1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2544 unsigned Depth) const { 2545 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2546 } 2547 2548 /// isSplatValue - Return true if the vector V has the same value 2549 /// across all DemandedElts. For scalable vectors it does not make 2550 /// sense to specify which elements are demanded or undefined, therefore 2551 /// they are simply ignored. 2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2553 APInt &UndefElts, unsigned Depth) const { 2554 unsigned Opcode = V.getOpcode(); 2555 EVT VT = V.getValueType(); 2556 assert(VT.isVector() && "Vector type expected"); 2557 2558 if (!VT.isScalableVector() && !DemandedElts) 2559 return false; // No demanded elts, better to assume we don't know anything. 2560 2561 if (Depth >= MaxRecursionDepth) 2562 return false; // Limit search depth. 2563 2564 // Deal with some common cases here that work for both fixed and scalable 2565 // vector types. 2566 switch (Opcode) { 2567 case ISD::SPLAT_VECTOR: 2568 UndefElts = V.getOperand(0).isUndef() 2569 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2570 : APInt(DemandedElts.getBitWidth(), 0); 2571 return true; 2572 case ISD::ADD: 2573 case ISD::SUB: 2574 case ISD::AND: 2575 case ISD::XOR: 2576 case ISD::OR: { 2577 APInt UndefLHS, UndefRHS; 2578 SDValue LHS = V.getOperand(0); 2579 SDValue RHS = V.getOperand(1); 2580 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2581 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2582 UndefElts = UndefLHS | UndefRHS; 2583 return true; 2584 } 2585 return false; 2586 } 2587 case ISD::ABS: 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2592 default: 2593 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2594 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2595 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2596 break; 2597 } 2598 2599 // We don't support other cases than those above for scalable vectors at 2600 // the moment. 2601 if (VT.isScalableVector()) 2602 return false; 2603 2604 unsigned NumElts = VT.getVectorNumElements(); 2605 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2606 UndefElts = APInt::getZero(NumElts); 2607 2608 switch (Opcode) { 2609 case ISD::BUILD_VECTOR: { 2610 SDValue Scl; 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 SDValue Op = V.getOperand(i); 2613 if (Op.isUndef()) { 2614 UndefElts.setBit(i); 2615 continue; 2616 } 2617 if (!DemandedElts[i]) 2618 continue; 2619 if (Scl && Scl != Op) 2620 return false; 2621 Scl = Op; 2622 } 2623 return true; 2624 } 2625 case ISD::VECTOR_SHUFFLE: { 2626 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2627 APInt DemandedLHS = APInt::getNullValue(NumElts); 2628 APInt DemandedRHS = APInt::getNullValue(NumElts); 2629 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2630 for (int i = 0; i != (int)NumElts; ++i) { 2631 int M = Mask[i]; 2632 if (M < 0) { 2633 UndefElts.setBit(i); 2634 continue; 2635 } 2636 if (!DemandedElts[i]) 2637 continue; 2638 if (M < (int)NumElts) 2639 DemandedLHS.setBit(M); 2640 else 2641 DemandedRHS.setBit(M - NumElts); 2642 } 2643 2644 // If we aren't demanding either op, assume there's no splat. 2645 // If we are demanding both ops, assume there's no splat. 2646 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2647 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2648 return false; 2649 2650 // See if the demanded elts of the source op is a splat or we only demand 2651 // one element, which should always be a splat. 2652 // TODO: Handle source ops splats with undefs. 2653 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2654 APInt SrcUndefs; 2655 return (SrcElts.countPopulation() == 1) || 2656 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2657 (SrcElts & SrcUndefs).isZero()); 2658 }; 2659 if (!DemandedLHS.isZero()) 2660 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2661 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2662 } 2663 case ISD::EXTRACT_SUBVECTOR: { 2664 // Offset the demanded elts by the subvector index. 2665 SDValue Src = V.getOperand(0); 2666 // We don't support scalable vectors at the moment. 2667 if (Src.getValueType().isScalableVector()) 2668 return false; 2669 uint64_t Idx = V.getConstantOperandVal(1); 2670 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2671 APInt UndefSrcElts; 2672 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2673 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2674 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2675 return true; 2676 } 2677 break; 2678 } 2679 case ISD::ANY_EXTEND_VECTOR_INREG: 2680 case ISD::SIGN_EXTEND_VECTOR_INREG: 2681 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2682 // Widen the demanded elts by the src element count. 2683 SDValue Src = V.getOperand(0); 2684 // We don't support scalable vectors at the moment. 2685 if (Src.getValueType().isScalableVector()) 2686 return false; 2687 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2688 APInt UndefSrcElts; 2689 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2690 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2691 UndefElts = UndefSrcElts.trunc(NumElts); 2692 return true; 2693 } 2694 break; 2695 } 2696 case ISD::BITCAST: { 2697 SDValue Src = V.getOperand(0); 2698 EVT SrcVT = Src.getValueType(); 2699 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2700 unsigned BitWidth = VT.getScalarSizeInBits(); 2701 2702 // Ignore bitcasts from unsupported types. 2703 // TODO: Add fp support? 2704 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2705 break; 2706 2707 // Bitcast 'small element' vector to 'large element' vector. 2708 if ((BitWidth % SrcBitWidth) == 0) { 2709 // See if each sub element is a splat. 2710 unsigned Scale = BitWidth / SrcBitWidth; 2711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2712 APInt ScaledDemandedElts = 2713 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2714 for (unsigned I = 0; I != Scale; ++I) { 2715 APInt SubUndefElts; 2716 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2717 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2718 SubDemandedElts &= ScaledDemandedElts; 2719 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2720 return false; 2721 // TODO: Add support for merging sub undef elements. 2722 if (SubDemandedElts.isSubsetOf(SubUndefElts)) 2723 return false; 2724 } 2725 return true; 2726 } 2727 break; 2728 } 2729 } 2730 2731 return false; 2732 } 2733 2734 /// Helper wrapper to main isSplatValue function. 2735 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2736 EVT VT = V.getValueType(); 2737 assert(VT.isVector() && "Vector type expected"); 2738 2739 APInt UndefElts; 2740 APInt DemandedElts; 2741 2742 // For now we don't support this with scalable vectors. 2743 if (!VT.isScalableVector()) 2744 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2745 return isSplatValue(V, DemandedElts, UndefElts) && 2746 (AllowUndefs || !UndefElts); 2747 } 2748 2749 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2750 V = peekThroughExtractSubvectors(V); 2751 2752 EVT VT = V.getValueType(); 2753 unsigned Opcode = V.getOpcode(); 2754 switch (Opcode) { 2755 default: { 2756 APInt UndefElts; 2757 APInt DemandedElts; 2758 2759 if (!VT.isScalableVector()) 2760 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2761 2762 if (isSplatValue(V, DemandedElts, UndefElts)) { 2763 if (VT.isScalableVector()) { 2764 // DemandedElts and UndefElts are ignored for scalable vectors, since 2765 // the only supported cases are SPLAT_VECTOR nodes. 2766 SplatIdx = 0; 2767 } else { 2768 // Handle case where all demanded elements are UNDEF. 2769 if (DemandedElts.isSubsetOf(UndefElts)) { 2770 SplatIdx = 0; 2771 return getUNDEF(VT); 2772 } 2773 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2774 } 2775 return V; 2776 } 2777 break; 2778 } 2779 case ISD::SPLAT_VECTOR: 2780 SplatIdx = 0; 2781 return V; 2782 case ISD::VECTOR_SHUFFLE: { 2783 if (VT.isScalableVector()) 2784 return SDValue(); 2785 2786 // Check if this is a shuffle node doing a splat. 2787 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2788 // getTargetVShiftNode currently struggles without the splat source. 2789 auto *SVN = cast<ShuffleVectorSDNode>(V); 2790 if (!SVN->isSplat()) 2791 break; 2792 int Idx = SVN->getSplatIndex(); 2793 int NumElts = V.getValueType().getVectorNumElements(); 2794 SplatIdx = Idx % NumElts; 2795 return V.getOperand(Idx / NumElts); 2796 } 2797 } 2798 2799 return SDValue(); 2800 } 2801 2802 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2803 int SplatIdx; 2804 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2805 EVT SVT = SrcVector.getValueType().getScalarType(); 2806 EVT LegalSVT = SVT; 2807 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2808 if (!SVT.isInteger()) 2809 return SDValue(); 2810 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2811 if (LegalSVT.bitsLT(SVT)) 2812 return SDValue(); 2813 } 2814 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2815 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2816 } 2817 return SDValue(); 2818 } 2819 2820 const APInt * 2821 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2822 const APInt &DemandedElts) const { 2823 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2824 V.getOpcode() == ISD::SRA) && 2825 "Unknown shift node"); 2826 unsigned BitWidth = V.getScalarValueSizeInBits(); 2827 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2828 // Shifting more than the bitwidth is not valid. 2829 const APInt &ShAmt = SA->getAPIntValue(); 2830 if (ShAmt.ult(BitWidth)) 2831 return &ShAmt; 2832 } 2833 return nullptr; 2834 } 2835 2836 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2837 SDValue V, const APInt &DemandedElts) const { 2838 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2839 V.getOpcode() == ISD::SRA) && 2840 "Unknown shift node"); 2841 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2842 return ValidAmt; 2843 unsigned BitWidth = V.getScalarValueSizeInBits(); 2844 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2845 if (!BV) 2846 return nullptr; 2847 const APInt *MinShAmt = nullptr; 2848 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2849 if (!DemandedElts[i]) 2850 continue; 2851 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2852 if (!SA) 2853 return nullptr; 2854 // Shifting more than the bitwidth is not valid. 2855 const APInt &ShAmt = SA->getAPIntValue(); 2856 if (ShAmt.uge(BitWidth)) 2857 return nullptr; 2858 if (MinShAmt && MinShAmt->ule(ShAmt)) 2859 continue; 2860 MinShAmt = &ShAmt; 2861 } 2862 return MinShAmt; 2863 } 2864 2865 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2866 SDValue V, const APInt &DemandedElts) const { 2867 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2868 V.getOpcode() == ISD::SRA) && 2869 "Unknown shift node"); 2870 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2871 return ValidAmt; 2872 unsigned BitWidth = V.getScalarValueSizeInBits(); 2873 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2874 if (!BV) 2875 return nullptr; 2876 const APInt *MaxShAmt = nullptr; 2877 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2878 if (!DemandedElts[i]) 2879 continue; 2880 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2881 if (!SA) 2882 return nullptr; 2883 // Shifting more than the bitwidth is not valid. 2884 const APInt &ShAmt = SA->getAPIntValue(); 2885 if (ShAmt.uge(BitWidth)) 2886 return nullptr; 2887 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2888 continue; 2889 MaxShAmt = &ShAmt; 2890 } 2891 return MaxShAmt; 2892 } 2893 2894 /// Determine which bits of Op are known to be either zero or one and return 2895 /// them in Known. For vectors, the known bits are those that are shared by 2896 /// every vector element. 2897 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2898 EVT VT = Op.getValueType(); 2899 2900 // TOOD: Until we have a plan for how to represent demanded elements for 2901 // scalable vectors, we can just bail out for now. 2902 if (Op.getValueType().isScalableVector()) { 2903 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2904 return KnownBits(BitWidth); 2905 } 2906 2907 APInt DemandedElts = VT.isVector() 2908 ? APInt::getAllOnes(VT.getVectorNumElements()) 2909 : APInt(1, 1); 2910 return computeKnownBits(Op, DemandedElts, Depth); 2911 } 2912 2913 /// Determine which bits of Op are known to be either zero or one and return 2914 /// them in Known. The DemandedElts argument allows us to only collect the known 2915 /// bits that are shared by the requested vector elements. 2916 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2917 unsigned Depth) const { 2918 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2919 2920 KnownBits Known(BitWidth); // Don't know anything. 2921 2922 // TOOD: Until we have a plan for how to represent demanded elements for 2923 // scalable vectors, we can just bail out for now. 2924 if (Op.getValueType().isScalableVector()) 2925 return Known; 2926 2927 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2928 // We know all of the bits for a constant! 2929 return KnownBits::makeConstant(C->getAPIntValue()); 2930 } 2931 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2932 // We know all of the bits for a constant fp! 2933 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2934 } 2935 2936 if (Depth >= MaxRecursionDepth) 2937 return Known; // Limit search depth. 2938 2939 KnownBits Known2; 2940 unsigned NumElts = DemandedElts.getBitWidth(); 2941 assert((!Op.getValueType().isVector() || 2942 NumElts == Op.getValueType().getVectorNumElements()) && 2943 "Unexpected vector size"); 2944 2945 if (!DemandedElts) 2946 return Known; // No demanded elts, better to assume we don't know anything. 2947 2948 unsigned Opcode = Op.getOpcode(); 2949 switch (Opcode) { 2950 case ISD::BUILD_VECTOR: 2951 // Collect the known bits that are shared by every demanded vector element. 2952 Known.Zero.setAllBits(); Known.One.setAllBits(); 2953 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2954 if (!DemandedElts[i]) 2955 continue; 2956 2957 SDValue SrcOp = Op.getOperand(i); 2958 Known2 = computeKnownBits(SrcOp, Depth + 1); 2959 2960 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2961 if (SrcOp.getValueSizeInBits() != BitWidth) { 2962 assert(SrcOp.getValueSizeInBits() > BitWidth && 2963 "Expected BUILD_VECTOR implicit truncation"); 2964 Known2 = Known2.trunc(BitWidth); 2965 } 2966 2967 // Known bits are the values that are shared by every demanded element. 2968 Known = KnownBits::commonBits(Known, Known2); 2969 2970 // If we don't know any bits, early out. 2971 if (Known.isUnknown()) 2972 break; 2973 } 2974 break; 2975 case ISD::VECTOR_SHUFFLE: { 2976 // Collect the known bits that are shared by every vector element referenced 2977 // by the shuffle. 2978 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2979 Known.Zero.setAllBits(); Known.One.setAllBits(); 2980 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2981 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2982 for (unsigned i = 0; i != NumElts; ++i) { 2983 if (!DemandedElts[i]) 2984 continue; 2985 2986 int M = SVN->getMaskElt(i); 2987 if (M < 0) { 2988 // For UNDEF elements, we don't know anything about the common state of 2989 // the shuffle result. 2990 Known.resetAll(); 2991 DemandedLHS.clearAllBits(); 2992 DemandedRHS.clearAllBits(); 2993 break; 2994 } 2995 2996 if ((unsigned)M < NumElts) 2997 DemandedLHS.setBit((unsigned)M % NumElts); 2998 else 2999 DemandedRHS.setBit((unsigned)M % NumElts); 3000 } 3001 // Known bits are the values that are shared by every demanded element. 3002 if (!!DemandedLHS) { 3003 SDValue LHS = Op.getOperand(0); 3004 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3005 Known = KnownBits::commonBits(Known, Known2); 3006 } 3007 // If we don't know any bits, early out. 3008 if (Known.isUnknown()) 3009 break; 3010 if (!!DemandedRHS) { 3011 SDValue RHS = Op.getOperand(1); 3012 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3013 Known = KnownBits::commonBits(Known, Known2); 3014 } 3015 break; 3016 } 3017 case ISD::CONCAT_VECTORS: { 3018 // Split DemandedElts and test each of the demanded subvectors. 3019 Known.Zero.setAllBits(); Known.One.setAllBits(); 3020 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3021 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3022 unsigned NumSubVectors = Op.getNumOperands(); 3023 for (unsigned i = 0; i != NumSubVectors; ++i) { 3024 APInt DemandedSub = 3025 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3026 if (!!DemandedSub) { 3027 SDValue Sub = Op.getOperand(i); 3028 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3029 Known = KnownBits::commonBits(Known, Known2); 3030 } 3031 // If we don't know any bits, early out. 3032 if (Known.isUnknown()) 3033 break; 3034 } 3035 break; 3036 } 3037 case ISD::INSERT_SUBVECTOR: { 3038 // Demand any elements from the subvector and the remainder from the src its 3039 // inserted into. 3040 SDValue Src = Op.getOperand(0); 3041 SDValue Sub = Op.getOperand(1); 3042 uint64_t Idx = Op.getConstantOperandVal(2); 3043 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3044 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3045 APInt DemandedSrcElts = DemandedElts; 3046 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3047 3048 Known.One.setAllBits(); 3049 Known.Zero.setAllBits(); 3050 if (!!DemandedSubElts) { 3051 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3052 if (Known.isUnknown()) 3053 break; // early-out. 3054 } 3055 if (!!DemandedSrcElts) { 3056 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3057 Known = KnownBits::commonBits(Known, Known2); 3058 } 3059 break; 3060 } 3061 case ISD::EXTRACT_SUBVECTOR: { 3062 // Offset the demanded elts by the subvector index. 3063 SDValue Src = Op.getOperand(0); 3064 // Bail until we can represent demanded elements for scalable vectors. 3065 if (Src.getValueType().isScalableVector()) 3066 break; 3067 uint64_t Idx = Op.getConstantOperandVal(1); 3068 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3069 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3070 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3071 break; 3072 } 3073 case ISD::SCALAR_TO_VECTOR: { 3074 // We know about scalar_to_vector as much as we know about it source, 3075 // which becomes the first element of otherwise unknown vector. 3076 if (DemandedElts != 1) 3077 break; 3078 3079 SDValue N0 = Op.getOperand(0); 3080 Known = computeKnownBits(N0, Depth + 1); 3081 if (N0.getValueSizeInBits() != BitWidth) 3082 Known = Known.trunc(BitWidth); 3083 3084 break; 3085 } 3086 case ISD::BITCAST: { 3087 SDValue N0 = Op.getOperand(0); 3088 EVT SubVT = N0.getValueType(); 3089 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3090 3091 // Ignore bitcasts from unsupported types. 3092 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3093 break; 3094 3095 // Fast handling of 'identity' bitcasts. 3096 if (BitWidth == SubBitWidth) { 3097 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3098 break; 3099 } 3100 3101 bool IsLE = getDataLayout().isLittleEndian(); 3102 3103 // Bitcast 'small element' vector to 'large element' scalar/vector. 3104 if ((BitWidth % SubBitWidth) == 0) { 3105 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3106 3107 // Collect known bits for the (larger) output by collecting the known 3108 // bits from each set of sub elements and shift these into place. 3109 // We need to separately call computeKnownBits for each set of 3110 // sub elements as the knownbits for each is likely to be different. 3111 unsigned SubScale = BitWidth / SubBitWidth; 3112 APInt SubDemandedElts(NumElts * SubScale, 0); 3113 for (unsigned i = 0; i != NumElts; ++i) 3114 if (DemandedElts[i]) 3115 SubDemandedElts.setBit(i * SubScale); 3116 3117 for (unsigned i = 0; i != SubScale; ++i) { 3118 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3119 Depth + 1); 3120 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3121 Known.insertBits(Known2, SubBitWidth * Shifts); 3122 } 3123 } 3124 3125 // Bitcast 'large element' scalar/vector to 'small element' vector. 3126 if ((SubBitWidth % BitWidth) == 0) { 3127 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3128 3129 // Collect known bits for the (smaller) output by collecting the known 3130 // bits from the overlapping larger input elements and extracting the 3131 // sub sections we actually care about. 3132 unsigned SubScale = SubBitWidth / BitWidth; 3133 APInt SubDemandedElts = 3134 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3135 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3136 3137 Known.Zero.setAllBits(); Known.One.setAllBits(); 3138 for (unsigned i = 0; i != NumElts; ++i) 3139 if (DemandedElts[i]) { 3140 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3141 unsigned Offset = (Shifts % SubScale) * BitWidth; 3142 Known = KnownBits::commonBits(Known, 3143 Known2.extractBits(BitWidth, Offset)); 3144 // If we don't know any bits, early out. 3145 if (Known.isUnknown()) 3146 break; 3147 } 3148 } 3149 break; 3150 } 3151 case ISD::AND: 3152 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 3155 Known &= Known2; 3156 break; 3157 case ISD::OR: 3158 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 3161 Known |= Known2; 3162 break; 3163 case ISD::XOR: 3164 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3165 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 3167 Known ^= Known2; 3168 break; 3169 case ISD::MUL: { 3170 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3171 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3173 // TODO: SelfMultiply can be poison, but not undef. 3174 if (SelfMultiply) 3175 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3176 Op.getOperand(0), DemandedElts, false, Depth + 1); 3177 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3178 break; 3179 } 3180 case ISD::MULHU: { 3181 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3182 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3183 Known = KnownBits::mulhu(Known, Known2); 3184 break; 3185 } 3186 case ISD::MULHS: { 3187 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known = KnownBits::mulhs(Known, Known2); 3190 break; 3191 } 3192 case ISD::UMUL_LOHI: { 3193 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3194 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3195 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3196 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3197 if (Op.getResNo() == 0) 3198 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3199 else 3200 Known = KnownBits::mulhu(Known, Known2); 3201 break; 3202 } 3203 case ISD::SMUL_LOHI: { 3204 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3205 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3206 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3207 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3208 if (Op.getResNo() == 0) 3209 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3210 else 3211 Known = KnownBits::mulhs(Known, Known2); 3212 break; 3213 } 3214 case ISD::UDIV: { 3215 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3217 Known = KnownBits::udiv(Known, Known2); 3218 break; 3219 } 3220 case ISD::AVGCEILU: { 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = Known.zext(BitWidth + 1); 3224 Known2 = Known2.zext(BitWidth + 1); 3225 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3226 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3227 Known = Known.extractBits(BitWidth, 1); 3228 break; 3229 } 3230 case ISD::SELECT: 3231 case ISD::VSELECT: 3232 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3233 // If we don't know any bits, early out. 3234 if (Known.isUnknown()) 3235 break; 3236 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3237 3238 // Only known if known in both the LHS and RHS. 3239 Known = KnownBits::commonBits(Known, Known2); 3240 break; 3241 case ISD::SELECT_CC: 3242 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3243 // If we don't know any bits, early out. 3244 if (Known.isUnknown()) 3245 break; 3246 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3247 3248 // Only known if known in both the LHS and RHS. 3249 Known = KnownBits::commonBits(Known, Known2); 3250 break; 3251 case ISD::SMULO: 3252 case ISD::UMULO: 3253 if (Op.getResNo() != 1) 3254 break; 3255 // The boolean result conforms to getBooleanContents. 3256 // If we know the result of a setcc has the top bits zero, use this info. 3257 // We know that we have an integer-based boolean since these operations 3258 // are only available for integer. 3259 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3260 TargetLowering::ZeroOrOneBooleanContent && 3261 BitWidth > 1) 3262 Known.Zero.setBitsFrom(1); 3263 break; 3264 case ISD::SETCC: 3265 case ISD::STRICT_FSETCC: 3266 case ISD::STRICT_FSETCCS: { 3267 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3268 // If we know the result of a setcc has the top bits zero, use this info. 3269 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3270 TargetLowering::ZeroOrOneBooleanContent && 3271 BitWidth > 1) 3272 Known.Zero.setBitsFrom(1); 3273 break; 3274 } 3275 case ISD::SHL: 3276 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3277 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3278 Known = KnownBits::shl(Known, Known2); 3279 3280 // Minimum shift low bits are known zero. 3281 if (const APInt *ShMinAmt = 3282 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3283 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3284 break; 3285 case ISD::SRL: 3286 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3287 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3288 Known = KnownBits::lshr(Known, Known2); 3289 3290 // Minimum shift high bits are known zero. 3291 if (const APInt *ShMinAmt = 3292 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3293 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3294 break; 3295 case ISD::SRA: 3296 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3297 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3298 Known = KnownBits::ashr(Known, Known2); 3299 // TODO: Add minimum shift high known sign bits. 3300 break; 3301 case ISD::FSHL: 3302 case ISD::FSHR: 3303 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3304 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3305 3306 // For fshl, 0-shift returns the 1st arg. 3307 // For fshr, 0-shift returns the 2nd arg. 3308 if (Amt == 0) { 3309 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3310 DemandedElts, Depth + 1); 3311 break; 3312 } 3313 3314 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3315 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3316 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3317 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3318 if (Opcode == ISD::FSHL) { 3319 Known.One <<= Amt; 3320 Known.Zero <<= Amt; 3321 Known2.One.lshrInPlace(BitWidth - Amt); 3322 Known2.Zero.lshrInPlace(BitWidth - Amt); 3323 } else { 3324 Known.One <<= BitWidth - Amt; 3325 Known.Zero <<= BitWidth - Amt; 3326 Known2.One.lshrInPlace(Amt); 3327 Known2.Zero.lshrInPlace(Amt); 3328 } 3329 Known.One |= Known2.One; 3330 Known.Zero |= Known2.Zero; 3331 } 3332 break; 3333 case ISD::SIGN_EXTEND_INREG: { 3334 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3335 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3336 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3337 break; 3338 } 3339 case ISD::CTTZ: 3340 case ISD::CTTZ_ZERO_UNDEF: { 3341 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3342 // If we have a known 1, its position is our upper bound. 3343 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3344 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3345 Known.Zero.setBitsFrom(LowBits); 3346 break; 3347 } 3348 case ISD::CTLZ: 3349 case ISD::CTLZ_ZERO_UNDEF: { 3350 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If we have a known 1, its position is our upper bound. 3352 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3353 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3354 Known.Zero.setBitsFrom(LowBits); 3355 break; 3356 } 3357 case ISD::CTPOP: { 3358 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3359 // If we know some of the bits are zero, they can't be one. 3360 unsigned PossibleOnes = Known2.countMaxPopulation(); 3361 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3362 break; 3363 } 3364 case ISD::PARITY: { 3365 // Parity returns 0 everywhere but the LSB. 3366 Known.Zero.setBitsFrom(1); 3367 break; 3368 } 3369 case ISD::LOAD: { 3370 LoadSDNode *LD = cast<LoadSDNode>(Op); 3371 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3372 if (ISD::isNON_EXTLoad(LD) && Cst) { 3373 // Determine any common known bits from the loaded constant pool value. 3374 Type *CstTy = Cst->getType(); 3375 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3376 // If its a vector splat, then we can (quickly) reuse the scalar path. 3377 // NOTE: We assume all elements match and none are UNDEF. 3378 if (CstTy->isVectorTy()) { 3379 if (const Constant *Splat = Cst->getSplatValue()) { 3380 Cst = Splat; 3381 CstTy = Cst->getType(); 3382 } 3383 } 3384 // TODO - do we need to handle different bitwidths? 3385 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3386 // Iterate across all vector elements finding common known bits. 3387 Known.One.setAllBits(); 3388 Known.Zero.setAllBits(); 3389 for (unsigned i = 0; i != NumElts; ++i) { 3390 if (!DemandedElts[i]) 3391 continue; 3392 if (Constant *Elt = Cst->getAggregateElement(i)) { 3393 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3394 const APInt &Value = CInt->getValue(); 3395 Known.One &= Value; 3396 Known.Zero &= ~Value; 3397 continue; 3398 } 3399 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3400 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3401 Known.One &= Value; 3402 Known.Zero &= ~Value; 3403 continue; 3404 } 3405 } 3406 Known.One.clearAllBits(); 3407 Known.Zero.clearAllBits(); 3408 break; 3409 } 3410 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3411 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3412 Known = KnownBits::makeConstant(CInt->getValue()); 3413 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3414 Known = 3415 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3416 } 3417 } 3418 } 3419 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3420 // If this is a ZEXTLoad and we are looking at the loaded value. 3421 EVT VT = LD->getMemoryVT(); 3422 unsigned MemBits = VT.getScalarSizeInBits(); 3423 Known.Zero.setBitsFrom(MemBits); 3424 } else if (const MDNode *Ranges = LD->getRanges()) { 3425 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3426 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3427 } 3428 break; 3429 } 3430 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3431 EVT InVT = Op.getOperand(0).getValueType(); 3432 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3433 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3434 Known = Known.zext(BitWidth); 3435 break; 3436 } 3437 case ISD::ZERO_EXTEND: { 3438 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3439 Known = Known.zext(BitWidth); 3440 break; 3441 } 3442 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3443 EVT InVT = Op.getOperand(0).getValueType(); 3444 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3445 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3446 // If the sign bit is known to be zero or one, then sext will extend 3447 // it to the top bits, else it will just zext. 3448 Known = Known.sext(BitWidth); 3449 break; 3450 } 3451 case ISD::SIGN_EXTEND: { 3452 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 // If the sign bit is known to be zero or one, then sext will extend 3454 // it to the top bits, else it will just zext. 3455 Known = Known.sext(BitWidth); 3456 break; 3457 } 3458 case ISD::ANY_EXTEND_VECTOR_INREG: { 3459 EVT InVT = Op.getOperand(0).getValueType(); 3460 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3461 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3462 Known = Known.anyext(BitWidth); 3463 break; 3464 } 3465 case ISD::ANY_EXTEND: { 3466 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3467 Known = Known.anyext(BitWidth); 3468 break; 3469 } 3470 case ISD::TRUNCATE: { 3471 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3472 Known = Known.trunc(BitWidth); 3473 break; 3474 } 3475 case ISD::AssertZext: { 3476 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3477 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3478 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3479 Known.Zero |= (~InMask); 3480 Known.One &= (~Known.Zero); 3481 break; 3482 } 3483 case ISD::AssertAlign: { 3484 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3485 assert(LogOfAlign != 0); 3486 3487 // TODO: Should use maximum with source 3488 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3489 // well as clearing one bits. 3490 Known.Zero.setLowBits(LogOfAlign); 3491 Known.One.clearLowBits(LogOfAlign); 3492 break; 3493 } 3494 case ISD::FGETSIGN: 3495 // All bits are zero except the low bit. 3496 Known.Zero.setBitsFrom(1); 3497 break; 3498 case ISD::USUBO: 3499 case ISD::SSUBO: 3500 if (Op.getResNo() == 1) { 3501 // If we know the result of a setcc has the top bits zero, use this info. 3502 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3503 TargetLowering::ZeroOrOneBooleanContent && 3504 BitWidth > 1) 3505 Known.Zero.setBitsFrom(1); 3506 break; 3507 } 3508 LLVM_FALLTHROUGH; 3509 case ISD::SUB: 3510 case ISD::SUBC: { 3511 assert(Op.getResNo() == 0 && 3512 "We only compute knownbits for the difference here."); 3513 3514 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3515 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3516 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3517 Known, Known2); 3518 break; 3519 } 3520 case ISD::UADDO: 3521 case ISD::SADDO: 3522 case ISD::ADDCARRY: 3523 if (Op.getResNo() == 1) { 3524 // If we know the result of a setcc has the top bits zero, use this info. 3525 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3526 TargetLowering::ZeroOrOneBooleanContent && 3527 BitWidth > 1) 3528 Known.Zero.setBitsFrom(1); 3529 break; 3530 } 3531 LLVM_FALLTHROUGH; 3532 case ISD::ADD: 3533 case ISD::ADDC: 3534 case ISD::ADDE: { 3535 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3536 3537 // With ADDE and ADDCARRY, a carry bit may be added in. 3538 KnownBits Carry(1); 3539 if (Opcode == ISD::ADDE) 3540 // Can't track carry from glue, set carry to unknown. 3541 Carry.resetAll(); 3542 else if (Opcode == ISD::ADDCARRY) 3543 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3544 // the trouble (how often will we find a known carry bit). And I haven't 3545 // tested this very much yet, but something like this might work: 3546 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3547 // Carry = Carry.zextOrTrunc(1, false); 3548 Carry.resetAll(); 3549 else 3550 Carry.setAllZero(); 3551 3552 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3553 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3554 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3555 break; 3556 } 3557 case ISD::SREM: { 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::srem(Known, Known2); 3561 break; 3562 } 3563 case ISD::UREM: { 3564 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3565 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3566 Known = KnownBits::urem(Known, Known2); 3567 break; 3568 } 3569 case ISD::EXTRACT_ELEMENT: { 3570 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3571 const unsigned Index = Op.getConstantOperandVal(1); 3572 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3573 3574 // Remove low part of known bits mask 3575 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3576 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3577 3578 // Remove high part of known bit mask 3579 Known = Known.trunc(EltBitWidth); 3580 break; 3581 } 3582 case ISD::EXTRACT_VECTOR_ELT: { 3583 SDValue InVec = Op.getOperand(0); 3584 SDValue EltNo = Op.getOperand(1); 3585 EVT VecVT = InVec.getValueType(); 3586 // computeKnownBits not yet implemented for scalable vectors. 3587 if (VecVT.isScalableVector()) 3588 break; 3589 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3590 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3591 3592 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3593 // anything about the extended bits. 3594 if (BitWidth > EltBitWidth) 3595 Known = Known.trunc(EltBitWidth); 3596 3597 // If we know the element index, just demand that vector element, else for 3598 // an unknown element index, ignore DemandedElts and demand them all. 3599 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3600 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3601 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3602 DemandedSrcElts = 3603 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3604 3605 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3606 if (BitWidth > EltBitWidth) 3607 Known = Known.anyext(BitWidth); 3608 break; 3609 } 3610 case ISD::INSERT_VECTOR_ELT: { 3611 // If we know the element index, split the demand between the 3612 // source vector and the inserted element, otherwise assume we need 3613 // the original demanded vector elements and the value. 3614 SDValue InVec = Op.getOperand(0); 3615 SDValue InVal = Op.getOperand(1); 3616 SDValue EltNo = Op.getOperand(2); 3617 bool DemandedVal = true; 3618 APInt DemandedVecElts = DemandedElts; 3619 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3620 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3621 unsigned EltIdx = CEltNo->getZExtValue(); 3622 DemandedVal = !!DemandedElts[EltIdx]; 3623 DemandedVecElts.clearBit(EltIdx); 3624 } 3625 Known.One.setAllBits(); 3626 Known.Zero.setAllBits(); 3627 if (DemandedVal) { 3628 Known2 = computeKnownBits(InVal, Depth + 1); 3629 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3630 } 3631 if (!!DemandedVecElts) { 3632 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3633 Known = KnownBits::commonBits(Known, Known2); 3634 } 3635 break; 3636 } 3637 case ISD::BITREVERSE: { 3638 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3639 Known = Known2.reverseBits(); 3640 break; 3641 } 3642 case ISD::BSWAP: { 3643 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3644 Known = Known2.byteSwap(); 3645 break; 3646 } 3647 case ISD::ABS: { 3648 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3649 Known = Known2.abs(); 3650 break; 3651 } 3652 case ISD::USUBSAT: { 3653 // The result of usubsat will never be larger than the LHS. 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3656 break; 3657 } 3658 case ISD::UMIN: { 3659 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3660 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3661 Known = KnownBits::umin(Known, Known2); 3662 break; 3663 } 3664 case ISD::UMAX: { 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::umax(Known, Known2); 3668 break; 3669 } 3670 case ISD::SMIN: 3671 case ISD::SMAX: { 3672 // If we have a clamp pattern, we know that the number of sign bits will be 3673 // the minimum of the clamp min/max range. 3674 bool IsMax = (Opcode == ISD::SMAX); 3675 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3676 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3677 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3678 CstHigh = 3679 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3680 if (CstLow && CstHigh) { 3681 if (!IsMax) 3682 std::swap(CstLow, CstHigh); 3683 3684 const APInt &ValueLow = CstLow->getAPIntValue(); 3685 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3686 if (ValueLow.sle(ValueHigh)) { 3687 unsigned LowSignBits = ValueLow.getNumSignBits(); 3688 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3689 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3690 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3691 Known.One.setHighBits(MinSignBits); 3692 break; 3693 } 3694 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3695 Known.Zero.setHighBits(MinSignBits); 3696 break; 3697 } 3698 } 3699 } 3700 // For SMAX, if CstLow is non-negative we know the result will be 3701 // non-negative and thus all sign bits are 0. 3702 // TODO: There's an equivalent of this for smin with negative constant for 3703 // known ones. 3704 if (IsMax && CstLow) { 3705 const APInt &ValueLow = CstLow->getAPIntValue(); 3706 if (ValueLow.isNonNegative()) { 3707 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3708 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3709 break; 3710 } 3711 } 3712 3713 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3714 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3715 if (IsMax) 3716 Known = KnownBits::smax(Known, Known2); 3717 else 3718 Known = KnownBits::smin(Known, Known2); 3719 break; 3720 } 3721 case ISD::FP_TO_UINT_SAT: { 3722 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3723 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3724 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3725 break; 3726 } 3727 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3728 if (Op.getResNo() == 1) { 3729 // The boolean result conforms to getBooleanContents. 3730 // If we know the result of a setcc has the top bits zero, use this info. 3731 // We know that we have an integer-based boolean since these operations 3732 // are only available for integer. 3733 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3734 TargetLowering::ZeroOrOneBooleanContent && 3735 BitWidth > 1) 3736 Known.Zero.setBitsFrom(1); 3737 break; 3738 } 3739 LLVM_FALLTHROUGH; 3740 case ISD::ATOMIC_CMP_SWAP: 3741 case ISD::ATOMIC_SWAP: 3742 case ISD::ATOMIC_LOAD_ADD: 3743 case ISD::ATOMIC_LOAD_SUB: 3744 case ISD::ATOMIC_LOAD_AND: 3745 case ISD::ATOMIC_LOAD_CLR: 3746 case ISD::ATOMIC_LOAD_OR: 3747 case ISD::ATOMIC_LOAD_XOR: 3748 case ISD::ATOMIC_LOAD_NAND: 3749 case ISD::ATOMIC_LOAD_MIN: 3750 case ISD::ATOMIC_LOAD_MAX: 3751 case ISD::ATOMIC_LOAD_UMIN: 3752 case ISD::ATOMIC_LOAD_UMAX: 3753 case ISD::ATOMIC_LOAD: { 3754 unsigned MemBits = 3755 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3756 // If we are looking at the loaded value. 3757 if (Op.getResNo() == 0) { 3758 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3759 Known.Zero.setBitsFrom(MemBits); 3760 } 3761 break; 3762 } 3763 case ISD::FrameIndex: 3764 case ISD::TargetFrameIndex: 3765 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3766 Known, getMachineFunction()); 3767 break; 3768 3769 default: 3770 if (Opcode < ISD::BUILTIN_OP_END) 3771 break; 3772 LLVM_FALLTHROUGH; 3773 case ISD::INTRINSIC_WO_CHAIN: 3774 case ISD::INTRINSIC_W_CHAIN: 3775 case ISD::INTRINSIC_VOID: 3776 // Allow the target to implement this method for its nodes. 3777 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3778 break; 3779 } 3780 3781 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3782 return Known; 3783 } 3784 3785 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3786 SDValue N1) const { 3787 // X + 0 never overflow 3788 if (isNullConstant(N1)) 3789 return OFK_Never; 3790 3791 KnownBits N1Known = computeKnownBits(N1); 3792 if (N1Known.Zero.getBoolValue()) { 3793 KnownBits N0Known = computeKnownBits(N0); 3794 3795 bool overflow; 3796 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3797 if (!overflow) 3798 return OFK_Never; 3799 } 3800 3801 // mulhi + 1 never overflow 3802 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3803 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3804 return OFK_Never; 3805 3806 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3807 KnownBits N0Known = computeKnownBits(N0); 3808 3809 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3810 return OFK_Never; 3811 } 3812 3813 return OFK_Sometime; 3814 } 3815 3816 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3817 EVT OpVT = Val.getValueType(); 3818 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3819 3820 // Is the constant a known power of 2? 3821 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3822 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3823 3824 // A left-shift of a constant one will have exactly one bit set because 3825 // shifting the bit off the end is undefined. 3826 if (Val.getOpcode() == ISD::SHL) { 3827 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3828 if (C && C->getAPIntValue() == 1) 3829 return true; 3830 } 3831 3832 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3833 // one bit set. 3834 if (Val.getOpcode() == ISD::SRL) { 3835 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3836 if (C && C->getAPIntValue().isSignMask()) 3837 return true; 3838 } 3839 3840 // Are all operands of a build vector constant powers of two? 3841 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3842 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3843 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3844 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3845 return false; 3846 })) 3847 return true; 3848 3849 // Is the operand of a splat vector a constant power of two? 3850 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3851 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3852 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3853 return true; 3854 3855 // More could be done here, though the above checks are enough 3856 // to handle some common cases. 3857 3858 // Fall back to computeKnownBits to catch other known cases. 3859 KnownBits Known = computeKnownBits(Val); 3860 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3861 } 3862 3863 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3864 EVT VT = Op.getValueType(); 3865 3866 // TODO: Assume we don't know anything for now. 3867 if (VT.isScalableVector()) 3868 return 1; 3869 3870 APInt DemandedElts = VT.isVector() 3871 ? APInt::getAllOnes(VT.getVectorNumElements()) 3872 : APInt(1, 1); 3873 return ComputeNumSignBits(Op, DemandedElts, Depth); 3874 } 3875 3876 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3877 unsigned Depth) const { 3878 EVT VT = Op.getValueType(); 3879 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3880 unsigned VTBits = VT.getScalarSizeInBits(); 3881 unsigned NumElts = DemandedElts.getBitWidth(); 3882 unsigned Tmp, Tmp2; 3883 unsigned FirstAnswer = 1; 3884 3885 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3886 const APInt &Val = C->getAPIntValue(); 3887 return Val.getNumSignBits(); 3888 } 3889 3890 if (Depth >= MaxRecursionDepth) 3891 return 1; // Limit search depth. 3892 3893 if (!DemandedElts || VT.isScalableVector()) 3894 return 1; // No demanded elts, better to assume we don't know anything. 3895 3896 unsigned Opcode = Op.getOpcode(); 3897 switch (Opcode) { 3898 default: break; 3899 case ISD::AssertSext: 3900 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3901 return VTBits-Tmp+1; 3902 case ISD::AssertZext: 3903 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3904 return VTBits-Tmp; 3905 3906 case ISD::BUILD_VECTOR: 3907 Tmp = VTBits; 3908 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3909 if (!DemandedElts[i]) 3910 continue; 3911 3912 SDValue SrcOp = Op.getOperand(i); 3913 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3914 3915 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3916 if (SrcOp.getValueSizeInBits() != VTBits) { 3917 assert(SrcOp.getValueSizeInBits() > VTBits && 3918 "Expected BUILD_VECTOR implicit truncation"); 3919 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3920 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3921 } 3922 Tmp = std::min(Tmp, Tmp2); 3923 } 3924 return Tmp; 3925 3926 case ISD::VECTOR_SHUFFLE: { 3927 // Collect the minimum number of sign bits that are shared by every vector 3928 // element referenced by the shuffle. 3929 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3930 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3931 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3932 for (unsigned i = 0; i != NumElts; ++i) { 3933 int M = SVN->getMaskElt(i); 3934 if (!DemandedElts[i]) 3935 continue; 3936 // For UNDEF elements, we don't know anything about the common state of 3937 // the shuffle result. 3938 if (M < 0) 3939 return 1; 3940 if ((unsigned)M < NumElts) 3941 DemandedLHS.setBit((unsigned)M % NumElts); 3942 else 3943 DemandedRHS.setBit((unsigned)M % NumElts); 3944 } 3945 Tmp = std::numeric_limits<unsigned>::max(); 3946 if (!!DemandedLHS) 3947 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3948 if (!!DemandedRHS) { 3949 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3950 Tmp = std::min(Tmp, Tmp2); 3951 } 3952 // If we don't know anything, early out and try computeKnownBits fall-back. 3953 if (Tmp == 1) 3954 break; 3955 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3956 return Tmp; 3957 } 3958 3959 case ISD::BITCAST: { 3960 SDValue N0 = Op.getOperand(0); 3961 EVT SrcVT = N0.getValueType(); 3962 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3963 3964 // Ignore bitcasts from unsupported types.. 3965 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3966 break; 3967 3968 // Fast handling of 'identity' bitcasts. 3969 if (VTBits == SrcBits) 3970 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3971 3972 bool IsLE = getDataLayout().isLittleEndian(); 3973 3974 // Bitcast 'large element' scalar/vector to 'small element' vector. 3975 if ((SrcBits % VTBits) == 0) { 3976 assert(VT.isVector() && "Expected bitcast to vector"); 3977 3978 unsigned Scale = SrcBits / VTBits; 3979 APInt SrcDemandedElts = 3980 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3981 3982 // Fast case - sign splat can be simply split across the small elements. 3983 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3984 if (Tmp == SrcBits) 3985 return VTBits; 3986 3987 // Slow case - determine how far the sign extends into each sub-element. 3988 Tmp2 = VTBits; 3989 for (unsigned i = 0; i != NumElts; ++i) 3990 if (DemandedElts[i]) { 3991 unsigned SubOffset = i % Scale; 3992 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3993 SubOffset = SubOffset * VTBits; 3994 if (Tmp <= SubOffset) 3995 return 1; 3996 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3997 } 3998 return Tmp2; 3999 } 4000 break; 4001 } 4002 4003 case ISD::FP_TO_SINT_SAT: 4004 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4005 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4006 return VTBits - Tmp + 1; 4007 case ISD::SIGN_EXTEND: 4008 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4009 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4010 case ISD::SIGN_EXTEND_INREG: 4011 // Max of the input and what this extends. 4012 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4013 Tmp = VTBits-Tmp+1; 4014 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4015 return std::max(Tmp, Tmp2); 4016 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4017 SDValue Src = Op.getOperand(0); 4018 EVT SrcVT = Src.getValueType(); 4019 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4020 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4021 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4022 } 4023 case ISD::SRA: 4024 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4025 // SRA X, C -> adds C sign bits. 4026 if (const APInt *ShAmt = 4027 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4028 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4029 return Tmp; 4030 case ISD::SHL: 4031 if (const APInt *ShAmt = 4032 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4033 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4034 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4035 if (ShAmt->ult(Tmp)) 4036 return Tmp - ShAmt->getZExtValue(); 4037 } 4038 break; 4039 case ISD::AND: 4040 case ISD::OR: 4041 case ISD::XOR: // NOT is handled here. 4042 // Logical binary ops preserve the number of sign bits at the worst. 4043 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4044 if (Tmp != 1) { 4045 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4046 FirstAnswer = std::min(Tmp, Tmp2); 4047 // We computed what we know about the sign bits as our first 4048 // answer. Now proceed to the generic code that uses 4049 // computeKnownBits, and pick whichever answer is better. 4050 } 4051 break; 4052 4053 case ISD::SELECT: 4054 case ISD::VSELECT: 4055 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4056 if (Tmp == 1) return 1; // Early out. 4057 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4058 return std::min(Tmp, Tmp2); 4059 case ISD::SELECT_CC: 4060 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4061 if (Tmp == 1) return 1; // Early out. 4062 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4063 return std::min(Tmp, Tmp2); 4064 4065 case ISD::SMIN: 4066 case ISD::SMAX: { 4067 // If we have a clamp pattern, we know that the number of sign bits will be 4068 // the minimum of the clamp min/max range. 4069 bool IsMax = (Opcode == ISD::SMAX); 4070 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4071 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4072 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4073 CstHigh = 4074 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4075 if (CstLow && CstHigh) { 4076 if (!IsMax) 4077 std::swap(CstLow, CstHigh); 4078 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4079 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4080 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4081 return std::min(Tmp, Tmp2); 4082 } 4083 } 4084 4085 // Fallback - just get the minimum number of sign bits of the operands. 4086 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4087 if (Tmp == 1) 4088 return 1; // Early out. 4089 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4090 return std::min(Tmp, Tmp2); 4091 } 4092 case ISD::UMIN: 4093 case ISD::UMAX: 4094 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4095 if (Tmp == 1) 4096 return 1; // Early out. 4097 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4098 return std::min(Tmp, Tmp2); 4099 case ISD::SADDO: 4100 case ISD::UADDO: 4101 case ISD::SSUBO: 4102 case ISD::USUBO: 4103 case ISD::SMULO: 4104 case ISD::UMULO: 4105 if (Op.getResNo() != 1) 4106 break; 4107 // The boolean result conforms to getBooleanContents. Fall through. 4108 // If setcc returns 0/-1, all bits are sign bits. 4109 // We know that we have an integer-based boolean since these operations 4110 // are only available for integer. 4111 if (TLI->getBooleanContents(VT.isVector(), false) == 4112 TargetLowering::ZeroOrNegativeOneBooleanContent) 4113 return VTBits; 4114 break; 4115 case ISD::SETCC: 4116 case ISD::STRICT_FSETCC: 4117 case ISD::STRICT_FSETCCS: { 4118 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4119 // If setcc returns 0/-1, all bits are sign bits. 4120 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4121 TargetLowering::ZeroOrNegativeOneBooleanContent) 4122 return VTBits; 4123 break; 4124 } 4125 case ISD::ROTL: 4126 case ISD::ROTR: 4127 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4128 4129 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4130 if (Tmp == VTBits) 4131 return VTBits; 4132 4133 if (ConstantSDNode *C = 4134 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4135 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4136 4137 // Handle rotate right by N like a rotate left by 32-N. 4138 if (Opcode == ISD::ROTR) 4139 RotAmt = (VTBits - RotAmt) % VTBits; 4140 4141 // If we aren't rotating out all of the known-in sign bits, return the 4142 // number that are left. This handles rotl(sext(x), 1) for example. 4143 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4144 } 4145 break; 4146 case ISD::ADD: 4147 case ISD::ADDC: 4148 // Add can have at most one carry bit. Thus we know that the output 4149 // is, at worst, one more bit than the inputs. 4150 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4151 if (Tmp == 1) return 1; // Early out. 4152 4153 // Special case decrementing a value (ADD X, -1): 4154 if (ConstantSDNode *CRHS = 4155 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4156 if (CRHS->isAllOnes()) { 4157 KnownBits Known = 4158 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4159 4160 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4161 // sign bits set. 4162 if ((Known.Zero | 1).isAllOnes()) 4163 return VTBits; 4164 4165 // If we are subtracting one from a positive number, there is no carry 4166 // out of the result. 4167 if (Known.isNonNegative()) 4168 return Tmp; 4169 } 4170 4171 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4172 if (Tmp2 == 1) return 1; // Early out. 4173 return std::min(Tmp, Tmp2) - 1; 4174 case ISD::SUB: 4175 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4176 if (Tmp2 == 1) return 1; // Early out. 4177 4178 // Handle NEG. 4179 if (ConstantSDNode *CLHS = 4180 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4181 if (CLHS->isZero()) { 4182 KnownBits Known = 4183 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4184 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4185 // sign bits set. 4186 if ((Known.Zero | 1).isAllOnes()) 4187 return VTBits; 4188 4189 // If the input is known to be positive (the sign bit is known clear), 4190 // the output of the NEG has the same number of sign bits as the input. 4191 if (Known.isNonNegative()) 4192 return Tmp2; 4193 4194 // Otherwise, we treat this like a SUB. 4195 } 4196 4197 // Sub can have at most one carry bit. Thus we know that the output 4198 // is, at worst, one more bit than the inputs. 4199 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4200 if (Tmp == 1) return 1; // Early out. 4201 return std::min(Tmp, Tmp2) - 1; 4202 case ISD::MUL: { 4203 // The output of the Mul can be at most twice the valid bits in the inputs. 4204 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4205 if (SignBitsOp0 == 1) 4206 break; 4207 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4208 if (SignBitsOp1 == 1) 4209 break; 4210 unsigned OutValidBits = 4211 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4212 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4213 } 4214 case ISD::SREM: 4215 // The sign bit is the LHS's sign bit, except when the result of the 4216 // remainder is zero. The magnitude of the result should be less than or 4217 // equal to the magnitude of the LHS. Therefore, the result should have 4218 // at least as many sign bits as the left hand side. 4219 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4220 case ISD::TRUNCATE: { 4221 // Check if the sign bits of source go down as far as the truncated value. 4222 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4223 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4224 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4225 return NumSrcSignBits - (NumSrcBits - VTBits); 4226 break; 4227 } 4228 case ISD::EXTRACT_ELEMENT: { 4229 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4230 const int BitWidth = Op.getValueSizeInBits(); 4231 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4232 4233 // Get reverse index (starting from 1), Op1 value indexes elements from 4234 // little end. Sign starts at big end. 4235 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4236 4237 // If the sign portion ends in our element the subtraction gives correct 4238 // result. Otherwise it gives either negative or > bitwidth result 4239 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4240 } 4241 case ISD::INSERT_VECTOR_ELT: { 4242 // If we know the element index, split the demand between the 4243 // source vector and the inserted element, otherwise assume we need 4244 // the original demanded vector elements and the value. 4245 SDValue InVec = Op.getOperand(0); 4246 SDValue InVal = Op.getOperand(1); 4247 SDValue EltNo = Op.getOperand(2); 4248 bool DemandedVal = true; 4249 APInt DemandedVecElts = DemandedElts; 4250 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4251 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4252 unsigned EltIdx = CEltNo->getZExtValue(); 4253 DemandedVal = !!DemandedElts[EltIdx]; 4254 DemandedVecElts.clearBit(EltIdx); 4255 } 4256 Tmp = std::numeric_limits<unsigned>::max(); 4257 if (DemandedVal) { 4258 // TODO - handle implicit truncation of inserted elements. 4259 if (InVal.getScalarValueSizeInBits() != VTBits) 4260 break; 4261 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4262 Tmp = std::min(Tmp, Tmp2); 4263 } 4264 if (!!DemandedVecElts) { 4265 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4266 Tmp = std::min(Tmp, Tmp2); 4267 } 4268 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4269 return Tmp; 4270 } 4271 case ISD::EXTRACT_VECTOR_ELT: { 4272 SDValue InVec = Op.getOperand(0); 4273 SDValue EltNo = Op.getOperand(1); 4274 EVT VecVT = InVec.getValueType(); 4275 // ComputeNumSignBits not yet implemented for scalable vectors. 4276 if (VecVT.isScalableVector()) 4277 break; 4278 const unsigned BitWidth = Op.getValueSizeInBits(); 4279 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4280 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4281 4282 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4283 // anything about sign bits. But if the sizes match we can derive knowledge 4284 // about sign bits from the vector operand. 4285 if (BitWidth != EltBitWidth) 4286 break; 4287 4288 // If we know the element index, just demand that vector element, else for 4289 // an unknown element index, ignore DemandedElts and demand them all. 4290 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4291 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4292 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4293 DemandedSrcElts = 4294 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4295 4296 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4297 } 4298 case ISD::EXTRACT_SUBVECTOR: { 4299 // Offset the demanded elts by the subvector index. 4300 SDValue Src = Op.getOperand(0); 4301 // Bail until we can represent demanded elements for scalable vectors. 4302 if (Src.getValueType().isScalableVector()) 4303 break; 4304 uint64_t Idx = Op.getConstantOperandVal(1); 4305 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4306 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4307 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4308 } 4309 case ISD::CONCAT_VECTORS: { 4310 // Determine the minimum number of sign bits across all demanded 4311 // elts of the input vectors. Early out if the result is already 1. 4312 Tmp = std::numeric_limits<unsigned>::max(); 4313 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4314 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4315 unsigned NumSubVectors = Op.getNumOperands(); 4316 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4317 APInt DemandedSub = 4318 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4319 if (!DemandedSub) 4320 continue; 4321 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4322 Tmp = std::min(Tmp, Tmp2); 4323 } 4324 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4325 return Tmp; 4326 } 4327 case ISD::INSERT_SUBVECTOR: { 4328 // Demand any elements from the subvector and the remainder from the src its 4329 // inserted into. 4330 SDValue Src = Op.getOperand(0); 4331 SDValue Sub = Op.getOperand(1); 4332 uint64_t Idx = Op.getConstantOperandVal(2); 4333 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4334 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4335 APInt DemandedSrcElts = DemandedElts; 4336 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4337 4338 Tmp = std::numeric_limits<unsigned>::max(); 4339 if (!!DemandedSubElts) { 4340 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4341 if (Tmp == 1) 4342 return 1; // early-out 4343 } 4344 if (!!DemandedSrcElts) { 4345 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4346 Tmp = std::min(Tmp, Tmp2); 4347 } 4348 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4349 return Tmp; 4350 } 4351 case ISD::ATOMIC_CMP_SWAP: 4352 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4353 case ISD::ATOMIC_SWAP: 4354 case ISD::ATOMIC_LOAD_ADD: 4355 case ISD::ATOMIC_LOAD_SUB: 4356 case ISD::ATOMIC_LOAD_AND: 4357 case ISD::ATOMIC_LOAD_CLR: 4358 case ISD::ATOMIC_LOAD_OR: 4359 case ISD::ATOMIC_LOAD_XOR: 4360 case ISD::ATOMIC_LOAD_NAND: 4361 case ISD::ATOMIC_LOAD_MIN: 4362 case ISD::ATOMIC_LOAD_MAX: 4363 case ISD::ATOMIC_LOAD_UMIN: 4364 case ISD::ATOMIC_LOAD_UMAX: 4365 case ISD::ATOMIC_LOAD: { 4366 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4367 // If we are looking at the loaded value. 4368 if (Op.getResNo() == 0) { 4369 if (Tmp == VTBits) 4370 return 1; // early-out 4371 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4372 return VTBits - Tmp + 1; 4373 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4374 return VTBits - Tmp; 4375 } 4376 break; 4377 } 4378 } 4379 4380 // If we are looking at the loaded value of the SDNode. 4381 if (Op.getResNo() == 0) { 4382 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4383 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4384 unsigned ExtType = LD->getExtensionType(); 4385 switch (ExtType) { 4386 default: break; 4387 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4388 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4389 return VTBits - Tmp + 1; 4390 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4391 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4392 return VTBits - Tmp; 4393 case ISD::NON_EXTLOAD: 4394 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4395 // We only need to handle vectors - computeKnownBits should handle 4396 // scalar cases. 4397 Type *CstTy = Cst->getType(); 4398 if (CstTy->isVectorTy() && 4399 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4400 VTBits == CstTy->getScalarSizeInBits()) { 4401 Tmp = VTBits; 4402 for (unsigned i = 0; i != NumElts; ++i) { 4403 if (!DemandedElts[i]) 4404 continue; 4405 if (Constant *Elt = Cst->getAggregateElement(i)) { 4406 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4407 const APInt &Value = CInt->getValue(); 4408 Tmp = std::min(Tmp, Value.getNumSignBits()); 4409 continue; 4410 } 4411 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4412 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4413 Tmp = std::min(Tmp, Value.getNumSignBits()); 4414 continue; 4415 } 4416 } 4417 // Unknown type. Conservatively assume no bits match sign bit. 4418 return 1; 4419 } 4420 return Tmp; 4421 } 4422 } 4423 break; 4424 } 4425 } 4426 } 4427 4428 // Allow the target to implement this method for its nodes. 4429 if (Opcode >= ISD::BUILTIN_OP_END || 4430 Opcode == ISD::INTRINSIC_WO_CHAIN || 4431 Opcode == ISD::INTRINSIC_W_CHAIN || 4432 Opcode == ISD::INTRINSIC_VOID) { 4433 unsigned NumBits = 4434 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4435 if (NumBits > 1) 4436 FirstAnswer = std::max(FirstAnswer, NumBits); 4437 } 4438 4439 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4440 // use this information. 4441 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4442 return std::max(FirstAnswer, Known.countMinSignBits()); 4443 } 4444 4445 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4446 unsigned Depth) const { 4447 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4448 return Op.getScalarValueSizeInBits() - SignBits + 1; 4449 } 4450 4451 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4452 const APInt &DemandedElts, 4453 unsigned Depth) const { 4454 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4455 return Op.getScalarValueSizeInBits() - SignBits + 1; 4456 } 4457 4458 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4459 unsigned Depth) const { 4460 // Early out for FREEZE. 4461 if (Op.getOpcode() == ISD::FREEZE) 4462 return true; 4463 4464 // TODO: Assume we don't know anything for now. 4465 EVT VT = Op.getValueType(); 4466 if (VT.isScalableVector()) 4467 return false; 4468 4469 APInt DemandedElts = VT.isVector() 4470 ? APInt::getAllOnes(VT.getVectorNumElements()) 4471 : APInt(1, 1); 4472 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4473 } 4474 4475 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4476 const APInt &DemandedElts, 4477 bool PoisonOnly, 4478 unsigned Depth) const { 4479 unsigned Opcode = Op.getOpcode(); 4480 4481 // Early out for FREEZE. 4482 if (Opcode == ISD::FREEZE) 4483 return true; 4484 4485 if (Depth >= MaxRecursionDepth) 4486 return false; // Limit search depth. 4487 4488 if (isIntOrFPConstant(Op)) 4489 return true; 4490 4491 switch (Opcode) { 4492 case ISD::UNDEF: 4493 return PoisonOnly; 4494 4495 case ISD::BUILD_VECTOR: 4496 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4497 // this shouldn't affect the result. 4498 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4499 if (!DemandedElts[i]) 4500 continue; 4501 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4502 Depth + 1)) 4503 return false; 4504 } 4505 return true; 4506 4507 // TODO: Search for noundef attributes from library functions. 4508 4509 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4510 4511 default: 4512 // Allow the target to implement this method for its nodes. 4513 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4514 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4515 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4516 Op, DemandedElts, *this, PoisonOnly, Depth); 4517 break; 4518 } 4519 4520 return false; 4521 } 4522 4523 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4524 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4525 !isa<ConstantSDNode>(Op.getOperand(1))) 4526 return false; 4527 4528 if (Op.getOpcode() == ISD::OR && 4529 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4530 return false; 4531 4532 return true; 4533 } 4534 4535 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4536 // If we're told that NaNs won't happen, assume they won't. 4537 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4538 return true; 4539 4540 if (Depth >= MaxRecursionDepth) 4541 return false; // Limit search depth. 4542 4543 // TODO: Handle vectors. 4544 // If the value is a constant, we can obviously see if it is a NaN or not. 4545 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4546 return !C->getValueAPF().isNaN() || 4547 (SNaN && !C->getValueAPF().isSignaling()); 4548 } 4549 4550 unsigned Opcode = Op.getOpcode(); 4551 switch (Opcode) { 4552 case ISD::FADD: 4553 case ISD::FSUB: 4554 case ISD::FMUL: 4555 case ISD::FDIV: 4556 case ISD::FREM: 4557 case ISD::FSIN: 4558 case ISD::FCOS: { 4559 if (SNaN) 4560 return true; 4561 // TODO: Need isKnownNeverInfinity 4562 return false; 4563 } 4564 case ISD::FCANONICALIZE: 4565 case ISD::FEXP: 4566 case ISD::FEXP2: 4567 case ISD::FTRUNC: 4568 case ISD::FFLOOR: 4569 case ISD::FCEIL: 4570 case ISD::FROUND: 4571 case ISD::FROUNDEVEN: 4572 case ISD::FRINT: 4573 case ISD::FNEARBYINT: { 4574 if (SNaN) 4575 return true; 4576 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4577 } 4578 case ISD::FABS: 4579 case ISD::FNEG: 4580 case ISD::FCOPYSIGN: { 4581 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4582 } 4583 case ISD::SELECT: 4584 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4585 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4586 case ISD::FP_EXTEND: 4587 case ISD::FP_ROUND: { 4588 if (SNaN) 4589 return true; 4590 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4591 } 4592 case ISD::SINT_TO_FP: 4593 case ISD::UINT_TO_FP: 4594 return true; 4595 case ISD::FMA: 4596 case ISD::FMAD: { 4597 if (SNaN) 4598 return true; 4599 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4600 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4601 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4602 } 4603 case ISD::FSQRT: // Need is known positive 4604 case ISD::FLOG: 4605 case ISD::FLOG2: 4606 case ISD::FLOG10: 4607 case ISD::FPOWI: 4608 case ISD::FPOW: { 4609 if (SNaN) 4610 return true; 4611 // TODO: Refine on operand 4612 return false; 4613 } 4614 case ISD::FMINNUM: 4615 case ISD::FMAXNUM: { 4616 // Only one needs to be known not-nan, since it will be returned if the 4617 // other ends up being one. 4618 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4619 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4620 } 4621 case ISD::FMINNUM_IEEE: 4622 case ISD::FMAXNUM_IEEE: { 4623 if (SNaN) 4624 return true; 4625 // This can return a NaN if either operand is an sNaN, or if both operands 4626 // are NaN. 4627 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4628 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4629 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4630 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4631 } 4632 case ISD::FMINIMUM: 4633 case ISD::FMAXIMUM: { 4634 // TODO: Does this quiet or return the origina NaN as-is? 4635 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4636 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4637 } 4638 case ISD::EXTRACT_VECTOR_ELT: { 4639 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4640 } 4641 default: 4642 if (Opcode >= ISD::BUILTIN_OP_END || 4643 Opcode == ISD::INTRINSIC_WO_CHAIN || 4644 Opcode == ISD::INTRINSIC_W_CHAIN || 4645 Opcode == ISD::INTRINSIC_VOID) { 4646 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4647 } 4648 4649 return false; 4650 } 4651 } 4652 4653 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4654 assert(Op.getValueType().isFloatingPoint() && 4655 "Floating point type expected"); 4656 4657 // If the value is a constant, we can obviously see if it is a zero or not. 4658 // TODO: Add BuildVector support. 4659 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4660 return !C->isZero(); 4661 return false; 4662 } 4663 4664 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4665 assert(!Op.getValueType().isFloatingPoint() && 4666 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4667 4668 // If the value is a constant, we can obviously see if it is a zero or not. 4669 if (ISD::matchUnaryPredicate(Op, 4670 [](ConstantSDNode *C) { return !C->isZero(); })) 4671 return true; 4672 4673 // TODO: Recognize more cases here. 4674 switch (Op.getOpcode()) { 4675 default: break; 4676 case ISD::OR: 4677 if (isKnownNeverZero(Op.getOperand(1)) || 4678 isKnownNeverZero(Op.getOperand(0))) 4679 return true; 4680 break; 4681 } 4682 4683 return false; 4684 } 4685 4686 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4687 // Check the obvious case. 4688 if (A == B) return true; 4689 4690 // For for negative and positive zero. 4691 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4692 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4693 if (CA->isZero() && CB->isZero()) return true; 4694 4695 // Otherwise they may not be equal. 4696 return false; 4697 } 4698 4699 // Only bits set in Mask must be negated, other bits may be arbitrary. 4700 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4701 if (isBitwiseNot(V, AllowUndefs)) 4702 return V.getOperand(0); 4703 4704 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4705 // bits in the non-extended part. 4706 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4707 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4708 return SDValue(); 4709 SDValue ExtArg = V.getOperand(0); 4710 if (ExtArg.getScalarValueSizeInBits() >= 4711 MaskC->getAPIntValue().getActiveBits() && 4712 isBitwiseNot(ExtArg, AllowUndefs) && 4713 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4714 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4715 return ExtArg.getOperand(0).getOperand(0); 4716 return SDValue(); 4717 } 4718 4719 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4720 // Match masked merge pattern (X & ~M) op (Y & M) 4721 // Including degenerate case (X & ~M) op M 4722 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4723 SDValue Other) { 4724 if (SDValue NotOperand = 4725 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4726 if (Other == NotOperand) 4727 return true; 4728 if (Other->getOpcode() == ISD::AND) 4729 return NotOperand == Other->getOperand(0) || 4730 NotOperand == Other->getOperand(1); 4731 } 4732 return false; 4733 }; 4734 if (A->getOpcode() == ISD::AND) 4735 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4736 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4737 return false; 4738 } 4739 4740 // FIXME: unify with llvm::haveNoCommonBitsSet. 4741 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4742 assert(A.getValueType() == B.getValueType() && 4743 "Values must have the same type"); 4744 if (haveNoCommonBitsSetCommutative(A, B) || 4745 haveNoCommonBitsSetCommutative(B, A)) 4746 return true; 4747 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4748 computeKnownBits(B)); 4749 } 4750 4751 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4752 SelectionDAG &DAG) { 4753 if (cast<ConstantSDNode>(Step)->isZero()) 4754 return DAG.getConstant(0, DL, VT); 4755 4756 return SDValue(); 4757 } 4758 4759 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4760 ArrayRef<SDValue> Ops, 4761 SelectionDAG &DAG) { 4762 int NumOps = Ops.size(); 4763 assert(NumOps != 0 && "Can't build an empty vector!"); 4764 assert(!VT.isScalableVector() && 4765 "BUILD_VECTOR cannot be used with scalable types"); 4766 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4767 "Incorrect element count in BUILD_VECTOR!"); 4768 4769 // BUILD_VECTOR of UNDEFs is UNDEF. 4770 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4771 return DAG.getUNDEF(VT); 4772 4773 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4774 SDValue IdentitySrc; 4775 bool IsIdentity = true; 4776 for (int i = 0; i != NumOps; ++i) { 4777 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4778 Ops[i].getOperand(0).getValueType() != VT || 4779 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4780 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4781 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4782 IsIdentity = false; 4783 break; 4784 } 4785 IdentitySrc = Ops[i].getOperand(0); 4786 } 4787 if (IsIdentity) 4788 return IdentitySrc; 4789 4790 return SDValue(); 4791 } 4792 4793 /// Try to simplify vector concatenation to an input value, undef, or build 4794 /// vector. 4795 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4796 ArrayRef<SDValue> Ops, 4797 SelectionDAG &DAG) { 4798 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4799 assert(llvm::all_of(Ops, 4800 [Ops](SDValue Op) { 4801 return Ops[0].getValueType() == Op.getValueType(); 4802 }) && 4803 "Concatenation of vectors with inconsistent value types!"); 4804 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4805 VT.getVectorElementCount() && 4806 "Incorrect element count in vector concatenation!"); 4807 4808 if (Ops.size() == 1) 4809 return Ops[0]; 4810 4811 // Concat of UNDEFs is UNDEF. 4812 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4813 return DAG.getUNDEF(VT); 4814 4815 // Scan the operands and look for extract operations from a single source 4816 // that correspond to insertion at the same location via this concatenation: 4817 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4818 SDValue IdentitySrc; 4819 bool IsIdentity = true; 4820 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4821 SDValue Op = Ops[i]; 4822 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4823 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4824 Op.getOperand(0).getValueType() != VT || 4825 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4826 Op.getConstantOperandVal(1) != IdentityIndex) { 4827 IsIdentity = false; 4828 break; 4829 } 4830 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4831 "Unexpected identity source vector for concat of extracts"); 4832 IdentitySrc = Op.getOperand(0); 4833 } 4834 if (IsIdentity) { 4835 assert(IdentitySrc && "Failed to set source vector of extracts"); 4836 return IdentitySrc; 4837 } 4838 4839 // The code below this point is only designed to work for fixed width 4840 // vectors, so we bail out for now. 4841 if (VT.isScalableVector()) 4842 return SDValue(); 4843 4844 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4845 // simplified to one big BUILD_VECTOR. 4846 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4847 EVT SVT = VT.getScalarType(); 4848 SmallVector<SDValue, 16> Elts; 4849 for (SDValue Op : Ops) { 4850 EVT OpVT = Op.getValueType(); 4851 if (Op.isUndef()) 4852 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4853 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4854 Elts.append(Op->op_begin(), Op->op_end()); 4855 else 4856 return SDValue(); 4857 } 4858 4859 // BUILD_VECTOR requires all inputs to be of the same type, find the 4860 // maximum type and extend them all. 4861 for (SDValue Op : Elts) 4862 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4863 4864 if (SVT.bitsGT(VT.getScalarType())) { 4865 for (SDValue &Op : Elts) { 4866 if (Op.isUndef()) 4867 Op = DAG.getUNDEF(SVT); 4868 else 4869 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4870 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4871 : DAG.getSExtOrTrunc(Op, DL, SVT); 4872 } 4873 } 4874 4875 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4876 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4877 return V; 4878 } 4879 4880 /// Gets or creates the specified node. 4881 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4882 FoldingSetNodeID ID; 4883 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4884 void *IP = nullptr; 4885 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4886 return SDValue(E, 0); 4887 4888 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4889 getVTList(VT)); 4890 CSEMap.InsertNode(N, IP); 4891 4892 InsertNode(N); 4893 SDValue V = SDValue(N, 0); 4894 NewSDValueDbgMsg(V, "Creating new node: ", this); 4895 return V; 4896 } 4897 4898 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4899 SDValue Operand) { 4900 SDNodeFlags Flags; 4901 if (Inserter) 4902 Flags = Inserter->getFlags(); 4903 return getNode(Opcode, DL, VT, Operand, Flags); 4904 } 4905 4906 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4907 SDValue Operand, const SDNodeFlags Flags) { 4908 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4909 "Operand is DELETED_NODE!"); 4910 // Constant fold unary operations with an integer constant operand. Even 4911 // opaque constant will be folded, because the folding of unary operations 4912 // doesn't create new constants with different values. Nevertheless, the 4913 // opaque flag is preserved during folding to prevent future folding with 4914 // other constants. 4915 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4916 const APInt &Val = C->getAPIntValue(); 4917 switch (Opcode) { 4918 default: break; 4919 case ISD::SIGN_EXTEND: 4920 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4921 C->isTargetOpcode(), C->isOpaque()); 4922 case ISD::TRUNCATE: 4923 if (C->isOpaque()) 4924 break; 4925 LLVM_FALLTHROUGH; 4926 case ISD::ZERO_EXTEND: 4927 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4928 C->isTargetOpcode(), C->isOpaque()); 4929 case ISD::ANY_EXTEND: 4930 // Some targets like RISCV prefer to sign extend some types. 4931 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4932 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4933 C->isTargetOpcode(), C->isOpaque()); 4934 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4935 C->isTargetOpcode(), C->isOpaque()); 4936 case ISD::UINT_TO_FP: 4937 case ISD::SINT_TO_FP: { 4938 APFloat apf(EVTToAPFloatSemantics(VT), 4939 APInt::getZero(VT.getSizeInBits())); 4940 (void)apf.convertFromAPInt(Val, 4941 Opcode==ISD::SINT_TO_FP, 4942 APFloat::rmNearestTiesToEven); 4943 return getConstantFP(apf, DL, VT); 4944 } 4945 case ISD::BITCAST: 4946 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4947 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4948 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4949 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4950 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4951 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4952 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4953 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4954 break; 4955 case ISD::ABS: 4956 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4957 C->isOpaque()); 4958 case ISD::BITREVERSE: 4959 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4960 C->isOpaque()); 4961 case ISD::BSWAP: 4962 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4963 C->isOpaque()); 4964 case ISD::CTPOP: 4965 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4966 C->isOpaque()); 4967 case ISD::CTLZ: 4968 case ISD::CTLZ_ZERO_UNDEF: 4969 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4970 C->isOpaque()); 4971 case ISD::CTTZ: 4972 case ISD::CTTZ_ZERO_UNDEF: 4973 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4974 C->isOpaque()); 4975 case ISD::FP16_TO_FP: { 4976 bool Ignored; 4977 APFloat FPV(APFloat::IEEEhalf(), 4978 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4979 4980 // This can return overflow, underflow, or inexact; we don't care. 4981 // FIXME need to be more flexible about rounding mode. 4982 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4983 APFloat::rmNearestTiesToEven, &Ignored); 4984 return getConstantFP(FPV, DL, VT); 4985 } 4986 case ISD::STEP_VECTOR: { 4987 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4988 return V; 4989 break; 4990 } 4991 } 4992 } 4993 4994 // Constant fold unary operations with a floating point constant operand. 4995 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4996 APFloat V = C->getValueAPF(); // make copy 4997 switch (Opcode) { 4998 case ISD::FNEG: 4999 V.changeSign(); 5000 return getConstantFP(V, DL, VT); 5001 case ISD::FABS: 5002 V.clearSign(); 5003 return getConstantFP(V, DL, VT); 5004 case ISD::FCEIL: { 5005 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5006 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5007 return getConstantFP(V, DL, VT); 5008 break; 5009 } 5010 case ISD::FTRUNC: { 5011 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5012 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5013 return getConstantFP(V, DL, VT); 5014 break; 5015 } 5016 case ISD::FFLOOR: { 5017 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5018 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5019 return getConstantFP(V, DL, VT); 5020 break; 5021 } 5022 case ISD::FP_EXTEND: { 5023 bool ignored; 5024 // This can return overflow, underflow, or inexact; we don't care. 5025 // FIXME need to be more flexible about rounding mode. 5026 (void)V.convert(EVTToAPFloatSemantics(VT), 5027 APFloat::rmNearestTiesToEven, &ignored); 5028 return getConstantFP(V, DL, VT); 5029 } 5030 case ISD::FP_TO_SINT: 5031 case ISD::FP_TO_UINT: { 5032 bool ignored; 5033 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5034 // FIXME need to be more flexible about rounding mode. 5035 APFloat::opStatus s = 5036 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5037 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5038 break; 5039 return getConstant(IntVal, DL, VT); 5040 } 5041 case ISD::BITCAST: 5042 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5043 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5044 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5045 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5046 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5047 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5048 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5049 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5050 break; 5051 case ISD::FP_TO_FP16: { 5052 bool Ignored; 5053 // This can return overflow, underflow, or inexact; we don't care. 5054 // FIXME need to be more flexible about rounding mode. 5055 (void)V.convert(APFloat::IEEEhalf(), 5056 APFloat::rmNearestTiesToEven, &Ignored); 5057 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5058 } 5059 } 5060 } 5061 5062 // Constant fold unary operations with a vector integer or float operand. 5063 switch (Opcode) { 5064 default: 5065 // FIXME: Entirely reasonable to perform folding of other unary 5066 // operations here as the need arises. 5067 break; 5068 case ISD::FNEG: 5069 case ISD::FABS: 5070 case ISD::FCEIL: 5071 case ISD::FTRUNC: 5072 case ISD::FFLOOR: 5073 case ISD::FP_EXTEND: 5074 case ISD::FP_TO_SINT: 5075 case ISD::FP_TO_UINT: 5076 case ISD::TRUNCATE: 5077 case ISD::ANY_EXTEND: 5078 case ISD::ZERO_EXTEND: 5079 case ISD::SIGN_EXTEND: 5080 case ISD::UINT_TO_FP: 5081 case ISD::SINT_TO_FP: 5082 case ISD::ABS: 5083 case ISD::BITREVERSE: 5084 case ISD::BSWAP: 5085 case ISD::CTLZ: 5086 case ISD::CTLZ_ZERO_UNDEF: 5087 case ISD::CTTZ: 5088 case ISD::CTTZ_ZERO_UNDEF: 5089 case ISD::CTPOP: { 5090 SDValue Ops = {Operand}; 5091 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5092 return Fold; 5093 } 5094 } 5095 5096 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5097 switch (Opcode) { 5098 case ISD::STEP_VECTOR: 5099 assert(VT.isScalableVector() && 5100 "STEP_VECTOR can only be used with scalable types"); 5101 assert(OpOpcode == ISD::TargetConstant && 5102 VT.getVectorElementType() == Operand.getValueType() && 5103 "Unexpected step operand"); 5104 break; 5105 case ISD::FREEZE: 5106 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5107 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5108 return Operand; 5109 break; 5110 case ISD::TokenFactor: 5111 case ISD::MERGE_VALUES: 5112 case ISD::CONCAT_VECTORS: 5113 return Operand; // Factor, merge or concat of one node? No need. 5114 case ISD::BUILD_VECTOR: { 5115 // Attempt to simplify BUILD_VECTOR. 5116 SDValue Ops[] = {Operand}; 5117 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5118 return V; 5119 break; 5120 } 5121 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5122 case ISD::FP_EXTEND: 5123 assert(VT.isFloatingPoint() && 5124 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5125 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5126 assert((!VT.isVector() || 5127 VT.getVectorElementCount() == 5128 Operand.getValueType().getVectorElementCount()) && 5129 "Vector element count mismatch!"); 5130 assert(Operand.getValueType().bitsLT(VT) && 5131 "Invalid fpext node, dst < src!"); 5132 if (Operand.isUndef()) 5133 return getUNDEF(VT); 5134 break; 5135 case ISD::FP_TO_SINT: 5136 case ISD::FP_TO_UINT: 5137 if (Operand.isUndef()) 5138 return getUNDEF(VT); 5139 break; 5140 case ISD::SINT_TO_FP: 5141 case ISD::UINT_TO_FP: 5142 // [us]itofp(undef) = 0, because the result value is bounded. 5143 if (Operand.isUndef()) 5144 return getConstantFP(0.0, DL, VT); 5145 break; 5146 case ISD::SIGN_EXTEND: 5147 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5148 "Invalid SIGN_EXTEND!"); 5149 assert(VT.isVector() == Operand.getValueType().isVector() && 5150 "SIGN_EXTEND result type type should be vector iff the operand " 5151 "type is vector!"); 5152 if (Operand.getValueType() == VT) return Operand; // noop extension 5153 assert((!VT.isVector() || 5154 VT.getVectorElementCount() == 5155 Operand.getValueType().getVectorElementCount()) && 5156 "Vector element count mismatch!"); 5157 assert(Operand.getValueType().bitsLT(VT) && 5158 "Invalid sext node, dst < src!"); 5159 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5160 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5161 if (OpOpcode == ISD::UNDEF) 5162 // sext(undef) = 0, because the top bits will all be the same. 5163 return getConstant(0, DL, VT); 5164 break; 5165 case ISD::ZERO_EXTEND: 5166 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5167 "Invalid ZERO_EXTEND!"); 5168 assert(VT.isVector() == Operand.getValueType().isVector() && 5169 "ZERO_EXTEND result type type should be vector iff the operand " 5170 "type is vector!"); 5171 if (Operand.getValueType() == VT) return Operand; // noop extension 5172 assert((!VT.isVector() || 5173 VT.getVectorElementCount() == 5174 Operand.getValueType().getVectorElementCount()) && 5175 "Vector element count mismatch!"); 5176 assert(Operand.getValueType().bitsLT(VT) && 5177 "Invalid zext node, dst < src!"); 5178 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5179 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5180 if (OpOpcode == ISD::UNDEF) 5181 // zext(undef) = 0, because the top bits will be zero. 5182 return getConstant(0, DL, VT); 5183 break; 5184 case ISD::ANY_EXTEND: 5185 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5186 "Invalid ANY_EXTEND!"); 5187 assert(VT.isVector() == Operand.getValueType().isVector() && 5188 "ANY_EXTEND result type type should be vector iff the operand " 5189 "type is vector!"); 5190 if (Operand.getValueType() == VT) return Operand; // noop extension 5191 assert((!VT.isVector() || 5192 VT.getVectorElementCount() == 5193 Operand.getValueType().getVectorElementCount()) && 5194 "Vector element count mismatch!"); 5195 assert(Operand.getValueType().bitsLT(VT) && 5196 "Invalid anyext node, dst < src!"); 5197 5198 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5199 OpOpcode == ISD::ANY_EXTEND) 5200 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5201 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5202 if (OpOpcode == ISD::UNDEF) 5203 return getUNDEF(VT); 5204 5205 // (ext (trunc x)) -> x 5206 if (OpOpcode == ISD::TRUNCATE) { 5207 SDValue OpOp = Operand.getOperand(0); 5208 if (OpOp.getValueType() == VT) { 5209 transferDbgValues(Operand, OpOp); 5210 return OpOp; 5211 } 5212 } 5213 break; 5214 case ISD::TRUNCATE: 5215 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5216 "Invalid TRUNCATE!"); 5217 assert(VT.isVector() == Operand.getValueType().isVector() && 5218 "TRUNCATE result type type should be vector iff the operand " 5219 "type is vector!"); 5220 if (Operand.getValueType() == VT) return Operand; // noop truncate 5221 assert((!VT.isVector() || 5222 VT.getVectorElementCount() == 5223 Operand.getValueType().getVectorElementCount()) && 5224 "Vector element count mismatch!"); 5225 assert(Operand.getValueType().bitsGT(VT) && 5226 "Invalid truncate node, src < dst!"); 5227 if (OpOpcode == ISD::TRUNCATE) 5228 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5229 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5230 OpOpcode == ISD::ANY_EXTEND) { 5231 // If the source is smaller than the dest, we still need an extend. 5232 if (Operand.getOperand(0).getValueType().getScalarType() 5233 .bitsLT(VT.getScalarType())) 5234 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5235 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5236 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5237 return Operand.getOperand(0); 5238 } 5239 if (OpOpcode == ISD::UNDEF) 5240 return getUNDEF(VT); 5241 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5242 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5243 break; 5244 case ISD::ANY_EXTEND_VECTOR_INREG: 5245 case ISD::ZERO_EXTEND_VECTOR_INREG: 5246 case ISD::SIGN_EXTEND_VECTOR_INREG: 5247 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5248 assert(Operand.getValueType().bitsLE(VT) && 5249 "The input must be the same size or smaller than the result."); 5250 assert(VT.getVectorMinNumElements() < 5251 Operand.getValueType().getVectorMinNumElements() && 5252 "The destination vector type must have fewer lanes than the input."); 5253 break; 5254 case ISD::ABS: 5255 assert(VT.isInteger() && VT == Operand.getValueType() && 5256 "Invalid ABS!"); 5257 if (OpOpcode == ISD::UNDEF) 5258 return getConstant(0, DL, VT); 5259 break; 5260 case ISD::BSWAP: 5261 assert(VT.isInteger() && VT == Operand.getValueType() && 5262 "Invalid BSWAP!"); 5263 assert((VT.getScalarSizeInBits() % 16 == 0) && 5264 "BSWAP types must be a multiple of 16 bits!"); 5265 if (OpOpcode == ISD::UNDEF) 5266 return getUNDEF(VT); 5267 // bswap(bswap(X)) -> X. 5268 if (OpOpcode == ISD::BSWAP) 5269 return Operand.getOperand(0); 5270 break; 5271 case ISD::BITREVERSE: 5272 assert(VT.isInteger() && VT == Operand.getValueType() && 5273 "Invalid BITREVERSE!"); 5274 if (OpOpcode == ISD::UNDEF) 5275 return getUNDEF(VT); 5276 break; 5277 case ISD::BITCAST: 5278 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5279 "Cannot BITCAST between types of different sizes!"); 5280 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5281 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5282 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5283 if (OpOpcode == ISD::UNDEF) 5284 return getUNDEF(VT); 5285 break; 5286 case ISD::SCALAR_TO_VECTOR: 5287 assert(VT.isVector() && !Operand.getValueType().isVector() && 5288 (VT.getVectorElementType() == Operand.getValueType() || 5289 (VT.getVectorElementType().isInteger() && 5290 Operand.getValueType().isInteger() && 5291 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5292 "Illegal SCALAR_TO_VECTOR node!"); 5293 if (OpOpcode == ISD::UNDEF) 5294 return getUNDEF(VT); 5295 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5296 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5297 isa<ConstantSDNode>(Operand.getOperand(1)) && 5298 Operand.getConstantOperandVal(1) == 0 && 5299 Operand.getOperand(0).getValueType() == VT) 5300 return Operand.getOperand(0); 5301 break; 5302 case ISD::FNEG: 5303 // Negation of an unknown bag of bits is still completely undefined. 5304 if (OpOpcode == ISD::UNDEF) 5305 return getUNDEF(VT); 5306 5307 if (OpOpcode == ISD::FNEG) // --X -> X 5308 return Operand.getOperand(0); 5309 break; 5310 case ISD::FABS: 5311 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5312 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5313 break; 5314 case ISD::VSCALE: 5315 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5316 break; 5317 case ISD::CTPOP: 5318 if (Operand.getValueType().getScalarType() == MVT::i1) 5319 return Operand; 5320 break; 5321 case ISD::CTLZ: 5322 case ISD::CTTZ: 5323 if (Operand.getValueType().getScalarType() == MVT::i1) 5324 return getNOT(DL, Operand, Operand.getValueType()); 5325 break; 5326 case ISD::VECREDUCE_ADD: 5327 if (Operand.getValueType().getScalarType() == MVT::i1) 5328 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5329 break; 5330 case ISD::VECREDUCE_SMIN: 5331 case ISD::VECREDUCE_UMAX: 5332 if (Operand.getValueType().getScalarType() == MVT::i1) 5333 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5334 break; 5335 case ISD::VECREDUCE_SMAX: 5336 case ISD::VECREDUCE_UMIN: 5337 if (Operand.getValueType().getScalarType() == MVT::i1) 5338 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5339 break; 5340 } 5341 5342 SDNode *N; 5343 SDVTList VTs = getVTList(VT); 5344 SDValue Ops[] = {Operand}; 5345 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5346 FoldingSetNodeID ID; 5347 AddNodeIDNode(ID, Opcode, VTs, Ops); 5348 void *IP = nullptr; 5349 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5350 E->intersectFlagsWith(Flags); 5351 return SDValue(E, 0); 5352 } 5353 5354 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5355 N->setFlags(Flags); 5356 createOperands(N, Ops); 5357 CSEMap.InsertNode(N, IP); 5358 } else { 5359 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5360 createOperands(N, Ops); 5361 } 5362 5363 InsertNode(N); 5364 SDValue V = SDValue(N, 0); 5365 NewSDValueDbgMsg(V, "Creating new node: ", this); 5366 return V; 5367 } 5368 5369 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5370 const APInt &C2) { 5371 switch (Opcode) { 5372 case ISD::ADD: return C1 + C2; 5373 case ISD::SUB: return C1 - C2; 5374 case ISD::MUL: return C1 * C2; 5375 case ISD::AND: return C1 & C2; 5376 case ISD::OR: return C1 | C2; 5377 case ISD::XOR: return C1 ^ C2; 5378 case ISD::SHL: return C1 << C2; 5379 case ISD::SRL: return C1.lshr(C2); 5380 case ISD::SRA: return C1.ashr(C2); 5381 case ISD::ROTL: return C1.rotl(C2); 5382 case ISD::ROTR: return C1.rotr(C2); 5383 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5384 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5385 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5386 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5387 case ISD::SADDSAT: return C1.sadd_sat(C2); 5388 case ISD::UADDSAT: return C1.uadd_sat(C2); 5389 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5390 case ISD::USUBSAT: return C1.usub_sat(C2); 5391 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5392 case ISD::USHLSAT: return C1.ushl_sat(C2); 5393 case ISD::UDIV: 5394 if (!C2.getBoolValue()) 5395 break; 5396 return C1.udiv(C2); 5397 case ISD::UREM: 5398 if (!C2.getBoolValue()) 5399 break; 5400 return C1.urem(C2); 5401 case ISD::SDIV: 5402 if (!C2.getBoolValue()) 5403 break; 5404 return C1.sdiv(C2); 5405 case ISD::SREM: 5406 if (!C2.getBoolValue()) 5407 break; 5408 return C1.srem(C2); 5409 case ISD::MULHS: { 5410 unsigned FullWidth = C1.getBitWidth() * 2; 5411 APInt C1Ext = C1.sext(FullWidth); 5412 APInt C2Ext = C2.sext(FullWidth); 5413 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5414 } 5415 case ISD::MULHU: { 5416 unsigned FullWidth = C1.getBitWidth() * 2; 5417 APInt C1Ext = C1.zext(FullWidth); 5418 APInt C2Ext = C2.zext(FullWidth); 5419 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5420 } 5421 case ISD::AVGFLOORS: { 5422 unsigned FullWidth = C1.getBitWidth() + 1; 5423 APInt C1Ext = C1.sext(FullWidth); 5424 APInt C2Ext = C2.sext(FullWidth); 5425 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5426 } 5427 case ISD::AVGFLOORU: { 5428 unsigned FullWidth = C1.getBitWidth() + 1; 5429 APInt C1Ext = C1.zext(FullWidth); 5430 APInt C2Ext = C2.zext(FullWidth); 5431 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5432 } 5433 case ISD::AVGCEILS: { 5434 unsigned FullWidth = C1.getBitWidth() + 1; 5435 APInt C1Ext = C1.sext(FullWidth); 5436 APInt C2Ext = C2.sext(FullWidth); 5437 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5438 } 5439 case ISD::AVGCEILU: { 5440 unsigned FullWidth = C1.getBitWidth() + 1; 5441 APInt C1Ext = C1.zext(FullWidth); 5442 APInt C2Ext = C2.zext(FullWidth); 5443 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5444 } 5445 } 5446 return llvm::None; 5447 } 5448 5449 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5450 const GlobalAddressSDNode *GA, 5451 const SDNode *N2) { 5452 if (GA->getOpcode() != ISD::GlobalAddress) 5453 return SDValue(); 5454 if (!TLI->isOffsetFoldingLegal(GA)) 5455 return SDValue(); 5456 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5457 if (!C2) 5458 return SDValue(); 5459 int64_t Offset = C2->getSExtValue(); 5460 switch (Opcode) { 5461 case ISD::ADD: break; 5462 case ISD::SUB: Offset = -uint64_t(Offset); break; 5463 default: return SDValue(); 5464 } 5465 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5466 GA->getOffset() + uint64_t(Offset)); 5467 } 5468 5469 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5470 switch (Opcode) { 5471 case ISD::SDIV: 5472 case ISD::UDIV: 5473 case ISD::SREM: 5474 case ISD::UREM: { 5475 // If a divisor is zero/undef or any element of a divisor vector is 5476 // zero/undef, the whole op is undef. 5477 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5478 SDValue Divisor = Ops[1]; 5479 if (Divisor.isUndef() || isNullConstant(Divisor)) 5480 return true; 5481 5482 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5483 llvm::any_of(Divisor->op_values(), 5484 [](SDValue V) { return V.isUndef() || 5485 isNullConstant(V); }); 5486 // TODO: Handle signed overflow. 5487 } 5488 // TODO: Handle oversized shifts. 5489 default: 5490 return false; 5491 } 5492 } 5493 5494 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5495 EVT VT, ArrayRef<SDValue> Ops) { 5496 // If the opcode is a target-specific ISD node, there's nothing we can 5497 // do here and the operand rules may not line up with the below, so 5498 // bail early. 5499 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5500 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5501 // foldCONCAT_VECTORS in getNode before this is called. 5502 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5503 return SDValue(); 5504 5505 unsigned NumOps = Ops.size(); 5506 if (NumOps == 0) 5507 return SDValue(); 5508 5509 if (isUndef(Opcode, Ops)) 5510 return getUNDEF(VT); 5511 5512 // Handle binops special cases. 5513 if (NumOps == 2) { 5514 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5515 return CFP; 5516 5517 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5518 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5519 if (C1->isOpaque() || C2->isOpaque()) 5520 return SDValue(); 5521 5522 Optional<APInt> FoldAttempt = 5523 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5524 if (!FoldAttempt) 5525 return SDValue(); 5526 5527 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5528 assert((!Folded || !VT.isVector()) && 5529 "Can't fold vectors ops with scalar operands"); 5530 return Folded; 5531 } 5532 } 5533 5534 // fold (add Sym, c) -> Sym+c 5535 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5536 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5537 if (TLI->isCommutativeBinOp(Opcode)) 5538 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5539 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5540 } 5541 5542 // This is for vector folding only from here on. 5543 if (!VT.isVector()) 5544 return SDValue(); 5545 5546 ElementCount NumElts = VT.getVectorElementCount(); 5547 5548 // See if we can fold through bitcasted integer ops. 5549 // TODO: Can we handle undef elements? 5550 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5551 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5552 Ops[0].getOpcode() == ISD::BITCAST && 5553 Ops[1].getOpcode() == ISD::BITCAST) { 5554 SDValue N1 = peekThroughBitcasts(Ops[0]); 5555 SDValue N2 = peekThroughBitcasts(Ops[1]); 5556 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5557 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5558 EVT BVVT = N1.getValueType(); 5559 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5560 bool IsLE = getDataLayout().isLittleEndian(); 5561 unsigned EltBits = VT.getScalarSizeInBits(); 5562 SmallVector<APInt> RawBits1, RawBits2; 5563 BitVector UndefElts1, UndefElts2; 5564 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5565 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5566 UndefElts1.none() && UndefElts2.none()) { 5567 SmallVector<APInt> RawBits; 5568 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5569 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5570 if (!Fold) 5571 break; 5572 RawBits.push_back(Fold.getValue()); 5573 } 5574 if (RawBits.size() == NumElts.getFixedValue()) { 5575 // We have constant folded, but we need to cast this again back to 5576 // the original (possibly legalized) type. 5577 SmallVector<APInt> DstBits; 5578 BitVector DstUndefs; 5579 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5580 DstBits, RawBits, DstUndefs, 5581 BitVector(RawBits.size(), false)); 5582 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5583 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5584 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5585 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5586 if (DstUndefs[I]) 5587 continue; 5588 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5589 } 5590 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5591 } 5592 } 5593 } 5594 } 5595 5596 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5597 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5598 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5599 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5600 APInt RHSVal; 5601 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5602 APInt NewStep = Opcode == ISD::MUL 5603 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5604 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5605 return getStepVector(DL, VT, NewStep); 5606 } 5607 } 5608 5609 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5610 return !Op.getValueType().isVector() || 5611 Op.getValueType().getVectorElementCount() == NumElts; 5612 }; 5613 5614 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5615 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5616 Op.getOpcode() == ISD::BUILD_VECTOR || 5617 Op.getOpcode() == ISD::SPLAT_VECTOR; 5618 }; 5619 5620 // All operands must be vector types with the same number of elements as 5621 // the result type and must be either UNDEF or a build/splat vector 5622 // or UNDEF scalars. 5623 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5624 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5625 return SDValue(); 5626 5627 // If we are comparing vectors, then the result needs to be a i1 boolean that 5628 // is then extended back to the legal result type depending on how booleans 5629 // are represented. 5630 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5631 ISD::NodeType ExtendCode = 5632 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5633 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5634 : ISD::SIGN_EXTEND; 5635 5636 // Find legal integer scalar type for constant promotion and 5637 // ensure that its scalar size is at least as large as source. 5638 EVT LegalSVT = VT.getScalarType(); 5639 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5640 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5641 if (LegalSVT.bitsLT(VT.getScalarType())) 5642 return SDValue(); 5643 } 5644 5645 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5646 // only have one operand to check. For fixed-length vector types we may have 5647 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5648 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5649 5650 // Constant fold each scalar lane separately. 5651 SmallVector<SDValue, 4> ScalarResults; 5652 for (unsigned I = 0; I != NumVectorElts; I++) { 5653 SmallVector<SDValue, 4> ScalarOps; 5654 for (SDValue Op : Ops) { 5655 EVT InSVT = Op.getValueType().getScalarType(); 5656 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5657 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5658 if (Op.isUndef()) 5659 ScalarOps.push_back(getUNDEF(InSVT)); 5660 else 5661 ScalarOps.push_back(Op); 5662 continue; 5663 } 5664 5665 SDValue ScalarOp = 5666 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5667 EVT ScalarVT = ScalarOp.getValueType(); 5668 5669 // Build vector (integer) scalar operands may need implicit 5670 // truncation - do this before constant folding. 5671 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5672 // Don't create illegally-typed nodes unless they're constants or undef 5673 // - if we fail to constant fold we can't guarantee the (dead) nodes 5674 // we're creating will be cleaned up before being visited for 5675 // legalization. 5676 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5677 !isa<ConstantSDNode>(ScalarOp) && 5678 TLI->getTypeAction(*getContext(), InSVT) != 5679 TargetLowering::TypeLegal) 5680 return SDValue(); 5681 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5682 } 5683 5684 ScalarOps.push_back(ScalarOp); 5685 } 5686 5687 // Constant fold the scalar operands. 5688 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5689 5690 // Legalize the (integer) scalar constant if necessary. 5691 if (LegalSVT != SVT) 5692 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5693 5694 // Scalar folding only succeeded if the result is a constant or UNDEF. 5695 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5696 ScalarResult.getOpcode() != ISD::ConstantFP) 5697 return SDValue(); 5698 ScalarResults.push_back(ScalarResult); 5699 } 5700 5701 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5702 : getBuildVector(VT, DL, ScalarResults); 5703 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5704 return V; 5705 } 5706 5707 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5708 EVT VT, SDValue N1, SDValue N2) { 5709 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5710 // should. That will require dealing with a potentially non-default 5711 // rounding mode, checking the "opStatus" return value from the APFloat 5712 // math calculations, and possibly other variations. 5713 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5714 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5715 if (N1CFP && N2CFP) { 5716 APFloat C1 = N1CFP->getValueAPF(); // make copy 5717 const APFloat &C2 = N2CFP->getValueAPF(); 5718 switch (Opcode) { 5719 case ISD::FADD: 5720 C1.add(C2, APFloat::rmNearestTiesToEven); 5721 return getConstantFP(C1, DL, VT); 5722 case ISD::FSUB: 5723 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5724 return getConstantFP(C1, DL, VT); 5725 case ISD::FMUL: 5726 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5727 return getConstantFP(C1, DL, VT); 5728 case ISD::FDIV: 5729 C1.divide(C2, APFloat::rmNearestTiesToEven); 5730 return getConstantFP(C1, DL, VT); 5731 case ISD::FREM: 5732 C1.mod(C2); 5733 return getConstantFP(C1, DL, VT); 5734 case ISD::FCOPYSIGN: 5735 C1.copySign(C2); 5736 return getConstantFP(C1, DL, VT); 5737 case ISD::FMINNUM: 5738 return getConstantFP(minnum(C1, C2), DL, VT); 5739 case ISD::FMAXNUM: 5740 return getConstantFP(maxnum(C1, C2), DL, VT); 5741 case ISD::FMINIMUM: 5742 return getConstantFP(minimum(C1, C2), DL, VT); 5743 case ISD::FMAXIMUM: 5744 return getConstantFP(maximum(C1, C2), DL, VT); 5745 default: break; 5746 } 5747 } 5748 if (N1CFP && Opcode == ISD::FP_ROUND) { 5749 APFloat C1 = N1CFP->getValueAPF(); // make copy 5750 bool Unused; 5751 // This can return overflow, underflow, or inexact; we don't care. 5752 // FIXME need to be more flexible about rounding mode. 5753 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5754 &Unused); 5755 return getConstantFP(C1, DL, VT); 5756 } 5757 5758 switch (Opcode) { 5759 case ISD::FSUB: 5760 // -0.0 - undef --> undef (consistent with "fneg undef") 5761 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5762 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5763 return getUNDEF(VT); 5764 LLVM_FALLTHROUGH; 5765 5766 case ISD::FADD: 5767 case ISD::FMUL: 5768 case ISD::FDIV: 5769 case ISD::FREM: 5770 // If both operands are undef, the result is undef. If 1 operand is undef, 5771 // the result is NaN. This should match the behavior of the IR optimizer. 5772 if (N1.isUndef() && N2.isUndef()) 5773 return getUNDEF(VT); 5774 if (N1.isUndef() || N2.isUndef()) 5775 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5776 } 5777 return SDValue(); 5778 } 5779 5780 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5781 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5782 5783 // There's no need to assert on a byte-aligned pointer. All pointers are at 5784 // least byte aligned. 5785 if (A == Align(1)) 5786 return Val; 5787 5788 FoldingSetNodeID ID; 5789 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5790 ID.AddInteger(A.value()); 5791 5792 void *IP = nullptr; 5793 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5794 return SDValue(E, 0); 5795 5796 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5797 Val.getValueType(), A); 5798 createOperands(N, {Val}); 5799 5800 CSEMap.InsertNode(N, IP); 5801 InsertNode(N); 5802 5803 SDValue V(N, 0); 5804 NewSDValueDbgMsg(V, "Creating new node: ", this); 5805 return V; 5806 } 5807 5808 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5809 SDValue N1, SDValue N2) { 5810 SDNodeFlags Flags; 5811 if (Inserter) 5812 Flags = Inserter->getFlags(); 5813 return getNode(Opcode, DL, VT, N1, N2, Flags); 5814 } 5815 5816 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5817 SDValue &N2) const { 5818 if (!TLI->isCommutativeBinOp(Opcode)) 5819 return; 5820 5821 // Canonicalize: 5822 // binop(const, nonconst) -> binop(nonconst, const) 5823 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5824 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5825 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5826 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5827 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5828 std::swap(N1, N2); 5829 5830 // Canonicalize: 5831 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5832 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5833 N2.getOpcode() == ISD::STEP_VECTOR) 5834 std::swap(N1, N2); 5835 } 5836 5837 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5838 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5839 assert(N1.getOpcode() != ISD::DELETED_NODE && 5840 N2.getOpcode() != ISD::DELETED_NODE && 5841 "Operand is DELETED_NODE!"); 5842 5843 canonicalizeCommutativeBinop(Opcode, N1, N2); 5844 5845 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5846 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5847 5848 // Don't allow undefs in vector splats - we might be returning N2 when folding 5849 // to zero etc. 5850 ConstantSDNode *N2CV = 5851 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5852 5853 switch (Opcode) { 5854 default: break; 5855 case ISD::TokenFactor: 5856 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5857 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5858 // Fold trivial token factors. 5859 if (N1.getOpcode() == ISD::EntryToken) return N2; 5860 if (N2.getOpcode() == ISD::EntryToken) return N1; 5861 if (N1 == N2) return N1; 5862 break; 5863 case ISD::BUILD_VECTOR: { 5864 // Attempt to simplify BUILD_VECTOR. 5865 SDValue Ops[] = {N1, N2}; 5866 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5867 return V; 5868 break; 5869 } 5870 case ISD::CONCAT_VECTORS: { 5871 SDValue Ops[] = {N1, N2}; 5872 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5873 return V; 5874 break; 5875 } 5876 case ISD::AND: 5877 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5878 assert(N1.getValueType() == N2.getValueType() && 5879 N1.getValueType() == VT && "Binary operator types must match!"); 5880 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5881 // worth handling here. 5882 if (N2CV && N2CV->isZero()) 5883 return N2; 5884 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5885 return N1; 5886 break; 5887 case ISD::OR: 5888 case ISD::XOR: 5889 case ISD::ADD: 5890 case ISD::SUB: 5891 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5892 assert(N1.getValueType() == N2.getValueType() && 5893 N1.getValueType() == VT && "Binary operator types must match!"); 5894 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5895 // it's worth handling here. 5896 if (N2CV && N2CV->isZero()) 5897 return N1; 5898 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5899 VT.getVectorElementType() == MVT::i1) 5900 return getNode(ISD::XOR, DL, VT, N1, N2); 5901 break; 5902 case ISD::MUL: 5903 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5904 assert(N1.getValueType() == N2.getValueType() && 5905 N1.getValueType() == VT && "Binary operator types must match!"); 5906 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5907 return getNode(ISD::AND, DL, VT, N1, N2); 5908 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5909 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5910 const APInt &N2CImm = N2C->getAPIntValue(); 5911 return getVScale(DL, VT, MulImm * N2CImm); 5912 } 5913 break; 5914 case ISD::UDIV: 5915 case ISD::UREM: 5916 case ISD::MULHU: 5917 case ISD::MULHS: 5918 case ISD::SDIV: 5919 case ISD::SREM: 5920 case ISD::SADDSAT: 5921 case ISD::SSUBSAT: 5922 case ISD::UADDSAT: 5923 case ISD::USUBSAT: 5924 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5925 assert(N1.getValueType() == N2.getValueType() && 5926 N1.getValueType() == VT && "Binary operator types must match!"); 5927 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5928 // fold (add_sat x, y) -> (or x, y) for bool types. 5929 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5930 return getNode(ISD::OR, DL, VT, N1, N2); 5931 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5932 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5933 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5934 } 5935 break; 5936 case ISD::SMIN: 5937 case ISD::UMAX: 5938 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5939 assert(N1.getValueType() == N2.getValueType() && 5940 N1.getValueType() == VT && "Binary operator types must match!"); 5941 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5942 return getNode(ISD::OR, DL, VT, N1, N2); 5943 break; 5944 case ISD::SMAX: 5945 case ISD::UMIN: 5946 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5947 assert(N1.getValueType() == N2.getValueType() && 5948 N1.getValueType() == VT && "Binary operator types must match!"); 5949 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5950 return getNode(ISD::AND, DL, VT, N1, N2); 5951 break; 5952 case ISD::FADD: 5953 case ISD::FSUB: 5954 case ISD::FMUL: 5955 case ISD::FDIV: 5956 case ISD::FREM: 5957 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5958 assert(N1.getValueType() == N2.getValueType() && 5959 N1.getValueType() == VT && "Binary operator types must match!"); 5960 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5961 return V; 5962 break; 5963 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5964 assert(N1.getValueType() == VT && 5965 N1.getValueType().isFloatingPoint() && 5966 N2.getValueType().isFloatingPoint() && 5967 "Invalid FCOPYSIGN!"); 5968 break; 5969 case ISD::SHL: 5970 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5971 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5972 const APInt &ShiftImm = N2C->getAPIntValue(); 5973 return getVScale(DL, VT, MulImm << ShiftImm); 5974 } 5975 LLVM_FALLTHROUGH; 5976 case ISD::SRA: 5977 case ISD::SRL: 5978 if (SDValue V = simplifyShift(N1, N2)) 5979 return V; 5980 LLVM_FALLTHROUGH; 5981 case ISD::ROTL: 5982 case ISD::ROTR: 5983 assert(VT == N1.getValueType() && 5984 "Shift operators return type must be the same as their first arg"); 5985 assert(VT.isInteger() && N2.getValueType().isInteger() && 5986 "Shifts only work on integers"); 5987 assert((!VT.isVector() || VT == N2.getValueType()) && 5988 "Vector shift amounts must be in the same as their first arg"); 5989 // Verify that the shift amount VT is big enough to hold valid shift 5990 // amounts. This catches things like trying to shift an i1024 value by an 5991 // i8, which is easy to fall into in generic code that uses 5992 // TLI.getShiftAmount(). 5993 assert(N2.getValueType().getScalarSizeInBits() >= 5994 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5995 "Invalid use of small shift amount with oversized value!"); 5996 5997 // Always fold shifts of i1 values so the code generator doesn't need to 5998 // handle them. Since we know the size of the shift has to be less than the 5999 // size of the value, the shift/rotate count is guaranteed to be zero. 6000 if (VT == MVT::i1) 6001 return N1; 6002 if (N2CV && N2CV->isZero()) 6003 return N1; 6004 break; 6005 case ISD::FP_ROUND: 6006 assert(VT.isFloatingPoint() && 6007 N1.getValueType().isFloatingPoint() && 6008 VT.bitsLE(N1.getValueType()) && 6009 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6010 "Invalid FP_ROUND!"); 6011 if (N1.getValueType() == VT) return N1; // noop conversion. 6012 break; 6013 case ISD::AssertSext: 6014 case ISD::AssertZext: { 6015 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6016 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6017 assert(VT.isInteger() && EVT.isInteger() && 6018 "Cannot *_EXTEND_INREG FP types"); 6019 assert(!EVT.isVector() && 6020 "AssertSExt/AssertZExt type should be the vector element type " 6021 "rather than the vector type!"); 6022 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6023 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6024 break; 6025 } 6026 case ISD::SIGN_EXTEND_INREG: { 6027 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6028 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6029 assert(VT.isInteger() && EVT.isInteger() && 6030 "Cannot *_EXTEND_INREG FP types"); 6031 assert(EVT.isVector() == VT.isVector() && 6032 "SIGN_EXTEND_INREG type should be vector iff the operand " 6033 "type is vector!"); 6034 assert((!EVT.isVector() || 6035 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6036 "Vector element counts must match in SIGN_EXTEND_INREG"); 6037 assert(EVT.bitsLE(VT) && "Not extending!"); 6038 if (EVT == VT) return N1; // Not actually extending 6039 6040 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6041 unsigned FromBits = EVT.getScalarSizeInBits(); 6042 Val <<= Val.getBitWidth() - FromBits; 6043 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6044 return getConstant(Val, DL, ConstantVT); 6045 }; 6046 6047 if (N1C) { 6048 const APInt &Val = N1C->getAPIntValue(); 6049 return SignExtendInReg(Val, VT); 6050 } 6051 6052 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6053 SmallVector<SDValue, 8> Ops; 6054 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6055 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6056 SDValue Op = N1.getOperand(i); 6057 if (Op.isUndef()) { 6058 Ops.push_back(getUNDEF(OpVT)); 6059 continue; 6060 } 6061 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6062 APInt Val = C->getAPIntValue(); 6063 Ops.push_back(SignExtendInReg(Val, OpVT)); 6064 } 6065 return getBuildVector(VT, DL, Ops); 6066 } 6067 break; 6068 } 6069 case ISD::FP_TO_SINT_SAT: 6070 case ISD::FP_TO_UINT_SAT: { 6071 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6072 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6073 assert(N1.getValueType().isVector() == VT.isVector() && 6074 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6075 "vector!"); 6076 assert((!VT.isVector() || VT.getVectorNumElements() == 6077 N1.getValueType().getVectorNumElements()) && 6078 "Vector element counts must match in FP_TO_*INT_SAT"); 6079 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6080 "Type to saturate to must be a scalar."); 6081 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6082 "Not extending!"); 6083 break; 6084 } 6085 case ISD::EXTRACT_VECTOR_ELT: 6086 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6087 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6088 element type of the vector."); 6089 6090 // Extract from an undefined value or using an undefined index is undefined. 6091 if (N1.isUndef() || N2.isUndef()) 6092 return getUNDEF(VT); 6093 6094 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6095 // vectors. For scalable vectors we will provide appropriate support for 6096 // dealing with arbitrary indices. 6097 if (N2C && N1.getValueType().isFixedLengthVector() && 6098 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6099 return getUNDEF(VT); 6100 6101 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6102 // expanding copies of large vectors from registers. This only works for 6103 // fixed length vectors, since we need to know the exact number of 6104 // elements. 6105 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6106 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6107 unsigned Factor = 6108 N1.getOperand(0).getValueType().getVectorNumElements(); 6109 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6110 N1.getOperand(N2C->getZExtValue() / Factor), 6111 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6112 } 6113 6114 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6115 // lowering is expanding large vector constants. 6116 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6117 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6118 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6119 N1.getValueType().isFixedLengthVector()) && 6120 "BUILD_VECTOR used for scalable vectors"); 6121 unsigned Index = 6122 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6123 SDValue Elt = N1.getOperand(Index); 6124 6125 if (VT != Elt.getValueType()) 6126 // If the vector element type is not legal, the BUILD_VECTOR operands 6127 // are promoted and implicitly truncated, and the result implicitly 6128 // extended. Make that explicit here. 6129 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6130 6131 return Elt; 6132 } 6133 6134 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6135 // operations are lowered to scalars. 6136 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6137 // If the indices are the same, return the inserted element else 6138 // if the indices are known different, extract the element from 6139 // the original vector. 6140 SDValue N1Op2 = N1.getOperand(2); 6141 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6142 6143 if (N1Op2C && N2C) { 6144 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6145 if (VT == N1.getOperand(1).getValueType()) 6146 return N1.getOperand(1); 6147 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6148 } 6149 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6150 } 6151 } 6152 6153 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6154 // when vector types are scalarized and v1iX is legal. 6155 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6156 // Here we are completely ignoring the extract element index (N2), 6157 // which is fine for fixed width vectors, since any index other than 0 6158 // is undefined anyway. However, this cannot be ignored for scalable 6159 // vectors - in theory we could support this, but we don't want to do this 6160 // without a profitability check. 6161 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6162 N1.getValueType().isFixedLengthVector() && 6163 N1.getValueType().getVectorNumElements() == 1) { 6164 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6165 N1.getOperand(1)); 6166 } 6167 break; 6168 case ISD::EXTRACT_ELEMENT: 6169 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6170 assert(!N1.getValueType().isVector() && !VT.isVector() && 6171 (N1.getValueType().isInteger() == VT.isInteger()) && 6172 N1.getValueType() != VT && 6173 "Wrong types for EXTRACT_ELEMENT!"); 6174 6175 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6176 // 64-bit integers into 32-bit parts. Instead of building the extract of 6177 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6178 if (N1.getOpcode() == ISD::BUILD_PAIR) 6179 return N1.getOperand(N2C->getZExtValue()); 6180 6181 // EXTRACT_ELEMENT of a constant int is also very common. 6182 if (N1C) { 6183 unsigned ElementSize = VT.getSizeInBits(); 6184 unsigned Shift = ElementSize * N2C->getZExtValue(); 6185 const APInt &Val = N1C->getAPIntValue(); 6186 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6187 } 6188 break; 6189 case ISD::EXTRACT_SUBVECTOR: { 6190 EVT N1VT = N1.getValueType(); 6191 assert(VT.isVector() && N1VT.isVector() && 6192 "Extract subvector VTs must be vectors!"); 6193 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6194 "Extract subvector VTs must have the same element type!"); 6195 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6196 "Cannot extract a scalable vector from a fixed length vector!"); 6197 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6198 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6199 "Extract subvector must be from larger vector to smaller vector!"); 6200 assert(N2C && "Extract subvector index must be a constant"); 6201 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6202 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6203 N1VT.getVectorMinNumElements()) && 6204 "Extract subvector overflow!"); 6205 assert(N2C->getAPIntValue().getBitWidth() == 6206 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6207 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6208 6209 // Trivial extraction. 6210 if (VT == N1VT) 6211 return N1; 6212 6213 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6214 if (N1.isUndef()) 6215 return getUNDEF(VT); 6216 6217 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6218 // the concat have the same type as the extract. 6219 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6220 VT == N1.getOperand(0).getValueType()) { 6221 unsigned Factor = VT.getVectorMinNumElements(); 6222 return N1.getOperand(N2C->getZExtValue() / Factor); 6223 } 6224 6225 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6226 // during shuffle legalization. 6227 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6228 VT == N1.getOperand(1).getValueType()) 6229 return N1.getOperand(1); 6230 break; 6231 } 6232 } 6233 6234 // Perform trivial constant folding. 6235 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6236 return SV; 6237 6238 // Canonicalize an UNDEF to the RHS, even over a constant. 6239 if (N1.isUndef()) { 6240 if (TLI->isCommutativeBinOp(Opcode)) { 6241 std::swap(N1, N2); 6242 } else { 6243 switch (Opcode) { 6244 case ISD::SUB: 6245 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6246 case ISD::SIGN_EXTEND_INREG: 6247 case ISD::UDIV: 6248 case ISD::SDIV: 6249 case ISD::UREM: 6250 case ISD::SREM: 6251 case ISD::SSUBSAT: 6252 case ISD::USUBSAT: 6253 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6254 } 6255 } 6256 } 6257 6258 // Fold a bunch of operators when the RHS is undef. 6259 if (N2.isUndef()) { 6260 switch (Opcode) { 6261 case ISD::XOR: 6262 if (N1.isUndef()) 6263 // Handle undef ^ undef -> 0 special case. This is a common 6264 // idiom (misuse). 6265 return getConstant(0, DL, VT); 6266 LLVM_FALLTHROUGH; 6267 case ISD::ADD: 6268 case ISD::SUB: 6269 case ISD::UDIV: 6270 case ISD::SDIV: 6271 case ISD::UREM: 6272 case ISD::SREM: 6273 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6274 case ISD::MUL: 6275 case ISD::AND: 6276 case ISD::SSUBSAT: 6277 case ISD::USUBSAT: 6278 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6279 case ISD::OR: 6280 case ISD::SADDSAT: 6281 case ISD::UADDSAT: 6282 return getAllOnesConstant(DL, VT); 6283 } 6284 } 6285 6286 // Memoize this node if possible. 6287 SDNode *N; 6288 SDVTList VTs = getVTList(VT); 6289 SDValue Ops[] = {N1, N2}; 6290 if (VT != MVT::Glue) { 6291 FoldingSetNodeID ID; 6292 AddNodeIDNode(ID, Opcode, VTs, Ops); 6293 void *IP = nullptr; 6294 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6295 E->intersectFlagsWith(Flags); 6296 return SDValue(E, 0); 6297 } 6298 6299 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6300 N->setFlags(Flags); 6301 createOperands(N, Ops); 6302 CSEMap.InsertNode(N, IP); 6303 } else { 6304 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6305 createOperands(N, Ops); 6306 } 6307 6308 InsertNode(N); 6309 SDValue V = SDValue(N, 0); 6310 NewSDValueDbgMsg(V, "Creating new node: ", this); 6311 return V; 6312 } 6313 6314 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6315 SDValue N1, SDValue N2, SDValue N3) { 6316 SDNodeFlags Flags; 6317 if (Inserter) 6318 Flags = Inserter->getFlags(); 6319 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6320 } 6321 6322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6323 SDValue N1, SDValue N2, SDValue N3, 6324 const SDNodeFlags Flags) { 6325 assert(N1.getOpcode() != ISD::DELETED_NODE && 6326 N2.getOpcode() != ISD::DELETED_NODE && 6327 N3.getOpcode() != ISD::DELETED_NODE && 6328 "Operand is DELETED_NODE!"); 6329 // Perform various simplifications. 6330 switch (Opcode) { 6331 case ISD::FMA: { 6332 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6333 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6334 N3.getValueType() == VT && "FMA types must match!"); 6335 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6336 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6337 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6338 if (N1CFP && N2CFP && N3CFP) { 6339 APFloat V1 = N1CFP->getValueAPF(); 6340 const APFloat &V2 = N2CFP->getValueAPF(); 6341 const APFloat &V3 = N3CFP->getValueAPF(); 6342 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6343 return getConstantFP(V1, DL, VT); 6344 } 6345 break; 6346 } 6347 case ISD::BUILD_VECTOR: { 6348 // Attempt to simplify BUILD_VECTOR. 6349 SDValue Ops[] = {N1, N2, N3}; 6350 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6351 return V; 6352 break; 6353 } 6354 case ISD::CONCAT_VECTORS: { 6355 SDValue Ops[] = {N1, N2, N3}; 6356 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6357 return V; 6358 break; 6359 } 6360 case ISD::SETCC: { 6361 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6362 assert(N1.getValueType() == N2.getValueType() && 6363 "SETCC operands must have the same type!"); 6364 assert(VT.isVector() == N1.getValueType().isVector() && 6365 "SETCC type should be vector iff the operand type is vector!"); 6366 assert((!VT.isVector() || VT.getVectorElementCount() == 6367 N1.getValueType().getVectorElementCount()) && 6368 "SETCC vector element counts must match!"); 6369 // Use FoldSetCC to simplify SETCC's. 6370 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6371 return V; 6372 // Vector constant folding. 6373 SDValue Ops[] = {N1, N2, N3}; 6374 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6375 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6376 return V; 6377 } 6378 break; 6379 } 6380 case ISD::SELECT: 6381 case ISD::VSELECT: 6382 if (SDValue V = simplifySelect(N1, N2, N3)) 6383 return V; 6384 break; 6385 case ISD::VECTOR_SHUFFLE: 6386 llvm_unreachable("should use getVectorShuffle constructor!"); 6387 case ISD::VECTOR_SPLICE: { 6388 if (cast<ConstantSDNode>(N3)->isNullValue()) 6389 return N1; 6390 break; 6391 } 6392 case ISD::INSERT_VECTOR_ELT: { 6393 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6394 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6395 // for scalable vectors where we will generate appropriate code to 6396 // deal with out-of-bounds cases correctly. 6397 if (N3C && N1.getValueType().isFixedLengthVector() && 6398 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6399 return getUNDEF(VT); 6400 6401 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6402 if (N3.isUndef()) 6403 return getUNDEF(VT); 6404 6405 // If the inserted element is an UNDEF, just use the input vector. 6406 if (N2.isUndef()) 6407 return N1; 6408 6409 break; 6410 } 6411 case ISD::INSERT_SUBVECTOR: { 6412 // Inserting undef into undef is still undef. 6413 if (N1.isUndef() && N2.isUndef()) 6414 return getUNDEF(VT); 6415 6416 EVT N2VT = N2.getValueType(); 6417 assert(VT == N1.getValueType() && 6418 "Dest and insert subvector source types must match!"); 6419 assert(VT.isVector() && N2VT.isVector() && 6420 "Insert subvector VTs must be vectors!"); 6421 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6422 "Cannot insert a scalable vector into a fixed length vector!"); 6423 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6424 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6425 "Insert subvector must be from smaller vector to larger vector!"); 6426 assert(isa<ConstantSDNode>(N3) && 6427 "Insert subvector index must be constant"); 6428 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6429 (N2VT.getVectorMinNumElements() + 6430 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6431 VT.getVectorMinNumElements()) && 6432 "Insert subvector overflow!"); 6433 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6434 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6435 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6436 6437 // Trivial insertion. 6438 if (VT == N2VT) 6439 return N2; 6440 6441 // If this is an insert of an extracted vector into an undef vector, we 6442 // can just use the input to the extract. 6443 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6444 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6445 return N2.getOperand(0); 6446 break; 6447 } 6448 case ISD::BITCAST: 6449 // Fold bit_convert nodes from a type to themselves. 6450 if (N1.getValueType() == VT) 6451 return N1; 6452 break; 6453 } 6454 6455 // Memoize node if it doesn't produce a flag. 6456 SDNode *N; 6457 SDVTList VTs = getVTList(VT); 6458 SDValue Ops[] = {N1, N2, N3}; 6459 if (VT != MVT::Glue) { 6460 FoldingSetNodeID ID; 6461 AddNodeIDNode(ID, Opcode, VTs, Ops); 6462 void *IP = nullptr; 6463 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6464 E->intersectFlagsWith(Flags); 6465 return SDValue(E, 0); 6466 } 6467 6468 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6469 N->setFlags(Flags); 6470 createOperands(N, Ops); 6471 CSEMap.InsertNode(N, IP); 6472 } else { 6473 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6474 createOperands(N, Ops); 6475 } 6476 6477 InsertNode(N); 6478 SDValue V = SDValue(N, 0); 6479 NewSDValueDbgMsg(V, "Creating new node: ", this); 6480 return V; 6481 } 6482 6483 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6484 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6485 SDValue Ops[] = { N1, N2, N3, N4 }; 6486 return getNode(Opcode, DL, VT, Ops); 6487 } 6488 6489 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6490 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6491 SDValue N5) { 6492 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6493 return getNode(Opcode, DL, VT, Ops); 6494 } 6495 6496 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6497 /// the incoming stack arguments to be loaded from the stack. 6498 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6499 SmallVector<SDValue, 8> ArgChains; 6500 6501 // Include the original chain at the beginning of the list. When this is 6502 // used by target LowerCall hooks, this helps legalize find the 6503 // CALLSEQ_BEGIN node. 6504 ArgChains.push_back(Chain); 6505 6506 // Add a chain value for each stack argument. 6507 for (SDNode *U : getEntryNode().getNode()->uses()) 6508 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6509 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6510 if (FI->getIndex() < 0) 6511 ArgChains.push_back(SDValue(L, 1)); 6512 6513 // Build a tokenfactor for all the chains. 6514 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6515 } 6516 6517 /// getMemsetValue - Vectorized representation of the memset value 6518 /// operand. 6519 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6520 const SDLoc &dl) { 6521 assert(!Value.isUndef()); 6522 6523 unsigned NumBits = VT.getScalarSizeInBits(); 6524 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6525 assert(C->getAPIntValue().getBitWidth() == 8); 6526 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6527 if (VT.isInteger()) { 6528 bool IsOpaque = VT.getSizeInBits() > 64 || 6529 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6530 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6531 } 6532 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6533 VT); 6534 } 6535 6536 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6537 EVT IntVT = VT.getScalarType(); 6538 if (!IntVT.isInteger()) 6539 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6540 6541 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6542 if (NumBits > 8) { 6543 // Use a multiplication with 0x010101... to extend the input to the 6544 // required length. 6545 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6546 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6547 DAG.getConstant(Magic, dl, IntVT)); 6548 } 6549 6550 if (VT != Value.getValueType() && !VT.isInteger()) 6551 Value = DAG.getBitcast(VT.getScalarType(), Value); 6552 if (VT != Value.getValueType()) 6553 Value = DAG.getSplatBuildVector(VT, dl, Value); 6554 6555 return Value; 6556 } 6557 6558 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6559 /// used when a memcpy is turned into a memset when the source is a constant 6560 /// string ptr. 6561 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6562 const TargetLowering &TLI, 6563 const ConstantDataArraySlice &Slice) { 6564 // Handle vector with all elements zero. 6565 if (Slice.Array == nullptr) { 6566 if (VT.isInteger()) 6567 return DAG.getConstant(0, dl, VT); 6568 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6569 return DAG.getConstantFP(0.0, dl, VT); 6570 if (VT.isVector()) { 6571 unsigned NumElts = VT.getVectorNumElements(); 6572 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6573 return DAG.getNode(ISD::BITCAST, dl, VT, 6574 DAG.getConstant(0, dl, 6575 EVT::getVectorVT(*DAG.getContext(), 6576 EltVT, NumElts))); 6577 } 6578 llvm_unreachable("Expected type!"); 6579 } 6580 6581 assert(!VT.isVector() && "Can't handle vector type here!"); 6582 unsigned NumVTBits = VT.getSizeInBits(); 6583 unsigned NumVTBytes = NumVTBits / 8; 6584 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6585 6586 APInt Val(NumVTBits, 0); 6587 if (DAG.getDataLayout().isLittleEndian()) { 6588 for (unsigned i = 0; i != NumBytes; ++i) 6589 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6590 } else { 6591 for (unsigned i = 0; i != NumBytes; ++i) 6592 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6593 } 6594 6595 // If the "cost" of materializing the integer immediate is less than the cost 6596 // of a load, then it is cost effective to turn the load into the immediate. 6597 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6598 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6599 return DAG.getConstant(Val, dl, VT); 6600 return SDValue(); 6601 } 6602 6603 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6604 const SDLoc &DL, 6605 const SDNodeFlags Flags) { 6606 EVT VT = Base.getValueType(); 6607 SDValue Index; 6608 6609 if (Offset.isScalable()) 6610 Index = getVScale(DL, Base.getValueType(), 6611 APInt(Base.getValueSizeInBits().getFixedSize(), 6612 Offset.getKnownMinSize())); 6613 else 6614 Index = getConstant(Offset.getFixedSize(), DL, VT); 6615 6616 return getMemBasePlusOffset(Base, Index, DL, Flags); 6617 } 6618 6619 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6620 const SDLoc &DL, 6621 const SDNodeFlags Flags) { 6622 assert(Offset.getValueType().isInteger()); 6623 EVT BasePtrVT = Ptr.getValueType(); 6624 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6625 } 6626 6627 /// Returns true if memcpy source is constant data. 6628 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6629 uint64_t SrcDelta = 0; 6630 GlobalAddressSDNode *G = nullptr; 6631 if (Src.getOpcode() == ISD::GlobalAddress) 6632 G = cast<GlobalAddressSDNode>(Src); 6633 else if (Src.getOpcode() == ISD::ADD && 6634 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6635 Src.getOperand(1).getOpcode() == ISD::Constant) { 6636 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6637 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6638 } 6639 if (!G) 6640 return false; 6641 6642 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6643 SrcDelta + G->getOffset()); 6644 } 6645 6646 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6647 SelectionDAG &DAG) { 6648 // On Darwin, -Os means optimize for size without hurting performance, so 6649 // only really optimize for size when -Oz (MinSize) is used. 6650 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6651 return MF.getFunction().hasMinSize(); 6652 return DAG.shouldOptForSize(); 6653 } 6654 6655 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6656 SmallVector<SDValue, 32> &OutChains, unsigned From, 6657 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6658 SmallVector<SDValue, 16> &OutStoreChains) { 6659 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6660 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6661 SmallVector<SDValue, 16> GluedLoadChains; 6662 for (unsigned i = From; i < To; ++i) { 6663 OutChains.push_back(OutLoadChains[i]); 6664 GluedLoadChains.push_back(OutLoadChains[i]); 6665 } 6666 6667 // Chain for all loads. 6668 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6669 GluedLoadChains); 6670 6671 for (unsigned i = From; i < To; ++i) { 6672 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6673 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6674 ST->getBasePtr(), ST->getMemoryVT(), 6675 ST->getMemOperand()); 6676 OutChains.push_back(NewStore); 6677 } 6678 } 6679 6680 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6681 SDValue Chain, SDValue Dst, SDValue Src, 6682 uint64_t Size, Align Alignment, 6683 bool isVol, bool AlwaysInline, 6684 MachinePointerInfo DstPtrInfo, 6685 MachinePointerInfo SrcPtrInfo, 6686 const AAMDNodes &AAInfo) { 6687 // Turn a memcpy of undef to nop. 6688 // FIXME: We need to honor volatile even is Src is undef. 6689 if (Src.isUndef()) 6690 return Chain; 6691 6692 // Expand memcpy to a series of load and store ops if the size operand falls 6693 // below a certain threshold. 6694 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6695 // rather than maybe a humongous number of loads and stores. 6696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6697 const DataLayout &DL = DAG.getDataLayout(); 6698 LLVMContext &C = *DAG.getContext(); 6699 std::vector<EVT> MemOps; 6700 bool DstAlignCanChange = false; 6701 MachineFunction &MF = DAG.getMachineFunction(); 6702 MachineFrameInfo &MFI = MF.getFrameInfo(); 6703 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6704 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6705 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6706 DstAlignCanChange = true; 6707 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6708 if (!SrcAlign || Alignment > *SrcAlign) 6709 SrcAlign = Alignment; 6710 assert(SrcAlign && "SrcAlign must be set"); 6711 ConstantDataArraySlice Slice; 6712 // If marked as volatile, perform a copy even when marked as constant. 6713 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6714 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6715 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6716 const MemOp Op = isZeroConstant 6717 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6718 /*IsZeroMemset*/ true, isVol) 6719 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6720 *SrcAlign, isVol, CopyFromConstant); 6721 if (!TLI.findOptimalMemOpLowering( 6722 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6723 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6724 return SDValue(); 6725 6726 if (DstAlignCanChange) { 6727 Type *Ty = MemOps[0].getTypeForEVT(C); 6728 Align NewAlign = DL.getABITypeAlign(Ty); 6729 6730 // Don't promote to an alignment that would require dynamic stack 6731 // realignment. 6732 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6733 if (!TRI->hasStackRealignment(MF)) 6734 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6735 NewAlign = NewAlign / 2; 6736 6737 if (NewAlign > Alignment) { 6738 // Give the stack frame object a larger alignment if needed. 6739 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6740 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6741 Alignment = NewAlign; 6742 } 6743 } 6744 6745 // Prepare AAInfo for loads/stores after lowering this memcpy. 6746 AAMDNodes NewAAInfo = AAInfo; 6747 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6748 6749 MachineMemOperand::Flags MMOFlags = 6750 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6751 SmallVector<SDValue, 16> OutLoadChains; 6752 SmallVector<SDValue, 16> OutStoreChains; 6753 SmallVector<SDValue, 32> OutChains; 6754 unsigned NumMemOps = MemOps.size(); 6755 uint64_t SrcOff = 0, DstOff = 0; 6756 for (unsigned i = 0; i != NumMemOps; ++i) { 6757 EVT VT = MemOps[i]; 6758 unsigned VTSize = VT.getSizeInBits() / 8; 6759 SDValue Value, Store; 6760 6761 if (VTSize > Size) { 6762 // Issuing an unaligned load / store pair that overlaps with the previous 6763 // pair. Adjust the offset accordingly. 6764 assert(i == NumMemOps-1 && i != 0); 6765 SrcOff -= VTSize - Size; 6766 DstOff -= VTSize - Size; 6767 } 6768 6769 if (CopyFromConstant && 6770 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6771 // It's unlikely a store of a vector immediate can be done in a single 6772 // instruction. It would require a load from a constantpool first. 6773 // We only handle zero vectors here. 6774 // FIXME: Handle other cases where store of vector immediate is done in 6775 // a single instruction. 6776 ConstantDataArraySlice SubSlice; 6777 if (SrcOff < Slice.Length) { 6778 SubSlice = Slice; 6779 SubSlice.move(SrcOff); 6780 } else { 6781 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6782 SubSlice.Array = nullptr; 6783 SubSlice.Offset = 0; 6784 SubSlice.Length = VTSize; 6785 } 6786 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6787 if (Value.getNode()) { 6788 Store = DAG.getStore( 6789 Chain, dl, Value, 6790 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6791 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6792 OutChains.push_back(Store); 6793 } 6794 } 6795 6796 if (!Store.getNode()) { 6797 // The type might not be legal for the target. This should only happen 6798 // if the type is smaller than a legal type, as on PPC, so the right 6799 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6800 // to Load/Store if NVT==VT. 6801 // FIXME does the case above also need this? 6802 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6803 assert(NVT.bitsGE(VT)); 6804 6805 bool isDereferenceable = 6806 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6807 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6808 if (isDereferenceable) 6809 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6810 6811 Value = DAG.getExtLoad( 6812 ISD::EXTLOAD, dl, NVT, Chain, 6813 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6814 SrcPtrInfo.getWithOffset(SrcOff), VT, 6815 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6816 OutLoadChains.push_back(Value.getValue(1)); 6817 6818 Store = DAG.getTruncStore( 6819 Chain, dl, Value, 6820 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6821 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6822 OutStoreChains.push_back(Store); 6823 } 6824 SrcOff += VTSize; 6825 DstOff += VTSize; 6826 Size -= VTSize; 6827 } 6828 6829 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6830 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6831 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6832 6833 if (NumLdStInMemcpy) { 6834 // It may be that memcpy might be converted to memset if it's memcpy 6835 // of constants. In such a case, we won't have loads and stores, but 6836 // just stores. In the absence of loads, there is nothing to gang up. 6837 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6838 // If target does not care, just leave as it. 6839 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6840 OutChains.push_back(OutLoadChains[i]); 6841 OutChains.push_back(OutStoreChains[i]); 6842 } 6843 } else { 6844 // Ld/St less than/equal limit set by target. 6845 if (NumLdStInMemcpy <= GluedLdStLimit) { 6846 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6847 NumLdStInMemcpy, OutLoadChains, 6848 OutStoreChains); 6849 } else { 6850 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6851 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6852 unsigned GlueIter = 0; 6853 6854 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6855 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6856 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6857 6858 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6859 OutLoadChains, OutStoreChains); 6860 GlueIter += GluedLdStLimit; 6861 } 6862 6863 // Residual ld/st. 6864 if (RemainingLdStInMemcpy) { 6865 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6866 RemainingLdStInMemcpy, OutLoadChains, 6867 OutStoreChains); 6868 } 6869 } 6870 } 6871 } 6872 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6873 } 6874 6875 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6876 SDValue Chain, SDValue Dst, SDValue Src, 6877 uint64_t Size, Align Alignment, 6878 bool isVol, bool AlwaysInline, 6879 MachinePointerInfo DstPtrInfo, 6880 MachinePointerInfo SrcPtrInfo, 6881 const AAMDNodes &AAInfo) { 6882 // Turn a memmove of undef to nop. 6883 // FIXME: We need to honor volatile even is Src is undef. 6884 if (Src.isUndef()) 6885 return Chain; 6886 6887 // Expand memmove to a series of load and store ops if the size operand falls 6888 // below a certain threshold. 6889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6890 const DataLayout &DL = DAG.getDataLayout(); 6891 LLVMContext &C = *DAG.getContext(); 6892 std::vector<EVT> MemOps; 6893 bool DstAlignCanChange = false; 6894 MachineFunction &MF = DAG.getMachineFunction(); 6895 MachineFrameInfo &MFI = MF.getFrameInfo(); 6896 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6897 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6898 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6899 DstAlignCanChange = true; 6900 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6901 if (!SrcAlign || Alignment > *SrcAlign) 6902 SrcAlign = Alignment; 6903 assert(SrcAlign && "SrcAlign must be set"); 6904 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6905 if (!TLI.findOptimalMemOpLowering( 6906 MemOps, Limit, 6907 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6908 /*IsVolatile*/ true), 6909 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6910 MF.getFunction().getAttributes())) 6911 return SDValue(); 6912 6913 if (DstAlignCanChange) { 6914 Type *Ty = MemOps[0].getTypeForEVT(C); 6915 Align NewAlign = DL.getABITypeAlign(Ty); 6916 if (NewAlign > Alignment) { 6917 // Give the stack frame object a larger alignment if needed. 6918 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6919 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6920 Alignment = NewAlign; 6921 } 6922 } 6923 6924 // Prepare AAInfo for loads/stores after lowering this memmove. 6925 AAMDNodes NewAAInfo = AAInfo; 6926 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6927 6928 MachineMemOperand::Flags MMOFlags = 6929 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6930 uint64_t SrcOff = 0, DstOff = 0; 6931 SmallVector<SDValue, 8> LoadValues; 6932 SmallVector<SDValue, 8> LoadChains; 6933 SmallVector<SDValue, 8> OutChains; 6934 unsigned NumMemOps = MemOps.size(); 6935 for (unsigned i = 0; i < NumMemOps; i++) { 6936 EVT VT = MemOps[i]; 6937 unsigned VTSize = VT.getSizeInBits() / 8; 6938 SDValue Value; 6939 6940 bool isDereferenceable = 6941 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6942 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6943 if (isDereferenceable) 6944 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6945 6946 Value = DAG.getLoad( 6947 VT, dl, Chain, 6948 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6949 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6950 LoadValues.push_back(Value); 6951 LoadChains.push_back(Value.getValue(1)); 6952 SrcOff += VTSize; 6953 } 6954 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6955 OutChains.clear(); 6956 for (unsigned i = 0; i < NumMemOps; i++) { 6957 EVT VT = MemOps[i]; 6958 unsigned VTSize = VT.getSizeInBits() / 8; 6959 SDValue Store; 6960 6961 Store = DAG.getStore( 6962 Chain, dl, LoadValues[i], 6963 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6964 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6965 OutChains.push_back(Store); 6966 DstOff += VTSize; 6967 } 6968 6969 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6970 } 6971 6972 /// Lower the call to 'memset' intrinsic function into a series of store 6973 /// operations. 6974 /// 6975 /// \param DAG Selection DAG where lowered code is placed. 6976 /// \param dl Link to corresponding IR location. 6977 /// \param Chain Control flow dependency. 6978 /// \param Dst Pointer to destination memory location. 6979 /// \param Src Value of byte to write into the memory. 6980 /// \param Size Number of bytes to write. 6981 /// \param Alignment Alignment of the destination in bytes. 6982 /// \param isVol True if destination is volatile. 6983 /// \param DstPtrInfo IR information on the memory pointer. 6984 /// \returns New head in the control flow, if lowering was successful, empty 6985 /// SDValue otherwise. 6986 /// 6987 /// The function tries to replace 'llvm.memset' intrinsic with several store 6988 /// operations and value calculation code. This is usually profitable for small 6989 /// memory size. 6990 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6991 SDValue Chain, SDValue Dst, SDValue Src, 6992 uint64_t Size, Align Alignment, bool isVol, 6993 MachinePointerInfo DstPtrInfo, 6994 const AAMDNodes &AAInfo) { 6995 // Turn a memset of undef to nop. 6996 // FIXME: We need to honor volatile even is Src is undef. 6997 if (Src.isUndef()) 6998 return Chain; 6999 7000 // Expand memset to a series of load/store ops if the size operand 7001 // falls below a certain threshold. 7002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7003 std::vector<EVT> MemOps; 7004 bool DstAlignCanChange = false; 7005 MachineFunction &MF = DAG.getMachineFunction(); 7006 MachineFrameInfo &MFI = MF.getFrameInfo(); 7007 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7008 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7009 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7010 DstAlignCanChange = true; 7011 bool IsZeroVal = 7012 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7013 if (!TLI.findOptimalMemOpLowering( 7014 MemOps, TLI.getMaxStoresPerMemset(OptSize), 7015 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7016 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7017 return SDValue(); 7018 7019 if (DstAlignCanChange) { 7020 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7021 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7022 if (NewAlign > Alignment) { 7023 // Give the stack frame object a larger alignment if needed. 7024 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7025 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7026 Alignment = NewAlign; 7027 } 7028 } 7029 7030 SmallVector<SDValue, 8> OutChains; 7031 uint64_t DstOff = 0; 7032 unsigned NumMemOps = MemOps.size(); 7033 7034 // Find the largest store and generate the bit pattern for it. 7035 EVT LargestVT = MemOps[0]; 7036 for (unsigned i = 1; i < NumMemOps; i++) 7037 if (MemOps[i].bitsGT(LargestVT)) 7038 LargestVT = MemOps[i]; 7039 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7040 7041 // Prepare AAInfo for loads/stores after lowering this memset. 7042 AAMDNodes NewAAInfo = AAInfo; 7043 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7044 7045 for (unsigned i = 0; i < NumMemOps; i++) { 7046 EVT VT = MemOps[i]; 7047 unsigned VTSize = VT.getSizeInBits() / 8; 7048 if (VTSize > Size) { 7049 // Issuing an unaligned load / store pair that overlaps with the previous 7050 // pair. Adjust the offset accordingly. 7051 assert(i == NumMemOps-1 && i != 0); 7052 DstOff -= VTSize - Size; 7053 } 7054 7055 // If this store is smaller than the largest store see whether we can get 7056 // the smaller value for free with a truncate. 7057 SDValue Value = MemSetValue; 7058 if (VT.bitsLT(LargestVT)) { 7059 if (!LargestVT.isVector() && !VT.isVector() && 7060 TLI.isTruncateFree(LargestVT, VT)) 7061 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7062 else 7063 Value = getMemsetValue(Src, VT, DAG, dl); 7064 } 7065 assert(Value.getValueType() == VT && "Value with wrong type."); 7066 SDValue Store = DAG.getStore( 7067 Chain, dl, Value, 7068 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7069 DstPtrInfo.getWithOffset(DstOff), Alignment, 7070 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7071 NewAAInfo); 7072 OutChains.push_back(Store); 7073 DstOff += VT.getSizeInBits() / 8; 7074 Size -= VTSize; 7075 } 7076 7077 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7078 } 7079 7080 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7081 unsigned AS) { 7082 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7083 // pointer operands can be losslessly bitcasted to pointers of address space 0 7084 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7085 report_fatal_error("cannot lower memory intrinsic in address space " + 7086 Twine(AS)); 7087 } 7088 } 7089 7090 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7091 SDValue Src, SDValue Size, Align Alignment, 7092 bool isVol, bool AlwaysInline, bool isTailCall, 7093 MachinePointerInfo DstPtrInfo, 7094 MachinePointerInfo SrcPtrInfo, 7095 const AAMDNodes &AAInfo) { 7096 // Check to see if we should lower the memcpy to loads and stores first. 7097 // For cases within the target-specified limits, this is the best choice. 7098 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7099 if (ConstantSize) { 7100 // Memcpy with size zero? Just return the original chain. 7101 if (ConstantSize->isZero()) 7102 return Chain; 7103 7104 SDValue Result = getMemcpyLoadsAndStores( 7105 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7106 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7107 if (Result.getNode()) 7108 return Result; 7109 } 7110 7111 // Then check to see if we should lower the memcpy with target-specific 7112 // code. If the target chooses to do this, this is the next best. 7113 if (TSI) { 7114 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7115 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7116 DstPtrInfo, SrcPtrInfo); 7117 if (Result.getNode()) 7118 return Result; 7119 } 7120 7121 // If we really need inline code and the target declined to provide it, 7122 // use a (potentially long) sequence of loads and stores. 7123 if (AlwaysInline) { 7124 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7125 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7126 ConstantSize->getZExtValue(), Alignment, 7127 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7128 } 7129 7130 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7131 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7132 7133 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7134 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7135 // respect volatile, so they may do things like read or write memory 7136 // beyond the given memory regions. But fixing this isn't easy, and most 7137 // people don't care. 7138 7139 // Emit a library call. 7140 TargetLowering::ArgListTy Args; 7141 TargetLowering::ArgListEntry Entry; 7142 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7143 Entry.Node = Dst; Args.push_back(Entry); 7144 Entry.Node = Src; Args.push_back(Entry); 7145 7146 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7147 Entry.Node = Size; Args.push_back(Entry); 7148 // FIXME: pass in SDLoc 7149 TargetLowering::CallLoweringInfo CLI(*this); 7150 CLI.setDebugLoc(dl) 7151 .setChain(Chain) 7152 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7153 Dst.getValueType().getTypeForEVT(*getContext()), 7154 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7155 TLI->getPointerTy(getDataLayout())), 7156 std::move(Args)) 7157 .setDiscardResult() 7158 .setTailCall(isTailCall); 7159 7160 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7161 return CallResult.second; 7162 } 7163 7164 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7165 SDValue Dst, unsigned DstAlign, 7166 SDValue Src, unsigned SrcAlign, 7167 SDValue Size, Type *SizeTy, 7168 unsigned ElemSz, bool isTailCall, 7169 MachinePointerInfo DstPtrInfo, 7170 MachinePointerInfo SrcPtrInfo) { 7171 // Emit a library call. 7172 TargetLowering::ArgListTy Args; 7173 TargetLowering::ArgListEntry Entry; 7174 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7175 Entry.Node = Dst; 7176 Args.push_back(Entry); 7177 7178 Entry.Node = Src; 7179 Args.push_back(Entry); 7180 7181 Entry.Ty = SizeTy; 7182 Entry.Node = Size; 7183 Args.push_back(Entry); 7184 7185 RTLIB::Libcall LibraryCall = 7186 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7187 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7188 report_fatal_error("Unsupported element size"); 7189 7190 TargetLowering::CallLoweringInfo CLI(*this); 7191 CLI.setDebugLoc(dl) 7192 .setChain(Chain) 7193 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7194 Type::getVoidTy(*getContext()), 7195 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7196 TLI->getPointerTy(getDataLayout())), 7197 std::move(Args)) 7198 .setDiscardResult() 7199 .setTailCall(isTailCall); 7200 7201 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7202 return CallResult.second; 7203 } 7204 7205 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7206 SDValue Src, SDValue Size, Align Alignment, 7207 bool isVol, bool isTailCall, 7208 MachinePointerInfo DstPtrInfo, 7209 MachinePointerInfo SrcPtrInfo, 7210 const AAMDNodes &AAInfo) { 7211 // Check to see if we should lower the memmove to loads and stores first. 7212 // For cases within the target-specified limits, this is the best choice. 7213 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7214 if (ConstantSize) { 7215 // Memmove with size zero? Just return the original chain. 7216 if (ConstantSize->isZero()) 7217 return Chain; 7218 7219 SDValue Result = getMemmoveLoadsAndStores( 7220 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7221 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7222 if (Result.getNode()) 7223 return Result; 7224 } 7225 7226 // Then check to see if we should lower the memmove with target-specific 7227 // code. If the target chooses to do this, this is the next best. 7228 if (TSI) { 7229 SDValue Result = 7230 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7231 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7232 if (Result.getNode()) 7233 return Result; 7234 } 7235 7236 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7237 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7238 7239 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7240 // not be safe. See memcpy above for more details. 7241 7242 // Emit a library call. 7243 TargetLowering::ArgListTy Args; 7244 TargetLowering::ArgListEntry Entry; 7245 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7246 Entry.Node = Dst; Args.push_back(Entry); 7247 Entry.Node = Src; Args.push_back(Entry); 7248 7249 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7250 Entry.Node = Size; Args.push_back(Entry); 7251 // FIXME: pass in SDLoc 7252 TargetLowering::CallLoweringInfo CLI(*this); 7253 CLI.setDebugLoc(dl) 7254 .setChain(Chain) 7255 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7256 Dst.getValueType().getTypeForEVT(*getContext()), 7257 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7258 TLI->getPointerTy(getDataLayout())), 7259 std::move(Args)) 7260 .setDiscardResult() 7261 .setTailCall(isTailCall); 7262 7263 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7264 return CallResult.second; 7265 } 7266 7267 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7268 SDValue Dst, unsigned DstAlign, 7269 SDValue Src, unsigned SrcAlign, 7270 SDValue Size, Type *SizeTy, 7271 unsigned ElemSz, bool isTailCall, 7272 MachinePointerInfo DstPtrInfo, 7273 MachinePointerInfo SrcPtrInfo) { 7274 // Emit a library call. 7275 TargetLowering::ArgListTy Args; 7276 TargetLowering::ArgListEntry Entry; 7277 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7278 Entry.Node = Dst; 7279 Args.push_back(Entry); 7280 7281 Entry.Node = Src; 7282 Args.push_back(Entry); 7283 7284 Entry.Ty = SizeTy; 7285 Entry.Node = Size; 7286 Args.push_back(Entry); 7287 7288 RTLIB::Libcall LibraryCall = 7289 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7290 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7291 report_fatal_error("Unsupported element size"); 7292 7293 TargetLowering::CallLoweringInfo CLI(*this); 7294 CLI.setDebugLoc(dl) 7295 .setChain(Chain) 7296 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7297 Type::getVoidTy(*getContext()), 7298 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7299 TLI->getPointerTy(getDataLayout())), 7300 std::move(Args)) 7301 .setDiscardResult() 7302 .setTailCall(isTailCall); 7303 7304 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7305 return CallResult.second; 7306 } 7307 7308 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7309 SDValue Src, SDValue Size, Align Alignment, 7310 bool isVol, bool isTailCall, 7311 MachinePointerInfo DstPtrInfo, 7312 const AAMDNodes &AAInfo) { 7313 // Check to see if we should lower the memset to stores first. 7314 // For cases within the target-specified limits, this is the best choice. 7315 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7316 if (ConstantSize) { 7317 // Memset with size zero? Just return the original chain. 7318 if (ConstantSize->isZero()) 7319 return Chain; 7320 7321 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7322 ConstantSize->getZExtValue(), Alignment, 7323 isVol, DstPtrInfo, AAInfo); 7324 7325 if (Result.getNode()) 7326 return Result; 7327 } 7328 7329 // Then check to see if we should lower the memset with target-specific 7330 // code. If the target chooses to do this, this is the next best. 7331 if (TSI) { 7332 SDValue Result = TSI->EmitTargetCodeForMemset( 7333 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7334 if (Result.getNode()) 7335 return Result; 7336 } 7337 7338 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7339 7340 // Emit a library call. 7341 TargetLowering::ArgListTy Args; 7342 TargetLowering::ArgListEntry Entry; 7343 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7344 Args.push_back(Entry); 7345 Entry.Node = Src; 7346 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7347 Args.push_back(Entry); 7348 Entry.Node = Size; 7349 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7350 Args.push_back(Entry); 7351 7352 // FIXME: pass in SDLoc 7353 TargetLowering::CallLoweringInfo CLI(*this); 7354 CLI.setDebugLoc(dl) 7355 .setChain(Chain) 7356 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7357 Dst.getValueType().getTypeForEVT(*getContext()), 7358 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7359 TLI->getPointerTy(getDataLayout())), 7360 std::move(Args)) 7361 .setDiscardResult() 7362 .setTailCall(isTailCall); 7363 7364 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7365 return CallResult.second; 7366 } 7367 7368 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7369 SDValue Dst, unsigned DstAlign, 7370 SDValue Value, SDValue Size, Type *SizeTy, 7371 unsigned ElemSz, bool isTailCall, 7372 MachinePointerInfo DstPtrInfo) { 7373 // Emit a library call. 7374 TargetLowering::ArgListTy Args; 7375 TargetLowering::ArgListEntry Entry; 7376 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7377 Entry.Node = Dst; 7378 Args.push_back(Entry); 7379 7380 Entry.Ty = Type::getInt8Ty(*getContext()); 7381 Entry.Node = Value; 7382 Args.push_back(Entry); 7383 7384 Entry.Ty = SizeTy; 7385 Entry.Node = Size; 7386 Args.push_back(Entry); 7387 7388 RTLIB::Libcall LibraryCall = 7389 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7390 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7391 report_fatal_error("Unsupported element size"); 7392 7393 TargetLowering::CallLoweringInfo CLI(*this); 7394 CLI.setDebugLoc(dl) 7395 .setChain(Chain) 7396 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7397 Type::getVoidTy(*getContext()), 7398 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7399 TLI->getPointerTy(getDataLayout())), 7400 std::move(Args)) 7401 .setDiscardResult() 7402 .setTailCall(isTailCall); 7403 7404 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7405 return CallResult.second; 7406 } 7407 7408 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7409 SDVTList VTList, ArrayRef<SDValue> Ops, 7410 MachineMemOperand *MMO) { 7411 FoldingSetNodeID ID; 7412 ID.AddInteger(MemVT.getRawBits()); 7413 AddNodeIDNode(ID, Opcode, VTList, Ops); 7414 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7415 ID.AddInteger(MMO->getFlags()); 7416 void* IP = nullptr; 7417 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7418 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7419 return SDValue(E, 0); 7420 } 7421 7422 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7423 VTList, MemVT, MMO); 7424 createOperands(N, Ops); 7425 7426 CSEMap.InsertNode(N, IP); 7427 InsertNode(N); 7428 return SDValue(N, 0); 7429 } 7430 7431 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7432 EVT MemVT, SDVTList VTs, SDValue Chain, 7433 SDValue Ptr, SDValue Cmp, SDValue Swp, 7434 MachineMemOperand *MMO) { 7435 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7436 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7437 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7438 7439 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7440 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7441 } 7442 7443 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7444 SDValue Chain, SDValue Ptr, SDValue Val, 7445 MachineMemOperand *MMO) { 7446 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7447 Opcode == ISD::ATOMIC_LOAD_SUB || 7448 Opcode == ISD::ATOMIC_LOAD_AND || 7449 Opcode == ISD::ATOMIC_LOAD_CLR || 7450 Opcode == ISD::ATOMIC_LOAD_OR || 7451 Opcode == ISD::ATOMIC_LOAD_XOR || 7452 Opcode == ISD::ATOMIC_LOAD_NAND || 7453 Opcode == ISD::ATOMIC_LOAD_MIN || 7454 Opcode == ISD::ATOMIC_LOAD_MAX || 7455 Opcode == ISD::ATOMIC_LOAD_UMIN || 7456 Opcode == ISD::ATOMIC_LOAD_UMAX || 7457 Opcode == ISD::ATOMIC_LOAD_FADD || 7458 Opcode == ISD::ATOMIC_LOAD_FSUB || 7459 Opcode == ISD::ATOMIC_SWAP || 7460 Opcode == ISD::ATOMIC_STORE) && 7461 "Invalid Atomic Op"); 7462 7463 EVT VT = Val.getValueType(); 7464 7465 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7466 getVTList(VT, MVT::Other); 7467 SDValue Ops[] = {Chain, Ptr, Val}; 7468 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7469 } 7470 7471 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7472 EVT VT, SDValue Chain, SDValue Ptr, 7473 MachineMemOperand *MMO) { 7474 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7475 7476 SDVTList VTs = getVTList(VT, MVT::Other); 7477 SDValue Ops[] = {Chain, Ptr}; 7478 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7479 } 7480 7481 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7482 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7483 if (Ops.size() == 1) 7484 return Ops[0]; 7485 7486 SmallVector<EVT, 4> VTs; 7487 VTs.reserve(Ops.size()); 7488 for (const SDValue &Op : Ops) 7489 VTs.push_back(Op.getValueType()); 7490 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7491 } 7492 7493 SDValue SelectionDAG::getMemIntrinsicNode( 7494 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7495 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7496 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7497 if (!Size && MemVT.isScalableVector()) 7498 Size = MemoryLocation::UnknownSize; 7499 else if (!Size) 7500 Size = MemVT.getStoreSize(); 7501 7502 MachineFunction &MF = getMachineFunction(); 7503 MachineMemOperand *MMO = 7504 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7505 7506 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7507 } 7508 7509 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7510 SDVTList VTList, 7511 ArrayRef<SDValue> Ops, EVT MemVT, 7512 MachineMemOperand *MMO) { 7513 assert((Opcode == ISD::INTRINSIC_VOID || 7514 Opcode == ISD::INTRINSIC_W_CHAIN || 7515 Opcode == ISD::PREFETCH || 7516 ((int)Opcode <= std::numeric_limits<int>::max() && 7517 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7518 "Opcode is not a memory-accessing opcode!"); 7519 7520 // Memoize the node unless it returns a flag. 7521 MemIntrinsicSDNode *N; 7522 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7523 FoldingSetNodeID ID; 7524 AddNodeIDNode(ID, Opcode, VTList, Ops); 7525 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7526 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7527 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7528 ID.AddInteger(MMO->getFlags()); 7529 void *IP = nullptr; 7530 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7531 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7532 return SDValue(E, 0); 7533 } 7534 7535 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7536 VTList, MemVT, MMO); 7537 createOperands(N, Ops); 7538 7539 CSEMap.InsertNode(N, IP); 7540 } else { 7541 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7542 VTList, MemVT, MMO); 7543 createOperands(N, Ops); 7544 } 7545 InsertNode(N); 7546 SDValue V(N, 0); 7547 NewSDValueDbgMsg(V, "Creating new node: ", this); 7548 return V; 7549 } 7550 7551 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7552 SDValue Chain, int FrameIndex, 7553 int64_t Size, int64_t Offset) { 7554 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7555 const auto VTs = getVTList(MVT::Other); 7556 SDValue Ops[2] = { 7557 Chain, 7558 getFrameIndex(FrameIndex, 7559 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7560 true)}; 7561 7562 FoldingSetNodeID ID; 7563 AddNodeIDNode(ID, Opcode, VTs, Ops); 7564 ID.AddInteger(FrameIndex); 7565 ID.AddInteger(Size); 7566 ID.AddInteger(Offset); 7567 void *IP = nullptr; 7568 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7569 return SDValue(E, 0); 7570 7571 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7572 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7573 createOperands(N, Ops); 7574 CSEMap.InsertNode(N, IP); 7575 InsertNode(N); 7576 SDValue V(N, 0); 7577 NewSDValueDbgMsg(V, "Creating new node: ", this); 7578 return V; 7579 } 7580 7581 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7582 uint64_t Guid, uint64_t Index, 7583 uint32_t Attr) { 7584 const unsigned Opcode = ISD::PSEUDO_PROBE; 7585 const auto VTs = getVTList(MVT::Other); 7586 SDValue Ops[] = {Chain}; 7587 FoldingSetNodeID ID; 7588 AddNodeIDNode(ID, Opcode, VTs, Ops); 7589 ID.AddInteger(Guid); 7590 ID.AddInteger(Index); 7591 void *IP = nullptr; 7592 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7593 return SDValue(E, 0); 7594 7595 auto *N = newSDNode<PseudoProbeSDNode>( 7596 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7597 createOperands(N, Ops); 7598 CSEMap.InsertNode(N, IP); 7599 InsertNode(N); 7600 SDValue V(N, 0); 7601 NewSDValueDbgMsg(V, "Creating new node: ", this); 7602 return V; 7603 } 7604 7605 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7606 /// MachinePointerInfo record from it. This is particularly useful because the 7607 /// code generator has many cases where it doesn't bother passing in a 7608 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7609 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7610 SelectionDAG &DAG, SDValue Ptr, 7611 int64_t Offset = 0) { 7612 // If this is FI+Offset, we can model it. 7613 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7614 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7615 FI->getIndex(), Offset); 7616 7617 // If this is (FI+Offset1)+Offset2, we can model it. 7618 if (Ptr.getOpcode() != ISD::ADD || 7619 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7620 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7621 return Info; 7622 7623 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7624 return MachinePointerInfo::getFixedStack( 7625 DAG.getMachineFunction(), FI, 7626 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7627 } 7628 7629 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7630 /// MachinePointerInfo record from it. This is particularly useful because the 7631 /// code generator has many cases where it doesn't bother passing in a 7632 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7633 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7634 SelectionDAG &DAG, SDValue Ptr, 7635 SDValue OffsetOp) { 7636 // If the 'Offset' value isn't a constant, we can't handle this. 7637 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7638 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7639 if (OffsetOp.isUndef()) 7640 return InferPointerInfo(Info, DAG, Ptr); 7641 return Info; 7642 } 7643 7644 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7645 EVT VT, const SDLoc &dl, SDValue Chain, 7646 SDValue Ptr, SDValue Offset, 7647 MachinePointerInfo PtrInfo, EVT MemVT, 7648 Align Alignment, 7649 MachineMemOperand::Flags MMOFlags, 7650 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7651 assert(Chain.getValueType() == MVT::Other && 7652 "Invalid chain type"); 7653 7654 MMOFlags |= MachineMemOperand::MOLoad; 7655 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7656 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7657 // clients. 7658 if (PtrInfo.V.isNull()) 7659 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7660 7661 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7662 MachineFunction &MF = getMachineFunction(); 7663 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7664 Alignment, AAInfo, Ranges); 7665 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7666 } 7667 7668 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7669 EVT VT, const SDLoc &dl, SDValue Chain, 7670 SDValue Ptr, SDValue Offset, EVT MemVT, 7671 MachineMemOperand *MMO) { 7672 if (VT == MemVT) { 7673 ExtType = ISD::NON_EXTLOAD; 7674 } else if (ExtType == ISD::NON_EXTLOAD) { 7675 assert(VT == MemVT && "Non-extending load from different memory type!"); 7676 } else { 7677 // Extending load. 7678 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7679 "Should only be an extending load, not truncating!"); 7680 assert(VT.isInteger() == MemVT.isInteger() && 7681 "Cannot convert from FP to Int or Int -> FP!"); 7682 assert(VT.isVector() == MemVT.isVector() && 7683 "Cannot use an ext load to convert to or from a vector!"); 7684 assert((!VT.isVector() || 7685 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7686 "Cannot use an ext load to change the number of vector elements!"); 7687 } 7688 7689 bool Indexed = AM != ISD::UNINDEXED; 7690 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7691 7692 SDVTList VTs = Indexed ? 7693 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7694 SDValue Ops[] = { Chain, Ptr, Offset }; 7695 FoldingSetNodeID ID; 7696 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7697 ID.AddInteger(MemVT.getRawBits()); 7698 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7699 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7700 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7701 ID.AddInteger(MMO->getFlags()); 7702 void *IP = nullptr; 7703 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7704 cast<LoadSDNode>(E)->refineAlignment(MMO); 7705 return SDValue(E, 0); 7706 } 7707 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7708 ExtType, MemVT, MMO); 7709 createOperands(N, Ops); 7710 7711 CSEMap.InsertNode(N, IP); 7712 InsertNode(N); 7713 SDValue V(N, 0); 7714 NewSDValueDbgMsg(V, "Creating new node: ", this); 7715 return V; 7716 } 7717 7718 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7719 SDValue Ptr, MachinePointerInfo PtrInfo, 7720 MaybeAlign Alignment, 7721 MachineMemOperand::Flags MMOFlags, 7722 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7723 SDValue Undef = getUNDEF(Ptr.getValueType()); 7724 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7725 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7726 } 7727 7728 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7729 SDValue Ptr, MachineMemOperand *MMO) { 7730 SDValue Undef = getUNDEF(Ptr.getValueType()); 7731 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7732 VT, MMO); 7733 } 7734 7735 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7736 EVT VT, SDValue Chain, SDValue Ptr, 7737 MachinePointerInfo PtrInfo, EVT MemVT, 7738 MaybeAlign Alignment, 7739 MachineMemOperand::Flags MMOFlags, 7740 const AAMDNodes &AAInfo) { 7741 SDValue Undef = getUNDEF(Ptr.getValueType()); 7742 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7743 MemVT, Alignment, MMOFlags, AAInfo); 7744 } 7745 7746 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7747 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7748 MachineMemOperand *MMO) { 7749 SDValue Undef = getUNDEF(Ptr.getValueType()); 7750 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7751 MemVT, MMO); 7752 } 7753 7754 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7755 SDValue Base, SDValue Offset, 7756 ISD::MemIndexedMode AM) { 7757 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7758 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7759 // Don't propagate the invariant or dereferenceable flags. 7760 auto MMOFlags = 7761 LD->getMemOperand()->getFlags() & 7762 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7763 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7764 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7765 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7766 } 7767 7768 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7769 SDValue Ptr, MachinePointerInfo PtrInfo, 7770 Align Alignment, 7771 MachineMemOperand::Flags MMOFlags, 7772 const AAMDNodes &AAInfo) { 7773 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7774 7775 MMOFlags |= MachineMemOperand::MOStore; 7776 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7777 7778 if (PtrInfo.V.isNull()) 7779 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7780 7781 MachineFunction &MF = getMachineFunction(); 7782 uint64_t Size = 7783 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7784 MachineMemOperand *MMO = 7785 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7786 return getStore(Chain, dl, Val, Ptr, MMO); 7787 } 7788 7789 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7790 SDValue Ptr, MachineMemOperand *MMO) { 7791 assert(Chain.getValueType() == MVT::Other && 7792 "Invalid chain type"); 7793 EVT VT = Val.getValueType(); 7794 SDVTList VTs = getVTList(MVT::Other); 7795 SDValue Undef = getUNDEF(Ptr.getValueType()); 7796 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7797 FoldingSetNodeID ID; 7798 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7799 ID.AddInteger(VT.getRawBits()); 7800 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7801 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7802 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7803 ID.AddInteger(MMO->getFlags()); 7804 void *IP = nullptr; 7805 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7806 cast<StoreSDNode>(E)->refineAlignment(MMO); 7807 return SDValue(E, 0); 7808 } 7809 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7810 ISD::UNINDEXED, false, VT, MMO); 7811 createOperands(N, Ops); 7812 7813 CSEMap.InsertNode(N, IP); 7814 InsertNode(N); 7815 SDValue V(N, 0); 7816 NewSDValueDbgMsg(V, "Creating new node: ", this); 7817 return V; 7818 } 7819 7820 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7821 SDValue Ptr, MachinePointerInfo PtrInfo, 7822 EVT SVT, Align Alignment, 7823 MachineMemOperand::Flags MMOFlags, 7824 const AAMDNodes &AAInfo) { 7825 assert(Chain.getValueType() == MVT::Other && 7826 "Invalid chain type"); 7827 7828 MMOFlags |= MachineMemOperand::MOStore; 7829 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7830 7831 if (PtrInfo.V.isNull()) 7832 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7833 7834 MachineFunction &MF = getMachineFunction(); 7835 MachineMemOperand *MMO = MF.getMachineMemOperand( 7836 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7837 Alignment, AAInfo); 7838 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7839 } 7840 7841 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7842 SDValue Ptr, EVT SVT, 7843 MachineMemOperand *MMO) { 7844 EVT VT = Val.getValueType(); 7845 7846 assert(Chain.getValueType() == MVT::Other && 7847 "Invalid chain type"); 7848 if (VT == SVT) 7849 return getStore(Chain, dl, Val, Ptr, MMO); 7850 7851 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7852 "Should only be a truncating store, not extending!"); 7853 assert(VT.isInteger() == SVT.isInteger() && 7854 "Can't do FP-INT conversion!"); 7855 assert(VT.isVector() == SVT.isVector() && 7856 "Cannot use trunc store to convert to or from a vector!"); 7857 assert((!VT.isVector() || 7858 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7859 "Cannot use trunc store to change the number of vector elements!"); 7860 7861 SDVTList VTs = getVTList(MVT::Other); 7862 SDValue Undef = getUNDEF(Ptr.getValueType()); 7863 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7864 FoldingSetNodeID ID; 7865 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7866 ID.AddInteger(SVT.getRawBits()); 7867 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7868 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7869 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7870 ID.AddInteger(MMO->getFlags()); 7871 void *IP = nullptr; 7872 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7873 cast<StoreSDNode>(E)->refineAlignment(MMO); 7874 return SDValue(E, 0); 7875 } 7876 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7877 ISD::UNINDEXED, true, SVT, MMO); 7878 createOperands(N, Ops); 7879 7880 CSEMap.InsertNode(N, IP); 7881 InsertNode(N); 7882 SDValue V(N, 0); 7883 NewSDValueDbgMsg(V, "Creating new node: ", this); 7884 return V; 7885 } 7886 7887 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7888 SDValue Base, SDValue Offset, 7889 ISD::MemIndexedMode AM) { 7890 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7891 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7892 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7893 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7894 FoldingSetNodeID ID; 7895 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7896 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7897 ID.AddInteger(ST->getRawSubclassData()); 7898 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7899 ID.AddInteger(ST->getMemOperand()->getFlags()); 7900 void *IP = nullptr; 7901 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7902 return SDValue(E, 0); 7903 7904 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7905 ST->isTruncatingStore(), ST->getMemoryVT(), 7906 ST->getMemOperand()); 7907 createOperands(N, Ops); 7908 7909 CSEMap.InsertNode(N, IP); 7910 InsertNode(N); 7911 SDValue V(N, 0); 7912 NewSDValueDbgMsg(V, "Creating new node: ", this); 7913 return V; 7914 } 7915 7916 SDValue SelectionDAG::getLoadVP( 7917 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7918 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7919 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7920 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7921 const MDNode *Ranges, bool IsExpanding) { 7922 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7923 7924 MMOFlags |= MachineMemOperand::MOLoad; 7925 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7926 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7927 // clients. 7928 if (PtrInfo.V.isNull()) 7929 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7930 7931 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7932 MachineFunction &MF = getMachineFunction(); 7933 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7934 Alignment, AAInfo, Ranges); 7935 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7936 MMO, IsExpanding); 7937 } 7938 7939 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7940 ISD::LoadExtType ExtType, EVT VT, 7941 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7942 SDValue Offset, SDValue Mask, SDValue EVL, 7943 EVT MemVT, MachineMemOperand *MMO, 7944 bool IsExpanding) { 7945 bool Indexed = AM != ISD::UNINDEXED; 7946 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7947 7948 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7949 : getVTList(VT, MVT::Other); 7950 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7951 FoldingSetNodeID ID; 7952 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7953 ID.AddInteger(VT.getRawBits()); 7954 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7955 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7956 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7957 ID.AddInteger(MMO->getFlags()); 7958 void *IP = nullptr; 7959 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7960 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7961 return SDValue(E, 0); 7962 } 7963 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7964 ExtType, IsExpanding, MemVT, MMO); 7965 createOperands(N, Ops); 7966 7967 CSEMap.InsertNode(N, IP); 7968 InsertNode(N); 7969 SDValue V(N, 0); 7970 NewSDValueDbgMsg(V, "Creating new node: ", this); 7971 return V; 7972 } 7973 7974 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7975 SDValue Ptr, SDValue Mask, SDValue EVL, 7976 MachinePointerInfo PtrInfo, 7977 MaybeAlign Alignment, 7978 MachineMemOperand::Flags MMOFlags, 7979 const AAMDNodes &AAInfo, const MDNode *Ranges, 7980 bool IsExpanding) { 7981 SDValue Undef = getUNDEF(Ptr.getValueType()); 7982 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7983 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7984 IsExpanding); 7985 } 7986 7987 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7988 SDValue Ptr, SDValue Mask, SDValue EVL, 7989 MachineMemOperand *MMO, bool IsExpanding) { 7990 SDValue Undef = getUNDEF(Ptr.getValueType()); 7991 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7992 Mask, EVL, VT, MMO, IsExpanding); 7993 } 7994 7995 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7996 EVT VT, SDValue Chain, SDValue Ptr, 7997 SDValue Mask, SDValue EVL, 7998 MachinePointerInfo PtrInfo, EVT MemVT, 7999 MaybeAlign Alignment, 8000 MachineMemOperand::Flags MMOFlags, 8001 const AAMDNodes &AAInfo, bool IsExpanding) { 8002 SDValue Undef = getUNDEF(Ptr.getValueType()); 8003 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8004 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8005 IsExpanding); 8006 } 8007 8008 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8009 EVT VT, SDValue Chain, SDValue Ptr, 8010 SDValue Mask, SDValue EVL, EVT MemVT, 8011 MachineMemOperand *MMO, bool IsExpanding) { 8012 SDValue Undef = getUNDEF(Ptr.getValueType()); 8013 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8014 EVL, MemVT, MMO, IsExpanding); 8015 } 8016 8017 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8018 SDValue Base, SDValue Offset, 8019 ISD::MemIndexedMode AM) { 8020 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8021 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8022 // Don't propagate the invariant or dereferenceable flags. 8023 auto MMOFlags = 8024 LD->getMemOperand()->getFlags() & 8025 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8026 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8027 LD->getChain(), Base, Offset, LD->getMask(), 8028 LD->getVectorLength(), LD->getPointerInfo(), 8029 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8030 nullptr, LD->isExpandingLoad()); 8031 } 8032 8033 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8034 SDValue Ptr, SDValue Offset, SDValue Mask, 8035 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8036 ISD::MemIndexedMode AM, bool IsTruncating, 8037 bool IsCompressing) { 8038 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8039 bool Indexed = AM != ISD::UNINDEXED; 8040 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8041 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8042 : getVTList(MVT::Other); 8043 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8044 FoldingSetNodeID ID; 8045 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8046 ID.AddInteger(MemVT.getRawBits()); 8047 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8048 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8049 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8050 ID.AddInteger(MMO->getFlags()); 8051 void *IP = nullptr; 8052 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8053 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8054 return SDValue(E, 0); 8055 } 8056 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8057 IsTruncating, IsCompressing, MemVT, MMO); 8058 createOperands(N, Ops); 8059 8060 CSEMap.InsertNode(N, IP); 8061 InsertNode(N); 8062 SDValue V(N, 0); 8063 NewSDValueDbgMsg(V, "Creating new node: ", this); 8064 return V; 8065 } 8066 8067 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8068 SDValue Val, SDValue Ptr, SDValue Mask, 8069 SDValue EVL, MachinePointerInfo PtrInfo, 8070 EVT SVT, Align Alignment, 8071 MachineMemOperand::Flags MMOFlags, 8072 const AAMDNodes &AAInfo, 8073 bool IsCompressing) { 8074 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8075 8076 MMOFlags |= MachineMemOperand::MOStore; 8077 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8078 8079 if (PtrInfo.V.isNull()) 8080 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8081 8082 MachineFunction &MF = getMachineFunction(); 8083 MachineMemOperand *MMO = MF.getMachineMemOperand( 8084 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8085 Alignment, AAInfo); 8086 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8087 IsCompressing); 8088 } 8089 8090 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8091 SDValue Val, SDValue Ptr, SDValue Mask, 8092 SDValue EVL, EVT SVT, 8093 MachineMemOperand *MMO, 8094 bool IsCompressing) { 8095 EVT VT = Val.getValueType(); 8096 8097 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8098 if (VT == SVT) 8099 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8100 EVL, VT, MMO, ISD::UNINDEXED, 8101 /*IsTruncating*/ false, IsCompressing); 8102 8103 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8104 "Should only be a truncating store, not extending!"); 8105 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8106 assert(VT.isVector() == SVT.isVector() && 8107 "Cannot use trunc store to convert to or from a vector!"); 8108 assert((!VT.isVector() || 8109 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8110 "Cannot use trunc store to change the number of vector elements!"); 8111 8112 SDVTList VTs = getVTList(MVT::Other); 8113 SDValue Undef = getUNDEF(Ptr.getValueType()); 8114 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8115 FoldingSetNodeID ID; 8116 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8117 ID.AddInteger(SVT.getRawBits()); 8118 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8119 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8120 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8121 ID.AddInteger(MMO->getFlags()); 8122 void *IP = nullptr; 8123 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8124 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8125 return SDValue(E, 0); 8126 } 8127 auto *N = 8128 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8129 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8130 createOperands(N, Ops); 8131 8132 CSEMap.InsertNode(N, IP); 8133 InsertNode(N); 8134 SDValue V(N, 0); 8135 NewSDValueDbgMsg(V, "Creating new node: ", this); 8136 return V; 8137 } 8138 8139 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8140 SDValue Base, SDValue Offset, 8141 ISD::MemIndexedMode AM) { 8142 auto *ST = cast<VPStoreSDNode>(OrigStore); 8143 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8144 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8145 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8146 Offset, ST->getMask(), ST->getVectorLength()}; 8147 FoldingSetNodeID ID; 8148 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8149 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8150 ID.AddInteger(ST->getRawSubclassData()); 8151 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8152 ID.AddInteger(ST->getMemOperand()->getFlags()); 8153 void *IP = nullptr; 8154 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8155 return SDValue(E, 0); 8156 8157 auto *N = newSDNode<VPStoreSDNode>( 8158 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8159 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8160 createOperands(N, Ops); 8161 8162 CSEMap.InsertNode(N, IP); 8163 InsertNode(N); 8164 SDValue V(N, 0); 8165 NewSDValueDbgMsg(V, "Creating new node: ", this); 8166 return V; 8167 } 8168 8169 SDValue SelectionDAG::getStridedLoadVP( 8170 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8171 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8172 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8173 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8174 const MDNode *Ranges, bool IsExpanding) { 8175 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8176 8177 MMOFlags |= MachineMemOperand::MOLoad; 8178 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8179 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8180 // clients. 8181 if (PtrInfo.V.isNull()) 8182 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8183 8184 uint64_t Size = MemoryLocation::UnknownSize; 8185 MachineFunction &MF = getMachineFunction(); 8186 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8187 Alignment, AAInfo, Ranges); 8188 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8189 EVL, MemVT, MMO, IsExpanding); 8190 } 8191 8192 SDValue SelectionDAG::getStridedLoadVP( 8193 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8194 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8195 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8196 bool Indexed = AM != ISD::UNINDEXED; 8197 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8198 8199 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8200 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8201 : getVTList(VT, MVT::Other); 8202 FoldingSetNodeID ID; 8203 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8204 ID.AddInteger(VT.getRawBits()); 8205 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8206 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8207 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8208 8209 void *IP = nullptr; 8210 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8211 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8212 return SDValue(E, 0); 8213 } 8214 8215 auto *N = 8216 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8217 ExtType, IsExpanding, MemVT, MMO); 8218 createOperands(N, Ops); 8219 CSEMap.InsertNode(N, IP); 8220 InsertNode(N); 8221 SDValue V(N, 0); 8222 NewSDValueDbgMsg(V, "Creating new node: ", this); 8223 return V; 8224 } 8225 8226 SDValue SelectionDAG::getStridedLoadVP( 8227 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8228 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8229 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8230 const MDNode *Ranges, bool IsExpanding) { 8231 SDValue Undef = getUNDEF(Ptr.getValueType()); 8232 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8233 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8234 MMOFlags, AAInfo, Ranges, IsExpanding); 8235 } 8236 8237 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8238 SDValue Ptr, SDValue Stride, 8239 SDValue Mask, SDValue EVL, 8240 MachineMemOperand *MMO, 8241 bool IsExpanding) { 8242 SDValue Undef = getUNDEF(Ptr.getValueType()); 8243 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8244 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8245 } 8246 8247 SDValue SelectionDAG::getExtStridedLoadVP( 8248 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8249 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8250 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8251 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8252 bool IsExpanding) { 8253 SDValue Undef = getUNDEF(Ptr.getValueType()); 8254 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8255 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8256 MMOFlags, AAInfo, nullptr, IsExpanding); 8257 } 8258 8259 SDValue SelectionDAG::getExtStridedLoadVP( 8260 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8261 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8262 MachineMemOperand *MMO, bool IsExpanding) { 8263 SDValue Undef = getUNDEF(Ptr.getValueType()); 8264 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8265 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8266 } 8267 8268 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8269 SDValue Base, SDValue Offset, 8270 ISD::MemIndexedMode AM) { 8271 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8272 assert(SLD->getOffset().isUndef() && 8273 "Strided load is already a indexed load!"); 8274 // Don't propagate the invariant or dereferenceable flags. 8275 auto MMOFlags = 8276 SLD->getMemOperand()->getFlags() & 8277 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8278 return getStridedLoadVP( 8279 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8280 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8281 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8282 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8283 } 8284 8285 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8286 SDValue Val, SDValue Ptr, 8287 SDValue Offset, SDValue Stride, 8288 SDValue Mask, SDValue EVL, EVT MemVT, 8289 MachineMemOperand *MMO, 8290 ISD::MemIndexedMode AM, 8291 bool IsTruncating, bool IsCompressing) { 8292 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8293 bool Indexed = AM != ISD::UNINDEXED; 8294 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8295 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8296 : getVTList(MVT::Other); 8297 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8298 FoldingSetNodeID ID; 8299 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8300 ID.AddInteger(MemVT.getRawBits()); 8301 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8302 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8303 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8304 void *IP = nullptr; 8305 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8306 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8307 return SDValue(E, 0); 8308 } 8309 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8310 VTs, AM, IsTruncating, 8311 IsCompressing, MemVT, MMO); 8312 createOperands(N, Ops); 8313 8314 CSEMap.InsertNode(N, IP); 8315 InsertNode(N); 8316 SDValue V(N, 0); 8317 NewSDValueDbgMsg(V, "Creating new node: ", this); 8318 return V; 8319 } 8320 8321 SDValue SelectionDAG::getTruncStridedStoreVP( 8322 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8323 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8324 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8325 bool IsCompressing) { 8326 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8327 8328 MMOFlags |= MachineMemOperand::MOStore; 8329 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8330 8331 if (PtrInfo.V.isNull()) 8332 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8333 8334 MachineFunction &MF = getMachineFunction(); 8335 MachineMemOperand *MMO = MF.getMachineMemOperand( 8336 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8337 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8338 MMO, IsCompressing); 8339 } 8340 8341 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8342 SDValue Val, SDValue Ptr, 8343 SDValue Stride, SDValue Mask, 8344 SDValue EVL, EVT SVT, 8345 MachineMemOperand *MMO, 8346 bool IsCompressing) { 8347 EVT VT = Val.getValueType(); 8348 8349 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8350 if (VT == SVT) 8351 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8352 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8353 /*IsTruncating*/ false, IsCompressing); 8354 8355 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8356 "Should only be a truncating store, not extending!"); 8357 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8358 assert(VT.isVector() == SVT.isVector() && 8359 "Cannot use trunc store to convert to or from a vector!"); 8360 assert((!VT.isVector() || 8361 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8362 "Cannot use trunc store to change the number of vector elements!"); 8363 8364 SDVTList VTs = getVTList(MVT::Other); 8365 SDValue Undef = getUNDEF(Ptr.getValueType()); 8366 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8367 FoldingSetNodeID ID; 8368 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8369 ID.AddInteger(SVT.getRawBits()); 8370 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8371 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8372 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8373 void *IP = nullptr; 8374 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8375 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8376 return SDValue(E, 0); 8377 } 8378 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8379 VTs, ISD::UNINDEXED, true, 8380 IsCompressing, SVT, MMO); 8381 createOperands(N, Ops); 8382 8383 CSEMap.InsertNode(N, IP); 8384 InsertNode(N); 8385 SDValue V(N, 0); 8386 NewSDValueDbgMsg(V, "Creating new node: ", this); 8387 return V; 8388 } 8389 8390 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8391 const SDLoc &DL, SDValue Base, 8392 SDValue Offset, 8393 ISD::MemIndexedMode AM) { 8394 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8395 assert(SST->getOffset().isUndef() && 8396 "Strided store is already an indexed store!"); 8397 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8398 SDValue Ops[] = { 8399 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8400 SST->getMask(), SST->getVectorLength()}; 8401 FoldingSetNodeID ID; 8402 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8403 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8404 ID.AddInteger(SST->getRawSubclassData()); 8405 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8406 void *IP = nullptr; 8407 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8408 return SDValue(E, 0); 8409 8410 auto *N = newSDNode<VPStridedStoreSDNode>( 8411 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8412 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8413 createOperands(N, Ops); 8414 8415 CSEMap.InsertNode(N, IP); 8416 InsertNode(N); 8417 SDValue V(N, 0); 8418 NewSDValueDbgMsg(V, "Creating new node: ", this); 8419 return V; 8420 } 8421 8422 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8423 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8424 ISD::MemIndexType IndexType) { 8425 assert(Ops.size() == 6 && "Incompatible number of operands"); 8426 8427 FoldingSetNodeID ID; 8428 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8429 ID.AddInteger(VT.getRawBits()); 8430 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8431 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8432 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8433 ID.AddInteger(MMO->getFlags()); 8434 void *IP = nullptr; 8435 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8436 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8437 return SDValue(E, 0); 8438 } 8439 8440 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8441 VT, MMO, IndexType); 8442 createOperands(N, Ops); 8443 8444 assert(N->getMask().getValueType().getVectorElementCount() == 8445 N->getValueType(0).getVectorElementCount() && 8446 "Vector width mismatch between mask and data"); 8447 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8448 N->getValueType(0).getVectorElementCount().isScalable() && 8449 "Scalable flags of index and data do not match"); 8450 assert(ElementCount::isKnownGE( 8451 N->getIndex().getValueType().getVectorElementCount(), 8452 N->getValueType(0).getVectorElementCount()) && 8453 "Vector width mismatch between index and data"); 8454 assert(isa<ConstantSDNode>(N->getScale()) && 8455 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8456 "Scale should be a constant power of 2"); 8457 8458 CSEMap.InsertNode(N, IP); 8459 InsertNode(N); 8460 SDValue V(N, 0); 8461 NewSDValueDbgMsg(V, "Creating new node: ", this); 8462 return V; 8463 } 8464 8465 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8466 ArrayRef<SDValue> Ops, 8467 MachineMemOperand *MMO, 8468 ISD::MemIndexType IndexType) { 8469 assert(Ops.size() == 7 && "Incompatible number of operands"); 8470 8471 FoldingSetNodeID ID; 8472 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8473 ID.AddInteger(VT.getRawBits()); 8474 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8475 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8476 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8477 ID.AddInteger(MMO->getFlags()); 8478 void *IP = nullptr; 8479 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8480 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8481 return SDValue(E, 0); 8482 } 8483 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8484 VT, MMO, IndexType); 8485 createOperands(N, Ops); 8486 8487 assert(N->getMask().getValueType().getVectorElementCount() == 8488 N->getValue().getValueType().getVectorElementCount() && 8489 "Vector width mismatch between mask and data"); 8490 assert( 8491 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8492 N->getValue().getValueType().getVectorElementCount().isScalable() && 8493 "Scalable flags of index and data do not match"); 8494 assert(ElementCount::isKnownGE( 8495 N->getIndex().getValueType().getVectorElementCount(), 8496 N->getValue().getValueType().getVectorElementCount()) && 8497 "Vector width mismatch between index and data"); 8498 assert(isa<ConstantSDNode>(N->getScale()) && 8499 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8500 "Scale should be a constant power of 2"); 8501 8502 CSEMap.InsertNode(N, IP); 8503 InsertNode(N); 8504 SDValue V(N, 0); 8505 NewSDValueDbgMsg(V, "Creating new node: ", this); 8506 return V; 8507 } 8508 8509 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8510 SDValue Base, SDValue Offset, SDValue Mask, 8511 SDValue PassThru, EVT MemVT, 8512 MachineMemOperand *MMO, 8513 ISD::MemIndexedMode AM, 8514 ISD::LoadExtType ExtTy, bool isExpanding) { 8515 bool Indexed = AM != ISD::UNINDEXED; 8516 assert((Indexed || Offset.isUndef()) && 8517 "Unindexed masked load with an offset!"); 8518 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8519 : getVTList(VT, MVT::Other); 8520 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8521 FoldingSetNodeID ID; 8522 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8523 ID.AddInteger(MemVT.getRawBits()); 8524 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8525 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8526 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8527 ID.AddInteger(MMO->getFlags()); 8528 void *IP = nullptr; 8529 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8530 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8531 return SDValue(E, 0); 8532 } 8533 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8534 AM, ExtTy, isExpanding, MemVT, MMO); 8535 createOperands(N, Ops); 8536 8537 CSEMap.InsertNode(N, IP); 8538 InsertNode(N); 8539 SDValue V(N, 0); 8540 NewSDValueDbgMsg(V, "Creating new node: ", this); 8541 return V; 8542 } 8543 8544 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8545 SDValue Base, SDValue Offset, 8546 ISD::MemIndexedMode AM) { 8547 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8548 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8549 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8550 Offset, LD->getMask(), LD->getPassThru(), 8551 LD->getMemoryVT(), LD->getMemOperand(), AM, 8552 LD->getExtensionType(), LD->isExpandingLoad()); 8553 } 8554 8555 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8556 SDValue Val, SDValue Base, SDValue Offset, 8557 SDValue Mask, EVT MemVT, 8558 MachineMemOperand *MMO, 8559 ISD::MemIndexedMode AM, bool IsTruncating, 8560 bool IsCompressing) { 8561 assert(Chain.getValueType() == MVT::Other && 8562 "Invalid chain type"); 8563 bool Indexed = AM != ISD::UNINDEXED; 8564 assert((Indexed || Offset.isUndef()) && 8565 "Unindexed masked store with an offset!"); 8566 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8567 : getVTList(MVT::Other); 8568 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8569 FoldingSetNodeID ID; 8570 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8571 ID.AddInteger(MemVT.getRawBits()); 8572 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8573 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8574 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8575 ID.AddInteger(MMO->getFlags()); 8576 void *IP = nullptr; 8577 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8578 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8579 return SDValue(E, 0); 8580 } 8581 auto *N = 8582 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8583 IsTruncating, IsCompressing, MemVT, MMO); 8584 createOperands(N, Ops); 8585 8586 CSEMap.InsertNode(N, IP); 8587 InsertNode(N); 8588 SDValue V(N, 0); 8589 NewSDValueDbgMsg(V, "Creating new node: ", this); 8590 return V; 8591 } 8592 8593 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8594 SDValue Base, SDValue Offset, 8595 ISD::MemIndexedMode AM) { 8596 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8597 assert(ST->getOffset().isUndef() && 8598 "Masked store is already a indexed store!"); 8599 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8600 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8601 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8602 } 8603 8604 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8605 ArrayRef<SDValue> Ops, 8606 MachineMemOperand *MMO, 8607 ISD::MemIndexType IndexType, 8608 ISD::LoadExtType ExtTy) { 8609 assert(Ops.size() == 6 && "Incompatible number of operands"); 8610 8611 FoldingSetNodeID ID; 8612 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8613 ID.AddInteger(MemVT.getRawBits()); 8614 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8615 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8616 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8617 ID.AddInteger(MMO->getFlags()); 8618 void *IP = nullptr; 8619 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8620 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8621 return SDValue(E, 0); 8622 } 8623 8624 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8625 VTs, MemVT, MMO, IndexType, ExtTy); 8626 createOperands(N, Ops); 8627 8628 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8629 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8630 assert(N->getMask().getValueType().getVectorElementCount() == 8631 N->getValueType(0).getVectorElementCount() && 8632 "Vector width mismatch between mask and data"); 8633 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8634 N->getValueType(0).getVectorElementCount().isScalable() && 8635 "Scalable flags of index and data do not match"); 8636 assert(ElementCount::isKnownGE( 8637 N->getIndex().getValueType().getVectorElementCount(), 8638 N->getValueType(0).getVectorElementCount()) && 8639 "Vector width mismatch between index and data"); 8640 assert(isa<ConstantSDNode>(N->getScale()) && 8641 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8642 "Scale should be a constant power of 2"); 8643 8644 CSEMap.InsertNode(N, IP); 8645 InsertNode(N); 8646 SDValue V(N, 0); 8647 NewSDValueDbgMsg(V, "Creating new node: ", this); 8648 return V; 8649 } 8650 8651 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8652 ArrayRef<SDValue> Ops, 8653 MachineMemOperand *MMO, 8654 ISD::MemIndexType IndexType, 8655 bool IsTrunc) { 8656 assert(Ops.size() == 6 && "Incompatible number of operands"); 8657 8658 FoldingSetNodeID ID; 8659 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8660 ID.AddInteger(MemVT.getRawBits()); 8661 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8662 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8663 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8664 ID.AddInteger(MMO->getFlags()); 8665 void *IP = nullptr; 8666 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8667 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8668 return SDValue(E, 0); 8669 } 8670 8671 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8672 VTs, MemVT, MMO, IndexType, IsTrunc); 8673 createOperands(N, Ops); 8674 8675 assert(N->getMask().getValueType().getVectorElementCount() == 8676 N->getValue().getValueType().getVectorElementCount() && 8677 "Vector width mismatch between mask and data"); 8678 assert( 8679 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8680 N->getValue().getValueType().getVectorElementCount().isScalable() && 8681 "Scalable flags of index and data do not match"); 8682 assert(ElementCount::isKnownGE( 8683 N->getIndex().getValueType().getVectorElementCount(), 8684 N->getValue().getValueType().getVectorElementCount()) && 8685 "Vector width mismatch between index and data"); 8686 assert(isa<ConstantSDNode>(N->getScale()) && 8687 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8688 "Scale should be a constant power of 2"); 8689 8690 CSEMap.InsertNode(N, IP); 8691 InsertNode(N); 8692 SDValue V(N, 0); 8693 NewSDValueDbgMsg(V, "Creating new node: ", this); 8694 return V; 8695 } 8696 8697 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8698 // select undef, T, F --> T (if T is a constant), otherwise F 8699 // select, ?, undef, F --> F 8700 // select, ?, T, undef --> T 8701 if (Cond.isUndef()) 8702 return isConstantValueOfAnyType(T) ? T : F; 8703 if (T.isUndef()) 8704 return F; 8705 if (F.isUndef()) 8706 return T; 8707 8708 // select true, T, F --> T 8709 // select false, T, F --> F 8710 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8711 return CondC->isZero() ? F : T; 8712 8713 // TODO: This should simplify VSELECT with constant condition using something 8714 // like this (but check boolean contents to be complete?): 8715 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8716 // return T; 8717 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8718 // return F; 8719 8720 // select ?, T, T --> T 8721 if (T == F) 8722 return T; 8723 8724 return SDValue(); 8725 } 8726 8727 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8728 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8729 if (X.isUndef()) 8730 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8731 // shift X, undef --> undef (because it may shift by the bitwidth) 8732 if (Y.isUndef()) 8733 return getUNDEF(X.getValueType()); 8734 8735 // shift 0, Y --> 0 8736 // shift X, 0 --> X 8737 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8738 return X; 8739 8740 // shift X, C >= bitwidth(X) --> undef 8741 // All vector elements must be too big (or undef) to avoid partial undefs. 8742 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8743 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8744 }; 8745 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8746 return getUNDEF(X.getValueType()); 8747 8748 return SDValue(); 8749 } 8750 8751 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8752 SDNodeFlags Flags) { 8753 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8754 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8755 // operation is poison. That result can be relaxed to undef. 8756 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8757 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8758 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8759 (YC && YC->getValueAPF().isNaN()); 8760 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8761 (YC && YC->getValueAPF().isInfinity()); 8762 8763 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8764 return getUNDEF(X.getValueType()); 8765 8766 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8767 return getUNDEF(X.getValueType()); 8768 8769 if (!YC) 8770 return SDValue(); 8771 8772 // X + -0.0 --> X 8773 if (Opcode == ISD::FADD) 8774 if (YC->getValueAPF().isNegZero()) 8775 return X; 8776 8777 // X - +0.0 --> X 8778 if (Opcode == ISD::FSUB) 8779 if (YC->getValueAPF().isPosZero()) 8780 return X; 8781 8782 // X * 1.0 --> X 8783 // X / 1.0 --> X 8784 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8785 if (YC->getValueAPF().isExactlyValue(1.0)) 8786 return X; 8787 8788 // X * 0.0 --> 0.0 8789 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8790 if (YC->getValueAPF().isZero()) 8791 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8792 8793 return SDValue(); 8794 } 8795 8796 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8797 SDValue Ptr, SDValue SV, unsigned Align) { 8798 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8799 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8800 } 8801 8802 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8803 ArrayRef<SDUse> Ops) { 8804 switch (Ops.size()) { 8805 case 0: return getNode(Opcode, DL, VT); 8806 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8807 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8808 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8809 default: break; 8810 } 8811 8812 // Copy from an SDUse array into an SDValue array for use with 8813 // the regular getNode logic. 8814 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8815 return getNode(Opcode, DL, VT, NewOps); 8816 } 8817 8818 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8819 ArrayRef<SDValue> Ops) { 8820 SDNodeFlags Flags; 8821 if (Inserter) 8822 Flags = Inserter->getFlags(); 8823 return getNode(Opcode, DL, VT, Ops, Flags); 8824 } 8825 8826 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8827 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8828 unsigned NumOps = Ops.size(); 8829 switch (NumOps) { 8830 case 0: return getNode(Opcode, DL, VT); 8831 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8832 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8833 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8834 default: break; 8835 } 8836 8837 #ifndef NDEBUG 8838 for (auto &Op : Ops) 8839 assert(Op.getOpcode() != ISD::DELETED_NODE && 8840 "Operand is DELETED_NODE!"); 8841 #endif 8842 8843 switch (Opcode) { 8844 default: break; 8845 case ISD::BUILD_VECTOR: 8846 // Attempt to simplify BUILD_VECTOR. 8847 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8848 return V; 8849 break; 8850 case ISD::CONCAT_VECTORS: 8851 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8852 return V; 8853 break; 8854 case ISD::SELECT_CC: 8855 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8856 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8857 "LHS and RHS of condition must have same type!"); 8858 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8859 "True and False arms of SelectCC must have same type!"); 8860 assert(Ops[2].getValueType() == VT && 8861 "select_cc node must be of same type as true and false value!"); 8862 break; 8863 case ISD::BR_CC: 8864 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8865 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8866 "LHS/RHS of comparison should match types!"); 8867 break; 8868 case ISD::VP_ADD: 8869 case ISD::VP_SUB: 8870 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8871 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8872 Opcode = ISD::VP_XOR; 8873 break; 8874 case ISD::VP_MUL: 8875 // If it is VP_MUL mask operation then turn it to VP_AND 8876 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8877 Opcode = ISD::VP_AND; 8878 break; 8879 case ISD::VP_REDUCE_MUL: 8880 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8881 if (VT == MVT::i1) 8882 Opcode = ISD::VP_REDUCE_AND; 8883 break; 8884 case ISD::VP_REDUCE_ADD: 8885 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8886 if (VT == MVT::i1) 8887 Opcode = ISD::VP_REDUCE_XOR; 8888 break; 8889 case ISD::VP_REDUCE_SMAX: 8890 case ISD::VP_REDUCE_UMIN: 8891 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8892 // VP_REDUCE_AND. 8893 if (VT == MVT::i1) 8894 Opcode = ISD::VP_REDUCE_AND; 8895 break; 8896 case ISD::VP_REDUCE_SMIN: 8897 case ISD::VP_REDUCE_UMAX: 8898 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8899 // VP_REDUCE_OR. 8900 if (VT == MVT::i1) 8901 Opcode = ISD::VP_REDUCE_OR; 8902 break; 8903 } 8904 8905 // Memoize nodes. 8906 SDNode *N; 8907 SDVTList VTs = getVTList(VT); 8908 8909 if (VT != MVT::Glue) { 8910 FoldingSetNodeID ID; 8911 AddNodeIDNode(ID, Opcode, VTs, Ops); 8912 void *IP = nullptr; 8913 8914 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8915 return SDValue(E, 0); 8916 8917 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8918 createOperands(N, Ops); 8919 8920 CSEMap.InsertNode(N, IP); 8921 } else { 8922 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8923 createOperands(N, Ops); 8924 } 8925 8926 N->setFlags(Flags); 8927 InsertNode(N); 8928 SDValue V(N, 0); 8929 NewSDValueDbgMsg(V, "Creating new node: ", this); 8930 return V; 8931 } 8932 8933 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8934 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8935 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8936 } 8937 8938 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8939 ArrayRef<SDValue> Ops) { 8940 SDNodeFlags Flags; 8941 if (Inserter) 8942 Flags = Inserter->getFlags(); 8943 return getNode(Opcode, DL, VTList, Ops, Flags); 8944 } 8945 8946 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8947 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8948 if (VTList.NumVTs == 1) 8949 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 8950 8951 #ifndef NDEBUG 8952 for (auto &Op : Ops) 8953 assert(Op.getOpcode() != ISD::DELETED_NODE && 8954 "Operand is DELETED_NODE!"); 8955 #endif 8956 8957 switch (Opcode) { 8958 case ISD::STRICT_FP_EXTEND: 8959 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8960 "Invalid STRICT_FP_EXTEND!"); 8961 assert(VTList.VTs[0].isFloatingPoint() && 8962 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8963 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8964 "STRICT_FP_EXTEND result type should be vector iff the operand " 8965 "type is vector!"); 8966 assert((!VTList.VTs[0].isVector() || 8967 VTList.VTs[0].getVectorNumElements() == 8968 Ops[1].getValueType().getVectorNumElements()) && 8969 "Vector element count mismatch!"); 8970 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8971 "Invalid fpext node, dst <= src!"); 8972 break; 8973 case ISD::STRICT_FP_ROUND: 8974 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8975 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8976 "STRICT_FP_ROUND result type should be vector iff the operand " 8977 "type is vector!"); 8978 assert((!VTList.VTs[0].isVector() || 8979 VTList.VTs[0].getVectorNumElements() == 8980 Ops[1].getValueType().getVectorNumElements()) && 8981 "Vector element count mismatch!"); 8982 assert(VTList.VTs[0].isFloatingPoint() && 8983 Ops[1].getValueType().isFloatingPoint() && 8984 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8985 isa<ConstantSDNode>(Ops[2]) && 8986 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8987 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8988 "Invalid STRICT_FP_ROUND!"); 8989 break; 8990 #if 0 8991 // FIXME: figure out how to safely handle things like 8992 // int foo(int x) { return 1 << (x & 255); } 8993 // int bar() { return foo(256); } 8994 case ISD::SRA_PARTS: 8995 case ISD::SRL_PARTS: 8996 case ISD::SHL_PARTS: 8997 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8998 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8999 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9000 else if (N3.getOpcode() == ISD::AND) 9001 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9002 // If the and is only masking out bits that cannot effect the shift, 9003 // eliminate the and. 9004 unsigned NumBits = VT.getScalarSizeInBits()*2; 9005 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9006 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9007 } 9008 break; 9009 #endif 9010 } 9011 9012 // Memoize the node unless it returns a flag. 9013 SDNode *N; 9014 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9015 FoldingSetNodeID ID; 9016 AddNodeIDNode(ID, Opcode, VTList, Ops); 9017 void *IP = nullptr; 9018 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9019 return SDValue(E, 0); 9020 9021 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9022 createOperands(N, Ops); 9023 CSEMap.InsertNode(N, IP); 9024 } else { 9025 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9026 createOperands(N, Ops); 9027 } 9028 9029 N->setFlags(Flags); 9030 InsertNode(N); 9031 SDValue V(N, 0); 9032 NewSDValueDbgMsg(V, "Creating new node: ", this); 9033 return V; 9034 } 9035 9036 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9037 SDVTList VTList) { 9038 return getNode(Opcode, DL, VTList, None); 9039 } 9040 9041 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9042 SDValue N1) { 9043 SDValue Ops[] = { N1 }; 9044 return getNode(Opcode, DL, VTList, Ops); 9045 } 9046 9047 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9048 SDValue N1, SDValue N2) { 9049 SDValue Ops[] = { N1, N2 }; 9050 return getNode(Opcode, DL, VTList, Ops); 9051 } 9052 9053 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9054 SDValue N1, SDValue N2, SDValue N3) { 9055 SDValue Ops[] = { N1, N2, N3 }; 9056 return getNode(Opcode, DL, VTList, Ops); 9057 } 9058 9059 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9060 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9061 SDValue Ops[] = { N1, N2, N3, N4 }; 9062 return getNode(Opcode, DL, VTList, Ops); 9063 } 9064 9065 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9066 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9067 SDValue N5) { 9068 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9069 return getNode(Opcode, DL, VTList, Ops); 9070 } 9071 9072 SDVTList SelectionDAG::getVTList(EVT VT) { 9073 return makeVTList(SDNode::getValueTypeList(VT), 1); 9074 } 9075 9076 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9077 FoldingSetNodeID ID; 9078 ID.AddInteger(2U); 9079 ID.AddInteger(VT1.getRawBits()); 9080 ID.AddInteger(VT2.getRawBits()); 9081 9082 void *IP = nullptr; 9083 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9084 if (!Result) { 9085 EVT *Array = Allocator.Allocate<EVT>(2); 9086 Array[0] = VT1; 9087 Array[1] = VT2; 9088 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9089 VTListMap.InsertNode(Result, IP); 9090 } 9091 return Result->getSDVTList(); 9092 } 9093 9094 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9095 FoldingSetNodeID ID; 9096 ID.AddInteger(3U); 9097 ID.AddInteger(VT1.getRawBits()); 9098 ID.AddInteger(VT2.getRawBits()); 9099 ID.AddInteger(VT3.getRawBits()); 9100 9101 void *IP = nullptr; 9102 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9103 if (!Result) { 9104 EVT *Array = Allocator.Allocate<EVT>(3); 9105 Array[0] = VT1; 9106 Array[1] = VT2; 9107 Array[2] = VT3; 9108 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9109 VTListMap.InsertNode(Result, IP); 9110 } 9111 return Result->getSDVTList(); 9112 } 9113 9114 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9115 FoldingSetNodeID ID; 9116 ID.AddInteger(4U); 9117 ID.AddInteger(VT1.getRawBits()); 9118 ID.AddInteger(VT2.getRawBits()); 9119 ID.AddInteger(VT3.getRawBits()); 9120 ID.AddInteger(VT4.getRawBits()); 9121 9122 void *IP = nullptr; 9123 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9124 if (!Result) { 9125 EVT *Array = Allocator.Allocate<EVT>(4); 9126 Array[0] = VT1; 9127 Array[1] = VT2; 9128 Array[2] = VT3; 9129 Array[3] = VT4; 9130 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9131 VTListMap.InsertNode(Result, IP); 9132 } 9133 return Result->getSDVTList(); 9134 } 9135 9136 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9137 unsigned NumVTs = VTs.size(); 9138 FoldingSetNodeID ID; 9139 ID.AddInteger(NumVTs); 9140 for (unsigned index = 0; index < NumVTs; index++) { 9141 ID.AddInteger(VTs[index].getRawBits()); 9142 } 9143 9144 void *IP = nullptr; 9145 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9146 if (!Result) { 9147 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9148 llvm::copy(VTs, Array); 9149 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9150 VTListMap.InsertNode(Result, IP); 9151 } 9152 return Result->getSDVTList(); 9153 } 9154 9155 9156 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9157 /// specified operands. If the resultant node already exists in the DAG, 9158 /// this does not modify the specified node, instead it returns the node that 9159 /// already exists. If the resultant node does not exist in the DAG, the 9160 /// input node is returned. As a degenerate case, if you specify the same 9161 /// input operands as the node already has, the input node is returned. 9162 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9163 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9164 9165 // Check to see if there is no change. 9166 if (Op == N->getOperand(0)) return N; 9167 9168 // See if the modified node already exists. 9169 void *InsertPos = nullptr; 9170 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9171 return Existing; 9172 9173 // Nope it doesn't. Remove the node from its current place in the maps. 9174 if (InsertPos) 9175 if (!RemoveNodeFromCSEMaps(N)) 9176 InsertPos = nullptr; 9177 9178 // Now we update the operands. 9179 N->OperandList[0].set(Op); 9180 9181 updateDivergence(N); 9182 // If this gets put into a CSE map, add it. 9183 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9184 return N; 9185 } 9186 9187 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9188 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9189 9190 // Check to see if there is no change. 9191 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9192 return N; // No operands changed, just return the input node. 9193 9194 // See if the modified node already exists. 9195 void *InsertPos = nullptr; 9196 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9197 return Existing; 9198 9199 // Nope it doesn't. Remove the node from its current place in the maps. 9200 if (InsertPos) 9201 if (!RemoveNodeFromCSEMaps(N)) 9202 InsertPos = nullptr; 9203 9204 // Now we update the operands. 9205 if (N->OperandList[0] != Op1) 9206 N->OperandList[0].set(Op1); 9207 if (N->OperandList[1] != Op2) 9208 N->OperandList[1].set(Op2); 9209 9210 updateDivergence(N); 9211 // If this gets put into a CSE map, add it. 9212 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9213 return N; 9214 } 9215 9216 SDNode *SelectionDAG:: 9217 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9218 SDValue Ops[] = { Op1, Op2, Op3 }; 9219 return UpdateNodeOperands(N, Ops); 9220 } 9221 9222 SDNode *SelectionDAG:: 9223 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9224 SDValue Op3, SDValue Op4) { 9225 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9226 return UpdateNodeOperands(N, Ops); 9227 } 9228 9229 SDNode *SelectionDAG:: 9230 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9231 SDValue Op3, SDValue Op4, SDValue Op5) { 9232 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9233 return UpdateNodeOperands(N, Ops); 9234 } 9235 9236 SDNode *SelectionDAG:: 9237 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9238 unsigned NumOps = Ops.size(); 9239 assert(N->getNumOperands() == NumOps && 9240 "Update with wrong number of operands"); 9241 9242 // If no operands changed just return the input node. 9243 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9244 return N; 9245 9246 // See if the modified node already exists. 9247 void *InsertPos = nullptr; 9248 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9249 return Existing; 9250 9251 // Nope it doesn't. Remove the node from its current place in the maps. 9252 if (InsertPos) 9253 if (!RemoveNodeFromCSEMaps(N)) 9254 InsertPos = nullptr; 9255 9256 // Now we update the operands. 9257 for (unsigned i = 0; i != NumOps; ++i) 9258 if (N->OperandList[i] != Ops[i]) 9259 N->OperandList[i].set(Ops[i]); 9260 9261 updateDivergence(N); 9262 // If this gets put into a CSE map, add it. 9263 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9264 return N; 9265 } 9266 9267 /// DropOperands - Release the operands and set this node to have 9268 /// zero operands. 9269 void SDNode::DropOperands() { 9270 // Unlike the code in MorphNodeTo that does this, we don't need to 9271 // watch for dead nodes here. 9272 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9273 SDUse &Use = *I++; 9274 Use.set(SDValue()); 9275 } 9276 } 9277 9278 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9279 ArrayRef<MachineMemOperand *> NewMemRefs) { 9280 if (NewMemRefs.empty()) { 9281 N->clearMemRefs(); 9282 return; 9283 } 9284 9285 // Check if we can avoid allocating by storing a single reference directly. 9286 if (NewMemRefs.size() == 1) { 9287 N->MemRefs = NewMemRefs[0]; 9288 N->NumMemRefs = 1; 9289 return; 9290 } 9291 9292 MachineMemOperand **MemRefsBuffer = 9293 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9294 llvm::copy(NewMemRefs, MemRefsBuffer); 9295 N->MemRefs = MemRefsBuffer; 9296 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9297 } 9298 9299 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9300 /// machine opcode. 9301 /// 9302 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9303 EVT VT) { 9304 SDVTList VTs = getVTList(VT); 9305 return SelectNodeTo(N, MachineOpc, VTs, None); 9306 } 9307 9308 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9309 EVT VT, SDValue Op1) { 9310 SDVTList VTs = getVTList(VT); 9311 SDValue Ops[] = { Op1 }; 9312 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9313 } 9314 9315 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9316 EVT VT, SDValue Op1, 9317 SDValue Op2) { 9318 SDVTList VTs = getVTList(VT); 9319 SDValue Ops[] = { Op1, Op2 }; 9320 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9321 } 9322 9323 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9324 EVT VT, SDValue Op1, 9325 SDValue Op2, SDValue Op3) { 9326 SDVTList VTs = getVTList(VT); 9327 SDValue Ops[] = { Op1, Op2, Op3 }; 9328 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9329 } 9330 9331 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9332 EVT VT, ArrayRef<SDValue> Ops) { 9333 SDVTList VTs = getVTList(VT); 9334 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9335 } 9336 9337 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9338 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9339 SDVTList VTs = getVTList(VT1, VT2); 9340 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9341 } 9342 9343 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9344 EVT VT1, EVT VT2) { 9345 SDVTList VTs = getVTList(VT1, VT2); 9346 return SelectNodeTo(N, MachineOpc, VTs, None); 9347 } 9348 9349 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9350 EVT VT1, EVT VT2, EVT VT3, 9351 ArrayRef<SDValue> Ops) { 9352 SDVTList VTs = getVTList(VT1, VT2, VT3); 9353 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9354 } 9355 9356 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9357 EVT VT1, EVT VT2, 9358 SDValue Op1, SDValue Op2) { 9359 SDVTList VTs = getVTList(VT1, VT2); 9360 SDValue Ops[] = { Op1, Op2 }; 9361 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9362 } 9363 9364 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9365 SDVTList VTs,ArrayRef<SDValue> Ops) { 9366 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9367 // Reset the NodeID to -1. 9368 New->setNodeId(-1); 9369 if (New != N) { 9370 ReplaceAllUsesWith(N, New); 9371 RemoveDeadNode(N); 9372 } 9373 return New; 9374 } 9375 9376 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9377 /// the line number information on the merged node since it is not possible to 9378 /// preserve the information that operation is associated with multiple lines. 9379 /// This will make the debugger working better at -O0, were there is a higher 9380 /// probability having other instructions associated with that line. 9381 /// 9382 /// For IROrder, we keep the smaller of the two 9383 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9384 DebugLoc NLoc = N->getDebugLoc(); 9385 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9386 N->setDebugLoc(DebugLoc()); 9387 } 9388 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9389 N->setIROrder(Order); 9390 return N; 9391 } 9392 9393 /// MorphNodeTo - This *mutates* the specified node to have the specified 9394 /// return type, opcode, and operands. 9395 /// 9396 /// Note that MorphNodeTo returns the resultant node. If there is already a 9397 /// node of the specified opcode and operands, it returns that node instead of 9398 /// the current one. Note that the SDLoc need not be the same. 9399 /// 9400 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9401 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9402 /// node, and because it doesn't require CSE recalculation for any of 9403 /// the node's users. 9404 /// 9405 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9406 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9407 /// the legalizer which maintain worklists that would need to be updated when 9408 /// deleting things. 9409 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9410 SDVTList VTs, ArrayRef<SDValue> Ops) { 9411 // If an identical node already exists, use it. 9412 void *IP = nullptr; 9413 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9414 FoldingSetNodeID ID; 9415 AddNodeIDNode(ID, Opc, VTs, Ops); 9416 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9417 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9418 } 9419 9420 if (!RemoveNodeFromCSEMaps(N)) 9421 IP = nullptr; 9422 9423 // Start the morphing. 9424 N->NodeType = Opc; 9425 N->ValueList = VTs.VTs; 9426 N->NumValues = VTs.NumVTs; 9427 9428 // Clear the operands list, updating used nodes to remove this from their 9429 // use list. Keep track of any operands that become dead as a result. 9430 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9431 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9432 SDUse &Use = *I++; 9433 SDNode *Used = Use.getNode(); 9434 Use.set(SDValue()); 9435 if (Used->use_empty()) 9436 DeadNodeSet.insert(Used); 9437 } 9438 9439 // For MachineNode, initialize the memory references information. 9440 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9441 MN->clearMemRefs(); 9442 9443 // Swap for an appropriately sized array from the recycler. 9444 removeOperands(N); 9445 createOperands(N, Ops); 9446 9447 // Delete any nodes that are still dead after adding the uses for the 9448 // new operands. 9449 if (!DeadNodeSet.empty()) { 9450 SmallVector<SDNode *, 16> DeadNodes; 9451 for (SDNode *N : DeadNodeSet) 9452 if (N->use_empty()) 9453 DeadNodes.push_back(N); 9454 RemoveDeadNodes(DeadNodes); 9455 } 9456 9457 if (IP) 9458 CSEMap.InsertNode(N, IP); // Memoize the new node. 9459 return N; 9460 } 9461 9462 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9463 unsigned OrigOpc = Node->getOpcode(); 9464 unsigned NewOpc; 9465 switch (OrigOpc) { 9466 default: 9467 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9468 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9469 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9470 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9471 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9472 #include "llvm/IR/ConstrainedOps.def" 9473 } 9474 9475 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9476 9477 // We're taking this node out of the chain, so we need to re-link things. 9478 SDValue InputChain = Node->getOperand(0); 9479 SDValue OutputChain = SDValue(Node, 1); 9480 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9481 9482 SmallVector<SDValue, 3> Ops; 9483 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9484 Ops.push_back(Node->getOperand(i)); 9485 9486 SDVTList VTs = getVTList(Node->getValueType(0)); 9487 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9488 9489 // MorphNodeTo can operate in two ways: if an existing node with the 9490 // specified operands exists, it can just return it. Otherwise, it 9491 // updates the node in place to have the requested operands. 9492 if (Res == Node) { 9493 // If we updated the node in place, reset the node ID. To the isel, 9494 // this should be just like a newly allocated machine node. 9495 Res->setNodeId(-1); 9496 } else { 9497 ReplaceAllUsesWith(Node, Res); 9498 RemoveDeadNode(Node); 9499 } 9500 9501 return Res; 9502 } 9503 9504 /// getMachineNode - These are used for target selectors to create a new node 9505 /// with specified return type(s), MachineInstr opcode, and operands. 9506 /// 9507 /// Note that getMachineNode returns the resultant node. If there is already a 9508 /// node of the specified opcode and operands, it returns that node instead of 9509 /// the current one. 9510 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9511 EVT VT) { 9512 SDVTList VTs = getVTList(VT); 9513 return getMachineNode(Opcode, dl, VTs, None); 9514 } 9515 9516 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9517 EVT VT, SDValue Op1) { 9518 SDVTList VTs = getVTList(VT); 9519 SDValue Ops[] = { Op1 }; 9520 return getMachineNode(Opcode, dl, VTs, Ops); 9521 } 9522 9523 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9524 EVT VT, SDValue Op1, SDValue Op2) { 9525 SDVTList VTs = getVTList(VT); 9526 SDValue Ops[] = { Op1, Op2 }; 9527 return getMachineNode(Opcode, dl, VTs, Ops); 9528 } 9529 9530 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9531 EVT VT, SDValue Op1, SDValue Op2, 9532 SDValue Op3) { 9533 SDVTList VTs = getVTList(VT); 9534 SDValue Ops[] = { Op1, Op2, Op3 }; 9535 return getMachineNode(Opcode, dl, VTs, Ops); 9536 } 9537 9538 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9539 EVT VT, ArrayRef<SDValue> Ops) { 9540 SDVTList VTs = getVTList(VT); 9541 return getMachineNode(Opcode, dl, VTs, Ops); 9542 } 9543 9544 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9545 EVT VT1, EVT VT2, SDValue Op1, 9546 SDValue Op2) { 9547 SDVTList VTs = getVTList(VT1, VT2); 9548 SDValue Ops[] = { Op1, Op2 }; 9549 return getMachineNode(Opcode, dl, VTs, Ops); 9550 } 9551 9552 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9553 EVT VT1, EVT VT2, SDValue Op1, 9554 SDValue Op2, SDValue Op3) { 9555 SDVTList VTs = getVTList(VT1, VT2); 9556 SDValue Ops[] = { Op1, Op2, Op3 }; 9557 return getMachineNode(Opcode, dl, VTs, Ops); 9558 } 9559 9560 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9561 EVT VT1, EVT VT2, 9562 ArrayRef<SDValue> Ops) { 9563 SDVTList VTs = getVTList(VT1, VT2); 9564 return getMachineNode(Opcode, dl, VTs, Ops); 9565 } 9566 9567 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9568 EVT VT1, EVT VT2, EVT VT3, 9569 SDValue Op1, SDValue Op2) { 9570 SDVTList VTs = getVTList(VT1, VT2, VT3); 9571 SDValue Ops[] = { Op1, Op2 }; 9572 return getMachineNode(Opcode, dl, VTs, Ops); 9573 } 9574 9575 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9576 EVT VT1, EVT VT2, EVT VT3, 9577 SDValue Op1, SDValue Op2, 9578 SDValue Op3) { 9579 SDVTList VTs = getVTList(VT1, VT2, VT3); 9580 SDValue Ops[] = { Op1, Op2, Op3 }; 9581 return getMachineNode(Opcode, dl, VTs, Ops); 9582 } 9583 9584 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9585 EVT VT1, EVT VT2, EVT VT3, 9586 ArrayRef<SDValue> Ops) { 9587 SDVTList VTs = getVTList(VT1, VT2, VT3); 9588 return getMachineNode(Opcode, dl, VTs, Ops); 9589 } 9590 9591 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9592 ArrayRef<EVT> ResultTys, 9593 ArrayRef<SDValue> Ops) { 9594 SDVTList VTs = getVTList(ResultTys); 9595 return getMachineNode(Opcode, dl, VTs, Ops); 9596 } 9597 9598 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9599 SDVTList VTs, 9600 ArrayRef<SDValue> Ops) { 9601 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9602 MachineSDNode *N; 9603 void *IP = nullptr; 9604 9605 if (DoCSE) { 9606 FoldingSetNodeID ID; 9607 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9608 IP = nullptr; 9609 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9610 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9611 } 9612 } 9613 9614 // Allocate a new MachineSDNode. 9615 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9616 createOperands(N, Ops); 9617 9618 if (DoCSE) 9619 CSEMap.InsertNode(N, IP); 9620 9621 InsertNode(N); 9622 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9623 return N; 9624 } 9625 9626 /// getTargetExtractSubreg - A convenience function for creating 9627 /// TargetOpcode::EXTRACT_SUBREG nodes. 9628 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9629 SDValue Operand) { 9630 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9631 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9632 VT, Operand, SRIdxVal); 9633 return SDValue(Subreg, 0); 9634 } 9635 9636 /// getTargetInsertSubreg - A convenience function for creating 9637 /// TargetOpcode::INSERT_SUBREG nodes. 9638 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9639 SDValue Operand, SDValue Subreg) { 9640 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9641 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9642 VT, Operand, Subreg, SRIdxVal); 9643 return SDValue(Result, 0); 9644 } 9645 9646 /// getNodeIfExists - Get the specified node if it's already available, or 9647 /// else return NULL. 9648 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9649 ArrayRef<SDValue> Ops) { 9650 SDNodeFlags Flags; 9651 if (Inserter) 9652 Flags = Inserter->getFlags(); 9653 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9654 } 9655 9656 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9657 ArrayRef<SDValue> Ops, 9658 const SDNodeFlags Flags) { 9659 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9660 FoldingSetNodeID ID; 9661 AddNodeIDNode(ID, Opcode, VTList, Ops); 9662 void *IP = nullptr; 9663 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9664 E->intersectFlagsWith(Flags); 9665 return E; 9666 } 9667 } 9668 return nullptr; 9669 } 9670 9671 /// doesNodeExist - Check if a node exists without modifying its flags. 9672 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9673 ArrayRef<SDValue> Ops) { 9674 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9675 FoldingSetNodeID ID; 9676 AddNodeIDNode(ID, Opcode, VTList, Ops); 9677 void *IP = nullptr; 9678 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9679 return true; 9680 } 9681 return false; 9682 } 9683 9684 /// getDbgValue - Creates a SDDbgValue node. 9685 /// 9686 /// SDNode 9687 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9688 SDNode *N, unsigned R, bool IsIndirect, 9689 const DebugLoc &DL, unsigned O) { 9690 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9691 "Expected inlined-at fields to agree"); 9692 return new (DbgInfo->getAlloc()) 9693 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9694 {}, IsIndirect, DL, O, 9695 /*IsVariadic=*/false); 9696 } 9697 9698 /// Constant 9699 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9700 DIExpression *Expr, 9701 const Value *C, 9702 const DebugLoc &DL, unsigned O) { 9703 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9704 "Expected inlined-at fields to agree"); 9705 return new (DbgInfo->getAlloc()) 9706 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9707 /*IsIndirect=*/false, DL, O, 9708 /*IsVariadic=*/false); 9709 } 9710 9711 /// FrameIndex 9712 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9713 DIExpression *Expr, unsigned FI, 9714 bool IsIndirect, 9715 const DebugLoc &DL, 9716 unsigned O) { 9717 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9718 "Expected inlined-at fields to agree"); 9719 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9720 } 9721 9722 /// FrameIndex with dependencies 9723 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9724 DIExpression *Expr, unsigned FI, 9725 ArrayRef<SDNode *> Dependencies, 9726 bool IsIndirect, 9727 const DebugLoc &DL, 9728 unsigned O) { 9729 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9730 "Expected inlined-at fields to agree"); 9731 return new (DbgInfo->getAlloc()) 9732 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9733 Dependencies, IsIndirect, DL, O, 9734 /*IsVariadic=*/false); 9735 } 9736 9737 /// VReg 9738 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9739 unsigned VReg, bool IsIndirect, 9740 const DebugLoc &DL, unsigned O) { 9741 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9742 "Expected inlined-at fields to agree"); 9743 return new (DbgInfo->getAlloc()) 9744 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9745 {}, IsIndirect, DL, O, 9746 /*IsVariadic=*/false); 9747 } 9748 9749 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9750 ArrayRef<SDDbgOperand> Locs, 9751 ArrayRef<SDNode *> Dependencies, 9752 bool IsIndirect, const DebugLoc &DL, 9753 unsigned O, bool IsVariadic) { 9754 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9755 "Expected inlined-at fields to agree"); 9756 return new (DbgInfo->getAlloc()) 9757 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9758 DL, O, IsVariadic); 9759 } 9760 9761 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9762 unsigned OffsetInBits, unsigned SizeInBits, 9763 bool InvalidateDbg) { 9764 SDNode *FromNode = From.getNode(); 9765 SDNode *ToNode = To.getNode(); 9766 assert(FromNode && ToNode && "Can't modify dbg values"); 9767 9768 // PR35338 9769 // TODO: assert(From != To && "Redundant dbg value transfer"); 9770 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9771 if (From == To || FromNode == ToNode) 9772 return; 9773 9774 if (!FromNode->getHasDebugValue()) 9775 return; 9776 9777 SDDbgOperand FromLocOp = 9778 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9779 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9780 9781 SmallVector<SDDbgValue *, 2> ClonedDVs; 9782 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9783 if (Dbg->isInvalidated()) 9784 continue; 9785 9786 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9787 9788 // Create a new location ops vector that is equal to the old vector, but 9789 // with each instance of FromLocOp replaced with ToLocOp. 9790 bool Changed = false; 9791 auto NewLocOps = Dbg->copyLocationOps(); 9792 std::replace_if( 9793 NewLocOps.begin(), NewLocOps.end(), 9794 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9795 bool Match = Op == FromLocOp; 9796 Changed |= Match; 9797 return Match; 9798 }, 9799 ToLocOp); 9800 // Ignore this SDDbgValue if we didn't find a matching location. 9801 if (!Changed) 9802 continue; 9803 9804 DIVariable *Var = Dbg->getVariable(); 9805 auto *Expr = Dbg->getExpression(); 9806 // If a fragment is requested, update the expression. 9807 if (SizeInBits) { 9808 // When splitting a larger (e.g., sign-extended) value whose 9809 // lower bits are described with an SDDbgValue, do not attempt 9810 // to transfer the SDDbgValue to the upper bits. 9811 if (auto FI = Expr->getFragmentInfo()) 9812 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9813 continue; 9814 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9815 SizeInBits); 9816 if (!Fragment) 9817 continue; 9818 Expr = *Fragment; 9819 } 9820 9821 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9822 // Clone the SDDbgValue and move it to To. 9823 SDDbgValue *Clone = getDbgValueList( 9824 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9825 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9826 Dbg->isVariadic()); 9827 ClonedDVs.push_back(Clone); 9828 9829 if (InvalidateDbg) { 9830 // Invalidate value and indicate the SDDbgValue should not be emitted. 9831 Dbg->setIsInvalidated(); 9832 Dbg->setIsEmitted(); 9833 } 9834 } 9835 9836 for (SDDbgValue *Dbg : ClonedDVs) { 9837 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9838 "Transferred DbgValues should depend on the new SDNode"); 9839 AddDbgValue(Dbg, false); 9840 } 9841 } 9842 9843 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9844 if (!N.getHasDebugValue()) 9845 return; 9846 9847 SmallVector<SDDbgValue *, 2> ClonedDVs; 9848 for (auto DV : GetDbgValues(&N)) { 9849 if (DV->isInvalidated()) 9850 continue; 9851 switch (N.getOpcode()) { 9852 default: 9853 break; 9854 case ISD::ADD: 9855 SDValue N0 = N.getOperand(0); 9856 SDValue N1 = N.getOperand(1); 9857 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9858 isConstantIntBuildVectorOrConstantInt(N1)) { 9859 uint64_t Offset = N.getConstantOperandVal(1); 9860 9861 // Rewrite an ADD constant node into a DIExpression. Since we are 9862 // performing arithmetic to compute the variable's *value* in the 9863 // DIExpression, we need to mark the expression with a 9864 // DW_OP_stack_value. 9865 auto *DIExpr = DV->getExpression(); 9866 auto NewLocOps = DV->copyLocationOps(); 9867 bool Changed = false; 9868 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9869 // We're not given a ResNo to compare against because the whole 9870 // node is going away. We know that any ISD::ADD only has one 9871 // result, so we can assume any node match is using the result. 9872 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9873 NewLocOps[i].getSDNode() != &N) 9874 continue; 9875 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9876 SmallVector<uint64_t, 3> ExprOps; 9877 DIExpression::appendOffset(ExprOps, Offset); 9878 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9879 Changed = true; 9880 } 9881 (void)Changed; 9882 assert(Changed && "Salvage target doesn't use N"); 9883 9884 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9885 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9886 NewLocOps, AdditionalDependencies, 9887 DV->isIndirect(), DV->getDebugLoc(), 9888 DV->getOrder(), DV->isVariadic()); 9889 ClonedDVs.push_back(Clone); 9890 DV->setIsInvalidated(); 9891 DV->setIsEmitted(); 9892 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9893 N0.getNode()->dumprFull(this); 9894 dbgs() << " into " << *DIExpr << '\n'); 9895 } 9896 } 9897 } 9898 9899 for (SDDbgValue *Dbg : ClonedDVs) { 9900 assert(!Dbg->getSDNodes().empty() && 9901 "Salvaged DbgValue should depend on a new SDNode"); 9902 AddDbgValue(Dbg, false); 9903 } 9904 } 9905 9906 /// Creates a SDDbgLabel node. 9907 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9908 const DebugLoc &DL, unsigned O) { 9909 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9910 "Expected inlined-at fields to agree"); 9911 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9912 } 9913 9914 namespace { 9915 9916 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9917 /// pointed to by a use iterator is deleted, increment the use iterator 9918 /// so that it doesn't dangle. 9919 /// 9920 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9921 SDNode::use_iterator &UI; 9922 SDNode::use_iterator &UE; 9923 9924 void NodeDeleted(SDNode *N, SDNode *E) override { 9925 // Increment the iterator as needed. 9926 while (UI != UE && N == *UI) 9927 ++UI; 9928 } 9929 9930 public: 9931 RAUWUpdateListener(SelectionDAG &d, 9932 SDNode::use_iterator &ui, 9933 SDNode::use_iterator &ue) 9934 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9935 }; 9936 9937 } // end anonymous namespace 9938 9939 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9940 /// This can cause recursive merging of nodes in the DAG. 9941 /// 9942 /// This version assumes From has a single result value. 9943 /// 9944 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9945 SDNode *From = FromN.getNode(); 9946 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9947 "Cannot replace with this method!"); 9948 assert(From != To.getNode() && "Cannot replace uses of with self"); 9949 9950 // Preserve Debug Values 9951 transferDbgValues(FromN, To); 9952 9953 // Iterate over all the existing uses of From. New uses will be added 9954 // to the beginning of the use list, which we avoid visiting. 9955 // This specifically avoids visiting uses of From that arise while the 9956 // replacement is happening, because any such uses would be the result 9957 // of CSE: If an existing node looks like From after one of its operands 9958 // is replaced by To, we don't want to replace of all its users with To 9959 // too. See PR3018 for more info. 9960 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9961 RAUWUpdateListener Listener(*this, UI, UE); 9962 while (UI != UE) { 9963 SDNode *User = *UI; 9964 9965 // This node is about to morph, remove its old self from the CSE maps. 9966 RemoveNodeFromCSEMaps(User); 9967 9968 // A user can appear in a use list multiple times, and when this 9969 // happens the uses are usually next to each other in the list. 9970 // To help reduce the number of CSE recomputations, process all 9971 // the uses of this user that we can find this way. 9972 do { 9973 SDUse &Use = UI.getUse(); 9974 ++UI; 9975 Use.set(To); 9976 if (To->isDivergent() != From->isDivergent()) 9977 updateDivergence(User); 9978 } while (UI != UE && *UI == User); 9979 // Now that we have modified User, add it back to the CSE maps. If it 9980 // already exists there, recursively merge the results together. 9981 AddModifiedNodeToCSEMaps(User); 9982 } 9983 9984 // If we just RAUW'd the root, take note. 9985 if (FromN == getRoot()) 9986 setRoot(To); 9987 } 9988 9989 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9990 /// This can cause recursive merging of nodes in the DAG. 9991 /// 9992 /// This version assumes that for each value of From, there is a 9993 /// corresponding value in To in the same position with the same type. 9994 /// 9995 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9996 #ifndef NDEBUG 9997 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9998 assert((!From->hasAnyUseOfValue(i) || 9999 From->getValueType(i) == To->getValueType(i)) && 10000 "Cannot use this version of ReplaceAllUsesWith!"); 10001 #endif 10002 10003 // Handle the trivial case. 10004 if (From == To) 10005 return; 10006 10007 // Preserve Debug Info. Only do this if there's a use. 10008 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10009 if (From->hasAnyUseOfValue(i)) { 10010 assert((i < To->getNumValues()) && "Invalid To location"); 10011 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10012 } 10013 10014 // Iterate over just the existing users of From. See the comments in 10015 // the ReplaceAllUsesWith above. 10016 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10017 RAUWUpdateListener Listener(*this, UI, UE); 10018 while (UI != UE) { 10019 SDNode *User = *UI; 10020 10021 // This node is about to morph, remove its old self from the CSE maps. 10022 RemoveNodeFromCSEMaps(User); 10023 10024 // A user can appear in a use list multiple times, and when this 10025 // happens the uses are usually next to each other in the list. 10026 // To help reduce the number of CSE recomputations, process all 10027 // the uses of this user that we can find this way. 10028 do { 10029 SDUse &Use = UI.getUse(); 10030 ++UI; 10031 Use.setNode(To); 10032 if (To->isDivergent() != From->isDivergent()) 10033 updateDivergence(User); 10034 } while (UI != UE && *UI == User); 10035 10036 // Now that we have modified User, add it back to the CSE maps. If it 10037 // already exists there, recursively merge the results together. 10038 AddModifiedNodeToCSEMaps(User); 10039 } 10040 10041 // If we just RAUW'd the root, take note. 10042 if (From == getRoot().getNode()) 10043 setRoot(SDValue(To, getRoot().getResNo())); 10044 } 10045 10046 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10047 /// This can cause recursive merging of nodes in the DAG. 10048 /// 10049 /// This version can replace From with any result values. To must match the 10050 /// number and types of values returned by From. 10051 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10052 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10053 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10054 10055 // Preserve Debug Info. 10056 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10057 transferDbgValues(SDValue(From, i), To[i]); 10058 10059 // Iterate over just the existing users of From. See the comments in 10060 // the ReplaceAllUsesWith above. 10061 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10062 RAUWUpdateListener Listener(*this, UI, UE); 10063 while (UI != UE) { 10064 SDNode *User = *UI; 10065 10066 // This node is about to morph, remove its old self from the CSE maps. 10067 RemoveNodeFromCSEMaps(User); 10068 10069 // A user can appear in a use list multiple times, and when this happens the 10070 // uses are usually next to each other in the list. To help reduce the 10071 // number of CSE and divergence recomputations, process all the uses of this 10072 // user that we can find this way. 10073 bool To_IsDivergent = false; 10074 do { 10075 SDUse &Use = UI.getUse(); 10076 const SDValue &ToOp = To[Use.getResNo()]; 10077 ++UI; 10078 Use.set(ToOp); 10079 To_IsDivergent |= ToOp->isDivergent(); 10080 } while (UI != UE && *UI == User); 10081 10082 if (To_IsDivergent != From->isDivergent()) 10083 updateDivergence(User); 10084 10085 // Now that we have modified User, add it back to the CSE maps. If it 10086 // already exists there, recursively merge the results together. 10087 AddModifiedNodeToCSEMaps(User); 10088 } 10089 10090 // If we just RAUW'd the root, take note. 10091 if (From == getRoot().getNode()) 10092 setRoot(SDValue(To[getRoot().getResNo()])); 10093 } 10094 10095 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10096 /// uses of other values produced by From.getNode() alone. The Deleted 10097 /// vector is handled the same way as for ReplaceAllUsesWith. 10098 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10099 // Handle the really simple, really trivial case efficiently. 10100 if (From == To) return; 10101 10102 // Handle the simple, trivial, case efficiently. 10103 if (From.getNode()->getNumValues() == 1) { 10104 ReplaceAllUsesWith(From, To); 10105 return; 10106 } 10107 10108 // Preserve Debug Info. 10109 transferDbgValues(From, To); 10110 10111 // Iterate over just the existing users of From. See the comments in 10112 // the ReplaceAllUsesWith above. 10113 SDNode::use_iterator UI = From.getNode()->use_begin(), 10114 UE = From.getNode()->use_end(); 10115 RAUWUpdateListener Listener(*this, UI, UE); 10116 while (UI != UE) { 10117 SDNode *User = *UI; 10118 bool UserRemovedFromCSEMaps = false; 10119 10120 // A user can appear in a use list multiple times, and when this 10121 // happens the uses are usually next to each other in the list. 10122 // To help reduce the number of CSE recomputations, process all 10123 // the uses of this user that we can find this way. 10124 do { 10125 SDUse &Use = UI.getUse(); 10126 10127 // Skip uses of different values from the same node. 10128 if (Use.getResNo() != From.getResNo()) { 10129 ++UI; 10130 continue; 10131 } 10132 10133 // If this node hasn't been modified yet, it's still in the CSE maps, 10134 // so remove its old self from the CSE maps. 10135 if (!UserRemovedFromCSEMaps) { 10136 RemoveNodeFromCSEMaps(User); 10137 UserRemovedFromCSEMaps = true; 10138 } 10139 10140 ++UI; 10141 Use.set(To); 10142 if (To->isDivergent() != From->isDivergent()) 10143 updateDivergence(User); 10144 } while (UI != UE && *UI == User); 10145 // We are iterating over all uses of the From node, so if a use 10146 // doesn't use the specific value, no changes are made. 10147 if (!UserRemovedFromCSEMaps) 10148 continue; 10149 10150 // Now that we have modified User, add it back to the CSE maps. If it 10151 // already exists there, recursively merge the results together. 10152 AddModifiedNodeToCSEMaps(User); 10153 } 10154 10155 // If we just RAUW'd the root, take note. 10156 if (From == getRoot()) 10157 setRoot(To); 10158 } 10159 10160 namespace { 10161 10162 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10163 /// to record information about a use. 10164 struct UseMemo { 10165 SDNode *User; 10166 unsigned Index; 10167 SDUse *Use; 10168 }; 10169 10170 /// operator< - Sort Memos by User. 10171 bool operator<(const UseMemo &L, const UseMemo &R) { 10172 return (intptr_t)L.User < (intptr_t)R.User; 10173 } 10174 10175 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10176 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10177 /// the node already has been taken care of recursively. 10178 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10179 SmallVector<UseMemo, 4> &Uses; 10180 10181 void NodeDeleted(SDNode *N, SDNode *E) override { 10182 for (UseMemo &Memo : Uses) 10183 if (Memo.User == N) 10184 Memo.User = nullptr; 10185 } 10186 10187 public: 10188 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10189 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10190 }; 10191 10192 } // end anonymous namespace 10193 10194 bool SelectionDAG::calculateDivergence(SDNode *N) { 10195 if (TLI->isSDNodeAlwaysUniform(N)) { 10196 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10197 "Conflicting divergence information!"); 10198 return false; 10199 } 10200 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10201 return true; 10202 for (auto &Op : N->ops()) { 10203 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10204 return true; 10205 } 10206 return false; 10207 } 10208 10209 void SelectionDAG::updateDivergence(SDNode *N) { 10210 SmallVector<SDNode *, 16> Worklist(1, N); 10211 do { 10212 N = Worklist.pop_back_val(); 10213 bool IsDivergent = calculateDivergence(N); 10214 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10215 N->SDNodeBits.IsDivergent = IsDivergent; 10216 llvm::append_range(Worklist, N->uses()); 10217 } 10218 } while (!Worklist.empty()); 10219 } 10220 10221 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10222 DenseMap<SDNode *, unsigned> Degree; 10223 Order.reserve(AllNodes.size()); 10224 for (auto &N : allnodes()) { 10225 unsigned NOps = N.getNumOperands(); 10226 Degree[&N] = NOps; 10227 if (0 == NOps) 10228 Order.push_back(&N); 10229 } 10230 for (size_t I = 0; I != Order.size(); ++I) { 10231 SDNode *N = Order[I]; 10232 for (auto U : N->uses()) { 10233 unsigned &UnsortedOps = Degree[U]; 10234 if (0 == --UnsortedOps) 10235 Order.push_back(U); 10236 } 10237 } 10238 } 10239 10240 #ifndef NDEBUG 10241 void SelectionDAG::VerifyDAGDivergence() { 10242 std::vector<SDNode *> TopoOrder; 10243 CreateTopologicalOrder(TopoOrder); 10244 for (auto *N : TopoOrder) { 10245 assert(calculateDivergence(N) == N->isDivergent() && 10246 "Divergence bit inconsistency detected"); 10247 } 10248 } 10249 #endif 10250 10251 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10252 /// uses of other values produced by From.getNode() alone. The same value 10253 /// may appear in both the From and To list. The Deleted vector is 10254 /// handled the same way as for ReplaceAllUsesWith. 10255 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10256 const SDValue *To, 10257 unsigned Num){ 10258 // Handle the simple, trivial case efficiently. 10259 if (Num == 1) 10260 return ReplaceAllUsesOfValueWith(*From, *To); 10261 10262 transferDbgValues(*From, *To); 10263 10264 // Read up all the uses and make records of them. This helps 10265 // processing new uses that are introduced during the 10266 // replacement process. 10267 SmallVector<UseMemo, 4> Uses; 10268 for (unsigned i = 0; i != Num; ++i) { 10269 unsigned FromResNo = From[i].getResNo(); 10270 SDNode *FromNode = From[i].getNode(); 10271 for (SDNode::use_iterator UI = FromNode->use_begin(), 10272 E = FromNode->use_end(); UI != E; ++UI) { 10273 SDUse &Use = UI.getUse(); 10274 if (Use.getResNo() == FromResNo) { 10275 UseMemo Memo = { *UI, i, &Use }; 10276 Uses.push_back(Memo); 10277 } 10278 } 10279 } 10280 10281 // Sort the uses, so that all the uses from a given User are together. 10282 llvm::sort(Uses); 10283 RAUOVWUpdateListener Listener(*this, Uses); 10284 10285 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10286 UseIndex != UseIndexEnd; ) { 10287 // We know that this user uses some value of From. If it is the right 10288 // value, update it. 10289 SDNode *User = Uses[UseIndex].User; 10290 // If the node has been deleted by recursive CSE updates when updating 10291 // another node, then just skip this entry. 10292 if (User == nullptr) { 10293 ++UseIndex; 10294 continue; 10295 } 10296 10297 // This node is about to morph, remove its old self from the CSE maps. 10298 RemoveNodeFromCSEMaps(User); 10299 10300 // The Uses array is sorted, so all the uses for a given User 10301 // are next to each other in the list. 10302 // To help reduce the number of CSE recomputations, process all 10303 // the uses of this user that we can find this way. 10304 do { 10305 unsigned i = Uses[UseIndex].Index; 10306 SDUse &Use = *Uses[UseIndex].Use; 10307 ++UseIndex; 10308 10309 Use.set(To[i]); 10310 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10311 10312 // Now that we have modified User, add it back to the CSE maps. If it 10313 // already exists there, recursively merge the results together. 10314 AddModifiedNodeToCSEMaps(User); 10315 } 10316 } 10317 10318 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10319 /// based on their topological order. It returns the maximum id and a vector 10320 /// of the SDNodes* in assigned order by reference. 10321 unsigned SelectionDAG::AssignTopologicalOrder() { 10322 unsigned DAGSize = 0; 10323 10324 // SortedPos tracks the progress of the algorithm. Nodes before it are 10325 // sorted, nodes after it are unsorted. When the algorithm completes 10326 // it is at the end of the list. 10327 allnodes_iterator SortedPos = allnodes_begin(); 10328 10329 // Visit all the nodes. Move nodes with no operands to the front of 10330 // the list immediately. Annotate nodes that do have operands with their 10331 // operand count. Before we do this, the Node Id fields of the nodes 10332 // may contain arbitrary values. After, the Node Id fields for nodes 10333 // before SortedPos will contain the topological sort index, and the 10334 // Node Id fields for nodes At SortedPos and after will contain the 10335 // count of outstanding operands. 10336 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10337 checkForCycles(&N, this); 10338 unsigned Degree = N.getNumOperands(); 10339 if (Degree == 0) { 10340 // A node with no uses, add it to the result array immediately. 10341 N.setNodeId(DAGSize++); 10342 allnodes_iterator Q(&N); 10343 if (Q != SortedPos) 10344 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10345 assert(SortedPos != AllNodes.end() && "Overran node list"); 10346 ++SortedPos; 10347 } else { 10348 // Temporarily use the Node Id as scratch space for the degree count. 10349 N.setNodeId(Degree); 10350 } 10351 } 10352 10353 // Visit all the nodes. As we iterate, move nodes into sorted order, 10354 // such that by the time the end is reached all nodes will be sorted. 10355 for (SDNode &Node : allnodes()) { 10356 SDNode *N = &Node; 10357 checkForCycles(N, this); 10358 // N is in sorted position, so all its uses have one less operand 10359 // that needs to be sorted. 10360 for (SDNode *P : N->uses()) { 10361 unsigned Degree = P->getNodeId(); 10362 assert(Degree != 0 && "Invalid node degree"); 10363 --Degree; 10364 if (Degree == 0) { 10365 // All of P's operands are sorted, so P may sorted now. 10366 P->setNodeId(DAGSize++); 10367 if (P->getIterator() != SortedPos) 10368 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10369 assert(SortedPos != AllNodes.end() && "Overran node list"); 10370 ++SortedPos; 10371 } else { 10372 // Update P's outstanding operand count. 10373 P->setNodeId(Degree); 10374 } 10375 } 10376 if (Node.getIterator() == SortedPos) { 10377 #ifndef NDEBUG 10378 allnodes_iterator I(N); 10379 SDNode *S = &*++I; 10380 dbgs() << "Overran sorted position:\n"; 10381 S->dumprFull(this); dbgs() << "\n"; 10382 dbgs() << "Checking if this is due to cycles\n"; 10383 checkForCycles(this, true); 10384 #endif 10385 llvm_unreachable(nullptr); 10386 } 10387 } 10388 10389 assert(SortedPos == AllNodes.end() && 10390 "Topological sort incomplete!"); 10391 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10392 "First node in topological sort is not the entry token!"); 10393 assert(AllNodes.front().getNodeId() == 0 && 10394 "First node in topological sort has non-zero id!"); 10395 assert(AllNodes.front().getNumOperands() == 0 && 10396 "First node in topological sort has operands!"); 10397 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10398 "Last node in topologic sort has unexpected id!"); 10399 assert(AllNodes.back().use_empty() && 10400 "Last node in topologic sort has users!"); 10401 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10402 return DAGSize; 10403 } 10404 10405 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10406 /// value is produced by SD. 10407 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10408 for (SDNode *SD : DB->getSDNodes()) { 10409 if (!SD) 10410 continue; 10411 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10412 SD->setHasDebugValue(true); 10413 } 10414 DbgInfo->add(DB, isParameter); 10415 } 10416 10417 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10418 10419 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10420 SDValue NewMemOpChain) { 10421 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10422 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10423 // The new memory operation must have the same position as the old load in 10424 // terms of memory dependency. Create a TokenFactor for the old load and new 10425 // memory operation and update uses of the old load's output chain to use that 10426 // TokenFactor. 10427 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10428 return NewMemOpChain; 10429 10430 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10431 OldChain, NewMemOpChain); 10432 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10433 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10434 return TokenFactor; 10435 } 10436 10437 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10438 SDValue NewMemOp) { 10439 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10440 SDValue OldChain = SDValue(OldLoad, 1); 10441 SDValue NewMemOpChain = NewMemOp.getValue(1); 10442 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10443 } 10444 10445 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10446 Function **OutFunction) { 10447 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10448 10449 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10450 auto *Module = MF->getFunction().getParent(); 10451 auto *Function = Module->getFunction(Symbol); 10452 10453 if (OutFunction != nullptr) 10454 *OutFunction = Function; 10455 10456 if (Function != nullptr) { 10457 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10458 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10459 } 10460 10461 std::string ErrorStr; 10462 raw_string_ostream ErrorFormatter(ErrorStr); 10463 ErrorFormatter << "Undefined external symbol "; 10464 ErrorFormatter << '"' << Symbol << '"'; 10465 report_fatal_error(Twine(ErrorFormatter.str())); 10466 } 10467 10468 //===----------------------------------------------------------------------===// 10469 // SDNode Class 10470 //===----------------------------------------------------------------------===// 10471 10472 bool llvm::isNullConstant(SDValue V) { 10473 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10474 return Const != nullptr && Const->isZero(); 10475 } 10476 10477 bool llvm::isNullFPConstant(SDValue V) { 10478 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10479 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10480 } 10481 10482 bool llvm::isAllOnesConstant(SDValue V) { 10483 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10484 return Const != nullptr && Const->isAllOnes(); 10485 } 10486 10487 bool llvm::isOneConstant(SDValue V) { 10488 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10489 return Const != nullptr && Const->isOne(); 10490 } 10491 10492 bool llvm::isMinSignedConstant(SDValue V) { 10493 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10494 return Const != nullptr && Const->isMinSignedValue(); 10495 } 10496 10497 SDValue llvm::peekThroughBitcasts(SDValue V) { 10498 while (V.getOpcode() == ISD::BITCAST) 10499 V = V.getOperand(0); 10500 return V; 10501 } 10502 10503 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10504 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10505 V = V.getOperand(0); 10506 return V; 10507 } 10508 10509 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10510 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10511 V = V.getOperand(0); 10512 return V; 10513 } 10514 10515 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10516 if (V.getOpcode() != ISD::XOR) 10517 return false; 10518 V = peekThroughBitcasts(V.getOperand(1)); 10519 unsigned NumBits = V.getScalarValueSizeInBits(); 10520 ConstantSDNode *C = 10521 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10522 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10523 } 10524 10525 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10526 bool AllowTruncation) { 10527 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10528 return CN; 10529 10530 // SplatVectors can truncate their operands. Ignore that case here unless 10531 // AllowTruncation is set. 10532 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10533 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10534 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10535 EVT CVT = CN->getValueType(0); 10536 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10537 if (AllowTruncation || CVT == VecEltVT) 10538 return CN; 10539 } 10540 } 10541 10542 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10543 BitVector UndefElements; 10544 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10545 10546 // BuildVectors can truncate their operands. Ignore that case here unless 10547 // AllowTruncation is set. 10548 if (CN && (UndefElements.none() || AllowUndefs)) { 10549 EVT CVT = CN->getValueType(0); 10550 EVT NSVT = N.getValueType().getScalarType(); 10551 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10552 if (AllowTruncation || (CVT == NSVT)) 10553 return CN; 10554 } 10555 } 10556 10557 return nullptr; 10558 } 10559 10560 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10561 bool AllowUndefs, 10562 bool AllowTruncation) { 10563 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10564 return CN; 10565 10566 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10567 BitVector UndefElements; 10568 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10569 10570 // BuildVectors can truncate their operands. Ignore that case here unless 10571 // AllowTruncation is set. 10572 if (CN && (UndefElements.none() || AllowUndefs)) { 10573 EVT CVT = CN->getValueType(0); 10574 EVT NSVT = N.getValueType().getScalarType(); 10575 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10576 if (AllowTruncation || (CVT == NSVT)) 10577 return CN; 10578 } 10579 } 10580 10581 return nullptr; 10582 } 10583 10584 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10585 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10586 return CN; 10587 10588 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10589 BitVector UndefElements; 10590 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10591 if (CN && (UndefElements.none() || AllowUndefs)) 10592 return CN; 10593 } 10594 10595 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10596 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10597 return CN; 10598 10599 return nullptr; 10600 } 10601 10602 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10603 const APInt &DemandedElts, 10604 bool AllowUndefs) { 10605 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10606 return CN; 10607 10608 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10609 BitVector UndefElements; 10610 ConstantFPSDNode *CN = 10611 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10612 if (CN && (UndefElements.none() || AllowUndefs)) 10613 return CN; 10614 } 10615 10616 return nullptr; 10617 } 10618 10619 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10620 // TODO: may want to use peekThroughBitcast() here. 10621 ConstantSDNode *C = 10622 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10623 return C && C->isZero(); 10624 } 10625 10626 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10627 // TODO: may want to use peekThroughBitcast() here. 10628 unsigned BitWidth = N.getScalarValueSizeInBits(); 10629 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10630 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10631 } 10632 10633 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10634 N = peekThroughBitcasts(N); 10635 unsigned BitWidth = N.getScalarValueSizeInBits(); 10636 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10637 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10638 } 10639 10640 HandleSDNode::~HandleSDNode() { 10641 DropOperands(); 10642 } 10643 10644 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10645 const DebugLoc &DL, 10646 const GlobalValue *GA, EVT VT, 10647 int64_t o, unsigned TF) 10648 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10649 TheGlobal = GA; 10650 } 10651 10652 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10653 EVT VT, unsigned SrcAS, 10654 unsigned DestAS) 10655 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10656 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10657 10658 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10659 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10660 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10661 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10662 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10663 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10664 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10665 10666 // We check here that the size of the memory operand fits within the size of 10667 // the MMO. This is because the MMO might indicate only a possible address 10668 // range instead of specifying the affected memory addresses precisely. 10669 // TODO: Make MachineMemOperands aware of scalable vectors. 10670 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10671 "Size mismatch!"); 10672 } 10673 10674 /// Profile - Gather unique data for the node. 10675 /// 10676 void SDNode::Profile(FoldingSetNodeID &ID) const { 10677 AddNodeIDNode(ID, this); 10678 } 10679 10680 namespace { 10681 10682 struct EVTArray { 10683 std::vector<EVT> VTs; 10684 10685 EVTArray() { 10686 VTs.reserve(MVT::VALUETYPE_SIZE); 10687 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10688 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10689 } 10690 }; 10691 10692 } // end anonymous namespace 10693 10694 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10695 static ManagedStatic<EVTArray> SimpleVTArray; 10696 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10697 10698 /// getValueTypeList - Return a pointer to the specified value type. 10699 /// 10700 const EVT *SDNode::getValueTypeList(EVT VT) { 10701 if (VT.isExtended()) { 10702 sys::SmartScopedLock<true> Lock(*VTMutex); 10703 return &(*EVTs->insert(VT).first); 10704 } 10705 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10706 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10707 } 10708 10709 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10710 /// indicated value. This method ignores uses of other values defined by this 10711 /// operation. 10712 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10713 assert(Value < getNumValues() && "Bad value!"); 10714 10715 // TODO: Only iterate over uses of a given value of the node 10716 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10717 if (UI.getUse().getResNo() == Value) { 10718 if (NUses == 0) 10719 return false; 10720 --NUses; 10721 } 10722 } 10723 10724 // Found exactly the right number of uses? 10725 return NUses == 0; 10726 } 10727 10728 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10729 /// value. This method ignores uses of other values defined by this operation. 10730 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10731 assert(Value < getNumValues() && "Bad value!"); 10732 10733 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10734 if (UI.getUse().getResNo() == Value) 10735 return true; 10736 10737 return false; 10738 } 10739 10740 /// isOnlyUserOf - Return true if this node is the only use of N. 10741 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10742 bool Seen = false; 10743 for (const SDNode *User : N->uses()) { 10744 if (User == this) 10745 Seen = true; 10746 else 10747 return false; 10748 } 10749 10750 return Seen; 10751 } 10752 10753 /// Return true if the only users of N are contained in Nodes. 10754 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10755 bool Seen = false; 10756 for (const SDNode *User : N->uses()) { 10757 if (llvm::is_contained(Nodes, User)) 10758 Seen = true; 10759 else 10760 return false; 10761 } 10762 10763 return Seen; 10764 } 10765 10766 /// isOperand - Return true if this node is an operand of N. 10767 bool SDValue::isOperandOf(const SDNode *N) const { 10768 return is_contained(N->op_values(), *this); 10769 } 10770 10771 bool SDNode::isOperandOf(const SDNode *N) const { 10772 return any_of(N->op_values(), 10773 [this](SDValue Op) { return this == Op.getNode(); }); 10774 } 10775 10776 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10777 /// be a chain) reaches the specified operand without crossing any 10778 /// side-effecting instructions on any chain path. In practice, this looks 10779 /// through token factors and non-volatile loads. In order to remain efficient, 10780 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10781 /// 10782 /// Note that we only need to examine chains when we're searching for 10783 /// side-effects; SelectionDAG requires that all side-effects are represented 10784 /// by chains, even if another operand would force a specific ordering. This 10785 /// constraint is necessary to allow transformations like splitting loads. 10786 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10787 unsigned Depth) const { 10788 if (*this == Dest) return true; 10789 10790 // Don't search too deeply, we just want to be able to see through 10791 // TokenFactor's etc. 10792 if (Depth == 0) return false; 10793 10794 // If this is a token factor, all inputs to the TF happen in parallel. 10795 if (getOpcode() == ISD::TokenFactor) { 10796 // First, try a shallow search. 10797 if (is_contained((*this)->ops(), Dest)) { 10798 // We found the chain we want as an operand of this TokenFactor. 10799 // Essentially, we reach the chain without side-effects if we could 10800 // serialize the TokenFactor into a simple chain of operations with 10801 // Dest as the last operation. This is automatically true if the 10802 // chain has one use: there are no other ordering constraints. 10803 // If the chain has more than one use, we give up: some other 10804 // use of Dest might force a side-effect between Dest and the current 10805 // node. 10806 if (Dest.hasOneUse()) 10807 return true; 10808 } 10809 // Next, try a deep search: check whether every operand of the TokenFactor 10810 // reaches Dest. 10811 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10812 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10813 }); 10814 } 10815 10816 // Loads don't have side effects, look through them. 10817 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10818 if (Ld->isUnordered()) 10819 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10820 } 10821 return false; 10822 } 10823 10824 bool SDNode::hasPredecessor(const SDNode *N) const { 10825 SmallPtrSet<const SDNode *, 32> Visited; 10826 SmallVector<const SDNode *, 16> Worklist; 10827 Worklist.push_back(this); 10828 return hasPredecessorHelper(N, Visited, Worklist); 10829 } 10830 10831 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10832 this->Flags.intersectWith(Flags); 10833 } 10834 10835 SDValue 10836 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10837 ArrayRef<ISD::NodeType> CandidateBinOps, 10838 bool AllowPartials) { 10839 // The pattern must end in an extract from index 0. 10840 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10841 !isNullConstant(Extract->getOperand(1))) 10842 return SDValue(); 10843 10844 // Match against one of the candidate binary ops. 10845 SDValue Op = Extract->getOperand(0); 10846 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10847 return Op.getOpcode() == unsigned(BinOp); 10848 })) 10849 return SDValue(); 10850 10851 // Floating-point reductions may require relaxed constraints on the final step 10852 // of the reduction because they may reorder intermediate operations. 10853 unsigned CandidateBinOp = Op.getOpcode(); 10854 if (Op.getValueType().isFloatingPoint()) { 10855 SDNodeFlags Flags = Op->getFlags(); 10856 switch (CandidateBinOp) { 10857 case ISD::FADD: 10858 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10859 return SDValue(); 10860 break; 10861 default: 10862 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10863 } 10864 } 10865 10866 // Matching failed - attempt to see if we did enough stages that a partial 10867 // reduction from a subvector is possible. 10868 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10869 if (!AllowPartials || !Op) 10870 return SDValue(); 10871 EVT OpVT = Op.getValueType(); 10872 EVT OpSVT = OpVT.getScalarType(); 10873 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10874 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10875 return SDValue(); 10876 BinOp = (ISD::NodeType)CandidateBinOp; 10877 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10878 getVectorIdxConstant(0, SDLoc(Op))); 10879 }; 10880 10881 // At each stage, we're looking for something that looks like: 10882 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10883 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10884 // i32 undef, i32 undef, i32 undef, i32 undef> 10885 // %a = binop <8 x i32> %op, %s 10886 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10887 // we expect something like: 10888 // <4,5,6,7,u,u,u,u> 10889 // <2,3,u,u,u,u,u,u> 10890 // <1,u,u,u,u,u,u,u> 10891 // While a partial reduction match would be: 10892 // <2,3,u,u,u,u,u,u> 10893 // <1,u,u,u,u,u,u,u> 10894 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10895 SDValue PrevOp; 10896 for (unsigned i = 0; i < Stages; ++i) { 10897 unsigned MaskEnd = (1 << i); 10898 10899 if (Op.getOpcode() != CandidateBinOp) 10900 return PartialReduction(PrevOp, MaskEnd); 10901 10902 SDValue Op0 = Op.getOperand(0); 10903 SDValue Op1 = Op.getOperand(1); 10904 10905 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10906 if (Shuffle) { 10907 Op = Op1; 10908 } else { 10909 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10910 Op = Op0; 10911 } 10912 10913 // The first operand of the shuffle should be the same as the other operand 10914 // of the binop. 10915 if (!Shuffle || Shuffle->getOperand(0) != Op) 10916 return PartialReduction(PrevOp, MaskEnd); 10917 10918 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10919 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10920 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10921 return PartialReduction(PrevOp, MaskEnd); 10922 10923 PrevOp = Op; 10924 } 10925 10926 // Handle subvector reductions, which tend to appear after the shuffle 10927 // reduction stages. 10928 while (Op.getOpcode() == CandidateBinOp) { 10929 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10930 SDValue Op0 = Op.getOperand(0); 10931 SDValue Op1 = Op.getOperand(1); 10932 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10933 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10934 Op0.getOperand(0) != Op1.getOperand(0)) 10935 break; 10936 SDValue Src = Op0.getOperand(0); 10937 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10938 if (NumSrcElts != (2 * NumElts)) 10939 break; 10940 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10941 Op1.getConstantOperandAPInt(1) == NumElts) && 10942 !(Op1.getConstantOperandAPInt(1) == 0 && 10943 Op0.getConstantOperandAPInt(1) == NumElts)) 10944 break; 10945 Op = Src; 10946 } 10947 10948 BinOp = (ISD::NodeType)CandidateBinOp; 10949 return Op; 10950 } 10951 10952 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10953 assert(N->getNumValues() == 1 && 10954 "Can't unroll a vector with multiple results!"); 10955 10956 EVT VT = N->getValueType(0); 10957 unsigned NE = VT.getVectorNumElements(); 10958 EVT EltVT = VT.getVectorElementType(); 10959 SDLoc dl(N); 10960 10961 SmallVector<SDValue, 8> Scalars; 10962 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10963 10964 // If ResNE is 0, fully unroll the vector op. 10965 if (ResNE == 0) 10966 ResNE = NE; 10967 else if (NE > ResNE) 10968 NE = ResNE; 10969 10970 unsigned i; 10971 for (i= 0; i != NE; ++i) { 10972 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10973 SDValue Operand = N->getOperand(j); 10974 EVT OperandVT = Operand.getValueType(); 10975 if (OperandVT.isVector()) { 10976 // A vector operand; extract a single element. 10977 EVT OperandEltVT = OperandVT.getVectorElementType(); 10978 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10979 Operand, getVectorIdxConstant(i, dl)); 10980 } else { 10981 // A scalar operand; just use it as is. 10982 Operands[j] = Operand; 10983 } 10984 } 10985 10986 switch (N->getOpcode()) { 10987 default: { 10988 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10989 N->getFlags())); 10990 break; 10991 } 10992 case ISD::VSELECT: 10993 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10994 break; 10995 case ISD::SHL: 10996 case ISD::SRA: 10997 case ISD::SRL: 10998 case ISD::ROTL: 10999 case ISD::ROTR: 11000 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11001 getShiftAmountOperand(Operands[0].getValueType(), 11002 Operands[1]))); 11003 break; 11004 case ISD::SIGN_EXTEND_INREG: { 11005 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11006 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11007 Operands[0], 11008 getValueType(ExtVT))); 11009 } 11010 } 11011 } 11012 11013 for (; i < ResNE; ++i) 11014 Scalars.push_back(getUNDEF(EltVT)); 11015 11016 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11017 return getBuildVector(VecVT, dl, Scalars); 11018 } 11019 11020 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11021 SDNode *N, unsigned ResNE) { 11022 unsigned Opcode = N->getOpcode(); 11023 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11024 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11025 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11026 "Expected an overflow opcode"); 11027 11028 EVT ResVT = N->getValueType(0); 11029 EVT OvVT = N->getValueType(1); 11030 EVT ResEltVT = ResVT.getVectorElementType(); 11031 EVT OvEltVT = OvVT.getVectorElementType(); 11032 SDLoc dl(N); 11033 11034 // If ResNE is 0, fully unroll the vector op. 11035 unsigned NE = ResVT.getVectorNumElements(); 11036 if (ResNE == 0) 11037 ResNE = NE; 11038 else if (NE > ResNE) 11039 NE = ResNE; 11040 11041 SmallVector<SDValue, 8> LHSScalars; 11042 SmallVector<SDValue, 8> RHSScalars; 11043 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11044 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11045 11046 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11047 SDVTList VTs = getVTList(ResEltVT, SVT); 11048 SmallVector<SDValue, 8> ResScalars; 11049 SmallVector<SDValue, 8> OvScalars; 11050 for (unsigned i = 0; i < NE; ++i) { 11051 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11052 SDValue Ov = 11053 getSelect(dl, OvEltVT, Res.getValue(1), 11054 getBoolConstant(true, dl, OvEltVT, ResVT), 11055 getConstant(0, dl, OvEltVT)); 11056 11057 ResScalars.push_back(Res); 11058 OvScalars.push_back(Ov); 11059 } 11060 11061 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11062 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11063 11064 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11065 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11066 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11067 getBuildVector(NewOvVT, dl, OvScalars)); 11068 } 11069 11070 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11071 LoadSDNode *Base, 11072 unsigned Bytes, 11073 int Dist) const { 11074 if (LD->isVolatile() || Base->isVolatile()) 11075 return false; 11076 // TODO: probably too restrictive for atomics, revisit 11077 if (!LD->isSimple()) 11078 return false; 11079 if (LD->isIndexed() || Base->isIndexed()) 11080 return false; 11081 if (LD->getChain() != Base->getChain()) 11082 return false; 11083 EVT VT = LD->getValueType(0); 11084 if (VT.getSizeInBits() / 8 != Bytes) 11085 return false; 11086 11087 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11088 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11089 11090 int64_t Offset = 0; 11091 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11092 return (Dist * Bytes == Offset); 11093 return false; 11094 } 11095 11096 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11097 /// if it cannot be inferred. 11098 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11099 // If this is a GlobalAddress + cst, return the alignment. 11100 const GlobalValue *GV = nullptr; 11101 int64_t GVOffset = 0; 11102 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11103 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11104 KnownBits Known(PtrWidth); 11105 llvm::computeKnownBits(GV, Known, getDataLayout()); 11106 unsigned AlignBits = Known.countMinTrailingZeros(); 11107 if (AlignBits) 11108 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11109 } 11110 11111 // If this is a direct reference to a stack slot, use information about the 11112 // stack slot's alignment. 11113 int FrameIdx = INT_MIN; 11114 int64_t FrameOffset = 0; 11115 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11116 FrameIdx = FI->getIndex(); 11117 } else if (isBaseWithConstantOffset(Ptr) && 11118 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11119 // Handle FI+Cst 11120 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11121 FrameOffset = Ptr.getConstantOperandVal(1); 11122 } 11123 11124 if (FrameIdx != INT_MIN) { 11125 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11126 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11127 } 11128 11129 return None; 11130 } 11131 11132 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11133 /// which is split (or expanded) into two not necessarily identical pieces. 11134 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11135 // Currently all types are split in half. 11136 EVT LoVT, HiVT; 11137 if (!VT.isVector()) 11138 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11139 else 11140 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11141 11142 return std::make_pair(LoVT, HiVT); 11143 } 11144 11145 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11146 /// type, dependent on an enveloping VT that has been split into two identical 11147 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11148 std::pair<EVT, EVT> 11149 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11150 bool *HiIsEmpty) const { 11151 EVT EltTp = VT.getVectorElementType(); 11152 // Examples: 11153 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11154 // custom VL=9 with enveloping VL=8/8 yields 8/1 11155 // custom VL=10 with enveloping VL=8/8 yields 8/2 11156 // etc. 11157 ElementCount VTNumElts = VT.getVectorElementCount(); 11158 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11159 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11160 "Mixing fixed width and scalable vectors when enveloping a type"); 11161 EVT LoVT, HiVT; 11162 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11163 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11164 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11165 *HiIsEmpty = false; 11166 } else { 11167 // Flag that hi type has zero storage size, but return split envelop type 11168 // (this would be easier if vector types with zero elements were allowed). 11169 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11170 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11171 *HiIsEmpty = true; 11172 } 11173 return std::make_pair(LoVT, HiVT); 11174 } 11175 11176 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11177 /// low/high part. 11178 std::pair<SDValue, SDValue> 11179 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11180 const EVT &HiVT) { 11181 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11182 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11183 "Splitting vector with an invalid mixture of fixed and scalable " 11184 "vector types"); 11185 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11186 N.getValueType().getVectorMinNumElements() && 11187 "More vector elements requested than available!"); 11188 SDValue Lo, Hi; 11189 Lo = 11190 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11191 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11192 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11193 // IDX with the runtime scaling factor of the result vector type. For 11194 // fixed-width result vectors, that runtime scaling factor is 1. 11195 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11196 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11197 return std::make_pair(Lo, Hi); 11198 } 11199 11200 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11201 const SDLoc &DL) { 11202 // Split the vector length parameter. 11203 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11204 EVT VT = N.getValueType(); 11205 assert(VecVT.getVectorElementCount().isKnownEven() && 11206 "Expecting the mask to be an evenly-sized vector"); 11207 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11208 SDValue HalfNumElts = 11209 VecVT.isFixedLengthVector() 11210 ? getConstant(HalfMinNumElts, DL, VT) 11211 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11212 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11213 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11214 return std::make_pair(Lo, Hi); 11215 } 11216 11217 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11218 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11219 EVT VT = N.getValueType(); 11220 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11221 NextPowerOf2(VT.getVectorNumElements())); 11222 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11223 getVectorIdxConstant(0, DL)); 11224 } 11225 11226 void SelectionDAG::ExtractVectorElements(SDValue Op, 11227 SmallVectorImpl<SDValue> &Args, 11228 unsigned Start, unsigned Count, 11229 EVT EltVT) { 11230 EVT VT = Op.getValueType(); 11231 if (Count == 0) 11232 Count = VT.getVectorNumElements(); 11233 if (EltVT == EVT()) 11234 EltVT = VT.getVectorElementType(); 11235 SDLoc SL(Op); 11236 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11237 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11238 getVectorIdxConstant(i, SL))); 11239 } 11240 } 11241 11242 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11243 unsigned GlobalAddressSDNode::getAddressSpace() const { 11244 return getGlobal()->getType()->getAddressSpace(); 11245 } 11246 11247 Type *ConstantPoolSDNode::getType() const { 11248 if (isMachineConstantPoolEntry()) 11249 return Val.MachineCPVal->getType(); 11250 return Val.ConstVal->getType(); 11251 } 11252 11253 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11254 unsigned &SplatBitSize, 11255 bool &HasAnyUndefs, 11256 unsigned MinSplatBits, 11257 bool IsBigEndian) const { 11258 EVT VT = getValueType(0); 11259 assert(VT.isVector() && "Expected a vector type"); 11260 unsigned VecWidth = VT.getSizeInBits(); 11261 if (MinSplatBits > VecWidth) 11262 return false; 11263 11264 // FIXME: The widths are based on this node's type, but build vectors can 11265 // truncate their operands. 11266 SplatValue = APInt(VecWidth, 0); 11267 SplatUndef = APInt(VecWidth, 0); 11268 11269 // Get the bits. Bits with undefined values (when the corresponding element 11270 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11271 // in SplatValue. If any of the values are not constant, give up and return 11272 // false. 11273 unsigned int NumOps = getNumOperands(); 11274 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11275 unsigned EltWidth = VT.getScalarSizeInBits(); 11276 11277 for (unsigned j = 0; j < NumOps; ++j) { 11278 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11279 SDValue OpVal = getOperand(i); 11280 unsigned BitPos = j * EltWidth; 11281 11282 if (OpVal.isUndef()) 11283 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11284 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11285 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11286 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11287 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11288 else 11289 return false; 11290 } 11291 11292 // The build_vector is all constants or undefs. Find the smallest element 11293 // size that splats the vector. 11294 HasAnyUndefs = (SplatUndef != 0); 11295 11296 // FIXME: This does not work for vectors with elements less than 8 bits. 11297 while (VecWidth > 8) { 11298 unsigned HalfSize = VecWidth / 2; 11299 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11300 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11301 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11302 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11303 11304 // If the two halves do not match (ignoring undef bits), stop here. 11305 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11306 MinSplatBits > HalfSize) 11307 break; 11308 11309 SplatValue = HighValue | LowValue; 11310 SplatUndef = HighUndef & LowUndef; 11311 11312 VecWidth = HalfSize; 11313 } 11314 11315 SplatBitSize = VecWidth; 11316 return true; 11317 } 11318 11319 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11320 BitVector *UndefElements) const { 11321 unsigned NumOps = getNumOperands(); 11322 if (UndefElements) { 11323 UndefElements->clear(); 11324 UndefElements->resize(NumOps); 11325 } 11326 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11327 if (!DemandedElts) 11328 return SDValue(); 11329 SDValue Splatted; 11330 for (unsigned i = 0; i != NumOps; ++i) { 11331 if (!DemandedElts[i]) 11332 continue; 11333 SDValue Op = getOperand(i); 11334 if (Op.isUndef()) { 11335 if (UndefElements) 11336 (*UndefElements)[i] = true; 11337 } else if (!Splatted) { 11338 Splatted = Op; 11339 } else if (Splatted != Op) { 11340 return SDValue(); 11341 } 11342 } 11343 11344 if (!Splatted) { 11345 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11346 assert(getOperand(FirstDemandedIdx).isUndef() && 11347 "Can only have a splat without a constant for all undefs."); 11348 return getOperand(FirstDemandedIdx); 11349 } 11350 11351 return Splatted; 11352 } 11353 11354 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11355 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11356 return getSplatValue(DemandedElts, UndefElements); 11357 } 11358 11359 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11360 SmallVectorImpl<SDValue> &Sequence, 11361 BitVector *UndefElements) const { 11362 unsigned NumOps = getNumOperands(); 11363 Sequence.clear(); 11364 if (UndefElements) { 11365 UndefElements->clear(); 11366 UndefElements->resize(NumOps); 11367 } 11368 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11369 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11370 return false; 11371 11372 // Set the undefs even if we don't find a sequence (like getSplatValue). 11373 if (UndefElements) 11374 for (unsigned I = 0; I != NumOps; ++I) 11375 if (DemandedElts[I] && getOperand(I).isUndef()) 11376 (*UndefElements)[I] = true; 11377 11378 // Iteratively widen the sequence length looking for repetitions. 11379 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11380 Sequence.append(SeqLen, SDValue()); 11381 for (unsigned I = 0; I != NumOps; ++I) { 11382 if (!DemandedElts[I]) 11383 continue; 11384 SDValue &SeqOp = Sequence[I % SeqLen]; 11385 SDValue Op = getOperand(I); 11386 if (Op.isUndef()) { 11387 if (!SeqOp) 11388 SeqOp = Op; 11389 continue; 11390 } 11391 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11392 Sequence.clear(); 11393 break; 11394 } 11395 SeqOp = Op; 11396 } 11397 if (!Sequence.empty()) 11398 return true; 11399 } 11400 11401 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11402 return false; 11403 } 11404 11405 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11406 BitVector *UndefElements) const { 11407 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11408 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11409 } 11410 11411 ConstantSDNode * 11412 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11413 BitVector *UndefElements) const { 11414 return dyn_cast_or_null<ConstantSDNode>( 11415 getSplatValue(DemandedElts, UndefElements)); 11416 } 11417 11418 ConstantSDNode * 11419 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11420 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11421 } 11422 11423 ConstantFPSDNode * 11424 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11425 BitVector *UndefElements) const { 11426 return dyn_cast_or_null<ConstantFPSDNode>( 11427 getSplatValue(DemandedElts, UndefElements)); 11428 } 11429 11430 ConstantFPSDNode * 11431 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11432 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11433 } 11434 11435 int32_t 11436 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11437 uint32_t BitWidth) const { 11438 if (ConstantFPSDNode *CN = 11439 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11440 bool IsExact; 11441 APSInt IntVal(BitWidth); 11442 const APFloat &APF = CN->getValueAPF(); 11443 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11444 APFloat::opOK || 11445 !IsExact) 11446 return -1; 11447 11448 return IntVal.exactLogBase2(); 11449 } 11450 return -1; 11451 } 11452 11453 bool BuildVectorSDNode::getConstantRawBits( 11454 bool IsLittleEndian, unsigned DstEltSizeInBits, 11455 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11456 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11457 if (!isConstant()) 11458 return false; 11459 11460 unsigned NumSrcOps = getNumOperands(); 11461 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11462 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11463 "Invalid bitcast scale"); 11464 11465 // Extract raw src bits. 11466 SmallVector<APInt> SrcBitElements(NumSrcOps, 11467 APInt::getNullValue(SrcEltSizeInBits)); 11468 BitVector SrcUndeElements(NumSrcOps, false); 11469 11470 for (unsigned I = 0; I != NumSrcOps; ++I) { 11471 SDValue Op = getOperand(I); 11472 if (Op.isUndef()) { 11473 SrcUndeElements.set(I); 11474 continue; 11475 } 11476 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11477 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11478 assert((CInt || CFP) && "Unknown constant"); 11479 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11480 : CFP->getValueAPF().bitcastToAPInt(); 11481 } 11482 11483 // Recast to dst width. 11484 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11485 SrcBitElements, UndefElements, SrcUndeElements); 11486 return true; 11487 } 11488 11489 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11490 unsigned DstEltSizeInBits, 11491 SmallVectorImpl<APInt> &DstBitElements, 11492 ArrayRef<APInt> SrcBitElements, 11493 BitVector &DstUndefElements, 11494 const BitVector &SrcUndefElements) { 11495 unsigned NumSrcOps = SrcBitElements.size(); 11496 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11497 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11498 "Invalid bitcast scale"); 11499 assert(NumSrcOps == SrcUndefElements.size() && 11500 "Vector size mismatch"); 11501 11502 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11503 DstUndefElements.clear(); 11504 DstUndefElements.resize(NumDstOps, false); 11505 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11506 11507 // Concatenate src elements constant bits together into dst element. 11508 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11509 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11510 for (unsigned I = 0; I != NumDstOps; ++I) { 11511 DstUndefElements.set(I); 11512 APInt &DstBits = DstBitElements[I]; 11513 for (unsigned J = 0; J != Scale; ++J) { 11514 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11515 if (SrcUndefElements[Idx]) 11516 continue; 11517 DstUndefElements.reset(I); 11518 const APInt &SrcBits = SrcBitElements[Idx]; 11519 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11520 "Illegal constant bitwidths"); 11521 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11522 } 11523 } 11524 return; 11525 } 11526 11527 // Split src element constant bits into dst elements. 11528 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11529 for (unsigned I = 0; I != NumSrcOps; ++I) { 11530 if (SrcUndefElements[I]) { 11531 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11532 continue; 11533 } 11534 const APInt &SrcBits = SrcBitElements[I]; 11535 for (unsigned J = 0; J != Scale; ++J) { 11536 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11537 APInt &DstBits = DstBitElements[Idx]; 11538 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11539 } 11540 } 11541 } 11542 11543 bool BuildVectorSDNode::isConstant() const { 11544 for (const SDValue &Op : op_values()) { 11545 unsigned Opc = Op.getOpcode(); 11546 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11547 return false; 11548 } 11549 return true; 11550 } 11551 11552 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11553 // Find the first non-undef value in the shuffle mask. 11554 unsigned i, e; 11555 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11556 /* search */; 11557 11558 // If all elements are undefined, this shuffle can be considered a splat 11559 // (although it should eventually get simplified away completely). 11560 if (i == e) 11561 return true; 11562 11563 // Make sure all remaining elements are either undef or the same as the first 11564 // non-undef value. 11565 for (int Idx = Mask[i]; i != e; ++i) 11566 if (Mask[i] >= 0 && Mask[i] != Idx) 11567 return false; 11568 return true; 11569 } 11570 11571 // Returns the SDNode if it is a constant integer BuildVector 11572 // or constant integer. 11573 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11574 if (isa<ConstantSDNode>(N)) 11575 return N.getNode(); 11576 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11577 return N.getNode(); 11578 // Treat a GlobalAddress supporting constant offset folding as a 11579 // constant integer. 11580 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11581 if (GA->getOpcode() == ISD::GlobalAddress && 11582 TLI->isOffsetFoldingLegal(GA)) 11583 return GA; 11584 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11585 isa<ConstantSDNode>(N.getOperand(0))) 11586 return N.getNode(); 11587 return nullptr; 11588 } 11589 11590 // Returns the SDNode if it is a constant float BuildVector 11591 // or constant float. 11592 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11593 if (isa<ConstantFPSDNode>(N)) 11594 return N.getNode(); 11595 11596 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11597 return N.getNode(); 11598 11599 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11600 isa<ConstantFPSDNode>(N.getOperand(0))) 11601 return N.getNode(); 11602 11603 return nullptr; 11604 } 11605 11606 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11607 assert(!Node->OperandList && "Node already has operands"); 11608 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11609 "too many operands to fit into SDNode"); 11610 SDUse *Ops = OperandRecycler.allocate( 11611 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11612 11613 bool IsDivergent = false; 11614 for (unsigned I = 0; I != Vals.size(); ++I) { 11615 Ops[I].setUser(Node); 11616 Ops[I].setInitial(Vals[I]); 11617 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11618 IsDivergent |= Ops[I].getNode()->isDivergent(); 11619 } 11620 Node->NumOperands = Vals.size(); 11621 Node->OperandList = Ops; 11622 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11623 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11624 Node->SDNodeBits.IsDivergent = IsDivergent; 11625 } 11626 checkForCycles(Node); 11627 } 11628 11629 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11630 SmallVectorImpl<SDValue> &Vals) { 11631 size_t Limit = SDNode::getMaxNumOperands(); 11632 while (Vals.size() > Limit) { 11633 unsigned SliceIdx = Vals.size() - Limit; 11634 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11635 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11636 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11637 Vals.emplace_back(NewTF); 11638 } 11639 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11640 } 11641 11642 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11643 EVT VT, SDNodeFlags Flags) { 11644 switch (Opcode) { 11645 default: 11646 return SDValue(); 11647 case ISD::ADD: 11648 case ISD::OR: 11649 case ISD::XOR: 11650 case ISD::UMAX: 11651 return getConstant(0, DL, VT); 11652 case ISD::MUL: 11653 return getConstant(1, DL, VT); 11654 case ISD::AND: 11655 case ISD::UMIN: 11656 return getAllOnesConstant(DL, VT); 11657 case ISD::SMAX: 11658 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11659 case ISD::SMIN: 11660 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11661 case ISD::FADD: 11662 return getConstantFP(-0.0, DL, VT); 11663 case ISD::FMUL: 11664 return getConstantFP(1.0, DL, VT); 11665 case ISD::FMINNUM: 11666 case ISD::FMAXNUM: { 11667 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11668 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11669 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11670 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11671 APFloat::getLargest(Semantics); 11672 if (Opcode == ISD::FMAXNUM) 11673 NeutralAF.changeSign(); 11674 11675 return getConstantFP(NeutralAF, DL, VT); 11676 } 11677 } 11678 } 11679 11680 #ifndef NDEBUG 11681 static void checkForCyclesHelper(const SDNode *N, 11682 SmallPtrSetImpl<const SDNode*> &Visited, 11683 SmallPtrSetImpl<const SDNode*> &Checked, 11684 const llvm::SelectionDAG *DAG) { 11685 // If this node has already been checked, don't check it again. 11686 if (Checked.count(N)) 11687 return; 11688 11689 // If a node has already been visited on this depth-first walk, reject it as 11690 // a cycle. 11691 if (!Visited.insert(N).second) { 11692 errs() << "Detected cycle in SelectionDAG\n"; 11693 dbgs() << "Offending node:\n"; 11694 N->dumprFull(DAG); dbgs() << "\n"; 11695 abort(); 11696 } 11697 11698 for (const SDValue &Op : N->op_values()) 11699 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11700 11701 Checked.insert(N); 11702 Visited.erase(N); 11703 } 11704 #endif 11705 11706 void llvm::checkForCycles(const llvm::SDNode *N, 11707 const llvm::SelectionDAG *DAG, 11708 bool force) { 11709 #ifndef NDEBUG 11710 bool check = force; 11711 #ifdef EXPENSIVE_CHECKS 11712 check = true; 11713 #endif // EXPENSIVE_CHECKS 11714 if (check) { 11715 assert(N && "Checking nonexistent SDNode"); 11716 SmallPtrSet<const SDNode*, 32> visited; 11717 SmallPtrSet<const SDNode*, 32> checked; 11718 checkForCyclesHelper(N, visited, checked, DAG); 11719 } 11720 #endif // !NDEBUG 11721 } 11722 11723 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11724 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11725 } 11726