1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
173     APInt SplatVal;
174     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
175   }
176 
177   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
178 
179   unsigned i = 0, e = N->getNumOperands();
180 
181   // Skip over all of the undef values.
182   while (i != e && N->getOperand(i).isUndef())
183     ++i;
184 
185   // Do not accept an all-undef vector.
186   if (i == e) return false;
187 
188   // Do not accept build_vectors that aren't all constants or which have non-~0
189   // elements. We have to be a bit careful here, as the type of the constant
190   // may not be the same as the type of the vector elements due to type
191   // legalization (the elements are promoted to a legal type for the target and
192   // a vector of a type may be legal when the base element type is not).
193   // We only want to check enough bits to cover the vector elements, because
194   // we care if the resultant vector is all ones, not whether the individual
195   // constants are.
196   SDValue NotZero = N->getOperand(i);
197   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
198   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
199     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
200       return false;
201   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
202     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
203       return false;
204   } else
205     return false;
206 
207   // Okay, we have at least one ~0 value, check to see if the rest match or are
208   // undefs. Even with the above element type twiddling, this should be OK, as
209   // the same type legalization should have applied to all the elements.
210   for (++i; i != e; ++i)
211     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
212       return false;
213   return true;
214 }
215 
216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
217   // Look through a bit convert.
218   while (N->getOpcode() == ISD::BITCAST)
219     N = N->getOperand(0).getNode();
220 
221   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
222     APInt SplatVal;
223     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
224   }
225 
226   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
227 
228   bool IsAllUndef = true;
229   for (const SDValue &Op : N->op_values()) {
230     if (Op.isUndef())
231       continue;
232     IsAllUndef = false;
233     // Do not accept build_vectors that aren't all constants or which have non-0
234     // elements. We have to be a bit careful here, as the type of the constant
235     // may not be the same as the type of the vector elements due to type
236     // legalization (the elements are promoted to a legal type for the target
237     // and a vector of a type may be legal when the base element type is not).
238     // We only want to check enough bits to cover the vector elements, because
239     // we care if the resultant vector is all zeros, not whether the individual
240     // constants are.
241     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
242     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
243       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
244         return false;
245     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
246       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
247         return false;
248     } else
249       return false;
250   }
251 
252   // Do not accept an all-undef vector.
253   if (IsAllUndef)
254     return false;
255   return true;
256 }
257 
258 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
259   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
260 }
261 
262 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
263   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
267   if (N->getOpcode() != ISD::BUILD_VECTOR)
268     return false;
269 
270   for (const SDValue &Op : N->op_values()) {
271     if (Op.isUndef())
272       continue;
273     if (!isa<ConstantSDNode>(Op))
274       return false;
275   }
276   return true;
277 }
278 
279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
280   if (N->getOpcode() != ISD::BUILD_VECTOR)
281     return false;
282 
283   for (const SDValue &Op : N->op_values()) {
284     if (Op.isUndef())
285       continue;
286     if (!isa<ConstantFPSDNode>(Op))
287       return false;
288   }
289   return true;
290 }
291 
292 bool ISD::allOperandsUndef(const SDNode *N) {
293   // Return false if the node has no operands.
294   // This is "logically inconsistent" with the definition of "all" but
295   // is probably the desired behavior.
296   if (N->getNumOperands() == 0)
297     return false;
298   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
299 }
300 
301 bool ISD::matchUnaryPredicate(SDValue Op,
302                               std::function<bool(ConstantSDNode *)> Match,
303                               bool AllowUndefs) {
304   // FIXME: Add support for scalar UNDEF cases?
305   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
306     return Match(Cst);
307 
308   // FIXME: Add support for vector UNDEF cases?
309   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
310       ISD::SPLAT_VECTOR != Op.getOpcode())
311     return false;
312 
313   EVT SVT = Op.getValueType().getScalarType();
314   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
315     if (AllowUndefs && Op.getOperand(i).isUndef()) {
316       if (!Match(nullptr))
317         return false;
318       continue;
319     }
320 
321     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
322     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
323       return false;
324   }
325   return true;
326 }
327 
328 bool ISD::matchBinaryPredicate(
329     SDValue LHS, SDValue RHS,
330     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
331     bool AllowUndefs, bool AllowTypeMismatch) {
332   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
333     return false;
334 
335   // TODO: Add support for scalar UNDEF cases?
336   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
337     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
338       return Match(LHSCst, RHSCst);
339 
340   // TODO: Add support for vector UNDEF cases?
341   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
342       ISD::BUILD_VECTOR != RHS.getOpcode())
343     return false;
344 
345   EVT SVT = LHS.getValueType().getScalarType();
346   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
347     SDValue LHSOp = LHS.getOperand(i);
348     SDValue RHSOp = RHS.getOperand(i);
349     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
350     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
351     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
352     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
353     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
354       return false;
355     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
356                                LHSOp.getValueType() != RHSOp.getValueType()))
357       return false;
358     if (!Match(LHSCst, RHSCst))
359       return false;
360   }
361   return true;
362 }
363 
364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
365   switch (VecReduceOpcode) {
366   default:
367     llvm_unreachable("Expected VECREDUCE opcode");
368   case ISD::VECREDUCE_FADD:
369   case ISD::VECREDUCE_SEQ_FADD:
370     return ISD::FADD;
371   case ISD::VECREDUCE_FMUL:
372   case ISD::VECREDUCE_SEQ_FMUL:
373     return ISD::FMUL;
374   case ISD::VECREDUCE_ADD:
375     return ISD::ADD;
376   case ISD::VECREDUCE_MUL:
377     return ISD::MUL;
378   case ISD::VECREDUCE_AND:
379     return ISD::AND;
380   case ISD::VECREDUCE_OR:
381     return ISD::OR;
382   case ISD::VECREDUCE_XOR:
383     return ISD::XOR;
384   case ISD::VECREDUCE_SMAX:
385     return ISD::SMAX;
386   case ISD::VECREDUCE_SMIN:
387     return ISD::SMIN;
388   case ISD::VECREDUCE_UMAX:
389     return ISD::UMAX;
390   case ISD::VECREDUCE_UMIN:
391     return ISD::UMIN;
392   case ISD::VECREDUCE_FMAX:
393     return ISD::FMAXNUM;
394   case ISD::VECREDUCE_FMIN:
395     return ISD::FMINNUM;
396   }
397 }
398 
399 bool ISD::isVPOpcode(unsigned Opcode) {
400   switch (Opcode) {
401   default:
402     return false;
403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
404   case ISD::SDOPC:                                                             \
405     return true;
406 #include "llvm/IR/VPIntrinsics.def"
407   }
408 }
409 
410 /// The operand position of the vector mask.
411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
412   switch (Opcode) {
413   default:
414     return None;
415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
416   case ISD::SDOPC:                                                             \
417     return MASKPOS;
418 #include "llvm/IR/VPIntrinsics.def"
419   }
420 }
421 
422 /// The operand position of the explicit vector length parameter.
423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
424   switch (Opcode) {
425   default:
426     return None;
427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
428   case ISD::SDOPC:                                                             \
429     return EVLPOS;
430 #include "llvm/IR/VPIntrinsics.def"
431   }
432 }
433 
434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
435   switch (ExtType) {
436   case ISD::EXTLOAD:
437     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
438   case ISD::SEXTLOAD:
439     return ISD::SIGN_EXTEND;
440   case ISD::ZEXTLOAD:
441     return ISD::ZERO_EXTEND;
442   default:
443     break;
444   }
445 
446   llvm_unreachable("Invalid LoadExtType");
447 }
448 
449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
450   // To perform this operation, we just need to swap the L and G bits of the
451   // operation.
452   unsigned OldL = (Operation >> 2) & 1;
453   unsigned OldG = (Operation >> 1) & 1;
454   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
455                        (OldL << 1) |       // New G bit
456                        (OldG << 2));       // New L bit.
457 }
458 
459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
460   unsigned Operation = Op;
461   if (isIntegerLike)
462     Operation ^= 7;   // Flip L, G, E bits, but not U.
463   else
464     Operation ^= 15;  // Flip all of the condition bits.
465 
466   if (Operation > ISD::SETTRUE2)
467     Operation &= ~8;  // Don't let N and U bits get set.
468 
469   return ISD::CondCode(Operation);
470 }
471 
472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
473   return getSetCCInverseImpl(Op, Type.isInteger());
474 }
475 
476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
477                                                bool isIntegerLike) {
478   return getSetCCInverseImpl(Op, isIntegerLike);
479 }
480 
481 /// For an integer comparison, return 1 if the comparison is a signed operation
482 /// and 2 if the result is an unsigned comparison. Return zero if the operation
483 /// does not depend on the sign of the input (setne and seteq).
484 static int isSignedOp(ISD::CondCode Opcode) {
485   switch (Opcode) {
486   default: llvm_unreachable("Illegal integer setcc operation!");
487   case ISD::SETEQ:
488   case ISD::SETNE: return 0;
489   case ISD::SETLT:
490   case ISD::SETLE:
491   case ISD::SETGT:
492   case ISD::SETGE: return 1;
493   case ISD::SETULT:
494   case ISD::SETULE:
495   case ISD::SETUGT:
496   case ISD::SETUGE: return 2;
497   }
498 }
499 
500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
501                                        EVT Type) {
502   bool IsInteger = Type.isInteger();
503   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
504     // Cannot fold a signed integer setcc with an unsigned integer setcc.
505     return ISD::SETCC_INVALID;
506 
507   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
508 
509   // If the N and U bits get set, then the resultant comparison DOES suddenly
510   // care about orderedness, and it is true when ordered.
511   if (Op > ISD::SETTRUE2)
512     Op &= ~16;     // Clear the U bit if the N bit is set.
513 
514   // Canonicalize illegal integer setcc's.
515   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
516     Op = ISD::SETNE;
517 
518   return ISD::CondCode(Op);
519 }
520 
521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
522                                         EVT Type) {
523   bool IsInteger = Type.isInteger();
524   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
525     // Cannot fold a signed setcc with an unsigned setcc.
526     return ISD::SETCC_INVALID;
527 
528   // Combine all of the condition bits.
529   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
530 
531   // Canonicalize illegal integer setcc's.
532   if (IsInteger) {
533     switch (Result) {
534     default: break;
535     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
536     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
537     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
538     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
539     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
540     }
541   }
542 
543   return Result;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 //                           SDNode Profile Support
548 //===----------------------------------------------------------------------===//
549 
550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
552   ID.AddInteger(OpC);
553 }
554 
555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
556 /// solely with their pointer.
557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
558   ID.AddPointer(VTList.VTs);
559 }
560 
561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
562 static void AddNodeIDOperands(FoldingSetNodeID &ID,
563                               ArrayRef<SDValue> Ops) {
564   for (auto& Op : Ops) {
565     ID.AddPointer(Op.getNode());
566     ID.AddInteger(Op.getResNo());
567   }
568 }
569 
570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
571 static void AddNodeIDOperands(FoldingSetNodeID &ID,
572                               ArrayRef<SDUse> Ops) {
573   for (auto& Op : Ops) {
574     ID.AddPointer(Op.getNode());
575     ID.AddInteger(Op.getResNo());
576   }
577 }
578 
579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
580                           SDVTList VTList, ArrayRef<SDValue> OpList) {
581   AddNodeIDOpcode(ID, OpC);
582   AddNodeIDValueTypes(ID, VTList);
583   AddNodeIDOperands(ID, OpList);
584 }
585 
586 /// If this is an SDNode with special info, add this info to the NodeID data.
587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
588   switch (N->getOpcode()) {
589   case ISD::TargetExternalSymbol:
590   case ISD::ExternalSymbol:
591   case ISD::MCSymbol:
592     llvm_unreachable("Should only be used on nodes with operands");
593   default: break;  // Normal nodes don't need extra info.
594   case ISD::TargetConstant:
595   case ISD::Constant: {
596     const ConstantSDNode *C = cast<ConstantSDNode>(N);
597     ID.AddPointer(C->getConstantIntValue());
598     ID.AddBoolean(C->isOpaque());
599     break;
600   }
601   case ISD::TargetConstantFP:
602   case ISD::ConstantFP:
603     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
604     break;
605   case ISD::TargetGlobalAddress:
606   case ISD::GlobalAddress:
607   case ISD::TargetGlobalTLSAddress:
608   case ISD::GlobalTLSAddress: {
609     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
610     ID.AddPointer(GA->getGlobal());
611     ID.AddInteger(GA->getOffset());
612     ID.AddInteger(GA->getTargetFlags());
613     break;
614   }
615   case ISD::BasicBlock:
616     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
617     break;
618   case ISD::Register:
619     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
620     break;
621   case ISD::RegisterMask:
622     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
623     break;
624   case ISD::SRCVALUE:
625     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
626     break;
627   case ISD::FrameIndex:
628   case ISD::TargetFrameIndex:
629     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
630     break;
631   case ISD::LIFETIME_START:
632   case ISD::LIFETIME_END:
633     if (cast<LifetimeSDNode>(N)->hasOffset()) {
634       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
635       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
636     }
637     break;
638   case ISD::PSEUDO_PROBE:
639     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
640     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
641     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
642     break;
643   case ISD::JumpTable:
644   case ISD::TargetJumpTable:
645     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
646     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
647     break;
648   case ISD::ConstantPool:
649   case ISD::TargetConstantPool: {
650     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
651     ID.AddInteger(CP->getAlign().value());
652     ID.AddInteger(CP->getOffset());
653     if (CP->isMachineConstantPoolEntry())
654       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
655     else
656       ID.AddPointer(CP->getConstVal());
657     ID.AddInteger(CP->getTargetFlags());
658     break;
659   }
660   case ISD::TargetIndex: {
661     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
662     ID.AddInteger(TI->getIndex());
663     ID.AddInteger(TI->getOffset());
664     ID.AddInteger(TI->getTargetFlags());
665     break;
666   }
667   case ISD::LOAD: {
668     const LoadSDNode *LD = cast<LoadSDNode>(N);
669     ID.AddInteger(LD->getMemoryVT().getRawBits());
670     ID.AddInteger(LD->getRawSubclassData());
671     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
672     break;
673   }
674   case ISD::STORE: {
675     const StoreSDNode *ST = cast<StoreSDNode>(N);
676     ID.AddInteger(ST->getMemoryVT().getRawBits());
677     ID.AddInteger(ST->getRawSubclassData());
678     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
679     break;
680   }
681   case ISD::MLOAD: {
682     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
683     ID.AddInteger(MLD->getMemoryVT().getRawBits());
684     ID.AddInteger(MLD->getRawSubclassData());
685     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
686     break;
687   }
688   case ISD::MSTORE: {
689     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
690     ID.AddInteger(MST->getMemoryVT().getRawBits());
691     ID.AddInteger(MST->getRawSubclassData());
692     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
693     break;
694   }
695   case ISD::MGATHER: {
696     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
697     ID.AddInteger(MG->getMemoryVT().getRawBits());
698     ID.AddInteger(MG->getRawSubclassData());
699     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
700     break;
701   }
702   case ISD::MSCATTER: {
703     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
704     ID.AddInteger(MS->getMemoryVT().getRawBits());
705     ID.AddInteger(MS->getRawSubclassData());
706     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
707     break;
708   }
709   case ISD::ATOMIC_CMP_SWAP:
710   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
711   case ISD::ATOMIC_SWAP:
712   case ISD::ATOMIC_LOAD_ADD:
713   case ISD::ATOMIC_LOAD_SUB:
714   case ISD::ATOMIC_LOAD_AND:
715   case ISD::ATOMIC_LOAD_CLR:
716   case ISD::ATOMIC_LOAD_OR:
717   case ISD::ATOMIC_LOAD_XOR:
718   case ISD::ATOMIC_LOAD_NAND:
719   case ISD::ATOMIC_LOAD_MIN:
720   case ISD::ATOMIC_LOAD_MAX:
721   case ISD::ATOMIC_LOAD_UMIN:
722   case ISD::ATOMIC_LOAD_UMAX:
723   case ISD::ATOMIC_LOAD:
724   case ISD::ATOMIC_STORE: {
725     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
726     ID.AddInteger(AT->getMemoryVT().getRawBits());
727     ID.AddInteger(AT->getRawSubclassData());
728     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
729     break;
730   }
731   case ISD::PREFETCH: {
732     const MemSDNode *PF = cast<MemSDNode>(N);
733     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::VECTOR_SHUFFLE: {
737     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
738     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
739          i != e; ++i)
740       ID.AddInteger(SVN->getMaskElt(i));
741     break;
742   }
743   case ISD::TargetBlockAddress:
744   case ISD::BlockAddress: {
745     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
746     ID.AddPointer(BA->getBlockAddress());
747     ID.AddInteger(BA->getOffset());
748     ID.AddInteger(BA->getTargetFlags());
749     break;
750   }
751   } // end switch (N->getOpcode())
752 
753   // Target specific memory nodes could also have address spaces to check.
754   if (N->isTargetMemoryOpcode())
755     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
756 }
757 
758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
759 /// data.
760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
761   AddNodeIDOpcode(ID, N->getOpcode());
762   // Add the return value info.
763   AddNodeIDValueTypes(ID, N->getVTList());
764   // Add the operand info.
765   AddNodeIDOperands(ID, N->ops());
766 
767   // Handle SDNode leafs with special info.
768   AddNodeIDCustom(ID, N);
769 }
770 
771 //===----------------------------------------------------------------------===//
772 //                              SelectionDAG Class
773 //===----------------------------------------------------------------------===//
774 
775 /// doNotCSE - Return true if CSE should not be performed for this node.
776 static bool doNotCSE(SDNode *N) {
777   if (N->getValueType(0) == MVT::Glue)
778     return true; // Never CSE anything that produces a flag.
779 
780   switch (N->getOpcode()) {
781   default: break;
782   case ISD::HANDLENODE:
783   case ISD::EH_LABEL:
784     return true;   // Never CSE these nodes.
785   }
786 
787   // Check that remaining values produced are not flags.
788   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
789     if (N->getValueType(i) == MVT::Glue)
790       return true; // Never CSE anything that produces a flag.
791 
792   return false;
793 }
794 
795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
796 /// SelectionDAG.
797 void SelectionDAG::RemoveDeadNodes() {
798   // Create a dummy node (which is not added to allnodes), that adds a reference
799   // to the root node, preventing it from being deleted.
800   HandleSDNode Dummy(getRoot());
801 
802   SmallVector<SDNode*, 128> DeadNodes;
803 
804   // Add all obviously-dead nodes to the DeadNodes worklist.
805   for (SDNode &Node : allnodes())
806     if (Node.use_empty())
807       DeadNodes.push_back(&Node);
808 
809   RemoveDeadNodes(DeadNodes);
810 
811   // If the root changed (e.g. it was a dead load, update the root).
812   setRoot(Dummy.getValue());
813 }
814 
815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
816 /// given list, and any nodes that become unreachable as a result.
817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
818 
819   // Process the worklist, deleting the nodes and adding their uses to the
820   // worklist.
821   while (!DeadNodes.empty()) {
822     SDNode *N = DeadNodes.pop_back_val();
823     // Skip to next node if we've already managed to delete the node. This could
824     // happen if replacing a node causes a node previously added to the node to
825     // be deleted.
826     if (N->getOpcode() == ISD::DELETED_NODE)
827       continue;
828 
829     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
830       DUL->NodeDeleted(N, nullptr);
831 
832     // Take the node out of the appropriate CSE map.
833     RemoveNodeFromCSEMaps(N);
834 
835     // Next, brutally remove the operand list.  This is safe to do, as there are
836     // no cycles in the graph.
837     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
838       SDUse &Use = *I++;
839       SDNode *Operand = Use.getNode();
840       Use.set(SDValue());
841 
842       // Now that we removed this operand, see if there are no uses of it left.
843       if (Operand->use_empty())
844         DeadNodes.push_back(Operand);
845     }
846 
847     DeallocateNode(N);
848   }
849 }
850 
851 void SelectionDAG::RemoveDeadNode(SDNode *N){
852   SmallVector<SDNode*, 16> DeadNodes(1, N);
853 
854   // Create a dummy node that adds a reference to the root node, preventing
855   // it from being deleted.  (This matters if the root is an operand of the
856   // dead node.)
857   HandleSDNode Dummy(getRoot());
858 
859   RemoveDeadNodes(DeadNodes);
860 }
861 
862 void SelectionDAG::DeleteNode(SDNode *N) {
863   // First take this out of the appropriate CSE map.
864   RemoveNodeFromCSEMaps(N);
865 
866   // Finally, remove uses due to operands of this node, remove from the
867   // AllNodes list, and delete the node.
868   DeleteNodeNotInCSEMaps(N);
869 }
870 
871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
872   assert(N->getIterator() != AllNodes.begin() &&
873          "Cannot delete the entry node!");
874   assert(N->use_empty() && "Cannot delete a node that is not dead!");
875 
876   // Drop all of the operands and decrement used node's use counts.
877   N->DropOperands();
878 
879   DeallocateNode(N);
880 }
881 
882 void SDDbgInfo::erase(const SDNode *Node) {
883   DbgValMapType::iterator I = DbgValMap.find(Node);
884   if (I == DbgValMap.end())
885     return;
886   for (auto &Val: I->second)
887     Val->setIsInvalidated();
888   DbgValMap.erase(I);
889 }
890 
891 void SelectionDAG::DeallocateNode(SDNode *N) {
892   // If we have operands, deallocate them.
893   removeOperands(N);
894 
895   NodeAllocator.Deallocate(AllNodes.remove(N));
896 
897   // Set the opcode to DELETED_NODE to help catch bugs when node
898   // memory is reallocated.
899   // FIXME: There are places in SDag that have grown a dependency on the opcode
900   // value in the released node.
901   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
902   N->NodeType = ISD::DELETED_NODE;
903 
904   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
905   // them and forget about that node.
906   DbgInfo->erase(N);
907 }
908 
909 #ifndef NDEBUG
910 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
911 static void VerifySDNode(SDNode *N) {
912   switch (N->getOpcode()) {
913   default:
914     break;
915   case ISD::BUILD_PAIR: {
916     EVT VT = N->getValueType(0);
917     assert(N->getNumValues() == 1 && "Too many results!");
918     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
919            "Wrong return type!");
920     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
921     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
922            "Mismatched operand types!");
923     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
924            "Wrong operand type!");
925     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
926            "Wrong return type size");
927     break;
928   }
929   case ISD::BUILD_VECTOR: {
930     assert(N->getNumValues() == 1 && "Too many results!");
931     assert(N->getValueType(0).isVector() && "Wrong return type!");
932     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
933            "Wrong number of operands!");
934     EVT EltVT = N->getValueType(0).getVectorElementType();
935     for (const SDUse &Op : N->ops()) {
936       assert((Op.getValueType() == EltVT ||
937               (EltVT.isInteger() && Op.getValueType().isInteger() &&
938                EltVT.bitsLE(Op.getValueType()))) &&
939              "Wrong operand type!");
940       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
941              "Operands must all have the same type");
942     }
943     break;
944   }
945   }
946 }
947 #endif // NDEBUG
948 
949 /// Insert a newly allocated node into the DAG.
950 ///
951 /// Handles insertion into the all nodes list and CSE map, as well as
952 /// verification and other common operations when a new node is allocated.
953 void SelectionDAG::InsertNode(SDNode *N) {
954   AllNodes.push_back(N);
955 #ifndef NDEBUG
956   N->PersistentId = NextPersistentId++;
957   VerifySDNode(N);
958 #endif
959   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
960     DUL->NodeInserted(N);
961 }
962 
963 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
964 /// correspond to it.  This is useful when we're about to delete or repurpose
965 /// the node.  We don't want future request for structurally identical nodes
966 /// to return N anymore.
967 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
968   bool Erased = false;
969   switch (N->getOpcode()) {
970   case ISD::HANDLENODE: return false;  // noop.
971   case ISD::CONDCODE:
972     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
973            "Cond code doesn't exist!");
974     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
975     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
976     break;
977   case ISD::ExternalSymbol:
978     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
979     break;
980   case ISD::TargetExternalSymbol: {
981     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
982     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
983         ESN->getSymbol(), ESN->getTargetFlags()));
984     break;
985   }
986   case ISD::MCSymbol: {
987     auto *MCSN = cast<MCSymbolSDNode>(N);
988     Erased = MCSymbols.erase(MCSN->getMCSymbol());
989     break;
990   }
991   case ISD::VALUETYPE: {
992     EVT VT = cast<VTSDNode>(N)->getVT();
993     if (VT.isExtended()) {
994       Erased = ExtendedValueTypeNodes.erase(VT);
995     } else {
996       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
997       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
998     }
999     break;
1000   }
1001   default:
1002     // Remove it from the CSE Map.
1003     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1004     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1005     Erased = CSEMap.RemoveNode(N);
1006     break;
1007   }
1008 #ifndef NDEBUG
1009   // Verify that the node was actually in one of the CSE maps, unless it has a
1010   // flag result (which cannot be CSE'd) or is one of the special cases that are
1011   // not subject to CSE.
1012   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1013       !N->isMachineOpcode() && !doNotCSE(N)) {
1014     N->dump(this);
1015     dbgs() << "\n";
1016     llvm_unreachable("Node is not in map!");
1017   }
1018 #endif
1019   return Erased;
1020 }
1021 
1022 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1023 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1024 /// node already exists, in which case transfer all its users to the existing
1025 /// node. This transfer can potentially trigger recursive merging.
1026 void
1027 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1028   // For node types that aren't CSE'd, just act as if no identical node
1029   // already exists.
1030   if (!doNotCSE(N)) {
1031     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1032     if (Existing != N) {
1033       // If there was already an existing matching node, use ReplaceAllUsesWith
1034       // to replace the dead one with the existing one.  This can cause
1035       // recursive merging of other unrelated nodes down the line.
1036       ReplaceAllUsesWith(N, Existing);
1037 
1038       // N is now dead. Inform the listeners and delete it.
1039       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1040         DUL->NodeDeleted(N, Existing);
1041       DeleteNodeNotInCSEMaps(N);
1042       return;
1043     }
1044   }
1045 
1046   // If the node doesn't already exist, we updated it.  Inform listeners.
1047   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1048     DUL->NodeUpdated(N);
1049 }
1050 
1051 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1052 /// were replaced with those specified.  If this node is never memoized,
1053 /// return null, otherwise return a pointer to the slot it would take.  If a
1054 /// node already exists with these operands, the slot will be non-null.
1055 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1056                                            void *&InsertPos) {
1057   if (doNotCSE(N))
1058     return nullptr;
1059 
1060   SDValue Ops[] = { Op };
1061   FoldingSetNodeID ID;
1062   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1063   AddNodeIDCustom(ID, N);
1064   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1065   if (Node)
1066     Node->intersectFlagsWith(N->getFlags());
1067   return Node;
1068 }
1069 
1070 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1071 /// were replaced with those specified.  If this node is never memoized,
1072 /// return null, otherwise return a pointer to the slot it would take.  If a
1073 /// node already exists with these operands, the slot will be non-null.
1074 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1075                                            SDValue Op1, SDValue Op2,
1076                                            void *&InsertPos) {
1077   if (doNotCSE(N))
1078     return nullptr;
1079 
1080   SDValue Ops[] = { Op1, Op2 };
1081   FoldingSetNodeID ID;
1082   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1083   AddNodeIDCustom(ID, N);
1084   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1085   if (Node)
1086     Node->intersectFlagsWith(N->getFlags());
1087   return Node;
1088 }
1089 
1090 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1091 /// were replaced with those specified.  If this node is never memoized,
1092 /// return null, otherwise return a pointer to the slot it would take.  If a
1093 /// node already exists with these operands, the slot will be non-null.
1094 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1095                                            void *&InsertPos) {
1096   if (doNotCSE(N))
1097     return nullptr;
1098 
1099   FoldingSetNodeID ID;
1100   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1101   AddNodeIDCustom(ID, N);
1102   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1103   if (Node)
1104     Node->intersectFlagsWith(N->getFlags());
1105   return Node;
1106 }
1107 
1108 Align SelectionDAG::getEVTAlign(EVT VT) const {
1109   Type *Ty = VT == MVT::iPTR ?
1110                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1111                    VT.getTypeForEVT(*getContext());
1112 
1113   return getDataLayout().getABITypeAlign(Ty);
1114 }
1115 
1116 // EntryNode could meaningfully have debug info if we can find it...
1117 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1118     : TM(tm), OptLevel(OL),
1119       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1120       Root(getEntryNode()) {
1121   InsertNode(&EntryNode);
1122   DbgInfo = new SDDbgInfo();
1123 }
1124 
1125 void SelectionDAG::init(MachineFunction &NewMF,
1126                         OptimizationRemarkEmitter &NewORE,
1127                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1128                         LegacyDivergenceAnalysis * Divergence,
1129                         ProfileSummaryInfo *PSIin,
1130                         BlockFrequencyInfo *BFIin) {
1131   MF = &NewMF;
1132   SDAGISelPass = PassPtr;
1133   ORE = &NewORE;
1134   TLI = getSubtarget().getTargetLowering();
1135   TSI = getSubtarget().getSelectionDAGInfo();
1136   LibInfo = LibraryInfo;
1137   Context = &MF->getFunction().getContext();
1138   DA = Divergence;
1139   PSI = PSIin;
1140   BFI = BFIin;
1141 }
1142 
1143 SelectionDAG::~SelectionDAG() {
1144   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1145   allnodes_clear();
1146   OperandRecycler.clear(OperandAllocator);
1147   delete DbgInfo;
1148 }
1149 
1150 bool SelectionDAG::shouldOptForSize() const {
1151   return MF->getFunction().hasOptSize() ||
1152       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1153 }
1154 
1155 void SelectionDAG::allnodes_clear() {
1156   assert(&*AllNodes.begin() == &EntryNode);
1157   AllNodes.remove(AllNodes.begin());
1158   while (!AllNodes.empty())
1159     DeallocateNode(&AllNodes.front());
1160 #ifndef NDEBUG
1161   NextPersistentId = 0;
1162 #endif
1163 }
1164 
1165 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1166                                           void *&InsertPos) {
1167   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1168   if (N) {
1169     switch (N->getOpcode()) {
1170     default: break;
1171     case ISD::Constant:
1172     case ISD::ConstantFP:
1173       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1174                        "debug location.  Use another overload.");
1175     }
1176   }
1177   return N;
1178 }
1179 
1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           const SDLoc &DL, void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     case ISD::Constant:
1186     case ISD::ConstantFP:
1187       // Erase debug location from the node if the node is used at several
1188       // different places. Do not propagate one location to all uses as it
1189       // will cause a worse single stepping debugging experience.
1190       if (N->getDebugLoc() != DL.getDebugLoc())
1191         N->setDebugLoc(DebugLoc());
1192       break;
1193     default:
1194       // When the node's point of use is located earlier in the instruction
1195       // sequence than its prior point of use, update its debug info to the
1196       // earlier location.
1197       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1198         N->setDebugLoc(DL.getDebugLoc());
1199       break;
1200     }
1201   }
1202   return N;
1203 }
1204 
1205 void SelectionDAG::clear() {
1206   allnodes_clear();
1207   OperandRecycler.clear(OperandAllocator);
1208   OperandAllocator.Reset();
1209   CSEMap.clear();
1210 
1211   ExtendedValueTypeNodes.clear();
1212   ExternalSymbols.clear();
1213   TargetExternalSymbols.clear();
1214   MCSymbols.clear();
1215   SDCallSiteDbgInfo.clear();
1216   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1217             static_cast<CondCodeSDNode*>(nullptr));
1218   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1219             static_cast<SDNode*>(nullptr));
1220 
1221   EntryNode.UseList = nullptr;
1222   InsertNode(&EntryNode);
1223   Root = getEntryNode();
1224   DbgInfo->clear();
1225 }
1226 
1227 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1228   return VT.bitsGT(Op.getValueType())
1229              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1230              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1231 }
1232 
1233 std::pair<SDValue, SDValue>
1234 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1235                                        const SDLoc &DL, EVT VT) {
1236   assert(!VT.bitsEq(Op.getValueType()) &&
1237          "Strict no-op FP extend/round not allowed.");
1238   SDValue Res =
1239       VT.bitsGT(Op.getValueType())
1240           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1241           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1242                     {Chain, Op, getIntPtrConstant(0, DL)});
1243 
1244   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1245 }
1246 
1247 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1248   return VT.bitsGT(Op.getValueType()) ?
1249     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1250     getNode(ISD::TRUNCATE, DL, VT, Op);
1251 }
1252 
1253 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1254   return VT.bitsGT(Op.getValueType()) ?
1255     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1256     getNode(ISD::TRUNCATE, DL, VT, Op);
1257 }
1258 
1259 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1260   return VT.bitsGT(Op.getValueType()) ?
1261     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1262     getNode(ISD::TRUNCATE, DL, VT, Op);
1263 }
1264 
1265 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1266                                         EVT OpVT) {
1267   if (VT.bitsLE(Op.getValueType()))
1268     return getNode(ISD::TRUNCATE, SL, VT, Op);
1269 
1270   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1271   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1272 }
1273 
1274 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1275   EVT OpVT = Op.getValueType();
1276   assert(VT.isInteger() && OpVT.isInteger() &&
1277          "Cannot getZeroExtendInReg FP types");
1278   assert(VT.isVector() == OpVT.isVector() &&
1279          "getZeroExtendInReg type should be vector iff the operand "
1280          "type is vector!");
1281   assert((!VT.isVector() ||
1282           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1283          "Vector element counts must match in getZeroExtendInReg");
1284   assert(VT.bitsLE(OpVT) && "Not extending!");
1285   if (OpVT == VT)
1286     return Op;
1287   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1288                                    VT.getScalarSizeInBits());
1289   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1290 }
1291 
1292 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1293   // Only unsigned pointer semantics are supported right now. In the future this
1294   // might delegate to TLI to check pointer signedness.
1295   return getZExtOrTrunc(Op, DL, VT);
1296 }
1297 
1298 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1299   // Only unsigned pointer semantics are supported right now. In the future this
1300   // might delegate to TLI to check pointer signedness.
1301   return getZeroExtendInReg(Op, DL, VT);
1302 }
1303 
1304 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1305 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1306   EVT EltVT = VT.getScalarType();
1307   SDValue NegOne =
1308     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1309   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1310 }
1311 
1312 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1313   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1314   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1315 }
1316 
1317 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1318                                       EVT OpVT) {
1319   if (!V)
1320     return getConstant(0, DL, VT);
1321 
1322   switch (TLI->getBooleanContents(OpVT)) {
1323   case TargetLowering::ZeroOrOneBooleanContent:
1324   case TargetLowering::UndefinedBooleanContent:
1325     return getConstant(1, DL, VT);
1326   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1327     return getAllOnesConstant(DL, VT);
1328   }
1329   llvm_unreachable("Unexpected boolean content enum!");
1330 }
1331 
1332 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1333                                   bool isT, bool isO) {
1334   EVT EltVT = VT.getScalarType();
1335   assert((EltVT.getSizeInBits() >= 64 ||
1336           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1337          "getConstant with a uint64_t value that doesn't fit in the type!");
1338   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1339 }
1340 
1341 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1342                                   bool isT, bool isO) {
1343   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1344 }
1345 
1346 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1347                                   EVT VT, bool isT, bool isO) {
1348   assert(VT.isInteger() && "Cannot create FP integer constant!");
1349 
1350   EVT EltVT = VT.getScalarType();
1351   const ConstantInt *Elt = &Val;
1352 
1353   // In some cases the vector type is legal but the element type is illegal and
1354   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1355   // inserted value (the type does not need to match the vector element type).
1356   // Any extra bits introduced will be truncated away.
1357   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1358                            TargetLowering::TypePromoteInteger) {
1359     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1360     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1361     Elt = ConstantInt::get(*getContext(), NewVal);
1362   }
1363   // In other cases the element type is illegal and needs to be expanded, for
1364   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1365   // the value into n parts and use a vector type with n-times the elements.
1366   // Then bitcast to the type requested.
1367   // Legalizing constants too early makes the DAGCombiner's job harder so we
1368   // only legalize if the DAG tells us we must produce legal types.
1369   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1370            TLI->getTypeAction(*getContext(), EltVT) ==
1371                TargetLowering::TypeExpandInteger) {
1372     const APInt &NewVal = Elt->getValue();
1373     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1374     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1375     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1376     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1377 
1378     // Check the temporary vector is the correct size. If this fails then
1379     // getTypeToTransformTo() probably returned a type whose size (in bits)
1380     // isn't a power-of-2 factor of the requested type size.
1381     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1382 
1383     SmallVector<SDValue, 2> EltParts;
1384     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1385       EltParts.push_back(getConstant(
1386           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1387           ViaEltVT, isT, isO));
1388     }
1389 
1390     // EltParts is currently in little endian order. If we actually want
1391     // big-endian order then reverse it now.
1392     if (getDataLayout().isBigEndian())
1393       std::reverse(EltParts.begin(), EltParts.end());
1394 
1395     // The elements must be reversed when the element order is different
1396     // to the endianness of the elements (because the BITCAST is itself a
1397     // vector shuffle in this situation). However, we do not need any code to
1398     // perform this reversal because getConstant() is producing a vector
1399     // splat.
1400     // This situation occurs in MIPS MSA.
1401 
1402     SmallVector<SDValue, 8> Ops;
1403     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1404       llvm::append_range(Ops, EltParts);
1405 
1406     SDValue V =
1407         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1408     return V;
1409   }
1410 
1411   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1412          "APInt size does not match type size!");
1413   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1414   FoldingSetNodeID ID;
1415   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1416   ID.AddPointer(Elt);
1417   ID.AddBoolean(isO);
1418   void *IP = nullptr;
1419   SDNode *N = nullptr;
1420   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1421     if (!VT.isVector())
1422       return SDValue(N, 0);
1423 
1424   if (!N) {
1425     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1426     CSEMap.InsertNode(N, IP);
1427     InsertNode(N);
1428     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1429   }
1430 
1431   SDValue Result(N, 0);
1432   if (VT.isScalableVector())
1433     Result = getSplatVector(VT, DL, Result);
1434   else if (VT.isVector())
1435     Result = getSplatBuildVector(VT, DL, Result);
1436 
1437   return Result;
1438 }
1439 
1440 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1441                                         bool isTarget) {
1442   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1443 }
1444 
1445 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1446                                              const SDLoc &DL, bool LegalTypes) {
1447   assert(VT.isInteger() && "Shift amount is not an integer type!");
1448   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1449   return getConstant(Val, DL, ShiftVT);
1450 }
1451 
1452 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1453                                            bool isTarget) {
1454   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1455 }
1456 
1457 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1458                                     bool isTarget) {
1459   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1460 }
1461 
1462 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1463                                     EVT VT, bool isTarget) {
1464   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1465 
1466   EVT EltVT = VT.getScalarType();
1467 
1468   // Do the map lookup using the actual bit pattern for the floating point
1469   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1470   // we don't have issues with SNANs.
1471   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1472   FoldingSetNodeID ID;
1473   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1474   ID.AddPointer(&V);
1475   void *IP = nullptr;
1476   SDNode *N = nullptr;
1477   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1478     if (!VT.isVector())
1479       return SDValue(N, 0);
1480 
1481   if (!N) {
1482     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1483     CSEMap.InsertNode(N, IP);
1484     InsertNode(N);
1485   }
1486 
1487   SDValue Result(N, 0);
1488   if (VT.isScalableVector())
1489     Result = getSplatVector(VT, DL, Result);
1490   else if (VT.isVector())
1491     Result = getSplatBuildVector(VT, DL, Result);
1492   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1493   return Result;
1494 }
1495 
1496 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1497                                     bool isTarget) {
1498   EVT EltVT = VT.getScalarType();
1499   if (EltVT == MVT::f32)
1500     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1501   else if (EltVT == MVT::f64)
1502     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1503   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1504            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1505     bool Ignored;
1506     APFloat APF = APFloat(Val);
1507     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1508                 &Ignored);
1509     return getConstantFP(APF, DL, VT, isTarget);
1510   } else
1511     llvm_unreachable("Unsupported type in getConstantFP");
1512 }
1513 
1514 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1515                                        EVT VT, int64_t Offset, bool isTargetGA,
1516                                        unsigned TargetFlags) {
1517   assert((TargetFlags == 0 || isTargetGA) &&
1518          "Cannot set target flags on target-independent globals");
1519 
1520   // Truncate (with sign-extension) the offset value to the pointer size.
1521   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1522   if (BitWidth < 64)
1523     Offset = SignExtend64(Offset, BitWidth);
1524 
1525   unsigned Opc;
1526   if (GV->isThreadLocal())
1527     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1528   else
1529     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1530 
1531   FoldingSetNodeID ID;
1532   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1533   ID.AddPointer(GV);
1534   ID.AddInteger(Offset);
1535   ID.AddInteger(TargetFlags);
1536   void *IP = nullptr;
1537   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1538     return SDValue(E, 0);
1539 
1540   auto *N = newSDNode<GlobalAddressSDNode>(
1541       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1542   CSEMap.InsertNode(N, IP);
1543     InsertNode(N);
1544   return SDValue(N, 0);
1545 }
1546 
1547 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1548   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1549   FoldingSetNodeID ID;
1550   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1551   ID.AddInteger(FI);
1552   void *IP = nullptr;
1553   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1554     return SDValue(E, 0);
1555 
1556   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1557   CSEMap.InsertNode(N, IP);
1558   InsertNode(N);
1559   return SDValue(N, 0);
1560 }
1561 
1562 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1563                                    unsigned TargetFlags) {
1564   assert((TargetFlags == 0 || isTarget) &&
1565          "Cannot set target flags on target-independent jump tables");
1566   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1567   FoldingSetNodeID ID;
1568   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1569   ID.AddInteger(JTI);
1570   ID.AddInteger(TargetFlags);
1571   void *IP = nullptr;
1572   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1573     return SDValue(E, 0);
1574 
1575   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1576   CSEMap.InsertNode(N, IP);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1582                                       MaybeAlign Alignment, int Offset,
1583                                       bool isTarget, unsigned TargetFlags) {
1584   assert((TargetFlags == 0 || isTarget) &&
1585          "Cannot set target flags on target-independent globals");
1586   if (!Alignment)
1587     Alignment = shouldOptForSize()
1588                     ? getDataLayout().getABITypeAlign(C->getType())
1589                     : getDataLayout().getPrefTypeAlign(C->getType());
1590   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1591   FoldingSetNodeID ID;
1592   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1593   ID.AddInteger(Alignment->value());
1594   ID.AddInteger(Offset);
1595   ID.AddPointer(C);
1596   ID.AddInteger(TargetFlags);
1597   void *IP = nullptr;
1598   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1599     return SDValue(E, 0);
1600 
1601   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1602                                           TargetFlags);
1603   CSEMap.InsertNode(N, IP);
1604   InsertNode(N);
1605   SDValue V = SDValue(N, 0);
1606   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1607   return V;
1608 }
1609 
1610 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1611                                       MaybeAlign Alignment, int Offset,
1612                                       bool isTarget, unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTarget) &&
1614          "Cannot set target flags on target-independent globals");
1615   if (!Alignment)
1616     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1617   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1618   FoldingSetNodeID ID;
1619   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1620   ID.AddInteger(Alignment->value());
1621   ID.AddInteger(Offset);
1622   C->addSelectionDAGCSEId(ID);
1623   ID.AddInteger(TargetFlags);
1624   void *IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1626     return SDValue(E, 0);
1627 
1628   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1629                                           TargetFlags);
1630   CSEMap.InsertNode(N, IP);
1631   InsertNode(N);
1632   return SDValue(N, 0);
1633 }
1634 
1635 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1636                                      unsigned TargetFlags) {
1637   FoldingSetNodeID ID;
1638   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1639   ID.AddInteger(Index);
1640   ID.AddInteger(Offset);
1641   ID.AddInteger(TargetFlags);
1642   void *IP = nullptr;
1643   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1644     return SDValue(E, 0);
1645 
1646   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1647   CSEMap.InsertNode(N, IP);
1648   InsertNode(N);
1649   return SDValue(N, 0);
1650 }
1651 
1652 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1653   FoldingSetNodeID ID;
1654   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1655   ID.AddPointer(MBB);
1656   void *IP = nullptr;
1657   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1658     return SDValue(E, 0);
1659 
1660   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getValueType(EVT VT) {
1667   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1668       ValueTypeNodes.size())
1669     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1670 
1671   SDNode *&N = VT.isExtended() ?
1672     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1673 
1674   if (N) return SDValue(N, 0);
1675   N = newSDNode<VTSDNode>(VT);
1676   InsertNode(N);
1677   return SDValue(N, 0);
1678 }
1679 
1680 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1681   SDNode *&N = ExternalSymbols[Sym];
1682   if (N) return SDValue(N, 0);
1683   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1684   InsertNode(N);
1685   return SDValue(N, 0);
1686 }
1687 
1688 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1689   SDNode *&N = MCSymbols[Sym];
1690   if (N)
1691     return SDValue(N, 0);
1692   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1698                                               unsigned TargetFlags) {
1699   SDNode *&N =
1700       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1701   if (N) return SDValue(N, 0);
1702   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1708   if ((unsigned)Cond >= CondCodeNodes.size())
1709     CondCodeNodes.resize(Cond+1);
1710 
1711   if (!CondCodeNodes[Cond]) {
1712     auto *N = newSDNode<CondCodeSDNode>(Cond);
1713     CondCodeNodes[Cond] = N;
1714     InsertNode(N);
1715   }
1716 
1717   return SDValue(CondCodeNodes[Cond], 0);
1718 }
1719 
1720 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1721 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1722 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1723   std::swap(N1, N2);
1724   ShuffleVectorSDNode::commuteMask(M);
1725 }
1726 
1727 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1728                                        SDValue N2, ArrayRef<int> Mask) {
1729   assert(VT.getVectorNumElements() == Mask.size() &&
1730            "Must have the same number of vector elements as mask elements!");
1731   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1732          "Invalid VECTOR_SHUFFLE");
1733 
1734   // Canonicalize shuffle undef, undef -> undef
1735   if (N1.isUndef() && N2.isUndef())
1736     return getUNDEF(VT);
1737 
1738   // Validate that all indices in Mask are within the range of the elements
1739   // input to the shuffle.
1740   int NElts = Mask.size();
1741   assert(llvm::all_of(Mask,
1742                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1743          "Index out of range");
1744 
1745   // Copy the mask so we can do any needed cleanup.
1746   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1747 
1748   // Canonicalize shuffle v, v -> v, undef
1749   if (N1 == N2) {
1750     N2 = getUNDEF(VT);
1751     for (int i = 0; i != NElts; ++i)
1752       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1753   }
1754 
1755   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1756   if (N1.isUndef())
1757     commuteShuffle(N1, N2, MaskVec);
1758 
1759   if (TLI->hasVectorBlend()) {
1760     // If shuffling a splat, try to blend the splat instead. We do this here so
1761     // that even when this arises during lowering we don't have to re-handle it.
1762     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1763       BitVector UndefElements;
1764       SDValue Splat = BV->getSplatValue(&UndefElements);
1765       if (!Splat)
1766         return;
1767 
1768       for (int i = 0; i < NElts; ++i) {
1769         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1770           continue;
1771 
1772         // If this input comes from undef, mark it as such.
1773         if (UndefElements[MaskVec[i] - Offset]) {
1774           MaskVec[i] = -1;
1775           continue;
1776         }
1777 
1778         // If we can blend a non-undef lane, use that instead.
1779         if (!UndefElements[i])
1780           MaskVec[i] = i + Offset;
1781       }
1782     };
1783     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1784       BlendSplat(N1BV, 0);
1785     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1786       BlendSplat(N2BV, NElts);
1787   }
1788 
1789   // Canonicalize all index into lhs, -> shuffle lhs, undef
1790   // Canonicalize all index into rhs, -> shuffle rhs, undef
1791   bool AllLHS = true, AllRHS = true;
1792   bool N2Undef = N2.isUndef();
1793   for (int i = 0; i != NElts; ++i) {
1794     if (MaskVec[i] >= NElts) {
1795       if (N2Undef)
1796         MaskVec[i] = -1;
1797       else
1798         AllLHS = false;
1799     } else if (MaskVec[i] >= 0) {
1800       AllRHS = false;
1801     }
1802   }
1803   if (AllLHS && AllRHS)
1804     return getUNDEF(VT);
1805   if (AllLHS && !N2Undef)
1806     N2 = getUNDEF(VT);
1807   if (AllRHS) {
1808     N1 = getUNDEF(VT);
1809     commuteShuffle(N1, N2, MaskVec);
1810   }
1811   // Reset our undef status after accounting for the mask.
1812   N2Undef = N2.isUndef();
1813   // Re-check whether both sides ended up undef.
1814   if (N1.isUndef() && N2Undef)
1815     return getUNDEF(VT);
1816 
1817   // If Identity shuffle return that node.
1818   bool Identity = true, AllSame = true;
1819   for (int i = 0; i != NElts; ++i) {
1820     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1821     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1822   }
1823   if (Identity && NElts)
1824     return N1;
1825 
1826   // Shuffling a constant splat doesn't change the result.
1827   if (N2Undef) {
1828     SDValue V = N1;
1829 
1830     // Look through any bitcasts. We check that these don't change the number
1831     // (and size) of elements and just changes their types.
1832     while (V.getOpcode() == ISD::BITCAST)
1833       V = V->getOperand(0);
1834 
1835     // A splat should always show up as a build vector node.
1836     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1837       BitVector UndefElements;
1838       SDValue Splat = BV->getSplatValue(&UndefElements);
1839       // If this is a splat of an undef, shuffling it is also undef.
1840       if (Splat && Splat.isUndef())
1841         return getUNDEF(VT);
1842 
1843       bool SameNumElts =
1844           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1845 
1846       // We only have a splat which can skip shuffles if there is a splatted
1847       // value and no undef lanes rearranged by the shuffle.
1848       if (Splat && UndefElements.none()) {
1849         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1850         // number of elements match or the value splatted is a zero constant.
1851         if (SameNumElts)
1852           return N1;
1853         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1854           if (C->isNullValue())
1855             return N1;
1856       }
1857 
1858       // If the shuffle itself creates a splat, build the vector directly.
1859       if (AllSame && SameNumElts) {
1860         EVT BuildVT = BV->getValueType(0);
1861         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1862         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1863 
1864         // We may have jumped through bitcasts, so the type of the
1865         // BUILD_VECTOR may not match the type of the shuffle.
1866         if (BuildVT != VT)
1867           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1868         return NewBV;
1869       }
1870     }
1871   }
1872 
1873   FoldingSetNodeID ID;
1874   SDValue Ops[2] = { N1, N2 };
1875   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1876   for (int i = 0; i != NElts; ++i)
1877     ID.AddInteger(MaskVec[i]);
1878 
1879   void* IP = nullptr;
1880   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1881     return SDValue(E, 0);
1882 
1883   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1884   // SDNode doesn't have access to it.  This memory will be "leaked" when
1885   // the node is deallocated, but recovered when the NodeAllocator is released.
1886   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1887   llvm::copy(MaskVec, MaskAlloc);
1888 
1889   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1890                                            dl.getDebugLoc(), MaskAlloc);
1891   createOperands(N, Ops);
1892 
1893   CSEMap.InsertNode(N, IP);
1894   InsertNode(N);
1895   SDValue V = SDValue(N, 0);
1896   NewSDValueDbgMsg(V, "Creating new node: ", this);
1897   return V;
1898 }
1899 
1900 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1901   EVT VT = SV.getValueType(0);
1902   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1903   ShuffleVectorSDNode::commuteMask(MaskVec);
1904 
1905   SDValue Op0 = SV.getOperand(0);
1906   SDValue Op1 = SV.getOperand(1);
1907   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1908 }
1909 
1910 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1911   FoldingSetNodeID ID;
1912   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1913   ID.AddInteger(RegNo);
1914   void *IP = nullptr;
1915   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1916     return SDValue(E, 0);
1917 
1918   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1919   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1920   CSEMap.InsertNode(N, IP);
1921   InsertNode(N);
1922   return SDValue(N, 0);
1923 }
1924 
1925 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1926   FoldingSetNodeID ID;
1927   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1928   ID.AddPointer(RegMask);
1929   void *IP = nullptr;
1930   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1931     return SDValue(E, 0);
1932 
1933   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1934   CSEMap.InsertNode(N, IP);
1935   InsertNode(N);
1936   return SDValue(N, 0);
1937 }
1938 
1939 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1940                                  MCSymbol *Label) {
1941   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1942 }
1943 
1944 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1945                                    SDValue Root, MCSymbol *Label) {
1946   FoldingSetNodeID ID;
1947   SDValue Ops[] = { Root };
1948   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1949   ID.AddPointer(Label);
1950   void *IP = nullptr;
1951   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1952     return SDValue(E, 0);
1953 
1954   auto *N =
1955       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1956   createOperands(N, Ops);
1957 
1958   CSEMap.InsertNode(N, IP);
1959   InsertNode(N);
1960   return SDValue(N, 0);
1961 }
1962 
1963 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1964                                       int64_t Offset, bool isTarget,
1965                                       unsigned TargetFlags) {
1966   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1967 
1968   FoldingSetNodeID ID;
1969   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1970   ID.AddPointer(BA);
1971   ID.AddInteger(Offset);
1972   ID.AddInteger(TargetFlags);
1973   void *IP = nullptr;
1974   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1975     return SDValue(E, 0);
1976 
1977   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1978   CSEMap.InsertNode(N, IP);
1979   InsertNode(N);
1980   return SDValue(N, 0);
1981 }
1982 
1983 SDValue SelectionDAG::getSrcValue(const Value *V) {
1984   FoldingSetNodeID ID;
1985   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1986   ID.AddPointer(V);
1987 
1988   void *IP = nullptr;
1989   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1990     return SDValue(E, 0);
1991 
1992   auto *N = newSDNode<SrcValueSDNode>(V);
1993   CSEMap.InsertNode(N, IP);
1994   InsertNode(N);
1995   return SDValue(N, 0);
1996 }
1997 
1998 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1999   FoldingSetNodeID ID;
2000   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2001   ID.AddPointer(MD);
2002 
2003   void *IP = nullptr;
2004   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2005     return SDValue(E, 0);
2006 
2007   auto *N = newSDNode<MDNodeSDNode>(MD);
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   return SDValue(N, 0);
2011 }
2012 
2013 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2014   if (VT == V.getValueType())
2015     return V;
2016 
2017   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2018 }
2019 
2020 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2021                                        unsigned SrcAS, unsigned DestAS) {
2022   SDValue Ops[] = {Ptr};
2023   FoldingSetNodeID ID;
2024   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2025   ID.AddInteger(SrcAS);
2026   ID.AddInteger(DestAS);
2027 
2028   void *IP = nullptr;
2029   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2030     return SDValue(E, 0);
2031 
2032   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2033                                            VT, SrcAS, DestAS);
2034   createOperands(N, Ops);
2035 
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getFreeze(SDValue V) {
2042   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2043 }
2044 
2045 /// getShiftAmountOperand - Return the specified value casted to
2046 /// the target's desired shift amount type.
2047 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2048   EVT OpTy = Op.getValueType();
2049   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2050   if (OpTy == ShTy || OpTy.isVector()) return Op;
2051 
2052   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2053 }
2054 
2055 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2056   SDLoc dl(Node);
2057   const TargetLowering &TLI = getTargetLoweringInfo();
2058   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2059   EVT VT = Node->getValueType(0);
2060   SDValue Tmp1 = Node->getOperand(0);
2061   SDValue Tmp2 = Node->getOperand(1);
2062   const MaybeAlign MA(Node->getConstantOperandVal(3));
2063 
2064   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2065                                Tmp2, MachinePointerInfo(V));
2066   SDValue VAList = VAListLoad;
2067 
2068   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2069     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2070                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2071 
2072     VAList =
2073         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2074                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2075   }
2076 
2077   // Increment the pointer, VAList, to the next vaarg
2078   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2079                  getConstant(getDataLayout().getTypeAllocSize(
2080                                                VT.getTypeForEVT(*getContext())),
2081                              dl, VAList.getValueType()));
2082   // Store the incremented VAList to the legalized pointer
2083   Tmp1 =
2084       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2085   // Load the actual argument out of the pointer VAList
2086   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2087 }
2088 
2089 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2090   SDLoc dl(Node);
2091   const TargetLowering &TLI = getTargetLoweringInfo();
2092   // This defaults to loading a pointer from the input and storing it to the
2093   // output, returning the chain.
2094   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2095   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2096   SDValue Tmp1 =
2097       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2098               Node->getOperand(2), MachinePointerInfo(VS));
2099   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2100                   MachinePointerInfo(VD));
2101 }
2102 
2103 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2104   const DataLayout &DL = getDataLayout();
2105   Type *Ty = VT.getTypeForEVT(*getContext());
2106   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2107 
2108   if (TLI->isTypeLegal(VT) || !VT.isVector())
2109     return RedAlign;
2110 
2111   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2112   const Align StackAlign = TFI->getStackAlign();
2113 
2114   // See if we can choose a smaller ABI alignment in cases where it's an
2115   // illegal vector type that will get broken down.
2116   if (RedAlign > StackAlign) {
2117     EVT IntermediateVT;
2118     MVT RegisterVT;
2119     unsigned NumIntermediates;
2120     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2121                                 NumIntermediates, RegisterVT);
2122     Ty = IntermediateVT.getTypeForEVT(*getContext());
2123     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2124     if (RedAlign2 < RedAlign)
2125       RedAlign = RedAlign2;
2126   }
2127 
2128   return RedAlign;
2129 }
2130 
2131 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2132   MachineFrameInfo &MFI = MF->getFrameInfo();
2133   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2134   int StackID = 0;
2135   if (Bytes.isScalable())
2136     StackID = TFI->getStackIDForScalableVectors();
2137   // The stack id gives an indication of whether the object is scalable or
2138   // not, so it's safe to pass in the minimum size here.
2139   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2140                                        false, nullptr, StackID);
2141   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2142 }
2143 
2144 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2145   Type *Ty = VT.getTypeForEVT(*getContext());
2146   Align StackAlign =
2147       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2148   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2149 }
2150 
2151 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2152   TypeSize VT1Size = VT1.getStoreSize();
2153   TypeSize VT2Size = VT2.getStoreSize();
2154   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2155          "Don't know how to choose the maximum size when creating a stack "
2156          "temporary");
2157   TypeSize Bytes =
2158       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2159 
2160   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2161   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2162   const DataLayout &DL = getDataLayout();
2163   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2164   return CreateStackTemporary(Bytes, Align);
2165 }
2166 
2167 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2168                                 ISD::CondCode Cond, const SDLoc &dl) {
2169   EVT OpVT = N1.getValueType();
2170 
2171   // These setcc operations always fold.
2172   switch (Cond) {
2173   default: break;
2174   case ISD::SETFALSE:
2175   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2176   case ISD::SETTRUE:
2177   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2178 
2179   case ISD::SETOEQ:
2180   case ISD::SETOGT:
2181   case ISD::SETOGE:
2182   case ISD::SETOLT:
2183   case ISD::SETOLE:
2184   case ISD::SETONE:
2185   case ISD::SETO:
2186   case ISD::SETUO:
2187   case ISD::SETUEQ:
2188   case ISD::SETUNE:
2189     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2190     break;
2191   }
2192 
2193   if (OpVT.isInteger()) {
2194     // For EQ and NE, we can always pick a value for the undef to make the
2195     // predicate pass or fail, so we can return undef.
2196     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2197     // icmp eq/ne X, undef -> undef.
2198     if ((N1.isUndef() || N2.isUndef()) &&
2199         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2200       return getUNDEF(VT);
2201 
2202     // If both operands are undef, we can return undef for int comparison.
2203     // icmp undef, undef -> undef.
2204     if (N1.isUndef() && N2.isUndef())
2205       return getUNDEF(VT);
2206 
2207     // icmp X, X -> true/false
2208     // icmp X, undef -> true/false because undef could be X.
2209     if (N1 == N2)
2210       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2211   }
2212 
2213   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2214     const APInt &C2 = N2C->getAPIntValue();
2215     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2216       const APInt &C1 = N1C->getAPIntValue();
2217 
2218       switch (Cond) {
2219       default: llvm_unreachable("Unknown integer setcc!");
2220       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2221       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2222       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2223       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2224       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2225       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2226       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2227       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2228       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2229       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2230       }
2231     }
2232   }
2233 
2234   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2235   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2236 
2237   if (N1CFP && N2CFP) {
2238     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2239     switch (Cond) {
2240     default: break;
2241     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2242                         return getUNDEF(VT);
2243                       LLVM_FALLTHROUGH;
2244     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2245                                              OpVT);
2246     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2247                         return getUNDEF(VT);
2248                       LLVM_FALLTHROUGH;
2249     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2250                                              R==APFloat::cmpLessThan, dl, VT,
2251                                              OpVT);
2252     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2253                         return getUNDEF(VT);
2254                       LLVM_FALLTHROUGH;
2255     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2256                                              OpVT);
2257     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2258                         return getUNDEF(VT);
2259                       LLVM_FALLTHROUGH;
2260     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2261                                              VT, OpVT);
2262     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2263                         return getUNDEF(VT);
2264                       LLVM_FALLTHROUGH;
2265     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2266                                              R==APFloat::cmpEqual, dl, VT,
2267                                              OpVT);
2268     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2269                         return getUNDEF(VT);
2270                       LLVM_FALLTHROUGH;
2271     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2272                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2273     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2274                                              OpVT);
2275     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2276                                              OpVT);
2277     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2278                                              R==APFloat::cmpEqual, dl, VT,
2279                                              OpVT);
2280     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2281                                              OpVT);
2282     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2283                                              R==APFloat::cmpLessThan, dl, VT,
2284                                              OpVT);
2285     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2286                                              R==APFloat::cmpUnordered, dl, VT,
2287                                              OpVT);
2288     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2289                                              VT, OpVT);
2290     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2291                                              OpVT);
2292     }
2293   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2294     // Ensure that the constant occurs on the RHS.
2295     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2296     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2297       return SDValue();
2298     return getSetCC(dl, VT, N2, N1, SwappedCond);
2299   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2300              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2301     // If an operand is known to be a nan (or undef that could be a nan), we can
2302     // fold it.
2303     // Choosing NaN for the undef will always make unordered comparison succeed
2304     // and ordered comparison fails.
2305     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2306     switch (ISD::getUnorderedFlavor(Cond)) {
2307     default:
2308       llvm_unreachable("Unknown flavor!");
2309     case 0: // Known false.
2310       return getBoolConstant(false, dl, VT, OpVT);
2311     case 1: // Known true.
2312       return getBoolConstant(true, dl, VT, OpVT);
2313     case 2: // Undefined.
2314       return getUNDEF(VT);
2315     }
2316   }
2317 
2318   // Could not fold it.
2319   return SDValue();
2320 }
2321 
2322 /// See if the specified operand can be simplified with the knowledge that only
2323 /// the bits specified by DemandedBits are used.
2324 /// TODO: really we should be making this into the DAG equivalent of
2325 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2326 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2327   EVT VT = V.getValueType();
2328 
2329   if (VT.isScalableVector())
2330     return SDValue();
2331 
2332   APInt DemandedElts = VT.isVector()
2333                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2334                            : APInt(1, 1);
2335   return GetDemandedBits(V, DemandedBits, DemandedElts);
2336 }
2337 
2338 /// See if the specified operand can be simplified with the knowledge that only
2339 /// the bits specified by DemandedBits are used in the elements specified by
2340 /// DemandedElts.
2341 /// TODO: really we should be making this into the DAG equivalent of
2342 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2343 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2344                                       const APInt &DemandedElts) {
2345   switch (V.getOpcode()) {
2346   default:
2347     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2348                                                 *this, 0);
2349   case ISD::Constant: {
2350     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2351     APInt NewVal = CVal & DemandedBits;
2352     if (NewVal != CVal)
2353       return getConstant(NewVal, SDLoc(V), V.getValueType());
2354     break;
2355   }
2356   case ISD::SRL:
2357     // Only look at single-use SRLs.
2358     if (!V.getNode()->hasOneUse())
2359       break;
2360     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2361       // See if we can recursively simplify the LHS.
2362       unsigned Amt = RHSC->getZExtValue();
2363 
2364       // Watch out for shift count overflow though.
2365       if (Amt >= DemandedBits.getBitWidth())
2366         break;
2367       APInt SrcDemandedBits = DemandedBits << Amt;
2368       if (SDValue SimplifyLHS =
2369               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2370         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2371                        V.getOperand(1));
2372     }
2373     break;
2374   }
2375   return SDValue();
2376 }
2377 
2378 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2379 /// use this predicate to simplify operations downstream.
2380 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2381   unsigned BitWidth = Op.getScalarValueSizeInBits();
2382   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2383 }
2384 
2385 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2386 /// this predicate to simplify operations downstream.  Mask is known to be zero
2387 /// for bits that V cannot have.
2388 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2389                                      unsigned Depth) const {
2390   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2391 }
2392 
2393 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2394 /// DemandedElts.  We use this predicate to simplify operations downstream.
2395 /// Mask is known to be zero for bits that V cannot have.
2396 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2397                                      const APInt &DemandedElts,
2398                                      unsigned Depth) const {
2399   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2400 }
2401 
2402 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2403 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2404                                         unsigned Depth) const {
2405   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2406 }
2407 
2408 /// isSplatValue - Return true if the vector V has the same value
2409 /// across all DemandedElts. For scalable vectors it does not make
2410 /// sense to specify which elements are demanded or undefined, therefore
2411 /// they are simply ignored.
2412 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2413                                 APInt &UndefElts, unsigned Depth) {
2414   EVT VT = V.getValueType();
2415   assert(VT.isVector() && "Vector type expected");
2416 
2417   if (!VT.isScalableVector() && !DemandedElts)
2418     return false; // No demanded elts, better to assume we don't know anything.
2419 
2420   if (Depth >= MaxRecursionDepth)
2421     return false; // Limit search depth.
2422 
2423   // Deal with some common cases here that work for both fixed and scalable
2424   // vector types.
2425   switch (V.getOpcode()) {
2426   case ISD::SPLAT_VECTOR:
2427     UndefElts = V.getOperand(0).isUndef()
2428                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2429                     : APInt(DemandedElts.getBitWidth(), 0);
2430     return true;
2431   case ISD::ADD:
2432   case ISD::SUB:
2433   case ISD::AND:
2434   case ISD::XOR:
2435   case ISD::OR: {
2436     APInt UndefLHS, UndefRHS;
2437     SDValue LHS = V.getOperand(0);
2438     SDValue RHS = V.getOperand(1);
2439     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2440         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2441       UndefElts = UndefLHS | UndefRHS;
2442       return true;
2443     }
2444     break;
2445   }
2446   case ISD::TRUNCATE:
2447   case ISD::SIGN_EXTEND:
2448   case ISD::ZERO_EXTEND:
2449     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2450   }
2451 
2452   // We don't support other cases than those above for scalable vectors at
2453   // the moment.
2454   if (VT.isScalableVector())
2455     return false;
2456 
2457   unsigned NumElts = VT.getVectorNumElements();
2458   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2459   UndefElts = APInt::getNullValue(NumElts);
2460 
2461   switch (V.getOpcode()) {
2462   case ISD::BUILD_VECTOR: {
2463     SDValue Scl;
2464     for (unsigned i = 0; i != NumElts; ++i) {
2465       SDValue Op = V.getOperand(i);
2466       if (Op.isUndef()) {
2467         UndefElts.setBit(i);
2468         continue;
2469       }
2470       if (!DemandedElts[i])
2471         continue;
2472       if (Scl && Scl != Op)
2473         return false;
2474       Scl = Op;
2475     }
2476     return true;
2477   }
2478   case ISD::VECTOR_SHUFFLE: {
2479     // Check if this is a shuffle node doing a splat.
2480     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2481     int SplatIndex = -1;
2482     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2483     for (int i = 0; i != (int)NumElts; ++i) {
2484       int M = Mask[i];
2485       if (M < 0) {
2486         UndefElts.setBit(i);
2487         continue;
2488       }
2489       if (!DemandedElts[i])
2490         continue;
2491       if (0 <= SplatIndex && SplatIndex != M)
2492         return false;
2493       SplatIndex = M;
2494     }
2495     return true;
2496   }
2497   case ISD::EXTRACT_SUBVECTOR: {
2498     // Offset the demanded elts by the subvector index.
2499     SDValue Src = V.getOperand(0);
2500     uint64_t Idx = V.getConstantOperandVal(1);
2501     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2502     APInt UndefSrcElts;
2503     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2504     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2505       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2506       return true;
2507     }
2508     break;
2509   }
2510   }
2511 
2512   return false;
2513 }
2514 
2515 /// Helper wrapper to main isSplatValue function.
2516 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2517   EVT VT = V.getValueType();
2518   assert(VT.isVector() && "Vector type expected");
2519 
2520   APInt UndefElts;
2521   APInt DemandedElts;
2522 
2523   // For now we don't support this with scalable vectors.
2524   if (!VT.isScalableVector())
2525     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2526   return isSplatValue(V, DemandedElts, UndefElts) &&
2527          (AllowUndefs || !UndefElts);
2528 }
2529 
2530 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2531   V = peekThroughExtractSubvectors(V);
2532 
2533   EVT VT = V.getValueType();
2534   unsigned Opcode = V.getOpcode();
2535   switch (Opcode) {
2536   default: {
2537     APInt UndefElts;
2538     APInt DemandedElts;
2539 
2540     if (!VT.isScalableVector())
2541       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2542 
2543     if (isSplatValue(V, DemandedElts, UndefElts)) {
2544       if (VT.isScalableVector()) {
2545         // DemandedElts and UndefElts are ignored for scalable vectors, since
2546         // the only supported cases are SPLAT_VECTOR nodes.
2547         SplatIdx = 0;
2548       } else {
2549         // Handle case where all demanded elements are UNDEF.
2550         if (DemandedElts.isSubsetOf(UndefElts)) {
2551           SplatIdx = 0;
2552           return getUNDEF(VT);
2553         }
2554         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2555       }
2556       return V;
2557     }
2558     break;
2559   }
2560   case ISD::SPLAT_VECTOR:
2561     SplatIdx = 0;
2562     return V;
2563   case ISD::VECTOR_SHUFFLE: {
2564     if (VT.isScalableVector())
2565       return SDValue();
2566 
2567     // Check if this is a shuffle node doing a splat.
2568     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2569     // getTargetVShiftNode currently struggles without the splat source.
2570     auto *SVN = cast<ShuffleVectorSDNode>(V);
2571     if (!SVN->isSplat())
2572       break;
2573     int Idx = SVN->getSplatIndex();
2574     int NumElts = V.getValueType().getVectorNumElements();
2575     SplatIdx = Idx % NumElts;
2576     return V.getOperand(Idx / NumElts);
2577   }
2578   }
2579 
2580   return SDValue();
2581 }
2582 
2583 SDValue SelectionDAG::getSplatValue(SDValue V) {
2584   int SplatIdx;
2585   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2586     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2587                    SrcVector.getValueType().getScalarType(), SrcVector,
2588                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2589   return SDValue();
2590 }
2591 
2592 const APInt *
2593 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2594                                           const APInt &DemandedElts) const {
2595   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2596           V.getOpcode() == ISD::SRA) &&
2597          "Unknown shift node");
2598   unsigned BitWidth = V.getScalarValueSizeInBits();
2599   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2600     // Shifting more than the bitwidth is not valid.
2601     const APInt &ShAmt = SA->getAPIntValue();
2602     if (ShAmt.ult(BitWidth))
2603       return &ShAmt;
2604   }
2605   return nullptr;
2606 }
2607 
2608 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2609     SDValue V, const APInt &DemandedElts) const {
2610   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2611           V.getOpcode() == ISD::SRA) &&
2612          "Unknown shift node");
2613   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2614     return ValidAmt;
2615   unsigned BitWidth = V.getScalarValueSizeInBits();
2616   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2617   if (!BV)
2618     return nullptr;
2619   const APInt *MinShAmt = nullptr;
2620   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2621     if (!DemandedElts[i])
2622       continue;
2623     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2624     if (!SA)
2625       return nullptr;
2626     // Shifting more than the bitwidth is not valid.
2627     const APInt &ShAmt = SA->getAPIntValue();
2628     if (ShAmt.uge(BitWidth))
2629       return nullptr;
2630     if (MinShAmt && MinShAmt->ule(ShAmt))
2631       continue;
2632     MinShAmt = &ShAmt;
2633   }
2634   return MinShAmt;
2635 }
2636 
2637 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2638     SDValue V, const APInt &DemandedElts) const {
2639   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2640           V.getOpcode() == ISD::SRA) &&
2641          "Unknown shift node");
2642   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2643     return ValidAmt;
2644   unsigned BitWidth = V.getScalarValueSizeInBits();
2645   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2646   if (!BV)
2647     return nullptr;
2648   const APInt *MaxShAmt = nullptr;
2649   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2650     if (!DemandedElts[i])
2651       continue;
2652     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2653     if (!SA)
2654       return nullptr;
2655     // Shifting more than the bitwidth is not valid.
2656     const APInt &ShAmt = SA->getAPIntValue();
2657     if (ShAmt.uge(BitWidth))
2658       return nullptr;
2659     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2660       continue;
2661     MaxShAmt = &ShAmt;
2662   }
2663   return MaxShAmt;
2664 }
2665 
2666 /// Determine which bits of Op are known to be either zero or one and return
2667 /// them in Known. For vectors, the known bits are those that are shared by
2668 /// every vector element.
2669 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2670   EVT VT = Op.getValueType();
2671 
2672   // TOOD: Until we have a plan for how to represent demanded elements for
2673   // scalable vectors, we can just bail out for now.
2674   if (Op.getValueType().isScalableVector()) {
2675     unsigned BitWidth = Op.getScalarValueSizeInBits();
2676     return KnownBits(BitWidth);
2677   }
2678 
2679   APInt DemandedElts = VT.isVector()
2680                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2681                            : APInt(1, 1);
2682   return computeKnownBits(Op, DemandedElts, Depth);
2683 }
2684 
2685 /// Determine which bits of Op are known to be either zero or one and return
2686 /// them in Known. The DemandedElts argument allows us to only collect the known
2687 /// bits that are shared by the requested vector elements.
2688 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2689                                          unsigned Depth) const {
2690   unsigned BitWidth = Op.getScalarValueSizeInBits();
2691 
2692   KnownBits Known(BitWidth);   // Don't know anything.
2693 
2694   // TOOD: Until we have a plan for how to represent demanded elements for
2695   // scalable vectors, we can just bail out for now.
2696   if (Op.getValueType().isScalableVector())
2697     return Known;
2698 
2699   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2700     // We know all of the bits for a constant!
2701     return KnownBits::makeConstant(C->getAPIntValue());
2702   }
2703   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2704     // We know all of the bits for a constant fp!
2705     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2706   }
2707 
2708   if (Depth >= MaxRecursionDepth)
2709     return Known;  // Limit search depth.
2710 
2711   KnownBits Known2;
2712   unsigned NumElts = DemandedElts.getBitWidth();
2713   assert((!Op.getValueType().isVector() ||
2714           NumElts == Op.getValueType().getVectorNumElements()) &&
2715          "Unexpected vector size");
2716 
2717   if (!DemandedElts)
2718     return Known;  // No demanded elts, better to assume we don't know anything.
2719 
2720   unsigned Opcode = Op.getOpcode();
2721   switch (Opcode) {
2722   case ISD::BUILD_VECTOR:
2723     // Collect the known bits that are shared by every demanded vector element.
2724     Known.Zero.setAllBits(); Known.One.setAllBits();
2725     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2726       if (!DemandedElts[i])
2727         continue;
2728 
2729       SDValue SrcOp = Op.getOperand(i);
2730       Known2 = computeKnownBits(SrcOp, Depth + 1);
2731 
2732       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2733       if (SrcOp.getValueSizeInBits() != BitWidth) {
2734         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2735                "Expected BUILD_VECTOR implicit truncation");
2736         Known2 = Known2.trunc(BitWidth);
2737       }
2738 
2739       // Known bits are the values that are shared by every demanded element.
2740       Known = KnownBits::commonBits(Known, Known2);
2741 
2742       // If we don't know any bits, early out.
2743       if (Known.isUnknown())
2744         break;
2745     }
2746     break;
2747   case ISD::VECTOR_SHUFFLE: {
2748     // Collect the known bits that are shared by every vector element referenced
2749     // by the shuffle.
2750     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2751     Known.Zero.setAllBits(); Known.One.setAllBits();
2752     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2753     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2754     for (unsigned i = 0; i != NumElts; ++i) {
2755       if (!DemandedElts[i])
2756         continue;
2757 
2758       int M = SVN->getMaskElt(i);
2759       if (M < 0) {
2760         // For UNDEF elements, we don't know anything about the common state of
2761         // the shuffle result.
2762         Known.resetAll();
2763         DemandedLHS.clearAllBits();
2764         DemandedRHS.clearAllBits();
2765         break;
2766       }
2767 
2768       if ((unsigned)M < NumElts)
2769         DemandedLHS.setBit((unsigned)M % NumElts);
2770       else
2771         DemandedRHS.setBit((unsigned)M % NumElts);
2772     }
2773     // Known bits are the values that are shared by every demanded element.
2774     if (!!DemandedLHS) {
2775       SDValue LHS = Op.getOperand(0);
2776       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2777       Known = KnownBits::commonBits(Known, Known2);
2778     }
2779     // If we don't know any bits, early out.
2780     if (Known.isUnknown())
2781       break;
2782     if (!!DemandedRHS) {
2783       SDValue RHS = Op.getOperand(1);
2784       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2785       Known = KnownBits::commonBits(Known, Known2);
2786     }
2787     break;
2788   }
2789   case ISD::CONCAT_VECTORS: {
2790     // Split DemandedElts and test each of the demanded subvectors.
2791     Known.Zero.setAllBits(); Known.One.setAllBits();
2792     EVT SubVectorVT = Op.getOperand(0).getValueType();
2793     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2794     unsigned NumSubVectors = Op.getNumOperands();
2795     for (unsigned i = 0; i != NumSubVectors; ++i) {
2796       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2797       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2798       if (!!DemandedSub) {
2799         SDValue Sub = Op.getOperand(i);
2800         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2801         Known = KnownBits::commonBits(Known, Known2);
2802       }
2803       // If we don't know any bits, early out.
2804       if (Known.isUnknown())
2805         break;
2806     }
2807     break;
2808   }
2809   case ISD::INSERT_SUBVECTOR: {
2810     // Demand any elements from the subvector and the remainder from the src its
2811     // inserted into.
2812     SDValue Src = Op.getOperand(0);
2813     SDValue Sub = Op.getOperand(1);
2814     uint64_t Idx = Op.getConstantOperandVal(2);
2815     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2816     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2817     APInt DemandedSrcElts = DemandedElts;
2818     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2819 
2820     Known.One.setAllBits();
2821     Known.Zero.setAllBits();
2822     if (!!DemandedSubElts) {
2823       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2824       if (Known.isUnknown())
2825         break; // early-out.
2826     }
2827     if (!!DemandedSrcElts) {
2828       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2829       Known = KnownBits::commonBits(Known, Known2);
2830     }
2831     break;
2832   }
2833   case ISD::EXTRACT_SUBVECTOR: {
2834     // Offset the demanded elts by the subvector index.
2835     SDValue Src = Op.getOperand(0);
2836     // Bail until we can represent demanded elements for scalable vectors.
2837     if (Src.getValueType().isScalableVector())
2838       break;
2839     uint64_t Idx = Op.getConstantOperandVal(1);
2840     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2841     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2842     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2843     break;
2844   }
2845   case ISD::SCALAR_TO_VECTOR: {
2846     // We know about scalar_to_vector as much as we know about it source,
2847     // which becomes the first element of otherwise unknown vector.
2848     if (DemandedElts != 1)
2849       break;
2850 
2851     SDValue N0 = Op.getOperand(0);
2852     Known = computeKnownBits(N0, Depth + 1);
2853     if (N0.getValueSizeInBits() != BitWidth)
2854       Known = Known.trunc(BitWidth);
2855 
2856     break;
2857   }
2858   case ISD::BITCAST: {
2859     SDValue N0 = Op.getOperand(0);
2860     EVT SubVT = N0.getValueType();
2861     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2862 
2863     // Ignore bitcasts from unsupported types.
2864     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2865       break;
2866 
2867     // Fast handling of 'identity' bitcasts.
2868     if (BitWidth == SubBitWidth) {
2869       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2870       break;
2871     }
2872 
2873     bool IsLE = getDataLayout().isLittleEndian();
2874 
2875     // Bitcast 'small element' vector to 'large element' scalar/vector.
2876     if ((BitWidth % SubBitWidth) == 0) {
2877       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2878 
2879       // Collect known bits for the (larger) output by collecting the known
2880       // bits from each set of sub elements and shift these into place.
2881       // We need to separately call computeKnownBits for each set of
2882       // sub elements as the knownbits for each is likely to be different.
2883       unsigned SubScale = BitWidth / SubBitWidth;
2884       APInt SubDemandedElts(NumElts * SubScale, 0);
2885       for (unsigned i = 0; i != NumElts; ++i)
2886         if (DemandedElts[i])
2887           SubDemandedElts.setBit(i * SubScale);
2888 
2889       for (unsigned i = 0; i != SubScale; ++i) {
2890         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2891                          Depth + 1);
2892         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2893         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2894         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2895       }
2896     }
2897 
2898     // Bitcast 'large element' scalar/vector to 'small element' vector.
2899     if ((SubBitWidth % BitWidth) == 0) {
2900       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2901 
2902       // Collect known bits for the (smaller) output by collecting the known
2903       // bits from the overlapping larger input elements and extracting the
2904       // sub sections we actually care about.
2905       unsigned SubScale = SubBitWidth / BitWidth;
2906       APInt SubDemandedElts(NumElts / SubScale, 0);
2907       for (unsigned i = 0; i != NumElts; ++i)
2908         if (DemandedElts[i])
2909           SubDemandedElts.setBit(i / SubScale);
2910 
2911       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2912 
2913       Known.Zero.setAllBits(); Known.One.setAllBits();
2914       for (unsigned i = 0; i != NumElts; ++i)
2915         if (DemandedElts[i]) {
2916           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2917           unsigned Offset = (Shifts % SubScale) * BitWidth;
2918           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2919           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2920           // If we don't know any bits, early out.
2921           if (Known.isUnknown())
2922             break;
2923         }
2924     }
2925     break;
2926   }
2927   case ISD::AND:
2928     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2929     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2930 
2931     Known &= Known2;
2932     break;
2933   case ISD::OR:
2934     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2935     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2936 
2937     Known |= Known2;
2938     break;
2939   case ISD::XOR:
2940     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2941     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2942 
2943     Known ^= Known2;
2944     break;
2945   case ISD::MUL: {
2946     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2947     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2948     Known = KnownBits::computeForMul(Known, Known2);
2949     break;
2950   }
2951   case ISD::UDIV: {
2952     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2953     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2954     Known = KnownBits::udiv(Known, Known2);
2955     break;
2956   }
2957   case ISD::SELECT:
2958   case ISD::VSELECT:
2959     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2960     // If we don't know any bits, early out.
2961     if (Known.isUnknown())
2962       break;
2963     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2964 
2965     // Only known if known in both the LHS and RHS.
2966     Known = KnownBits::commonBits(Known, Known2);
2967     break;
2968   case ISD::SELECT_CC:
2969     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2970     // If we don't know any bits, early out.
2971     if (Known.isUnknown())
2972       break;
2973     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2974 
2975     // Only known if known in both the LHS and RHS.
2976     Known = KnownBits::commonBits(Known, Known2);
2977     break;
2978   case ISD::SMULO:
2979   case ISD::UMULO:
2980   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2981     if (Op.getResNo() != 1)
2982       break;
2983     // The boolean result conforms to getBooleanContents.
2984     // If we know the result of a setcc has the top bits zero, use this info.
2985     // We know that we have an integer-based boolean since these operations
2986     // are only available for integer.
2987     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2988             TargetLowering::ZeroOrOneBooleanContent &&
2989         BitWidth > 1)
2990       Known.Zero.setBitsFrom(1);
2991     break;
2992   case ISD::SETCC:
2993   case ISD::STRICT_FSETCC:
2994   case ISD::STRICT_FSETCCS: {
2995     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2996     // If we know the result of a setcc has the top bits zero, use this info.
2997     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2998             TargetLowering::ZeroOrOneBooleanContent &&
2999         BitWidth > 1)
3000       Known.Zero.setBitsFrom(1);
3001     break;
3002   }
3003   case ISD::SHL:
3004     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3005     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3006     Known = KnownBits::shl(Known, Known2);
3007 
3008     // Minimum shift low bits are known zero.
3009     if (const APInt *ShMinAmt =
3010             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3011       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3012     break;
3013   case ISD::SRL:
3014     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3015     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3016     Known = KnownBits::lshr(Known, Known2);
3017 
3018     // Minimum shift high bits are known zero.
3019     if (const APInt *ShMinAmt =
3020             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3021       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3022     break;
3023   case ISD::SRA:
3024     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3025     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3026     Known = KnownBits::ashr(Known, Known2);
3027     // TODO: Add minimum shift high known sign bits.
3028     break;
3029   case ISD::FSHL:
3030   case ISD::FSHR:
3031     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3032       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3033 
3034       // For fshl, 0-shift returns the 1st arg.
3035       // For fshr, 0-shift returns the 2nd arg.
3036       if (Amt == 0) {
3037         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3038                                  DemandedElts, Depth + 1);
3039         break;
3040       }
3041 
3042       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3043       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3044       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3045       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3046       if (Opcode == ISD::FSHL) {
3047         Known.One <<= Amt;
3048         Known.Zero <<= Amt;
3049         Known2.One.lshrInPlace(BitWidth - Amt);
3050         Known2.Zero.lshrInPlace(BitWidth - Amt);
3051       } else {
3052         Known.One <<= BitWidth - Amt;
3053         Known.Zero <<= BitWidth - Amt;
3054         Known2.One.lshrInPlace(Amt);
3055         Known2.Zero.lshrInPlace(Amt);
3056       }
3057       Known.One |= Known2.One;
3058       Known.Zero |= Known2.Zero;
3059     }
3060     break;
3061   case ISD::SIGN_EXTEND_INREG: {
3062     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3063     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3064     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3065     break;
3066   }
3067   case ISD::CTTZ:
3068   case ISD::CTTZ_ZERO_UNDEF: {
3069     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3070     // If we have a known 1, its position is our upper bound.
3071     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3072     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3073     Known.Zero.setBitsFrom(LowBits);
3074     break;
3075   }
3076   case ISD::CTLZ:
3077   case ISD::CTLZ_ZERO_UNDEF: {
3078     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3079     // If we have a known 1, its position is our upper bound.
3080     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3081     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3082     Known.Zero.setBitsFrom(LowBits);
3083     break;
3084   }
3085   case ISD::CTPOP: {
3086     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3087     // If we know some of the bits are zero, they can't be one.
3088     unsigned PossibleOnes = Known2.countMaxPopulation();
3089     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3090     break;
3091   }
3092   case ISD::PARITY: {
3093     // Parity returns 0 everywhere but the LSB.
3094     Known.Zero.setBitsFrom(1);
3095     break;
3096   }
3097   case ISD::LOAD: {
3098     LoadSDNode *LD = cast<LoadSDNode>(Op);
3099     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3100     if (ISD::isNON_EXTLoad(LD) && Cst) {
3101       // Determine any common known bits from the loaded constant pool value.
3102       Type *CstTy = Cst->getType();
3103       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3104         // If its a vector splat, then we can (quickly) reuse the scalar path.
3105         // NOTE: We assume all elements match and none are UNDEF.
3106         if (CstTy->isVectorTy()) {
3107           if (const Constant *Splat = Cst->getSplatValue()) {
3108             Cst = Splat;
3109             CstTy = Cst->getType();
3110           }
3111         }
3112         // TODO - do we need to handle different bitwidths?
3113         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3114           // Iterate across all vector elements finding common known bits.
3115           Known.One.setAllBits();
3116           Known.Zero.setAllBits();
3117           for (unsigned i = 0; i != NumElts; ++i) {
3118             if (!DemandedElts[i])
3119               continue;
3120             if (Constant *Elt = Cst->getAggregateElement(i)) {
3121               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3122                 const APInt &Value = CInt->getValue();
3123                 Known.One &= Value;
3124                 Known.Zero &= ~Value;
3125                 continue;
3126               }
3127               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3128                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3129                 Known.One &= Value;
3130                 Known.Zero &= ~Value;
3131                 continue;
3132               }
3133             }
3134             Known.One.clearAllBits();
3135             Known.Zero.clearAllBits();
3136             break;
3137           }
3138         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3139           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3140             Known = KnownBits::makeConstant(CInt->getValue());
3141           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3142             Known =
3143                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3144           }
3145         }
3146       }
3147     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3148       // If this is a ZEXTLoad and we are looking at the loaded value.
3149       EVT VT = LD->getMemoryVT();
3150       unsigned MemBits = VT.getScalarSizeInBits();
3151       Known.Zero.setBitsFrom(MemBits);
3152     } else if (const MDNode *Ranges = LD->getRanges()) {
3153       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3154         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3155     }
3156     break;
3157   }
3158   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3159     EVT InVT = Op.getOperand(0).getValueType();
3160     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3161     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3162     Known = Known.zext(BitWidth);
3163     break;
3164   }
3165   case ISD::ZERO_EXTEND: {
3166     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3167     Known = Known.zext(BitWidth);
3168     break;
3169   }
3170   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3171     EVT InVT = Op.getOperand(0).getValueType();
3172     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3173     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3174     // If the sign bit is known to be zero or one, then sext will extend
3175     // it to the top bits, else it will just zext.
3176     Known = Known.sext(BitWidth);
3177     break;
3178   }
3179   case ISD::SIGN_EXTEND: {
3180     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3181     // If the sign bit is known to be zero or one, then sext will extend
3182     // it to the top bits, else it will just zext.
3183     Known = Known.sext(BitWidth);
3184     break;
3185   }
3186   case ISD::ANY_EXTEND_VECTOR_INREG: {
3187     EVT InVT = Op.getOperand(0).getValueType();
3188     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3189     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3190     Known = Known.anyext(BitWidth);
3191     break;
3192   }
3193   case ISD::ANY_EXTEND: {
3194     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3195     Known = Known.anyext(BitWidth);
3196     break;
3197   }
3198   case ISD::TRUNCATE: {
3199     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3200     Known = Known.trunc(BitWidth);
3201     break;
3202   }
3203   case ISD::AssertZext: {
3204     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3205     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3206     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3207     Known.Zero |= (~InMask);
3208     Known.One  &= (~Known.Zero);
3209     break;
3210   }
3211   case ISD::AssertAlign: {
3212     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3213     assert(LogOfAlign != 0);
3214     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3215     // well as clearing one bits.
3216     Known.Zero.setLowBits(LogOfAlign);
3217     Known.One.clearLowBits(LogOfAlign);
3218     break;
3219   }
3220   case ISD::FGETSIGN:
3221     // All bits are zero except the low bit.
3222     Known.Zero.setBitsFrom(1);
3223     break;
3224   case ISD::USUBO:
3225   case ISD::SSUBO:
3226     if (Op.getResNo() == 1) {
3227       // If we know the result of a setcc has the top bits zero, use this info.
3228       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3229               TargetLowering::ZeroOrOneBooleanContent &&
3230           BitWidth > 1)
3231         Known.Zero.setBitsFrom(1);
3232       break;
3233     }
3234     LLVM_FALLTHROUGH;
3235   case ISD::SUB:
3236   case ISD::SUBC: {
3237     assert(Op.getResNo() == 0 &&
3238            "We only compute knownbits for the difference here.");
3239 
3240     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3241     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3242     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3243                                         Known, Known2);
3244     break;
3245   }
3246   case ISD::UADDO:
3247   case ISD::SADDO:
3248   case ISD::ADDCARRY:
3249     if (Op.getResNo() == 1) {
3250       // If we know the result of a setcc has the top bits zero, use this info.
3251       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3252               TargetLowering::ZeroOrOneBooleanContent &&
3253           BitWidth > 1)
3254         Known.Zero.setBitsFrom(1);
3255       break;
3256     }
3257     LLVM_FALLTHROUGH;
3258   case ISD::ADD:
3259   case ISD::ADDC:
3260   case ISD::ADDE: {
3261     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3262 
3263     // With ADDE and ADDCARRY, a carry bit may be added in.
3264     KnownBits Carry(1);
3265     if (Opcode == ISD::ADDE)
3266       // Can't track carry from glue, set carry to unknown.
3267       Carry.resetAll();
3268     else if (Opcode == ISD::ADDCARRY)
3269       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3270       // the trouble (how often will we find a known carry bit). And I haven't
3271       // tested this very much yet, but something like this might work:
3272       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3273       //   Carry = Carry.zextOrTrunc(1, false);
3274       Carry.resetAll();
3275     else
3276       Carry.setAllZero();
3277 
3278     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3279     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3280     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3281     break;
3282   }
3283   case ISD::SREM: {
3284     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3285     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3286     Known = KnownBits::srem(Known, Known2);
3287     break;
3288   }
3289   case ISD::UREM: {
3290     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3291     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3292     Known = KnownBits::urem(Known, Known2);
3293     break;
3294   }
3295   case ISD::EXTRACT_ELEMENT: {
3296     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3297     const unsigned Index = Op.getConstantOperandVal(1);
3298     const unsigned EltBitWidth = Op.getValueSizeInBits();
3299 
3300     // Remove low part of known bits mask
3301     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3302     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3303 
3304     // Remove high part of known bit mask
3305     Known = Known.trunc(EltBitWidth);
3306     break;
3307   }
3308   case ISD::EXTRACT_VECTOR_ELT: {
3309     SDValue InVec = Op.getOperand(0);
3310     SDValue EltNo = Op.getOperand(1);
3311     EVT VecVT = InVec.getValueType();
3312     // computeKnownBits not yet implemented for scalable vectors.
3313     if (VecVT.isScalableVector())
3314       break;
3315     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3316     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3317 
3318     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3319     // anything about the extended bits.
3320     if (BitWidth > EltBitWidth)
3321       Known = Known.trunc(EltBitWidth);
3322 
3323     // If we know the element index, just demand that vector element, else for
3324     // an unknown element index, ignore DemandedElts and demand them all.
3325     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3326     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3327     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3328       DemandedSrcElts =
3329           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3330 
3331     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3332     if (BitWidth > EltBitWidth)
3333       Known = Known.anyext(BitWidth);
3334     break;
3335   }
3336   case ISD::INSERT_VECTOR_ELT: {
3337     // If we know the element index, split the demand between the
3338     // source vector and the inserted element, otherwise assume we need
3339     // the original demanded vector elements and the value.
3340     SDValue InVec = Op.getOperand(0);
3341     SDValue InVal = Op.getOperand(1);
3342     SDValue EltNo = Op.getOperand(2);
3343     bool DemandedVal = true;
3344     APInt DemandedVecElts = DemandedElts;
3345     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3346     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3347       unsigned EltIdx = CEltNo->getZExtValue();
3348       DemandedVal = !!DemandedElts[EltIdx];
3349       DemandedVecElts.clearBit(EltIdx);
3350     }
3351     Known.One.setAllBits();
3352     Known.Zero.setAllBits();
3353     if (DemandedVal) {
3354       Known2 = computeKnownBits(InVal, Depth + 1);
3355       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3356     }
3357     if (!!DemandedVecElts) {
3358       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3359       Known = KnownBits::commonBits(Known, Known2);
3360     }
3361     break;
3362   }
3363   case ISD::BITREVERSE: {
3364     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3365     Known = Known2.reverseBits();
3366     break;
3367   }
3368   case ISD::BSWAP: {
3369     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3370     Known = Known2.byteSwap();
3371     break;
3372   }
3373   case ISD::ABS: {
3374     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3375     Known = Known2.abs();
3376     break;
3377   }
3378   case ISD::UMIN: {
3379     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3380     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3381     Known = KnownBits::umin(Known, Known2);
3382     break;
3383   }
3384   case ISD::UMAX: {
3385     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3386     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3387     Known = KnownBits::umax(Known, Known2);
3388     break;
3389   }
3390   case ISD::SMIN:
3391   case ISD::SMAX: {
3392     // If we have a clamp pattern, we know that the number of sign bits will be
3393     // the minimum of the clamp min/max range.
3394     bool IsMax = (Opcode == ISD::SMAX);
3395     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3396     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3397       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3398         CstHigh =
3399             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3400     if (CstLow && CstHigh) {
3401       if (!IsMax)
3402         std::swap(CstLow, CstHigh);
3403 
3404       const APInt &ValueLow = CstLow->getAPIntValue();
3405       const APInt &ValueHigh = CstHigh->getAPIntValue();
3406       if (ValueLow.sle(ValueHigh)) {
3407         unsigned LowSignBits = ValueLow.getNumSignBits();
3408         unsigned HighSignBits = ValueHigh.getNumSignBits();
3409         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3410         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3411           Known.One.setHighBits(MinSignBits);
3412           break;
3413         }
3414         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3415           Known.Zero.setHighBits(MinSignBits);
3416           break;
3417         }
3418       }
3419     }
3420 
3421     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3422     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3423     if (IsMax)
3424       Known = KnownBits::smax(Known, Known2);
3425     else
3426       Known = KnownBits::smin(Known, Known2);
3427     break;
3428   }
3429   case ISD::FrameIndex:
3430   case ISD::TargetFrameIndex:
3431     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3432                                        Known, getMachineFunction());
3433     break;
3434 
3435   default:
3436     if (Opcode < ISD::BUILTIN_OP_END)
3437       break;
3438     LLVM_FALLTHROUGH;
3439   case ISD::INTRINSIC_WO_CHAIN:
3440   case ISD::INTRINSIC_W_CHAIN:
3441   case ISD::INTRINSIC_VOID:
3442     // Allow the target to implement this method for its nodes.
3443     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3444     break;
3445   }
3446 
3447   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3448   return Known;
3449 }
3450 
3451 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3452                                                              SDValue N1) const {
3453   // X + 0 never overflow
3454   if (isNullConstant(N1))
3455     return OFK_Never;
3456 
3457   KnownBits N1Known = computeKnownBits(N1);
3458   if (N1Known.Zero.getBoolValue()) {
3459     KnownBits N0Known = computeKnownBits(N0);
3460 
3461     bool overflow;
3462     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3463     if (!overflow)
3464       return OFK_Never;
3465   }
3466 
3467   // mulhi + 1 never overflow
3468   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3469       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3470     return OFK_Never;
3471 
3472   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3473     KnownBits N0Known = computeKnownBits(N0);
3474 
3475     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3476       return OFK_Never;
3477   }
3478 
3479   return OFK_Sometime;
3480 }
3481 
3482 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3483   EVT OpVT = Val.getValueType();
3484   unsigned BitWidth = OpVT.getScalarSizeInBits();
3485 
3486   // Is the constant a known power of 2?
3487   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3488     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3489 
3490   // A left-shift of a constant one will have exactly one bit set because
3491   // shifting the bit off the end is undefined.
3492   if (Val.getOpcode() == ISD::SHL) {
3493     auto *C = isConstOrConstSplat(Val.getOperand(0));
3494     if (C && C->getAPIntValue() == 1)
3495       return true;
3496   }
3497 
3498   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3499   // one bit set.
3500   if (Val.getOpcode() == ISD::SRL) {
3501     auto *C = isConstOrConstSplat(Val.getOperand(0));
3502     if (C && C->getAPIntValue().isSignMask())
3503       return true;
3504   }
3505 
3506   // Are all operands of a build vector constant powers of two?
3507   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3508     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3509           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3510             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3511           return false;
3512         }))
3513       return true;
3514 
3515   // More could be done here, though the above checks are enough
3516   // to handle some common cases.
3517 
3518   // Fall back to computeKnownBits to catch other known cases.
3519   KnownBits Known = computeKnownBits(Val);
3520   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3521 }
3522 
3523 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3524   EVT VT = Op.getValueType();
3525 
3526   // TODO: Assume we don't know anything for now.
3527   if (VT.isScalableVector())
3528     return 1;
3529 
3530   APInt DemandedElts = VT.isVector()
3531                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3532                            : APInt(1, 1);
3533   return ComputeNumSignBits(Op, DemandedElts, Depth);
3534 }
3535 
3536 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3537                                           unsigned Depth) const {
3538   EVT VT = Op.getValueType();
3539   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3540   unsigned VTBits = VT.getScalarSizeInBits();
3541   unsigned NumElts = DemandedElts.getBitWidth();
3542   unsigned Tmp, Tmp2;
3543   unsigned FirstAnswer = 1;
3544 
3545   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3546     const APInt &Val = C->getAPIntValue();
3547     return Val.getNumSignBits();
3548   }
3549 
3550   if (Depth >= MaxRecursionDepth)
3551     return 1;  // Limit search depth.
3552 
3553   if (!DemandedElts || VT.isScalableVector())
3554     return 1;  // No demanded elts, better to assume we don't know anything.
3555 
3556   unsigned Opcode = Op.getOpcode();
3557   switch (Opcode) {
3558   default: break;
3559   case ISD::AssertSext:
3560     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3561     return VTBits-Tmp+1;
3562   case ISD::AssertZext:
3563     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3564     return VTBits-Tmp;
3565 
3566   case ISD::BUILD_VECTOR:
3567     Tmp = VTBits;
3568     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3569       if (!DemandedElts[i])
3570         continue;
3571 
3572       SDValue SrcOp = Op.getOperand(i);
3573       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3574 
3575       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3576       if (SrcOp.getValueSizeInBits() != VTBits) {
3577         assert(SrcOp.getValueSizeInBits() > VTBits &&
3578                "Expected BUILD_VECTOR implicit truncation");
3579         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3580         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3581       }
3582       Tmp = std::min(Tmp, Tmp2);
3583     }
3584     return Tmp;
3585 
3586   case ISD::VECTOR_SHUFFLE: {
3587     // Collect the minimum number of sign bits that are shared by every vector
3588     // element referenced by the shuffle.
3589     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3590     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3591     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3592     for (unsigned i = 0; i != NumElts; ++i) {
3593       int M = SVN->getMaskElt(i);
3594       if (!DemandedElts[i])
3595         continue;
3596       // For UNDEF elements, we don't know anything about the common state of
3597       // the shuffle result.
3598       if (M < 0)
3599         return 1;
3600       if ((unsigned)M < NumElts)
3601         DemandedLHS.setBit((unsigned)M % NumElts);
3602       else
3603         DemandedRHS.setBit((unsigned)M % NumElts);
3604     }
3605     Tmp = std::numeric_limits<unsigned>::max();
3606     if (!!DemandedLHS)
3607       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3608     if (!!DemandedRHS) {
3609       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3610       Tmp = std::min(Tmp, Tmp2);
3611     }
3612     // If we don't know anything, early out and try computeKnownBits fall-back.
3613     if (Tmp == 1)
3614       break;
3615     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3616     return Tmp;
3617   }
3618 
3619   case ISD::BITCAST: {
3620     SDValue N0 = Op.getOperand(0);
3621     EVT SrcVT = N0.getValueType();
3622     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3623 
3624     // Ignore bitcasts from unsupported types..
3625     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3626       break;
3627 
3628     // Fast handling of 'identity' bitcasts.
3629     if (VTBits == SrcBits)
3630       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3631 
3632     bool IsLE = getDataLayout().isLittleEndian();
3633 
3634     // Bitcast 'large element' scalar/vector to 'small element' vector.
3635     if ((SrcBits % VTBits) == 0) {
3636       assert(VT.isVector() && "Expected bitcast to vector");
3637 
3638       unsigned Scale = SrcBits / VTBits;
3639       APInt SrcDemandedElts(NumElts / Scale, 0);
3640       for (unsigned i = 0; i != NumElts; ++i)
3641         if (DemandedElts[i])
3642           SrcDemandedElts.setBit(i / Scale);
3643 
3644       // Fast case - sign splat can be simply split across the small elements.
3645       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3646       if (Tmp == SrcBits)
3647         return VTBits;
3648 
3649       // Slow case - determine how far the sign extends into each sub-element.
3650       Tmp2 = VTBits;
3651       for (unsigned i = 0; i != NumElts; ++i)
3652         if (DemandedElts[i]) {
3653           unsigned SubOffset = i % Scale;
3654           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3655           SubOffset = SubOffset * VTBits;
3656           if (Tmp <= SubOffset)
3657             return 1;
3658           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3659         }
3660       return Tmp2;
3661     }
3662     break;
3663   }
3664 
3665   case ISD::SIGN_EXTEND:
3666     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3667     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3668   case ISD::SIGN_EXTEND_INREG:
3669     // Max of the input and what this extends.
3670     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3671     Tmp = VTBits-Tmp+1;
3672     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3673     return std::max(Tmp, Tmp2);
3674   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3675     SDValue Src = Op.getOperand(0);
3676     EVT SrcVT = Src.getValueType();
3677     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3678     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3679     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3680   }
3681   case ISD::SRA:
3682     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3683     // SRA X, C -> adds C sign bits.
3684     if (const APInt *ShAmt =
3685             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3686       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3687     return Tmp;
3688   case ISD::SHL:
3689     if (const APInt *ShAmt =
3690             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3691       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3692       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3693       if (ShAmt->ult(Tmp))
3694         return Tmp - ShAmt->getZExtValue();
3695     }
3696     break;
3697   case ISD::AND:
3698   case ISD::OR:
3699   case ISD::XOR:    // NOT is handled here.
3700     // Logical binary ops preserve the number of sign bits at the worst.
3701     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3702     if (Tmp != 1) {
3703       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3704       FirstAnswer = std::min(Tmp, Tmp2);
3705       // We computed what we know about the sign bits as our first
3706       // answer. Now proceed to the generic code that uses
3707       // computeKnownBits, and pick whichever answer is better.
3708     }
3709     break;
3710 
3711   case ISD::SELECT:
3712   case ISD::VSELECT:
3713     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3714     if (Tmp == 1) return 1;  // Early out.
3715     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3716     return std::min(Tmp, Tmp2);
3717   case ISD::SELECT_CC:
3718     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3719     if (Tmp == 1) return 1;  // Early out.
3720     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3721     return std::min(Tmp, Tmp2);
3722 
3723   case ISD::SMIN:
3724   case ISD::SMAX: {
3725     // If we have a clamp pattern, we know that the number of sign bits will be
3726     // the minimum of the clamp min/max range.
3727     bool IsMax = (Opcode == ISD::SMAX);
3728     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3729     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3730       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3731         CstHigh =
3732             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3733     if (CstLow && CstHigh) {
3734       if (!IsMax)
3735         std::swap(CstLow, CstHigh);
3736       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3737         Tmp = CstLow->getAPIntValue().getNumSignBits();
3738         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3739         return std::min(Tmp, Tmp2);
3740       }
3741     }
3742 
3743     // Fallback - just get the minimum number of sign bits of the operands.
3744     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3745     if (Tmp == 1)
3746       return 1;  // Early out.
3747     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3748     return std::min(Tmp, Tmp2);
3749   }
3750   case ISD::UMIN:
3751   case ISD::UMAX:
3752     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3753     if (Tmp == 1)
3754       return 1;  // Early out.
3755     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3756     return std::min(Tmp, Tmp2);
3757   case ISD::SADDO:
3758   case ISD::UADDO:
3759   case ISD::SSUBO:
3760   case ISD::USUBO:
3761   case ISD::SMULO:
3762   case ISD::UMULO:
3763     if (Op.getResNo() != 1)
3764       break;
3765     // The boolean result conforms to getBooleanContents.  Fall through.
3766     // If setcc returns 0/-1, all bits are sign bits.
3767     // We know that we have an integer-based boolean since these operations
3768     // are only available for integer.
3769     if (TLI->getBooleanContents(VT.isVector(), false) ==
3770         TargetLowering::ZeroOrNegativeOneBooleanContent)
3771       return VTBits;
3772     break;
3773   case ISD::SETCC:
3774   case ISD::STRICT_FSETCC:
3775   case ISD::STRICT_FSETCCS: {
3776     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3777     // If setcc returns 0/-1, all bits are sign bits.
3778     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3779         TargetLowering::ZeroOrNegativeOneBooleanContent)
3780       return VTBits;
3781     break;
3782   }
3783   case ISD::ROTL:
3784   case ISD::ROTR:
3785     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3786 
3787     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3788     if (Tmp == VTBits)
3789       return VTBits;
3790 
3791     if (ConstantSDNode *C =
3792             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3793       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3794 
3795       // Handle rotate right by N like a rotate left by 32-N.
3796       if (Opcode == ISD::ROTR)
3797         RotAmt = (VTBits - RotAmt) % VTBits;
3798 
3799       // If we aren't rotating out all of the known-in sign bits, return the
3800       // number that are left.  This handles rotl(sext(x), 1) for example.
3801       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3802     }
3803     break;
3804   case ISD::ADD:
3805   case ISD::ADDC:
3806     // Add can have at most one carry bit.  Thus we know that the output
3807     // is, at worst, one more bit than the inputs.
3808     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3809     if (Tmp == 1) return 1; // Early out.
3810 
3811     // Special case decrementing a value (ADD X, -1):
3812     if (ConstantSDNode *CRHS =
3813             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3814       if (CRHS->isAllOnesValue()) {
3815         KnownBits Known =
3816             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3817 
3818         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3819         // sign bits set.
3820         if ((Known.Zero | 1).isAllOnesValue())
3821           return VTBits;
3822 
3823         // If we are subtracting one from a positive number, there is no carry
3824         // out of the result.
3825         if (Known.isNonNegative())
3826           return Tmp;
3827       }
3828 
3829     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3830     if (Tmp2 == 1) return 1; // Early out.
3831     return std::min(Tmp, Tmp2) - 1;
3832   case ISD::SUB:
3833     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3834     if (Tmp2 == 1) return 1; // Early out.
3835 
3836     // Handle NEG.
3837     if (ConstantSDNode *CLHS =
3838             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3839       if (CLHS->isNullValue()) {
3840         KnownBits Known =
3841             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3842         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3843         // sign bits set.
3844         if ((Known.Zero | 1).isAllOnesValue())
3845           return VTBits;
3846 
3847         // If the input is known to be positive (the sign bit is known clear),
3848         // the output of the NEG has the same number of sign bits as the input.
3849         if (Known.isNonNegative())
3850           return Tmp2;
3851 
3852         // Otherwise, we treat this like a SUB.
3853       }
3854 
3855     // Sub can have at most one carry bit.  Thus we know that the output
3856     // is, at worst, one more bit than the inputs.
3857     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3858     if (Tmp == 1) return 1; // Early out.
3859     return std::min(Tmp, Tmp2) - 1;
3860   case ISD::MUL: {
3861     // The output of the Mul can be at most twice the valid bits in the inputs.
3862     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3863     if (SignBitsOp0 == 1)
3864       break;
3865     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3866     if (SignBitsOp1 == 1)
3867       break;
3868     unsigned OutValidBits =
3869         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3870     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3871   }
3872   case ISD::TRUNCATE: {
3873     // Check if the sign bits of source go down as far as the truncated value.
3874     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3875     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3876     if (NumSrcSignBits > (NumSrcBits - VTBits))
3877       return NumSrcSignBits - (NumSrcBits - VTBits);
3878     break;
3879   }
3880   case ISD::EXTRACT_ELEMENT: {
3881     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3882     const int BitWidth = Op.getValueSizeInBits();
3883     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3884 
3885     // Get reverse index (starting from 1), Op1 value indexes elements from
3886     // little end. Sign starts at big end.
3887     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3888 
3889     // If the sign portion ends in our element the subtraction gives correct
3890     // result. Otherwise it gives either negative or > bitwidth result
3891     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3892   }
3893   case ISD::INSERT_VECTOR_ELT: {
3894     // If we know the element index, split the demand between the
3895     // source vector and the inserted element, otherwise assume we need
3896     // the original demanded vector elements and the value.
3897     SDValue InVec = Op.getOperand(0);
3898     SDValue InVal = Op.getOperand(1);
3899     SDValue EltNo = Op.getOperand(2);
3900     bool DemandedVal = true;
3901     APInt DemandedVecElts = DemandedElts;
3902     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3903     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3904       unsigned EltIdx = CEltNo->getZExtValue();
3905       DemandedVal = !!DemandedElts[EltIdx];
3906       DemandedVecElts.clearBit(EltIdx);
3907     }
3908     Tmp = std::numeric_limits<unsigned>::max();
3909     if (DemandedVal) {
3910       // TODO - handle implicit truncation of inserted elements.
3911       if (InVal.getScalarValueSizeInBits() != VTBits)
3912         break;
3913       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3914       Tmp = std::min(Tmp, Tmp2);
3915     }
3916     if (!!DemandedVecElts) {
3917       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3918       Tmp = std::min(Tmp, Tmp2);
3919     }
3920     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3921     return Tmp;
3922   }
3923   case ISD::EXTRACT_VECTOR_ELT: {
3924     SDValue InVec = Op.getOperand(0);
3925     SDValue EltNo = Op.getOperand(1);
3926     EVT VecVT = InVec.getValueType();
3927     // ComputeNumSignBits not yet implemented for scalable vectors.
3928     if (VecVT.isScalableVector())
3929       break;
3930     const unsigned BitWidth = Op.getValueSizeInBits();
3931     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3932     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3933 
3934     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3935     // anything about sign bits. But if the sizes match we can derive knowledge
3936     // about sign bits from the vector operand.
3937     if (BitWidth != EltBitWidth)
3938       break;
3939 
3940     // If we know the element index, just demand that vector element, else for
3941     // an unknown element index, ignore DemandedElts and demand them all.
3942     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3943     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3944     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3945       DemandedSrcElts =
3946           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3947 
3948     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3949   }
3950   case ISD::EXTRACT_SUBVECTOR: {
3951     // Offset the demanded elts by the subvector index.
3952     SDValue Src = Op.getOperand(0);
3953     // Bail until we can represent demanded elements for scalable vectors.
3954     if (Src.getValueType().isScalableVector())
3955       break;
3956     uint64_t Idx = Op.getConstantOperandVal(1);
3957     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3958     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3959     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3960   }
3961   case ISD::CONCAT_VECTORS: {
3962     // Determine the minimum number of sign bits across all demanded
3963     // elts of the input vectors. Early out if the result is already 1.
3964     Tmp = std::numeric_limits<unsigned>::max();
3965     EVT SubVectorVT = Op.getOperand(0).getValueType();
3966     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3967     unsigned NumSubVectors = Op.getNumOperands();
3968     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3969       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3970       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3971       if (!DemandedSub)
3972         continue;
3973       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3974       Tmp = std::min(Tmp, Tmp2);
3975     }
3976     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3977     return Tmp;
3978   }
3979   case ISD::INSERT_SUBVECTOR: {
3980     // Demand any elements from the subvector and the remainder from the src its
3981     // inserted into.
3982     SDValue Src = Op.getOperand(0);
3983     SDValue Sub = Op.getOperand(1);
3984     uint64_t Idx = Op.getConstantOperandVal(2);
3985     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3986     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3987     APInt DemandedSrcElts = DemandedElts;
3988     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3989 
3990     Tmp = std::numeric_limits<unsigned>::max();
3991     if (!!DemandedSubElts) {
3992       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3993       if (Tmp == 1)
3994         return 1; // early-out
3995     }
3996     if (!!DemandedSrcElts) {
3997       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3998       Tmp = std::min(Tmp, Tmp2);
3999     }
4000     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4001     return Tmp;
4002   }
4003   }
4004 
4005   // If we are looking at the loaded value of the SDNode.
4006   if (Op.getResNo() == 0) {
4007     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4008     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4009       unsigned ExtType = LD->getExtensionType();
4010       switch (ExtType) {
4011       default: break;
4012       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4013         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4014         return VTBits - Tmp + 1;
4015       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4016         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4017         return VTBits - Tmp;
4018       case ISD::NON_EXTLOAD:
4019         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4020           // We only need to handle vectors - computeKnownBits should handle
4021           // scalar cases.
4022           Type *CstTy = Cst->getType();
4023           if (CstTy->isVectorTy() &&
4024               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4025             Tmp = VTBits;
4026             for (unsigned i = 0; i != NumElts; ++i) {
4027               if (!DemandedElts[i])
4028                 continue;
4029               if (Constant *Elt = Cst->getAggregateElement(i)) {
4030                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4031                   const APInt &Value = CInt->getValue();
4032                   Tmp = std::min(Tmp, Value.getNumSignBits());
4033                   continue;
4034                 }
4035                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4036                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4037                   Tmp = std::min(Tmp, Value.getNumSignBits());
4038                   continue;
4039                 }
4040               }
4041               // Unknown type. Conservatively assume no bits match sign bit.
4042               return 1;
4043             }
4044             return Tmp;
4045           }
4046         }
4047         break;
4048       }
4049     }
4050   }
4051 
4052   // Allow the target to implement this method for its nodes.
4053   if (Opcode >= ISD::BUILTIN_OP_END ||
4054       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4055       Opcode == ISD::INTRINSIC_W_CHAIN ||
4056       Opcode == ISD::INTRINSIC_VOID) {
4057     unsigned NumBits =
4058         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4059     if (NumBits > 1)
4060       FirstAnswer = std::max(FirstAnswer, NumBits);
4061   }
4062 
4063   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4064   // use this information.
4065   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4066 
4067   APInt Mask;
4068   if (Known.isNonNegative()) {        // sign bit is 0
4069     Mask = Known.Zero;
4070   } else if (Known.isNegative()) {  // sign bit is 1;
4071     Mask = Known.One;
4072   } else {
4073     // Nothing known.
4074     return FirstAnswer;
4075   }
4076 
4077   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4078   // the number of identical bits in the top of the input value.
4079   Mask <<= Mask.getBitWidth()-VTBits;
4080   return std::max(FirstAnswer, Mask.countLeadingOnes());
4081 }
4082 
4083 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4084   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4085       !isa<ConstantSDNode>(Op.getOperand(1)))
4086     return false;
4087 
4088   if (Op.getOpcode() == ISD::OR &&
4089       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4090     return false;
4091 
4092   return true;
4093 }
4094 
4095 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4096   // If we're told that NaNs won't happen, assume they won't.
4097   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4098     return true;
4099 
4100   if (Depth >= MaxRecursionDepth)
4101     return false; // Limit search depth.
4102 
4103   // TODO: Handle vectors.
4104   // If the value is a constant, we can obviously see if it is a NaN or not.
4105   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4106     return !C->getValueAPF().isNaN() ||
4107            (SNaN && !C->getValueAPF().isSignaling());
4108   }
4109 
4110   unsigned Opcode = Op.getOpcode();
4111   switch (Opcode) {
4112   case ISD::FADD:
4113   case ISD::FSUB:
4114   case ISD::FMUL:
4115   case ISD::FDIV:
4116   case ISD::FREM:
4117   case ISD::FSIN:
4118   case ISD::FCOS: {
4119     if (SNaN)
4120       return true;
4121     // TODO: Need isKnownNeverInfinity
4122     return false;
4123   }
4124   case ISD::FCANONICALIZE:
4125   case ISD::FEXP:
4126   case ISD::FEXP2:
4127   case ISD::FTRUNC:
4128   case ISD::FFLOOR:
4129   case ISD::FCEIL:
4130   case ISD::FROUND:
4131   case ISD::FROUNDEVEN:
4132   case ISD::FRINT:
4133   case ISD::FNEARBYINT: {
4134     if (SNaN)
4135       return true;
4136     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4137   }
4138   case ISD::FABS:
4139   case ISD::FNEG:
4140   case ISD::FCOPYSIGN: {
4141     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4142   }
4143   case ISD::SELECT:
4144     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4145            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4146   case ISD::FP_EXTEND:
4147   case ISD::FP_ROUND: {
4148     if (SNaN)
4149       return true;
4150     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4151   }
4152   case ISD::SINT_TO_FP:
4153   case ISD::UINT_TO_FP:
4154     return true;
4155   case ISD::FMA:
4156   case ISD::FMAD: {
4157     if (SNaN)
4158       return true;
4159     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4160            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4161            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4162   }
4163   case ISD::FSQRT: // Need is known positive
4164   case ISD::FLOG:
4165   case ISD::FLOG2:
4166   case ISD::FLOG10:
4167   case ISD::FPOWI:
4168   case ISD::FPOW: {
4169     if (SNaN)
4170       return true;
4171     // TODO: Refine on operand
4172     return false;
4173   }
4174   case ISD::FMINNUM:
4175   case ISD::FMAXNUM: {
4176     // Only one needs to be known not-nan, since it will be returned if the
4177     // other ends up being one.
4178     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4179            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4180   }
4181   case ISD::FMINNUM_IEEE:
4182   case ISD::FMAXNUM_IEEE: {
4183     if (SNaN)
4184       return true;
4185     // This can return a NaN if either operand is an sNaN, or if both operands
4186     // are NaN.
4187     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4188             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4189            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4190             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4191   }
4192   case ISD::FMINIMUM:
4193   case ISD::FMAXIMUM: {
4194     // TODO: Does this quiet or return the origina NaN as-is?
4195     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4196            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4197   }
4198   case ISD::EXTRACT_VECTOR_ELT: {
4199     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4200   }
4201   default:
4202     if (Opcode >= ISD::BUILTIN_OP_END ||
4203         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4204         Opcode == ISD::INTRINSIC_W_CHAIN ||
4205         Opcode == ISD::INTRINSIC_VOID) {
4206       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4207     }
4208 
4209     return false;
4210   }
4211 }
4212 
4213 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4214   assert(Op.getValueType().isFloatingPoint() &&
4215          "Floating point type expected");
4216 
4217   // If the value is a constant, we can obviously see if it is a zero or not.
4218   // TODO: Add BuildVector support.
4219   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4220     return !C->isZero();
4221   return false;
4222 }
4223 
4224 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4225   assert(!Op.getValueType().isFloatingPoint() &&
4226          "Floating point types unsupported - use isKnownNeverZeroFloat");
4227 
4228   // If the value is a constant, we can obviously see if it is a zero or not.
4229   if (ISD::matchUnaryPredicate(
4230           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4231     return true;
4232 
4233   // TODO: Recognize more cases here.
4234   switch (Op.getOpcode()) {
4235   default: break;
4236   case ISD::OR:
4237     if (isKnownNeverZero(Op.getOperand(1)) ||
4238         isKnownNeverZero(Op.getOperand(0)))
4239       return true;
4240     break;
4241   }
4242 
4243   return false;
4244 }
4245 
4246 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4247   // Check the obvious case.
4248   if (A == B) return true;
4249 
4250   // For for negative and positive zero.
4251   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4252     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4253       if (CA->isZero() && CB->isZero()) return true;
4254 
4255   // Otherwise they may not be equal.
4256   return false;
4257 }
4258 
4259 // FIXME: unify with llvm::haveNoCommonBitsSet.
4260 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4261 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4262   assert(A.getValueType() == B.getValueType() &&
4263          "Values must have the same type");
4264   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4265 }
4266 
4267 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4268                                 ArrayRef<SDValue> Ops,
4269                                 SelectionDAG &DAG) {
4270   int NumOps = Ops.size();
4271   assert(NumOps != 0 && "Can't build an empty vector!");
4272   assert(!VT.isScalableVector() &&
4273          "BUILD_VECTOR cannot be used with scalable types");
4274   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4275          "Incorrect element count in BUILD_VECTOR!");
4276 
4277   // BUILD_VECTOR of UNDEFs is UNDEF.
4278   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4279     return DAG.getUNDEF(VT);
4280 
4281   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4282   SDValue IdentitySrc;
4283   bool IsIdentity = true;
4284   for (int i = 0; i != NumOps; ++i) {
4285     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4286         Ops[i].getOperand(0).getValueType() != VT ||
4287         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4288         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4289         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4290       IsIdentity = false;
4291       break;
4292     }
4293     IdentitySrc = Ops[i].getOperand(0);
4294   }
4295   if (IsIdentity)
4296     return IdentitySrc;
4297 
4298   return SDValue();
4299 }
4300 
4301 /// Try to simplify vector concatenation to an input value, undef, or build
4302 /// vector.
4303 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4304                                   ArrayRef<SDValue> Ops,
4305                                   SelectionDAG &DAG) {
4306   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4307   assert(llvm::all_of(Ops,
4308                       [Ops](SDValue Op) {
4309                         return Ops[0].getValueType() == Op.getValueType();
4310                       }) &&
4311          "Concatenation of vectors with inconsistent value types!");
4312   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4313              VT.getVectorElementCount() &&
4314          "Incorrect element count in vector concatenation!");
4315 
4316   if (Ops.size() == 1)
4317     return Ops[0];
4318 
4319   // Concat of UNDEFs is UNDEF.
4320   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4321     return DAG.getUNDEF(VT);
4322 
4323   // Scan the operands and look for extract operations from a single source
4324   // that correspond to insertion at the same location via this concatenation:
4325   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4326   SDValue IdentitySrc;
4327   bool IsIdentity = true;
4328   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4329     SDValue Op = Ops[i];
4330     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4331     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4332         Op.getOperand(0).getValueType() != VT ||
4333         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4334         Op.getConstantOperandVal(1) != IdentityIndex) {
4335       IsIdentity = false;
4336       break;
4337     }
4338     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4339            "Unexpected identity source vector for concat of extracts");
4340     IdentitySrc = Op.getOperand(0);
4341   }
4342   if (IsIdentity) {
4343     assert(IdentitySrc && "Failed to set source vector of extracts");
4344     return IdentitySrc;
4345   }
4346 
4347   // The code below this point is only designed to work for fixed width
4348   // vectors, so we bail out for now.
4349   if (VT.isScalableVector())
4350     return SDValue();
4351 
4352   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4353   // simplified to one big BUILD_VECTOR.
4354   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4355   EVT SVT = VT.getScalarType();
4356   SmallVector<SDValue, 16> Elts;
4357   for (SDValue Op : Ops) {
4358     EVT OpVT = Op.getValueType();
4359     if (Op.isUndef())
4360       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4361     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4362       Elts.append(Op->op_begin(), Op->op_end());
4363     else
4364       return SDValue();
4365   }
4366 
4367   // BUILD_VECTOR requires all inputs to be of the same type, find the
4368   // maximum type and extend them all.
4369   for (SDValue Op : Elts)
4370     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4371 
4372   if (SVT.bitsGT(VT.getScalarType())) {
4373     for (SDValue &Op : Elts) {
4374       if (Op.isUndef())
4375         Op = DAG.getUNDEF(SVT);
4376       else
4377         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4378                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4379                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4380     }
4381   }
4382 
4383   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4384   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4385   return V;
4386 }
4387 
4388 /// Gets or creates the specified node.
4389 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4390   FoldingSetNodeID ID;
4391   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4392   void *IP = nullptr;
4393   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4394     return SDValue(E, 0);
4395 
4396   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4397                               getVTList(VT));
4398   CSEMap.InsertNode(N, IP);
4399 
4400   InsertNode(N);
4401   SDValue V = SDValue(N, 0);
4402   NewSDValueDbgMsg(V, "Creating new node: ", this);
4403   return V;
4404 }
4405 
4406 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4407                               SDValue Operand) {
4408   SDNodeFlags Flags;
4409   if (Inserter)
4410     Flags = Inserter->getFlags();
4411   return getNode(Opcode, DL, VT, Operand, Flags);
4412 }
4413 
4414 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4415                               SDValue Operand, const SDNodeFlags Flags) {
4416   // Constant fold unary operations with an integer constant operand. Even
4417   // opaque constant will be folded, because the folding of unary operations
4418   // doesn't create new constants with different values. Nevertheless, the
4419   // opaque flag is preserved during folding to prevent future folding with
4420   // other constants.
4421   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4422     const APInt &Val = C->getAPIntValue();
4423     switch (Opcode) {
4424     default: break;
4425     case ISD::SIGN_EXTEND:
4426       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4427                          C->isTargetOpcode(), C->isOpaque());
4428     case ISD::TRUNCATE:
4429       if (C->isOpaque())
4430         break;
4431       LLVM_FALLTHROUGH;
4432     case ISD::ANY_EXTEND:
4433     case ISD::ZERO_EXTEND:
4434       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4435                          C->isTargetOpcode(), C->isOpaque());
4436     case ISD::UINT_TO_FP:
4437     case ISD::SINT_TO_FP: {
4438       APFloat apf(EVTToAPFloatSemantics(VT),
4439                   APInt::getNullValue(VT.getSizeInBits()));
4440       (void)apf.convertFromAPInt(Val,
4441                                  Opcode==ISD::SINT_TO_FP,
4442                                  APFloat::rmNearestTiesToEven);
4443       return getConstantFP(apf, DL, VT);
4444     }
4445     case ISD::BITCAST:
4446       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4447         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4448       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4449         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4450       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4451         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4452       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4453         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4454       break;
4455     case ISD::ABS:
4456       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4457                          C->isOpaque());
4458     case ISD::BITREVERSE:
4459       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4460                          C->isOpaque());
4461     case ISD::BSWAP:
4462       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4463                          C->isOpaque());
4464     case ISD::CTPOP:
4465       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4466                          C->isOpaque());
4467     case ISD::CTLZ:
4468     case ISD::CTLZ_ZERO_UNDEF:
4469       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4470                          C->isOpaque());
4471     case ISD::CTTZ:
4472     case ISD::CTTZ_ZERO_UNDEF:
4473       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4474                          C->isOpaque());
4475     case ISD::FP16_TO_FP: {
4476       bool Ignored;
4477       APFloat FPV(APFloat::IEEEhalf(),
4478                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4479 
4480       // This can return overflow, underflow, or inexact; we don't care.
4481       // FIXME need to be more flexible about rounding mode.
4482       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4483                         APFloat::rmNearestTiesToEven, &Ignored);
4484       return getConstantFP(FPV, DL, VT);
4485     }
4486     }
4487   }
4488 
4489   // Constant fold unary operations with a floating point constant operand.
4490   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4491     APFloat V = C->getValueAPF();    // make copy
4492     switch (Opcode) {
4493     case ISD::FNEG:
4494       V.changeSign();
4495       return getConstantFP(V, DL, VT);
4496     case ISD::FABS:
4497       V.clearSign();
4498       return getConstantFP(V, DL, VT);
4499     case ISD::FCEIL: {
4500       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4501       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4502         return getConstantFP(V, DL, VT);
4503       break;
4504     }
4505     case ISD::FTRUNC: {
4506       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4507       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4508         return getConstantFP(V, DL, VT);
4509       break;
4510     }
4511     case ISD::FFLOOR: {
4512       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4513       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4514         return getConstantFP(V, DL, VT);
4515       break;
4516     }
4517     case ISD::FP_EXTEND: {
4518       bool ignored;
4519       // This can return overflow, underflow, or inexact; we don't care.
4520       // FIXME need to be more flexible about rounding mode.
4521       (void)V.convert(EVTToAPFloatSemantics(VT),
4522                       APFloat::rmNearestTiesToEven, &ignored);
4523       return getConstantFP(V, DL, VT);
4524     }
4525     case ISD::FP_TO_SINT:
4526     case ISD::FP_TO_UINT: {
4527       bool ignored;
4528       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4529       // FIXME need to be more flexible about rounding mode.
4530       APFloat::opStatus s =
4531           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4532       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4533         break;
4534       return getConstant(IntVal, DL, VT);
4535     }
4536     case ISD::BITCAST:
4537       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4538         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4539       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4540         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4541       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4542         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4543       break;
4544     case ISD::FP_TO_FP16: {
4545       bool Ignored;
4546       // This can return overflow, underflow, or inexact; we don't care.
4547       // FIXME need to be more flexible about rounding mode.
4548       (void)V.convert(APFloat::IEEEhalf(),
4549                       APFloat::rmNearestTiesToEven, &Ignored);
4550       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4551     }
4552     }
4553   }
4554 
4555   // Constant fold unary operations with a vector integer or float operand.
4556   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4557     if (BV->isConstant()) {
4558       switch (Opcode) {
4559       default:
4560         // FIXME: Entirely reasonable to perform folding of other unary
4561         // operations here as the need arises.
4562         break;
4563       case ISD::FNEG:
4564       case ISD::FABS:
4565       case ISD::FCEIL:
4566       case ISD::FTRUNC:
4567       case ISD::FFLOOR:
4568       case ISD::FP_EXTEND:
4569       case ISD::FP_TO_SINT:
4570       case ISD::FP_TO_UINT:
4571       case ISD::TRUNCATE:
4572       case ISD::ANY_EXTEND:
4573       case ISD::ZERO_EXTEND:
4574       case ISD::SIGN_EXTEND:
4575       case ISD::UINT_TO_FP:
4576       case ISD::SINT_TO_FP:
4577       case ISD::ABS:
4578       case ISD::BITREVERSE:
4579       case ISD::BSWAP:
4580       case ISD::CTLZ:
4581       case ISD::CTLZ_ZERO_UNDEF:
4582       case ISD::CTTZ:
4583       case ISD::CTTZ_ZERO_UNDEF:
4584       case ISD::CTPOP: {
4585         SDValue Ops = { Operand };
4586         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4587           return Fold;
4588       }
4589       }
4590     }
4591   }
4592 
4593   unsigned OpOpcode = Operand.getNode()->getOpcode();
4594   switch (Opcode) {
4595   case ISD::FREEZE:
4596     assert(VT == Operand.getValueType() && "Unexpected VT!");
4597     break;
4598   case ISD::TokenFactor:
4599   case ISD::MERGE_VALUES:
4600   case ISD::CONCAT_VECTORS:
4601     return Operand;         // Factor, merge or concat of one node?  No need.
4602   case ISD::BUILD_VECTOR: {
4603     // Attempt to simplify BUILD_VECTOR.
4604     SDValue Ops[] = {Operand};
4605     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4606       return V;
4607     break;
4608   }
4609   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4610   case ISD::FP_EXTEND:
4611     assert(VT.isFloatingPoint() &&
4612            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4613     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4614     assert((!VT.isVector() ||
4615             VT.getVectorElementCount() ==
4616             Operand.getValueType().getVectorElementCount()) &&
4617            "Vector element count mismatch!");
4618     assert(Operand.getValueType().bitsLT(VT) &&
4619            "Invalid fpext node, dst < src!");
4620     if (Operand.isUndef())
4621       return getUNDEF(VT);
4622     break;
4623   case ISD::FP_TO_SINT:
4624   case ISD::FP_TO_UINT:
4625     if (Operand.isUndef())
4626       return getUNDEF(VT);
4627     break;
4628   case ISD::SINT_TO_FP:
4629   case ISD::UINT_TO_FP:
4630     // [us]itofp(undef) = 0, because the result value is bounded.
4631     if (Operand.isUndef())
4632       return getConstantFP(0.0, DL, VT);
4633     break;
4634   case ISD::SIGN_EXTEND:
4635     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4636            "Invalid SIGN_EXTEND!");
4637     assert(VT.isVector() == Operand.getValueType().isVector() &&
4638            "SIGN_EXTEND result type type should be vector iff the operand "
4639            "type is vector!");
4640     if (Operand.getValueType() == VT) return Operand;   // noop extension
4641     assert((!VT.isVector() ||
4642             VT.getVectorElementCount() ==
4643                 Operand.getValueType().getVectorElementCount()) &&
4644            "Vector element count mismatch!");
4645     assert(Operand.getValueType().bitsLT(VT) &&
4646            "Invalid sext node, dst < src!");
4647     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4648       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4649     else if (OpOpcode == ISD::UNDEF)
4650       // sext(undef) = 0, because the top bits will all be the same.
4651       return getConstant(0, DL, VT);
4652     break;
4653   case ISD::ZERO_EXTEND:
4654     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4655            "Invalid ZERO_EXTEND!");
4656     assert(VT.isVector() == Operand.getValueType().isVector() &&
4657            "ZERO_EXTEND result type type should be vector iff the operand "
4658            "type is vector!");
4659     if (Operand.getValueType() == VT) return Operand;   // noop extension
4660     assert((!VT.isVector() ||
4661             VT.getVectorElementCount() ==
4662                 Operand.getValueType().getVectorElementCount()) &&
4663            "Vector element count mismatch!");
4664     assert(Operand.getValueType().bitsLT(VT) &&
4665            "Invalid zext node, dst < src!");
4666     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4667       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4668     else if (OpOpcode == ISD::UNDEF)
4669       // zext(undef) = 0, because the top bits will be zero.
4670       return getConstant(0, DL, VT);
4671     break;
4672   case ISD::ANY_EXTEND:
4673     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4674            "Invalid ANY_EXTEND!");
4675     assert(VT.isVector() == Operand.getValueType().isVector() &&
4676            "ANY_EXTEND result type type should be vector iff the operand "
4677            "type is vector!");
4678     if (Operand.getValueType() == VT) return Operand;   // noop extension
4679     assert((!VT.isVector() ||
4680             VT.getVectorElementCount() ==
4681                 Operand.getValueType().getVectorElementCount()) &&
4682            "Vector element count mismatch!");
4683     assert(Operand.getValueType().bitsLT(VT) &&
4684            "Invalid anyext node, dst < src!");
4685 
4686     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4687         OpOpcode == ISD::ANY_EXTEND)
4688       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4689       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4690     else if (OpOpcode == ISD::UNDEF)
4691       return getUNDEF(VT);
4692 
4693     // (ext (trunc x)) -> x
4694     if (OpOpcode == ISD::TRUNCATE) {
4695       SDValue OpOp = Operand.getOperand(0);
4696       if (OpOp.getValueType() == VT) {
4697         transferDbgValues(Operand, OpOp);
4698         return OpOp;
4699       }
4700     }
4701     break;
4702   case ISD::TRUNCATE:
4703     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4704            "Invalid TRUNCATE!");
4705     assert(VT.isVector() == Operand.getValueType().isVector() &&
4706            "TRUNCATE result type type should be vector iff the operand "
4707            "type is vector!");
4708     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4709     assert((!VT.isVector() ||
4710             VT.getVectorElementCount() ==
4711                 Operand.getValueType().getVectorElementCount()) &&
4712            "Vector element count mismatch!");
4713     assert(Operand.getValueType().bitsGT(VT) &&
4714            "Invalid truncate node, src < dst!");
4715     if (OpOpcode == ISD::TRUNCATE)
4716       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4717     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4718         OpOpcode == ISD::ANY_EXTEND) {
4719       // If the source is smaller than the dest, we still need an extend.
4720       if (Operand.getOperand(0).getValueType().getScalarType()
4721             .bitsLT(VT.getScalarType()))
4722         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4723       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4724         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4725       return Operand.getOperand(0);
4726     }
4727     if (OpOpcode == ISD::UNDEF)
4728       return getUNDEF(VT);
4729     break;
4730   case ISD::ANY_EXTEND_VECTOR_INREG:
4731   case ISD::ZERO_EXTEND_VECTOR_INREG:
4732   case ISD::SIGN_EXTEND_VECTOR_INREG:
4733     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4734     assert(Operand.getValueType().bitsLE(VT) &&
4735            "The input must be the same size or smaller than the result.");
4736     assert(VT.getVectorNumElements() <
4737              Operand.getValueType().getVectorNumElements() &&
4738            "The destination vector type must have fewer lanes than the input.");
4739     break;
4740   case ISD::ABS:
4741     assert(VT.isInteger() && VT == Operand.getValueType() &&
4742            "Invalid ABS!");
4743     if (OpOpcode == ISD::UNDEF)
4744       return getUNDEF(VT);
4745     break;
4746   case ISD::BSWAP:
4747     assert(VT.isInteger() && VT == Operand.getValueType() &&
4748            "Invalid BSWAP!");
4749     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4750            "BSWAP types must be a multiple of 16 bits!");
4751     if (OpOpcode == ISD::UNDEF)
4752       return getUNDEF(VT);
4753     break;
4754   case ISD::BITREVERSE:
4755     assert(VT.isInteger() && VT == Operand.getValueType() &&
4756            "Invalid BITREVERSE!");
4757     if (OpOpcode == ISD::UNDEF)
4758       return getUNDEF(VT);
4759     break;
4760   case ISD::BITCAST:
4761     // Basic sanity checking.
4762     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4763            "Cannot BITCAST between types of different sizes!");
4764     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4765     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4766       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4767     if (OpOpcode == ISD::UNDEF)
4768       return getUNDEF(VT);
4769     break;
4770   case ISD::SCALAR_TO_VECTOR:
4771     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4772            (VT.getVectorElementType() == Operand.getValueType() ||
4773             (VT.getVectorElementType().isInteger() &&
4774              Operand.getValueType().isInteger() &&
4775              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4776            "Illegal SCALAR_TO_VECTOR node!");
4777     if (OpOpcode == ISD::UNDEF)
4778       return getUNDEF(VT);
4779     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4780     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4781         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4782         Operand.getConstantOperandVal(1) == 0 &&
4783         Operand.getOperand(0).getValueType() == VT)
4784       return Operand.getOperand(0);
4785     break;
4786   case ISD::FNEG:
4787     // Negation of an unknown bag of bits is still completely undefined.
4788     if (OpOpcode == ISD::UNDEF)
4789       return getUNDEF(VT);
4790 
4791     if (OpOpcode == ISD::FNEG)  // --X -> X
4792       return Operand.getOperand(0);
4793     break;
4794   case ISD::FABS:
4795     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4796       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4797     break;
4798   case ISD::VSCALE:
4799     assert(VT == Operand.getValueType() && "Unexpected VT!");
4800     break;
4801   case ISD::CTPOP:
4802     if (Operand.getValueType().getScalarType() == MVT::i1)
4803       return Operand;
4804     break;
4805   case ISD::CTLZ:
4806   case ISD::CTTZ:
4807     if (Operand.getValueType().getScalarType() == MVT::i1)
4808       return getNOT(DL, Operand, Operand.getValueType());
4809     break;
4810   case ISD::VECREDUCE_SMIN:
4811   case ISD::VECREDUCE_UMAX:
4812     if (Operand.getValueType().getScalarType() == MVT::i1)
4813       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4814     break;
4815   case ISD::VECREDUCE_SMAX:
4816   case ISD::VECREDUCE_UMIN:
4817     if (Operand.getValueType().getScalarType() == MVT::i1)
4818       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4819     break;
4820   }
4821 
4822   SDNode *N;
4823   SDVTList VTs = getVTList(VT);
4824   SDValue Ops[] = {Operand};
4825   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4826     FoldingSetNodeID ID;
4827     AddNodeIDNode(ID, Opcode, VTs, Ops);
4828     void *IP = nullptr;
4829     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4830       E->intersectFlagsWith(Flags);
4831       return SDValue(E, 0);
4832     }
4833 
4834     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4835     N->setFlags(Flags);
4836     createOperands(N, Ops);
4837     CSEMap.InsertNode(N, IP);
4838   } else {
4839     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4840     createOperands(N, Ops);
4841   }
4842 
4843   InsertNode(N);
4844   SDValue V = SDValue(N, 0);
4845   NewSDValueDbgMsg(V, "Creating new node: ", this);
4846   return V;
4847 }
4848 
4849 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4850                                        const APInt &C2) {
4851   switch (Opcode) {
4852   case ISD::ADD:  return C1 + C2;
4853   case ISD::SUB:  return C1 - C2;
4854   case ISD::MUL:  return C1 * C2;
4855   case ISD::AND:  return C1 & C2;
4856   case ISD::OR:   return C1 | C2;
4857   case ISD::XOR:  return C1 ^ C2;
4858   case ISD::SHL:  return C1 << C2;
4859   case ISD::SRL:  return C1.lshr(C2);
4860   case ISD::SRA:  return C1.ashr(C2);
4861   case ISD::ROTL: return C1.rotl(C2);
4862   case ISD::ROTR: return C1.rotr(C2);
4863   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4864   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4865   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4866   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4867   case ISD::SADDSAT: return C1.sadd_sat(C2);
4868   case ISD::UADDSAT: return C1.uadd_sat(C2);
4869   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4870   case ISD::USUBSAT: return C1.usub_sat(C2);
4871   case ISD::UDIV:
4872     if (!C2.getBoolValue())
4873       break;
4874     return C1.udiv(C2);
4875   case ISD::UREM:
4876     if (!C2.getBoolValue())
4877       break;
4878     return C1.urem(C2);
4879   case ISD::SDIV:
4880     if (!C2.getBoolValue())
4881       break;
4882     return C1.sdiv(C2);
4883   case ISD::SREM:
4884     if (!C2.getBoolValue())
4885       break;
4886     return C1.srem(C2);
4887   }
4888   return llvm::None;
4889 }
4890 
4891 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4892                                        const GlobalAddressSDNode *GA,
4893                                        const SDNode *N2) {
4894   if (GA->getOpcode() != ISD::GlobalAddress)
4895     return SDValue();
4896   if (!TLI->isOffsetFoldingLegal(GA))
4897     return SDValue();
4898   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4899   if (!C2)
4900     return SDValue();
4901   int64_t Offset = C2->getSExtValue();
4902   switch (Opcode) {
4903   case ISD::ADD: break;
4904   case ISD::SUB: Offset = -uint64_t(Offset); break;
4905   default: return SDValue();
4906   }
4907   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4908                           GA->getOffset() + uint64_t(Offset));
4909 }
4910 
4911 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4912   switch (Opcode) {
4913   case ISD::SDIV:
4914   case ISD::UDIV:
4915   case ISD::SREM:
4916   case ISD::UREM: {
4917     // If a divisor is zero/undef or any element of a divisor vector is
4918     // zero/undef, the whole op is undef.
4919     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4920     SDValue Divisor = Ops[1];
4921     if (Divisor.isUndef() || isNullConstant(Divisor))
4922       return true;
4923 
4924     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4925            llvm::any_of(Divisor->op_values(),
4926                         [](SDValue V) { return V.isUndef() ||
4927                                         isNullConstant(V); });
4928     // TODO: Handle signed overflow.
4929   }
4930   // TODO: Handle oversized shifts.
4931   default:
4932     return false;
4933   }
4934 }
4935 
4936 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4937                                              EVT VT, ArrayRef<SDValue> Ops) {
4938   // If the opcode is a target-specific ISD node, there's nothing we can
4939   // do here and the operand rules may not line up with the below, so
4940   // bail early.
4941   if (Opcode >= ISD::BUILTIN_OP_END)
4942     return SDValue();
4943 
4944   // For now, the array Ops should only contain two values.
4945   // This enforcement will be removed once this function is merged with
4946   // FoldConstantVectorArithmetic
4947   if (Ops.size() != 2)
4948     return SDValue();
4949 
4950   if (isUndef(Opcode, Ops))
4951     return getUNDEF(VT);
4952 
4953   SDNode *N1 = Ops[0].getNode();
4954   SDNode *N2 = Ops[1].getNode();
4955 
4956   // Handle the case of two scalars.
4957   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4958     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4959       if (C1->isOpaque() || C2->isOpaque())
4960         return SDValue();
4961 
4962       Optional<APInt> FoldAttempt =
4963           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4964       if (!FoldAttempt)
4965         return SDValue();
4966 
4967       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4968       assert((!Folded || !VT.isVector()) &&
4969              "Can't fold vectors ops with scalar operands");
4970       return Folded;
4971     }
4972   }
4973 
4974   // fold (add Sym, c) -> Sym+c
4975   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4976     return FoldSymbolOffset(Opcode, VT, GA, N2);
4977   if (TLI->isCommutativeBinOp(Opcode))
4978     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4979       return FoldSymbolOffset(Opcode, VT, GA, N1);
4980 
4981   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4982   // vector width, however we should be able to do constant folds involving
4983   // splat vector nodes too.
4984   if (VT.isScalableVector())
4985     return SDValue();
4986 
4987   // For fixed width vectors, extract each constant element and fold them
4988   // individually. Either input may be an undef value.
4989   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4990   if (!BV1 && !N1->isUndef())
4991     return SDValue();
4992   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4993   if (!BV2 && !N2->isUndef())
4994     return SDValue();
4995   // If both operands are undef, that's handled the same way as scalars.
4996   if (!BV1 && !BV2)
4997     return SDValue();
4998 
4999   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5000          "Vector binop with different number of elements in operands?");
5001 
5002   EVT SVT = VT.getScalarType();
5003   EVT LegalSVT = SVT;
5004   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5005     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5006     if (LegalSVT.bitsLT(SVT))
5007       return SDValue();
5008   }
5009   SmallVector<SDValue, 4> Outputs;
5010   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5011   for (unsigned I = 0; I != NumOps; ++I) {
5012     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5013     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5014     if (SVT.isInteger()) {
5015       if (V1->getValueType(0).bitsGT(SVT))
5016         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5017       if (V2->getValueType(0).bitsGT(SVT))
5018         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5019     }
5020 
5021     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5022       return SDValue();
5023 
5024     // Fold one vector element.
5025     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5026     if (LegalSVT != SVT)
5027       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5028 
5029     // Scalar folding only succeeded if the result is a constant or UNDEF.
5030     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5031         ScalarResult.getOpcode() != ISD::ConstantFP)
5032       return SDValue();
5033     Outputs.push_back(ScalarResult);
5034   }
5035 
5036   assert(VT.getVectorNumElements() == Outputs.size() &&
5037          "Vector size mismatch!");
5038 
5039   // We may have a vector type but a scalar result. Create a splat.
5040   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5041 
5042   // Build a big vector out of the scalar elements we generated.
5043   return getBuildVector(VT, SDLoc(), Outputs);
5044 }
5045 
5046 // TODO: Merge with FoldConstantArithmetic
5047 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5048                                                    const SDLoc &DL, EVT VT,
5049                                                    ArrayRef<SDValue> Ops,
5050                                                    const SDNodeFlags Flags) {
5051   // If the opcode is a target-specific ISD node, there's nothing we can
5052   // do here and the operand rules may not line up with the below, so
5053   // bail early.
5054   if (Opcode >= ISD::BUILTIN_OP_END)
5055     return SDValue();
5056 
5057   if (isUndef(Opcode, Ops))
5058     return getUNDEF(VT);
5059 
5060   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5061   if (!VT.isVector())
5062     return SDValue();
5063 
5064   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5065   // vector width, however we should be able to do constant folds involving
5066   // splat vector nodes too.
5067   if (VT.isScalableVector())
5068     return SDValue();
5069 
5070   // From this point onwards all vectors are assumed to be fixed width.
5071   unsigned NumElts = VT.getVectorNumElements();
5072 
5073   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5074     return !Op.getValueType().isVector() ||
5075            Op.getValueType().getVectorNumElements() == NumElts;
5076   };
5077 
5078   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5079     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5080     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5081            (BV && BV->isConstant());
5082   };
5083 
5084   // All operands must be vector types with the same number of elements as
5085   // the result type and must be either UNDEF or a build vector of constant
5086   // or UNDEF scalars.
5087   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5088       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5089     return SDValue();
5090 
5091   // If we are comparing vectors, then the result needs to be a i1 boolean
5092   // that is then sign-extended back to the legal result type.
5093   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5094 
5095   // Find legal integer scalar type for constant promotion and
5096   // ensure that its scalar size is at least as large as source.
5097   EVT LegalSVT = VT.getScalarType();
5098   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5099     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5100     if (LegalSVT.bitsLT(VT.getScalarType()))
5101       return SDValue();
5102   }
5103 
5104   // Constant fold each scalar lane separately.
5105   SmallVector<SDValue, 4> ScalarResults;
5106   for (unsigned i = 0; i != NumElts; i++) {
5107     SmallVector<SDValue, 4> ScalarOps;
5108     for (SDValue Op : Ops) {
5109       EVT InSVT = Op.getValueType().getScalarType();
5110       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5111       if (!InBV) {
5112         // We've checked that this is UNDEF or a constant of some kind.
5113         if (Op.isUndef())
5114           ScalarOps.push_back(getUNDEF(InSVT));
5115         else
5116           ScalarOps.push_back(Op);
5117         continue;
5118       }
5119 
5120       SDValue ScalarOp = InBV->getOperand(i);
5121       EVT ScalarVT = ScalarOp.getValueType();
5122 
5123       // Build vector (integer) scalar operands may need implicit
5124       // truncation - do this before constant folding.
5125       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5126         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5127 
5128       ScalarOps.push_back(ScalarOp);
5129     }
5130 
5131     // Constant fold the scalar operands.
5132     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5133 
5134     // Legalize the (integer) scalar constant if necessary.
5135     if (LegalSVT != SVT)
5136       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5137 
5138     // Scalar folding only succeeded if the result is a constant or UNDEF.
5139     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5140         ScalarResult.getOpcode() != ISD::ConstantFP)
5141       return SDValue();
5142     ScalarResults.push_back(ScalarResult);
5143   }
5144 
5145   SDValue V = getBuildVector(VT, DL, ScalarResults);
5146   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5147   return V;
5148 }
5149 
5150 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5151                                          EVT VT, SDValue N1, SDValue N2) {
5152   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5153   //       should. That will require dealing with a potentially non-default
5154   //       rounding mode, checking the "opStatus" return value from the APFloat
5155   //       math calculations, and possibly other variations.
5156   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5157   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5158   if (N1CFP && N2CFP) {
5159     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5160     switch (Opcode) {
5161     case ISD::FADD:
5162       C1.add(C2, APFloat::rmNearestTiesToEven);
5163       return getConstantFP(C1, DL, VT);
5164     case ISD::FSUB:
5165       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5166       return getConstantFP(C1, DL, VT);
5167     case ISD::FMUL:
5168       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5169       return getConstantFP(C1, DL, VT);
5170     case ISD::FDIV:
5171       C1.divide(C2, APFloat::rmNearestTiesToEven);
5172       return getConstantFP(C1, DL, VT);
5173     case ISD::FREM:
5174       C1.mod(C2);
5175       return getConstantFP(C1, DL, VT);
5176     case ISD::FCOPYSIGN:
5177       C1.copySign(C2);
5178       return getConstantFP(C1, DL, VT);
5179     default: break;
5180     }
5181   }
5182   if (N1CFP && Opcode == ISD::FP_ROUND) {
5183     APFloat C1 = N1CFP->getValueAPF();    // make copy
5184     bool Unused;
5185     // This can return overflow, underflow, or inexact; we don't care.
5186     // FIXME need to be more flexible about rounding mode.
5187     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5188                       &Unused);
5189     return getConstantFP(C1, DL, VT);
5190   }
5191 
5192   switch (Opcode) {
5193   case ISD::FSUB:
5194     // -0.0 - undef --> undef (consistent with "fneg undef")
5195     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5196       return getUNDEF(VT);
5197     LLVM_FALLTHROUGH;
5198 
5199   case ISD::FADD:
5200   case ISD::FMUL:
5201   case ISD::FDIV:
5202   case ISD::FREM:
5203     // If both operands are undef, the result is undef. If 1 operand is undef,
5204     // the result is NaN. This should match the behavior of the IR optimizer.
5205     if (N1.isUndef() && N2.isUndef())
5206       return getUNDEF(VT);
5207     if (N1.isUndef() || N2.isUndef())
5208       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5209   }
5210   return SDValue();
5211 }
5212 
5213 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5214   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5215 
5216   // There's no need to assert on a byte-aligned pointer. All pointers are at
5217   // least byte aligned.
5218   if (A == Align(1))
5219     return Val;
5220 
5221   FoldingSetNodeID ID;
5222   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5223   ID.AddInteger(A.value());
5224 
5225   void *IP = nullptr;
5226   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5227     return SDValue(E, 0);
5228 
5229   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5230                                          Val.getValueType(), A);
5231   createOperands(N, {Val});
5232 
5233   CSEMap.InsertNode(N, IP);
5234   InsertNode(N);
5235 
5236   SDValue V(N, 0);
5237   NewSDValueDbgMsg(V, "Creating new node: ", this);
5238   return V;
5239 }
5240 
5241 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5242                               SDValue N1, SDValue N2) {
5243   SDNodeFlags Flags;
5244   if (Inserter)
5245     Flags = Inserter->getFlags();
5246   return getNode(Opcode, DL, VT, N1, N2, Flags);
5247 }
5248 
5249 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5250                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5251   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5252   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5253   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5254   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5255 
5256   // Canonicalize constant to RHS if commutative.
5257   if (TLI->isCommutativeBinOp(Opcode)) {
5258     if (N1C && !N2C) {
5259       std::swap(N1C, N2C);
5260       std::swap(N1, N2);
5261     } else if (N1CFP && !N2CFP) {
5262       std::swap(N1CFP, N2CFP);
5263       std::swap(N1, N2);
5264     }
5265   }
5266 
5267   switch (Opcode) {
5268   default: break;
5269   case ISD::TokenFactor:
5270     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5271            N2.getValueType() == MVT::Other && "Invalid token factor!");
5272     // Fold trivial token factors.
5273     if (N1.getOpcode() == ISD::EntryToken) return N2;
5274     if (N2.getOpcode() == ISD::EntryToken) return N1;
5275     if (N1 == N2) return N1;
5276     break;
5277   case ISD::BUILD_VECTOR: {
5278     // Attempt to simplify BUILD_VECTOR.
5279     SDValue Ops[] = {N1, N2};
5280     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5281       return V;
5282     break;
5283   }
5284   case ISD::CONCAT_VECTORS: {
5285     SDValue Ops[] = {N1, N2};
5286     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5287       return V;
5288     break;
5289   }
5290   case ISD::AND:
5291     assert(VT.isInteger() && "This operator does not apply to FP types!");
5292     assert(N1.getValueType() == N2.getValueType() &&
5293            N1.getValueType() == VT && "Binary operator types must match!");
5294     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5295     // worth handling here.
5296     if (N2C && N2C->isNullValue())
5297       return N2;
5298     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5299       return N1;
5300     break;
5301   case ISD::OR:
5302   case ISD::XOR:
5303   case ISD::ADD:
5304   case ISD::SUB:
5305     assert(VT.isInteger() && "This operator does not apply to FP types!");
5306     assert(N1.getValueType() == N2.getValueType() &&
5307            N1.getValueType() == VT && "Binary operator types must match!");
5308     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5309     // it's worth handling here.
5310     if (N2C && N2C->isNullValue())
5311       return N1;
5312     break;
5313   case ISD::MUL:
5314     assert(VT.isInteger() && "This operator does not apply to FP types!");
5315     assert(N1.getValueType() == N2.getValueType() &&
5316            N1.getValueType() == VT && "Binary operator types must match!");
5317     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5318       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5319       APInt N2CImm = N2C->getAPIntValue();
5320       return getVScale(DL, VT, MulImm * N2CImm);
5321     }
5322     break;
5323   case ISD::UDIV:
5324   case ISD::UREM:
5325   case ISD::MULHU:
5326   case ISD::MULHS:
5327   case ISD::SDIV:
5328   case ISD::SREM:
5329   case ISD::SADDSAT:
5330   case ISD::SSUBSAT:
5331   case ISD::UADDSAT:
5332   case ISD::USUBSAT:
5333     assert(VT.isInteger() && "This operator does not apply to FP types!");
5334     assert(N1.getValueType() == N2.getValueType() &&
5335            N1.getValueType() == VT && "Binary operator types must match!");
5336     break;
5337   case ISD::SMIN:
5338   case ISD::UMAX:
5339     assert(VT.isInteger() && "This operator does not apply to FP types!");
5340     assert(N1.getValueType() == N2.getValueType() &&
5341            N1.getValueType() == VT && "Binary operator types must match!");
5342     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5343       return getNode(ISD::OR, DL, VT, N1, N2);
5344     break;
5345   case ISD::SMAX:
5346   case ISD::UMIN:
5347     assert(VT.isInteger() && "This operator does not apply to FP types!");
5348     assert(N1.getValueType() == N2.getValueType() &&
5349            N1.getValueType() == VT && "Binary operator types must match!");
5350     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5351       return getNode(ISD::AND, DL, VT, N1, N2);
5352     break;
5353   case ISD::FADD:
5354   case ISD::FSUB:
5355   case ISD::FMUL:
5356   case ISD::FDIV:
5357   case ISD::FREM:
5358     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5359     assert(N1.getValueType() == N2.getValueType() &&
5360            N1.getValueType() == VT && "Binary operator types must match!");
5361     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5362       return V;
5363     break;
5364   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5365     assert(N1.getValueType() == VT &&
5366            N1.getValueType().isFloatingPoint() &&
5367            N2.getValueType().isFloatingPoint() &&
5368            "Invalid FCOPYSIGN!");
5369     break;
5370   case ISD::SHL:
5371     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5372       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5373       APInt ShiftImm = N2C->getAPIntValue();
5374       return getVScale(DL, VT, MulImm << ShiftImm);
5375     }
5376     LLVM_FALLTHROUGH;
5377   case ISD::SRA:
5378   case ISD::SRL:
5379     if (SDValue V = simplifyShift(N1, N2))
5380       return V;
5381     LLVM_FALLTHROUGH;
5382   case ISD::ROTL:
5383   case ISD::ROTR:
5384     assert(VT == N1.getValueType() &&
5385            "Shift operators return type must be the same as their first arg");
5386     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5387            "Shifts only work on integers");
5388     assert((!VT.isVector() || VT == N2.getValueType()) &&
5389            "Vector shift amounts must be in the same as their first arg");
5390     // Verify that the shift amount VT is big enough to hold valid shift
5391     // amounts.  This catches things like trying to shift an i1024 value by an
5392     // i8, which is easy to fall into in generic code that uses
5393     // TLI.getShiftAmount().
5394     assert(N2.getValueType().getScalarSizeInBits() >=
5395                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5396            "Invalid use of small shift amount with oversized value!");
5397 
5398     // Always fold shifts of i1 values so the code generator doesn't need to
5399     // handle them.  Since we know the size of the shift has to be less than the
5400     // size of the value, the shift/rotate count is guaranteed to be zero.
5401     if (VT == MVT::i1)
5402       return N1;
5403     if (N2C && N2C->isNullValue())
5404       return N1;
5405     break;
5406   case ISD::FP_ROUND:
5407     assert(VT.isFloatingPoint() &&
5408            N1.getValueType().isFloatingPoint() &&
5409            VT.bitsLE(N1.getValueType()) &&
5410            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5411            "Invalid FP_ROUND!");
5412     if (N1.getValueType() == VT) return N1;  // noop conversion.
5413     break;
5414   case ISD::AssertSext:
5415   case ISD::AssertZext: {
5416     EVT EVT = cast<VTSDNode>(N2)->getVT();
5417     assert(VT == N1.getValueType() && "Not an inreg extend!");
5418     assert(VT.isInteger() && EVT.isInteger() &&
5419            "Cannot *_EXTEND_INREG FP types");
5420     assert(!EVT.isVector() &&
5421            "AssertSExt/AssertZExt type should be the vector element type "
5422            "rather than the vector type!");
5423     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5424     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5425     break;
5426   }
5427   case ISD::SIGN_EXTEND_INREG: {
5428     EVT EVT = cast<VTSDNode>(N2)->getVT();
5429     assert(VT == N1.getValueType() && "Not an inreg extend!");
5430     assert(VT.isInteger() && EVT.isInteger() &&
5431            "Cannot *_EXTEND_INREG FP types");
5432     assert(EVT.isVector() == VT.isVector() &&
5433            "SIGN_EXTEND_INREG type should be vector iff the operand "
5434            "type is vector!");
5435     assert((!EVT.isVector() ||
5436             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5437            "Vector element counts must match in SIGN_EXTEND_INREG");
5438     assert(EVT.bitsLE(VT) && "Not extending!");
5439     if (EVT == VT) return N1;  // Not actually extending
5440 
5441     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5442       unsigned FromBits = EVT.getScalarSizeInBits();
5443       Val <<= Val.getBitWidth() - FromBits;
5444       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5445       return getConstant(Val, DL, ConstantVT);
5446     };
5447 
5448     if (N1C) {
5449       const APInt &Val = N1C->getAPIntValue();
5450       return SignExtendInReg(Val, VT);
5451     }
5452     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5453       SmallVector<SDValue, 8> Ops;
5454       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5455       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5456         SDValue Op = N1.getOperand(i);
5457         if (Op.isUndef()) {
5458           Ops.push_back(getUNDEF(OpVT));
5459           continue;
5460         }
5461         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5462         APInt Val = C->getAPIntValue();
5463         Ops.push_back(SignExtendInReg(Val, OpVT));
5464       }
5465       return getBuildVector(VT, DL, Ops);
5466     }
5467     break;
5468   }
5469   case ISD::EXTRACT_VECTOR_ELT:
5470     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5471            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5472              element type of the vector.");
5473 
5474     // Extract from an undefined value or using an undefined index is undefined.
5475     if (N1.isUndef() || N2.isUndef())
5476       return getUNDEF(VT);
5477 
5478     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5479     // vectors. For scalable vectors we will provide appropriate support for
5480     // dealing with arbitrary indices.
5481     if (N2C && N1.getValueType().isFixedLengthVector() &&
5482         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5483       return getUNDEF(VT);
5484 
5485     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5486     // expanding copies of large vectors from registers. This only works for
5487     // fixed length vectors, since we need to know the exact number of
5488     // elements.
5489     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5490         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5491       unsigned Factor =
5492         N1.getOperand(0).getValueType().getVectorNumElements();
5493       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5494                      N1.getOperand(N2C->getZExtValue() / Factor),
5495                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5496     }
5497 
5498     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5499     // lowering is expanding large vector constants.
5500     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5501                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5502       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5503               N1.getValueType().isFixedLengthVector()) &&
5504              "BUILD_VECTOR used for scalable vectors");
5505       unsigned Index =
5506           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5507       SDValue Elt = N1.getOperand(Index);
5508 
5509       if (VT != Elt.getValueType())
5510         // If the vector element type is not legal, the BUILD_VECTOR operands
5511         // are promoted and implicitly truncated, and the result implicitly
5512         // extended. Make that explicit here.
5513         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5514 
5515       return Elt;
5516     }
5517 
5518     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5519     // operations are lowered to scalars.
5520     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5521       // If the indices are the same, return the inserted element else
5522       // if the indices are known different, extract the element from
5523       // the original vector.
5524       SDValue N1Op2 = N1.getOperand(2);
5525       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5526 
5527       if (N1Op2C && N2C) {
5528         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5529           if (VT == N1.getOperand(1).getValueType())
5530             return N1.getOperand(1);
5531           else
5532             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5533         }
5534 
5535         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5536       }
5537     }
5538 
5539     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5540     // when vector types are scalarized and v1iX is legal.
5541     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5542     // Here we are completely ignoring the extract element index (N2),
5543     // which is fine for fixed width vectors, since any index other than 0
5544     // is undefined anyway. However, this cannot be ignored for scalable
5545     // vectors - in theory we could support this, but we don't want to do this
5546     // without a profitability check.
5547     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5548         N1.getValueType().isFixedLengthVector() &&
5549         N1.getValueType().getVectorNumElements() == 1) {
5550       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5551                      N1.getOperand(1));
5552     }
5553     break;
5554   case ISD::EXTRACT_ELEMENT:
5555     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5556     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5557            (N1.getValueType().isInteger() == VT.isInteger()) &&
5558            N1.getValueType() != VT &&
5559            "Wrong types for EXTRACT_ELEMENT!");
5560 
5561     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5562     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5563     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5564     if (N1.getOpcode() == ISD::BUILD_PAIR)
5565       return N1.getOperand(N2C->getZExtValue());
5566 
5567     // EXTRACT_ELEMENT of a constant int is also very common.
5568     if (N1C) {
5569       unsigned ElementSize = VT.getSizeInBits();
5570       unsigned Shift = ElementSize * N2C->getZExtValue();
5571       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5572       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5573     }
5574     break;
5575   case ISD::EXTRACT_SUBVECTOR:
5576     EVT N1VT = N1.getValueType();
5577     assert(VT.isVector() && N1VT.isVector() &&
5578            "Extract subvector VTs must be vectors!");
5579     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5580            "Extract subvector VTs must have the same element type!");
5581     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5582            "Cannot extract a scalable vector from a fixed length vector!");
5583     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5584             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5585            "Extract subvector must be from larger vector to smaller vector!");
5586     assert(N2C && "Extract subvector index must be a constant");
5587     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5588             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5589                 N1VT.getVectorMinNumElements()) &&
5590            "Extract subvector overflow!");
5591     assert(N2C->getAPIntValue().getBitWidth() ==
5592                TLI->getVectorIdxTy(getDataLayout())
5593                    .getSizeInBits()
5594                    .getFixedSize() &&
5595            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5596 
5597     // Trivial extraction.
5598     if (VT == N1VT)
5599       return N1;
5600 
5601     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5602     if (N1.isUndef())
5603       return getUNDEF(VT);
5604 
5605     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5606     // the concat have the same type as the extract.
5607     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5608         VT == N1.getOperand(0).getValueType()) {
5609       unsigned Factor = VT.getVectorMinNumElements();
5610       return N1.getOperand(N2C->getZExtValue() / Factor);
5611     }
5612 
5613     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5614     // during shuffle legalization.
5615     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5616         VT == N1.getOperand(1).getValueType())
5617       return N1.getOperand(1);
5618     break;
5619   }
5620 
5621   // Perform trivial constant folding.
5622   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5623     return SV;
5624 
5625   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5626     return V;
5627 
5628   // Canonicalize an UNDEF to the RHS, even over a constant.
5629   if (N1.isUndef()) {
5630     if (TLI->isCommutativeBinOp(Opcode)) {
5631       std::swap(N1, N2);
5632     } else {
5633       switch (Opcode) {
5634       case ISD::SIGN_EXTEND_INREG:
5635       case ISD::SUB:
5636         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5637       case ISD::UDIV:
5638       case ISD::SDIV:
5639       case ISD::UREM:
5640       case ISD::SREM:
5641       case ISD::SSUBSAT:
5642       case ISD::USUBSAT:
5643         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5644       }
5645     }
5646   }
5647 
5648   // Fold a bunch of operators when the RHS is undef.
5649   if (N2.isUndef()) {
5650     switch (Opcode) {
5651     case ISD::XOR:
5652       if (N1.isUndef())
5653         // Handle undef ^ undef -> 0 special case. This is a common
5654         // idiom (misuse).
5655         return getConstant(0, DL, VT);
5656       LLVM_FALLTHROUGH;
5657     case ISD::ADD:
5658     case ISD::SUB:
5659     case ISD::UDIV:
5660     case ISD::SDIV:
5661     case ISD::UREM:
5662     case ISD::SREM:
5663       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5664     case ISD::MUL:
5665     case ISD::AND:
5666     case ISD::SSUBSAT:
5667     case ISD::USUBSAT:
5668       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5669     case ISD::OR:
5670     case ISD::SADDSAT:
5671     case ISD::UADDSAT:
5672       return getAllOnesConstant(DL, VT);
5673     }
5674   }
5675 
5676   // Memoize this node if possible.
5677   SDNode *N;
5678   SDVTList VTs = getVTList(VT);
5679   SDValue Ops[] = {N1, N2};
5680   if (VT != MVT::Glue) {
5681     FoldingSetNodeID ID;
5682     AddNodeIDNode(ID, Opcode, VTs, Ops);
5683     void *IP = nullptr;
5684     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5685       E->intersectFlagsWith(Flags);
5686       return SDValue(E, 0);
5687     }
5688 
5689     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5690     N->setFlags(Flags);
5691     createOperands(N, Ops);
5692     CSEMap.InsertNode(N, IP);
5693   } else {
5694     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5695     createOperands(N, Ops);
5696   }
5697 
5698   InsertNode(N);
5699   SDValue V = SDValue(N, 0);
5700   NewSDValueDbgMsg(V, "Creating new node: ", this);
5701   return V;
5702 }
5703 
5704 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5705                               SDValue N1, SDValue N2, SDValue N3) {
5706   SDNodeFlags Flags;
5707   if (Inserter)
5708     Flags = Inserter->getFlags();
5709   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5710 }
5711 
5712 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5713                               SDValue N1, SDValue N2, SDValue N3,
5714                               const SDNodeFlags Flags) {
5715   // Perform various simplifications.
5716   switch (Opcode) {
5717   case ISD::FMA: {
5718     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5719     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5720            N3.getValueType() == VT && "FMA types must match!");
5721     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5722     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5723     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5724     if (N1CFP && N2CFP && N3CFP) {
5725       APFloat  V1 = N1CFP->getValueAPF();
5726       const APFloat &V2 = N2CFP->getValueAPF();
5727       const APFloat &V3 = N3CFP->getValueAPF();
5728       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5729       return getConstantFP(V1, DL, VT);
5730     }
5731     break;
5732   }
5733   case ISD::BUILD_VECTOR: {
5734     // Attempt to simplify BUILD_VECTOR.
5735     SDValue Ops[] = {N1, N2, N3};
5736     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5737       return V;
5738     break;
5739   }
5740   case ISD::CONCAT_VECTORS: {
5741     SDValue Ops[] = {N1, N2, N3};
5742     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5743       return V;
5744     break;
5745   }
5746   case ISD::SETCC: {
5747     assert(VT.isInteger() && "SETCC result type must be an integer!");
5748     assert(N1.getValueType() == N2.getValueType() &&
5749            "SETCC operands must have the same type!");
5750     assert(VT.isVector() == N1.getValueType().isVector() &&
5751            "SETCC type should be vector iff the operand type is vector!");
5752     assert((!VT.isVector() || VT.getVectorElementCount() ==
5753                                   N1.getValueType().getVectorElementCount()) &&
5754            "SETCC vector element counts must match!");
5755     // Use FoldSetCC to simplify SETCC's.
5756     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5757       return V;
5758     // Vector constant folding.
5759     SDValue Ops[] = {N1, N2, N3};
5760     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5761       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5762       return V;
5763     }
5764     break;
5765   }
5766   case ISD::SELECT:
5767   case ISD::VSELECT:
5768     if (SDValue V = simplifySelect(N1, N2, N3))
5769       return V;
5770     break;
5771   case ISD::VECTOR_SHUFFLE:
5772     llvm_unreachable("should use getVectorShuffle constructor!");
5773   case ISD::INSERT_VECTOR_ELT: {
5774     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5775     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5776     // for scalable vectors where we will generate appropriate code to
5777     // deal with out-of-bounds cases correctly.
5778     if (N3C && N1.getValueType().isFixedLengthVector() &&
5779         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5780       return getUNDEF(VT);
5781 
5782     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5783     if (N3.isUndef())
5784       return getUNDEF(VT);
5785 
5786     // If the inserted element is an UNDEF, just use the input vector.
5787     if (N2.isUndef())
5788       return N1;
5789 
5790     break;
5791   }
5792   case ISD::INSERT_SUBVECTOR: {
5793     // Inserting undef into undef is still undef.
5794     if (N1.isUndef() && N2.isUndef())
5795       return getUNDEF(VT);
5796 
5797     EVT N2VT = N2.getValueType();
5798     assert(VT == N1.getValueType() &&
5799            "Dest and insert subvector source types must match!");
5800     assert(VT.isVector() && N2VT.isVector() &&
5801            "Insert subvector VTs must be vectors!");
5802     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5803            "Cannot insert a scalable vector into a fixed length vector!");
5804     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5805             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5806            "Insert subvector must be from smaller vector to larger vector!");
5807     assert(isa<ConstantSDNode>(N3) &&
5808            "Insert subvector index must be constant");
5809     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5810             (N2VT.getVectorMinNumElements() +
5811              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5812                 VT.getVectorMinNumElements()) &&
5813            "Insert subvector overflow!");
5814 
5815     // Trivial insertion.
5816     if (VT == N2VT)
5817       return N2;
5818 
5819     // If this is an insert of an extracted vector into an undef vector, we
5820     // can just use the input to the extract.
5821     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5822         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5823       return N2.getOperand(0);
5824     break;
5825   }
5826   case ISD::BITCAST:
5827     // Fold bit_convert nodes from a type to themselves.
5828     if (N1.getValueType() == VT)
5829       return N1;
5830     break;
5831   }
5832 
5833   // Memoize node if it doesn't produce a flag.
5834   SDNode *N;
5835   SDVTList VTs = getVTList(VT);
5836   SDValue Ops[] = {N1, N2, N3};
5837   if (VT != MVT::Glue) {
5838     FoldingSetNodeID ID;
5839     AddNodeIDNode(ID, Opcode, VTs, Ops);
5840     void *IP = nullptr;
5841     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5842       E->intersectFlagsWith(Flags);
5843       return SDValue(E, 0);
5844     }
5845 
5846     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5847     N->setFlags(Flags);
5848     createOperands(N, Ops);
5849     CSEMap.InsertNode(N, IP);
5850   } else {
5851     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5852     createOperands(N, Ops);
5853   }
5854 
5855   InsertNode(N);
5856   SDValue V = SDValue(N, 0);
5857   NewSDValueDbgMsg(V, "Creating new node: ", this);
5858   return V;
5859 }
5860 
5861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5862                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5863   SDValue Ops[] = { N1, N2, N3, N4 };
5864   return getNode(Opcode, DL, VT, Ops);
5865 }
5866 
5867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5868                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5869                               SDValue N5) {
5870   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5871   return getNode(Opcode, DL, VT, Ops);
5872 }
5873 
5874 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5875 /// the incoming stack arguments to be loaded from the stack.
5876 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5877   SmallVector<SDValue, 8> ArgChains;
5878 
5879   // Include the original chain at the beginning of the list. When this is
5880   // used by target LowerCall hooks, this helps legalize find the
5881   // CALLSEQ_BEGIN node.
5882   ArgChains.push_back(Chain);
5883 
5884   // Add a chain value for each stack argument.
5885   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5886        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5887     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5888       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5889         if (FI->getIndex() < 0)
5890           ArgChains.push_back(SDValue(L, 1));
5891 
5892   // Build a tokenfactor for all the chains.
5893   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5894 }
5895 
5896 /// getMemsetValue - Vectorized representation of the memset value
5897 /// operand.
5898 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5899                               const SDLoc &dl) {
5900   assert(!Value.isUndef());
5901 
5902   unsigned NumBits = VT.getScalarSizeInBits();
5903   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5904     assert(C->getAPIntValue().getBitWidth() == 8);
5905     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5906     if (VT.isInteger()) {
5907       bool IsOpaque = VT.getSizeInBits() > 64 ||
5908           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5909       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5910     }
5911     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5912                              VT);
5913   }
5914 
5915   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5916   EVT IntVT = VT.getScalarType();
5917   if (!IntVT.isInteger())
5918     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5919 
5920   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5921   if (NumBits > 8) {
5922     // Use a multiplication with 0x010101... to extend the input to the
5923     // required length.
5924     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5925     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5926                         DAG.getConstant(Magic, dl, IntVT));
5927   }
5928 
5929   if (VT != Value.getValueType() && !VT.isInteger())
5930     Value = DAG.getBitcast(VT.getScalarType(), Value);
5931   if (VT != Value.getValueType())
5932     Value = DAG.getSplatBuildVector(VT, dl, Value);
5933 
5934   return Value;
5935 }
5936 
5937 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5938 /// used when a memcpy is turned into a memset when the source is a constant
5939 /// string ptr.
5940 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5941                                   const TargetLowering &TLI,
5942                                   const ConstantDataArraySlice &Slice) {
5943   // Handle vector with all elements zero.
5944   if (Slice.Array == nullptr) {
5945     if (VT.isInteger())
5946       return DAG.getConstant(0, dl, VT);
5947     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5948       return DAG.getConstantFP(0.0, dl, VT);
5949     else if (VT.isVector()) {
5950       unsigned NumElts = VT.getVectorNumElements();
5951       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5952       return DAG.getNode(ISD::BITCAST, dl, VT,
5953                          DAG.getConstant(0, dl,
5954                                          EVT::getVectorVT(*DAG.getContext(),
5955                                                           EltVT, NumElts)));
5956     } else
5957       llvm_unreachable("Expected type!");
5958   }
5959 
5960   assert(!VT.isVector() && "Can't handle vector type here!");
5961   unsigned NumVTBits = VT.getSizeInBits();
5962   unsigned NumVTBytes = NumVTBits / 8;
5963   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5964 
5965   APInt Val(NumVTBits, 0);
5966   if (DAG.getDataLayout().isLittleEndian()) {
5967     for (unsigned i = 0; i != NumBytes; ++i)
5968       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5969   } else {
5970     for (unsigned i = 0; i != NumBytes; ++i)
5971       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5972   }
5973 
5974   // If the "cost" of materializing the integer immediate is less than the cost
5975   // of a load, then it is cost effective to turn the load into the immediate.
5976   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5977   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5978     return DAG.getConstant(Val, dl, VT);
5979   return SDValue(nullptr, 0);
5980 }
5981 
5982 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5983                                            const SDLoc &DL,
5984                                            const SDNodeFlags Flags) {
5985   EVT VT = Base.getValueType();
5986   SDValue Index;
5987 
5988   if (Offset.isScalable())
5989     Index = getVScale(DL, Base.getValueType(),
5990                       APInt(Base.getValueSizeInBits().getFixedSize(),
5991                             Offset.getKnownMinSize()));
5992   else
5993     Index = getConstant(Offset.getFixedSize(), DL, VT);
5994 
5995   return getMemBasePlusOffset(Base, Index, DL, Flags);
5996 }
5997 
5998 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5999                                            const SDLoc &DL,
6000                                            const SDNodeFlags Flags) {
6001   assert(Offset.getValueType().isInteger());
6002   EVT BasePtrVT = Ptr.getValueType();
6003   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6004 }
6005 
6006 /// Returns true if memcpy source is constant data.
6007 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6008   uint64_t SrcDelta = 0;
6009   GlobalAddressSDNode *G = nullptr;
6010   if (Src.getOpcode() == ISD::GlobalAddress)
6011     G = cast<GlobalAddressSDNode>(Src);
6012   else if (Src.getOpcode() == ISD::ADD &&
6013            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6014            Src.getOperand(1).getOpcode() == ISD::Constant) {
6015     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6016     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6017   }
6018   if (!G)
6019     return false;
6020 
6021   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6022                                   SrcDelta + G->getOffset());
6023 }
6024 
6025 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6026                                       SelectionDAG &DAG) {
6027   // On Darwin, -Os means optimize for size without hurting performance, so
6028   // only really optimize for size when -Oz (MinSize) is used.
6029   if (MF.getTarget().getTargetTriple().isOSDarwin())
6030     return MF.getFunction().hasMinSize();
6031   return DAG.shouldOptForSize();
6032 }
6033 
6034 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6035                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6036                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6037                           SmallVector<SDValue, 16> &OutStoreChains) {
6038   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6039   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6040   SmallVector<SDValue, 16> GluedLoadChains;
6041   for (unsigned i = From; i < To; ++i) {
6042     OutChains.push_back(OutLoadChains[i]);
6043     GluedLoadChains.push_back(OutLoadChains[i]);
6044   }
6045 
6046   // Chain for all loads.
6047   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6048                                   GluedLoadChains);
6049 
6050   for (unsigned i = From; i < To; ++i) {
6051     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6052     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6053                                   ST->getBasePtr(), ST->getMemoryVT(),
6054                                   ST->getMemOperand());
6055     OutChains.push_back(NewStore);
6056   }
6057 }
6058 
6059 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6060                                        SDValue Chain, SDValue Dst, SDValue Src,
6061                                        uint64_t Size, Align Alignment,
6062                                        bool isVol, bool AlwaysInline,
6063                                        MachinePointerInfo DstPtrInfo,
6064                                        MachinePointerInfo SrcPtrInfo) {
6065   // Turn a memcpy of undef to nop.
6066   // FIXME: We need to honor volatile even is Src is undef.
6067   if (Src.isUndef())
6068     return Chain;
6069 
6070   // Expand memcpy to a series of load and store ops if the size operand falls
6071   // below a certain threshold.
6072   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6073   // rather than maybe a humongous number of loads and stores.
6074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6075   const DataLayout &DL = DAG.getDataLayout();
6076   LLVMContext &C = *DAG.getContext();
6077   std::vector<EVT> MemOps;
6078   bool DstAlignCanChange = false;
6079   MachineFunction &MF = DAG.getMachineFunction();
6080   MachineFrameInfo &MFI = MF.getFrameInfo();
6081   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6082   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6083   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6084     DstAlignCanChange = true;
6085   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6086   if (!SrcAlign || Alignment > *SrcAlign)
6087     SrcAlign = Alignment;
6088   assert(SrcAlign && "SrcAlign must be set");
6089   ConstantDataArraySlice Slice;
6090   // If marked as volatile, perform a copy even when marked as constant.
6091   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6092   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6093   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6094   const MemOp Op = isZeroConstant
6095                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6096                                     /*IsZeroMemset*/ true, isVol)
6097                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6098                                      *SrcAlign, isVol, CopyFromConstant);
6099   if (!TLI.findOptimalMemOpLowering(
6100           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6101           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6102     return SDValue();
6103 
6104   if (DstAlignCanChange) {
6105     Type *Ty = MemOps[0].getTypeForEVT(C);
6106     Align NewAlign = DL.getABITypeAlign(Ty);
6107 
6108     // Don't promote to an alignment that would require dynamic stack
6109     // realignment.
6110     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6111     if (!TRI->needsStackRealignment(MF))
6112       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6113         NewAlign = NewAlign / 2;
6114 
6115     if (NewAlign > Alignment) {
6116       // Give the stack frame object a larger alignment if needed.
6117       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6118         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6119       Alignment = NewAlign;
6120     }
6121   }
6122 
6123   MachineMemOperand::Flags MMOFlags =
6124       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6125   SmallVector<SDValue, 16> OutLoadChains;
6126   SmallVector<SDValue, 16> OutStoreChains;
6127   SmallVector<SDValue, 32> OutChains;
6128   unsigned NumMemOps = MemOps.size();
6129   uint64_t SrcOff = 0, DstOff = 0;
6130   for (unsigned i = 0; i != NumMemOps; ++i) {
6131     EVT VT = MemOps[i];
6132     unsigned VTSize = VT.getSizeInBits() / 8;
6133     SDValue Value, Store;
6134 
6135     if (VTSize > Size) {
6136       // Issuing an unaligned load / store pair  that overlaps with the previous
6137       // pair. Adjust the offset accordingly.
6138       assert(i == NumMemOps-1 && i != 0);
6139       SrcOff -= VTSize - Size;
6140       DstOff -= VTSize - Size;
6141     }
6142 
6143     if (CopyFromConstant &&
6144         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6145       // It's unlikely a store of a vector immediate can be done in a single
6146       // instruction. It would require a load from a constantpool first.
6147       // We only handle zero vectors here.
6148       // FIXME: Handle other cases where store of vector immediate is done in
6149       // a single instruction.
6150       ConstantDataArraySlice SubSlice;
6151       if (SrcOff < Slice.Length) {
6152         SubSlice = Slice;
6153         SubSlice.move(SrcOff);
6154       } else {
6155         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6156         SubSlice.Array = nullptr;
6157         SubSlice.Offset = 0;
6158         SubSlice.Length = VTSize;
6159       }
6160       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6161       if (Value.getNode()) {
6162         Store = DAG.getStore(
6163             Chain, dl, Value,
6164             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6165             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6166         OutChains.push_back(Store);
6167       }
6168     }
6169 
6170     if (!Store.getNode()) {
6171       // The type might not be legal for the target.  This should only happen
6172       // if the type is smaller than a legal type, as on PPC, so the right
6173       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6174       // to Load/Store if NVT==VT.
6175       // FIXME does the case above also need this?
6176       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6177       assert(NVT.bitsGE(VT));
6178 
6179       bool isDereferenceable =
6180         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6181       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6182       if (isDereferenceable)
6183         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6184 
6185       Value = DAG.getExtLoad(
6186           ISD::EXTLOAD, dl, NVT, Chain,
6187           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6188           SrcPtrInfo.getWithOffset(SrcOff), VT,
6189           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6190       OutLoadChains.push_back(Value.getValue(1));
6191 
6192       Store = DAG.getTruncStore(
6193           Chain, dl, Value,
6194           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6195           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6196       OutStoreChains.push_back(Store);
6197     }
6198     SrcOff += VTSize;
6199     DstOff += VTSize;
6200     Size -= VTSize;
6201   }
6202 
6203   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6204                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6205   unsigned NumLdStInMemcpy = OutStoreChains.size();
6206 
6207   if (NumLdStInMemcpy) {
6208     // It may be that memcpy might be converted to memset if it's memcpy
6209     // of constants. In such a case, we won't have loads and stores, but
6210     // just stores. In the absence of loads, there is nothing to gang up.
6211     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6212       // If target does not care, just leave as it.
6213       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6214         OutChains.push_back(OutLoadChains[i]);
6215         OutChains.push_back(OutStoreChains[i]);
6216       }
6217     } else {
6218       // Ld/St less than/equal limit set by target.
6219       if (NumLdStInMemcpy <= GluedLdStLimit) {
6220           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6221                                         NumLdStInMemcpy, OutLoadChains,
6222                                         OutStoreChains);
6223       } else {
6224         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6225         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6226         unsigned GlueIter = 0;
6227 
6228         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6229           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6230           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6231 
6232           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6233                                        OutLoadChains, OutStoreChains);
6234           GlueIter += GluedLdStLimit;
6235         }
6236 
6237         // Residual ld/st.
6238         if (RemainingLdStInMemcpy) {
6239           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6240                                         RemainingLdStInMemcpy, OutLoadChains,
6241                                         OutStoreChains);
6242         }
6243       }
6244     }
6245   }
6246   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6247 }
6248 
6249 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6250                                         SDValue Chain, SDValue Dst, SDValue Src,
6251                                         uint64_t Size, Align Alignment,
6252                                         bool isVol, bool AlwaysInline,
6253                                         MachinePointerInfo DstPtrInfo,
6254                                         MachinePointerInfo SrcPtrInfo) {
6255   // Turn a memmove of undef to nop.
6256   // FIXME: We need to honor volatile even is Src is undef.
6257   if (Src.isUndef())
6258     return Chain;
6259 
6260   // Expand memmove to a series of load and store ops if the size operand falls
6261   // below a certain threshold.
6262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6263   const DataLayout &DL = DAG.getDataLayout();
6264   LLVMContext &C = *DAG.getContext();
6265   std::vector<EVT> MemOps;
6266   bool DstAlignCanChange = false;
6267   MachineFunction &MF = DAG.getMachineFunction();
6268   MachineFrameInfo &MFI = MF.getFrameInfo();
6269   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6270   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6271   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6272     DstAlignCanChange = true;
6273   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6274   if (!SrcAlign || Alignment > *SrcAlign)
6275     SrcAlign = Alignment;
6276   assert(SrcAlign && "SrcAlign must be set");
6277   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6278   if (!TLI.findOptimalMemOpLowering(
6279           MemOps, Limit,
6280           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6281                       /*IsVolatile*/ true),
6282           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6283           MF.getFunction().getAttributes()))
6284     return SDValue();
6285 
6286   if (DstAlignCanChange) {
6287     Type *Ty = MemOps[0].getTypeForEVT(C);
6288     Align NewAlign = DL.getABITypeAlign(Ty);
6289     if (NewAlign > Alignment) {
6290       // Give the stack frame object a larger alignment if needed.
6291       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6292         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6293       Alignment = NewAlign;
6294     }
6295   }
6296 
6297   MachineMemOperand::Flags MMOFlags =
6298       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6299   uint64_t SrcOff = 0, DstOff = 0;
6300   SmallVector<SDValue, 8> LoadValues;
6301   SmallVector<SDValue, 8> LoadChains;
6302   SmallVector<SDValue, 8> OutChains;
6303   unsigned NumMemOps = MemOps.size();
6304   for (unsigned i = 0; i < NumMemOps; i++) {
6305     EVT VT = MemOps[i];
6306     unsigned VTSize = VT.getSizeInBits() / 8;
6307     SDValue Value;
6308 
6309     bool isDereferenceable =
6310       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6311     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6312     if (isDereferenceable)
6313       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6314 
6315     Value =
6316         DAG.getLoad(VT, dl, Chain,
6317                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6318                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6319     LoadValues.push_back(Value);
6320     LoadChains.push_back(Value.getValue(1));
6321     SrcOff += VTSize;
6322   }
6323   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6324   OutChains.clear();
6325   for (unsigned i = 0; i < NumMemOps; i++) {
6326     EVT VT = MemOps[i];
6327     unsigned VTSize = VT.getSizeInBits() / 8;
6328     SDValue Store;
6329 
6330     Store =
6331         DAG.getStore(Chain, dl, LoadValues[i],
6332                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6333                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6334     OutChains.push_back(Store);
6335     DstOff += VTSize;
6336   }
6337 
6338   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6339 }
6340 
6341 /// Lower the call to 'memset' intrinsic function into a series of store
6342 /// operations.
6343 ///
6344 /// \param DAG Selection DAG where lowered code is placed.
6345 /// \param dl Link to corresponding IR location.
6346 /// \param Chain Control flow dependency.
6347 /// \param Dst Pointer to destination memory location.
6348 /// \param Src Value of byte to write into the memory.
6349 /// \param Size Number of bytes to write.
6350 /// \param Alignment Alignment of the destination in bytes.
6351 /// \param isVol True if destination is volatile.
6352 /// \param DstPtrInfo IR information on the memory pointer.
6353 /// \returns New head in the control flow, if lowering was successful, empty
6354 /// SDValue otherwise.
6355 ///
6356 /// The function tries to replace 'llvm.memset' intrinsic with several store
6357 /// operations and value calculation code. This is usually profitable for small
6358 /// memory size.
6359 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6360                                SDValue Chain, SDValue Dst, SDValue Src,
6361                                uint64_t Size, Align Alignment, bool isVol,
6362                                MachinePointerInfo DstPtrInfo) {
6363   // Turn a memset of undef to nop.
6364   // FIXME: We need to honor volatile even is Src is undef.
6365   if (Src.isUndef())
6366     return Chain;
6367 
6368   // Expand memset to a series of load/store ops if the size operand
6369   // falls below a certain threshold.
6370   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6371   std::vector<EVT> MemOps;
6372   bool DstAlignCanChange = false;
6373   MachineFunction &MF = DAG.getMachineFunction();
6374   MachineFrameInfo &MFI = MF.getFrameInfo();
6375   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6376   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6377   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6378     DstAlignCanChange = true;
6379   bool IsZeroVal =
6380     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6381   if (!TLI.findOptimalMemOpLowering(
6382           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6383           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6384           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6385     return SDValue();
6386 
6387   if (DstAlignCanChange) {
6388     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6389     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6390     if (NewAlign > Alignment) {
6391       // Give the stack frame object a larger alignment if needed.
6392       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6393         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6394       Alignment = NewAlign;
6395     }
6396   }
6397 
6398   SmallVector<SDValue, 8> OutChains;
6399   uint64_t DstOff = 0;
6400   unsigned NumMemOps = MemOps.size();
6401 
6402   // Find the largest store and generate the bit pattern for it.
6403   EVT LargestVT = MemOps[0];
6404   for (unsigned i = 1; i < NumMemOps; i++)
6405     if (MemOps[i].bitsGT(LargestVT))
6406       LargestVT = MemOps[i];
6407   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6408 
6409   for (unsigned i = 0; i < NumMemOps; i++) {
6410     EVT VT = MemOps[i];
6411     unsigned VTSize = VT.getSizeInBits() / 8;
6412     if (VTSize > Size) {
6413       // Issuing an unaligned load / store pair  that overlaps with the previous
6414       // pair. Adjust the offset accordingly.
6415       assert(i == NumMemOps-1 && i != 0);
6416       DstOff -= VTSize - Size;
6417     }
6418 
6419     // If this store is smaller than the largest store see whether we can get
6420     // the smaller value for free with a truncate.
6421     SDValue Value = MemSetValue;
6422     if (VT.bitsLT(LargestVT)) {
6423       if (!LargestVT.isVector() && !VT.isVector() &&
6424           TLI.isTruncateFree(LargestVT, VT))
6425         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6426       else
6427         Value = getMemsetValue(Src, VT, DAG, dl);
6428     }
6429     assert(Value.getValueType() == VT && "Value with wrong type.");
6430     SDValue Store = DAG.getStore(
6431         Chain, dl, Value,
6432         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6433         DstPtrInfo.getWithOffset(DstOff), Alignment,
6434         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6435     OutChains.push_back(Store);
6436     DstOff += VT.getSizeInBits() / 8;
6437     Size -= VTSize;
6438   }
6439 
6440   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6441 }
6442 
6443 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6444                                             unsigned AS) {
6445   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6446   // pointer operands can be losslessly bitcasted to pointers of address space 0
6447   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6448     report_fatal_error("cannot lower memory intrinsic in address space " +
6449                        Twine(AS));
6450   }
6451 }
6452 
6453 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6454                                 SDValue Src, SDValue Size, Align Alignment,
6455                                 bool isVol, bool AlwaysInline, bool isTailCall,
6456                                 MachinePointerInfo DstPtrInfo,
6457                                 MachinePointerInfo SrcPtrInfo) {
6458   // Check to see if we should lower the memcpy to loads and stores first.
6459   // For cases within the target-specified limits, this is the best choice.
6460   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6461   if (ConstantSize) {
6462     // Memcpy with size zero? Just return the original chain.
6463     if (ConstantSize->isNullValue())
6464       return Chain;
6465 
6466     SDValue Result = getMemcpyLoadsAndStores(
6467         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6468         isVol, false, DstPtrInfo, SrcPtrInfo);
6469     if (Result.getNode())
6470       return Result;
6471   }
6472 
6473   // Then check to see if we should lower the memcpy with target-specific
6474   // code. If the target chooses to do this, this is the next best.
6475   if (TSI) {
6476     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6477         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6478         DstPtrInfo, SrcPtrInfo);
6479     if (Result.getNode())
6480       return Result;
6481   }
6482 
6483   // If we really need inline code and the target declined to provide it,
6484   // use a (potentially long) sequence of loads and stores.
6485   if (AlwaysInline) {
6486     assert(ConstantSize && "AlwaysInline requires a constant size!");
6487     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6488                                    ConstantSize->getZExtValue(), Alignment,
6489                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6490   }
6491 
6492   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6493   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6494 
6495   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6496   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6497   // respect volatile, so they may do things like read or write memory
6498   // beyond the given memory regions. But fixing this isn't easy, and most
6499   // people don't care.
6500 
6501   // Emit a library call.
6502   TargetLowering::ArgListTy Args;
6503   TargetLowering::ArgListEntry Entry;
6504   Entry.Ty = Type::getInt8PtrTy(*getContext());
6505   Entry.Node = Dst; Args.push_back(Entry);
6506   Entry.Node = Src; Args.push_back(Entry);
6507 
6508   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6509   Entry.Node = Size; Args.push_back(Entry);
6510   // FIXME: pass in SDLoc
6511   TargetLowering::CallLoweringInfo CLI(*this);
6512   CLI.setDebugLoc(dl)
6513       .setChain(Chain)
6514       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6515                     Dst.getValueType().getTypeForEVT(*getContext()),
6516                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6517                                       TLI->getPointerTy(getDataLayout())),
6518                     std::move(Args))
6519       .setDiscardResult()
6520       .setTailCall(isTailCall);
6521 
6522   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6523   return CallResult.second;
6524 }
6525 
6526 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6527                                       SDValue Dst, unsigned DstAlign,
6528                                       SDValue Src, unsigned SrcAlign,
6529                                       SDValue Size, Type *SizeTy,
6530                                       unsigned ElemSz, bool isTailCall,
6531                                       MachinePointerInfo DstPtrInfo,
6532                                       MachinePointerInfo SrcPtrInfo) {
6533   // Emit a library call.
6534   TargetLowering::ArgListTy Args;
6535   TargetLowering::ArgListEntry Entry;
6536   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6537   Entry.Node = Dst;
6538   Args.push_back(Entry);
6539 
6540   Entry.Node = Src;
6541   Args.push_back(Entry);
6542 
6543   Entry.Ty = SizeTy;
6544   Entry.Node = Size;
6545   Args.push_back(Entry);
6546 
6547   RTLIB::Libcall LibraryCall =
6548       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6549   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6550     report_fatal_error("Unsupported element size");
6551 
6552   TargetLowering::CallLoweringInfo CLI(*this);
6553   CLI.setDebugLoc(dl)
6554       .setChain(Chain)
6555       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6556                     Type::getVoidTy(*getContext()),
6557                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6558                                       TLI->getPointerTy(getDataLayout())),
6559                     std::move(Args))
6560       .setDiscardResult()
6561       .setTailCall(isTailCall);
6562 
6563   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6564   return CallResult.second;
6565 }
6566 
6567 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6568                                  SDValue Src, SDValue Size, Align Alignment,
6569                                  bool isVol, bool isTailCall,
6570                                  MachinePointerInfo DstPtrInfo,
6571                                  MachinePointerInfo SrcPtrInfo) {
6572   // Check to see if we should lower the memmove to loads and stores first.
6573   // For cases within the target-specified limits, this is the best choice.
6574   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6575   if (ConstantSize) {
6576     // Memmove with size zero? Just return the original chain.
6577     if (ConstantSize->isNullValue())
6578       return Chain;
6579 
6580     SDValue Result = getMemmoveLoadsAndStores(
6581         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6582         isVol, false, DstPtrInfo, SrcPtrInfo);
6583     if (Result.getNode())
6584       return Result;
6585   }
6586 
6587   // Then check to see if we should lower the memmove with target-specific
6588   // code. If the target chooses to do this, this is the next best.
6589   if (TSI) {
6590     SDValue Result =
6591         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6592                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6593     if (Result.getNode())
6594       return Result;
6595   }
6596 
6597   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6598   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6599 
6600   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6601   // not be safe.  See memcpy above for more details.
6602 
6603   // Emit a library call.
6604   TargetLowering::ArgListTy Args;
6605   TargetLowering::ArgListEntry Entry;
6606   Entry.Ty = Type::getInt8PtrTy(*getContext());
6607   Entry.Node = Dst; Args.push_back(Entry);
6608   Entry.Node = Src; Args.push_back(Entry);
6609 
6610   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6611   Entry.Node = Size; Args.push_back(Entry);
6612   // FIXME:  pass in SDLoc
6613   TargetLowering::CallLoweringInfo CLI(*this);
6614   CLI.setDebugLoc(dl)
6615       .setChain(Chain)
6616       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6617                     Dst.getValueType().getTypeForEVT(*getContext()),
6618                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6619                                       TLI->getPointerTy(getDataLayout())),
6620                     std::move(Args))
6621       .setDiscardResult()
6622       .setTailCall(isTailCall);
6623 
6624   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6625   return CallResult.second;
6626 }
6627 
6628 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6629                                        SDValue Dst, unsigned DstAlign,
6630                                        SDValue Src, unsigned SrcAlign,
6631                                        SDValue Size, Type *SizeTy,
6632                                        unsigned ElemSz, bool isTailCall,
6633                                        MachinePointerInfo DstPtrInfo,
6634                                        MachinePointerInfo SrcPtrInfo) {
6635   // Emit a library call.
6636   TargetLowering::ArgListTy Args;
6637   TargetLowering::ArgListEntry Entry;
6638   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6639   Entry.Node = Dst;
6640   Args.push_back(Entry);
6641 
6642   Entry.Node = Src;
6643   Args.push_back(Entry);
6644 
6645   Entry.Ty = SizeTy;
6646   Entry.Node = Size;
6647   Args.push_back(Entry);
6648 
6649   RTLIB::Libcall LibraryCall =
6650       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6651   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6652     report_fatal_error("Unsupported element size");
6653 
6654   TargetLowering::CallLoweringInfo CLI(*this);
6655   CLI.setDebugLoc(dl)
6656       .setChain(Chain)
6657       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6658                     Type::getVoidTy(*getContext()),
6659                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6660                                       TLI->getPointerTy(getDataLayout())),
6661                     std::move(Args))
6662       .setDiscardResult()
6663       .setTailCall(isTailCall);
6664 
6665   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6666   return CallResult.second;
6667 }
6668 
6669 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6670                                 SDValue Src, SDValue Size, Align Alignment,
6671                                 bool isVol, bool isTailCall,
6672                                 MachinePointerInfo DstPtrInfo) {
6673   // Check to see if we should lower the memset to stores first.
6674   // For cases within the target-specified limits, this is the best choice.
6675   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6676   if (ConstantSize) {
6677     // Memset with size zero? Just return the original chain.
6678     if (ConstantSize->isNullValue())
6679       return Chain;
6680 
6681     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6682                                      ConstantSize->getZExtValue(), Alignment,
6683                                      isVol, DstPtrInfo);
6684 
6685     if (Result.getNode())
6686       return Result;
6687   }
6688 
6689   // Then check to see if we should lower the memset with target-specific
6690   // code. If the target chooses to do this, this is the next best.
6691   if (TSI) {
6692     SDValue Result = TSI->EmitTargetCodeForMemset(
6693         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6694     if (Result.getNode())
6695       return Result;
6696   }
6697 
6698   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6699 
6700   // Emit a library call.
6701   TargetLowering::ArgListTy Args;
6702   TargetLowering::ArgListEntry Entry;
6703   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6704   Args.push_back(Entry);
6705   Entry.Node = Src;
6706   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6707   Args.push_back(Entry);
6708   Entry.Node = Size;
6709   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6710   Args.push_back(Entry);
6711 
6712   // FIXME: pass in SDLoc
6713   TargetLowering::CallLoweringInfo CLI(*this);
6714   CLI.setDebugLoc(dl)
6715       .setChain(Chain)
6716       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6717                     Dst.getValueType().getTypeForEVT(*getContext()),
6718                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6719                                       TLI->getPointerTy(getDataLayout())),
6720                     std::move(Args))
6721       .setDiscardResult()
6722       .setTailCall(isTailCall);
6723 
6724   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6725   return CallResult.second;
6726 }
6727 
6728 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6729                                       SDValue Dst, unsigned DstAlign,
6730                                       SDValue Value, SDValue Size, Type *SizeTy,
6731                                       unsigned ElemSz, bool isTailCall,
6732                                       MachinePointerInfo DstPtrInfo) {
6733   // Emit a library call.
6734   TargetLowering::ArgListTy Args;
6735   TargetLowering::ArgListEntry Entry;
6736   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6737   Entry.Node = Dst;
6738   Args.push_back(Entry);
6739 
6740   Entry.Ty = Type::getInt8Ty(*getContext());
6741   Entry.Node = Value;
6742   Args.push_back(Entry);
6743 
6744   Entry.Ty = SizeTy;
6745   Entry.Node = Size;
6746   Args.push_back(Entry);
6747 
6748   RTLIB::Libcall LibraryCall =
6749       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6750   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6751     report_fatal_error("Unsupported element size");
6752 
6753   TargetLowering::CallLoweringInfo CLI(*this);
6754   CLI.setDebugLoc(dl)
6755       .setChain(Chain)
6756       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6757                     Type::getVoidTy(*getContext()),
6758                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6759                                       TLI->getPointerTy(getDataLayout())),
6760                     std::move(Args))
6761       .setDiscardResult()
6762       .setTailCall(isTailCall);
6763 
6764   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6765   return CallResult.second;
6766 }
6767 
6768 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6769                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6770                                 MachineMemOperand *MMO) {
6771   FoldingSetNodeID ID;
6772   ID.AddInteger(MemVT.getRawBits());
6773   AddNodeIDNode(ID, Opcode, VTList, Ops);
6774   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6775   void* IP = nullptr;
6776   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6777     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6778     return SDValue(E, 0);
6779   }
6780 
6781   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6782                                     VTList, MemVT, MMO);
6783   createOperands(N, Ops);
6784 
6785   CSEMap.InsertNode(N, IP);
6786   InsertNode(N);
6787   return SDValue(N, 0);
6788 }
6789 
6790 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6791                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6792                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6793                                        MachineMemOperand *MMO) {
6794   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6795          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6796   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6797 
6798   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6799   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6800 }
6801 
6802 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6803                                 SDValue Chain, SDValue Ptr, SDValue Val,
6804                                 MachineMemOperand *MMO) {
6805   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6806           Opcode == ISD::ATOMIC_LOAD_SUB ||
6807           Opcode == ISD::ATOMIC_LOAD_AND ||
6808           Opcode == ISD::ATOMIC_LOAD_CLR ||
6809           Opcode == ISD::ATOMIC_LOAD_OR ||
6810           Opcode == ISD::ATOMIC_LOAD_XOR ||
6811           Opcode == ISD::ATOMIC_LOAD_NAND ||
6812           Opcode == ISD::ATOMIC_LOAD_MIN ||
6813           Opcode == ISD::ATOMIC_LOAD_MAX ||
6814           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6815           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6816           Opcode == ISD::ATOMIC_LOAD_FADD ||
6817           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6818           Opcode == ISD::ATOMIC_SWAP ||
6819           Opcode == ISD::ATOMIC_STORE) &&
6820          "Invalid Atomic Op");
6821 
6822   EVT VT = Val.getValueType();
6823 
6824   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6825                                                getVTList(VT, MVT::Other);
6826   SDValue Ops[] = {Chain, Ptr, Val};
6827   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6828 }
6829 
6830 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6831                                 EVT VT, SDValue Chain, SDValue Ptr,
6832                                 MachineMemOperand *MMO) {
6833   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6834 
6835   SDVTList VTs = getVTList(VT, MVT::Other);
6836   SDValue Ops[] = {Chain, Ptr};
6837   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6838 }
6839 
6840 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6841 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6842   if (Ops.size() == 1)
6843     return Ops[0];
6844 
6845   SmallVector<EVT, 4> VTs;
6846   VTs.reserve(Ops.size());
6847   for (const SDValue &Op : Ops)
6848     VTs.push_back(Op.getValueType());
6849   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6850 }
6851 
6852 SDValue SelectionDAG::getMemIntrinsicNode(
6853     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6854     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6855     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6856   if (!Size && MemVT.isScalableVector())
6857     Size = MemoryLocation::UnknownSize;
6858   else if (!Size)
6859     Size = MemVT.getStoreSize();
6860 
6861   MachineFunction &MF = getMachineFunction();
6862   MachineMemOperand *MMO =
6863       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6864 
6865   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6866 }
6867 
6868 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6869                                           SDVTList VTList,
6870                                           ArrayRef<SDValue> Ops, EVT MemVT,
6871                                           MachineMemOperand *MMO) {
6872   assert((Opcode == ISD::INTRINSIC_VOID ||
6873           Opcode == ISD::INTRINSIC_W_CHAIN ||
6874           Opcode == ISD::PREFETCH ||
6875           ((int)Opcode <= std::numeric_limits<int>::max() &&
6876            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6877          "Opcode is not a memory-accessing opcode!");
6878 
6879   // Memoize the node unless it returns a flag.
6880   MemIntrinsicSDNode *N;
6881   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6882     FoldingSetNodeID ID;
6883     AddNodeIDNode(ID, Opcode, VTList, Ops);
6884     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6885         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6886     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6887     void *IP = nullptr;
6888     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6889       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6890       return SDValue(E, 0);
6891     }
6892 
6893     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6894                                       VTList, MemVT, MMO);
6895     createOperands(N, Ops);
6896 
6897   CSEMap.InsertNode(N, IP);
6898   } else {
6899     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6900                                       VTList, MemVT, MMO);
6901     createOperands(N, Ops);
6902   }
6903   InsertNode(N);
6904   SDValue V(N, 0);
6905   NewSDValueDbgMsg(V, "Creating new node: ", this);
6906   return V;
6907 }
6908 
6909 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6910                                       SDValue Chain, int FrameIndex,
6911                                       int64_t Size, int64_t Offset) {
6912   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6913   const auto VTs = getVTList(MVT::Other);
6914   SDValue Ops[2] = {
6915       Chain,
6916       getFrameIndex(FrameIndex,
6917                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6918                     true)};
6919 
6920   FoldingSetNodeID ID;
6921   AddNodeIDNode(ID, Opcode, VTs, Ops);
6922   ID.AddInteger(FrameIndex);
6923   ID.AddInteger(Size);
6924   ID.AddInteger(Offset);
6925   void *IP = nullptr;
6926   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6927     return SDValue(E, 0);
6928 
6929   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6930       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6931   createOperands(N, Ops);
6932   CSEMap.InsertNode(N, IP);
6933   InsertNode(N);
6934   SDValue V(N, 0);
6935   NewSDValueDbgMsg(V, "Creating new node: ", this);
6936   return V;
6937 }
6938 
6939 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
6940                                          uint64_t Guid, uint64_t Index,
6941                                          uint32_t Attr) {
6942   const unsigned Opcode = ISD::PSEUDO_PROBE;
6943   const auto VTs = getVTList(MVT::Other);
6944   SDValue Ops[] = {Chain};
6945   FoldingSetNodeID ID;
6946   AddNodeIDNode(ID, Opcode, VTs, Ops);
6947   ID.AddInteger(Guid);
6948   ID.AddInteger(Index);
6949   void *IP = nullptr;
6950   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
6951     return SDValue(E, 0);
6952 
6953   auto *N = newSDNode<PseudoProbeSDNode>(
6954       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
6955   createOperands(N, Ops);
6956   CSEMap.InsertNode(N, IP);
6957   InsertNode(N);
6958   SDValue V(N, 0);
6959   NewSDValueDbgMsg(V, "Creating new node: ", this);
6960   return V;
6961 }
6962 
6963 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6964 /// MachinePointerInfo record from it.  This is particularly useful because the
6965 /// code generator has many cases where it doesn't bother passing in a
6966 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6967 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6968                                            SelectionDAG &DAG, SDValue Ptr,
6969                                            int64_t Offset = 0) {
6970   // If this is FI+Offset, we can model it.
6971   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6972     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6973                                              FI->getIndex(), Offset);
6974 
6975   // If this is (FI+Offset1)+Offset2, we can model it.
6976   if (Ptr.getOpcode() != ISD::ADD ||
6977       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6978       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6979     return Info;
6980 
6981   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6982   return MachinePointerInfo::getFixedStack(
6983       DAG.getMachineFunction(), FI,
6984       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6985 }
6986 
6987 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6988 /// MachinePointerInfo record from it.  This is particularly useful because the
6989 /// code generator has many cases where it doesn't bother passing in a
6990 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6991 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6992                                            SelectionDAG &DAG, SDValue Ptr,
6993                                            SDValue OffsetOp) {
6994   // If the 'Offset' value isn't a constant, we can't handle this.
6995   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6996     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6997   if (OffsetOp.isUndef())
6998     return InferPointerInfo(Info, DAG, Ptr);
6999   return Info;
7000 }
7001 
7002 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7003                               EVT VT, const SDLoc &dl, SDValue Chain,
7004                               SDValue Ptr, SDValue Offset,
7005                               MachinePointerInfo PtrInfo, EVT MemVT,
7006                               Align Alignment,
7007                               MachineMemOperand::Flags MMOFlags,
7008                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7009   assert(Chain.getValueType() == MVT::Other &&
7010         "Invalid chain type");
7011 
7012   MMOFlags |= MachineMemOperand::MOLoad;
7013   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7014   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7015   // clients.
7016   if (PtrInfo.V.isNull())
7017     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7018 
7019   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7020   MachineFunction &MF = getMachineFunction();
7021   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7022                                                    Alignment, AAInfo, Ranges);
7023   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7024 }
7025 
7026 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7027                               EVT VT, const SDLoc &dl, SDValue Chain,
7028                               SDValue Ptr, SDValue Offset, EVT MemVT,
7029                               MachineMemOperand *MMO) {
7030   if (VT == MemVT) {
7031     ExtType = ISD::NON_EXTLOAD;
7032   } else if (ExtType == ISD::NON_EXTLOAD) {
7033     assert(VT == MemVT && "Non-extending load from different memory type!");
7034   } else {
7035     // Extending load.
7036     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7037            "Should only be an extending load, not truncating!");
7038     assert(VT.isInteger() == MemVT.isInteger() &&
7039            "Cannot convert from FP to Int or Int -> FP!");
7040     assert(VT.isVector() == MemVT.isVector() &&
7041            "Cannot use an ext load to convert to or from a vector!");
7042     assert((!VT.isVector() ||
7043             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7044            "Cannot use an ext load to change the number of vector elements!");
7045   }
7046 
7047   bool Indexed = AM != ISD::UNINDEXED;
7048   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7049 
7050   SDVTList VTs = Indexed ?
7051     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7052   SDValue Ops[] = { Chain, Ptr, Offset };
7053   FoldingSetNodeID ID;
7054   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7055   ID.AddInteger(MemVT.getRawBits());
7056   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7057       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7058   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7059   void *IP = nullptr;
7060   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7061     cast<LoadSDNode>(E)->refineAlignment(MMO);
7062     return SDValue(E, 0);
7063   }
7064   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7065                                   ExtType, MemVT, MMO);
7066   createOperands(N, Ops);
7067 
7068   CSEMap.InsertNode(N, IP);
7069   InsertNode(N);
7070   SDValue V(N, 0);
7071   NewSDValueDbgMsg(V, "Creating new node: ", this);
7072   return V;
7073 }
7074 
7075 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7076                               SDValue Ptr, MachinePointerInfo PtrInfo,
7077                               MaybeAlign Alignment,
7078                               MachineMemOperand::Flags MMOFlags,
7079                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7080   SDValue Undef = getUNDEF(Ptr.getValueType());
7081   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7082                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7083 }
7084 
7085 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7086                               SDValue Ptr, MachineMemOperand *MMO) {
7087   SDValue Undef = getUNDEF(Ptr.getValueType());
7088   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7089                  VT, MMO);
7090 }
7091 
7092 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7093                                  EVT VT, SDValue Chain, SDValue Ptr,
7094                                  MachinePointerInfo PtrInfo, EVT MemVT,
7095                                  MaybeAlign Alignment,
7096                                  MachineMemOperand::Flags MMOFlags,
7097                                  const AAMDNodes &AAInfo) {
7098   SDValue Undef = getUNDEF(Ptr.getValueType());
7099   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7100                  MemVT, Alignment, MMOFlags, AAInfo);
7101 }
7102 
7103 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7104                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7105                                  MachineMemOperand *MMO) {
7106   SDValue Undef = getUNDEF(Ptr.getValueType());
7107   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7108                  MemVT, MMO);
7109 }
7110 
7111 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7112                                      SDValue Base, SDValue Offset,
7113                                      ISD::MemIndexedMode AM) {
7114   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7115   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7116   // Don't propagate the invariant or dereferenceable flags.
7117   auto MMOFlags =
7118       LD->getMemOperand()->getFlags() &
7119       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7120   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7121                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7122                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7123 }
7124 
7125 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7126                                SDValue Ptr, MachinePointerInfo PtrInfo,
7127                                Align Alignment,
7128                                MachineMemOperand::Flags MMOFlags,
7129                                const AAMDNodes &AAInfo) {
7130   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7131 
7132   MMOFlags |= MachineMemOperand::MOStore;
7133   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7134 
7135   if (PtrInfo.V.isNull())
7136     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7137 
7138   MachineFunction &MF = getMachineFunction();
7139   uint64_t Size =
7140       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7141   MachineMemOperand *MMO =
7142       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7143   return getStore(Chain, dl, Val, Ptr, MMO);
7144 }
7145 
7146 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7147                                SDValue Ptr, MachineMemOperand *MMO) {
7148   assert(Chain.getValueType() == MVT::Other &&
7149         "Invalid chain type");
7150   EVT VT = Val.getValueType();
7151   SDVTList VTs = getVTList(MVT::Other);
7152   SDValue Undef = getUNDEF(Ptr.getValueType());
7153   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7154   FoldingSetNodeID ID;
7155   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7156   ID.AddInteger(VT.getRawBits());
7157   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7158       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7159   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7160   void *IP = nullptr;
7161   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7162     cast<StoreSDNode>(E)->refineAlignment(MMO);
7163     return SDValue(E, 0);
7164   }
7165   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7166                                    ISD::UNINDEXED, false, VT, MMO);
7167   createOperands(N, Ops);
7168 
7169   CSEMap.InsertNode(N, IP);
7170   InsertNode(N);
7171   SDValue V(N, 0);
7172   NewSDValueDbgMsg(V, "Creating new node: ", this);
7173   return V;
7174 }
7175 
7176 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7177                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7178                                     EVT SVT, Align Alignment,
7179                                     MachineMemOperand::Flags MMOFlags,
7180                                     const AAMDNodes &AAInfo) {
7181   assert(Chain.getValueType() == MVT::Other &&
7182         "Invalid chain type");
7183 
7184   MMOFlags |= MachineMemOperand::MOStore;
7185   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7186 
7187   if (PtrInfo.V.isNull())
7188     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7189 
7190   MachineFunction &MF = getMachineFunction();
7191   MachineMemOperand *MMO = MF.getMachineMemOperand(
7192       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7193       Alignment, AAInfo);
7194   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7195 }
7196 
7197 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7198                                     SDValue Ptr, EVT SVT,
7199                                     MachineMemOperand *MMO) {
7200   EVT VT = Val.getValueType();
7201 
7202   assert(Chain.getValueType() == MVT::Other &&
7203         "Invalid chain type");
7204   if (VT == SVT)
7205     return getStore(Chain, dl, Val, Ptr, MMO);
7206 
7207   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7208          "Should only be a truncating store, not extending!");
7209   assert(VT.isInteger() == SVT.isInteger() &&
7210          "Can't do FP-INT conversion!");
7211   assert(VT.isVector() == SVT.isVector() &&
7212          "Cannot use trunc store to convert to or from a vector!");
7213   assert((!VT.isVector() ||
7214           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7215          "Cannot use trunc store to change the number of vector elements!");
7216 
7217   SDVTList VTs = getVTList(MVT::Other);
7218   SDValue Undef = getUNDEF(Ptr.getValueType());
7219   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7220   FoldingSetNodeID ID;
7221   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7222   ID.AddInteger(SVT.getRawBits());
7223   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7224       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7225   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7226   void *IP = nullptr;
7227   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7228     cast<StoreSDNode>(E)->refineAlignment(MMO);
7229     return SDValue(E, 0);
7230   }
7231   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7232                                    ISD::UNINDEXED, true, SVT, MMO);
7233   createOperands(N, Ops);
7234 
7235   CSEMap.InsertNode(N, IP);
7236   InsertNode(N);
7237   SDValue V(N, 0);
7238   NewSDValueDbgMsg(V, "Creating new node: ", this);
7239   return V;
7240 }
7241 
7242 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7243                                       SDValue Base, SDValue Offset,
7244                                       ISD::MemIndexedMode AM) {
7245   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7246   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7247   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7248   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7249   FoldingSetNodeID ID;
7250   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7251   ID.AddInteger(ST->getMemoryVT().getRawBits());
7252   ID.AddInteger(ST->getRawSubclassData());
7253   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7254   void *IP = nullptr;
7255   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7256     return SDValue(E, 0);
7257 
7258   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7259                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7260                                    ST->getMemOperand());
7261   createOperands(N, Ops);
7262 
7263   CSEMap.InsertNode(N, IP);
7264   InsertNode(N);
7265   SDValue V(N, 0);
7266   NewSDValueDbgMsg(V, "Creating new node: ", this);
7267   return V;
7268 }
7269 
7270 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7271                                     SDValue Base, SDValue Offset, SDValue Mask,
7272                                     SDValue PassThru, EVT MemVT,
7273                                     MachineMemOperand *MMO,
7274                                     ISD::MemIndexedMode AM,
7275                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7276   bool Indexed = AM != ISD::UNINDEXED;
7277   assert((Indexed || Offset.isUndef()) &&
7278          "Unindexed masked load with an offset!");
7279   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7280                          : getVTList(VT, MVT::Other);
7281   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7282   FoldingSetNodeID ID;
7283   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7284   ID.AddInteger(MemVT.getRawBits());
7285   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7286       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7287   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7288   void *IP = nullptr;
7289   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7290     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7291     return SDValue(E, 0);
7292   }
7293   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7294                                         AM, ExtTy, isExpanding, MemVT, MMO);
7295   createOperands(N, Ops);
7296 
7297   CSEMap.InsertNode(N, IP);
7298   InsertNode(N);
7299   SDValue V(N, 0);
7300   NewSDValueDbgMsg(V, "Creating new node: ", this);
7301   return V;
7302 }
7303 
7304 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7305                                            SDValue Base, SDValue Offset,
7306                                            ISD::MemIndexedMode AM) {
7307   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7308   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7309   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7310                        Offset, LD->getMask(), LD->getPassThru(),
7311                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7312                        LD->getExtensionType(), LD->isExpandingLoad());
7313 }
7314 
7315 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7316                                      SDValue Val, SDValue Base, SDValue Offset,
7317                                      SDValue Mask, EVT MemVT,
7318                                      MachineMemOperand *MMO,
7319                                      ISD::MemIndexedMode AM, bool IsTruncating,
7320                                      bool IsCompressing) {
7321   assert(Chain.getValueType() == MVT::Other &&
7322         "Invalid chain type");
7323   bool Indexed = AM != ISD::UNINDEXED;
7324   assert((Indexed || Offset.isUndef()) &&
7325          "Unindexed masked store with an offset!");
7326   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7327                          : getVTList(MVT::Other);
7328   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7329   FoldingSetNodeID ID;
7330   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7331   ID.AddInteger(MemVT.getRawBits());
7332   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7333       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7334   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7335   void *IP = nullptr;
7336   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7337     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7338     return SDValue(E, 0);
7339   }
7340   auto *N =
7341       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7342                                    IsTruncating, IsCompressing, MemVT, MMO);
7343   createOperands(N, Ops);
7344 
7345   CSEMap.InsertNode(N, IP);
7346   InsertNode(N);
7347   SDValue V(N, 0);
7348   NewSDValueDbgMsg(V, "Creating new node: ", this);
7349   return V;
7350 }
7351 
7352 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7353                                             SDValue Base, SDValue Offset,
7354                                             ISD::MemIndexedMode AM) {
7355   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7356   assert(ST->getOffset().isUndef() &&
7357          "Masked store is already a indexed store!");
7358   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7359                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7360                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7361 }
7362 
7363 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7364                                       ArrayRef<SDValue> Ops,
7365                                       MachineMemOperand *MMO,
7366                                       ISD::MemIndexType IndexType,
7367                                       ISD::LoadExtType ExtTy) {
7368   assert(Ops.size() == 6 && "Incompatible number of operands");
7369 
7370   FoldingSetNodeID ID;
7371   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7372   ID.AddInteger(VT.getRawBits());
7373   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7374       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7375   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7376   void *IP = nullptr;
7377   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7378     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7379     return SDValue(E, 0);
7380   }
7381 
7382   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7383   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7384                                           VTs, VT, MMO, IndexType, ExtTy);
7385   createOperands(N, Ops);
7386 
7387   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7388          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7389   assert(N->getMask().getValueType().getVectorElementCount() ==
7390              N->getValueType(0).getVectorElementCount() &&
7391          "Vector width mismatch between mask and data");
7392   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7393              N->getValueType(0).getVectorElementCount().isScalable() &&
7394          "Scalable flags of index and data do not match");
7395   assert(ElementCount::isKnownGE(
7396              N->getIndex().getValueType().getVectorElementCount(),
7397              N->getValueType(0).getVectorElementCount()) &&
7398          "Vector width mismatch between index and data");
7399   assert(isa<ConstantSDNode>(N->getScale()) &&
7400          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7401          "Scale should be a constant power of 2");
7402 
7403   CSEMap.InsertNode(N, IP);
7404   InsertNode(N);
7405   SDValue V(N, 0);
7406   NewSDValueDbgMsg(V, "Creating new node: ", this);
7407   return V;
7408 }
7409 
7410 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7411                                        ArrayRef<SDValue> Ops,
7412                                        MachineMemOperand *MMO,
7413                                        ISD::MemIndexType IndexType,
7414                                        bool IsTrunc) {
7415   assert(Ops.size() == 6 && "Incompatible number of operands");
7416 
7417   FoldingSetNodeID ID;
7418   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7419   ID.AddInteger(VT.getRawBits());
7420   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7421       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7422   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7423   void *IP = nullptr;
7424   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7425     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7426     return SDValue(E, 0);
7427   }
7428 
7429   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7430   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7431                                            VTs, VT, MMO, IndexType, IsTrunc);
7432   createOperands(N, Ops);
7433 
7434   assert(N->getMask().getValueType().getVectorElementCount() ==
7435              N->getValue().getValueType().getVectorElementCount() &&
7436          "Vector width mismatch between mask and data");
7437   assert(
7438       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7439           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7440       "Scalable flags of index and data do not match");
7441   assert(ElementCount::isKnownGE(
7442              N->getIndex().getValueType().getVectorElementCount(),
7443              N->getValue().getValueType().getVectorElementCount()) &&
7444          "Vector width mismatch between index and data");
7445   assert(isa<ConstantSDNode>(N->getScale()) &&
7446          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7447          "Scale should be a constant power of 2");
7448 
7449   CSEMap.InsertNode(N, IP);
7450   InsertNode(N);
7451   SDValue V(N, 0);
7452   NewSDValueDbgMsg(V, "Creating new node: ", this);
7453   return V;
7454 }
7455 
7456 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7457   // select undef, T, F --> T (if T is a constant), otherwise F
7458   // select, ?, undef, F --> F
7459   // select, ?, T, undef --> T
7460   if (Cond.isUndef())
7461     return isConstantValueOfAnyType(T) ? T : F;
7462   if (T.isUndef())
7463     return F;
7464   if (F.isUndef())
7465     return T;
7466 
7467   // select true, T, F --> T
7468   // select false, T, F --> F
7469   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7470     return CondC->isNullValue() ? F : T;
7471 
7472   // TODO: This should simplify VSELECT with constant condition using something
7473   // like this (but check boolean contents to be complete?):
7474   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7475   //    return T;
7476   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7477   //    return F;
7478 
7479   // select ?, T, T --> T
7480   if (T == F)
7481     return T;
7482 
7483   return SDValue();
7484 }
7485 
7486 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7487   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7488   if (X.isUndef())
7489     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7490   // shift X, undef --> undef (because it may shift by the bitwidth)
7491   if (Y.isUndef())
7492     return getUNDEF(X.getValueType());
7493 
7494   // shift 0, Y --> 0
7495   // shift X, 0 --> X
7496   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7497     return X;
7498 
7499   // shift X, C >= bitwidth(X) --> undef
7500   // All vector elements must be too big (or undef) to avoid partial undefs.
7501   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7502     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7503   };
7504   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7505     return getUNDEF(X.getValueType());
7506 
7507   return SDValue();
7508 }
7509 
7510 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7511                                       SDNodeFlags Flags) {
7512   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7513   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7514   // operation is poison. That result can be relaxed to undef.
7515   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7516   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7517   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7518                 (YC && YC->getValueAPF().isNaN());
7519   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7520                 (YC && YC->getValueAPF().isInfinity());
7521 
7522   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7523     return getUNDEF(X.getValueType());
7524 
7525   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7526     return getUNDEF(X.getValueType());
7527 
7528   if (!YC)
7529     return SDValue();
7530 
7531   // X + -0.0 --> X
7532   if (Opcode == ISD::FADD)
7533     if (YC->getValueAPF().isNegZero())
7534       return X;
7535 
7536   // X - +0.0 --> X
7537   if (Opcode == ISD::FSUB)
7538     if (YC->getValueAPF().isPosZero())
7539       return X;
7540 
7541   // X * 1.0 --> X
7542   // X / 1.0 --> X
7543   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7544     if (YC->getValueAPF().isExactlyValue(1.0))
7545       return X;
7546 
7547   // X * 0.0 --> 0.0
7548   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7549     if (YC->getValueAPF().isZero())
7550       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7551 
7552   return SDValue();
7553 }
7554 
7555 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7556                                SDValue Ptr, SDValue SV, unsigned Align) {
7557   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7558   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7559 }
7560 
7561 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7562                               ArrayRef<SDUse> Ops) {
7563   switch (Ops.size()) {
7564   case 0: return getNode(Opcode, DL, VT);
7565   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7566   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7567   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7568   default: break;
7569   }
7570 
7571   // Copy from an SDUse array into an SDValue array for use with
7572   // the regular getNode logic.
7573   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7574   return getNode(Opcode, DL, VT, NewOps);
7575 }
7576 
7577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7578                               ArrayRef<SDValue> Ops) {
7579   SDNodeFlags Flags;
7580   if (Inserter)
7581     Flags = Inserter->getFlags();
7582   return getNode(Opcode, DL, VT, Ops, Flags);
7583 }
7584 
7585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7586                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7587   unsigned NumOps = Ops.size();
7588   switch (NumOps) {
7589   case 0: return getNode(Opcode, DL, VT);
7590   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7591   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7592   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7593   default: break;
7594   }
7595 
7596   switch (Opcode) {
7597   default: break;
7598   case ISD::BUILD_VECTOR:
7599     // Attempt to simplify BUILD_VECTOR.
7600     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7601       return V;
7602     break;
7603   case ISD::CONCAT_VECTORS:
7604     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7605       return V;
7606     break;
7607   case ISD::SELECT_CC:
7608     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7609     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7610            "LHS and RHS of condition must have same type!");
7611     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7612            "True and False arms of SelectCC must have same type!");
7613     assert(Ops[2].getValueType() == VT &&
7614            "select_cc node must be of same type as true and false value!");
7615     break;
7616   case ISD::BR_CC:
7617     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7618     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7619            "LHS/RHS of comparison should match types!");
7620     break;
7621   }
7622 
7623   // Memoize nodes.
7624   SDNode *N;
7625   SDVTList VTs = getVTList(VT);
7626 
7627   if (VT != MVT::Glue) {
7628     FoldingSetNodeID ID;
7629     AddNodeIDNode(ID, Opcode, VTs, Ops);
7630     void *IP = nullptr;
7631 
7632     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7633       return SDValue(E, 0);
7634 
7635     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7636     createOperands(N, Ops);
7637 
7638     CSEMap.InsertNode(N, IP);
7639   } else {
7640     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7641     createOperands(N, Ops);
7642   }
7643 
7644   N->setFlags(Flags);
7645   InsertNode(N);
7646   SDValue V(N, 0);
7647   NewSDValueDbgMsg(V, "Creating new node: ", this);
7648   return V;
7649 }
7650 
7651 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7652                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7653   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7654 }
7655 
7656 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7657                               ArrayRef<SDValue> Ops) {
7658   SDNodeFlags Flags;
7659   if (Inserter)
7660     Flags = Inserter->getFlags();
7661   return getNode(Opcode, DL, VTList, Ops, Flags);
7662 }
7663 
7664 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7665                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7666   if (VTList.NumVTs == 1)
7667     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7668 
7669   switch (Opcode) {
7670   case ISD::STRICT_FP_EXTEND:
7671     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7672            "Invalid STRICT_FP_EXTEND!");
7673     assert(VTList.VTs[0].isFloatingPoint() &&
7674            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7675     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7676            "STRICT_FP_EXTEND result type should be vector iff the operand "
7677            "type is vector!");
7678     assert((!VTList.VTs[0].isVector() ||
7679             VTList.VTs[0].getVectorNumElements() ==
7680             Ops[1].getValueType().getVectorNumElements()) &&
7681            "Vector element count mismatch!");
7682     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7683            "Invalid fpext node, dst <= src!");
7684     break;
7685   case ISD::STRICT_FP_ROUND:
7686     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7687     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7688            "STRICT_FP_ROUND result type should be vector iff the operand "
7689            "type is vector!");
7690     assert((!VTList.VTs[0].isVector() ||
7691             VTList.VTs[0].getVectorNumElements() ==
7692             Ops[1].getValueType().getVectorNumElements()) &&
7693            "Vector element count mismatch!");
7694     assert(VTList.VTs[0].isFloatingPoint() &&
7695            Ops[1].getValueType().isFloatingPoint() &&
7696            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7697            isa<ConstantSDNode>(Ops[2]) &&
7698            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7699             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7700            "Invalid STRICT_FP_ROUND!");
7701     break;
7702 #if 0
7703   // FIXME: figure out how to safely handle things like
7704   // int foo(int x) { return 1 << (x & 255); }
7705   // int bar() { return foo(256); }
7706   case ISD::SRA_PARTS:
7707   case ISD::SRL_PARTS:
7708   case ISD::SHL_PARTS:
7709     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7710         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7711       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7712     else if (N3.getOpcode() == ISD::AND)
7713       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7714         // If the and is only masking out bits that cannot effect the shift,
7715         // eliminate the and.
7716         unsigned NumBits = VT.getScalarSizeInBits()*2;
7717         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7718           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7719       }
7720     break;
7721 #endif
7722   }
7723 
7724   // Memoize the node unless it returns a flag.
7725   SDNode *N;
7726   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7727     FoldingSetNodeID ID;
7728     AddNodeIDNode(ID, Opcode, VTList, Ops);
7729     void *IP = nullptr;
7730     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7731       return SDValue(E, 0);
7732 
7733     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7734     createOperands(N, Ops);
7735     CSEMap.InsertNode(N, IP);
7736   } else {
7737     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7738     createOperands(N, Ops);
7739   }
7740 
7741   N->setFlags(Flags);
7742   InsertNode(N);
7743   SDValue V(N, 0);
7744   NewSDValueDbgMsg(V, "Creating new node: ", this);
7745   return V;
7746 }
7747 
7748 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7749                               SDVTList VTList) {
7750   return getNode(Opcode, DL, VTList, None);
7751 }
7752 
7753 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7754                               SDValue N1) {
7755   SDValue Ops[] = { N1 };
7756   return getNode(Opcode, DL, VTList, Ops);
7757 }
7758 
7759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7760                               SDValue N1, SDValue N2) {
7761   SDValue Ops[] = { N1, N2 };
7762   return getNode(Opcode, DL, VTList, Ops);
7763 }
7764 
7765 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7766                               SDValue N1, SDValue N2, SDValue N3) {
7767   SDValue Ops[] = { N1, N2, N3 };
7768   return getNode(Opcode, DL, VTList, Ops);
7769 }
7770 
7771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7772                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7773   SDValue Ops[] = { N1, N2, N3, N4 };
7774   return getNode(Opcode, DL, VTList, Ops);
7775 }
7776 
7777 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7778                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7779                               SDValue N5) {
7780   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7781   return getNode(Opcode, DL, VTList, Ops);
7782 }
7783 
7784 SDVTList SelectionDAG::getVTList(EVT VT) {
7785   return makeVTList(SDNode::getValueTypeList(VT), 1);
7786 }
7787 
7788 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7789   FoldingSetNodeID ID;
7790   ID.AddInteger(2U);
7791   ID.AddInteger(VT1.getRawBits());
7792   ID.AddInteger(VT2.getRawBits());
7793 
7794   void *IP = nullptr;
7795   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7796   if (!Result) {
7797     EVT *Array = Allocator.Allocate<EVT>(2);
7798     Array[0] = VT1;
7799     Array[1] = VT2;
7800     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7801     VTListMap.InsertNode(Result, IP);
7802   }
7803   return Result->getSDVTList();
7804 }
7805 
7806 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7807   FoldingSetNodeID ID;
7808   ID.AddInteger(3U);
7809   ID.AddInteger(VT1.getRawBits());
7810   ID.AddInteger(VT2.getRawBits());
7811   ID.AddInteger(VT3.getRawBits());
7812 
7813   void *IP = nullptr;
7814   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7815   if (!Result) {
7816     EVT *Array = Allocator.Allocate<EVT>(3);
7817     Array[0] = VT1;
7818     Array[1] = VT2;
7819     Array[2] = VT3;
7820     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7821     VTListMap.InsertNode(Result, IP);
7822   }
7823   return Result->getSDVTList();
7824 }
7825 
7826 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7827   FoldingSetNodeID ID;
7828   ID.AddInteger(4U);
7829   ID.AddInteger(VT1.getRawBits());
7830   ID.AddInteger(VT2.getRawBits());
7831   ID.AddInteger(VT3.getRawBits());
7832   ID.AddInteger(VT4.getRawBits());
7833 
7834   void *IP = nullptr;
7835   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7836   if (!Result) {
7837     EVT *Array = Allocator.Allocate<EVT>(4);
7838     Array[0] = VT1;
7839     Array[1] = VT2;
7840     Array[2] = VT3;
7841     Array[3] = VT4;
7842     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7843     VTListMap.InsertNode(Result, IP);
7844   }
7845   return Result->getSDVTList();
7846 }
7847 
7848 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7849   unsigned NumVTs = VTs.size();
7850   FoldingSetNodeID ID;
7851   ID.AddInteger(NumVTs);
7852   for (unsigned index = 0; index < NumVTs; index++) {
7853     ID.AddInteger(VTs[index].getRawBits());
7854   }
7855 
7856   void *IP = nullptr;
7857   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7858   if (!Result) {
7859     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7860     llvm::copy(VTs, Array);
7861     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7862     VTListMap.InsertNode(Result, IP);
7863   }
7864   return Result->getSDVTList();
7865 }
7866 
7867 
7868 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7869 /// specified operands.  If the resultant node already exists in the DAG,
7870 /// this does not modify the specified node, instead it returns the node that
7871 /// already exists.  If the resultant node does not exist in the DAG, the
7872 /// input node is returned.  As a degenerate case, if you specify the same
7873 /// input operands as the node already has, the input node is returned.
7874 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7875   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7876 
7877   // Check to see if there is no change.
7878   if (Op == N->getOperand(0)) return N;
7879 
7880   // See if the modified node already exists.
7881   void *InsertPos = nullptr;
7882   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7883     return Existing;
7884 
7885   // Nope it doesn't.  Remove the node from its current place in the maps.
7886   if (InsertPos)
7887     if (!RemoveNodeFromCSEMaps(N))
7888       InsertPos = nullptr;
7889 
7890   // Now we update the operands.
7891   N->OperandList[0].set(Op);
7892 
7893   updateDivergence(N);
7894   // If this gets put into a CSE map, add it.
7895   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7896   return N;
7897 }
7898 
7899 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7900   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7901 
7902   // Check to see if there is no change.
7903   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7904     return N;   // No operands changed, just return the input node.
7905 
7906   // See if the modified node already exists.
7907   void *InsertPos = nullptr;
7908   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7909     return Existing;
7910 
7911   // Nope it doesn't.  Remove the node from its current place in the maps.
7912   if (InsertPos)
7913     if (!RemoveNodeFromCSEMaps(N))
7914       InsertPos = nullptr;
7915 
7916   // Now we update the operands.
7917   if (N->OperandList[0] != Op1)
7918     N->OperandList[0].set(Op1);
7919   if (N->OperandList[1] != Op2)
7920     N->OperandList[1].set(Op2);
7921 
7922   updateDivergence(N);
7923   // If this gets put into a CSE map, add it.
7924   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7925   return N;
7926 }
7927 
7928 SDNode *SelectionDAG::
7929 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7930   SDValue Ops[] = { Op1, Op2, Op3 };
7931   return UpdateNodeOperands(N, Ops);
7932 }
7933 
7934 SDNode *SelectionDAG::
7935 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7936                    SDValue Op3, SDValue Op4) {
7937   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7938   return UpdateNodeOperands(N, Ops);
7939 }
7940 
7941 SDNode *SelectionDAG::
7942 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7943                    SDValue Op3, SDValue Op4, SDValue Op5) {
7944   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7945   return UpdateNodeOperands(N, Ops);
7946 }
7947 
7948 SDNode *SelectionDAG::
7949 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7950   unsigned NumOps = Ops.size();
7951   assert(N->getNumOperands() == NumOps &&
7952          "Update with wrong number of operands");
7953 
7954   // If no operands changed just return the input node.
7955   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7956     return N;
7957 
7958   // See if the modified node already exists.
7959   void *InsertPos = nullptr;
7960   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7961     return Existing;
7962 
7963   // Nope it doesn't.  Remove the node from its current place in the maps.
7964   if (InsertPos)
7965     if (!RemoveNodeFromCSEMaps(N))
7966       InsertPos = nullptr;
7967 
7968   // Now we update the operands.
7969   for (unsigned i = 0; i != NumOps; ++i)
7970     if (N->OperandList[i] != Ops[i])
7971       N->OperandList[i].set(Ops[i]);
7972 
7973   updateDivergence(N);
7974   // If this gets put into a CSE map, add it.
7975   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7976   return N;
7977 }
7978 
7979 /// DropOperands - Release the operands and set this node to have
7980 /// zero operands.
7981 void SDNode::DropOperands() {
7982   // Unlike the code in MorphNodeTo that does this, we don't need to
7983   // watch for dead nodes here.
7984   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7985     SDUse &Use = *I++;
7986     Use.set(SDValue());
7987   }
7988 }
7989 
7990 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7991                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7992   if (NewMemRefs.empty()) {
7993     N->clearMemRefs();
7994     return;
7995   }
7996 
7997   // Check if we can avoid allocating by storing a single reference directly.
7998   if (NewMemRefs.size() == 1) {
7999     N->MemRefs = NewMemRefs[0];
8000     N->NumMemRefs = 1;
8001     return;
8002   }
8003 
8004   MachineMemOperand **MemRefsBuffer =
8005       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8006   llvm::copy(NewMemRefs, MemRefsBuffer);
8007   N->MemRefs = MemRefsBuffer;
8008   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8009 }
8010 
8011 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8012 /// machine opcode.
8013 ///
8014 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8015                                    EVT VT) {
8016   SDVTList VTs = getVTList(VT);
8017   return SelectNodeTo(N, MachineOpc, VTs, None);
8018 }
8019 
8020 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8021                                    EVT VT, SDValue Op1) {
8022   SDVTList VTs = getVTList(VT);
8023   SDValue Ops[] = { Op1 };
8024   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8025 }
8026 
8027 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8028                                    EVT VT, SDValue Op1,
8029                                    SDValue Op2) {
8030   SDVTList VTs = getVTList(VT);
8031   SDValue Ops[] = { Op1, Op2 };
8032   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8033 }
8034 
8035 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8036                                    EVT VT, SDValue Op1,
8037                                    SDValue Op2, SDValue Op3) {
8038   SDVTList VTs = getVTList(VT);
8039   SDValue Ops[] = { Op1, Op2, Op3 };
8040   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8041 }
8042 
8043 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8044                                    EVT VT, ArrayRef<SDValue> Ops) {
8045   SDVTList VTs = getVTList(VT);
8046   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8047 }
8048 
8049 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8050                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8051   SDVTList VTs = getVTList(VT1, VT2);
8052   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8053 }
8054 
8055 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8056                                    EVT VT1, EVT VT2) {
8057   SDVTList VTs = getVTList(VT1, VT2);
8058   return SelectNodeTo(N, MachineOpc, VTs, None);
8059 }
8060 
8061 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8062                                    EVT VT1, EVT VT2, EVT VT3,
8063                                    ArrayRef<SDValue> Ops) {
8064   SDVTList VTs = getVTList(VT1, VT2, VT3);
8065   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8066 }
8067 
8068 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8069                                    EVT VT1, EVT VT2,
8070                                    SDValue Op1, SDValue Op2) {
8071   SDVTList VTs = getVTList(VT1, VT2);
8072   SDValue Ops[] = { Op1, Op2 };
8073   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8074 }
8075 
8076 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8077                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8078   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8079   // Reset the NodeID to -1.
8080   New->setNodeId(-1);
8081   if (New != N) {
8082     ReplaceAllUsesWith(N, New);
8083     RemoveDeadNode(N);
8084   }
8085   return New;
8086 }
8087 
8088 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8089 /// the line number information on the merged node since it is not possible to
8090 /// preserve the information that operation is associated with multiple lines.
8091 /// This will make the debugger working better at -O0, were there is a higher
8092 /// probability having other instructions associated with that line.
8093 ///
8094 /// For IROrder, we keep the smaller of the two
8095 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8096   DebugLoc NLoc = N->getDebugLoc();
8097   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8098     N->setDebugLoc(DebugLoc());
8099   }
8100   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8101   N->setIROrder(Order);
8102   return N;
8103 }
8104 
8105 /// MorphNodeTo - This *mutates* the specified node to have the specified
8106 /// return type, opcode, and operands.
8107 ///
8108 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8109 /// node of the specified opcode and operands, it returns that node instead of
8110 /// the current one.  Note that the SDLoc need not be the same.
8111 ///
8112 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8113 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8114 /// node, and because it doesn't require CSE recalculation for any of
8115 /// the node's users.
8116 ///
8117 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8118 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8119 /// the legalizer which maintain worklists that would need to be updated when
8120 /// deleting things.
8121 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8122                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8123   // If an identical node already exists, use it.
8124   void *IP = nullptr;
8125   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8126     FoldingSetNodeID ID;
8127     AddNodeIDNode(ID, Opc, VTs, Ops);
8128     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8129       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8130   }
8131 
8132   if (!RemoveNodeFromCSEMaps(N))
8133     IP = nullptr;
8134 
8135   // Start the morphing.
8136   N->NodeType = Opc;
8137   N->ValueList = VTs.VTs;
8138   N->NumValues = VTs.NumVTs;
8139 
8140   // Clear the operands list, updating used nodes to remove this from their
8141   // use list.  Keep track of any operands that become dead as a result.
8142   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8143   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8144     SDUse &Use = *I++;
8145     SDNode *Used = Use.getNode();
8146     Use.set(SDValue());
8147     if (Used->use_empty())
8148       DeadNodeSet.insert(Used);
8149   }
8150 
8151   // For MachineNode, initialize the memory references information.
8152   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8153     MN->clearMemRefs();
8154 
8155   // Swap for an appropriately sized array from the recycler.
8156   removeOperands(N);
8157   createOperands(N, Ops);
8158 
8159   // Delete any nodes that are still dead after adding the uses for the
8160   // new operands.
8161   if (!DeadNodeSet.empty()) {
8162     SmallVector<SDNode *, 16> DeadNodes;
8163     for (SDNode *N : DeadNodeSet)
8164       if (N->use_empty())
8165         DeadNodes.push_back(N);
8166     RemoveDeadNodes(DeadNodes);
8167   }
8168 
8169   if (IP)
8170     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8171   return N;
8172 }
8173 
8174 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8175   unsigned OrigOpc = Node->getOpcode();
8176   unsigned NewOpc;
8177   switch (OrigOpc) {
8178   default:
8179     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8180 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8181   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8182 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8183   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8184 #include "llvm/IR/ConstrainedOps.def"
8185   }
8186 
8187   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8188 
8189   // We're taking this node out of the chain, so we need to re-link things.
8190   SDValue InputChain = Node->getOperand(0);
8191   SDValue OutputChain = SDValue(Node, 1);
8192   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8193 
8194   SmallVector<SDValue, 3> Ops;
8195   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8196     Ops.push_back(Node->getOperand(i));
8197 
8198   SDVTList VTs = getVTList(Node->getValueType(0));
8199   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8200 
8201   // MorphNodeTo can operate in two ways: if an existing node with the
8202   // specified operands exists, it can just return it.  Otherwise, it
8203   // updates the node in place to have the requested operands.
8204   if (Res == Node) {
8205     // If we updated the node in place, reset the node ID.  To the isel,
8206     // this should be just like a newly allocated machine node.
8207     Res->setNodeId(-1);
8208   } else {
8209     ReplaceAllUsesWith(Node, Res);
8210     RemoveDeadNode(Node);
8211   }
8212 
8213   return Res;
8214 }
8215 
8216 /// getMachineNode - These are used for target selectors to create a new node
8217 /// with specified return type(s), MachineInstr opcode, and operands.
8218 ///
8219 /// Note that getMachineNode returns the resultant node.  If there is already a
8220 /// node of the specified opcode and operands, it returns that node instead of
8221 /// the current one.
8222 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8223                                             EVT VT) {
8224   SDVTList VTs = getVTList(VT);
8225   return getMachineNode(Opcode, dl, VTs, None);
8226 }
8227 
8228 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8229                                             EVT VT, SDValue Op1) {
8230   SDVTList VTs = getVTList(VT);
8231   SDValue Ops[] = { Op1 };
8232   return getMachineNode(Opcode, dl, VTs, Ops);
8233 }
8234 
8235 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8236                                             EVT VT, SDValue Op1, SDValue Op2) {
8237   SDVTList VTs = getVTList(VT);
8238   SDValue Ops[] = { Op1, Op2 };
8239   return getMachineNode(Opcode, dl, VTs, Ops);
8240 }
8241 
8242 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8243                                             EVT VT, SDValue Op1, SDValue Op2,
8244                                             SDValue Op3) {
8245   SDVTList VTs = getVTList(VT);
8246   SDValue Ops[] = { Op1, Op2, Op3 };
8247   return getMachineNode(Opcode, dl, VTs, Ops);
8248 }
8249 
8250 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8251                                             EVT VT, ArrayRef<SDValue> Ops) {
8252   SDVTList VTs = getVTList(VT);
8253   return getMachineNode(Opcode, dl, VTs, Ops);
8254 }
8255 
8256 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8257                                             EVT VT1, EVT VT2, SDValue Op1,
8258                                             SDValue Op2) {
8259   SDVTList VTs = getVTList(VT1, VT2);
8260   SDValue Ops[] = { Op1, Op2 };
8261   return getMachineNode(Opcode, dl, VTs, Ops);
8262 }
8263 
8264 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8265                                             EVT VT1, EVT VT2, SDValue Op1,
8266                                             SDValue Op2, SDValue Op3) {
8267   SDVTList VTs = getVTList(VT1, VT2);
8268   SDValue Ops[] = { Op1, Op2, Op3 };
8269   return getMachineNode(Opcode, dl, VTs, Ops);
8270 }
8271 
8272 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8273                                             EVT VT1, EVT VT2,
8274                                             ArrayRef<SDValue> Ops) {
8275   SDVTList VTs = getVTList(VT1, VT2);
8276   return getMachineNode(Opcode, dl, VTs, Ops);
8277 }
8278 
8279 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8280                                             EVT VT1, EVT VT2, EVT VT3,
8281                                             SDValue Op1, SDValue Op2) {
8282   SDVTList VTs = getVTList(VT1, VT2, VT3);
8283   SDValue Ops[] = { Op1, Op2 };
8284   return getMachineNode(Opcode, dl, VTs, Ops);
8285 }
8286 
8287 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8288                                             EVT VT1, EVT VT2, EVT VT3,
8289                                             SDValue Op1, SDValue Op2,
8290                                             SDValue Op3) {
8291   SDVTList VTs = getVTList(VT1, VT2, VT3);
8292   SDValue Ops[] = { Op1, Op2, Op3 };
8293   return getMachineNode(Opcode, dl, VTs, Ops);
8294 }
8295 
8296 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8297                                             EVT VT1, EVT VT2, EVT VT3,
8298                                             ArrayRef<SDValue> Ops) {
8299   SDVTList VTs = getVTList(VT1, VT2, VT3);
8300   return getMachineNode(Opcode, dl, VTs, Ops);
8301 }
8302 
8303 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8304                                             ArrayRef<EVT> ResultTys,
8305                                             ArrayRef<SDValue> Ops) {
8306   SDVTList VTs = getVTList(ResultTys);
8307   return getMachineNode(Opcode, dl, VTs, Ops);
8308 }
8309 
8310 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8311                                             SDVTList VTs,
8312                                             ArrayRef<SDValue> Ops) {
8313   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8314   MachineSDNode *N;
8315   void *IP = nullptr;
8316 
8317   if (DoCSE) {
8318     FoldingSetNodeID ID;
8319     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8320     IP = nullptr;
8321     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8322       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8323     }
8324   }
8325 
8326   // Allocate a new MachineSDNode.
8327   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8328   createOperands(N, Ops);
8329 
8330   if (DoCSE)
8331     CSEMap.InsertNode(N, IP);
8332 
8333   InsertNode(N);
8334   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8335   return N;
8336 }
8337 
8338 /// getTargetExtractSubreg - A convenience function for creating
8339 /// TargetOpcode::EXTRACT_SUBREG nodes.
8340 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8341                                              SDValue Operand) {
8342   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8343   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8344                                   VT, Operand, SRIdxVal);
8345   return SDValue(Subreg, 0);
8346 }
8347 
8348 /// getTargetInsertSubreg - A convenience function for creating
8349 /// TargetOpcode::INSERT_SUBREG nodes.
8350 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8351                                             SDValue Operand, SDValue Subreg) {
8352   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8353   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8354                                   VT, Operand, Subreg, SRIdxVal);
8355   return SDValue(Result, 0);
8356 }
8357 
8358 /// getNodeIfExists - Get the specified node if it's already available, or
8359 /// else return NULL.
8360 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8361                                       ArrayRef<SDValue> Ops) {
8362   SDNodeFlags Flags;
8363   if (Inserter)
8364     Flags = Inserter->getFlags();
8365   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8366 }
8367 
8368 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8369                                       ArrayRef<SDValue> Ops,
8370                                       const SDNodeFlags Flags) {
8371   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8372     FoldingSetNodeID ID;
8373     AddNodeIDNode(ID, Opcode, VTList, Ops);
8374     void *IP = nullptr;
8375     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8376       E->intersectFlagsWith(Flags);
8377       return E;
8378     }
8379   }
8380   return nullptr;
8381 }
8382 
8383 /// doesNodeExist - Check if a node exists without modifying its flags.
8384 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8385                                  ArrayRef<SDValue> Ops) {
8386   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8387     FoldingSetNodeID ID;
8388     AddNodeIDNode(ID, Opcode, VTList, Ops);
8389     void *IP = nullptr;
8390     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8391       return true;
8392   }
8393   return false;
8394 }
8395 
8396 /// getDbgValue - Creates a SDDbgValue node.
8397 ///
8398 /// SDNode
8399 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8400                                       SDNode *N, unsigned R, bool IsIndirect,
8401                                       const DebugLoc &DL, unsigned O) {
8402   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8403          "Expected inlined-at fields to agree");
8404   return new (DbgInfo->getAlloc())
8405       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8406 }
8407 
8408 /// Constant
8409 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8410                                               DIExpression *Expr,
8411                                               const Value *C,
8412                                               const DebugLoc &DL, unsigned O) {
8413   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8414          "Expected inlined-at fields to agree");
8415   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8416 }
8417 
8418 /// FrameIndex
8419 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8420                                                 DIExpression *Expr, unsigned FI,
8421                                                 bool IsIndirect,
8422                                                 const DebugLoc &DL,
8423                                                 unsigned O) {
8424   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8425          "Expected inlined-at fields to agree");
8426   return new (DbgInfo->getAlloc())
8427       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8428 }
8429 
8430 /// VReg
8431 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8432                                           DIExpression *Expr,
8433                                           unsigned VReg, bool IsIndirect,
8434                                           const DebugLoc &DL, unsigned O) {
8435   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8436          "Expected inlined-at fields to agree");
8437   return new (DbgInfo->getAlloc())
8438       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8439 }
8440 
8441 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8442                                      unsigned OffsetInBits, unsigned SizeInBits,
8443                                      bool InvalidateDbg) {
8444   SDNode *FromNode = From.getNode();
8445   SDNode *ToNode = To.getNode();
8446   assert(FromNode && ToNode && "Can't modify dbg values");
8447 
8448   // PR35338
8449   // TODO: assert(From != To && "Redundant dbg value transfer");
8450   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8451   if (From == To || FromNode == ToNode)
8452     return;
8453 
8454   if (!FromNode->getHasDebugValue())
8455     return;
8456 
8457   SmallVector<SDDbgValue *, 2> ClonedDVs;
8458   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8459     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8460       continue;
8461 
8462     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8463 
8464     // Just transfer the dbg value attached to From.
8465     if (Dbg->getResNo() != From.getResNo())
8466       continue;
8467 
8468     DIVariable *Var = Dbg->getVariable();
8469     auto *Expr = Dbg->getExpression();
8470     // If a fragment is requested, update the expression.
8471     if (SizeInBits) {
8472       // When splitting a larger (e.g., sign-extended) value whose
8473       // lower bits are described with an SDDbgValue, do not attempt
8474       // to transfer the SDDbgValue to the upper bits.
8475       if (auto FI = Expr->getFragmentInfo())
8476         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8477           continue;
8478       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8479                                                              SizeInBits);
8480       if (!Fragment)
8481         continue;
8482       Expr = *Fragment;
8483     }
8484     // Clone the SDDbgValue and move it to To.
8485     SDDbgValue *Clone = getDbgValue(
8486         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8487         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8488     ClonedDVs.push_back(Clone);
8489 
8490     if (InvalidateDbg) {
8491       // Invalidate value and indicate the SDDbgValue should not be emitted.
8492       Dbg->setIsInvalidated();
8493       Dbg->setIsEmitted();
8494     }
8495   }
8496 
8497   for (SDDbgValue *Dbg : ClonedDVs)
8498     AddDbgValue(Dbg, ToNode, false);
8499 }
8500 
8501 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8502   if (!N.getHasDebugValue())
8503     return;
8504 
8505   SmallVector<SDDbgValue *, 2> ClonedDVs;
8506   for (auto DV : GetDbgValues(&N)) {
8507     if (DV->isInvalidated())
8508       continue;
8509     switch (N.getOpcode()) {
8510     default:
8511       break;
8512     case ISD::ADD:
8513       SDValue N0 = N.getOperand(0);
8514       SDValue N1 = N.getOperand(1);
8515       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8516           isConstantIntBuildVectorOrConstantInt(N1)) {
8517         uint64_t Offset = N.getConstantOperandVal(1);
8518         // Rewrite an ADD constant node into a DIExpression. Since we are
8519         // performing arithmetic to compute the variable's *value* in the
8520         // DIExpression, we need to mark the expression with a
8521         // DW_OP_stack_value.
8522         auto *DIExpr = DV->getExpression();
8523         DIExpr =
8524             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8525         SDDbgValue *Clone =
8526             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8527                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8528         ClonedDVs.push_back(Clone);
8529         DV->setIsInvalidated();
8530         DV->setIsEmitted();
8531         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8532                    N0.getNode()->dumprFull(this);
8533                    dbgs() << " into " << *DIExpr << '\n');
8534       }
8535     }
8536   }
8537 
8538   for (SDDbgValue *Dbg : ClonedDVs)
8539     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8540 }
8541 
8542 /// Creates a SDDbgLabel node.
8543 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8544                                       const DebugLoc &DL, unsigned O) {
8545   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8546          "Expected inlined-at fields to agree");
8547   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8548 }
8549 
8550 namespace {
8551 
8552 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8553 /// pointed to by a use iterator is deleted, increment the use iterator
8554 /// so that it doesn't dangle.
8555 ///
8556 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8557   SDNode::use_iterator &UI;
8558   SDNode::use_iterator &UE;
8559 
8560   void NodeDeleted(SDNode *N, SDNode *E) override {
8561     // Increment the iterator as needed.
8562     while (UI != UE && N == *UI)
8563       ++UI;
8564   }
8565 
8566 public:
8567   RAUWUpdateListener(SelectionDAG &d,
8568                      SDNode::use_iterator &ui,
8569                      SDNode::use_iterator &ue)
8570     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8571 };
8572 
8573 } // end anonymous namespace
8574 
8575 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8576 /// This can cause recursive merging of nodes in the DAG.
8577 ///
8578 /// This version assumes From has a single result value.
8579 ///
8580 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8581   SDNode *From = FromN.getNode();
8582   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8583          "Cannot replace with this method!");
8584   assert(From != To.getNode() && "Cannot replace uses of with self");
8585 
8586   // Preserve Debug Values
8587   transferDbgValues(FromN, To);
8588 
8589   // Iterate over all the existing uses of From. New uses will be added
8590   // to the beginning of the use list, which we avoid visiting.
8591   // This specifically avoids visiting uses of From that arise while the
8592   // replacement is happening, because any such uses would be the result
8593   // of CSE: If an existing node looks like From after one of its operands
8594   // is replaced by To, we don't want to replace of all its users with To
8595   // too. See PR3018 for more info.
8596   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8597   RAUWUpdateListener Listener(*this, UI, UE);
8598   while (UI != UE) {
8599     SDNode *User = *UI;
8600 
8601     // This node is about to morph, remove its old self from the CSE maps.
8602     RemoveNodeFromCSEMaps(User);
8603 
8604     // A user can appear in a use list multiple times, and when this
8605     // happens the uses are usually next to each other in the list.
8606     // To help reduce the number of CSE recomputations, process all
8607     // the uses of this user that we can find this way.
8608     do {
8609       SDUse &Use = UI.getUse();
8610       ++UI;
8611       Use.set(To);
8612       if (To->isDivergent() != From->isDivergent())
8613         updateDivergence(User);
8614     } while (UI != UE && *UI == User);
8615     // Now that we have modified User, add it back to the CSE maps.  If it
8616     // already exists there, recursively merge the results together.
8617     AddModifiedNodeToCSEMaps(User);
8618   }
8619 
8620   // If we just RAUW'd the root, take note.
8621   if (FromN == getRoot())
8622     setRoot(To);
8623 }
8624 
8625 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8626 /// This can cause recursive merging of nodes in the DAG.
8627 ///
8628 /// This version assumes that for each value of From, there is a
8629 /// corresponding value in To in the same position with the same type.
8630 ///
8631 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8632 #ifndef NDEBUG
8633   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8634     assert((!From->hasAnyUseOfValue(i) ||
8635             From->getValueType(i) == To->getValueType(i)) &&
8636            "Cannot use this version of ReplaceAllUsesWith!");
8637 #endif
8638 
8639   // Handle the trivial case.
8640   if (From == To)
8641     return;
8642 
8643   // Preserve Debug Info. Only do this if there's a use.
8644   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8645     if (From->hasAnyUseOfValue(i)) {
8646       assert((i < To->getNumValues()) && "Invalid To location");
8647       transferDbgValues(SDValue(From, i), SDValue(To, i));
8648     }
8649 
8650   // Iterate over just the existing users of From. See the comments in
8651   // the ReplaceAllUsesWith above.
8652   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8653   RAUWUpdateListener Listener(*this, UI, UE);
8654   while (UI != UE) {
8655     SDNode *User = *UI;
8656 
8657     // This node is about to morph, remove its old self from the CSE maps.
8658     RemoveNodeFromCSEMaps(User);
8659 
8660     // A user can appear in a use list multiple times, and when this
8661     // happens the uses are usually next to each other in the list.
8662     // To help reduce the number of CSE recomputations, process all
8663     // the uses of this user that we can find this way.
8664     do {
8665       SDUse &Use = UI.getUse();
8666       ++UI;
8667       Use.setNode(To);
8668       if (To->isDivergent() != From->isDivergent())
8669         updateDivergence(User);
8670     } while (UI != UE && *UI == User);
8671 
8672     // Now that we have modified User, add it back to the CSE maps.  If it
8673     // already exists there, recursively merge the results together.
8674     AddModifiedNodeToCSEMaps(User);
8675   }
8676 
8677   // If we just RAUW'd the root, take note.
8678   if (From == getRoot().getNode())
8679     setRoot(SDValue(To, getRoot().getResNo()));
8680 }
8681 
8682 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8683 /// This can cause recursive merging of nodes in the DAG.
8684 ///
8685 /// This version can replace From with any result values.  To must match the
8686 /// number and types of values returned by From.
8687 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8688   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8689     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8690 
8691   // Preserve Debug Info.
8692   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8693     transferDbgValues(SDValue(From, i), To[i]);
8694 
8695   // Iterate over just the existing users of From. See the comments in
8696   // the ReplaceAllUsesWith above.
8697   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8698   RAUWUpdateListener Listener(*this, UI, UE);
8699   while (UI != UE) {
8700     SDNode *User = *UI;
8701 
8702     // This node is about to morph, remove its old self from the CSE maps.
8703     RemoveNodeFromCSEMaps(User);
8704 
8705     // A user can appear in a use list multiple times, and when this happens the
8706     // uses are usually next to each other in the list.  To help reduce the
8707     // number of CSE and divergence recomputations, process all the uses of this
8708     // user that we can find this way.
8709     bool To_IsDivergent = false;
8710     do {
8711       SDUse &Use = UI.getUse();
8712       const SDValue &ToOp = To[Use.getResNo()];
8713       ++UI;
8714       Use.set(ToOp);
8715       To_IsDivergent |= ToOp->isDivergent();
8716     } while (UI != UE && *UI == User);
8717 
8718     if (To_IsDivergent != From->isDivergent())
8719       updateDivergence(User);
8720 
8721     // Now that we have modified User, add it back to the CSE maps.  If it
8722     // already exists there, recursively merge the results together.
8723     AddModifiedNodeToCSEMaps(User);
8724   }
8725 
8726   // If we just RAUW'd the root, take note.
8727   if (From == getRoot().getNode())
8728     setRoot(SDValue(To[getRoot().getResNo()]));
8729 }
8730 
8731 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8732 /// uses of other values produced by From.getNode() alone.  The Deleted
8733 /// vector is handled the same way as for ReplaceAllUsesWith.
8734 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8735   // Handle the really simple, really trivial case efficiently.
8736   if (From == To) return;
8737 
8738   // Handle the simple, trivial, case efficiently.
8739   if (From.getNode()->getNumValues() == 1) {
8740     ReplaceAllUsesWith(From, To);
8741     return;
8742   }
8743 
8744   // Preserve Debug Info.
8745   transferDbgValues(From, To);
8746 
8747   // Iterate over just the existing users of From. See the comments in
8748   // the ReplaceAllUsesWith above.
8749   SDNode::use_iterator UI = From.getNode()->use_begin(),
8750                        UE = From.getNode()->use_end();
8751   RAUWUpdateListener Listener(*this, UI, UE);
8752   while (UI != UE) {
8753     SDNode *User = *UI;
8754     bool UserRemovedFromCSEMaps = false;
8755 
8756     // A user can appear in a use list multiple times, and when this
8757     // happens the uses are usually next to each other in the list.
8758     // To help reduce the number of CSE recomputations, process all
8759     // the uses of this user that we can find this way.
8760     do {
8761       SDUse &Use = UI.getUse();
8762 
8763       // Skip uses of different values from the same node.
8764       if (Use.getResNo() != From.getResNo()) {
8765         ++UI;
8766         continue;
8767       }
8768 
8769       // If this node hasn't been modified yet, it's still in the CSE maps,
8770       // so remove its old self from the CSE maps.
8771       if (!UserRemovedFromCSEMaps) {
8772         RemoveNodeFromCSEMaps(User);
8773         UserRemovedFromCSEMaps = true;
8774       }
8775 
8776       ++UI;
8777       Use.set(To);
8778       if (To->isDivergent() != From->isDivergent())
8779         updateDivergence(User);
8780     } while (UI != UE && *UI == User);
8781     // We are iterating over all uses of the From node, so if a use
8782     // doesn't use the specific value, no changes are made.
8783     if (!UserRemovedFromCSEMaps)
8784       continue;
8785 
8786     // Now that we have modified User, add it back to the CSE maps.  If it
8787     // already exists there, recursively merge the results together.
8788     AddModifiedNodeToCSEMaps(User);
8789   }
8790 
8791   // If we just RAUW'd the root, take note.
8792   if (From == getRoot())
8793     setRoot(To);
8794 }
8795 
8796 namespace {
8797 
8798   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8799   /// to record information about a use.
8800   struct UseMemo {
8801     SDNode *User;
8802     unsigned Index;
8803     SDUse *Use;
8804   };
8805 
8806   /// operator< - Sort Memos by User.
8807   bool operator<(const UseMemo &L, const UseMemo &R) {
8808     return (intptr_t)L.User < (intptr_t)R.User;
8809   }
8810 
8811 } // end anonymous namespace
8812 
8813 bool SelectionDAG::calculateDivergence(SDNode *N) {
8814   if (TLI->isSDNodeAlwaysUniform(N)) {
8815     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8816            "Conflicting divergence information!");
8817     return false;
8818   }
8819   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8820     return true;
8821   for (auto &Op : N->ops()) {
8822     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8823       return true;
8824   }
8825   return false;
8826 }
8827 
8828 void SelectionDAG::updateDivergence(SDNode *N) {
8829   SmallVector<SDNode *, 16> Worklist(1, N);
8830   do {
8831     N = Worklist.pop_back_val();
8832     bool IsDivergent = calculateDivergence(N);
8833     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8834       N->SDNodeBits.IsDivergent = IsDivergent;
8835       llvm::append_range(Worklist, N->uses());
8836     }
8837   } while (!Worklist.empty());
8838 }
8839 
8840 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8841   DenseMap<SDNode *, unsigned> Degree;
8842   Order.reserve(AllNodes.size());
8843   for (auto &N : allnodes()) {
8844     unsigned NOps = N.getNumOperands();
8845     Degree[&N] = NOps;
8846     if (0 == NOps)
8847       Order.push_back(&N);
8848   }
8849   for (size_t I = 0; I != Order.size(); ++I) {
8850     SDNode *N = Order[I];
8851     for (auto U : N->uses()) {
8852       unsigned &UnsortedOps = Degree[U];
8853       if (0 == --UnsortedOps)
8854         Order.push_back(U);
8855     }
8856   }
8857 }
8858 
8859 #ifndef NDEBUG
8860 void SelectionDAG::VerifyDAGDiverence() {
8861   std::vector<SDNode *> TopoOrder;
8862   CreateTopologicalOrder(TopoOrder);
8863   for (auto *N : TopoOrder) {
8864     assert(calculateDivergence(N) == N->isDivergent() &&
8865            "Divergence bit inconsistency detected");
8866   }
8867 }
8868 #endif
8869 
8870 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8871 /// uses of other values produced by From.getNode() alone.  The same value
8872 /// may appear in both the From and To list.  The Deleted vector is
8873 /// handled the same way as for ReplaceAllUsesWith.
8874 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8875                                               const SDValue *To,
8876                                               unsigned Num){
8877   // Handle the simple, trivial case efficiently.
8878   if (Num == 1)
8879     return ReplaceAllUsesOfValueWith(*From, *To);
8880 
8881   transferDbgValues(*From, *To);
8882 
8883   // Read up all the uses and make records of them. This helps
8884   // processing new uses that are introduced during the
8885   // replacement process.
8886   SmallVector<UseMemo, 4> Uses;
8887   for (unsigned i = 0; i != Num; ++i) {
8888     unsigned FromResNo = From[i].getResNo();
8889     SDNode *FromNode = From[i].getNode();
8890     for (SDNode::use_iterator UI = FromNode->use_begin(),
8891          E = FromNode->use_end(); UI != E; ++UI) {
8892       SDUse &Use = UI.getUse();
8893       if (Use.getResNo() == FromResNo) {
8894         UseMemo Memo = { *UI, i, &Use };
8895         Uses.push_back(Memo);
8896       }
8897     }
8898   }
8899 
8900   // Sort the uses, so that all the uses from a given User are together.
8901   llvm::sort(Uses);
8902 
8903   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8904        UseIndex != UseIndexEnd; ) {
8905     // We know that this user uses some value of From.  If it is the right
8906     // value, update it.
8907     SDNode *User = Uses[UseIndex].User;
8908 
8909     // This node is about to morph, remove its old self from the CSE maps.
8910     RemoveNodeFromCSEMaps(User);
8911 
8912     // The Uses array is sorted, so all the uses for a given User
8913     // are next to each other in the list.
8914     // To help reduce the number of CSE recomputations, process all
8915     // the uses of this user that we can find this way.
8916     do {
8917       unsigned i = Uses[UseIndex].Index;
8918       SDUse &Use = *Uses[UseIndex].Use;
8919       ++UseIndex;
8920 
8921       Use.set(To[i]);
8922     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8923 
8924     // Now that we have modified User, add it back to the CSE maps.  If it
8925     // already exists there, recursively merge the results together.
8926     AddModifiedNodeToCSEMaps(User);
8927   }
8928 }
8929 
8930 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8931 /// based on their topological order. It returns the maximum id and a vector
8932 /// of the SDNodes* in assigned order by reference.
8933 unsigned SelectionDAG::AssignTopologicalOrder() {
8934   unsigned DAGSize = 0;
8935 
8936   // SortedPos tracks the progress of the algorithm. Nodes before it are
8937   // sorted, nodes after it are unsorted. When the algorithm completes
8938   // it is at the end of the list.
8939   allnodes_iterator SortedPos = allnodes_begin();
8940 
8941   // Visit all the nodes. Move nodes with no operands to the front of
8942   // the list immediately. Annotate nodes that do have operands with their
8943   // operand count. Before we do this, the Node Id fields of the nodes
8944   // may contain arbitrary values. After, the Node Id fields for nodes
8945   // before SortedPos will contain the topological sort index, and the
8946   // Node Id fields for nodes At SortedPos and after will contain the
8947   // count of outstanding operands.
8948   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8949     SDNode *N = &*I++;
8950     checkForCycles(N, this);
8951     unsigned Degree = N->getNumOperands();
8952     if (Degree == 0) {
8953       // A node with no uses, add it to the result array immediately.
8954       N->setNodeId(DAGSize++);
8955       allnodes_iterator Q(N);
8956       if (Q != SortedPos)
8957         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8958       assert(SortedPos != AllNodes.end() && "Overran node list");
8959       ++SortedPos;
8960     } else {
8961       // Temporarily use the Node Id as scratch space for the degree count.
8962       N->setNodeId(Degree);
8963     }
8964   }
8965 
8966   // Visit all the nodes. As we iterate, move nodes into sorted order,
8967   // such that by the time the end is reached all nodes will be sorted.
8968   for (SDNode &Node : allnodes()) {
8969     SDNode *N = &Node;
8970     checkForCycles(N, this);
8971     // N is in sorted position, so all its uses have one less operand
8972     // that needs to be sorted.
8973     for (SDNode *P : N->uses()) {
8974       unsigned Degree = P->getNodeId();
8975       assert(Degree != 0 && "Invalid node degree");
8976       --Degree;
8977       if (Degree == 0) {
8978         // All of P's operands are sorted, so P may sorted now.
8979         P->setNodeId(DAGSize++);
8980         if (P->getIterator() != SortedPos)
8981           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8982         assert(SortedPos != AllNodes.end() && "Overran node list");
8983         ++SortedPos;
8984       } else {
8985         // Update P's outstanding operand count.
8986         P->setNodeId(Degree);
8987       }
8988     }
8989     if (Node.getIterator() == SortedPos) {
8990 #ifndef NDEBUG
8991       allnodes_iterator I(N);
8992       SDNode *S = &*++I;
8993       dbgs() << "Overran sorted position:\n";
8994       S->dumprFull(this); dbgs() << "\n";
8995       dbgs() << "Checking if this is due to cycles\n";
8996       checkForCycles(this, true);
8997 #endif
8998       llvm_unreachable(nullptr);
8999     }
9000   }
9001 
9002   assert(SortedPos == AllNodes.end() &&
9003          "Topological sort incomplete!");
9004   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9005          "First node in topological sort is not the entry token!");
9006   assert(AllNodes.front().getNodeId() == 0 &&
9007          "First node in topological sort has non-zero id!");
9008   assert(AllNodes.front().getNumOperands() == 0 &&
9009          "First node in topological sort has operands!");
9010   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9011          "Last node in topologic sort has unexpected id!");
9012   assert(AllNodes.back().use_empty() &&
9013          "Last node in topologic sort has users!");
9014   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9015   return DAGSize;
9016 }
9017 
9018 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9019 /// value is produced by SD.
9020 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
9021   if (SD) {
9022     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9023     SD->setHasDebugValue(true);
9024   }
9025   DbgInfo->add(DB, SD, isParameter);
9026 }
9027 
9028 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
9029   DbgInfo->add(DB);
9030 }
9031 
9032 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9033                                                    SDValue NewMemOpChain) {
9034   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9035   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9036   // The new memory operation must have the same position as the old load in
9037   // terms of memory dependency. Create a TokenFactor for the old load and new
9038   // memory operation and update uses of the old load's output chain to use that
9039   // TokenFactor.
9040   if (OldChain == NewMemOpChain || OldChain.use_empty())
9041     return NewMemOpChain;
9042 
9043   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9044                                 OldChain, NewMemOpChain);
9045   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9046   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9047   return TokenFactor;
9048 }
9049 
9050 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9051                                                    SDValue NewMemOp) {
9052   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9053   SDValue OldChain = SDValue(OldLoad, 1);
9054   SDValue NewMemOpChain = NewMemOp.getValue(1);
9055   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9056 }
9057 
9058 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9059                                                      Function **OutFunction) {
9060   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9061 
9062   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9063   auto *Module = MF->getFunction().getParent();
9064   auto *Function = Module->getFunction(Symbol);
9065 
9066   if (OutFunction != nullptr)
9067       *OutFunction = Function;
9068 
9069   if (Function != nullptr) {
9070     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9071     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9072   }
9073 
9074   std::string ErrorStr;
9075   raw_string_ostream ErrorFormatter(ErrorStr);
9076 
9077   ErrorFormatter << "Undefined external symbol ";
9078   ErrorFormatter << '"' << Symbol << '"';
9079   ErrorFormatter.flush();
9080 
9081   report_fatal_error(ErrorStr);
9082 }
9083 
9084 //===----------------------------------------------------------------------===//
9085 //                              SDNode Class
9086 //===----------------------------------------------------------------------===//
9087 
9088 bool llvm::isNullConstant(SDValue V) {
9089   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9090   return Const != nullptr && Const->isNullValue();
9091 }
9092 
9093 bool llvm::isNullFPConstant(SDValue V) {
9094   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9095   return Const != nullptr && Const->isZero() && !Const->isNegative();
9096 }
9097 
9098 bool llvm::isAllOnesConstant(SDValue V) {
9099   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9100   return Const != nullptr && Const->isAllOnesValue();
9101 }
9102 
9103 bool llvm::isOneConstant(SDValue V) {
9104   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9105   return Const != nullptr && Const->isOne();
9106 }
9107 
9108 SDValue llvm::peekThroughBitcasts(SDValue V) {
9109   while (V.getOpcode() == ISD::BITCAST)
9110     V = V.getOperand(0);
9111   return V;
9112 }
9113 
9114 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9115   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9116     V = V.getOperand(0);
9117   return V;
9118 }
9119 
9120 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9121   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9122     V = V.getOperand(0);
9123   return V;
9124 }
9125 
9126 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9127   if (V.getOpcode() != ISD::XOR)
9128     return false;
9129   V = peekThroughBitcasts(V.getOperand(1));
9130   unsigned NumBits = V.getScalarValueSizeInBits();
9131   ConstantSDNode *C =
9132       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9133   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9134 }
9135 
9136 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9137                                           bool AllowTruncation) {
9138   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9139     return CN;
9140 
9141   // SplatVectors can truncate their operands. Ignore that case here unless
9142   // AllowTruncation is set.
9143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9144     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9145     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9146       EVT CVT = CN->getValueType(0);
9147       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9148       if (AllowTruncation || CVT == VecEltVT)
9149         return CN;
9150     }
9151   }
9152 
9153   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9154     BitVector UndefElements;
9155     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9156 
9157     // BuildVectors can truncate their operands. Ignore that case here unless
9158     // AllowTruncation is set.
9159     if (CN && (UndefElements.none() || AllowUndefs)) {
9160       EVT CVT = CN->getValueType(0);
9161       EVT NSVT = N.getValueType().getScalarType();
9162       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9163       if (AllowTruncation || (CVT == NSVT))
9164         return CN;
9165     }
9166   }
9167 
9168   return nullptr;
9169 }
9170 
9171 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9172                                           bool AllowUndefs,
9173                                           bool AllowTruncation) {
9174   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9175     return CN;
9176 
9177   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9178     BitVector UndefElements;
9179     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9180 
9181     // BuildVectors can truncate their operands. Ignore that case here unless
9182     // AllowTruncation is set.
9183     if (CN && (UndefElements.none() || AllowUndefs)) {
9184       EVT CVT = CN->getValueType(0);
9185       EVT NSVT = N.getValueType().getScalarType();
9186       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9187       if (AllowTruncation || (CVT == NSVT))
9188         return CN;
9189     }
9190   }
9191 
9192   return nullptr;
9193 }
9194 
9195 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9196   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9197     return CN;
9198 
9199   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9200     BitVector UndefElements;
9201     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9202     if (CN && (UndefElements.none() || AllowUndefs))
9203       return CN;
9204   }
9205 
9206   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9207     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9208       return CN;
9209 
9210   return nullptr;
9211 }
9212 
9213 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9214                                               const APInt &DemandedElts,
9215                                               bool AllowUndefs) {
9216   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9217     return CN;
9218 
9219   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9220     BitVector UndefElements;
9221     ConstantFPSDNode *CN =
9222         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9223     if (CN && (UndefElements.none() || AllowUndefs))
9224       return CN;
9225   }
9226 
9227   return nullptr;
9228 }
9229 
9230 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9231   // TODO: may want to use peekThroughBitcast() here.
9232   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9233   return C && C->isNullValue();
9234 }
9235 
9236 bool llvm::isOneOrOneSplat(SDValue N) {
9237   // TODO: may want to use peekThroughBitcast() here.
9238   unsigned BitWidth = N.getScalarValueSizeInBits();
9239   ConstantSDNode *C = isConstOrConstSplat(N);
9240   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9241 }
9242 
9243 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9244   N = peekThroughBitcasts(N);
9245   unsigned BitWidth = N.getScalarValueSizeInBits();
9246   ConstantSDNode *C = isConstOrConstSplat(N);
9247   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9248 }
9249 
9250 HandleSDNode::~HandleSDNode() {
9251   DropOperands();
9252 }
9253 
9254 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9255                                          const DebugLoc &DL,
9256                                          const GlobalValue *GA, EVT VT,
9257                                          int64_t o, unsigned TF)
9258     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9259   TheGlobal = GA;
9260 }
9261 
9262 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9263                                          EVT VT, unsigned SrcAS,
9264                                          unsigned DestAS)
9265     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9266       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9267 
9268 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9269                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9270     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9271   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9272   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9273   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9274   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9275 
9276   // We check here that the size of the memory operand fits within the size of
9277   // the MMO. This is because the MMO might indicate only a possible address
9278   // range instead of specifying the affected memory addresses precisely.
9279   // TODO: Make MachineMemOperands aware of scalable vectors.
9280   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9281          "Size mismatch!");
9282 }
9283 
9284 /// Profile - Gather unique data for the node.
9285 ///
9286 void SDNode::Profile(FoldingSetNodeID &ID) const {
9287   AddNodeIDNode(ID, this);
9288 }
9289 
9290 namespace {
9291 
9292   struct EVTArray {
9293     std::vector<EVT> VTs;
9294 
9295     EVTArray() {
9296       VTs.reserve(MVT::LAST_VALUETYPE);
9297       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9298         VTs.push_back(MVT((MVT::SimpleValueType)i));
9299     }
9300   };
9301 
9302 } // end anonymous namespace
9303 
9304 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9305 static ManagedStatic<EVTArray> SimpleVTArray;
9306 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9307 
9308 /// getValueTypeList - Return a pointer to the specified value type.
9309 ///
9310 const EVT *SDNode::getValueTypeList(EVT VT) {
9311   if (VT.isExtended()) {
9312     sys::SmartScopedLock<true> Lock(*VTMutex);
9313     return &(*EVTs->insert(VT).first);
9314   } else {
9315     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9316            "Value type out of range!");
9317     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9318   }
9319 }
9320 
9321 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9322 /// indicated value.  This method ignores uses of other values defined by this
9323 /// operation.
9324 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9325   assert(Value < getNumValues() && "Bad value!");
9326 
9327   // TODO: Only iterate over uses of a given value of the node
9328   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9329     if (UI.getUse().getResNo() == Value) {
9330       if (NUses == 0)
9331         return false;
9332       --NUses;
9333     }
9334   }
9335 
9336   // Found exactly the right number of uses?
9337   return NUses == 0;
9338 }
9339 
9340 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9341 /// value. This method ignores uses of other values defined by this operation.
9342 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9343   assert(Value < getNumValues() && "Bad value!");
9344 
9345   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9346     if (UI.getUse().getResNo() == Value)
9347       return true;
9348 
9349   return false;
9350 }
9351 
9352 /// isOnlyUserOf - Return true if this node is the only use of N.
9353 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9354   bool Seen = false;
9355   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9356     SDNode *User = *I;
9357     if (User == this)
9358       Seen = true;
9359     else
9360       return false;
9361   }
9362 
9363   return Seen;
9364 }
9365 
9366 /// Return true if the only users of N are contained in Nodes.
9367 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9368   bool Seen = false;
9369   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9370     SDNode *User = *I;
9371     if (llvm::is_contained(Nodes, User))
9372       Seen = true;
9373     else
9374       return false;
9375   }
9376 
9377   return Seen;
9378 }
9379 
9380 /// isOperand - Return true if this node is an operand of N.
9381 bool SDValue::isOperandOf(const SDNode *N) const {
9382   return is_contained(N->op_values(), *this);
9383 }
9384 
9385 bool SDNode::isOperandOf(const SDNode *N) const {
9386   return any_of(N->op_values(),
9387                 [this](SDValue Op) { return this == Op.getNode(); });
9388 }
9389 
9390 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9391 /// be a chain) reaches the specified operand without crossing any
9392 /// side-effecting instructions on any chain path.  In practice, this looks
9393 /// through token factors and non-volatile loads.  In order to remain efficient,
9394 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9395 ///
9396 /// Note that we only need to examine chains when we're searching for
9397 /// side-effects; SelectionDAG requires that all side-effects are represented
9398 /// by chains, even if another operand would force a specific ordering. This
9399 /// constraint is necessary to allow transformations like splitting loads.
9400 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9401                                              unsigned Depth) const {
9402   if (*this == Dest) return true;
9403 
9404   // Don't search too deeply, we just want to be able to see through
9405   // TokenFactor's etc.
9406   if (Depth == 0) return false;
9407 
9408   // If this is a token factor, all inputs to the TF happen in parallel.
9409   if (getOpcode() == ISD::TokenFactor) {
9410     // First, try a shallow search.
9411     if (is_contained((*this)->ops(), Dest)) {
9412       // We found the chain we want as an operand of this TokenFactor.
9413       // Essentially, we reach the chain without side-effects if we could
9414       // serialize the TokenFactor into a simple chain of operations with
9415       // Dest as the last operation. This is automatically true if the
9416       // chain has one use: there are no other ordering constraints.
9417       // If the chain has more than one use, we give up: some other
9418       // use of Dest might force a side-effect between Dest and the current
9419       // node.
9420       if (Dest.hasOneUse())
9421         return true;
9422     }
9423     // Next, try a deep search: check whether every operand of the TokenFactor
9424     // reaches Dest.
9425     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9426       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9427     });
9428   }
9429 
9430   // Loads don't have side effects, look through them.
9431   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9432     if (Ld->isUnordered())
9433       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9434   }
9435   return false;
9436 }
9437 
9438 bool SDNode::hasPredecessor(const SDNode *N) const {
9439   SmallPtrSet<const SDNode *, 32> Visited;
9440   SmallVector<const SDNode *, 16> Worklist;
9441   Worklist.push_back(this);
9442   return hasPredecessorHelper(N, Visited, Worklist);
9443 }
9444 
9445 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9446   this->Flags.intersectWith(Flags);
9447 }
9448 
9449 SDValue
9450 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9451                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9452                                   bool AllowPartials) {
9453   // The pattern must end in an extract from index 0.
9454   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9455       !isNullConstant(Extract->getOperand(1)))
9456     return SDValue();
9457 
9458   // Match against one of the candidate binary ops.
9459   SDValue Op = Extract->getOperand(0);
9460   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9461         return Op.getOpcode() == unsigned(BinOp);
9462       }))
9463     return SDValue();
9464 
9465   // Floating-point reductions may require relaxed constraints on the final step
9466   // of the reduction because they may reorder intermediate operations.
9467   unsigned CandidateBinOp = Op.getOpcode();
9468   if (Op.getValueType().isFloatingPoint()) {
9469     SDNodeFlags Flags = Op->getFlags();
9470     switch (CandidateBinOp) {
9471     case ISD::FADD:
9472       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9473         return SDValue();
9474       break;
9475     default:
9476       llvm_unreachable("Unhandled FP opcode for binop reduction");
9477     }
9478   }
9479 
9480   // Matching failed - attempt to see if we did enough stages that a partial
9481   // reduction from a subvector is possible.
9482   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9483     if (!AllowPartials || !Op)
9484       return SDValue();
9485     EVT OpVT = Op.getValueType();
9486     EVT OpSVT = OpVT.getScalarType();
9487     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9488     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9489       return SDValue();
9490     BinOp = (ISD::NodeType)CandidateBinOp;
9491     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9492                    getVectorIdxConstant(0, SDLoc(Op)));
9493   };
9494 
9495   // At each stage, we're looking for something that looks like:
9496   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9497   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9498   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9499   // %a = binop <8 x i32> %op, %s
9500   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9501   // we expect something like:
9502   // <4,5,6,7,u,u,u,u>
9503   // <2,3,u,u,u,u,u,u>
9504   // <1,u,u,u,u,u,u,u>
9505   // While a partial reduction match would be:
9506   // <2,3,u,u,u,u,u,u>
9507   // <1,u,u,u,u,u,u,u>
9508   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9509   SDValue PrevOp;
9510   for (unsigned i = 0; i < Stages; ++i) {
9511     unsigned MaskEnd = (1 << i);
9512 
9513     if (Op.getOpcode() != CandidateBinOp)
9514       return PartialReduction(PrevOp, MaskEnd);
9515 
9516     SDValue Op0 = Op.getOperand(0);
9517     SDValue Op1 = Op.getOperand(1);
9518 
9519     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9520     if (Shuffle) {
9521       Op = Op1;
9522     } else {
9523       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9524       Op = Op0;
9525     }
9526 
9527     // The first operand of the shuffle should be the same as the other operand
9528     // of the binop.
9529     if (!Shuffle || Shuffle->getOperand(0) != Op)
9530       return PartialReduction(PrevOp, MaskEnd);
9531 
9532     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9533     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9534       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9535         return PartialReduction(PrevOp, MaskEnd);
9536 
9537     PrevOp = Op;
9538   }
9539 
9540   // Handle subvector reductions, which tend to appear after the shuffle
9541   // reduction stages.
9542   while (Op.getOpcode() == CandidateBinOp) {
9543     unsigned NumElts = Op.getValueType().getVectorNumElements();
9544     SDValue Op0 = Op.getOperand(0);
9545     SDValue Op1 = Op.getOperand(1);
9546     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9547         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9548         Op0.getOperand(0) != Op1.getOperand(0))
9549       break;
9550     SDValue Src = Op0.getOperand(0);
9551     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9552     if (NumSrcElts != (2 * NumElts))
9553       break;
9554     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9555           Op1.getConstantOperandAPInt(1) == NumElts) &&
9556         !(Op1.getConstantOperandAPInt(1) == 0 &&
9557           Op0.getConstantOperandAPInt(1) == NumElts))
9558       break;
9559     Op = Src;
9560   }
9561 
9562   BinOp = (ISD::NodeType)CandidateBinOp;
9563   return Op;
9564 }
9565 
9566 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9567   assert(N->getNumValues() == 1 &&
9568          "Can't unroll a vector with multiple results!");
9569 
9570   EVT VT = N->getValueType(0);
9571   unsigned NE = VT.getVectorNumElements();
9572   EVT EltVT = VT.getVectorElementType();
9573   SDLoc dl(N);
9574 
9575   SmallVector<SDValue, 8> Scalars;
9576   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9577 
9578   // If ResNE is 0, fully unroll the vector op.
9579   if (ResNE == 0)
9580     ResNE = NE;
9581   else if (NE > ResNE)
9582     NE = ResNE;
9583 
9584   unsigned i;
9585   for (i= 0; i != NE; ++i) {
9586     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9587       SDValue Operand = N->getOperand(j);
9588       EVT OperandVT = Operand.getValueType();
9589       if (OperandVT.isVector()) {
9590         // A vector operand; extract a single element.
9591         EVT OperandEltVT = OperandVT.getVectorElementType();
9592         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9593                               Operand, getVectorIdxConstant(i, dl));
9594       } else {
9595         // A scalar operand; just use it as is.
9596         Operands[j] = Operand;
9597       }
9598     }
9599 
9600     switch (N->getOpcode()) {
9601     default: {
9602       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9603                                 N->getFlags()));
9604       break;
9605     }
9606     case ISD::VSELECT:
9607       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9608       break;
9609     case ISD::SHL:
9610     case ISD::SRA:
9611     case ISD::SRL:
9612     case ISD::ROTL:
9613     case ISD::ROTR:
9614       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9615                                getShiftAmountOperand(Operands[0].getValueType(),
9616                                                      Operands[1])));
9617       break;
9618     case ISD::SIGN_EXTEND_INREG: {
9619       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9620       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9621                                 Operands[0],
9622                                 getValueType(ExtVT)));
9623     }
9624     }
9625   }
9626 
9627   for (; i < ResNE; ++i)
9628     Scalars.push_back(getUNDEF(EltVT));
9629 
9630   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9631   return getBuildVector(VecVT, dl, Scalars);
9632 }
9633 
9634 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9635     SDNode *N, unsigned ResNE) {
9636   unsigned Opcode = N->getOpcode();
9637   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9638           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9639           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9640          "Expected an overflow opcode");
9641 
9642   EVT ResVT = N->getValueType(0);
9643   EVT OvVT = N->getValueType(1);
9644   EVT ResEltVT = ResVT.getVectorElementType();
9645   EVT OvEltVT = OvVT.getVectorElementType();
9646   SDLoc dl(N);
9647 
9648   // If ResNE is 0, fully unroll the vector op.
9649   unsigned NE = ResVT.getVectorNumElements();
9650   if (ResNE == 0)
9651     ResNE = NE;
9652   else if (NE > ResNE)
9653     NE = ResNE;
9654 
9655   SmallVector<SDValue, 8> LHSScalars;
9656   SmallVector<SDValue, 8> RHSScalars;
9657   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9658   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9659 
9660   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9661   SDVTList VTs = getVTList(ResEltVT, SVT);
9662   SmallVector<SDValue, 8> ResScalars;
9663   SmallVector<SDValue, 8> OvScalars;
9664   for (unsigned i = 0; i < NE; ++i) {
9665     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9666     SDValue Ov =
9667         getSelect(dl, OvEltVT, Res.getValue(1),
9668                   getBoolConstant(true, dl, OvEltVT, ResVT),
9669                   getConstant(0, dl, OvEltVT));
9670 
9671     ResScalars.push_back(Res);
9672     OvScalars.push_back(Ov);
9673   }
9674 
9675   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9676   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9677 
9678   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9679   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9680   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9681                         getBuildVector(NewOvVT, dl, OvScalars));
9682 }
9683 
9684 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9685                                                   LoadSDNode *Base,
9686                                                   unsigned Bytes,
9687                                                   int Dist) const {
9688   if (LD->isVolatile() || Base->isVolatile())
9689     return false;
9690   // TODO: probably too restrictive for atomics, revisit
9691   if (!LD->isSimple())
9692     return false;
9693   if (LD->isIndexed() || Base->isIndexed())
9694     return false;
9695   if (LD->getChain() != Base->getChain())
9696     return false;
9697   EVT VT = LD->getValueType(0);
9698   if (VT.getSizeInBits() / 8 != Bytes)
9699     return false;
9700 
9701   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9702   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9703 
9704   int64_t Offset = 0;
9705   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9706     return (Dist * Bytes == Offset);
9707   return false;
9708 }
9709 
9710 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9711 /// if it cannot be inferred.
9712 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9713   // If this is a GlobalAddress + cst, return the alignment.
9714   const GlobalValue *GV = nullptr;
9715   int64_t GVOffset = 0;
9716   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9717     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9718     KnownBits Known(PtrWidth);
9719     llvm::computeKnownBits(GV, Known, getDataLayout());
9720     unsigned AlignBits = Known.countMinTrailingZeros();
9721     if (AlignBits)
9722       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9723   }
9724 
9725   // If this is a direct reference to a stack slot, use information about the
9726   // stack slot's alignment.
9727   int FrameIdx = INT_MIN;
9728   int64_t FrameOffset = 0;
9729   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9730     FrameIdx = FI->getIndex();
9731   } else if (isBaseWithConstantOffset(Ptr) &&
9732              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9733     // Handle FI+Cst
9734     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9735     FrameOffset = Ptr.getConstantOperandVal(1);
9736   }
9737 
9738   if (FrameIdx != INT_MIN) {
9739     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9740     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9741   }
9742 
9743   return None;
9744 }
9745 
9746 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9747 /// which is split (or expanded) into two not necessarily identical pieces.
9748 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9749   // Currently all types are split in half.
9750   EVT LoVT, HiVT;
9751   if (!VT.isVector())
9752     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9753   else
9754     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9755 
9756   return std::make_pair(LoVT, HiVT);
9757 }
9758 
9759 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9760 /// type, dependent on an enveloping VT that has been split into two identical
9761 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9762 std::pair<EVT, EVT>
9763 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9764                                        bool *HiIsEmpty) const {
9765   EVT EltTp = VT.getVectorElementType();
9766   // Examples:
9767   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9768   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9769   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9770   //   etc.
9771   ElementCount VTNumElts = VT.getVectorElementCount();
9772   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9773   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9774          "Mixing fixed width and scalable vectors when enveloping a type");
9775   EVT LoVT, HiVT;
9776   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9777     LoVT = EnvVT;
9778     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9779     *HiIsEmpty = false;
9780   } else {
9781     // Flag that hi type has zero storage size, but return split envelop type
9782     // (this would be easier if vector types with zero elements were allowed).
9783     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9784     HiVT = EnvVT;
9785     *HiIsEmpty = true;
9786   }
9787   return std::make_pair(LoVT, HiVT);
9788 }
9789 
9790 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9791 /// low/high part.
9792 std::pair<SDValue, SDValue>
9793 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9794                           const EVT &HiVT) {
9795   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9796          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9797          "Splitting vector with an invalid mixture of fixed and scalable "
9798          "vector types");
9799   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9800              N.getValueType().getVectorMinNumElements() &&
9801          "More vector elements requested than available!");
9802   SDValue Lo, Hi;
9803   Lo =
9804       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9805   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9806   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9807   // IDX with the runtime scaling factor of the result vector type. For
9808   // fixed-width result vectors, that runtime scaling factor is 1.
9809   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9810                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9811   return std::make_pair(Lo, Hi);
9812 }
9813 
9814 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9815 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9816   EVT VT = N.getValueType();
9817   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9818                                 NextPowerOf2(VT.getVectorNumElements()));
9819   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9820                  getVectorIdxConstant(0, DL));
9821 }
9822 
9823 void SelectionDAG::ExtractVectorElements(SDValue Op,
9824                                          SmallVectorImpl<SDValue> &Args,
9825                                          unsigned Start, unsigned Count,
9826                                          EVT EltVT) {
9827   EVT VT = Op.getValueType();
9828   if (Count == 0)
9829     Count = VT.getVectorNumElements();
9830   if (EltVT == EVT())
9831     EltVT = VT.getVectorElementType();
9832   SDLoc SL(Op);
9833   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9834     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9835                            getVectorIdxConstant(i, SL)));
9836   }
9837 }
9838 
9839 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9840 unsigned GlobalAddressSDNode::getAddressSpace() const {
9841   return getGlobal()->getType()->getAddressSpace();
9842 }
9843 
9844 Type *ConstantPoolSDNode::getType() const {
9845   if (isMachineConstantPoolEntry())
9846     return Val.MachineCPVal->getType();
9847   return Val.ConstVal->getType();
9848 }
9849 
9850 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9851                                         unsigned &SplatBitSize,
9852                                         bool &HasAnyUndefs,
9853                                         unsigned MinSplatBits,
9854                                         bool IsBigEndian) const {
9855   EVT VT = getValueType(0);
9856   assert(VT.isVector() && "Expected a vector type");
9857   unsigned VecWidth = VT.getSizeInBits();
9858   if (MinSplatBits > VecWidth)
9859     return false;
9860 
9861   // FIXME: The widths are based on this node's type, but build vectors can
9862   // truncate their operands.
9863   SplatValue = APInt(VecWidth, 0);
9864   SplatUndef = APInt(VecWidth, 0);
9865 
9866   // Get the bits. Bits with undefined values (when the corresponding element
9867   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9868   // in SplatValue. If any of the values are not constant, give up and return
9869   // false.
9870   unsigned int NumOps = getNumOperands();
9871   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9872   unsigned EltWidth = VT.getScalarSizeInBits();
9873 
9874   for (unsigned j = 0; j < NumOps; ++j) {
9875     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9876     SDValue OpVal = getOperand(i);
9877     unsigned BitPos = j * EltWidth;
9878 
9879     if (OpVal.isUndef())
9880       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9881     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9882       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9883     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9884       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9885     else
9886       return false;
9887   }
9888 
9889   // The build_vector is all constants or undefs. Find the smallest element
9890   // size that splats the vector.
9891   HasAnyUndefs = (SplatUndef != 0);
9892 
9893   // FIXME: This does not work for vectors with elements less than 8 bits.
9894   while (VecWidth > 8) {
9895     unsigned HalfSize = VecWidth / 2;
9896     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9897     APInt LowValue = SplatValue.trunc(HalfSize);
9898     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9899     APInt LowUndef = SplatUndef.trunc(HalfSize);
9900 
9901     // If the two halves do not match (ignoring undef bits), stop here.
9902     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9903         MinSplatBits > HalfSize)
9904       break;
9905 
9906     SplatValue = HighValue | LowValue;
9907     SplatUndef = HighUndef & LowUndef;
9908 
9909     VecWidth = HalfSize;
9910   }
9911 
9912   SplatBitSize = VecWidth;
9913   return true;
9914 }
9915 
9916 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9917                                          BitVector *UndefElements) const {
9918   unsigned NumOps = getNumOperands();
9919   if (UndefElements) {
9920     UndefElements->clear();
9921     UndefElements->resize(NumOps);
9922   }
9923   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9924   if (!DemandedElts)
9925     return SDValue();
9926   SDValue Splatted;
9927   for (unsigned i = 0; i != NumOps; ++i) {
9928     if (!DemandedElts[i])
9929       continue;
9930     SDValue Op = getOperand(i);
9931     if (Op.isUndef()) {
9932       if (UndefElements)
9933         (*UndefElements)[i] = true;
9934     } else if (!Splatted) {
9935       Splatted = Op;
9936     } else if (Splatted != Op) {
9937       return SDValue();
9938     }
9939   }
9940 
9941   if (!Splatted) {
9942     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9943     assert(getOperand(FirstDemandedIdx).isUndef() &&
9944            "Can only have a splat without a constant for all undefs.");
9945     return getOperand(FirstDemandedIdx);
9946   }
9947 
9948   return Splatted;
9949 }
9950 
9951 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9952   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9953   return getSplatValue(DemandedElts, UndefElements);
9954 }
9955 
9956 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9957                                             SmallVectorImpl<SDValue> &Sequence,
9958                                             BitVector *UndefElements) const {
9959   unsigned NumOps = getNumOperands();
9960   Sequence.clear();
9961   if (UndefElements) {
9962     UndefElements->clear();
9963     UndefElements->resize(NumOps);
9964   }
9965   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9966   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9967     return false;
9968 
9969   // Set the undefs even if we don't find a sequence (like getSplatValue).
9970   if (UndefElements)
9971     for (unsigned I = 0; I != NumOps; ++I)
9972       if (DemandedElts[I] && getOperand(I).isUndef())
9973         (*UndefElements)[I] = true;
9974 
9975   // Iteratively widen the sequence length looking for repetitions.
9976   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9977     Sequence.append(SeqLen, SDValue());
9978     for (unsigned I = 0; I != NumOps; ++I) {
9979       if (!DemandedElts[I])
9980         continue;
9981       SDValue &SeqOp = Sequence[I % SeqLen];
9982       SDValue Op = getOperand(I);
9983       if (Op.isUndef()) {
9984         if (!SeqOp)
9985           SeqOp = Op;
9986         continue;
9987       }
9988       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9989         Sequence.clear();
9990         break;
9991       }
9992       SeqOp = Op;
9993     }
9994     if (!Sequence.empty())
9995       return true;
9996   }
9997 
9998   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
9999   return false;
10000 }
10001 
10002 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10003                                             BitVector *UndefElements) const {
10004   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10005   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10006 }
10007 
10008 ConstantSDNode *
10009 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10010                                         BitVector *UndefElements) const {
10011   return dyn_cast_or_null<ConstantSDNode>(
10012       getSplatValue(DemandedElts, UndefElements));
10013 }
10014 
10015 ConstantSDNode *
10016 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10017   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10018 }
10019 
10020 ConstantFPSDNode *
10021 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10022                                           BitVector *UndefElements) const {
10023   return dyn_cast_or_null<ConstantFPSDNode>(
10024       getSplatValue(DemandedElts, UndefElements));
10025 }
10026 
10027 ConstantFPSDNode *
10028 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10029   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10030 }
10031 
10032 int32_t
10033 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10034                                                    uint32_t BitWidth) const {
10035   if (ConstantFPSDNode *CN =
10036           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10037     bool IsExact;
10038     APSInt IntVal(BitWidth);
10039     const APFloat &APF = CN->getValueAPF();
10040     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10041             APFloat::opOK ||
10042         !IsExact)
10043       return -1;
10044 
10045     return IntVal.exactLogBase2();
10046   }
10047   return -1;
10048 }
10049 
10050 bool BuildVectorSDNode::isConstant() const {
10051   for (const SDValue &Op : op_values()) {
10052     unsigned Opc = Op.getOpcode();
10053     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10054       return false;
10055   }
10056   return true;
10057 }
10058 
10059 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10060   // Find the first non-undef value in the shuffle mask.
10061   unsigned i, e;
10062   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10063     /* search */;
10064 
10065   // If all elements are undefined, this shuffle can be considered a splat
10066   // (although it should eventually get simplified away completely).
10067   if (i == e)
10068     return true;
10069 
10070   // Make sure all remaining elements are either undef or the same as the first
10071   // non-undef value.
10072   for (int Idx = Mask[i]; i != e; ++i)
10073     if (Mask[i] >= 0 && Mask[i] != Idx)
10074       return false;
10075   return true;
10076 }
10077 
10078 // Returns the SDNode if it is a constant integer BuildVector
10079 // or constant integer.
10080 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10081   if (isa<ConstantSDNode>(N))
10082     return N.getNode();
10083   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10084     return N.getNode();
10085   // Treat a GlobalAddress supporting constant offset folding as a
10086   // constant integer.
10087   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10088     if (GA->getOpcode() == ISD::GlobalAddress &&
10089         TLI->isOffsetFoldingLegal(GA))
10090       return GA;
10091   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10092       isa<ConstantSDNode>(N.getOperand(0)))
10093     return N.getNode();
10094   return nullptr;
10095 }
10096 
10097 // Returns the SDNode if it is a constant float BuildVector
10098 // or constant float.
10099 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10100   if (isa<ConstantFPSDNode>(N))
10101     return N.getNode();
10102 
10103   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10104     return N.getNode();
10105 
10106   return nullptr;
10107 }
10108 
10109 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10110   assert(!Node->OperandList && "Node already has operands");
10111   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10112          "too many operands to fit into SDNode");
10113   SDUse *Ops = OperandRecycler.allocate(
10114       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10115 
10116   bool IsDivergent = false;
10117   for (unsigned I = 0; I != Vals.size(); ++I) {
10118     Ops[I].setUser(Node);
10119     Ops[I].setInitial(Vals[I]);
10120     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10121       IsDivergent |= Ops[I].getNode()->isDivergent();
10122   }
10123   Node->NumOperands = Vals.size();
10124   Node->OperandList = Ops;
10125   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10126     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10127     Node->SDNodeBits.IsDivergent = IsDivergent;
10128   }
10129   checkForCycles(Node);
10130 }
10131 
10132 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10133                                      SmallVectorImpl<SDValue> &Vals) {
10134   size_t Limit = SDNode::getMaxNumOperands();
10135   while (Vals.size() > Limit) {
10136     unsigned SliceIdx = Vals.size() - Limit;
10137     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10138     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10139     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10140     Vals.emplace_back(NewTF);
10141   }
10142   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10143 }
10144 
10145 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10146                                         EVT VT, SDNodeFlags Flags) {
10147   switch (Opcode) {
10148   default:
10149     return SDValue();
10150   case ISD::ADD:
10151   case ISD::OR:
10152   case ISD::XOR:
10153   case ISD::UMAX:
10154     return getConstant(0, DL, VT);
10155   case ISD::MUL:
10156     return getConstant(1, DL, VT);
10157   case ISD::AND:
10158   case ISD::UMIN:
10159     return getAllOnesConstant(DL, VT);
10160   case ISD::SMAX:
10161     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10162   case ISD::SMIN:
10163     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10164   case ISD::FADD:
10165     return getConstantFP(-0.0, DL, VT);
10166   case ISD::FMUL:
10167     return getConstantFP(1.0, DL, VT);
10168   case ISD::FMINNUM:
10169   case ISD::FMAXNUM: {
10170     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10171     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10172     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10173                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10174                         APFloat::getLargest(Semantics);
10175     if (Opcode == ISD::FMAXNUM)
10176       NeutralAF.changeSign();
10177 
10178     return getConstantFP(NeutralAF, DL, VT);
10179   }
10180   }
10181 }
10182 
10183 #ifndef NDEBUG
10184 static void checkForCyclesHelper(const SDNode *N,
10185                                  SmallPtrSetImpl<const SDNode*> &Visited,
10186                                  SmallPtrSetImpl<const SDNode*> &Checked,
10187                                  const llvm::SelectionDAG *DAG) {
10188   // If this node has already been checked, don't check it again.
10189   if (Checked.count(N))
10190     return;
10191 
10192   // If a node has already been visited on this depth-first walk, reject it as
10193   // a cycle.
10194   if (!Visited.insert(N).second) {
10195     errs() << "Detected cycle in SelectionDAG\n";
10196     dbgs() << "Offending node:\n";
10197     N->dumprFull(DAG); dbgs() << "\n";
10198     abort();
10199   }
10200 
10201   for (const SDValue &Op : N->op_values())
10202     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10203 
10204   Checked.insert(N);
10205   Visited.erase(N);
10206 }
10207 #endif
10208 
10209 void llvm::checkForCycles(const llvm::SDNode *N,
10210                           const llvm::SelectionDAG *DAG,
10211                           bool force) {
10212 #ifndef NDEBUG
10213   bool check = force;
10214 #ifdef EXPENSIVE_CHECKS
10215   check = true;
10216 #endif  // EXPENSIVE_CHECKS
10217   if (check) {
10218     assert(N && "Checking nonexistent SDNode");
10219     SmallPtrSet<const SDNode*, 32> visited;
10220     SmallPtrSet<const SDNode*, 32> checked;
10221     checkForCyclesHelper(N, visited, checked, DAG);
10222   }
10223 #endif  // !NDEBUG
10224 }
10225 
10226 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10227   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10228 }
10229