2870 bool IsLE = getDataLayout().isLittleEndian(); 2871 2872 // Bitcast 'small element' vector to 'large element' scalar/vector. 2873 if ((BitWidth % SubBitWidth) == 0) { 2874 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2875 2876 // Collect known bits for the (larger) output by collecting the known 2877 // bits from each set of sub elements and shift these into place. 2878 // We need to separately call computeKnownBits for each set of 2879 // sub elements as the knownbits for each is likely to be different. 2880 unsigned SubScale = BitWidth / SubBitWidth; 2881 APInt SubDemandedElts(NumElts * SubScale, 0); 2882 for (unsigned i = 0; i != NumElts; ++i) 2883 if (DemandedElts[i]) 2884 SubDemandedElts.setBit(i * SubScale); 2885 2886 for (unsigned i = 0; i != SubScale; ++i) { 2887 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2888 Depth + 1); 2889 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2890 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2891 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2892 } 2893 } 2894 2895 // Bitcast 'large element' scalar/vector to 'small element' vector. 2896 if ((SubBitWidth % BitWidth) == 0) { 2897 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2898 2899 // Collect known bits for the (smaller) output by collecting the known 2900 // bits from the overlapping larger input elements and extracting the 2901 // sub sections we actually care about. 2902 unsigned SubScale = SubBitWidth / BitWidth; 2903 APInt SubDemandedElts(NumElts / SubScale, 0); 2904 for (unsigned i = 0; i != NumElts; ++i) 2905 if (DemandedElts[i]) 2906 SubDemandedElts.setBit(i / SubScale); 2907 2908 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2909 2910 Known.Zero.setAllBits(); Known.One.setAllBits(); 2911 for (unsigned i = 0; i != NumElts; ++i) 2912 if (DemandedElts[i]) { 2913 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2914 unsigned Offset = (Shifts % SubScale) * BitWidth; 2915 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2916 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2917 // If we don't know any bits, early out. 2918 if (Known.isUnknown()) 2919 break; 2920 } 2921 } 2922 break; 2923 } 2924 case ISD::AND: 2925 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2926 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2927 2928 Known &= Known2; 2929 break; 2930 case ISD::OR: 2931 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2932 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2933 2934 Known |= Known2; 2935 break; 2936 case ISD::XOR: 2937 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2938 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2939 2940 Known ^= Known2; 2941 break; 2942 case ISD::MUL: { 2943 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2944 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2945 Known = KnownBits::computeForMul(Known, Known2); 2946 break; 2947 } 2948 case ISD::UDIV: { 2949 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2950 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2951 Known = KnownBits::udiv(Known, Known2); 2952 break; 2953 } 2954 case ISD::SELECT: 2955 case ISD::VSELECT: 2956 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2957 // If we don't know any bits, early out. 2958 if (Known.isUnknown()) 2959 break; 2960 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2961 2962 // Only known if known in both the LHS and RHS. 2963 Known = KnownBits::commonBits(Known, Known2); 2964 break; 2965 case ISD::SELECT_CC: 2966 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2967 // If we don't know any bits, early out. 2968 if (Known.isUnknown()) 2969 break; 2970 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2971 2972 // Only known if known in both the LHS and RHS. 2973 Known = KnownBits::commonBits(Known, Known2); 2974 break; 2975 case ISD::SMULO: 2976 case ISD::UMULO: 2977 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2978 if (Op.getResNo() != 1) 2979 break; 2980 // The boolean result conforms to getBooleanContents. 2981 // If we know the result of a setcc has the top bits zero, use this info. 2982 // We know that we have an integer-based boolean since these operations 2983 // are only available for integer. 2984 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2985 TargetLowering::ZeroOrOneBooleanContent && 2986 BitWidth > 1) 2987 Known.Zero.setBitsFrom(1); 2988 break; 2989 case ISD::SETCC: 2990 case ISD::STRICT_FSETCC: 2991 case ISD::STRICT_FSETCCS: { 2992 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2993 // If we know the result of a setcc has the top bits zero, use this info. 2994 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2995 TargetLowering::ZeroOrOneBooleanContent && 2996 BitWidth > 1) 2997 Known.Zero.setBitsFrom(1); 2998 break; 2999 } 3000 case ISD::SHL: 3001 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3002 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3003 Known = KnownBits::shl(Known, Known2); 3004 3005 // Minimum shift low bits are known zero. 3006 if (const APInt *ShMinAmt = 3007 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3008 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3009 break; 3010 case ISD::SRL: 3011 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3012 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3013 Known = KnownBits::lshr(Known, Known2); 3014 3015 // Minimum shift high bits are known zero. 3016 if (const APInt *ShMinAmt = 3017 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3018 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3019 break; 3020 case ISD::SRA: 3021 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3022 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3023 Known = KnownBits::ashr(Known, Known2); 3024 // TODO: Add minimum shift high known sign bits. 3025 break; 3026 case ISD::FSHL: 3027 case ISD::FSHR: 3028 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3029 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3030 3031 // For fshl, 0-shift returns the 1st arg. 3032 // For fshr, 0-shift returns the 2nd arg. 3033 if (Amt == 0) { 3034 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3035 DemandedElts, Depth + 1); 3036 break; 3037 } 3038 3039 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3040 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3041 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3042 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3043 if (Opcode == ISD::FSHL) { 3044 Known.One <<= Amt; 3045 Known.Zero <<= Amt; 3046 Known2.One.lshrInPlace(BitWidth - Amt); 3047 Known2.Zero.lshrInPlace(BitWidth - Amt); 3048 } else { 3049 Known.One <<= BitWidth - Amt; 3050 Known.Zero <<= BitWidth - Amt; 3051 Known2.One.lshrInPlace(Amt); 3052 Known2.Zero.lshrInPlace(Amt); 3053 } 3054 Known.One |= Known2.One; 3055 Known.Zero |= Known2.Zero; 3056 } 3057 break; 3058 case ISD::SIGN_EXTEND_INREG: { 3059 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3060 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3061 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3062 break; 3063 } 3064 case ISD::CTTZ: 3065 case ISD::CTTZ_ZERO_UNDEF: { 3066 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3067 // If we have a known 1, its position is our upper bound. 3068 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3069 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3070 Known.Zero.setBitsFrom(LowBits); 3071 break; 3072 } 3073 case ISD::CTLZ: 3074 case ISD::CTLZ_ZERO_UNDEF: { 3075 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3076 // If we have a known 1, its position is our upper bound. 3077 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3078 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3079 Known.Zero.setBitsFrom(LowBits); 3080 break; 3081 } 3082 case ISD::CTPOP: { 3083 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3084 // If we know some of the bits are zero, they can't be one. 3085 unsigned PossibleOnes = Known2.countMaxPopulation(); 3086 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3087 break; 3088 } 3089 case ISD::PARITY: { 3090 // Parity returns 0 everywhere but the LSB. 3091 Known.Zero.setBitsFrom(1); 3092 break; 3093 } 3094 case ISD::LOAD: { 3095 LoadSDNode *LD = cast<LoadSDNode>(Op); 3096 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3097 if (ISD::isNON_EXTLoad(LD) && Cst) { 3098 // Determine any common known bits from the loaded constant pool value. 3099 Type *CstTy = Cst->getType(); 3100 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3101 // If its a vector splat, then we can (quickly) reuse the scalar path. 3102 // NOTE: We assume all elements match and none are UNDEF. 3103 if (CstTy->isVectorTy()) { 3104 if (const Constant *Splat = Cst->getSplatValue()) { 3105 Cst = Splat; 3106 CstTy = Cst->getType(); 3107 } 3108 } 3109 // TODO - do we need to handle different bitwidths? 3110 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3111 // Iterate across all vector elements finding common known bits. 3112 Known.One.setAllBits(); 3113 Known.Zero.setAllBits(); 3114 for (unsigned i = 0; i != NumElts; ++i) { 3115 if (!DemandedElts[i]) 3116 continue; 3117 if (Constant *Elt = Cst->getAggregateElement(i)) { 3118 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3119 const APInt &Value = CInt->getValue(); 3120 Known.One &= Value; 3121 Known.Zero &= ~Value; 3122 continue; 3123 } 3124 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3125 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3126 Known.One &= Value; 3127 Known.Zero &= ~Value; 3128 continue; 3129 } 3130 } 3131 Known.One.clearAllBits(); 3132 Known.Zero.clearAllBits(); 3133 break; 3134 } 3135 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3136 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3137 Known = KnownBits::makeConstant(CInt->getValue()); 3138 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3139 Known = 3140 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3141 } 3142 } 3143 } 3144 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3145 // If this is a ZEXTLoad and we are looking at the loaded value. 3146 EVT VT = LD->getMemoryVT(); 3147 unsigned MemBits = VT.getScalarSizeInBits(); 3148 Known.Zero.setBitsFrom(MemBits); 3149 } else if (const MDNode *Ranges = LD->getRanges()) { 3150 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3151 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3152 } 3153 break; 3154 } 3155 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3156 EVT InVT = Op.getOperand(0).getValueType(); 3157 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3158 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3159 Known = Known.zext(BitWidth); 3160 break; 3161 } 3162 case ISD::ZERO_EXTEND: { 3163 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 Known = Known.zext(BitWidth); 3165 break; 3166 } 3167 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3168 EVT InVT = Op.getOperand(0).getValueType(); 3169 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3170 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3171 // If the sign bit is known to be zero or one, then sext will extend 3172 // it to the top bits, else it will just zext. 3173 Known = Known.sext(BitWidth); 3174 break; 3175 } 3176 case ISD::SIGN_EXTEND: { 3177 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3178 // If the sign bit is known to be zero or one, then sext will extend 3179 // it to the top bits, else it will just zext. 3180 Known = Known.sext(BitWidth); 3181 break; 3182 } 3183 case ISD::ANY_EXTEND_VECTOR_INREG: { 3184 EVT InVT = Op.getOperand(0).getValueType(); 3185 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3186 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3187 Known = Known.anyext(BitWidth); 3188 break; 3189 } 3190 case ISD::ANY_EXTEND: { 3191 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3192 Known = Known.anyext(BitWidth); 3193 break; 3194 } 3195 case ISD::TRUNCATE: { 3196 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known = Known.trunc(BitWidth); 3198 break; 3199 } 3200 case ISD::AssertZext: { 3201 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3202 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3203 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3204 Known.Zero |= (~InMask); 3205 Known.One &= (~Known.Zero); 3206 break; 3207 } 3208 case ISD::AssertAlign: { 3209 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3210 assert(LogOfAlign != 0); 3211 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3212 // well as clearing one bits. 3213 Known.Zero.setLowBits(LogOfAlign); 3214 Known.One.clearLowBits(LogOfAlign); 3215 break; 3216 } 3217 case ISD::FGETSIGN: 3218 // All bits are zero except the low bit. 3219 Known.Zero.setBitsFrom(1); 3220 break; 3221 case ISD::USUBO: 3222 case ISD::SSUBO: 3223 if (Op.getResNo() == 1) { 3224 // If we know the result of a setcc has the top bits zero, use this info. 3225 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3226 TargetLowering::ZeroOrOneBooleanContent && 3227 BitWidth > 1) 3228 Known.Zero.setBitsFrom(1); 3229 break; 3230 } 3231 LLVM_FALLTHROUGH; 3232 case ISD::SUB: 3233 case ISD::SUBC: { 3234 assert(Op.getResNo() == 0 && 3235 "We only compute knownbits for the difference here."); 3236 3237 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3238 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3239 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3240 Known, Known2); 3241 break; 3242 } 3243 case ISD::UADDO: 3244 case ISD::SADDO: 3245 case ISD::ADDCARRY: 3246 if (Op.getResNo() == 1) { 3247 // If we know the result of a setcc has the top bits zero, use this info. 3248 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3249 TargetLowering::ZeroOrOneBooleanContent && 3250 BitWidth > 1) 3251 Known.Zero.setBitsFrom(1); 3252 break; 3253 } 3254 LLVM_FALLTHROUGH; 3255 case ISD::ADD: 3256 case ISD::ADDC: 3257 case ISD::ADDE: { 3258 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3259 3260 // With ADDE and ADDCARRY, a carry bit may be added in. 3261 KnownBits Carry(1); 3262 if (Opcode == ISD::ADDE) 3263 // Can't track carry from glue, set carry to unknown. 3264 Carry.resetAll(); 3265 else if (Opcode == ISD::ADDCARRY) 3266 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3267 // the trouble (how often will we find a known carry bit). And I haven't 3268 // tested this very much yet, but something like this might work: 3269 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3270 // Carry = Carry.zextOrTrunc(1, false); 3271 Carry.resetAll(); 3272 else 3273 Carry.setAllZero(); 3274 3275 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3276 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3277 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3278 break; 3279 } 3280 case ISD::SREM: { 3281 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3282 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3283 Known = KnownBits::srem(Known, Known2); 3284 break; 3285 } 3286 case ISD::UREM: { 3287 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3288 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3289 Known = KnownBits::urem(Known, Known2); 3290 break; 3291 } 3292 case ISD::EXTRACT_ELEMENT: { 3293 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3294 const unsigned Index = Op.getConstantOperandVal(1); 3295 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3296 3297 // Remove low part of known bits mask 3298 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3299 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3300 3301 // Remove high part of known bit mask 3302 Known = Known.trunc(EltBitWidth); 3303 break; 3304 } 3305 case ISD::EXTRACT_VECTOR_ELT: { 3306 SDValue InVec = Op.getOperand(0); 3307 SDValue EltNo = Op.getOperand(1); 3308 EVT VecVT = InVec.getValueType(); 3309 // computeKnownBits not yet implemented for scalable vectors. 3310 if (VecVT.isScalableVector()) 3311 break; 3312 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3313 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3314 3315 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3316 // anything about the extended bits. 3317 if (BitWidth > EltBitWidth) 3318 Known = Known.trunc(EltBitWidth); 3319 3320 // If we know the element index, just demand that vector element, else for 3321 // an unknown element index, ignore DemandedElts and demand them all. 3322 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3323 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3324 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3325 DemandedSrcElts = 3326 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3327 3328 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3329 if (BitWidth > EltBitWidth) 3330 Known = Known.anyext(BitWidth); 3331 break; 3332 } 3333 case ISD::INSERT_VECTOR_ELT: { 3334 // If we know the element index, split the demand between the 3335 // source vector and the inserted element, otherwise assume we need 3336 // the original demanded vector elements and the value. 3337 SDValue InVec = Op.getOperand(0); 3338 SDValue InVal = Op.getOperand(1); 3339 SDValue EltNo = Op.getOperand(2); 3340 bool DemandedVal = true; 3341 APInt DemandedVecElts = DemandedElts; 3342 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3343 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3344 unsigned EltIdx = CEltNo->getZExtValue(); 3345 DemandedVal = !!DemandedElts[EltIdx]; 3346 DemandedVecElts.clearBit(EltIdx); 3347 } 3348 Known.One.setAllBits(); 3349 Known.Zero.setAllBits(); 3350 if (DemandedVal) { 3351 Known2 = computeKnownBits(InVal, Depth + 1); 3352 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3353 } 3354 if (!!DemandedVecElts) { 3355 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3356 Known = KnownBits::commonBits(Known, Known2); 3357 } 3358 break; 3359 } 3360 case ISD::BITREVERSE: { 3361 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3362 Known = Known2.reverseBits(); 3363 break; 3364 } 3365 case ISD::BSWAP: { 3366 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3367 Known = Known2.byteSwap(); 3368 break; 3369 } 3370 case ISD::ABS: { 3371 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3372 Known = Known2.abs(); 3373 break; 3374 } 3375 case ISD::UMIN: { 3376 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3377 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3378 Known = KnownBits::umin(Known, Known2); 3379 break; 3380 } 3381 case ISD::UMAX: { 3382 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3383 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3384 Known = KnownBits::umax(Known, Known2); 3385 break; 3386 } 3387 case ISD::SMIN: 3388 case ISD::SMAX: { 3389 // If we have a clamp pattern, we know that the number of sign bits will be 3390 // the minimum of the clamp min/max range. 3391 bool IsMax = (Opcode == ISD::SMAX); 3392 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3393 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3394 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3395 CstHigh = 3396 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3397 if (CstLow && CstHigh) { 3398 if (!IsMax) 3399 std::swap(CstLow, CstHigh); 3400 3401 const APInt &ValueLow = CstLow->getAPIntValue(); 3402 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3403 if (ValueLow.sle(ValueHigh)) { 3404 unsigned LowSignBits = ValueLow.getNumSignBits(); 3405 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3406 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3407 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3408 Known.One.setHighBits(MinSignBits); 3409 break; 3410 } 3411 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3412 Known.Zero.setHighBits(MinSignBits); 3413 break; 3414 } 3415 } 3416 } 3417 3418 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3419 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3420 if (IsMax) 3421 Known = KnownBits::smax(Known, Known2); 3422 else 3423 Known = KnownBits::smin(Known, Known2); 3424 break; 3425 } 3426 case ISD::FrameIndex: 3427 case ISD::TargetFrameIndex: 3428 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3429 Known, getMachineFunction()); 3430 break; 3431 3432 default: 3433 if (Opcode < ISD::BUILTIN_OP_END) 3434 break; 3435 LLVM_FALLTHROUGH; 3436 case ISD::INTRINSIC_WO_CHAIN: 3437 case ISD::INTRINSIC_W_CHAIN: 3438 case ISD::INTRINSIC_VOID: 3439 // Allow the target to implement this method for its nodes. 3440 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3441 break; 3442 } 3443 3444 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3445 return Known; 3446 } 3447 3448 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3449 SDValue N1) const { 3450 // X + 0 never overflow 3451 if (isNullConstant(N1)) 3452 return OFK_Never; 3453 3454 KnownBits N1Known = computeKnownBits(N1); 3455 if (N1Known.Zero.getBoolValue()) { 3456 KnownBits N0Known = computeKnownBits(N0); 3457 3458 bool overflow; 3459 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3460 if (!overflow) 3461 return OFK_Never; 3462 } 3463 3464 // mulhi + 1 never overflow 3465 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3466 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3467 return OFK_Never; 3468 3469 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3470 KnownBits N0Known = computeKnownBits(N0); 3471 3472 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3473 return OFK_Never; 3474 } 3475 3476 return OFK_Sometime; 3477 } 3478 3479 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3480 EVT OpVT = Val.getValueType(); 3481 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3482 3483 // Is the constant a known power of 2? 3484 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3485 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3486 3487 // A left-shift of a constant one will have exactly one bit set because 3488 // shifting the bit off the end is undefined. 3489 if (Val.getOpcode() == ISD::SHL) { 3490 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3491 if (C && C->getAPIntValue() == 1) 3492 return true; 3493 } 3494 3495 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3496 // one bit set. 3497 if (Val.getOpcode() == ISD::SRL) { 3498 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3499 if (C && C->getAPIntValue().isSignMask()) 3500 return true; 3501 } 3502 3503 // Are all operands of a build vector constant powers of two? 3504 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3505 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3506 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3507 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3508 return false; 3509 })) 3510 return true; 3511 3512 // More could be done here, though the above checks are enough 3513 // to handle some common cases. 3514 3515 // Fall back to computeKnownBits to catch other known cases. 3516 KnownBits Known = computeKnownBits(Val); 3517 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3518 } 3519 3520 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3521 EVT VT = Op.getValueType(); 3522 3523 // TODO: Assume we don't know anything for now. 3524 if (VT.isScalableVector()) 3525 return 1; 3526 3527 APInt DemandedElts = VT.isVector() 3528 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3529 : APInt(1, 1); 3530 return ComputeNumSignBits(Op, DemandedElts, Depth); 3531 } 3532 3533 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3534 unsigned Depth) const { 3535 EVT VT = Op.getValueType(); 3536 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3537 unsigned VTBits = VT.getScalarSizeInBits(); 3538 unsigned NumElts = DemandedElts.getBitWidth(); 3539 unsigned Tmp, Tmp2; 3540 unsigned FirstAnswer = 1; 3541 3542 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3543 const APInt &Val = C->getAPIntValue(); 3544 return Val.getNumSignBits(); 3545 } 3546 3547 if (Depth >= MaxRecursionDepth) 3548 return 1; // Limit search depth. 3549 3550 if (!DemandedElts || VT.isScalableVector()) 3551 return 1; // No demanded elts, better to assume we don't know anything. 3552 3553 unsigned Opcode = Op.getOpcode(); 3554 switch (Opcode) { 3555 default: break; 3556 case ISD::AssertSext: 3557 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3558 return VTBits-Tmp+1; 3559 case ISD::AssertZext: 3560 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3561 return VTBits-Tmp; 3562 3563 case ISD::BUILD_VECTOR: 3564 Tmp = VTBits; 3565 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3566 if (!DemandedElts[i]) 3567 continue; 3568 3569 SDValue SrcOp = Op.getOperand(i); 3570 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3571 3572 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3573 if (SrcOp.getValueSizeInBits() != VTBits) { 3574 assert(SrcOp.getValueSizeInBits() > VTBits && 3575 "Expected BUILD_VECTOR implicit truncation"); 3576 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3577 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3578 } 3579 Tmp = std::min(Tmp, Tmp2); 3580 } 3581 return Tmp; 3582 3583 case ISD::VECTOR_SHUFFLE: { 3584 // Collect the minimum number of sign bits that are shared by every vector 3585 // element referenced by the shuffle. 3586 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3587 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3588 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3589 for (unsigned i = 0; i != NumElts; ++i) { 3590 int M = SVN->getMaskElt(i); 3591 if (!DemandedElts[i]) 3592 continue; 3593 // For UNDEF elements, we don't know anything about the common state of 3594 // the shuffle result. 3595 if (M < 0) 3596 return 1; 3597 if ((unsigned)M < NumElts) 3598 DemandedLHS.setBit((unsigned)M % NumElts); 3599 else 3600 DemandedRHS.setBit((unsigned)M % NumElts); 3601 } 3602 Tmp = std::numeric_limits<unsigned>::max(); 3603 if (!!DemandedLHS) 3604 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3605 if (!!DemandedRHS) { 3606 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3607 Tmp = std::min(Tmp, Tmp2); 3608 } 3609 // If we don't know anything, early out and try computeKnownBits fall-back. 3610 if (Tmp == 1) 3611 break; 3612 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3613 return Tmp; 3614 } 3615 3616 case ISD::BITCAST: { 3617 SDValue N0 = Op.getOperand(0); 3618 EVT SrcVT = N0.getValueType(); 3619 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3620 3621 // Ignore bitcasts from unsupported types.. 3622 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3623 break; 3624 3625 // Fast handling of 'identity' bitcasts. 3626 if (VTBits == SrcBits) 3627 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3628 3629 bool IsLE = getDataLayout().isLittleEndian(); 3630 3631 // Bitcast 'large element' scalar/vector to 'small element' vector. 3632 if ((SrcBits % VTBits) == 0) { 3633 assert(VT.isVector() && "Expected bitcast to vector"); 3634 3635 unsigned Scale = SrcBits / VTBits; 3636 APInt SrcDemandedElts(NumElts / Scale, 0); 3637 for (unsigned i = 0; i != NumElts; ++i) 3638 if (DemandedElts[i]) 3639 SrcDemandedElts.setBit(i / Scale); 3640 3641 // Fast case - sign splat can be simply split across the small elements. 3642 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3643 if (Tmp == SrcBits) 3644 return VTBits; 3645 3646 // Slow case - determine how far the sign extends into each sub-element. 3647 Tmp2 = VTBits; 3648 for (unsigned i = 0; i != NumElts; ++i) 3649 if (DemandedElts[i]) { 3650 unsigned SubOffset = i % Scale; 3651 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3652 SubOffset = SubOffset * VTBits; 3653 if (Tmp <= SubOffset) 3654 return 1; 3655 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3656 } 3657 return Tmp2; 3658 } 3659 break; 3660 } 3661 3662 case ISD::SIGN_EXTEND: 3663 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3664 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3665 case ISD::SIGN_EXTEND_INREG: 3666 // Max of the input and what this extends. 3667 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3668 Tmp = VTBits-Tmp+1; 3669 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3670 return std::max(Tmp, Tmp2); 3671 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3672 SDValue Src = Op.getOperand(0); 3673 EVT SrcVT = Src.getValueType(); 3674 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3675 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3676 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3677 } 3678 case ISD::SRA: 3679 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3680 // SRA X, C -> adds C sign bits. 3681 if (const APInt *ShAmt = 3682 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3683 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3684 return Tmp; 3685 case ISD::SHL: 3686 if (const APInt *ShAmt = 3687 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3688 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3689 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3690 if (ShAmt->ult(Tmp)) 3691 return Tmp - ShAmt->getZExtValue(); 3692 } 3693 break; 3694 case ISD::AND: 3695 case ISD::OR: 3696 case ISD::XOR: // NOT is handled here. 3697 // Logical binary ops preserve the number of sign bits at the worst. 3698 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3699 if (Tmp != 1) { 3700 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3701 FirstAnswer = std::min(Tmp, Tmp2); 3702 // We computed what we know about the sign bits as our first 3703 // answer. Now proceed to the generic code that uses 3704 // computeKnownBits, and pick whichever answer is better. 3705 } 3706 break; 3707 3708 case ISD::SELECT: 3709 case ISD::VSELECT: 3710 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3711 if (Tmp == 1) return 1; // Early out. 3712 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3713 return std::min(Tmp, Tmp2); 3714 case ISD::SELECT_CC: 3715 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3716 if (Tmp == 1) return 1; // Early out. 3717 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3718 return std::min(Tmp, Tmp2); 3719 3720 case ISD::SMIN: 3721 case ISD::SMAX: { 3722 // If we have a clamp pattern, we know that the number of sign bits will be 3723 // the minimum of the clamp min/max range. 3724 bool IsMax = (Opcode == ISD::SMAX); 3725 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3726 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3727 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3728 CstHigh = 3729 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3730 if (CstLow && CstHigh) { 3731 if (!IsMax) 3732 std::swap(CstLow, CstHigh); 3733 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3734 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3735 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3736 return std::min(Tmp, Tmp2); 3737 } 3738 } 3739 3740 // Fallback - just get the minimum number of sign bits of the operands. 3741 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3742 if (Tmp == 1) 3743 return 1; // Early out. 3744 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3745 return std::min(Tmp, Tmp2); 3746 } 3747 case ISD::UMIN: 3748 case ISD::UMAX: 3749 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3750 if (Tmp == 1) 3751 return 1; // Early out. 3752 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3753 return std::min(Tmp, Tmp2); 3754 case ISD::SADDO: 3755 case ISD::UADDO: 3756 case ISD::SSUBO: 3757 case ISD::USUBO: 3758 case ISD::SMULO: 3759 case ISD::UMULO: 3760 if (Op.getResNo() != 1) 3761 break; 3762 // The boolean result conforms to getBooleanContents. Fall through. 3763 // If setcc returns 0/-1, all bits are sign bits. 3764 // We know that we have an integer-based boolean since these operations 3765 // are only available for integer. 3766 if (TLI->getBooleanContents(VT.isVector(), false) == 3767 TargetLowering::ZeroOrNegativeOneBooleanContent) 3768 return VTBits; 3769 break; 3770 case ISD::SETCC: 3771 case ISD::STRICT_FSETCC: 3772 case ISD::STRICT_FSETCCS: { 3773 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3774 // If setcc returns 0/-1, all bits are sign bits. 3775 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3776 TargetLowering::ZeroOrNegativeOneBooleanContent) 3777 return VTBits; 3778 break; 3779 } 3780 case ISD::ROTL: 3781 case ISD::ROTR: 3782 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3783 3784 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3785 if (Tmp == VTBits) 3786 return VTBits; 3787 3788 if (ConstantSDNode *C = 3789 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3790 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3791 3792 // Handle rotate right by N like a rotate left by 32-N. 3793 if (Opcode == ISD::ROTR) 3794 RotAmt = (VTBits - RotAmt) % VTBits; 3795 3796 // If we aren't rotating out all of the known-in sign bits, return the 3797 // number that are left. This handles rotl(sext(x), 1) for example. 3798 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3799 } 3800 break; 3801 case ISD::ADD: 3802 case ISD::ADDC: 3803 // Add can have at most one carry bit. Thus we know that the output 3804 // is, at worst, one more bit than the inputs. 3805 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3806 if (Tmp == 1) return 1; // Early out. 3807 3808 // Special case decrementing a value (ADD X, -1): 3809 if (ConstantSDNode *CRHS = 3810 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3811 if (CRHS->isAllOnesValue()) { 3812 KnownBits Known = 3813 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3814 3815 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3816 // sign bits set. 3817 if ((Known.Zero | 1).isAllOnesValue()) 3818 return VTBits; 3819 3820 // If we are subtracting one from a positive number, there is no carry 3821 // out of the result. 3822 if (Known.isNonNegative()) 3823 return Tmp; 3824 } 3825 3826 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3827 if (Tmp2 == 1) return 1; // Early out. 3828 return std::min(Tmp, Tmp2) - 1; 3829 case ISD::SUB: 3830 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3831 if (Tmp2 == 1) return 1; // Early out. 3832 3833 // Handle NEG. 3834 if (ConstantSDNode *CLHS = 3835 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3836 if (CLHS->isNullValue()) { 3837 KnownBits Known = 3838 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3839 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3840 // sign bits set. 3841 if ((Known.Zero | 1).isAllOnesValue()) 3842 return VTBits; 3843 3844 // If the input is known to be positive (the sign bit is known clear), 3845 // the output of the NEG has the same number of sign bits as the input. 3846 if (Known.isNonNegative()) 3847 return Tmp2; 3848 3849 // Otherwise, we treat this like a SUB. 3850 } 3851 3852 // Sub can have at most one carry bit. Thus we know that the output 3853 // is, at worst, one more bit than the inputs. 3854 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3855 if (Tmp == 1) return 1; // Early out. 3856 return std::min(Tmp, Tmp2) - 1; 3857 case ISD::MUL: { 3858 // The output of the Mul can be at most twice the valid bits in the inputs. 3859 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3860 if (SignBitsOp0 == 1) 3861 break; 3862 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3863 if (SignBitsOp1 == 1) 3864 break; 3865 unsigned OutValidBits = 3866 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3867 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3868 } 3869 case ISD::TRUNCATE: { 3870 // Check if the sign bits of source go down as far as the truncated value. 3871 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3872 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3873 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3874 return NumSrcSignBits - (NumSrcBits - VTBits); 3875 break; 3876 } 3877 case ISD::EXTRACT_ELEMENT: { 3878 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3879 const int BitWidth = Op.getValueSizeInBits(); 3880 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3881 3882 // Get reverse index (starting from 1), Op1 value indexes elements from 3883 // little end. Sign starts at big end. 3884 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3885 3886 // If the sign portion ends in our element the subtraction gives correct 3887 // result. Otherwise it gives either negative or > bitwidth result 3888 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3889 } 3890 case ISD::INSERT_VECTOR_ELT: { 3891 // If we know the element index, split the demand between the 3892 // source vector and the inserted element, otherwise assume we need 3893 // the original demanded vector elements and the value. 3894 SDValue InVec = Op.getOperand(0); 3895 SDValue InVal = Op.getOperand(1); 3896 SDValue EltNo = Op.getOperand(2); 3897 bool DemandedVal = true; 3898 APInt DemandedVecElts = DemandedElts; 3899 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3900 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3901 unsigned EltIdx = CEltNo->getZExtValue(); 3902 DemandedVal = !!DemandedElts[EltIdx]; 3903 DemandedVecElts.clearBit(EltIdx); 3904 } 3905 Tmp = std::numeric_limits<unsigned>::max(); 3906 if (DemandedVal) { 3907 // TODO - handle implicit truncation of inserted elements. 3908 if (InVal.getScalarValueSizeInBits() != VTBits) 3909 break; 3910 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3911 Tmp = std::min(Tmp, Tmp2); 3912 } 3913 if (!!DemandedVecElts) { 3914 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3915 Tmp = std::min(Tmp, Tmp2); 3916 } 3917 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3918 return Tmp; 3919 } 3920 case ISD::EXTRACT_VECTOR_ELT: { 3921 SDValue InVec = Op.getOperand(0); 3922 SDValue EltNo = Op.getOperand(1); 3923 EVT VecVT = InVec.getValueType(); 3924 const unsigned BitWidth = Op.getValueSizeInBits(); 3925 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3926 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3927 3928 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3929 // anything about sign bits. But if the sizes match we can derive knowledge 3930 // about sign bits from the vector operand. 3931 if (BitWidth != EltBitWidth) 3932 break; 3933 3934 // If we know the element index, just demand that vector element, else for 3935 // an unknown element index, ignore DemandedElts and demand them all. 3936 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3937 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3938 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3939 DemandedSrcElts = 3940 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3941 3942 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3943 } 3944 case ISD::EXTRACT_SUBVECTOR: { 3945 // Offset the demanded elts by the subvector index. 3946 SDValue Src = Op.getOperand(0); 3947 // Bail until we can represent demanded elements for scalable vectors. 3948 if (Src.getValueType().isScalableVector()) 3949 break; 3950 uint64_t Idx = Op.getConstantOperandVal(1); 3951 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3952 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3953 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3954 } 3955 case ISD::CONCAT_VECTORS: { 3956 // Determine the minimum number of sign bits across all demanded 3957 // elts of the input vectors. Early out if the result is already 1. 3958 Tmp = std::numeric_limits<unsigned>::max(); 3959 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3960 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3961 unsigned NumSubVectors = Op.getNumOperands(); 3962 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3963 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3964 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3965 if (!DemandedSub) 3966 continue; 3967 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3968 Tmp = std::min(Tmp, Tmp2); 3969 } 3970 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3971 return Tmp; 3972 } 3973 case ISD::INSERT_SUBVECTOR: { 3974 // Demand any elements from the subvector and the remainder from the src its 3975 // inserted into. 3976 SDValue Src = Op.getOperand(0); 3977 SDValue Sub = Op.getOperand(1); 3978 uint64_t Idx = Op.getConstantOperandVal(2); 3979 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3980 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3981 APInt DemandedSrcElts = DemandedElts; 3982 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3983 3984 Tmp = std::numeric_limits<unsigned>::max(); 3985 if (!!DemandedSubElts) { 3986 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3987 if (Tmp == 1) 3988 return 1; // early-out 3989 } 3990 if (!!DemandedSrcElts) { 3991 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3992 Tmp = std::min(Tmp, Tmp2); 3993 } 3994 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3995 return Tmp; 3996 } 3997 } 3998 3999 // If we are looking at the loaded value of the SDNode. 4000 if (Op.getResNo() == 0) { 4001 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4002 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4003 unsigned ExtType = LD->getExtensionType(); 4004 switch (ExtType) { 4005 default: break; 4006 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4007 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4008 return VTBits - Tmp + 1; 4009 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4010 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4011 return VTBits - Tmp; 4012 case ISD::NON_EXTLOAD: 4013 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4014 // We only need to handle vectors - computeKnownBits should handle 4015 // scalar cases. 4016 Type *CstTy = Cst->getType(); 4017 if (CstTy->isVectorTy() && 4018 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4019 Tmp = VTBits; 4020 for (unsigned i = 0; i != NumElts; ++i) { 4021 if (!DemandedElts[i]) 4022 continue; 4023 if (Constant *Elt = Cst->getAggregateElement(i)) { 4024 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4025 const APInt &Value = CInt->getValue(); 4026 Tmp = std::min(Tmp, Value.getNumSignBits()); 4027 continue; 4028 } 4029 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4030 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4031 Tmp = std::min(Tmp, Value.getNumSignBits()); 4032 continue; 4033 } 4034 } 4035 // Unknown type. Conservatively assume no bits match sign bit. 4036 return 1; 4037 } 4038 return Tmp; 4039 } 4040 } 4041 break; 4042 } 4043 } 4044 } 4045 4046 // Allow the target to implement this method for its nodes. 4047 if (Opcode >= ISD::BUILTIN_OP_END || 4048 Opcode == ISD::INTRINSIC_WO_CHAIN || 4049 Opcode == ISD::INTRINSIC_W_CHAIN || 4050 Opcode == ISD::INTRINSIC_VOID) { 4051 unsigned NumBits = 4052 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4053 if (NumBits > 1) 4054 FirstAnswer = std::max(FirstAnswer, NumBits); 4055 } 4056 4057 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4058 // use this information. 4059 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4060 4061 APInt Mask; 4062 if (Known.isNonNegative()) { // sign bit is 0 4063 Mask = Known.Zero; 4064 } else if (Known.isNegative()) { // sign bit is 1; 4065 Mask = Known.One; 4066 } else { 4067 // Nothing known. 4068 return FirstAnswer; 4069 } 4070 4071 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4072 // the number of identical bits in the top of the input value. 4073 Mask <<= Mask.getBitWidth()-VTBits; 4074 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4075 } 4076 4077 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4078 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4079 !isa<ConstantSDNode>(Op.getOperand(1))) 4080 return false; 4081 4082 if (Op.getOpcode() == ISD::OR && 4083 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4084 return false; 4085 4086 return true; 4087 } 4088 4089 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4090 // If we're told that NaNs won't happen, assume they won't. 4091 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4092 return true; 4093 4094 if (Depth >= MaxRecursionDepth) 4095 return false; // Limit search depth. 4096 4097 // TODO: Handle vectors. 4098 // If the value is a constant, we can obviously see if it is a NaN or not. 4099 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4100 return !C->getValueAPF().isNaN() || 4101 (SNaN && !C->getValueAPF().isSignaling()); 4102 } 4103 4104 unsigned Opcode = Op.getOpcode(); 4105 switch (Opcode) { 4106 case ISD::FADD: 4107 case ISD::FSUB: 4108 case ISD::FMUL: 4109 case ISD::FDIV: 4110 case ISD::FREM: 4111 case ISD::FSIN: 4112 case ISD::FCOS: { 4113 if (SNaN) 4114 return true; 4115 // TODO: Need isKnownNeverInfinity 4116 return false; 4117 } 4118 case ISD::FCANONICALIZE: 4119 case ISD::FEXP: 4120 case ISD::FEXP2: 4121 case ISD::FTRUNC: 4122 case ISD::FFLOOR: 4123 case ISD::FCEIL: 4124 case ISD::FROUND: 4125 case ISD::FROUNDEVEN: 4126 case ISD::FRINT: 4127 case ISD::FNEARBYINT: { 4128 if (SNaN) 4129 return true; 4130 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4131 } 4132 case ISD::FABS: 4133 case ISD::FNEG: 4134 case ISD::FCOPYSIGN: { 4135 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4136 } 4137 case ISD::SELECT: 4138 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4139 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4140 case ISD::FP_EXTEND: 4141 case ISD::FP_ROUND: { 4142 if (SNaN) 4143 return true; 4144 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4145 } 4146 case ISD::SINT_TO_FP: 4147 case ISD::UINT_TO_FP: 4148 return true; 4149 case ISD::FMA: 4150 case ISD::FMAD: { 4151 if (SNaN) 4152 return true; 4153 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4154 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4155 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4156 } 4157 case ISD::FSQRT: // Need is known positive 4158 case ISD::FLOG: 4159 case ISD::FLOG2: 4160 case ISD::FLOG10: 4161 case ISD::FPOWI: 4162 case ISD::FPOW: { 4163 if (SNaN) 4164 return true; 4165 // TODO: Refine on operand 4166 return false; 4167 } 4168 case ISD::FMINNUM: 4169 case ISD::FMAXNUM: { 4170 // Only one needs to be known not-nan, since it will be returned if the 4171 // other ends up being one. 4172 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4173 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4174 } 4175 case ISD::FMINNUM_IEEE: 4176 case ISD::FMAXNUM_IEEE: { 4177 if (SNaN) 4178 return true; 4179 // This can return a NaN if either operand is an sNaN, or if both operands 4180 // are NaN. 4181 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4182 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4183 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4184 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4185 } 4186 case ISD::FMINIMUM: 4187 case ISD::FMAXIMUM: { 4188 // TODO: Does this quiet or return the origina NaN as-is? 4189 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4190 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4191 } 4192 case ISD::EXTRACT_VECTOR_ELT: { 4193 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4194 } 4195 default: 4196 if (Opcode >= ISD::BUILTIN_OP_END || 4197 Opcode == ISD::INTRINSIC_WO_CHAIN || 4198 Opcode == ISD::INTRINSIC_W_CHAIN || 4199 Opcode == ISD::INTRINSIC_VOID) { 4200 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4201 } 4202 4203 return false; 4204 } 4205 } 4206 4207 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4208 assert(Op.getValueType().isFloatingPoint() && 4209 "Floating point type expected"); 4210 4211 // If the value is a constant, we can obviously see if it is a zero or not. 4212 // TODO: Add BuildVector support. 4213 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4214 return !C->isZero(); 4215 return false; 4216 } 4217 4218 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4219 assert(!Op.getValueType().isFloatingPoint() && 4220 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4221 4222 // If the value is a constant, we can obviously see if it is a zero or not. 4223 if (ISD::matchUnaryPredicate( 4224 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4225 return true; 4226 4227 // TODO: Recognize more cases here. 4228 switch (Op.getOpcode()) { 4229 default: break; 4230 case ISD::OR: 4231 if (isKnownNeverZero(Op.getOperand(1)) || 4232 isKnownNeverZero(Op.getOperand(0))) 4233 return true; 4234 break; 4235 } 4236 4237 return false; 4238 } 4239 4240 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4241 // Check the obvious case. 4242 if (A == B) return true; 4243 4244 // For for negative and positive zero. 4245 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4246 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4247 if (CA->isZero() && CB->isZero()) return true; 4248 4249 // Otherwise they may not be equal. 4250 return false; 4251 } 4252 4253 // FIXME: unify with llvm::haveNoCommonBitsSet. 4254 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4255 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4256 assert(A.getValueType() == B.getValueType() && 4257 "Values must have the same type"); 4258 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4259 } 4260 4261 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4262 ArrayRef<SDValue> Ops, 4263 SelectionDAG &DAG) { 4264 int NumOps = Ops.size(); 4265 assert(NumOps != 0 && "Can't build an empty vector!"); 4266 assert(!VT.isScalableVector() && 4267 "BUILD_VECTOR cannot be used with scalable types"); 4268 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4269 "Incorrect element count in BUILD_VECTOR!"); 4270 4271 // BUILD_VECTOR of UNDEFs is UNDEF. 4272 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4273 return DAG.getUNDEF(VT); 4274 4275 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4276 SDValue IdentitySrc; 4277 bool IsIdentity = true; 4278 for (int i = 0; i != NumOps; ++i) { 4279 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4280 Ops[i].getOperand(0).getValueType() != VT || 4281 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4282 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4283 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4284 IsIdentity = false; 4285 break; 4286 } 4287 IdentitySrc = Ops[i].getOperand(0); 4288 } 4289 if (IsIdentity) 4290 return IdentitySrc; 4291 4292 return SDValue(); 4293 } 4294 4295 /// Try to simplify vector concatenation to an input value, undef, or build 4296 /// vector. 4297 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4298 ArrayRef<SDValue> Ops, 4299 SelectionDAG &DAG) { 4300 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4301 assert(llvm::all_of(Ops, 4302 [Ops](SDValue Op) { 4303 return Ops[0].getValueType() == Op.getValueType(); 4304 }) && 4305 "Concatenation of vectors with inconsistent value types!"); 4306 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4307 VT.getVectorElementCount() && 4308 "Incorrect element count in vector concatenation!"); 4309 4310 if (Ops.size() == 1) 4311 return Ops[0]; 4312 4313 // Concat of UNDEFs is UNDEF. 4314 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4315 return DAG.getUNDEF(VT); 4316 4317 // Scan the operands and look for extract operations from a single source 4318 // that correspond to insertion at the same location via this concatenation: 4319 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4320 SDValue IdentitySrc; 4321 bool IsIdentity = true; 4322 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4323 SDValue Op = Ops[i]; 4324 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4325 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4326 Op.getOperand(0).getValueType() != VT || 4327 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4328 Op.getConstantOperandVal(1) != IdentityIndex) { 4329 IsIdentity = false; 4330 break; 4331 } 4332 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4333 "Unexpected identity source vector for concat of extracts"); 4334 IdentitySrc = Op.getOperand(0); 4335 } 4336 if (IsIdentity) { 4337 assert(IdentitySrc && "Failed to set source vector of extracts"); 4338 return IdentitySrc; 4339 } 4340 4341 // The code below this point is only designed to work for fixed width 4342 // vectors, so we bail out for now. 4343 if (VT.isScalableVector()) 4344 return SDValue(); 4345 4346 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4347 // simplified to one big BUILD_VECTOR. 4348 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4349 EVT SVT = VT.getScalarType(); 4350 SmallVector<SDValue, 16> Elts; 4351 for (SDValue Op : Ops) { 4352 EVT OpVT = Op.getValueType(); 4353 if (Op.isUndef()) 4354 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4355 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4356 Elts.append(Op->op_begin(), Op->op_end()); 4357 else 4358 return SDValue(); 4359 } 4360 4361 // BUILD_VECTOR requires all inputs to be of the same type, find the 4362 // maximum type and extend them all. 4363 for (SDValue Op : Elts) 4364 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4365 4366 if (SVT.bitsGT(VT.getScalarType())) { 4367 for (SDValue &Op : Elts) { 4368 if (Op.isUndef()) 4369 Op = DAG.getUNDEF(SVT); 4370 else 4371 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4372 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4373 : DAG.getSExtOrTrunc(Op, DL, SVT); 4374 } 4375 } 4376 4377 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4378 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4379 return V; 4380 } 4381 4382 /// Gets or creates the specified node. 4383 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4384 FoldingSetNodeID ID; 4385 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4386 void *IP = nullptr; 4387 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4388 return SDValue(E, 0); 4389 4390 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4391 getVTList(VT)); 4392 CSEMap.InsertNode(N, IP); 4393 4394 InsertNode(N); 4395 SDValue V = SDValue(N, 0); 4396 NewSDValueDbgMsg(V, "Creating new node: ", this); 4397 return V; 4398 } 4399 4400 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4401 SDValue Operand) { 4402 SDNodeFlags Flags; 4403 if (Inserter) 4404 Flags = Inserter->getFlags(); 4405 return getNode(Opcode, DL, VT, Operand, Flags); 4406 } 4407 4408 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4409 SDValue Operand, const SDNodeFlags Flags) { 4410 // Constant fold unary operations with an integer constant operand. Even 4411 // opaque constant will be folded, because the folding of unary operations 4412 // doesn't create new constants with different values. Nevertheless, the 4413 // opaque flag is preserved during folding to prevent future folding with 4414 // other constants. 4415 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4416 const APInt &Val = C->getAPIntValue(); 4417 switch (Opcode) { 4418 default: break; 4419 case ISD::SIGN_EXTEND: 4420 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4421 C->isTargetOpcode(), C->isOpaque()); 4422 case ISD::TRUNCATE: 4423 if (C->isOpaque()) 4424 break; 4425 LLVM_FALLTHROUGH; 4426 case ISD::ANY_EXTEND: 4427 case ISD::ZERO_EXTEND: 4428 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4429 C->isTargetOpcode(), C->isOpaque()); 4430 case ISD::UINT_TO_FP: 4431 case ISD::SINT_TO_FP: { 4432 APFloat apf(EVTToAPFloatSemantics(VT), 4433 APInt::getNullValue(VT.getSizeInBits())); 4434 (void)apf.convertFromAPInt(Val, 4435 Opcode==ISD::SINT_TO_FP, 4436 APFloat::rmNearestTiesToEven); 4437 return getConstantFP(apf, DL, VT); 4438 } 4439 case ISD::BITCAST: 4440 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4441 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4442 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4443 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4444 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4445 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4446 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4447 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4448 break; 4449 case ISD::ABS: 4450 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4451 C->isOpaque()); 4452 case ISD::BITREVERSE: 4453 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4454 C->isOpaque()); 4455 case ISD::BSWAP: 4456 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4457 C->isOpaque()); 4458 case ISD::CTPOP: 4459 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4460 C->isOpaque()); 4461 case ISD::CTLZ: 4462 case ISD::CTLZ_ZERO_UNDEF: 4463 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4464 C->isOpaque()); 4465 case ISD::CTTZ: 4466 case ISD::CTTZ_ZERO_UNDEF: 4467 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4468 C->isOpaque()); 4469 case ISD::FP16_TO_FP: { 4470 bool Ignored; 4471 APFloat FPV(APFloat::IEEEhalf(), 4472 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4473 4474 // This can return overflow, underflow, or inexact; we don't care. 4475 // FIXME need to be more flexible about rounding mode. 4476 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4477 APFloat::rmNearestTiesToEven, &Ignored); 4478 return getConstantFP(FPV, DL, VT); 4479 } 4480 } 4481 } 4482 4483 // Constant fold unary operations with a floating point constant operand. 4484 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4485 APFloat V = C->getValueAPF(); // make copy 4486 switch (Opcode) { 4487 case ISD::FNEG: 4488 V.changeSign(); 4489 return getConstantFP(V, DL, VT); 4490 case ISD::FABS: 4491 V.clearSign(); 4492 return getConstantFP(V, DL, VT); 4493 case ISD::FCEIL: { 4494 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4495 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4496 return getConstantFP(V, DL, VT); 4497 break; 4498 } 4499 case ISD::FTRUNC: { 4500 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4501 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4502 return getConstantFP(V, DL, VT); 4503 break; 4504 } 4505 case ISD::FFLOOR: { 4506 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4507 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4508 return getConstantFP(V, DL, VT); 4509 break; 4510 } 4511 case ISD::FP_EXTEND: { 4512 bool ignored; 4513 // This can return overflow, underflow, or inexact; we don't care. 4514 // FIXME need to be more flexible about rounding mode. 4515 (void)V.convert(EVTToAPFloatSemantics(VT), 4516 APFloat::rmNearestTiesToEven, &ignored); 4517 return getConstantFP(V, DL, VT); 4518 } 4519 case ISD::FP_TO_SINT: 4520 case ISD::FP_TO_UINT: { 4521 bool ignored; 4522 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4523 // FIXME need to be more flexible about rounding mode. 4524 APFloat::opStatus s = 4525 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4526 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4527 break; 4528 return getConstant(IntVal, DL, VT); 4529 } 4530 case ISD::BITCAST: 4531 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4532 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4533 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4534 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4535 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4536 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4537 break; 4538 case ISD::FP_TO_FP16: { 4539 bool Ignored; 4540 // This can return overflow, underflow, or inexact; we don't care. 4541 // FIXME need to be more flexible about rounding mode. 4542 (void)V.convert(APFloat::IEEEhalf(), 4543 APFloat::rmNearestTiesToEven, &Ignored); 4544 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4545 } 4546 } 4547 } 4548 4549 // Constant fold unary operations with a vector integer or float operand. 4550 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4551 if (BV->isConstant()) { 4552 switch (Opcode) { 4553 default: 4554 // FIXME: Entirely reasonable to perform folding of other unary 4555 // operations here as the need arises. 4556 break; 4557 case ISD::FNEG: 4558 case ISD::FABS: 4559 case ISD::FCEIL: 4560 case ISD::FTRUNC: 4561 case ISD::FFLOOR: 4562 case ISD::FP_EXTEND: 4563 case ISD::FP_TO_SINT: 4564 case ISD::FP_TO_UINT: 4565 case ISD::TRUNCATE: 4566 case ISD::ANY_EXTEND: 4567 case ISD::ZERO_EXTEND: 4568 case ISD::SIGN_EXTEND: 4569 case ISD::UINT_TO_FP: 4570 case ISD::SINT_TO_FP: 4571 case ISD::ABS: 4572 case ISD::BITREVERSE: 4573 case ISD::BSWAP: 4574 case ISD::CTLZ: 4575 case ISD::CTLZ_ZERO_UNDEF: 4576 case ISD::CTTZ: 4577 case ISD::CTTZ_ZERO_UNDEF: 4578 case ISD::CTPOP: { 4579 SDValue Ops = { Operand }; 4580 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4581 return Fold; 4582 } 4583 } 4584 } 4585 } 4586 4587 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4588 switch (Opcode) { 4589 case ISD::FREEZE: 4590 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4591 break; 4592 case ISD::TokenFactor: 4593 case ISD::MERGE_VALUES: 4594 case ISD::CONCAT_VECTORS: 4595 return Operand; // Factor, merge or concat of one node? No need. 4596 case ISD::BUILD_VECTOR: { 4597 // Attempt to simplify BUILD_VECTOR. 4598 SDValue Ops[] = {Operand}; 4599 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4600 return V; 4601 break; 4602 } 4603 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4604 case ISD::FP_EXTEND: 4605 assert(VT.isFloatingPoint() && 4606 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4607 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4608 assert((!VT.isVector() || 4609 VT.getVectorElementCount() == 4610 Operand.getValueType().getVectorElementCount()) && 4611 "Vector element count mismatch!"); 4612 assert(Operand.getValueType().bitsLT(VT) && 4613 "Invalid fpext node, dst < src!"); 4614 if (Operand.isUndef()) 4615 return getUNDEF(VT); 4616 break; 4617 case ISD::FP_TO_SINT: 4618 case ISD::FP_TO_UINT: 4619 if (Operand.isUndef()) 4620 return getUNDEF(VT); 4621 break; 4622 case ISD::SINT_TO_FP: 4623 case ISD::UINT_TO_FP: 4624 // [us]itofp(undef) = 0, because the result value is bounded. 4625 if (Operand.isUndef()) 4626 return getConstantFP(0.0, DL, VT); 4627 break; 4628 case ISD::SIGN_EXTEND: 4629 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4630 "Invalid SIGN_EXTEND!"); 4631 assert(VT.isVector() == Operand.getValueType().isVector() && 4632 "SIGN_EXTEND result type type should be vector iff the operand " 4633 "type is vector!"); 4634 if (Operand.getValueType() == VT) return Operand; // noop extension 4635 assert((!VT.isVector() || 4636 VT.getVectorElementCount() == 4637 Operand.getValueType().getVectorElementCount()) && 4638 "Vector element count mismatch!"); 4639 assert(Operand.getValueType().bitsLT(VT) && 4640 "Invalid sext node, dst < src!"); 4641 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4642 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4643 else if (OpOpcode == ISD::UNDEF) 4644 // sext(undef) = 0, because the top bits will all be the same. 4645 return getConstant(0, DL, VT); 4646 break; 4647 case ISD::ZERO_EXTEND: 4648 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4649 "Invalid ZERO_EXTEND!"); 4650 assert(VT.isVector() == Operand.getValueType().isVector() && 4651 "ZERO_EXTEND result type type should be vector iff the operand " 4652 "type is vector!"); 4653 if (Operand.getValueType() == VT) return Operand; // noop extension 4654 assert((!VT.isVector() || 4655 VT.getVectorElementCount() == 4656 Operand.getValueType().getVectorElementCount()) && 4657 "Vector element count mismatch!"); 4658 assert(Operand.getValueType().bitsLT(VT) && 4659 "Invalid zext node, dst < src!"); 4660 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4661 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4662 else if (OpOpcode == ISD::UNDEF) 4663 // zext(undef) = 0, because the top bits will be zero. 4664 return getConstant(0, DL, VT); 4665 break; 4666 case ISD::ANY_EXTEND: 4667 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4668 "Invalid ANY_EXTEND!"); 4669 assert(VT.isVector() == Operand.getValueType().isVector() && 4670 "ANY_EXTEND result type type should be vector iff the operand " 4671 "type is vector!"); 4672 if (Operand.getValueType() == VT) return Operand; // noop extension 4673 assert((!VT.isVector() || 4674 VT.getVectorElementCount() == 4675 Operand.getValueType().getVectorElementCount()) && 4676 "Vector element count mismatch!"); 4677 assert(Operand.getValueType().bitsLT(VT) && 4678 "Invalid anyext node, dst < src!"); 4679 4680 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4681 OpOpcode == ISD::ANY_EXTEND) 4682 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4683 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4684 else if (OpOpcode == ISD::UNDEF) 4685 return getUNDEF(VT); 4686 4687 // (ext (trunc x)) -> x 4688 if (OpOpcode == ISD::TRUNCATE) { 4689 SDValue OpOp = Operand.getOperand(0); 4690 if (OpOp.getValueType() == VT) { 4691 transferDbgValues(Operand, OpOp); 4692 return OpOp; 4693 } 4694 } 4695 break; 4696 case ISD::TRUNCATE: 4697 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4698 "Invalid TRUNCATE!"); 4699 assert(VT.isVector() == Operand.getValueType().isVector() && 4700 "TRUNCATE result type type should be vector iff the operand " 4701 "type is vector!"); 4702 if (Operand.getValueType() == VT) return Operand; // noop truncate 4703 assert((!VT.isVector() || 4704 VT.getVectorElementCount() == 4705 Operand.getValueType().getVectorElementCount()) && 4706 "Vector element count mismatch!"); 4707 assert(Operand.getValueType().bitsGT(VT) && 4708 "Invalid truncate node, src < dst!"); 4709 if (OpOpcode == ISD::TRUNCATE) 4710 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4711 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4712 OpOpcode == ISD::ANY_EXTEND) { 4713 // If the source is smaller than the dest, we still need an extend. 4714 if (Operand.getOperand(0).getValueType().getScalarType() 4715 .bitsLT(VT.getScalarType())) 4716 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4717 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4718 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4719 return Operand.getOperand(0); 4720 } 4721 if (OpOpcode == ISD::UNDEF) 4722 return getUNDEF(VT); 4723 break; 4724 case ISD::ANY_EXTEND_VECTOR_INREG: 4725 case ISD::ZERO_EXTEND_VECTOR_INREG: 4726 case ISD::SIGN_EXTEND_VECTOR_INREG: 4727 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4728 assert(Operand.getValueType().bitsLE(VT) && 4729 "The input must be the same size or smaller than the result."); 4730 assert(VT.getVectorNumElements() < 4731 Operand.getValueType().getVectorNumElements() && 4732 "The destination vector type must have fewer lanes than the input."); 4733 break; 4734 case ISD::ABS: 4735 assert(VT.isInteger() && VT == Operand.getValueType() && 4736 "Invalid ABS!"); 4737 if (OpOpcode == ISD::UNDEF) 4738 return getUNDEF(VT); 4739 break; 4740 case ISD::BSWAP: 4741 assert(VT.isInteger() && VT == Operand.getValueType() && 4742 "Invalid BSWAP!"); 4743 assert((VT.getScalarSizeInBits() % 16 == 0) && 4744 "BSWAP types must be a multiple of 16 bits!"); 4745 if (OpOpcode == ISD::UNDEF) 4746 return getUNDEF(VT); 4747 break; 4748 case ISD::BITREVERSE: 4749 assert(VT.isInteger() && VT == Operand.getValueType() && 4750 "Invalid BITREVERSE!"); 4751 if (OpOpcode == ISD::UNDEF) 4752 return getUNDEF(VT); 4753 break; 4754 case ISD::BITCAST: 4755 // Basic sanity checking. 4756 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4757 "Cannot BITCAST between types of different sizes!"); 4758 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4759 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4760 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4761 if (OpOpcode == ISD::UNDEF) 4762 return getUNDEF(VT); 4763 break; 4764 case ISD::SCALAR_TO_VECTOR: 4765 assert(VT.isVector() && !Operand.getValueType().isVector() && 4766 (VT.getVectorElementType() == Operand.getValueType() || 4767 (VT.getVectorElementType().isInteger() && 4768 Operand.getValueType().isInteger() && 4769 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4770 "Illegal SCALAR_TO_VECTOR node!"); 4771 if (OpOpcode == ISD::UNDEF) 4772 return getUNDEF(VT); 4773 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4774 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4775 isa<ConstantSDNode>(Operand.getOperand(1)) && 4776 Operand.getConstantOperandVal(1) == 0 && 4777 Operand.getOperand(0).getValueType() == VT) 4778 return Operand.getOperand(0); 4779 break; 4780 case ISD::FNEG: 4781 // Negation of an unknown bag of bits is still completely undefined. 4782 if (OpOpcode == ISD::UNDEF) 4783 return getUNDEF(VT); 4784 4785 if (OpOpcode == ISD::FNEG) // --X -> X 4786 return Operand.getOperand(0); 4787 break; 4788 case ISD::FABS: 4789 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4790 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4791 break; 4792 case ISD::VSCALE: 4793 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4794 break; 4795 case ISD::CTPOP: 4796 if (Operand.getValueType().getScalarType() == MVT::i1) 4797 return Operand; 4798 break; 4799 case ISD::CTLZ: 4800 case ISD::CTTZ: 4801 if (Operand.getValueType().getScalarType() == MVT::i1) 4802 return getNOT(DL, Operand, Operand.getValueType()); 4803 break; 4804 case ISD::VECREDUCE_SMIN: 4805 case ISD::VECREDUCE_UMAX: 4806 if (Operand.getValueType().getScalarType() == MVT::i1) 4807 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4808 break; 4809 case ISD::VECREDUCE_SMAX: 4810 case ISD::VECREDUCE_UMIN: 4811 if (Operand.getValueType().getScalarType() == MVT::i1) 4812 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4813 break; 4814 } 4815 4816 SDNode *N; 4817 SDVTList VTs = getVTList(VT); 4818 SDValue Ops[] = {Operand}; 4819 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4820 FoldingSetNodeID ID; 4821 AddNodeIDNode(ID, Opcode, VTs, Ops); 4822 void *IP = nullptr; 4823 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4824 E->intersectFlagsWith(Flags); 4825 return SDValue(E, 0); 4826 } 4827 4828 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4829 N->setFlags(Flags); 4830 createOperands(N, Ops); 4831 CSEMap.InsertNode(N, IP); 4832 } else { 4833 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4834 createOperands(N, Ops); 4835 } 4836 4837 InsertNode(N); 4838 SDValue V = SDValue(N, 0); 4839 NewSDValueDbgMsg(V, "Creating new node: ", this); 4840 return V; 4841 } 4842 4843 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4844 const APInt &C2) { 4845 switch (Opcode) { 4846 case ISD::ADD: return C1 + C2; 4847 case ISD::SUB: return C1 - C2; 4848 case ISD::MUL: return C1 * C2; 4849 case ISD::AND: return C1 & C2; 4850 case ISD::OR: return C1 | C2; 4851 case ISD::XOR: return C1 ^ C2; 4852 case ISD::SHL: return C1 << C2; 4853 case ISD::SRL: return C1.lshr(C2); 4854 case ISD::SRA: return C1.ashr(C2); 4855 case ISD::ROTL: return C1.rotl(C2); 4856 case ISD::ROTR: return C1.rotr(C2); 4857 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4858 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4859 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4860 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4861 case ISD::SADDSAT: return C1.sadd_sat(C2); 4862 case ISD::UADDSAT: return C1.uadd_sat(C2); 4863 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4864 case ISD::USUBSAT: return C1.usub_sat(C2); 4865 case ISD::UDIV: 4866 if (!C2.getBoolValue()) 4867 break; 4868 return C1.udiv(C2); 4869 case ISD::UREM: 4870 if (!C2.getBoolValue()) 4871 break; 4872 return C1.urem(C2); 4873 case ISD::SDIV: 4874 if (!C2.getBoolValue()) 4875 break; 4876 return C1.sdiv(C2); 4877 case ISD::SREM: 4878 if (!C2.getBoolValue()) 4879 break; 4880 return C1.srem(C2); 4881 } 4882 return llvm::None; 4883 } 4884 4885 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4886 const GlobalAddressSDNode *GA, 4887 const SDNode *N2) { 4888 if (GA->getOpcode() != ISD::GlobalAddress) 4889 return SDValue(); 4890 if (!TLI->isOffsetFoldingLegal(GA)) 4891 return SDValue(); 4892 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4893 if (!C2) 4894 return SDValue(); 4895 int64_t Offset = C2->getSExtValue(); 4896 switch (Opcode) { 4897 case ISD::ADD: break; 4898 case ISD::SUB: Offset = -uint64_t(Offset); break; 4899 default: return SDValue(); 4900 } 4901 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4902 GA->getOffset() + uint64_t(Offset)); 4903 } 4904 4905 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4906 switch (Opcode) { 4907 case ISD::SDIV: 4908 case ISD::UDIV: 4909 case ISD::SREM: 4910 case ISD::UREM: { 4911 // If a divisor is zero/undef or any element of a divisor vector is 4912 // zero/undef, the whole op is undef. 4913 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4914 SDValue Divisor = Ops[1]; 4915 if (Divisor.isUndef() || isNullConstant(Divisor)) 4916 return true; 4917 4918 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4919 llvm::any_of(Divisor->op_values(), 4920 [](SDValue V) { return V.isUndef() || 4921 isNullConstant(V); }); 4922 // TODO: Handle signed overflow. 4923 } 4924 // TODO: Handle oversized shifts. 4925 default: 4926 return false; 4927 } 4928 } 4929 4930 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4931 EVT VT, ArrayRef<SDValue> Ops) { 4932 // If the opcode is a target-specific ISD node, there's nothing we can 4933 // do here and the operand rules may not line up with the below, so 4934 // bail early. 4935 if (Opcode >= ISD::BUILTIN_OP_END) 4936 return SDValue(); 4937 4938 // For now, the array Ops should only contain two values. 4939 // This enforcement will be removed once this function is merged with 4940 // FoldConstantVectorArithmetic 4941 if (Ops.size() != 2) 4942 return SDValue(); 4943 4944 if (isUndef(Opcode, Ops)) 4945 return getUNDEF(VT); 4946 4947 SDNode *N1 = Ops[0].getNode(); 4948 SDNode *N2 = Ops[1].getNode(); 4949 4950 // Handle the case of two scalars. 4951 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4952 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4953 if (C1->isOpaque() || C2->isOpaque()) 4954 return SDValue(); 4955 4956 Optional<APInt> FoldAttempt = 4957 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4958 if (!FoldAttempt) 4959 return SDValue(); 4960 4961 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4962 assert((!Folded || !VT.isVector()) && 4963 "Can't fold vectors ops with scalar operands"); 4964 return Folded; 4965 } 4966 } 4967 4968 // fold (add Sym, c) -> Sym+c 4969 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4970 return FoldSymbolOffset(Opcode, VT, GA, N2); 4971 if (TLI->isCommutativeBinOp(Opcode)) 4972 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4973 return FoldSymbolOffset(Opcode, VT, GA, N1); 4974 4975 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4976 // vector width, however we should be able to do constant folds involving 4977 // splat vector nodes too. 4978 if (VT.isScalableVector()) 4979 return SDValue(); 4980 4981 // For fixed width vectors, extract each constant element and fold them 4982 // individually. Either input may be an undef value. 4983 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4984 if (!BV1 && !N1->isUndef()) 4985 return SDValue(); 4986 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4987 if (!BV2 && !N2->isUndef()) 4988 return SDValue(); 4989 // If both operands are undef, that's handled the same way as scalars. 4990 if (!BV1 && !BV2) 4991 return SDValue(); 4992 4993 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4994 "Vector binop with different number of elements in operands?"); 4995 4996 EVT SVT = VT.getScalarType(); 4997 EVT LegalSVT = SVT; 4998 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4999 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5000 if (LegalSVT.bitsLT(SVT)) 5001 return SDValue(); 5002 } 5003 SmallVector<SDValue, 4> Outputs; 5004 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5005 for (unsigned I = 0; I != NumOps; ++I) { 5006 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5007 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5008 if (SVT.isInteger()) { 5009 if (V1->getValueType(0).bitsGT(SVT)) 5010 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5011 if (V2->getValueType(0).bitsGT(SVT)) 5012 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5013 } 5014 5015 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5016 return SDValue(); 5017 5018 // Fold one vector element. 5019 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5020 if (LegalSVT != SVT) 5021 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5022 5023 // Scalar folding only succeeded if the result is a constant or UNDEF. 5024 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5025 ScalarResult.getOpcode() != ISD::ConstantFP) 5026 return SDValue(); 5027 Outputs.push_back(ScalarResult); 5028 } 5029 5030 assert(VT.getVectorNumElements() == Outputs.size() && 5031 "Vector size mismatch!"); 5032 5033 // We may have a vector type but a scalar result. Create a splat. 5034 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5035 5036 // Build a big vector out of the scalar elements we generated. 5037 return getBuildVector(VT, SDLoc(), Outputs); 5038 } 5039 5040 // TODO: Merge with FoldConstantArithmetic 5041 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5042 const SDLoc &DL, EVT VT, 5043 ArrayRef<SDValue> Ops, 5044 const SDNodeFlags Flags) { 5045 // If the opcode is a target-specific ISD node, there's nothing we can 5046 // do here and the operand rules may not line up with the below, so 5047 // bail early. 5048 if (Opcode >= ISD::BUILTIN_OP_END) 5049 return SDValue(); 5050 5051 if (isUndef(Opcode, Ops)) 5052 return getUNDEF(VT); 5053 5054 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5055 if (!VT.isVector()) 5056 return SDValue(); 5057 5058 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5059 // vector width, however we should be able to do constant folds involving 5060 // splat vector nodes too. 5061 if (VT.isScalableVector()) 5062 return SDValue(); 5063 5064 // From this point onwards all vectors are assumed to be fixed width. 5065 unsigned NumElts = VT.getVectorNumElements(); 5066 5067 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5068 return !Op.getValueType().isVector() || 5069 Op.getValueType().getVectorNumElements() == NumElts; 5070 }; 5071 5072 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5073 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5074 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5075 (BV && BV->isConstant()); 5076 }; 5077 5078 // All operands must be vector types with the same number of elements as 5079 // the result type and must be either UNDEF or a build vector of constant 5080 // or UNDEF scalars. 5081 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5082 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5083 return SDValue(); 5084 5085 // If we are comparing vectors, then the result needs to be a i1 boolean 5086 // that is then sign-extended back to the legal result type. 5087 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5088 5089 // Find legal integer scalar type for constant promotion and 5090 // ensure that its scalar size is at least as large as source. 5091 EVT LegalSVT = VT.getScalarType(); 5092 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5093 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5094 if (LegalSVT.bitsLT(VT.getScalarType())) 5095 return SDValue(); 5096 } 5097 5098 // Constant fold each scalar lane separately. 5099 SmallVector<SDValue, 4> ScalarResults; 5100 for (unsigned i = 0; i != NumElts; i++) { 5101 SmallVector<SDValue, 4> ScalarOps; 5102 for (SDValue Op : Ops) { 5103 EVT InSVT = Op.getValueType().getScalarType(); 5104 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5105 if (!InBV) { 5106 // We've checked that this is UNDEF or a constant of some kind. 5107 if (Op.isUndef()) 5108 ScalarOps.push_back(getUNDEF(InSVT)); 5109 else 5110 ScalarOps.push_back(Op); 5111 continue; 5112 } 5113 5114 SDValue ScalarOp = InBV->getOperand(i); 5115 EVT ScalarVT = ScalarOp.getValueType(); 5116 5117 // Build vector (integer) scalar operands may need implicit 5118 // truncation - do this before constant folding. 5119 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5120 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5121 5122 ScalarOps.push_back(ScalarOp); 5123 } 5124 5125 // Constant fold the scalar operands. 5126 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5127 5128 // Legalize the (integer) scalar constant if necessary. 5129 if (LegalSVT != SVT) 5130 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5131 5132 // Scalar folding only succeeded if the result is a constant or UNDEF. 5133 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5134 ScalarResult.getOpcode() != ISD::ConstantFP) 5135 return SDValue(); 5136 ScalarResults.push_back(ScalarResult); 5137 } 5138 5139 SDValue V = getBuildVector(VT, DL, ScalarResults); 5140 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5141 return V; 5142 } 5143 5144 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5145 EVT VT, SDValue N1, SDValue N2) { 5146 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5147 // should. That will require dealing with a potentially non-default 5148 // rounding mode, checking the "opStatus" return value from the APFloat 5149 // math calculations, and possibly other variations. 5150 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5151 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5152 if (N1CFP && N2CFP) { 5153 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5154 switch (Opcode) { 5155 case ISD::FADD: 5156 C1.add(C2, APFloat::rmNearestTiesToEven); 5157 return getConstantFP(C1, DL, VT); 5158 case ISD::FSUB: 5159 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5160 return getConstantFP(C1, DL, VT); 5161 case ISD::FMUL: 5162 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5163 return getConstantFP(C1, DL, VT); 5164 case ISD::FDIV: 5165 C1.divide(C2, APFloat::rmNearestTiesToEven); 5166 return getConstantFP(C1, DL, VT); 5167 case ISD::FREM: 5168 C1.mod(C2); 5169 return getConstantFP(C1, DL, VT); 5170 case ISD::FCOPYSIGN: 5171 C1.copySign(C2); 5172 return getConstantFP(C1, DL, VT); 5173 default: break; 5174 } 5175 } 5176 if (N1CFP && Opcode == ISD::FP_ROUND) { 5177 APFloat C1 = N1CFP->getValueAPF(); // make copy 5178 bool Unused; 5179 // This can return overflow, underflow, or inexact; we don't care. 5180 // FIXME need to be more flexible about rounding mode. 5181 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5182 &Unused); 5183 return getConstantFP(C1, DL, VT); 5184 } 5185 5186 switch (Opcode) { 5187 case ISD::FSUB: 5188 // -0.0 - undef --> undef (consistent with "fneg undef") 5189 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5190 return getUNDEF(VT); 5191 LLVM_FALLTHROUGH; 5192 5193 case ISD::FADD: 5194 case ISD::FMUL: 5195 case ISD::FDIV: 5196 case ISD::FREM: 5197 // If both operands are undef, the result is undef. If 1 operand is undef, 5198 // the result is NaN. This should match the behavior of the IR optimizer. 5199 if (N1.isUndef() && N2.isUndef()) 5200 return getUNDEF(VT); 5201 if (N1.isUndef() || N2.isUndef()) 5202 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5203 } 5204 return SDValue(); 5205 } 5206 5207 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5208 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5209 5210 // There's no need to assert on a byte-aligned pointer. All pointers are at 5211 // least byte aligned. 5212 if (A == Align(1)) 5213 return Val; 5214 5215 FoldingSetNodeID ID; 5216 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5217 ID.AddInteger(A.value()); 5218 5219 void *IP = nullptr; 5220 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5221 return SDValue(E, 0); 5222 5223 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5224 Val.getValueType(), A); 5225 createOperands(N, {Val}); 5226 5227 CSEMap.InsertNode(N, IP); 5228 InsertNode(N); 5229 5230 SDValue V(N, 0); 5231 NewSDValueDbgMsg(V, "Creating new node: ", this); 5232 return V; 5233 } 5234 5235 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5236 SDValue N1, SDValue N2) { 5237 SDNodeFlags Flags; 5238 if (Inserter) 5239 Flags = Inserter->getFlags(); 5240 return getNode(Opcode, DL, VT, N1, N2, Flags); 5241 } 5242 5243 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5244 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5245 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5246 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5247 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5248 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5249 5250 // Canonicalize constant to RHS if commutative. 5251 if (TLI->isCommutativeBinOp(Opcode)) { 5252 if (N1C && !N2C) { 5253 std::swap(N1C, N2C); 5254 std::swap(N1, N2); 5255 } else if (N1CFP && !N2CFP) { 5256 std::swap(N1CFP, N2CFP); 5257 std::swap(N1, N2); 5258 } 5259 } 5260 5261 switch (Opcode) { 5262 default: break; 5263 case ISD::TokenFactor: 5264 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5265 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5266 // Fold trivial token factors. 5267 if (N1.getOpcode() == ISD::EntryToken) return N2; 5268 if (N2.getOpcode() == ISD::EntryToken) return N1; 5269 if (N1 == N2) return N1; 5270 break; 5271 case ISD::BUILD_VECTOR: { 5272 // Attempt to simplify BUILD_VECTOR. 5273 SDValue Ops[] = {N1, N2}; 5274 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5275 return V; 5276 break; 5277 } 5278 case ISD::CONCAT_VECTORS: { 5279 SDValue Ops[] = {N1, N2}; 5280 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5281 return V; 5282 break; 5283 } 5284 case ISD::AND: 5285 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5286 assert(N1.getValueType() == N2.getValueType() && 5287 N1.getValueType() == VT && "Binary operator types must match!"); 5288 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5289 // worth handling here. 5290 if (N2C && N2C->isNullValue()) 5291 return N2; 5292 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5293 return N1; 5294 break; 5295 case ISD::OR: 5296 case ISD::XOR: 5297 case ISD::ADD: 5298 case ISD::SUB: 5299 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5300 assert(N1.getValueType() == N2.getValueType() && 5301 N1.getValueType() == VT && "Binary operator types must match!"); 5302 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5303 // it's worth handling here. 5304 if (N2C && N2C->isNullValue()) 5305 return N1; 5306 break; 5307 case ISD::MUL: 5308 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5309 assert(N1.getValueType() == N2.getValueType() && 5310 N1.getValueType() == VT && "Binary operator types must match!"); 5311 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5312 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5313 APInt N2CImm = N2C->getAPIntValue(); 5314 return getVScale(DL, VT, MulImm * N2CImm); 5315 } 5316 break; 5317 case ISD::UDIV: 5318 case ISD::UREM: 5319 case ISD::MULHU: 5320 case ISD::MULHS: 5321 case ISD::SDIV: 5322 case ISD::SREM: 5323 case ISD::SADDSAT: 5324 case ISD::SSUBSAT: 5325 case ISD::UADDSAT: 5326 case ISD::USUBSAT: 5327 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5328 assert(N1.getValueType() == N2.getValueType() && 5329 N1.getValueType() == VT && "Binary operator types must match!"); 5330 break; 5331 case ISD::SMIN: 5332 case ISD::UMAX: 5333 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5334 assert(N1.getValueType() == N2.getValueType() && 5335 N1.getValueType() == VT && "Binary operator types must match!"); 5336 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5337 return getNode(ISD::OR, DL, VT, N1, N2); 5338 break; 5339 case ISD::SMAX: 5340 case ISD::UMIN: 5341 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5342 assert(N1.getValueType() == N2.getValueType() && 5343 N1.getValueType() == VT && "Binary operator types must match!"); 5344 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5345 return getNode(ISD::AND, DL, VT, N1, N2); 5346 break; 5347 case ISD::FADD: 5348 case ISD::FSUB: 5349 case ISD::FMUL: 5350 case ISD::FDIV: 5351 case ISD::FREM: 5352 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5353 assert(N1.getValueType() == N2.getValueType() && 5354 N1.getValueType() == VT && "Binary operator types must match!"); 5355 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5356 return V; 5357 break; 5358 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5359 assert(N1.getValueType() == VT && 5360 N1.getValueType().isFloatingPoint() && 5361 N2.getValueType().isFloatingPoint() && 5362 "Invalid FCOPYSIGN!"); 5363 break; 5364 case ISD::SHL: 5365 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5366 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5367 APInt ShiftImm = N2C->getAPIntValue(); 5368 return getVScale(DL, VT, MulImm << ShiftImm); 5369 } 5370 LLVM_FALLTHROUGH; 5371 case ISD::SRA: 5372 case ISD::SRL: 5373 if (SDValue V = simplifyShift(N1, N2)) 5374 return V; 5375 LLVM_FALLTHROUGH; 5376 case ISD::ROTL: 5377 case ISD::ROTR: 5378 assert(VT == N1.getValueType() && 5379 "Shift operators return type must be the same as their first arg"); 5380 assert(VT.isInteger() && N2.getValueType().isInteger() && 5381 "Shifts only work on integers"); 5382 assert((!VT.isVector() || VT == N2.getValueType()) && 5383 "Vector shift amounts must be in the same as their first arg"); 5384 // Verify that the shift amount VT is big enough to hold valid shift 5385 // amounts. This catches things like trying to shift an i1024 value by an 5386 // i8, which is easy to fall into in generic code that uses 5387 // TLI.getShiftAmount(). 5388 assert(N2.getValueType().getScalarSizeInBits() >= 5389 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5390 "Invalid use of small shift amount with oversized value!"); 5391 5392 // Always fold shifts of i1 values so the code generator doesn't need to 5393 // handle them. Since we know the size of the shift has to be less than the 5394 // size of the value, the shift/rotate count is guaranteed to be zero. 5395 if (VT == MVT::i1) 5396 return N1; 5397 if (N2C && N2C->isNullValue()) 5398 return N1; 5399 break; 5400 case ISD::FP_ROUND: 5401 assert(VT.isFloatingPoint() && 5402 N1.getValueType().isFloatingPoint() && 5403 VT.bitsLE(N1.getValueType()) && 5404 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5405 "Invalid FP_ROUND!"); 5406 if (N1.getValueType() == VT) return N1; // noop conversion. 5407 break; 5408 case ISD::AssertSext: 5409 case ISD::AssertZext: { 5410 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5411 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5412 assert(VT.isInteger() && EVT.isInteger() && 5413 "Cannot *_EXTEND_INREG FP types"); 5414 assert(!EVT.isVector() && 5415 "AssertSExt/AssertZExt type should be the vector element type " 5416 "rather than the vector type!"); 5417 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5418 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5419 break; 5420 } 5421 case ISD::SIGN_EXTEND_INREG: { 5422 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5423 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5424 assert(VT.isInteger() && EVT.isInteger() && 5425 "Cannot *_EXTEND_INREG FP types"); 5426 assert(EVT.isVector() == VT.isVector() && 5427 "SIGN_EXTEND_INREG type should be vector iff the operand " 5428 "type is vector!"); 5429 assert((!EVT.isVector() || 5430 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5431 "Vector element counts must match in SIGN_EXTEND_INREG"); 5432 assert(EVT.bitsLE(VT) && "Not extending!"); 5433 if (EVT == VT) return N1; // Not actually extending 5434 5435 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5436 unsigned FromBits = EVT.getScalarSizeInBits(); 5437 Val <<= Val.getBitWidth() - FromBits; 5438 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5439 return getConstant(Val, DL, ConstantVT); 5440 }; 5441 5442 if (N1C) { 5443 const APInt &Val = N1C->getAPIntValue(); 5444 return SignExtendInReg(Val, VT); 5445 } 5446 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5447 SmallVector<SDValue, 8> Ops; 5448 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5449 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5450 SDValue Op = N1.getOperand(i); 5451 if (Op.isUndef()) { 5452 Ops.push_back(getUNDEF(OpVT)); 5453 continue; 5454 } 5455 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5456 APInt Val = C->getAPIntValue(); 5457 Ops.push_back(SignExtendInReg(Val, OpVT)); 5458 } 5459 return getBuildVector(VT, DL, Ops); 5460 } 5461 break; 5462 } 5463 case ISD::EXTRACT_VECTOR_ELT: 5464 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5465 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5466 element type of the vector."); 5467 5468 // Extract from an undefined value or using an undefined index is undefined. 5469 if (N1.isUndef() || N2.isUndef()) 5470 return getUNDEF(VT); 5471 5472 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5473 // vectors. For scalable vectors we will provide appropriate support for 5474 // dealing with arbitrary indices. 5475 if (N2C && N1.getValueType().isFixedLengthVector() && 5476 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5477 return getUNDEF(VT); 5478 5479 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5480 // expanding copies of large vectors from registers. This only works for 5481 // fixed length vectors, since we need to know the exact number of 5482 // elements. 5483 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5484 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5485 unsigned Factor = 5486 N1.getOperand(0).getValueType().getVectorNumElements(); 5487 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5488 N1.getOperand(N2C->getZExtValue() / Factor), 5489 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5490 } 5491 5492 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5493 // lowering is expanding large vector constants. 5494 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5495 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5496 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5497 N1.getValueType().isFixedLengthVector()) && 5498 "BUILD_VECTOR used for scalable vectors"); 5499 unsigned Index = 5500 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5501 SDValue Elt = N1.getOperand(Index); 5502 5503 if (VT != Elt.getValueType()) 5504 // If the vector element type is not legal, the BUILD_VECTOR operands 5505 // are promoted and implicitly truncated, and the result implicitly 5506 // extended. Make that explicit here. 5507 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5508 5509 return Elt; 5510 } 5511 5512 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5513 // operations are lowered to scalars. 5514 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5515 // If the indices are the same, return the inserted element else 5516 // if the indices are known different, extract the element from 5517 // the original vector. 5518 SDValue N1Op2 = N1.getOperand(2); 5519 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5520 5521 if (N1Op2C && N2C) { 5522 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5523 if (VT == N1.getOperand(1).getValueType()) 5524 return N1.getOperand(1); 5525 else 5526 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5527 } 5528 5529 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5530 } 5531 } 5532 5533 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5534 // when vector types are scalarized and v1iX is legal. 5535 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5536 // Here we are completely ignoring the extract element index (N2), 5537 // which is fine for fixed width vectors, since any index other than 0 5538 // is undefined anyway. However, this cannot be ignored for scalable 5539 // vectors - in theory we could support this, but we don't want to do this 5540 // without a profitability check. 5541 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5542 N1.getValueType().isFixedLengthVector() && 5543 N1.getValueType().getVectorNumElements() == 1) { 5544 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5545 N1.getOperand(1)); 5546 } 5547 break; 5548 case ISD::EXTRACT_ELEMENT: 5549 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5550 assert(!N1.getValueType().isVector() && !VT.isVector() && 5551 (N1.getValueType().isInteger() == VT.isInteger()) && 5552 N1.getValueType() != VT && 5553 "Wrong types for EXTRACT_ELEMENT!"); 5554 5555 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5556 // 64-bit integers into 32-bit parts. Instead of building the extract of 5557 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5558 if (N1.getOpcode() == ISD::BUILD_PAIR) 5559 return N1.getOperand(N2C->getZExtValue()); 5560 5561 // EXTRACT_ELEMENT of a constant int is also very common. 5562 if (N1C) { 5563 unsigned ElementSize = VT.getSizeInBits(); 5564 unsigned Shift = ElementSize * N2C->getZExtValue(); 5565 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5566 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5567 } 5568 break; 5569 case ISD::EXTRACT_SUBVECTOR: 5570 EVT N1VT = N1.getValueType(); 5571 assert(VT.isVector() && N1VT.isVector() && 5572 "Extract subvector VTs must be vectors!"); 5573 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5574 "Extract subvector VTs must have the same element type!"); 5575 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5576 "Cannot extract a scalable vector from a fixed length vector!"); 5577 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5578 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5579 "Extract subvector must be from larger vector to smaller vector!"); 5580 assert(N2C && "Extract subvector index must be a constant"); 5581 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5582 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5583 N1VT.getVectorMinNumElements()) && 5584 "Extract subvector overflow!"); 5585 assert(N2C->getAPIntValue().getBitWidth() == 5586 TLI->getVectorIdxTy(getDataLayout()) 5587 .getSizeInBits() 5588 .getFixedSize() && 5589 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5590 5591 // Trivial extraction. 5592 if (VT == N1VT) 5593 return N1; 5594 5595 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5596 if (N1.isUndef()) 5597 return getUNDEF(VT); 5598 5599 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5600 // the concat have the same type as the extract. 5601 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5602 VT == N1.getOperand(0).getValueType()) { 5603 unsigned Factor = VT.getVectorMinNumElements(); 5604 return N1.getOperand(N2C->getZExtValue() / Factor); 5605 } 5606 5607 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5608 // during shuffle legalization. 5609 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5610 VT == N1.getOperand(1).getValueType()) 5611 return N1.getOperand(1); 5612 break; 5613 } 5614 5615 // Perform trivial constant folding. 5616 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5617 return SV; 5618 5619 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5620 return V; 5621 5622 // Canonicalize an UNDEF to the RHS, even over a constant. 5623 if (N1.isUndef()) { 5624 if (TLI->isCommutativeBinOp(Opcode)) { 5625 std::swap(N1, N2); 5626 } else { 5627 switch (Opcode) { 5628 case ISD::SIGN_EXTEND_INREG: 5629 case ISD::SUB: 5630 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5631 case ISD::UDIV: 5632 case ISD::SDIV: 5633 case ISD::UREM: 5634 case ISD::SREM: 5635 case ISD::SSUBSAT: 5636 case ISD::USUBSAT: 5637 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5638 } 5639 } 5640 } 5641 5642 // Fold a bunch of operators when the RHS is undef. 5643 if (N2.isUndef()) { 5644 switch (Opcode) { 5645 case ISD::XOR: 5646 if (N1.isUndef()) 5647 // Handle undef ^ undef -> 0 special case. This is a common 5648 // idiom (misuse). 5649 return getConstant(0, DL, VT); 5650 LLVM_FALLTHROUGH; 5651 case ISD::ADD: 5652 case ISD::SUB: 5653 case ISD::UDIV: 5654 case ISD::SDIV: 5655 case ISD::UREM: 5656 case ISD::SREM: 5657 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5658 case ISD::MUL: 5659 case ISD::AND: 5660 case ISD::SSUBSAT: 5661 case ISD::USUBSAT: 5662 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5663 case ISD::OR: 5664 case ISD::SADDSAT: 5665 case ISD::UADDSAT: 5666 return getAllOnesConstant(DL, VT); 5667 } 5668 } 5669 5670 // Memoize this node if possible. 5671 SDNode *N; 5672 SDVTList VTs = getVTList(VT); 5673 SDValue Ops[] = {N1, N2}; 5674 if (VT != MVT::Glue) { 5675 FoldingSetNodeID ID; 5676 AddNodeIDNode(ID, Opcode, VTs, Ops); 5677 void *IP = nullptr; 5678 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5679 E->intersectFlagsWith(Flags); 5680 return SDValue(E, 0); 5681 } 5682 5683 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5684 N->setFlags(Flags); 5685 createOperands(N, Ops); 5686 CSEMap.InsertNode(N, IP); 5687 } else { 5688 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5689 createOperands(N, Ops); 5690 } 5691 5692 InsertNode(N); 5693 SDValue V = SDValue(N, 0); 5694 NewSDValueDbgMsg(V, "Creating new node: ", this); 5695 return V; 5696 } 5697 5698 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5699 SDValue N1, SDValue N2, SDValue N3) { 5700 SDNodeFlags Flags; 5701 if (Inserter) 5702 Flags = Inserter->getFlags(); 5703 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5704 } 5705 5706 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5707 SDValue N1, SDValue N2, SDValue N3, 5708 const SDNodeFlags Flags) { 5709 // Perform various simplifications. 5710 switch (Opcode) { 5711 case ISD::FMA: { 5712 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5713 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5714 N3.getValueType() == VT && "FMA types must match!"); 5715 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5716 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5717 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5718 if (N1CFP && N2CFP && N3CFP) { 5719 APFloat V1 = N1CFP->getValueAPF(); 5720 const APFloat &V2 = N2CFP->getValueAPF(); 5721 const APFloat &V3 = N3CFP->getValueAPF(); 5722 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5723 return getConstantFP(V1, DL, VT); 5724 } 5725 break; 5726 } 5727 case ISD::BUILD_VECTOR: { 5728 // Attempt to simplify BUILD_VECTOR. 5729 SDValue Ops[] = {N1, N2, N3}; 5730 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5731 return V; 5732 break; 5733 } 5734 case ISD::CONCAT_VECTORS: { 5735 SDValue Ops[] = {N1, N2, N3}; 5736 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5737 return V; 5738 break; 5739 } 5740 case ISD::SETCC: { 5741 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5742 assert(N1.getValueType() == N2.getValueType() && 5743 "SETCC operands must have the same type!"); 5744 assert(VT.isVector() == N1.getValueType().isVector() && 5745 "SETCC type should be vector iff the operand type is vector!"); 5746 assert((!VT.isVector() || VT.getVectorElementCount() == 5747 N1.getValueType().getVectorElementCount()) && 5748 "SETCC vector element counts must match!"); 5749 // Use FoldSetCC to simplify SETCC's. 5750 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5751 return V; 5752 // Vector constant folding. 5753 SDValue Ops[] = {N1, N2, N3}; 5754 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5755 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5756 return V; 5757 } 5758 break; 5759 } 5760 case ISD::SELECT: 5761 case ISD::VSELECT: 5762 if (SDValue V = simplifySelect(N1, N2, N3)) 5763 return V; 5764 break; 5765 case ISD::VECTOR_SHUFFLE: 5766 llvm_unreachable("should use getVectorShuffle constructor!"); 5767 case ISD::INSERT_VECTOR_ELT: { 5768 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5769 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5770 // for scalable vectors where we will generate appropriate code to 5771 // deal with out-of-bounds cases correctly. 5772 if (N3C && N1.getValueType().isFixedLengthVector() && 5773 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5774 return getUNDEF(VT); 5775 5776 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5777 if (N3.isUndef()) 5778 return getUNDEF(VT); 5779 5780 // If the inserted element is an UNDEF, just use the input vector. 5781 if (N2.isUndef()) 5782 return N1; 5783 5784 break; 5785 } 5786 case ISD::INSERT_SUBVECTOR: { 5787 // Inserting undef into undef is still undef. 5788 if (N1.isUndef() && N2.isUndef()) 5789 return getUNDEF(VT); 5790 5791 EVT N2VT = N2.getValueType(); 5792 assert(VT == N1.getValueType() && 5793 "Dest and insert subvector source types must match!"); 5794 assert(VT.isVector() && N2VT.isVector() && 5795 "Insert subvector VTs must be vectors!"); 5796 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5797 "Cannot insert a scalable vector into a fixed length vector!"); 5798 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5799 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5800 "Insert subvector must be from smaller vector to larger vector!"); 5801 assert(isa<ConstantSDNode>(N3) && 5802 "Insert subvector index must be constant"); 5803 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5804 (N2VT.getVectorMinNumElements() + 5805 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5806 VT.getVectorMinNumElements()) && 5807 "Insert subvector overflow!"); 5808 5809 // Trivial insertion. 5810 if (VT == N2VT) 5811 return N2; 5812 5813 // If this is an insert of an extracted vector into an undef vector, we 5814 // can just use the input to the extract. 5815 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5816 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5817 return N2.getOperand(0); 5818 break; 5819 } 5820 case ISD::BITCAST: 5821 // Fold bit_convert nodes from a type to themselves. 5822 if (N1.getValueType() == VT) 5823 return N1; 5824 break; 5825 } 5826 5827 // Memoize node if it doesn't produce a flag. 5828 SDNode *N; 5829 SDVTList VTs = getVTList(VT); 5830 SDValue Ops[] = {N1, N2, N3}; 5831 if (VT != MVT::Glue) { 5832 FoldingSetNodeID ID; 5833 AddNodeIDNode(ID, Opcode, VTs, Ops); 5834 void *IP = nullptr; 5835 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5836 E->intersectFlagsWith(Flags); 5837 return SDValue(E, 0); 5838 } 5839 5840 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5841 N->setFlags(Flags); 5842 createOperands(N, Ops); 5843 CSEMap.InsertNode(N, IP); 5844 } else { 5845 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5846 createOperands(N, Ops); 5847 } 5848 5849 InsertNode(N); 5850 SDValue V = SDValue(N, 0); 5851 NewSDValueDbgMsg(V, "Creating new node: ", this); 5852 return V; 5853 } 5854 5855 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5856 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5857 SDValue Ops[] = { N1, N2, N3, N4 }; 5858 return getNode(Opcode, DL, VT, Ops); 5859 } 5860 5861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5862 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5863 SDValue N5) { 5864 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5865 return getNode(Opcode, DL, VT, Ops); 5866 } 5867 5868 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5869 /// the incoming stack arguments to be loaded from the stack. 5870 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5871 SmallVector<SDValue, 8> ArgChains; 5872 5873 // Include the original chain at the beginning of the list. When this is 5874 // used by target LowerCall hooks, this helps legalize find the 5875 // CALLSEQ_BEGIN node. 5876 ArgChains.push_back(Chain); 5877 5878 // Add a chain value for each stack argument. 5879 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5880 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5881 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5882 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5883 if (FI->getIndex() < 0) 5884 ArgChains.push_back(SDValue(L, 1)); 5885 5886 // Build a tokenfactor for all the chains. 5887 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5888 } 5889 5890 /// getMemsetValue - Vectorized representation of the memset value 5891 /// operand. 5892 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5893 const SDLoc &dl) { 5894 assert(!Value.isUndef()); 5895 5896 unsigned NumBits = VT.getScalarSizeInBits(); 5897 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5898 assert(C->getAPIntValue().getBitWidth() == 8); 5899 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5900 if (VT.isInteger()) { 5901 bool IsOpaque = VT.getSizeInBits() > 64 || 5902 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5903 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5904 } 5905 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5906 VT); 5907 } 5908 5909 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5910 EVT IntVT = VT.getScalarType(); 5911 if (!IntVT.isInteger()) 5912 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5913 5914 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5915 if (NumBits > 8) { 5916 // Use a multiplication with 0x010101... to extend the input to the 5917 // required length. 5918 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5919 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5920 DAG.getConstant(Magic, dl, IntVT)); 5921 } 5922 5923 if (VT != Value.getValueType() && !VT.isInteger()) 5924 Value = DAG.getBitcast(VT.getScalarType(), Value); 5925 if (VT != Value.getValueType()) 5926 Value = DAG.getSplatBuildVector(VT, dl, Value); 5927 5928 return Value; 5929 } 5930 5931 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5932 /// used when a memcpy is turned into a memset when the source is a constant 5933 /// string ptr. 5934 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5935 const TargetLowering &TLI, 5936 const ConstantDataArraySlice &Slice) { 5937 // Handle vector with all elements zero. 5938 if (Slice.Array == nullptr) { 5939 if (VT.isInteger()) 5940 return DAG.getConstant(0, dl, VT); 5941 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5942 return DAG.getConstantFP(0.0, dl, VT); 5943 else if (VT.isVector()) { 5944 unsigned NumElts = VT.getVectorNumElements(); 5945 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5946 return DAG.getNode(ISD::BITCAST, dl, VT, 5947 DAG.getConstant(0, dl, 5948 EVT::getVectorVT(*DAG.getContext(), 5949 EltVT, NumElts))); 5950 } else 5951 llvm_unreachable("Expected type!"); 5952 } 5953 5954 assert(!VT.isVector() && "Can't handle vector type here!"); 5955 unsigned NumVTBits = VT.getSizeInBits(); 5956 unsigned NumVTBytes = NumVTBits / 8; 5957 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5958 5959 APInt Val(NumVTBits, 0); 5960 if (DAG.getDataLayout().isLittleEndian()) { 5961 for (unsigned i = 0; i != NumBytes; ++i) 5962 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5963 } else { 5964 for (unsigned i = 0; i != NumBytes; ++i) 5965 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5966 } 5967 5968 // If the "cost" of materializing the integer immediate is less than the cost 5969 // of a load, then it is cost effective to turn the load into the immediate. 5970 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5971 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5972 return DAG.getConstant(Val, dl, VT); 5973 return SDValue(nullptr, 0); 5974 } 5975 5976 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5977 const SDLoc &DL, 5978 const SDNodeFlags Flags) { 5979 EVT VT = Base.getValueType(); 5980 SDValue Index; 5981 5982 if (Offset.isScalable()) 5983 Index = getVScale(DL, Base.getValueType(), 5984 APInt(Base.getValueSizeInBits().getFixedSize(), 5985 Offset.getKnownMinSize())); 5986 else 5987 Index = getConstant(Offset.getFixedSize(), DL, VT); 5988 5989 return getMemBasePlusOffset(Base, Index, DL, Flags); 5990 } 5991 5992 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5993 const SDLoc &DL, 5994 const SDNodeFlags Flags) { 5995 assert(Offset.getValueType().isInteger()); 5996 EVT BasePtrVT = Ptr.getValueType(); 5997 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5998 } 5999 6000 /// Returns true if memcpy source is constant data. 6001 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6002 uint64_t SrcDelta = 0; 6003 GlobalAddressSDNode *G = nullptr; 6004 if (Src.getOpcode() == ISD::GlobalAddress) 6005 G = cast<GlobalAddressSDNode>(Src); 6006 else if (Src.getOpcode() == ISD::ADD && 6007 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6008 Src.getOperand(1).getOpcode() == ISD::Constant) { 6009 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6010 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6011 } 6012 if (!G) 6013 return false; 6014 6015 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6016 SrcDelta + G->getOffset()); 6017 } 6018 6019 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6020 SelectionDAG &DAG) { 6021 // On Darwin, -Os means optimize for size without hurting performance, so 6022 // only really optimize for size when -Oz (MinSize) is used. 6023 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6024 return MF.getFunction().hasMinSize(); 6025 return DAG.shouldOptForSize(); 6026 } 6027 6028 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6029 SmallVector<SDValue, 32> &OutChains, unsigned From, 6030 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6031 SmallVector<SDValue, 16> &OutStoreChains) { 6032 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6033 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6034 SmallVector<SDValue, 16> GluedLoadChains; 6035 for (unsigned i = From; i < To; ++i) { 6036 OutChains.push_back(OutLoadChains[i]); 6037 GluedLoadChains.push_back(OutLoadChains[i]); 6038 } 6039 6040 // Chain for all loads. 6041 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6042 GluedLoadChains); 6043 6044 for (unsigned i = From; i < To; ++i) { 6045 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6046 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6047 ST->getBasePtr(), ST->getMemoryVT(), 6048 ST->getMemOperand()); 6049 OutChains.push_back(NewStore); 6050 } 6051 } 6052 6053 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6054 SDValue Chain, SDValue Dst, SDValue Src, 6055 uint64_t Size, Align Alignment, 6056 bool isVol, bool AlwaysInline, 6057 MachinePointerInfo DstPtrInfo, 6058 MachinePointerInfo SrcPtrInfo) { 6059 // Turn a memcpy of undef to nop. 6060 // FIXME: We need to honor volatile even is Src is undef. 6061 if (Src.isUndef()) 6062 return Chain; 6063 6064 // Expand memcpy to a series of load and store ops if the size operand falls 6065 // below a certain threshold. 6066 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6067 // rather than maybe a humongous number of loads and stores. 6068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6069 const DataLayout &DL = DAG.getDataLayout(); 6070 LLVMContext &C = *DAG.getContext(); 6071 std::vector<EVT> MemOps; 6072 bool DstAlignCanChange = false; 6073 MachineFunction &MF = DAG.getMachineFunction(); 6074 MachineFrameInfo &MFI = MF.getFrameInfo(); 6075 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6076 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6077 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6078 DstAlignCanChange = true; 6079 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6080 if (!SrcAlign || Alignment > *SrcAlign) 6081 SrcAlign = Alignment; 6082 assert(SrcAlign && "SrcAlign must be set"); 6083 ConstantDataArraySlice Slice; 6084 // If marked as volatile, perform a copy even when marked as constant. 6085 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6086 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6087 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6088 const MemOp Op = isZeroConstant 6089 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6090 /*IsZeroMemset*/ true, isVol) 6091 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6092 *SrcAlign, isVol, CopyFromConstant); 6093 if (!TLI.findOptimalMemOpLowering( 6094 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6095 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6096 return SDValue(); 6097 6098 if (DstAlignCanChange) { 6099 Type *Ty = MemOps[0].getTypeForEVT(C); 6100 Align NewAlign = DL.getABITypeAlign(Ty); 6101 6102 // Don't promote to an alignment that would require dynamic stack 6103 // realignment. 6104 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6105 if (!TRI->needsStackRealignment(MF)) 6106 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6107 NewAlign = NewAlign / 2; 6108 6109 if (NewAlign > Alignment) { 6110 // Give the stack frame object a larger alignment if needed. 6111 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6112 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6113 Alignment = NewAlign; 6114 } 6115 } 6116 6117 MachineMemOperand::Flags MMOFlags = 6118 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6119 SmallVector<SDValue, 16> OutLoadChains; 6120 SmallVector<SDValue, 16> OutStoreChains; 6121 SmallVector<SDValue, 32> OutChains; 6122 unsigned NumMemOps = MemOps.size(); 6123 uint64_t SrcOff = 0, DstOff = 0; 6124 for (unsigned i = 0; i != NumMemOps; ++i) { 6125 EVT VT = MemOps[i]; 6126 unsigned VTSize = VT.getSizeInBits() / 8; 6127 SDValue Value, Store; 6128 6129 if (VTSize > Size) { 6130 // Issuing an unaligned load / store pair that overlaps with the previous 6131 // pair. Adjust the offset accordingly. 6132 assert(i == NumMemOps-1 && i != 0); 6133 SrcOff -= VTSize - Size; 6134 DstOff -= VTSize - Size; 6135 } 6136 6137 if (CopyFromConstant && 6138 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6139 // It's unlikely a store of a vector immediate can be done in a single 6140 // instruction. It would require a load from a constantpool first. 6141 // We only handle zero vectors here. 6142 // FIXME: Handle other cases where store of vector immediate is done in 6143 // a single instruction. 6144 ConstantDataArraySlice SubSlice; 6145 if (SrcOff < Slice.Length) { 6146 SubSlice = Slice; 6147 SubSlice.move(SrcOff); 6148 } else { 6149 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6150 SubSlice.Array = nullptr; 6151 SubSlice.Offset = 0; 6152 SubSlice.Length = VTSize; 6153 } 6154 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6155 if (Value.getNode()) { 6156 Store = DAG.getStore( 6157 Chain, dl, Value, 6158 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6159 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6160 OutChains.push_back(Store); 6161 } 6162 } 6163 6164 if (!Store.getNode()) { 6165 // The type might not be legal for the target. This should only happen 6166 // if the type is smaller than a legal type, as on PPC, so the right 6167 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6168 // to Load/Store if NVT==VT. 6169 // FIXME does the case above also need this? 6170 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6171 assert(NVT.bitsGE(VT)); 6172 6173 bool isDereferenceable = 6174 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6175 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6176 if (isDereferenceable) 6177 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6178 6179 Value = DAG.getExtLoad( 6180 ISD::EXTLOAD, dl, NVT, Chain, 6181 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6182 SrcPtrInfo.getWithOffset(SrcOff), VT, 6183 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6184 OutLoadChains.push_back(Value.getValue(1)); 6185 6186 Store = DAG.getTruncStore( 6187 Chain, dl, Value, 6188 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6189 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6190 OutStoreChains.push_back(Store); 6191 } 6192 SrcOff += VTSize; 6193 DstOff += VTSize; 6194 Size -= VTSize; 6195 } 6196 6197 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6198 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6199 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6200 6201 if (NumLdStInMemcpy) { 6202 // It may be that memcpy might be converted to memset if it's memcpy 6203 // of constants. In such a case, we won't have loads and stores, but 6204 // just stores. In the absence of loads, there is nothing to gang up. 6205 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6206 // If target does not care, just leave as it. 6207 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6208 OutChains.push_back(OutLoadChains[i]); 6209 OutChains.push_back(OutStoreChains[i]); 6210 } 6211 } else { 6212 // Ld/St less than/equal limit set by target. 6213 if (NumLdStInMemcpy <= GluedLdStLimit) { 6214 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6215 NumLdStInMemcpy, OutLoadChains, 6216 OutStoreChains); 6217 } else { 6218 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6219 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6220 unsigned GlueIter = 0; 6221 6222 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6223 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6224 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6225 6226 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6227 OutLoadChains, OutStoreChains); 6228 GlueIter += GluedLdStLimit; 6229 } 6230 6231 // Residual ld/st. 6232 if (RemainingLdStInMemcpy) { 6233 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6234 RemainingLdStInMemcpy, OutLoadChains, 6235 OutStoreChains); 6236 } 6237 } 6238 } 6239 } 6240 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6241 } 6242 6243 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6244 SDValue Chain, SDValue Dst, SDValue Src, 6245 uint64_t Size, Align Alignment, 6246 bool isVol, bool AlwaysInline, 6247 MachinePointerInfo DstPtrInfo, 6248 MachinePointerInfo SrcPtrInfo) { 6249 // Turn a memmove of undef to nop. 6250 // FIXME: We need to honor volatile even is Src is undef. 6251 if (Src.isUndef()) 6252 return Chain; 6253 6254 // Expand memmove to a series of load and store ops if the size operand falls 6255 // below a certain threshold. 6256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6257 const DataLayout &DL = DAG.getDataLayout(); 6258 LLVMContext &C = *DAG.getContext(); 6259 std::vector<EVT> MemOps; 6260 bool DstAlignCanChange = false; 6261 MachineFunction &MF = DAG.getMachineFunction(); 6262 MachineFrameInfo &MFI = MF.getFrameInfo(); 6263 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6264 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6265 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6266 DstAlignCanChange = true; 6267 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6268 if (!SrcAlign || Alignment > *SrcAlign) 6269 SrcAlign = Alignment; 6270 assert(SrcAlign && "SrcAlign must be set"); 6271 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6272 if (!TLI.findOptimalMemOpLowering( 6273 MemOps, Limit, 6274 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6275 /*IsVolatile*/ true), 6276 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6277 MF.getFunction().getAttributes())) 6278 return SDValue(); 6279 6280 if (DstAlignCanChange) { 6281 Type *Ty = MemOps[0].getTypeForEVT(C); 6282 Align NewAlign = DL.getABITypeAlign(Ty); 6283 if (NewAlign > Alignment) { 6284 // Give the stack frame object a larger alignment if needed. 6285 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6286 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6287 Alignment = NewAlign; 6288 } 6289 } 6290 6291 MachineMemOperand::Flags MMOFlags = 6292 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6293 uint64_t SrcOff = 0, DstOff = 0; 6294 SmallVector<SDValue, 8> LoadValues; 6295 SmallVector<SDValue, 8> LoadChains; 6296 SmallVector<SDValue, 8> OutChains; 6297 unsigned NumMemOps = MemOps.size(); 6298 for (unsigned i = 0; i < NumMemOps; i++) { 6299 EVT VT = MemOps[i]; 6300 unsigned VTSize = VT.getSizeInBits() / 8; 6301 SDValue Value; 6302 6303 bool isDereferenceable = 6304 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6305 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6306 if (isDereferenceable) 6307 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6308 6309 Value = 6310 DAG.getLoad(VT, dl, Chain, 6311 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6312 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6313 LoadValues.push_back(Value); 6314 LoadChains.push_back(Value.getValue(1)); 6315 SrcOff += VTSize; 6316 } 6317 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6318 OutChains.clear(); 6319 for (unsigned i = 0; i < NumMemOps; i++) { 6320 EVT VT = MemOps[i]; 6321 unsigned VTSize = VT.getSizeInBits() / 8; 6322 SDValue Store; 6323 6324 Store = 6325 DAG.getStore(Chain, dl, LoadValues[i], 6326 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6327 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6328 OutChains.push_back(Store); 6329 DstOff += VTSize; 6330 } 6331 6332 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6333 } 6334 6335 /// Lower the call to 'memset' intrinsic function into a series of store 6336 /// operations. 6337 /// 6338 /// \param DAG Selection DAG where lowered code is placed. 6339 /// \param dl Link to corresponding IR location. 6340 /// \param Chain Control flow dependency. 6341 /// \param Dst Pointer to destination memory location. 6342 /// \param Src Value of byte to write into the memory. 6343 /// \param Size Number of bytes to write. 6344 /// \param Alignment Alignment of the destination in bytes. 6345 /// \param isVol True if destination is volatile. 6346 /// \param DstPtrInfo IR information on the memory pointer. 6347 /// \returns New head in the control flow, if lowering was successful, empty 6348 /// SDValue otherwise. 6349 /// 6350 /// The function tries to replace 'llvm.memset' intrinsic with several store 6351 /// operations and value calculation code. This is usually profitable for small 6352 /// memory size. 6353 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6354 SDValue Chain, SDValue Dst, SDValue Src, 6355 uint64_t Size, Align Alignment, bool isVol, 6356 MachinePointerInfo DstPtrInfo) { 6357 // Turn a memset of undef to nop. 6358 // FIXME: We need to honor volatile even is Src is undef. 6359 if (Src.isUndef()) 6360 return Chain; 6361 6362 // Expand memset to a series of load/store ops if the size operand 6363 // falls below a certain threshold. 6364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6365 std::vector<EVT> MemOps; 6366 bool DstAlignCanChange = false; 6367 MachineFunction &MF = DAG.getMachineFunction(); 6368 MachineFrameInfo &MFI = MF.getFrameInfo(); 6369 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6370 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6371 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6372 DstAlignCanChange = true; 6373 bool IsZeroVal = 6374 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6375 if (!TLI.findOptimalMemOpLowering( 6376 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6377 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6378 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6379 return SDValue(); 6380 6381 if (DstAlignCanChange) { 6382 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6383 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6384 if (NewAlign > Alignment) { 6385 // Give the stack frame object a larger alignment if needed. 6386 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6387 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6388 Alignment = NewAlign; 6389 } 6390 } 6391 6392 SmallVector<SDValue, 8> OutChains; 6393 uint64_t DstOff = 0; 6394 unsigned NumMemOps = MemOps.size(); 6395 6396 // Find the largest store and generate the bit pattern for it. 6397 EVT LargestVT = MemOps[0]; 6398 for (unsigned i = 1; i < NumMemOps; i++) 6399 if (MemOps[i].bitsGT(LargestVT)) 6400 LargestVT = MemOps[i]; 6401 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6402 6403 for (unsigned i = 0; i < NumMemOps; i++) { 6404 EVT VT = MemOps[i]; 6405 unsigned VTSize = VT.getSizeInBits() / 8; 6406 if (VTSize > Size) { 6407 // Issuing an unaligned load / store pair that overlaps with the previous 6408 // pair. Adjust the offset accordingly. 6409 assert(i == NumMemOps-1 && i != 0); 6410 DstOff -= VTSize - Size; 6411 } 6412 6413 // If this store is smaller than the largest store see whether we can get 6414 // the smaller value for free with a truncate. 6415 SDValue Value = MemSetValue; 6416 if (VT.bitsLT(LargestVT)) { 6417 if (!LargestVT.isVector() && !VT.isVector() && 6418 TLI.isTruncateFree(LargestVT, VT)) 6419 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6420 else 6421 Value = getMemsetValue(Src, VT, DAG, dl); 6422 } 6423 assert(Value.getValueType() == VT && "Value with wrong type."); 6424 SDValue Store = DAG.getStore( 6425 Chain, dl, Value, 6426 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6427 DstPtrInfo.getWithOffset(DstOff), Alignment, 6428 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6429 OutChains.push_back(Store); 6430 DstOff += VT.getSizeInBits() / 8; 6431 Size -= VTSize; 6432 } 6433 6434 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6435 } 6436 6437 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6438 unsigned AS) { 6439 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6440 // pointer operands can be losslessly bitcasted to pointers of address space 0 6441 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6442 report_fatal_error("cannot lower memory intrinsic in address space " + 6443 Twine(AS)); 6444 } 6445 } 6446 6447 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6448 SDValue Src, SDValue Size, Align Alignment, 6449 bool isVol, bool AlwaysInline, bool isTailCall, 6450 MachinePointerInfo DstPtrInfo, 6451 MachinePointerInfo SrcPtrInfo) { 6452 // Check to see if we should lower the memcpy to loads and stores first. 6453 // For cases within the target-specified limits, this is the best choice. 6454 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6455 if (ConstantSize) { 6456 // Memcpy with size zero? Just return the original chain. 6457 if (ConstantSize->isNullValue()) 6458 return Chain; 6459 6460 SDValue Result = getMemcpyLoadsAndStores( 6461 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6462 isVol, false, DstPtrInfo, SrcPtrInfo); 6463 if (Result.getNode()) 6464 return Result; 6465 } 6466 6467 // Then check to see if we should lower the memcpy with target-specific 6468 // code. If the target chooses to do this, this is the next best. 6469 if (TSI) { 6470 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6471 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6472 DstPtrInfo, SrcPtrInfo); 6473 if (Result.getNode()) 6474 return Result; 6475 } 6476 6477 // If we really need inline code and the target declined to provide it, 6478 // use a (potentially long) sequence of loads and stores. 6479 if (AlwaysInline) { 6480 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6481 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6482 ConstantSize->getZExtValue(), Alignment, 6483 isVol, true, DstPtrInfo, SrcPtrInfo); 6484 } 6485 6486 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6487 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6488 6489 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6490 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6491 // respect volatile, so they may do things like read or write memory 6492 // beyond the given memory regions. But fixing this isn't easy, and most 6493 // people don't care. 6494 6495 // Emit a library call. 6496 TargetLowering::ArgListTy Args; 6497 TargetLowering::ArgListEntry Entry; 6498 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6499 Entry.Node = Dst; Args.push_back(Entry); 6500 Entry.Node = Src; Args.push_back(Entry); 6501 6502 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6503 Entry.Node = Size; Args.push_back(Entry); 6504 // FIXME: pass in SDLoc 6505 TargetLowering::CallLoweringInfo CLI(*this); 6506 CLI.setDebugLoc(dl) 6507 .setChain(Chain) 6508 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6509 Dst.getValueType().getTypeForEVT(*getContext()), 6510 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6511 TLI->getPointerTy(getDataLayout())), 6512 std::move(Args)) 6513 .setDiscardResult() 6514 .setTailCall(isTailCall); 6515 6516 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6517 return CallResult.second; 6518 } 6519 6520 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6521 SDValue Dst, unsigned DstAlign, 6522 SDValue Src, unsigned SrcAlign, 6523 SDValue Size, Type *SizeTy, 6524 unsigned ElemSz, bool isTailCall, 6525 MachinePointerInfo DstPtrInfo, 6526 MachinePointerInfo SrcPtrInfo) { 6527 // Emit a library call. 6528 TargetLowering::ArgListTy Args; 6529 TargetLowering::ArgListEntry Entry; 6530 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6531 Entry.Node = Dst; 6532 Args.push_back(Entry); 6533 6534 Entry.Node = Src; 6535 Args.push_back(Entry); 6536 6537 Entry.Ty = SizeTy; 6538 Entry.Node = Size; 6539 Args.push_back(Entry); 6540 6541 RTLIB::Libcall LibraryCall = 6542 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6543 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6544 report_fatal_error("Unsupported element size"); 6545 6546 TargetLowering::CallLoweringInfo CLI(*this); 6547 CLI.setDebugLoc(dl) 6548 .setChain(Chain) 6549 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6550 Type::getVoidTy(*getContext()), 6551 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6552 TLI->getPointerTy(getDataLayout())), 6553 std::move(Args)) 6554 .setDiscardResult() 6555 .setTailCall(isTailCall); 6556 6557 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6558 return CallResult.second; 6559 } 6560 6561 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6562 SDValue Src, SDValue Size, Align Alignment, 6563 bool isVol, bool isTailCall, 6564 MachinePointerInfo DstPtrInfo, 6565 MachinePointerInfo SrcPtrInfo) { 6566 // Check to see if we should lower the memmove to loads and stores first. 6567 // For cases within the target-specified limits, this is the best choice. 6568 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6569 if (ConstantSize) { 6570 // Memmove with size zero? Just return the original chain. 6571 if (ConstantSize->isNullValue()) 6572 return Chain; 6573 6574 SDValue Result = getMemmoveLoadsAndStores( 6575 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6576 isVol, false, DstPtrInfo, SrcPtrInfo); 6577 if (Result.getNode()) 6578 return Result; 6579 } 6580 6581 // Then check to see if we should lower the memmove with target-specific 6582 // code. If the target chooses to do this, this is the next best. 6583 if (TSI) { 6584 SDValue Result = 6585 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6586 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6587 if (Result.getNode()) 6588 return Result; 6589 } 6590 6591 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6592 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6593 6594 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6595 // not be safe. See memcpy above for more details. 6596 6597 // Emit a library call. 6598 TargetLowering::ArgListTy Args; 6599 TargetLowering::ArgListEntry Entry; 6600 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6601 Entry.Node = Dst; Args.push_back(Entry); 6602 Entry.Node = Src; Args.push_back(Entry); 6603 6604 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6605 Entry.Node = Size; Args.push_back(Entry); 6606 // FIXME: pass in SDLoc 6607 TargetLowering::CallLoweringInfo CLI(*this); 6608 CLI.setDebugLoc(dl) 6609 .setChain(Chain) 6610 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6611 Dst.getValueType().getTypeForEVT(*getContext()), 6612 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6613 TLI->getPointerTy(getDataLayout())), 6614 std::move(Args)) 6615 .setDiscardResult() 6616 .setTailCall(isTailCall); 6617 6618 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6619 return CallResult.second; 6620 } 6621 6622 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6623 SDValue Dst, unsigned DstAlign, 6624 SDValue Src, unsigned SrcAlign, 6625 SDValue Size, Type *SizeTy, 6626 unsigned ElemSz, bool isTailCall, 6627 MachinePointerInfo DstPtrInfo, 6628 MachinePointerInfo SrcPtrInfo) { 6629 // Emit a library call. 6630 TargetLowering::ArgListTy Args; 6631 TargetLowering::ArgListEntry Entry; 6632 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6633 Entry.Node = Dst; 6634 Args.push_back(Entry); 6635 6636 Entry.Node = Src; 6637 Args.push_back(Entry); 6638 6639 Entry.Ty = SizeTy; 6640 Entry.Node = Size; 6641 Args.push_back(Entry); 6642 6643 RTLIB::Libcall LibraryCall = 6644 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6645 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6646 report_fatal_error("Unsupported element size"); 6647 6648 TargetLowering::CallLoweringInfo CLI(*this); 6649 CLI.setDebugLoc(dl) 6650 .setChain(Chain) 6651 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6652 Type::getVoidTy(*getContext()), 6653 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6654 TLI->getPointerTy(getDataLayout())), 6655 std::move(Args)) 6656 .setDiscardResult() 6657 .setTailCall(isTailCall); 6658 6659 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6660 return CallResult.second; 6661 } 6662 6663 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6664 SDValue Src, SDValue Size, Align Alignment, 6665 bool isVol, bool isTailCall, 6666 MachinePointerInfo DstPtrInfo) { 6667 // Check to see if we should lower the memset to stores first. 6668 // For cases within the target-specified limits, this is the best choice. 6669 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6670 if (ConstantSize) { 6671 // Memset with size zero? Just return the original chain. 6672 if (ConstantSize->isNullValue()) 6673 return Chain; 6674 6675 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6676 ConstantSize->getZExtValue(), Alignment, 6677 isVol, DstPtrInfo); 6678 6679 if (Result.getNode()) 6680 return Result; 6681 } 6682 6683 // Then check to see if we should lower the memset with target-specific 6684 // code. If the target chooses to do this, this is the next best. 6685 if (TSI) { 6686 SDValue Result = TSI->EmitTargetCodeForMemset( 6687 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6688 if (Result.getNode()) 6689 return Result; 6690 } 6691 6692 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6693 6694 // Emit a library call. 6695 TargetLowering::ArgListTy Args; 6696 TargetLowering::ArgListEntry Entry; 6697 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6698 Args.push_back(Entry); 6699 Entry.Node = Src; 6700 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6701 Args.push_back(Entry); 6702 Entry.Node = Size; 6703 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6704 Args.push_back(Entry); 6705 6706 // FIXME: pass in SDLoc 6707 TargetLowering::CallLoweringInfo CLI(*this); 6708 CLI.setDebugLoc(dl) 6709 .setChain(Chain) 6710 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6711 Dst.getValueType().getTypeForEVT(*getContext()), 6712 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6713 TLI->getPointerTy(getDataLayout())), 6714 std::move(Args)) 6715 .setDiscardResult() 6716 .setTailCall(isTailCall); 6717 6718 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6719 return CallResult.second; 6720 } 6721 6722 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6723 SDValue Dst, unsigned DstAlign, 6724 SDValue Value, SDValue Size, Type *SizeTy, 6725 unsigned ElemSz, bool isTailCall, 6726 MachinePointerInfo DstPtrInfo) { 6727 // Emit a library call. 6728 TargetLowering::ArgListTy Args; 6729 TargetLowering::ArgListEntry Entry; 6730 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6731 Entry.Node = Dst; 6732 Args.push_back(Entry); 6733 6734 Entry.Ty = Type::getInt8Ty(*getContext()); 6735 Entry.Node = Value; 6736 Args.push_back(Entry); 6737 6738 Entry.Ty = SizeTy; 6739 Entry.Node = Size; 6740 Args.push_back(Entry); 6741 6742 RTLIB::Libcall LibraryCall = 6743 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6744 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6745 report_fatal_error("Unsupported element size"); 6746 6747 TargetLowering::CallLoweringInfo CLI(*this); 6748 CLI.setDebugLoc(dl) 6749 .setChain(Chain) 6750 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6751 Type::getVoidTy(*getContext()), 6752 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6753 TLI->getPointerTy(getDataLayout())), 6754 std::move(Args)) 6755 .setDiscardResult() 6756 .setTailCall(isTailCall); 6757 6758 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6759 return CallResult.second; 6760 } 6761 6762 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6763 SDVTList VTList, ArrayRef<SDValue> Ops, 6764 MachineMemOperand *MMO) { 6765 FoldingSetNodeID ID; 6766 ID.AddInteger(MemVT.getRawBits()); 6767 AddNodeIDNode(ID, Opcode, VTList, Ops); 6768 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6769 void* IP = nullptr; 6770 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6771 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6772 return SDValue(E, 0); 6773 } 6774 6775 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6776 VTList, MemVT, MMO); 6777 createOperands(N, Ops); 6778 6779 CSEMap.InsertNode(N, IP); 6780 InsertNode(N); 6781 return SDValue(N, 0); 6782 } 6783 6784 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6785 EVT MemVT, SDVTList VTs, SDValue Chain, 6786 SDValue Ptr, SDValue Cmp, SDValue Swp, 6787 MachineMemOperand *MMO) { 6788 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6789 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6790 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6791 6792 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6793 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6794 } 6795 6796 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6797 SDValue Chain, SDValue Ptr, SDValue Val, 6798 MachineMemOperand *MMO) { 6799 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6800 Opcode == ISD::ATOMIC_LOAD_SUB || 6801 Opcode == ISD::ATOMIC_LOAD_AND || 6802 Opcode == ISD::ATOMIC_LOAD_CLR || 6803 Opcode == ISD::ATOMIC_LOAD_OR || 6804 Opcode == ISD::ATOMIC_LOAD_XOR || 6805 Opcode == ISD::ATOMIC_LOAD_NAND || 6806 Opcode == ISD::ATOMIC_LOAD_MIN || 6807 Opcode == ISD::ATOMIC_LOAD_MAX || 6808 Opcode == ISD::ATOMIC_LOAD_UMIN || 6809 Opcode == ISD::ATOMIC_LOAD_UMAX || 6810 Opcode == ISD::ATOMIC_LOAD_FADD || 6811 Opcode == ISD::ATOMIC_LOAD_FSUB || 6812 Opcode == ISD::ATOMIC_SWAP || 6813 Opcode == ISD::ATOMIC_STORE) && 6814 "Invalid Atomic Op"); 6815 6816 EVT VT = Val.getValueType(); 6817 6818 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6819 getVTList(VT, MVT::Other); 6820 SDValue Ops[] = {Chain, Ptr, Val}; 6821 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6822 } 6823 6824 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6825 EVT VT, SDValue Chain, SDValue Ptr, 6826 MachineMemOperand *MMO) { 6827 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6828 6829 SDVTList VTs = getVTList(VT, MVT::Other); 6830 SDValue Ops[] = {Chain, Ptr}; 6831 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6832 } 6833 6834 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6835 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6836 if (Ops.size() == 1) 6837 return Ops[0]; 6838 6839 SmallVector<EVT, 4> VTs; 6840 VTs.reserve(Ops.size()); 6841 for (unsigned i = 0; i < Ops.size(); ++i) 6842 VTs.push_back(Ops[i].getValueType()); 6843 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6844 } 6845 6846 SDValue SelectionDAG::getMemIntrinsicNode( 6847 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6848 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6849 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6850 if (!Size && MemVT.isScalableVector()) 6851 Size = MemoryLocation::UnknownSize; 6852 else if (!Size) 6853 Size = MemVT.getStoreSize(); 6854 6855 MachineFunction &MF = getMachineFunction(); 6856 MachineMemOperand *MMO = 6857 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6858 6859 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6860 } 6861 6862 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6863 SDVTList VTList, 6864 ArrayRef<SDValue> Ops, EVT MemVT, 6865 MachineMemOperand *MMO) { 6866 assert((Opcode == ISD::INTRINSIC_VOID || 6867 Opcode == ISD::INTRINSIC_W_CHAIN || 6868 Opcode == ISD::PREFETCH || 6869 ((int)Opcode <= std::numeric_limits<int>::max() && 6870 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6871 "Opcode is not a memory-accessing opcode!"); 6872 6873 // Memoize the node unless it returns a flag. 6874 MemIntrinsicSDNode *N; 6875 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6876 FoldingSetNodeID ID; 6877 AddNodeIDNode(ID, Opcode, VTList, Ops); 6878 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6879 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6880 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6881 void *IP = nullptr; 6882 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6883 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6884 return SDValue(E, 0); 6885 } 6886 6887 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6888 VTList, MemVT, MMO); 6889 createOperands(N, Ops); 6890 6891 CSEMap.InsertNode(N, IP); 6892 } else { 6893 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6894 VTList, MemVT, MMO); 6895 createOperands(N, Ops); 6896 } 6897 InsertNode(N); 6898 SDValue V(N, 0); 6899 NewSDValueDbgMsg(V, "Creating new node: ", this); 6900 return V; 6901 } 6902 6903 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6904 SDValue Chain, int FrameIndex, 6905 int64_t Size, int64_t Offset) { 6906 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6907 const auto VTs = getVTList(MVT::Other); 6908 SDValue Ops[2] = { 6909 Chain, 6910 getFrameIndex(FrameIndex, 6911 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6912 true)}; 6913 6914 FoldingSetNodeID ID; 6915 AddNodeIDNode(ID, Opcode, VTs, Ops); 6916 ID.AddInteger(FrameIndex); 6917 ID.AddInteger(Size); 6918 ID.AddInteger(Offset); 6919 void *IP = nullptr; 6920 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6921 return SDValue(E, 0); 6922 6923 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6924 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6925 createOperands(N, Ops); 6926 CSEMap.InsertNode(N, IP); 6927 InsertNode(N); 6928 SDValue V(N, 0); 6929 NewSDValueDbgMsg(V, "Creating new node: ", this); 6930 return V; 6931 } 6932 6933 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6934 uint64_t Guid, uint64_t Index, 6935 uint32_t Attr) { 6936 const unsigned Opcode = ISD::PSEUDO_PROBE; 6937 const auto VTs = getVTList(MVT::Other); 6938 SDValue Ops[] = {Chain}; 6939 FoldingSetNodeID ID; 6940 AddNodeIDNode(ID, Opcode, VTs, Ops); 6941 ID.AddInteger(Guid); 6942 ID.AddInteger(Index); 6943 void *IP = nullptr; 6944 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6945 return SDValue(E, 0); 6946 6947 auto *N = newSDNode<PseudoProbeSDNode>( 6948 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 6949 createOperands(N, Ops); 6950 CSEMap.InsertNode(N, IP); 6951 InsertNode(N); 6952 SDValue V(N, 0); 6953 NewSDValueDbgMsg(V, "Creating new node: ", this); 6954 return V; 6955 } 6956 6957 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6958 /// MachinePointerInfo record from it. This is particularly useful because the 6959 /// code generator has many cases where it doesn't bother passing in a 6960 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6961 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6962 SelectionDAG &DAG, SDValue Ptr, 6963 int64_t Offset = 0) { 6964 // If this is FI+Offset, we can model it. 6965 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6966 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6967 FI->getIndex(), Offset); 6968 6969 // If this is (FI+Offset1)+Offset2, we can model it. 6970 if (Ptr.getOpcode() != ISD::ADD || 6971 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6972 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6973 return Info; 6974 6975 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6976 return MachinePointerInfo::getFixedStack( 6977 DAG.getMachineFunction(), FI, 6978 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6979 } 6980 6981 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6982 /// MachinePointerInfo record from it. This is particularly useful because the 6983 /// code generator has many cases where it doesn't bother passing in a 6984 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6985 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6986 SelectionDAG &DAG, SDValue Ptr, 6987 SDValue OffsetOp) { 6988 // If the 'Offset' value isn't a constant, we can't handle this. 6989 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6990 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6991 if (OffsetOp.isUndef()) 6992 return InferPointerInfo(Info, DAG, Ptr); 6993 return Info; 6994 } 6995 6996 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6997 EVT VT, const SDLoc &dl, SDValue Chain, 6998 SDValue Ptr, SDValue Offset, 6999 MachinePointerInfo PtrInfo, EVT MemVT, 7000 Align Alignment, 7001 MachineMemOperand::Flags MMOFlags, 7002 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7003 assert(Chain.getValueType() == MVT::Other && 7004 "Invalid chain type"); 7005 7006 MMOFlags |= MachineMemOperand::MOLoad; 7007 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7008 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7009 // clients. 7010 if (PtrInfo.V.isNull()) 7011 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7012 7013 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7014 MachineFunction &MF = getMachineFunction(); 7015 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7016 Alignment, AAInfo, Ranges); 7017 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7018 } 7019 7020 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7021 EVT VT, const SDLoc &dl, SDValue Chain, 7022 SDValue Ptr, SDValue Offset, EVT MemVT, 7023 MachineMemOperand *MMO) { 7024 if (VT == MemVT) { 7025 ExtType = ISD::NON_EXTLOAD; 7026 } else if (ExtType == ISD::NON_EXTLOAD) { 7027 assert(VT == MemVT && "Non-extending load from different memory type!"); 7028 } else { 7029 // Extending load. 7030 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7031 "Should only be an extending load, not truncating!"); 7032 assert(VT.isInteger() == MemVT.isInteger() && 7033 "Cannot convert from FP to Int or Int -> FP!"); 7034 assert(VT.isVector() == MemVT.isVector() && 7035 "Cannot use an ext load to convert to or from a vector!"); 7036 assert((!VT.isVector() || 7037 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7038 "Cannot use an ext load to change the number of vector elements!"); 7039 } 7040 7041 bool Indexed = AM != ISD::UNINDEXED; 7042 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7043 7044 SDVTList VTs = Indexed ? 7045 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7046 SDValue Ops[] = { Chain, Ptr, Offset }; 7047 FoldingSetNodeID ID; 7048 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7049 ID.AddInteger(MemVT.getRawBits()); 7050 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7051 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7052 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7053 void *IP = nullptr; 7054 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7055 cast<LoadSDNode>(E)->refineAlignment(MMO); 7056 return SDValue(E, 0); 7057 } 7058 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7059 ExtType, MemVT, MMO); 7060 createOperands(N, Ops); 7061 7062 CSEMap.InsertNode(N, IP); 7063 InsertNode(N); 7064 SDValue V(N, 0); 7065 NewSDValueDbgMsg(V, "Creating new node: ", this); 7066 return V; 7067 } 7068 7069 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7070 SDValue Ptr, MachinePointerInfo PtrInfo, 7071 MaybeAlign Alignment, 7072 MachineMemOperand::Flags MMOFlags, 7073 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7074 SDValue Undef = getUNDEF(Ptr.getValueType()); 7075 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7076 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7077 } 7078 7079 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7080 SDValue Ptr, MachineMemOperand *MMO) { 7081 SDValue Undef = getUNDEF(Ptr.getValueType()); 7082 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7083 VT, MMO); 7084 } 7085 7086 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7087 EVT VT, SDValue Chain, SDValue Ptr, 7088 MachinePointerInfo PtrInfo, EVT MemVT, 7089 MaybeAlign Alignment, 7090 MachineMemOperand::Flags MMOFlags, 7091 const AAMDNodes &AAInfo) { 7092 SDValue Undef = getUNDEF(Ptr.getValueType()); 7093 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7094 MemVT, Alignment, MMOFlags, AAInfo); 7095 } 7096 7097 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7098 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7099 MachineMemOperand *MMO) { 7100 SDValue Undef = getUNDEF(Ptr.getValueType()); 7101 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7102 MemVT, MMO); 7103 } 7104 7105 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7106 SDValue Base, SDValue Offset, 7107 ISD::MemIndexedMode AM) { 7108 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7109 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7110 // Don't propagate the invariant or dereferenceable flags. 7111 auto MMOFlags = 7112 LD->getMemOperand()->getFlags() & 7113 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7114 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7115 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7116 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7117 } 7118 7119 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7120 SDValue Ptr, MachinePointerInfo PtrInfo, 7121 Align Alignment, 7122 MachineMemOperand::Flags MMOFlags, 7123 const AAMDNodes &AAInfo) { 7124 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7125 7126 MMOFlags |= MachineMemOperand::MOStore; 7127 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7128 7129 if (PtrInfo.V.isNull()) 7130 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7131 7132 MachineFunction &MF = getMachineFunction(); 7133 uint64_t Size = 7134 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7135 MachineMemOperand *MMO = 7136 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7137 return getStore(Chain, dl, Val, Ptr, MMO); 7138 } 7139 7140 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7141 SDValue Ptr, MachineMemOperand *MMO) { 7142 assert(Chain.getValueType() == MVT::Other && 7143 "Invalid chain type"); 7144 EVT VT = Val.getValueType(); 7145 SDVTList VTs = getVTList(MVT::Other); 7146 SDValue Undef = getUNDEF(Ptr.getValueType()); 7147 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7148 FoldingSetNodeID ID; 7149 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7150 ID.AddInteger(VT.getRawBits()); 7151 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7152 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7153 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7154 void *IP = nullptr; 7155 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7156 cast<StoreSDNode>(E)->refineAlignment(MMO); 7157 return SDValue(E, 0); 7158 } 7159 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7160 ISD::UNINDEXED, false, VT, MMO); 7161 createOperands(N, Ops); 7162 7163 CSEMap.InsertNode(N, IP); 7164 InsertNode(N); 7165 SDValue V(N, 0); 7166 NewSDValueDbgMsg(V, "Creating new node: ", this); 7167 return V; 7168 } 7169 7170 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7171 SDValue Ptr, MachinePointerInfo PtrInfo, 7172 EVT SVT, Align Alignment, 7173 MachineMemOperand::Flags MMOFlags, 7174 const AAMDNodes &AAInfo) { 7175 assert(Chain.getValueType() == MVT::Other && 7176 "Invalid chain type"); 7177 7178 MMOFlags |= MachineMemOperand::MOStore; 7179 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7180 7181 if (PtrInfo.V.isNull()) 7182 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7183 7184 MachineFunction &MF = getMachineFunction(); 7185 MachineMemOperand *MMO = MF.getMachineMemOperand( 7186 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7187 Alignment, AAInfo); 7188 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7189 } 7190 7191 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7192 SDValue Ptr, EVT SVT, 7193 MachineMemOperand *MMO) { 7194 EVT VT = Val.getValueType(); 7195 7196 assert(Chain.getValueType() == MVT::Other && 7197 "Invalid chain type"); 7198 if (VT == SVT) 7199 return getStore(Chain, dl, Val, Ptr, MMO); 7200 7201 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7202 "Should only be a truncating store, not extending!"); 7203 assert(VT.isInteger() == SVT.isInteger() && 7204 "Can't do FP-INT conversion!"); 7205 assert(VT.isVector() == SVT.isVector() && 7206 "Cannot use trunc store to convert to or from a vector!"); 7207 assert((!VT.isVector() || 7208 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7209 "Cannot use trunc store to change the number of vector elements!"); 7210 7211 SDVTList VTs = getVTList(MVT::Other); 7212 SDValue Undef = getUNDEF(Ptr.getValueType()); 7213 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7214 FoldingSetNodeID ID; 7215 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7216 ID.AddInteger(SVT.getRawBits()); 7217 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7218 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7219 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7220 void *IP = nullptr; 7221 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7222 cast<StoreSDNode>(E)->refineAlignment(MMO); 7223 return SDValue(E, 0); 7224 } 7225 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7226 ISD::UNINDEXED, true, SVT, MMO); 7227 createOperands(N, Ops); 7228 7229 CSEMap.InsertNode(N, IP); 7230 InsertNode(N); 7231 SDValue V(N, 0); 7232 NewSDValueDbgMsg(V, "Creating new node: ", this); 7233 return V; 7234 } 7235 7236 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7237 SDValue Base, SDValue Offset, 7238 ISD::MemIndexedMode AM) { 7239 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7240 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7241 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7242 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7243 FoldingSetNodeID ID; 7244 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7245 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7246 ID.AddInteger(ST->getRawSubclassData()); 7247 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7248 void *IP = nullptr; 7249 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7250 return SDValue(E, 0); 7251 7252 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7253 ST->isTruncatingStore(), ST->getMemoryVT(), 7254 ST->getMemOperand()); 7255 createOperands(N, Ops); 7256 7257 CSEMap.InsertNode(N, IP); 7258 InsertNode(N); 7259 SDValue V(N, 0); 7260 NewSDValueDbgMsg(V, "Creating new node: ", this); 7261 return V; 7262 } 7263 7264 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7265 SDValue Base, SDValue Offset, SDValue Mask, 7266 SDValue PassThru, EVT MemVT, 7267 MachineMemOperand *MMO, 7268 ISD::MemIndexedMode AM, 7269 ISD::LoadExtType ExtTy, bool isExpanding) { 7270 bool Indexed = AM != ISD::UNINDEXED; 7271 assert((Indexed || Offset.isUndef()) && 7272 "Unindexed masked load with an offset!"); 7273 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7274 : getVTList(VT, MVT::Other); 7275 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7276 FoldingSetNodeID ID; 7277 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7278 ID.AddInteger(MemVT.getRawBits()); 7279 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7280 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7281 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7282 void *IP = nullptr; 7283 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7284 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7285 return SDValue(E, 0); 7286 } 7287 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7288 AM, ExtTy, isExpanding, MemVT, MMO); 7289 createOperands(N, Ops); 7290 7291 CSEMap.InsertNode(N, IP); 7292 InsertNode(N); 7293 SDValue V(N, 0); 7294 NewSDValueDbgMsg(V, "Creating new node: ", this); 7295 return V; 7296 } 7297 7298 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7299 SDValue Base, SDValue Offset, 7300 ISD::MemIndexedMode AM) { 7301 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7302 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7303 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7304 Offset, LD->getMask(), LD->getPassThru(), 7305 LD->getMemoryVT(), LD->getMemOperand(), AM, 7306 LD->getExtensionType(), LD->isExpandingLoad()); 7307 } 7308 7309 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7310 SDValue Val, SDValue Base, SDValue Offset, 7311 SDValue Mask, EVT MemVT, 7312 MachineMemOperand *MMO, 7313 ISD::MemIndexedMode AM, bool IsTruncating, 7314 bool IsCompressing) { 7315 assert(Chain.getValueType() == MVT::Other && 7316 "Invalid chain type"); 7317 bool Indexed = AM != ISD::UNINDEXED; 7318 assert((Indexed || Offset.isUndef()) && 7319 "Unindexed masked store with an offset!"); 7320 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7321 : getVTList(MVT::Other); 7322 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7323 FoldingSetNodeID ID; 7324 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7325 ID.AddInteger(MemVT.getRawBits()); 7326 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7327 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7328 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7329 void *IP = nullptr; 7330 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7331 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7332 return SDValue(E, 0); 7333 } 7334 auto *N = 7335 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7336 IsTruncating, IsCompressing, MemVT, MMO); 7337 createOperands(N, Ops); 7338 7339 CSEMap.InsertNode(N, IP); 7340 InsertNode(N); 7341 SDValue V(N, 0); 7342 NewSDValueDbgMsg(V, "Creating new node: ", this); 7343 return V; 7344 } 7345 7346 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7347 SDValue Base, SDValue Offset, 7348 ISD::MemIndexedMode AM) { 7349 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7350 assert(ST->getOffset().isUndef() && 7351 "Masked store is already a indexed store!"); 7352 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7353 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7354 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7355 } 7356 7357 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7358 ArrayRef<SDValue> Ops, 7359 MachineMemOperand *MMO, 7360 ISD::MemIndexType IndexType, 7361 ISD::LoadExtType ExtTy) { 7362 assert(Ops.size() == 6 && "Incompatible number of operands"); 7363 7364 FoldingSetNodeID ID; 7365 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7366 ID.AddInteger(VT.getRawBits()); 7367 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7368 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7369 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7370 void *IP = nullptr; 7371 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7372 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7373 return SDValue(E, 0); 7374 } 7375 7376 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7377 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7378 VTs, VT, MMO, IndexType, ExtTy); 7379 createOperands(N, Ops); 7380 7381 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7382 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7383 assert(N->getMask().getValueType().getVectorElementCount() == 7384 N->getValueType(0).getVectorElementCount() && 7385 "Vector width mismatch between mask and data"); 7386 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7387 N->getValueType(0).getVectorElementCount().isScalable() && 7388 "Scalable flags of index and data do not match"); 7389 assert(ElementCount::isKnownGE( 7390 N->getIndex().getValueType().getVectorElementCount(), 7391 N->getValueType(0).getVectorElementCount()) && 7392 "Vector width mismatch between index and data"); 7393 assert(isa<ConstantSDNode>(N->getScale()) && 7394 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7395 "Scale should be a constant power of 2"); 7396 7397 CSEMap.InsertNode(N, IP); 7398 InsertNode(N); 7399 SDValue V(N, 0); 7400 NewSDValueDbgMsg(V, "Creating new node: ", this); 7401 return V; 7402 } 7403 7404 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7405 ArrayRef<SDValue> Ops, 7406 MachineMemOperand *MMO, 7407 ISD::MemIndexType IndexType, 7408 bool IsTrunc) { 7409 assert(Ops.size() == 6 && "Incompatible number of operands"); 7410 7411 FoldingSetNodeID ID; 7412 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7413 ID.AddInteger(VT.getRawBits()); 7414 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7415 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7416 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7417 void *IP = nullptr; 7418 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7419 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7420 return SDValue(E, 0); 7421 } 7422 7423 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7424 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7425 VTs, VT, MMO, IndexType, IsTrunc); 7426 createOperands(N, Ops); 7427 7428 assert(N->getMask().getValueType().getVectorElementCount() == 7429 N->getValue().getValueType().getVectorElementCount() && 7430 "Vector width mismatch between mask and data"); 7431 assert( 7432 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7433 N->getValue().getValueType().getVectorElementCount().isScalable() && 7434 "Scalable flags of index and data do not match"); 7435 assert(ElementCount::isKnownGE( 7436 N->getIndex().getValueType().getVectorElementCount(), 7437 N->getValue().getValueType().getVectorElementCount()) && 7438 "Vector width mismatch between index and data"); 7439 assert(isa<ConstantSDNode>(N->getScale()) && 7440 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7441 "Scale should be a constant power of 2"); 7442 7443 CSEMap.InsertNode(N, IP); 7444 InsertNode(N); 7445 SDValue V(N, 0); 7446 NewSDValueDbgMsg(V, "Creating new node: ", this); 7447 return V; 7448 } 7449 7450 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7451 // select undef, T, F --> T (if T is a constant), otherwise F 7452 // select, ?, undef, F --> F 7453 // select, ?, T, undef --> T 7454 if (Cond.isUndef()) 7455 return isConstantValueOfAnyType(T) ? T : F; 7456 if (T.isUndef()) 7457 return F; 7458 if (F.isUndef()) 7459 return T; 7460 7461 // select true, T, F --> T 7462 // select false, T, F --> F 7463 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7464 return CondC->isNullValue() ? F : T; 7465 7466 // TODO: This should simplify VSELECT with constant condition using something 7467 // like this (but check boolean contents to be complete?): 7468 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7469 // return T; 7470 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7471 // return F; 7472 7473 // select ?, T, T --> T 7474 if (T == F) 7475 return T; 7476 7477 return SDValue(); 7478 } 7479 7480 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7481 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7482 if (X.isUndef()) 7483 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7484 // shift X, undef --> undef (because it may shift by the bitwidth) 7485 if (Y.isUndef()) 7486 return getUNDEF(X.getValueType()); 7487 7488 // shift 0, Y --> 0 7489 // shift X, 0 --> X 7490 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7491 return X; 7492 7493 // shift X, C >= bitwidth(X) --> undef 7494 // All vector elements must be too big (or undef) to avoid partial undefs. 7495 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7496 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7497 }; 7498 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7499 return getUNDEF(X.getValueType()); 7500 7501 return SDValue(); 7502 } 7503 7504 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7505 SDNodeFlags Flags) { 7506 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7507 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7508 // operation is poison. That result can be relaxed to undef. 7509 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7510 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7511 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7512 (YC && YC->getValueAPF().isNaN()); 7513 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7514 (YC && YC->getValueAPF().isInfinity()); 7515 7516 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7517 return getUNDEF(X.getValueType()); 7518 7519 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7520 return getUNDEF(X.getValueType()); 7521 7522 if (!YC) 7523 return SDValue(); 7524 7525 // X + -0.0 --> X 7526 if (Opcode == ISD::FADD) 7527 if (YC->getValueAPF().isNegZero()) 7528 return X; 7529 7530 // X - +0.0 --> X 7531 if (Opcode == ISD::FSUB) 7532 if (YC->getValueAPF().isPosZero()) 7533 return X; 7534 7535 // X * 1.0 --> X 7536 // X / 1.0 --> X 7537 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7538 if (YC->getValueAPF().isExactlyValue(1.0)) 7539 return X; 7540 7541 // X * 0.0 --> 0.0 7542 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7543 if (YC->getValueAPF().isZero()) 7544 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7545 7546 return SDValue(); 7547 } 7548 7549 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7550 SDValue Ptr, SDValue SV, unsigned Align) { 7551 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7552 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7553 } 7554 7555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7556 ArrayRef<SDUse> Ops) { 7557 switch (Ops.size()) { 7558 case 0: return getNode(Opcode, DL, VT); 7559 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7560 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7561 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7562 default: break; 7563 } 7564 7565 // Copy from an SDUse array into an SDValue array for use with 7566 // the regular getNode logic. 7567 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7568 return getNode(Opcode, DL, VT, NewOps); 7569 } 7570 7571 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7572 ArrayRef<SDValue> Ops) { 7573 SDNodeFlags Flags; 7574 if (Inserter) 7575 Flags = Inserter->getFlags(); 7576 return getNode(Opcode, DL, VT, Ops, Flags); 7577 } 7578 7579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7580 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7581 unsigned NumOps = Ops.size(); 7582 switch (NumOps) { 7583 case 0: return getNode(Opcode, DL, VT); 7584 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7585 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7586 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7587 default: break; 7588 } 7589 7590 switch (Opcode) { 7591 default: break; 7592 case ISD::BUILD_VECTOR: 7593 // Attempt to simplify BUILD_VECTOR. 7594 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7595 return V; 7596 break; 7597 case ISD::CONCAT_VECTORS: 7598 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7599 return V; 7600 break; 7601 case ISD::SELECT_CC: 7602 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7603 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7604 "LHS and RHS of condition must have same type!"); 7605 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7606 "True and False arms of SelectCC must have same type!"); 7607 assert(Ops[2].getValueType() == VT && 7608 "select_cc node must be of same type as true and false value!"); 7609 break; 7610 case ISD::BR_CC: 7611 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7612 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7613 "LHS/RHS of comparison should match types!"); 7614 break; 7615 } 7616 7617 // Memoize nodes. 7618 SDNode *N; 7619 SDVTList VTs = getVTList(VT); 7620 7621 if (VT != MVT::Glue) { 7622 FoldingSetNodeID ID; 7623 AddNodeIDNode(ID, Opcode, VTs, Ops); 7624 void *IP = nullptr; 7625 7626 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7627 return SDValue(E, 0); 7628 7629 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7630 createOperands(N, Ops); 7631 7632 CSEMap.InsertNode(N, IP); 7633 } else { 7634 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7635 createOperands(N, Ops); 7636 } 7637 7638 N->setFlags(Flags); 7639 InsertNode(N); 7640 SDValue V(N, 0); 7641 NewSDValueDbgMsg(V, "Creating new node: ", this); 7642 return V; 7643 } 7644 7645 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7646 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7647 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7648 } 7649 7650 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7651 ArrayRef<SDValue> Ops) { 7652 SDNodeFlags Flags; 7653 if (Inserter) 7654 Flags = Inserter->getFlags(); 7655 return getNode(Opcode, DL, VTList, Ops, Flags); 7656 } 7657 7658 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7659 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7660 if (VTList.NumVTs == 1) 7661 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7662 7663 switch (Opcode) { 7664 case ISD::STRICT_FP_EXTEND: 7665 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7666 "Invalid STRICT_FP_EXTEND!"); 7667 assert(VTList.VTs[0].isFloatingPoint() && 7668 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7669 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7670 "STRICT_FP_EXTEND result type should be vector iff the operand " 7671 "type is vector!"); 7672 assert((!VTList.VTs[0].isVector() || 7673 VTList.VTs[0].getVectorNumElements() == 7674 Ops[1].getValueType().getVectorNumElements()) && 7675 "Vector element count mismatch!"); 7676 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7677 "Invalid fpext node, dst <= src!"); 7678 break; 7679 case ISD::STRICT_FP_ROUND: 7680 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7681 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7682 "STRICT_FP_ROUND result type should be vector iff the operand " 7683 "type is vector!"); 7684 assert((!VTList.VTs[0].isVector() || 7685 VTList.VTs[0].getVectorNumElements() == 7686 Ops[1].getValueType().getVectorNumElements()) && 7687 "Vector element count mismatch!"); 7688 assert(VTList.VTs[0].isFloatingPoint() && 7689 Ops[1].getValueType().isFloatingPoint() && 7690 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7691 isa<ConstantSDNode>(Ops[2]) && 7692 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7693 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7694 "Invalid STRICT_FP_ROUND!"); 7695 break; 7696 #if 0 7697 // FIXME: figure out how to safely handle things like 7698 // int foo(int x) { return 1 << (x & 255); } 7699 // int bar() { return foo(256); } 7700 case ISD::SRA_PARTS: 7701 case ISD::SRL_PARTS: 7702 case ISD::SHL_PARTS: 7703 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7704 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7705 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7706 else if (N3.getOpcode() == ISD::AND) 7707 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7708 // If the and is only masking out bits that cannot effect the shift, 7709 // eliminate the and. 7710 unsigned NumBits = VT.getScalarSizeInBits()*2; 7711 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7712 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7713 } 7714 break; 7715 #endif 7716 } 7717 7718 // Memoize the node unless it returns a flag. 7719 SDNode *N; 7720 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7721 FoldingSetNodeID ID; 7722 AddNodeIDNode(ID, Opcode, VTList, Ops); 7723 void *IP = nullptr; 7724 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7725 return SDValue(E, 0); 7726 7727 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7728 createOperands(N, Ops); 7729 CSEMap.InsertNode(N, IP); 7730 } else { 7731 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7732 createOperands(N, Ops); 7733 } 7734 7735 N->setFlags(Flags); 7736 InsertNode(N); 7737 SDValue V(N, 0); 7738 NewSDValueDbgMsg(V, "Creating new node: ", this); 7739 return V; 7740 } 7741 7742 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7743 SDVTList VTList) { 7744 return getNode(Opcode, DL, VTList, None); 7745 } 7746 7747 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7748 SDValue N1) { 7749 SDValue Ops[] = { N1 }; 7750 return getNode(Opcode, DL, VTList, Ops); 7751 } 7752 7753 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7754 SDValue N1, SDValue N2) { 7755 SDValue Ops[] = { N1, N2 }; 7756 return getNode(Opcode, DL, VTList, Ops); 7757 } 7758 7759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7760 SDValue N1, SDValue N2, SDValue N3) { 7761 SDValue Ops[] = { N1, N2, N3 }; 7762 return getNode(Opcode, DL, VTList, Ops); 7763 } 7764 7765 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7766 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7767 SDValue Ops[] = { N1, N2, N3, N4 }; 7768 return getNode(Opcode, DL, VTList, Ops); 7769 } 7770 7771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7772 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7773 SDValue N5) { 7774 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7775 return getNode(Opcode, DL, VTList, Ops); 7776 } 7777 7778 SDVTList SelectionDAG::getVTList(EVT VT) { 7779 return makeVTList(SDNode::getValueTypeList(VT), 1); 7780 } 7781 7782 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7783 FoldingSetNodeID ID; 7784 ID.AddInteger(2U); 7785 ID.AddInteger(VT1.getRawBits()); 7786 ID.AddInteger(VT2.getRawBits()); 7787 7788 void *IP = nullptr; 7789 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7790 if (!Result) { 7791 EVT *Array = Allocator.Allocate<EVT>(2); 7792 Array[0] = VT1; 7793 Array[1] = VT2; 7794 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7795 VTListMap.InsertNode(Result, IP); 7796 } 7797 return Result->getSDVTList(); 7798 } 7799 7800 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7801 FoldingSetNodeID ID; 7802 ID.AddInteger(3U); 7803 ID.AddInteger(VT1.getRawBits()); 7804 ID.AddInteger(VT2.getRawBits()); 7805 ID.AddInteger(VT3.getRawBits()); 7806 7807 void *IP = nullptr; 7808 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7809 if (!Result) { 7810 EVT *Array = Allocator.Allocate<EVT>(3); 7811 Array[0] = VT1; 7812 Array[1] = VT2; 7813 Array[2] = VT3; 7814 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7815 VTListMap.InsertNode(Result, IP); 7816 } 7817 return Result->getSDVTList(); 7818 } 7819 7820 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7821 FoldingSetNodeID ID; 7822 ID.AddInteger(4U); 7823 ID.AddInteger(VT1.getRawBits()); 7824 ID.AddInteger(VT2.getRawBits()); 7825 ID.AddInteger(VT3.getRawBits()); 7826 ID.AddInteger(VT4.getRawBits()); 7827 7828 void *IP = nullptr; 7829 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7830 if (!Result) { 7831 EVT *Array = Allocator.Allocate<EVT>(4); 7832 Array[0] = VT1; 7833 Array[1] = VT2; 7834 Array[2] = VT3; 7835 Array[3] = VT4; 7836 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7837 VTListMap.InsertNode(Result, IP); 7838 } 7839 return Result->getSDVTList(); 7840 } 7841 7842 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7843 unsigned NumVTs = VTs.size(); 7844 FoldingSetNodeID ID; 7845 ID.AddInteger(NumVTs); 7846 for (unsigned index = 0; index < NumVTs; index++) { 7847 ID.AddInteger(VTs[index].getRawBits()); 7848 } 7849 7850 void *IP = nullptr; 7851 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7852 if (!Result) { 7853 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7854 llvm::copy(VTs, Array); 7855 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7856 VTListMap.InsertNode(Result, IP); 7857 } 7858 return Result->getSDVTList(); 7859 } 7860 7861 7862 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7863 /// specified operands. If the resultant node already exists in the DAG, 7864 /// this does not modify the specified node, instead it returns the node that 7865 /// already exists. If the resultant node does not exist in the DAG, the 7866 /// input node is returned. As a degenerate case, if you specify the same 7867 /// input operands as the node already has, the input node is returned. 7868 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7869 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7870 7871 // Check to see if there is no change. 7872 if (Op == N->getOperand(0)) return N; 7873 7874 // See if the modified node already exists. 7875 void *InsertPos = nullptr; 7876 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7877 return Existing; 7878 7879 // Nope it doesn't. Remove the node from its current place in the maps. 7880 if (InsertPos) 7881 if (!RemoveNodeFromCSEMaps(N)) 7882 InsertPos = nullptr; 7883 7884 // Now we update the operands. 7885 N->OperandList[0].set(Op); 7886 7887 updateDivergence(N); 7888 // If this gets put into a CSE map, add it. 7889 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7890 return N; 7891 } 7892 7893 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7894 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7895 7896 // Check to see if there is no change. 7897 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7898 return N; // No operands changed, just return the input node. 7899 7900 // See if the modified node already exists. 7901 void *InsertPos = nullptr; 7902 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7903 return Existing; 7904 7905 // Nope it doesn't. Remove the node from its current place in the maps. 7906 if (InsertPos) 7907 if (!RemoveNodeFromCSEMaps(N)) 7908 InsertPos = nullptr; 7909 7910 // Now we update the operands. 7911 if (N->OperandList[0] != Op1) 7912 N->OperandList[0].set(Op1); 7913 if (N->OperandList[1] != Op2) 7914 N->OperandList[1].set(Op2); 7915 7916 updateDivergence(N); 7917 // If this gets put into a CSE map, add it. 7918 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7919 return N; 7920 } 7921 7922 SDNode *SelectionDAG:: 7923 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7924 SDValue Ops[] = { Op1, Op2, Op3 }; 7925 return UpdateNodeOperands(N, Ops); 7926 } 7927 7928 SDNode *SelectionDAG:: 7929 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7930 SDValue Op3, SDValue Op4) { 7931 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7932 return UpdateNodeOperands(N, Ops); 7933 } 7934 7935 SDNode *SelectionDAG:: 7936 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7937 SDValue Op3, SDValue Op4, SDValue Op5) { 7938 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7939 return UpdateNodeOperands(N, Ops); 7940 } 7941 7942 SDNode *SelectionDAG:: 7943 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7944 unsigned NumOps = Ops.size(); 7945 assert(N->getNumOperands() == NumOps && 7946 "Update with wrong number of operands"); 7947 7948 // If no operands changed just return the input node. 7949 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7950 return N; 7951 7952 // See if the modified node already exists. 7953 void *InsertPos = nullptr; 7954 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7955 return Existing; 7956 7957 // Nope it doesn't. Remove the node from its current place in the maps. 7958 if (InsertPos) 7959 if (!RemoveNodeFromCSEMaps(N)) 7960 InsertPos = nullptr; 7961 7962 // Now we update the operands. 7963 for (unsigned i = 0; i != NumOps; ++i) 7964 if (N->OperandList[i] != Ops[i]) 7965 N->OperandList[i].set(Ops[i]); 7966 7967 updateDivergence(N); 7968 // If this gets put into a CSE map, add it. 7969 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7970 return N; 7971 } 7972 7973 /// DropOperands - Release the operands and set this node to have 7974 /// zero operands. 7975 void SDNode::DropOperands() { 7976 // Unlike the code in MorphNodeTo that does this, we don't need to 7977 // watch for dead nodes here. 7978 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7979 SDUse &Use = *I++; 7980 Use.set(SDValue()); 7981 } 7982 } 7983 7984 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7985 ArrayRef<MachineMemOperand *> NewMemRefs) { 7986 if (NewMemRefs.empty()) { 7987 N->clearMemRefs(); 7988 return; 7989 } 7990 7991 // Check if we can avoid allocating by storing a single reference directly. 7992 if (NewMemRefs.size() == 1) { 7993 N->MemRefs = NewMemRefs[0]; 7994 N->NumMemRefs = 1; 7995 return; 7996 } 7997 7998 MachineMemOperand **MemRefsBuffer = 7999 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8000 llvm::copy(NewMemRefs, MemRefsBuffer); 8001 N->MemRefs = MemRefsBuffer; 8002 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8003 } 8004 8005 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8006 /// machine opcode. 8007 /// 8008 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8009 EVT VT) { 8010 SDVTList VTs = getVTList(VT); 8011 return SelectNodeTo(N, MachineOpc, VTs, None); 8012 } 8013 8014 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8015 EVT VT, SDValue Op1) { 8016 SDVTList VTs = getVTList(VT); 8017 SDValue Ops[] = { Op1 }; 8018 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8019 } 8020 8021 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8022 EVT VT, SDValue Op1, 8023 SDValue Op2) { 8024 SDVTList VTs = getVTList(VT); 8025 SDValue Ops[] = { Op1, Op2 }; 8026 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8027 } 8028 8029 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8030 EVT VT, SDValue Op1, 8031 SDValue Op2, SDValue Op3) { 8032 SDVTList VTs = getVTList(VT); 8033 SDValue Ops[] = { Op1, Op2, Op3 }; 8034 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8035 } 8036 8037 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8038 EVT VT, ArrayRef<SDValue> Ops) { 8039 SDVTList VTs = getVTList(VT); 8040 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8041 } 8042 8043 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8044 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8045 SDVTList VTs = getVTList(VT1, VT2); 8046 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8047 } 8048 8049 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8050 EVT VT1, EVT VT2) { 8051 SDVTList VTs = getVTList(VT1, VT2); 8052 return SelectNodeTo(N, MachineOpc, VTs, None); 8053 } 8054 8055 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8056 EVT VT1, EVT VT2, EVT VT3, 8057 ArrayRef<SDValue> Ops) { 8058 SDVTList VTs = getVTList(VT1, VT2, VT3); 8059 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8060 } 8061 8062 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8063 EVT VT1, EVT VT2, 8064 SDValue Op1, SDValue Op2) { 8065 SDVTList VTs = getVTList(VT1, VT2); 8066 SDValue Ops[] = { Op1, Op2 }; 8067 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8068 } 8069 8070 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8071 SDVTList VTs,ArrayRef<SDValue> Ops) { 8072 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8073 // Reset the NodeID to -1. 8074 New->setNodeId(-1); 8075 if (New != N) { 8076 ReplaceAllUsesWith(N, New); 8077 RemoveDeadNode(N); 8078 } 8079 return New; 8080 } 8081 8082 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8083 /// the line number information on the merged node since it is not possible to 8084 /// preserve the information that operation is associated with multiple lines. 8085 /// This will make the debugger working better at -O0, were there is a higher 8086 /// probability having other instructions associated with that line. 8087 /// 8088 /// For IROrder, we keep the smaller of the two 8089 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8090 DebugLoc NLoc = N->getDebugLoc(); 8091 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8092 N->setDebugLoc(DebugLoc()); 8093 } 8094 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8095 N->setIROrder(Order); 8096 return N; 8097 } 8098 8099 /// MorphNodeTo - This *mutates* the specified node to have the specified 8100 /// return type, opcode, and operands. 8101 /// 8102 /// Note that MorphNodeTo returns the resultant node. If there is already a 8103 /// node of the specified opcode and operands, it returns that node instead of 8104 /// the current one. Note that the SDLoc need not be the same. 8105 /// 8106 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8107 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8108 /// node, and because it doesn't require CSE recalculation for any of 8109 /// the node's users. 8110 /// 8111 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8112 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8113 /// the legalizer which maintain worklists that would need to be updated when 8114 /// deleting things. 8115 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8116 SDVTList VTs, ArrayRef<SDValue> Ops) { 8117 // If an identical node already exists, use it. 8118 void *IP = nullptr; 8119 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8120 FoldingSetNodeID ID; 8121 AddNodeIDNode(ID, Opc, VTs, Ops); 8122 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8123 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8124 } 8125 8126 if (!RemoveNodeFromCSEMaps(N)) 8127 IP = nullptr; 8128 8129 // Start the morphing. 8130 N->NodeType = Opc; 8131 N->ValueList = VTs.VTs; 8132 N->NumValues = VTs.NumVTs; 8133 8134 // Clear the operands list, updating used nodes to remove this from their 8135 // use list. Keep track of any operands that become dead as a result. 8136 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8137 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8138 SDUse &Use = *I++; 8139 SDNode *Used = Use.getNode(); 8140 Use.set(SDValue()); 8141 if (Used->use_empty()) 8142 DeadNodeSet.insert(Used); 8143 } 8144 8145 // For MachineNode, initialize the memory references information. 8146 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8147 MN->clearMemRefs(); 8148 8149 // Swap for an appropriately sized array from the recycler. 8150 removeOperands(N); 8151 createOperands(N, Ops); 8152 8153 // Delete any nodes that are still dead after adding the uses for the 8154 // new operands. 8155 if (!DeadNodeSet.empty()) { 8156 SmallVector<SDNode *, 16> DeadNodes; 8157 for (SDNode *N : DeadNodeSet) 8158 if (N->use_empty()) 8159 DeadNodes.push_back(N); 8160 RemoveDeadNodes(DeadNodes); 8161 } 8162 8163 if (IP) 8164 CSEMap.InsertNode(N, IP); // Memoize the new node. 8165 return N; 8166 } 8167 8168 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8169 unsigned OrigOpc = Node->getOpcode(); 8170 unsigned NewOpc; 8171 switch (OrigOpc) { 8172 default: 8173 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8174 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8175 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8176 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8177 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8178 #include "llvm/IR/ConstrainedOps.def" 8179 } 8180 8181 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8182 8183 // We're taking this node out of the chain, so we need to re-link things. 8184 SDValue InputChain = Node->getOperand(0); 8185 SDValue OutputChain = SDValue(Node, 1); 8186 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8187 8188 SmallVector<SDValue, 3> Ops; 8189 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8190 Ops.push_back(Node->getOperand(i)); 8191 8192 SDVTList VTs = getVTList(Node->getValueType(0)); 8193 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8194 8195 // MorphNodeTo can operate in two ways: if an existing node with the 8196 // specified operands exists, it can just return it. Otherwise, it 8197 // updates the node in place to have the requested operands. 8198 if (Res == Node) { 8199 // If we updated the node in place, reset the node ID. To the isel, 8200 // this should be just like a newly allocated machine node. 8201 Res->setNodeId(-1); 8202 } else { 8203 ReplaceAllUsesWith(Node, Res); 8204 RemoveDeadNode(Node); 8205 } 8206 8207 return Res; 8208 } 8209 8210 /// getMachineNode - These are used for target selectors to create a new node 8211 /// with specified return type(s), MachineInstr opcode, and operands. 8212 /// 8213 /// Note that getMachineNode returns the resultant node. If there is already a 8214 /// node of the specified opcode and operands, it returns that node instead of 8215 /// the current one. 8216 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8217 EVT VT) { 8218 SDVTList VTs = getVTList(VT); 8219 return getMachineNode(Opcode, dl, VTs, None); 8220 } 8221 8222 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8223 EVT VT, SDValue Op1) { 8224 SDVTList VTs = getVTList(VT); 8225 SDValue Ops[] = { Op1 }; 8226 return getMachineNode(Opcode, dl, VTs, Ops); 8227 } 8228 8229 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8230 EVT VT, SDValue Op1, SDValue Op2) { 8231 SDVTList VTs = getVTList(VT); 8232 SDValue Ops[] = { Op1, Op2 }; 8233 return getMachineNode(Opcode, dl, VTs, Ops); 8234 } 8235 8236 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8237 EVT VT, SDValue Op1, SDValue Op2, 8238 SDValue Op3) { 8239 SDVTList VTs = getVTList(VT); 8240 SDValue Ops[] = { Op1, Op2, Op3 }; 8241 return getMachineNode(Opcode, dl, VTs, Ops); 8242 } 8243 8244 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8245 EVT VT, ArrayRef<SDValue> Ops) { 8246 SDVTList VTs = getVTList(VT); 8247 return getMachineNode(Opcode, dl, VTs, Ops); 8248 } 8249 8250 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8251 EVT VT1, EVT VT2, SDValue Op1, 8252 SDValue Op2) { 8253 SDVTList VTs = getVTList(VT1, VT2); 8254 SDValue Ops[] = { Op1, Op2 }; 8255 return getMachineNode(Opcode, dl, VTs, Ops); 8256 } 8257 8258 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8259 EVT VT1, EVT VT2, SDValue Op1, 8260 SDValue Op2, SDValue Op3) { 8261 SDVTList VTs = getVTList(VT1, VT2); 8262 SDValue Ops[] = { Op1, Op2, Op3 }; 8263 return getMachineNode(Opcode, dl, VTs, Ops); 8264 } 8265 8266 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8267 EVT VT1, EVT VT2, 8268 ArrayRef<SDValue> Ops) { 8269 SDVTList VTs = getVTList(VT1, VT2); 8270 return getMachineNode(Opcode, dl, VTs, Ops); 8271 } 8272 8273 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8274 EVT VT1, EVT VT2, EVT VT3, 8275 SDValue Op1, SDValue Op2) { 8276 SDVTList VTs = getVTList(VT1, VT2, VT3); 8277 SDValue Ops[] = { Op1, Op2 }; 8278 return getMachineNode(Opcode, dl, VTs, Ops); 8279 } 8280 8281 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8282 EVT VT1, EVT VT2, EVT VT3, 8283 SDValue Op1, SDValue Op2, 8284 SDValue Op3) { 8285 SDVTList VTs = getVTList(VT1, VT2, VT3); 8286 SDValue Ops[] = { Op1, Op2, Op3 }; 8287 return getMachineNode(Opcode, dl, VTs, Ops); 8288 } 8289 8290 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8291 EVT VT1, EVT VT2, EVT VT3, 8292 ArrayRef<SDValue> Ops) { 8293 SDVTList VTs = getVTList(VT1, VT2, VT3); 8294 return getMachineNode(Opcode, dl, VTs, Ops); 8295 } 8296 8297 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8298 ArrayRef<EVT> ResultTys, 8299 ArrayRef<SDValue> Ops) { 8300 SDVTList VTs = getVTList(ResultTys); 8301 return getMachineNode(Opcode, dl, VTs, Ops); 8302 } 8303 8304 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8305 SDVTList VTs, 8306 ArrayRef<SDValue> Ops) { 8307 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8308 MachineSDNode *N; 8309 void *IP = nullptr; 8310 8311 if (DoCSE) { 8312 FoldingSetNodeID ID; 8313 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8314 IP = nullptr; 8315 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8316 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8317 } 8318 } 8319 8320 // Allocate a new MachineSDNode. 8321 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8322 createOperands(N, Ops); 8323 8324 if (DoCSE) 8325 CSEMap.InsertNode(N, IP); 8326 8327 InsertNode(N); 8328 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8329 return N; 8330 } 8331 8332 /// getTargetExtractSubreg - A convenience function for creating 8333 /// TargetOpcode::EXTRACT_SUBREG nodes. 8334 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8335 SDValue Operand) { 8336 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8337 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8338 VT, Operand, SRIdxVal); 8339 return SDValue(Subreg, 0); 8340 } 8341 8342 /// getTargetInsertSubreg - A convenience function for creating 8343 /// TargetOpcode::INSERT_SUBREG nodes. 8344 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8345 SDValue Operand, SDValue Subreg) { 8346 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8347 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8348 VT, Operand, Subreg, SRIdxVal); 8349 return SDValue(Result, 0); 8350 } 8351 8352 /// getNodeIfExists - Get the specified node if it's already available, or 8353 /// else return NULL. 8354 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8355 ArrayRef<SDValue> Ops) { 8356 SDNodeFlags Flags; 8357 if (Inserter) 8358 Flags = Inserter->getFlags(); 8359 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8360 } 8361 8362 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8363 ArrayRef<SDValue> Ops, 8364 const SDNodeFlags Flags) { 8365 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8366 FoldingSetNodeID ID; 8367 AddNodeIDNode(ID, Opcode, VTList, Ops); 8368 void *IP = nullptr; 8369 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8370 E->intersectFlagsWith(Flags); 8371 return E; 8372 } 8373 } 8374 return nullptr; 8375 } 8376 8377 /// doesNodeExist - Check if a node exists without modifying its flags. 8378 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8379 ArrayRef<SDValue> Ops) { 8380 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8381 FoldingSetNodeID ID; 8382 AddNodeIDNode(ID, Opcode, VTList, Ops); 8383 void *IP = nullptr; 8384 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8385 return true; 8386 } 8387 return false; 8388 } 8389 8390 /// getDbgValue - Creates a SDDbgValue node. 8391 /// 8392 /// SDNode 8393 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8394 SDNode *N, unsigned R, bool IsIndirect, 8395 const DebugLoc &DL, unsigned O) { 8396 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8397 "Expected inlined-at fields to agree"); 8398 return new (DbgInfo->getAlloc()) 8399 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8400 } 8401 8402 /// Constant 8403 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8404 DIExpression *Expr, 8405 const Value *C, 8406 const DebugLoc &DL, unsigned O) { 8407 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8408 "Expected inlined-at fields to agree"); 8409 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8410 } 8411 8412 /// FrameIndex 8413 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8414 DIExpression *Expr, unsigned FI, 8415 bool IsIndirect, 8416 const DebugLoc &DL, 8417 unsigned O) { 8418 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8419 "Expected inlined-at fields to agree"); 8420 return new (DbgInfo->getAlloc()) 8421 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8422 } 8423 8424 /// VReg 8425 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8426 DIExpression *Expr, 8427 unsigned VReg, bool IsIndirect, 8428 const DebugLoc &DL, unsigned O) { 8429 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8430 "Expected inlined-at fields to agree"); 8431 return new (DbgInfo->getAlloc()) 8432 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8433 } 8434 8435 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8436 unsigned OffsetInBits, unsigned SizeInBits, 8437 bool InvalidateDbg) { 8438 SDNode *FromNode = From.getNode(); 8439 SDNode *ToNode = To.getNode(); 8440 assert(FromNode && ToNode && "Can't modify dbg values"); 8441 8442 // PR35338 8443 // TODO: assert(From != To && "Redundant dbg value transfer"); 8444 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8445 if (From == To || FromNode == ToNode) 8446 return; 8447 8448 if (!FromNode->getHasDebugValue()) 8449 return; 8450 8451 SmallVector<SDDbgValue *, 2> ClonedDVs; 8452 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8453 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8454 continue; 8455 8456 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8457 8458 // Just transfer the dbg value attached to From. 8459 if (Dbg->getResNo() != From.getResNo()) 8460 continue; 8461 8462 DIVariable *Var = Dbg->getVariable(); 8463 auto *Expr = Dbg->getExpression(); 8464 // If a fragment is requested, update the expression. 8465 if (SizeInBits) { 8466 // When splitting a larger (e.g., sign-extended) value whose 8467 // lower bits are described with an SDDbgValue, do not attempt 8468 // to transfer the SDDbgValue to the upper bits. 8469 if (auto FI = Expr->getFragmentInfo()) 8470 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8471 continue; 8472 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8473 SizeInBits); 8474 if (!Fragment) 8475 continue; 8476 Expr = *Fragment; 8477 } 8478 // Clone the SDDbgValue and move it to To. 8479 SDDbgValue *Clone = getDbgValue( 8480 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8481 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8482 ClonedDVs.push_back(Clone); 8483 8484 if (InvalidateDbg) { 8485 // Invalidate value and indicate the SDDbgValue should not be emitted. 8486 Dbg->setIsInvalidated(); 8487 Dbg->setIsEmitted(); 8488 } 8489 } 8490 8491 for (SDDbgValue *Dbg : ClonedDVs) 8492 AddDbgValue(Dbg, ToNode, false); 8493 } 8494 8495 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8496 if (!N.getHasDebugValue()) 8497 return; 8498 8499 SmallVector<SDDbgValue *, 2> ClonedDVs; 8500 for (auto DV : GetDbgValues(&N)) { 8501 if (DV->isInvalidated()) 8502 continue; 8503 switch (N.getOpcode()) { 8504 default: 8505 break; 8506 case ISD::ADD: 8507 SDValue N0 = N.getOperand(0); 8508 SDValue N1 = N.getOperand(1); 8509 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8510 isConstantIntBuildVectorOrConstantInt(N1)) { 8511 uint64_t Offset = N.getConstantOperandVal(1); 8512 // Rewrite an ADD constant node into a DIExpression. Since we are 8513 // performing arithmetic to compute the variable's *value* in the 8514 // DIExpression, we need to mark the expression with a 8515 // DW_OP_stack_value. 8516 auto *DIExpr = DV->getExpression(); 8517 DIExpr = 8518 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8519 SDDbgValue *Clone = 8520 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8521 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8522 ClonedDVs.push_back(Clone); 8523 DV->setIsInvalidated(); 8524 DV->setIsEmitted(); 8525 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8526 N0.getNode()->dumprFull(this); 8527 dbgs() << " into " << *DIExpr << '\n'); 8528 } 8529 } 8530 } 8531 8532 for (SDDbgValue *Dbg : ClonedDVs) 8533 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8534 } 8535 8536 /// Creates a SDDbgLabel node. 8537 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8538 const DebugLoc &DL, unsigned O) { 8539 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8540 "Expected inlined-at fields to agree"); 8541 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8542 } 8543 8544 namespace { 8545 8546 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8547 /// pointed to by a use iterator is deleted, increment the use iterator 8548 /// so that it doesn't dangle. 8549 /// 8550 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8551 SDNode::use_iterator &UI; 8552 SDNode::use_iterator &UE; 8553 8554 void NodeDeleted(SDNode *N, SDNode *E) override { 8555 // Increment the iterator as needed. 8556 while (UI != UE && N == *UI) 8557 ++UI; 8558 } 8559 8560 public: 8561 RAUWUpdateListener(SelectionDAG &d, 8562 SDNode::use_iterator &ui, 8563 SDNode::use_iterator &ue) 8564 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8565 }; 8566 8567 } // end anonymous namespace 8568 8569 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8570 /// This can cause recursive merging of nodes in the DAG. 8571 /// 8572 /// This version assumes From has a single result value. 8573 /// 8574 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8575 SDNode *From = FromN.getNode(); 8576 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8577 "Cannot replace with this method!"); 8578 assert(From != To.getNode() && "Cannot replace uses of with self"); 8579 8580 // Preserve Debug Values 8581 transferDbgValues(FromN, To); 8582 8583 // Iterate over all the existing uses of From. New uses will be added 8584 // to the beginning of the use list, which we avoid visiting. 8585 // This specifically avoids visiting uses of From that arise while the 8586 // replacement is happening, because any such uses would be the result 8587 // of CSE: If an existing node looks like From after one of its operands 8588 // is replaced by To, we don't want to replace of all its users with To 8589 // too. See PR3018 for more info. 8590 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8591 RAUWUpdateListener Listener(*this, UI, UE); 8592 while (UI != UE) { 8593 SDNode *User = *UI; 8594 8595 // This node is about to morph, remove its old self from the CSE maps. 8596 RemoveNodeFromCSEMaps(User); 8597 8598 // A user can appear in a use list multiple times, and when this 8599 // happens the uses are usually next to each other in the list. 8600 // To help reduce the number of CSE recomputations, process all 8601 // the uses of this user that we can find this way. 8602 do { 8603 SDUse &Use = UI.getUse(); 8604 ++UI; 8605 Use.set(To); 8606 if (To->isDivergent() != From->isDivergent()) 8607 updateDivergence(User); 8608 } while (UI != UE && *UI == User); 8609 // Now that we have modified User, add it back to the CSE maps. If it 8610 // already exists there, recursively merge the results together. 8611 AddModifiedNodeToCSEMaps(User); 8612 } 8613 8614 // If we just RAUW'd the root, take note. 8615 if (FromN == getRoot()) 8616 setRoot(To); 8617 } 8618 8619 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8620 /// This can cause recursive merging of nodes in the DAG. 8621 /// 8622 /// This version assumes that for each value of From, there is a 8623 /// corresponding value in To in the same position with the same type. 8624 /// 8625 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8626 #ifndef NDEBUG 8627 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8628 assert((!From->hasAnyUseOfValue(i) || 8629 From->getValueType(i) == To->getValueType(i)) && 8630 "Cannot use this version of ReplaceAllUsesWith!"); 8631 #endif 8632 8633 // Handle the trivial case. 8634 if (From == To) 8635 return; 8636 8637 // Preserve Debug Info. Only do this if there's a use. 8638 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8639 if (From->hasAnyUseOfValue(i)) { 8640 assert((i < To->getNumValues()) && "Invalid To location"); 8641 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8642 } 8643 8644 // Iterate over just the existing users of From. See the comments in 8645 // the ReplaceAllUsesWith above. 8646 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8647 RAUWUpdateListener Listener(*this, UI, UE); 8648 while (UI != UE) { 8649 SDNode *User = *UI; 8650 8651 // This node is about to morph, remove its old self from the CSE maps. 8652 RemoveNodeFromCSEMaps(User); 8653 8654 // A user can appear in a use list multiple times, and when this 8655 // happens the uses are usually next to each other in the list. 8656 // To help reduce the number of CSE recomputations, process all 8657 // the uses of this user that we can find this way. 8658 do { 8659 SDUse &Use = UI.getUse(); 8660 ++UI; 8661 Use.setNode(To); 8662 if (To->isDivergent() != From->isDivergent()) 8663 updateDivergence(User); 8664 } while (UI != UE && *UI == User); 8665 8666 // Now that we have modified User, add it back to the CSE maps. If it 8667 // already exists there, recursively merge the results together. 8668 AddModifiedNodeToCSEMaps(User); 8669 } 8670 8671 // If we just RAUW'd the root, take note. 8672 if (From == getRoot().getNode()) 8673 setRoot(SDValue(To, getRoot().getResNo())); 8674 } 8675 8676 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8677 /// This can cause recursive merging of nodes in the DAG. 8678 /// 8679 /// This version can replace From with any result values. To must match the 8680 /// number and types of values returned by From. 8681 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8682 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8683 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8684 8685 // Preserve Debug Info. 8686 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8687 transferDbgValues(SDValue(From, i), To[i]); 8688 8689 // Iterate over just the existing users of From. See the comments in 8690 // the ReplaceAllUsesWith above. 8691 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8692 RAUWUpdateListener Listener(*this, UI, UE); 8693 while (UI != UE) { 8694 SDNode *User = *UI; 8695 8696 // This node is about to morph, remove its old self from the CSE maps. 8697 RemoveNodeFromCSEMaps(User); 8698 8699 // A user can appear in a use list multiple times, and when this happens the 8700 // uses are usually next to each other in the list. To help reduce the 8701 // number of CSE and divergence recomputations, process all the uses of this 8702 // user that we can find this way. 8703 bool To_IsDivergent = false; 8704 do { 8705 SDUse &Use = UI.getUse(); 8706 const SDValue &ToOp = To[Use.getResNo()]; 8707 ++UI; 8708 Use.set(ToOp); 8709 To_IsDivergent |= ToOp->isDivergent(); 8710 } while (UI != UE && *UI == User); 8711 8712 if (To_IsDivergent != From->isDivergent()) 8713 updateDivergence(User); 8714 8715 // Now that we have modified User, add it back to the CSE maps. If it 8716 // already exists there, recursively merge the results together. 8717 AddModifiedNodeToCSEMaps(User); 8718 } 8719 8720 // If we just RAUW'd the root, take note. 8721 if (From == getRoot().getNode()) 8722 setRoot(SDValue(To[getRoot().getResNo()])); 8723 } 8724 8725 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8726 /// uses of other values produced by From.getNode() alone. The Deleted 8727 /// vector is handled the same way as for ReplaceAllUsesWith. 8728 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8729 // Handle the really simple, really trivial case efficiently. 8730 if (From == To) return; 8731 8732 // Handle the simple, trivial, case efficiently. 8733 if (From.getNode()->getNumValues() == 1) { 8734 ReplaceAllUsesWith(From, To); 8735 return; 8736 } 8737 8738 // Preserve Debug Info. 8739 transferDbgValues(From, To); 8740 8741 // Iterate over just the existing users of From. See the comments in 8742 // the ReplaceAllUsesWith above. 8743 SDNode::use_iterator UI = From.getNode()->use_begin(), 8744 UE = From.getNode()->use_end(); 8745 RAUWUpdateListener Listener(*this, UI, UE); 8746 while (UI != UE) { 8747 SDNode *User = *UI; 8748 bool UserRemovedFromCSEMaps = false; 8749 8750 // A user can appear in a use list multiple times, and when this 8751 // happens the uses are usually next to each other in the list. 8752 // To help reduce the number of CSE recomputations, process all 8753 // the uses of this user that we can find this way. 8754 do { 8755 SDUse &Use = UI.getUse(); 8756 8757 // Skip uses of different values from the same node. 8758 if (Use.getResNo() != From.getResNo()) { 8759 ++UI; 8760 continue; 8761 } 8762 8763 // If this node hasn't been modified yet, it's still in the CSE maps, 8764 // so remove its old self from the CSE maps. 8765 if (!UserRemovedFromCSEMaps) { 8766 RemoveNodeFromCSEMaps(User); 8767 UserRemovedFromCSEMaps = true; 8768 } 8769 8770 ++UI; 8771 Use.set(To); 8772 if (To->isDivergent() != From->isDivergent()) 8773 updateDivergence(User); 8774 } while (UI != UE && *UI == User); 8775 // We are iterating over all uses of the From node, so if a use 8776 // doesn't use the specific value, no changes are made. 8777 if (!UserRemovedFromCSEMaps) 8778 continue; 8779 8780 // Now that we have modified User, add it back to the CSE maps. If it 8781 // already exists there, recursively merge the results together. 8782 AddModifiedNodeToCSEMaps(User); 8783 } 8784 8785 // If we just RAUW'd the root, take note. 8786 if (From == getRoot()) 8787 setRoot(To); 8788 } 8789 8790 namespace { 8791 8792 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8793 /// to record information about a use. 8794 struct UseMemo { 8795 SDNode *User; 8796 unsigned Index; 8797 SDUse *Use; 8798 }; 8799 8800 /// operator< - Sort Memos by User. 8801 bool operator<(const UseMemo &L, const UseMemo &R) { 8802 return (intptr_t)L.User < (intptr_t)R.User; 8803 } 8804 8805 } // end anonymous namespace 8806 8807 bool SelectionDAG::calculateDivergence(SDNode *N) { 8808 if (TLI->isSDNodeAlwaysUniform(N)) { 8809 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8810 "Conflicting divergence information!"); 8811 return false; 8812 } 8813 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8814 return true; 8815 for (auto &Op : N->ops()) { 8816 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8817 return true; 8818 } 8819 return false; 8820 } 8821 8822 void SelectionDAG::updateDivergence(SDNode *N) { 8823 SmallVector<SDNode *, 16> Worklist(1, N); 8824 do { 8825 N = Worklist.pop_back_val(); 8826 bool IsDivergent = calculateDivergence(N); 8827 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8828 N->SDNodeBits.IsDivergent = IsDivergent; 8829 llvm::append_range(Worklist, N->uses()); 8830 } 8831 } while (!Worklist.empty()); 8832 } 8833 8834 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8835 DenseMap<SDNode *, unsigned> Degree; 8836 Order.reserve(AllNodes.size()); 8837 for (auto &N : allnodes()) { 8838 unsigned NOps = N.getNumOperands(); 8839 Degree[&N] = NOps; 8840 if (0 == NOps) 8841 Order.push_back(&N); 8842 } 8843 for (size_t I = 0; I != Order.size(); ++I) { 8844 SDNode *N = Order[I]; 8845 for (auto U : N->uses()) { 8846 unsigned &UnsortedOps = Degree[U]; 8847 if (0 == --UnsortedOps) 8848 Order.push_back(U); 8849 } 8850 } 8851 } 8852 8853 #ifndef NDEBUG 8854 void SelectionDAG::VerifyDAGDiverence() { 8855 std::vector<SDNode *> TopoOrder; 8856 CreateTopologicalOrder(TopoOrder); 8857 for (auto *N : TopoOrder) { 8858 assert(calculateDivergence(N) == N->isDivergent() && 8859 "Divergence bit inconsistency detected"); 8860 } 8861 } 8862 #endif 8863 8864 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8865 /// uses of other values produced by From.getNode() alone. The same value 8866 /// may appear in both the From and To list. The Deleted vector is 8867 /// handled the same way as for ReplaceAllUsesWith. 8868 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8869 const SDValue *To, 8870 unsigned Num){ 8871 // Handle the simple, trivial case efficiently. 8872 if (Num == 1) 8873 return ReplaceAllUsesOfValueWith(*From, *To); 8874 8875 transferDbgValues(*From, *To); 8876 8877 // Read up all the uses and make records of them. This helps 8878 // processing new uses that are introduced during the 8879 // replacement process. 8880 SmallVector<UseMemo, 4> Uses; 8881 for (unsigned i = 0; i != Num; ++i) { 8882 unsigned FromResNo = From[i].getResNo(); 8883 SDNode *FromNode = From[i].getNode(); 8884 for (SDNode::use_iterator UI = FromNode->use_begin(), 8885 E = FromNode->use_end(); UI != E; ++UI) { 8886 SDUse &Use = UI.getUse(); 8887 if (Use.getResNo() == FromResNo) { 8888 UseMemo Memo = { *UI, i, &Use }; 8889 Uses.push_back(Memo); 8890 } 8891 } 8892 } 8893 8894 // Sort the uses, so that all the uses from a given User are together. 8895 llvm::sort(Uses); 8896 8897 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8898 UseIndex != UseIndexEnd; ) { 8899 // We know that this user uses some value of From. If it is the right 8900 // value, update it. 8901 SDNode *User = Uses[UseIndex].User; 8902 8903 // This node is about to morph, remove its old self from the CSE maps. 8904 RemoveNodeFromCSEMaps(User); 8905 8906 // The Uses array is sorted, so all the uses for a given User 8907 // are next to each other in the list. 8908 // To help reduce the number of CSE recomputations, process all 8909 // the uses of this user that we can find this way. 8910 do { 8911 unsigned i = Uses[UseIndex].Index; 8912 SDUse &Use = *Uses[UseIndex].Use; 8913 ++UseIndex; 8914 8915 Use.set(To[i]); 8916 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8917 8918 // Now that we have modified User, add it back to the CSE maps. If it 8919 // already exists there, recursively merge the results together. 8920 AddModifiedNodeToCSEMaps(User); 8921 } 8922 } 8923 8924 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8925 /// based on their topological order. It returns the maximum id and a vector 8926 /// of the SDNodes* in assigned order by reference. 8927 unsigned SelectionDAG::AssignTopologicalOrder() { 8928 unsigned DAGSize = 0; 8929 8930 // SortedPos tracks the progress of the algorithm. Nodes before it are 8931 // sorted, nodes after it are unsorted. When the algorithm completes 8932 // it is at the end of the list. 8933 allnodes_iterator SortedPos = allnodes_begin(); 8934 8935 // Visit all the nodes. Move nodes with no operands to the front of 8936 // the list immediately. Annotate nodes that do have operands with their 8937 // operand count. Before we do this, the Node Id fields of the nodes 8938 // may contain arbitrary values. After, the Node Id fields for nodes 8939 // before SortedPos will contain the topological sort index, and the 8940 // Node Id fields for nodes At SortedPos and after will contain the 8941 // count of outstanding operands. 8942 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8943 SDNode *N = &*I++; 8944 checkForCycles(N, this); 8945 unsigned Degree = N->getNumOperands(); 8946 if (Degree == 0) { 8947 // A node with no uses, add it to the result array immediately. 8948 N->setNodeId(DAGSize++); 8949 allnodes_iterator Q(N); 8950 if (Q != SortedPos) 8951 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8952 assert(SortedPos != AllNodes.end() && "Overran node list"); 8953 ++SortedPos; 8954 } else { 8955 // Temporarily use the Node Id as scratch space for the degree count. 8956 N->setNodeId(Degree); 8957 } 8958 } 8959 8960 // Visit all the nodes. As we iterate, move nodes into sorted order, 8961 // such that by the time the end is reached all nodes will be sorted. 8962 for (SDNode &Node : allnodes()) { 8963 SDNode *N = &Node; 8964 checkForCycles(N, this); 8965 // N is in sorted position, so all its uses have one less operand 8966 // that needs to be sorted. 8967 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8968 UI != UE; ++UI) { 8969 SDNode *P = *UI; 8970 unsigned Degree = P->getNodeId(); 8971 assert(Degree != 0 && "Invalid node degree"); 8972 --Degree; 8973 if (Degree == 0) { 8974 // All of P's operands are sorted, so P may sorted now. 8975 P->setNodeId(DAGSize++); 8976 if (P->getIterator() != SortedPos) 8977 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8978 assert(SortedPos != AllNodes.end() && "Overran node list"); 8979 ++SortedPos; 8980 } else { 8981 // Update P's outstanding operand count. 8982 P->setNodeId(Degree); 8983 } 8984 } 8985 if (Node.getIterator() == SortedPos) { 8986 #ifndef NDEBUG 8987 allnodes_iterator I(N); 8988 SDNode *S = &*++I; 8989 dbgs() << "Overran sorted position:\n"; 8990 S->dumprFull(this); dbgs() << "\n"; 8991 dbgs() << "Checking if this is due to cycles\n"; 8992 checkForCycles(this, true); 8993 #endif 8994 llvm_unreachable(nullptr); 8995 } 8996 } 8997 8998 assert(SortedPos == AllNodes.end() && 8999 "Topological sort incomplete!"); 9000 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9001 "First node in topological sort is not the entry token!"); 9002 assert(AllNodes.front().getNodeId() == 0 && 9003 "First node in topological sort has non-zero id!"); 9004 assert(AllNodes.front().getNumOperands() == 0 && 9005 "First node in topological sort has operands!"); 9006 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9007 "Last node in topologic sort has unexpected id!"); 9008 assert(AllNodes.back().use_empty() && 9009 "Last node in topologic sort has users!"); 9010 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9011 return DAGSize; 9012 } 9013 9014 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9015 /// value is produced by SD. 9016 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 9017 if (SD) { 9018 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9019 SD->setHasDebugValue(true); 9020 } 9021 DbgInfo->add(DB, SD, isParameter); 9022 } 9023 9024 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 9025 DbgInfo->add(DB); 9026 } 9027 9028 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9029 SDValue NewMemOpChain) { 9030 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9031 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9032 // The new memory operation must have the same position as the old load in 9033 // terms of memory dependency. Create a TokenFactor for the old load and new 9034 // memory operation and update uses of the old load's output chain to use that 9035 // TokenFactor. 9036 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9037 return NewMemOpChain; 9038 9039 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9040 OldChain, NewMemOpChain); 9041 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9042 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9043 return TokenFactor; 9044 } 9045 9046 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9047 SDValue NewMemOp) { 9048 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9049 SDValue OldChain = SDValue(OldLoad, 1); 9050 SDValue NewMemOpChain = NewMemOp.getValue(1); 9051 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9052 } 9053 9054 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9055 Function **OutFunction) { 9056 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9057 9058 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9059 auto *Module = MF->getFunction().getParent(); 9060 auto *Function = Module->getFunction(Symbol); 9061 9062 if (OutFunction != nullptr) 9063 *OutFunction = Function; 9064 9065 if (Function != nullptr) { 9066 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9067 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9068 } 9069 9070 std::string ErrorStr; 9071 raw_string_ostream ErrorFormatter(ErrorStr); 9072 9073 ErrorFormatter << "Undefined external symbol "; 9074 ErrorFormatter << '"' << Symbol << '"'; 9075 ErrorFormatter.flush(); 9076 9077 report_fatal_error(ErrorStr); 9078 } 9079 9080 //===----------------------------------------------------------------------===// 9081 // SDNode Class 9082 //===----------------------------------------------------------------------===// 9083 9084 bool llvm::isNullConstant(SDValue V) { 9085 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9086 return Const != nullptr && Const->isNullValue(); 9087 } 9088 9089 bool llvm::isNullFPConstant(SDValue V) { 9090 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9091 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9092 } 9093 9094 bool llvm::isAllOnesConstant(SDValue V) { 9095 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9096 return Const != nullptr && Const->isAllOnesValue(); 9097 } 9098 9099 bool llvm::isOneConstant(SDValue V) { 9100 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9101 return Const != nullptr && Const->isOne(); 9102 } 9103 9104 SDValue llvm::peekThroughBitcasts(SDValue V) { 9105 while (V.getOpcode() == ISD::BITCAST) 9106 V = V.getOperand(0); 9107 return V; 9108 } 9109 9110 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9111 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9112 V = V.getOperand(0); 9113 return V; 9114 } 9115 9116 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9117 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9118 V = V.getOperand(0); 9119 return V; 9120 } 9121 9122 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9123 if (V.getOpcode() != ISD::XOR) 9124 return false; 9125 V = peekThroughBitcasts(V.getOperand(1)); 9126 unsigned NumBits = V.getScalarValueSizeInBits(); 9127 ConstantSDNode *C = 9128 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9129 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9130 } 9131 9132 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9133 bool AllowTruncation) { 9134 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9135 return CN; 9136 9137 // SplatVectors can truncate their operands. Ignore that case here unless 9138 // AllowTruncation is set. 9139 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9140 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9141 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9142 EVT CVT = CN->getValueType(0); 9143 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9144 if (AllowTruncation || CVT == VecEltVT) 9145 return CN; 9146 } 9147 } 9148 9149 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9150 BitVector UndefElements; 9151 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9152 9153 // BuildVectors can truncate their operands. Ignore that case here unless 9154 // AllowTruncation is set. 9155 if (CN && (UndefElements.none() || AllowUndefs)) { 9156 EVT CVT = CN->getValueType(0); 9157 EVT NSVT = N.getValueType().getScalarType(); 9158 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9159 if (AllowTruncation || (CVT == NSVT)) 9160 return CN; 9161 } 9162 } 9163 9164 return nullptr; 9165 } 9166 9167 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9168 bool AllowUndefs, 9169 bool AllowTruncation) { 9170 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9171 return CN; 9172 9173 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9174 BitVector UndefElements; 9175 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9176 9177 // BuildVectors can truncate their operands. Ignore that case here unless 9178 // AllowTruncation is set. 9179 if (CN && (UndefElements.none() || AllowUndefs)) { 9180 EVT CVT = CN->getValueType(0); 9181 EVT NSVT = N.getValueType().getScalarType(); 9182 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9183 if (AllowTruncation || (CVT == NSVT)) 9184 return CN; 9185 } 9186 } 9187 9188 return nullptr; 9189 } 9190 9191 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9192 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9193 return CN; 9194 9195 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9196 BitVector UndefElements; 9197 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9198 if (CN && (UndefElements.none() || AllowUndefs)) 9199 return CN; 9200 } 9201 9202 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9203 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9204 return CN; 9205 9206 return nullptr; 9207 } 9208 9209 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9210 const APInt &DemandedElts, 9211 bool AllowUndefs) { 9212 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9213 return CN; 9214 9215 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9216 BitVector UndefElements; 9217 ConstantFPSDNode *CN = 9218 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9219 if (CN && (UndefElements.none() || AllowUndefs)) 9220 return CN; 9221 } 9222 9223 return nullptr; 9224 } 9225 9226 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9227 // TODO: may want to use peekThroughBitcast() here. 9228 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9229 return C && C->isNullValue(); 9230 } 9231 9232 bool llvm::isOneOrOneSplat(SDValue N) { 9233 // TODO: may want to use peekThroughBitcast() here. 9234 unsigned BitWidth = N.getScalarValueSizeInBits(); 9235 ConstantSDNode *C = isConstOrConstSplat(N); 9236 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9237 } 9238 9239 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9240 N = peekThroughBitcasts(N); 9241 unsigned BitWidth = N.getScalarValueSizeInBits(); 9242 ConstantSDNode *C = isConstOrConstSplat(N); 9243 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9244 } 9245 9246 HandleSDNode::~HandleSDNode() { 9247 DropOperands(); 9248 } 9249 9250 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9251 const DebugLoc &DL, 9252 const GlobalValue *GA, EVT VT, 9253 int64_t o, unsigned TF) 9254 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9255 TheGlobal = GA; 9256 } 9257 9258 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9259 EVT VT, unsigned SrcAS, 9260 unsigned DestAS) 9261 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9262 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9263 9264 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9265 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9266 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9267 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9268 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9269 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9270 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9271 9272 // We check here that the size of the memory operand fits within the size of 9273 // the MMO. This is because the MMO might indicate only a possible address 9274 // range instead of specifying the affected memory addresses precisely. 9275 // TODO: Make MachineMemOperands aware of scalable vectors. 9276 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9277 "Size mismatch!"); 9278 } 9279 9280 /// Profile - Gather unique data for the node. 9281 /// 9282 void SDNode::Profile(FoldingSetNodeID &ID) const { 9283 AddNodeIDNode(ID, this); 9284 } 9285 9286 namespace { 9287 9288 struct EVTArray { 9289 std::vector<EVT> VTs; 9290 9291 EVTArray() { 9292 VTs.reserve(MVT::LAST_VALUETYPE); 9293 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9294 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9295 } 9296 }; 9297 9298 } // end anonymous namespace 9299 9300 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9301 static ManagedStatic<EVTArray> SimpleVTArray; 9302 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9303 9304 /// getValueTypeList - Return a pointer to the specified value type. 9305 /// 9306 const EVT *SDNode::getValueTypeList(EVT VT) { 9307 if (VT.isExtended()) { 9308 sys::SmartScopedLock<true> Lock(*VTMutex); 9309 return &(*EVTs->insert(VT).first); 9310 } else { 9311 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9312 "Value type out of range!"); 9313 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9314 } 9315 } 9316 9317 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9318 /// indicated value. This method ignores uses of other values defined by this 9319 /// operation. 9320 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9321 assert(Value < getNumValues() && "Bad value!"); 9322 9323 // TODO: Only iterate over uses of a given value of the node 9324 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9325 if (UI.getUse().getResNo() == Value) { 9326 if (NUses == 0) 9327 return false; 9328 --NUses; 9329 } 9330 } 9331 9332 // Found exactly the right number of uses? 9333 return NUses == 0; 9334 } 9335 9336 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9337 /// value. This method ignores uses of other values defined by this operation. 9338 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9339 assert(Value < getNumValues() && "Bad value!"); 9340 9341 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9342 if (UI.getUse().getResNo() == Value) 9343 return true; 9344 9345 return false; 9346 } 9347 9348 /// isOnlyUserOf - Return true if this node is the only use of N. 9349 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9350 bool Seen = false; 9351 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9352 SDNode *User = *I; 9353 if (User == this) 9354 Seen = true; 9355 else 9356 return false; 9357 } 9358 9359 return Seen; 9360 } 9361 9362 /// Return true if the only users of N are contained in Nodes. 9363 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9364 bool Seen = false; 9365 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9366 SDNode *User = *I; 9367 if (llvm::is_contained(Nodes, User)) 9368 Seen = true; 9369 else 9370 return false; 9371 } 9372 9373 return Seen; 9374 } 9375 9376 /// isOperand - Return true if this node is an operand of N. 9377 bool SDValue::isOperandOf(const SDNode *N) const { 9378 return is_contained(N->op_values(), *this); 9379 } 9380 9381 bool SDNode::isOperandOf(const SDNode *N) const { 9382 return any_of(N->op_values(), 9383 [this](SDValue Op) { return this == Op.getNode(); }); 9384 } 9385 9386 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9387 /// be a chain) reaches the specified operand without crossing any 9388 /// side-effecting instructions on any chain path. In practice, this looks 9389 /// through token factors and non-volatile loads. In order to remain efficient, 9390 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9391 /// 9392 /// Note that we only need to examine chains when we're searching for 9393 /// side-effects; SelectionDAG requires that all side-effects are represented 9394 /// by chains, even if another operand would force a specific ordering. This 9395 /// constraint is necessary to allow transformations like splitting loads. 9396 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9397 unsigned Depth) const { 9398 if (*this == Dest) return true; 9399 9400 // Don't search too deeply, we just want to be able to see through 9401 // TokenFactor's etc. 9402 if (Depth == 0) return false; 9403 9404 // If this is a token factor, all inputs to the TF happen in parallel. 9405 if (getOpcode() == ISD::TokenFactor) { 9406 // First, try a shallow search. 9407 if (is_contained((*this)->ops(), Dest)) { 9408 // We found the chain we want as an operand of this TokenFactor. 9409 // Essentially, we reach the chain without side-effects if we could 9410 // serialize the TokenFactor into a simple chain of operations with 9411 // Dest as the last operation. This is automatically true if the 9412 // chain has one use: there are no other ordering constraints. 9413 // If the chain has more than one use, we give up: some other 9414 // use of Dest might force a side-effect between Dest and the current 9415 // node. 9416 if (Dest.hasOneUse()) 9417 return true; 9418 } 9419 // Next, try a deep search: check whether every operand of the TokenFactor 9420 // reaches Dest. 9421 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9422 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9423 }); 9424 } 9425 9426 // Loads don't have side effects, look through them. 9427 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9428 if (Ld->isUnordered()) 9429 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9430 } 9431 return false; 9432 } 9433 9434 bool SDNode::hasPredecessor(const SDNode *N) const { 9435 SmallPtrSet<const SDNode *, 32> Visited; 9436 SmallVector<const SDNode *, 16> Worklist; 9437 Worklist.push_back(this); 9438 return hasPredecessorHelper(N, Visited, Worklist); 9439 } 9440 9441 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9442 this->Flags.intersectWith(Flags); 9443 } 9444 9445 SDValue 9446 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9447 ArrayRef<ISD::NodeType> CandidateBinOps, 9448 bool AllowPartials) { 9449 // The pattern must end in an extract from index 0. 9450 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9451 !isNullConstant(Extract->getOperand(1))) 9452 return SDValue(); 9453 9454 // Match against one of the candidate binary ops. 9455 SDValue Op = Extract->getOperand(0); 9456 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9457 return Op.getOpcode() == unsigned(BinOp); 9458 })) 9459 return SDValue(); 9460 9461 // Floating-point reductions may require relaxed constraints on the final step 9462 // of the reduction because they may reorder intermediate operations. 9463 unsigned CandidateBinOp = Op.getOpcode(); 9464 if (Op.getValueType().isFloatingPoint()) { 9465 SDNodeFlags Flags = Op->getFlags(); 9466 switch (CandidateBinOp) { 9467 case ISD::FADD: 9468 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9469 return SDValue(); 9470 break; 9471 default: 9472 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9473 } 9474 } 9475 9476 // Matching failed - attempt to see if we did enough stages that a partial 9477 // reduction from a subvector is possible. 9478 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9479 if (!AllowPartials || !Op) 9480 return SDValue(); 9481 EVT OpVT = Op.getValueType(); 9482 EVT OpSVT = OpVT.getScalarType(); 9483 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9484 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9485 return SDValue(); 9486 BinOp = (ISD::NodeType)CandidateBinOp; 9487 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9488 getVectorIdxConstant(0, SDLoc(Op))); 9489 }; 9490 9491 // At each stage, we're looking for something that looks like: 9492 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9493 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9494 // i32 undef, i32 undef, i32 undef, i32 undef> 9495 // %a = binop <8 x i32> %op, %s 9496 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9497 // we expect something like: 9498 // <4,5,6,7,u,u,u,u> 9499 // <2,3,u,u,u,u,u,u> 9500 // <1,u,u,u,u,u,u,u> 9501 // While a partial reduction match would be: 9502 // <2,3,u,u,u,u,u,u> 9503 // <1,u,u,u,u,u,u,u> 9504 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9505 SDValue PrevOp; 9506 for (unsigned i = 0; i < Stages; ++i) { 9507 unsigned MaskEnd = (1 << i); 9508 9509 if (Op.getOpcode() != CandidateBinOp) 9510 return PartialReduction(PrevOp, MaskEnd); 9511 9512 SDValue Op0 = Op.getOperand(0); 9513 SDValue Op1 = Op.getOperand(1); 9514 9515 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9516 if (Shuffle) { 9517 Op = Op1; 9518 } else { 9519 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9520 Op = Op0; 9521 } 9522 9523 // The first operand of the shuffle should be the same as the other operand 9524 // of the binop. 9525 if (!Shuffle || Shuffle->getOperand(0) != Op) 9526 return PartialReduction(PrevOp, MaskEnd); 9527 9528 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9529 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9530 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9531 return PartialReduction(PrevOp, MaskEnd); 9532 9533 PrevOp = Op; 9534 } 9535 9536 // Handle subvector reductions, which tend to appear after the shuffle 9537 // reduction stages. 9538 while (Op.getOpcode() == CandidateBinOp) { 9539 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9540 SDValue Op0 = Op.getOperand(0); 9541 SDValue Op1 = Op.getOperand(1); 9542 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9543 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9544 Op0.getOperand(0) != Op1.getOperand(0)) 9545 break; 9546 SDValue Src = Op0.getOperand(0); 9547 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9548 if (NumSrcElts != (2 * NumElts)) 9549 break; 9550 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9551 Op1.getConstantOperandAPInt(1) == NumElts) && 9552 !(Op1.getConstantOperandAPInt(1) == 0 && 9553 Op0.getConstantOperandAPInt(1) == NumElts)) 9554 break; 9555 Op = Src; 9556 } 9557 9558 BinOp = (ISD::NodeType)CandidateBinOp; 9559 return Op; 9560 } 9561 9562 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9563 assert(N->getNumValues() == 1 && 9564 "Can't unroll a vector with multiple results!"); 9565 9566 EVT VT = N->getValueType(0); 9567 unsigned NE = VT.getVectorNumElements(); 9568 EVT EltVT = VT.getVectorElementType(); 9569 SDLoc dl(N); 9570 9571 SmallVector<SDValue, 8> Scalars; 9572 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9573 9574 // If ResNE is 0, fully unroll the vector op. 9575 if (ResNE == 0) 9576 ResNE = NE; 9577 else if (NE > ResNE) 9578 NE = ResNE; 9579 9580 unsigned i; 9581 for (i= 0; i != NE; ++i) { 9582 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9583 SDValue Operand = N->getOperand(j); 9584 EVT OperandVT = Operand.getValueType(); 9585 if (OperandVT.isVector()) { 9586 // A vector operand; extract a single element. 9587 EVT OperandEltVT = OperandVT.getVectorElementType(); 9588 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9589 Operand, getVectorIdxConstant(i, dl)); 9590 } else { 9591 // A scalar operand; just use it as is. 9592 Operands[j] = Operand; 9593 } 9594 } 9595 9596 switch (N->getOpcode()) { 9597 default: { 9598 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9599 N->getFlags())); 9600 break; 9601 } 9602 case ISD::VSELECT: 9603 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9604 break; 9605 case ISD::SHL: 9606 case ISD::SRA: 9607 case ISD::SRL: 9608 case ISD::ROTL: 9609 case ISD::ROTR: 9610 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9611 getShiftAmountOperand(Operands[0].getValueType(), 9612 Operands[1]))); 9613 break; 9614 case ISD::SIGN_EXTEND_INREG: { 9615 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9616 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9617 Operands[0], 9618 getValueType(ExtVT))); 9619 } 9620 } 9621 } 9622 9623 for (; i < ResNE; ++i) 9624 Scalars.push_back(getUNDEF(EltVT)); 9625 9626 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9627 return getBuildVector(VecVT, dl, Scalars); 9628 } 9629 9630 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9631 SDNode *N, unsigned ResNE) { 9632 unsigned Opcode = N->getOpcode(); 9633 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9634 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9635 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9636 "Expected an overflow opcode"); 9637 9638 EVT ResVT = N->getValueType(0); 9639 EVT OvVT = N->getValueType(1); 9640 EVT ResEltVT = ResVT.getVectorElementType(); 9641 EVT OvEltVT = OvVT.getVectorElementType(); 9642 SDLoc dl(N); 9643 9644 // If ResNE is 0, fully unroll the vector op. 9645 unsigned NE = ResVT.getVectorNumElements(); 9646 if (ResNE == 0) 9647 ResNE = NE; 9648 else if (NE > ResNE) 9649 NE = ResNE; 9650 9651 SmallVector<SDValue, 8> LHSScalars; 9652 SmallVector<SDValue, 8> RHSScalars; 9653 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9654 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9655 9656 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9657 SDVTList VTs = getVTList(ResEltVT, SVT); 9658 SmallVector<SDValue, 8> ResScalars; 9659 SmallVector<SDValue, 8> OvScalars; 9660 for (unsigned i = 0; i < NE; ++i) { 9661 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9662 SDValue Ov = 9663 getSelect(dl, OvEltVT, Res.getValue(1), 9664 getBoolConstant(true, dl, OvEltVT, ResVT), 9665 getConstant(0, dl, OvEltVT)); 9666 9667 ResScalars.push_back(Res); 9668 OvScalars.push_back(Ov); 9669 } 9670 9671 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9672 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9673 9674 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9675 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9676 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9677 getBuildVector(NewOvVT, dl, OvScalars)); 9678 } 9679 9680 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9681 LoadSDNode *Base, 9682 unsigned Bytes, 9683 int Dist) const { 9684 if (LD->isVolatile() || Base->isVolatile()) 9685 return false; 9686 // TODO: probably too restrictive for atomics, revisit 9687 if (!LD->isSimple()) 9688 return false; 9689 if (LD->isIndexed() || Base->isIndexed()) 9690 return false; 9691 if (LD->getChain() != Base->getChain()) 9692 return false; 9693 EVT VT = LD->getValueType(0); 9694 if (VT.getSizeInBits() / 8 != Bytes) 9695 return false; 9696 9697 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9698 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9699 9700 int64_t Offset = 0; 9701 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9702 return (Dist * Bytes == Offset); 9703 return false; 9704 } 9705 9706 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9707 /// if it cannot be inferred. 9708 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9709 // If this is a GlobalAddress + cst, return the alignment. 9710 const GlobalValue *GV = nullptr; 9711 int64_t GVOffset = 0; 9712 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9713 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9714 KnownBits Known(PtrWidth); 9715 llvm::computeKnownBits(GV, Known, getDataLayout()); 9716 unsigned AlignBits = Known.countMinTrailingZeros(); 9717 if (AlignBits) 9718 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9719 } 9720 9721 // If this is a direct reference to a stack slot, use information about the 9722 // stack slot's alignment. 9723 int FrameIdx = INT_MIN; 9724 int64_t FrameOffset = 0; 9725 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9726 FrameIdx = FI->getIndex(); 9727 } else if (isBaseWithConstantOffset(Ptr) && 9728 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9729 // Handle FI+Cst 9730 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9731 FrameOffset = Ptr.getConstantOperandVal(1); 9732 } 9733 9734 if (FrameIdx != INT_MIN) { 9735 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9736 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9737 } 9738 9739 return None; 9740 } 9741 9742 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9743 /// which is split (or expanded) into two not necessarily identical pieces. 9744 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9745 // Currently all types are split in half. 9746 EVT LoVT, HiVT; 9747 if (!VT.isVector()) 9748 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9749 else 9750 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9751 9752 return std::make_pair(LoVT, HiVT); 9753 } 9754 9755 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9756 /// type, dependent on an enveloping VT that has been split into two identical 9757 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9758 std::pair<EVT, EVT> 9759 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9760 bool *HiIsEmpty) const { 9761 EVT EltTp = VT.getVectorElementType(); 9762 // Examples: 9763 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9764 // custom VL=9 with enveloping VL=8/8 yields 8/1 9765 // custom VL=10 with enveloping VL=8/8 yields 8/2 9766 // etc. 9767 ElementCount VTNumElts = VT.getVectorElementCount(); 9768 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9769 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9770 "Mixing fixed width and scalable vectors when enveloping a type"); 9771 EVT LoVT, HiVT; 9772 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9773 LoVT = EnvVT; 9774 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9775 *HiIsEmpty = false; 9776 } else { 9777 // Flag that hi type has zero storage size, but return split envelop type 9778 // (this would be easier if vector types with zero elements were allowed). 9779 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9780 HiVT = EnvVT; 9781 *HiIsEmpty = true; 9782 } 9783 return std::make_pair(LoVT, HiVT); 9784 } 9785 9786 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9787 /// low/high part. 9788 std::pair<SDValue, SDValue> 9789 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9790 const EVT &HiVT) { 9791 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9792 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9793 "Splitting vector with an invalid mixture of fixed and scalable " 9794 "vector types"); 9795 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9796 N.getValueType().getVectorMinNumElements() && 9797 "More vector elements requested than available!"); 9798 SDValue Lo, Hi; 9799 Lo = 9800 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9801 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9802 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9803 // IDX with the runtime scaling factor of the result vector type. For 9804 // fixed-width result vectors, that runtime scaling factor is 1. 9805 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9806 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9807 return std::make_pair(Lo, Hi); 9808 } 9809 9810 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9811 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9812 EVT VT = N.getValueType(); 9813 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9814 NextPowerOf2(VT.getVectorNumElements())); 9815 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9816 getVectorIdxConstant(0, DL)); 9817 } 9818 9819 void SelectionDAG::ExtractVectorElements(SDValue Op, 9820 SmallVectorImpl<SDValue> &Args, 9821 unsigned Start, unsigned Count, 9822 EVT EltVT) { 9823 EVT VT = Op.getValueType(); 9824 if (Count == 0) 9825 Count = VT.getVectorNumElements(); 9826 if (EltVT == EVT()) 9827 EltVT = VT.getVectorElementType(); 9828 SDLoc SL(Op); 9829 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9830 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9831 getVectorIdxConstant(i, SL))); 9832 } 9833 } 9834 9835 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9836 unsigned GlobalAddressSDNode::getAddressSpace() const { 9837 return getGlobal()->getType()->getAddressSpace(); 9838 } 9839 9840 Type *ConstantPoolSDNode::getType() const { 9841 if (isMachineConstantPoolEntry()) 9842 return Val.MachineCPVal->getType(); 9843 return Val.ConstVal->getType(); 9844 } 9845 9846 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9847 unsigned &SplatBitSize, 9848 bool &HasAnyUndefs, 9849 unsigned MinSplatBits, 9850 bool IsBigEndian) const { 9851 EVT VT = getValueType(0); 9852 assert(VT.isVector() && "Expected a vector type"); 9853 unsigned VecWidth = VT.getSizeInBits(); 9854 if (MinSplatBits > VecWidth) 9855 return false; 9856 9857 // FIXME: The widths are based on this node's type, but build vectors can 9858 // truncate their operands. 9859 SplatValue = APInt(VecWidth, 0); 9860 SplatUndef = APInt(VecWidth, 0); 9861 9862 // Get the bits. Bits with undefined values (when the corresponding element 9863 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9864 // in SplatValue. If any of the values are not constant, give up and return 9865 // false. 9866 unsigned int NumOps = getNumOperands(); 9867 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9868 unsigned EltWidth = VT.getScalarSizeInBits(); 9869 9870 for (unsigned j = 0; j < NumOps; ++j) { 9871 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9872 SDValue OpVal = getOperand(i); 9873 unsigned BitPos = j * EltWidth; 9874 9875 if (OpVal.isUndef()) 9876 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9877 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9878 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9879 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9880 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9881 else 9882 return false; 9883 } 9884 9885 // The build_vector is all constants or undefs. Find the smallest element 9886 // size that splats the vector. 9887 HasAnyUndefs = (SplatUndef != 0); 9888 9889 // FIXME: This does not work for vectors with elements less than 8 bits. 9890 while (VecWidth > 8) { 9891 unsigned HalfSize = VecWidth / 2; 9892 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9893 APInt LowValue = SplatValue.trunc(HalfSize); 9894 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9895 APInt LowUndef = SplatUndef.trunc(HalfSize); 9896 9897 // If the two halves do not match (ignoring undef bits), stop here. 9898 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9899 MinSplatBits > HalfSize) 9900 break; 9901 9902 SplatValue = HighValue | LowValue; 9903 SplatUndef = HighUndef & LowUndef; 9904 9905 VecWidth = HalfSize; 9906 } 9907 9908 SplatBitSize = VecWidth; 9909 return true; 9910 } 9911 9912 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9913 BitVector *UndefElements) const { 9914 unsigned NumOps = getNumOperands(); 9915 if (UndefElements) { 9916 UndefElements->clear(); 9917 UndefElements->resize(NumOps); 9918 } 9919 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9920 if (!DemandedElts) 9921 return SDValue(); 9922 SDValue Splatted; 9923 for (unsigned i = 0; i != NumOps; ++i) { 9924 if (!DemandedElts[i]) 9925 continue; 9926 SDValue Op = getOperand(i); 9927 if (Op.isUndef()) { 9928 if (UndefElements) 9929 (*UndefElements)[i] = true; 9930 } else if (!Splatted) { 9931 Splatted = Op; 9932 } else if (Splatted != Op) { 9933 return SDValue(); 9934 } 9935 } 9936 9937 if (!Splatted) { 9938 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9939 assert(getOperand(FirstDemandedIdx).isUndef() && 9940 "Can only have a splat without a constant for all undefs."); 9941 return getOperand(FirstDemandedIdx); 9942 } 9943 9944 return Splatted; 9945 } 9946 9947 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9948 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9949 return getSplatValue(DemandedElts, UndefElements); 9950 } 9951 9952 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9953 SmallVectorImpl<SDValue> &Sequence, 9954 BitVector *UndefElements) const { 9955 unsigned NumOps = getNumOperands(); 9956 Sequence.clear(); 9957 if (UndefElements) { 9958 UndefElements->clear(); 9959 UndefElements->resize(NumOps); 9960 } 9961 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9962 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9963 return false; 9964 9965 // Set the undefs even if we don't find a sequence (like getSplatValue). 9966 if (UndefElements) 9967 for (unsigned I = 0; I != NumOps; ++I) 9968 if (DemandedElts[I] && getOperand(I).isUndef()) 9969 (*UndefElements)[I] = true; 9970 9971 // Iteratively widen the sequence length looking for repetitions. 9972 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9973 Sequence.append(SeqLen, SDValue()); 9974 for (unsigned I = 0; I != NumOps; ++I) { 9975 if (!DemandedElts[I]) 9976 continue; 9977 SDValue &SeqOp = Sequence[I % SeqLen]; 9978 SDValue Op = getOperand(I); 9979 if (Op.isUndef()) { 9980 if (!SeqOp) 9981 SeqOp = Op; 9982 continue; 9983 } 9984 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9985 Sequence.clear(); 9986 break; 9987 } 9988 SeqOp = Op; 9989 } 9990 if (!Sequence.empty()) 9991 return true; 9992 } 9993 9994 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9995 return false; 9996 } 9997 9998 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 9999 BitVector *UndefElements) const { 10000 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10001 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10002 } 10003 10004 ConstantSDNode * 10005 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10006 BitVector *UndefElements) const { 10007 return dyn_cast_or_null<ConstantSDNode>( 10008 getSplatValue(DemandedElts, UndefElements)); 10009 } 10010 10011 ConstantSDNode * 10012 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10013 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10014 } 10015 10016 ConstantFPSDNode * 10017 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10018 BitVector *UndefElements) const { 10019 return dyn_cast_or_null<ConstantFPSDNode>( 10020 getSplatValue(DemandedElts, UndefElements)); 10021 } 10022 10023 ConstantFPSDNode * 10024 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10025 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10026 } 10027 10028 int32_t 10029 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10030 uint32_t BitWidth) const { 10031 if (ConstantFPSDNode *CN = 10032 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10033 bool IsExact; 10034 APSInt IntVal(BitWidth); 10035 const APFloat &APF = CN->getValueAPF(); 10036 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10037 APFloat::opOK || 10038 !IsExact) 10039 return -1; 10040 10041 return IntVal.exactLogBase2(); 10042 } 10043 return -1; 10044 } 10045 10046 bool BuildVectorSDNode::isConstant() const { 10047 for (const SDValue &Op : op_values()) { 10048 unsigned Opc = Op.getOpcode(); 10049 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10050 return false; 10051 } 10052 return true; 10053 } 10054 10055 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10056 // Find the first non-undef value in the shuffle mask. 10057 unsigned i, e; 10058 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10059 /* search */; 10060 10061 // If all elements are undefined, this shuffle can be considered a splat 10062 // (although it should eventually get simplified away completely). 10063 if (i == e) 10064 return true; 10065 10066 // Make sure all remaining elements are either undef or the same as the first 10067 // non-undef value. 10068 for (int Idx = Mask[i]; i != e; ++i) 10069 if (Mask[i] >= 0 && Mask[i] != Idx) 10070 return false; 10071 return true; 10072 } 10073 10074 // Returns the SDNode if it is a constant integer BuildVector 10075 // or constant integer. 10076 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10077 if (isa<ConstantSDNode>(N)) 10078 return N.getNode(); 10079 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10080 return N.getNode(); 10081 // Treat a GlobalAddress supporting constant offset folding as a 10082 // constant integer. 10083 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10084 if (GA->getOpcode() == ISD::GlobalAddress && 10085 TLI->isOffsetFoldingLegal(GA)) 10086 return GA; 10087 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10088 isa<ConstantSDNode>(N.getOperand(0))) 10089 return N.getNode(); 10090 return nullptr; 10091 } 10092 10093 // Returns the SDNode if it is a constant float BuildVector 10094 // or constant float. 10095 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10096 if (isa<ConstantFPSDNode>(N)) 10097 return N.getNode(); 10098 10099 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10100 return N.getNode(); 10101 10102 return nullptr; 10103 } 10104 10105 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10106 assert(!Node->OperandList && "Node already has operands"); 10107 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10108 "too many operands to fit into SDNode"); 10109 SDUse *Ops = OperandRecycler.allocate( 10110 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10111 10112 bool IsDivergent = false; 10113 for (unsigned I = 0; I != Vals.size(); ++I) { 10114 Ops[I].setUser(Node); 10115 Ops[I].setInitial(Vals[I]); 10116 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10117 IsDivergent |= Ops[I].getNode()->isDivergent(); 10118 } 10119 Node->NumOperands = Vals.size(); 10120 Node->OperandList = Ops; 10121 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10122 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10123 Node->SDNodeBits.IsDivergent = IsDivergent; 10124 } 10125 checkForCycles(Node); 10126 } 10127 10128 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10129 SmallVectorImpl<SDValue> &Vals) { 10130 size_t Limit = SDNode::getMaxNumOperands(); 10131 while (Vals.size() > Limit) { 10132 unsigned SliceIdx = Vals.size() - Limit; 10133 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10134 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10135 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10136 Vals.emplace_back(NewTF); 10137 } 10138 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10139 } 10140 10141 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10142 EVT VT, SDNodeFlags Flags) { 10143 switch (Opcode) { 10144 default: 10145 return SDValue(); 10146 case ISD::ADD: 10147 case ISD::OR: 10148 case ISD::XOR: 10149 case ISD::UMAX: 10150 return getConstant(0, DL, VT); 10151 case ISD::MUL: 10152 return getConstant(1, DL, VT); 10153 case ISD::AND: 10154 case ISD::UMIN: 10155 return getAllOnesConstant(DL, VT); 10156 case ISD::SMAX: 10157 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10158 case ISD::SMIN: 10159 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10160 case ISD::FADD: 10161 return getConstantFP(-0.0, DL, VT); 10162 case ISD::FMUL: 10163 return getConstantFP(1.0, DL, VT); 10164 case ISD::FMINNUM: 10165 case ISD::FMAXNUM: { 10166 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10167 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10168 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10169 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10170 APFloat::getLargest(Semantics); 10171 if (Opcode == ISD::FMAXNUM) 10172 NeutralAF.changeSign(); 10173 10174 return getConstantFP(NeutralAF, DL, VT); 10175 } 10176 } 10177 } 10178 10179 #ifndef NDEBUG 10180 static void checkForCyclesHelper(const SDNode *N, 10181 SmallPtrSetImpl<const SDNode*> &Visited, 10182 SmallPtrSetImpl<const SDNode*> &Checked, 10183 const llvm::SelectionDAG *DAG) { 10184 // If this node has already been checked, don't check it again. 10185 if (Checked.count(N)) 10186 return; 10187 10188 // If a node has already been visited on this depth-first walk, reject it as 10189 // a cycle. 10190 if (!Visited.insert(N).second) { 10191 errs() << "Detected cycle in SelectionDAG\n"; 10192 dbgs() << "Offending node:\n"; 10193 N->dumprFull(DAG); dbgs() << "\n"; 10194 abort(); 10195 } 10196 10197 for (const SDValue &Op : N->op_values()) 10198 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10199 10200 Checked.insert(N); 10201 Visited.erase(N); 10202 } 10203 #endif 10204 10205 void llvm::checkForCycles(const llvm::SDNode *N, 10206 const llvm::SelectionDAG *DAG, 10207 bool force) { 10208 #ifndef NDEBUG 10209 bool check = force; 10210 #ifdef EXPENSIVE_CHECKS 10211 check = true; 10212 #endif // EXPENSIVE_CHECKS 10213 if (check) { 10214 assert(N && "Checking nonexistent SDNode"); 10215 SmallPtrSet<const SDNode*, 32> visited; 10216 SmallPtrSet<const SDNode*, 32> checked; 10217 checkForCyclesHelper(N, visited, checked, DAG); 10218 } 10219 #endif // !NDEBUG 10220 } 10221 10222 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10223 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10224 } 10225