1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 410 case ISD::VPSD: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 break; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 421 #define VP_PROPERTY_BINARYOP return true; 422 #define END_REGISTER_VP_SDNODE(VPSD) break; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 return false; 426 } 427 428 bool ISD::isVPReduction(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 /// The operand position of the vector mask. 441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 442 switch (Opcode) { 443 default: 444 return None; 445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 446 case ISD::VPSD: \ 447 return MASKPOS; 448 #include "llvm/IR/VPIntrinsics.def" 449 } 450 } 451 452 /// The operand position of the explicit vector length parameter. 453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 458 case ISD::VPSD: \ 459 return EVLPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 465 switch (ExtType) { 466 case ISD::EXTLOAD: 467 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 468 case ISD::SEXTLOAD: 469 return ISD::SIGN_EXTEND; 470 case ISD::ZEXTLOAD: 471 return ISD::ZERO_EXTEND; 472 default: 473 break; 474 } 475 476 llvm_unreachable("Invalid LoadExtType"); 477 } 478 479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 480 // To perform this operation, we just need to swap the L and G bits of the 481 // operation. 482 unsigned OldL = (Operation >> 2) & 1; 483 unsigned OldG = (Operation >> 1) & 1; 484 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 485 (OldL << 1) | // New G bit 486 (OldG << 2)); // New L bit. 487 } 488 489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 490 unsigned Operation = Op; 491 if (isIntegerLike) 492 Operation ^= 7; // Flip L, G, E bits, but not U. 493 else 494 Operation ^= 15; // Flip all of the condition bits. 495 496 if (Operation > ISD::SETTRUE2) 497 Operation &= ~8; // Don't let N and U bits get set. 498 499 return ISD::CondCode(Operation); 500 } 501 502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 503 return getSetCCInverseImpl(Op, Type.isInteger()); 504 } 505 506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 507 bool isIntegerLike) { 508 return getSetCCInverseImpl(Op, isIntegerLike); 509 } 510 511 /// For an integer comparison, return 1 if the comparison is a signed operation 512 /// and 2 if the result is an unsigned comparison. Return zero if the operation 513 /// does not depend on the sign of the input (setne and seteq). 514 static int isSignedOp(ISD::CondCode Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Illegal integer setcc operation!"); 517 case ISD::SETEQ: 518 case ISD::SETNE: return 0; 519 case ISD::SETLT: 520 case ISD::SETLE: 521 case ISD::SETGT: 522 case ISD::SETGE: return 1; 523 case ISD::SETULT: 524 case ISD::SETULE: 525 case ISD::SETUGT: 526 case ISD::SETUGE: return 2; 527 } 528 } 529 530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 531 EVT Type) { 532 bool IsInteger = Type.isInteger(); 533 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 534 // Cannot fold a signed integer setcc with an unsigned integer setcc. 535 return ISD::SETCC_INVALID; 536 537 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 538 539 // If the N and U bits get set, then the resultant comparison DOES suddenly 540 // care about orderedness, and it is true when ordered. 541 if (Op > ISD::SETTRUE2) 542 Op &= ~16; // Clear the U bit if the N bit is set. 543 544 // Canonicalize illegal integer setcc's. 545 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 546 Op = ISD::SETNE; 547 548 return ISD::CondCode(Op); 549 } 550 551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 552 EVT Type) { 553 bool IsInteger = Type.isInteger(); 554 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 555 // Cannot fold a signed setcc with an unsigned setcc. 556 return ISD::SETCC_INVALID; 557 558 // Combine all of the condition bits. 559 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 560 561 // Canonicalize illegal integer setcc's. 562 if (IsInteger) { 563 switch (Result) { 564 default: break; 565 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 566 case ISD::SETOEQ: // SETEQ & SETU[LG]E 567 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 568 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 569 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 570 } 571 } 572 573 return Result; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // SDNode Profile Support 578 //===----------------------------------------------------------------------===// 579 580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 582 ID.AddInteger(OpC); 583 } 584 585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 586 /// solely with their pointer. 587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 588 ID.AddPointer(VTList.VTs); 589 } 590 591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 592 static void AddNodeIDOperands(FoldingSetNodeID &ID, 593 ArrayRef<SDValue> Ops) { 594 for (auto& Op : Ops) { 595 ID.AddPointer(Op.getNode()); 596 ID.AddInteger(Op.getResNo()); 597 } 598 } 599 600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 601 static void AddNodeIDOperands(FoldingSetNodeID &ID, 602 ArrayRef<SDUse> Ops) { 603 for (auto& Op : Ops) { 604 ID.AddPointer(Op.getNode()); 605 ID.AddInteger(Op.getResNo()); 606 } 607 } 608 609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 610 SDVTList VTList, ArrayRef<SDValue> OpList) { 611 AddNodeIDOpcode(ID, OpC); 612 AddNodeIDValueTypes(ID, VTList); 613 AddNodeIDOperands(ID, OpList); 614 } 615 616 /// If this is an SDNode with special info, add this info to the NodeID data. 617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 618 switch (N->getOpcode()) { 619 case ISD::TargetExternalSymbol: 620 case ISD::ExternalSymbol: 621 case ISD::MCSymbol: 622 llvm_unreachable("Should only be used on nodes with operands"); 623 default: break; // Normal nodes don't need extra info. 624 case ISD::TargetConstant: 625 case ISD::Constant: { 626 const ConstantSDNode *C = cast<ConstantSDNode>(N); 627 ID.AddPointer(C->getConstantIntValue()); 628 ID.AddBoolean(C->isOpaque()); 629 break; 630 } 631 case ISD::TargetConstantFP: 632 case ISD::ConstantFP: 633 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 634 break; 635 case ISD::TargetGlobalAddress: 636 case ISD::GlobalAddress: 637 case ISD::TargetGlobalTLSAddress: 638 case ISD::GlobalTLSAddress: { 639 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 640 ID.AddPointer(GA->getGlobal()); 641 ID.AddInteger(GA->getOffset()); 642 ID.AddInteger(GA->getTargetFlags()); 643 break; 644 } 645 case ISD::BasicBlock: 646 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 647 break; 648 case ISD::Register: 649 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 650 break; 651 case ISD::RegisterMask: 652 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 653 break; 654 case ISD::SRCVALUE: 655 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 656 break; 657 case ISD::FrameIndex: 658 case ISD::TargetFrameIndex: 659 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 660 break; 661 case ISD::LIFETIME_START: 662 case ISD::LIFETIME_END: 663 if (cast<LifetimeSDNode>(N)->hasOffset()) { 664 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 665 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 666 } 667 break; 668 case ISD::PSEUDO_PROBE: 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 670 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 671 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 672 break; 673 case ISD::JumpTable: 674 case ISD::TargetJumpTable: 675 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 676 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 677 break; 678 case ISD::ConstantPool: 679 case ISD::TargetConstantPool: { 680 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 681 ID.AddInteger(CP->getAlign().value()); 682 ID.AddInteger(CP->getOffset()); 683 if (CP->isMachineConstantPoolEntry()) 684 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 685 else 686 ID.AddPointer(CP->getConstVal()); 687 ID.AddInteger(CP->getTargetFlags()); 688 break; 689 } 690 case ISD::TargetIndex: { 691 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 692 ID.AddInteger(TI->getIndex()); 693 ID.AddInteger(TI->getOffset()); 694 ID.AddInteger(TI->getTargetFlags()); 695 break; 696 } 697 case ISD::LOAD: { 698 const LoadSDNode *LD = cast<LoadSDNode>(N); 699 ID.AddInteger(LD->getMemoryVT().getRawBits()); 700 ID.AddInteger(LD->getRawSubclassData()); 701 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 702 break; 703 } 704 case ISD::STORE: { 705 const StoreSDNode *ST = cast<StoreSDNode>(N); 706 ID.AddInteger(ST->getMemoryVT().getRawBits()); 707 ID.AddInteger(ST->getRawSubclassData()); 708 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 709 break; 710 } 711 case ISD::VP_LOAD: { 712 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 713 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 714 ID.AddInteger(ELD->getRawSubclassData()); 715 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 716 break; 717 } 718 case ISD::VP_STORE: { 719 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 720 ID.AddInteger(EST->getMemoryVT().getRawBits()); 721 ID.AddInteger(EST->getRawSubclassData()); 722 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 723 break; 724 } 725 case ISD::VP_GATHER: { 726 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 727 ID.AddInteger(EG->getMemoryVT().getRawBits()); 728 ID.AddInteger(EG->getRawSubclassData()); 729 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 730 break; 731 } 732 case ISD::VP_SCATTER: { 733 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 734 ID.AddInteger(ES->getMemoryVT().getRawBits()); 735 ID.AddInteger(ES->getRawSubclassData()); 736 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::MLOAD: { 740 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 741 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 742 ID.AddInteger(MLD->getRawSubclassData()); 743 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 744 break; 745 } 746 case ISD::MSTORE: { 747 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 748 ID.AddInteger(MST->getMemoryVT().getRawBits()); 749 ID.AddInteger(MST->getRawSubclassData()); 750 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 751 break; 752 } 753 case ISD::MGATHER: { 754 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 755 ID.AddInteger(MG->getMemoryVT().getRawBits()); 756 ID.AddInteger(MG->getRawSubclassData()); 757 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 758 break; 759 } 760 case ISD::MSCATTER: { 761 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 762 ID.AddInteger(MS->getMemoryVT().getRawBits()); 763 ID.AddInteger(MS->getRawSubclassData()); 764 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 765 break; 766 } 767 case ISD::ATOMIC_CMP_SWAP: 768 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 769 case ISD::ATOMIC_SWAP: 770 case ISD::ATOMIC_LOAD_ADD: 771 case ISD::ATOMIC_LOAD_SUB: 772 case ISD::ATOMIC_LOAD_AND: 773 case ISD::ATOMIC_LOAD_CLR: 774 case ISD::ATOMIC_LOAD_OR: 775 case ISD::ATOMIC_LOAD_XOR: 776 case ISD::ATOMIC_LOAD_NAND: 777 case ISD::ATOMIC_LOAD_MIN: 778 case ISD::ATOMIC_LOAD_MAX: 779 case ISD::ATOMIC_LOAD_UMIN: 780 case ISD::ATOMIC_LOAD_UMAX: 781 case ISD::ATOMIC_LOAD: 782 case ISD::ATOMIC_STORE: { 783 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 784 ID.AddInteger(AT->getMemoryVT().getRawBits()); 785 ID.AddInteger(AT->getRawSubclassData()); 786 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 787 break; 788 } 789 case ISD::PREFETCH: { 790 const MemSDNode *PF = cast<MemSDNode>(N); 791 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 792 break; 793 } 794 case ISD::VECTOR_SHUFFLE: { 795 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 796 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 797 i != e; ++i) 798 ID.AddInteger(SVN->getMaskElt(i)); 799 break; 800 } 801 case ISD::TargetBlockAddress: 802 case ISD::BlockAddress: { 803 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 804 ID.AddPointer(BA->getBlockAddress()); 805 ID.AddInteger(BA->getOffset()); 806 ID.AddInteger(BA->getTargetFlags()); 807 break; 808 } 809 } // end switch (N->getOpcode()) 810 811 // Target specific memory nodes could also have address spaces to check. 812 if (N->isTargetMemoryOpcode()) 813 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 814 } 815 816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 817 /// data. 818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 819 AddNodeIDOpcode(ID, N->getOpcode()); 820 // Add the return value info. 821 AddNodeIDValueTypes(ID, N->getVTList()); 822 // Add the operand info. 823 AddNodeIDOperands(ID, N->ops()); 824 825 // Handle SDNode leafs with special info. 826 AddNodeIDCustom(ID, N); 827 } 828 829 //===----------------------------------------------------------------------===// 830 // SelectionDAG Class 831 //===----------------------------------------------------------------------===// 832 833 /// doNotCSE - Return true if CSE should not be performed for this node. 834 static bool doNotCSE(SDNode *N) { 835 if (N->getValueType(0) == MVT::Glue) 836 return true; // Never CSE anything that produces a flag. 837 838 switch (N->getOpcode()) { 839 default: break; 840 case ISD::HANDLENODE: 841 case ISD::EH_LABEL: 842 return true; // Never CSE these nodes. 843 } 844 845 // Check that remaining values produced are not flags. 846 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 847 if (N->getValueType(i) == MVT::Glue) 848 return true; // Never CSE anything that produces a flag. 849 850 return false; 851 } 852 853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 854 /// SelectionDAG. 855 void SelectionDAG::RemoveDeadNodes() { 856 // Create a dummy node (which is not added to allnodes), that adds a reference 857 // to the root node, preventing it from being deleted. 858 HandleSDNode Dummy(getRoot()); 859 860 SmallVector<SDNode*, 128> DeadNodes; 861 862 // Add all obviously-dead nodes to the DeadNodes worklist. 863 for (SDNode &Node : allnodes()) 864 if (Node.use_empty()) 865 DeadNodes.push_back(&Node); 866 867 RemoveDeadNodes(DeadNodes); 868 869 // If the root changed (e.g. it was a dead load, update the root). 870 setRoot(Dummy.getValue()); 871 } 872 873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 874 /// given list, and any nodes that become unreachable as a result. 875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 876 877 // Process the worklist, deleting the nodes and adding their uses to the 878 // worklist. 879 while (!DeadNodes.empty()) { 880 SDNode *N = DeadNodes.pop_back_val(); 881 // Skip to next node if we've already managed to delete the node. This could 882 // happen if replacing a node causes a node previously added to the node to 883 // be deleted. 884 if (N->getOpcode() == ISD::DELETED_NODE) 885 continue; 886 887 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 888 DUL->NodeDeleted(N, nullptr); 889 890 // Take the node out of the appropriate CSE map. 891 RemoveNodeFromCSEMaps(N); 892 893 // Next, brutally remove the operand list. This is safe to do, as there are 894 // no cycles in the graph. 895 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 896 SDUse &Use = *I++; 897 SDNode *Operand = Use.getNode(); 898 Use.set(SDValue()); 899 900 // Now that we removed this operand, see if there are no uses of it left. 901 if (Operand->use_empty()) 902 DeadNodes.push_back(Operand); 903 } 904 905 DeallocateNode(N); 906 } 907 } 908 909 void SelectionDAG::RemoveDeadNode(SDNode *N){ 910 SmallVector<SDNode*, 16> DeadNodes(1, N); 911 912 // Create a dummy node that adds a reference to the root node, preventing 913 // it from being deleted. (This matters if the root is an operand of the 914 // dead node.) 915 HandleSDNode Dummy(getRoot()); 916 917 RemoveDeadNodes(DeadNodes); 918 } 919 920 void SelectionDAG::DeleteNode(SDNode *N) { 921 // First take this out of the appropriate CSE map. 922 RemoveNodeFromCSEMaps(N); 923 924 // Finally, remove uses due to operands of this node, remove from the 925 // AllNodes list, and delete the node. 926 DeleteNodeNotInCSEMaps(N); 927 } 928 929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 930 assert(N->getIterator() != AllNodes.begin() && 931 "Cannot delete the entry node!"); 932 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 933 934 // Drop all of the operands and decrement used node's use counts. 935 N->DropOperands(); 936 937 DeallocateNode(N); 938 } 939 940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 941 assert(!(V->isVariadic() && isParameter)); 942 if (isParameter) 943 ByvalParmDbgValues.push_back(V); 944 else 945 DbgValues.push_back(V); 946 for (const SDNode *Node : V->getSDNodes()) 947 if (Node) 948 DbgValMap[Node].push_back(V); 949 } 950 951 void SDDbgInfo::erase(const SDNode *Node) { 952 DbgValMapType::iterator I = DbgValMap.find(Node); 953 if (I == DbgValMap.end()) 954 return; 955 for (auto &Val: I->second) 956 Val->setIsInvalidated(); 957 DbgValMap.erase(I); 958 } 959 960 void SelectionDAG::DeallocateNode(SDNode *N) { 961 // If we have operands, deallocate them. 962 removeOperands(N); 963 964 NodeAllocator.Deallocate(AllNodes.remove(N)); 965 966 // Set the opcode to DELETED_NODE to help catch bugs when node 967 // memory is reallocated. 968 // FIXME: There are places in SDag that have grown a dependency on the opcode 969 // value in the released node. 970 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 971 N->NodeType = ISD::DELETED_NODE; 972 973 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 974 // them and forget about that node. 975 DbgInfo->erase(N); 976 } 977 978 #ifndef NDEBUG 979 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 980 static void VerifySDNode(SDNode *N) { 981 switch (N->getOpcode()) { 982 default: 983 break; 984 case ISD::BUILD_PAIR: { 985 EVT VT = N->getValueType(0); 986 assert(N->getNumValues() == 1 && "Too many results!"); 987 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 988 "Wrong return type!"); 989 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 990 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 991 "Mismatched operand types!"); 992 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 993 "Wrong operand type!"); 994 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 995 "Wrong return type size"); 996 break; 997 } 998 case ISD::BUILD_VECTOR: { 999 assert(N->getNumValues() == 1 && "Too many results!"); 1000 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1001 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1002 "Wrong number of operands!"); 1003 EVT EltVT = N->getValueType(0).getVectorElementType(); 1004 for (const SDUse &Op : N->ops()) { 1005 assert((Op.getValueType() == EltVT || 1006 (EltVT.isInteger() && Op.getValueType().isInteger() && 1007 EltVT.bitsLE(Op.getValueType()))) && 1008 "Wrong operand type!"); 1009 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1010 "Operands must all have the same type"); 1011 } 1012 break; 1013 } 1014 } 1015 } 1016 #endif // NDEBUG 1017 1018 /// Insert a newly allocated node into the DAG. 1019 /// 1020 /// Handles insertion into the all nodes list and CSE map, as well as 1021 /// verification and other common operations when a new node is allocated. 1022 void SelectionDAG::InsertNode(SDNode *N) { 1023 AllNodes.push_back(N); 1024 #ifndef NDEBUG 1025 N->PersistentId = NextPersistentId++; 1026 VerifySDNode(N); 1027 #endif 1028 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1029 DUL->NodeInserted(N); 1030 } 1031 1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1033 /// correspond to it. This is useful when we're about to delete or repurpose 1034 /// the node. We don't want future request for structurally identical nodes 1035 /// to return N anymore. 1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1037 bool Erased = false; 1038 switch (N->getOpcode()) { 1039 case ISD::HANDLENODE: return false; // noop. 1040 case ISD::CONDCODE: 1041 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1042 "Cond code doesn't exist!"); 1043 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1044 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1045 break; 1046 case ISD::ExternalSymbol: 1047 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1048 break; 1049 case ISD::TargetExternalSymbol: { 1050 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1051 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1052 ESN->getSymbol(), ESN->getTargetFlags())); 1053 break; 1054 } 1055 case ISD::MCSymbol: { 1056 auto *MCSN = cast<MCSymbolSDNode>(N); 1057 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1058 break; 1059 } 1060 case ISD::VALUETYPE: { 1061 EVT VT = cast<VTSDNode>(N)->getVT(); 1062 if (VT.isExtended()) { 1063 Erased = ExtendedValueTypeNodes.erase(VT); 1064 } else { 1065 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1066 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1067 } 1068 break; 1069 } 1070 default: 1071 // Remove it from the CSE Map. 1072 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1073 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1074 Erased = CSEMap.RemoveNode(N); 1075 break; 1076 } 1077 #ifndef NDEBUG 1078 // Verify that the node was actually in one of the CSE maps, unless it has a 1079 // flag result (which cannot be CSE'd) or is one of the special cases that are 1080 // not subject to CSE. 1081 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1082 !N->isMachineOpcode() && !doNotCSE(N)) { 1083 N->dump(this); 1084 dbgs() << "\n"; 1085 llvm_unreachable("Node is not in map!"); 1086 } 1087 #endif 1088 return Erased; 1089 } 1090 1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1093 /// node already exists, in which case transfer all its users to the existing 1094 /// node. This transfer can potentially trigger recursive merging. 1095 void 1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1097 // For node types that aren't CSE'd, just act as if no identical node 1098 // already exists. 1099 if (!doNotCSE(N)) { 1100 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1101 if (Existing != N) { 1102 // If there was already an existing matching node, use ReplaceAllUsesWith 1103 // to replace the dead one with the existing one. This can cause 1104 // recursive merging of other unrelated nodes down the line. 1105 ReplaceAllUsesWith(N, Existing); 1106 1107 // N is now dead. Inform the listeners and delete it. 1108 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1109 DUL->NodeDeleted(N, Existing); 1110 DeleteNodeNotInCSEMaps(N); 1111 return; 1112 } 1113 } 1114 1115 // If the node doesn't already exist, we updated it. Inform listeners. 1116 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1117 DUL->NodeUpdated(N); 1118 } 1119 1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1121 /// were replaced with those specified. If this node is never memoized, 1122 /// return null, otherwise return a pointer to the slot it would take. If a 1123 /// node already exists with these operands, the slot will be non-null. 1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1125 void *&InsertPos) { 1126 if (doNotCSE(N)) 1127 return nullptr; 1128 1129 SDValue Ops[] = { Op }; 1130 FoldingSetNodeID ID; 1131 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1132 AddNodeIDCustom(ID, N); 1133 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1134 if (Node) 1135 Node->intersectFlagsWith(N->getFlags()); 1136 return Node; 1137 } 1138 1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1140 /// were replaced with those specified. If this node is never memoized, 1141 /// return null, otherwise return a pointer to the slot it would take. If a 1142 /// node already exists with these operands, the slot will be non-null. 1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1144 SDValue Op1, SDValue Op2, 1145 void *&InsertPos) { 1146 if (doNotCSE(N)) 1147 return nullptr; 1148 1149 SDValue Ops[] = { Op1, Op2 }; 1150 FoldingSetNodeID ID; 1151 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1152 AddNodeIDCustom(ID, N); 1153 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1154 if (Node) 1155 Node->intersectFlagsWith(N->getFlags()); 1156 return Node; 1157 } 1158 1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1160 /// were replaced with those specified. If this node is never memoized, 1161 /// return null, otherwise return a pointer to the slot it would take. If a 1162 /// node already exists with these operands, the slot will be non-null. 1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1164 void *&InsertPos) { 1165 if (doNotCSE(N)) 1166 return nullptr; 1167 1168 FoldingSetNodeID ID; 1169 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1170 AddNodeIDCustom(ID, N); 1171 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1172 if (Node) 1173 Node->intersectFlagsWith(N->getFlags()); 1174 return Node; 1175 } 1176 1177 Align SelectionDAG::getEVTAlign(EVT VT) const { 1178 Type *Ty = VT == MVT::iPTR ? 1179 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1180 VT.getTypeForEVT(*getContext()); 1181 1182 return getDataLayout().getABITypeAlign(Ty); 1183 } 1184 1185 // EntryNode could meaningfully have debug info if we can find it... 1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1187 : TM(tm), OptLevel(OL), 1188 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1189 Root(getEntryNode()) { 1190 InsertNode(&EntryNode); 1191 DbgInfo = new SDDbgInfo(); 1192 } 1193 1194 void SelectionDAG::init(MachineFunction &NewMF, 1195 OptimizationRemarkEmitter &NewORE, 1196 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1197 LegacyDivergenceAnalysis * Divergence, 1198 ProfileSummaryInfo *PSIin, 1199 BlockFrequencyInfo *BFIin) { 1200 MF = &NewMF; 1201 SDAGISelPass = PassPtr; 1202 ORE = &NewORE; 1203 TLI = getSubtarget().getTargetLowering(); 1204 TSI = getSubtarget().getSelectionDAGInfo(); 1205 LibInfo = LibraryInfo; 1206 Context = &MF->getFunction().getContext(); 1207 DA = Divergence; 1208 PSI = PSIin; 1209 BFI = BFIin; 1210 } 1211 1212 SelectionDAG::~SelectionDAG() { 1213 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1214 allnodes_clear(); 1215 OperandRecycler.clear(OperandAllocator); 1216 delete DbgInfo; 1217 } 1218 1219 bool SelectionDAG::shouldOptForSize() const { 1220 return MF->getFunction().hasOptSize() || 1221 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1222 } 1223 1224 void SelectionDAG::allnodes_clear() { 1225 assert(&*AllNodes.begin() == &EntryNode); 1226 AllNodes.remove(AllNodes.begin()); 1227 while (!AllNodes.empty()) 1228 DeallocateNode(&AllNodes.front()); 1229 #ifndef NDEBUG 1230 NextPersistentId = 0; 1231 #endif 1232 } 1233 1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1235 void *&InsertPos) { 1236 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1237 if (N) { 1238 switch (N->getOpcode()) { 1239 default: break; 1240 case ISD::Constant: 1241 case ISD::ConstantFP: 1242 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1243 "debug location. Use another overload."); 1244 } 1245 } 1246 return N; 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 const SDLoc &DL, void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 case ISD::Constant: 1255 case ISD::ConstantFP: 1256 // Erase debug location from the node if the node is used at several 1257 // different places. Do not propagate one location to all uses as it 1258 // will cause a worse single stepping debugging experience. 1259 if (N->getDebugLoc() != DL.getDebugLoc()) 1260 N->setDebugLoc(DebugLoc()); 1261 break; 1262 default: 1263 // When the node's point of use is located earlier in the instruction 1264 // sequence than its prior point of use, update its debug info to the 1265 // earlier location. 1266 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1267 N->setDebugLoc(DL.getDebugLoc()); 1268 break; 1269 } 1270 } 1271 return N; 1272 } 1273 1274 void SelectionDAG::clear() { 1275 allnodes_clear(); 1276 OperandRecycler.clear(OperandAllocator); 1277 OperandAllocator.Reset(); 1278 CSEMap.clear(); 1279 1280 ExtendedValueTypeNodes.clear(); 1281 ExternalSymbols.clear(); 1282 TargetExternalSymbols.clear(); 1283 MCSymbols.clear(); 1284 SDCallSiteDbgInfo.clear(); 1285 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1286 static_cast<CondCodeSDNode*>(nullptr)); 1287 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1288 static_cast<SDNode*>(nullptr)); 1289 1290 EntryNode.UseList = nullptr; 1291 InsertNode(&EntryNode); 1292 Root = getEntryNode(); 1293 DbgInfo->clear(); 1294 } 1295 1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1297 return VT.bitsGT(Op.getValueType()) 1298 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1299 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1300 } 1301 1302 std::pair<SDValue, SDValue> 1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1304 const SDLoc &DL, EVT VT) { 1305 assert(!VT.bitsEq(Op.getValueType()) && 1306 "Strict no-op FP extend/round not allowed."); 1307 SDValue Res = 1308 VT.bitsGT(Op.getValueType()) 1309 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1310 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1311 {Chain, Op, getIntPtrConstant(0, DL)}); 1312 1313 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1314 } 1315 1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1317 return VT.bitsGT(Op.getValueType()) ? 1318 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1319 getNode(ISD::TRUNCATE, DL, VT, Op); 1320 } 1321 1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1323 return VT.bitsGT(Op.getValueType()) ? 1324 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1325 getNode(ISD::TRUNCATE, DL, VT, Op); 1326 } 1327 1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1329 return VT.bitsGT(Op.getValueType()) ? 1330 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1331 getNode(ISD::TRUNCATE, DL, VT, Op); 1332 } 1333 1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1335 EVT OpVT) { 1336 if (VT.bitsLE(Op.getValueType())) 1337 return getNode(ISD::TRUNCATE, SL, VT, Op); 1338 1339 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1340 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1344 EVT OpVT = Op.getValueType(); 1345 assert(VT.isInteger() && OpVT.isInteger() && 1346 "Cannot getZeroExtendInReg FP types"); 1347 assert(VT.isVector() == OpVT.isVector() && 1348 "getZeroExtendInReg type should be vector iff the operand " 1349 "type is vector!"); 1350 assert((!VT.isVector() || 1351 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1352 "Vector element counts must match in getZeroExtendInReg"); 1353 assert(VT.bitsLE(OpVT) && "Not extending!"); 1354 if (OpVT == VT) 1355 return Op; 1356 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1357 VT.getScalarSizeInBits()); 1358 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1359 } 1360 1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 // Only unsigned pointer semantics are supported right now. In the future this 1363 // might delegate to TLI to check pointer signedness. 1364 return getZExtOrTrunc(Op, DL, VT); 1365 } 1366 1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1368 // Only unsigned pointer semantics are supported right now. In the future this 1369 // might delegate to TLI to check pointer signedness. 1370 return getZeroExtendInReg(Op, DL, VT); 1371 } 1372 1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1375 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1376 } 1377 1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1379 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1380 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1381 } 1382 1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1384 EVT OpVT) { 1385 if (!V) 1386 return getConstant(0, DL, VT); 1387 1388 switch (TLI->getBooleanContents(OpVT)) { 1389 case TargetLowering::ZeroOrOneBooleanContent: 1390 case TargetLowering::UndefinedBooleanContent: 1391 return getConstant(1, DL, VT); 1392 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1393 return getAllOnesConstant(DL, VT); 1394 } 1395 llvm_unreachable("Unexpected boolean content enum!"); 1396 } 1397 1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1399 bool isT, bool isO) { 1400 EVT EltVT = VT.getScalarType(); 1401 assert((EltVT.getSizeInBits() >= 64 || 1402 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1403 "getConstant with a uint64_t value that doesn't fit in the type!"); 1404 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1405 } 1406 1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1408 bool isT, bool isO) { 1409 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1410 } 1411 1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1413 EVT VT, bool isT, bool isO) { 1414 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1415 1416 EVT EltVT = VT.getScalarType(); 1417 const ConstantInt *Elt = &Val; 1418 1419 // In some cases the vector type is legal but the element type is illegal and 1420 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1421 // inserted value (the type does not need to match the vector element type). 1422 // Any extra bits introduced will be truncated away. 1423 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1424 TargetLowering::TypePromoteInteger) { 1425 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1426 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1427 Elt = ConstantInt::get(*getContext(), NewVal); 1428 } 1429 // In other cases the element type is illegal and needs to be expanded, for 1430 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1431 // the value into n parts and use a vector type with n-times the elements. 1432 // Then bitcast to the type requested. 1433 // Legalizing constants too early makes the DAGCombiner's job harder so we 1434 // only legalize if the DAG tells us we must produce legal types. 1435 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1436 TLI->getTypeAction(*getContext(), EltVT) == 1437 TargetLowering::TypeExpandInteger) { 1438 const APInt &NewVal = Elt->getValue(); 1439 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1440 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1441 1442 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1443 if (VT.isScalableVector()) { 1444 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1445 "Can only handle an even split!"); 1446 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1447 1448 SmallVector<SDValue, 2> ScalarParts; 1449 for (unsigned i = 0; i != Parts; ++i) 1450 ScalarParts.push_back(getConstant( 1451 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1452 ViaEltVT, isT, isO)); 1453 1454 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1455 } 1456 1457 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1458 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1459 1460 // Check the temporary vector is the correct size. If this fails then 1461 // getTypeToTransformTo() probably returned a type whose size (in bits) 1462 // isn't a power-of-2 factor of the requested type size. 1463 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1464 1465 SmallVector<SDValue, 2> EltParts; 1466 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1467 EltParts.push_back(getConstant( 1468 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1469 ViaEltVT, isT, isO)); 1470 1471 // EltParts is currently in little endian order. If we actually want 1472 // big-endian order then reverse it now. 1473 if (getDataLayout().isBigEndian()) 1474 std::reverse(EltParts.begin(), EltParts.end()); 1475 1476 // The elements must be reversed when the element order is different 1477 // to the endianness of the elements (because the BITCAST is itself a 1478 // vector shuffle in this situation). However, we do not need any code to 1479 // perform this reversal because getConstant() is producing a vector 1480 // splat. 1481 // This situation occurs in MIPS MSA. 1482 1483 SmallVector<SDValue, 8> Ops; 1484 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1485 llvm::append_range(Ops, EltParts); 1486 1487 SDValue V = 1488 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1489 return V; 1490 } 1491 1492 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1493 "APInt size does not match type size!"); 1494 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1497 ID.AddPointer(Elt); 1498 ID.AddBoolean(isO); 1499 void *IP = nullptr; 1500 SDNode *N = nullptr; 1501 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1502 if (!VT.isVector()) 1503 return SDValue(N, 0); 1504 1505 if (!N) { 1506 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1510 } 1511 1512 SDValue Result(N, 0); 1513 if (VT.isScalableVector()) 1514 Result = getSplatVector(VT, DL, Result); 1515 else if (VT.isVector()) 1516 Result = getSplatBuildVector(VT, DL, Result); 1517 1518 return Result; 1519 } 1520 1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1522 bool isTarget) { 1523 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1524 } 1525 1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1527 const SDLoc &DL, bool LegalTypes) { 1528 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1529 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1530 return getConstant(Val, DL, ShiftVT); 1531 } 1532 1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1534 bool isTarget) { 1535 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1536 } 1537 1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1539 bool isTarget) { 1540 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1541 } 1542 1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1544 EVT VT, bool isTarget) { 1545 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1546 1547 EVT EltVT = VT.getScalarType(); 1548 1549 // Do the map lookup using the actual bit pattern for the floating point 1550 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1551 // we don't have issues with SNANs. 1552 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1553 FoldingSetNodeID ID; 1554 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1555 ID.AddPointer(&V); 1556 void *IP = nullptr; 1557 SDNode *N = nullptr; 1558 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1559 if (!VT.isVector()) 1560 return SDValue(N, 0); 1561 1562 if (!N) { 1563 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1564 CSEMap.InsertNode(N, IP); 1565 InsertNode(N); 1566 } 1567 1568 SDValue Result(N, 0); 1569 if (VT.isScalableVector()) 1570 Result = getSplatVector(VT, DL, Result); 1571 else if (VT.isVector()) 1572 Result = getSplatBuildVector(VT, DL, Result); 1573 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1574 return Result; 1575 } 1576 1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1578 bool isTarget) { 1579 EVT EltVT = VT.getScalarType(); 1580 if (EltVT == MVT::f32) 1581 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f64) 1583 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1584 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1585 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1586 bool Ignored; 1587 APFloat APF = APFloat(Val); 1588 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1589 &Ignored); 1590 return getConstantFP(APF, DL, VT, isTarget); 1591 } 1592 llvm_unreachable("Unsupported type in getConstantFP"); 1593 } 1594 1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1596 EVT VT, int64_t Offset, bool isTargetGA, 1597 unsigned TargetFlags) { 1598 assert((TargetFlags == 0 || isTargetGA) && 1599 "Cannot set target flags on target-independent globals"); 1600 1601 // Truncate (with sign-extension) the offset value to the pointer size. 1602 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1603 if (BitWidth < 64) 1604 Offset = SignExtend64(Offset, BitWidth); 1605 1606 unsigned Opc; 1607 if (GV->isThreadLocal()) 1608 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1609 else 1610 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1611 1612 FoldingSetNodeID ID; 1613 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1614 ID.AddPointer(GV); 1615 ID.AddInteger(Offset); 1616 ID.AddInteger(TargetFlags); 1617 void *IP = nullptr; 1618 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1619 return SDValue(E, 0); 1620 1621 auto *N = newSDNode<GlobalAddressSDNode>( 1622 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1623 CSEMap.InsertNode(N, IP); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1629 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1630 FoldingSetNodeID ID; 1631 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1632 ID.AddInteger(FI); 1633 void *IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1635 return SDValue(E, 0); 1636 1637 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1644 unsigned TargetFlags) { 1645 assert((TargetFlags == 0 || isTarget) && 1646 "Cannot set target flags on target-independent jump tables"); 1647 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(JTI); 1651 ID.AddInteger(TargetFlags); 1652 void *IP = nullptr; 1653 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1654 return SDValue(E, 0); 1655 1656 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1663 MaybeAlign Alignment, int Offset, 1664 bool isTarget, unsigned TargetFlags) { 1665 assert((TargetFlags == 0 || isTarget) && 1666 "Cannot set target flags on target-independent globals"); 1667 if (!Alignment) 1668 Alignment = shouldOptForSize() 1669 ? getDataLayout().getABITypeAlign(C->getType()) 1670 : getDataLayout().getPrefTypeAlign(C->getType()); 1671 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1672 FoldingSetNodeID ID; 1673 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1674 ID.AddInteger(Alignment->value()); 1675 ID.AddInteger(Offset); 1676 ID.AddPointer(C); 1677 ID.AddInteger(TargetFlags); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1683 TargetFlags); 1684 CSEMap.InsertNode(N, IP); 1685 InsertNode(N); 1686 SDValue V = SDValue(N, 0); 1687 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1688 return V; 1689 } 1690 1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1692 MaybeAlign Alignment, int Offset, 1693 bool isTarget, unsigned TargetFlags) { 1694 assert((TargetFlags == 0 || isTarget) && 1695 "Cannot set target flags on target-independent globals"); 1696 if (!Alignment) 1697 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1698 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(Alignment->value()); 1702 ID.AddInteger(Offset); 1703 C->addSelectionDAGCSEId(ID); 1704 ID.AddInteger(TargetFlags); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1710 TargetFlags); 1711 CSEMap.InsertNode(N, IP); 1712 InsertNode(N); 1713 return SDValue(N, 0); 1714 } 1715 1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1717 unsigned TargetFlags) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1720 ID.AddInteger(Index); 1721 ID.AddInteger(Offset); 1722 ID.AddInteger(TargetFlags); 1723 void *IP = nullptr; 1724 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1725 return SDValue(E, 0); 1726 1727 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1734 FoldingSetNodeID ID; 1735 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1736 ID.AddPointer(MBB); 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getValueType(EVT VT) { 1748 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1749 ValueTypeNodes.size()) 1750 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1751 1752 SDNode *&N = VT.isExtended() ? 1753 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1754 1755 if (N) return SDValue(N, 0); 1756 N = newSDNode<VTSDNode>(VT); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1762 SDNode *&N = ExternalSymbols[Sym]; 1763 if (N) return SDValue(N, 0); 1764 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1765 InsertNode(N); 1766 return SDValue(N, 0); 1767 } 1768 1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1770 SDNode *&N = MCSymbols[Sym]; 1771 if (N) 1772 return SDValue(N, 0); 1773 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1779 unsigned TargetFlags) { 1780 SDNode *&N = 1781 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1782 if (N) return SDValue(N, 0); 1783 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1789 if ((unsigned)Cond >= CondCodeNodes.size()) 1790 CondCodeNodes.resize(Cond+1); 1791 1792 if (!CondCodeNodes[Cond]) { 1793 auto *N = newSDNode<CondCodeSDNode>(Cond); 1794 CondCodeNodes[Cond] = N; 1795 InsertNode(N); 1796 } 1797 1798 return SDValue(CondCodeNodes[Cond], 0); 1799 } 1800 1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1802 APInt One(ResVT.getScalarSizeInBits(), 1); 1803 return getStepVector(DL, ResVT, One); 1804 } 1805 1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1807 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1808 if (ResVT.isScalableVector()) 1809 return getNode( 1810 ISD::STEP_VECTOR, DL, ResVT, 1811 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1812 1813 SmallVector<SDValue, 16> OpsStepConstants; 1814 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1815 OpsStepConstants.push_back( 1816 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1817 return getBuildVector(ResVT, DL, OpsStepConstants); 1818 } 1819 1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1823 std::swap(N1, N2); 1824 ShuffleVectorSDNode::commuteMask(M); 1825 } 1826 1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1828 SDValue N2, ArrayRef<int> Mask) { 1829 assert(VT.getVectorNumElements() == Mask.size() && 1830 "Must have the same number of vector elements as mask elements!"); 1831 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1832 "Invalid VECTOR_SHUFFLE"); 1833 1834 // Canonicalize shuffle undef, undef -> undef 1835 if (N1.isUndef() && N2.isUndef()) 1836 return getUNDEF(VT); 1837 1838 // Validate that all indices in Mask are within the range of the elements 1839 // input to the shuffle. 1840 int NElts = Mask.size(); 1841 assert(llvm::all_of(Mask, 1842 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1843 "Index out of range"); 1844 1845 // Copy the mask so we can do any needed cleanup. 1846 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1847 1848 // Canonicalize shuffle v, v -> v, undef 1849 if (N1 == N2) { 1850 N2 = getUNDEF(VT); 1851 for (int i = 0; i != NElts; ++i) 1852 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1853 } 1854 1855 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1856 if (N1.isUndef()) 1857 commuteShuffle(N1, N2, MaskVec); 1858 1859 if (TLI->hasVectorBlend()) { 1860 // If shuffling a splat, try to blend the splat instead. We do this here so 1861 // that even when this arises during lowering we don't have to re-handle it. 1862 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1863 BitVector UndefElements; 1864 SDValue Splat = BV->getSplatValue(&UndefElements); 1865 if (!Splat) 1866 return; 1867 1868 for (int i = 0; i < NElts; ++i) { 1869 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1870 continue; 1871 1872 // If this input comes from undef, mark it as such. 1873 if (UndefElements[MaskVec[i] - Offset]) { 1874 MaskVec[i] = -1; 1875 continue; 1876 } 1877 1878 // If we can blend a non-undef lane, use that instead. 1879 if (!UndefElements[i]) 1880 MaskVec[i] = i + Offset; 1881 } 1882 }; 1883 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1884 BlendSplat(N1BV, 0); 1885 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1886 BlendSplat(N2BV, NElts); 1887 } 1888 1889 // Canonicalize all index into lhs, -> shuffle lhs, undef 1890 // Canonicalize all index into rhs, -> shuffle rhs, undef 1891 bool AllLHS = true, AllRHS = true; 1892 bool N2Undef = N2.isUndef(); 1893 for (int i = 0; i != NElts; ++i) { 1894 if (MaskVec[i] >= NElts) { 1895 if (N2Undef) 1896 MaskVec[i] = -1; 1897 else 1898 AllLHS = false; 1899 } else if (MaskVec[i] >= 0) { 1900 AllRHS = false; 1901 } 1902 } 1903 if (AllLHS && AllRHS) 1904 return getUNDEF(VT); 1905 if (AllLHS && !N2Undef) 1906 N2 = getUNDEF(VT); 1907 if (AllRHS) { 1908 N1 = getUNDEF(VT); 1909 commuteShuffle(N1, N2, MaskVec); 1910 } 1911 // Reset our undef status after accounting for the mask. 1912 N2Undef = N2.isUndef(); 1913 // Re-check whether both sides ended up undef. 1914 if (N1.isUndef() && N2Undef) 1915 return getUNDEF(VT); 1916 1917 // If Identity shuffle return that node. 1918 bool Identity = true, AllSame = true; 1919 for (int i = 0; i != NElts; ++i) { 1920 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1921 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1922 } 1923 if (Identity && NElts) 1924 return N1; 1925 1926 // Shuffling a constant splat doesn't change the result. 1927 if (N2Undef) { 1928 SDValue V = N1; 1929 1930 // Look through any bitcasts. We check that these don't change the number 1931 // (and size) of elements and just changes their types. 1932 while (V.getOpcode() == ISD::BITCAST) 1933 V = V->getOperand(0); 1934 1935 // A splat should always show up as a build vector node. 1936 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1937 BitVector UndefElements; 1938 SDValue Splat = BV->getSplatValue(&UndefElements); 1939 // If this is a splat of an undef, shuffling it is also undef. 1940 if (Splat && Splat.isUndef()) 1941 return getUNDEF(VT); 1942 1943 bool SameNumElts = 1944 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1945 1946 // We only have a splat which can skip shuffles if there is a splatted 1947 // value and no undef lanes rearranged by the shuffle. 1948 if (Splat && UndefElements.none()) { 1949 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1950 // number of elements match or the value splatted is a zero constant. 1951 if (SameNumElts) 1952 return N1; 1953 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1954 if (C->isZero()) 1955 return N1; 1956 } 1957 1958 // If the shuffle itself creates a splat, build the vector directly. 1959 if (AllSame && SameNumElts) { 1960 EVT BuildVT = BV->getValueType(0); 1961 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1962 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1963 1964 // We may have jumped through bitcasts, so the type of the 1965 // BUILD_VECTOR may not match the type of the shuffle. 1966 if (BuildVT != VT) 1967 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1968 return NewBV; 1969 } 1970 } 1971 } 1972 1973 FoldingSetNodeID ID; 1974 SDValue Ops[2] = { N1, N2 }; 1975 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1976 for (int i = 0; i != NElts; ++i) 1977 ID.AddInteger(MaskVec[i]); 1978 1979 void* IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1981 return SDValue(E, 0); 1982 1983 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1984 // SDNode doesn't have access to it. This memory will be "leaked" when 1985 // the node is deallocated, but recovered when the NodeAllocator is released. 1986 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1987 llvm::copy(MaskVec, MaskAlloc); 1988 1989 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1990 dl.getDebugLoc(), MaskAlloc); 1991 createOperands(N, Ops); 1992 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 SDValue V = SDValue(N, 0); 1996 NewSDValueDbgMsg(V, "Creating new node: ", this); 1997 return V; 1998 } 1999 2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2001 EVT VT = SV.getValueType(0); 2002 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2003 ShuffleVectorSDNode::commuteMask(MaskVec); 2004 2005 SDValue Op0 = SV.getOperand(0); 2006 SDValue Op1 = SV.getOperand(1); 2007 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2008 } 2009 2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2013 ID.AddInteger(RegNo); 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2019 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2028 ID.AddPointer(RegMask); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2034 CSEMap.InsertNode(N, IP); 2035 InsertNode(N); 2036 return SDValue(N, 0); 2037 } 2038 2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2040 MCSymbol *Label) { 2041 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2042 } 2043 2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2045 SDValue Root, MCSymbol *Label) { 2046 FoldingSetNodeID ID; 2047 SDValue Ops[] = { Root }; 2048 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2049 ID.AddPointer(Label); 2050 void *IP = nullptr; 2051 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2052 return SDValue(E, 0); 2053 2054 auto *N = 2055 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2056 createOperands(N, Ops); 2057 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2064 int64_t Offset, bool isTarget, 2065 unsigned TargetFlags) { 2066 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2067 2068 FoldingSetNodeID ID; 2069 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2070 ID.AddPointer(BA); 2071 ID.AddInteger(Offset); 2072 ID.AddInteger(TargetFlags); 2073 void *IP = nullptr; 2074 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2075 return SDValue(E, 0); 2076 2077 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getSrcValue(const Value *V) { 2084 FoldingSetNodeID ID; 2085 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2086 ID.AddPointer(V); 2087 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<SrcValueSDNode>(V); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2101 ID.AddPointer(MD); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<MDNodeSDNode>(MD); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2114 if (VT == V.getValueType()) 2115 return V; 2116 2117 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2118 } 2119 2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2121 unsigned SrcAS, unsigned DestAS) { 2122 SDValue Ops[] = {Ptr}; 2123 FoldingSetNodeID ID; 2124 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2125 ID.AddInteger(SrcAS); 2126 ID.AddInteger(DestAS); 2127 2128 void *IP = nullptr; 2129 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2130 return SDValue(E, 0); 2131 2132 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2133 VT, SrcAS, DestAS); 2134 createOperands(N, Ops); 2135 2136 CSEMap.InsertNode(N, IP); 2137 InsertNode(N); 2138 return SDValue(N, 0); 2139 } 2140 2141 SDValue SelectionDAG::getFreeze(SDValue V) { 2142 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2143 } 2144 2145 /// getShiftAmountOperand - Return the specified value casted to 2146 /// the target's desired shift amount type. 2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2148 EVT OpTy = Op.getValueType(); 2149 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2150 if (OpTy == ShTy || OpTy.isVector()) return Op; 2151 2152 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2153 } 2154 2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2156 SDLoc dl(Node); 2157 const TargetLowering &TLI = getTargetLoweringInfo(); 2158 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2159 EVT VT = Node->getValueType(0); 2160 SDValue Tmp1 = Node->getOperand(0); 2161 SDValue Tmp2 = Node->getOperand(1); 2162 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2163 2164 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2165 Tmp2, MachinePointerInfo(V)); 2166 SDValue VAList = VAListLoad; 2167 2168 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2169 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2170 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2171 2172 VAList = 2173 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2174 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2175 } 2176 2177 // Increment the pointer, VAList, to the next vaarg 2178 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2179 getConstant(getDataLayout().getTypeAllocSize( 2180 VT.getTypeForEVT(*getContext())), 2181 dl, VAList.getValueType())); 2182 // Store the incremented VAList to the legalized pointer 2183 Tmp1 = 2184 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2185 // Load the actual argument out of the pointer VAList 2186 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2187 } 2188 2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2190 SDLoc dl(Node); 2191 const TargetLowering &TLI = getTargetLoweringInfo(); 2192 // This defaults to loading a pointer from the input and storing it to the 2193 // output, returning the chain. 2194 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2195 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2196 SDValue Tmp1 = 2197 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2198 Node->getOperand(2), MachinePointerInfo(VS)); 2199 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2200 MachinePointerInfo(VD)); 2201 } 2202 2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2204 const DataLayout &DL = getDataLayout(); 2205 Type *Ty = VT.getTypeForEVT(*getContext()); 2206 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2207 2208 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2209 return RedAlign; 2210 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 const Align StackAlign = TFI->getStackAlign(); 2213 2214 // See if we can choose a smaller ABI alignment in cases where it's an 2215 // illegal vector type that will get broken down. 2216 if (RedAlign > StackAlign) { 2217 EVT IntermediateVT; 2218 MVT RegisterVT; 2219 unsigned NumIntermediates; 2220 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2221 NumIntermediates, RegisterVT); 2222 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2223 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2224 if (RedAlign2 < RedAlign) 2225 RedAlign = RedAlign2; 2226 } 2227 2228 return RedAlign; 2229 } 2230 2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2232 MachineFrameInfo &MFI = MF->getFrameInfo(); 2233 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2234 int StackID = 0; 2235 if (Bytes.isScalable()) 2236 StackID = TFI->getStackIDForScalableVectors(); 2237 // The stack id gives an indication of whether the object is scalable or 2238 // not, so it's safe to pass in the minimum size here. 2239 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2240 false, nullptr, StackID); 2241 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2242 } 2243 2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2245 Type *Ty = VT.getTypeForEVT(*getContext()); 2246 Align StackAlign = 2247 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2248 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2249 } 2250 2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2252 TypeSize VT1Size = VT1.getStoreSize(); 2253 TypeSize VT2Size = VT2.getStoreSize(); 2254 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2255 "Don't know how to choose the maximum size when creating a stack " 2256 "temporary"); 2257 TypeSize Bytes = 2258 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2259 2260 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2261 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2262 const DataLayout &DL = getDataLayout(); 2263 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2264 return CreateStackTemporary(Bytes, Align); 2265 } 2266 2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2268 ISD::CondCode Cond, const SDLoc &dl) { 2269 EVT OpVT = N1.getValueType(); 2270 2271 // These setcc operations always fold. 2272 switch (Cond) { 2273 default: break; 2274 case ISD::SETFALSE: 2275 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2276 case ISD::SETTRUE: 2277 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2278 2279 case ISD::SETOEQ: 2280 case ISD::SETOGT: 2281 case ISD::SETOGE: 2282 case ISD::SETOLT: 2283 case ISD::SETOLE: 2284 case ISD::SETONE: 2285 case ISD::SETO: 2286 case ISD::SETUO: 2287 case ISD::SETUEQ: 2288 case ISD::SETUNE: 2289 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2290 break; 2291 } 2292 2293 if (OpVT.isInteger()) { 2294 // For EQ and NE, we can always pick a value for the undef to make the 2295 // predicate pass or fail, so we can return undef. 2296 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2297 // icmp eq/ne X, undef -> undef. 2298 if ((N1.isUndef() || N2.isUndef()) && 2299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2300 return getUNDEF(VT); 2301 2302 // If both operands are undef, we can return undef for int comparison. 2303 // icmp undef, undef -> undef. 2304 if (N1.isUndef() && N2.isUndef()) 2305 return getUNDEF(VT); 2306 2307 // icmp X, X -> true/false 2308 // icmp X, undef -> true/false because undef could be X. 2309 if (N1 == N2) 2310 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2311 } 2312 2313 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2314 const APInt &C2 = N2C->getAPIntValue(); 2315 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2316 const APInt &C1 = N1C->getAPIntValue(); 2317 2318 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2319 dl, VT, OpVT); 2320 } 2321 } 2322 2323 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2324 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2325 2326 if (N1CFP && N2CFP) { 2327 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2328 switch (Cond) { 2329 default: break; 2330 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2334 OpVT); 2335 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2339 R==APFloat::cmpLessThan, dl, VT, 2340 OpVT); 2341 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2342 return getUNDEF(VT); 2343 LLVM_FALLTHROUGH; 2344 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2345 OpVT); 2346 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2350 VT, OpVT); 2351 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2352 return getUNDEF(VT); 2353 LLVM_FALLTHROUGH; 2354 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2355 R==APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2358 return getUNDEF(VT); 2359 LLVM_FALLTHROUGH; 2360 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpEqual, dl, VT, OpVT); 2362 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2367 R==APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2370 OpVT); 2371 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2372 R==APFloat::cmpLessThan, dl, VT, 2373 OpVT); 2374 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2375 R==APFloat::cmpUnordered, dl, VT, 2376 OpVT); 2377 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2378 VT, OpVT); 2379 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2380 OpVT); 2381 } 2382 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2383 // Ensure that the constant occurs on the RHS. 2384 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2385 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2386 return SDValue(); 2387 return getSetCC(dl, VT, N2, N1, SwappedCond); 2388 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2389 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2390 // If an operand is known to be a nan (or undef that could be a nan), we can 2391 // fold it. 2392 // Choosing NaN for the undef will always make unordered comparison succeed 2393 // and ordered comparison fails. 2394 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2395 switch (ISD::getUnorderedFlavor(Cond)) { 2396 default: 2397 llvm_unreachable("Unknown flavor!"); 2398 case 0: // Known false. 2399 return getBoolConstant(false, dl, VT, OpVT); 2400 case 1: // Known true. 2401 return getBoolConstant(true, dl, VT, OpVT); 2402 case 2: // Undefined. 2403 return getUNDEF(VT); 2404 } 2405 } 2406 2407 // Could not fold it. 2408 return SDValue(); 2409 } 2410 2411 /// See if the specified operand can be simplified with the knowledge that only 2412 /// the bits specified by DemandedBits are used. 2413 /// TODO: really we should be making this into the DAG equivalent of 2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2416 EVT VT = V.getValueType(); 2417 2418 if (VT.isScalableVector()) 2419 return SDValue(); 2420 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnes(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return GetDemandedBits(V, DemandedBits, DemandedElts); 2425 } 2426 2427 /// See if the specified operand can be simplified with the knowledge that only 2428 /// the bits specified by DemandedBits are used in the elements specified by 2429 /// DemandedElts. 2430 /// TODO: really we should be making this into the DAG equivalent of 2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2433 const APInt &DemandedElts) { 2434 switch (V.getOpcode()) { 2435 default: 2436 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2437 *this, 0); 2438 case ISD::Constant: { 2439 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2440 APInt NewVal = CVal & DemandedBits; 2441 if (NewVal != CVal) 2442 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2443 break; 2444 } 2445 case ISD::SRL: 2446 // Only look at single-use SRLs. 2447 if (!V.getNode()->hasOneUse()) 2448 break; 2449 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2450 // See if we can recursively simplify the LHS. 2451 unsigned Amt = RHSC->getZExtValue(); 2452 2453 // Watch out for shift count overflow though. 2454 if (Amt >= DemandedBits.getBitWidth()) 2455 break; 2456 APInt SrcDemandedBits = DemandedBits << Amt; 2457 if (SDValue SimplifyLHS = 2458 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2459 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2460 V.getOperand(1)); 2461 } 2462 break; 2463 } 2464 return SDValue(); 2465 } 2466 2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2468 /// use this predicate to simplify operations downstream. 2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2470 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2471 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2472 } 2473 2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2475 /// this predicate to simplify operations downstream. Mask is known to be zero 2476 /// for bits that V cannot have. 2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2478 unsigned Depth) const { 2479 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2480 } 2481 2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2483 /// DemandedElts. We use this predicate to simplify operations downstream. 2484 /// Mask is known to be zero for bits that V cannot have. 2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2486 const APInt &DemandedElts, 2487 unsigned Depth) const { 2488 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2489 } 2490 2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2495 } 2496 2497 /// isSplatValue - Return true if the vector V has the same value 2498 /// across all DemandedElts. For scalable vectors it does not make 2499 /// sense to specify which elements are demanded or undefined, therefore 2500 /// they are simply ignored. 2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2502 APInt &UndefElts, unsigned Depth) const { 2503 unsigned Opcode = V.getOpcode(); 2504 EVT VT = V.getValueType(); 2505 assert(VT.isVector() && "Vector type expected"); 2506 2507 if (!VT.isScalableVector() && !DemandedElts) 2508 return false; // No demanded elts, better to assume we don't know anything. 2509 2510 if (Depth >= MaxRecursionDepth) 2511 return false; // Limit search depth. 2512 2513 // Deal with some common cases here that work for both fixed and scalable 2514 // vector types. 2515 switch (Opcode) { 2516 case ISD::SPLAT_VECTOR: 2517 UndefElts = V.getOperand(0).isUndef() 2518 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2519 : APInt(DemandedElts.getBitWidth(), 0); 2520 return true; 2521 case ISD::ADD: 2522 case ISD::SUB: 2523 case ISD::AND: 2524 case ISD::XOR: 2525 case ISD::OR: { 2526 APInt UndefLHS, UndefRHS; 2527 SDValue LHS = V.getOperand(0); 2528 SDValue RHS = V.getOperand(1); 2529 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2530 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2531 UndefElts = UndefLHS | UndefRHS; 2532 return true; 2533 } 2534 return false; 2535 } 2536 case ISD::ABS: 2537 case ISD::TRUNCATE: 2538 case ISD::SIGN_EXTEND: 2539 case ISD::ZERO_EXTEND: 2540 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2541 default: 2542 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2543 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2544 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2545 break; 2546 } 2547 2548 // We don't support other cases than those above for scalable vectors at 2549 // the moment. 2550 if (VT.isScalableVector()) 2551 return false; 2552 2553 unsigned NumElts = VT.getVectorNumElements(); 2554 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2555 UndefElts = APInt::getZero(NumElts); 2556 2557 switch (Opcode) { 2558 case ISD::BUILD_VECTOR: { 2559 SDValue Scl; 2560 for (unsigned i = 0; i != NumElts; ++i) { 2561 SDValue Op = V.getOperand(i); 2562 if (Op.isUndef()) { 2563 UndefElts.setBit(i); 2564 continue; 2565 } 2566 if (!DemandedElts[i]) 2567 continue; 2568 if (Scl && Scl != Op) 2569 return false; 2570 Scl = Op; 2571 } 2572 return true; 2573 } 2574 case ISD::VECTOR_SHUFFLE: { 2575 // Check if this is a shuffle node doing a splat. 2576 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2577 int SplatIndex = -1; 2578 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2579 for (int i = 0; i != (int)NumElts; ++i) { 2580 int M = Mask[i]; 2581 if (M < 0) { 2582 UndefElts.setBit(i); 2583 continue; 2584 } 2585 if (!DemandedElts[i]) 2586 continue; 2587 if (0 <= SplatIndex && SplatIndex != M) 2588 return false; 2589 SplatIndex = M; 2590 } 2591 return true; 2592 } 2593 case ISD::EXTRACT_SUBVECTOR: { 2594 // Offset the demanded elts by the subvector index. 2595 SDValue Src = V.getOperand(0); 2596 // We don't support scalable vectors at the moment. 2597 if (Src.getValueType().isScalableVector()) 2598 return false; 2599 uint64_t Idx = V.getConstantOperandVal(1); 2600 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2601 APInt UndefSrcElts; 2602 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2603 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2604 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2605 return true; 2606 } 2607 break; 2608 } 2609 case ISD::ANY_EXTEND_VECTOR_INREG: 2610 case ISD::SIGN_EXTEND_VECTOR_INREG: 2611 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2612 // Widen the demanded elts by the src element count. 2613 SDValue Src = V.getOperand(0); 2614 // We don't support scalable vectors at the moment. 2615 if (Src.getValueType().isScalableVector()) 2616 return false; 2617 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2618 APInt UndefSrcElts; 2619 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2620 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2621 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2622 return true; 2623 } 2624 break; 2625 } 2626 } 2627 2628 return false; 2629 } 2630 2631 /// Helper wrapper to main isSplatValue function. 2632 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2633 EVT VT = V.getValueType(); 2634 assert(VT.isVector() && "Vector type expected"); 2635 2636 APInt UndefElts; 2637 APInt DemandedElts; 2638 2639 // For now we don't support this with scalable vectors. 2640 if (!VT.isScalableVector()) 2641 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2642 return isSplatValue(V, DemandedElts, UndefElts) && 2643 (AllowUndefs || !UndefElts); 2644 } 2645 2646 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2647 V = peekThroughExtractSubvectors(V); 2648 2649 EVT VT = V.getValueType(); 2650 unsigned Opcode = V.getOpcode(); 2651 switch (Opcode) { 2652 default: { 2653 APInt UndefElts; 2654 APInt DemandedElts; 2655 2656 if (!VT.isScalableVector()) 2657 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2658 2659 if (isSplatValue(V, DemandedElts, UndefElts)) { 2660 if (VT.isScalableVector()) { 2661 // DemandedElts and UndefElts are ignored for scalable vectors, since 2662 // the only supported cases are SPLAT_VECTOR nodes. 2663 SplatIdx = 0; 2664 } else { 2665 // Handle case where all demanded elements are UNDEF. 2666 if (DemandedElts.isSubsetOf(UndefElts)) { 2667 SplatIdx = 0; 2668 return getUNDEF(VT); 2669 } 2670 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2671 } 2672 return V; 2673 } 2674 break; 2675 } 2676 case ISD::SPLAT_VECTOR: 2677 SplatIdx = 0; 2678 return V; 2679 case ISD::VECTOR_SHUFFLE: { 2680 if (VT.isScalableVector()) 2681 return SDValue(); 2682 2683 // Check if this is a shuffle node doing a splat. 2684 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2685 // getTargetVShiftNode currently struggles without the splat source. 2686 auto *SVN = cast<ShuffleVectorSDNode>(V); 2687 if (!SVN->isSplat()) 2688 break; 2689 int Idx = SVN->getSplatIndex(); 2690 int NumElts = V.getValueType().getVectorNumElements(); 2691 SplatIdx = Idx % NumElts; 2692 return V.getOperand(Idx / NumElts); 2693 } 2694 } 2695 2696 return SDValue(); 2697 } 2698 2699 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2700 int SplatIdx; 2701 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2702 EVT SVT = SrcVector.getValueType().getScalarType(); 2703 EVT LegalSVT = SVT; 2704 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2705 if (!SVT.isInteger()) 2706 return SDValue(); 2707 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2708 if (LegalSVT.bitsLT(SVT)) 2709 return SDValue(); 2710 } 2711 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2712 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2713 } 2714 return SDValue(); 2715 } 2716 2717 const APInt * 2718 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2719 const APInt &DemandedElts) const { 2720 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2721 V.getOpcode() == ISD::SRA) && 2722 "Unknown shift node"); 2723 unsigned BitWidth = V.getScalarValueSizeInBits(); 2724 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2725 // Shifting more than the bitwidth is not valid. 2726 const APInt &ShAmt = SA->getAPIntValue(); 2727 if (ShAmt.ult(BitWidth)) 2728 return &ShAmt; 2729 } 2730 return nullptr; 2731 } 2732 2733 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2734 SDValue V, const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2739 return ValidAmt; 2740 unsigned BitWidth = V.getScalarValueSizeInBits(); 2741 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2742 if (!BV) 2743 return nullptr; 2744 const APInt *MinShAmt = nullptr; 2745 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2746 if (!DemandedElts[i]) 2747 continue; 2748 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2749 if (!SA) 2750 return nullptr; 2751 // Shifting more than the bitwidth is not valid. 2752 const APInt &ShAmt = SA->getAPIntValue(); 2753 if (ShAmt.uge(BitWidth)) 2754 return nullptr; 2755 if (MinShAmt && MinShAmt->ule(ShAmt)) 2756 continue; 2757 MinShAmt = &ShAmt; 2758 } 2759 return MinShAmt; 2760 } 2761 2762 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2763 SDValue V, const APInt &DemandedElts) const { 2764 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2765 V.getOpcode() == ISD::SRA) && 2766 "Unknown shift node"); 2767 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2768 return ValidAmt; 2769 unsigned BitWidth = V.getScalarValueSizeInBits(); 2770 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2771 if (!BV) 2772 return nullptr; 2773 const APInt *MaxShAmt = nullptr; 2774 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2775 if (!DemandedElts[i]) 2776 continue; 2777 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2778 if (!SA) 2779 return nullptr; 2780 // Shifting more than the bitwidth is not valid. 2781 const APInt &ShAmt = SA->getAPIntValue(); 2782 if (ShAmt.uge(BitWidth)) 2783 return nullptr; 2784 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2785 continue; 2786 MaxShAmt = &ShAmt; 2787 } 2788 return MaxShAmt; 2789 } 2790 2791 /// Determine which bits of Op are known to be either zero or one and return 2792 /// them in Known. For vectors, the known bits are those that are shared by 2793 /// every vector element. 2794 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2795 EVT VT = Op.getValueType(); 2796 2797 // TOOD: Until we have a plan for how to represent demanded elements for 2798 // scalable vectors, we can just bail out for now. 2799 if (Op.getValueType().isScalableVector()) { 2800 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2801 return KnownBits(BitWidth); 2802 } 2803 2804 APInt DemandedElts = VT.isVector() 2805 ? APInt::getAllOnes(VT.getVectorNumElements()) 2806 : APInt(1, 1); 2807 return computeKnownBits(Op, DemandedElts, Depth); 2808 } 2809 2810 /// Determine which bits of Op are known to be either zero or one and return 2811 /// them in Known. The DemandedElts argument allows us to only collect the known 2812 /// bits that are shared by the requested vector elements. 2813 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2814 unsigned Depth) const { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 2817 KnownBits Known(BitWidth); // Don't know anything. 2818 2819 // TOOD: Until we have a plan for how to represent demanded elements for 2820 // scalable vectors, we can just bail out for now. 2821 if (Op.getValueType().isScalableVector()) 2822 return Known; 2823 2824 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2825 // We know all of the bits for a constant! 2826 return KnownBits::makeConstant(C->getAPIntValue()); 2827 } 2828 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2829 // We know all of the bits for a constant fp! 2830 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2831 } 2832 2833 if (Depth >= MaxRecursionDepth) 2834 return Known; // Limit search depth. 2835 2836 KnownBits Known2; 2837 unsigned NumElts = DemandedElts.getBitWidth(); 2838 assert((!Op.getValueType().isVector() || 2839 NumElts == Op.getValueType().getVectorNumElements()) && 2840 "Unexpected vector size"); 2841 2842 if (!DemandedElts) 2843 return Known; // No demanded elts, better to assume we don't know anything. 2844 2845 unsigned Opcode = Op.getOpcode(); 2846 switch (Opcode) { 2847 case ISD::BUILD_VECTOR: 2848 // Collect the known bits that are shared by every demanded vector element. 2849 Known.Zero.setAllBits(); Known.One.setAllBits(); 2850 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2851 if (!DemandedElts[i]) 2852 continue; 2853 2854 SDValue SrcOp = Op.getOperand(i); 2855 Known2 = computeKnownBits(SrcOp, Depth + 1); 2856 2857 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2858 if (SrcOp.getValueSizeInBits() != BitWidth) { 2859 assert(SrcOp.getValueSizeInBits() > BitWidth && 2860 "Expected BUILD_VECTOR implicit truncation"); 2861 Known2 = Known2.trunc(BitWidth); 2862 } 2863 2864 // Known bits are the values that are shared by every demanded element. 2865 Known = KnownBits::commonBits(Known, Known2); 2866 2867 // If we don't know any bits, early out. 2868 if (Known.isUnknown()) 2869 break; 2870 } 2871 break; 2872 case ISD::VECTOR_SHUFFLE: { 2873 // Collect the known bits that are shared by every vector element referenced 2874 // by the shuffle. 2875 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2876 Known.Zero.setAllBits(); Known.One.setAllBits(); 2877 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2878 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2879 for (unsigned i = 0; i != NumElts; ++i) { 2880 if (!DemandedElts[i]) 2881 continue; 2882 2883 int M = SVN->getMaskElt(i); 2884 if (M < 0) { 2885 // For UNDEF elements, we don't know anything about the common state of 2886 // the shuffle result. 2887 Known.resetAll(); 2888 DemandedLHS.clearAllBits(); 2889 DemandedRHS.clearAllBits(); 2890 break; 2891 } 2892 2893 if ((unsigned)M < NumElts) 2894 DemandedLHS.setBit((unsigned)M % NumElts); 2895 else 2896 DemandedRHS.setBit((unsigned)M % NumElts); 2897 } 2898 // Known bits are the values that are shared by every demanded element. 2899 if (!!DemandedLHS) { 2900 SDValue LHS = Op.getOperand(0); 2901 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2902 Known = KnownBits::commonBits(Known, Known2); 2903 } 2904 // If we don't know any bits, early out. 2905 if (Known.isUnknown()) 2906 break; 2907 if (!!DemandedRHS) { 2908 SDValue RHS = Op.getOperand(1); 2909 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2910 Known = KnownBits::commonBits(Known, Known2); 2911 } 2912 break; 2913 } 2914 case ISD::CONCAT_VECTORS: { 2915 // Split DemandedElts and test each of the demanded subvectors. 2916 Known.Zero.setAllBits(); Known.One.setAllBits(); 2917 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2918 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2919 unsigned NumSubVectors = Op.getNumOperands(); 2920 for (unsigned i = 0; i != NumSubVectors; ++i) { 2921 APInt DemandedSub = 2922 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2923 if (!!DemandedSub) { 2924 SDValue Sub = Op.getOperand(i); 2925 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2926 Known = KnownBits::commonBits(Known, Known2); 2927 } 2928 // If we don't know any bits, early out. 2929 if (Known.isUnknown()) 2930 break; 2931 } 2932 break; 2933 } 2934 case ISD::INSERT_SUBVECTOR: { 2935 // Demand any elements from the subvector and the remainder from the src its 2936 // inserted into. 2937 SDValue Src = Op.getOperand(0); 2938 SDValue Sub = Op.getOperand(1); 2939 uint64_t Idx = Op.getConstantOperandVal(2); 2940 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2941 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2942 APInt DemandedSrcElts = DemandedElts; 2943 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2944 2945 Known.One.setAllBits(); 2946 Known.Zero.setAllBits(); 2947 if (!!DemandedSubElts) { 2948 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2949 if (Known.isUnknown()) 2950 break; // early-out. 2951 } 2952 if (!!DemandedSrcElts) { 2953 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2954 Known = KnownBits::commonBits(Known, Known2); 2955 } 2956 break; 2957 } 2958 case ISD::EXTRACT_SUBVECTOR: { 2959 // Offset the demanded elts by the subvector index. 2960 SDValue Src = Op.getOperand(0); 2961 // Bail until we can represent demanded elements for scalable vectors. 2962 if (Src.getValueType().isScalableVector()) 2963 break; 2964 uint64_t Idx = Op.getConstantOperandVal(1); 2965 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2966 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2967 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2968 break; 2969 } 2970 case ISD::SCALAR_TO_VECTOR: { 2971 // We know about scalar_to_vector as much as we know about it source, 2972 // which becomes the first element of otherwise unknown vector. 2973 if (DemandedElts != 1) 2974 break; 2975 2976 SDValue N0 = Op.getOperand(0); 2977 Known = computeKnownBits(N0, Depth + 1); 2978 if (N0.getValueSizeInBits() != BitWidth) 2979 Known = Known.trunc(BitWidth); 2980 2981 break; 2982 } 2983 case ISD::BITCAST: { 2984 SDValue N0 = Op.getOperand(0); 2985 EVT SubVT = N0.getValueType(); 2986 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2987 2988 // Ignore bitcasts from unsupported types. 2989 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2990 break; 2991 2992 // Fast handling of 'identity' bitcasts. 2993 if (BitWidth == SubBitWidth) { 2994 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2995 break; 2996 } 2997 2998 bool IsLE = getDataLayout().isLittleEndian(); 2999 3000 // Bitcast 'small element' vector to 'large element' scalar/vector. 3001 if ((BitWidth % SubBitWidth) == 0) { 3002 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3003 3004 // Collect known bits for the (larger) output by collecting the known 3005 // bits from each set of sub elements and shift these into place. 3006 // We need to separately call computeKnownBits for each set of 3007 // sub elements as the knownbits for each is likely to be different. 3008 unsigned SubScale = BitWidth / SubBitWidth; 3009 APInt SubDemandedElts(NumElts * SubScale, 0); 3010 for (unsigned i = 0; i != NumElts; ++i) 3011 if (DemandedElts[i]) 3012 SubDemandedElts.setBit(i * SubScale); 3013 3014 for (unsigned i = 0; i != SubScale; ++i) { 3015 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3016 Depth + 1); 3017 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3018 Known.insertBits(Known2, SubBitWidth * Shifts); 3019 } 3020 } 3021 3022 // Bitcast 'large element' scalar/vector to 'small element' vector. 3023 if ((SubBitWidth % BitWidth) == 0) { 3024 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3025 3026 // Collect known bits for the (smaller) output by collecting the known 3027 // bits from the overlapping larger input elements and extracting the 3028 // sub sections we actually care about. 3029 unsigned SubScale = SubBitWidth / BitWidth; 3030 APInt SubDemandedElts = 3031 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3032 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3033 3034 Known.Zero.setAllBits(); Known.One.setAllBits(); 3035 for (unsigned i = 0; i != NumElts; ++i) 3036 if (DemandedElts[i]) { 3037 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3038 unsigned Offset = (Shifts % SubScale) * BitWidth; 3039 Known = KnownBits::commonBits(Known, 3040 Known2.extractBits(BitWidth, Offset)); 3041 // If we don't know any bits, early out. 3042 if (Known.isUnknown()) 3043 break; 3044 } 3045 } 3046 break; 3047 } 3048 case ISD::AND: 3049 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3050 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3051 3052 Known &= Known2; 3053 break; 3054 case ISD::OR: 3055 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3057 3058 Known |= Known2; 3059 break; 3060 case ISD::XOR: 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 3064 Known ^= Known2; 3065 break; 3066 case ISD::MUL: { 3067 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3068 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3069 Known = KnownBits::mul(Known, Known2); 3070 break; 3071 } 3072 case ISD::MULHU: { 3073 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3074 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 Known = KnownBits::mulhu(Known, Known2); 3076 break; 3077 } 3078 case ISD::MULHS: { 3079 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3080 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known = KnownBits::mulhs(Known, Known2); 3082 break; 3083 } 3084 case ISD::UMUL_LOHI: { 3085 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3086 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3087 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3088 if (Op.getResNo() == 0) 3089 Known = KnownBits::mul(Known, Known2); 3090 else 3091 Known = KnownBits::mulhu(Known, Known2); 3092 break; 3093 } 3094 case ISD::SMUL_LOHI: { 3095 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3096 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3097 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3098 if (Op.getResNo() == 0) 3099 Known = KnownBits::mul(Known, Known2); 3100 else 3101 Known = KnownBits::mulhs(Known, Known2); 3102 break; 3103 } 3104 case ISD::UDIV: { 3105 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3106 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3107 Known = KnownBits::udiv(Known, Known2); 3108 break; 3109 } 3110 case ISD::SELECT: 3111 case ISD::VSELECT: 3112 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3113 // If we don't know any bits, early out. 3114 if (Known.isUnknown()) 3115 break; 3116 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3117 3118 // Only known if known in both the LHS and RHS. 3119 Known = KnownBits::commonBits(Known, Known2); 3120 break; 3121 case ISD::SELECT_CC: 3122 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3123 // If we don't know any bits, early out. 3124 if (Known.isUnknown()) 3125 break; 3126 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3127 3128 // Only known if known in both the LHS and RHS. 3129 Known = KnownBits::commonBits(Known, Known2); 3130 break; 3131 case ISD::SMULO: 3132 case ISD::UMULO: 3133 if (Op.getResNo() != 1) 3134 break; 3135 // The boolean result conforms to getBooleanContents. 3136 // If we know the result of a setcc has the top bits zero, use this info. 3137 // We know that we have an integer-based boolean since these operations 3138 // are only available for integer. 3139 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3140 TargetLowering::ZeroOrOneBooleanContent && 3141 BitWidth > 1) 3142 Known.Zero.setBitsFrom(1); 3143 break; 3144 case ISD::SETCC: 3145 case ISD::STRICT_FSETCC: 3146 case ISD::STRICT_FSETCCS: { 3147 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3148 // If we know the result of a setcc has the top bits zero, use this info. 3149 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3150 TargetLowering::ZeroOrOneBooleanContent && 3151 BitWidth > 1) 3152 Known.Zero.setBitsFrom(1); 3153 break; 3154 } 3155 case ISD::SHL: 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3158 Known = KnownBits::shl(Known, Known2); 3159 3160 // Minimum shift low bits are known zero. 3161 if (const APInt *ShMinAmt = 3162 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3163 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3164 break; 3165 case ISD::SRL: 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3168 Known = KnownBits::lshr(Known, Known2); 3169 3170 // Minimum shift high bits are known zero. 3171 if (const APInt *ShMinAmt = 3172 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3173 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3174 break; 3175 case ISD::SRA: 3176 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3177 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3178 Known = KnownBits::ashr(Known, Known2); 3179 // TODO: Add minimum shift high known sign bits. 3180 break; 3181 case ISD::FSHL: 3182 case ISD::FSHR: 3183 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3184 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3185 3186 // For fshl, 0-shift returns the 1st arg. 3187 // For fshr, 0-shift returns the 2nd arg. 3188 if (Amt == 0) { 3189 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3190 DemandedElts, Depth + 1); 3191 break; 3192 } 3193 3194 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3195 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3196 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3198 if (Opcode == ISD::FSHL) { 3199 Known.One <<= Amt; 3200 Known.Zero <<= Amt; 3201 Known2.One.lshrInPlace(BitWidth - Amt); 3202 Known2.Zero.lshrInPlace(BitWidth - Amt); 3203 } else { 3204 Known.One <<= BitWidth - Amt; 3205 Known.Zero <<= BitWidth - Amt; 3206 Known2.One.lshrInPlace(Amt); 3207 Known2.Zero.lshrInPlace(Amt); 3208 } 3209 Known.One |= Known2.One; 3210 Known.Zero |= Known2.Zero; 3211 } 3212 break; 3213 case ISD::SIGN_EXTEND_INREG: { 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3216 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3217 break; 3218 } 3219 case ISD::CTTZ: 3220 case ISD::CTTZ_ZERO_UNDEF: { 3221 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 // If we have a known 1, its position is our upper bound. 3223 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3224 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3225 Known.Zero.setBitsFrom(LowBits); 3226 break; 3227 } 3228 case ISD::CTLZ: 3229 case ISD::CTLZ_ZERO_UNDEF: { 3230 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 // If we have a known 1, its position is our upper bound. 3232 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3233 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3234 Known.Zero.setBitsFrom(LowBits); 3235 break; 3236 } 3237 case ISD::CTPOP: { 3238 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3239 // If we know some of the bits are zero, they can't be one. 3240 unsigned PossibleOnes = Known2.countMaxPopulation(); 3241 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3242 break; 3243 } 3244 case ISD::PARITY: { 3245 // Parity returns 0 everywhere but the LSB. 3246 Known.Zero.setBitsFrom(1); 3247 break; 3248 } 3249 case ISD::LOAD: { 3250 LoadSDNode *LD = cast<LoadSDNode>(Op); 3251 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3252 if (ISD::isNON_EXTLoad(LD) && Cst) { 3253 // Determine any common known bits from the loaded constant pool value. 3254 Type *CstTy = Cst->getType(); 3255 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3256 // If its a vector splat, then we can (quickly) reuse the scalar path. 3257 // NOTE: We assume all elements match and none are UNDEF. 3258 if (CstTy->isVectorTy()) { 3259 if (const Constant *Splat = Cst->getSplatValue()) { 3260 Cst = Splat; 3261 CstTy = Cst->getType(); 3262 } 3263 } 3264 // TODO - do we need to handle different bitwidths? 3265 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3266 // Iterate across all vector elements finding common known bits. 3267 Known.One.setAllBits(); 3268 Known.Zero.setAllBits(); 3269 for (unsigned i = 0; i != NumElts; ++i) { 3270 if (!DemandedElts[i]) 3271 continue; 3272 if (Constant *Elt = Cst->getAggregateElement(i)) { 3273 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3274 const APInt &Value = CInt->getValue(); 3275 Known.One &= Value; 3276 Known.Zero &= ~Value; 3277 continue; 3278 } 3279 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3280 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3281 Known.One &= Value; 3282 Known.Zero &= ~Value; 3283 continue; 3284 } 3285 } 3286 Known.One.clearAllBits(); 3287 Known.Zero.clearAllBits(); 3288 break; 3289 } 3290 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3291 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3292 Known = KnownBits::makeConstant(CInt->getValue()); 3293 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3294 Known = 3295 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3296 } 3297 } 3298 } 3299 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3300 // If this is a ZEXTLoad and we are looking at the loaded value. 3301 EVT VT = LD->getMemoryVT(); 3302 unsigned MemBits = VT.getScalarSizeInBits(); 3303 Known.Zero.setBitsFrom(MemBits); 3304 } else if (const MDNode *Ranges = LD->getRanges()) { 3305 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3306 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3307 } 3308 break; 3309 } 3310 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3311 EVT InVT = Op.getOperand(0).getValueType(); 3312 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3313 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3314 Known = Known.zext(BitWidth); 3315 break; 3316 } 3317 case ISD::ZERO_EXTEND: { 3318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 Known = Known.zext(BitWidth); 3320 break; 3321 } 3322 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3323 EVT InVT = Op.getOperand(0).getValueType(); 3324 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3325 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3326 // If the sign bit is known to be zero or one, then sext will extend 3327 // it to the top bits, else it will just zext. 3328 Known = Known.sext(BitWidth); 3329 break; 3330 } 3331 case ISD::SIGN_EXTEND: { 3332 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 // If the sign bit is known to be zero or one, then sext will extend 3334 // it to the top bits, else it will just zext. 3335 Known = Known.sext(BitWidth); 3336 break; 3337 } 3338 case ISD::ANY_EXTEND_VECTOR_INREG: { 3339 EVT InVT = Op.getOperand(0).getValueType(); 3340 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3341 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3342 Known = Known.anyext(BitWidth); 3343 break; 3344 } 3345 case ISD::ANY_EXTEND: { 3346 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3347 Known = Known.anyext(BitWidth); 3348 break; 3349 } 3350 case ISD::TRUNCATE: { 3351 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3352 Known = Known.trunc(BitWidth); 3353 break; 3354 } 3355 case ISD::AssertZext: { 3356 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3357 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3358 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3359 Known.Zero |= (~InMask); 3360 Known.One &= (~Known.Zero); 3361 break; 3362 } 3363 case ISD::AssertAlign: { 3364 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3365 assert(LogOfAlign != 0); 3366 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3367 // well as clearing one bits. 3368 Known.Zero.setLowBits(LogOfAlign); 3369 Known.One.clearLowBits(LogOfAlign); 3370 break; 3371 } 3372 case ISD::FGETSIGN: 3373 // All bits are zero except the low bit. 3374 Known.Zero.setBitsFrom(1); 3375 break; 3376 case ISD::USUBO: 3377 case ISD::SSUBO: 3378 if (Op.getResNo() == 1) { 3379 // If we know the result of a setcc has the top bits zero, use this info. 3380 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3381 TargetLowering::ZeroOrOneBooleanContent && 3382 BitWidth > 1) 3383 Known.Zero.setBitsFrom(1); 3384 break; 3385 } 3386 LLVM_FALLTHROUGH; 3387 case ISD::SUB: 3388 case ISD::SUBC: { 3389 assert(Op.getResNo() == 0 && 3390 "We only compute knownbits for the difference here."); 3391 3392 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3393 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3394 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3395 Known, Known2); 3396 break; 3397 } 3398 case ISD::UADDO: 3399 case ISD::SADDO: 3400 case ISD::ADDCARRY: 3401 if (Op.getResNo() == 1) { 3402 // If we know the result of a setcc has the top bits zero, use this info. 3403 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3404 TargetLowering::ZeroOrOneBooleanContent && 3405 BitWidth > 1) 3406 Known.Zero.setBitsFrom(1); 3407 break; 3408 } 3409 LLVM_FALLTHROUGH; 3410 case ISD::ADD: 3411 case ISD::ADDC: 3412 case ISD::ADDE: { 3413 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3414 3415 // With ADDE and ADDCARRY, a carry bit may be added in. 3416 KnownBits Carry(1); 3417 if (Opcode == ISD::ADDE) 3418 // Can't track carry from glue, set carry to unknown. 3419 Carry.resetAll(); 3420 else if (Opcode == ISD::ADDCARRY) 3421 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3422 // the trouble (how often will we find a known carry bit). And I haven't 3423 // tested this very much yet, but something like this might work: 3424 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3425 // Carry = Carry.zextOrTrunc(1, false); 3426 Carry.resetAll(); 3427 else 3428 Carry.setAllZero(); 3429 3430 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3431 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3432 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3433 break; 3434 } 3435 case ISD::SREM: { 3436 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3437 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3438 Known = KnownBits::srem(Known, Known2); 3439 break; 3440 } 3441 case ISD::UREM: { 3442 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3443 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3444 Known = KnownBits::urem(Known, Known2); 3445 break; 3446 } 3447 case ISD::EXTRACT_ELEMENT: { 3448 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3449 const unsigned Index = Op.getConstantOperandVal(1); 3450 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3451 3452 // Remove low part of known bits mask 3453 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3454 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3455 3456 // Remove high part of known bit mask 3457 Known = Known.trunc(EltBitWidth); 3458 break; 3459 } 3460 case ISD::EXTRACT_VECTOR_ELT: { 3461 SDValue InVec = Op.getOperand(0); 3462 SDValue EltNo = Op.getOperand(1); 3463 EVT VecVT = InVec.getValueType(); 3464 // computeKnownBits not yet implemented for scalable vectors. 3465 if (VecVT.isScalableVector()) 3466 break; 3467 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3468 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3469 3470 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3471 // anything about the extended bits. 3472 if (BitWidth > EltBitWidth) 3473 Known = Known.trunc(EltBitWidth); 3474 3475 // If we know the element index, just demand that vector element, else for 3476 // an unknown element index, ignore DemandedElts and demand them all. 3477 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3478 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3479 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3480 DemandedSrcElts = 3481 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3482 3483 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3484 if (BitWidth > EltBitWidth) 3485 Known = Known.anyext(BitWidth); 3486 break; 3487 } 3488 case ISD::INSERT_VECTOR_ELT: { 3489 // If we know the element index, split the demand between the 3490 // source vector and the inserted element, otherwise assume we need 3491 // the original demanded vector elements and the value. 3492 SDValue InVec = Op.getOperand(0); 3493 SDValue InVal = Op.getOperand(1); 3494 SDValue EltNo = Op.getOperand(2); 3495 bool DemandedVal = true; 3496 APInt DemandedVecElts = DemandedElts; 3497 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3498 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3499 unsigned EltIdx = CEltNo->getZExtValue(); 3500 DemandedVal = !!DemandedElts[EltIdx]; 3501 DemandedVecElts.clearBit(EltIdx); 3502 } 3503 Known.One.setAllBits(); 3504 Known.Zero.setAllBits(); 3505 if (DemandedVal) { 3506 Known2 = computeKnownBits(InVal, Depth + 1); 3507 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3508 } 3509 if (!!DemandedVecElts) { 3510 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3511 Known = KnownBits::commonBits(Known, Known2); 3512 } 3513 break; 3514 } 3515 case ISD::BITREVERSE: { 3516 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3517 Known = Known2.reverseBits(); 3518 break; 3519 } 3520 case ISD::BSWAP: { 3521 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3522 Known = Known2.byteSwap(); 3523 break; 3524 } 3525 case ISD::ABS: { 3526 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3527 Known = Known2.abs(); 3528 break; 3529 } 3530 case ISD::USUBSAT: { 3531 // The result of usubsat will never be larger than the LHS. 3532 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3533 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3534 break; 3535 } 3536 case ISD::UMIN: { 3537 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3538 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3539 Known = KnownBits::umin(Known, Known2); 3540 break; 3541 } 3542 case ISD::UMAX: { 3543 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3544 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3545 Known = KnownBits::umax(Known, Known2); 3546 break; 3547 } 3548 case ISD::SMIN: 3549 case ISD::SMAX: { 3550 // If we have a clamp pattern, we know that the number of sign bits will be 3551 // the minimum of the clamp min/max range. 3552 bool IsMax = (Opcode == ISD::SMAX); 3553 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3554 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3555 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3556 CstHigh = 3557 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3558 if (CstLow && CstHigh) { 3559 if (!IsMax) 3560 std::swap(CstLow, CstHigh); 3561 3562 const APInt &ValueLow = CstLow->getAPIntValue(); 3563 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3564 if (ValueLow.sle(ValueHigh)) { 3565 unsigned LowSignBits = ValueLow.getNumSignBits(); 3566 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3567 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3568 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3569 Known.One.setHighBits(MinSignBits); 3570 break; 3571 } 3572 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3573 Known.Zero.setHighBits(MinSignBits); 3574 break; 3575 } 3576 } 3577 } 3578 3579 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3580 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3581 if (IsMax) 3582 Known = KnownBits::smax(Known, Known2); 3583 else 3584 Known = KnownBits::smin(Known, Known2); 3585 break; 3586 } 3587 case ISD::FP_TO_UINT_SAT: { 3588 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3589 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3590 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3591 break; 3592 } 3593 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3594 if (Op.getResNo() == 1) { 3595 // The boolean result conforms to getBooleanContents. 3596 // If we know the result of a setcc has the top bits zero, use this info. 3597 // We know that we have an integer-based boolean since these operations 3598 // are only available for integer. 3599 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3600 TargetLowering::ZeroOrOneBooleanContent && 3601 BitWidth > 1) 3602 Known.Zero.setBitsFrom(1); 3603 break; 3604 } 3605 LLVM_FALLTHROUGH; 3606 case ISD::ATOMIC_CMP_SWAP: 3607 case ISD::ATOMIC_SWAP: 3608 case ISD::ATOMIC_LOAD_ADD: 3609 case ISD::ATOMIC_LOAD_SUB: 3610 case ISD::ATOMIC_LOAD_AND: 3611 case ISD::ATOMIC_LOAD_CLR: 3612 case ISD::ATOMIC_LOAD_OR: 3613 case ISD::ATOMIC_LOAD_XOR: 3614 case ISD::ATOMIC_LOAD_NAND: 3615 case ISD::ATOMIC_LOAD_MIN: 3616 case ISD::ATOMIC_LOAD_MAX: 3617 case ISD::ATOMIC_LOAD_UMIN: 3618 case ISD::ATOMIC_LOAD_UMAX: 3619 case ISD::ATOMIC_LOAD: { 3620 unsigned MemBits = 3621 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3622 // If we are looking at the loaded value. 3623 if (Op.getResNo() == 0) { 3624 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3625 Known.Zero.setBitsFrom(MemBits); 3626 } 3627 break; 3628 } 3629 case ISD::FrameIndex: 3630 case ISD::TargetFrameIndex: 3631 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3632 Known, getMachineFunction()); 3633 break; 3634 3635 default: 3636 if (Opcode < ISD::BUILTIN_OP_END) 3637 break; 3638 LLVM_FALLTHROUGH; 3639 case ISD::INTRINSIC_WO_CHAIN: 3640 case ISD::INTRINSIC_W_CHAIN: 3641 case ISD::INTRINSIC_VOID: 3642 // Allow the target to implement this method for its nodes. 3643 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3644 break; 3645 } 3646 3647 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3648 return Known; 3649 } 3650 3651 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3652 SDValue N1) const { 3653 // X + 0 never overflow 3654 if (isNullConstant(N1)) 3655 return OFK_Never; 3656 3657 KnownBits N1Known = computeKnownBits(N1); 3658 if (N1Known.Zero.getBoolValue()) { 3659 KnownBits N0Known = computeKnownBits(N0); 3660 3661 bool overflow; 3662 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3663 if (!overflow) 3664 return OFK_Never; 3665 } 3666 3667 // mulhi + 1 never overflow 3668 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3669 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3670 return OFK_Never; 3671 3672 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3673 KnownBits N0Known = computeKnownBits(N0); 3674 3675 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3676 return OFK_Never; 3677 } 3678 3679 return OFK_Sometime; 3680 } 3681 3682 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3683 EVT OpVT = Val.getValueType(); 3684 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3685 3686 // Is the constant a known power of 2? 3687 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3688 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3689 3690 // A left-shift of a constant one will have exactly one bit set because 3691 // shifting the bit off the end is undefined. 3692 if (Val.getOpcode() == ISD::SHL) { 3693 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3694 if (C && C->getAPIntValue() == 1) 3695 return true; 3696 } 3697 3698 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3699 // one bit set. 3700 if (Val.getOpcode() == ISD::SRL) { 3701 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3702 if (C && C->getAPIntValue().isSignMask()) 3703 return true; 3704 } 3705 3706 // Are all operands of a build vector constant powers of two? 3707 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3708 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3709 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3710 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3711 return false; 3712 })) 3713 return true; 3714 3715 // Is the operand of a splat vector a constant power of two? 3716 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3717 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3718 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3719 return true; 3720 3721 // More could be done here, though the above checks are enough 3722 // to handle some common cases. 3723 3724 // Fall back to computeKnownBits to catch other known cases. 3725 KnownBits Known = computeKnownBits(Val); 3726 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3727 } 3728 3729 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3730 EVT VT = Op.getValueType(); 3731 3732 // TODO: Assume we don't know anything for now. 3733 if (VT.isScalableVector()) 3734 return 1; 3735 3736 APInt DemandedElts = VT.isVector() 3737 ? APInt::getAllOnes(VT.getVectorNumElements()) 3738 : APInt(1, 1); 3739 return ComputeNumSignBits(Op, DemandedElts, Depth); 3740 } 3741 3742 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3743 unsigned Depth) const { 3744 EVT VT = Op.getValueType(); 3745 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3746 unsigned VTBits = VT.getScalarSizeInBits(); 3747 unsigned NumElts = DemandedElts.getBitWidth(); 3748 unsigned Tmp, Tmp2; 3749 unsigned FirstAnswer = 1; 3750 3751 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3752 const APInt &Val = C->getAPIntValue(); 3753 return Val.getNumSignBits(); 3754 } 3755 3756 if (Depth >= MaxRecursionDepth) 3757 return 1; // Limit search depth. 3758 3759 if (!DemandedElts || VT.isScalableVector()) 3760 return 1; // No demanded elts, better to assume we don't know anything. 3761 3762 unsigned Opcode = Op.getOpcode(); 3763 switch (Opcode) { 3764 default: break; 3765 case ISD::AssertSext: 3766 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3767 return VTBits-Tmp+1; 3768 case ISD::AssertZext: 3769 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3770 return VTBits-Tmp; 3771 3772 case ISD::BUILD_VECTOR: 3773 Tmp = VTBits; 3774 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3775 if (!DemandedElts[i]) 3776 continue; 3777 3778 SDValue SrcOp = Op.getOperand(i); 3779 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3780 3781 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3782 if (SrcOp.getValueSizeInBits() != VTBits) { 3783 assert(SrcOp.getValueSizeInBits() > VTBits && 3784 "Expected BUILD_VECTOR implicit truncation"); 3785 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3786 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3787 } 3788 Tmp = std::min(Tmp, Tmp2); 3789 } 3790 return Tmp; 3791 3792 case ISD::VECTOR_SHUFFLE: { 3793 // Collect the minimum number of sign bits that are shared by every vector 3794 // element referenced by the shuffle. 3795 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3796 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3797 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3798 for (unsigned i = 0; i != NumElts; ++i) { 3799 int M = SVN->getMaskElt(i); 3800 if (!DemandedElts[i]) 3801 continue; 3802 // For UNDEF elements, we don't know anything about the common state of 3803 // the shuffle result. 3804 if (M < 0) 3805 return 1; 3806 if ((unsigned)M < NumElts) 3807 DemandedLHS.setBit((unsigned)M % NumElts); 3808 else 3809 DemandedRHS.setBit((unsigned)M % NumElts); 3810 } 3811 Tmp = std::numeric_limits<unsigned>::max(); 3812 if (!!DemandedLHS) 3813 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3814 if (!!DemandedRHS) { 3815 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3816 Tmp = std::min(Tmp, Tmp2); 3817 } 3818 // If we don't know anything, early out and try computeKnownBits fall-back. 3819 if (Tmp == 1) 3820 break; 3821 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3822 return Tmp; 3823 } 3824 3825 case ISD::BITCAST: { 3826 SDValue N0 = Op.getOperand(0); 3827 EVT SrcVT = N0.getValueType(); 3828 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3829 3830 // Ignore bitcasts from unsupported types.. 3831 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3832 break; 3833 3834 // Fast handling of 'identity' bitcasts. 3835 if (VTBits == SrcBits) 3836 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3837 3838 bool IsLE = getDataLayout().isLittleEndian(); 3839 3840 // Bitcast 'large element' scalar/vector to 'small element' vector. 3841 if ((SrcBits % VTBits) == 0) { 3842 assert(VT.isVector() && "Expected bitcast to vector"); 3843 3844 unsigned Scale = SrcBits / VTBits; 3845 APInt SrcDemandedElts = 3846 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3847 3848 // Fast case - sign splat can be simply split across the small elements. 3849 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3850 if (Tmp == SrcBits) 3851 return VTBits; 3852 3853 // Slow case - determine how far the sign extends into each sub-element. 3854 Tmp2 = VTBits; 3855 for (unsigned i = 0; i != NumElts; ++i) 3856 if (DemandedElts[i]) { 3857 unsigned SubOffset = i % Scale; 3858 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3859 SubOffset = SubOffset * VTBits; 3860 if (Tmp <= SubOffset) 3861 return 1; 3862 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3863 } 3864 return Tmp2; 3865 } 3866 break; 3867 } 3868 3869 case ISD::FP_TO_SINT_SAT: 3870 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3871 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3872 return VTBits - Tmp + 1; 3873 case ISD::SIGN_EXTEND: 3874 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3875 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3876 case ISD::SIGN_EXTEND_INREG: 3877 // Max of the input and what this extends. 3878 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3879 Tmp = VTBits-Tmp+1; 3880 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3881 return std::max(Tmp, Tmp2); 3882 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3883 SDValue Src = Op.getOperand(0); 3884 EVT SrcVT = Src.getValueType(); 3885 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3886 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3887 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3888 } 3889 case ISD::SRA: 3890 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3891 // SRA X, C -> adds C sign bits. 3892 if (const APInt *ShAmt = 3893 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3894 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3895 return Tmp; 3896 case ISD::SHL: 3897 if (const APInt *ShAmt = 3898 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3899 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3900 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3901 if (ShAmt->ult(Tmp)) 3902 return Tmp - ShAmt->getZExtValue(); 3903 } 3904 break; 3905 case ISD::AND: 3906 case ISD::OR: 3907 case ISD::XOR: // NOT is handled here. 3908 // Logical binary ops preserve the number of sign bits at the worst. 3909 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3910 if (Tmp != 1) { 3911 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3912 FirstAnswer = std::min(Tmp, Tmp2); 3913 // We computed what we know about the sign bits as our first 3914 // answer. Now proceed to the generic code that uses 3915 // computeKnownBits, and pick whichever answer is better. 3916 } 3917 break; 3918 3919 case ISD::SELECT: 3920 case ISD::VSELECT: 3921 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3922 if (Tmp == 1) return 1; // Early out. 3923 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3924 return std::min(Tmp, Tmp2); 3925 case ISD::SELECT_CC: 3926 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3927 if (Tmp == 1) return 1; // Early out. 3928 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3929 return std::min(Tmp, Tmp2); 3930 3931 case ISD::SMIN: 3932 case ISD::SMAX: { 3933 // If we have a clamp pattern, we know that the number of sign bits will be 3934 // the minimum of the clamp min/max range. 3935 bool IsMax = (Opcode == ISD::SMAX); 3936 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3937 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3938 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3939 CstHigh = 3940 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3941 if (CstLow && CstHigh) { 3942 if (!IsMax) 3943 std::swap(CstLow, CstHigh); 3944 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3945 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3946 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3947 return std::min(Tmp, Tmp2); 3948 } 3949 } 3950 3951 // Fallback - just get the minimum number of sign bits of the operands. 3952 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3953 if (Tmp == 1) 3954 return 1; // Early out. 3955 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3956 return std::min(Tmp, Tmp2); 3957 } 3958 case ISD::UMIN: 3959 case ISD::UMAX: 3960 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3961 if (Tmp == 1) 3962 return 1; // Early out. 3963 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3964 return std::min(Tmp, Tmp2); 3965 case ISD::SADDO: 3966 case ISD::UADDO: 3967 case ISD::SSUBO: 3968 case ISD::USUBO: 3969 case ISD::SMULO: 3970 case ISD::UMULO: 3971 if (Op.getResNo() != 1) 3972 break; 3973 // The boolean result conforms to getBooleanContents. Fall through. 3974 // If setcc returns 0/-1, all bits are sign bits. 3975 // We know that we have an integer-based boolean since these operations 3976 // are only available for integer. 3977 if (TLI->getBooleanContents(VT.isVector(), false) == 3978 TargetLowering::ZeroOrNegativeOneBooleanContent) 3979 return VTBits; 3980 break; 3981 case ISD::SETCC: 3982 case ISD::STRICT_FSETCC: 3983 case ISD::STRICT_FSETCCS: { 3984 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3985 // If setcc returns 0/-1, all bits are sign bits. 3986 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3987 TargetLowering::ZeroOrNegativeOneBooleanContent) 3988 return VTBits; 3989 break; 3990 } 3991 case ISD::ROTL: 3992 case ISD::ROTR: 3993 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3994 3995 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3996 if (Tmp == VTBits) 3997 return VTBits; 3998 3999 if (ConstantSDNode *C = 4000 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4001 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4002 4003 // Handle rotate right by N like a rotate left by 32-N. 4004 if (Opcode == ISD::ROTR) 4005 RotAmt = (VTBits - RotAmt) % VTBits; 4006 4007 // If we aren't rotating out all of the known-in sign bits, return the 4008 // number that are left. This handles rotl(sext(x), 1) for example. 4009 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4010 } 4011 break; 4012 case ISD::ADD: 4013 case ISD::ADDC: 4014 // Add can have at most one carry bit. Thus we know that the output 4015 // is, at worst, one more bit than the inputs. 4016 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4017 if (Tmp == 1) return 1; // Early out. 4018 4019 // Special case decrementing a value (ADD X, -1): 4020 if (ConstantSDNode *CRHS = 4021 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4022 if (CRHS->isAllOnes()) { 4023 KnownBits Known = 4024 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4025 4026 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4027 // sign bits set. 4028 if ((Known.Zero | 1).isAllOnes()) 4029 return VTBits; 4030 4031 // If we are subtracting one from a positive number, there is no carry 4032 // out of the result. 4033 if (Known.isNonNegative()) 4034 return Tmp; 4035 } 4036 4037 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4038 if (Tmp2 == 1) return 1; // Early out. 4039 return std::min(Tmp, Tmp2) - 1; 4040 case ISD::SUB: 4041 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4042 if (Tmp2 == 1) return 1; // Early out. 4043 4044 // Handle NEG. 4045 if (ConstantSDNode *CLHS = 4046 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4047 if (CLHS->isZero()) { 4048 KnownBits Known = 4049 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4050 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4051 // sign bits set. 4052 if ((Known.Zero | 1).isAllOnes()) 4053 return VTBits; 4054 4055 // If the input is known to be positive (the sign bit is known clear), 4056 // the output of the NEG has the same number of sign bits as the input. 4057 if (Known.isNonNegative()) 4058 return Tmp2; 4059 4060 // Otherwise, we treat this like a SUB. 4061 } 4062 4063 // Sub can have at most one carry bit. Thus we know that the output 4064 // is, at worst, one more bit than the inputs. 4065 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4066 if (Tmp == 1) return 1; // Early out. 4067 return std::min(Tmp, Tmp2) - 1; 4068 case ISD::MUL: { 4069 // The output of the Mul can be at most twice the valid bits in the inputs. 4070 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4071 if (SignBitsOp0 == 1) 4072 break; 4073 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4074 if (SignBitsOp1 == 1) 4075 break; 4076 unsigned OutValidBits = 4077 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4078 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4079 } 4080 case ISD::SREM: 4081 // The sign bit is the LHS's sign bit, except when the result of the 4082 // remainder is zero. The magnitude of the result should be less than or 4083 // equal to the magnitude of the LHS. Therefore, the result should have 4084 // at least as many sign bits as the left hand side. 4085 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4086 case ISD::TRUNCATE: { 4087 // Check if the sign bits of source go down as far as the truncated value. 4088 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4089 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4090 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4091 return NumSrcSignBits - (NumSrcBits - VTBits); 4092 break; 4093 } 4094 case ISD::EXTRACT_ELEMENT: { 4095 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4096 const int BitWidth = Op.getValueSizeInBits(); 4097 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4098 4099 // Get reverse index (starting from 1), Op1 value indexes elements from 4100 // little end. Sign starts at big end. 4101 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4102 4103 // If the sign portion ends in our element the subtraction gives correct 4104 // result. Otherwise it gives either negative or > bitwidth result 4105 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4106 } 4107 case ISD::INSERT_VECTOR_ELT: { 4108 // If we know the element index, split the demand between the 4109 // source vector and the inserted element, otherwise assume we need 4110 // the original demanded vector elements and the value. 4111 SDValue InVec = Op.getOperand(0); 4112 SDValue InVal = Op.getOperand(1); 4113 SDValue EltNo = Op.getOperand(2); 4114 bool DemandedVal = true; 4115 APInt DemandedVecElts = DemandedElts; 4116 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4117 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4118 unsigned EltIdx = CEltNo->getZExtValue(); 4119 DemandedVal = !!DemandedElts[EltIdx]; 4120 DemandedVecElts.clearBit(EltIdx); 4121 } 4122 Tmp = std::numeric_limits<unsigned>::max(); 4123 if (DemandedVal) { 4124 // TODO - handle implicit truncation of inserted elements. 4125 if (InVal.getScalarValueSizeInBits() != VTBits) 4126 break; 4127 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4128 Tmp = std::min(Tmp, Tmp2); 4129 } 4130 if (!!DemandedVecElts) { 4131 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4132 Tmp = std::min(Tmp, Tmp2); 4133 } 4134 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4135 return Tmp; 4136 } 4137 case ISD::EXTRACT_VECTOR_ELT: { 4138 SDValue InVec = Op.getOperand(0); 4139 SDValue EltNo = Op.getOperand(1); 4140 EVT VecVT = InVec.getValueType(); 4141 // ComputeNumSignBits not yet implemented for scalable vectors. 4142 if (VecVT.isScalableVector()) 4143 break; 4144 const unsigned BitWidth = Op.getValueSizeInBits(); 4145 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4146 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4147 4148 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4149 // anything about sign bits. But if the sizes match we can derive knowledge 4150 // about sign bits from the vector operand. 4151 if (BitWidth != EltBitWidth) 4152 break; 4153 4154 // If we know the element index, just demand that vector element, else for 4155 // an unknown element index, ignore DemandedElts and demand them all. 4156 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4157 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4158 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4159 DemandedSrcElts = 4160 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4161 4162 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4163 } 4164 case ISD::EXTRACT_SUBVECTOR: { 4165 // Offset the demanded elts by the subvector index. 4166 SDValue Src = Op.getOperand(0); 4167 // Bail until we can represent demanded elements for scalable vectors. 4168 if (Src.getValueType().isScalableVector()) 4169 break; 4170 uint64_t Idx = Op.getConstantOperandVal(1); 4171 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4172 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4173 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4174 } 4175 case ISD::CONCAT_VECTORS: { 4176 // Determine the minimum number of sign bits across all demanded 4177 // elts of the input vectors. Early out if the result is already 1. 4178 Tmp = std::numeric_limits<unsigned>::max(); 4179 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4180 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4181 unsigned NumSubVectors = Op.getNumOperands(); 4182 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4183 APInt DemandedSub = 4184 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4185 if (!DemandedSub) 4186 continue; 4187 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4188 Tmp = std::min(Tmp, Tmp2); 4189 } 4190 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4191 return Tmp; 4192 } 4193 case ISD::INSERT_SUBVECTOR: { 4194 // Demand any elements from the subvector and the remainder from the src its 4195 // inserted into. 4196 SDValue Src = Op.getOperand(0); 4197 SDValue Sub = Op.getOperand(1); 4198 uint64_t Idx = Op.getConstantOperandVal(2); 4199 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4200 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4201 APInt DemandedSrcElts = DemandedElts; 4202 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4203 4204 Tmp = std::numeric_limits<unsigned>::max(); 4205 if (!!DemandedSubElts) { 4206 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4207 if (Tmp == 1) 4208 return 1; // early-out 4209 } 4210 if (!!DemandedSrcElts) { 4211 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4212 Tmp = std::min(Tmp, Tmp2); 4213 } 4214 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4215 return Tmp; 4216 } 4217 case ISD::ATOMIC_CMP_SWAP: 4218 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4219 case ISD::ATOMIC_SWAP: 4220 case ISD::ATOMIC_LOAD_ADD: 4221 case ISD::ATOMIC_LOAD_SUB: 4222 case ISD::ATOMIC_LOAD_AND: 4223 case ISD::ATOMIC_LOAD_CLR: 4224 case ISD::ATOMIC_LOAD_OR: 4225 case ISD::ATOMIC_LOAD_XOR: 4226 case ISD::ATOMIC_LOAD_NAND: 4227 case ISD::ATOMIC_LOAD_MIN: 4228 case ISD::ATOMIC_LOAD_MAX: 4229 case ISD::ATOMIC_LOAD_UMIN: 4230 case ISD::ATOMIC_LOAD_UMAX: 4231 case ISD::ATOMIC_LOAD: { 4232 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4233 // If we are looking at the loaded value. 4234 if (Op.getResNo() == 0) { 4235 if (Tmp == VTBits) 4236 return 1; // early-out 4237 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4238 return VTBits - Tmp + 1; 4239 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4240 return VTBits - Tmp; 4241 } 4242 break; 4243 } 4244 } 4245 4246 // If we are looking at the loaded value of the SDNode. 4247 if (Op.getResNo() == 0) { 4248 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4249 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4250 unsigned ExtType = LD->getExtensionType(); 4251 switch (ExtType) { 4252 default: break; 4253 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4254 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4255 return VTBits - Tmp + 1; 4256 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4257 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4258 return VTBits - Tmp; 4259 case ISD::NON_EXTLOAD: 4260 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4261 // We only need to handle vectors - computeKnownBits should handle 4262 // scalar cases. 4263 Type *CstTy = Cst->getType(); 4264 if (CstTy->isVectorTy() && 4265 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4266 Tmp = VTBits; 4267 for (unsigned i = 0; i != NumElts; ++i) { 4268 if (!DemandedElts[i]) 4269 continue; 4270 if (Constant *Elt = Cst->getAggregateElement(i)) { 4271 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4272 const APInt &Value = CInt->getValue(); 4273 Tmp = std::min(Tmp, Value.getNumSignBits()); 4274 continue; 4275 } 4276 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4277 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4278 Tmp = std::min(Tmp, Value.getNumSignBits()); 4279 continue; 4280 } 4281 } 4282 // Unknown type. Conservatively assume no bits match sign bit. 4283 return 1; 4284 } 4285 return Tmp; 4286 } 4287 } 4288 break; 4289 } 4290 } 4291 } 4292 4293 // Allow the target to implement this method for its nodes. 4294 if (Opcode >= ISD::BUILTIN_OP_END || 4295 Opcode == ISD::INTRINSIC_WO_CHAIN || 4296 Opcode == ISD::INTRINSIC_W_CHAIN || 4297 Opcode == ISD::INTRINSIC_VOID) { 4298 unsigned NumBits = 4299 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4300 if (NumBits > 1) 4301 FirstAnswer = std::max(FirstAnswer, NumBits); 4302 } 4303 4304 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4305 // use this information. 4306 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4307 return std::max(FirstAnswer, Known.countMinSignBits()); 4308 } 4309 4310 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4311 unsigned Depth) const { 4312 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4313 return Op.getScalarValueSizeInBits() - SignBits + 1; 4314 } 4315 4316 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4317 const APInt &DemandedElts, 4318 unsigned Depth) const { 4319 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4320 return Op.getScalarValueSizeInBits() - SignBits + 1; 4321 } 4322 4323 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4324 unsigned Depth) const { 4325 // Early out for FREEZE. 4326 if (Op.getOpcode() == ISD::FREEZE) 4327 return true; 4328 4329 // TODO: Assume we don't know anything for now. 4330 EVT VT = Op.getValueType(); 4331 if (VT.isScalableVector()) 4332 return false; 4333 4334 APInt DemandedElts = VT.isVector() 4335 ? APInt::getAllOnes(VT.getVectorNumElements()) 4336 : APInt(1, 1); 4337 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4338 } 4339 4340 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4341 const APInt &DemandedElts, 4342 bool PoisonOnly, 4343 unsigned Depth) const { 4344 unsigned Opcode = Op.getOpcode(); 4345 4346 // Early out for FREEZE. 4347 if (Opcode == ISD::FREEZE) 4348 return true; 4349 4350 if (Depth >= MaxRecursionDepth) 4351 return false; // Limit search depth. 4352 4353 if (isIntOrFPConstant(Op)) 4354 return true; 4355 4356 switch (Opcode) { 4357 case ISD::UNDEF: 4358 return PoisonOnly; 4359 4360 case ISD::BUILD_VECTOR: 4361 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4362 // this shouldn't affect the result. 4363 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4364 if (!DemandedElts[i]) 4365 continue; 4366 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4367 Depth + 1)) 4368 return false; 4369 } 4370 return true; 4371 4372 // TODO: Search for noundef attributes from library functions. 4373 4374 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4375 4376 default: 4377 // Allow the target to implement this method for its nodes. 4378 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4379 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4380 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4381 Op, DemandedElts, *this, PoisonOnly, Depth); 4382 break; 4383 } 4384 4385 return false; 4386 } 4387 4388 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4389 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4390 !isa<ConstantSDNode>(Op.getOperand(1))) 4391 return false; 4392 4393 if (Op.getOpcode() == ISD::OR && 4394 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4395 return false; 4396 4397 return true; 4398 } 4399 4400 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4401 // If we're told that NaNs won't happen, assume they won't. 4402 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4403 return true; 4404 4405 if (Depth >= MaxRecursionDepth) 4406 return false; // Limit search depth. 4407 4408 // TODO: Handle vectors. 4409 // If the value is a constant, we can obviously see if it is a NaN or not. 4410 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4411 return !C->getValueAPF().isNaN() || 4412 (SNaN && !C->getValueAPF().isSignaling()); 4413 } 4414 4415 unsigned Opcode = Op.getOpcode(); 4416 switch (Opcode) { 4417 case ISD::FADD: 4418 case ISD::FSUB: 4419 case ISD::FMUL: 4420 case ISD::FDIV: 4421 case ISD::FREM: 4422 case ISD::FSIN: 4423 case ISD::FCOS: { 4424 if (SNaN) 4425 return true; 4426 // TODO: Need isKnownNeverInfinity 4427 return false; 4428 } 4429 case ISD::FCANONICALIZE: 4430 case ISD::FEXP: 4431 case ISD::FEXP2: 4432 case ISD::FTRUNC: 4433 case ISD::FFLOOR: 4434 case ISD::FCEIL: 4435 case ISD::FROUND: 4436 case ISD::FROUNDEVEN: 4437 case ISD::FRINT: 4438 case ISD::FNEARBYINT: { 4439 if (SNaN) 4440 return true; 4441 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4442 } 4443 case ISD::FABS: 4444 case ISD::FNEG: 4445 case ISD::FCOPYSIGN: { 4446 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4447 } 4448 case ISD::SELECT: 4449 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4450 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4451 case ISD::FP_EXTEND: 4452 case ISD::FP_ROUND: { 4453 if (SNaN) 4454 return true; 4455 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4456 } 4457 case ISD::SINT_TO_FP: 4458 case ISD::UINT_TO_FP: 4459 return true; 4460 case ISD::FMA: 4461 case ISD::FMAD: { 4462 if (SNaN) 4463 return true; 4464 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4465 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4466 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4467 } 4468 case ISD::FSQRT: // Need is known positive 4469 case ISD::FLOG: 4470 case ISD::FLOG2: 4471 case ISD::FLOG10: 4472 case ISD::FPOWI: 4473 case ISD::FPOW: { 4474 if (SNaN) 4475 return true; 4476 // TODO: Refine on operand 4477 return false; 4478 } 4479 case ISD::FMINNUM: 4480 case ISD::FMAXNUM: { 4481 // Only one needs to be known not-nan, since it will be returned if the 4482 // other ends up being one. 4483 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4484 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4485 } 4486 case ISD::FMINNUM_IEEE: 4487 case ISD::FMAXNUM_IEEE: { 4488 if (SNaN) 4489 return true; 4490 // This can return a NaN if either operand is an sNaN, or if both operands 4491 // are NaN. 4492 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4493 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4494 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4495 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4496 } 4497 case ISD::FMINIMUM: 4498 case ISD::FMAXIMUM: { 4499 // TODO: Does this quiet or return the origina NaN as-is? 4500 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4501 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4502 } 4503 case ISD::EXTRACT_VECTOR_ELT: { 4504 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4505 } 4506 default: 4507 if (Opcode >= ISD::BUILTIN_OP_END || 4508 Opcode == ISD::INTRINSIC_WO_CHAIN || 4509 Opcode == ISD::INTRINSIC_W_CHAIN || 4510 Opcode == ISD::INTRINSIC_VOID) { 4511 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4512 } 4513 4514 return false; 4515 } 4516 } 4517 4518 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4519 assert(Op.getValueType().isFloatingPoint() && 4520 "Floating point type expected"); 4521 4522 // If the value is a constant, we can obviously see if it is a zero or not. 4523 // TODO: Add BuildVector support. 4524 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4525 return !C->isZero(); 4526 return false; 4527 } 4528 4529 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4530 assert(!Op.getValueType().isFloatingPoint() && 4531 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4532 4533 // If the value is a constant, we can obviously see if it is a zero or not. 4534 if (ISD::matchUnaryPredicate(Op, 4535 [](ConstantSDNode *C) { return !C->isZero(); })) 4536 return true; 4537 4538 // TODO: Recognize more cases here. 4539 switch (Op.getOpcode()) { 4540 default: break; 4541 case ISD::OR: 4542 if (isKnownNeverZero(Op.getOperand(1)) || 4543 isKnownNeverZero(Op.getOperand(0))) 4544 return true; 4545 break; 4546 } 4547 4548 return false; 4549 } 4550 4551 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4552 // Check the obvious case. 4553 if (A == B) return true; 4554 4555 // For for negative and positive zero. 4556 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4557 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4558 if (CA->isZero() && CB->isZero()) return true; 4559 4560 // Otherwise they may not be equal. 4561 return false; 4562 } 4563 4564 // FIXME: unify with llvm::haveNoCommonBitsSet. 4565 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4566 assert(A.getValueType() == B.getValueType() && 4567 "Values must have the same type"); 4568 // Match masked merge pattern (X & ~M) op (Y & M) 4569 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4570 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4571 if (isBitwiseNot(NotM, true)) { 4572 SDValue NotOperand = NotM->getOperand(0); 4573 return NotOperand == And->getOperand(0) || 4574 NotOperand == And->getOperand(1); 4575 } 4576 return false; 4577 }; 4578 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4579 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4580 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4581 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4582 return true; 4583 } 4584 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4585 computeKnownBits(B)); 4586 } 4587 4588 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4589 SelectionDAG &DAG) { 4590 if (cast<ConstantSDNode>(Step)->isZero()) 4591 return DAG.getConstant(0, DL, VT); 4592 4593 return SDValue(); 4594 } 4595 4596 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4597 ArrayRef<SDValue> Ops, 4598 SelectionDAG &DAG) { 4599 int NumOps = Ops.size(); 4600 assert(NumOps != 0 && "Can't build an empty vector!"); 4601 assert(!VT.isScalableVector() && 4602 "BUILD_VECTOR cannot be used with scalable types"); 4603 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4604 "Incorrect element count in BUILD_VECTOR!"); 4605 4606 // BUILD_VECTOR of UNDEFs is UNDEF. 4607 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4608 return DAG.getUNDEF(VT); 4609 4610 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4611 SDValue IdentitySrc; 4612 bool IsIdentity = true; 4613 for (int i = 0; i != NumOps; ++i) { 4614 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4615 Ops[i].getOperand(0).getValueType() != VT || 4616 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4617 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4618 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4619 IsIdentity = false; 4620 break; 4621 } 4622 IdentitySrc = Ops[i].getOperand(0); 4623 } 4624 if (IsIdentity) 4625 return IdentitySrc; 4626 4627 return SDValue(); 4628 } 4629 4630 /// Try to simplify vector concatenation to an input value, undef, or build 4631 /// vector. 4632 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4633 ArrayRef<SDValue> Ops, 4634 SelectionDAG &DAG) { 4635 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4636 assert(llvm::all_of(Ops, 4637 [Ops](SDValue Op) { 4638 return Ops[0].getValueType() == Op.getValueType(); 4639 }) && 4640 "Concatenation of vectors with inconsistent value types!"); 4641 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4642 VT.getVectorElementCount() && 4643 "Incorrect element count in vector concatenation!"); 4644 4645 if (Ops.size() == 1) 4646 return Ops[0]; 4647 4648 // Concat of UNDEFs is UNDEF. 4649 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4650 return DAG.getUNDEF(VT); 4651 4652 // Scan the operands and look for extract operations from a single source 4653 // that correspond to insertion at the same location via this concatenation: 4654 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4655 SDValue IdentitySrc; 4656 bool IsIdentity = true; 4657 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4658 SDValue Op = Ops[i]; 4659 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4660 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4661 Op.getOperand(0).getValueType() != VT || 4662 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4663 Op.getConstantOperandVal(1) != IdentityIndex) { 4664 IsIdentity = false; 4665 break; 4666 } 4667 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4668 "Unexpected identity source vector for concat of extracts"); 4669 IdentitySrc = Op.getOperand(0); 4670 } 4671 if (IsIdentity) { 4672 assert(IdentitySrc && "Failed to set source vector of extracts"); 4673 return IdentitySrc; 4674 } 4675 4676 // The code below this point is only designed to work for fixed width 4677 // vectors, so we bail out for now. 4678 if (VT.isScalableVector()) 4679 return SDValue(); 4680 4681 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4682 // simplified to one big BUILD_VECTOR. 4683 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4684 EVT SVT = VT.getScalarType(); 4685 SmallVector<SDValue, 16> Elts; 4686 for (SDValue Op : Ops) { 4687 EVT OpVT = Op.getValueType(); 4688 if (Op.isUndef()) 4689 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4690 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4691 Elts.append(Op->op_begin(), Op->op_end()); 4692 else 4693 return SDValue(); 4694 } 4695 4696 // BUILD_VECTOR requires all inputs to be of the same type, find the 4697 // maximum type and extend them all. 4698 for (SDValue Op : Elts) 4699 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4700 4701 if (SVT.bitsGT(VT.getScalarType())) { 4702 for (SDValue &Op : Elts) { 4703 if (Op.isUndef()) 4704 Op = DAG.getUNDEF(SVT); 4705 else 4706 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4707 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4708 : DAG.getSExtOrTrunc(Op, DL, SVT); 4709 } 4710 } 4711 4712 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4713 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4714 return V; 4715 } 4716 4717 /// Gets or creates the specified node. 4718 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4719 FoldingSetNodeID ID; 4720 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4721 void *IP = nullptr; 4722 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4723 return SDValue(E, 0); 4724 4725 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4726 getVTList(VT)); 4727 CSEMap.InsertNode(N, IP); 4728 4729 InsertNode(N); 4730 SDValue V = SDValue(N, 0); 4731 NewSDValueDbgMsg(V, "Creating new node: ", this); 4732 return V; 4733 } 4734 4735 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4736 SDValue Operand) { 4737 SDNodeFlags Flags; 4738 if (Inserter) 4739 Flags = Inserter->getFlags(); 4740 return getNode(Opcode, DL, VT, Operand, Flags); 4741 } 4742 4743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4744 SDValue Operand, const SDNodeFlags Flags) { 4745 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4746 "Operand is DELETED_NODE!"); 4747 // Constant fold unary operations with an integer constant operand. Even 4748 // opaque constant will be folded, because the folding of unary operations 4749 // doesn't create new constants with different values. Nevertheless, the 4750 // opaque flag is preserved during folding to prevent future folding with 4751 // other constants. 4752 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4753 const APInt &Val = C->getAPIntValue(); 4754 switch (Opcode) { 4755 default: break; 4756 case ISD::SIGN_EXTEND: 4757 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4758 C->isTargetOpcode(), C->isOpaque()); 4759 case ISD::TRUNCATE: 4760 if (C->isOpaque()) 4761 break; 4762 LLVM_FALLTHROUGH; 4763 case ISD::ZERO_EXTEND: 4764 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4765 C->isTargetOpcode(), C->isOpaque()); 4766 case ISD::ANY_EXTEND: 4767 // Some targets like RISCV prefer to sign extend some types. 4768 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4769 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4770 C->isTargetOpcode(), C->isOpaque()); 4771 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4772 C->isTargetOpcode(), C->isOpaque()); 4773 case ISD::UINT_TO_FP: 4774 case ISD::SINT_TO_FP: { 4775 APFloat apf(EVTToAPFloatSemantics(VT), 4776 APInt::getZero(VT.getSizeInBits())); 4777 (void)apf.convertFromAPInt(Val, 4778 Opcode==ISD::SINT_TO_FP, 4779 APFloat::rmNearestTiesToEven); 4780 return getConstantFP(apf, DL, VT); 4781 } 4782 case ISD::BITCAST: 4783 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4784 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4785 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4786 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4787 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4788 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4789 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4790 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4791 break; 4792 case ISD::ABS: 4793 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4794 C->isOpaque()); 4795 case ISD::BITREVERSE: 4796 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4797 C->isOpaque()); 4798 case ISD::BSWAP: 4799 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4800 C->isOpaque()); 4801 case ISD::CTPOP: 4802 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4803 C->isOpaque()); 4804 case ISD::CTLZ: 4805 case ISD::CTLZ_ZERO_UNDEF: 4806 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4807 C->isOpaque()); 4808 case ISD::CTTZ: 4809 case ISD::CTTZ_ZERO_UNDEF: 4810 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4811 C->isOpaque()); 4812 case ISD::FP16_TO_FP: { 4813 bool Ignored; 4814 APFloat FPV(APFloat::IEEEhalf(), 4815 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4816 4817 // This can return overflow, underflow, or inexact; we don't care. 4818 // FIXME need to be more flexible about rounding mode. 4819 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4820 APFloat::rmNearestTiesToEven, &Ignored); 4821 return getConstantFP(FPV, DL, VT); 4822 } 4823 case ISD::STEP_VECTOR: { 4824 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4825 return V; 4826 break; 4827 } 4828 } 4829 } 4830 4831 // Constant fold unary operations with a floating point constant operand. 4832 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4833 APFloat V = C->getValueAPF(); // make copy 4834 switch (Opcode) { 4835 case ISD::FNEG: 4836 V.changeSign(); 4837 return getConstantFP(V, DL, VT); 4838 case ISD::FABS: 4839 V.clearSign(); 4840 return getConstantFP(V, DL, VT); 4841 case ISD::FCEIL: { 4842 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4843 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4844 return getConstantFP(V, DL, VT); 4845 break; 4846 } 4847 case ISD::FTRUNC: { 4848 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4849 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4850 return getConstantFP(V, DL, VT); 4851 break; 4852 } 4853 case ISD::FFLOOR: { 4854 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4855 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4856 return getConstantFP(V, DL, VT); 4857 break; 4858 } 4859 case ISD::FP_EXTEND: { 4860 bool ignored; 4861 // This can return overflow, underflow, or inexact; we don't care. 4862 // FIXME need to be more flexible about rounding mode. 4863 (void)V.convert(EVTToAPFloatSemantics(VT), 4864 APFloat::rmNearestTiesToEven, &ignored); 4865 return getConstantFP(V, DL, VT); 4866 } 4867 case ISD::FP_TO_SINT: 4868 case ISD::FP_TO_UINT: { 4869 bool ignored; 4870 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4871 // FIXME need to be more flexible about rounding mode. 4872 APFloat::opStatus s = 4873 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4874 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4875 break; 4876 return getConstant(IntVal, DL, VT); 4877 } 4878 case ISD::BITCAST: 4879 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4880 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4881 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4882 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4883 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4884 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4885 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4886 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4887 break; 4888 case ISD::FP_TO_FP16: { 4889 bool Ignored; 4890 // This can return overflow, underflow, or inexact; we don't care. 4891 // FIXME need to be more flexible about rounding mode. 4892 (void)V.convert(APFloat::IEEEhalf(), 4893 APFloat::rmNearestTiesToEven, &Ignored); 4894 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4895 } 4896 } 4897 } 4898 4899 // Constant fold unary operations with a vector integer or float operand. 4900 switch (Opcode) { 4901 default: 4902 // FIXME: Entirely reasonable to perform folding of other unary 4903 // operations here as the need arises. 4904 break; 4905 case ISD::FNEG: 4906 case ISD::FABS: 4907 case ISD::FCEIL: 4908 case ISD::FTRUNC: 4909 case ISD::FFLOOR: 4910 case ISD::FP_EXTEND: 4911 case ISD::FP_TO_SINT: 4912 case ISD::FP_TO_UINT: 4913 case ISD::TRUNCATE: 4914 case ISD::ANY_EXTEND: 4915 case ISD::ZERO_EXTEND: 4916 case ISD::SIGN_EXTEND: 4917 case ISD::UINT_TO_FP: 4918 case ISD::SINT_TO_FP: 4919 case ISD::ABS: 4920 case ISD::BITREVERSE: 4921 case ISD::BSWAP: 4922 case ISD::CTLZ: 4923 case ISD::CTLZ_ZERO_UNDEF: 4924 case ISD::CTTZ: 4925 case ISD::CTTZ_ZERO_UNDEF: 4926 case ISD::CTPOP: { 4927 SDValue Ops = {Operand}; 4928 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4929 return Fold; 4930 } 4931 } 4932 4933 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4934 switch (Opcode) { 4935 case ISD::STEP_VECTOR: 4936 assert(VT.isScalableVector() && 4937 "STEP_VECTOR can only be used with scalable types"); 4938 assert(OpOpcode == ISD::TargetConstant && 4939 VT.getVectorElementType() == Operand.getValueType() && 4940 "Unexpected step operand"); 4941 break; 4942 case ISD::FREEZE: 4943 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4944 break; 4945 case ISD::TokenFactor: 4946 case ISD::MERGE_VALUES: 4947 case ISD::CONCAT_VECTORS: 4948 return Operand; // Factor, merge or concat of one node? No need. 4949 case ISD::BUILD_VECTOR: { 4950 // Attempt to simplify BUILD_VECTOR. 4951 SDValue Ops[] = {Operand}; 4952 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4953 return V; 4954 break; 4955 } 4956 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4957 case ISD::FP_EXTEND: 4958 assert(VT.isFloatingPoint() && 4959 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4960 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4961 assert((!VT.isVector() || 4962 VT.getVectorElementCount() == 4963 Operand.getValueType().getVectorElementCount()) && 4964 "Vector element count mismatch!"); 4965 assert(Operand.getValueType().bitsLT(VT) && 4966 "Invalid fpext node, dst < src!"); 4967 if (Operand.isUndef()) 4968 return getUNDEF(VT); 4969 break; 4970 case ISD::FP_TO_SINT: 4971 case ISD::FP_TO_UINT: 4972 if (Operand.isUndef()) 4973 return getUNDEF(VT); 4974 break; 4975 case ISD::SINT_TO_FP: 4976 case ISD::UINT_TO_FP: 4977 // [us]itofp(undef) = 0, because the result value is bounded. 4978 if (Operand.isUndef()) 4979 return getConstantFP(0.0, DL, VT); 4980 break; 4981 case ISD::SIGN_EXTEND: 4982 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4983 "Invalid SIGN_EXTEND!"); 4984 assert(VT.isVector() == Operand.getValueType().isVector() && 4985 "SIGN_EXTEND result type type should be vector iff the operand " 4986 "type is vector!"); 4987 if (Operand.getValueType() == VT) return Operand; // noop extension 4988 assert((!VT.isVector() || 4989 VT.getVectorElementCount() == 4990 Operand.getValueType().getVectorElementCount()) && 4991 "Vector element count mismatch!"); 4992 assert(Operand.getValueType().bitsLT(VT) && 4993 "Invalid sext node, dst < src!"); 4994 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4995 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4996 if (OpOpcode == ISD::UNDEF) 4997 // sext(undef) = 0, because the top bits will all be the same. 4998 return getConstant(0, DL, VT); 4999 break; 5000 case ISD::ZERO_EXTEND: 5001 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5002 "Invalid ZERO_EXTEND!"); 5003 assert(VT.isVector() == Operand.getValueType().isVector() && 5004 "ZERO_EXTEND result type type should be vector iff the operand " 5005 "type is vector!"); 5006 if (Operand.getValueType() == VT) return Operand; // noop extension 5007 assert((!VT.isVector() || 5008 VT.getVectorElementCount() == 5009 Operand.getValueType().getVectorElementCount()) && 5010 "Vector element count mismatch!"); 5011 assert(Operand.getValueType().bitsLT(VT) && 5012 "Invalid zext node, dst < src!"); 5013 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5014 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5015 if (OpOpcode == ISD::UNDEF) 5016 // zext(undef) = 0, because the top bits will be zero. 5017 return getConstant(0, DL, VT); 5018 break; 5019 case ISD::ANY_EXTEND: 5020 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5021 "Invalid ANY_EXTEND!"); 5022 assert(VT.isVector() == Operand.getValueType().isVector() && 5023 "ANY_EXTEND result type type should be vector iff the operand " 5024 "type is vector!"); 5025 if (Operand.getValueType() == VT) return Operand; // noop extension 5026 assert((!VT.isVector() || 5027 VT.getVectorElementCount() == 5028 Operand.getValueType().getVectorElementCount()) && 5029 "Vector element count mismatch!"); 5030 assert(Operand.getValueType().bitsLT(VT) && 5031 "Invalid anyext node, dst < src!"); 5032 5033 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5034 OpOpcode == ISD::ANY_EXTEND) 5035 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5036 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5037 if (OpOpcode == ISD::UNDEF) 5038 return getUNDEF(VT); 5039 5040 // (ext (trunc x)) -> x 5041 if (OpOpcode == ISD::TRUNCATE) { 5042 SDValue OpOp = Operand.getOperand(0); 5043 if (OpOp.getValueType() == VT) { 5044 transferDbgValues(Operand, OpOp); 5045 return OpOp; 5046 } 5047 } 5048 break; 5049 case ISD::TRUNCATE: 5050 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5051 "Invalid TRUNCATE!"); 5052 assert(VT.isVector() == Operand.getValueType().isVector() && 5053 "TRUNCATE result type type should be vector iff the operand " 5054 "type is vector!"); 5055 if (Operand.getValueType() == VT) return Operand; // noop truncate 5056 assert((!VT.isVector() || 5057 VT.getVectorElementCount() == 5058 Operand.getValueType().getVectorElementCount()) && 5059 "Vector element count mismatch!"); 5060 assert(Operand.getValueType().bitsGT(VT) && 5061 "Invalid truncate node, src < dst!"); 5062 if (OpOpcode == ISD::TRUNCATE) 5063 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5064 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5065 OpOpcode == ISD::ANY_EXTEND) { 5066 // If the source is smaller than the dest, we still need an extend. 5067 if (Operand.getOperand(0).getValueType().getScalarType() 5068 .bitsLT(VT.getScalarType())) 5069 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5070 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5071 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5072 return Operand.getOperand(0); 5073 } 5074 if (OpOpcode == ISD::UNDEF) 5075 return getUNDEF(VT); 5076 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5077 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5078 break; 5079 case ISD::ANY_EXTEND_VECTOR_INREG: 5080 case ISD::ZERO_EXTEND_VECTOR_INREG: 5081 case ISD::SIGN_EXTEND_VECTOR_INREG: 5082 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5083 assert(Operand.getValueType().bitsLE(VT) && 5084 "The input must be the same size or smaller than the result."); 5085 assert(VT.getVectorMinNumElements() < 5086 Operand.getValueType().getVectorMinNumElements() && 5087 "The destination vector type must have fewer lanes than the input."); 5088 break; 5089 case ISD::ABS: 5090 assert(VT.isInteger() && VT == Operand.getValueType() && 5091 "Invalid ABS!"); 5092 if (OpOpcode == ISD::UNDEF) 5093 return getUNDEF(VT); 5094 break; 5095 case ISD::BSWAP: 5096 assert(VT.isInteger() && VT == Operand.getValueType() && 5097 "Invalid BSWAP!"); 5098 assert((VT.getScalarSizeInBits() % 16 == 0) && 5099 "BSWAP types must be a multiple of 16 bits!"); 5100 if (OpOpcode == ISD::UNDEF) 5101 return getUNDEF(VT); 5102 break; 5103 case ISD::BITREVERSE: 5104 assert(VT.isInteger() && VT == Operand.getValueType() && 5105 "Invalid BITREVERSE!"); 5106 if (OpOpcode == ISD::UNDEF) 5107 return getUNDEF(VT); 5108 break; 5109 case ISD::BITCAST: 5110 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5111 "Cannot BITCAST between types of different sizes!"); 5112 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5113 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5114 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5115 if (OpOpcode == ISD::UNDEF) 5116 return getUNDEF(VT); 5117 break; 5118 case ISD::SCALAR_TO_VECTOR: 5119 assert(VT.isVector() && !Operand.getValueType().isVector() && 5120 (VT.getVectorElementType() == Operand.getValueType() || 5121 (VT.getVectorElementType().isInteger() && 5122 Operand.getValueType().isInteger() && 5123 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5124 "Illegal SCALAR_TO_VECTOR node!"); 5125 if (OpOpcode == ISD::UNDEF) 5126 return getUNDEF(VT); 5127 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5128 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5129 isa<ConstantSDNode>(Operand.getOperand(1)) && 5130 Operand.getConstantOperandVal(1) == 0 && 5131 Operand.getOperand(0).getValueType() == VT) 5132 return Operand.getOperand(0); 5133 break; 5134 case ISD::FNEG: 5135 // Negation of an unknown bag of bits is still completely undefined. 5136 if (OpOpcode == ISD::UNDEF) 5137 return getUNDEF(VT); 5138 5139 if (OpOpcode == ISD::FNEG) // --X -> X 5140 return Operand.getOperand(0); 5141 break; 5142 case ISD::FABS: 5143 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5144 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5145 break; 5146 case ISD::VSCALE: 5147 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5148 break; 5149 case ISD::CTPOP: 5150 if (Operand.getValueType().getScalarType() == MVT::i1) 5151 return Operand; 5152 break; 5153 case ISD::CTLZ: 5154 case ISD::CTTZ: 5155 if (Operand.getValueType().getScalarType() == MVT::i1) 5156 return getNOT(DL, Operand, Operand.getValueType()); 5157 break; 5158 case ISD::VECREDUCE_SMIN: 5159 case ISD::VECREDUCE_UMAX: 5160 if (Operand.getValueType().getScalarType() == MVT::i1) 5161 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5162 break; 5163 case ISD::VECREDUCE_SMAX: 5164 case ISD::VECREDUCE_UMIN: 5165 if (Operand.getValueType().getScalarType() == MVT::i1) 5166 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5167 break; 5168 } 5169 5170 SDNode *N; 5171 SDVTList VTs = getVTList(VT); 5172 SDValue Ops[] = {Operand}; 5173 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5174 FoldingSetNodeID ID; 5175 AddNodeIDNode(ID, Opcode, VTs, Ops); 5176 void *IP = nullptr; 5177 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5178 E->intersectFlagsWith(Flags); 5179 return SDValue(E, 0); 5180 } 5181 5182 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5183 N->setFlags(Flags); 5184 createOperands(N, Ops); 5185 CSEMap.InsertNode(N, IP); 5186 } else { 5187 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5188 createOperands(N, Ops); 5189 } 5190 5191 InsertNode(N); 5192 SDValue V = SDValue(N, 0); 5193 NewSDValueDbgMsg(V, "Creating new node: ", this); 5194 return V; 5195 } 5196 5197 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5198 const APInt &C2) { 5199 switch (Opcode) { 5200 case ISD::ADD: return C1 + C2; 5201 case ISD::SUB: return C1 - C2; 5202 case ISD::MUL: return C1 * C2; 5203 case ISD::AND: return C1 & C2; 5204 case ISD::OR: return C1 | C2; 5205 case ISD::XOR: return C1 ^ C2; 5206 case ISD::SHL: return C1 << C2; 5207 case ISD::SRL: return C1.lshr(C2); 5208 case ISD::SRA: return C1.ashr(C2); 5209 case ISD::ROTL: return C1.rotl(C2); 5210 case ISD::ROTR: return C1.rotr(C2); 5211 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5212 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5213 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5214 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5215 case ISD::SADDSAT: return C1.sadd_sat(C2); 5216 case ISD::UADDSAT: return C1.uadd_sat(C2); 5217 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5218 case ISD::USUBSAT: return C1.usub_sat(C2); 5219 case ISD::UDIV: 5220 if (!C2.getBoolValue()) 5221 break; 5222 return C1.udiv(C2); 5223 case ISD::UREM: 5224 if (!C2.getBoolValue()) 5225 break; 5226 return C1.urem(C2); 5227 case ISD::SDIV: 5228 if (!C2.getBoolValue()) 5229 break; 5230 return C1.sdiv(C2); 5231 case ISD::SREM: 5232 if (!C2.getBoolValue()) 5233 break; 5234 return C1.srem(C2); 5235 case ISD::MULHS: { 5236 unsigned FullWidth = C1.getBitWidth() * 2; 5237 APInt C1Ext = C1.sext(FullWidth); 5238 APInt C2Ext = C2.sext(FullWidth); 5239 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5240 } 5241 case ISD::MULHU: { 5242 unsigned FullWidth = C1.getBitWidth() * 2; 5243 APInt C1Ext = C1.zext(FullWidth); 5244 APInt C2Ext = C2.zext(FullWidth); 5245 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5246 } 5247 } 5248 return llvm::None; 5249 } 5250 5251 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5252 const GlobalAddressSDNode *GA, 5253 const SDNode *N2) { 5254 if (GA->getOpcode() != ISD::GlobalAddress) 5255 return SDValue(); 5256 if (!TLI->isOffsetFoldingLegal(GA)) 5257 return SDValue(); 5258 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5259 if (!C2) 5260 return SDValue(); 5261 int64_t Offset = C2->getSExtValue(); 5262 switch (Opcode) { 5263 case ISD::ADD: break; 5264 case ISD::SUB: Offset = -uint64_t(Offset); break; 5265 default: return SDValue(); 5266 } 5267 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5268 GA->getOffset() + uint64_t(Offset)); 5269 } 5270 5271 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5272 switch (Opcode) { 5273 case ISD::SDIV: 5274 case ISD::UDIV: 5275 case ISD::SREM: 5276 case ISD::UREM: { 5277 // If a divisor is zero/undef or any element of a divisor vector is 5278 // zero/undef, the whole op is undef. 5279 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5280 SDValue Divisor = Ops[1]; 5281 if (Divisor.isUndef() || isNullConstant(Divisor)) 5282 return true; 5283 5284 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5285 llvm::any_of(Divisor->op_values(), 5286 [](SDValue V) { return V.isUndef() || 5287 isNullConstant(V); }); 5288 // TODO: Handle signed overflow. 5289 } 5290 // TODO: Handle oversized shifts. 5291 default: 5292 return false; 5293 } 5294 } 5295 5296 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5297 EVT VT, ArrayRef<SDValue> Ops) { 5298 // If the opcode is a target-specific ISD node, there's nothing we can 5299 // do here and the operand rules may not line up with the below, so 5300 // bail early. 5301 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5302 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5303 // foldCONCAT_VECTORS in getNode before this is called. 5304 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5305 return SDValue(); 5306 5307 unsigned NumOps = Ops.size(); 5308 if (NumOps == 0) 5309 return SDValue(); 5310 5311 if (isUndef(Opcode, Ops)) 5312 return getUNDEF(VT); 5313 5314 // Handle binops special cases. 5315 if (NumOps == 2) { 5316 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5317 return CFP; 5318 5319 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5320 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5321 if (C1->isOpaque() || C2->isOpaque()) 5322 return SDValue(); 5323 5324 Optional<APInt> FoldAttempt = 5325 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5326 if (!FoldAttempt) 5327 return SDValue(); 5328 5329 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5330 assert((!Folded || !VT.isVector()) && 5331 "Can't fold vectors ops with scalar operands"); 5332 return Folded; 5333 } 5334 } 5335 5336 // fold (add Sym, c) -> Sym+c 5337 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5338 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5339 if (TLI->isCommutativeBinOp(Opcode)) 5340 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5341 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5342 } 5343 5344 // This is for vector folding only from here on. 5345 if (!VT.isVector()) 5346 return SDValue(); 5347 5348 ElementCount NumElts = VT.getVectorElementCount(); 5349 5350 // See if we can fold through bitcasted integer ops. 5351 // TODO: Can we handle undef elements? 5352 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5353 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5354 Ops[0].getOpcode() == ISD::BITCAST && 5355 Ops[1].getOpcode() == ISD::BITCAST) { 5356 SDValue N1 = peekThroughBitcasts(Ops[0]); 5357 SDValue N2 = peekThroughBitcasts(Ops[1]); 5358 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5359 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5360 EVT BVVT = N1.getValueType(); 5361 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5362 bool IsLE = getDataLayout().isLittleEndian(); 5363 unsigned EltBits = VT.getScalarSizeInBits(); 5364 SmallVector<APInt> RawBits1, RawBits2; 5365 BitVector UndefElts1, UndefElts2; 5366 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5367 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5368 UndefElts1.none() && UndefElts2.none()) { 5369 SmallVector<APInt> RawBits; 5370 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5371 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5372 if (!Fold) 5373 break; 5374 RawBits.push_back(Fold.getValue()); 5375 } 5376 if (RawBits.size() == NumElts.getFixedValue()) { 5377 // We have constant folded, but we need to cast this again back to 5378 // the original (possibly legalized) type. 5379 SmallVector<APInt> DstBits; 5380 BitVector DstUndefs; 5381 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5382 DstBits, RawBits, DstUndefs, 5383 BitVector(RawBits.size(), false)); 5384 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5385 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5386 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5387 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5388 if (DstUndefs[I]) 5389 continue; 5390 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5391 } 5392 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5393 } 5394 } 5395 } 5396 } 5397 5398 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5399 return !Op.getValueType().isVector() || 5400 Op.getValueType().getVectorElementCount() == NumElts; 5401 }; 5402 5403 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5404 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5405 Op.getOpcode() == ISD::BUILD_VECTOR || 5406 Op.getOpcode() == ISD::SPLAT_VECTOR; 5407 }; 5408 5409 // All operands must be vector types with the same number of elements as 5410 // the result type and must be either UNDEF or a build/splat vector 5411 // or UNDEF scalars. 5412 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5413 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5414 return SDValue(); 5415 5416 // If we are comparing vectors, then the result needs to be a i1 boolean 5417 // that is then sign-extended back to the legal result type. 5418 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5419 5420 // Find legal integer scalar type for constant promotion and 5421 // ensure that its scalar size is at least as large as source. 5422 EVT LegalSVT = VT.getScalarType(); 5423 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5424 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5425 if (LegalSVT.bitsLT(VT.getScalarType())) 5426 return SDValue(); 5427 } 5428 5429 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5430 // only have one operand to check. For fixed-length vector types we may have 5431 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5432 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5433 5434 // Constant fold each scalar lane separately. 5435 SmallVector<SDValue, 4> ScalarResults; 5436 for (unsigned I = 0; I != NumVectorElts; I++) { 5437 SmallVector<SDValue, 4> ScalarOps; 5438 for (SDValue Op : Ops) { 5439 EVT InSVT = Op.getValueType().getScalarType(); 5440 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5441 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5442 if (Op.isUndef()) 5443 ScalarOps.push_back(getUNDEF(InSVT)); 5444 else 5445 ScalarOps.push_back(Op); 5446 continue; 5447 } 5448 5449 SDValue ScalarOp = 5450 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5451 EVT ScalarVT = ScalarOp.getValueType(); 5452 5453 // Build vector (integer) scalar operands may need implicit 5454 // truncation - do this before constant folding. 5455 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5456 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5457 5458 ScalarOps.push_back(ScalarOp); 5459 } 5460 5461 // Constant fold the scalar operands. 5462 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5463 5464 // Legalize the (integer) scalar constant if necessary. 5465 if (LegalSVT != SVT) 5466 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5467 5468 // Scalar folding only succeeded if the result is a constant or UNDEF. 5469 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5470 ScalarResult.getOpcode() != ISD::ConstantFP) 5471 return SDValue(); 5472 ScalarResults.push_back(ScalarResult); 5473 } 5474 5475 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5476 : getBuildVector(VT, DL, ScalarResults); 5477 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5478 return V; 5479 } 5480 5481 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5482 EVT VT, SDValue N1, SDValue N2) { 5483 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5484 // should. That will require dealing with a potentially non-default 5485 // rounding mode, checking the "opStatus" return value from the APFloat 5486 // math calculations, and possibly other variations. 5487 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5488 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5489 if (N1CFP && N2CFP) { 5490 APFloat C1 = N1CFP->getValueAPF(); // make copy 5491 const APFloat &C2 = N2CFP->getValueAPF(); 5492 switch (Opcode) { 5493 case ISD::FADD: 5494 C1.add(C2, APFloat::rmNearestTiesToEven); 5495 return getConstantFP(C1, DL, VT); 5496 case ISD::FSUB: 5497 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5498 return getConstantFP(C1, DL, VT); 5499 case ISD::FMUL: 5500 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5501 return getConstantFP(C1, DL, VT); 5502 case ISD::FDIV: 5503 C1.divide(C2, APFloat::rmNearestTiesToEven); 5504 return getConstantFP(C1, DL, VT); 5505 case ISD::FREM: 5506 C1.mod(C2); 5507 return getConstantFP(C1, DL, VT); 5508 case ISD::FCOPYSIGN: 5509 C1.copySign(C2); 5510 return getConstantFP(C1, DL, VT); 5511 case ISD::FMINNUM: 5512 return getConstantFP(minnum(C1, C2), DL, VT); 5513 case ISD::FMAXNUM: 5514 return getConstantFP(maxnum(C1, C2), DL, VT); 5515 case ISD::FMINIMUM: 5516 return getConstantFP(minimum(C1, C2), DL, VT); 5517 case ISD::FMAXIMUM: 5518 return getConstantFP(maximum(C1, C2), DL, VT); 5519 default: break; 5520 } 5521 } 5522 if (N1CFP && Opcode == ISD::FP_ROUND) { 5523 APFloat C1 = N1CFP->getValueAPF(); // make copy 5524 bool Unused; 5525 // This can return overflow, underflow, or inexact; we don't care. 5526 // FIXME need to be more flexible about rounding mode. 5527 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5528 &Unused); 5529 return getConstantFP(C1, DL, VT); 5530 } 5531 5532 switch (Opcode) { 5533 case ISD::FSUB: 5534 // -0.0 - undef --> undef (consistent with "fneg undef") 5535 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5536 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5537 return getUNDEF(VT); 5538 LLVM_FALLTHROUGH; 5539 5540 case ISD::FADD: 5541 case ISD::FMUL: 5542 case ISD::FDIV: 5543 case ISD::FREM: 5544 // If both operands are undef, the result is undef. If 1 operand is undef, 5545 // the result is NaN. This should match the behavior of the IR optimizer. 5546 if (N1.isUndef() && N2.isUndef()) 5547 return getUNDEF(VT); 5548 if (N1.isUndef() || N2.isUndef()) 5549 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5550 } 5551 return SDValue(); 5552 } 5553 5554 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5555 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5556 5557 // There's no need to assert on a byte-aligned pointer. All pointers are at 5558 // least byte aligned. 5559 if (A == Align(1)) 5560 return Val; 5561 5562 FoldingSetNodeID ID; 5563 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5564 ID.AddInteger(A.value()); 5565 5566 void *IP = nullptr; 5567 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5568 return SDValue(E, 0); 5569 5570 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5571 Val.getValueType(), A); 5572 createOperands(N, {Val}); 5573 5574 CSEMap.InsertNode(N, IP); 5575 InsertNode(N); 5576 5577 SDValue V(N, 0); 5578 NewSDValueDbgMsg(V, "Creating new node: ", this); 5579 return V; 5580 } 5581 5582 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5583 SDValue N1, SDValue N2) { 5584 SDNodeFlags Flags; 5585 if (Inserter) 5586 Flags = Inserter->getFlags(); 5587 return getNode(Opcode, DL, VT, N1, N2, Flags); 5588 } 5589 5590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5591 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5592 assert(N1.getOpcode() != ISD::DELETED_NODE && 5593 N2.getOpcode() != ISD::DELETED_NODE && 5594 "Operand is DELETED_NODE!"); 5595 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5596 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5597 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5598 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5599 5600 // Canonicalize constant to RHS if commutative. 5601 if (TLI->isCommutativeBinOp(Opcode)) { 5602 if (N1C && !N2C) { 5603 std::swap(N1C, N2C); 5604 std::swap(N1, N2); 5605 } else if (N1CFP && !N2CFP) { 5606 std::swap(N1CFP, N2CFP); 5607 std::swap(N1, N2); 5608 } 5609 } 5610 5611 switch (Opcode) { 5612 default: break; 5613 case ISD::TokenFactor: 5614 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5615 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5616 // Fold trivial token factors. 5617 if (N1.getOpcode() == ISD::EntryToken) return N2; 5618 if (N2.getOpcode() == ISD::EntryToken) return N1; 5619 if (N1 == N2) return N1; 5620 break; 5621 case ISD::BUILD_VECTOR: { 5622 // Attempt to simplify BUILD_VECTOR. 5623 SDValue Ops[] = {N1, N2}; 5624 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5625 return V; 5626 break; 5627 } 5628 case ISD::CONCAT_VECTORS: { 5629 SDValue Ops[] = {N1, N2}; 5630 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5631 return V; 5632 break; 5633 } 5634 case ISD::AND: 5635 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5636 assert(N1.getValueType() == N2.getValueType() && 5637 N1.getValueType() == VT && "Binary operator types must match!"); 5638 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5639 // worth handling here. 5640 if (N2C && N2C->isZero()) 5641 return N2; 5642 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5643 return N1; 5644 break; 5645 case ISD::OR: 5646 case ISD::XOR: 5647 case ISD::ADD: 5648 case ISD::SUB: 5649 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5650 assert(N1.getValueType() == N2.getValueType() && 5651 N1.getValueType() == VT && "Binary operator types must match!"); 5652 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5653 // it's worth handling here. 5654 if (N2C && N2C->isZero()) 5655 return N1; 5656 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5657 VT.getVectorElementType() == MVT::i1) 5658 return getNode(ISD::XOR, DL, VT, N1, N2); 5659 break; 5660 case ISD::MUL: 5661 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5662 assert(N1.getValueType() == N2.getValueType() && 5663 N1.getValueType() == VT && "Binary operator types must match!"); 5664 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5665 return getNode(ISD::AND, DL, VT, N1, N2); 5666 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5667 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5668 const APInt &N2CImm = N2C->getAPIntValue(); 5669 return getVScale(DL, VT, MulImm * N2CImm); 5670 } 5671 break; 5672 case ISD::UDIV: 5673 case ISD::UREM: 5674 case ISD::MULHU: 5675 case ISD::MULHS: 5676 case ISD::SDIV: 5677 case ISD::SREM: 5678 case ISD::SADDSAT: 5679 case ISD::SSUBSAT: 5680 case ISD::UADDSAT: 5681 case ISD::USUBSAT: 5682 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5683 assert(N1.getValueType() == N2.getValueType() && 5684 N1.getValueType() == VT && "Binary operator types must match!"); 5685 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5686 // fold (add_sat x, y) -> (or x, y) for bool types. 5687 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5688 return getNode(ISD::OR, DL, VT, N1, N2); 5689 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5690 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5691 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5692 } 5693 break; 5694 case ISD::SMIN: 5695 case ISD::UMAX: 5696 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5697 assert(N1.getValueType() == N2.getValueType() && 5698 N1.getValueType() == VT && "Binary operator types must match!"); 5699 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5700 return getNode(ISD::OR, DL, VT, N1, N2); 5701 break; 5702 case ISD::SMAX: 5703 case ISD::UMIN: 5704 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5705 assert(N1.getValueType() == N2.getValueType() && 5706 N1.getValueType() == VT && "Binary operator types must match!"); 5707 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5708 return getNode(ISD::AND, DL, VT, N1, N2); 5709 break; 5710 case ISD::FADD: 5711 case ISD::FSUB: 5712 case ISD::FMUL: 5713 case ISD::FDIV: 5714 case ISD::FREM: 5715 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5716 assert(N1.getValueType() == N2.getValueType() && 5717 N1.getValueType() == VT && "Binary operator types must match!"); 5718 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5719 return V; 5720 break; 5721 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5722 assert(N1.getValueType() == VT && 5723 N1.getValueType().isFloatingPoint() && 5724 N2.getValueType().isFloatingPoint() && 5725 "Invalid FCOPYSIGN!"); 5726 break; 5727 case ISD::SHL: 5728 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5729 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5730 const APInt &ShiftImm = N2C->getAPIntValue(); 5731 return getVScale(DL, VT, MulImm << ShiftImm); 5732 } 5733 LLVM_FALLTHROUGH; 5734 case ISD::SRA: 5735 case ISD::SRL: 5736 if (SDValue V = simplifyShift(N1, N2)) 5737 return V; 5738 LLVM_FALLTHROUGH; 5739 case ISD::ROTL: 5740 case ISD::ROTR: 5741 assert(VT == N1.getValueType() && 5742 "Shift operators return type must be the same as their first arg"); 5743 assert(VT.isInteger() && N2.getValueType().isInteger() && 5744 "Shifts only work on integers"); 5745 assert((!VT.isVector() || VT == N2.getValueType()) && 5746 "Vector shift amounts must be in the same as their first arg"); 5747 // Verify that the shift amount VT is big enough to hold valid shift 5748 // amounts. This catches things like trying to shift an i1024 value by an 5749 // i8, which is easy to fall into in generic code that uses 5750 // TLI.getShiftAmount(). 5751 assert(N2.getValueType().getScalarSizeInBits() >= 5752 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5753 "Invalid use of small shift amount with oversized value!"); 5754 5755 // Always fold shifts of i1 values so the code generator doesn't need to 5756 // handle them. Since we know the size of the shift has to be less than the 5757 // size of the value, the shift/rotate count is guaranteed to be zero. 5758 if (VT == MVT::i1) 5759 return N1; 5760 if (N2C && N2C->isZero()) 5761 return N1; 5762 break; 5763 case ISD::FP_ROUND: 5764 assert(VT.isFloatingPoint() && 5765 N1.getValueType().isFloatingPoint() && 5766 VT.bitsLE(N1.getValueType()) && 5767 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5768 "Invalid FP_ROUND!"); 5769 if (N1.getValueType() == VT) return N1; // noop conversion. 5770 break; 5771 case ISD::AssertSext: 5772 case ISD::AssertZext: { 5773 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5774 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5775 assert(VT.isInteger() && EVT.isInteger() && 5776 "Cannot *_EXTEND_INREG FP types"); 5777 assert(!EVT.isVector() && 5778 "AssertSExt/AssertZExt type should be the vector element type " 5779 "rather than the vector type!"); 5780 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5781 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5782 break; 5783 } 5784 case ISD::SIGN_EXTEND_INREG: { 5785 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5786 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5787 assert(VT.isInteger() && EVT.isInteger() && 5788 "Cannot *_EXTEND_INREG FP types"); 5789 assert(EVT.isVector() == VT.isVector() && 5790 "SIGN_EXTEND_INREG type should be vector iff the operand " 5791 "type is vector!"); 5792 assert((!EVT.isVector() || 5793 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5794 "Vector element counts must match in SIGN_EXTEND_INREG"); 5795 assert(EVT.bitsLE(VT) && "Not extending!"); 5796 if (EVT == VT) return N1; // Not actually extending 5797 5798 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5799 unsigned FromBits = EVT.getScalarSizeInBits(); 5800 Val <<= Val.getBitWidth() - FromBits; 5801 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5802 return getConstant(Val, DL, ConstantVT); 5803 }; 5804 5805 if (N1C) { 5806 const APInt &Val = N1C->getAPIntValue(); 5807 return SignExtendInReg(Val, VT); 5808 } 5809 5810 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5811 SmallVector<SDValue, 8> Ops; 5812 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5813 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5814 SDValue Op = N1.getOperand(i); 5815 if (Op.isUndef()) { 5816 Ops.push_back(getUNDEF(OpVT)); 5817 continue; 5818 } 5819 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5820 APInt Val = C->getAPIntValue(); 5821 Ops.push_back(SignExtendInReg(Val, OpVT)); 5822 } 5823 return getBuildVector(VT, DL, Ops); 5824 } 5825 break; 5826 } 5827 case ISD::FP_TO_SINT_SAT: 5828 case ISD::FP_TO_UINT_SAT: { 5829 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5830 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5831 assert(N1.getValueType().isVector() == VT.isVector() && 5832 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5833 "vector!"); 5834 assert((!VT.isVector() || VT.getVectorNumElements() == 5835 N1.getValueType().getVectorNumElements()) && 5836 "Vector element counts must match in FP_TO_*INT_SAT"); 5837 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5838 "Type to saturate to must be a scalar."); 5839 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5840 "Not extending!"); 5841 break; 5842 } 5843 case ISD::EXTRACT_VECTOR_ELT: 5844 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5845 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5846 element type of the vector."); 5847 5848 // Extract from an undefined value or using an undefined index is undefined. 5849 if (N1.isUndef() || N2.isUndef()) 5850 return getUNDEF(VT); 5851 5852 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5853 // vectors. For scalable vectors we will provide appropriate support for 5854 // dealing with arbitrary indices. 5855 if (N2C && N1.getValueType().isFixedLengthVector() && 5856 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5857 return getUNDEF(VT); 5858 5859 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5860 // expanding copies of large vectors from registers. This only works for 5861 // fixed length vectors, since we need to know the exact number of 5862 // elements. 5863 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5864 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5865 unsigned Factor = 5866 N1.getOperand(0).getValueType().getVectorNumElements(); 5867 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5868 N1.getOperand(N2C->getZExtValue() / Factor), 5869 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5870 } 5871 5872 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5873 // lowering is expanding large vector constants. 5874 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5875 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5876 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5877 N1.getValueType().isFixedLengthVector()) && 5878 "BUILD_VECTOR used for scalable vectors"); 5879 unsigned Index = 5880 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5881 SDValue Elt = N1.getOperand(Index); 5882 5883 if (VT != Elt.getValueType()) 5884 // If the vector element type is not legal, the BUILD_VECTOR operands 5885 // are promoted and implicitly truncated, and the result implicitly 5886 // extended. Make that explicit here. 5887 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5888 5889 return Elt; 5890 } 5891 5892 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5893 // operations are lowered to scalars. 5894 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5895 // If the indices are the same, return the inserted element else 5896 // if the indices are known different, extract the element from 5897 // the original vector. 5898 SDValue N1Op2 = N1.getOperand(2); 5899 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5900 5901 if (N1Op2C && N2C) { 5902 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5903 if (VT == N1.getOperand(1).getValueType()) 5904 return N1.getOperand(1); 5905 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5906 } 5907 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5908 } 5909 } 5910 5911 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5912 // when vector types are scalarized and v1iX is legal. 5913 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5914 // Here we are completely ignoring the extract element index (N2), 5915 // which is fine for fixed width vectors, since any index other than 0 5916 // is undefined anyway. However, this cannot be ignored for scalable 5917 // vectors - in theory we could support this, but we don't want to do this 5918 // without a profitability check. 5919 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5920 N1.getValueType().isFixedLengthVector() && 5921 N1.getValueType().getVectorNumElements() == 1) { 5922 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5923 N1.getOperand(1)); 5924 } 5925 break; 5926 case ISD::EXTRACT_ELEMENT: 5927 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5928 assert(!N1.getValueType().isVector() && !VT.isVector() && 5929 (N1.getValueType().isInteger() == VT.isInteger()) && 5930 N1.getValueType() != VT && 5931 "Wrong types for EXTRACT_ELEMENT!"); 5932 5933 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5934 // 64-bit integers into 32-bit parts. Instead of building the extract of 5935 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5936 if (N1.getOpcode() == ISD::BUILD_PAIR) 5937 return N1.getOperand(N2C->getZExtValue()); 5938 5939 // EXTRACT_ELEMENT of a constant int is also very common. 5940 if (N1C) { 5941 unsigned ElementSize = VT.getSizeInBits(); 5942 unsigned Shift = ElementSize * N2C->getZExtValue(); 5943 const APInt &Val = N1C->getAPIntValue(); 5944 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5945 } 5946 break; 5947 case ISD::EXTRACT_SUBVECTOR: { 5948 EVT N1VT = N1.getValueType(); 5949 assert(VT.isVector() && N1VT.isVector() && 5950 "Extract subvector VTs must be vectors!"); 5951 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5952 "Extract subvector VTs must have the same element type!"); 5953 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5954 "Cannot extract a scalable vector from a fixed length vector!"); 5955 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5956 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5957 "Extract subvector must be from larger vector to smaller vector!"); 5958 assert(N2C && "Extract subvector index must be a constant"); 5959 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5960 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5961 N1VT.getVectorMinNumElements()) && 5962 "Extract subvector overflow!"); 5963 assert(N2C->getAPIntValue().getBitWidth() == 5964 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5965 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5966 5967 // Trivial extraction. 5968 if (VT == N1VT) 5969 return N1; 5970 5971 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5972 if (N1.isUndef()) 5973 return getUNDEF(VT); 5974 5975 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5976 // the concat have the same type as the extract. 5977 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5978 VT == N1.getOperand(0).getValueType()) { 5979 unsigned Factor = VT.getVectorMinNumElements(); 5980 return N1.getOperand(N2C->getZExtValue() / Factor); 5981 } 5982 5983 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5984 // during shuffle legalization. 5985 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5986 VT == N1.getOperand(1).getValueType()) 5987 return N1.getOperand(1); 5988 break; 5989 } 5990 } 5991 5992 // Perform trivial constant folding. 5993 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5994 return SV; 5995 5996 // Canonicalize an UNDEF to the RHS, even over a constant. 5997 if (N1.isUndef()) { 5998 if (TLI->isCommutativeBinOp(Opcode)) { 5999 std::swap(N1, N2); 6000 } else { 6001 switch (Opcode) { 6002 case ISD::SIGN_EXTEND_INREG: 6003 case ISD::SUB: 6004 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6005 case ISD::UDIV: 6006 case ISD::SDIV: 6007 case ISD::UREM: 6008 case ISD::SREM: 6009 case ISD::SSUBSAT: 6010 case ISD::USUBSAT: 6011 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6012 } 6013 } 6014 } 6015 6016 // Fold a bunch of operators when the RHS is undef. 6017 if (N2.isUndef()) { 6018 switch (Opcode) { 6019 case ISD::XOR: 6020 if (N1.isUndef()) 6021 // Handle undef ^ undef -> 0 special case. This is a common 6022 // idiom (misuse). 6023 return getConstant(0, DL, VT); 6024 LLVM_FALLTHROUGH; 6025 case ISD::ADD: 6026 case ISD::SUB: 6027 case ISD::UDIV: 6028 case ISD::SDIV: 6029 case ISD::UREM: 6030 case ISD::SREM: 6031 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6032 case ISD::MUL: 6033 case ISD::AND: 6034 case ISD::SSUBSAT: 6035 case ISD::USUBSAT: 6036 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6037 case ISD::OR: 6038 case ISD::SADDSAT: 6039 case ISD::UADDSAT: 6040 return getAllOnesConstant(DL, VT); 6041 } 6042 } 6043 6044 // Memoize this node if possible. 6045 SDNode *N; 6046 SDVTList VTs = getVTList(VT); 6047 SDValue Ops[] = {N1, N2}; 6048 if (VT != MVT::Glue) { 6049 FoldingSetNodeID ID; 6050 AddNodeIDNode(ID, Opcode, VTs, Ops); 6051 void *IP = nullptr; 6052 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6053 E->intersectFlagsWith(Flags); 6054 return SDValue(E, 0); 6055 } 6056 6057 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6058 N->setFlags(Flags); 6059 createOperands(N, Ops); 6060 CSEMap.InsertNode(N, IP); 6061 } else { 6062 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6063 createOperands(N, Ops); 6064 } 6065 6066 InsertNode(N); 6067 SDValue V = SDValue(N, 0); 6068 NewSDValueDbgMsg(V, "Creating new node: ", this); 6069 return V; 6070 } 6071 6072 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6073 SDValue N1, SDValue N2, SDValue N3) { 6074 SDNodeFlags Flags; 6075 if (Inserter) 6076 Flags = Inserter->getFlags(); 6077 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6078 } 6079 6080 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6081 SDValue N1, SDValue N2, SDValue N3, 6082 const SDNodeFlags Flags) { 6083 assert(N1.getOpcode() != ISD::DELETED_NODE && 6084 N2.getOpcode() != ISD::DELETED_NODE && 6085 N3.getOpcode() != ISD::DELETED_NODE && 6086 "Operand is DELETED_NODE!"); 6087 // Perform various simplifications. 6088 switch (Opcode) { 6089 case ISD::FMA: { 6090 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6091 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6092 N3.getValueType() == VT && "FMA types must match!"); 6093 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6094 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6095 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6096 if (N1CFP && N2CFP && N3CFP) { 6097 APFloat V1 = N1CFP->getValueAPF(); 6098 const APFloat &V2 = N2CFP->getValueAPF(); 6099 const APFloat &V3 = N3CFP->getValueAPF(); 6100 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6101 return getConstantFP(V1, DL, VT); 6102 } 6103 break; 6104 } 6105 case ISD::BUILD_VECTOR: { 6106 // Attempt to simplify BUILD_VECTOR. 6107 SDValue Ops[] = {N1, N2, N3}; 6108 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6109 return V; 6110 break; 6111 } 6112 case ISD::CONCAT_VECTORS: { 6113 SDValue Ops[] = {N1, N2, N3}; 6114 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6115 return V; 6116 break; 6117 } 6118 case ISD::SETCC: { 6119 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6120 assert(N1.getValueType() == N2.getValueType() && 6121 "SETCC operands must have the same type!"); 6122 assert(VT.isVector() == N1.getValueType().isVector() && 6123 "SETCC type should be vector iff the operand type is vector!"); 6124 assert((!VT.isVector() || VT.getVectorElementCount() == 6125 N1.getValueType().getVectorElementCount()) && 6126 "SETCC vector element counts must match!"); 6127 // Use FoldSetCC to simplify SETCC's. 6128 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6129 return V; 6130 // Vector constant folding. 6131 SDValue Ops[] = {N1, N2, N3}; 6132 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6133 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6134 return V; 6135 } 6136 break; 6137 } 6138 case ISD::SELECT: 6139 case ISD::VSELECT: 6140 if (SDValue V = simplifySelect(N1, N2, N3)) 6141 return V; 6142 break; 6143 case ISD::VECTOR_SHUFFLE: 6144 llvm_unreachable("should use getVectorShuffle constructor!"); 6145 case ISD::VECTOR_SPLICE: { 6146 if (cast<ConstantSDNode>(N3)->isNullValue()) 6147 return N1; 6148 break; 6149 } 6150 case ISD::INSERT_VECTOR_ELT: { 6151 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6152 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6153 // for scalable vectors where we will generate appropriate code to 6154 // deal with out-of-bounds cases correctly. 6155 if (N3C && N1.getValueType().isFixedLengthVector() && 6156 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6157 return getUNDEF(VT); 6158 6159 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6160 if (N3.isUndef()) 6161 return getUNDEF(VT); 6162 6163 // If the inserted element is an UNDEF, just use the input vector. 6164 if (N2.isUndef()) 6165 return N1; 6166 6167 break; 6168 } 6169 case ISD::INSERT_SUBVECTOR: { 6170 // Inserting undef into undef is still undef. 6171 if (N1.isUndef() && N2.isUndef()) 6172 return getUNDEF(VT); 6173 6174 EVT N2VT = N2.getValueType(); 6175 assert(VT == N1.getValueType() && 6176 "Dest and insert subvector source types must match!"); 6177 assert(VT.isVector() && N2VT.isVector() && 6178 "Insert subvector VTs must be vectors!"); 6179 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6180 "Cannot insert a scalable vector into a fixed length vector!"); 6181 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6182 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6183 "Insert subvector must be from smaller vector to larger vector!"); 6184 assert(isa<ConstantSDNode>(N3) && 6185 "Insert subvector index must be constant"); 6186 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6187 (N2VT.getVectorMinNumElements() + 6188 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6189 VT.getVectorMinNumElements()) && 6190 "Insert subvector overflow!"); 6191 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6192 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6193 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6194 6195 // Trivial insertion. 6196 if (VT == N2VT) 6197 return N2; 6198 6199 // If this is an insert of an extracted vector into an undef vector, we 6200 // can just use the input to the extract. 6201 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6202 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6203 return N2.getOperand(0); 6204 break; 6205 } 6206 case ISD::BITCAST: 6207 // Fold bit_convert nodes from a type to themselves. 6208 if (N1.getValueType() == VT) 6209 return N1; 6210 break; 6211 } 6212 6213 // Memoize node if it doesn't produce a flag. 6214 SDNode *N; 6215 SDVTList VTs = getVTList(VT); 6216 SDValue Ops[] = {N1, N2, N3}; 6217 if (VT != MVT::Glue) { 6218 FoldingSetNodeID ID; 6219 AddNodeIDNode(ID, Opcode, VTs, Ops); 6220 void *IP = nullptr; 6221 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6222 E->intersectFlagsWith(Flags); 6223 return SDValue(E, 0); 6224 } 6225 6226 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6227 N->setFlags(Flags); 6228 createOperands(N, Ops); 6229 CSEMap.InsertNode(N, IP); 6230 } else { 6231 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6232 createOperands(N, Ops); 6233 } 6234 6235 InsertNode(N); 6236 SDValue V = SDValue(N, 0); 6237 NewSDValueDbgMsg(V, "Creating new node: ", this); 6238 return V; 6239 } 6240 6241 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6242 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6243 SDValue Ops[] = { N1, N2, N3, N4 }; 6244 return getNode(Opcode, DL, VT, Ops); 6245 } 6246 6247 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6248 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6249 SDValue N5) { 6250 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6251 return getNode(Opcode, DL, VT, Ops); 6252 } 6253 6254 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6255 /// the incoming stack arguments to be loaded from the stack. 6256 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6257 SmallVector<SDValue, 8> ArgChains; 6258 6259 // Include the original chain at the beginning of the list. When this is 6260 // used by target LowerCall hooks, this helps legalize find the 6261 // CALLSEQ_BEGIN node. 6262 ArgChains.push_back(Chain); 6263 6264 // Add a chain value for each stack argument. 6265 for (SDNode *U : getEntryNode().getNode()->uses()) 6266 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6267 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6268 if (FI->getIndex() < 0) 6269 ArgChains.push_back(SDValue(L, 1)); 6270 6271 // Build a tokenfactor for all the chains. 6272 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6273 } 6274 6275 /// getMemsetValue - Vectorized representation of the memset value 6276 /// operand. 6277 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6278 const SDLoc &dl) { 6279 assert(!Value.isUndef()); 6280 6281 unsigned NumBits = VT.getScalarSizeInBits(); 6282 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6283 assert(C->getAPIntValue().getBitWidth() == 8); 6284 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6285 if (VT.isInteger()) { 6286 bool IsOpaque = VT.getSizeInBits() > 64 || 6287 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6288 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6289 } 6290 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6291 VT); 6292 } 6293 6294 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6295 EVT IntVT = VT.getScalarType(); 6296 if (!IntVT.isInteger()) 6297 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6298 6299 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6300 if (NumBits > 8) { 6301 // Use a multiplication with 0x010101... to extend the input to the 6302 // required length. 6303 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6304 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6305 DAG.getConstant(Magic, dl, IntVT)); 6306 } 6307 6308 if (VT != Value.getValueType() && !VT.isInteger()) 6309 Value = DAG.getBitcast(VT.getScalarType(), Value); 6310 if (VT != Value.getValueType()) 6311 Value = DAG.getSplatBuildVector(VT, dl, Value); 6312 6313 return Value; 6314 } 6315 6316 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6317 /// used when a memcpy is turned into a memset when the source is a constant 6318 /// string ptr. 6319 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6320 const TargetLowering &TLI, 6321 const ConstantDataArraySlice &Slice) { 6322 // Handle vector with all elements zero. 6323 if (Slice.Array == nullptr) { 6324 if (VT.isInteger()) 6325 return DAG.getConstant(0, dl, VT); 6326 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6327 return DAG.getConstantFP(0.0, dl, VT); 6328 if (VT.isVector()) { 6329 unsigned NumElts = VT.getVectorNumElements(); 6330 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6331 return DAG.getNode(ISD::BITCAST, dl, VT, 6332 DAG.getConstant(0, dl, 6333 EVT::getVectorVT(*DAG.getContext(), 6334 EltVT, NumElts))); 6335 } 6336 llvm_unreachable("Expected type!"); 6337 } 6338 6339 assert(!VT.isVector() && "Can't handle vector type here!"); 6340 unsigned NumVTBits = VT.getSizeInBits(); 6341 unsigned NumVTBytes = NumVTBits / 8; 6342 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6343 6344 APInt Val(NumVTBits, 0); 6345 if (DAG.getDataLayout().isLittleEndian()) { 6346 for (unsigned i = 0; i != NumBytes; ++i) 6347 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6348 } else { 6349 for (unsigned i = 0; i != NumBytes; ++i) 6350 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6351 } 6352 6353 // If the "cost" of materializing the integer immediate is less than the cost 6354 // of a load, then it is cost effective to turn the load into the immediate. 6355 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6356 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6357 return DAG.getConstant(Val, dl, VT); 6358 return SDValue(); 6359 } 6360 6361 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6362 const SDLoc &DL, 6363 const SDNodeFlags Flags) { 6364 EVT VT = Base.getValueType(); 6365 SDValue Index; 6366 6367 if (Offset.isScalable()) 6368 Index = getVScale(DL, Base.getValueType(), 6369 APInt(Base.getValueSizeInBits().getFixedSize(), 6370 Offset.getKnownMinSize())); 6371 else 6372 Index = getConstant(Offset.getFixedSize(), DL, VT); 6373 6374 return getMemBasePlusOffset(Base, Index, DL, Flags); 6375 } 6376 6377 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6378 const SDLoc &DL, 6379 const SDNodeFlags Flags) { 6380 assert(Offset.getValueType().isInteger()); 6381 EVT BasePtrVT = Ptr.getValueType(); 6382 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6383 } 6384 6385 /// Returns true if memcpy source is constant data. 6386 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6387 uint64_t SrcDelta = 0; 6388 GlobalAddressSDNode *G = nullptr; 6389 if (Src.getOpcode() == ISD::GlobalAddress) 6390 G = cast<GlobalAddressSDNode>(Src); 6391 else if (Src.getOpcode() == ISD::ADD && 6392 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6393 Src.getOperand(1).getOpcode() == ISD::Constant) { 6394 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6395 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6396 } 6397 if (!G) 6398 return false; 6399 6400 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6401 SrcDelta + G->getOffset()); 6402 } 6403 6404 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6405 SelectionDAG &DAG) { 6406 // On Darwin, -Os means optimize for size without hurting performance, so 6407 // only really optimize for size when -Oz (MinSize) is used. 6408 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6409 return MF.getFunction().hasMinSize(); 6410 return DAG.shouldOptForSize(); 6411 } 6412 6413 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6414 SmallVector<SDValue, 32> &OutChains, unsigned From, 6415 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6416 SmallVector<SDValue, 16> &OutStoreChains) { 6417 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6418 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6419 SmallVector<SDValue, 16> GluedLoadChains; 6420 for (unsigned i = From; i < To; ++i) { 6421 OutChains.push_back(OutLoadChains[i]); 6422 GluedLoadChains.push_back(OutLoadChains[i]); 6423 } 6424 6425 // Chain for all loads. 6426 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6427 GluedLoadChains); 6428 6429 for (unsigned i = From; i < To; ++i) { 6430 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6431 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6432 ST->getBasePtr(), ST->getMemoryVT(), 6433 ST->getMemOperand()); 6434 OutChains.push_back(NewStore); 6435 } 6436 } 6437 6438 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6439 SDValue Chain, SDValue Dst, SDValue Src, 6440 uint64_t Size, Align Alignment, 6441 bool isVol, bool AlwaysInline, 6442 MachinePointerInfo DstPtrInfo, 6443 MachinePointerInfo SrcPtrInfo, 6444 const AAMDNodes &AAInfo) { 6445 // Turn a memcpy of undef to nop. 6446 // FIXME: We need to honor volatile even is Src is undef. 6447 if (Src.isUndef()) 6448 return Chain; 6449 6450 // Expand memcpy to a series of load and store ops if the size operand falls 6451 // below a certain threshold. 6452 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6453 // rather than maybe a humongous number of loads and stores. 6454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6455 const DataLayout &DL = DAG.getDataLayout(); 6456 LLVMContext &C = *DAG.getContext(); 6457 std::vector<EVT> MemOps; 6458 bool DstAlignCanChange = false; 6459 MachineFunction &MF = DAG.getMachineFunction(); 6460 MachineFrameInfo &MFI = MF.getFrameInfo(); 6461 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6462 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6463 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6464 DstAlignCanChange = true; 6465 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6466 if (!SrcAlign || Alignment > *SrcAlign) 6467 SrcAlign = Alignment; 6468 assert(SrcAlign && "SrcAlign must be set"); 6469 ConstantDataArraySlice Slice; 6470 // If marked as volatile, perform a copy even when marked as constant. 6471 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6472 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6473 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6474 const MemOp Op = isZeroConstant 6475 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6476 /*IsZeroMemset*/ true, isVol) 6477 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6478 *SrcAlign, isVol, CopyFromConstant); 6479 if (!TLI.findOptimalMemOpLowering( 6480 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6481 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6482 return SDValue(); 6483 6484 if (DstAlignCanChange) { 6485 Type *Ty = MemOps[0].getTypeForEVT(C); 6486 Align NewAlign = DL.getABITypeAlign(Ty); 6487 6488 // Don't promote to an alignment that would require dynamic stack 6489 // realignment. 6490 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6491 if (!TRI->hasStackRealignment(MF)) 6492 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6493 NewAlign = NewAlign / 2; 6494 6495 if (NewAlign > Alignment) { 6496 // Give the stack frame object a larger alignment if needed. 6497 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6498 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6499 Alignment = NewAlign; 6500 } 6501 } 6502 6503 // Prepare AAInfo for loads/stores after lowering this memcpy. 6504 AAMDNodes NewAAInfo = AAInfo; 6505 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6506 6507 MachineMemOperand::Flags MMOFlags = 6508 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6509 SmallVector<SDValue, 16> OutLoadChains; 6510 SmallVector<SDValue, 16> OutStoreChains; 6511 SmallVector<SDValue, 32> OutChains; 6512 unsigned NumMemOps = MemOps.size(); 6513 uint64_t SrcOff = 0, DstOff = 0; 6514 for (unsigned i = 0; i != NumMemOps; ++i) { 6515 EVT VT = MemOps[i]; 6516 unsigned VTSize = VT.getSizeInBits() / 8; 6517 SDValue Value, Store; 6518 6519 if (VTSize > Size) { 6520 // Issuing an unaligned load / store pair that overlaps with the previous 6521 // pair. Adjust the offset accordingly. 6522 assert(i == NumMemOps-1 && i != 0); 6523 SrcOff -= VTSize - Size; 6524 DstOff -= VTSize - Size; 6525 } 6526 6527 if (CopyFromConstant && 6528 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6529 // It's unlikely a store of a vector immediate can be done in a single 6530 // instruction. It would require a load from a constantpool first. 6531 // We only handle zero vectors here. 6532 // FIXME: Handle other cases where store of vector immediate is done in 6533 // a single instruction. 6534 ConstantDataArraySlice SubSlice; 6535 if (SrcOff < Slice.Length) { 6536 SubSlice = Slice; 6537 SubSlice.move(SrcOff); 6538 } else { 6539 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6540 SubSlice.Array = nullptr; 6541 SubSlice.Offset = 0; 6542 SubSlice.Length = VTSize; 6543 } 6544 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6545 if (Value.getNode()) { 6546 Store = DAG.getStore( 6547 Chain, dl, Value, 6548 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6549 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6550 OutChains.push_back(Store); 6551 } 6552 } 6553 6554 if (!Store.getNode()) { 6555 // The type might not be legal for the target. This should only happen 6556 // if the type is smaller than a legal type, as on PPC, so the right 6557 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6558 // to Load/Store if NVT==VT. 6559 // FIXME does the case above also need this? 6560 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6561 assert(NVT.bitsGE(VT)); 6562 6563 bool isDereferenceable = 6564 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6565 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6566 if (isDereferenceable) 6567 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6568 6569 Value = DAG.getExtLoad( 6570 ISD::EXTLOAD, dl, NVT, Chain, 6571 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6572 SrcPtrInfo.getWithOffset(SrcOff), VT, 6573 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6574 OutLoadChains.push_back(Value.getValue(1)); 6575 6576 Store = DAG.getTruncStore( 6577 Chain, dl, Value, 6578 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6579 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6580 OutStoreChains.push_back(Store); 6581 } 6582 SrcOff += VTSize; 6583 DstOff += VTSize; 6584 Size -= VTSize; 6585 } 6586 6587 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6588 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6589 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6590 6591 if (NumLdStInMemcpy) { 6592 // It may be that memcpy might be converted to memset if it's memcpy 6593 // of constants. In such a case, we won't have loads and stores, but 6594 // just stores. In the absence of loads, there is nothing to gang up. 6595 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6596 // If target does not care, just leave as it. 6597 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6598 OutChains.push_back(OutLoadChains[i]); 6599 OutChains.push_back(OutStoreChains[i]); 6600 } 6601 } else { 6602 // Ld/St less than/equal limit set by target. 6603 if (NumLdStInMemcpy <= GluedLdStLimit) { 6604 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6605 NumLdStInMemcpy, OutLoadChains, 6606 OutStoreChains); 6607 } else { 6608 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6609 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6610 unsigned GlueIter = 0; 6611 6612 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6613 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6614 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6615 6616 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6617 OutLoadChains, OutStoreChains); 6618 GlueIter += GluedLdStLimit; 6619 } 6620 6621 // Residual ld/st. 6622 if (RemainingLdStInMemcpy) { 6623 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6624 RemainingLdStInMemcpy, OutLoadChains, 6625 OutStoreChains); 6626 } 6627 } 6628 } 6629 } 6630 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6631 } 6632 6633 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6634 SDValue Chain, SDValue Dst, SDValue Src, 6635 uint64_t Size, Align Alignment, 6636 bool isVol, bool AlwaysInline, 6637 MachinePointerInfo DstPtrInfo, 6638 MachinePointerInfo SrcPtrInfo, 6639 const AAMDNodes &AAInfo) { 6640 // Turn a memmove of undef to nop. 6641 // FIXME: We need to honor volatile even is Src is undef. 6642 if (Src.isUndef()) 6643 return Chain; 6644 6645 // Expand memmove to a series of load and store ops if the size operand falls 6646 // below a certain threshold. 6647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6648 const DataLayout &DL = DAG.getDataLayout(); 6649 LLVMContext &C = *DAG.getContext(); 6650 std::vector<EVT> MemOps; 6651 bool DstAlignCanChange = false; 6652 MachineFunction &MF = DAG.getMachineFunction(); 6653 MachineFrameInfo &MFI = MF.getFrameInfo(); 6654 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6655 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6656 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6657 DstAlignCanChange = true; 6658 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6659 if (!SrcAlign || Alignment > *SrcAlign) 6660 SrcAlign = Alignment; 6661 assert(SrcAlign && "SrcAlign must be set"); 6662 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6663 if (!TLI.findOptimalMemOpLowering( 6664 MemOps, Limit, 6665 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6666 /*IsVolatile*/ true), 6667 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6668 MF.getFunction().getAttributes())) 6669 return SDValue(); 6670 6671 if (DstAlignCanChange) { 6672 Type *Ty = MemOps[0].getTypeForEVT(C); 6673 Align NewAlign = DL.getABITypeAlign(Ty); 6674 if (NewAlign > Alignment) { 6675 // Give the stack frame object a larger alignment if needed. 6676 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6677 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6678 Alignment = NewAlign; 6679 } 6680 } 6681 6682 // Prepare AAInfo for loads/stores after lowering this memmove. 6683 AAMDNodes NewAAInfo = AAInfo; 6684 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6685 6686 MachineMemOperand::Flags MMOFlags = 6687 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6688 uint64_t SrcOff = 0, DstOff = 0; 6689 SmallVector<SDValue, 8> LoadValues; 6690 SmallVector<SDValue, 8> LoadChains; 6691 SmallVector<SDValue, 8> OutChains; 6692 unsigned NumMemOps = MemOps.size(); 6693 for (unsigned i = 0; i < NumMemOps; i++) { 6694 EVT VT = MemOps[i]; 6695 unsigned VTSize = VT.getSizeInBits() / 8; 6696 SDValue Value; 6697 6698 bool isDereferenceable = 6699 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6700 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6701 if (isDereferenceable) 6702 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6703 6704 Value = DAG.getLoad( 6705 VT, dl, Chain, 6706 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6707 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6708 LoadValues.push_back(Value); 6709 LoadChains.push_back(Value.getValue(1)); 6710 SrcOff += VTSize; 6711 } 6712 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6713 OutChains.clear(); 6714 for (unsigned i = 0; i < NumMemOps; i++) { 6715 EVT VT = MemOps[i]; 6716 unsigned VTSize = VT.getSizeInBits() / 8; 6717 SDValue Store; 6718 6719 Store = DAG.getStore( 6720 Chain, dl, LoadValues[i], 6721 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6722 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6723 OutChains.push_back(Store); 6724 DstOff += VTSize; 6725 } 6726 6727 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6728 } 6729 6730 /// Lower the call to 'memset' intrinsic function into a series of store 6731 /// operations. 6732 /// 6733 /// \param DAG Selection DAG where lowered code is placed. 6734 /// \param dl Link to corresponding IR location. 6735 /// \param Chain Control flow dependency. 6736 /// \param Dst Pointer to destination memory location. 6737 /// \param Src Value of byte to write into the memory. 6738 /// \param Size Number of bytes to write. 6739 /// \param Alignment Alignment of the destination in bytes. 6740 /// \param isVol True if destination is volatile. 6741 /// \param DstPtrInfo IR information on the memory pointer. 6742 /// \returns New head in the control flow, if lowering was successful, empty 6743 /// SDValue otherwise. 6744 /// 6745 /// The function tries to replace 'llvm.memset' intrinsic with several store 6746 /// operations and value calculation code. This is usually profitable for small 6747 /// memory size. 6748 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6749 SDValue Chain, SDValue Dst, SDValue Src, 6750 uint64_t Size, Align Alignment, bool isVol, 6751 MachinePointerInfo DstPtrInfo, 6752 const AAMDNodes &AAInfo) { 6753 // Turn a memset of undef to nop. 6754 // FIXME: We need to honor volatile even is Src is undef. 6755 if (Src.isUndef()) 6756 return Chain; 6757 6758 // Expand memset to a series of load/store ops if the size operand 6759 // falls below a certain threshold. 6760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6761 std::vector<EVT> MemOps; 6762 bool DstAlignCanChange = false; 6763 MachineFunction &MF = DAG.getMachineFunction(); 6764 MachineFrameInfo &MFI = MF.getFrameInfo(); 6765 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6766 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6767 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6768 DstAlignCanChange = true; 6769 bool IsZeroVal = 6770 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6771 if (!TLI.findOptimalMemOpLowering( 6772 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6773 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6774 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6775 return SDValue(); 6776 6777 if (DstAlignCanChange) { 6778 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6779 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6780 if (NewAlign > Alignment) { 6781 // Give the stack frame object a larger alignment if needed. 6782 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6783 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6784 Alignment = NewAlign; 6785 } 6786 } 6787 6788 SmallVector<SDValue, 8> OutChains; 6789 uint64_t DstOff = 0; 6790 unsigned NumMemOps = MemOps.size(); 6791 6792 // Find the largest store and generate the bit pattern for it. 6793 EVT LargestVT = MemOps[0]; 6794 for (unsigned i = 1; i < NumMemOps; i++) 6795 if (MemOps[i].bitsGT(LargestVT)) 6796 LargestVT = MemOps[i]; 6797 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6798 6799 // Prepare AAInfo for loads/stores after lowering this memset. 6800 AAMDNodes NewAAInfo = AAInfo; 6801 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6802 6803 for (unsigned i = 0; i < NumMemOps; i++) { 6804 EVT VT = MemOps[i]; 6805 unsigned VTSize = VT.getSizeInBits() / 8; 6806 if (VTSize > Size) { 6807 // Issuing an unaligned load / store pair that overlaps with the previous 6808 // pair. Adjust the offset accordingly. 6809 assert(i == NumMemOps-1 && i != 0); 6810 DstOff -= VTSize - Size; 6811 } 6812 6813 // If this store is smaller than the largest store see whether we can get 6814 // the smaller value for free with a truncate. 6815 SDValue Value = MemSetValue; 6816 if (VT.bitsLT(LargestVT)) { 6817 if (!LargestVT.isVector() && !VT.isVector() && 6818 TLI.isTruncateFree(LargestVT, VT)) 6819 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6820 else 6821 Value = getMemsetValue(Src, VT, DAG, dl); 6822 } 6823 assert(Value.getValueType() == VT && "Value with wrong type."); 6824 SDValue Store = DAG.getStore( 6825 Chain, dl, Value, 6826 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6827 DstPtrInfo.getWithOffset(DstOff), Alignment, 6828 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6829 NewAAInfo); 6830 OutChains.push_back(Store); 6831 DstOff += VT.getSizeInBits() / 8; 6832 Size -= VTSize; 6833 } 6834 6835 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6836 } 6837 6838 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6839 unsigned AS) { 6840 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6841 // pointer operands can be losslessly bitcasted to pointers of address space 0 6842 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6843 report_fatal_error("cannot lower memory intrinsic in address space " + 6844 Twine(AS)); 6845 } 6846 } 6847 6848 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6849 SDValue Src, SDValue Size, Align Alignment, 6850 bool isVol, bool AlwaysInline, bool isTailCall, 6851 MachinePointerInfo DstPtrInfo, 6852 MachinePointerInfo SrcPtrInfo, 6853 const AAMDNodes &AAInfo) { 6854 // Check to see if we should lower the memcpy to loads and stores first. 6855 // For cases within the target-specified limits, this is the best choice. 6856 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6857 if (ConstantSize) { 6858 // Memcpy with size zero? Just return the original chain. 6859 if (ConstantSize->isZero()) 6860 return Chain; 6861 6862 SDValue Result = getMemcpyLoadsAndStores( 6863 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6864 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6865 if (Result.getNode()) 6866 return Result; 6867 } 6868 6869 // Then check to see if we should lower the memcpy with target-specific 6870 // code. If the target chooses to do this, this is the next best. 6871 if (TSI) { 6872 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6873 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6874 DstPtrInfo, SrcPtrInfo); 6875 if (Result.getNode()) 6876 return Result; 6877 } 6878 6879 // If we really need inline code and the target declined to provide it, 6880 // use a (potentially long) sequence of loads and stores. 6881 if (AlwaysInline) { 6882 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6883 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6884 ConstantSize->getZExtValue(), Alignment, 6885 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6886 } 6887 6888 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6889 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6890 6891 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6892 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6893 // respect volatile, so they may do things like read or write memory 6894 // beyond the given memory regions. But fixing this isn't easy, and most 6895 // people don't care. 6896 6897 // Emit a library call. 6898 TargetLowering::ArgListTy Args; 6899 TargetLowering::ArgListEntry Entry; 6900 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6901 Entry.Node = Dst; Args.push_back(Entry); 6902 Entry.Node = Src; Args.push_back(Entry); 6903 6904 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6905 Entry.Node = Size; Args.push_back(Entry); 6906 // FIXME: pass in SDLoc 6907 TargetLowering::CallLoweringInfo CLI(*this); 6908 CLI.setDebugLoc(dl) 6909 .setChain(Chain) 6910 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6911 Dst.getValueType().getTypeForEVT(*getContext()), 6912 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6913 TLI->getPointerTy(getDataLayout())), 6914 std::move(Args)) 6915 .setDiscardResult() 6916 .setTailCall(isTailCall); 6917 6918 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6919 return CallResult.second; 6920 } 6921 6922 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6923 SDValue Dst, unsigned DstAlign, 6924 SDValue Src, unsigned SrcAlign, 6925 SDValue Size, Type *SizeTy, 6926 unsigned ElemSz, bool isTailCall, 6927 MachinePointerInfo DstPtrInfo, 6928 MachinePointerInfo SrcPtrInfo) { 6929 // Emit a library call. 6930 TargetLowering::ArgListTy Args; 6931 TargetLowering::ArgListEntry Entry; 6932 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6933 Entry.Node = Dst; 6934 Args.push_back(Entry); 6935 6936 Entry.Node = Src; 6937 Args.push_back(Entry); 6938 6939 Entry.Ty = SizeTy; 6940 Entry.Node = Size; 6941 Args.push_back(Entry); 6942 6943 RTLIB::Libcall LibraryCall = 6944 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6945 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6946 report_fatal_error("Unsupported element size"); 6947 6948 TargetLowering::CallLoweringInfo CLI(*this); 6949 CLI.setDebugLoc(dl) 6950 .setChain(Chain) 6951 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6952 Type::getVoidTy(*getContext()), 6953 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6954 TLI->getPointerTy(getDataLayout())), 6955 std::move(Args)) 6956 .setDiscardResult() 6957 .setTailCall(isTailCall); 6958 6959 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6960 return CallResult.second; 6961 } 6962 6963 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6964 SDValue Src, SDValue Size, Align Alignment, 6965 bool isVol, bool isTailCall, 6966 MachinePointerInfo DstPtrInfo, 6967 MachinePointerInfo SrcPtrInfo, 6968 const AAMDNodes &AAInfo) { 6969 // Check to see if we should lower the memmove to loads and stores first. 6970 // For cases within the target-specified limits, this is the best choice. 6971 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6972 if (ConstantSize) { 6973 // Memmove with size zero? Just return the original chain. 6974 if (ConstantSize->isZero()) 6975 return Chain; 6976 6977 SDValue Result = getMemmoveLoadsAndStores( 6978 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6979 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6980 if (Result.getNode()) 6981 return Result; 6982 } 6983 6984 // Then check to see if we should lower the memmove with target-specific 6985 // code. If the target chooses to do this, this is the next best. 6986 if (TSI) { 6987 SDValue Result = 6988 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6989 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6990 if (Result.getNode()) 6991 return Result; 6992 } 6993 6994 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6995 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6996 6997 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6998 // not be safe. See memcpy above for more details. 6999 7000 // Emit a library call. 7001 TargetLowering::ArgListTy Args; 7002 TargetLowering::ArgListEntry Entry; 7003 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7004 Entry.Node = Dst; Args.push_back(Entry); 7005 Entry.Node = Src; Args.push_back(Entry); 7006 7007 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7008 Entry.Node = Size; Args.push_back(Entry); 7009 // FIXME: pass in SDLoc 7010 TargetLowering::CallLoweringInfo CLI(*this); 7011 CLI.setDebugLoc(dl) 7012 .setChain(Chain) 7013 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7014 Dst.getValueType().getTypeForEVT(*getContext()), 7015 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7016 TLI->getPointerTy(getDataLayout())), 7017 std::move(Args)) 7018 .setDiscardResult() 7019 .setTailCall(isTailCall); 7020 7021 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7022 return CallResult.second; 7023 } 7024 7025 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7026 SDValue Dst, unsigned DstAlign, 7027 SDValue Src, unsigned SrcAlign, 7028 SDValue Size, Type *SizeTy, 7029 unsigned ElemSz, bool isTailCall, 7030 MachinePointerInfo DstPtrInfo, 7031 MachinePointerInfo SrcPtrInfo) { 7032 // Emit a library call. 7033 TargetLowering::ArgListTy Args; 7034 TargetLowering::ArgListEntry Entry; 7035 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7036 Entry.Node = Dst; 7037 Args.push_back(Entry); 7038 7039 Entry.Node = Src; 7040 Args.push_back(Entry); 7041 7042 Entry.Ty = SizeTy; 7043 Entry.Node = Size; 7044 Args.push_back(Entry); 7045 7046 RTLIB::Libcall LibraryCall = 7047 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7048 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7049 report_fatal_error("Unsupported element size"); 7050 7051 TargetLowering::CallLoweringInfo CLI(*this); 7052 CLI.setDebugLoc(dl) 7053 .setChain(Chain) 7054 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7055 Type::getVoidTy(*getContext()), 7056 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7057 TLI->getPointerTy(getDataLayout())), 7058 std::move(Args)) 7059 .setDiscardResult() 7060 .setTailCall(isTailCall); 7061 7062 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7063 return CallResult.second; 7064 } 7065 7066 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7067 SDValue Src, SDValue Size, Align Alignment, 7068 bool isVol, bool isTailCall, 7069 MachinePointerInfo DstPtrInfo, 7070 const AAMDNodes &AAInfo) { 7071 // Check to see if we should lower the memset to stores first. 7072 // For cases within the target-specified limits, this is the best choice. 7073 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7074 if (ConstantSize) { 7075 // Memset with size zero? Just return the original chain. 7076 if (ConstantSize->isZero()) 7077 return Chain; 7078 7079 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7080 ConstantSize->getZExtValue(), Alignment, 7081 isVol, DstPtrInfo, AAInfo); 7082 7083 if (Result.getNode()) 7084 return Result; 7085 } 7086 7087 // Then check to see if we should lower the memset with target-specific 7088 // code. If the target chooses to do this, this is the next best. 7089 if (TSI) { 7090 SDValue Result = TSI->EmitTargetCodeForMemset( 7091 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7092 if (Result.getNode()) 7093 return Result; 7094 } 7095 7096 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7097 7098 // Emit a library call. 7099 TargetLowering::ArgListTy Args; 7100 TargetLowering::ArgListEntry Entry; 7101 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7102 Args.push_back(Entry); 7103 Entry.Node = Src; 7104 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7105 Args.push_back(Entry); 7106 Entry.Node = Size; 7107 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7108 Args.push_back(Entry); 7109 7110 // FIXME: pass in SDLoc 7111 TargetLowering::CallLoweringInfo CLI(*this); 7112 CLI.setDebugLoc(dl) 7113 .setChain(Chain) 7114 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7115 Dst.getValueType().getTypeForEVT(*getContext()), 7116 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7117 TLI->getPointerTy(getDataLayout())), 7118 std::move(Args)) 7119 .setDiscardResult() 7120 .setTailCall(isTailCall); 7121 7122 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7123 return CallResult.second; 7124 } 7125 7126 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7127 SDValue Dst, unsigned DstAlign, 7128 SDValue Value, SDValue Size, Type *SizeTy, 7129 unsigned ElemSz, bool isTailCall, 7130 MachinePointerInfo DstPtrInfo) { 7131 // Emit a library call. 7132 TargetLowering::ArgListTy Args; 7133 TargetLowering::ArgListEntry Entry; 7134 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7135 Entry.Node = Dst; 7136 Args.push_back(Entry); 7137 7138 Entry.Ty = Type::getInt8Ty(*getContext()); 7139 Entry.Node = Value; 7140 Args.push_back(Entry); 7141 7142 Entry.Ty = SizeTy; 7143 Entry.Node = Size; 7144 Args.push_back(Entry); 7145 7146 RTLIB::Libcall LibraryCall = 7147 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7148 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7149 report_fatal_error("Unsupported element size"); 7150 7151 TargetLowering::CallLoweringInfo CLI(*this); 7152 CLI.setDebugLoc(dl) 7153 .setChain(Chain) 7154 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7155 Type::getVoidTy(*getContext()), 7156 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7157 TLI->getPointerTy(getDataLayout())), 7158 std::move(Args)) 7159 .setDiscardResult() 7160 .setTailCall(isTailCall); 7161 7162 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7163 return CallResult.second; 7164 } 7165 7166 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7167 SDVTList VTList, ArrayRef<SDValue> Ops, 7168 MachineMemOperand *MMO) { 7169 FoldingSetNodeID ID; 7170 ID.AddInteger(MemVT.getRawBits()); 7171 AddNodeIDNode(ID, Opcode, VTList, Ops); 7172 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7173 void* IP = nullptr; 7174 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7175 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7176 return SDValue(E, 0); 7177 } 7178 7179 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7180 VTList, MemVT, MMO); 7181 createOperands(N, Ops); 7182 7183 CSEMap.InsertNode(N, IP); 7184 InsertNode(N); 7185 return SDValue(N, 0); 7186 } 7187 7188 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7189 EVT MemVT, SDVTList VTs, SDValue Chain, 7190 SDValue Ptr, SDValue Cmp, SDValue Swp, 7191 MachineMemOperand *MMO) { 7192 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7193 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7194 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7195 7196 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7197 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7198 } 7199 7200 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7201 SDValue Chain, SDValue Ptr, SDValue Val, 7202 MachineMemOperand *MMO) { 7203 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7204 Opcode == ISD::ATOMIC_LOAD_SUB || 7205 Opcode == ISD::ATOMIC_LOAD_AND || 7206 Opcode == ISD::ATOMIC_LOAD_CLR || 7207 Opcode == ISD::ATOMIC_LOAD_OR || 7208 Opcode == ISD::ATOMIC_LOAD_XOR || 7209 Opcode == ISD::ATOMIC_LOAD_NAND || 7210 Opcode == ISD::ATOMIC_LOAD_MIN || 7211 Opcode == ISD::ATOMIC_LOAD_MAX || 7212 Opcode == ISD::ATOMIC_LOAD_UMIN || 7213 Opcode == ISD::ATOMIC_LOAD_UMAX || 7214 Opcode == ISD::ATOMIC_LOAD_FADD || 7215 Opcode == ISD::ATOMIC_LOAD_FSUB || 7216 Opcode == ISD::ATOMIC_SWAP || 7217 Opcode == ISD::ATOMIC_STORE) && 7218 "Invalid Atomic Op"); 7219 7220 EVT VT = Val.getValueType(); 7221 7222 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7223 getVTList(VT, MVT::Other); 7224 SDValue Ops[] = {Chain, Ptr, Val}; 7225 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7226 } 7227 7228 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7229 EVT VT, SDValue Chain, SDValue Ptr, 7230 MachineMemOperand *MMO) { 7231 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7232 7233 SDVTList VTs = getVTList(VT, MVT::Other); 7234 SDValue Ops[] = {Chain, Ptr}; 7235 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7236 } 7237 7238 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7239 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7240 if (Ops.size() == 1) 7241 return Ops[0]; 7242 7243 SmallVector<EVT, 4> VTs; 7244 VTs.reserve(Ops.size()); 7245 for (const SDValue &Op : Ops) 7246 VTs.push_back(Op.getValueType()); 7247 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7248 } 7249 7250 SDValue SelectionDAG::getMemIntrinsicNode( 7251 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7252 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7253 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7254 if (!Size && MemVT.isScalableVector()) 7255 Size = MemoryLocation::UnknownSize; 7256 else if (!Size) 7257 Size = MemVT.getStoreSize(); 7258 7259 MachineFunction &MF = getMachineFunction(); 7260 MachineMemOperand *MMO = 7261 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7262 7263 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7264 } 7265 7266 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7267 SDVTList VTList, 7268 ArrayRef<SDValue> Ops, EVT MemVT, 7269 MachineMemOperand *MMO) { 7270 assert((Opcode == ISD::INTRINSIC_VOID || 7271 Opcode == ISD::INTRINSIC_W_CHAIN || 7272 Opcode == ISD::PREFETCH || 7273 ((int)Opcode <= std::numeric_limits<int>::max() && 7274 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7275 "Opcode is not a memory-accessing opcode!"); 7276 7277 // Memoize the node unless it returns a flag. 7278 MemIntrinsicSDNode *N; 7279 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7280 FoldingSetNodeID ID; 7281 AddNodeIDNode(ID, Opcode, VTList, Ops); 7282 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7283 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7284 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7285 void *IP = nullptr; 7286 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7287 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7288 return SDValue(E, 0); 7289 } 7290 7291 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7292 VTList, MemVT, MMO); 7293 createOperands(N, Ops); 7294 7295 CSEMap.InsertNode(N, IP); 7296 } else { 7297 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7298 VTList, MemVT, MMO); 7299 createOperands(N, Ops); 7300 } 7301 InsertNode(N); 7302 SDValue V(N, 0); 7303 NewSDValueDbgMsg(V, "Creating new node: ", this); 7304 return V; 7305 } 7306 7307 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7308 SDValue Chain, int FrameIndex, 7309 int64_t Size, int64_t Offset) { 7310 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7311 const auto VTs = getVTList(MVT::Other); 7312 SDValue Ops[2] = { 7313 Chain, 7314 getFrameIndex(FrameIndex, 7315 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7316 true)}; 7317 7318 FoldingSetNodeID ID; 7319 AddNodeIDNode(ID, Opcode, VTs, Ops); 7320 ID.AddInteger(FrameIndex); 7321 ID.AddInteger(Size); 7322 ID.AddInteger(Offset); 7323 void *IP = nullptr; 7324 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7325 return SDValue(E, 0); 7326 7327 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7328 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7329 createOperands(N, Ops); 7330 CSEMap.InsertNode(N, IP); 7331 InsertNode(N); 7332 SDValue V(N, 0); 7333 NewSDValueDbgMsg(V, "Creating new node: ", this); 7334 return V; 7335 } 7336 7337 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7338 uint64_t Guid, uint64_t Index, 7339 uint32_t Attr) { 7340 const unsigned Opcode = ISD::PSEUDO_PROBE; 7341 const auto VTs = getVTList(MVT::Other); 7342 SDValue Ops[] = {Chain}; 7343 FoldingSetNodeID ID; 7344 AddNodeIDNode(ID, Opcode, VTs, Ops); 7345 ID.AddInteger(Guid); 7346 ID.AddInteger(Index); 7347 void *IP = nullptr; 7348 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7349 return SDValue(E, 0); 7350 7351 auto *N = newSDNode<PseudoProbeSDNode>( 7352 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7353 createOperands(N, Ops); 7354 CSEMap.InsertNode(N, IP); 7355 InsertNode(N); 7356 SDValue V(N, 0); 7357 NewSDValueDbgMsg(V, "Creating new node: ", this); 7358 return V; 7359 } 7360 7361 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7362 /// MachinePointerInfo record from it. This is particularly useful because the 7363 /// code generator has many cases where it doesn't bother passing in a 7364 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7365 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7366 SelectionDAG &DAG, SDValue Ptr, 7367 int64_t Offset = 0) { 7368 // If this is FI+Offset, we can model it. 7369 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7370 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7371 FI->getIndex(), Offset); 7372 7373 // If this is (FI+Offset1)+Offset2, we can model it. 7374 if (Ptr.getOpcode() != ISD::ADD || 7375 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7376 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7377 return Info; 7378 7379 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7380 return MachinePointerInfo::getFixedStack( 7381 DAG.getMachineFunction(), FI, 7382 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7383 } 7384 7385 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7386 /// MachinePointerInfo record from it. This is particularly useful because the 7387 /// code generator has many cases where it doesn't bother passing in a 7388 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7389 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7390 SelectionDAG &DAG, SDValue Ptr, 7391 SDValue OffsetOp) { 7392 // If the 'Offset' value isn't a constant, we can't handle this. 7393 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7394 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7395 if (OffsetOp.isUndef()) 7396 return InferPointerInfo(Info, DAG, Ptr); 7397 return Info; 7398 } 7399 7400 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7401 EVT VT, const SDLoc &dl, SDValue Chain, 7402 SDValue Ptr, SDValue Offset, 7403 MachinePointerInfo PtrInfo, EVT MemVT, 7404 Align Alignment, 7405 MachineMemOperand::Flags MMOFlags, 7406 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7407 assert(Chain.getValueType() == MVT::Other && 7408 "Invalid chain type"); 7409 7410 MMOFlags |= MachineMemOperand::MOLoad; 7411 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7412 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7413 // clients. 7414 if (PtrInfo.V.isNull()) 7415 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7416 7417 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7418 MachineFunction &MF = getMachineFunction(); 7419 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7420 Alignment, AAInfo, Ranges); 7421 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7422 } 7423 7424 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7425 EVT VT, const SDLoc &dl, SDValue Chain, 7426 SDValue Ptr, SDValue Offset, EVT MemVT, 7427 MachineMemOperand *MMO) { 7428 if (VT == MemVT) { 7429 ExtType = ISD::NON_EXTLOAD; 7430 } else if (ExtType == ISD::NON_EXTLOAD) { 7431 assert(VT == MemVT && "Non-extending load from different memory type!"); 7432 } else { 7433 // Extending load. 7434 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7435 "Should only be an extending load, not truncating!"); 7436 assert(VT.isInteger() == MemVT.isInteger() && 7437 "Cannot convert from FP to Int or Int -> FP!"); 7438 assert(VT.isVector() == MemVT.isVector() && 7439 "Cannot use an ext load to convert to or from a vector!"); 7440 assert((!VT.isVector() || 7441 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7442 "Cannot use an ext load to change the number of vector elements!"); 7443 } 7444 7445 bool Indexed = AM != ISD::UNINDEXED; 7446 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7447 7448 SDVTList VTs = Indexed ? 7449 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7450 SDValue Ops[] = { Chain, Ptr, Offset }; 7451 FoldingSetNodeID ID; 7452 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7453 ID.AddInteger(MemVT.getRawBits()); 7454 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7455 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7456 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7457 void *IP = nullptr; 7458 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7459 cast<LoadSDNode>(E)->refineAlignment(MMO); 7460 return SDValue(E, 0); 7461 } 7462 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7463 ExtType, MemVT, MMO); 7464 createOperands(N, Ops); 7465 7466 CSEMap.InsertNode(N, IP); 7467 InsertNode(N); 7468 SDValue V(N, 0); 7469 NewSDValueDbgMsg(V, "Creating new node: ", this); 7470 return V; 7471 } 7472 7473 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7474 SDValue Ptr, MachinePointerInfo PtrInfo, 7475 MaybeAlign Alignment, 7476 MachineMemOperand::Flags MMOFlags, 7477 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7478 SDValue Undef = getUNDEF(Ptr.getValueType()); 7479 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7480 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7481 } 7482 7483 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7484 SDValue Ptr, MachineMemOperand *MMO) { 7485 SDValue Undef = getUNDEF(Ptr.getValueType()); 7486 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7487 VT, MMO); 7488 } 7489 7490 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7491 EVT VT, SDValue Chain, SDValue Ptr, 7492 MachinePointerInfo PtrInfo, EVT MemVT, 7493 MaybeAlign Alignment, 7494 MachineMemOperand::Flags MMOFlags, 7495 const AAMDNodes &AAInfo) { 7496 SDValue Undef = getUNDEF(Ptr.getValueType()); 7497 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7498 MemVT, Alignment, MMOFlags, AAInfo); 7499 } 7500 7501 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7502 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7503 MachineMemOperand *MMO) { 7504 SDValue Undef = getUNDEF(Ptr.getValueType()); 7505 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7506 MemVT, MMO); 7507 } 7508 7509 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7510 SDValue Base, SDValue Offset, 7511 ISD::MemIndexedMode AM) { 7512 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7513 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7514 // Don't propagate the invariant or dereferenceable flags. 7515 auto MMOFlags = 7516 LD->getMemOperand()->getFlags() & 7517 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7518 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7519 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7520 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7521 } 7522 7523 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7524 SDValue Ptr, MachinePointerInfo PtrInfo, 7525 Align Alignment, 7526 MachineMemOperand::Flags MMOFlags, 7527 const AAMDNodes &AAInfo) { 7528 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7529 7530 MMOFlags |= MachineMemOperand::MOStore; 7531 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7532 7533 if (PtrInfo.V.isNull()) 7534 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7535 7536 MachineFunction &MF = getMachineFunction(); 7537 uint64_t Size = 7538 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7539 MachineMemOperand *MMO = 7540 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7541 return getStore(Chain, dl, Val, Ptr, MMO); 7542 } 7543 7544 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7545 SDValue Ptr, MachineMemOperand *MMO) { 7546 assert(Chain.getValueType() == MVT::Other && 7547 "Invalid chain type"); 7548 EVT VT = Val.getValueType(); 7549 SDVTList VTs = getVTList(MVT::Other); 7550 SDValue Undef = getUNDEF(Ptr.getValueType()); 7551 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7552 FoldingSetNodeID ID; 7553 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7554 ID.AddInteger(VT.getRawBits()); 7555 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7556 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7557 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7558 void *IP = nullptr; 7559 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7560 cast<StoreSDNode>(E)->refineAlignment(MMO); 7561 return SDValue(E, 0); 7562 } 7563 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7564 ISD::UNINDEXED, false, VT, MMO); 7565 createOperands(N, Ops); 7566 7567 CSEMap.InsertNode(N, IP); 7568 InsertNode(N); 7569 SDValue V(N, 0); 7570 NewSDValueDbgMsg(V, "Creating new node: ", this); 7571 return V; 7572 } 7573 7574 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7575 SDValue Ptr, MachinePointerInfo PtrInfo, 7576 EVT SVT, Align Alignment, 7577 MachineMemOperand::Flags MMOFlags, 7578 const AAMDNodes &AAInfo) { 7579 assert(Chain.getValueType() == MVT::Other && 7580 "Invalid chain type"); 7581 7582 MMOFlags |= MachineMemOperand::MOStore; 7583 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7584 7585 if (PtrInfo.V.isNull()) 7586 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7587 7588 MachineFunction &MF = getMachineFunction(); 7589 MachineMemOperand *MMO = MF.getMachineMemOperand( 7590 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7591 Alignment, AAInfo); 7592 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7593 } 7594 7595 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7596 SDValue Ptr, EVT SVT, 7597 MachineMemOperand *MMO) { 7598 EVT VT = Val.getValueType(); 7599 7600 assert(Chain.getValueType() == MVT::Other && 7601 "Invalid chain type"); 7602 if (VT == SVT) 7603 return getStore(Chain, dl, Val, Ptr, MMO); 7604 7605 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7606 "Should only be a truncating store, not extending!"); 7607 assert(VT.isInteger() == SVT.isInteger() && 7608 "Can't do FP-INT conversion!"); 7609 assert(VT.isVector() == SVT.isVector() && 7610 "Cannot use trunc store to convert to or from a vector!"); 7611 assert((!VT.isVector() || 7612 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7613 "Cannot use trunc store to change the number of vector elements!"); 7614 7615 SDVTList VTs = getVTList(MVT::Other); 7616 SDValue Undef = getUNDEF(Ptr.getValueType()); 7617 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7618 FoldingSetNodeID ID; 7619 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7620 ID.AddInteger(SVT.getRawBits()); 7621 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7622 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7623 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7624 void *IP = nullptr; 7625 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7626 cast<StoreSDNode>(E)->refineAlignment(MMO); 7627 return SDValue(E, 0); 7628 } 7629 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7630 ISD::UNINDEXED, true, SVT, MMO); 7631 createOperands(N, Ops); 7632 7633 CSEMap.InsertNode(N, IP); 7634 InsertNode(N); 7635 SDValue V(N, 0); 7636 NewSDValueDbgMsg(V, "Creating new node: ", this); 7637 return V; 7638 } 7639 7640 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7641 SDValue Base, SDValue Offset, 7642 ISD::MemIndexedMode AM) { 7643 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7644 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7645 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7646 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7647 FoldingSetNodeID ID; 7648 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7649 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7650 ID.AddInteger(ST->getRawSubclassData()); 7651 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7652 void *IP = nullptr; 7653 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7654 return SDValue(E, 0); 7655 7656 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7657 ST->isTruncatingStore(), ST->getMemoryVT(), 7658 ST->getMemOperand()); 7659 createOperands(N, Ops); 7660 7661 CSEMap.InsertNode(N, IP); 7662 InsertNode(N); 7663 SDValue V(N, 0); 7664 NewSDValueDbgMsg(V, "Creating new node: ", this); 7665 return V; 7666 } 7667 7668 SDValue SelectionDAG::getLoadVP( 7669 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7670 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7671 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7672 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7673 const MDNode *Ranges, bool IsExpanding) { 7674 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7675 7676 MMOFlags |= MachineMemOperand::MOLoad; 7677 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7678 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7679 // clients. 7680 if (PtrInfo.V.isNull()) 7681 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7682 7683 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7684 MachineFunction &MF = getMachineFunction(); 7685 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7686 Alignment, AAInfo, Ranges); 7687 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7688 MMO, IsExpanding); 7689 } 7690 7691 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7692 ISD::LoadExtType ExtType, EVT VT, 7693 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7694 SDValue Offset, SDValue Mask, SDValue EVL, 7695 EVT MemVT, MachineMemOperand *MMO, 7696 bool IsExpanding) { 7697 bool Indexed = AM != ISD::UNINDEXED; 7698 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7699 7700 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7701 : getVTList(VT, MVT::Other); 7702 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7703 FoldingSetNodeID ID; 7704 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7705 ID.AddInteger(VT.getRawBits()); 7706 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7707 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7708 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7709 void *IP = nullptr; 7710 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7711 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7712 return SDValue(E, 0); 7713 } 7714 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7715 ExtType, IsExpanding, MemVT, MMO); 7716 createOperands(N, Ops); 7717 7718 CSEMap.InsertNode(N, IP); 7719 InsertNode(N); 7720 SDValue V(N, 0); 7721 NewSDValueDbgMsg(V, "Creating new node: ", this); 7722 return V; 7723 } 7724 7725 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7726 SDValue Ptr, SDValue Mask, SDValue EVL, 7727 MachinePointerInfo PtrInfo, 7728 MaybeAlign Alignment, 7729 MachineMemOperand::Flags MMOFlags, 7730 const AAMDNodes &AAInfo, const MDNode *Ranges, 7731 bool IsExpanding) { 7732 SDValue Undef = getUNDEF(Ptr.getValueType()); 7733 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7734 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7735 IsExpanding); 7736 } 7737 7738 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7739 SDValue Ptr, SDValue Mask, SDValue EVL, 7740 MachineMemOperand *MMO, bool IsExpanding) { 7741 SDValue Undef = getUNDEF(Ptr.getValueType()); 7742 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7743 Mask, EVL, VT, MMO, IsExpanding); 7744 } 7745 7746 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7747 EVT VT, SDValue Chain, SDValue Ptr, 7748 SDValue Mask, SDValue EVL, 7749 MachinePointerInfo PtrInfo, EVT MemVT, 7750 MaybeAlign Alignment, 7751 MachineMemOperand::Flags MMOFlags, 7752 const AAMDNodes &AAInfo, bool IsExpanding) { 7753 SDValue Undef = getUNDEF(Ptr.getValueType()); 7754 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7755 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7756 IsExpanding); 7757 } 7758 7759 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7760 EVT VT, SDValue Chain, SDValue Ptr, 7761 SDValue Mask, SDValue EVL, EVT MemVT, 7762 MachineMemOperand *MMO, bool IsExpanding) { 7763 SDValue Undef = getUNDEF(Ptr.getValueType()); 7764 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7765 EVL, MemVT, MMO, IsExpanding); 7766 } 7767 7768 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7769 SDValue Base, SDValue Offset, 7770 ISD::MemIndexedMode AM) { 7771 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7772 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7773 // Don't propagate the invariant or dereferenceable flags. 7774 auto MMOFlags = 7775 LD->getMemOperand()->getFlags() & 7776 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7777 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7778 LD->getChain(), Base, Offset, LD->getMask(), 7779 LD->getVectorLength(), LD->getPointerInfo(), 7780 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7781 nullptr, LD->isExpandingLoad()); 7782 } 7783 7784 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7785 SDValue Ptr, SDValue Offset, SDValue Mask, 7786 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7787 ISD::MemIndexedMode AM, bool IsTruncating, 7788 bool IsCompressing) { 7789 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7790 bool Indexed = AM != ISD::UNINDEXED; 7791 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7792 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7793 : getVTList(MVT::Other); 7794 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7795 FoldingSetNodeID ID; 7796 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7797 ID.AddInteger(MemVT.getRawBits()); 7798 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7799 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7800 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7801 void *IP = nullptr; 7802 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7803 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7804 return SDValue(E, 0); 7805 } 7806 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7807 IsTruncating, IsCompressing, MemVT, MMO); 7808 createOperands(N, Ops); 7809 7810 CSEMap.InsertNode(N, IP); 7811 InsertNode(N); 7812 SDValue V(N, 0); 7813 NewSDValueDbgMsg(V, "Creating new node: ", this); 7814 return V; 7815 } 7816 7817 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7818 SDValue Val, SDValue Ptr, SDValue Mask, 7819 SDValue EVL, MachinePointerInfo PtrInfo, 7820 EVT SVT, Align Alignment, 7821 MachineMemOperand::Flags MMOFlags, 7822 const AAMDNodes &AAInfo, 7823 bool IsCompressing) { 7824 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7825 7826 MMOFlags |= MachineMemOperand::MOStore; 7827 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7828 7829 if (PtrInfo.V.isNull()) 7830 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7831 7832 MachineFunction &MF = getMachineFunction(); 7833 MachineMemOperand *MMO = MF.getMachineMemOperand( 7834 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7835 Alignment, AAInfo); 7836 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7837 IsCompressing); 7838 } 7839 7840 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7841 SDValue Val, SDValue Ptr, SDValue Mask, 7842 SDValue EVL, EVT SVT, 7843 MachineMemOperand *MMO, 7844 bool IsCompressing) { 7845 EVT VT = Val.getValueType(); 7846 7847 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7848 if (VT == SVT) 7849 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 7850 EVL, VT, MMO, ISD::UNINDEXED, 7851 /*IsTruncating*/ false, IsCompressing); 7852 7853 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7854 "Should only be a truncating store, not extending!"); 7855 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7856 assert(VT.isVector() == SVT.isVector() && 7857 "Cannot use trunc store to convert to or from a vector!"); 7858 assert((!VT.isVector() || 7859 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7860 "Cannot use trunc store to change the number of vector elements!"); 7861 7862 SDVTList VTs = getVTList(MVT::Other); 7863 SDValue Undef = getUNDEF(Ptr.getValueType()); 7864 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7865 FoldingSetNodeID ID; 7866 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7867 ID.AddInteger(SVT.getRawBits()); 7868 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7869 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7870 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7871 void *IP = nullptr; 7872 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7873 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7874 return SDValue(E, 0); 7875 } 7876 auto *N = 7877 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7878 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7879 createOperands(N, Ops); 7880 7881 CSEMap.InsertNode(N, IP); 7882 InsertNode(N); 7883 SDValue V(N, 0); 7884 NewSDValueDbgMsg(V, "Creating new node: ", this); 7885 return V; 7886 } 7887 7888 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7889 SDValue Base, SDValue Offset, 7890 ISD::MemIndexedMode AM) { 7891 auto *ST = cast<VPStoreSDNode>(OrigStore); 7892 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7893 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7894 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7895 Offset, ST->getMask(), ST->getVectorLength()}; 7896 FoldingSetNodeID ID; 7897 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7898 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7899 ID.AddInteger(ST->getRawSubclassData()); 7900 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7901 void *IP = nullptr; 7902 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7903 return SDValue(E, 0); 7904 7905 auto *N = newSDNode<VPStoreSDNode>( 7906 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7907 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7908 createOperands(N, Ops); 7909 7910 CSEMap.InsertNode(N, IP); 7911 InsertNode(N); 7912 SDValue V(N, 0); 7913 NewSDValueDbgMsg(V, "Creating new node: ", this); 7914 return V; 7915 } 7916 7917 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7918 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7919 ISD::MemIndexType IndexType) { 7920 assert(Ops.size() == 6 && "Incompatible number of operands"); 7921 7922 FoldingSetNodeID ID; 7923 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7924 ID.AddInteger(VT.getRawBits()); 7925 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7926 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7927 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7928 void *IP = nullptr; 7929 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7930 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7931 return SDValue(E, 0); 7932 } 7933 7934 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7935 VT, MMO, IndexType); 7936 createOperands(N, Ops); 7937 7938 assert(N->getMask().getValueType().getVectorElementCount() == 7939 N->getValueType(0).getVectorElementCount() && 7940 "Vector width mismatch between mask and data"); 7941 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7942 N->getValueType(0).getVectorElementCount().isScalable() && 7943 "Scalable flags of index and data do not match"); 7944 assert(ElementCount::isKnownGE( 7945 N->getIndex().getValueType().getVectorElementCount(), 7946 N->getValueType(0).getVectorElementCount()) && 7947 "Vector width mismatch between index and data"); 7948 assert(isa<ConstantSDNode>(N->getScale()) && 7949 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7950 "Scale should be a constant power of 2"); 7951 7952 CSEMap.InsertNode(N, IP); 7953 InsertNode(N); 7954 SDValue V(N, 0); 7955 NewSDValueDbgMsg(V, "Creating new node: ", this); 7956 return V; 7957 } 7958 7959 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7960 ArrayRef<SDValue> Ops, 7961 MachineMemOperand *MMO, 7962 ISD::MemIndexType IndexType) { 7963 assert(Ops.size() == 7 && "Incompatible number of operands"); 7964 7965 FoldingSetNodeID ID; 7966 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7967 ID.AddInteger(VT.getRawBits()); 7968 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7969 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7970 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7971 void *IP = nullptr; 7972 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7973 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7974 return SDValue(E, 0); 7975 } 7976 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7977 VT, MMO, IndexType); 7978 createOperands(N, Ops); 7979 7980 assert(N->getMask().getValueType().getVectorElementCount() == 7981 N->getValue().getValueType().getVectorElementCount() && 7982 "Vector width mismatch between mask and data"); 7983 assert( 7984 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7985 N->getValue().getValueType().getVectorElementCount().isScalable() && 7986 "Scalable flags of index and data do not match"); 7987 assert(ElementCount::isKnownGE( 7988 N->getIndex().getValueType().getVectorElementCount(), 7989 N->getValue().getValueType().getVectorElementCount()) && 7990 "Vector width mismatch between index and data"); 7991 assert(isa<ConstantSDNode>(N->getScale()) && 7992 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7993 "Scale should be a constant power of 2"); 7994 7995 CSEMap.InsertNode(N, IP); 7996 InsertNode(N); 7997 SDValue V(N, 0); 7998 NewSDValueDbgMsg(V, "Creating new node: ", this); 7999 return V; 8000 } 8001 8002 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8003 SDValue Base, SDValue Offset, SDValue Mask, 8004 SDValue PassThru, EVT MemVT, 8005 MachineMemOperand *MMO, 8006 ISD::MemIndexedMode AM, 8007 ISD::LoadExtType ExtTy, bool isExpanding) { 8008 bool Indexed = AM != ISD::UNINDEXED; 8009 assert((Indexed || Offset.isUndef()) && 8010 "Unindexed masked load with an offset!"); 8011 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8012 : getVTList(VT, MVT::Other); 8013 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8014 FoldingSetNodeID ID; 8015 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8016 ID.AddInteger(MemVT.getRawBits()); 8017 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8018 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8019 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8020 void *IP = nullptr; 8021 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8022 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8023 return SDValue(E, 0); 8024 } 8025 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8026 AM, ExtTy, isExpanding, MemVT, MMO); 8027 createOperands(N, Ops); 8028 8029 CSEMap.InsertNode(N, IP); 8030 InsertNode(N); 8031 SDValue V(N, 0); 8032 NewSDValueDbgMsg(V, "Creating new node: ", this); 8033 return V; 8034 } 8035 8036 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8037 SDValue Base, SDValue Offset, 8038 ISD::MemIndexedMode AM) { 8039 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8040 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8041 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8042 Offset, LD->getMask(), LD->getPassThru(), 8043 LD->getMemoryVT(), LD->getMemOperand(), AM, 8044 LD->getExtensionType(), LD->isExpandingLoad()); 8045 } 8046 8047 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8048 SDValue Val, SDValue Base, SDValue Offset, 8049 SDValue Mask, EVT MemVT, 8050 MachineMemOperand *MMO, 8051 ISD::MemIndexedMode AM, bool IsTruncating, 8052 bool IsCompressing) { 8053 assert(Chain.getValueType() == MVT::Other && 8054 "Invalid chain type"); 8055 bool Indexed = AM != ISD::UNINDEXED; 8056 assert((Indexed || Offset.isUndef()) && 8057 "Unindexed masked store with an offset!"); 8058 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8059 : getVTList(MVT::Other); 8060 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8061 FoldingSetNodeID ID; 8062 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8063 ID.AddInteger(MemVT.getRawBits()); 8064 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8065 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8066 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8067 void *IP = nullptr; 8068 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8069 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8070 return SDValue(E, 0); 8071 } 8072 auto *N = 8073 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8074 IsTruncating, IsCompressing, MemVT, MMO); 8075 createOperands(N, Ops); 8076 8077 CSEMap.InsertNode(N, IP); 8078 InsertNode(N); 8079 SDValue V(N, 0); 8080 NewSDValueDbgMsg(V, "Creating new node: ", this); 8081 return V; 8082 } 8083 8084 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8085 SDValue Base, SDValue Offset, 8086 ISD::MemIndexedMode AM) { 8087 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8088 assert(ST->getOffset().isUndef() && 8089 "Masked store is already a indexed store!"); 8090 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8091 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8092 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8093 } 8094 8095 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8096 ArrayRef<SDValue> Ops, 8097 MachineMemOperand *MMO, 8098 ISD::MemIndexType IndexType, 8099 ISD::LoadExtType ExtTy) { 8100 assert(Ops.size() == 6 && "Incompatible number of operands"); 8101 8102 FoldingSetNodeID ID; 8103 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8104 ID.AddInteger(MemVT.getRawBits()); 8105 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8106 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8107 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8108 void *IP = nullptr; 8109 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8110 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8111 return SDValue(E, 0); 8112 } 8113 8114 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8115 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8116 VTs, MemVT, MMO, IndexType, ExtTy); 8117 createOperands(N, Ops); 8118 8119 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8120 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8121 assert(N->getMask().getValueType().getVectorElementCount() == 8122 N->getValueType(0).getVectorElementCount() && 8123 "Vector width mismatch between mask and data"); 8124 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8125 N->getValueType(0).getVectorElementCount().isScalable() && 8126 "Scalable flags of index and data do not match"); 8127 assert(ElementCount::isKnownGE( 8128 N->getIndex().getValueType().getVectorElementCount(), 8129 N->getValueType(0).getVectorElementCount()) && 8130 "Vector width mismatch between index and data"); 8131 assert(isa<ConstantSDNode>(N->getScale()) && 8132 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8133 "Scale should be a constant power of 2"); 8134 8135 CSEMap.InsertNode(N, IP); 8136 InsertNode(N); 8137 SDValue V(N, 0); 8138 NewSDValueDbgMsg(V, "Creating new node: ", this); 8139 return V; 8140 } 8141 8142 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8143 ArrayRef<SDValue> Ops, 8144 MachineMemOperand *MMO, 8145 ISD::MemIndexType IndexType, 8146 bool IsTrunc) { 8147 assert(Ops.size() == 6 && "Incompatible number of operands"); 8148 8149 FoldingSetNodeID ID; 8150 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8151 ID.AddInteger(MemVT.getRawBits()); 8152 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8153 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8154 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8155 void *IP = nullptr; 8156 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8157 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8158 return SDValue(E, 0); 8159 } 8160 8161 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8162 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8163 VTs, MemVT, MMO, IndexType, IsTrunc); 8164 createOperands(N, Ops); 8165 8166 assert(N->getMask().getValueType().getVectorElementCount() == 8167 N->getValue().getValueType().getVectorElementCount() && 8168 "Vector width mismatch between mask and data"); 8169 assert( 8170 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8171 N->getValue().getValueType().getVectorElementCount().isScalable() && 8172 "Scalable flags of index and data do not match"); 8173 assert(ElementCount::isKnownGE( 8174 N->getIndex().getValueType().getVectorElementCount(), 8175 N->getValue().getValueType().getVectorElementCount()) && 8176 "Vector width mismatch between index and data"); 8177 assert(isa<ConstantSDNode>(N->getScale()) && 8178 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8179 "Scale should be a constant power of 2"); 8180 8181 CSEMap.InsertNode(N, IP); 8182 InsertNode(N); 8183 SDValue V(N, 0); 8184 NewSDValueDbgMsg(V, "Creating new node: ", this); 8185 return V; 8186 } 8187 8188 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8189 // select undef, T, F --> T (if T is a constant), otherwise F 8190 // select, ?, undef, F --> F 8191 // select, ?, T, undef --> T 8192 if (Cond.isUndef()) 8193 return isConstantValueOfAnyType(T) ? T : F; 8194 if (T.isUndef()) 8195 return F; 8196 if (F.isUndef()) 8197 return T; 8198 8199 // select true, T, F --> T 8200 // select false, T, F --> F 8201 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8202 return CondC->isZero() ? F : T; 8203 8204 // TODO: This should simplify VSELECT with constant condition using something 8205 // like this (but check boolean contents to be complete?): 8206 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8207 // return T; 8208 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8209 // return F; 8210 8211 // select ?, T, T --> T 8212 if (T == F) 8213 return T; 8214 8215 return SDValue(); 8216 } 8217 8218 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8219 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8220 if (X.isUndef()) 8221 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8222 // shift X, undef --> undef (because it may shift by the bitwidth) 8223 if (Y.isUndef()) 8224 return getUNDEF(X.getValueType()); 8225 8226 // shift 0, Y --> 0 8227 // shift X, 0 --> X 8228 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8229 return X; 8230 8231 // shift X, C >= bitwidth(X) --> undef 8232 // All vector elements must be too big (or undef) to avoid partial undefs. 8233 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8234 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8235 }; 8236 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8237 return getUNDEF(X.getValueType()); 8238 8239 return SDValue(); 8240 } 8241 8242 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8243 SDNodeFlags Flags) { 8244 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8245 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8246 // operation is poison. That result can be relaxed to undef. 8247 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8248 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8249 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8250 (YC && YC->getValueAPF().isNaN()); 8251 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8252 (YC && YC->getValueAPF().isInfinity()); 8253 8254 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8255 return getUNDEF(X.getValueType()); 8256 8257 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8258 return getUNDEF(X.getValueType()); 8259 8260 if (!YC) 8261 return SDValue(); 8262 8263 // X + -0.0 --> X 8264 if (Opcode == ISD::FADD) 8265 if (YC->getValueAPF().isNegZero()) 8266 return X; 8267 8268 // X - +0.0 --> X 8269 if (Opcode == ISD::FSUB) 8270 if (YC->getValueAPF().isPosZero()) 8271 return X; 8272 8273 // X * 1.0 --> X 8274 // X / 1.0 --> X 8275 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8276 if (YC->getValueAPF().isExactlyValue(1.0)) 8277 return X; 8278 8279 // X * 0.0 --> 0.0 8280 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8281 if (YC->getValueAPF().isZero()) 8282 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8283 8284 return SDValue(); 8285 } 8286 8287 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8288 SDValue Ptr, SDValue SV, unsigned Align) { 8289 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8290 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8291 } 8292 8293 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8294 ArrayRef<SDUse> Ops) { 8295 switch (Ops.size()) { 8296 case 0: return getNode(Opcode, DL, VT); 8297 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8298 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8299 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8300 default: break; 8301 } 8302 8303 // Copy from an SDUse array into an SDValue array for use with 8304 // the regular getNode logic. 8305 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8306 return getNode(Opcode, DL, VT, NewOps); 8307 } 8308 8309 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8310 ArrayRef<SDValue> Ops) { 8311 SDNodeFlags Flags; 8312 if (Inserter) 8313 Flags = Inserter->getFlags(); 8314 return getNode(Opcode, DL, VT, Ops, Flags); 8315 } 8316 8317 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8318 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8319 unsigned NumOps = Ops.size(); 8320 switch (NumOps) { 8321 case 0: return getNode(Opcode, DL, VT); 8322 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8323 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8324 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8325 default: break; 8326 } 8327 8328 #ifndef NDEBUG 8329 for (auto &Op : Ops) 8330 assert(Op.getOpcode() != ISD::DELETED_NODE && 8331 "Operand is DELETED_NODE!"); 8332 #endif 8333 8334 switch (Opcode) { 8335 default: break; 8336 case ISD::BUILD_VECTOR: 8337 // Attempt to simplify BUILD_VECTOR. 8338 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8339 return V; 8340 break; 8341 case ISD::CONCAT_VECTORS: 8342 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8343 return V; 8344 break; 8345 case ISD::SELECT_CC: 8346 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8347 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8348 "LHS and RHS of condition must have same type!"); 8349 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8350 "True and False arms of SelectCC must have same type!"); 8351 assert(Ops[2].getValueType() == VT && 8352 "select_cc node must be of same type as true and false value!"); 8353 break; 8354 case ISD::BR_CC: 8355 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8356 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8357 "LHS/RHS of comparison should match types!"); 8358 break; 8359 } 8360 8361 // Memoize nodes. 8362 SDNode *N; 8363 SDVTList VTs = getVTList(VT); 8364 8365 if (VT != MVT::Glue) { 8366 FoldingSetNodeID ID; 8367 AddNodeIDNode(ID, Opcode, VTs, Ops); 8368 void *IP = nullptr; 8369 8370 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8371 return SDValue(E, 0); 8372 8373 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8374 createOperands(N, Ops); 8375 8376 CSEMap.InsertNode(N, IP); 8377 } else { 8378 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8379 createOperands(N, Ops); 8380 } 8381 8382 N->setFlags(Flags); 8383 InsertNode(N); 8384 SDValue V(N, 0); 8385 NewSDValueDbgMsg(V, "Creating new node: ", this); 8386 return V; 8387 } 8388 8389 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8390 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8391 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8392 } 8393 8394 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8395 ArrayRef<SDValue> Ops) { 8396 SDNodeFlags Flags; 8397 if (Inserter) 8398 Flags = Inserter->getFlags(); 8399 return getNode(Opcode, DL, VTList, Ops, Flags); 8400 } 8401 8402 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8403 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8404 if (VTList.NumVTs == 1) 8405 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8406 8407 #ifndef NDEBUG 8408 for (auto &Op : Ops) 8409 assert(Op.getOpcode() != ISD::DELETED_NODE && 8410 "Operand is DELETED_NODE!"); 8411 #endif 8412 8413 switch (Opcode) { 8414 case ISD::STRICT_FP_EXTEND: 8415 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8416 "Invalid STRICT_FP_EXTEND!"); 8417 assert(VTList.VTs[0].isFloatingPoint() && 8418 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8419 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8420 "STRICT_FP_EXTEND result type should be vector iff the operand " 8421 "type is vector!"); 8422 assert((!VTList.VTs[0].isVector() || 8423 VTList.VTs[0].getVectorNumElements() == 8424 Ops[1].getValueType().getVectorNumElements()) && 8425 "Vector element count mismatch!"); 8426 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8427 "Invalid fpext node, dst <= src!"); 8428 break; 8429 case ISD::STRICT_FP_ROUND: 8430 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8431 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8432 "STRICT_FP_ROUND result type should be vector iff the operand " 8433 "type is vector!"); 8434 assert((!VTList.VTs[0].isVector() || 8435 VTList.VTs[0].getVectorNumElements() == 8436 Ops[1].getValueType().getVectorNumElements()) && 8437 "Vector element count mismatch!"); 8438 assert(VTList.VTs[0].isFloatingPoint() && 8439 Ops[1].getValueType().isFloatingPoint() && 8440 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8441 isa<ConstantSDNode>(Ops[2]) && 8442 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8443 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8444 "Invalid STRICT_FP_ROUND!"); 8445 break; 8446 #if 0 8447 // FIXME: figure out how to safely handle things like 8448 // int foo(int x) { return 1 << (x & 255); } 8449 // int bar() { return foo(256); } 8450 case ISD::SRA_PARTS: 8451 case ISD::SRL_PARTS: 8452 case ISD::SHL_PARTS: 8453 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8454 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8455 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8456 else if (N3.getOpcode() == ISD::AND) 8457 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8458 // If the and is only masking out bits that cannot effect the shift, 8459 // eliminate the and. 8460 unsigned NumBits = VT.getScalarSizeInBits()*2; 8461 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8462 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8463 } 8464 break; 8465 #endif 8466 } 8467 8468 // Memoize the node unless it returns a flag. 8469 SDNode *N; 8470 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8471 FoldingSetNodeID ID; 8472 AddNodeIDNode(ID, Opcode, VTList, Ops); 8473 void *IP = nullptr; 8474 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8475 return SDValue(E, 0); 8476 8477 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8478 createOperands(N, Ops); 8479 CSEMap.InsertNode(N, IP); 8480 } else { 8481 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8482 createOperands(N, Ops); 8483 } 8484 8485 N->setFlags(Flags); 8486 InsertNode(N); 8487 SDValue V(N, 0); 8488 NewSDValueDbgMsg(V, "Creating new node: ", this); 8489 return V; 8490 } 8491 8492 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8493 SDVTList VTList) { 8494 return getNode(Opcode, DL, VTList, None); 8495 } 8496 8497 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8498 SDValue N1) { 8499 SDValue Ops[] = { N1 }; 8500 return getNode(Opcode, DL, VTList, Ops); 8501 } 8502 8503 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8504 SDValue N1, SDValue N2) { 8505 SDValue Ops[] = { N1, N2 }; 8506 return getNode(Opcode, DL, VTList, Ops); 8507 } 8508 8509 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8510 SDValue N1, SDValue N2, SDValue N3) { 8511 SDValue Ops[] = { N1, N2, N3 }; 8512 return getNode(Opcode, DL, VTList, Ops); 8513 } 8514 8515 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8516 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8517 SDValue Ops[] = { N1, N2, N3, N4 }; 8518 return getNode(Opcode, DL, VTList, Ops); 8519 } 8520 8521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8522 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8523 SDValue N5) { 8524 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8525 return getNode(Opcode, DL, VTList, Ops); 8526 } 8527 8528 SDVTList SelectionDAG::getVTList(EVT VT) { 8529 return makeVTList(SDNode::getValueTypeList(VT), 1); 8530 } 8531 8532 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8533 FoldingSetNodeID ID; 8534 ID.AddInteger(2U); 8535 ID.AddInteger(VT1.getRawBits()); 8536 ID.AddInteger(VT2.getRawBits()); 8537 8538 void *IP = nullptr; 8539 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8540 if (!Result) { 8541 EVT *Array = Allocator.Allocate<EVT>(2); 8542 Array[0] = VT1; 8543 Array[1] = VT2; 8544 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8545 VTListMap.InsertNode(Result, IP); 8546 } 8547 return Result->getSDVTList(); 8548 } 8549 8550 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8551 FoldingSetNodeID ID; 8552 ID.AddInteger(3U); 8553 ID.AddInteger(VT1.getRawBits()); 8554 ID.AddInteger(VT2.getRawBits()); 8555 ID.AddInteger(VT3.getRawBits()); 8556 8557 void *IP = nullptr; 8558 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8559 if (!Result) { 8560 EVT *Array = Allocator.Allocate<EVT>(3); 8561 Array[0] = VT1; 8562 Array[1] = VT2; 8563 Array[2] = VT3; 8564 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8565 VTListMap.InsertNode(Result, IP); 8566 } 8567 return Result->getSDVTList(); 8568 } 8569 8570 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8571 FoldingSetNodeID ID; 8572 ID.AddInteger(4U); 8573 ID.AddInteger(VT1.getRawBits()); 8574 ID.AddInteger(VT2.getRawBits()); 8575 ID.AddInteger(VT3.getRawBits()); 8576 ID.AddInteger(VT4.getRawBits()); 8577 8578 void *IP = nullptr; 8579 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8580 if (!Result) { 8581 EVT *Array = Allocator.Allocate<EVT>(4); 8582 Array[0] = VT1; 8583 Array[1] = VT2; 8584 Array[2] = VT3; 8585 Array[3] = VT4; 8586 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8587 VTListMap.InsertNode(Result, IP); 8588 } 8589 return Result->getSDVTList(); 8590 } 8591 8592 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8593 unsigned NumVTs = VTs.size(); 8594 FoldingSetNodeID ID; 8595 ID.AddInteger(NumVTs); 8596 for (unsigned index = 0; index < NumVTs; index++) { 8597 ID.AddInteger(VTs[index].getRawBits()); 8598 } 8599 8600 void *IP = nullptr; 8601 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8602 if (!Result) { 8603 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8604 llvm::copy(VTs, Array); 8605 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8606 VTListMap.InsertNode(Result, IP); 8607 } 8608 return Result->getSDVTList(); 8609 } 8610 8611 8612 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8613 /// specified operands. If the resultant node already exists in the DAG, 8614 /// this does not modify the specified node, instead it returns the node that 8615 /// already exists. If the resultant node does not exist in the DAG, the 8616 /// input node is returned. As a degenerate case, if you specify the same 8617 /// input operands as the node already has, the input node is returned. 8618 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8619 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8620 8621 // Check to see if there is no change. 8622 if (Op == N->getOperand(0)) return N; 8623 8624 // See if the modified node already exists. 8625 void *InsertPos = nullptr; 8626 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8627 return Existing; 8628 8629 // Nope it doesn't. Remove the node from its current place in the maps. 8630 if (InsertPos) 8631 if (!RemoveNodeFromCSEMaps(N)) 8632 InsertPos = nullptr; 8633 8634 // Now we update the operands. 8635 N->OperandList[0].set(Op); 8636 8637 updateDivergence(N); 8638 // If this gets put into a CSE map, add it. 8639 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8640 return N; 8641 } 8642 8643 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8644 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8645 8646 // Check to see if there is no change. 8647 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8648 return N; // No operands changed, just return the input node. 8649 8650 // See if the modified node already exists. 8651 void *InsertPos = nullptr; 8652 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8653 return Existing; 8654 8655 // Nope it doesn't. Remove the node from its current place in the maps. 8656 if (InsertPos) 8657 if (!RemoveNodeFromCSEMaps(N)) 8658 InsertPos = nullptr; 8659 8660 // Now we update the operands. 8661 if (N->OperandList[0] != Op1) 8662 N->OperandList[0].set(Op1); 8663 if (N->OperandList[1] != Op2) 8664 N->OperandList[1].set(Op2); 8665 8666 updateDivergence(N); 8667 // If this gets put into a CSE map, add it. 8668 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8669 return N; 8670 } 8671 8672 SDNode *SelectionDAG:: 8673 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8674 SDValue Ops[] = { Op1, Op2, Op3 }; 8675 return UpdateNodeOperands(N, Ops); 8676 } 8677 8678 SDNode *SelectionDAG:: 8679 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8680 SDValue Op3, SDValue Op4) { 8681 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8682 return UpdateNodeOperands(N, Ops); 8683 } 8684 8685 SDNode *SelectionDAG:: 8686 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8687 SDValue Op3, SDValue Op4, SDValue Op5) { 8688 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8689 return UpdateNodeOperands(N, Ops); 8690 } 8691 8692 SDNode *SelectionDAG:: 8693 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8694 unsigned NumOps = Ops.size(); 8695 assert(N->getNumOperands() == NumOps && 8696 "Update with wrong number of operands"); 8697 8698 // If no operands changed just return the input node. 8699 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8700 return N; 8701 8702 // See if the modified node already exists. 8703 void *InsertPos = nullptr; 8704 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8705 return Existing; 8706 8707 // Nope it doesn't. Remove the node from its current place in the maps. 8708 if (InsertPos) 8709 if (!RemoveNodeFromCSEMaps(N)) 8710 InsertPos = nullptr; 8711 8712 // Now we update the operands. 8713 for (unsigned i = 0; i != NumOps; ++i) 8714 if (N->OperandList[i] != Ops[i]) 8715 N->OperandList[i].set(Ops[i]); 8716 8717 updateDivergence(N); 8718 // If this gets put into a CSE map, add it. 8719 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8720 return N; 8721 } 8722 8723 /// DropOperands - Release the operands and set this node to have 8724 /// zero operands. 8725 void SDNode::DropOperands() { 8726 // Unlike the code in MorphNodeTo that does this, we don't need to 8727 // watch for dead nodes here. 8728 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8729 SDUse &Use = *I++; 8730 Use.set(SDValue()); 8731 } 8732 } 8733 8734 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8735 ArrayRef<MachineMemOperand *> NewMemRefs) { 8736 if (NewMemRefs.empty()) { 8737 N->clearMemRefs(); 8738 return; 8739 } 8740 8741 // Check if we can avoid allocating by storing a single reference directly. 8742 if (NewMemRefs.size() == 1) { 8743 N->MemRefs = NewMemRefs[0]; 8744 N->NumMemRefs = 1; 8745 return; 8746 } 8747 8748 MachineMemOperand **MemRefsBuffer = 8749 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8750 llvm::copy(NewMemRefs, MemRefsBuffer); 8751 N->MemRefs = MemRefsBuffer; 8752 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8753 } 8754 8755 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8756 /// machine opcode. 8757 /// 8758 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8759 EVT VT) { 8760 SDVTList VTs = getVTList(VT); 8761 return SelectNodeTo(N, MachineOpc, VTs, None); 8762 } 8763 8764 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8765 EVT VT, SDValue Op1) { 8766 SDVTList VTs = getVTList(VT); 8767 SDValue Ops[] = { Op1 }; 8768 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8769 } 8770 8771 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8772 EVT VT, SDValue Op1, 8773 SDValue Op2) { 8774 SDVTList VTs = getVTList(VT); 8775 SDValue Ops[] = { Op1, Op2 }; 8776 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8777 } 8778 8779 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8780 EVT VT, SDValue Op1, 8781 SDValue Op2, SDValue Op3) { 8782 SDVTList VTs = getVTList(VT); 8783 SDValue Ops[] = { Op1, Op2, Op3 }; 8784 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8785 } 8786 8787 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8788 EVT VT, ArrayRef<SDValue> Ops) { 8789 SDVTList VTs = getVTList(VT); 8790 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8791 } 8792 8793 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8794 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8795 SDVTList VTs = getVTList(VT1, VT2); 8796 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8797 } 8798 8799 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8800 EVT VT1, EVT VT2) { 8801 SDVTList VTs = getVTList(VT1, VT2); 8802 return SelectNodeTo(N, MachineOpc, VTs, None); 8803 } 8804 8805 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8806 EVT VT1, EVT VT2, EVT VT3, 8807 ArrayRef<SDValue> Ops) { 8808 SDVTList VTs = getVTList(VT1, VT2, VT3); 8809 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8810 } 8811 8812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8813 EVT VT1, EVT VT2, 8814 SDValue Op1, SDValue Op2) { 8815 SDVTList VTs = getVTList(VT1, VT2); 8816 SDValue Ops[] = { Op1, Op2 }; 8817 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8818 } 8819 8820 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8821 SDVTList VTs,ArrayRef<SDValue> Ops) { 8822 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8823 // Reset the NodeID to -1. 8824 New->setNodeId(-1); 8825 if (New != N) { 8826 ReplaceAllUsesWith(N, New); 8827 RemoveDeadNode(N); 8828 } 8829 return New; 8830 } 8831 8832 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8833 /// the line number information on the merged node since it is not possible to 8834 /// preserve the information that operation is associated with multiple lines. 8835 /// This will make the debugger working better at -O0, were there is a higher 8836 /// probability having other instructions associated with that line. 8837 /// 8838 /// For IROrder, we keep the smaller of the two 8839 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8840 DebugLoc NLoc = N->getDebugLoc(); 8841 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8842 N->setDebugLoc(DebugLoc()); 8843 } 8844 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8845 N->setIROrder(Order); 8846 return N; 8847 } 8848 8849 /// MorphNodeTo - This *mutates* the specified node to have the specified 8850 /// return type, opcode, and operands. 8851 /// 8852 /// Note that MorphNodeTo returns the resultant node. If there is already a 8853 /// node of the specified opcode and operands, it returns that node instead of 8854 /// the current one. Note that the SDLoc need not be the same. 8855 /// 8856 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8857 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8858 /// node, and because it doesn't require CSE recalculation for any of 8859 /// the node's users. 8860 /// 8861 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8862 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8863 /// the legalizer which maintain worklists that would need to be updated when 8864 /// deleting things. 8865 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8866 SDVTList VTs, ArrayRef<SDValue> Ops) { 8867 // If an identical node already exists, use it. 8868 void *IP = nullptr; 8869 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8870 FoldingSetNodeID ID; 8871 AddNodeIDNode(ID, Opc, VTs, Ops); 8872 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8873 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8874 } 8875 8876 if (!RemoveNodeFromCSEMaps(N)) 8877 IP = nullptr; 8878 8879 // Start the morphing. 8880 N->NodeType = Opc; 8881 N->ValueList = VTs.VTs; 8882 N->NumValues = VTs.NumVTs; 8883 8884 // Clear the operands list, updating used nodes to remove this from their 8885 // use list. Keep track of any operands that become dead as a result. 8886 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8887 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8888 SDUse &Use = *I++; 8889 SDNode *Used = Use.getNode(); 8890 Use.set(SDValue()); 8891 if (Used->use_empty()) 8892 DeadNodeSet.insert(Used); 8893 } 8894 8895 // For MachineNode, initialize the memory references information. 8896 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8897 MN->clearMemRefs(); 8898 8899 // Swap for an appropriately sized array from the recycler. 8900 removeOperands(N); 8901 createOperands(N, Ops); 8902 8903 // Delete any nodes that are still dead after adding the uses for the 8904 // new operands. 8905 if (!DeadNodeSet.empty()) { 8906 SmallVector<SDNode *, 16> DeadNodes; 8907 for (SDNode *N : DeadNodeSet) 8908 if (N->use_empty()) 8909 DeadNodes.push_back(N); 8910 RemoveDeadNodes(DeadNodes); 8911 } 8912 8913 if (IP) 8914 CSEMap.InsertNode(N, IP); // Memoize the new node. 8915 return N; 8916 } 8917 8918 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8919 unsigned OrigOpc = Node->getOpcode(); 8920 unsigned NewOpc; 8921 switch (OrigOpc) { 8922 default: 8923 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8924 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8925 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8926 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8927 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8928 #include "llvm/IR/ConstrainedOps.def" 8929 } 8930 8931 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8932 8933 // We're taking this node out of the chain, so we need to re-link things. 8934 SDValue InputChain = Node->getOperand(0); 8935 SDValue OutputChain = SDValue(Node, 1); 8936 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8937 8938 SmallVector<SDValue, 3> Ops; 8939 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8940 Ops.push_back(Node->getOperand(i)); 8941 8942 SDVTList VTs = getVTList(Node->getValueType(0)); 8943 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8944 8945 // MorphNodeTo can operate in two ways: if an existing node with the 8946 // specified operands exists, it can just return it. Otherwise, it 8947 // updates the node in place to have the requested operands. 8948 if (Res == Node) { 8949 // If we updated the node in place, reset the node ID. To the isel, 8950 // this should be just like a newly allocated machine node. 8951 Res->setNodeId(-1); 8952 } else { 8953 ReplaceAllUsesWith(Node, Res); 8954 RemoveDeadNode(Node); 8955 } 8956 8957 return Res; 8958 } 8959 8960 /// getMachineNode - These are used for target selectors to create a new node 8961 /// with specified return type(s), MachineInstr opcode, and operands. 8962 /// 8963 /// Note that getMachineNode returns the resultant node. If there is already a 8964 /// node of the specified opcode and operands, it returns that node instead of 8965 /// the current one. 8966 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8967 EVT VT) { 8968 SDVTList VTs = getVTList(VT); 8969 return getMachineNode(Opcode, dl, VTs, None); 8970 } 8971 8972 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8973 EVT VT, SDValue Op1) { 8974 SDVTList VTs = getVTList(VT); 8975 SDValue Ops[] = { Op1 }; 8976 return getMachineNode(Opcode, dl, VTs, Ops); 8977 } 8978 8979 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8980 EVT VT, SDValue Op1, SDValue Op2) { 8981 SDVTList VTs = getVTList(VT); 8982 SDValue Ops[] = { Op1, Op2 }; 8983 return getMachineNode(Opcode, dl, VTs, Ops); 8984 } 8985 8986 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8987 EVT VT, SDValue Op1, SDValue Op2, 8988 SDValue Op3) { 8989 SDVTList VTs = getVTList(VT); 8990 SDValue Ops[] = { Op1, Op2, Op3 }; 8991 return getMachineNode(Opcode, dl, VTs, Ops); 8992 } 8993 8994 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8995 EVT VT, ArrayRef<SDValue> Ops) { 8996 SDVTList VTs = getVTList(VT); 8997 return getMachineNode(Opcode, dl, VTs, Ops); 8998 } 8999 9000 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9001 EVT VT1, EVT VT2, SDValue Op1, 9002 SDValue Op2) { 9003 SDVTList VTs = getVTList(VT1, VT2); 9004 SDValue Ops[] = { Op1, Op2 }; 9005 return getMachineNode(Opcode, dl, VTs, Ops); 9006 } 9007 9008 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9009 EVT VT1, EVT VT2, SDValue Op1, 9010 SDValue Op2, SDValue Op3) { 9011 SDVTList VTs = getVTList(VT1, VT2); 9012 SDValue Ops[] = { Op1, Op2, Op3 }; 9013 return getMachineNode(Opcode, dl, VTs, Ops); 9014 } 9015 9016 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9017 EVT VT1, EVT VT2, 9018 ArrayRef<SDValue> Ops) { 9019 SDVTList VTs = getVTList(VT1, VT2); 9020 return getMachineNode(Opcode, dl, VTs, Ops); 9021 } 9022 9023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9024 EVT VT1, EVT VT2, EVT VT3, 9025 SDValue Op1, SDValue Op2) { 9026 SDVTList VTs = getVTList(VT1, VT2, VT3); 9027 SDValue Ops[] = { Op1, Op2 }; 9028 return getMachineNode(Opcode, dl, VTs, Ops); 9029 } 9030 9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9032 EVT VT1, EVT VT2, EVT VT3, 9033 SDValue Op1, SDValue Op2, 9034 SDValue Op3) { 9035 SDVTList VTs = getVTList(VT1, VT2, VT3); 9036 SDValue Ops[] = { Op1, Op2, Op3 }; 9037 return getMachineNode(Opcode, dl, VTs, Ops); 9038 } 9039 9040 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9041 EVT VT1, EVT VT2, EVT VT3, 9042 ArrayRef<SDValue> Ops) { 9043 SDVTList VTs = getVTList(VT1, VT2, VT3); 9044 return getMachineNode(Opcode, dl, VTs, Ops); 9045 } 9046 9047 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9048 ArrayRef<EVT> ResultTys, 9049 ArrayRef<SDValue> Ops) { 9050 SDVTList VTs = getVTList(ResultTys); 9051 return getMachineNode(Opcode, dl, VTs, Ops); 9052 } 9053 9054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9055 SDVTList VTs, 9056 ArrayRef<SDValue> Ops) { 9057 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9058 MachineSDNode *N; 9059 void *IP = nullptr; 9060 9061 if (DoCSE) { 9062 FoldingSetNodeID ID; 9063 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9064 IP = nullptr; 9065 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9066 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9067 } 9068 } 9069 9070 // Allocate a new MachineSDNode. 9071 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9072 createOperands(N, Ops); 9073 9074 if (DoCSE) 9075 CSEMap.InsertNode(N, IP); 9076 9077 InsertNode(N); 9078 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9079 return N; 9080 } 9081 9082 /// getTargetExtractSubreg - A convenience function for creating 9083 /// TargetOpcode::EXTRACT_SUBREG nodes. 9084 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9085 SDValue Operand) { 9086 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9087 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9088 VT, Operand, SRIdxVal); 9089 return SDValue(Subreg, 0); 9090 } 9091 9092 /// getTargetInsertSubreg - A convenience function for creating 9093 /// TargetOpcode::INSERT_SUBREG nodes. 9094 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9095 SDValue Operand, SDValue Subreg) { 9096 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9097 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9098 VT, Operand, Subreg, SRIdxVal); 9099 return SDValue(Result, 0); 9100 } 9101 9102 /// getNodeIfExists - Get the specified node if it's already available, or 9103 /// else return NULL. 9104 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9105 ArrayRef<SDValue> Ops) { 9106 SDNodeFlags Flags; 9107 if (Inserter) 9108 Flags = Inserter->getFlags(); 9109 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9110 } 9111 9112 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9113 ArrayRef<SDValue> Ops, 9114 const SDNodeFlags Flags) { 9115 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9116 FoldingSetNodeID ID; 9117 AddNodeIDNode(ID, Opcode, VTList, Ops); 9118 void *IP = nullptr; 9119 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9120 E->intersectFlagsWith(Flags); 9121 return E; 9122 } 9123 } 9124 return nullptr; 9125 } 9126 9127 /// doesNodeExist - Check if a node exists without modifying its flags. 9128 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9129 ArrayRef<SDValue> Ops) { 9130 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9131 FoldingSetNodeID ID; 9132 AddNodeIDNode(ID, Opcode, VTList, Ops); 9133 void *IP = nullptr; 9134 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9135 return true; 9136 } 9137 return false; 9138 } 9139 9140 /// getDbgValue - Creates a SDDbgValue node. 9141 /// 9142 /// SDNode 9143 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9144 SDNode *N, unsigned R, bool IsIndirect, 9145 const DebugLoc &DL, unsigned O) { 9146 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9147 "Expected inlined-at fields to agree"); 9148 return new (DbgInfo->getAlloc()) 9149 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9150 {}, IsIndirect, DL, O, 9151 /*IsVariadic=*/false); 9152 } 9153 9154 /// Constant 9155 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9156 DIExpression *Expr, 9157 const Value *C, 9158 const DebugLoc &DL, unsigned O) { 9159 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9160 "Expected inlined-at fields to agree"); 9161 return new (DbgInfo->getAlloc()) 9162 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9163 /*IsIndirect=*/false, DL, O, 9164 /*IsVariadic=*/false); 9165 } 9166 9167 /// FrameIndex 9168 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9169 DIExpression *Expr, unsigned FI, 9170 bool IsIndirect, 9171 const DebugLoc &DL, 9172 unsigned O) { 9173 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9174 "Expected inlined-at fields to agree"); 9175 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9176 } 9177 9178 /// FrameIndex with dependencies 9179 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9180 DIExpression *Expr, unsigned FI, 9181 ArrayRef<SDNode *> Dependencies, 9182 bool IsIndirect, 9183 const DebugLoc &DL, 9184 unsigned O) { 9185 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9186 "Expected inlined-at fields to agree"); 9187 return new (DbgInfo->getAlloc()) 9188 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9189 Dependencies, IsIndirect, DL, O, 9190 /*IsVariadic=*/false); 9191 } 9192 9193 /// VReg 9194 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9195 unsigned VReg, bool IsIndirect, 9196 const DebugLoc &DL, unsigned O) { 9197 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9198 "Expected inlined-at fields to agree"); 9199 return new (DbgInfo->getAlloc()) 9200 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9201 {}, IsIndirect, DL, O, 9202 /*IsVariadic=*/false); 9203 } 9204 9205 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9206 ArrayRef<SDDbgOperand> Locs, 9207 ArrayRef<SDNode *> Dependencies, 9208 bool IsIndirect, const DebugLoc &DL, 9209 unsigned O, bool IsVariadic) { 9210 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9211 "Expected inlined-at fields to agree"); 9212 return new (DbgInfo->getAlloc()) 9213 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9214 DL, O, IsVariadic); 9215 } 9216 9217 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9218 unsigned OffsetInBits, unsigned SizeInBits, 9219 bool InvalidateDbg) { 9220 SDNode *FromNode = From.getNode(); 9221 SDNode *ToNode = To.getNode(); 9222 assert(FromNode && ToNode && "Can't modify dbg values"); 9223 9224 // PR35338 9225 // TODO: assert(From != To && "Redundant dbg value transfer"); 9226 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9227 if (From == To || FromNode == ToNode) 9228 return; 9229 9230 if (!FromNode->getHasDebugValue()) 9231 return; 9232 9233 SDDbgOperand FromLocOp = 9234 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9235 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9236 9237 SmallVector<SDDbgValue *, 2> ClonedDVs; 9238 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9239 if (Dbg->isInvalidated()) 9240 continue; 9241 9242 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9243 9244 // Create a new location ops vector that is equal to the old vector, but 9245 // with each instance of FromLocOp replaced with ToLocOp. 9246 bool Changed = false; 9247 auto NewLocOps = Dbg->copyLocationOps(); 9248 std::replace_if( 9249 NewLocOps.begin(), NewLocOps.end(), 9250 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9251 bool Match = Op == FromLocOp; 9252 Changed |= Match; 9253 return Match; 9254 }, 9255 ToLocOp); 9256 // Ignore this SDDbgValue if we didn't find a matching location. 9257 if (!Changed) 9258 continue; 9259 9260 DIVariable *Var = Dbg->getVariable(); 9261 auto *Expr = Dbg->getExpression(); 9262 // If a fragment is requested, update the expression. 9263 if (SizeInBits) { 9264 // When splitting a larger (e.g., sign-extended) value whose 9265 // lower bits are described with an SDDbgValue, do not attempt 9266 // to transfer the SDDbgValue to the upper bits. 9267 if (auto FI = Expr->getFragmentInfo()) 9268 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9269 continue; 9270 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9271 SizeInBits); 9272 if (!Fragment) 9273 continue; 9274 Expr = *Fragment; 9275 } 9276 9277 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9278 // Clone the SDDbgValue and move it to To. 9279 SDDbgValue *Clone = getDbgValueList( 9280 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9281 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9282 Dbg->isVariadic()); 9283 ClonedDVs.push_back(Clone); 9284 9285 if (InvalidateDbg) { 9286 // Invalidate value and indicate the SDDbgValue should not be emitted. 9287 Dbg->setIsInvalidated(); 9288 Dbg->setIsEmitted(); 9289 } 9290 } 9291 9292 for (SDDbgValue *Dbg : ClonedDVs) { 9293 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9294 "Transferred DbgValues should depend on the new SDNode"); 9295 AddDbgValue(Dbg, false); 9296 } 9297 } 9298 9299 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9300 if (!N.getHasDebugValue()) 9301 return; 9302 9303 SmallVector<SDDbgValue *, 2> ClonedDVs; 9304 for (auto DV : GetDbgValues(&N)) { 9305 if (DV->isInvalidated()) 9306 continue; 9307 switch (N.getOpcode()) { 9308 default: 9309 break; 9310 case ISD::ADD: 9311 SDValue N0 = N.getOperand(0); 9312 SDValue N1 = N.getOperand(1); 9313 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9314 isConstantIntBuildVectorOrConstantInt(N1)) { 9315 uint64_t Offset = N.getConstantOperandVal(1); 9316 9317 // Rewrite an ADD constant node into a DIExpression. Since we are 9318 // performing arithmetic to compute the variable's *value* in the 9319 // DIExpression, we need to mark the expression with a 9320 // DW_OP_stack_value. 9321 auto *DIExpr = DV->getExpression(); 9322 auto NewLocOps = DV->copyLocationOps(); 9323 bool Changed = false; 9324 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9325 // We're not given a ResNo to compare against because the whole 9326 // node is going away. We know that any ISD::ADD only has one 9327 // result, so we can assume any node match is using the result. 9328 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9329 NewLocOps[i].getSDNode() != &N) 9330 continue; 9331 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9332 SmallVector<uint64_t, 3> ExprOps; 9333 DIExpression::appendOffset(ExprOps, Offset); 9334 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9335 Changed = true; 9336 } 9337 (void)Changed; 9338 assert(Changed && "Salvage target doesn't use N"); 9339 9340 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9341 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9342 NewLocOps, AdditionalDependencies, 9343 DV->isIndirect(), DV->getDebugLoc(), 9344 DV->getOrder(), DV->isVariadic()); 9345 ClonedDVs.push_back(Clone); 9346 DV->setIsInvalidated(); 9347 DV->setIsEmitted(); 9348 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9349 N0.getNode()->dumprFull(this); 9350 dbgs() << " into " << *DIExpr << '\n'); 9351 } 9352 } 9353 } 9354 9355 for (SDDbgValue *Dbg : ClonedDVs) { 9356 assert(!Dbg->getSDNodes().empty() && 9357 "Salvaged DbgValue should depend on a new SDNode"); 9358 AddDbgValue(Dbg, false); 9359 } 9360 } 9361 9362 /// Creates a SDDbgLabel node. 9363 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9364 const DebugLoc &DL, unsigned O) { 9365 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9366 "Expected inlined-at fields to agree"); 9367 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9368 } 9369 9370 namespace { 9371 9372 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9373 /// pointed to by a use iterator is deleted, increment the use iterator 9374 /// so that it doesn't dangle. 9375 /// 9376 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9377 SDNode::use_iterator &UI; 9378 SDNode::use_iterator &UE; 9379 9380 void NodeDeleted(SDNode *N, SDNode *E) override { 9381 // Increment the iterator as needed. 9382 while (UI != UE && N == *UI) 9383 ++UI; 9384 } 9385 9386 public: 9387 RAUWUpdateListener(SelectionDAG &d, 9388 SDNode::use_iterator &ui, 9389 SDNode::use_iterator &ue) 9390 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9391 }; 9392 9393 } // end anonymous namespace 9394 9395 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9396 /// This can cause recursive merging of nodes in the DAG. 9397 /// 9398 /// This version assumes From has a single result value. 9399 /// 9400 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9401 SDNode *From = FromN.getNode(); 9402 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9403 "Cannot replace with this method!"); 9404 assert(From != To.getNode() && "Cannot replace uses of with self"); 9405 9406 // Preserve Debug Values 9407 transferDbgValues(FromN, To); 9408 9409 // Iterate over all the existing uses of From. New uses will be added 9410 // to the beginning of the use list, which we avoid visiting. 9411 // This specifically avoids visiting uses of From that arise while the 9412 // replacement is happening, because any such uses would be the result 9413 // of CSE: If an existing node looks like From after one of its operands 9414 // is replaced by To, we don't want to replace of all its users with To 9415 // too. See PR3018 for more info. 9416 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9417 RAUWUpdateListener Listener(*this, UI, UE); 9418 while (UI != UE) { 9419 SDNode *User = *UI; 9420 9421 // This node is about to morph, remove its old self from the CSE maps. 9422 RemoveNodeFromCSEMaps(User); 9423 9424 // A user can appear in a use list multiple times, and when this 9425 // happens the uses are usually next to each other in the list. 9426 // To help reduce the number of CSE recomputations, process all 9427 // the uses of this user that we can find this way. 9428 do { 9429 SDUse &Use = UI.getUse(); 9430 ++UI; 9431 Use.set(To); 9432 if (To->isDivergent() != From->isDivergent()) 9433 updateDivergence(User); 9434 } while (UI != UE && *UI == User); 9435 // Now that we have modified User, add it back to the CSE maps. If it 9436 // already exists there, recursively merge the results together. 9437 AddModifiedNodeToCSEMaps(User); 9438 } 9439 9440 // If we just RAUW'd the root, take note. 9441 if (FromN == getRoot()) 9442 setRoot(To); 9443 } 9444 9445 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9446 /// This can cause recursive merging of nodes in the DAG. 9447 /// 9448 /// This version assumes that for each value of From, there is a 9449 /// corresponding value in To in the same position with the same type. 9450 /// 9451 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9452 #ifndef NDEBUG 9453 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9454 assert((!From->hasAnyUseOfValue(i) || 9455 From->getValueType(i) == To->getValueType(i)) && 9456 "Cannot use this version of ReplaceAllUsesWith!"); 9457 #endif 9458 9459 // Handle the trivial case. 9460 if (From == To) 9461 return; 9462 9463 // Preserve Debug Info. Only do this if there's a use. 9464 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9465 if (From->hasAnyUseOfValue(i)) { 9466 assert((i < To->getNumValues()) && "Invalid To location"); 9467 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9468 } 9469 9470 // Iterate over just the existing users of From. See the comments in 9471 // the ReplaceAllUsesWith above. 9472 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9473 RAUWUpdateListener Listener(*this, UI, UE); 9474 while (UI != UE) { 9475 SDNode *User = *UI; 9476 9477 // This node is about to morph, remove its old self from the CSE maps. 9478 RemoveNodeFromCSEMaps(User); 9479 9480 // A user can appear in a use list multiple times, and when this 9481 // happens the uses are usually next to each other in the list. 9482 // To help reduce the number of CSE recomputations, process all 9483 // the uses of this user that we can find this way. 9484 do { 9485 SDUse &Use = UI.getUse(); 9486 ++UI; 9487 Use.setNode(To); 9488 if (To->isDivergent() != From->isDivergent()) 9489 updateDivergence(User); 9490 } while (UI != UE && *UI == User); 9491 9492 // Now that we have modified User, add it back to the CSE maps. If it 9493 // already exists there, recursively merge the results together. 9494 AddModifiedNodeToCSEMaps(User); 9495 } 9496 9497 // If we just RAUW'd the root, take note. 9498 if (From == getRoot().getNode()) 9499 setRoot(SDValue(To, getRoot().getResNo())); 9500 } 9501 9502 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9503 /// This can cause recursive merging of nodes in the DAG. 9504 /// 9505 /// This version can replace From with any result values. To must match the 9506 /// number and types of values returned by From. 9507 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9508 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9509 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9510 9511 // Preserve Debug Info. 9512 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9513 transferDbgValues(SDValue(From, i), To[i]); 9514 9515 // Iterate over just the existing users of From. See the comments in 9516 // the ReplaceAllUsesWith above. 9517 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9518 RAUWUpdateListener Listener(*this, UI, UE); 9519 while (UI != UE) { 9520 SDNode *User = *UI; 9521 9522 // This node is about to morph, remove its old self from the CSE maps. 9523 RemoveNodeFromCSEMaps(User); 9524 9525 // A user can appear in a use list multiple times, and when this happens the 9526 // uses are usually next to each other in the list. To help reduce the 9527 // number of CSE and divergence recomputations, process all the uses of this 9528 // user that we can find this way. 9529 bool To_IsDivergent = false; 9530 do { 9531 SDUse &Use = UI.getUse(); 9532 const SDValue &ToOp = To[Use.getResNo()]; 9533 ++UI; 9534 Use.set(ToOp); 9535 To_IsDivergent |= ToOp->isDivergent(); 9536 } while (UI != UE && *UI == User); 9537 9538 if (To_IsDivergent != From->isDivergent()) 9539 updateDivergence(User); 9540 9541 // Now that we have modified User, add it back to the CSE maps. If it 9542 // already exists there, recursively merge the results together. 9543 AddModifiedNodeToCSEMaps(User); 9544 } 9545 9546 // If we just RAUW'd the root, take note. 9547 if (From == getRoot().getNode()) 9548 setRoot(SDValue(To[getRoot().getResNo()])); 9549 } 9550 9551 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9552 /// uses of other values produced by From.getNode() alone. The Deleted 9553 /// vector is handled the same way as for ReplaceAllUsesWith. 9554 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9555 // Handle the really simple, really trivial case efficiently. 9556 if (From == To) return; 9557 9558 // Handle the simple, trivial, case efficiently. 9559 if (From.getNode()->getNumValues() == 1) { 9560 ReplaceAllUsesWith(From, To); 9561 return; 9562 } 9563 9564 // Preserve Debug Info. 9565 transferDbgValues(From, To); 9566 9567 // Iterate over just the existing users of From. See the comments in 9568 // the ReplaceAllUsesWith above. 9569 SDNode::use_iterator UI = From.getNode()->use_begin(), 9570 UE = From.getNode()->use_end(); 9571 RAUWUpdateListener Listener(*this, UI, UE); 9572 while (UI != UE) { 9573 SDNode *User = *UI; 9574 bool UserRemovedFromCSEMaps = false; 9575 9576 // A user can appear in a use list multiple times, and when this 9577 // happens the uses are usually next to each other in the list. 9578 // To help reduce the number of CSE recomputations, process all 9579 // the uses of this user that we can find this way. 9580 do { 9581 SDUse &Use = UI.getUse(); 9582 9583 // Skip uses of different values from the same node. 9584 if (Use.getResNo() != From.getResNo()) { 9585 ++UI; 9586 continue; 9587 } 9588 9589 // If this node hasn't been modified yet, it's still in the CSE maps, 9590 // so remove its old self from the CSE maps. 9591 if (!UserRemovedFromCSEMaps) { 9592 RemoveNodeFromCSEMaps(User); 9593 UserRemovedFromCSEMaps = true; 9594 } 9595 9596 ++UI; 9597 Use.set(To); 9598 if (To->isDivergent() != From->isDivergent()) 9599 updateDivergence(User); 9600 } while (UI != UE && *UI == User); 9601 // We are iterating over all uses of the From node, so if a use 9602 // doesn't use the specific value, no changes are made. 9603 if (!UserRemovedFromCSEMaps) 9604 continue; 9605 9606 // Now that we have modified User, add it back to the CSE maps. If it 9607 // already exists there, recursively merge the results together. 9608 AddModifiedNodeToCSEMaps(User); 9609 } 9610 9611 // If we just RAUW'd the root, take note. 9612 if (From == getRoot()) 9613 setRoot(To); 9614 } 9615 9616 namespace { 9617 9618 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9619 /// to record information about a use. 9620 struct UseMemo { 9621 SDNode *User; 9622 unsigned Index; 9623 SDUse *Use; 9624 }; 9625 9626 /// operator< - Sort Memos by User. 9627 bool operator<(const UseMemo &L, const UseMemo &R) { 9628 return (intptr_t)L.User < (intptr_t)R.User; 9629 } 9630 9631 } // end anonymous namespace 9632 9633 bool SelectionDAG::calculateDivergence(SDNode *N) { 9634 if (TLI->isSDNodeAlwaysUniform(N)) { 9635 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9636 "Conflicting divergence information!"); 9637 return false; 9638 } 9639 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9640 return true; 9641 for (auto &Op : N->ops()) { 9642 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9643 return true; 9644 } 9645 return false; 9646 } 9647 9648 void SelectionDAG::updateDivergence(SDNode *N) { 9649 SmallVector<SDNode *, 16> Worklist(1, N); 9650 do { 9651 N = Worklist.pop_back_val(); 9652 bool IsDivergent = calculateDivergence(N); 9653 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9654 N->SDNodeBits.IsDivergent = IsDivergent; 9655 llvm::append_range(Worklist, N->uses()); 9656 } 9657 } while (!Worklist.empty()); 9658 } 9659 9660 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9661 DenseMap<SDNode *, unsigned> Degree; 9662 Order.reserve(AllNodes.size()); 9663 for (auto &N : allnodes()) { 9664 unsigned NOps = N.getNumOperands(); 9665 Degree[&N] = NOps; 9666 if (0 == NOps) 9667 Order.push_back(&N); 9668 } 9669 for (size_t I = 0; I != Order.size(); ++I) { 9670 SDNode *N = Order[I]; 9671 for (auto U : N->uses()) { 9672 unsigned &UnsortedOps = Degree[U]; 9673 if (0 == --UnsortedOps) 9674 Order.push_back(U); 9675 } 9676 } 9677 } 9678 9679 #ifndef NDEBUG 9680 void SelectionDAG::VerifyDAGDivergence() { 9681 std::vector<SDNode *> TopoOrder; 9682 CreateTopologicalOrder(TopoOrder); 9683 for (auto *N : TopoOrder) { 9684 assert(calculateDivergence(N) == N->isDivergent() && 9685 "Divergence bit inconsistency detected"); 9686 } 9687 } 9688 #endif 9689 9690 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9691 /// uses of other values produced by From.getNode() alone. The same value 9692 /// may appear in both the From and To list. The Deleted vector is 9693 /// handled the same way as for ReplaceAllUsesWith. 9694 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9695 const SDValue *To, 9696 unsigned Num){ 9697 // Handle the simple, trivial case efficiently. 9698 if (Num == 1) 9699 return ReplaceAllUsesOfValueWith(*From, *To); 9700 9701 transferDbgValues(*From, *To); 9702 9703 // Read up all the uses and make records of them. This helps 9704 // processing new uses that are introduced during the 9705 // replacement process. 9706 SmallVector<UseMemo, 4> Uses; 9707 for (unsigned i = 0; i != Num; ++i) { 9708 unsigned FromResNo = From[i].getResNo(); 9709 SDNode *FromNode = From[i].getNode(); 9710 for (SDNode::use_iterator UI = FromNode->use_begin(), 9711 E = FromNode->use_end(); UI != E; ++UI) { 9712 SDUse &Use = UI.getUse(); 9713 if (Use.getResNo() == FromResNo) { 9714 UseMemo Memo = { *UI, i, &Use }; 9715 Uses.push_back(Memo); 9716 } 9717 } 9718 } 9719 9720 // Sort the uses, so that all the uses from a given User are together. 9721 llvm::sort(Uses); 9722 9723 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9724 UseIndex != UseIndexEnd; ) { 9725 // We know that this user uses some value of From. If it is the right 9726 // value, update it. 9727 SDNode *User = Uses[UseIndex].User; 9728 9729 // This node is about to morph, remove its old self from the CSE maps. 9730 RemoveNodeFromCSEMaps(User); 9731 9732 // The Uses array is sorted, so all the uses for a given User 9733 // are next to each other in the list. 9734 // To help reduce the number of CSE recomputations, process all 9735 // the uses of this user that we can find this way. 9736 do { 9737 unsigned i = Uses[UseIndex].Index; 9738 SDUse &Use = *Uses[UseIndex].Use; 9739 ++UseIndex; 9740 9741 Use.set(To[i]); 9742 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9743 9744 // Now that we have modified User, add it back to the CSE maps. If it 9745 // already exists there, recursively merge the results together. 9746 AddModifiedNodeToCSEMaps(User); 9747 } 9748 } 9749 9750 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9751 /// based on their topological order. It returns the maximum id and a vector 9752 /// of the SDNodes* in assigned order by reference. 9753 unsigned SelectionDAG::AssignTopologicalOrder() { 9754 unsigned DAGSize = 0; 9755 9756 // SortedPos tracks the progress of the algorithm. Nodes before it are 9757 // sorted, nodes after it are unsorted. When the algorithm completes 9758 // it is at the end of the list. 9759 allnodes_iterator SortedPos = allnodes_begin(); 9760 9761 // Visit all the nodes. Move nodes with no operands to the front of 9762 // the list immediately. Annotate nodes that do have operands with their 9763 // operand count. Before we do this, the Node Id fields of the nodes 9764 // may contain arbitrary values. After, the Node Id fields for nodes 9765 // before SortedPos will contain the topological sort index, and the 9766 // Node Id fields for nodes At SortedPos and after will contain the 9767 // count of outstanding operands. 9768 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9769 checkForCycles(&N, this); 9770 unsigned Degree = N.getNumOperands(); 9771 if (Degree == 0) { 9772 // A node with no uses, add it to the result array immediately. 9773 N.setNodeId(DAGSize++); 9774 allnodes_iterator Q(&N); 9775 if (Q != SortedPos) 9776 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9777 assert(SortedPos != AllNodes.end() && "Overran node list"); 9778 ++SortedPos; 9779 } else { 9780 // Temporarily use the Node Id as scratch space for the degree count. 9781 N.setNodeId(Degree); 9782 } 9783 } 9784 9785 // Visit all the nodes. As we iterate, move nodes into sorted order, 9786 // such that by the time the end is reached all nodes will be sorted. 9787 for (SDNode &Node : allnodes()) { 9788 SDNode *N = &Node; 9789 checkForCycles(N, this); 9790 // N is in sorted position, so all its uses have one less operand 9791 // that needs to be sorted. 9792 for (SDNode *P : N->uses()) { 9793 unsigned Degree = P->getNodeId(); 9794 assert(Degree != 0 && "Invalid node degree"); 9795 --Degree; 9796 if (Degree == 0) { 9797 // All of P's operands are sorted, so P may sorted now. 9798 P->setNodeId(DAGSize++); 9799 if (P->getIterator() != SortedPos) 9800 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9801 assert(SortedPos != AllNodes.end() && "Overran node list"); 9802 ++SortedPos; 9803 } else { 9804 // Update P's outstanding operand count. 9805 P->setNodeId(Degree); 9806 } 9807 } 9808 if (Node.getIterator() == SortedPos) { 9809 #ifndef NDEBUG 9810 allnodes_iterator I(N); 9811 SDNode *S = &*++I; 9812 dbgs() << "Overran sorted position:\n"; 9813 S->dumprFull(this); dbgs() << "\n"; 9814 dbgs() << "Checking if this is due to cycles\n"; 9815 checkForCycles(this, true); 9816 #endif 9817 llvm_unreachable(nullptr); 9818 } 9819 } 9820 9821 assert(SortedPos == AllNodes.end() && 9822 "Topological sort incomplete!"); 9823 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9824 "First node in topological sort is not the entry token!"); 9825 assert(AllNodes.front().getNodeId() == 0 && 9826 "First node in topological sort has non-zero id!"); 9827 assert(AllNodes.front().getNumOperands() == 0 && 9828 "First node in topological sort has operands!"); 9829 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9830 "Last node in topologic sort has unexpected id!"); 9831 assert(AllNodes.back().use_empty() && 9832 "Last node in topologic sort has users!"); 9833 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9834 return DAGSize; 9835 } 9836 9837 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9838 /// value is produced by SD. 9839 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9840 for (SDNode *SD : DB->getSDNodes()) { 9841 if (!SD) 9842 continue; 9843 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9844 SD->setHasDebugValue(true); 9845 } 9846 DbgInfo->add(DB, isParameter); 9847 } 9848 9849 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9850 9851 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9852 SDValue NewMemOpChain) { 9853 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9854 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9855 // The new memory operation must have the same position as the old load in 9856 // terms of memory dependency. Create a TokenFactor for the old load and new 9857 // memory operation and update uses of the old load's output chain to use that 9858 // TokenFactor. 9859 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9860 return NewMemOpChain; 9861 9862 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9863 OldChain, NewMemOpChain); 9864 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9865 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9866 return TokenFactor; 9867 } 9868 9869 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9870 SDValue NewMemOp) { 9871 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9872 SDValue OldChain = SDValue(OldLoad, 1); 9873 SDValue NewMemOpChain = NewMemOp.getValue(1); 9874 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9875 } 9876 9877 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9878 Function **OutFunction) { 9879 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9880 9881 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9882 auto *Module = MF->getFunction().getParent(); 9883 auto *Function = Module->getFunction(Symbol); 9884 9885 if (OutFunction != nullptr) 9886 *OutFunction = Function; 9887 9888 if (Function != nullptr) { 9889 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9890 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9891 } 9892 9893 std::string ErrorStr; 9894 raw_string_ostream ErrorFormatter(ErrorStr); 9895 ErrorFormatter << "Undefined external symbol "; 9896 ErrorFormatter << '"' << Symbol << '"'; 9897 report_fatal_error(Twine(ErrorFormatter.str())); 9898 } 9899 9900 //===----------------------------------------------------------------------===// 9901 // SDNode Class 9902 //===----------------------------------------------------------------------===// 9903 9904 bool llvm::isNullConstant(SDValue V) { 9905 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9906 return Const != nullptr && Const->isZero(); 9907 } 9908 9909 bool llvm::isNullFPConstant(SDValue V) { 9910 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9911 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9912 } 9913 9914 bool llvm::isAllOnesConstant(SDValue V) { 9915 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9916 return Const != nullptr && Const->isAllOnes(); 9917 } 9918 9919 bool llvm::isOneConstant(SDValue V) { 9920 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9921 return Const != nullptr && Const->isOne(); 9922 } 9923 9924 SDValue llvm::peekThroughBitcasts(SDValue V) { 9925 while (V.getOpcode() == ISD::BITCAST) 9926 V = V.getOperand(0); 9927 return V; 9928 } 9929 9930 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9931 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9932 V = V.getOperand(0); 9933 return V; 9934 } 9935 9936 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9937 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9938 V = V.getOperand(0); 9939 return V; 9940 } 9941 9942 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9943 if (V.getOpcode() != ISD::XOR) 9944 return false; 9945 V = peekThroughBitcasts(V.getOperand(1)); 9946 unsigned NumBits = V.getScalarValueSizeInBits(); 9947 ConstantSDNode *C = 9948 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9949 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9950 } 9951 9952 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9953 bool AllowTruncation) { 9954 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9955 return CN; 9956 9957 // SplatVectors can truncate their operands. Ignore that case here unless 9958 // AllowTruncation is set. 9959 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9960 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9961 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9962 EVT CVT = CN->getValueType(0); 9963 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9964 if (AllowTruncation || CVT == VecEltVT) 9965 return CN; 9966 } 9967 } 9968 9969 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9970 BitVector UndefElements; 9971 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9972 9973 // BuildVectors can truncate their operands. Ignore that case here unless 9974 // AllowTruncation is set. 9975 if (CN && (UndefElements.none() || AllowUndefs)) { 9976 EVT CVT = CN->getValueType(0); 9977 EVT NSVT = N.getValueType().getScalarType(); 9978 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9979 if (AllowTruncation || (CVT == NSVT)) 9980 return CN; 9981 } 9982 } 9983 9984 return nullptr; 9985 } 9986 9987 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9988 bool AllowUndefs, 9989 bool AllowTruncation) { 9990 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9991 return CN; 9992 9993 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9994 BitVector UndefElements; 9995 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9996 9997 // BuildVectors can truncate their operands. Ignore that case here unless 9998 // AllowTruncation is set. 9999 if (CN && (UndefElements.none() || AllowUndefs)) { 10000 EVT CVT = CN->getValueType(0); 10001 EVT NSVT = N.getValueType().getScalarType(); 10002 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10003 if (AllowTruncation || (CVT == NSVT)) 10004 return CN; 10005 } 10006 } 10007 10008 return nullptr; 10009 } 10010 10011 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10012 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10013 return CN; 10014 10015 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10016 BitVector UndefElements; 10017 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10018 if (CN && (UndefElements.none() || AllowUndefs)) 10019 return CN; 10020 } 10021 10022 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10023 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10024 return CN; 10025 10026 return nullptr; 10027 } 10028 10029 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10030 const APInt &DemandedElts, 10031 bool AllowUndefs) { 10032 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10033 return CN; 10034 10035 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10036 BitVector UndefElements; 10037 ConstantFPSDNode *CN = 10038 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10039 if (CN && (UndefElements.none() || AllowUndefs)) 10040 return CN; 10041 } 10042 10043 return nullptr; 10044 } 10045 10046 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10047 // TODO: may want to use peekThroughBitcast() here. 10048 ConstantSDNode *C = 10049 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10050 return C && C->isZero(); 10051 } 10052 10053 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10054 // TODO: may want to use peekThroughBitcast() here. 10055 unsigned BitWidth = N.getScalarValueSizeInBits(); 10056 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10057 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10058 } 10059 10060 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10061 N = peekThroughBitcasts(N); 10062 unsigned BitWidth = N.getScalarValueSizeInBits(); 10063 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10064 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10065 } 10066 10067 HandleSDNode::~HandleSDNode() { 10068 DropOperands(); 10069 } 10070 10071 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10072 const DebugLoc &DL, 10073 const GlobalValue *GA, EVT VT, 10074 int64_t o, unsigned TF) 10075 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10076 TheGlobal = GA; 10077 } 10078 10079 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10080 EVT VT, unsigned SrcAS, 10081 unsigned DestAS) 10082 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10083 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10084 10085 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10086 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10087 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10088 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10089 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10090 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10091 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10092 10093 // We check here that the size of the memory operand fits within the size of 10094 // the MMO. This is because the MMO might indicate only a possible address 10095 // range instead of specifying the affected memory addresses precisely. 10096 // TODO: Make MachineMemOperands aware of scalable vectors. 10097 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10098 "Size mismatch!"); 10099 } 10100 10101 /// Profile - Gather unique data for the node. 10102 /// 10103 void SDNode::Profile(FoldingSetNodeID &ID) const { 10104 AddNodeIDNode(ID, this); 10105 } 10106 10107 namespace { 10108 10109 struct EVTArray { 10110 std::vector<EVT> VTs; 10111 10112 EVTArray() { 10113 VTs.reserve(MVT::VALUETYPE_SIZE); 10114 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10115 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10116 } 10117 }; 10118 10119 } // end anonymous namespace 10120 10121 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10122 static ManagedStatic<EVTArray> SimpleVTArray; 10123 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10124 10125 /// getValueTypeList - Return a pointer to the specified value type. 10126 /// 10127 const EVT *SDNode::getValueTypeList(EVT VT) { 10128 if (VT.isExtended()) { 10129 sys::SmartScopedLock<true> Lock(*VTMutex); 10130 return &(*EVTs->insert(VT).first); 10131 } 10132 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10133 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10134 } 10135 10136 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10137 /// indicated value. This method ignores uses of other values defined by this 10138 /// operation. 10139 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10140 assert(Value < getNumValues() && "Bad value!"); 10141 10142 // TODO: Only iterate over uses of a given value of the node 10143 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10144 if (UI.getUse().getResNo() == Value) { 10145 if (NUses == 0) 10146 return false; 10147 --NUses; 10148 } 10149 } 10150 10151 // Found exactly the right number of uses? 10152 return NUses == 0; 10153 } 10154 10155 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10156 /// value. This method ignores uses of other values defined by this operation. 10157 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10158 assert(Value < getNumValues() && "Bad value!"); 10159 10160 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10161 if (UI.getUse().getResNo() == Value) 10162 return true; 10163 10164 return false; 10165 } 10166 10167 /// isOnlyUserOf - Return true if this node is the only use of N. 10168 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10169 bool Seen = false; 10170 for (const SDNode *User : N->uses()) { 10171 if (User == this) 10172 Seen = true; 10173 else 10174 return false; 10175 } 10176 10177 return Seen; 10178 } 10179 10180 /// Return true if the only users of N are contained in Nodes. 10181 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10182 bool Seen = false; 10183 for (const SDNode *User : N->uses()) { 10184 if (llvm::is_contained(Nodes, User)) 10185 Seen = true; 10186 else 10187 return false; 10188 } 10189 10190 return Seen; 10191 } 10192 10193 /// isOperand - Return true if this node is an operand of N. 10194 bool SDValue::isOperandOf(const SDNode *N) const { 10195 return is_contained(N->op_values(), *this); 10196 } 10197 10198 bool SDNode::isOperandOf(const SDNode *N) const { 10199 return any_of(N->op_values(), 10200 [this](SDValue Op) { return this == Op.getNode(); }); 10201 } 10202 10203 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10204 /// be a chain) reaches the specified operand without crossing any 10205 /// side-effecting instructions on any chain path. In practice, this looks 10206 /// through token factors and non-volatile loads. In order to remain efficient, 10207 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10208 /// 10209 /// Note that we only need to examine chains when we're searching for 10210 /// side-effects; SelectionDAG requires that all side-effects are represented 10211 /// by chains, even if another operand would force a specific ordering. This 10212 /// constraint is necessary to allow transformations like splitting loads. 10213 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10214 unsigned Depth) const { 10215 if (*this == Dest) return true; 10216 10217 // Don't search too deeply, we just want to be able to see through 10218 // TokenFactor's etc. 10219 if (Depth == 0) return false; 10220 10221 // If this is a token factor, all inputs to the TF happen in parallel. 10222 if (getOpcode() == ISD::TokenFactor) { 10223 // First, try a shallow search. 10224 if (is_contained((*this)->ops(), Dest)) { 10225 // We found the chain we want as an operand of this TokenFactor. 10226 // Essentially, we reach the chain without side-effects if we could 10227 // serialize the TokenFactor into a simple chain of operations with 10228 // Dest as the last operation. This is automatically true if the 10229 // chain has one use: there are no other ordering constraints. 10230 // If the chain has more than one use, we give up: some other 10231 // use of Dest might force a side-effect between Dest and the current 10232 // node. 10233 if (Dest.hasOneUse()) 10234 return true; 10235 } 10236 // Next, try a deep search: check whether every operand of the TokenFactor 10237 // reaches Dest. 10238 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10239 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10240 }); 10241 } 10242 10243 // Loads don't have side effects, look through them. 10244 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10245 if (Ld->isUnordered()) 10246 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10247 } 10248 return false; 10249 } 10250 10251 bool SDNode::hasPredecessor(const SDNode *N) const { 10252 SmallPtrSet<const SDNode *, 32> Visited; 10253 SmallVector<const SDNode *, 16> Worklist; 10254 Worklist.push_back(this); 10255 return hasPredecessorHelper(N, Visited, Worklist); 10256 } 10257 10258 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10259 this->Flags.intersectWith(Flags); 10260 } 10261 10262 SDValue 10263 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10264 ArrayRef<ISD::NodeType> CandidateBinOps, 10265 bool AllowPartials) { 10266 // The pattern must end in an extract from index 0. 10267 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10268 !isNullConstant(Extract->getOperand(1))) 10269 return SDValue(); 10270 10271 // Match against one of the candidate binary ops. 10272 SDValue Op = Extract->getOperand(0); 10273 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10274 return Op.getOpcode() == unsigned(BinOp); 10275 })) 10276 return SDValue(); 10277 10278 // Floating-point reductions may require relaxed constraints on the final step 10279 // of the reduction because they may reorder intermediate operations. 10280 unsigned CandidateBinOp = Op.getOpcode(); 10281 if (Op.getValueType().isFloatingPoint()) { 10282 SDNodeFlags Flags = Op->getFlags(); 10283 switch (CandidateBinOp) { 10284 case ISD::FADD: 10285 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10286 return SDValue(); 10287 break; 10288 default: 10289 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10290 } 10291 } 10292 10293 // Matching failed - attempt to see if we did enough stages that a partial 10294 // reduction from a subvector is possible. 10295 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10296 if (!AllowPartials || !Op) 10297 return SDValue(); 10298 EVT OpVT = Op.getValueType(); 10299 EVT OpSVT = OpVT.getScalarType(); 10300 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10301 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10302 return SDValue(); 10303 BinOp = (ISD::NodeType)CandidateBinOp; 10304 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10305 getVectorIdxConstant(0, SDLoc(Op))); 10306 }; 10307 10308 // At each stage, we're looking for something that looks like: 10309 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10310 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10311 // i32 undef, i32 undef, i32 undef, i32 undef> 10312 // %a = binop <8 x i32> %op, %s 10313 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10314 // we expect something like: 10315 // <4,5,6,7,u,u,u,u> 10316 // <2,3,u,u,u,u,u,u> 10317 // <1,u,u,u,u,u,u,u> 10318 // While a partial reduction match would be: 10319 // <2,3,u,u,u,u,u,u> 10320 // <1,u,u,u,u,u,u,u> 10321 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10322 SDValue PrevOp; 10323 for (unsigned i = 0; i < Stages; ++i) { 10324 unsigned MaskEnd = (1 << i); 10325 10326 if (Op.getOpcode() != CandidateBinOp) 10327 return PartialReduction(PrevOp, MaskEnd); 10328 10329 SDValue Op0 = Op.getOperand(0); 10330 SDValue Op1 = Op.getOperand(1); 10331 10332 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10333 if (Shuffle) { 10334 Op = Op1; 10335 } else { 10336 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10337 Op = Op0; 10338 } 10339 10340 // The first operand of the shuffle should be the same as the other operand 10341 // of the binop. 10342 if (!Shuffle || Shuffle->getOperand(0) != Op) 10343 return PartialReduction(PrevOp, MaskEnd); 10344 10345 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10346 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10347 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10348 return PartialReduction(PrevOp, MaskEnd); 10349 10350 PrevOp = Op; 10351 } 10352 10353 // Handle subvector reductions, which tend to appear after the shuffle 10354 // reduction stages. 10355 while (Op.getOpcode() == CandidateBinOp) { 10356 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10357 SDValue Op0 = Op.getOperand(0); 10358 SDValue Op1 = Op.getOperand(1); 10359 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10360 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10361 Op0.getOperand(0) != Op1.getOperand(0)) 10362 break; 10363 SDValue Src = Op0.getOperand(0); 10364 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10365 if (NumSrcElts != (2 * NumElts)) 10366 break; 10367 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10368 Op1.getConstantOperandAPInt(1) == NumElts) && 10369 !(Op1.getConstantOperandAPInt(1) == 0 && 10370 Op0.getConstantOperandAPInt(1) == NumElts)) 10371 break; 10372 Op = Src; 10373 } 10374 10375 BinOp = (ISD::NodeType)CandidateBinOp; 10376 return Op; 10377 } 10378 10379 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10380 assert(N->getNumValues() == 1 && 10381 "Can't unroll a vector with multiple results!"); 10382 10383 EVT VT = N->getValueType(0); 10384 unsigned NE = VT.getVectorNumElements(); 10385 EVT EltVT = VT.getVectorElementType(); 10386 SDLoc dl(N); 10387 10388 SmallVector<SDValue, 8> Scalars; 10389 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10390 10391 // If ResNE is 0, fully unroll the vector op. 10392 if (ResNE == 0) 10393 ResNE = NE; 10394 else if (NE > ResNE) 10395 NE = ResNE; 10396 10397 unsigned i; 10398 for (i= 0; i != NE; ++i) { 10399 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10400 SDValue Operand = N->getOperand(j); 10401 EVT OperandVT = Operand.getValueType(); 10402 if (OperandVT.isVector()) { 10403 // A vector operand; extract a single element. 10404 EVT OperandEltVT = OperandVT.getVectorElementType(); 10405 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10406 Operand, getVectorIdxConstant(i, dl)); 10407 } else { 10408 // A scalar operand; just use it as is. 10409 Operands[j] = Operand; 10410 } 10411 } 10412 10413 switch (N->getOpcode()) { 10414 default: { 10415 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10416 N->getFlags())); 10417 break; 10418 } 10419 case ISD::VSELECT: 10420 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10421 break; 10422 case ISD::SHL: 10423 case ISD::SRA: 10424 case ISD::SRL: 10425 case ISD::ROTL: 10426 case ISD::ROTR: 10427 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10428 getShiftAmountOperand(Operands[0].getValueType(), 10429 Operands[1]))); 10430 break; 10431 case ISD::SIGN_EXTEND_INREG: { 10432 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10433 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10434 Operands[0], 10435 getValueType(ExtVT))); 10436 } 10437 } 10438 } 10439 10440 for (; i < ResNE; ++i) 10441 Scalars.push_back(getUNDEF(EltVT)); 10442 10443 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10444 return getBuildVector(VecVT, dl, Scalars); 10445 } 10446 10447 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10448 SDNode *N, unsigned ResNE) { 10449 unsigned Opcode = N->getOpcode(); 10450 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10451 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10452 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10453 "Expected an overflow opcode"); 10454 10455 EVT ResVT = N->getValueType(0); 10456 EVT OvVT = N->getValueType(1); 10457 EVT ResEltVT = ResVT.getVectorElementType(); 10458 EVT OvEltVT = OvVT.getVectorElementType(); 10459 SDLoc dl(N); 10460 10461 // If ResNE is 0, fully unroll the vector op. 10462 unsigned NE = ResVT.getVectorNumElements(); 10463 if (ResNE == 0) 10464 ResNE = NE; 10465 else if (NE > ResNE) 10466 NE = ResNE; 10467 10468 SmallVector<SDValue, 8> LHSScalars; 10469 SmallVector<SDValue, 8> RHSScalars; 10470 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10471 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10472 10473 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10474 SDVTList VTs = getVTList(ResEltVT, SVT); 10475 SmallVector<SDValue, 8> ResScalars; 10476 SmallVector<SDValue, 8> OvScalars; 10477 for (unsigned i = 0; i < NE; ++i) { 10478 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10479 SDValue Ov = 10480 getSelect(dl, OvEltVT, Res.getValue(1), 10481 getBoolConstant(true, dl, OvEltVT, ResVT), 10482 getConstant(0, dl, OvEltVT)); 10483 10484 ResScalars.push_back(Res); 10485 OvScalars.push_back(Ov); 10486 } 10487 10488 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10489 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10490 10491 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10492 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10493 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10494 getBuildVector(NewOvVT, dl, OvScalars)); 10495 } 10496 10497 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10498 LoadSDNode *Base, 10499 unsigned Bytes, 10500 int Dist) const { 10501 if (LD->isVolatile() || Base->isVolatile()) 10502 return false; 10503 // TODO: probably too restrictive for atomics, revisit 10504 if (!LD->isSimple()) 10505 return false; 10506 if (LD->isIndexed() || Base->isIndexed()) 10507 return false; 10508 if (LD->getChain() != Base->getChain()) 10509 return false; 10510 EVT VT = LD->getValueType(0); 10511 if (VT.getSizeInBits() / 8 != Bytes) 10512 return false; 10513 10514 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10515 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10516 10517 int64_t Offset = 0; 10518 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10519 return (Dist * Bytes == Offset); 10520 return false; 10521 } 10522 10523 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10524 /// if it cannot be inferred. 10525 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10526 // If this is a GlobalAddress + cst, return the alignment. 10527 const GlobalValue *GV = nullptr; 10528 int64_t GVOffset = 0; 10529 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10530 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10531 KnownBits Known(PtrWidth); 10532 llvm::computeKnownBits(GV, Known, getDataLayout()); 10533 unsigned AlignBits = Known.countMinTrailingZeros(); 10534 if (AlignBits) 10535 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10536 } 10537 10538 // If this is a direct reference to a stack slot, use information about the 10539 // stack slot's alignment. 10540 int FrameIdx = INT_MIN; 10541 int64_t FrameOffset = 0; 10542 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10543 FrameIdx = FI->getIndex(); 10544 } else if (isBaseWithConstantOffset(Ptr) && 10545 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10546 // Handle FI+Cst 10547 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10548 FrameOffset = Ptr.getConstantOperandVal(1); 10549 } 10550 10551 if (FrameIdx != INT_MIN) { 10552 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10553 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10554 } 10555 10556 return None; 10557 } 10558 10559 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10560 /// which is split (or expanded) into two not necessarily identical pieces. 10561 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10562 // Currently all types are split in half. 10563 EVT LoVT, HiVT; 10564 if (!VT.isVector()) 10565 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10566 else 10567 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10568 10569 return std::make_pair(LoVT, HiVT); 10570 } 10571 10572 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10573 /// type, dependent on an enveloping VT that has been split into two identical 10574 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10575 std::pair<EVT, EVT> 10576 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10577 bool *HiIsEmpty) const { 10578 EVT EltTp = VT.getVectorElementType(); 10579 // Examples: 10580 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10581 // custom VL=9 with enveloping VL=8/8 yields 8/1 10582 // custom VL=10 with enveloping VL=8/8 yields 8/2 10583 // etc. 10584 ElementCount VTNumElts = VT.getVectorElementCount(); 10585 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10586 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10587 "Mixing fixed width and scalable vectors when enveloping a type"); 10588 EVT LoVT, HiVT; 10589 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10590 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10591 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10592 *HiIsEmpty = false; 10593 } else { 10594 // Flag that hi type has zero storage size, but return split envelop type 10595 // (this would be easier if vector types with zero elements were allowed). 10596 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10597 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10598 *HiIsEmpty = true; 10599 } 10600 return std::make_pair(LoVT, HiVT); 10601 } 10602 10603 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10604 /// low/high part. 10605 std::pair<SDValue, SDValue> 10606 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10607 const EVT &HiVT) { 10608 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10609 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10610 "Splitting vector with an invalid mixture of fixed and scalable " 10611 "vector types"); 10612 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10613 N.getValueType().getVectorMinNumElements() && 10614 "More vector elements requested than available!"); 10615 SDValue Lo, Hi; 10616 Lo = 10617 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10618 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10619 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10620 // IDX with the runtime scaling factor of the result vector type. For 10621 // fixed-width result vectors, that runtime scaling factor is 1. 10622 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10623 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10624 return std::make_pair(Lo, Hi); 10625 } 10626 10627 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10628 const SDLoc &DL) { 10629 // Split the vector length parameter. 10630 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10631 EVT VT = N.getValueType(); 10632 assert(VecVT.getVectorElementCount().isKnownEven() && 10633 "Expecting the mask to be an evenly-sized vector"); 10634 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10635 SDValue HalfNumElts = 10636 VecVT.isFixedLengthVector() 10637 ? getConstant(HalfMinNumElts, DL, VT) 10638 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10639 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10640 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10641 return std::make_pair(Lo, Hi); 10642 } 10643 10644 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10645 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10646 EVT VT = N.getValueType(); 10647 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10648 NextPowerOf2(VT.getVectorNumElements())); 10649 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10650 getVectorIdxConstant(0, DL)); 10651 } 10652 10653 void SelectionDAG::ExtractVectorElements(SDValue Op, 10654 SmallVectorImpl<SDValue> &Args, 10655 unsigned Start, unsigned Count, 10656 EVT EltVT) { 10657 EVT VT = Op.getValueType(); 10658 if (Count == 0) 10659 Count = VT.getVectorNumElements(); 10660 if (EltVT == EVT()) 10661 EltVT = VT.getVectorElementType(); 10662 SDLoc SL(Op); 10663 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10664 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10665 getVectorIdxConstant(i, SL))); 10666 } 10667 } 10668 10669 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10670 unsigned GlobalAddressSDNode::getAddressSpace() const { 10671 return getGlobal()->getType()->getAddressSpace(); 10672 } 10673 10674 Type *ConstantPoolSDNode::getType() const { 10675 if (isMachineConstantPoolEntry()) 10676 return Val.MachineCPVal->getType(); 10677 return Val.ConstVal->getType(); 10678 } 10679 10680 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10681 unsigned &SplatBitSize, 10682 bool &HasAnyUndefs, 10683 unsigned MinSplatBits, 10684 bool IsBigEndian) const { 10685 EVT VT = getValueType(0); 10686 assert(VT.isVector() && "Expected a vector type"); 10687 unsigned VecWidth = VT.getSizeInBits(); 10688 if (MinSplatBits > VecWidth) 10689 return false; 10690 10691 // FIXME: The widths are based on this node's type, but build vectors can 10692 // truncate their operands. 10693 SplatValue = APInt(VecWidth, 0); 10694 SplatUndef = APInt(VecWidth, 0); 10695 10696 // Get the bits. Bits with undefined values (when the corresponding element 10697 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10698 // in SplatValue. If any of the values are not constant, give up and return 10699 // false. 10700 unsigned int NumOps = getNumOperands(); 10701 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10702 unsigned EltWidth = VT.getScalarSizeInBits(); 10703 10704 for (unsigned j = 0; j < NumOps; ++j) { 10705 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10706 SDValue OpVal = getOperand(i); 10707 unsigned BitPos = j * EltWidth; 10708 10709 if (OpVal.isUndef()) 10710 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10711 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10712 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10713 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10714 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10715 else 10716 return false; 10717 } 10718 10719 // The build_vector is all constants or undefs. Find the smallest element 10720 // size that splats the vector. 10721 HasAnyUndefs = (SplatUndef != 0); 10722 10723 // FIXME: This does not work for vectors with elements less than 8 bits. 10724 while (VecWidth > 8) { 10725 unsigned HalfSize = VecWidth / 2; 10726 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10727 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10728 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10729 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10730 10731 // If the two halves do not match (ignoring undef bits), stop here. 10732 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10733 MinSplatBits > HalfSize) 10734 break; 10735 10736 SplatValue = HighValue | LowValue; 10737 SplatUndef = HighUndef & LowUndef; 10738 10739 VecWidth = HalfSize; 10740 } 10741 10742 SplatBitSize = VecWidth; 10743 return true; 10744 } 10745 10746 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10747 BitVector *UndefElements) const { 10748 unsigned NumOps = getNumOperands(); 10749 if (UndefElements) { 10750 UndefElements->clear(); 10751 UndefElements->resize(NumOps); 10752 } 10753 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10754 if (!DemandedElts) 10755 return SDValue(); 10756 SDValue Splatted; 10757 for (unsigned i = 0; i != NumOps; ++i) { 10758 if (!DemandedElts[i]) 10759 continue; 10760 SDValue Op = getOperand(i); 10761 if (Op.isUndef()) { 10762 if (UndefElements) 10763 (*UndefElements)[i] = true; 10764 } else if (!Splatted) { 10765 Splatted = Op; 10766 } else if (Splatted != Op) { 10767 return SDValue(); 10768 } 10769 } 10770 10771 if (!Splatted) { 10772 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10773 assert(getOperand(FirstDemandedIdx).isUndef() && 10774 "Can only have a splat without a constant for all undefs."); 10775 return getOperand(FirstDemandedIdx); 10776 } 10777 10778 return Splatted; 10779 } 10780 10781 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10782 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10783 return getSplatValue(DemandedElts, UndefElements); 10784 } 10785 10786 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10787 SmallVectorImpl<SDValue> &Sequence, 10788 BitVector *UndefElements) const { 10789 unsigned NumOps = getNumOperands(); 10790 Sequence.clear(); 10791 if (UndefElements) { 10792 UndefElements->clear(); 10793 UndefElements->resize(NumOps); 10794 } 10795 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10796 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10797 return false; 10798 10799 // Set the undefs even if we don't find a sequence (like getSplatValue). 10800 if (UndefElements) 10801 for (unsigned I = 0; I != NumOps; ++I) 10802 if (DemandedElts[I] && getOperand(I).isUndef()) 10803 (*UndefElements)[I] = true; 10804 10805 // Iteratively widen the sequence length looking for repetitions. 10806 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10807 Sequence.append(SeqLen, SDValue()); 10808 for (unsigned I = 0; I != NumOps; ++I) { 10809 if (!DemandedElts[I]) 10810 continue; 10811 SDValue &SeqOp = Sequence[I % SeqLen]; 10812 SDValue Op = getOperand(I); 10813 if (Op.isUndef()) { 10814 if (!SeqOp) 10815 SeqOp = Op; 10816 continue; 10817 } 10818 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10819 Sequence.clear(); 10820 break; 10821 } 10822 SeqOp = Op; 10823 } 10824 if (!Sequence.empty()) 10825 return true; 10826 } 10827 10828 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10829 return false; 10830 } 10831 10832 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10833 BitVector *UndefElements) const { 10834 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10835 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10836 } 10837 10838 ConstantSDNode * 10839 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10840 BitVector *UndefElements) const { 10841 return dyn_cast_or_null<ConstantSDNode>( 10842 getSplatValue(DemandedElts, UndefElements)); 10843 } 10844 10845 ConstantSDNode * 10846 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10847 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10848 } 10849 10850 ConstantFPSDNode * 10851 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10852 BitVector *UndefElements) const { 10853 return dyn_cast_or_null<ConstantFPSDNode>( 10854 getSplatValue(DemandedElts, UndefElements)); 10855 } 10856 10857 ConstantFPSDNode * 10858 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10859 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10860 } 10861 10862 int32_t 10863 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10864 uint32_t BitWidth) const { 10865 if (ConstantFPSDNode *CN = 10866 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10867 bool IsExact; 10868 APSInt IntVal(BitWidth); 10869 const APFloat &APF = CN->getValueAPF(); 10870 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10871 APFloat::opOK || 10872 !IsExact) 10873 return -1; 10874 10875 return IntVal.exactLogBase2(); 10876 } 10877 return -1; 10878 } 10879 10880 bool BuildVectorSDNode::getConstantRawBits( 10881 bool IsLittleEndian, unsigned DstEltSizeInBits, 10882 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10883 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10884 if (!isConstant()) 10885 return false; 10886 10887 unsigned NumSrcOps = getNumOperands(); 10888 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10889 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10890 "Invalid bitcast scale"); 10891 10892 // Extract raw src bits. 10893 SmallVector<APInt> SrcBitElements(NumSrcOps, 10894 APInt::getNullValue(SrcEltSizeInBits)); 10895 BitVector SrcUndeElements(NumSrcOps, false); 10896 10897 for (unsigned I = 0; I != NumSrcOps; ++I) { 10898 SDValue Op = getOperand(I); 10899 if (Op.isUndef()) { 10900 SrcUndeElements.set(I); 10901 continue; 10902 } 10903 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10904 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10905 assert((CInt || CFP) && "Unknown constant"); 10906 SrcBitElements[I] = 10907 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10908 : CFP->getValueAPF().bitcastToAPInt(); 10909 } 10910 10911 // Recast to dst width. 10912 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10913 SrcBitElements, UndefElements, SrcUndeElements); 10914 return true; 10915 } 10916 10917 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10918 unsigned DstEltSizeInBits, 10919 SmallVectorImpl<APInt> &DstBitElements, 10920 ArrayRef<APInt> SrcBitElements, 10921 BitVector &DstUndefElements, 10922 const BitVector &SrcUndefElements) { 10923 unsigned NumSrcOps = SrcBitElements.size(); 10924 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10925 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10926 "Invalid bitcast scale"); 10927 assert(NumSrcOps == SrcUndefElements.size() && 10928 "Vector size mismatch"); 10929 10930 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10931 DstUndefElements.clear(); 10932 DstUndefElements.resize(NumDstOps, false); 10933 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10934 10935 // Concatenate src elements constant bits together into dst element. 10936 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10937 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10938 for (unsigned I = 0; I != NumDstOps; ++I) { 10939 DstUndefElements.set(I); 10940 APInt &DstBits = DstBitElements[I]; 10941 for (unsigned J = 0; J != Scale; ++J) { 10942 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10943 if (SrcUndefElements[Idx]) 10944 continue; 10945 DstUndefElements.reset(I); 10946 const APInt &SrcBits = SrcBitElements[Idx]; 10947 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10948 "Illegal constant bitwidths"); 10949 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10950 } 10951 } 10952 return; 10953 } 10954 10955 // Split src element constant bits into dst elements. 10956 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10957 for (unsigned I = 0; I != NumSrcOps; ++I) { 10958 if (SrcUndefElements[I]) { 10959 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10960 continue; 10961 } 10962 const APInt &SrcBits = SrcBitElements[I]; 10963 for (unsigned J = 0; J != Scale; ++J) { 10964 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10965 APInt &DstBits = DstBitElements[Idx]; 10966 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10967 } 10968 } 10969 } 10970 10971 bool BuildVectorSDNode::isConstant() const { 10972 for (const SDValue &Op : op_values()) { 10973 unsigned Opc = Op.getOpcode(); 10974 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10975 return false; 10976 } 10977 return true; 10978 } 10979 10980 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10981 // Find the first non-undef value in the shuffle mask. 10982 unsigned i, e; 10983 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10984 /* search */; 10985 10986 // If all elements are undefined, this shuffle can be considered a splat 10987 // (although it should eventually get simplified away completely). 10988 if (i == e) 10989 return true; 10990 10991 // Make sure all remaining elements are either undef or the same as the first 10992 // non-undef value. 10993 for (int Idx = Mask[i]; i != e; ++i) 10994 if (Mask[i] >= 0 && Mask[i] != Idx) 10995 return false; 10996 return true; 10997 } 10998 10999 // Returns the SDNode if it is a constant integer BuildVector 11000 // or constant integer. 11001 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11002 if (isa<ConstantSDNode>(N)) 11003 return N.getNode(); 11004 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11005 return N.getNode(); 11006 // Treat a GlobalAddress supporting constant offset folding as a 11007 // constant integer. 11008 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11009 if (GA->getOpcode() == ISD::GlobalAddress && 11010 TLI->isOffsetFoldingLegal(GA)) 11011 return GA; 11012 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11013 isa<ConstantSDNode>(N.getOperand(0))) 11014 return N.getNode(); 11015 return nullptr; 11016 } 11017 11018 // Returns the SDNode if it is a constant float BuildVector 11019 // or constant float. 11020 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11021 if (isa<ConstantFPSDNode>(N)) 11022 return N.getNode(); 11023 11024 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11025 return N.getNode(); 11026 11027 return nullptr; 11028 } 11029 11030 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11031 assert(!Node->OperandList && "Node already has operands"); 11032 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11033 "too many operands to fit into SDNode"); 11034 SDUse *Ops = OperandRecycler.allocate( 11035 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11036 11037 bool IsDivergent = false; 11038 for (unsigned I = 0; I != Vals.size(); ++I) { 11039 Ops[I].setUser(Node); 11040 Ops[I].setInitial(Vals[I]); 11041 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11042 IsDivergent |= Ops[I].getNode()->isDivergent(); 11043 } 11044 Node->NumOperands = Vals.size(); 11045 Node->OperandList = Ops; 11046 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11047 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11048 Node->SDNodeBits.IsDivergent = IsDivergent; 11049 } 11050 checkForCycles(Node); 11051 } 11052 11053 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11054 SmallVectorImpl<SDValue> &Vals) { 11055 size_t Limit = SDNode::getMaxNumOperands(); 11056 while (Vals.size() > Limit) { 11057 unsigned SliceIdx = Vals.size() - Limit; 11058 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11059 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11060 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11061 Vals.emplace_back(NewTF); 11062 } 11063 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11064 } 11065 11066 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11067 EVT VT, SDNodeFlags Flags) { 11068 switch (Opcode) { 11069 default: 11070 return SDValue(); 11071 case ISD::ADD: 11072 case ISD::OR: 11073 case ISD::XOR: 11074 case ISD::UMAX: 11075 return getConstant(0, DL, VT); 11076 case ISD::MUL: 11077 return getConstant(1, DL, VT); 11078 case ISD::AND: 11079 case ISD::UMIN: 11080 return getAllOnesConstant(DL, VT); 11081 case ISD::SMAX: 11082 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11083 case ISD::SMIN: 11084 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11085 case ISD::FADD: 11086 return getConstantFP(-0.0, DL, VT); 11087 case ISD::FMUL: 11088 return getConstantFP(1.0, DL, VT); 11089 case ISD::FMINNUM: 11090 case ISD::FMAXNUM: { 11091 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11092 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11093 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11094 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11095 APFloat::getLargest(Semantics); 11096 if (Opcode == ISD::FMAXNUM) 11097 NeutralAF.changeSign(); 11098 11099 return getConstantFP(NeutralAF, DL, VT); 11100 } 11101 } 11102 } 11103 11104 #ifndef NDEBUG 11105 static void checkForCyclesHelper(const SDNode *N, 11106 SmallPtrSetImpl<const SDNode*> &Visited, 11107 SmallPtrSetImpl<const SDNode*> &Checked, 11108 const llvm::SelectionDAG *DAG) { 11109 // If this node has already been checked, don't check it again. 11110 if (Checked.count(N)) 11111 return; 11112 11113 // If a node has already been visited on this depth-first walk, reject it as 11114 // a cycle. 11115 if (!Visited.insert(N).second) { 11116 errs() << "Detected cycle in SelectionDAG\n"; 11117 dbgs() << "Offending node:\n"; 11118 N->dumprFull(DAG); dbgs() << "\n"; 11119 abort(); 11120 } 11121 11122 for (const SDValue &Op : N->op_values()) 11123 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11124 11125 Checked.insert(N); 11126 Visited.erase(N); 11127 } 11128 #endif 11129 11130 void llvm::checkForCycles(const llvm::SDNode *N, 11131 const llvm::SelectionDAG *DAG, 11132 bool force) { 11133 #ifndef NDEBUG 11134 bool check = force; 11135 #ifdef EXPENSIVE_CHECKS 11136 check = true; 11137 #endif // EXPENSIVE_CHECKS 11138 if (check) { 11139 assert(N && "Checking nonexistent SDNode"); 11140 SmallPtrSet<const SDNode*, 32> visited; 11141 SmallPtrSet<const SDNode*, 32> checked; 11142 checkForCyclesHelper(N, visited, checked, DAG); 11143 } 11144 #endif // !NDEBUG 11145 } 11146 11147 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11148 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11149 } 11150