1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MachineValueType.h" 64 #include "llvm/Support/ManagedStatic.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Mutex.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include "llvm/Transforms/Utils/SizeOpts.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <cstdlib> 75 #include <limits> 76 #include <set> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 83 /// makeVTList - Return an instance of the SDVTList struct initialized with the 84 /// specified members. 85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 86 SDVTList Res = {VTs, NumVTs}; 87 return Res; 88 } 89 90 // Default null implementations of the callbacks. 91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 94 95 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 96 97 #define DEBUG_TYPE "selectiondag" 98 99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 100 cl::Hidden, cl::init(true), 101 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 102 103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 104 cl::desc("Number limit for gluing ld/st of memcpy."), 105 cl::Hidden, cl::init(0)); 106 107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 108 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 109 } 110 111 //===----------------------------------------------------------------------===// 112 // ConstantFPSDNode Class 113 //===----------------------------------------------------------------------===// 114 115 /// isExactlyValue - We don't rely on operator== working on double values, as 116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 117 /// As such, this method can be used to do an exact bit-for-bit comparison of 118 /// two floating point values. 119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 120 return getValueAPF().bitwiseIsEqual(V); 121 } 122 123 bool ConstantFPSDNode::isValueValidForType(EVT VT, 124 const APFloat& Val) { 125 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 126 127 // convert modifies in place, so make a copy. 128 APFloat Val2 = APFloat(Val); 129 bool losesInfo; 130 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 131 APFloat::rmNearestTiesToEven, 132 &losesInfo); 133 return !losesInfo; 134 } 135 136 //===----------------------------------------------------------------------===// 137 // ISD Namespace 138 //===----------------------------------------------------------------------===// 139 140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 141 auto *BV = dyn_cast<BuildVectorSDNode>(N); 142 if (!BV) 143 return false; 144 145 APInt SplatUndef; 146 unsigned SplatBitSize; 147 bool HasUndefs; 148 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 149 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 150 EltSize) && 151 EltSize == SplatBitSize; 152 } 153 154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 155 // specializations of the more general isConstantSplatVector()? 156 157 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 158 // Look through a bit convert. 159 while (N->getOpcode() == ISD::BITCAST) 160 N = N->getOperand(0).getNode(); 161 162 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 163 164 unsigned i = 0, e = N->getNumOperands(); 165 166 // Skip over all of the undef values. 167 while (i != e && N->getOperand(i).isUndef()) 168 ++i; 169 170 // Do not accept an all-undef vector. 171 if (i == e) return false; 172 173 // Do not accept build_vectors that aren't all constants or which have non-~0 174 // elements. We have to be a bit careful here, as the type of the constant 175 // may not be the same as the type of the vector elements due to type 176 // legalization (the elements are promoted to a legal type for the target and 177 // a vector of a type may be legal when the base element type is not). 178 // We only want to check enough bits to cover the vector elements, because 179 // we care if the resultant vector is all ones, not whether the individual 180 // constants are. 181 SDValue NotZero = N->getOperand(i); 182 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 183 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 184 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 185 return false; 186 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 187 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 188 return false; 189 } else 190 return false; 191 192 // Okay, we have at least one ~0 value, check to see if the rest match or are 193 // undefs. Even with the above element type twiddling, this should be OK, as 194 // the same type legalization should have applied to all the elements. 195 for (++i; i != e; ++i) 196 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 197 return false; 198 return true; 199 } 200 201 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 202 // Look through a bit convert. 203 while (N->getOpcode() == ISD::BITCAST) 204 N = N->getOperand(0).getNode(); 205 206 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 207 208 bool IsAllUndef = true; 209 for (const SDValue &Op : N->op_values()) { 210 if (Op.isUndef()) 211 continue; 212 IsAllUndef = false; 213 // Do not accept build_vectors that aren't all constants or which have non-0 214 // elements. We have to be a bit careful here, as the type of the constant 215 // may not be the same as the type of the vector elements due to type 216 // legalization (the elements are promoted to a legal type for the target 217 // and a vector of a type may be legal when the base element type is not). 218 // We only want to check enough bits to cover the vector elements, because 219 // we care if the resultant vector is all zeros, not whether the individual 220 // constants are. 221 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 222 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 223 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 224 return false; 225 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 226 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 227 return false; 228 } else 229 return false; 230 } 231 232 // Do not accept an all-undef vector. 233 if (IsAllUndef) 234 return false; 235 return true; 236 } 237 238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 239 if (N->getOpcode() != ISD::BUILD_VECTOR) 240 return false; 241 242 for (const SDValue &Op : N->op_values()) { 243 if (Op.isUndef()) 244 continue; 245 if (!isa<ConstantSDNode>(Op)) 246 return false; 247 } 248 return true; 249 } 250 251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 252 if (N->getOpcode() != ISD::BUILD_VECTOR) 253 return false; 254 255 for (const SDValue &Op : N->op_values()) { 256 if (Op.isUndef()) 257 continue; 258 if (!isa<ConstantFPSDNode>(Op)) 259 return false; 260 } 261 return true; 262 } 263 264 bool ISD::allOperandsUndef(const SDNode *N) { 265 // Return false if the node has no operands. 266 // This is "logically inconsistent" with the definition of "all" but 267 // is probably the desired behavior. 268 if (N->getNumOperands() == 0) 269 return false; 270 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 271 } 272 273 bool ISD::matchUnaryPredicate(SDValue Op, 274 std::function<bool(ConstantSDNode *)> Match, 275 bool AllowUndefs) { 276 // FIXME: Add support for scalar UNDEF cases? 277 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 278 return Match(Cst); 279 280 // FIXME: Add support for vector UNDEF cases? 281 if (ISD::BUILD_VECTOR != Op.getOpcode()) 282 return false; 283 284 EVT SVT = Op.getValueType().getScalarType(); 285 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 286 if (AllowUndefs && Op.getOperand(i).isUndef()) { 287 if (!Match(nullptr)) 288 return false; 289 continue; 290 } 291 292 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 293 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 294 return false; 295 } 296 return true; 297 } 298 299 bool ISD::matchBinaryPredicate( 300 SDValue LHS, SDValue RHS, 301 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 302 bool AllowUndefs, bool AllowTypeMismatch) { 303 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 304 return false; 305 306 // TODO: Add support for scalar UNDEF cases? 307 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 308 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 309 return Match(LHSCst, RHSCst); 310 311 // TODO: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 313 ISD::BUILD_VECTOR != RHS.getOpcode()) 314 return false; 315 316 EVT SVT = LHS.getValueType().getScalarType(); 317 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 318 SDValue LHSOp = LHS.getOperand(i); 319 SDValue RHSOp = RHS.getOperand(i); 320 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 321 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 322 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 323 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 324 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 325 return false; 326 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 327 LHSOp.getValueType() != RHSOp.getValueType())) 328 return false; 329 if (!Match(LHSCst, RHSCst)) 330 return false; 331 } 332 return true; 333 } 334 335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 336 switch (ExtType) { 337 case ISD::EXTLOAD: 338 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 339 case ISD::SEXTLOAD: 340 return ISD::SIGN_EXTEND; 341 case ISD::ZEXTLOAD: 342 return ISD::ZERO_EXTEND; 343 default: 344 break; 345 } 346 347 llvm_unreachable("Invalid LoadExtType"); 348 } 349 350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 351 // To perform this operation, we just need to swap the L and G bits of the 352 // operation. 353 unsigned OldL = (Operation >> 2) & 1; 354 unsigned OldG = (Operation >> 1) & 1; 355 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 356 (OldL << 1) | // New G bit 357 (OldG << 2)); // New L bit. 358 } 359 360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 361 unsigned Operation = Op; 362 if (isIntegerLike) 363 Operation ^= 7; // Flip L, G, E bits, but not U. 364 else 365 Operation ^= 15; // Flip all of the condition bits. 366 367 if (Operation > ISD::SETTRUE2) 368 Operation &= ~8; // Don't let N and U bits get set. 369 370 return ISD::CondCode(Operation); 371 } 372 373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 374 return getSetCCInverseImpl(Op, Type.isInteger()); 375 } 376 377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 378 bool isIntegerLike) { 379 return getSetCCInverseImpl(Op, isIntegerLike); 380 } 381 382 /// For an integer comparison, return 1 if the comparison is a signed operation 383 /// and 2 if the result is an unsigned comparison. Return zero if the operation 384 /// does not depend on the sign of the input (setne and seteq). 385 static int isSignedOp(ISD::CondCode Opcode) { 386 switch (Opcode) { 387 default: llvm_unreachable("Illegal integer setcc operation!"); 388 case ISD::SETEQ: 389 case ISD::SETNE: return 0; 390 case ISD::SETLT: 391 case ISD::SETLE: 392 case ISD::SETGT: 393 case ISD::SETGE: return 1; 394 case ISD::SETULT: 395 case ISD::SETULE: 396 case ISD::SETUGT: 397 case ISD::SETUGE: return 2; 398 } 399 } 400 401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 402 EVT Type) { 403 bool IsInteger = Type.isInteger(); 404 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 405 // Cannot fold a signed integer setcc with an unsigned integer setcc. 406 return ISD::SETCC_INVALID; 407 408 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 409 410 // If the N and U bits get set, then the resultant comparison DOES suddenly 411 // care about orderedness, and it is true when ordered. 412 if (Op > ISD::SETTRUE2) 413 Op &= ~16; // Clear the U bit if the N bit is set. 414 415 // Canonicalize illegal integer setcc's. 416 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 417 Op = ISD::SETNE; 418 419 return ISD::CondCode(Op); 420 } 421 422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 423 EVT Type) { 424 bool IsInteger = Type.isInteger(); 425 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 426 // Cannot fold a signed setcc with an unsigned setcc. 427 return ISD::SETCC_INVALID; 428 429 // Combine all of the condition bits. 430 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 431 432 // Canonicalize illegal integer setcc's. 433 if (IsInteger) { 434 switch (Result) { 435 default: break; 436 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 437 case ISD::SETOEQ: // SETEQ & SETU[LG]E 438 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 439 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 440 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 441 } 442 } 443 444 return Result; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // SDNode Profile Support 449 //===----------------------------------------------------------------------===// 450 451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 453 ID.AddInteger(OpC); 454 } 455 456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 457 /// solely with their pointer. 458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 459 ID.AddPointer(VTList.VTs); 460 } 461 462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 463 static void AddNodeIDOperands(FoldingSetNodeID &ID, 464 ArrayRef<SDValue> Ops) { 465 for (auto& Op : Ops) { 466 ID.AddPointer(Op.getNode()); 467 ID.AddInteger(Op.getResNo()); 468 } 469 } 470 471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 472 static void AddNodeIDOperands(FoldingSetNodeID &ID, 473 ArrayRef<SDUse> Ops) { 474 for (auto& Op : Ops) { 475 ID.AddPointer(Op.getNode()); 476 ID.AddInteger(Op.getResNo()); 477 } 478 } 479 480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 481 SDVTList VTList, ArrayRef<SDValue> OpList) { 482 AddNodeIDOpcode(ID, OpC); 483 AddNodeIDValueTypes(ID, VTList); 484 AddNodeIDOperands(ID, OpList); 485 } 486 487 /// If this is an SDNode with special info, add this info to the NodeID data. 488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 489 switch (N->getOpcode()) { 490 case ISD::TargetExternalSymbol: 491 case ISD::ExternalSymbol: 492 case ISD::MCSymbol: 493 llvm_unreachable("Should only be used on nodes with operands"); 494 default: break; // Normal nodes don't need extra info. 495 case ISD::TargetConstant: 496 case ISD::Constant: { 497 const ConstantSDNode *C = cast<ConstantSDNode>(N); 498 ID.AddPointer(C->getConstantIntValue()); 499 ID.AddBoolean(C->isOpaque()); 500 break; 501 } 502 case ISD::TargetConstantFP: 503 case ISD::ConstantFP: 504 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 505 break; 506 case ISD::TargetGlobalAddress: 507 case ISD::GlobalAddress: 508 case ISD::TargetGlobalTLSAddress: 509 case ISD::GlobalTLSAddress: { 510 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 511 ID.AddPointer(GA->getGlobal()); 512 ID.AddInteger(GA->getOffset()); 513 ID.AddInteger(GA->getTargetFlags()); 514 break; 515 } 516 case ISD::BasicBlock: 517 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 518 break; 519 case ISD::Register: 520 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 521 break; 522 case ISD::RegisterMask: 523 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 524 break; 525 case ISD::SRCVALUE: 526 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 527 break; 528 case ISD::FrameIndex: 529 case ISD::TargetFrameIndex: 530 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 531 break; 532 case ISD::LIFETIME_START: 533 case ISD::LIFETIME_END: 534 if (cast<LifetimeSDNode>(N)->hasOffset()) { 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 537 } 538 break; 539 case ISD::JumpTable: 540 case ISD::TargetJumpTable: 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 543 break; 544 case ISD::ConstantPool: 545 case ISD::TargetConstantPool: { 546 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 547 ID.AddInteger(CP->getAlign().value()); 548 ID.AddInteger(CP->getOffset()); 549 if (CP->isMachineConstantPoolEntry()) 550 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 551 else 552 ID.AddPointer(CP->getConstVal()); 553 ID.AddInteger(CP->getTargetFlags()); 554 break; 555 } 556 case ISD::TargetIndex: { 557 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 558 ID.AddInteger(TI->getIndex()); 559 ID.AddInteger(TI->getOffset()); 560 ID.AddInteger(TI->getTargetFlags()); 561 break; 562 } 563 case ISD::LOAD: { 564 const LoadSDNode *LD = cast<LoadSDNode>(N); 565 ID.AddInteger(LD->getMemoryVT().getRawBits()); 566 ID.AddInteger(LD->getRawSubclassData()); 567 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 568 break; 569 } 570 case ISD::STORE: { 571 const StoreSDNode *ST = cast<StoreSDNode>(N); 572 ID.AddInteger(ST->getMemoryVT().getRawBits()); 573 ID.AddInteger(ST->getRawSubclassData()); 574 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 575 break; 576 } 577 case ISD::MLOAD: { 578 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 579 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 580 ID.AddInteger(MLD->getRawSubclassData()); 581 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 582 break; 583 } 584 case ISD::MSTORE: { 585 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 586 ID.AddInteger(MST->getMemoryVT().getRawBits()); 587 ID.AddInteger(MST->getRawSubclassData()); 588 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 589 break; 590 } 591 case ISD::MGATHER: { 592 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 593 ID.AddInteger(MG->getMemoryVT().getRawBits()); 594 ID.AddInteger(MG->getRawSubclassData()); 595 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 596 break; 597 } 598 case ISD::MSCATTER: { 599 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 600 ID.AddInteger(MS->getMemoryVT().getRawBits()); 601 ID.AddInteger(MS->getRawSubclassData()); 602 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 603 break; 604 } 605 case ISD::ATOMIC_CMP_SWAP: 606 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 607 case ISD::ATOMIC_SWAP: 608 case ISD::ATOMIC_LOAD_ADD: 609 case ISD::ATOMIC_LOAD_SUB: 610 case ISD::ATOMIC_LOAD_AND: 611 case ISD::ATOMIC_LOAD_CLR: 612 case ISD::ATOMIC_LOAD_OR: 613 case ISD::ATOMIC_LOAD_XOR: 614 case ISD::ATOMIC_LOAD_NAND: 615 case ISD::ATOMIC_LOAD_MIN: 616 case ISD::ATOMIC_LOAD_MAX: 617 case ISD::ATOMIC_LOAD_UMIN: 618 case ISD::ATOMIC_LOAD_UMAX: 619 case ISD::ATOMIC_LOAD: 620 case ISD::ATOMIC_STORE: { 621 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 622 ID.AddInteger(AT->getMemoryVT().getRawBits()); 623 ID.AddInteger(AT->getRawSubclassData()); 624 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::PREFETCH: { 628 const MemSDNode *PF = cast<MemSDNode>(N); 629 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 630 break; 631 } 632 case ISD::VECTOR_SHUFFLE: { 633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 634 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 635 i != e; ++i) 636 ID.AddInteger(SVN->getMaskElt(i)); 637 break; 638 } 639 case ISD::TargetBlockAddress: 640 case ISD::BlockAddress: { 641 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 642 ID.AddPointer(BA->getBlockAddress()); 643 ID.AddInteger(BA->getOffset()); 644 ID.AddInteger(BA->getTargetFlags()); 645 break; 646 } 647 } // end switch (N->getOpcode()) 648 649 // Target specific memory nodes could also have address spaces to check. 650 if (N->isTargetMemoryOpcode()) 651 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 652 } 653 654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 655 /// data. 656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 657 AddNodeIDOpcode(ID, N->getOpcode()); 658 // Add the return value info. 659 AddNodeIDValueTypes(ID, N->getVTList()); 660 // Add the operand info. 661 AddNodeIDOperands(ID, N->ops()); 662 663 // Handle SDNode leafs with special info. 664 AddNodeIDCustom(ID, N); 665 } 666 667 //===----------------------------------------------------------------------===// 668 // SelectionDAG Class 669 //===----------------------------------------------------------------------===// 670 671 /// doNotCSE - Return true if CSE should not be performed for this node. 672 static bool doNotCSE(SDNode *N) { 673 if (N->getValueType(0) == MVT::Glue) 674 return true; // Never CSE anything that produces a flag. 675 676 switch (N->getOpcode()) { 677 default: break; 678 case ISD::HANDLENODE: 679 case ISD::EH_LABEL: 680 return true; // Never CSE these nodes. 681 } 682 683 // Check that remaining values produced are not flags. 684 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 685 if (N->getValueType(i) == MVT::Glue) 686 return true; // Never CSE anything that produces a flag. 687 688 return false; 689 } 690 691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 692 /// SelectionDAG. 693 void SelectionDAG::RemoveDeadNodes() { 694 // Create a dummy node (which is not added to allnodes), that adds a reference 695 // to the root node, preventing it from being deleted. 696 HandleSDNode Dummy(getRoot()); 697 698 SmallVector<SDNode*, 128> DeadNodes; 699 700 // Add all obviously-dead nodes to the DeadNodes worklist. 701 for (SDNode &Node : allnodes()) 702 if (Node.use_empty()) 703 DeadNodes.push_back(&Node); 704 705 RemoveDeadNodes(DeadNodes); 706 707 // If the root changed (e.g. it was a dead load, update the root). 708 setRoot(Dummy.getValue()); 709 } 710 711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 712 /// given list, and any nodes that become unreachable as a result. 713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 714 715 // Process the worklist, deleting the nodes and adding their uses to the 716 // worklist. 717 while (!DeadNodes.empty()) { 718 SDNode *N = DeadNodes.pop_back_val(); 719 // Skip to next node if we've already managed to delete the node. This could 720 // happen if replacing a node causes a node previously added to the node to 721 // be deleted. 722 if (N->getOpcode() == ISD::DELETED_NODE) 723 continue; 724 725 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 726 DUL->NodeDeleted(N, nullptr); 727 728 // Take the node out of the appropriate CSE map. 729 RemoveNodeFromCSEMaps(N); 730 731 // Next, brutally remove the operand list. This is safe to do, as there are 732 // no cycles in the graph. 733 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 734 SDUse &Use = *I++; 735 SDNode *Operand = Use.getNode(); 736 Use.set(SDValue()); 737 738 // Now that we removed this operand, see if there are no uses of it left. 739 if (Operand->use_empty()) 740 DeadNodes.push_back(Operand); 741 } 742 743 DeallocateNode(N); 744 } 745 } 746 747 void SelectionDAG::RemoveDeadNode(SDNode *N){ 748 SmallVector<SDNode*, 16> DeadNodes(1, N); 749 750 // Create a dummy node that adds a reference to the root node, preventing 751 // it from being deleted. (This matters if the root is an operand of the 752 // dead node.) 753 HandleSDNode Dummy(getRoot()); 754 755 RemoveDeadNodes(DeadNodes); 756 } 757 758 void SelectionDAG::DeleteNode(SDNode *N) { 759 // First take this out of the appropriate CSE map. 760 RemoveNodeFromCSEMaps(N); 761 762 // Finally, remove uses due to operands of this node, remove from the 763 // AllNodes list, and delete the node. 764 DeleteNodeNotInCSEMaps(N); 765 } 766 767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 768 assert(N->getIterator() != AllNodes.begin() && 769 "Cannot delete the entry node!"); 770 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 771 772 // Drop all of the operands and decrement used node's use counts. 773 N->DropOperands(); 774 775 DeallocateNode(N); 776 } 777 778 void SDDbgInfo::erase(const SDNode *Node) { 779 DbgValMapType::iterator I = DbgValMap.find(Node); 780 if (I == DbgValMap.end()) 781 return; 782 for (auto &Val: I->second) 783 Val->setIsInvalidated(); 784 DbgValMap.erase(I); 785 } 786 787 void SelectionDAG::DeallocateNode(SDNode *N) { 788 // If we have operands, deallocate them. 789 removeOperands(N); 790 791 NodeAllocator.Deallocate(AllNodes.remove(N)); 792 793 // Set the opcode to DELETED_NODE to help catch bugs when node 794 // memory is reallocated. 795 // FIXME: There are places in SDag that have grown a dependency on the opcode 796 // value in the released node. 797 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 798 N->NodeType = ISD::DELETED_NODE; 799 800 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 801 // them and forget about that node. 802 DbgInfo->erase(N); 803 } 804 805 #ifndef NDEBUG 806 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 807 static void VerifySDNode(SDNode *N) { 808 switch (N->getOpcode()) { 809 default: 810 break; 811 case ISD::BUILD_PAIR: { 812 EVT VT = N->getValueType(0); 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 815 "Wrong return type!"); 816 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 817 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 818 "Mismatched operand types!"); 819 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 820 "Wrong operand type!"); 821 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 822 "Wrong return type size"); 823 break; 824 } 825 case ISD::BUILD_VECTOR: { 826 assert(N->getNumValues() == 1 && "Too many results!"); 827 assert(N->getValueType(0).isVector() && "Wrong return type!"); 828 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 829 "Wrong number of operands!"); 830 EVT EltVT = N->getValueType(0).getVectorElementType(); 831 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 832 assert((I->getValueType() == EltVT || 833 (EltVT.isInteger() && I->getValueType().isInteger() && 834 EltVT.bitsLE(I->getValueType()))) && 835 "Wrong operand type!"); 836 assert(I->getValueType() == N->getOperand(0).getValueType() && 837 "Operands must all have the same type"); 838 } 839 break; 840 } 841 } 842 } 843 #endif // NDEBUG 844 845 /// Insert a newly allocated node into the DAG. 846 /// 847 /// Handles insertion into the all nodes list and CSE map, as well as 848 /// verification and other common operations when a new node is allocated. 849 void SelectionDAG::InsertNode(SDNode *N) { 850 AllNodes.push_back(N); 851 #ifndef NDEBUG 852 N->PersistentId = NextPersistentId++; 853 VerifySDNode(N); 854 #endif 855 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 856 DUL->NodeInserted(N); 857 } 858 859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 860 /// correspond to it. This is useful when we're about to delete or repurpose 861 /// the node. We don't want future request for structurally identical nodes 862 /// to return N anymore. 863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 864 bool Erased = false; 865 switch (N->getOpcode()) { 866 case ISD::HANDLENODE: return false; // noop. 867 case ISD::CONDCODE: 868 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 869 "Cond code doesn't exist!"); 870 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 871 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 872 break; 873 case ISD::ExternalSymbol: 874 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 875 break; 876 case ISD::TargetExternalSymbol: { 877 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 878 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 879 ESN->getSymbol(), ESN->getTargetFlags())); 880 break; 881 } 882 case ISD::MCSymbol: { 883 auto *MCSN = cast<MCSymbolSDNode>(N); 884 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 885 break; 886 } 887 case ISD::VALUETYPE: { 888 EVT VT = cast<VTSDNode>(N)->getVT(); 889 if (VT.isExtended()) { 890 Erased = ExtendedValueTypeNodes.erase(VT); 891 } else { 892 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 893 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 894 } 895 break; 896 } 897 default: 898 // Remove it from the CSE Map. 899 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 900 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 901 Erased = CSEMap.RemoveNode(N); 902 break; 903 } 904 #ifndef NDEBUG 905 // Verify that the node was actually in one of the CSE maps, unless it has a 906 // flag result (which cannot be CSE'd) or is one of the special cases that are 907 // not subject to CSE. 908 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 909 !N->isMachineOpcode() && !doNotCSE(N)) { 910 N->dump(this); 911 dbgs() << "\n"; 912 llvm_unreachable("Node is not in map!"); 913 } 914 #endif 915 return Erased; 916 } 917 918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 919 /// maps and modified in place. Add it back to the CSE maps, unless an identical 920 /// node already exists, in which case transfer all its users to the existing 921 /// node. This transfer can potentially trigger recursive merging. 922 void 923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 924 // For node types that aren't CSE'd, just act as if no identical node 925 // already exists. 926 if (!doNotCSE(N)) { 927 SDNode *Existing = CSEMap.GetOrInsertNode(N); 928 if (Existing != N) { 929 // If there was already an existing matching node, use ReplaceAllUsesWith 930 // to replace the dead one with the existing one. This can cause 931 // recursive merging of other unrelated nodes down the line. 932 ReplaceAllUsesWith(N, Existing); 933 934 // N is now dead. Inform the listeners and delete it. 935 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 936 DUL->NodeDeleted(N, Existing); 937 DeleteNodeNotInCSEMaps(N); 938 return; 939 } 940 } 941 942 // If the node doesn't already exist, we updated it. Inform listeners. 943 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 944 DUL->NodeUpdated(N); 945 } 946 947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 948 /// were replaced with those specified. If this node is never memoized, 949 /// return null, otherwise return a pointer to the slot it would take. If a 950 /// node already exists with these operands, the slot will be non-null. 951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 952 void *&InsertPos) { 953 if (doNotCSE(N)) 954 return nullptr; 955 956 SDValue Ops[] = { Op }; 957 FoldingSetNodeID ID; 958 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 959 AddNodeIDCustom(ID, N); 960 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 961 if (Node) 962 Node->intersectFlagsWith(N->getFlags()); 963 return Node; 964 } 965 966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 967 /// were replaced with those specified. If this node is never memoized, 968 /// return null, otherwise return a pointer to the slot it would take. If a 969 /// node already exists with these operands, the slot will be non-null. 970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 971 SDValue Op1, SDValue Op2, 972 void *&InsertPos) { 973 if (doNotCSE(N)) 974 return nullptr; 975 976 SDValue Ops[] = { Op1, Op2 }; 977 FoldingSetNodeID ID; 978 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 979 AddNodeIDCustom(ID, N); 980 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 981 if (Node) 982 Node->intersectFlagsWith(N->getFlags()); 983 return Node; 984 } 985 986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 987 /// were replaced with those specified. If this node is never memoized, 988 /// return null, otherwise return a pointer to the slot it would take. If a 989 /// node already exists with these operands, the slot will be non-null. 990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 991 void *&InsertPos) { 992 if (doNotCSE(N)) 993 return nullptr; 994 995 FoldingSetNodeID ID; 996 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 997 AddNodeIDCustom(ID, N); 998 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 999 if (Node) 1000 Node->intersectFlagsWith(N->getFlags()); 1001 return Node; 1002 } 1003 1004 Align SelectionDAG::getEVTAlign(EVT VT) const { 1005 Type *Ty = VT == MVT::iPTR ? 1006 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1007 VT.getTypeForEVT(*getContext()); 1008 1009 return getDataLayout().getABITypeAlign(Ty); 1010 } 1011 1012 // EntryNode could meaningfully have debug info if we can find it... 1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1014 : TM(tm), OptLevel(OL), 1015 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1016 Root(getEntryNode()) { 1017 InsertNode(&EntryNode); 1018 DbgInfo = new SDDbgInfo(); 1019 } 1020 1021 void SelectionDAG::init(MachineFunction &NewMF, 1022 OptimizationRemarkEmitter &NewORE, 1023 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1024 LegacyDivergenceAnalysis * Divergence, 1025 ProfileSummaryInfo *PSIin, 1026 BlockFrequencyInfo *BFIin) { 1027 MF = &NewMF; 1028 SDAGISelPass = PassPtr; 1029 ORE = &NewORE; 1030 TLI = getSubtarget().getTargetLowering(); 1031 TSI = getSubtarget().getSelectionDAGInfo(); 1032 LibInfo = LibraryInfo; 1033 Context = &MF->getFunction().getContext(); 1034 DA = Divergence; 1035 PSI = PSIin; 1036 BFI = BFIin; 1037 } 1038 1039 SelectionDAG::~SelectionDAG() { 1040 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1041 allnodes_clear(); 1042 OperandRecycler.clear(OperandAllocator); 1043 delete DbgInfo; 1044 } 1045 1046 bool SelectionDAG::shouldOptForSize() const { 1047 return MF->getFunction().hasOptSize() || 1048 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1049 } 1050 1051 void SelectionDAG::allnodes_clear() { 1052 assert(&*AllNodes.begin() == &EntryNode); 1053 AllNodes.remove(AllNodes.begin()); 1054 while (!AllNodes.empty()) 1055 DeallocateNode(&AllNodes.front()); 1056 #ifndef NDEBUG 1057 NextPersistentId = 0; 1058 #endif 1059 } 1060 1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1062 void *&InsertPos) { 1063 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1064 if (N) { 1065 switch (N->getOpcode()) { 1066 default: break; 1067 case ISD::Constant: 1068 case ISD::ConstantFP: 1069 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1070 "debug location. Use another overload."); 1071 } 1072 } 1073 return N; 1074 } 1075 1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1077 const SDLoc &DL, void *&InsertPos) { 1078 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1079 if (N) { 1080 switch (N->getOpcode()) { 1081 case ISD::Constant: 1082 case ISD::ConstantFP: 1083 // Erase debug location from the node if the node is used at several 1084 // different places. Do not propagate one location to all uses as it 1085 // will cause a worse single stepping debugging experience. 1086 if (N->getDebugLoc() != DL.getDebugLoc()) 1087 N->setDebugLoc(DebugLoc()); 1088 break; 1089 default: 1090 // When the node's point of use is located earlier in the instruction 1091 // sequence than its prior point of use, update its debug info to the 1092 // earlier location. 1093 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1094 N->setDebugLoc(DL.getDebugLoc()); 1095 break; 1096 } 1097 } 1098 return N; 1099 } 1100 1101 void SelectionDAG::clear() { 1102 allnodes_clear(); 1103 OperandRecycler.clear(OperandAllocator); 1104 OperandAllocator.Reset(); 1105 CSEMap.clear(); 1106 1107 ExtendedValueTypeNodes.clear(); 1108 ExternalSymbols.clear(); 1109 TargetExternalSymbols.clear(); 1110 MCSymbols.clear(); 1111 SDCallSiteDbgInfo.clear(); 1112 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1113 static_cast<CondCodeSDNode*>(nullptr)); 1114 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1115 static_cast<SDNode*>(nullptr)); 1116 1117 EntryNode.UseList = nullptr; 1118 InsertNode(&EntryNode); 1119 Root = getEntryNode(); 1120 DbgInfo->clear(); 1121 } 1122 1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1124 return VT.bitsGT(Op.getValueType()) 1125 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1126 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1127 } 1128 1129 std::pair<SDValue, SDValue> 1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1131 const SDLoc &DL, EVT VT) { 1132 assert(!VT.bitsEq(Op.getValueType()) && 1133 "Strict no-op FP extend/round not allowed."); 1134 SDValue Res = 1135 VT.bitsGT(Op.getValueType()) 1136 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1137 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1138 {Chain, Op, getIntPtrConstant(0, DL)}); 1139 1140 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1141 } 1142 1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 return VT.bitsGT(Op.getValueType()) ? 1145 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1146 getNode(ISD::TRUNCATE, DL, VT, Op); 1147 } 1148 1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1150 return VT.bitsGT(Op.getValueType()) ? 1151 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1152 getNode(ISD::TRUNCATE, DL, VT, Op); 1153 } 1154 1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 return VT.bitsGT(Op.getValueType()) ? 1157 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1158 getNode(ISD::TRUNCATE, DL, VT, Op); 1159 } 1160 1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1162 EVT OpVT) { 1163 if (VT.bitsLE(Op.getValueType())) 1164 return getNode(ISD::TRUNCATE, SL, VT, Op); 1165 1166 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1167 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1168 } 1169 1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1171 EVT OpVT = Op.getValueType(); 1172 assert(VT.isInteger() && OpVT.isInteger() && 1173 "Cannot getZeroExtendInReg FP types"); 1174 assert(VT.isVector() == OpVT.isVector() && 1175 "getZeroExtendInReg type should be vector iff the operand " 1176 "type is vector!"); 1177 assert((!VT.isVector() || 1178 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1179 "Vector element counts must match in getZeroExtendInReg"); 1180 assert(VT.bitsLE(OpVT) && "Not extending!"); 1181 if (OpVT == VT) 1182 return Op; 1183 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1184 VT.getScalarSizeInBits()); 1185 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1186 } 1187 1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1189 // Only unsigned pointer semantics are supported right now. In the future this 1190 // might delegate to TLI to check pointer signedness. 1191 return getZExtOrTrunc(Op, DL, VT); 1192 } 1193 1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1195 // Only unsigned pointer semantics are supported right now. In the future this 1196 // might delegate to TLI to check pointer signedness. 1197 return getZeroExtendInReg(Op, DL, VT); 1198 } 1199 1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 EVT EltVT = VT.getScalarType(); 1203 SDValue NegOne = 1204 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1205 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1206 } 1207 1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1209 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1210 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1211 } 1212 1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1214 EVT OpVT) { 1215 if (!V) 1216 return getConstant(0, DL, VT); 1217 1218 switch (TLI->getBooleanContents(OpVT)) { 1219 case TargetLowering::ZeroOrOneBooleanContent: 1220 case TargetLowering::UndefinedBooleanContent: 1221 return getConstant(1, DL, VT); 1222 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1223 return getAllOnesConstant(DL, VT); 1224 } 1225 llvm_unreachable("Unexpected boolean content enum!"); 1226 } 1227 1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1229 bool isT, bool isO) { 1230 EVT EltVT = VT.getScalarType(); 1231 assert((EltVT.getSizeInBits() >= 64 || 1232 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1233 "getConstant with a uint64_t value that doesn't fit in the type!"); 1234 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1235 } 1236 1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1238 bool isT, bool isO) { 1239 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1240 } 1241 1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1243 EVT VT, bool isT, bool isO) { 1244 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1245 1246 EVT EltVT = VT.getScalarType(); 1247 const ConstantInt *Elt = &Val; 1248 1249 // In some cases the vector type is legal but the element type is illegal and 1250 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1251 // inserted value (the type does not need to match the vector element type). 1252 // Any extra bits introduced will be truncated away. 1253 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1254 TargetLowering::TypePromoteInteger) { 1255 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1256 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1257 Elt = ConstantInt::get(*getContext(), NewVal); 1258 } 1259 // In other cases the element type is illegal and needs to be expanded, for 1260 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1261 // the value into n parts and use a vector type with n-times the elements. 1262 // Then bitcast to the type requested. 1263 // Legalizing constants too early makes the DAGCombiner's job harder so we 1264 // only legalize if the DAG tells us we must produce legal types. 1265 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1266 TLI->getTypeAction(*getContext(), EltVT) == 1267 TargetLowering::TypeExpandInteger) { 1268 const APInt &NewVal = Elt->getValue(); 1269 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1270 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1271 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1272 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1273 1274 // Check the temporary vector is the correct size. If this fails then 1275 // getTypeToTransformTo() probably returned a type whose size (in bits) 1276 // isn't a power-of-2 factor of the requested type size. 1277 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1278 1279 SmallVector<SDValue, 2> EltParts; 1280 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1281 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1282 .zextOrTrunc(ViaEltSizeInBits), DL, 1283 ViaEltVT, isT, isO)); 1284 } 1285 1286 // EltParts is currently in little endian order. If we actually want 1287 // big-endian order then reverse it now. 1288 if (getDataLayout().isBigEndian()) 1289 std::reverse(EltParts.begin(), EltParts.end()); 1290 1291 // The elements must be reversed when the element order is different 1292 // to the endianness of the elements (because the BITCAST is itself a 1293 // vector shuffle in this situation). However, we do not need any code to 1294 // perform this reversal because getConstant() is producing a vector 1295 // splat. 1296 // This situation occurs in MIPS MSA. 1297 1298 SmallVector<SDValue, 8> Ops; 1299 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1300 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1301 1302 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1303 return V; 1304 } 1305 1306 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1307 "APInt size does not match type size!"); 1308 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1309 FoldingSetNodeID ID; 1310 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1311 ID.AddPointer(Elt); 1312 ID.AddBoolean(isO); 1313 void *IP = nullptr; 1314 SDNode *N = nullptr; 1315 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1316 if (!VT.isVector()) 1317 return SDValue(N, 0); 1318 1319 if (!N) { 1320 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1321 CSEMap.InsertNode(N, IP); 1322 InsertNode(N); 1323 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1324 } 1325 1326 SDValue Result(N, 0); 1327 if (VT.isScalableVector()) 1328 Result = getSplatVector(VT, DL, Result); 1329 else if (VT.isVector()) 1330 Result = getSplatBuildVector(VT, DL, Result); 1331 1332 return Result; 1333 } 1334 1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1336 bool isTarget) { 1337 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1338 } 1339 1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1341 const SDLoc &DL, bool LegalTypes) { 1342 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1343 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1344 return getConstant(Val, DL, ShiftVT); 1345 } 1346 1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1348 bool isTarget) { 1349 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1350 } 1351 1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1353 bool isTarget) { 1354 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1355 } 1356 1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1358 EVT VT, bool isTarget) { 1359 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 1363 // Do the map lookup using the actual bit pattern for the floating point 1364 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1365 // we don't have issues with SNANs. 1366 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1367 FoldingSetNodeID ID; 1368 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1369 ID.AddPointer(&V); 1370 void *IP = nullptr; 1371 SDNode *N = nullptr; 1372 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1373 if (!VT.isVector()) 1374 return SDValue(N, 0); 1375 1376 if (!N) { 1377 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1378 CSEMap.InsertNode(N, IP); 1379 InsertNode(N); 1380 } 1381 1382 SDValue Result(N, 0); 1383 if (VT.isVector()) 1384 Result = getSplatBuildVector(VT, DL, Result); 1385 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1386 return Result; 1387 } 1388 1389 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1390 bool isTarget) { 1391 EVT EltVT = VT.getScalarType(); 1392 if (EltVT == MVT::f32) 1393 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1394 else if (EltVT == MVT::f64) 1395 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1396 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1397 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1398 bool Ignored; 1399 APFloat APF = APFloat(Val); 1400 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1401 &Ignored); 1402 return getConstantFP(APF, DL, VT, isTarget); 1403 } else 1404 llvm_unreachable("Unsupported type in getConstantFP"); 1405 } 1406 1407 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1408 EVT VT, int64_t Offset, bool isTargetGA, 1409 unsigned TargetFlags) { 1410 assert((TargetFlags == 0 || isTargetGA) && 1411 "Cannot set target flags on target-independent globals"); 1412 1413 // Truncate (with sign-extension) the offset value to the pointer size. 1414 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1415 if (BitWidth < 64) 1416 Offset = SignExtend64(Offset, BitWidth); 1417 1418 unsigned Opc; 1419 if (GV->isThreadLocal()) 1420 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1421 else 1422 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1423 1424 FoldingSetNodeID ID; 1425 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1426 ID.AddPointer(GV); 1427 ID.AddInteger(Offset); 1428 ID.AddInteger(TargetFlags); 1429 void *IP = nullptr; 1430 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1431 return SDValue(E, 0); 1432 1433 auto *N = newSDNode<GlobalAddressSDNode>( 1434 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1435 CSEMap.InsertNode(N, IP); 1436 InsertNode(N); 1437 return SDValue(N, 0); 1438 } 1439 1440 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1441 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1442 FoldingSetNodeID ID; 1443 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1444 ID.AddInteger(FI); 1445 void *IP = nullptr; 1446 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1447 return SDValue(E, 0); 1448 1449 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1450 CSEMap.InsertNode(N, IP); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1456 unsigned TargetFlags) { 1457 assert((TargetFlags == 0 || isTarget) && 1458 "Cannot set target flags on target-independent jump tables"); 1459 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1460 FoldingSetNodeID ID; 1461 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1462 ID.AddInteger(JTI); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1469 CSEMap.InsertNode(N, IP); 1470 InsertNode(N); 1471 return SDValue(N, 0); 1472 } 1473 1474 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1475 MaybeAlign Alignment, int Offset, 1476 bool isTarget, unsigned TargetFlags) { 1477 assert((TargetFlags == 0 || isTarget) && 1478 "Cannot set target flags on target-independent globals"); 1479 if (!Alignment) 1480 Alignment = shouldOptForSize() 1481 ? getDataLayout().getABITypeAlign(C->getType()) 1482 : getDataLayout().getPrefTypeAlign(C->getType()); 1483 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1484 FoldingSetNodeID ID; 1485 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1486 ID.AddInteger(Alignment->value()); 1487 ID.AddInteger(Offset); 1488 ID.AddPointer(C); 1489 ID.AddInteger(TargetFlags); 1490 void *IP = nullptr; 1491 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1492 return SDValue(E, 0); 1493 1494 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1495 TargetFlags); 1496 CSEMap.InsertNode(N, IP); 1497 InsertNode(N); 1498 SDValue V = SDValue(N, 0); 1499 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1500 return V; 1501 } 1502 1503 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1504 MaybeAlign Alignment, int Offset, 1505 bool isTarget, unsigned TargetFlags) { 1506 assert((TargetFlags == 0 || isTarget) && 1507 "Cannot set target flags on target-independent globals"); 1508 if (!Alignment) 1509 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1510 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1511 FoldingSetNodeID ID; 1512 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1513 ID.AddInteger(Alignment->value()); 1514 ID.AddInteger(Offset); 1515 C->addSelectionDAGCSEId(ID); 1516 ID.AddInteger(TargetFlags); 1517 void *IP = nullptr; 1518 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1519 return SDValue(E, 0); 1520 1521 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1522 TargetFlags); 1523 CSEMap.InsertNode(N, IP); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1529 unsigned TargetFlags) { 1530 FoldingSetNodeID ID; 1531 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1532 ID.AddInteger(Index); 1533 ID.AddInteger(Offset); 1534 ID.AddInteger(TargetFlags); 1535 void *IP = nullptr; 1536 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1537 return SDValue(E, 0); 1538 1539 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1540 CSEMap.InsertNode(N, IP); 1541 InsertNode(N); 1542 return SDValue(N, 0); 1543 } 1544 1545 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1548 ID.AddPointer(MBB); 1549 void *IP = nullptr; 1550 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1551 return SDValue(E, 0); 1552 1553 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1554 CSEMap.InsertNode(N, IP); 1555 InsertNode(N); 1556 return SDValue(N, 0); 1557 } 1558 1559 SDValue SelectionDAG::getValueType(EVT VT) { 1560 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1561 ValueTypeNodes.size()) 1562 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1563 1564 SDNode *&N = VT.isExtended() ? 1565 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1566 1567 if (N) return SDValue(N, 0); 1568 N = newSDNode<VTSDNode>(VT); 1569 InsertNode(N); 1570 return SDValue(N, 0); 1571 } 1572 1573 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1574 SDNode *&N = ExternalSymbols[Sym]; 1575 if (N) return SDValue(N, 0); 1576 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1577 InsertNode(N); 1578 return SDValue(N, 0); 1579 } 1580 1581 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1582 SDNode *&N = MCSymbols[Sym]; 1583 if (N) 1584 return SDValue(N, 0); 1585 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1586 InsertNode(N); 1587 return SDValue(N, 0); 1588 } 1589 1590 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1591 unsigned TargetFlags) { 1592 SDNode *&N = 1593 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1594 if (N) return SDValue(N, 0); 1595 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1596 InsertNode(N); 1597 return SDValue(N, 0); 1598 } 1599 1600 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1601 if ((unsigned)Cond >= CondCodeNodes.size()) 1602 CondCodeNodes.resize(Cond+1); 1603 1604 if (!CondCodeNodes[Cond]) { 1605 auto *N = newSDNode<CondCodeSDNode>(Cond); 1606 CondCodeNodes[Cond] = N; 1607 InsertNode(N); 1608 } 1609 1610 return SDValue(CondCodeNodes[Cond], 0); 1611 } 1612 1613 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1614 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1615 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1616 std::swap(N1, N2); 1617 ShuffleVectorSDNode::commuteMask(M); 1618 } 1619 1620 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1621 SDValue N2, ArrayRef<int> Mask) { 1622 assert(VT.getVectorNumElements() == Mask.size() && 1623 "Must have the same number of vector elements as mask elements!"); 1624 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1625 "Invalid VECTOR_SHUFFLE"); 1626 1627 // Canonicalize shuffle undef, undef -> undef 1628 if (N1.isUndef() && N2.isUndef()) 1629 return getUNDEF(VT); 1630 1631 // Validate that all indices in Mask are within the range of the elements 1632 // input to the shuffle. 1633 int NElts = Mask.size(); 1634 assert(llvm::all_of(Mask, 1635 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1636 "Index out of range"); 1637 1638 // Copy the mask so we can do any needed cleanup. 1639 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1640 1641 // Canonicalize shuffle v, v -> v, undef 1642 if (N1 == N2) { 1643 N2 = getUNDEF(VT); 1644 for (int i = 0; i != NElts; ++i) 1645 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1646 } 1647 1648 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1649 if (N1.isUndef()) 1650 commuteShuffle(N1, N2, MaskVec); 1651 1652 if (TLI->hasVectorBlend()) { 1653 // If shuffling a splat, try to blend the splat instead. We do this here so 1654 // that even when this arises during lowering we don't have to re-handle it. 1655 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1656 BitVector UndefElements; 1657 SDValue Splat = BV->getSplatValue(&UndefElements); 1658 if (!Splat) 1659 return; 1660 1661 for (int i = 0; i < NElts; ++i) { 1662 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1663 continue; 1664 1665 // If this input comes from undef, mark it as such. 1666 if (UndefElements[MaskVec[i] - Offset]) { 1667 MaskVec[i] = -1; 1668 continue; 1669 } 1670 1671 // If we can blend a non-undef lane, use that instead. 1672 if (!UndefElements[i]) 1673 MaskVec[i] = i + Offset; 1674 } 1675 }; 1676 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1677 BlendSplat(N1BV, 0); 1678 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1679 BlendSplat(N2BV, NElts); 1680 } 1681 1682 // Canonicalize all index into lhs, -> shuffle lhs, undef 1683 // Canonicalize all index into rhs, -> shuffle rhs, undef 1684 bool AllLHS = true, AllRHS = true; 1685 bool N2Undef = N2.isUndef(); 1686 for (int i = 0; i != NElts; ++i) { 1687 if (MaskVec[i] >= NElts) { 1688 if (N2Undef) 1689 MaskVec[i] = -1; 1690 else 1691 AllLHS = false; 1692 } else if (MaskVec[i] >= 0) { 1693 AllRHS = false; 1694 } 1695 } 1696 if (AllLHS && AllRHS) 1697 return getUNDEF(VT); 1698 if (AllLHS && !N2Undef) 1699 N2 = getUNDEF(VT); 1700 if (AllRHS) { 1701 N1 = getUNDEF(VT); 1702 commuteShuffle(N1, N2, MaskVec); 1703 } 1704 // Reset our undef status after accounting for the mask. 1705 N2Undef = N2.isUndef(); 1706 // Re-check whether both sides ended up undef. 1707 if (N1.isUndef() && N2Undef) 1708 return getUNDEF(VT); 1709 1710 // If Identity shuffle return that node. 1711 bool Identity = true, AllSame = true; 1712 for (int i = 0; i != NElts; ++i) { 1713 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1714 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1715 } 1716 if (Identity && NElts) 1717 return N1; 1718 1719 // Shuffling a constant splat doesn't change the result. 1720 if (N2Undef) { 1721 SDValue V = N1; 1722 1723 // Look through any bitcasts. We check that these don't change the number 1724 // (and size) of elements and just changes their types. 1725 while (V.getOpcode() == ISD::BITCAST) 1726 V = V->getOperand(0); 1727 1728 // A splat should always show up as a build vector node. 1729 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1730 BitVector UndefElements; 1731 SDValue Splat = BV->getSplatValue(&UndefElements); 1732 // If this is a splat of an undef, shuffling it is also undef. 1733 if (Splat && Splat.isUndef()) 1734 return getUNDEF(VT); 1735 1736 bool SameNumElts = 1737 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1738 1739 // We only have a splat which can skip shuffles if there is a splatted 1740 // value and no undef lanes rearranged by the shuffle. 1741 if (Splat && UndefElements.none()) { 1742 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1743 // number of elements match or the value splatted is a zero constant. 1744 if (SameNumElts) 1745 return N1; 1746 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1747 if (C->isNullValue()) 1748 return N1; 1749 } 1750 1751 // If the shuffle itself creates a splat, build the vector directly. 1752 if (AllSame && SameNumElts) { 1753 EVT BuildVT = BV->getValueType(0); 1754 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1755 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1756 1757 // We may have jumped through bitcasts, so the type of the 1758 // BUILD_VECTOR may not match the type of the shuffle. 1759 if (BuildVT != VT) 1760 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1761 return NewBV; 1762 } 1763 } 1764 } 1765 1766 FoldingSetNodeID ID; 1767 SDValue Ops[2] = { N1, N2 }; 1768 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1769 for (int i = 0; i != NElts; ++i) 1770 ID.AddInteger(MaskVec[i]); 1771 1772 void* IP = nullptr; 1773 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1774 return SDValue(E, 0); 1775 1776 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1777 // SDNode doesn't have access to it. This memory will be "leaked" when 1778 // the node is deallocated, but recovered when the NodeAllocator is released. 1779 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1780 llvm::copy(MaskVec, MaskAlloc); 1781 1782 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1783 dl.getDebugLoc(), MaskAlloc); 1784 createOperands(N, Ops); 1785 1786 CSEMap.InsertNode(N, IP); 1787 InsertNode(N); 1788 SDValue V = SDValue(N, 0); 1789 NewSDValueDbgMsg(V, "Creating new node: ", this); 1790 return V; 1791 } 1792 1793 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1794 EVT VT = SV.getValueType(0); 1795 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1796 ShuffleVectorSDNode::commuteMask(MaskVec); 1797 1798 SDValue Op0 = SV.getOperand(0); 1799 SDValue Op1 = SV.getOperand(1); 1800 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1801 } 1802 1803 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1804 FoldingSetNodeID ID; 1805 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1806 ID.AddInteger(RegNo); 1807 void *IP = nullptr; 1808 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1809 return SDValue(E, 0); 1810 1811 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1812 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1813 CSEMap.InsertNode(N, IP); 1814 InsertNode(N); 1815 return SDValue(N, 0); 1816 } 1817 1818 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1819 FoldingSetNodeID ID; 1820 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1821 ID.AddPointer(RegMask); 1822 void *IP = nullptr; 1823 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1824 return SDValue(E, 0); 1825 1826 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1827 CSEMap.InsertNode(N, IP); 1828 InsertNode(N); 1829 return SDValue(N, 0); 1830 } 1831 1832 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1833 MCSymbol *Label) { 1834 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1835 } 1836 1837 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1838 SDValue Root, MCSymbol *Label) { 1839 FoldingSetNodeID ID; 1840 SDValue Ops[] = { Root }; 1841 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1842 ID.AddPointer(Label); 1843 void *IP = nullptr; 1844 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1845 return SDValue(E, 0); 1846 1847 auto *N = 1848 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1849 createOperands(N, Ops); 1850 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1857 int64_t Offset, bool isTarget, 1858 unsigned TargetFlags) { 1859 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1860 1861 FoldingSetNodeID ID; 1862 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1863 ID.AddPointer(BA); 1864 ID.AddInteger(Offset); 1865 ID.AddInteger(TargetFlags); 1866 void *IP = nullptr; 1867 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1868 return SDValue(E, 0); 1869 1870 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1871 CSEMap.InsertNode(N, IP); 1872 InsertNode(N); 1873 return SDValue(N, 0); 1874 } 1875 1876 SDValue SelectionDAG::getSrcValue(const Value *V) { 1877 FoldingSetNodeID ID; 1878 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1879 ID.AddPointer(V); 1880 1881 void *IP = nullptr; 1882 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1883 return SDValue(E, 0); 1884 1885 auto *N = newSDNode<SrcValueSDNode>(V); 1886 CSEMap.InsertNode(N, IP); 1887 InsertNode(N); 1888 return SDValue(N, 0); 1889 } 1890 1891 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1892 FoldingSetNodeID ID; 1893 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1894 ID.AddPointer(MD); 1895 1896 void *IP = nullptr; 1897 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1898 return SDValue(E, 0); 1899 1900 auto *N = newSDNode<MDNodeSDNode>(MD); 1901 CSEMap.InsertNode(N, IP); 1902 InsertNode(N); 1903 return SDValue(N, 0); 1904 } 1905 1906 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1907 if (VT == V.getValueType()) 1908 return V; 1909 1910 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1911 } 1912 1913 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1914 unsigned SrcAS, unsigned DestAS) { 1915 SDValue Ops[] = {Ptr}; 1916 FoldingSetNodeID ID; 1917 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1918 ID.AddInteger(SrcAS); 1919 ID.AddInteger(DestAS); 1920 1921 void *IP = nullptr; 1922 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1923 return SDValue(E, 0); 1924 1925 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1926 VT, SrcAS, DestAS); 1927 createOperands(N, Ops); 1928 1929 CSEMap.InsertNode(N, IP); 1930 InsertNode(N); 1931 return SDValue(N, 0); 1932 } 1933 1934 SDValue SelectionDAG::getFreeze(SDValue V) { 1935 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1936 } 1937 1938 /// getShiftAmountOperand - Return the specified value casted to 1939 /// the target's desired shift amount type. 1940 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1941 EVT OpTy = Op.getValueType(); 1942 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1943 if (OpTy == ShTy || OpTy.isVector()) return Op; 1944 1945 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1946 } 1947 1948 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1949 SDLoc dl(Node); 1950 const TargetLowering &TLI = getTargetLoweringInfo(); 1951 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1952 EVT VT = Node->getValueType(0); 1953 SDValue Tmp1 = Node->getOperand(0); 1954 SDValue Tmp2 = Node->getOperand(1); 1955 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1956 1957 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1958 Tmp2, MachinePointerInfo(V)); 1959 SDValue VAList = VAListLoad; 1960 1961 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1962 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1963 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1964 1965 VAList = 1966 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1967 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1968 } 1969 1970 // Increment the pointer, VAList, to the next vaarg 1971 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1972 getConstant(getDataLayout().getTypeAllocSize( 1973 VT.getTypeForEVT(*getContext())), 1974 dl, VAList.getValueType())); 1975 // Store the incremented VAList to the legalized pointer 1976 Tmp1 = 1977 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1978 // Load the actual argument out of the pointer VAList 1979 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1980 } 1981 1982 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1983 SDLoc dl(Node); 1984 const TargetLowering &TLI = getTargetLoweringInfo(); 1985 // This defaults to loading a pointer from the input and storing it to the 1986 // output, returning the chain. 1987 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1988 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1989 SDValue Tmp1 = 1990 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1991 Node->getOperand(2), MachinePointerInfo(VS)); 1992 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1993 MachinePointerInfo(VD)); 1994 } 1995 1996 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 1997 const DataLayout &DL = getDataLayout(); 1998 Type *Ty = VT.getTypeForEVT(*getContext()); 1999 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2000 2001 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2002 return RedAlign; 2003 2004 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2005 const Align StackAlign = TFI->getStackAlign(); 2006 2007 // See if we can choose a smaller ABI alignment in cases where it's an 2008 // illegal vector type that will get broken down. 2009 if (RedAlign > StackAlign) { 2010 EVT IntermediateVT; 2011 MVT RegisterVT; 2012 unsigned NumIntermediates; 2013 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2014 NumIntermediates, RegisterVT); 2015 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2016 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2017 if (RedAlign2 < RedAlign) 2018 RedAlign = RedAlign2; 2019 } 2020 2021 return RedAlign; 2022 } 2023 2024 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2025 MachineFrameInfo &MFI = MF->getFrameInfo(); 2026 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false); 2027 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2028 } 2029 2030 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2031 Type *Ty = VT.getTypeForEVT(*getContext()); 2032 Align StackAlign = 2033 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2034 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2035 } 2036 2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2038 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2039 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2040 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2041 const DataLayout &DL = getDataLayout(); 2042 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2043 return CreateStackTemporary(Bytes, Align); 2044 } 2045 2046 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2047 ISD::CondCode Cond, const SDLoc &dl) { 2048 EVT OpVT = N1.getValueType(); 2049 2050 // These setcc operations always fold. 2051 switch (Cond) { 2052 default: break; 2053 case ISD::SETFALSE: 2054 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2055 case ISD::SETTRUE: 2056 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2057 2058 case ISD::SETOEQ: 2059 case ISD::SETOGT: 2060 case ISD::SETOGE: 2061 case ISD::SETOLT: 2062 case ISD::SETOLE: 2063 case ISD::SETONE: 2064 case ISD::SETO: 2065 case ISD::SETUO: 2066 case ISD::SETUEQ: 2067 case ISD::SETUNE: 2068 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2069 break; 2070 } 2071 2072 if (OpVT.isInteger()) { 2073 // For EQ and NE, we can always pick a value for the undef to make the 2074 // predicate pass or fail, so we can return undef. 2075 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2076 // icmp eq/ne X, undef -> undef. 2077 if ((N1.isUndef() || N2.isUndef()) && 2078 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2079 return getUNDEF(VT); 2080 2081 // If both operands are undef, we can return undef for int comparison. 2082 // icmp undef, undef -> undef. 2083 if (N1.isUndef() && N2.isUndef()) 2084 return getUNDEF(VT); 2085 2086 // icmp X, X -> true/false 2087 // icmp X, undef -> true/false because undef could be X. 2088 if (N1 == N2) 2089 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2090 } 2091 2092 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2093 const APInt &C2 = N2C->getAPIntValue(); 2094 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2095 const APInt &C1 = N1C->getAPIntValue(); 2096 2097 switch (Cond) { 2098 default: llvm_unreachable("Unknown integer setcc!"); 2099 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2100 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2101 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2102 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2103 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2104 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2105 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2106 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2107 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2108 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2109 } 2110 } 2111 } 2112 2113 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2114 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2115 2116 if (N1CFP && N2CFP) { 2117 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2118 switch (Cond) { 2119 default: break; 2120 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2121 return getUNDEF(VT); 2122 LLVM_FALLTHROUGH; 2123 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2124 OpVT); 2125 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2126 return getUNDEF(VT); 2127 LLVM_FALLTHROUGH; 2128 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2129 R==APFloat::cmpLessThan, dl, VT, 2130 OpVT); 2131 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2132 return getUNDEF(VT); 2133 LLVM_FALLTHROUGH; 2134 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2135 OpVT); 2136 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2137 return getUNDEF(VT); 2138 LLVM_FALLTHROUGH; 2139 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2140 VT, OpVT); 2141 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2142 return getUNDEF(VT); 2143 LLVM_FALLTHROUGH; 2144 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2145 R==APFloat::cmpEqual, dl, VT, 2146 OpVT); 2147 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2148 return getUNDEF(VT); 2149 LLVM_FALLTHROUGH; 2150 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2151 R==APFloat::cmpEqual, dl, VT, OpVT); 2152 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2153 OpVT); 2154 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2155 OpVT); 2156 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2157 R==APFloat::cmpEqual, dl, VT, 2158 OpVT); 2159 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2160 OpVT); 2161 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2162 R==APFloat::cmpLessThan, dl, VT, 2163 OpVT); 2164 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2165 R==APFloat::cmpUnordered, dl, VT, 2166 OpVT); 2167 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2168 VT, OpVT); 2169 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2170 OpVT); 2171 } 2172 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2173 // Ensure that the constant occurs on the RHS. 2174 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2175 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2176 return SDValue(); 2177 return getSetCC(dl, VT, N2, N1, SwappedCond); 2178 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2179 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2180 // If an operand is known to be a nan (or undef that could be a nan), we can 2181 // fold it. 2182 // Choosing NaN for the undef will always make unordered comparison succeed 2183 // and ordered comparison fails. 2184 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2185 switch (ISD::getUnorderedFlavor(Cond)) { 2186 default: 2187 llvm_unreachable("Unknown flavor!"); 2188 case 0: // Known false. 2189 return getBoolConstant(false, dl, VT, OpVT); 2190 case 1: // Known true. 2191 return getBoolConstant(true, dl, VT, OpVT); 2192 case 2: // Undefined. 2193 return getUNDEF(VT); 2194 } 2195 } 2196 2197 // Could not fold it. 2198 return SDValue(); 2199 } 2200 2201 /// See if the specified operand can be simplified with the knowledge that only 2202 /// the bits specified by DemandedBits are used. 2203 /// TODO: really we should be making this into the DAG equivalent of 2204 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2205 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2206 EVT VT = V.getValueType(); 2207 APInt DemandedElts = VT.isVector() 2208 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2209 : APInt(1, 1); 2210 return GetDemandedBits(V, DemandedBits, DemandedElts); 2211 } 2212 2213 /// See if the specified operand can be simplified with the knowledge that only 2214 /// the bits specified by DemandedBits are used in the elements specified by 2215 /// DemandedElts. 2216 /// TODO: really we should be making this into the DAG equivalent of 2217 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2218 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2219 const APInt &DemandedElts) { 2220 switch (V.getOpcode()) { 2221 default: 2222 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2223 *this, 0); 2224 break; 2225 case ISD::Constant: { 2226 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2227 APInt NewVal = CVal & DemandedBits; 2228 if (NewVal != CVal) 2229 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2230 break; 2231 } 2232 case ISD::SRL: 2233 // Only look at single-use SRLs. 2234 if (!V.getNode()->hasOneUse()) 2235 break; 2236 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2237 // See if we can recursively simplify the LHS. 2238 unsigned Amt = RHSC->getZExtValue(); 2239 2240 // Watch out for shift count overflow though. 2241 if (Amt >= DemandedBits.getBitWidth()) 2242 break; 2243 APInt SrcDemandedBits = DemandedBits << Amt; 2244 if (SDValue SimplifyLHS = 2245 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2246 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2247 V.getOperand(1)); 2248 } 2249 break; 2250 case ISD::AND: { 2251 // X & -1 -> X (ignoring bits which aren't demanded). 2252 // Also handle the case where masked out bits in X are known to be zero. 2253 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2254 const APInt &AndVal = RHSC->getAPIntValue(); 2255 if (DemandedBits.isSubsetOf(AndVal) || 2256 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2257 AndVal)) 2258 return V.getOperand(0); 2259 } 2260 break; 2261 } 2262 } 2263 return SDValue(); 2264 } 2265 2266 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2267 /// use this predicate to simplify operations downstream. 2268 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2269 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2270 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2271 } 2272 2273 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2274 /// this predicate to simplify operations downstream. Mask is known to be zero 2275 /// for bits that V cannot have. 2276 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2277 unsigned Depth) const { 2278 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2279 } 2280 2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2282 /// DemandedElts. We use this predicate to simplify operations downstream. 2283 /// Mask is known to be zero for bits that V cannot have. 2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2285 const APInt &DemandedElts, 2286 unsigned Depth) const { 2287 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2288 } 2289 2290 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2291 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2292 unsigned Depth) const { 2293 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2294 } 2295 2296 /// isSplatValue - Return true if the vector V has the same value 2297 /// across all DemandedElts. For scalable vectors it does not make 2298 /// sense to specify which elements are demanded or undefined, therefore 2299 /// they are simply ignored. 2300 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2301 APInt &UndefElts) { 2302 EVT VT = V.getValueType(); 2303 assert(VT.isVector() && "Vector type expected"); 2304 2305 if (!VT.isScalableVector() && !DemandedElts) 2306 return false; // No demanded elts, better to assume we don't know anything. 2307 2308 // Deal with some common cases here that work for both fixed and scalable 2309 // vector types. 2310 switch (V.getOpcode()) { 2311 case ISD::SPLAT_VECTOR: 2312 return true; 2313 case ISD::ADD: 2314 case ISD::SUB: 2315 case ISD::AND: { 2316 APInt UndefLHS, UndefRHS; 2317 SDValue LHS = V.getOperand(0); 2318 SDValue RHS = V.getOperand(1); 2319 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2320 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2321 UndefElts = UndefLHS | UndefRHS; 2322 return true; 2323 } 2324 break; 2325 } 2326 } 2327 2328 // We don't support other cases than those above for scalable vectors at 2329 // the moment. 2330 if (VT.isScalableVector()) 2331 return false; 2332 2333 unsigned NumElts = VT.getVectorNumElements(); 2334 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2335 UndefElts = APInt::getNullValue(NumElts); 2336 2337 switch (V.getOpcode()) { 2338 case ISD::BUILD_VECTOR: { 2339 SDValue Scl; 2340 for (unsigned i = 0; i != NumElts; ++i) { 2341 SDValue Op = V.getOperand(i); 2342 if (Op.isUndef()) { 2343 UndefElts.setBit(i); 2344 continue; 2345 } 2346 if (!DemandedElts[i]) 2347 continue; 2348 if (Scl && Scl != Op) 2349 return false; 2350 Scl = Op; 2351 } 2352 return true; 2353 } 2354 case ISD::VECTOR_SHUFFLE: { 2355 // Check if this is a shuffle node doing a splat. 2356 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2357 int SplatIndex = -1; 2358 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2359 for (int i = 0; i != (int)NumElts; ++i) { 2360 int M = Mask[i]; 2361 if (M < 0) { 2362 UndefElts.setBit(i); 2363 continue; 2364 } 2365 if (!DemandedElts[i]) 2366 continue; 2367 if (0 <= SplatIndex && SplatIndex != M) 2368 return false; 2369 SplatIndex = M; 2370 } 2371 return true; 2372 } 2373 case ISD::EXTRACT_SUBVECTOR: { 2374 // Offset the demanded elts by the subvector index. 2375 SDValue Src = V.getOperand(0); 2376 uint64_t Idx = V.getConstantOperandVal(1); 2377 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2378 APInt UndefSrcElts; 2379 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2380 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2381 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2382 return true; 2383 } 2384 break; 2385 } 2386 } 2387 2388 return false; 2389 } 2390 2391 /// Helper wrapper to main isSplatValue function. 2392 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2393 EVT VT = V.getValueType(); 2394 assert(VT.isVector() && "Vector type expected"); 2395 2396 APInt UndefElts; 2397 APInt DemandedElts; 2398 2399 // For now we don't support this with scalable vectors. 2400 if (!VT.isScalableVector()) 2401 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2402 return isSplatValue(V, DemandedElts, UndefElts) && 2403 (AllowUndefs || !UndefElts); 2404 } 2405 2406 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2407 V = peekThroughExtractSubvectors(V); 2408 2409 EVT VT = V.getValueType(); 2410 unsigned Opcode = V.getOpcode(); 2411 switch (Opcode) { 2412 default: { 2413 APInt UndefElts; 2414 APInt DemandedElts; 2415 2416 if (!VT.isScalableVector()) 2417 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2418 2419 if (isSplatValue(V, DemandedElts, UndefElts)) { 2420 if (VT.isScalableVector()) { 2421 // DemandedElts and UndefElts are ignored for scalable vectors, since 2422 // the only supported cases are SPLAT_VECTOR nodes. 2423 SplatIdx = 0; 2424 } else { 2425 // Handle case where all demanded elements are UNDEF. 2426 if (DemandedElts.isSubsetOf(UndefElts)) { 2427 SplatIdx = 0; 2428 return getUNDEF(VT); 2429 } 2430 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2431 } 2432 return V; 2433 } 2434 break; 2435 } 2436 case ISD::SPLAT_VECTOR: 2437 SplatIdx = 0; 2438 return V; 2439 case ISD::VECTOR_SHUFFLE: { 2440 if (VT.isScalableVector()) 2441 return SDValue(); 2442 2443 // Check if this is a shuffle node doing a splat. 2444 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2445 // getTargetVShiftNode currently struggles without the splat source. 2446 auto *SVN = cast<ShuffleVectorSDNode>(V); 2447 if (!SVN->isSplat()) 2448 break; 2449 int Idx = SVN->getSplatIndex(); 2450 int NumElts = V.getValueType().getVectorNumElements(); 2451 SplatIdx = Idx % NumElts; 2452 return V.getOperand(Idx / NumElts); 2453 } 2454 } 2455 2456 return SDValue(); 2457 } 2458 2459 SDValue SelectionDAG::getSplatValue(SDValue V) { 2460 int SplatIdx; 2461 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2462 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2463 SrcVector.getValueType().getScalarType(), SrcVector, 2464 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2465 return SDValue(); 2466 } 2467 2468 const APInt * 2469 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2470 const APInt &DemandedElts) const { 2471 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2472 V.getOpcode() == ISD::SRA) && 2473 "Unknown shift node"); 2474 unsigned BitWidth = V.getScalarValueSizeInBits(); 2475 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2476 // Shifting more than the bitwidth is not valid. 2477 const APInt &ShAmt = SA->getAPIntValue(); 2478 if (ShAmt.ult(BitWidth)) 2479 return &ShAmt; 2480 } 2481 return nullptr; 2482 } 2483 2484 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2485 SDValue V, const APInt &DemandedElts) const { 2486 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2487 V.getOpcode() == ISD::SRA) && 2488 "Unknown shift node"); 2489 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2490 return ValidAmt; 2491 unsigned BitWidth = V.getScalarValueSizeInBits(); 2492 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2493 if (!BV) 2494 return nullptr; 2495 const APInt *MinShAmt = nullptr; 2496 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2497 if (!DemandedElts[i]) 2498 continue; 2499 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2500 if (!SA) 2501 return nullptr; 2502 // Shifting more than the bitwidth is not valid. 2503 const APInt &ShAmt = SA->getAPIntValue(); 2504 if (ShAmt.uge(BitWidth)) 2505 return nullptr; 2506 if (MinShAmt && MinShAmt->ule(ShAmt)) 2507 continue; 2508 MinShAmt = &ShAmt; 2509 } 2510 return MinShAmt; 2511 } 2512 2513 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2514 SDValue V, const APInt &DemandedElts) const { 2515 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2516 V.getOpcode() == ISD::SRA) && 2517 "Unknown shift node"); 2518 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2519 return ValidAmt; 2520 unsigned BitWidth = V.getScalarValueSizeInBits(); 2521 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2522 if (!BV) 2523 return nullptr; 2524 const APInt *MaxShAmt = nullptr; 2525 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2526 if (!DemandedElts[i]) 2527 continue; 2528 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2529 if (!SA) 2530 return nullptr; 2531 // Shifting more than the bitwidth is not valid. 2532 const APInt &ShAmt = SA->getAPIntValue(); 2533 if (ShAmt.uge(BitWidth)) 2534 return nullptr; 2535 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2536 continue; 2537 MaxShAmt = &ShAmt; 2538 } 2539 return MaxShAmt; 2540 } 2541 2542 /// Determine which bits of Op are known to be either zero or one and return 2543 /// them in Known. For vectors, the known bits are those that are shared by 2544 /// every vector element. 2545 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2546 EVT VT = Op.getValueType(); 2547 2548 // TOOD: Until we have a plan for how to represent demanded elements for 2549 // scalable vectors, we can just bail out for now. 2550 if (Op.getValueType().isScalableVector()) { 2551 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2552 return KnownBits(BitWidth); 2553 } 2554 2555 APInt DemandedElts = VT.isVector() 2556 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2557 : APInt(1, 1); 2558 return computeKnownBits(Op, DemandedElts, Depth); 2559 } 2560 2561 /// Determine which bits of Op are known to be either zero or one and return 2562 /// them in Known. The DemandedElts argument allows us to only collect the known 2563 /// bits that are shared by the requested vector elements. 2564 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2565 unsigned Depth) const { 2566 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2567 2568 KnownBits Known(BitWidth); // Don't know anything. 2569 2570 // TOOD: Until we have a plan for how to represent demanded elements for 2571 // scalable vectors, we can just bail out for now. 2572 if (Op.getValueType().isScalableVector()) 2573 return Known; 2574 2575 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2576 // We know all of the bits for a constant! 2577 Known.One = C->getAPIntValue(); 2578 Known.Zero = ~Known.One; 2579 return Known; 2580 } 2581 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2582 // We know all of the bits for a constant fp! 2583 Known.One = C->getValueAPF().bitcastToAPInt(); 2584 Known.Zero = ~Known.One; 2585 return Known; 2586 } 2587 2588 if (Depth >= MaxRecursionDepth) 2589 return Known; // Limit search depth. 2590 2591 KnownBits Known2; 2592 unsigned NumElts = DemandedElts.getBitWidth(); 2593 assert((!Op.getValueType().isVector() || 2594 NumElts == Op.getValueType().getVectorNumElements()) && 2595 "Unexpected vector size"); 2596 2597 if (!DemandedElts) 2598 return Known; // No demanded elts, better to assume we don't know anything. 2599 2600 unsigned Opcode = Op.getOpcode(); 2601 switch (Opcode) { 2602 case ISD::BUILD_VECTOR: 2603 // Collect the known bits that are shared by every demanded vector element. 2604 Known.Zero.setAllBits(); Known.One.setAllBits(); 2605 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2606 if (!DemandedElts[i]) 2607 continue; 2608 2609 SDValue SrcOp = Op.getOperand(i); 2610 Known2 = computeKnownBits(SrcOp, Depth + 1); 2611 2612 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2613 if (SrcOp.getValueSizeInBits() != BitWidth) { 2614 assert(SrcOp.getValueSizeInBits() > BitWidth && 2615 "Expected BUILD_VECTOR implicit truncation"); 2616 Known2 = Known2.trunc(BitWidth); 2617 } 2618 2619 // Known bits are the values that are shared by every demanded element. 2620 Known.One &= Known2.One; 2621 Known.Zero &= Known2.Zero; 2622 2623 // If we don't know any bits, early out. 2624 if (Known.isUnknown()) 2625 break; 2626 } 2627 break; 2628 case ISD::VECTOR_SHUFFLE: { 2629 // Collect the known bits that are shared by every vector element referenced 2630 // by the shuffle. 2631 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2632 Known.Zero.setAllBits(); Known.One.setAllBits(); 2633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2634 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2635 for (unsigned i = 0; i != NumElts; ++i) { 2636 if (!DemandedElts[i]) 2637 continue; 2638 2639 int M = SVN->getMaskElt(i); 2640 if (M < 0) { 2641 // For UNDEF elements, we don't know anything about the common state of 2642 // the shuffle result. 2643 Known.resetAll(); 2644 DemandedLHS.clearAllBits(); 2645 DemandedRHS.clearAllBits(); 2646 break; 2647 } 2648 2649 if ((unsigned)M < NumElts) 2650 DemandedLHS.setBit((unsigned)M % NumElts); 2651 else 2652 DemandedRHS.setBit((unsigned)M % NumElts); 2653 } 2654 // Known bits are the values that are shared by every demanded element. 2655 if (!!DemandedLHS) { 2656 SDValue LHS = Op.getOperand(0); 2657 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2658 Known.One &= Known2.One; 2659 Known.Zero &= Known2.Zero; 2660 } 2661 // If we don't know any bits, early out. 2662 if (Known.isUnknown()) 2663 break; 2664 if (!!DemandedRHS) { 2665 SDValue RHS = Op.getOperand(1); 2666 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2667 Known.One &= Known2.One; 2668 Known.Zero &= Known2.Zero; 2669 } 2670 break; 2671 } 2672 case ISD::CONCAT_VECTORS: { 2673 // Split DemandedElts and test each of the demanded subvectors. 2674 Known.Zero.setAllBits(); Known.One.setAllBits(); 2675 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2676 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2677 unsigned NumSubVectors = Op.getNumOperands(); 2678 for (unsigned i = 0; i != NumSubVectors; ++i) { 2679 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2680 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2681 if (!!DemandedSub) { 2682 SDValue Sub = Op.getOperand(i); 2683 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2684 Known.One &= Known2.One; 2685 Known.Zero &= Known2.Zero; 2686 } 2687 // If we don't know any bits, early out. 2688 if (Known.isUnknown()) 2689 break; 2690 } 2691 break; 2692 } 2693 case ISD::INSERT_SUBVECTOR: { 2694 // Demand any elements from the subvector and the remainder from the src its 2695 // inserted into. 2696 SDValue Src = Op.getOperand(0); 2697 SDValue Sub = Op.getOperand(1); 2698 uint64_t Idx = Op.getConstantOperandVal(2); 2699 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2700 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2701 APInt DemandedSrcElts = DemandedElts; 2702 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2703 2704 Known.One.setAllBits(); 2705 Known.Zero.setAllBits(); 2706 if (!!DemandedSubElts) { 2707 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2708 if (Known.isUnknown()) 2709 break; // early-out. 2710 } 2711 if (!!DemandedSrcElts) { 2712 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2713 Known.One &= Known2.One; 2714 Known.Zero &= Known2.Zero; 2715 } 2716 break; 2717 } 2718 case ISD::EXTRACT_SUBVECTOR: { 2719 // Offset the demanded elts by the subvector index. 2720 SDValue Src = Op.getOperand(0); 2721 uint64_t Idx = Op.getConstantOperandVal(1); 2722 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2723 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2724 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2725 break; 2726 } 2727 case ISD::SCALAR_TO_VECTOR: { 2728 // We know about scalar_to_vector as much as we know about it source, 2729 // which becomes the first element of otherwise unknown vector. 2730 if (DemandedElts != 1) 2731 break; 2732 2733 SDValue N0 = Op.getOperand(0); 2734 Known = computeKnownBits(N0, Depth + 1); 2735 if (N0.getValueSizeInBits() != BitWidth) 2736 Known = Known.trunc(BitWidth); 2737 2738 break; 2739 } 2740 case ISD::BITCAST: { 2741 SDValue N0 = Op.getOperand(0); 2742 EVT SubVT = N0.getValueType(); 2743 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2744 2745 // Ignore bitcasts from unsupported types. 2746 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2747 break; 2748 2749 // Fast handling of 'identity' bitcasts. 2750 if (BitWidth == SubBitWidth) { 2751 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2752 break; 2753 } 2754 2755 bool IsLE = getDataLayout().isLittleEndian(); 2756 2757 // Bitcast 'small element' vector to 'large element' scalar/vector. 2758 if ((BitWidth % SubBitWidth) == 0) { 2759 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2760 2761 // Collect known bits for the (larger) output by collecting the known 2762 // bits from each set of sub elements and shift these into place. 2763 // We need to separately call computeKnownBits for each set of 2764 // sub elements as the knownbits for each is likely to be different. 2765 unsigned SubScale = BitWidth / SubBitWidth; 2766 APInt SubDemandedElts(NumElts * SubScale, 0); 2767 for (unsigned i = 0; i != NumElts; ++i) 2768 if (DemandedElts[i]) 2769 SubDemandedElts.setBit(i * SubScale); 2770 2771 for (unsigned i = 0; i != SubScale; ++i) { 2772 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2773 Depth + 1); 2774 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2775 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2776 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2777 } 2778 } 2779 2780 // Bitcast 'large element' scalar/vector to 'small element' vector. 2781 if ((SubBitWidth % BitWidth) == 0) { 2782 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2783 2784 // Collect known bits for the (smaller) output by collecting the known 2785 // bits from the overlapping larger input elements and extracting the 2786 // sub sections we actually care about. 2787 unsigned SubScale = SubBitWidth / BitWidth; 2788 APInt SubDemandedElts(NumElts / SubScale, 0); 2789 for (unsigned i = 0; i != NumElts; ++i) 2790 if (DemandedElts[i]) 2791 SubDemandedElts.setBit(i / SubScale); 2792 2793 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2794 2795 Known.Zero.setAllBits(); Known.One.setAllBits(); 2796 for (unsigned i = 0; i != NumElts; ++i) 2797 if (DemandedElts[i]) { 2798 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2799 unsigned Offset = (Shifts % SubScale) * BitWidth; 2800 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2801 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2802 // If we don't know any bits, early out. 2803 if (Known.isUnknown()) 2804 break; 2805 } 2806 } 2807 break; 2808 } 2809 case ISD::AND: 2810 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2811 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2812 2813 Known &= Known2; 2814 break; 2815 case ISD::OR: 2816 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2817 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2818 2819 Known |= Known2; 2820 break; 2821 case ISD::XOR: 2822 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2823 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2824 2825 Known ^= Known2; 2826 break; 2827 case ISD::MUL: { 2828 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2829 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2830 2831 // If low bits are zero in either operand, output low known-0 bits. 2832 // Also compute a conservative estimate for high known-0 bits. 2833 // More trickiness is possible, but this is sufficient for the 2834 // interesting case of alignment computation. 2835 unsigned TrailZ = Known.countMinTrailingZeros() + 2836 Known2.countMinTrailingZeros(); 2837 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2838 Known2.countMinLeadingZeros(), 2839 BitWidth) - BitWidth; 2840 2841 Known.resetAll(); 2842 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2843 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2844 break; 2845 } 2846 case ISD::UDIV: { 2847 // For the purposes of computing leading zeros we can conservatively 2848 // treat a udiv as a logical right shift by the power of 2 known to 2849 // be less than the denominator. 2850 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2851 unsigned LeadZ = Known2.countMinLeadingZeros(); 2852 2853 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2854 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2855 if (RHSMaxLeadingZeros != BitWidth) 2856 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2857 2858 Known.Zero.setHighBits(LeadZ); 2859 break; 2860 } 2861 case ISD::SELECT: 2862 case ISD::VSELECT: 2863 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2864 // If we don't know any bits, early out. 2865 if (Known.isUnknown()) 2866 break; 2867 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2868 2869 // Only known if known in both the LHS and RHS. 2870 Known.One &= Known2.One; 2871 Known.Zero &= Known2.Zero; 2872 break; 2873 case ISD::SELECT_CC: 2874 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2875 // If we don't know any bits, early out. 2876 if (Known.isUnknown()) 2877 break; 2878 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2879 2880 // Only known if known in both the LHS and RHS. 2881 Known.One &= Known2.One; 2882 Known.Zero &= Known2.Zero; 2883 break; 2884 case ISD::SMULO: 2885 case ISD::UMULO: 2886 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2887 if (Op.getResNo() != 1) 2888 break; 2889 // The boolean result conforms to getBooleanContents. 2890 // If we know the result of a setcc has the top bits zero, use this info. 2891 // We know that we have an integer-based boolean since these operations 2892 // are only available for integer. 2893 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2894 TargetLowering::ZeroOrOneBooleanContent && 2895 BitWidth > 1) 2896 Known.Zero.setBitsFrom(1); 2897 break; 2898 case ISD::SETCC: 2899 case ISD::STRICT_FSETCC: 2900 case ISD::STRICT_FSETCCS: { 2901 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2902 // If we know the result of a setcc has the top bits zero, use this info. 2903 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2904 TargetLowering::ZeroOrOneBooleanContent && 2905 BitWidth > 1) 2906 Known.Zero.setBitsFrom(1); 2907 break; 2908 } 2909 case ISD::SHL: 2910 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2911 2912 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2913 unsigned Shift = ShAmt->getZExtValue(); 2914 Known.Zero <<= Shift; 2915 Known.One <<= Shift; 2916 // Low bits are known zero. 2917 Known.Zero.setLowBits(Shift); 2918 break; 2919 } 2920 2921 // No matter the shift amount, the trailing zeros will stay zero. 2922 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2923 Known.One.clearAllBits(); 2924 2925 // Minimum shift low bits are known zero. 2926 if (const APInt *ShMinAmt = 2927 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2928 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2929 break; 2930 case ISD::SRL: 2931 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2932 2933 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2934 unsigned Shift = ShAmt->getZExtValue(); 2935 Known.Zero.lshrInPlace(Shift); 2936 Known.One.lshrInPlace(Shift); 2937 // High bits are known zero. 2938 Known.Zero.setHighBits(Shift); 2939 break; 2940 } 2941 2942 // No matter the shift amount, the leading zeros will stay zero. 2943 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2944 Known.One.clearAllBits(); 2945 2946 // Minimum shift high bits are known zero. 2947 if (const APInt *ShMinAmt = 2948 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2949 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2950 break; 2951 case ISD::SRA: 2952 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2953 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2954 unsigned Shift = ShAmt->getZExtValue(); 2955 // Sign extend known zero/one bit (else is unknown). 2956 Known.Zero.ashrInPlace(Shift); 2957 Known.One.ashrInPlace(Shift); 2958 } 2959 break; 2960 case ISD::FSHL: 2961 case ISD::FSHR: 2962 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2963 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2964 2965 // For fshl, 0-shift returns the 1st arg. 2966 // For fshr, 0-shift returns the 2nd arg. 2967 if (Amt == 0) { 2968 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2969 DemandedElts, Depth + 1); 2970 break; 2971 } 2972 2973 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2974 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2975 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2976 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2977 if (Opcode == ISD::FSHL) { 2978 Known.One <<= Amt; 2979 Known.Zero <<= Amt; 2980 Known2.One.lshrInPlace(BitWidth - Amt); 2981 Known2.Zero.lshrInPlace(BitWidth - Amt); 2982 } else { 2983 Known.One <<= BitWidth - Amt; 2984 Known.Zero <<= BitWidth - Amt; 2985 Known2.One.lshrInPlace(Amt); 2986 Known2.Zero.lshrInPlace(Amt); 2987 } 2988 Known.One |= Known2.One; 2989 Known.Zero |= Known2.Zero; 2990 } 2991 break; 2992 case ISD::SIGN_EXTEND_INREG: { 2993 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2994 unsigned EBits = EVT.getScalarSizeInBits(); 2995 2996 // Sign extension. Compute the demanded bits in the result that are not 2997 // present in the input. 2998 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2999 3000 APInt InSignMask = APInt::getSignMask(EBits); 3001 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3002 3003 // If the sign extended bits are demanded, we know that the sign 3004 // bit is demanded. 3005 InSignMask = InSignMask.zext(BitWidth); 3006 if (NewBits.getBoolValue()) 3007 InputDemandedBits |= InSignMask; 3008 3009 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known.One &= InputDemandedBits; 3011 Known.Zero &= InputDemandedBits; 3012 3013 // If the sign bit of the input is known set or clear, then we know the 3014 // top bits of the result. 3015 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3016 Known.Zero |= NewBits; 3017 Known.One &= ~NewBits; 3018 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3019 Known.One |= NewBits; 3020 Known.Zero &= ~NewBits; 3021 } else { // Input sign bit unknown 3022 Known.Zero &= ~NewBits; 3023 Known.One &= ~NewBits; 3024 } 3025 break; 3026 } 3027 case ISD::CTTZ: 3028 case ISD::CTTZ_ZERO_UNDEF: { 3029 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3030 // If we have a known 1, its position is our upper bound. 3031 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3032 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3033 Known.Zero.setBitsFrom(LowBits); 3034 break; 3035 } 3036 case ISD::CTLZ: 3037 case ISD::CTLZ_ZERO_UNDEF: { 3038 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 // If we have a known 1, its position is our upper bound. 3040 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3041 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3042 Known.Zero.setBitsFrom(LowBits); 3043 break; 3044 } 3045 case ISD::CTPOP: { 3046 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3047 // If we know some of the bits are zero, they can't be one. 3048 unsigned PossibleOnes = Known2.countMaxPopulation(); 3049 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3050 break; 3051 } 3052 case ISD::LOAD: { 3053 LoadSDNode *LD = cast<LoadSDNode>(Op); 3054 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3055 if (ISD::isNON_EXTLoad(LD) && Cst) { 3056 // Determine any common known bits from the loaded constant pool value. 3057 Type *CstTy = Cst->getType(); 3058 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3059 // If its a vector splat, then we can (quickly) reuse the scalar path. 3060 // NOTE: We assume all elements match and none are UNDEF. 3061 if (CstTy->isVectorTy()) { 3062 if (const Constant *Splat = Cst->getSplatValue()) { 3063 Cst = Splat; 3064 CstTy = Cst->getType(); 3065 } 3066 } 3067 // TODO - do we need to handle different bitwidths? 3068 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3069 // Iterate across all vector elements finding common known bits. 3070 Known.One.setAllBits(); 3071 Known.Zero.setAllBits(); 3072 for (unsigned i = 0; i != NumElts; ++i) { 3073 if (!DemandedElts[i]) 3074 continue; 3075 if (Constant *Elt = Cst->getAggregateElement(i)) { 3076 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3077 const APInt &Value = CInt->getValue(); 3078 Known.One &= Value; 3079 Known.Zero &= ~Value; 3080 continue; 3081 } 3082 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3083 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3084 Known.One &= Value; 3085 Known.Zero &= ~Value; 3086 continue; 3087 } 3088 } 3089 Known.One.clearAllBits(); 3090 Known.Zero.clearAllBits(); 3091 break; 3092 } 3093 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3094 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3095 const APInt &Value = CInt->getValue(); 3096 Known.One = Value; 3097 Known.Zero = ~Value; 3098 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3099 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3100 Known.One = Value; 3101 Known.Zero = ~Value; 3102 } 3103 } 3104 } 3105 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3106 // If this is a ZEXTLoad and we are looking at the loaded value. 3107 EVT VT = LD->getMemoryVT(); 3108 unsigned MemBits = VT.getScalarSizeInBits(); 3109 Known.Zero.setBitsFrom(MemBits); 3110 } else if (const MDNode *Ranges = LD->getRanges()) { 3111 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3112 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3113 } 3114 break; 3115 } 3116 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3117 EVT InVT = Op.getOperand(0).getValueType(); 3118 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3119 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3120 Known = Known.zext(BitWidth); 3121 break; 3122 } 3123 case ISD::ZERO_EXTEND: { 3124 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3125 Known = Known.zext(BitWidth); 3126 break; 3127 } 3128 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3129 EVT InVT = Op.getOperand(0).getValueType(); 3130 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3131 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3132 // If the sign bit is known to be zero or one, then sext will extend 3133 // it to the top bits, else it will just zext. 3134 Known = Known.sext(BitWidth); 3135 break; 3136 } 3137 case ISD::SIGN_EXTEND: { 3138 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3139 // If the sign bit is known to be zero or one, then sext will extend 3140 // it to the top bits, else it will just zext. 3141 Known = Known.sext(BitWidth); 3142 break; 3143 } 3144 case ISD::ANY_EXTEND_VECTOR_INREG: { 3145 EVT InVT = Op.getOperand(0).getValueType(); 3146 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3147 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3148 Known = Known.anyext(BitWidth); 3149 break; 3150 } 3151 case ISD::ANY_EXTEND: { 3152 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3153 Known = Known.anyext(BitWidth); 3154 break; 3155 } 3156 case ISD::TRUNCATE: { 3157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 Known = Known.trunc(BitWidth); 3159 break; 3160 } 3161 case ISD::AssertZext: { 3162 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3163 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3164 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3165 Known.Zero |= (~InMask); 3166 Known.One &= (~Known.Zero); 3167 break; 3168 } 3169 case ISD::AssertAlign: { 3170 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3171 assert(LogOfAlign != 0); 3172 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3173 // well as clearing one bits. 3174 Known.Zero.setLowBits(LogOfAlign); 3175 Known.One.clearLowBits(LogOfAlign); 3176 break; 3177 } 3178 case ISD::FGETSIGN: 3179 // All bits are zero except the low bit. 3180 Known.Zero.setBitsFrom(1); 3181 break; 3182 case ISD::USUBO: 3183 case ISD::SSUBO: 3184 if (Op.getResNo() == 1) { 3185 // If we know the result of a setcc has the top bits zero, use this info. 3186 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3187 TargetLowering::ZeroOrOneBooleanContent && 3188 BitWidth > 1) 3189 Known.Zero.setBitsFrom(1); 3190 break; 3191 } 3192 LLVM_FALLTHROUGH; 3193 case ISD::SUB: 3194 case ISD::SUBC: { 3195 assert(Op.getResNo() == 0 && 3196 "We only compute knownbits for the difference here."); 3197 3198 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3199 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3200 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3201 Known, Known2); 3202 break; 3203 } 3204 case ISD::UADDO: 3205 case ISD::SADDO: 3206 case ISD::ADDCARRY: 3207 if (Op.getResNo() == 1) { 3208 // If we know the result of a setcc has the top bits zero, use this info. 3209 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3210 TargetLowering::ZeroOrOneBooleanContent && 3211 BitWidth > 1) 3212 Known.Zero.setBitsFrom(1); 3213 break; 3214 } 3215 LLVM_FALLTHROUGH; 3216 case ISD::ADD: 3217 case ISD::ADDC: 3218 case ISD::ADDE: { 3219 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3220 3221 // With ADDE and ADDCARRY, a carry bit may be added in. 3222 KnownBits Carry(1); 3223 if (Opcode == ISD::ADDE) 3224 // Can't track carry from glue, set carry to unknown. 3225 Carry.resetAll(); 3226 else if (Opcode == ISD::ADDCARRY) 3227 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3228 // the trouble (how often will we find a known carry bit). And I haven't 3229 // tested this very much yet, but something like this might work: 3230 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3231 // Carry = Carry.zextOrTrunc(1, false); 3232 Carry.resetAll(); 3233 else 3234 Carry.setAllZero(); 3235 3236 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3237 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3238 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3239 break; 3240 } 3241 case ISD::SREM: 3242 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3243 const APInt &RA = Rem->getAPIntValue().abs(); 3244 if (RA.isPowerOf2()) { 3245 APInt LowBits = RA - 1; 3246 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3247 3248 // The low bits of the first operand are unchanged by the srem. 3249 Known.Zero = Known2.Zero & LowBits; 3250 Known.One = Known2.One & LowBits; 3251 3252 // If the first operand is non-negative or has all low bits zero, then 3253 // the upper bits are all zero. 3254 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3255 Known.Zero |= ~LowBits; 3256 3257 // If the first operand is negative and not all low bits are zero, then 3258 // the upper bits are all one. 3259 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3260 Known.One |= ~LowBits; 3261 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3262 } 3263 } 3264 break; 3265 case ISD::UREM: { 3266 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3267 const APInt &RA = Rem->getAPIntValue(); 3268 if (RA.isPowerOf2()) { 3269 APInt LowBits = (RA - 1); 3270 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3271 3272 // The upper bits are all zero, the lower ones are unchanged. 3273 Known.Zero = Known2.Zero | ~LowBits; 3274 Known.One = Known2.One & LowBits; 3275 break; 3276 } 3277 } 3278 3279 // Since the result is less than or equal to either operand, any leading 3280 // zero bits in either operand must also exist in the result. 3281 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3282 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3283 3284 uint32_t Leaders = 3285 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3286 Known.resetAll(); 3287 Known.Zero.setHighBits(Leaders); 3288 break; 3289 } 3290 case ISD::EXTRACT_ELEMENT: { 3291 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3292 const unsigned Index = Op.getConstantOperandVal(1); 3293 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3294 3295 // Remove low part of known bits mask 3296 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3297 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3298 3299 // Remove high part of known bit mask 3300 Known = Known.trunc(EltBitWidth); 3301 break; 3302 } 3303 case ISD::EXTRACT_VECTOR_ELT: { 3304 SDValue InVec = Op.getOperand(0); 3305 SDValue EltNo = Op.getOperand(1); 3306 EVT VecVT = InVec.getValueType(); 3307 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3308 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3309 3310 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3311 // anything about the extended bits. 3312 if (BitWidth > EltBitWidth) 3313 Known = Known.trunc(EltBitWidth); 3314 3315 // If we know the element index, just demand that vector element, else for 3316 // an unknown element index, ignore DemandedElts and demand them all. 3317 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3318 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3319 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3320 DemandedSrcElts = 3321 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3322 3323 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3324 if (BitWidth > EltBitWidth) 3325 Known = Known.anyext(BitWidth); 3326 break; 3327 } 3328 case ISD::INSERT_VECTOR_ELT: { 3329 // If we know the element index, split the demand between the 3330 // source vector and the inserted element, otherwise assume we need 3331 // the original demanded vector elements and the value. 3332 SDValue InVec = Op.getOperand(0); 3333 SDValue InVal = Op.getOperand(1); 3334 SDValue EltNo = Op.getOperand(2); 3335 bool DemandedVal = true; 3336 APInt DemandedVecElts = DemandedElts; 3337 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3338 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3339 unsigned EltIdx = CEltNo->getZExtValue(); 3340 DemandedVal = !!DemandedElts[EltIdx]; 3341 DemandedVecElts.clearBit(EltIdx); 3342 } 3343 Known.One.setAllBits(); 3344 Known.Zero.setAllBits(); 3345 if (DemandedVal) { 3346 Known2 = computeKnownBits(InVal, Depth + 1); 3347 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3348 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3349 } 3350 if (!!DemandedVecElts) { 3351 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3352 Known.One &= Known2.One; 3353 Known.Zero &= Known2.Zero; 3354 } 3355 break; 3356 } 3357 case ISD::BITREVERSE: { 3358 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3359 Known.Zero = Known2.Zero.reverseBits(); 3360 Known.One = Known2.One.reverseBits(); 3361 break; 3362 } 3363 case ISD::BSWAP: { 3364 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 Known.Zero = Known2.Zero.byteSwap(); 3366 Known.One = Known2.One.byteSwap(); 3367 break; 3368 } 3369 case ISD::ABS: { 3370 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3371 3372 // If the source's MSB is zero then we know the rest of the bits already. 3373 if (Known2.isNonNegative()) { 3374 Known.Zero = Known2.Zero; 3375 Known.One = Known2.One; 3376 break; 3377 } 3378 3379 // We only know that the absolute values's MSB will be zero iff there is 3380 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3381 Known2.One.clearSignBit(); 3382 if (Known2.One.getBoolValue()) { 3383 Known.Zero = APInt::getSignMask(BitWidth); 3384 break; 3385 } 3386 break; 3387 } 3388 case ISD::UMIN: { 3389 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3390 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3391 3392 // UMIN - we know that the result will have the maximum of the 3393 // known zero leading bits of the inputs. 3394 unsigned LeadZero = Known.countMinLeadingZeros(); 3395 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3396 3397 Known.Zero &= Known2.Zero; 3398 Known.One &= Known2.One; 3399 Known.Zero.setHighBits(LeadZero); 3400 break; 3401 } 3402 case ISD::UMAX: { 3403 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3404 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3405 3406 // UMAX - we know that the result will have the maximum of the 3407 // known one leading bits of the inputs. 3408 unsigned LeadOne = Known.countMinLeadingOnes(); 3409 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3410 3411 Known.Zero &= Known2.Zero; 3412 Known.One &= Known2.One; 3413 Known.One.setHighBits(LeadOne); 3414 break; 3415 } 3416 case ISD::SMIN: 3417 case ISD::SMAX: { 3418 // If we have a clamp pattern, we know that the number of sign bits will be 3419 // the minimum of the clamp min/max range. 3420 bool IsMax = (Opcode == ISD::SMAX); 3421 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3422 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3423 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3424 CstHigh = 3425 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3426 if (CstLow && CstHigh) { 3427 if (!IsMax) 3428 std::swap(CstLow, CstHigh); 3429 3430 const APInt &ValueLow = CstLow->getAPIntValue(); 3431 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3432 if (ValueLow.sle(ValueHigh)) { 3433 unsigned LowSignBits = ValueLow.getNumSignBits(); 3434 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3435 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3436 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3437 Known.One.setHighBits(MinSignBits); 3438 break; 3439 } 3440 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3441 Known.Zero.setHighBits(MinSignBits); 3442 break; 3443 } 3444 } 3445 } 3446 3447 // Fallback - just get the shared known bits of the operands. 3448 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3449 if (Known.isUnknown()) break; // Early-out 3450 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3451 Known.Zero &= Known2.Zero; 3452 Known.One &= Known2.One; 3453 break; 3454 } 3455 case ISD::FrameIndex: 3456 case ISD::TargetFrameIndex: 3457 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3458 Known, getMachineFunction()); 3459 break; 3460 3461 default: 3462 if (Opcode < ISD::BUILTIN_OP_END) 3463 break; 3464 LLVM_FALLTHROUGH; 3465 case ISD::INTRINSIC_WO_CHAIN: 3466 case ISD::INTRINSIC_W_CHAIN: 3467 case ISD::INTRINSIC_VOID: 3468 // Allow the target to implement this method for its nodes. 3469 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3470 break; 3471 } 3472 3473 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3474 return Known; 3475 } 3476 3477 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3478 SDValue N1) const { 3479 // X + 0 never overflow 3480 if (isNullConstant(N1)) 3481 return OFK_Never; 3482 3483 KnownBits N1Known = computeKnownBits(N1); 3484 if (N1Known.Zero.getBoolValue()) { 3485 KnownBits N0Known = computeKnownBits(N0); 3486 3487 bool overflow; 3488 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3489 if (!overflow) 3490 return OFK_Never; 3491 } 3492 3493 // mulhi + 1 never overflow 3494 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3495 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3496 return OFK_Never; 3497 3498 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3499 KnownBits N0Known = computeKnownBits(N0); 3500 3501 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3502 return OFK_Never; 3503 } 3504 3505 return OFK_Sometime; 3506 } 3507 3508 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3509 EVT OpVT = Val.getValueType(); 3510 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3511 3512 // Is the constant a known power of 2? 3513 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3514 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3515 3516 // A left-shift of a constant one will have exactly one bit set because 3517 // shifting the bit off the end is undefined. 3518 if (Val.getOpcode() == ISD::SHL) { 3519 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3520 if (C && C->getAPIntValue() == 1) 3521 return true; 3522 } 3523 3524 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3525 // one bit set. 3526 if (Val.getOpcode() == ISD::SRL) { 3527 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3528 if (C && C->getAPIntValue().isSignMask()) 3529 return true; 3530 } 3531 3532 // Are all operands of a build vector constant powers of two? 3533 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3534 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3535 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3536 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3537 return false; 3538 })) 3539 return true; 3540 3541 // More could be done here, though the above checks are enough 3542 // to handle some common cases. 3543 3544 // Fall back to computeKnownBits to catch other known cases. 3545 KnownBits Known = computeKnownBits(Val); 3546 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3547 } 3548 3549 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3550 EVT VT = Op.getValueType(); 3551 3552 // TODO: Assume we don't know anything for now. 3553 if (VT.isScalableVector()) 3554 return 1; 3555 3556 APInt DemandedElts = VT.isVector() 3557 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3558 : APInt(1, 1); 3559 return ComputeNumSignBits(Op, DemandedElts, Depth); 3560 } 3561 3562 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3563 unsigned Depth) const { 3564 EVT VT = Op.getValueType(); 3565 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3566 unsigned VTBits = VT.getScalarSizeInBits(); 3567 unsigned NumElts = DemandedElts.getBitWidth(); 3568 unsigned Tmp, Tmp2; 3569 unsigned FirstAnswer = 1; 3570 3571 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3572 const APInt &Val = C->getAPIntValue(); 3573 return Val.getNumSignBits(); 3574 } 3575 3576 if (Depth >= MaxRecursionDepth) 3577 return 1; // Limit search depth. 3578 3579 if (!DemandedElts || VT.isScalableVector()) 3580 return 1; // No demanded elts, better to assume we don't know anything. 3581 3582 unsigned Opcode = Op.getOpcode(); 3583 switch (Opcode) { 3584 default: break; 3585 case ISD::AssertSext: 3586 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3587 return VTBits-Tmp+1; 3588 case ISD::AssertZext: 3589 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3590 return VTBits-Tmp; 3591 3592 case ISD::BUILD_VECTOR: 3593 Tmp = VTBits; 3594 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3595 if (!DemandedElts[i]) 3596 continue; 3597 3598 SDValue SrcOp = Op.getOperand(i); 3599 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3600 3601 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3602 if (SrcOp.getValueSizeInBits() != VTBits) { 3603 assert(SrcOp.getValueSizeInBits() > VTBits && 3604 "Expected BUILD_VECTOR implicit truncation"); 3605 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3606 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3607 } 3608 Tmp = std::min(Tmp, Tmp2); 3609 } 3610 return Tmp; 3611 3612 case ISD::VECTOR_SHUFFLE: { 3613 // Collect the minimum number of sign bits that are shared by every vector 3614 // element referenced by the shuffle. 3615 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3616 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3617 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3618 for (unsigned i = 0; i != NumElts; ++i) { 3619 int M = SVN->getMaskElt(i); 3620 if (!DemandedElts[i]) 3621 continue; 3622 // For UNDEF elements, we don't know anything about the common state of 3623 // the shuffle result. 3624 if (M < 0) 3625 return 1; 3626 if ((unsigned)M < NumElts) 3627 DemandedLHS.setBit((unsigned)M % NumElts); 3628 else 3629 DemandedRHS.setBit((unsigned)M % NumElts); 3630 } 3631 Tmp = std::numeric_limits<unsigned>::max(); 3632 if (!!DemandedLHS) 3633 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3634 if (!!DemandedRHS) { 3635 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3636 Tmp = std::min(Tmp, Tmp2); 3637 } 3638 // If we don't know anything, early out and try computeKnownBits fall-back. 3639 if (Tmp == 1) 3640 break; 3641 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3642 return Tmp; 3643 } 3644 3645 case ISD::BITCAST: { 3646 SDValue N0 = Op.getOperand(0); 3647 EVT SrcVT = N0.getValueType(); 3648 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3649 3650 // Ignore bitcasts from unsupported types.. 3651 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3652 break; 3653 3654 // Fast handling of 'identity' bitcasts. 3655 if (VTBits == SrcBits) 3656 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3657 3658 bool IsLE = getDataLayout().isLittleEndian(); 3659 3660 // Bitcast 'large element' scalar/vector to 'small element' vector. 3661 if ((SrcBits % VTBits) == 0) { 3662 assert(VT.isVector() && "Expected bitcast to vector"); 3663 3664 unsigned Scale = SrcBits / VTBits; 3665 APInt SrcDemandedElts(NumElts / Scale, 0); 3666 for (unsigned i = 0; i != NumElts; ++i) 3667 if (DemandedElts[i]) 3668 SrcDemandedElts.setBit(i / Scale); 3669 3670 // Fast case - sign splat can be simply split across the small elements. 3671 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3672 if (Tmp == SrcBits) 3673 return VTBits; 3674 3675 // Slow case - determine how far the sign extends into each sub-element. 3676 Tmp2 = VTBits; 3677 for (unsigned i = 0; i != NumElts; ++i) 3678 if (DemandedElts[i]) { 3679 unsigned SubOffset = i % Scale; 3680 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3681 SubOffset = SubOffset * VTBits; 3682 if (Tmp <= SubOffset) 3683 return 1; 3684 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3685 } 3686 return Tmp2; 3687 } 3688 break; 3689 } 3690 3691 case ISD::SIGN_EXTEND: 3692 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3693 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3694 case ISD::SIGN_EXTEND_INREG: 3695 // Max of the input and what this extends. 3696 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3697 Tmp = VTBits-Tmp+1; 3698 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3699 return std::max(Tmp, Tmp2); 3700 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3701 SDValue Src = Op.getOperand(0); 3702 EVT SrcVT = Src.getValueType(); 3703 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3704 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3705 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3706 } 3707 case ISD::SRA: 3708 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3709 // SRA X, C -> adds C sign bits. 3710 if (const APInt *ShAmt = 3711 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3712 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3713 return Tmp; 3714 case ISD::SHL: 3715 if (const APInt *ShAmt = 3716 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3717 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3718 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3719 if (ShAmt->ult(Tmp)) 3720 return Tmp - ShAmt->getZExtValue(); 3721 } 3722 break; 3723 case ISD::AND: 3724 case ISD::OR: 3725 case ISD::XOR: // NOT is handled here. 3726 // Logical binary ops preserve the number of sign bits at the worst. 3727 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3728 if (Tmp != 1) { 3729 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3730 FirstAnswer = std::min(Tmp, Tmp2); 3731 // We computed what we know about the sign bits as our first 3732 // answer. Now proceed to the generic code that uses 3733 // computeKnownBits, and pick whichever answer is better. 3734 } 3735 break; 3736 3737 case ISD::SELECT: 3738 case ISD::VSELECT: 3739 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3740 if (Tmp == 1) return 1; // Early out. 3741 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3742 return std::min(Tmp, Tmp2); 3743 case ISD::SELECT_CC: 3744 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3745 if (Tmp == 1) return 1; // Early out. 3746 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3747 return std::min(Tmp, Tmp2); 3748 3749 case ISD::SMIN: 3750 case ISD::SMAX: { 3751 // If we have a clamp pattern, we know that the number of sign bits will be 3752 // the minimum of the clamp min/max range. 3753 bool IsMax = (Opcode == ISD::SMAX); 3754 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3755 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3756 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3757 CstHigh = 3758 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3759 if (CstLow && CstHigh) { 3760 if (!IsMax) 3761 std::swap(CstLow, CstHigh); 3762 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3763 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3764 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3765 return std::min(Tmp, Tmp2); 3766 } 3767 } 3768 3769 // Fallback - just get the minimum number of sign bits of the operands. 3770 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3771 if (Tmp == 1) 3772 return 1; // Early out. 3773 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3774 return std::min(Tmp, Tmp2); 3775 } 3776 case ISD::UMIN: 3777 case ISD::UMAX: 3778 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3779 if (Tmp == 1) 3780 return 1; // Early out. 3781 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3782 return std::min(Tmp, Tmp2); 3783 case ISD::SADDO: 3784 case ISD::UADDO: 3785 case ISD::SSUBO: 3786 case ISD::USUBO: 3787 case ISD::SMULO: 3788 case ISD::UMULO: 3789 if (Op.getResNo() != 1) 3790 break; 3791 // The boolean result conforms to getBooleanContents. Fall through. 3792 // If setcc returns 0/-1, all bits are sign bits. 3793 // We know that we have an integer-based boolean since these operations 3794 // are only available for integer. 3795 if (TLI->getBooleanContents(VT.isVector(), false) == 3796 TargetLowering::ZeroOrNegativeOneBooleanContent) 3797 return VTBits; 3798 break; 3799 case ISD::SETCC: 3800 case ISD::STRICT_FSETCC: 3801 case ISD::STRICT_FSETCCS: { 3802 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3803 // If setcc returns 0/-1, all bits are sign bits. 3804 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3805 TargetLowering::ZeroOrNegativeOneBooleanContent) 3806 return VTBits; 3807 break; 3808 } 3809 case ISD::ROTL: 3810 case ISD::ROTR: 3811 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3812 3813 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3814 if (Tmp == VTBits) 3815 return VTBits; 3816 3817 if (ConstantSDNode *C = 3818 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3819 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3820 3821 // Handle rotate right by N like a rotate left by 32-N. 3822 if (Opcode == ISD::ROTR) 3823 RotAmt = (VTBits - RotAmt) % VTBits; 3824 3825 // If we aren't rotating out all of the known-in sign bits, return the 3826 // number that are left. This handles rotl(sext(x), 1) for example. 3827 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3828 } 3829 break; 3830 case ISD::ADD: 3831 case ISD::ADDC: 3832 // Add can have at most one carry bit. Thus we know that the output 3833 // is, at worst, one more bit than the inputs. 3834 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3835 if (Tmp == 1) return 1; // Early out. 3836 3837 // Special case decrementing a value (ADD X, -1): 3838 if (ConstantSDNode *CRHS = 3839 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3840 if (CRHS->isAllOnesValue()) { 3841 KnownBits Known = 3842 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3843 3844 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3845 // sign bits set. 3846 if ((Known.Zero | 1).isAllOnesValue()) 3847 return VTBits; 3848 3849 // If we are subtracting one from a positive number, there is no carry 3850 // out of the result. 3851 if (Known.isNonNegative()) 3852 return Tmp; 3853 } 3854 3855 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3856 if (Tmp2 == 1) return 1; // Early out. 3857 return std::min(Tmp, Tmp2) - 1; 3858 case ISD::SUB: 3859 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3860 if (Tmp2 == 1) return 1; // Early out. 3861 3862 // Handle NEG. 3863 if (ConstantSDNode *CLHS = 3864 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3865 if (CLHS->isNullValue()) { 3866 KnownBits Known = 3867 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3868 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3869 // sign bits set. 3870 if ((Known.Zero | 1).isAllOnesValue()) 3871 return VTBits; 3872 3873 // If the input is known to be positive (the sign bit is known clear), 3874 // the output of the NEG has the same number of sign bits as the input. 3875 if (Known.isNonNegative()) 3876 return Tmp2; 3877 3878 // Otherwise, we treat this like a SUB. 3879 } 3880 3881 // Sub can have at most one carry bit. Thus we know that the output 3882 // is, at worst, one more bit than the inputs. 3883 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3884 if (Tmp == 1) return 1; // Early out. 3885 return std::min(Tmp, Tmp2) - 1; 3886 case ISD::MUL: { 3887 // The output of the Mul can be at most twice the valid bits in the inputs. 3888 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3889 if (SignBitsOp0 == 1) 3890 break; 3891 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3892 if (SignBitsOp1 == 1) 3893 break; 3894 unsigned OutValidBits = 3895 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3896 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3897 } 3898 case ISD::TRUNCATE: { 3899 // Check if the sign bits of source go down as far as the truncated value. 3900 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3901 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3902 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3903 return NumSrcSignBits - (NumSrcBits - VTBits); 3904 break; 3905 } 3906 case ISD::EXTRACT_ELEMENT: { 3907 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3908 const int BitWidth = Op.getValueSizeInBits(); 3909 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3910 3911 // Get reverse index (starting from 1), Op1 value indexes elements from 3912 // little end. Sign starts at big end. 3913 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3914 3915 // If the sign portion ends in our element the subtraction gives correct 3916 // result. Otherwise it gives either negative or > bitwidth result 3917 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3918 } 3919 case ISD::INSERT_VECTOR_ELT: { 3920 // If we know the element index, split the demand between the 3921 // source vector and the inserted element, otherwise assume we need 3922 // the original demanded vector elements and the value. 3923 SDValue InVec = Op.getOperand(0); 3924 SDValue InVal = Op.getOperand(1); 3925 SDValue EltNo = Op.getOperand(2); 3926 bool DemandedVal = true; 3927 APInt DemandedVecElts = DemandedElts; 3928 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3929 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3930 unsigned EltIdx = CEltNo->getZExtValue(); 3931 DemandedVal = !!DemandedElts[EltIdx]; 3932 DemandedVecElts.clearBit(EltIdx); 3933 } 3934 Tmp = std::numeric_limits<unsigned>::max(); 3935 if (DemandedVal) { 3936 // TODO - handle implicit truncation of inserted elements. 3937 if (InVal.getScalarValueSizeInBits() != VTBits) 3938 break; 3939 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3940 Tmp = std::min(Tmp, Tmp2); 3941 } 3942 if (!!DemandedVecElts) { 3943 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3944 Tmp = std::min(Tmp, Tmp2); 3945 } 3946 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3947 return Tmp; 3948 } 3949 case ISD::EXTRACT_VECTOR_ELT: { 3950 SDValue InVec = Op.getOperand(0); 3951 SDValue EltNo = Op.getOperand(1); 3952 EVT VecVT = InVec.getValueType(); 3953 const unsigned BitWidth = Op.getValueSizeInBits(); 3954 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3955 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3956 3957 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3958 // anything about sign bits. But if the sizes match we can derive knowledge 3959 // about sign bits from the vector operand. 3960 if (BitWidth != EltBitWidth) 3961 break; 3962 3963 // If we know the element index, just demand that vector element, else for 3964 // an unknown element index, ignore DemandedElts and demand them all. 3965 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3966 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3967 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3968 DemandedSrcElts = 3969 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3970 3971 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3972 } 3973 case ISD::EXTRACT_SUBVECTOR: { 3974 // Offset the demanded elts by the subvector index. 3975 SDValue Src = Op.getOperand(0); 3976 uint64_t Idx = Op.getConstantOperandVal(1); 3977 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3978 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3979 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3980 } 3981 case ISD::CONCAT_VECTORS: { 3982 // Determine the minimum number of sign bits across all demanded 3983 // elts of the input vectors. Early out if the result is already 1. 3984 Tmp = std::numeric_limits<unsigned>::max(); 3985 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3986 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3987 unsigned NumSubVectors = Op.getNumOperands(); 3988 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3989 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3990 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3991 if (!DemandedSub) 3992 continue; 3993 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3994 Tmp = std::min(Tmp, Tmp2); 3995 } 3996 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3997 return Tmp; 3998 } 3999 case ISD::INSERT_SUBVECTOR: { 4000 // Demand any elements from the subvector and the remainder from the src its 4001 // inserted into. 4002 SDValue Src = Op.getOperand(0); 4003 SDValue Sub = Op.getOperand(1); 4004 uint64_t Idx = Op.getConstantOperandVal(2); 4005 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4006 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4007 APInt DemandedSrcElts = DemandedElts; 4008 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4009 4010 Tmp = std::numeric_limits<unsigned>::max(); 4011 if (!!DemandedSubElts) { 4012 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4013 if (Tmp == 1) 4014 return 1; // early-out 4015 } 4016 if (!!DemandedSrcElts) { 4017 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4018 Tmp = std::min(Tmp, Tmp2); 4019 } 4020 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4021 return Tmp; 4022 } 4023 } 4024 4025 // If we are looking at the loaded value of the SDNode. 4026 if (Op.getResNo() == 0) { 4027 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4028 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4029 unsigned ExtType = LD->getExtensionType(); 4030 switch (ExtType) { 4031 default: break; 4032 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4033 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4034 return VTBits - Tmp + 1; 4035 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4036 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4037 return VTBits - Tmp; 4038 case ISD::NON_EXTLOAD: 4039 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4040 // We only need to handle vectors - computeKnownBits should handle 4041 // scalar cases. 4042 Type *CstTy = Cst->getType(); 4043 if (CstTy->isVectorTy() && 4044 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4045 Tmp = VTBits; 4046 for (unsigned i = 0; i != NumElts; ++i) { 4047 if (!DemandedElts[i]) 4048 continue; 4049 if (Constant *Elt = Cst->getAggregateElement(i)) { 4050 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4051 const APInt &Value = CInt->getValue(); 4052 Tmp = std::min(Tmp, Value.getNumSignBits()); 4053 continue; 4054 } 4055 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4056 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4057 Tmp = std::min(Tmp, Value.getNumSignBits()); 4058 continue; 4059 } 4060 } 4061 // Unknown type. Conservatively assume no bits match sign bit. 4062 return 1; 4063 } 4064 return Tmp; 4065 } 4066 } 4067 break; 4068 } 4069 } 4070 } 4071 4072 // Allow the target to implement this method for its nodes. 4073 if (Opcode >= ISD::BUILTIN_OP_END || 4074 Opcode == ISD::INTRINSIC_WO_CHAIN || 4075 Opcode == ISD::INTRINSIC_W_CHAIN || 4076 Opcode == ISD::INTRINSIC_VOID) { 4077 unsigned NumBits = 4078 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4079 if (NumBits > 1) 4080 FirstAnswer = std::max(FirstAnswer, NumBits); 4081 } 4082 4083 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4084 // use this information. 4085 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4086 4087 APInt Mask; 4088 if (Known.isNonNegative()) { // sign bit is 0 4089 Mask = Known.Zero; 4090 } else if (Known.isNegative()) { // sign bit is 1; 4091 Mask = Known.One; 4092 } else { 4093 // Nothing known. 4094 return FirstAnswer; 4095 } 4096 4097 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4098 // the number of identical bits in the top of the input value. 4099 Mask <<= Mask.getBitWidth()-VTBits; 4100 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4101 } 4102 4103 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4104 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4105 !isa<ConstantSDNode>(Op.getOperand(1))) 4106 return false; 4107 4108 if (Op.getOpcode() == ISD::OR && 4109 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4110 return false; 4111 4112 return true; 4113 } 4114 4115 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4116 // If we're told that NaNs won't happen, assume they won't. 4117 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4118 return true; 4119 4120 if (Depth >= MaxRecursionDepth) 4121 return false; // Limit search depth. 4122 4123 // TODO: Handle vectors. 4124 // If the value is a constant, we can obviously see if it is a NaN or not. 4125 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4126 return !C->getValueAPF().isNaN() || 4127 (SNaN && !C->getValueAPF().isSignaling()); 4128 } 4129 4130 unsigned Opcode = Op.getOpcode(); 4131 switch (Opcode) { 4132 case ISD::FADD: 4133 case ISD::FSUB: 4134 case ISD::FMUL: 4135 case ISD::FDIV: 4136 case ISD::FREM: 4137 case ISD::FSIN: 4138 case ISD::FCOS: { 4139 if (SNaN) 4140 return true; 4141 // TODO: Need isKnownNeverInfinity 4142 return false; 4143 } 4144 case ISD::FCANONICALIZE: 4145 case ISD::FEXP: 4146 case ISD::FEXP2: 4147 case ISD::FTRUNC: 4148 case ISD::FFLOOR: 4149 case ISD::FCEIL: 4150 case ISD::FROUND: 4151 case ISD::FROUNDEVEN: 4152 case ISD::FRINT: 4153 case ISD::FNEARBYINT: { 4154 if (SNaN) 4155 return true; 4156 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4157 } 4158 case ISD::FABS: 4159 case ISD::FNEG: 4160 case ISD::FCOPYSIGN: { 4161 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4162 } 4163 case ISD::SELECT: 4164 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4165 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4166 case ISD::FP_EXTEND: 4167 case ISD::FP_ROUND: { 4168 if (SNaN) 4169 return true; 4170 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4171 } 4172 case ISD::SINT_TO_FP: 4173 case ISD::UINT_TO_FP: 4174 return true; 4175 case ISD::FMA: 4176 case ISD::FMAD: { 4177 if (SNaN) 4178 return true; 4179 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4180 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4181 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4182 } 4183 case ISD::FSQRT: // Need is known positive 4184 case ISD::FLOG: 4185 case ISD::FLOG2: 4186 case ISD::FLOG10: 4187 case ISD::FPOWI: 4188 case ISD::FPOW: { 4189 if (SNaN) 4190 return true; 4191 // TODO: Refine on operand 4192 return false; 4193 } 4194 case ISD::FMINNUM: 4195 case ISD::FMAXNUM: { 4196 // Only one needs to be known not-nan, since it will be returned if the 4197 // other ends up being one. 4198 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4199 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4200 } 4201 case ISD::FMINNUM_IEEE: 4202 case ISD::FMAXNUM_IEEE: { 4203 if (SNaN) 4204 return true; 4205 // This can return a NaN if either operand is an sNaN, or if both operands 4206 // are NaN. 4207 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4208 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4209 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4210 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4211 } 4212 case ISD::FMINIMUM: 4213 case ISD::FMAXIMUM: { 4214 // TODO: Does this quiet or return the origina NaN as-is? 4215 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4216 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4217 } 4218 case ISD::EXTRACT_VECTOR_ELT: { 4219 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4220 } 4221 default: 4222 if (Opcode >= ISD::BUILTIN_OP_END || 4223 Opcode == ISD::INTRINSIC_WO_CHAIN || 4224 Opcode == ISD::INTRINSIC_W_CHAIN || 4225 Opcode == ISD::INTRINSIC_VOID) { 4226 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4227 } 4228 4229 return false; 4230 } 4231 } 4232 4233 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4234 assert(Op.getValueType().isFloatingPoint() && 4235 "Floating point type expected"); 4236 4237 // If the value is a constant, we can obviously see if it is a zero or not. 4238 // TODO: Add BuildVector support. 4239 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4240 return !C->isZero(); 4241 return false; 4242 } 4243 4244 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4245 assert(!Op.getValueType().isFloatingPoint() && 4246 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4247 4248 // If the value is a constant, we can obviously see if it is a zero or not. 4249 if (ISD::matchUnaryPredicate( 4250 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4251 return true; 4252 4253 // TODO: Recognize more cases here. 4254 switch (Op.getOpcode()) { 4255 default: break; 4256 case ISD::OR: 4257 if (isKnownNeverZero(Op.getOperand(1)) || 4258 isKnownNeverZero(Op.getOperand(0))) 4259 return true; 4260 break; 4261 } 4262 4263 return false; 4264 } 4265 4266 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4267 // Check the obvious case. 4268 if (A == B) return true; 4269 4270 // For for negative and positive zero. 4271 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4272 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4273 if (CA->isZero() && CB->isZero()) return true; 4274 4275 // Otherwise they may not be equal. 4276 return false; 4277 } 4278 4279 // FIXME: unify with llvm::haveNoCommonBitsSet. 4280 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4281 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4282 assert(A.getValueType() == B.getValueType() && 4283 "Values must have the same type"); 4284 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4285 } 4286 4287 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4288 ArrayRef<SDValue> Ops, 4289 SelectionDAG &DAG) { 4290 int NumOps = Ops.size(); 4291 assert(NumOps != 0 && "Can't build an empty vector!"); 4292 assert(!VT.isScalableVector() && 4293 "BUILD_VECTOR cannot be used with scalable types"); 4294 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4295 "Incorrect element count in BUILD_VECTOR!"); 4296 4297 // BUILD_VECTOR of UNDEFs is UNDEF. 4298 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4299 return DAG.getUNDEF(VT); 4300 4301 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4302 SDValue IdentitySrc; 4303 bool IsIdentity = true; 4304 for (int i = 0; i != NumOps; ++i) { 4305 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4306 Ops[i].getOperand(0).getValueType() != VT || 4307 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4308 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4309 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4310 IsIdentity = false; 4311 break; 4312 } 4313 IdentitySrc = Ops[i].getOperand(0); 4314 } 4315 if (IsIdentity) 4316 return IdentitySrc; 4317 4318 return SDValue(); 4319 } 4320 4321 /// Try to simplify vector concatenation to an input value, undef, or build 4322 /// vector. 4323 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4324 ArrayRef<SDValue> Ops, 4325 SelectionDAG &DAG) { 4326 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4327 assert(llvm::all_of(Ops, 4328 [Ops](SDValue Op) { 4329 return Ops[0].getValueType() == Op.getValueType(); 4330 }) && 4331 "Concatenation of vectors with inconsistent value types!"); 4332 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4333 VT.getVectorElementCount() && 4334 "Incorrect element count in vector concatenation!"); 4335 4336 if (Ops.size() == 1) 4337 return Ops[0]; 4338 4339 // Concat of UNDEFs is UNDEF. 4340 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4341 return DAG.getUNDEF(VT); 4342 4343 // Scan the operands and look for extract operations from a single source 4344 // that correspond to insertion at the same location via this concatenation: 4345 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4346 SDValue IdentitySrc; 4347 bool IsIdentity = true; 4348 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4349 SDValue Op = Ops[i]; 4350 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4351 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4352 Op.getOperand(0).getValueType() != VT || 4353 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4354 Op.getConstantOperandVal(1) != IdentityIndex) { 4355 IsIdentity = false; 4356 break; 4357 } 4358 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4359 "Unexpected identity source vector for concat of extracts"); 4360 IdentitySrc = Op.getOperand(0); 4361 } 4362 if (IsIdentity) { 4363 assert(IdentitySrc && "Failed to set source vector of extracts"); 4364 return IdentitySrc; 4365 } 4366 4367 // The code below this point is only designed to work for fixed width 4368 // vectors, so we bail out for now. 4369 if (VT.isScalableVector()) 4370 return SDValue(); 4371 4372 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4373 // simplified to one big BUILD_VECTOR. 4374 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4375 EVT SVT = VT.getScalarType(); 4376 SmallVector<SDValue, 16> Elts; 4377 for (SDValue Op : Ops) { 4378 EVT OpVT = Op.getValueType(); 4379 if (Op.isUndef()) 4380 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4381 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4382 Elts.append(Op->op_begin(), Op->op_end()); 4383 else 4384 return SDValue(); 4385 } 4386 4387 // BUILD_VECTOR requires all inputs to be of the same type, find the 4388 // maximum type and extend them all. 4389 for (SDValue Op : Elts) 4390 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4391 4392 if (SVT.bitsGT(VT.getScalarType())) 4393 for (SDValue &Op : Elts) 4394 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4395 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4396 : DAG.getSExtOrTrunc(Op, DL, SVT); 4397 4398 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4399 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4400 return V; 4401 } 4402 4403 /// Gets or creates the specified node. 4404 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4405 FoldingSetNodeID ID; 4406 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4407 void *IP = nullptr; 4408 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4409 return SDValue(E, 0); 4410 4411 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4412 getVTList(VT)); 4413 CSEMap.InsertNode(N, IP); 4414 4415 InsertNode(N); 4416 SDValue V = SDValue(N, 0); 4417 NewSDValueDbgMsg(V, "Creating new node: ", this); 4418 return V; 4419 } 4420 4421 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4422 SDValue Operand, const SDNodeFlags Flags) { 4423 // Constant fold unary operations with an integer constant operand. Even 4424 // opaque constant will be folded, because the folding of unary operations 4425 // doesn't create new constants with different values. Nevertheless, the 4426 // opaque flag is preserved during folding to prevent future folding with 4427 // other constants. 4428 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4429 const APInt &Val = C->getAPIntValue(); 4430 switch (Opcode) { 4431 default: break; 4432 case ISD::SIGN_EXTEND: 4433 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4434 C->isTargetOpcode(), C->isOpaque()); 4435 case ISD::TRUNCATE: 4436 if (C->isOpaque()) 4437 break; 4438 LLVM_FALLTHROUGH; 4439 case ISD::ANY_EXTEND: 4440 case ISD::ZERO_EXTEND: 4441 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4442 C->isTargetOpcode(), C->isOpaque()); 4443 case ISD::UINT_TO_FP: 4444 case ISD::SINT_TO_FP: { 4445 APFloat apf(EVTToAPFloatSemantics(VT), 4446 APInt::getNullValue(VT.getSizeInBits())); 4447 (void)apf.convertFromAPInt(Val, 4448 Opcode==ISD::SINT_TO_FP, 4449 APFloat::rmNearestTiesToEven); 4450 return getConstantFP(apf, DL, VT); 4451 } 4452 case ISD::BITCAST: 4453 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4454 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4455 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4456 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4457 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4458 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4459 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4460 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4461 break; 4462 case ISD::ABS: 4463 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4464 C->isOpaque()); 4465 case ISD::BITREVERSE: 4466 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4467 C->isOpaque()); 4468 case ISD::BSWAP: 4469 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4470 C->isOpaque()); 4471 case ISD::CTPOP: 4472 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4473 C->isOpaque()); 4474 case ISD::CTLZ: 4475 case ISD::CTLZ_ZERO_UNDEF: 4476 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4477 C->isOpaque()); 4478 case ISD::CTTZ: 4479 case ISD::CTTZ_ZERO_UNDEF: 4480 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4481 C->isOpaque()); 4482 case ISD::FP16_TO_FP: { 4483 bool Ignored; 4484 APFloat FPV(APFloat::IEEEhalf(), 4485 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4486 4487 // This can return overflow, underflow, or inexact; we don't care. 4488 // FIXME need to be more flexible about rounding mode. 4489 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4490 APFloat::rmNearestTiesToEven, &Ignored); 4491 return getConstantFP(FPV, DL, VT); 4492 } 4493 } 4494 } 4495 4496 // Constant fold unary operations with a floating point constant operand. 4497 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4498 APFloat V = C->getValueAPF(); // make copy 4499 switch (Opcode) { 4500 case ISD::FNEG: 4501 V.changeSign(); 4502 return getConstantFP(V, DL, VT); 4503 case ISD::FABS: 4504 V.clearSign(); 4505 return getConstantFP(V, DL, VT); 4506 case ISD::FCEIL: { 4507 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4508 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4509 return getConstantFP(V, DL, VT); 4510 break; 4511 } 4512 case ISD::FTRUNC: { 4513 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4514 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4515 return getConstantFP(V, DL, VT); 4516 break; 4517 } 4518 case ISD::FFLOOR: { 4519 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4520 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4521 return getConstantFP(V, DL, VT); 4522 break; 4523 } 4524 case ISD::FP_EXTEND: { 4525 bool ignored; 4526 // This can return overflow, underflow, or inexact; we don't care. 4527 // FIXME need to be more flexible about rounding mode. 4528 (void)V.convert(EVTToAPFloatSemantics(VT), 4529 APFloat::rmNearestTiesToEven, &ignored); 4530 return getConstantFP(V, DL, VT); 4531 } 4532 case ISD::FP_TO_SINT: 4533 case ISD::FP_TO_UINT: { 4534 bool ignored; 4535 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4536 // FIXME need to be more flexible about rounding mode. 4537 APFloat::opStatus s = 4538 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4539 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4540 break; 4541 return getConstant(IntVal, DL, VT); 4542 } 4543 case ISD::BITCAST: 4544 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4545 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4546 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4547 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4548 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4549 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4550 break; 4551 case ISD::FP_TO_FP16: { 4552 bool Ignored; 4553 // This can return overflow, underflow, or inexact; we don't care. 4554 // FIXME need to be more flexible about rounding mode. 4555 (void)V.convert(APFloat::IEEEhalf(), 4556 APFloat::rmNearestTiesToEven, &Ignored); 4557 return getConstant(V.bitcastToAPInt(), DL, VT); 4558 } 4559 } 4560 } 4561 4562 // Constant fold unary operations with a vector integer or float operand. 4563 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4564 if (BV->isConstant()) { 4565 switch (Opcode) { 4566 default: 4567 // FIXME: Entirely reasonable to perform folding of other unary 4568 // operations here as the need arises. 4569 break; 4570 case ISD::FNEG: 4571 case ISD::FABS: 4572 case ISD::FCEIL: 4573 case ISD::FTRUNC: 4574 case ISD::FFLOOR: 4575 case ISD::FP_EXTEND: 4576 case ISD::FP_TO_SINT: 4577 case ISD::FP_TO_UINT: 4578 case ISD::TRUNCATE: 4579 case ISD::ANY_EXTEND: 4580 case ISD::ZERO_EXTEND: 4581 case ISD::SIGN_EXTEND: 4582 case ISD::UINT_TO_FP: 4583 case ISD::SINT_TO_FP: 4584 case ISD::ABS: 4585 case ISD::BITREVERSE: 4586 case ISD::BSWAP: 4587 case ISD::CTLZ: 4588 case ISD::CTLZ_ZERO_UNDEF: 4589 case ISD::CTTZ: 4590 case ISD::CTTZ_ZERO_UNDEF: 4591 case ISD::CTPOP: { 4592 SDValue Ops = { Operand }; 4593 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4594 return Fold; 4595 } 4596 } 4597 } 4598 } 4599 4600 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4601 switch (Opcode) { 4602 case ISD::FREEZE: 4603 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4604 break; 4605 case ISD::TokenFactor: 4606 case ISD::MERGE_VALUES: 4607 case ISD::CONCAT_VECTORS: 4608 return Operand; // Factor, merge or concat of one node? No need. 4609 case ISD::BUILD_VECTOR: { 4610 // Attempt to simplify BUILD_VECTOR. 4611 SDValue Ops[] = {Operand}; 4612 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4613 return V; 4614 break; 4615 } 4616 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4617 case ISD::FP_EXTEND: 4618 assert(VT.isFloatingPoint() && 4619 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4620 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4621 assert((!VT.isVector() || 4622 VT.getVectorNumElements() == 4623 Operand.getValueType().getVectorNumElements()) && 4624 "Vector element count mismatch!"); 4625 assert(Operand.getValueType().bitsLT(VT) && 4626 "Invalid fpext node, dst < src!"); 4627 if (Operand.isUndef()) 4628 return getUNDEF(VT); 4629 break; 4630 case ISD::FP_TO_SINT: 4631 case ISD::FP_TO_UINT: 4632 if (Operand.isUndef()) 4633 return getUNDEF(VT); 4634 break; 4635 case ISD::SINT_TO_FP: 4636 case ISD::UINT_TO_FP: 4637 // [us]itofp(undef) = 0, because the result value is bounded. 4638 if (Operand.isUndef()) 4639 return getConstantFP(0.0, DL, VT); 4640 break; 4641 case ISD::SIGN_EXTEND: 4642 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4643 "Invalid SIGN_EXTEND!"); 4644 assert(VT.isVector() == Operand.getValueType().isVector() && 4645 "SIGN_EXTEND result type type should be vector iff the operand " 4646 "type is vector!"); 4647 if (Operand.getValueType() == VT) return Operand; // noop extension 4648 assert((!VT.isVector() || 4649 VT.getVectorElementCount() == 4650 Operand.getValueType().getVectorElementCount()) && 4651 "Vector element count mismatch!"); 4652 assert(Operand.getValueType().bitsLT(VT) && 4653 "Invalid sext node, dst < src!"); 4654 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4655 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4656 else if (OpOpcode == ISD::UNDEF) 4657 // sext(undef) = 0, because the top bits will all be the same. 4658 return getConstant(0, DL, VT); 4659 break; 4660 case ISD::ZERO_EXTEND: 4661 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4662 "Invalid ZERO_EXTEND!"); 4663 assert(VT.isVector() == Operand.getValueType().isVector() && 4664 "ZERO_EXTEND result type type should be vector iff the operand " 4665 "type is vector!"); 4666 if (Operand.getValueType() == VT) return Operand; // noop extension 4667 assert((!VT.isVector() || 4668 VT.getVectorElementCount() == 4669 Operand.getValueType().getVectorElementCount()) && 4670 "Vector element count mismatch!"); 4671 assert(Operand.getValueType().bitsLT(VT) && 4672 "Invalid zext node, dst < src!"); 4673 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4674 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4675 else if (OpOpcode == ISD::UNDEF) 4676 // zext(undef) = 0, because the top bits will be zero. 4677 return getConstant(0, DL, VT); 4678 break; 4679 case ISD::ANY_EXTEND: 4680 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4681 "Invalid ANY_EXTEND!"); 4682 assert(VT.isVector() == Operand.getValueType().isVector() && 4683 "ANY_EXTEND result type type should be vector iff the operand " 4684 "type is vector!"); 4685 if (Operand.getValueType() == VT) return Operand; // noop extension 4686 assert((!VT.isVector() || 4687 VT.getVectorElementCount() == 4688 Operand.getValueType().getVectorElementCount()) && 4689 "Vector element count mismatch!"); 4690 assert(Operand.getValueType().bitsLT(VT) && 4691 "Invalid anyext node, dst < src!"); 4692 4693 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4694 OpOpcode == ISD::ANY_EXTEND) 4695 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4696 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4697 else if (OpOpcode == ISD::UNDEF) 4698 return getUNDEF(VT); 4699 4700 // (ext (trunc x)) -> x 4701 if (OpOpcode == ISD::TRUNCATE) { 4702 SDValue OpOp = Operand.getOperand(0); 4703 if (OpOp.getValueType() == VT) { 4704 transferDbgValues(Operand, OpOp); 4705 return OpOp; 4706 } 4707 } 4708 break; 4709 case ISD::TRUNCATE: 4710 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4711 "Invalid TRUNCATE!"); 4712 assert(VT.isVector() == Operand.getValueType().isVector() && 4713 "TRUNCATE result type type should be vector iff the operand " 4714 "type is vector!"); 4715 if (Operand.getValueType() == VT) return Operand; // noop truncate 4716 assert((!VT.isVector() || 4717 VT.getVectorElementCount() == 4718 Operand.getValueType().getVectorElementCount()) && 4719 "Vector element count mismatch!"); 4720 assert(Operand.getValueType().bitsGT(VT) && 4721 "Invalid truncate node, src < dst!"); 4722 if (OpOpcode == ISD::TRUNCATE) 4723 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4724 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4725 OpOpcode == ISD::ANY_EXTEND) { 4726 // If the source is smaller than the dest, we still need an extend. 4727 if (Operand.getOperand(0).getValueType().getScalarType() 4728 .bitsLT(VT.getScalarType())) 4729 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4730 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4731 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4732 return Operand.getOperand(0); 4733 } 4734 if (OpOpcode == ISD::UNDEF) 4735 return getUNDEF(VT); 4736 break; 4737 case ISD::ANY_EXTEND_VECTOR_INREG: 4738 case ISD::ZERO_EXTEND_VECTOR_INREG: 4739 case ISD::SIGN_EXTEND_VECTOR_INREG: 4740 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4741 assert(Operand.getValueType().bitsLE(VT) && 4742 "The input must be the same size or smaller than the result."); 4743 assert(VT.getVectorNumElements() < 4744 Operand.getValueType().getVectorNumElements() && 4745 "The destination vector type must have fewer lanes than the input."); 4746 break; 4747 case ISD::ABS: 4748 assert(VT.isInteger() && VT == Operand.getValueType() && 4749 "Invalid ABS!"); 4750 if (OpOpcode == ISD::UNDEF) 4751 return getUNDEF(VT); 4752 break; 4753 case ISD::BSWAP: 4754 assert(VT.isInteger() && VT == Operand.getValueType() && 4755 "Invalid BSWAP!"); 4756 assert((VT.getScalarSizeInBits() % 16 == 0) && 4757 "BSWAP types must be a multiple of 16 bits!"); 4758 if (OpOpcode == ISD::UNDEF) 4759 return getUNDEF(VT); 4760 break; 4761 case ISD::BITREVERSE: 4762 assert(VT.isInteger() && VT == Operand.getValueType() && 4763 "Invalid BITREVERSE!"); 4764 if (OpOpcode == ISD::UNDEF) 4765 return getUNDEF(VT); 4766 break; 4767 case ISD::BITCAST: 4768 // Basic sanity checking. 4769 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4770 "Cannot BITCAST between types of different sizes!"); 4771 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4772 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4773 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4774 if (OpOpcode == ISD::UNDEF) 4775 return getUNDEF(VT); 4776 break; 4777 case ISD::SCALAR_TO_VECTOR: 4778 assert(VT.isVector() && !Operand.getValueType().isVector() && 4779 (VT.getVectorElementType() == Operand.getValueType() || 4780 (VT.getVectorElementType().isInteger() && 4781 Operand.getValueType().isInteger() && 4782 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4783 "Illegal SCALAR_TO_VECTOR node!"); 4784 if (OpOpcode == ISD::UNDEF) 4785 return getUNDEF(VT); 4786 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4787 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4788 isa<ConstantSDNode>(Operand.getOperand(1)) && 4789 Operand.getConstantOperandVal(1) == 0 && 4790 Operand.getOperand(0).getValueType() == VT) 4791 return Operand.getOperand(0); 4792 break; 4793 case ISD::FNEG: 4794 // Negation of an unknown bag of bits is still completely undefined. 4795 if (OpOpcode == ISD::UNDEF) 4796 return getUNDEF(VT); 4797 4798 if (OpOpcode == ISD::FNEG) // --X -> X 4799 return Operand.getOperand(0); 4800 break; 4801 case ISD::FABS: 4802 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4803 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4804 break; 4805 case ISD::VSCALE: 4806 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4807 break; 4808 } 4809 4810 SDNode *N; 4811 SDVTList VTs = getVTList(VT); 4812 SDValue Ops[] = {Operand}; 4813 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4814 FoldingSetNodeID ID; 4815 AddNodeIDNode(ID, Opcode, VTs, Ops); 4816 void *IP = nullptr; 4817 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4818 E->intersectFlagsWith(Flags); 4819 return SDValue(E, 0); 4820 } 4821 4822 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4823 N->setFlags(Flags); 4824 createOperands(N, Ops); 4825 CSEMap.InsertNode(N, IP); 4826 } else { 4827 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4828 createOperands(N, Ops); 4829 } 4830 4831 InsertNode(N); 4832 SDValue V = SDValue(N, 0); 4833 NewSDValueDbgMsg(V, "Creating new node: ", this); 4834 return V; 4835 } 4836 4837 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4838 const APInt &C2) { 4839 switch (Opcode) { 4840 case ISD::ADD: return C1 + C2; 4841 case ISD::SUB: return C1 - C2; 4842 case ISD::MUL: return C1 * C2; 4843 case ISD::AND: return C1 & C2; 4844 case ISD::OR: return C1 | C2; 4845 case ISD::XOR: return C1 ^ C2; 4846 case ISD::SHL: return C1 << C2; 4847 case ISD::SRL: return C1.lshr(C2); 4848 case ISD::SRA: return C1.ashr(C2); 4849 case ISD::ROTL: return C1.rotl(C2); 4850 case ISD::ROTR: return C1.rotr(C2); 4851 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4852 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4853 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4854 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4855 case ISD::SADDSAT: return C1.sadd_sat(C2); 4856 case ISD::UADDSAT: return C1.uadd_sat(C2); 4857 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4858 case ISD::USUBSAT: return C1.usub_sat(C2); 4859 case ISD::UDIV: 4860 if (!C2.getBoolValue()) 4861 break; 4862 return C1.udiv(C2); 4863 case ISD::UREM: 4864 if (!C2.getBoolValue()) 4865 break; 4866 return C1.urem(C2); 4867 case ISD::SDIV: 4868 if (!C2.getBoolValue()) 4869 break; 4870 return C1.sdiv(C2); 4871 case ISD::SREM: 4872 if (!C2.getBoolValue()) 4873 break; 4874 return C1.srem(C2); 4875 } 4876 return llvm::None; 4877 } 4878 4879 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4880 const GlobalAddressSDNode *GA, 4881 const SDNode *N2) { 4882 if (GA->getOpcode() != ISD::GlobalAddress) 4883 return SDValue(); 4884 if (!TLI->isOffsetFoldingLegal(GA)) 4885 return SDValue(); 4886 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4887 if (!C2) 4888 return SDValue(); 4889 int64_t Offset = C2->getSExtValue(); 4890 switch (Opcode) { 4891 case ISD::ADD: break; 4892 case ISD::SUB: Offset = -uint64_t(Offset); break; 4893 default: return SDValue(); 4894 } 4895 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4896 GA->getOffset() + uint64_t(Offset)); 4897 } 4898 4899 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4900 switch (Opcode) { 4901 case ISD::SDIV: 4902 case ISD::UDIV: 4903 case ISD::SREM: 4904 case ISD::UREM: { 4905 // If a divisor is zero/undef or any element of a divisor vector is 4906 // zero/undef, the whole op is undef. 4907 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4908 SDValue Divisor = Ops[1]; 4909 if (Divisor.isUndef() || isNullConstant(Divisor)) 4910 return true; 4911 4912 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4913 llvm::any_of(Divisor->op_values(), 4914 [](SDValue V) { return V.isUndef() || 4915 isNullConstant(V); }); 4916 // TODO: Handle signed overflow. 4917 } 4918 // TODO: Handle oversized shifts. 4919 default: 4920 return false; 4921 } 4922 } 4923 4924 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4925 EVT VT, ArrayRef<SDValue> Ops) { 4926 // If the opcode is a target-specific ISD node, there's nothing we can 4927 // do here and the operand rules may not line up with the below, so 4928 // bail early. 4929 if (Opcode >= ISD::BUILTIN_OP_END) 4930 return SDValue(); 4931 4932 // For now, the array Ops should only contain two values. 4933 // This enforcement will be removed once this function is merged with 4934 // FoldConstantVectorArithmetic 4935 if (Ops.size() != 2) 4936 return SDValue(); 4937 4938 if (isUndef(Opcode, Ops)) 4939 return getUNDEF(VT); 4940 4941 SDNode *N1 = Ops[0].getNode(); 4942 SDNode *N2 = Ops[1].getNode(); 4943 4944 // Handle the case of two scalars. 4945 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4946 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4947 if (C1->isOpaque() || C2->isOpaque()) 4948 return SDValue(); 4949 4950 Optional<APInt> FoldAttempt = 4951 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4952 if (!FoldAttempt) 4953 return SDValue(); 4954 4955 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4956 assert((!Folded || !VT.isVector()) && 4957 "Can't fold vectors ops with scalar operands"); 4958 return Folded; 4959 } 4960 } 4961 4962 // fold (add Sym, c) -> Sym+c 4963 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4964 return FoldSymbolOffset(Opcode, VT, GA, N2); 4965 if (TLI->isCommutativeBinOp(Opcode)) 4966 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4967 return FoldSymbolOffset(Opcode, VT, GA, N1); 4968 4969 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4970 // vector width, however we should be able to do constant folds involving 4971 // splat vector nodes too. 4972 if (VT.isScalableVector()) 4973 return SDValue(); 4974 4975 // For fixed width vectors, extract each constant element and fold them 4976 // individually. Either input may be an undef value. 4977 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4978 if (!BV1 && !N1->isUndef()) 4979 return SDValue(); 4980 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4981 if (!BV2 && !N2->isUndef()) 4982 return SDValue(); 4983 // If both operands are undef, that's handled the same way as scalars. 4984 if (!BV1 && !BV2) 4985 return SDValue(); 4986 4987 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4988 "Vector binop with different number of elements in operands?"); 4989 4990 EVT SVT = VT.getScalarType(); 4991 EVT LegalSVT = SVT; 4992 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4993 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4994 if (LegalSVT.bitsLT(SVT)) 4995 return SDValue(); 4996 } 4997 SmallVector<SDValue, 4> Outputs; 4998 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4999 for (unsigned I = 0; I != NumOps; ++I) { 5000 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5001 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5002 if (SVT.isInteger()) { 5003 if (V1->getValueType(0).bitsGT(SVT)) 5004 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5005 if (V2->getValueType(0).bitsGT(SVT)) 5006 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5007 } 5008 5009 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5010 return SDValue(); 5011 5012 // Fold one vector element. 5013 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5014 if (LegalSVT != SVT) 5015 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5016 5017 // Scalar folding only succeeded if the result is a constant or UNDEF. 5018 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5019 ScalarResult.getOpcode() != ISD::ConstantFP) 5020 return SDValue(); 5021 Outputs.push_back(ScalarResult); 5022 } 5023 5024 assert(VT.getVectorNumElements() == Outputs.size() && 5025 "Vector size mismatch!"); 5026 5027 // We may have a vector type but a scalar result. Create a splat. 5028 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5029 5030 // Build a big vector out of the scalar elements we generated. 5031 return getBuildVector(VT, SDLoc(), Outputs); 5032 } 5033 5034 // TODO: Merge with FoldConstantArithmetic 5035 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5036 const SDLoc &DL, EVT VT, 5037 ArrayRef<SDValue> Ops, 5038 const SDNodeFlags Flags) { 5039 // If the opcode is a target-specific ISD node, there's nothing we can 5040 // do here and the operand rules may not line up with the below, so 5041 // bail early. 5042 if (Opcode >= ISD::BUILTIN_OP_END) 5043 return SDValue(); 5044 5045 if (isUndef(Opcode, Ops)) 5046 return getUNDEF(VT); 5047 5048 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5049 if (!VT.isVector()) 5050 return SDValue(); 5051 5052 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5053 // vector width, however we should be able to do constant folds involving 5054 // splat vector nodes too. 5055 if (VT.isScalableVector()) 5056 return SDValue(); 5057 5058 // From this point onwards all vectors are assumed to be fixed width. 5059 unsigned NumElts = VT.getVectorNumElements(); 5060 5061 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5062 return !Op.getValueType().isVector() || 5063 Op.getValueType().getVectorNumElements() == NumElts; 5064 }; 5065 5066 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5067 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5068 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5069 (BV && BV->isConstant()); 5070 }; 5071 5072 // All operands must be vector types with the same number of elements as 5073 // the result type and must be either UNDEF or a build vector of constant 5074 // or UNDEF scalars. 5075 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5076 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5077 return SDValue(); 5078 5079 // If we are comparing vectors, then the result needs to be a i1 boolean 5080 // that is then sign-extended back to the legal result type. 5081 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5082 5083 // Find legal integer scalar type for constant promotion and 5084 // ensure that its scalar size is at least as large as source. 5085 EVT LegalSVT = VT.getScalarType(); 5086 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5087 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5088 if (LegalSVT.bitsLT(VT.getScalarType())) 5089 return SDValue(); 5090 } 5091 5092 // Constant fold each scalar lane separately. 5093 SmallVector<SDValue, 4> ScalarResults; 5094 for (unsigned i = 0; i != NumElts; i++) { 5095 SmallVector<SDValue, 4> ScalarOps; 5096 for (SDValue Op : Ops) { 5097 EVT InSVT = Op.getValueType().getScalarType(); 5098 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5099 if (!InBV) { 5100 // We've checked that this is UNDEF or a constant of some kind. 5101 if (Op.isUndef()) 5102 ScalarOps.push_back(getUNDEF(InSVT)); 5103 else 5104 ScalarOps.push_back(Op); 5105 continue; 5106 } 5107 5108 SDValue ScalarOp = InBV->getOperand(i); 5109 EVT ScalarVT = ScalarOp.getValueType(); 5110 5111 // Build vector (integer) scalar operands may need implicit 5112 // truncation - do this before constant folding. 5113 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5114 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5115 5116 ScalarOps.push_back(ScalarOp); 5117 } 5118 5119 // Constant fold the scalar operands. 5120 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5121 5122 // Legalize the (integer) scalar constant if necessary. 5123 if (LegalSVT != SVT) 5124 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5125 5126 // Scalar folding only succeeded if the result is a constant or UNDEF. 5127 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5128 ScalarResult.getOpcode() != ISD::ConstantFP) 5129 return SDValue(); 5130 ScalarResults.push_back(ScalarResult); 5131 } 5132 5133 SDValue V = getBuildVector(VT, DL, ScalarResults); 5134 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5135 return V; 5136 } 5137 5138 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5139 EVT VT, SDValue N1, SDValue N2) { 5140 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5141 // should. That will require dealing with a potentially non-default 5142 // rounding mode, checking the "opStatus" return value from the APFloat 5143 // math calculations, and possibly other variations. 5144 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5145 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5146 if (N1CFP && N2CFP) { 5147 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5148 switch (Opcode) { 5149 case ISD::FADD: 5150 C1.add(C2, APFloat::rmNearestTiesToEven); 5151 return getConstantFP(C1, DL, VT); 5152 case ISD::FSUB: 5153 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5154 return getConstantFP(C1, DL, VT); 5155 case ISD::FMUL: 5156 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5157 return getConstantFP(C1, DL, VT); 5158 case ISD::FDIV: 5159 C1.divide(C2, APFloat::rmNearestTiesToEven); 5160 return getConstantFP(C1, DL, VT); 5161 case ISD::FREM: 5162 C1.mod(C2); 5163 return getConstantFP(C1, DL, VT); 5164 case ISD::FCOPYSIGN: 5165 C1.copySign(C2); 5166 return getConstantFP(C1, DL, VT); 5167 default: break; 5168 } 5169 } 5170 if (N1CFP && Opcode == ISD::FP_ROUND) { 5171 APFloat C1 = N1CFP->getValueAPF(); // make copy 5172 bool Unused; 5173 // This can return overflow, underflow, or inexact; we don't care. 5174 // FIXME need to be more flexible about rounding mode. 5175 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5176 &Unused); 5177 return getConstantFP(C1, DL, VT); 5178 } 5179 5180 switch (Opcode) { 5181 case ISD::FSUB: 5182 // -0.0 - undef --> undef (consistent with "fneg undef") 5183 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5184 return getUNDEF(VT); 5185 LLVM_FALLTHROUGH; 5186 5187 case ISD::FADD: 5188 case ISD::FMUL: 5189 case ISD::FDIV: 5190 case ISD::FREM: 5191 // If both operands are undef, the result is undef. If 1 operand is undef, 5192 // the result is NaN. This should match the behavior of the IR optimizer. 5193 if (N1.isUndef() && N2.isUndef()) 5194 return getUNDEF(VT); 5195 if (N1.isUndef() || N2.isUndef()) 5196 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5197 } 5198 return SDValue(); 5199 } 5200 5201 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5202 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5203 5204 // There's no need to assert on a byte-aligned pointer. All pointers are at 5205 // least byte aligned. 5206 if (A == Align(1)) 5207 return Val; 5208 5209 FoldingSetNodeID ID; 5210 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5211 ID.AddInteger(A.value()); 5212 5213 void *IP = nullptr; 5214 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5215 return SDValue(E, 0); 5216 5217 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5218 Val.getValueType(), A); 5219 createOperands(N, {Val}); 5220 5221 CSEMap.InsertNode(N, IP); 5222 InsertNode(N); 5223 5224 SDValue V(N, 0); 5225 NewSDValueDbgMsg(V, "Creating new node: ", this); 5226 return V; 5227 } 5228 5229 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5230 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5231 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5232 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5233 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5234 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5235 5236 // Canonicalize constant to RHS if commutative. 5237 if (TLI->isCommutativeBinOp(Opcode)) { 5238 if (N1C && !N2C) { 5239 std::swap(N1C, N2C); 5240 std::swap(N1, N2); 5241 } else if (N1CFP && !N2CFP) { 5242 std::swap(N1CFP, N2CFP); 5243 std::swap(N1, N2); 5244 } 5245 } 5246 5247 switch (Opcode) { 5248 default: break; 5249 case ISD::TokenFactor: 5250 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5251 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5252 // Fold trivial token factors. 5253 if (N1.getOpcode() == ISD::EntryToken) return N2; 5254 if (N2.getOpcode() == ISD::EntryToken) return N1; 5255 if (N1 == N2) return N1; 5256 break; 5257 case ISD::BUILD_VECTOR: { 5258 // Attempt to simplify BUILD_VECTOR. 5259 SDValue Ops[] = {N1, N2}; 5260 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5261 return V; 5262 break; 5263 } 5264 case ISD::CONCAT_VECTORS: { 5265 SDValue Ops[] = {N1, N2}; 5266 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5267 return V; 5268 break; 5269 } 5270 case ISD::AND: 5271 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5272 assert(N1.getValueType() == N2.getValueType() && 5273 N1.getValueType() == VT && "Binary operator types must match!"); 5274 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5275 // worth handling here. 5276 if (N2C && N2C->isNullValue()) 5277 return N2; 5278 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5279 return N1; 5280 break; 5281 case ISD::OR: 5282 case ISD::XOR: 5283 case ISD::ADD: 5284 case ISD::SUB: 5285 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5286 assert(N1.getValueType() == N2.getValueType() && 5287 N1.getValueType() == VT && "Binary operator types must match!"); 5288 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5289 // it's worth handling here. 5290 if (N2C && N2C->isNullValue()) 5291 return N1; 5292 break; 5293 case ISD::MUL: 5294 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5295 assert(N1.getValueType() == N2.getValueType() && 5296 N1.getValueType() == VT && "Binary operator types must match!"); 5297 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5298 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5299 APInt N2CImm = N2C->getAPIntValue(); 5300 return getVScale(DL, VT, MulImm * N2CImm); 5301 } 5302 break; 5303 case ISD::UDIV: 5304 case ISD::UREM: 5305 case ISD::MULHU: 5306 case ISD::MULHS: 5307 case ISD::SDIV: 5308 case ISD::SREM: 5309 case ISD::SMIN: 5310 case ISD::SMAX: 5311 case ISD::UMIN: 5312 case ISD::UMAX: 5313 case ISD::SADDSAT: 5314 case ISD::SSUBSAT: 5315 case ISD::UADDSAT: 5316 case ISD::USUBSAT: 5317 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5318 assert(N1.getValueType() == N2.getValueType() && 5319 N1.getValueType() == VT && "Binary operator types must match!"); 5320 break; 5321 case ISD::FADD: 5322 case ISD::FSUB: 5323 case ISD::FMUL: 5324 case ISD::FDIV: 5325 case ISD::FREM: 5326 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5327 assert(N1.getValueType() == N2.getValueType() && 5328 N1.getValueType() == VT && "Binary operator types must match!"); 5329 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5330 return V; 5331 break; 5332 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5333 assert(N1.getValueType() == VT && 5334 N1.getValueType().isFloatingPoint() && 5335 N2.getValueType().isFloatingPoint() && 5336 "Invalid FCOPYSIGN!"); 5337 break; 5338 case ISD::SHL: 5339 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5340 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5341 APInt ShiftImm = N2C->getAPIntValue(); 5342 return getVScale(DL, VT, MulImm << ShiftImm); 5343 } 5344 LLVM_FALLTHROUGH; 5345 case ISD::SRA: 5346 case ISD::SRL: 5347 if (SDValue V = simplifyShift(N1, N2)) 5348 return V; 5349 LLVM_FALLTHROUGH; 5350 case ISD::ROTL: 5351 case ISD::ROTR: 5352 assert(VT == N1.getValueType() && 5353 "Shift operators return type must be the same as their first arg"); 5354 assert(VT.isInteger() && N2.getValueType().isInteger() && 5355 "Shifts only work on integers"); 5356 assert((!VT.isVector() || VT == N2.getValueType()) && 5357 "Vector shift amounts must be in the same as their first arg"); 5358 // Verify that the shift amount VT is big enough to hold valid shift 5359 // amounts. This catches things like trying to shift an i1024 value by an 5360 // i8, which is easy to fall into in generic code that uses 5361 // TLI.getShiftAmount(). 5362 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5363 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5364 "Invalid use of small shift amount with oversized value!"); 5365 5366 // Always fold shifts of i1 values so the code generator doesn't need to 5367 // handle them. Since we know the size of the shift has to be less than the 5368 // size of the value, the shift/rotate count is guaranteed to be zero. 5369 if (VT == MVT::i1) 5370 return N1; 5371 if (N2C && N2C->isNullValue()) 5372 return N1; 5373 break; 5374 case ISD::FP_ROUND: 5375 assert(VT.isFloatingPoint() && 5376 N1.getValueType().isFloatingPoint() && 5377 VT.bitsLE(N1.getValueType()) && 5378 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5379 "Invalid FP_ROUND!"); 5380 if (N1.getValueType() == VT) return N1; // noop conversion. 5381 break; 5382 case ISD::AssertSext: 5383 case ISD::AssertZext: { 5384 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5385 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5386 assert(VT.isInteger() && EVT.isInteger() && 5387 "Cannot *_EXTEND_INREG FP types"); 5388 assert(!EVT.isVector() && 5389 "AssertSExt/AssertZExt type should be the vector element type " 5390 "rather than the vector type!"); 5391 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5392 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5393 break; 5394 } 5395 case ISD::SIGN_EXTEND_INREG: { 5396 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5397 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5398 assert(VT.isInteger() && EVT.isInteger() && 5399 "Cannot *_EXTEND_INREG FP types"); 5400 assert(EVT.isVector() == VT.isVector() && 5401 "SIGN_EXTEND_INREG type should be vector iff the operand " 5402 "type is vector!"); 5403 assert((!EVT.isVector() || 5404 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5405 "Vector element counts must match in SIGN_EXTEND_INREG"); 5406 assert(EVT.bitsLE(VT) && "Not extending!"); 5407 if (EVT == VT) return N1; // Not actually extending 5408 5409 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5410 unsigned FromBits = EVT.getScalarSizeInBits(); 5411 Val <<= Val.getBitWidth() - FromBits; 5412 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5413 return getConstant(Val, DL, ConstantVT); 5414 }; 5415 5416 if (N1C) { 5417 const APInt &Val = N1C->getAPIntValue(); 5418 return SignExtendInReg(Val, VT); 5419 } 5420 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5421 SmallVector<SDValue, 8> Ops; 5422 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5423 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5424 SDValue Op = N1.getOperand(i); 5425 if (Op.isUndef()) { 5426 Ops.push_back(getUNDEF(OpVT)); 5427 continue; 5428 } 5429 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5430 APInt Val = C->getAPIntValue(); 5431 Ops.push_back(SignExtendInReg(Val, OpVT)); 5432 } 5433 return getBuildVector(VT, DL, Ops); 5434 } 5435 break; 5436 } 5437 case ISD::EXTRACT_VECTOR_ELT: 5438 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5439 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5440 element type of the vector."); 5441 5442 // Extract from an undefined value or using an undefined index is undefined. 5443 if (N1.isUndef() || N2.isUndef()) 5444 return getUNDEF(VT); 5445 5446 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5447 // vectors. For scalable vectors we will provide appropriate support for 5448 // dealing with arbitrary indices. 5449 if (N2C && N1.getValueType().isFixedLengthVector() && 5450 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5451 return getUNDEF(VT); 5452 5453 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5454 // expanding copies of large vectors from registers. This only works for 5455 // fixed length vectors, since we need to know the exact number of 5456 // elements. 5457 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5458 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5459 unsigned Factor = 5460 N1.getOperand(0).getValueType().getVectorNumElements(); 5461 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5462 N1.getOperand(N2C->getZExtValue() / Factor), 5463 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5464 } 5465 5466 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5467 // lowering is expanding large vector constants. 5468 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5469 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5470 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5471 N1.getValueType().isFixedLengthVector()) && 5472 "BUILD_VECTOR used for scalable vectors"); 5473 unsigned Index = 5474 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5475 SDValue Elt = N1.getOperand(Index); 5476 5477 if (VT != Elt.getValueType()) 5478 // If the vector element type is not legal, the BUILD_VECTOR operands 5479 // are promoted and implicitly truncated, and the result implicitly 5480 // extended. Make that explicit here. 5481 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5482 5483 return Elt; 5484 } 5485 5486 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5487 // operations are lowered to scalars. 5488 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5489 // If the indices are the same, return the inserted element else 5490 // if the indices are known different, extract the element from 5491 // the original vector. 5492 SDValue N1Op2 = N1.getOperand(2); 5493 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5494 5495 if (N1Op2C && N2C) { 5496 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5497 if (VT == N1.getOperand(1).getValueType()) 5498 return N1.getOperand(1); 5499 else 5500 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5501 } 5502 5503 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5504 } 5505 } 5506 5507 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5508 // when vector types are scalarized and v1iX is legal. 5509 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5510 // Here we are completely ignoring the extract element index (N2), 5511 // which is fine for fixed width vectors, since any index other than 0 5512 // is undefined anyway. However, this cannot be ignored for scalable 5513 // vectors - in theory we could support this, but we don't want to do this 5514 // without a profitability check. 5515 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5516 N1.getValueType().isFixedLengthVector() && 5517 N1.getValueType().getVectorNumElements() == 1) { 5518 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5519 N1.getOperand(1)); 5520 } 5521 break; 5522 case ISD::EXTRACT_ELEMENT: 5523 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5524 assert(!N1.getValueType().isVector() && !VT.isVector() && 5525 (N1.getValueType().isInteger() == VT.isInteger()) && 5526 N1.getValueType() != VT && 5527 "Wrong types for EXTRACT_ELEMENT!"); 5528 5529 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5530 // 64-bit integers into 32-bit parts. Instead of building the extract of 5531 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5532 if (N1.getOpcode() == ISD::BUILD_PAIR) 5533 return N1.getOperand(N2C->getZExtValue()); 5534 5535 // EXTRACT_ELEMENT of a constant int is also very common. 5536 if (N1C) { 5537 unsigned ElementSize = VT.getSizeInBits(); 5538 unsigned Shift = ElementSize * N2C->getZExtValue(); 5539 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5540 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5541 } 5542 break; 5543 case ISD::EXTRACT_SUBVECTOR: 5544 EVT N1VT = N1.getValueType(); 5545 assert(VT.isVector() && N1VT.isVector() && 5546 "Extract subvector VTs must be vectors!"); 5547 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5548 "Extract subvector VTs must have the same element type!"); 5549 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5550 "Cannot extract a scalable vector from a fixed length vector!"); 5551 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5552 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5553 "Extract subvector must be from larger vector to smaller vector!"); 5554 assert(N2C && "Extract subvector index must be a constant"); 5555 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5556 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5557 N1VT.getVectorMinNumElements()) && 5558 "Extract subvector overflow!"); 5559 5560 // Trivial extraction. 5561 if (VT == N1VT) 5562 return N1; 5563 5564 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5565 if (N1.isUndef()) 5566 return getUNDEF(VT); 5567 5568 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5569 // the concat have the same type as the extract. 5570 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5571 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5572 unsigned Factor = VT.getVectorMinNumElements(); 5573 return N1.getOperand(N2C->getZExtValue() / Factor); 5574 } 5575 5576 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5577 // during shuffle legalization. 5578 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5579 VT == N1.getOperand(1).getValueType()) 5580 return N1.getOperand(1); 5581 break; 5582 } 5583 5584 // Perform trivial constant folding. 5585 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5586 return SV; 5587 5588 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5589 return V; 5590 5591 // Canonicalize an UNDEF to the RHS, even over a constant. 5592 if (N1.isUndef()) { 5593 if (TLI->isCommutativeBinOp(Opcode)) { 5594 std::swap(N1, N2); 5595 } else { 5596 switch (Opcode) { 5597 case ISD::SIGN_EXTEND_INREG: 5598 case ISD::SUB: 5599 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5600 case ISD::UDIV: 5601 case ISD::SDIV: 5602 case ISD::UREM: 5603 case ISD::SREM: 5604 case ISD::SSUBSAT: 5605 case ISD::USUBSAT: 5606 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5607 } 5608 } 5609 } 5610 5611 // Fold a bunch of operators when the RHS is undef. 5612 if (N2.isUndef()) { 5613 switch (Opcode) { 5614 case ISD::XOR: 5615 if (N1.isUndef()) 5616 // Handle undef ^ undef -> 0 special case. This is a common 5617 // idiom (misuse). 5618 return getConstant(0, DL, VT); 5619 LLVM_FALLTHROUGH; 5620 case ISD::ADD: 5621 case ISD::SUB: 5622 case ISD::UDIV: 5623 case ISD::SDIV: 5624 case ISD::UREM: 5625 case ISD::SREM: 5626 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5627 case ISD::MUL: 5628 case ISD::AND: 5629 case ISD::SSUBSAT: 5630 case ISD::USUBSAT: 5631 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5632 case ISD::OR: 5633 case ISD::SADDSAT: 5634 case ISD::UADDSAT: 5635 return getAllOnesConstant(DL, VT); 5636 } 5637 } 5638 5639 // Memoize this node if possible. 5640 SDNode *N; 5641 SDVTList VTs = getVTList(VT); 5642 SDValue Ops[] = {N1, N2}; 5643 if (VT != MVT::Glue) { 5644 FoldingSetNodeID ID; 5645 AddNodeIDNode(ID, Opcode, VTs, Ops); 5646 void *IP = nullptr; 5647 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5648 E->intersectFlagsWith(Flags); 5649 return SDValue(E, 0); 5650 } 5651 5652 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5653 N->setFlags(Flags); 5654 createOperands(N, Ops); 5655 CSEMap.InsertNode(N, IP); 5656 } else { 5657 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5658 createOperands(N, Ops); 5659 } 5660 5661 InsertNode(N); 5662 SDValue V = SDValue(N, 0); 5663 NewSDValueDbgMsg(V, "Creating new node: ", this); 5664 return V; 5665 } 5666 5667 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5668 SDValue N1, SDValue N2, SDValue N3, 5669 const SDNodeFlags Flags) { 5670 // Perform various simplifications. 5671 switch (Opcode) { 5672 case ISD::FMA: { 5673 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5674 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5675 N3.getValueType() == VT && "FMA types must match!"); 5676 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5677 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5678 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5679 if (N1CFP && N2CFP && N3CFP) { 5680 APFloat V1 = N1CFP->getValueAPF(); 5681 const APFloat &V2 = N2CFP->getValueAPF(); 5682 const APFloat &V3 = N3CFP->getValueAPF(); 5683 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5684 return getConstantFP(V1, DL, VT); 5685 } 5686 break; 5687 } 5688 case ISD::BUILD_VECTOR: { 5689 // Attempt to simplify BUILD_VECTOR. 5690 SDValue Ops[] = {N1, N2, N3}; 5691 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5692 return V; 5693 break; 5694 } 5695 case ISD::CONCAT_VECTORS: { 5696 SDValue Ops[] = {N1, N2, N3}; 5697 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5698 return V; 5699 break; 5700 } 5701 case ISD::SETCC: { 5702 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5703 assert(N1.getValueType() == N2.getValueType() && 5704 "SETCC operands must have the same type!"); 5705 assert(VT.isVector() == N1.getValueType().isVector() && 5706 "SETCC type should be vector iff the operand type is vector!"); 5707 assert((!VT.isVector() || VT.getVectorElementCount() == 5708 N1.getValueType().getVectorElementCount()) && 5709 "SETCC vector element counts must match!"); 5710 // Use FoldSetCC to simplify SETCC's. 5711 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5712 return V; 5713 // Vector constant folding. 5714 SDValue Ops[] = {N1, N2, N3}; 5715 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5716 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5717 return V; 5718 } 5719 break; 5720 } 5721 case ISD::SELECT: 5722 case ISD::VSELECT: 5723 if (SDValue V = simplifySelect(N1, N2, N3)) 5724 return V; 5725 break; 5726 case ISD::VECTOR_SHUFFLE: 5727 llvm_unreachable("should use getVectorShuffle constructor!"); 5728 case ISD::INSERT_VECTOR_ELT: { 5729 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5730 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5731 // for scalable vectors where we will generate appropriate code to 5732 // deal with out-of-bounds cases correctly. 5733 if (N3C && N1.getValueType().isFixedLengthVector() && 5734 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5735 return getUNDEF(VT); 5736 5737 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5738 if (N3.isUndef()) 5739 return getUNDEF(VT); 5740 5741 // If the inserted element is an UNDEF, just use the input vector. 5742 if (N2.isUndef()) 5743 return N1; 5744 5745 break; 5746 } 5747 case ISD::INSERT_SUBVECTOR: { 5748 // Inserting undef into undef is still undef. 5749 if (N1.isUndef() && N2.isUndef()) 5750 return getUNDEF(VT); 5751 5752 EVT N2VT = N2.getValueType(); 5753 assert(VT == N1.getValueType() && 5754 "Dest and insert subvector source types must match!"); 5755 assert(VT.isVector() && N2VT.isVector() && 5756 "Insert subvector VTs must be vectors!"); 5757 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5758 "Cannot insert a scalable vector into a fixed length vector!"); 5759 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5760 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5761 "Insert subvector must be from smaller vector to larger vector!"); 5762 assert(isa<ConstantSDNode>(N3) && 5763 "Insert subvector index must be constant"); 5764 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5765 (N2VT.getVectorMinNumElements() + 5766 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5767 VT.getVectorMinNumElements()) && 5768 "Insert subvector overflow!"); 5769 5770 // Trivial insertion. 5771 if (VT == N2VT) 5772 return N2; 5773 5774 // If this is an insert of an extracted vector into an undef vector, we 5775 // can just use the input to the extract. 5776 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5777 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5778 return N2.getOperand(0); 5779 break; 5780 } 5781 case ISD::BITCAST: 5782 // Fold bit_convert nodes from a type to themselves. 5783 if (N1.getValueType() == VT) 5784 return N1; 5785 break; 5786 } 5787 5788 // Memoize node if it doesn't produce a flag. 5789 SDNode *N; 5790 SDVTList VTs = getVTList(VT); 5791 SDValue Ops[] = {N1, N2, N3}; 5792 if (VT != MVT::Glue) { 5793 FoldingSetNodeID ID; 5794 AddNodeIDNode(ID, Opcode, VTs, Ops); 5795 void *IP = nullptr; 5796 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5797 E->intersectFlagsWith(Flags); 5798 return SDValue(E, 0); 5799 } 5800 5801 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5802 N->setFlags(Flags); 5803 createOperands(N, Ops); 5804 CSEMap.InsertNode(N, IP); 5805 } else { 5806 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5807 createOperands(N, Ops); 5808 } 5809 5810 InsertNode(N); 5811 SDValue V = SDValue(N, 0); 5812 NewSDValueDbgMsg(V, "Creating new node: ", this); 5813 return V; 5814 } 5815 5816 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5817 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5818 SDValue Ops[] = { N1, N2, N3, N4 }; 5819 return getNode(Opcode, DL, VT, Ops); 5820 } 5821 5822 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5823 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5824 SDValue N5) { 5825 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5826 return getNode(Opcode, DL, VT, Ops); 5827 } 5828 5829 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5830 /// the incoming stack arguments to be loaded from the stack. 5831 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5832 SmallVector<SDValue, 8> ArgChains; 5833 5834 // Include the original chain at the beginning of the list. When this is 5835 // used by target LowerCall hooks, this helps legalize find the 5836 // CALLSEQ_BEGIN node. 5837 ArgChains.push_back(Chain); 5838 5839 // Add a chain value for each stack argument. 5840 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5841 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5842 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5843 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5844 if (FI->getIndex() < 0) 5845 ArgChains.push_back(SDValue(L, 1)); 5846 5847 // Build a tokenfactor for all the chains. 5848 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5849 } 5850 5851 /// getMemsetValue - Vectorized representation of the memset value 5852 /// operand. 5853 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5854 const SDLoc &dl) { 5855 assert(!Value.isUndef()); 5856 5857 unsigned NumBits = VT.getScalarSizeInBits(); 5858 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5859 assert(C->getAPIntValue().getBitWidth() == 8); 5860 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5861 if (VT.isInteger()) { 5862 bool IsOpaque = VT.getSizeInBits() > 64 || 5863 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5864 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5865 } 5866 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5867 VT); 5868 } 5869 5870 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5871 EVT IntVT = VT.getScalarType(); 5872 if (!IntVT.isInteger()) 5873 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5874 5875 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5876 if (NumBits > 8) { 5877 // Use a multiplication with 0x010101... to extend the input to the 5878 // required length. 5879 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5880 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5881 DAG.getConstant(Magic, dl, IntVT)); 5882 } 5883 5884 if (VT != Value.getValueType() && !VT.isInteger()) 5885 Value = DAG.getBitcast(VT.getScalarType(), Value); 5886 if (VT != Value.getValueType()) 5887 Value = DAG.getSplatBuildVector(VT, dl, Value); 5888 5889 return Value; 5890 } 5891 5892 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5893 /// used when a memcpy is turned into a memset when the source is a constant 5894 /// string ptr. 5895 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5896 const TargetLowering &TLI, 5897 const ConstantDataArraySlice &Slice) { 5898 // Handle vector with all elements zero. 5899 if (Slice.Array == nullptr) { 5900 if (VT.isInteger()) 5901 return DAG.getConstant(0, dl, VT); 5902 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5903 return DAG.getConstantFP(0.0, dl, VT); 5904 else if (VT.isVector()) { 5905 unsigned NumElts = VT.getVectorNumElements(); 5906 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5907 return DAG.getNode(ISD::BITCAST, dl, VT, 5908 DAG.getConstant(0, dl, 5909 EVT::getVectorVT(*DAG.getContext(), 5910 EltVT, NumElts))); 5911 } else 5912 llvm_unreachable("Expected type!"); 5913 } 5914 5915 assert(!VT.isVector() && "Can't handle vector type here!"); 5916 unsigned NumVTBits = VT.getSizeInBits(); 5917 unsigned NumVTBytes = NumVTBits / 8; 5918 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5919 5920 APInt Val(NumVTBits, 0); 5921 if (DAG.getDataLayout().isLittleEndian()) { 5922 for (unsigned i = 0; i != NumBytes; ++i) 5923 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5924 } else { 5925 for (unsigned i = 0; i != NumBytes; ++i) 5926 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5927 } 5928 5929 // If the "cost" of materializing the integer immediate is less than the cost 5930 // of a load, then it is cost effective to turn the load into the immediate. 5931 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5932 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5933 return DAG.getConstant(Val, dl, VT); 5934 return SDValue(nullptr, 0); 5935 } 5936 5937 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5938 const SDLoc &DL, 5939 const SDNodeFlags Flags) { 5940 EVT VT = Base.getValueType(); 5941 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5942 } 5943 5944 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5945 const SDLoc &DL, 5946 const SDNodeFlags Flags) { 5947 assert(Offset.getValueType().isInteger()); 5948 EVT BasePtrVT = Ptr.getValueType(); 5949 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5950 } 5951 5952 /// Returns true if memcpy source is constant data. 5953 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5954 uint64_t SrcDelta = 0; 5955 GlobalAddressSDNode *G = nullptr; 5956 if (Src.getOpcode() == ISD::GlobalAddress) 5957 G = cast<GlobalAddressSDNode>(Src); 5958 else if (Src.getOpcode() == ISD::ADD && 5959 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5960 Src.getOperand(1).getOpcode() == ISD::Constant) { 5961 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5962 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5963 } 5964 if (!G) 5965 return false; 5966 5967 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5968 SrcDelta + G->getOffset()); 5969 } 5970 5971 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5972 SelectionDAG &DAG) { 5973 // On Darwin, -Os means optimize for size without hurting performance, so 5974 // only really optimize for size when -Oz (MinSize) is used. 5975 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5976 return MF.getFunction().hasMinSize(); 5977 return DAG.shouldOptForSize(); 5978 } 5979 5980 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5981 SmallVector<SDValue, 32> &OutChains, unsigned From, 5982 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5983 SmallVector<SDValue, 16> &OutStoreChains) { 5984 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5985 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5986 SmallVector<SDValue, 16> GluedLoadChains; 5987 for (unsigned i = From; i < To; ++i) { 5988 OutChains.push_back(OutLoadChains[i]); 5989 GluedLoadChains.push_back(OutLoadChains[i]); 5990 } 5991 5992 // Chain for all loads. 5993 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5994 GluedLoadChains); 5995 5996 for (unsigned i = From; i < To; ++i) { 5997 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5998 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5999 ST->getBasePtr(), ST->getMemoryVT(), 6000 ST->getMemOperand()); 6001 OutChains.push_back(NewStore); 6002 } 6003 } 6004 6005 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6006 SDValue Chain, SDValue Dst, SDValue Src, 6007 uint64_t Size, Align Alignment, 6008 bool isVol, bool AlwaysInline, 6009 MachinePointerInfo DstPtrInfo, 6010 MachinePointerInfo SrcPtrInfo) { 6011 // Turn a memcpy of undef to nop. 6012 // FIXME: We need to honor volatile even is Src is undef. 6013 if (Src.isUndef()) 6014 return Chain; 6015 6016 // Expand memcpy to a series of load and store ops if the size operand falls 6017 // below a certain threshold. 6018 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6019 // rather than maybe a humongous number of loads and stores. 6020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6021 const DataLayout &DL = DAG.getDataLayout(); 6022 LLVMContext &C = *DAG.getContext(); 6023 std::vector<EVT> MemOps; 6024 bool DstAlignCanChange = false; 6025 MachineFunction &MF = DAG.getMachineFunction(); 6026 MachineFrameInfo &MFI = MF.getFrameInfo(); 6027 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6028 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6029 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6030 DstAlignCanChange = true; 6031 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6032 if (!SrcAlign || Alignment > *SrcAlign) 6033 SrcAlign = Alignment; 6034 assert(SrcAlign && "SrcAlign must be set"); 6035 ConstantDataArraySlice Slice; 6036 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 6037 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6038 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6039 const MemOp Op = isZeroConstant 6040 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6041 /*IsZeroMemset*/ true, isVol) 6042 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6043 *SrcAlign, isVol, CopyFromConstant); 6044 if (!TLI.findOptimalMemOpLowering( 6045 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6046 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6047 return SDValue(); 6048 6049 if (DstAlignCanChange) { 6050 Type *Ty = MemOps[0].getTypeForEVT(C); 6051 Align NewAlign = DL.getABITypeAlign(Ty); 6052 6053 // Don't promote to an alignment that would require dynamic stack 6054 // realignment. 6055 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6056 if (!TRI->needsStackRealignment(MF)) 6057 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6058 NewAlign = NewAlign / 2; 6059 6060 if (NewAlign > Alignment) { 6061 // Give the stack frame object a larger alignment if needed. 6062 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6063 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6064 Alignment = NewAlign; 6065 } 6066 } 6067 6068 MachineMemOperand::Flags MMOFlags = 6069 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6070 SmallVector<SDValue, 16> OutLoadChains; 6071 SmallVector<SDValue, 16> OutStoreChains; 6072 SmallVector<SDValue, 32> OutChains; 6073 unsigned NumMemOps = MemOps.size(); 6074 uint64_t SrcOff = 0, DstOff = 0; 6075 for (unsigned i = 0; i != NumMemOps; ++i) { 6076 EVT VT = MemOps[i]; 6077 unsigned VTSize = VT.getSizeInBits() / 8; 6078 SDValue Value, Store; 6079 6080 if (VTSize > Size) { 6081 // Issuing an unaligned load / store pair that overlaps with the previous 6082 // pair. Adjust the offset accordingly. 6083 assert(i == NumMemOps-1 && i != 0); 6084 SrcOff -= VTSize - Size; 6085 DstOff -= VTSize - Size; 6086 } 6087 6088 if (CopyFromConstant && 6089 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6090 // It's unlikely a store of a vector immediate can be done in a single 6091 // instruction. It would require a load from a constantpool first. 6092 // We only handle zero vectors here. 6093 // FIXME: Handle other cases where store of vector immediate is done in 6094 // a single instruction. 6095 ConstantDataArraySlice SubSlice; 6096 if (SrcOff < Slice.Length) { 6097 SubSlice = Slice; 6098 SubSlice.move(SrcOff); 6099 } else { 6100 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6101 SubSlice.Array = nullptr; 6102 SubSlice.Offset = 0; 6103 SubSlice.Length = VTSize; 6104 } 6105 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6106 if (Value.getNode()) { 6107 Store = DAG.getStore( 6108 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6109 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6110 OutChains.push_back(Store); 6111 } 6112 } 6113 6114 if (!Store.getNode()) { 6115 // The type might not be legal for the target. This should only happen 6116 // if the type is smaller than a legal type, as on PPC, so the right 6117 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6118 // to Load/Store if NVT==VT. 6119 // FIXME does the case above also need this? 6120 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6121 assert(NVT.bitsGE(VT)); 6122 6123 bool isDereferenceable = 6124 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6125 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6126 if (isDereferenceable) 6127 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6128 6129 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6130 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6131 SrcPtrInfo.getWithOffset(SrcOff), VT, 6132 commonAlignment(*SrcAlign, SrcOff).value(), 6133 SrcMMOFlags); 6134 OutLoadChains.push_back(Value.getValue(1)); 6135 6136 Store = DAG.getTruncStore( 6137 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6138 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6139 OutStoreChains.push_back(Store); 6140 } 6141 SrcOff += VTSize; 6142 DstOff += VTSize; 6143 Size -= VTSize; 6144 } 6145 6146 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6147 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6148 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6149 6150 if (NumLdStInMemcpy) { 6151 // It may be that memcpy might be converted to memset if it's memcpy 6152 // of constants. In such a case, we won't have loads and stores, but 6153 // just stores. In the absence of loads, there is nothing to gang up. 6154 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6155 // If target does not care, just leave as it. 6156 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6157 OutChains.push_back(OutLoadChains[i]); 6158 OutChains.push_back(OutStoreChains[i]); 6159 } 6160 } else { 6161 // Ld/St less than/equal limit set by target. 6162 if (NumLdStInMemcpy <= GluedLdStLimit) { 6163 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6164 NumLdStInMemcpy, OutLoadChains, 6165 OutStoreChains); 6166 } else { 6167 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6168 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6169 unsigned GlueIter = 0; 6170 6171 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6172 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6173 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6174 6175 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6176 OutLoadChains, OutStoreChains); 6177 GlueIter += GluedLdStLimit; 6178 } 6179 6180 // Residual ld/st. 6181 if (RemainingLdStInMemcpy) { 6182 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6183 RemainingLdStInMemcpy, OutLoadChains, 6184 OutStoreChains); 6185 } 6186 } 6187 } 6188 } 6189 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6190 } 6191 6192 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6193 SDValue Chain, SDValue Dst, SDValue Src, 6194 uint64_t Size, Align Alignment, 6195 bool isVol, bool AlwaysInline, 6196 MachinePointerInfo DstPtrInfo, 6197 MachinePointerInfo SrcPtrInfo) { 6198 // Turn a memmove of undef to nop. 6199 // FIXME: We need to honor volatile even is Src is undef. 6200 if (Src.isUndef()) 6201 return Chain; 6202 6203 // Expand memmove to a series of load and store ops if the size operand falls 6204 // below a certain threshold. 6205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6206 const DataLayout &DL = DAG.getDataLayout(); 6207 LLVMContext &C = *DAG.getContext(); 6208 std::vector<EVT> MemOps; 6209 bool DstAlignCanChange = false; 6210 MachineFunction &MF = DAG.getMachineFunction(); 6211 MachineFrameInfo &MFI = MF.getFrameInfo(); 6212 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6213 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6214 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6215 DstAlignCanChange = true; 6216 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6217 if (!SrcAlign || Alignment > *SrcAlign) 6218 SrcAlign = Alignment; 6219 assert(SrcAlign && "SrcAlign must be set"); 6220 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6221 if (!TLI.findOptimalMemOpLowering( 6222 MemOps, Limit, 6223 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6224 /*IsVolatile*/ true), 6225 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6226 MF.getFunction().getAttributes())) 6227 return SDValue(); 6228 6229 if (DstAlignCanChange) { 6230 Type *Ty = MemOps[0].getTypeForEVT(C); 6231 Align NewAlign = DL.getABITypeAlign(Ty); 6232 if (NewAlign > Alignment) { 6233 // Give the stack frame object a larger alignment if needed. 6234 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6235 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6236 Alignment = NewAlign; 6237 } 6238 } 6239 6240 MachineMemOperand::Flags MMOFlags = 6241 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6242 uint64_t SrcOff = 0, DstOff = 0; 6243 SmallVector<SDValue, 8> LoadValues; 6244 SmallVector<SDValue, 8> LoadChains; 6245 SmallVector<SDValue, 8> OutChains; 6246 unsigned NumMemOps = MemOps.size(); 6247 for (unsigned i = 0; i < NumMemOps; i++) { 6248 EVT VT = MemOps[i]; 6249 unsigned VTSize = VT.getSizeInBits() / 8; 6250 SDValue Value; 6251 6252 bool isDereferenceable = 6253 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6254 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6255 if (isDereferenceable) 6256 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6257 6258 Value = DAG.getLoad( 6259 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6260 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6261 LoadValues.push_back(Value); 6262 LoadChains.push_back(Value.getValue(1)); 6263 SrcOff += VTSize; 6264 } 6265 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6266 OutChains.clear(); 6267 for (unsigned i = 0; i < NumMemOps; i++) { 6268 EVT VT = MemOps[i]; 6269 unsigned VTSize = VT.getSizeInBits() / 8; 6270 SDValue Store; 6271 6272 Store = DAG.getStore( 6273 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6274 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6275 OutChains.push_back(Store); 6276 DstOff += VTSize; 6277 } 6278 6279 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6280 } 6281 6282 /// Lower the call to 'memset' intrinsic function into a series of store 6283 /// operations. 6284 /// 6285 /// \param DAG Selection DAG where lowered code is placed. 6286 /// \param dl Link to corresponding IR location. 6287 /// \param Chain Control flow dependency. 6288 /// \param Dst Pointer to destination memory location. 6289 /// \param Src Value of byte to write into the memory. 6290 /// \param Size Number of bytes to write. 6291 /// \param Alignment Alignment of the destination in bytes. 6292 /// \param isVol True if destination is volatile. 6293 /// \param DstPtrInfo IR information on the memory pointer. 6294 /// \returns New head in the control flow, if lowering was successful, empty 6295 /// SDValue otherwise. 6296 /// 6297 /// The function tries to replace 'llvm.memset' intrinsic with several store 6298 /// operations and value calculation code. This is usually profitable for small 6299 /// memory size. 6300 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6301 SDValue Chain, SDValue Dst, SDValue Src, 6302 uint64_t Size, Align Alignment, bool isVol, 6303 MachinePointerInfo DstPtrInfo) { 6304 // Turn a memset of undef to nop. 6305 // FIXME: We need to honor volatile even is Src is undef. 6306 if (Src.isUndef()) 6307 return Chain; 6308 6309 // Expand memset to a series of load/store ops if the size operand 6310 // falls below a certain threshold. 6311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6312 std::vector<EVT> MemOps; 6313 bool DstAlignCanChange = false; 6314 MachineFunction &MF = DAG.getMachineFunction(); 6315 MachineFrameInfo &MFI = MF.getFrameInfo(); 6316 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6317 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6318 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6319 DstAlignCanChange = true; 6320 bool IsZeroVal = 6321 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6322 if (!TLI.findOptimalMemOpLowering( 6323 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6324 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6325 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6326 return SDValue(); 6327 6328 if (DstAlignCanChange) { 6329 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6330 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6331 if (NewAlign > Alignment) { 6332 // Give the stack frame object a larger alignment if needed. 6333 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6334 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6335 Alignment = NewAlign; 6336 } 6337 } 6338 6339 SmallVector<SDValue, 8> OutChains; 6340 uint64_t DstOff = 0; 6341 unsigned NumMemOps = MemOps.size(); 6342 6343 // Find the largest store and generate the bit pattern for it. 6344 EVT LargestVT = MemOps[0]; 6345 for (unsigned i = 1; i < NumMemOps; i++) 6346 if (MemOps[i].bitsGT(LargestVT)) 6347 LargestVT = MemOps[i]; 6348 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6349 6350 for (unsigned i = 0; i < NumMemOps; i++) { 6351 EVT VT = MemOps[i]; 6352 unsigned VTSize = VT.getSizeInBits() / 8; 6353 if (VTSize > Size) { 6354 // Issuing an unaligned load / store pair that overlaps with the previous 6355 // pair. Adjust the offset accordingly. 6356 assert(i == NumMemOps-1 && i != 0); 6357 DstOff -= VTSize - Size; 6358 } 6359 6360 // If this store is smaller than the largest store see whether we can get 6361 // the smaller value for free with a truncate. 6362 SDValue Value = MemSetValue; 6363 if (VT.bitsLT(LargestVT)) { 6364 if (!LargestVT.isVector() && !VT.isVector() && 6365 TLI.isTruncateFree(LargestVT, VT)) 6366 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6367 else 6368 Value = getMemsetValue(Src, VT, DAG, dl); 6369 } 6370 assert(Value.getValueType() == VT && "Value with wrong type."); 6371 SDValue Store = DAG.getStore( 6372 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6373 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6374 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6375 OutChains.push_back(Store); 6376 DstOff += VT.getSizeInBits() / 8; 6377 Size -= VTSize; 6378 } 6379 6380 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6381 } 6382 6383 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6384 unsigned AS) { 6385 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6386 // pointer operands can be losslessly bitcasted to pointers of address space 0 6387 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6388 report_fatal_error("cannot lower memory intrinsic in address space " + 6389 Twine(AS)); 6390 } 6391 } 6392 6393 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6394 SDValue Src, SDValue Size, Align Alignment, 6395 bool isVol, bool AlwaysInline, bool isTailCall, 6396 MachinePointerInfo DstPtrInfo, 6397 MachinePointerInfo SrcPtrInfo) { 6398 // Check to see if we should lower the memcpy to loads and stores first. 6399 // For cases within the target-specified limits, this is the best choice. 6400 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6401 if (ConstantSize) { 6402 // Memcpy with size zero? Just return the original chain. 6403 if (ConstantSize->isNullValue()) 6404 return Chain; 6405 6406 SDValue Result = getMemcpyLoadsAndStores( 6407 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6408 isVol, false, DstPtrInfo, SrcPtrInfo); 6409 if (Result.getNode()) 6410 return Result; 6411 } 6412 6413 // Then check to see if we should lower the memcpy with target-specific 6414 // code. If the target chooses to do this, this is the next best. 6415 if (TSI) { 6416 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6417 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6418 DstPtrInfo, SrcPtrInfo); 6419 if (Result.getNode()) 6420 return Result; 6421 } 6422 6423 // If we really need inline code and the target declined to provide it, 6424 // use a (potentially long) sequence of loads and stores. 6425 if (AlwaysInline) { 6426 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6427 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6428 ConstantSize->getZExtValue(), Alignment, 6429 isVol, true, DstPtrInfo, SrcPtrInfo); 6430 } 6431 6432 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6433 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6434 6435 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6436 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6437 // respect volatile, so they may do things like read or write memory 6438 // beyond the given memory regions. But fixing this isn't easy, and most 6439 // people don't care. 6440 6441 // Emit a library call. 6442 TargetLowering::ArgListTy Args; 6443 TargetLowering::ArgListEntry Entry; 6444 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6445 Entry.Node = Dst; Args.push_back(Entry); 6446 Entry.Node = Src; Args.push_back(Entry); 6447 6448 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6449 Entry.Node = Size; Args.push_back(Entry); 6450 // FIXME: pass in SDLoc 6451 TargetLowering::CallLoweringInfo CLI(*this); 6452 CLI.setDebugLoc(dl) 6453 .setChain(Chain) 6454 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6455 Dst.getValueType().getTypeForEVT(*getContext()), 6456 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6457 TLI->getPointerTy(getDataLayout())), 6458 std::move(Args)) 6459 .setDiscardResult() 6460 .setTailCall(isTailCall); 6461 6462 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6463 return CallResult.second; 6464 } 6465 6466 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6467 SDValue Dst, unsigned DstAlign, 6468 SDValue Src, unsigned SrcAlign, 6469 SDValue Size, Type *SizeTy, 6470 unsigned ElemSz, bool isTailCall, 6471 MachinePointerInfo DstPtrInfo, 6472 MachinePointerInfo SrcPtrInfo) { 6473 // Emit a library call. 6474 TargetLowering::ArgListTy Args; 6475 TargetLowering::ArgListEntry Entry; 6476 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6477 Entry.Node = Dst; 6478 Args.push_back(Entry); 6479 6480 Entry.Node = Src; 6481 Args.push_back(Entry); 6482 6483 Entry.Ty = SizeTy; 6484 Entry.Node = Size; 6485 Args.push_back(Entry); 6486 6487 RTLIB::Libcall LibraryCall = 6488 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6489 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6490 report_fatal_error("Unsupported element size"); 6491 6492 TargetLowering::CallLoweringInfo CLI(*this); 6493 CLI.setDebugLoc(dl) 6494 .setChain(Chain) 6495 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6496 Type::getVoidTy(*getContext()), 6497 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6498 TLI->getPointerTy(getDataLayout())), 6499 std::move(Args)) 6500 .setDiscardResult() 6501 .setTailCall(isTailCall); 6502 6503 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6504 return CallResult.second; 6505 } 6506 6507 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6508 SDValue Src, SDValue Size, Align Alignment, 6509 bool isVol, bool isTailCall, 6510 MachinePointerInfo DstPtrInfo, 6511 MachinePointerInfo SrcPtrInfo) { 6512 // Check to see if we should lower the memmove to loads and stores first. 6513 // For cases within the target-specified limits, this is the best choice. 6514 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6515 if (ConstantSize) { 6516 // Memmove with size zero? Just return the original chain. 6517 if (ConstantSize->isNullValue()) 6518 return Chain; 6519 6520 SDValue Result = getMemmoveLoadsAndStores( 6521 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6522 isVol, false, DstPtrInfo, SrcPtrInfo); 6523 if (Result.getNode()) 6524 return Result; 6525 } 6526 6527 // Then check to see if we should lower the memmove with target-specific 6528 // code. If the target chooses to do this, this is the next best. 6529 if (TSI) { 6530 SDValue Result = 6531 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6532 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6533 if (Result.getNode()) 6534 return Result; 6535 } 6536 6537 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6538 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6539 6540 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6541 // not be safe. See memcpy above for more details. 6542 6543 // Emit a library call. 6544 TargetLowering::ArgListTy Args; 6545 TargetLowering::ArgListEntry Entry; 6546 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6547 Entry.Node = Dst; Args.push_back(Entry); 6548 Entry.Node = Src; Args.push_back(Entry); 6549 6550 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6551 Entry.Node = Size; Args.push_back(Entry); 6552 // FIXME: pass in SDLoc 6553 TargetLowering::CallLoweringInfo CLI(*this); 6554 CLI.setDebugLoc(dl) 6555 .setChain(Chain) 6556 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6557 Dst.getValueType().getTypeForEVT(*getContext()), 6558 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6559 TLI->getPointerTy(getDataLayout())), 6560 std::move(Args)) 6561 .setDiscardResult() 6562 .setTailCall(isTailCall); 6563 6564 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6565 return CallResult.second; 6566 } 6567 6568 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6569 SDValue Dst, unsigned DstAlign, 6570 SDValue Src, unsigned SrcAlign, 6571 SDValue Size, Type *SizeTy, 6572 unsigned ElemSz, bool isTailCall, 6573 MachinePointerInfo DstPtrInfo, 6574 MachinePointerInfo SrcPtrInfo) { 6575 // Emit a library call. 6576 TargetLowering::ArgListTy Args; 6577 TargetLowering::ArgListEntry Entry; 6578 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6579 Entry.Node = Dst; 6580 Args.push_back(Entry); 6581 6582 Entry.Node = Src; 6583 Args.push_back(Entry); 6584 6585 Entry.Ty = SizeTy; 6586 Entry.Node = Size; 6587 Args.push_back(Entry); 6588 6589 RTLIB::Libcall LibraryCall = 6590 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6591 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6592 report_fatal_error("Unsupported element size"); 6593 6594 TargetLowering::CallLoweringInfo CLI(*this); 6595 CLI.setDebugLoc(dl) 6596 .setChain(Chain) 6597 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6598 Type::getVoidTy(*getContext()), 6599 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6600 TLI->getPointerTy(getDataLayout())), 6601 std::move(Args)) 6602 .setDiscardResult() 6603 .setTailCall(isTailCall); 6604 6605 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6606 return CallResult.second; 6607 } 6608 6609 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6610 SDValue Src, SDValue Size, Align Alignment, 6611 bool isVol, bool isTailCall, 6612 MachinePointerInfo DstPtrInfo) { 6613 // Check to see if we should lower the memset to stores first. 6614 // For cases within the target-specified limits, this is the best choice. 6615 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6616 if (ConstantSize) { 6617 // Memset with size zero? Just return the original chain. 6618 if (ConstantSize->isNullValue()) 6619 return Chain; 6620 6621 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6622 ConstantSize->getZExtValue(), Alignment, 6623 isVol, DstPtrInfo); 6624 6625 if (Result.getNode()) 6626 return Result; 6627 } 6628 6629 // Then check to see if we should lower the memset with target-specific 6630 // code. If the target chooses to do this, this is the next best. 6631 if (TSI) { 6632 SDValue Result = TSI->EmitTargetCodeForMemset( 6633 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6634 if (Result.getNode()) 6635 return Result; 6636 } 6637 6638 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6639 6640 // Emit a library call. 6641 TargetLowering::ArgListTy Args; 6642 TargetLowering::ArgListEntry Entry; 6643 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6644 Args.push_back(Entry); 6645 Entry.Node = Src; 6646 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6647 Args.push_back(Entry); 6648 Entry.Node = Size; 6649 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6650 Args.push_back(Entry); 6651 6652 // FIXME: pass in SDLoc 6653 TargetLowering::CallLoweringInfo CLI(*this); 6654 CLI.setDebugLoc(dl) 6655 .setChain(Chain) 6656 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6657 Dst.getValueType().getTypeForEVT(*getContext()), 6658 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6659 TLI->getPointerTy(getDataLayout())), 6660 std::move(Args)) 6661 .setDiscardResult() 6662 .setTailCall(isTailCall); 6663 6664 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6665 return CallResult.second; 6666 } 6667 6668 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6669 SDValue Dst, unsigned DstAlign, 6670 SDValue Value, SDValue Size, Type *SizeTy, 6671 unsigned ElemSz, bool isTailCall, 6672 MachinePointerInfo DstPtrInfo) { 6673 // Emit a library call. 6674 TargetLowering::ArgListTy Args; 6675 TargetLowering::ArgListEntry Entry; 6676 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6677 Entry.Node = Dst; 6678 Args.push_back(Entry); 6679 6680 Entry.Ty = Type::getInt8Ty(*getContext()); 6681 Entry.Node = Value; 6682 Args.push_back(Entry); 6683 6684 Entry.Ty = SizeTy; 6685 Entry.Node = Size; 6686 Args.push_back(Entry); 6687 6688 RTLIB::Libcall LibraryCall = 6689 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6690 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6691 report_fatal_error("Unsupported element size"); 6692 6693 TargetLowering::CallLoweringInfo CLI(*this); 6694 CLI.setDebugLoc(dl) 6695 .setChain(Chain) 6696 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6697 Type::getVoidTy(*getContext()), 6698 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6699 TLI->getPointerTy(getDataLayout())), 6700 std::move(Args)) 6701 .setDiscardResult() 6702 .setTailCall(isTailCall); 6703 6704 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6705 return CallResult.second; 6706 } 6707 6708 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6709 SDVTList VTList, ArrayRef<SDValue> Ops, 6710 MachineMemOperand *MMO) { 6711 FoldingSetNodeID ID; 6712 ID.AddInteger(MemVT.getRawBits()); 6713 AddNodeIDNode(ID, Opcode, VTList, Ops); 6714 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6715 void* IP = nullptr; 6716 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6717 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6718 return SDValue(E, 0); 6719 } 6720 6721 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6722 VTList, MemVT, MMO); 6723 createOperands(N, Ops); 6724 6725 CSEMap.InsertNode(N, IP); 6726 InsertNode(N); 6727 return SDValue(N, 0); 6728 } 6729 6730 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6731 EVT MemVT, SDVTList VTs, SDValue Chain, 6732 SDValue Ptr, SDValue Cmp, SDValue Swp, 6733 MachineMemOperand *MMO) { 6734 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6735 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6736 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6737 6738 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6739 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6740 } 6741 6742 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6743 SDValue Chain, SDValue Ptr, SDValue Val, 6744 MachineMemOperand *MMO) { 6745 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6746 Opcode == ISD::ATOMIC_LOAD_SUB || 6747 Opcode == ISD::ATOMIC_LOAD_AND || 6748 Opcode == ISD::ATOMIC_LOAD_CLR || 6749 Opcode == ISD::ATOMIC_LOAD_OR || 6750 Opcode == ISD::ATOMIC_LOAD_XOR || 6751 Opcode == ISD::ATOMIC_LOAD_NAND || 6752 Opcode == ISD::ATOMIC_LOAD_MIN || 6753 Opcode == ISD::ATOMIC_LOAD_MAX || 6754 Opcode == ISD::ATOMIC_LOAD_UMIN || 6755 Opcode == ISD::ATOMIC_LOAD_UMAX || 6756 Opcode == ISD::ATOMIC_LOAD_FADD || 6757 Opcode == ISD::ATOMIC_LOAD_FSUB || 6758 Opcode == ISD::ATOMIC_SWAP || 6759 Opcode == ISD::ATOMIC_STORE) && 6760 "Invalid Atomic Op"); 6761 6762 EVT VT = Val.getValueType(); 6763 6764 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6765 getVTList(VT, MVT::Other); 6766 SDValue Ops[] = {Chain, Ptr, Val}; 6767 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6768 } 6769 6770 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6771 EVT VT, SDValue Chain, SDValue Ptr, 6772 MachineMemOperand *MMO) { 6773 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6774 6775 SDVTList VTs = getVTList(VT, MVT::Other); 6776 SDValue Ops[] = {Chain, Ptr}; 6777 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6778 } 6779 6780 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6781 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6782 if (Ops.size() == 1) 6783 return Ops[0]; 6784 6785 SmallVector<EVT, 4> VTs; 6786 VTs.reserve(Ops.size()); 6787 for (unsigned i = 0; i < Ops.size(); ++i) 6788 VTs.push_back(Ops[i].getValueType()); 6789 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6790 } 6791 6792 SDValue SelectionDAG::getMemIntrinsicNode( 6793 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6794 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6795 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6796 if (!Size && MemVT.isScalableVector()) 6797 Size = MemoryLocation::UnknownSize; 6798 else if (!Size) 6799 Size = MemVT.getStoreSize(); 6800 6801 MachineFunction &MF = getMachineFunction(); 6802 MachineMemOperand *MMO = 6803 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6804 6805 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6806 } 6807 6808 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6809 SDVTList VTList, 6810 ArrayRef<SDValue> Ops, EVT MemVT, 6811 MachineMemOperand *MMO) { 6812 assert((Opcode == ISD::INTRINSIC_VOID || 6813 Opcode == ISD::INTRINSIC_W_CHAIN || 6814 Opcode == ISD::PREFETCH || 6815 ((int)Opcode <= std::numeric_limits<int>::max() && 6816 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6817 "Opcode is not a memory-accessing opcode!"); 6818 6819 // Memoize the node unless it returns a flag. 6820 MemIntrinsicSDNode *N; 6821 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6822 FoldingSetNodeID ID; 6823 AddNodeIDNode(ID, Opcode, VTList, Ops); 6824 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6825 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6826 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6827 void *IP = nullptr; 6828 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6829 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6830 return SDValue(E, 0); 6831 } 6832 6833 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6834 VTList, MemVT, MMO); 6835 createOperands(N, Ops); 6836 6837 CSEMap.InsertNode(N, IP); 6838 } else { 6839 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6840 VTList, MemVT, MMO); 6841 createOperands(N, Ops); 6842 } 6843 InsertNode(N); 6844 SDValue V(N, 0); 6845 NewSDValueDbgMsg(V, "Creating new node: ", this); 6846 return V; 6847 } 6848 6849 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6850 SDValue Chain, int FrameIndex, 6851 int64_t Size, int64_t Offset) { 6852 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6853 const auto VTs = getVTList(MVT::Other); 6854 SDValue Ops[2] = { 6855 Chain, 6856 getFrameIndex(FrameIndex, 6857 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6858 true)}; 6859 6860 FoldingSetNodeID ID; 6861 AddNodeIDNode(ID, Opcode, VTs, Ops); 6862 ID.AddInteger(FrameIndex); 6863 ID.AddInteger(Size); 6864 ID.AddInteger(Offset); 6865 void *IP = nullptr; 6866 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6867 return SDValue(E, 0); 6868 6869 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6870 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6871 createOperands(N, Ops); 6872 CSEMap.InsertNode(N, IP); 6873 InsertNode(N); 6874 SDValue V(N, 0); 6875 NewSDValueDbgMsg(V, "Creating new node: ", this); 6876 return V; 6877 } 6878 6879 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6880 /// MachinePointerInfo record from it. This is particularly useful because the 6881 /// code generator has many cases where it doesn't bother passing in a 6882 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6883 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6884 SelectionDAG &DAG, SDValue Ptr, 6885 int64_t Offset = 0) { 6886 // If this is FI+Offset, we can model it. 6887 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6888 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6889 FI->getIndex(), Offset); 6890 6891 // If this is (FI+Offset1)+Offset2, we can model it. 6892 if (Ptr.getOpcode() != ISD::ADD || 6893 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6894 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6895 return Info; 6896 6897 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6898 return MachinePointerInfo::getFixedStack( 6899 DAG.getMachineFunction(), FI, 6900 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6901 } 6902 6903 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6904 /// MachinePointerInfo record from it. This is particularly useful because the 6905 /// code generator has many cases where it doesn't bother passing in a 6906 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6907 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6908 SelectionDAG &DAG, SDValue Ptr, 6909 SDValue OffsetOp) { 6910 // If the 'Offset' value isn't a constant, we can't handle this. 6911 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6912 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6913 if (OffsetOp.isUndef()) 6914 return InferPointerInfo(Info, DAG, Ptr); 6915 return Info; 6916 } 6917 6918 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6919 EVT VT, const SDLoc &dl, SDValue Chain, 6920 SDValue Ptr, SDValue Offset, 6921 MachinePointerInfo PtrInfo, EVT MemVT, 6922 Align Alignment, 6923 MachineMemOperand::Flags MMOFlags, 6924 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6925 assert(Chain.getValueType() == MVT::Other && 6926 "Invalid chain type"); 6927 6928 MMOFlags |= MachineMemOperand::MOLoad; 6929 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6930 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6931 // clients. 6932 if (PtrInfo.V.isNull()) 6933 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6934 6935 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6936 MachineFunction &MF = getMachineFunction(); 6937 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6938 Alignment, AAInfo, Ranges); 6939 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6940 } 6941 6942 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6943 EVT VT, const SDLoc &dl, SDValue Chain, 6944 SDValue Ptr, SDValue Offset, EVT MemVT, 6945 MachineMemOperand *MMO) { 6946 if (VT == MemVT) { 6947 ExtType = ISD::NON_EXTLOAD; 6948 } else if (ExtType == ISD::NON_EXTLOAD) { 6949 assert(VT == MemVT && "Non-extending load from different memory type!"); 6950 } else { 6951 // Extending load. 6952 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6953 "Should only be an extending load, not truncating!"); 6954 assert(VT.isInteger() == MemVT.isInteger() && 6955 "Cannot convert from FP to Int or Int -> FP!"); 6956 assert(VT.isVector() == MemVT.isVector() && 6957 "Cannot use an ext load to convert to or from a vector!"); 6958 assert((!VT.isVector() || 6959 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6960 "Cannot use an ext load to change the number of vector elements!"); 6961 } 6962 6963 bool Indexed = AM != ISD::UNINDEXED; 6964 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6965 6966 SDVTList VTs = Indexed ? 6967 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6968 SDValue Ops[] = { Chain, Ptr, Offset }; 6969 FoldingSetNodeID ID; 6970 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6971 ID.AddInteger(MemVT.getRawBits()); 6972 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6973 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6974 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6975 void *IP = nullptr; 6976 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6977 cast<LoadSDNode>(E)->refineAlignment(MMO); 6978 return SDValue(E, 0); 6979 } 6980 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6981 ExtType, MemVT, MMO); 6982 createOperands(N, Ops); 6983 6984 CSEMap.InsertNode(N, IP); 6985 InsertNode(N); 6986 SDValue V(N, 0); 6987 NewSDValueDbgMsg(V, "Creating new node: ", this); 6988 return V; 6989 } 6990 6991 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6992 SDValue Ptr, MachinePointerInfo PtrInfo, 6993 MaybeAlign Alignment, 6994 MachineMemOperand::Flags MMOFlags, 6995 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6996 SDValue Undef = getUNDEF(Ptr.getValueType()); 6997 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6998 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6999 } 7000 7001 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7002 SDValue Ptr, MachineMemOperand *MMO) { 7003 SDValue Undef = getUNDEF(Ptr.getValueType()); 7004 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7005 VT, MMO); 7006 } 7007 7008 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7009 EVT VT, SDValue Chain, SDValue Ptr, 7010 MachinePointerInfo PtrInfo, EVT MemVT, 7011 MaybeAlign Alignment, 7012 MachineMemOperand::Flags MMOFlags, 7013 const AAMDNodes &AAInfo) { 7014 SDValue Undef = getUNDEF(Ptr.getValueType()); 7015 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7016 MemVT, Alignment, MMOFlags, AAInfo); 7017 } 7018 7019 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7020 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7021 MachineMemOperand *MMO) { 7022 SDValue Undef = getUNDEF(Ptr.getValueType()); 7023 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7024 MemVT, MMO); 7025 } 7026 7027 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7028 SDValue Base, SDValue Offset, 7029 ISD::MemIndexedMode AM) { 7030 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7031 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7032 // Don't propagate the invariant or dereferenceable flags. 7033 auto MMOFlags = 7034 LD->getMemOperand()->getFlags() & 7035 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7036 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7037 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7038 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 7039 LD->getAAInfo()); 7040 } 7041 7042 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7043 SDValue Ptr, MachinePointerInfo PtrInfo, 7044 Align Alignment, 7045 MachineMemOperand::Flags MMOFlags, 7046 const AAMDNodes &AAInfo) { 7047 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7048 7049 MMOFlags |= MachineMemOperand::MOStore; 7050 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7051 7052 if (PtrInfo.V.isNull()) 7053 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7054 7055 MachineFunction &MF = getMachineFunction(); 7056 uint64_t Size = 7057 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7058 MachineMemOperand *MMO = 7059 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7060 return getStore(Chain, dl, Val, Ptr, MMO); 7061 } 7062 7063 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7064 SDValue Ptr, MachineMemOperand *MMO) { 7065 assert(Chain.getValueType() == MVT::Other && 7066 "Invalid chain type"); 7067 EVT VT = Val.getValueType(); 7068 SDVTList VTs = getVTList(MVT::Other); 7069 SDValue Undef = getUNDEF(Ptr.getValueType()); 7070 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7071 FoldingSetNodeID ID; 7072 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7073 ID.AddInteger(VT.getRawBits()); 7074 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7075 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7076 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7077 void *IP = nullptr; 7078 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7079 cast<StoreSDNode>(E)->refineAlignment(MMO); 7080 return SDValue(E, 0); 7081 } 7082 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7083 ISD::UNINDEXED, false, VT, MMO); 7084 createOperands(N, Ops); 7085 7086 CSEMap.InsertNode(N, IP); 7087 InsertNode(N); 7088 SDValue V(N, 0); 7089 NewSDValueDbgMsg(V, "Creating new node: ", this); 7090 return V; 7091 } 7092 7093 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7094 SDValue Ptr, MachinePointerInfo PtrInfo, 7095 EVT SVT, Align Alignment, 7096 MachineMemOperand::Flags MMOFlags, 7097 const AAMDNodes &AAInfo) { 7098 assert(Chain.getValueType() == MVT::Other && 7099 "Invalid chain type"); 7100 7101 MMOFlags |= MachineMemOperand::MOStore; 7102 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7103 7104 if (PtrInfo.V.isNull()) 7105 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7106 7107 MachineFunction &MF = getMachineFunction(); 7108 MachineMemOperand *MMO = MF.getMachineMemOperand( 7109 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7110 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7111 } 7112 7113 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7114 SDValue Ptr, EVT SVT, 7115 MachineMemOperand *MMO) { 7116 EVT VT = Val.getValueType(); 7117 7118 assert(Chain.getValueType() == MVT::Other && 7119 "Invalid chain type"); 7120 if (VT == SVT) 7121 return getStore(Chain, dl, Val, Ptr, MMO); 7122 7123 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7124 "Should only be a truncating store, not extending!"); 7125 assert(VT.isInteger() == SVT.isInteger() && 7126 "Can't do FP-INT conversion!"); 7127 assert(VT.isVector() == SVT.isVector() && 7128 "Cannot use trunc store to convert to or from a vector!"); 7129 assert((!VT.isVector() || 7130 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7131 "Cannot use trunc store to change the number of vector elements!"); 7132 7133 SDVTList VTs = getVTList(MVT::Other); 7134 SDValue Undef = getUNDEF(Ptr.getValueType()); 7135 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7136 FoldingSetNodeID ID; 7137 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7138 ID.AddInteger(SVT.getRawBits()); 7139 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7140 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7141 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7142 void *IP = nullptr; 7143 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7144 cast<StoreSDNode>(E)->refineAlignment(MMO); 7145 return SDValue(E, 0); 7146 } 7147 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7148 ISD::UNINDEXED, true, SVT, MMO); 7149 createOperands(N, Ops); 7150 7151 CSEMap.InsertNode(N, IP); 7152 InsertNode(N); 7153 SDValue V(N, 0); 7154 NewSDValueDbgMsg(V, "Creating new node: ", this); 7155 return V; 7156 } 7157 7158 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7159 SDValue Base, SDValue Offset, 7160 ISD::MemIndexedMode AM) { 7161 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7162 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7163 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7164 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7165 FoldingSetNodeID ID; 7166 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7167 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7168 ID.AddInteger(ST->getRawSubclassData()); 7169 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7170 void *IP = nullptr; 7171 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7172 return SDValue(E, 0); 7173 7174 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7175 ST->isTruncatingStore(), ST->getMemoryVT(), 7176 ST->getMemOperand()); 7177 createOperands(N, Ops); 7178 7179 CSEMap.InsertNode(N, IP); 7180 InsertNode(N); 7181 SDValue V(N, 0); 7182 NewSDValueDbgMsg(V, "Creating new node: ", this); 7183 return V; 7184 } 7185 7186 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7187 SDValue Base, SDValue Offset, SDValue Mask, 7188 SDValue PassThru, EVT MemVT, 7189 MachineMemOperand *MMO, 7190 ISD::MemIndexedMode AM, 7191 ISD::LoadExtType ExtTy, bool isExpanding) { 7192 bool Indexed = AM != ISD::UNINDEXED; 7193 assert((Indexed || Offset.isUndef()) && 7194 "Unindexed masked load with an offset!"); 7195 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7196 : getVTList(VT, MVT::Other); 7197 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7198 FoldingSetNodeID ID; 7199 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7200 ID.AddInteger(MemVT.getRawBits()); 7201 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7202 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7203 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7204 void *IP = nullptr; 7205 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7206 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7207 return SDValue(E, 0); 7208 } 7209 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7210 AM, ExtTy, isExpanding, MemVT, MMO); 7211 createOperands(N, Ops); 7212 7213 CSEMap.InsertNode(N, IP); 7214 InsertNode(N); 7215 SDValue V(N, 0); 7216 NewSDValueDbgMsg(V, "Creating new node: ", this); 7217 return V; 7218 } 7219 7220 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7221 SDValue Base, SDValue Offset, 7222 ISD::MemIndexedMode AM) { 7223 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7224 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7225 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7226 Offset, LD->getMask(), LD->getPassThru(), 7227 LD->getMemoryVT(), LD->getMemOperand(), AM, 7228 LD->getExtensionType(), LD->isExpandingLoad()); 7229 } 7230 7231 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7232 SDValue Val, SDValue Base, SDValue Offset, 7233 SDValue Mask, EVT MemVT, 7234 MachineMemOperand *MMO, 7235 ISD::MemIndexedMode AM, bool IsTruncating, 7236 bool IsCompressing) { 7237 assert(Chain.getValueType() == MVT::Other && 7238 "Invalid chain type"); 7239 bool Indexed = AM != ISD::UNINDEXED; 7240 assert((Indexed || Offset.isUndef()) && 7241 "Unindexed masked store with an offset!"); 7242 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7243 : getVTList(MVT::Other); 7244 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7245 FoldingSetNodeID ID; 7246 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7247 ID.AddInteger(MemVT.getRawBits()); 7248 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7249 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7250 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7251 void *IP = nullptr; 7252 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7253 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7254 return SDValue(E, 0); 7255 } 7256 auto *N = 7257 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7258 IsTruncating, IsCompressing, MemVT, MMO); 7259 createOperands(N, Ops); 7260 7261 CSEMap.InsertNode(N, IP); 7262 InsertNode(N); 7263 SDValue V(N, 0); 7264 NewSDValueDbgMsg(V, "Creating new node: ", this); 7265 return V; 7266 } 7267 7268 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7269 SDValue Base, SDValue Offset, 7270 ISD::MemIndexedMode AM) { 7271 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7272 assert(ST->getOffset().isUndef() && 7273 "Masked store is already a indexed store!"); 7274 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7275 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7276 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7277 } 7278 7279 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7280 ArrayRef<SDValue> Ops, 7281 MachineMemOperand *MMO, 7282 ISD::MemIndexType IndexType) { 7283 assert(Ops.size() == 6 && "Incompatible number of operands"); 7284 7285 FoldingSetNodeID ID; 7286 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7287 ID.AddInteger(VT.getRawBits()); 7288 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7289 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7290 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7291 void *IP = nullptr; 7292 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7293 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7294 return SDValue(E, 0); 7295 } 7296 7297 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7298 VTs, VT, MMO, IndexType); 7299 createOperands(N, Ops); 7300 7301 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7302 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7303 assert(N->getMask().getValueType().getVectorNumElements() == 7304 N->getValueType(0).getVectorNumElements() && 7305 "Vector width mismatch between mask and data"); 7306 assert(N->getIndex().getValueType().getVectorNumElements() >= 7307 N->getValueType(0).getVectorNumElements() && 7308 "Vector width mismatch between index and data"); 7309 assert(isa<ConstantSDNode>(N->getScale()) && 7310 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7311 "Scale should be a constant power of 2"); 7312 7313 CSEMap.InsertNode(N, IP); 7314 InsertNode(N); 7315 SDValue V(N, 0); 7316 NewSDValueDbgMsg(V, "Creating new node: ", this); 7317 return V; 7318 } 7319 7320 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7321 ArrayRef<SDValue> Ops, 7322 MachineMemOperand *MMO, 7323 ISD::MemIndexType IndexType) { 7324 assert(Ops.size() == 6 && "Incompatible number of operands"); 7325 7326 FoldingSetNodeID ID; 7327 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7328 ID.AddInteger(VT.getRawBits()); 7329 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7330 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7331 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7332 void *IP = nullptr; 7333 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7334 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7335 return SDValue(E, 0); 7336 } 7337 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7338 VTs, VT, MMO, IndexType); 7339 createOperands(N, Ops); 7340 7341 assert(N->getMask().getValueType().getVectorNumElements() == 7342 N->getValue().getValueType().getVectorNumElements() && 7343 "Vector width mismatch between mask and data"); 7344 assert(N->getIndex().getValueType().getVectorNumElements() >= 7345 N->getValue().getValueType().getVectorNumElements() && 7346 "Vector width mismatch between index and data"); 7347 assert(isa<ConstantSDNode>(N->getScale()) && 7348 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7349 "Scale should be a constant power of 2"); 7350 7351 CSEMap.InsertNode(N, IP); 7352 InsertNode(N); 7353 SDValue V(N, 0); 7354 NewSDValueDbgMsg(V, "Creating new node: ", this); 7355 return V; 7356 } 7357 7358 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7359 // select undef, T, F --> T (if T is a constant), otherwise F 7360 // select, ?, undef, F --> F 7361 // select, ?, T, undef --> T 7362 if (Cond.isUndef()) 7363 return isConstantValueOfAnyType(T) ? T : F; 7364 if (T.isUndef()) 7365 return F; 7366 if (F.isUndef()) 7367 return T; 7368 7369 // select true, T, F --> T 7370 // select false, T, F --> F 7371 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7372 return CondC->isNullValue() ? F : T; 7373 7374 // TODO: This should simplify VSELECT with constant condition using something 7375 // like this (but check boolean contents to be complete?): 7376 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7377 // return T; 7378 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7379 // return F; 7380 7381 // select ?, T, T --> T 7382 if (T == F) 7383 return T; 7384 7385 return SDValue(); 7386 } 7387 7388 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7389 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7390 if (X.isUndef()) 7391 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7392 // shift X, undef --> undef (because it may shift by the bitwidth) 7393 if (Y.isUndef()) 7394 return getUNDEF(X.getValueType()); 7395 7396 // shift 0, Y --> 0 7397 // shift X, 0 --> X 7398 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7399 return X; 7400 7401 // shift X, C >= bitwidth(X) --> undef 7402 // All vector elements must be too big (or undef) to avoid partial undefs. 7403 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7404 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7405 }; 7406 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7407 return getUNDEF(X.getValueType()); 7408 7409 return SDValue(); 7410 } 7411 7412 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7413 SDNodeFlags Flags) { 7414 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7415 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7416 // operation is poison. That result can be relaxed to undef. 7417 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7418 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7419 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7420 (YC && YC->getValueAPF().isNaN()); 7421 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7422 (YC && YC->getValueAPF().isInfinity()); 7423 7424 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7425 return getUNDEF(X.getValueType()); 7426 7427 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7428 return getUNDEF(X.getValueType()); 7429 7430 if (!YC) 7431 return SDValue(); 7432 7433 // X + -0.0 --> X 7434 if (Opcode == ISD::FADD) 7435 if (YC->getValueAPF().isNegZero()) 7436 return X; 7437 7438 // X - +0.0 --> X 7439 if (Opcode == ISD::FSUB) 7440 if (YC->getValueAPF().isPosZero()) 7441 return X; 7442 7443 // X * 1.0 --> X 7444 // X / 1.0 --> X 7445 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7446 if (YC->getValueAPF().isExactlyValue(1.0)) 7447 return X; 7448 7449 return SDValue(); 7450 } 7451 7452 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7453 SDValue Ptr, SDValue SV, unsigned Align) { 7454 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7455 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7456 } 7457 7458 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7459 ArrayRef<SDUse> Ops) { 7460 switch (Ops.size()) { 7461 case 0: return getNode(Opcode, DL, VT); 7462 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7463 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7464 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7465 default: break; 7466 } 7467 7468 // Copy from an SDUse array into an SDValue array for use with 7469 // the regular getNode logic. 7470 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7471 return getNode(Opcode, DL, VT, NewOps); 7472 } 7473 7474 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7475 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7476 unsigned NumOps = Ops.size(); 7477 switch (NumOps) { 7478 case 0: return getNode(Opcode, DL, VT); 7479 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7480 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7481 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7482 default: break; 7483 } 7484 7485 switch (Opcode) { 7486 default: break; 7487 case ISD::BUILD_VECTOR: 7488 // Attempt to simplify BUILD_VECTOR. 7489 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7490 return V; 7491 break; 7492 case ISD::CONCAT_VECTORS: 7493 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7494 return V; 7495 break; 7496 case ISD::SELECT_CC: 7497 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7498 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7499 "LHS and RHS of condition must have same type!"); 7500 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7501 "True and False arms of SelectCC must have same type!"); 7502 assert(Ops[2].getValueType() == VT && 7503 "select_cc node must be of same type as true and false value!"); 7504 break; 7505 case ISD::BR_CC: 7506 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7507 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7508 "LHS/RHS of comparison should match types!"); 7509 break; 7510 } 7511 7512 // Memoize nodes. 7513 SDNode *N; 7514 SDVTList VTs = getVTList(VT); 7515 7516 if (VT != MVT::Glue) { 7517 FoldingSetNodeID ID; 7518 AddNodeIDNode(ID, Opcode, VTs, Ops); 7519 void *IP = nullptr; 7520 7521 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7522 return SDValue(E, 0); 7523 7524 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7525 createOperands(N, Ops); 7526 7527 CSEMap.InsertNode(N, IP); 7528 } else { 7529 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7530 createOperands(N, Ops); 7531 } 7532 7533 N->setFlags(Flags); 7534 InsertNode(N); 7535 SDValue V(N, 0); 7536 NewSDValueDbgMsg(V, "Creating new node: ", this); 7537 return V; 7538 } 7539 7540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7541 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7542 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7543 } 7544 7545 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7546 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7547 if (VTList.NumVTs == 1) 7548 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7549 7550 switch (Opcode) { 7551 case ISD::STRICT_FP_EXTEND: 7552 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7553 "Invalid STRICT_FP_EXTEND!"); 7554 assert(VTList.VTs[0].isFloatingPoint() && 7555 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7556 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7557 "STRICT_FP_EXTEND result type should be vector iff the operand " 7558 "type is vector!"); 7559 assert((!VTList.VTs[0].isVector() || 7560 VTList.VTs[0].getVectorNumElements() == 7561 Ops[1].getValueType().getVectorNumElements()) && 7562 "Vector element count mismatch!"); 7563 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7564 "Invalid fpext node, dst <= src!"); 7565 break; 7566 case ISD::STRICT_FP_ROUND: 7567 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7568 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7569 "STRICT_FP_ROUND result type should be vector iff the operand " 7570 "type is vector!"); 7571 assert((!VTList.VTs[0].isVector() || 7572 VTList.VTs[0].getVectorNumElements() == 7573 Ops[1].getValueType().getVectorNumElements()) && 7574 "Vector element count mismatch!"); 7575 assert(VTList.VTs[0].isFloatingPoint() && 7576 Ops[1].getValueType().isFloatingPoint() && 7577 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7578 isa<ConstantSDNode>(Ops[2]) && 7579 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7580 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7581 "Invalid STRICT_FP_ROUND!"); 7582 break; 7583 #if 0 7584 // FIXME: figure out how to safely handle things like 7585 // int foo(int x) { return 1 << (x & 255); } 7586 // int bar() { return foo(256); } 7587 case ISD::SRA_PARTS: 7588 case ISD::SRL_PARTS: 7589 case ISD::SHL_PARTS: 7590 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7591 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7592 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7593 else if (N3.getOpcode() == ISD::AND) 7594 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7595 // If the and is only masking out bits that cannot effect the shift, 7596 // eliminate the and. 7597 unsigned NumBits = VT.getScalarSizeInBits()*2; 7598 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7599 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7600 } 7601 break; 7602 #endif 7603 } 7604 7605 // Memoize the node unless it returns a flag. 7606 SDNode *N; 7607 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7608 FoldingSetNodeID ID; 7609 AddNodeIDNode(ID, Opcode, VTList, Ops); 7610 void *IP = nullptr; 7611 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7612 return SDValue(E, 0); 7613 7614 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7615 createOperands(N, Ops); 7616 CSEMap.InsertNode(N, IP); 7617 } else { 7618 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7619 createOperands(N, Ops); 7620 } 7621 7622 N->setFlags(Flags); 7623 InsertNode(N); 7624 SDValue V(N, 0); 7625 NewSDValueDbgMsg(V, "Creating new node: ", this); 7626 return V; 7627 } 7628 7629 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7630 SDVTList VTList) { 7631 return getNode(Opcode, DL, VTList, None); 7632 } 7633 7634 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7635 SDValue N1) { 7636 SDValue Ops[] = { N1 }; 7637 return getNode(Opcode, DL, VTList, Ops); 7638 } 7639 7640 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7641 SDValue N1, SDValue N2) { 7642 SDValue Ops[] = { N1, N2 }; 7643 return getNode(Opcode, DL, VTList, Ops); 7644 } 7645 7646 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7647 SDValue N1, SDValue N2, SDValue N3) { 7648 SDValue Ops[] = { N1, N2, N3 }; 7649 return getNode(Opcode, DL, VTList, Ops); 7650 } 7651 7652 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7653 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7654 SDValue Ops[] = { N1, N2, N3, N4 }; 7655 return getNode(Opcode, DL, VTList, Ops); 7656 } 7657 7658 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7659 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7660 SDValue N5) { 7661 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7662 return getNode(Opcode, DL, VTList, Ops); 7663 } 7664 7665 SDVTList SelectionDAG::getVTList(EVT VT) { 7666 return makeVTList(SDNode::getValueTypeList(VT), 1); 7667 } 7668 7669 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7670 FoldingSetNodeID ID; 7671 ID.AddInteger(2U); 7672 ID.AddInteger(VT1.getRawBits()); 7673 ID.AddInteger(VT2.getRawBits()); 7674 7675 void *IP = nullptr; 7676 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7677 if (!Result) { 7678 EVT *Array = Allocator.Allocate<EVT>(2); 7679 Array[0] = VT1; 7680 Array[1] = VT2; 7681 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7682 VTListMap.InsertNode(Result, IP); 7683 } 7684 return Result->getSDVTList(); 7685 } 7686 7687 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7688 FoldingSetNodeID ID; 7689 ID.AddInteger(3U); 7690 ID.AddInteger(VT1.getRawBits()); 7691 ID.AddInteger(VT2.getRawBits()); 7692 ID.AddInteger(VT3.getRawBits()); 7693 7694 void *IP = nullptr; 7695 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7696 if (!Result) { 7697 EVT *Array = Allocator.Allocate<EVT>(3); 7698 Array[0] = VT1; 7699 Array[1] = VT2; 7700 Array[2] = VT3; 7701 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7702 VTListMap.InsertNode(Result, IP); 7703 } 7704 return Result->getSDVTList(); 7705 } 7706 7707 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7708 FoldingSetNodeID ID; 7709 ID.AddInteger(4U); 7710 ID.AddInteger(VT1.getRawBits()); 7711 ID.AddInteger(VT2.getRawBits()); 7712 ID.AddInteger(VT3.getRawBits()); 7713 ID.AddInteger(VT4.getRawBits()); 7714 7715 void *IP = nullptr; 7716 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7717 if (!Result) { 7718 EVT *Array = Allocator.Allocate<EVT>(4); 7719 Array[0] = VT1; 7720 Array[1] = VT2; 7721 Array[2] = VT3; 7722 Array[3] = VT4; 7723 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7724 VTListMap.InsertNode(Result, IP); 7725 } 7726 return Result->getSDVTList(); 7727 } 7728 7729 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7730 unsigned NumVTs = VTs.size(); 7731 FoldingSetNodeID ID; 7732 ID.AddInteger(NumVTs); 7733 for (unsigned index = 0; index < NumVTs; index++) { 7734 ID.AddInteger(VTs[index].getRawBits()); 7735 } 7736 7737 void *IP = nullptr; 7738 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7739 if (!Result) { 7740 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7741 llvm::copy(VTs, Array); 7742 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7743 VTListMap.InsertNode(Result, IP); 7744 } 7745 return Result->getSDVTList(); 7746 } 7747 7748 7749 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7750 /// specified operands. If the resultant node already exists in the DAG, 7751 /// this does not modify the specified node, instead it returns the node that 7752 /// already exists. If the resultant node does not exist in the DAG, the 7753 /// input node is returned. As a degenerate case, if you specify the same 7754 /// input operands as the node already has, the input node is returned. 7755 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7756 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7757 7758 // Check to see if there is no change. 7759 if (Op == N->getOperand(0)) return N; 7760 7761 // See if the modified node already exists. 7762 void *InsertPos = nullptr; 7763 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7764 return Existing; 7765 7766 // Nope it doesn't. Remove the node from its current place in the maps. 7767 if (InsertPos) 7768 if (!RemoveNodeFromCSEMaps(N)) 7769 InsertPos = nullptr; 7770 7771 // Now we update the operands. 7772 N->OperandList[0].set(Op); 7773 7774 updateDivergence(N); 7775 // If this gets put into a CSE map, add it. 7776 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7777 return N; 7778 } 7779 7780 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7781 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7782 7783 // Check to see if there is no change. 7784 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7785 return N; // No operands changed, just return the input node. 7786 7787 // See if the modified node already exists. 7788 void *InsertPos = nullptr; 7789 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7790 return Existing; 7791 7792 // Nope it doesn't. Remove the node from its current place in the maps. 7793 if (InsertPos) 7794 if (!RemoveNodeFromCSEMaps(N)) 7795 InsertPos = nullptr; 7796 7797 // Now we update the operands. 7798 if (N->OperandList[0] != Op1) 7799 N->OperandList[0].set(Op1); 7800 if (N->OperandList[1] != Op2) 7801 N->OperandList[1].set(Op2); 7802 7803 updateDivergence(N); 7804 // If this gets put into a CSE map, add it. 7805 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7806 return N; 7807 } 7808 7809 SDNode *SelectionDAG:: 7810 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7811 SDValue Ops[] = { Op1, Op2, Op3 }; 7812 return UpdateNodeOperands(N, Ops); 7813 } 7814 7815 SDNode *SelectionDAG:: 7816 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7817 SDValue Op3, SDValue Op4) { 7818 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7819 return UpdateNodeOperands(N, Ops); 7820 } 7821 7822 SDNode *SelectionDAG:: 7823 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7824 SDValue Op3, SDValue Op4, SDValue Op5) { 7825 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7826 return UpdateNodeOperands(N, Ops); 7827 } 7828 7829 SDNode *SelectionDAG:: 7830 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7831 unsigned NumOps = Ops.size(); 7832 assert(N->getNumOperands() == NumOps && 7833 "Update with wrong number of operands"); 7834 7835 // If no operands changed just return the input node. 7836 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7837 return N; 7838 7839 // See if the modified node already exists. 7840 void *InsertPos = nullptr; 7841 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7842 return Existing; 7843 7844 // Nope it doesn't. Remove the node from its current place in the maps. 7845 if (InsertPos) 7846 if (!RemoveNodeFromCSEMaps(N)) 7847 InsertPos = nullptr; 7848 7849 // Now we update the operands. 7850 for (unsigned i = 0; i != NumOps; ++i) 7851 if (N->OperandList[i] != Ops[i]) 7852 N->OperandList[i].set(Ops[i]); 7853 7854 updateDivergence(N); 7855 // If this gets put into a CSE map, add it. 7856 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7857 return N; 7858 } 7859 7860 /// DropOperands - Release the operands and set this node to have 7861 /// zero operands. 7862 void SDNode::DropOperands() { 7863 // Unlike the code in MorphNodeTo that does this, we don't need to 7864 // watch for dead nodes here. 7865 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7866 SDUse &Use = *I++; 7867 Use.set(SDValue()); 7868 } 7869 } 7870 7871 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7872 ArrayRef<MachineMemOperand *> NewMemRefs) { 7873 if (NewMemRefs.empty()) { 7874 N->clearMemRefs(); 7875 return; 7876 } 7877 7878 // Check if we can avoid allocating by storing a single reference directly. 7879 if (NewMemRefs.size() == 1) { 7880 N->MemRefs = NewMemRefs[0]; 7881 N->NumMemRefs = 1; 7882 return; 7883 } 7884 7885 MachineMemOperand **MemRefsBuffer = 7886 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7887 llvm::copy(NewMemRefs, MemRefsBuffer); 7888 N->MemRefs = MemRefsBuffer; 7889 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7890 } 7891 7892 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7893 /// machine opcode. 7894 /// 7895 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7896 EVT VT) { 7897 SDVTList VTs = getVTList(VT); 7898 return SelectNodeTo(N, MachineOpc, VTs, None); 7899 } 7900 7901 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7902 EVT VT, SDValue Op1) { 7903 SDVTList VTs = getVTList(VT); 7904 SDValue Ops[] = { Op1 }; 7905 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7906 } 7907 7908 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7909 EVT VT, SDValue Op1, 7910 SDValue Op2) { 7911 SDVTList VTs = getVTList(VT); 7912 SDValue Ops[] = { Op1, Op2 }; 7913 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7914 } 7915 7916 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7917 EVT VT, SDValue Op1, 7918 SDValue Op2, SDValue Op3) { 7919 SDVTList VTs = getVTList(VT); 7920 SDValue Ops[] = { Op1, Op2, Op3 }; 7921 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7922 } 7923 7924 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7925 EVT VT, ArrayRef<SDValue> Ops) { 7926 SDVTList VTs = getVTList(VT); 7927 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7928 } 7929 7930 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7931 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7932 SDVTList VTs = getVTList(VT1, VT2); 7933 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7934 } 7935 7936 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7937 EVT VT1, EVT VT2) { 7938 SDVTList VTs = getVTList(VT1, VT2); 7939 return SelectNodeTo(N, MachineOpc, VTs, None); 7940 } 7941 7942 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7943 EVT VT1, EVT VT2, EVT VT3, 7944 ArrayRef<SDValue> Ops) { 7945 SDVTList VTs = getVTList(VT1, VT2, VT3); 7946 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7947 } 7948 7949 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7950 EVT VT1, EVT VT2, 7951 SDValue Op1, SDValue Op2) { 7952 SDVTList VTs = getVTList(VT1, VT2); 7953 SDValue Ops[] = { Op1, Op2 }; 7954 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7955 } 7956 7957 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7958 SDVTList VTs,ArrayRef<SDValue> Ops) { 7959 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7960 // Reset the NodeID to -1. 7961 New->setNodeId(-1); 7962 if (New != N) { 7963 ReplaceAllUsesWith(N, New); 7964 RemoveDeadNode(N); 7965 } 7966 return New; 7967 } 7968 7969 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7970 /// the line number information on the merged node since it is not possible to 7971 /// preserve the information that operation is associated with multiple lines. 7972 /// This will make the debugger working better at -O0, were there is a higher 7973 /// probability having other instructions associated with that line. 7974 /// 7975 /// For IROrder, we keep the smaller of the two 7976 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7977 DebugLoc NLoc = N->getDebugLoc(); 7978 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7979 N->setDebugLoc(DebugLoc()); 7980 } 7981 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7982 N->setIROrder(Order); 7983 return N; 7984 } 7985 7986 /// MorphNodeTo - This *mutates* the specified node to have the specified 7987 /// return type, opcode, and operands. 7988 /// 7989 /// Note that MorphNodeTo returns the resultant node. If there is already a 7990 /// node of the specified opcode and operands, it returns that node instead of 7991 /// the current one. Note that the SDLoc need not be the same. 7992 /// 7993 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7994 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7995 /// node, and because it doesn't require CSE recalculation for any of 7996 /// the node's users. 7997 /// 7998 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7999 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8000 /// the legalizer which maintain worklists that would need to be updated when 8001 /// deleting things. 8002 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8003 SDVTList VTs, ArrayRef<SDValue> Ops) { 8004 // If an identical node already exists, use it. 8005 void *IP = nullptr; 8006 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8007 FoldingSetNodeID ID; 8008 AddNodeIDNode(ID, Opc, VTs, Ops); 8009 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8010 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8011 } 8012 8013 if (!RemoveNodeFromCSEMaps(N)) 8014 IP = nullptr; 8015 8016 // Start the morphing. 8017 N->NodeType = Opc; 8018 N->ValueList = VTs.VTs; 8019 N->NumValues = VTs.NumVTs; 8020 8021 // Clear the operands list, updating used nodes to remove this from their 8022 // use list. Keep track of any operands that become dead as a result. 8023 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8024 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8025 SDUse &Use = *I++; 8026 SDNode *Used = Use.getNode(); 8027 Use.set(SDValue()); 8028 if (Used->use_empty()) 8029 DeadNodeSet.insert(Used); 8030 } 8031 8032 // For MachineNode, initialize the memory references information. 8033 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8034 MN->clearMemRefs(); 8035 8036 // Swap for an appropriately sized array from the recycler. 8037 removeOperands(N); 8038 createOperands(N, Ops); 8039 8040 // Delete any nodes that are still dead after adding the uses for the 8041 // new operands. 8042 if (!DeadNodeSet.empty()) { 8043 SmallVector<SDNode *, 16> DeadNodes; 8044 for (SDNode *N : DeadNodeSet) 8045 if (N->use_empty()) 8046 DeadNodes.push_back(N); 8047 RemoveDeadNodes(DeadNodes); 8048 } 8049 8050 if (IP) 8051 CSEMap.InsertNode(N, IP); // Memoize the new node. 8052 return N; 8053 } 8054 8055 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8056 unsigned OrigOpc = Node->getOpcode(); 8057 unsigned NewOpc; 8058 switch (OrigOpc) { 8059 default: 8060 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8061 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8062 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8063 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8064 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8065 #include "llvm/IR/ConstrainedOps.def" 8066 } 8067 8068 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8069 8070 // We're taking this node out of the chain, so we need to re-link things. 8071 SDValue InputChain = Node->getOperand(0); 8072 SDValue OutputChain = SDValue(Node, 1); 8073 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8074 8075 SmallVector<SDValue, 3> Ops; 8076 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8077 Ops.push_back(Node->getOperand(i)); 8078 8079 SDVTList VTs = getVTList(Node->getValueType(0)); 8080 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8081 8082 // MorphNodeTo can operate in two ways: if an existing node with the 8083 // specified operands exists, it can just return it. Otherwise, it 8084 // updates the node in place to have the requested operands. 8085 if (Res == Node) { 8086 // If we updated the node in place, reset the node ID. To the isel, 8087 // this should be just like a newly allocated machine node. 8088 Res->setNodeId(-1); 8089 } else { 8090 ReplaceAllUsesWith(Node, Res); 8091 RemoveDeadNode(Node); 8092 } 8093 8094 return Res; 8095 } 8096 8097 /// getMachineNode - These are used for target selectors to create a new node 8098 /// with specified return type(s), MachineInstr opcode, and operands. 8099 /// 8100 /// Note that getMachineNode returns the resultant node. If there is already a 8101 /// node of the specified opcode and operands, it returns that node instead of 8102 /// the current one. 8103 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8104 EVT VT) { 8105 SDVTList VTs = getVTList(VT); 8106 return getMachineNode(Opcode, dl, VTs, None); 8107 } 8108 8109 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8110 EVT VT, SDValue Op1) { 8111 SDVTList VTs = getVTList(VT); 8112 SDValue Ops[] = { Op1 }; 8113 return getMachineNode(Opcode, dl, VTs, Ops); 8114 } 8115 8116 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8117 EVT VT, SDValue Op1, SDValue Op2) { 8118 SDVTList VTs = getVTList(VT); 8119 SDValue Ops[] = { Op1, Op2 }; 8120 return getMachineNode(Opcode, dl, VTs, Ops); 8121 } 8122 8123 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8124 EVT VT, SDValue Op1, SDValue Op2, 8125 SDValue Op3) { 8126 SDVTList VTs = getVTList(VT); 8127 SDValue Ops[] = { Op1, Op2, Op3 }; 8128 return getMachineNode(Opcode, dl, VTs, Ops); 8129 } 8130 8131 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8132 EVT VT, ArrayRef<SDValue> Ops) { 8133 SDVTList VTs = getVTList(VT); 8134 return getMachineNode(Opcode, dl, VTs, Ops); 8135 } 8136 8137 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8138 EVT VT1, EVT VT2, SDValue Op1, 8139 SDValue Op2) { 8140 SDVTList VTs = getVTList(VT1, VT2); 8141 SDValue Ops[] = { Op1, Op2 }; 8142 return getMachineNode(Opcode, dl, VTs, Ops); 8143 } 8144 8145 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8146 EVT VT1, EVT VT2, SDValue Op1, 8147 SDValue Op2, SDValue Op3) { 8148 SDVTList VTs = getVTList(VT1, VT2); 8149 SDValue Ops[] = { Op1, Op2, Op3 }; 8150 return getMachineNode(Opcode, dl, VTs, Ops); 8151 } 8152 8153 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8154 EVT VT1, EVT VT2, 8155 ArrayRef<SDValue> Ops) { 8156 SDVTList VTs = getVTList(VT1, VT2); 8157 return getMachineNode(Opcode, dl, VTs, Ops); 8158 } 8159 8160 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8161 EVT VT1, EVT VT2, EVT VT3, 8162 SDValue Op1, SDValue Op2) { 8163 SDVTList VTs = getVTList(VT1, VT2, VT3); 8164 SDValue Ops[] = { Op1, Op2 }; 8165 return getMachineNode(Opcode, dl, VTs, Ops); 8166 } 8167 8168 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8169 EVT VT1, EVT VT2, EVT VT3, 8170 SDValue Op1, SDValue Op2, 8171 SDValue Op3) { 8172 SDVTList VTs = getVTList(VT1, VT2, VT3); 8173 SDValue Ops[] = { Op1, Op2, Op3 }; 8174 return getMachineNode(Opcode, dl, VTs, Ops); 8175 } 8176 8177 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8178 EVT VT1, EVT VT2, EVT VT3, 8179 ArrayRef<SDValue> Ops) { 8180 SDVTList VTs = getVTList(VT1, VT2, VT3); 8181 return getMachineNode(Opcode, dl, VTs, Ops); 8182 } 8183 8184 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8185 ArrayRef<EVT> ResultTys, 8186 ArrayRef<SDValue> Ops) { 8187 SDVTList VTs = getVTList(ResultTys); 8188 return getMachineNode(Opcode, dl, VTs, Ops); 8189 } 8190 8191 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8192 SDVTList VTs, 8193 ArrayRef<SDValue> Ops) { 8194 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8195 MachineSDNode *N; 8196 void *IP = nullptr; 8197 8198 if (DoCSE) { 8199 FoldingSetNodeID ID; 8200 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8201 IP = nullptr; 8202 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8203 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8204 } 8205 } 8206 8207 // Allocate a new MachineSDNode. 8208 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8209 createOperands(N, Ops); 8210 8211 if (DoCSE) 8212 CSEMap.InsertNode(N, IP); 8213 8214 InsertNode(N); 8215 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8216 return N; 8217 } 8218 8219 /// getTargetExtractSubreg - A convenience function for creating 8220 /// TargetOpcode::EXTRACT_SUBREG nodes. 8221 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8222 SDValue Operand) { 8223 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8224 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8225 VT, Operand, SRIdxVal); 8226 return SDValue(Subreg, 0); 8227 } 8228 8229 /// getTargetInsertSubreg - A convenience function for creating 8230 /// TargetOpcode::INSERT_SUBREG nodes. 8231 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8232 SDValue Operand, SDValue Subreg) { 8233 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8234 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8235 VT, Operand, Subreg, SRIdxVal); 8236 return SDValue(Result, 0); 8237 } 8238 8239 /// getNodeIfExists - Get the specified node if it's already available, or 8240 /// else return NULL. 8241 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8242 ArrayRef<SDValue> Ops, 8243 const SDNodeFlags Flags) { 8244 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8245 FoldingSetNodeID ID; 8246 AddNodeIDNode(ID, Opcode, VTList, Ops); 8247 void *IP = nullptr; 8248 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8249 E->intersectFlagsWith(Flags); 8250 return E; 8251 } 8252 } 8253 return nullptr; 8254 } 8255 8256 /// getDbgValue - Creates a SDDbgValue node. 8257 /// 8258 /// SDNode 8259 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8260 SDNode *N, unsigned R, bool IsIndirect, 8261 const DebugLoc &DL, unsigned O) { 8262 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8263 "Expected inlined-at fields to agree"); 8264 return new (DbgInfo->getAlloc()) 8265 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8266 } 8267 8268 /// Constant 8269 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8270 DIExpression *Expr, 8271 const Value *C, 8272 const DebugLoc &DL, unsigned O) { 8273 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8274 "Expected inlined-at fields to agree"); 8275 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8276 } 8277 8278 /// FrameIndex 8279 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8280 DIExpression *Expr, unsigned FI, 8281 bool IsIndirect, 8282 const DebugLoc &DL, 8283 unsigned O) { 8284 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8285 "Expected inlined-at fields to agree"); 8286 return new (DbgInfo->getAlloc()) 8287 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8288 } 8289 8290 /// VReg 8291 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8292 DIExpression *Expr, 8293 unsigned VReg, bool IsIndirect, 8294 const DebugLoc &DL, unsigned O) { 8295 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8296 "Expected inlined-at fields to agree"); 8297 return new (DbgInfo->getAlloc()) 8298 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8299 } 8300 8301 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8302 unsigned OffsetInBits, unsigned SizeInBits, 8303 bool InvalidateDbg) { 8304 SDNode *FromNode = From.getNode(); 8305 SDNode *ToNode = To.getNode(); 8306 assert(FromNode && ToNode && "Can't modify dbg values"); 8307 8308 // PR35338 8309 // TODO: assert(From != To && "Redundant dbg value transfer"); 8310 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8311 if (From == To || FromNode == ToNode) 8312 return; 8313 8314 if (!FromNode->getHasDebugValue()) 8315 return; 8316 8317 SmallVector<SDDbgValue *, 2> ClonedDVs; 8318 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8319 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8320 continue; 8321 8322 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8323 8324 // Just transfer the dbg value attached to From. 8325 if (Dbg->getResNo() != From.getResNo()) 8326 continue; 8327 8328 DIVariable *Var = Dbg->getVariable(); 8329 auto *Expr = Dbg->getExpression(); 8330 // If a fragment is requested, update the expression. 8331 if (SizeInBits) { 8332 // When splitting a larger (e.g., sign-extended) value whose 8333 // lower bits are described with an SDDbgValue, do not attempt 8334 // to transfer the SDDbgValue to the upper bits. 8335 if (auto FI = Expr->getFragmentInfo()) 8336 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8337 continue; 8338 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8339 SizeInBits); 8340 if (!Fragment) 8341 continue; 8342 Expr = *Fragment; 8343 } 8344 // Clone the SDDbgValue and move it to To. 8345 SDDbgValue *Clone = getDbgValue( 8346 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8347 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8348 ClonedDVs.push_back(Clone); 8349 8350 if (InvalidateDbg) { 8351 // Invalidate value and indicate the SDDbgValue should not be emitted. 8352 Dbg->setIsInvalidated(); 8353 Dbg->setIsEmitted(); 8354 } 8355 } 8356 8357 for (SDDbgValue *Dbg : ClonedDVs) 8358 AddDbgValue(Dbg, ToNode, false); 8359 } 8360 8361 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8362 if (!N.getHasDebugValue()) 8363 return; 8364 8365 SmallVector<SDDbgValue *, 2> ClonedDVs; 8366 for (auto DV : GetDbgValues(&N)) { 8367 if (DV->isInvalidated()) 8368 continue; 8369 switch (N.getOpcode()) { 8370 default: 8371 break; 8372 case ISD::ADD: 8373 SDValue N0 = N.getOperand(0); 8374 SDValue N1 = N.getOperand(1); 8375 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8376 isConstantIntBuildVectorOrConstantInt(N1)) { 8377 uint64_t Offset = N.getConstantOperandVal(1); 8378 // Rewrite an ADD constant node into a DIExpression. Since we are 8379 // performing arithmetic to compute the variable's *value* in the 8380 // DIExpression, we need to mark the expression with a 8381 // DW_OP_stack_value. 8382 auto *DIExpr = DV->getExpression(); 8383 DIExpr = 8384 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8385 SDDbgValue *Clone = 8386 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8387 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8388 ClonedDVs.push_back(Clone); 8389 DV->setIsInvalidated(); 8390 DV->setIsEmitted(); 8391 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8392 N0.getNode()->dumprFull(this); 8393 dbgs() << " into " << *DIExpr << '\n'); 8394 } 8395 } 8396 } 8397 8398 for (SDDbgValue *Dbg : ClonedDVs) 8399 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8400 } 8401 8402 /// Creates a SDDbgLabel node. 8403 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8404 const DebugLoc &DL, unsigned O) { 8405 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8406 "Expected inlined-at fields to agree"); 8407 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8408 } 8409 8410 namespace { 8411 8412 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8413 /// pointed to by a use iterator is deleted, increment the use iterator 8414 /// so that it doesn't dangle. 8415 /// 8416 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8417 SDNode::use_iterator &UI; 8418 SDNode::use_iterator &UE; 8419 8420 void NodeDeleted(SDNode *N, SDNode *E) override { 8421 // Increment the iterator as needed. 8422 while (UI != UE && N == *UI) 8423 ++UI; 8424 } 8425 8426 public: 8427 RAUWUpdateListener(SelectionDAG &d, 8428 SDNode::use_iterator &ui, 8429 SDNode::use_iterator &ue) 8430 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8431 }; 8432 8433 } // end anonymous namespace 8434 8435 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8436 /// This can cause recursive merging of nodes in the DAG. 8437 /// 8438 /// This version assumes From has a single result value. 8439 /// 8440 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8441 SDNode *From = FromN.getNode(); 8442 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8443 "Cannot replace with this method!"); 8444 assert(From != To.getNode() && "Cannot replace uses of with self"); 8445 8446 // Preserve Debug Values 8447 transferDbgValues(FromN, To); 8448 8449 // Iterate over all the existing uses of From. New uses will be added 8450 // to the beginning of the use list, which we avoid visiting. 8451 // This specifically avoids visiting uses of From that arise while the 8452 // replacement is happening, because any such uses would be the result 8453 // of CSE: If an existing node looks like From after one of its operands 8454 // is replaced by To, we don't want to replace of all its users with To 8455 // too. See PR3018 for more info. 8456 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8457 RAUWUpdateListener Listener(*this, UI, UE); 8458 while (UI != UE) { 8459 SDNode *User = *UI; 8460 8461 // This node is about to morph, remove its old self from the CSE maps. 8462 RemoveNodeFromCSEMaps(User); 8463 8464 // A user can appear in a use list multiple times, and when this 8465 // happens the uses are usually next to each other in the list. 8466 // To help reduce the number of CSE recomputations, process all 8467 // the uses of this user that we can find this way. 8468 do { 8469 SDUse &Use = UI.getUse(); 8470 ++UI; 8471 Use.set(To); 8472 if (To->isDivergent() != From->isDivergent()) 8473 updateDivergence(User); 8474 } while (UI != UE && *UI == User); 8475 // Now that we have modified User, add it back to the CSE maps. If it 8476 // already exists there, recursively merge the results together. 8477 AddModifiedNodeToCSEMaps(User); 8478 } 8479 8480 // If we just RAUW'd the root, take note. 8481 if (FromN == getRoot()) 8482 setRoot(To); 8483 } 8484 8485 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8486 /// This can cause recursive merging of nodes in the DAG. 8487 /// 8488 /// This version assumes that for each value of From, there is a 8489 /// corresponding value in To in the same position with the same type. 8490 /// 8491 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8492 #ifndef NDEBUG 8493 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8494 assert((!From->hasAnyUseOfValue(i) || 8495 From->getValueType(i) == To->getValueType(i)) && 8496 "Cannot use this version of ReplaceAllUsesWith!"); 8497 #endif 8498 8499 // Handle the trivial case. 8500 if (From == To) 8501 return; 8502 8503 // Preserve Debug Info. Only do this if there's a use. 8504 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8505 if (From->hasAnyUseOfValue(i)) { 8506 assert((i < To->getNumValues()) && "Invalid To location"); 8507 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8508 } 8509 8510 // Iterate over just the existing users of From. See the comments in 8511 // the ReplaceAllUsesWith above. 8512 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8513 RAUWUpdateListener Listener(*this, UI, UE); 8514 while (UI != UE) { 8515 SDNode *User = *UI; 8516 8517 // This node is about to morph, remove its old self from the CSE maps. 8518 RemoveNodeFromCSEMaps(User); 8519 8520 // A user can appear in a use list multiple times, and when this 8521 // happens the uses are usually next to each other in the list. 8522 // To help reduce the number of CSE recomputations, process all 8523 // the uses of this user that we can find this way. 8524 do { 8525 SDUse &Use = UI.getUse(); 8526 ++UI; 8527 Use.setNode(To); 8528 if (To->isDivergent() != From->isDivergent()) 8529 updateDivergence(User); 8530 } while (UI != UE && *UI == User); 8531 8532 // Now that we have modified User, add it back to the CSE maps. If it 8533 // already exists there, recursively merge the results together. 8534 AddModifiedNodeToCSEMaps(User); 8535 } 8536 8537 // If we just RAUW'd the root, take note. 8538 if (From == getRoot().getNode()) 8539 setRoot(SDValue(To, getRoot().getResNo())); 8540 } 8541 8542 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8543 /// This can cause recursive merging of nodes in the DAG. 8544 /// 8545 /// This version can replace From with any result values. To must match the 8546 /// number and types of values returned by From. 8547 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8548 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8549 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8550 8551 // Preserve Debug Info. 8552 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8553 transferDbgValues(SDValue(From, i), To[i]); 8554 8555 // Iterate over just the existing users of From. See the comments in 8556 // the ReplaceAllUsesWith above. 8557 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8558 RAUWUpdateListener Listener(*this, UI, UE); 8559 while (UI != UE) { 8560 SDNode *User = *UI; 8561 8562 // This node is about to morph, remove its old self from the CSE maps. 8563 RemoveNodeFromCSEMaps(User); 8564 8565 // A user can appear in a use list multiple times, and when this happens the 8566 // uses are usually next to each other in the list. To help reduce the 8567 // number of CSE and divergence recomputations, process all the uses of this 8568 // user that we can find this way. 8569 bool To_IsDivergent = false; 8570 do { 8571 SDUse &Use = UI.getUse(); 8572 const SDValue &ToOp = To[Use.getResNo()]; 8573 ++UI; 8574 Use.set(ToOp); 8575 To_IsDivergent |= ToOp->isDivergent(); 8576 } while (UI != UE && *UI == User); 8577 8578 if (To_IsDivergent != From->isDivergent()) 8579 updateDivergence(User); 8580 8581 // Now that we have modified User, add it back to the CSE maps. If it 8582 // already exists there, recursively merge the results together. 8583 AddModifiedNodeToCSEMaps(User); 8584 } 8585 8586 // If we just RAUW'd the root, take note. 8587 if (From == getRoot().getNode()) 8588 setRoot(SDValue(To[getRoot().getResNo()])); 8589 } 8590 8591 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8592 /// uses of other values produced by From.getNode() alone. The Deleted 8593 /// vector is handled the same way as for ReplaceAllUsesWith. 8594 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8595 // Handle the really simple, really trivial case efficiently. 8596 if (From == To) return; 8597 8598 // Handle the simple, trivial, case efficiently. 8599 if (From.getNode()->getNumValues() == 1) { 8600 ReplaceAllUsesWith(From, To); 8601 return; 8602 } 8603 8604 // Preserve Debug Info. 8605 transferDbgValues(From, To); 8606 8607 // Iterate over just the existing users of From. See the comments in 8608 // the ReplaceAllUsesWith above. 8609 SDNode::use_iterator UI = From.getNode()->use_begin(), 8610 UE = From.getNode()->use_end(); 8611 RAUWUpdateListener Listener(*this, UI, UE); 8612 while (UI != UE) { 8613 SDNode *User = *UI; 8614 bool UserRemovedFromCSEMaps = false; 8615 8616 // A user can appear in a use list multiple times, and when this 8617 // happens the uses are usually next to each other in the list. 8618 // To help reduce the number of CSE recomputations, process all 8619 // the uses of this user that we can find this way. 8620 do { 8621 SDUse &Use = UI.getUse(); 8622 8623 // Skip uses of different values from the same node. 8624 if (Use.getResNo() != From.getResNo()) { 8625 ++UI; 8626 continue; 8627 } 8628 8629 // If this node hasn't been modified yet, it's still in the CSE maps, 8630 // so remove its old self from the CSE maps. 8631 if (!UserRemovedFromCSEMaps) { 8632 RemoveNodeFromCSEMaps(User); 8633 UserRemovedFromCSEMaps = true; 8634 } 8635 8636 ++UI; 8637 Use.set(To); 8638 if (To->isDivergent() != From->isDivergent()) 8639 updateDivergence(User); 8640 } while (UI != UE && *UI == User); 8641 // We are iterating over all uses of the From node, so if a use 8642 // doesn't use the specific value, no changes are made. 8643 if (!UserRemovedFromCSEMaps) 8644 continue; 8645 8646 // Now that we have modified User, add it back to the CSE maps. If it 8647 // already exists there, recursively merge the results together. 8648 AddModifiedNodeToCSEMaps(User); 8649 } 8650 8651 // If we just RAUW'd the root, take note. 8652 if (From == getRoot()) 8653 setRoot(To); 8654 } 8655 8656 namespace { 8657 8658 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8659 /// to record information about a use. 8660 struct UseMemo { 8661 SDNode *User; 8662 unsigned Index; 8663 SDUse *Use; 8664 }; 8665 8666 /// operator< - Sort Memos by User. 8667 bool operator<(const UseMemo &L, const UseMemo &R) { 8668 return (intptr_t)L.User < (intptr_t)R.User; 8669 } 8670 8671 } // end anonymous namespace 8672 8673 void SelectionDAG::updateDivergence(SDNode * N) 8674 { 8675 if (TLI->isSDNodeAlwaysUniform(N)) 8676 return; 8677 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8678 for (auto &Op : N->ops()) { 8679 if (Op.Val.getValueType() != MVT::Other) 8680 IsDivergent |= Op.getNode()->isDivergent(); 8681 } 8682 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8683 N->SDNodeBits.IsDivergent = IsDivergent; 8684 for (auto U : N->uses()) { 8685 updateDivergence(U); 8686 } 8687 } 8688 } 8689 8690 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8691 DenseMap<SDNode *, unsigned> Degree; 8692 Order.reserve(AllNodes.size()); 8693 for (auto &N : allnodes()) { 8694 unsigned NOps = N.getNumOperands(); 8695 Degree[&N] = NOps; 8696 if (0 == NOps) 8697 Order.push_back(&N); 8698 } 8699 for (size_t I = 0; I != Order.size(); ++I) { 8700 SDNode *N = Order[I]; 8701 for (auto U : N->uses()) { 8702 unsigned &UnsortedOps = Degree[U]; 8703 if (0 == --UnsortedOps) 8704 Order.push_back(U); 8705 } 8706 } 8707 } 8708 8709 #ifndef NDEBUG 8710 void SelectionDAG::VerifyDAGDiverence() { 8711 std::vector<SDNode *> TopoOrder; 8712 CreateTopologicalOrder(TopoOrder); 8713 const TargetLowering &TLI = getTargetLoweringInfo(); 8714 DenseMap<const SDNode *, bool> DivergenceMap; 8715 for (auto &N : allnodes()) { 8716 DivergenceMap[&N] = false; 8717 } 8718 for (auto N : TopoOrder) { 8719 bool IsDivergent = DivergenceMap[N]; 8720 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8721 for (auto &Op : N->ops()) { 8722 if (Op.Val.getValueType() != MVT::Other) 8723 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8724 } 8725 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8726 DivergenceMap[N] = true; 8727 } 8728 } 8729 for (auto &N : allnodes()) { 8730 (void)N; 8731 assert(DivergenceMap[&N] == N.isDivergent() && 8732 "Divergence bit inconsistency detected\n"); 8733 } 8734 } 8735 #endif 8736 8737 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8738 /// uses of other values produced by From.getNode() alone. The same value 8739 /// may appear in both the From and To list. The Deleted vector is 8740 /// handled the same way as for ReplaceAllUsesWith. 8741 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8742 const SDValue *To, 8743 unsigned Num){ 8744 // Handle the simple, trivial case efficiently. 8745 if (Num == 1) 8746 return ReplaceAllUsesOfValueWith(*From, *To); 8747 8748 transferDbgValues(*From, *To); 8749 8750 // Read up all the uses and make records of them. This helps 8751 // processing new uses that are introduced during the 8752 // replacement process. 8753 SmallVector<UseMemo, 4> Uses; 8754 for (unsigned i = 0; i != Num; ++i) { 8755 unsigned FromResNo = From[i].getResNo(); 8756 SDNode *FromNode = From[i].getNode(); 8757 for (SDNode::use_iterator UI = FromNode->use_begin(), 8758 E = FromNode->use_end(); UI != E; ++UI) { 8759 SDUse &Use = UI.getUse(); 8760 if (Use.getResNo() == FromResNo) { 8761 UseMemo Memo = { *UI, i, &Use }; 8762 Uses.push_back(Memo); 8763 } 8764 } 8765 } 8766 8767 // Sort the uses, so that all the uses from a given User are together. 8768 llvm::sort(Uses); 8769 8770 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8771 UseIndex != UseIndexEnd; ) { 8772 // We know that this user uses some value of From. If it is the right 8773 // value, update it. 8774 SDNode *User = Uses[UseIndex].User; 8775 8776 // This node is about to morph, remove its old self from the CSE maps. 8777 RemoveNodeFromCSEMaps(User); 8778 8779 // The Uses array is sorted, so all the uses for a given User 8780 // are next to each other in the list. 8781 // To help reduce the number of CSE recomputations, process all 8782 // the uses of this user that we can find this way. 8783 do { 8784 unsigned i = Uses[UseIndex].Index; 8785 SDUse &Use = *Uses[UseIndex].Use; 8786 ++UseIndex; 8787 8788 Use.set(To[i]); 8789 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8790 8791 // Now that we have modified User, add it back to the CSE maps. If it 8792 // already exists there, recursively merge the results together. 8793 AddModifiedNodeToCSEMaps(User); 8794 } 8795 } 8796 8797 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8798 /// based on their topological order. It returns the maximum id and a vector 8799 /// of the SDNodes* in assigned order by reference. 8800 unsigned SelectionDAG::AssignTopologicalOrder() { 8801 unsigned DAGSize = 0; 8802 8803 // SortedPos tracks the progress of the algorithm. Nodes before it are 8804 // sorted, nodes after it are unsorted. When the algorithm completes 8805 // it is at the end of the list. 8806 allnodes_iterator SortedPos = allnodes_begin(); 8807 8808 // Visit all the nodes. Move nodes with no operands to the front of 8809 // the list immediately. Annotate nodes that do have operands with their 8810 // operand count. Before we do this, the Node Id fields of the nodes 8811 // may contain arbitrary values. After, the Node Id fields for nodes 8812 // before SortedPos will contain the topological sort index, and the 8813 // Node Id fields for nodes At SortedPos and after will contain the 8814 // count of outstanding operands. 8815 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8816 SDNode *N = &*I++; 8817 checkForCycles(N, this); 8818 unsigned Degree = N->getNumOperands(); 8819 if (Degree == 0) { 8820 // A node with no uses, add it to the result array immediately. 8821 N->setNodeId(DAGSize++); 8822 allnodes_iterator Q(N); 8823 if (Q != SortedPos) 8824 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8825 assert(SortedPos != AllNodes.end() && "Overran node list"); 8826 ++SortedPos; 8827 } else { 8828 // Temporarily use the Node Id as scratch space for the degree count. 8829 N->setNodeId(Degree); 8830 } 8831 } 8832 8833 // Visit all the nodes. As we iterate, move nodes into sorted order, 8834 // such that by the time the end is reached all nodes will be sorted. 8835 for (SDNode &Node : allnodes()) { 8836 SDNode *N = &Node; 8837 checkForCycles(N, this); 8838 // N is in sorted position, so all its uses have one less operand 8839 // that needs to be sorted. 8840 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8841 UI != UE; ++UI) { 8842 SDNode *P = *UI; 8843 unsigned Degree = P->getNodeId(); 8844 assert(Degree != 0 && "Invalid node degree"); 8845 --Degree; 8846 if (Degree == 0) { 8847 // All of P's operands are sorted, so P may sorted now. 8848 P->setNodeId(DAGSize++); 8849 if (P->getIterator() != SortedPos) 8850 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8851 assert(SortedPos != AllNodes.end() && "Overran node list"); 8852 ++SortedPos; 8853 } else { 8854 // Update P's outstanding operand count. 8855 P->setNodeId(Degree); 8856 } 8857 } 8858 if (Node.getIterator() == SortedPos) { 8859 #ifndef NDEBUG 8860 allnodes_iterator I(N); 8861 SDNode *S = &*++I; 8862 dbgs() << "Overran sorted position:\n"; 8863 S->dumprFull(this); dbgs() << "\n"; 8864 dbgs() << "Checking if this is due to cycles\n"; 8865 checkForCycles(this, true); 8866 #endif 8867 llvm_unreachable(nullptr); 8868 } 8869 } 8870 8871 assert(SortedPos == AllNodes.end() && 8872 "Topological sort incomplete!"); 8873 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8874 "First node in topological sort is not the entry token!"); 8875 assert(AllNodes.front().getNodeId() == 0 && 8876 "First node in topological sort has non-zero id!"); 8877 assert(AllNodes.front().getNumOperands() == 0 && 8878 "First node in topological sort has operands!"); 8879 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8880 "Last node in topologic sort has unexpected id!"); 8881 assert(AllNodes.back().use_empty() && 8882 "Last node in topologic sort has users!"); 8883 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8884 return DAGSize; 8885 } 8886 8887 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8888 /// value is produced by SD. 8889 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8890 if (SD) { 8891 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8892 SD->setHasDebugValue(true); 8893 } 8894 DbgInfo->add(DB, SD, isParameter); 8895 } 8896 8897 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8898 DbgInfo->add(DB); 8899 } 8900 8901 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8902 SDValue NewMemOp) { 8903 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8904 // The new memory operation must have the same position as the old load in 8905 // terms of memory dependency. Create a TokenFactor for the old load and new 8906 // memory operation and update uses of the old load's output chain to use that 8907 // TokenFactor. 8908 SDValue OldChain = SDValue(OldLoad, 1); 8909 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8910 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8911 return NewChain; 8912 8913 SDValue TokenFactor = 8914 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8915 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8916 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8917 return TokenFactor; 8918 } 8919 8920 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8921 Function **OutFunction) { 8922 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8923 8924 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8925 auto *Module = MF->getFunction().getParent(); 8926 auto *Function = Module->getFunction(Symbol); 8927 8928 if (OutFunction != nullptr) 8929 *OutFunction = Function; 8930 8931 if (Function != nullptr) { 8932 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8933 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8934 } 8935 8936 std::string ErrorStr; 8937 raw_string_ostream ErrorFormatter(ErrorStr); 8938 8939 ErrorFormatter << "Undefined external symbol "; 8940 ErrorFormatter << '"' << Symbol << '"'; 8941 ErrorFormatter.flush(); 8942 8943 report_fatal_error(ErrorStr); 8944 } 8945 8946 //===----------------------------------------------------------------------===// 8947 // SDNode Class 8948 //===----------------------------------------------------------------------===// 8949 8950 bool llvm::isNullConstant(SDValue V) { 8951 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8952 return Const != nullptr && Const->isNullValue(); 8953 } 8954 8955 bool llvm::isNullFPConstant(SDValue V) { 8956 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8957 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8958 } 8959 8960 bool llvm::isAllOnesConstant(SDValue V) { 8961 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8962 return Const != nullptr && Const->isAllOnesValue(); 8963 } 8964 8965 bool llvm::isOneConstant(SDValue V) { 8966 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8967 return Const != nullptr && Const->isOne(); 8968 } 8969 8970 SDValue llvm::peekThroughBitcasts(SDValue V) { 8971 while (V.getOpcode() == ISD::BITCAST) 8972 V = V.getOperand(0); 8973 return V; 8974 } 8975 8976 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8977 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8978 V = V.getOperand(0); 8979 return V; 8980 } 8981 8982 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8983 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8984 V = V.getOperand(0); 8985 return V; 8986 } 8987 8988 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8989 if (V.getOpcode() != ISD::XOR) 8990 return false; 8991 V = peekThroughBitcasts(V.getOperand(1)); 8992 unsigned NumBits = V.getScalarValueSizeInBits(); 8993 ConstantSDNode *C = 8994 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8995 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8996 } 8997 8998 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8999 bool AllowTruncation) { 9000 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9001 return CN; 9002 9003 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9004 BitVector UndefElements; 9005 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9006 9007 // BuildVectors can truncate their operands. Ignore that case here unless 9008 // AllowTruncation is set. 9009 if (CN && (UndefElements.none() || AllowUndefs)) { 9010 EVT CVT = CN->getValueType(0); 9011 EVT NSVT = N.getValueType().getScalarType(); 9012 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9013 if (AllowTruncation || (CVT == NSVT)) 9014 return CN; 9015 } 9016 } 9017 9018 return nullptr; 9019 } 9020 9021 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9022 bool AllowUndefs, 9023 bool AllowTruncation) { 9024 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9025 return CN; 9026 9027 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9028 BitVector UndefElements; 9029 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9030 9031 // BuildVectors can truncate their operands. Ignore that case here unless 9032 // AllowTruncation is set. 9033 if (CN && (UndefElements.none() || AllowUndefs)) { 9034 EVT CVT = CN->getValueType(0); 9035 EVT NSVT = N.getValueType().getScalarType(); 9036 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9037 if (AllowTruncation || (CVT == NSVT)) 9038 return CN; 9039 } 9040 } 9041 9042 return nullptr; 9043 } 9044 9045 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9046 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9047 return CN; 9048 9049 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9050 BitVector UndefElements; 9051 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9052 if (CN && (UndefElements.none() || AllowUndefs)) 9053 return CN; 9054 } 9055 9056 return nullptr; 9057 } 9058 9059 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9060 const APInt &DemandedElts, 9061 bool AllowUndefs) { 9062 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9063 return CN; 9064 9065 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9066 BitVector UndefElements; 9067 ConstantFPSDNode *CN = 9068 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9069 if (CN && (UndefElements.none() || AllowUndefs)) 9070 return CN; 9071 } 9072 9073 return nullptr; 9074 } 9075 9076 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9077 // TODO: may want to use peekThroughBitcast() here. 9078 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9079 return C && C->isNullValue(); 9080 } 9081 9082 bool llvm::isOneOrOneSplat(SDValue N) { 9083 // TODO: may want to use peekThroughBitcast() here. 9084 unsigned BitWidth = N.getScalarValueSizeInBits(); 9085 ConstantSDNode *C = isConstOrConstSplat(N); 9086 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9087 } 9088 9089 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9090 N = peekThroughBitcasts(N); 9091 unsigned BitWidth = N.getScalarValueSizeInBits(); 9092 ConstantSDNode *C = isConstOrConstSplat(N); 9093 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9094 } 9095 9096 HandleSDNode::~HandleSDNode() { 9097 DropOperands(); 9098 } 9099 9100 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9101 const DebugLoc &DL, 9102 const GlobalValue *GA, EVT VT, 9103 int64_t o, unsigned TF) 9104 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9105 TheGlobal = GA; 9106 } 9107 9108 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9109 EVT VT, unsigned SrcAS, 9110 unsigned DestAS) 9111 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9112 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9113 9114 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9115 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9116 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9117 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9118 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9119 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9120 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9121 9122 // We check here that the size of the memory operand fits within the size of 9123 // the MMO. This is because the MMO might indicate only a possible address 9124 // range instead of specifying the affected memory addresses precisely. 9125 // TODO: Make MachineMemOperands aware of scalable vectors. 9126 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9127 "Size mismatch!"); 9128 } 9129 9130 /// Profile - Gather unique data for the node. 9131 /// 9132 void SDNode::Profile(FoldingSetNodeID &ID) const { 9133 AddNodeIDNode(ID, this); 9134 } 9135 9136 namespace { 9137 9138 struct EVTArray { 9139 std::vector<EVT> VTs; 9140 9141 EVTArray() { 9142 VTs.reserve(MVT::LAST_VALUETYPE); 9143 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9144 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9145 } 9146 }; 9147 9148 } // end anonymous namespace 9149 9150 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9151 static ManagedStatic<EVTArray> SimpleVTArray; 9152 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9153 9154 /// getValueTypeList - Return a pointer to the specified value type. 9155 /// 9156 const EVT *SDNode::getValueTypeList(EVT VT) { 9157 if (VT.isExtended()) { 9158 sys::SmartScopedLock<true> Lock(*VTMutex); 9159 return &(*EVTs->insert(VT).first); 9160 } else { 9161 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9162 "Value type out of range!"); 9163 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9164 } 9165 } 9166 9167 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9168 /// indicated value. This method ignores uses of other values defined by this 9169 /// operation. 9170 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9171 assert(Value < getNumValues() && "Bad value!"); 9172 9173 // TODO: Only iterate over uses of a given value of the node 9174 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9175 if (UI.getUse().getResNo() == Value) { 9176 if (NUses == 0) 9177 return false; 9178 --NUses; 9179 } 9180 } 9181 9182 // Found exactly the right number of uses? 9183 return NUses == 0; 9184 } 9185 9186 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9187 /// value. This method ignores uses of other values defined by this operation. 9188 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9189 assert(Value < getNumValues() && "Bad value!"); 9190 9191 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9192 if (UI.getUse().getResNo() == Value) 9193 return true; 9194 9195 return false; 9196 } 9197 9198 /// isOnlyUserOf - Return true if this node is the only use of N. 9199 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9200 bool Seen = false; 9201 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9202 SDNode *User = *I; 9203 if (User == this) 9204 Seen = true; 9205 else 9206 return false; 9207 } 9208 9209 return Seen; 9210 } 9211 9212 /// Return true if the only users of N are contained in Nodes. 9213 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9214 bool Seen = false; 9215 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9216 SDNode *User = *I; 9217 if (llvm::any_of(Nodes, 9218 [&User](const SDNode *Node) { return User == Node; })) 9219 Seen = true; 9220 else 9221 return false; 9222 } 9223 9224 return Seen; 9225 } 9226 9227 /// isOperand - Return true if this node is an operand of N. 9228 bool SDValue::isOperandOf(const SDNode *N) const { 9229 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9230 } 9231 9232 bool SDNode::isOperandOf(const SDNode *N) const { 9233 return any_of(N->op_values(), 9234 [this](SDValue Op) { return this == Op.getNode(); }); 9235 } 9236 9237 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9238 /// be a chain) reaches the specified operand without crossing any 9239 /// side-effecting instructions on any chain path. In practice, this looks 9240 /// through token factors and non-volatile loads. In order to remain efficient, 9241 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9242 /// 9243 /// Note that we only need to examine chains when we're searching for 9244 /// side-effects; SelectionDAG requires that all side-effects are represented 9245 /// by chains, even if another operand would force a specific ordering. This 9246 /// constraint is necessary to allow transformations like splitting loads. 9247 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9248 unsigned Depth) const { 9249 if (*this == Dest) return true; 9250 9251 // Don't search too deeply, we just want to be able to see through 9252 // TokenFactor's etc. 9253 if (Depth == 0) return false; 9254 9255 // If this is a token factor, all inputs to the TF happen in parallel. 9256 if (getOpcode() == ISD::TokenFactor) { 9257 // First, try a shallow search. 9258 if (is_contained((*this)->ops(), Dest)) { 9259 // We found the chain we want as an operand of this TokenFactor. 9260 // Essentially, we reach the chain without side-effects if we could 9261 // serialize the TokenFactor into a simple chain of operations with 9262 // Dest as the last operation. This is automatically true if the 9263 // chain has one use: there are no other ordering constraints. 9264 // If the chain has more than one use, we give up: some other 9265 // use of Dest might force a side-effect between Dest and the current 9266 // node. 9267 if (Dest.hasOneUse()) 9268 return true; 9269 } 9270 // Next, try a deep search: check whether every operand of the TokenFactor 9271 // reaches Dest. 9272 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9273 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9274 }); 9275 } 9276 9277 // Loads don't have side effects, look through them. 9278 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9279 if (Ld->isUnordered()) 9280 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9281 } 9282 return false; 9283 } 9284 9285 bool SDNode::hasPredecessor(const SDNode *N) const { 9286 SmallPtrSet<const SDNode *, 32> Visited; 9287 SmallVector<const SDNode *, 16> Worklist; 9288 Worklist.push_back(this); 9289 return hasPredecessorHelper(N, Visited, Worklist); 9290 } 9291 9292 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9293 this->Flags.intersectWith(Flags); 9294 } 9295 9296 SDValue 9297 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9298 ArrayRef<ISD::NodeType> CandidateBinOps, 9299 bool AllowPartials) { 9300 // The pattern must end in an extract from index 0. 9301 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9302 !isNullConstant(Extract->getOperand(1))) 9303 return SDValue(); 9304 9305 // Match against one of the candidate binary ops. 9306 SDValue Op = Extract->getOperand(0); 9307 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9308 return Op.getOpcode() == unsigned(BinOp); 9309 })) 9310 return SDValue(); 9311 9312 // Floating-point reductions may require relaxed constraints on the final step 9313 // of the reduction because they may reorder intermediate operations. 9314 unsigned CandidateBinOp = Op.getOpcode(); 9315 if (Op.getValueType().isFloatingPoint()) { 9316 SDNodeFlags Flags = Op->getFlags(); 9317 switch (CandidateBinOp) { 9318 case ISD::FADD: 9319 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9320 return SDValue(); 9321 break; 9322 default: 9323 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9324 } 9325 } 9326 9327 // Matching failed - attempt to see if we did enough stages that a partial 9328 // reduction from a subvector is possible. 9329 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9330 if (!AllowPartials || !Op) 9331 return SDValue(); 9332 EVT OpVT = Op.getValueType(); 9333 EVT OpSVT = OpVT.getScalarType(); 9334 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9335 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9336 return SDValue(); 9337 BinOp = (ISD::NodeType)CandidateBinOp; 9338 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9339 getVectorIdxConstant(0, SDLoc(Op))); 9340 }; 9341 9342 // At each stage, we're looking for something that looks like: 9343 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9344 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9345 // i32 undef, i32 undef, i32 undef, i32 undef> 9346 // %a = binop <8 x i32> %op, %s 9347 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9348 // we expect something like: 9349 // <4,5,6,7,u,u,u,u> 9350 // <2,3,u,u,u,u,u,u> 9351 // <1,u,u,u,u,u,u,u> 9352 // While a partial reduction match would be: 9353 // <2,3,u,u,u,u,u,u> 9354 // <1,u,u,u,u,u,u,u> 9355 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9356 SDValue PrevOp; 9357 for (unsigned i = 0; i < Stages; ++i) { 9358 unsigned MaskEnd = (1 << i); 9359 9360 if (Op.getOpcode() != CandidateBinOp) 9361 return PartialReduction(PrevOp, MaskEnd); 9362 9363 SDValue Op0 = Op.getOperand(0); 9364 SDValue Op1 = Op.getOperand(1); 9365 9366 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9367 if (Shuffle) { 9368 Op = Op1; 9369 } else { 9370 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9371 Op = Op0; 9372 } 9373 9374 // The first operand of the shuffle should be the same as the other operand 9375 // of the binop. 9376 if (!Shuffle || Shuffle->getOperand(0) != Op) 9377 return PartialReduction(PrevOp, MaskEnd); 9378 9379 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9380 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9381 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9382 return PartialReduction(PrevOp, MaskEnd); 9383 9384 PrevOp = Op; 9385 } 9386 9387 // Handle subvector reductions, which tend to appear after the shuffle 9388 // reduction stages. 9389 while (Op.getOpcode() == CandidateBinOp) { 9390 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9391 SDValue Op0 = Op.getOperand(0); 9392 SDValue Op1 = Op.getOperand(1); 9393 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9394 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9395 Op0.getOperand(0) != Op1.getOperand(0)) 9396 break; 9397 SDValue Src = Op0.getOperand(0); 9398 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9399 if (NumSrcElts != (2 * NumElts)) 9400 break; 9401 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9402 Op1.getConstantOperandAPInt(1) == NumElts) && 9403 !(Op1.getConstantOperandAPInt(1) == 0 && 9404 Op0.getConstantOperandAPInt(1) == NumElts)) 9405 break; 9406 Op = Src; 9407 } 9408 9409 BinOp = (ISD::NodeType)CandidateBinOp; 9410 return Op; 9411 } 9412 9413 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9414 assert(N->getNumValues() == 1 && 9415 "Can't unroll a vector with multiple results!"); 9416 9417 EVT VT = N->getValueType(0); 9418 unsigned NE = VT.getVectorNumElements(); 9419 EVT EltVT = VT.getVectorElementType(); 9420 SDLoc dl(N); 9421 9422 SmallVector<SDValue, 8> Scalars; 9423 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9424 9425 // If ResNE is 0, fully unroll the vector op. 9426 if (ResNE == 0) 9427 ResNE = NE; 9428 else if (NE > ResNE) 9429 NE = ResNE; 9430 9431 unsigned i; 9432 for (i= 0; i != NE; ++i) { 9433 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9434 SDValue Operand = N->getOperand(j); 9435 EVT OperandVT = Operand.getValueType(); 9436 if (OperandVT.isVector()) { 9437 // A vector operand; extract a single element. 9438 EVT OperandEltVT = OperandVT.getVectorElementType(); 9439 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9440 Operand, getVectorIdxConstant(i, dl)); 9441 } else { 9442 // A scalar operand; just use it as is. 9443 Operands[j] = Operand; 9444 } 9445 } 9446 9447 switch (N->getOpcode()) { 9448 default: { 9449 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9450 N->getFlags())); 9451 break; 9452 } 9453 case ISD::VSELECT: 9454 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9455 break; 9456 case ISD::SHL: 9457 case ISD::SRA: 9458 case ISD::SRL: 9459 case ISD::ROTL: 9460 case ISD::ROTR: 9461 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9462 getShiftAmountOperand(Operands[0].getValueType(), 9463 Operands[1]))); 9464 break; 9465 case ISD::SIGN_EXTEND_INREG: { 9466 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9467 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9468 Operands[0], 9469 getValueType(ExtVT))); 9470 } 9471 } 9472 } 9473 9474 for (; i < ResNE; ++i) 9475 Scalars.push_back(getUNDEF(EltVT)); 9476 9477 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9478 return getBuildVector(VecVT, dl, Scalars); 9479 } 9480 9481 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9482 SDNode *N, unsigned ResNE) { 9483 unsigned Opcode = N->getOpcode(); 9484 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9485 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9486 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9487 "Expected an overflow opcode"); 9488 9489 EVT ResVT = N->getValueType(0); 9490 EVT OvVT = N->getValueType(1); 9491 EVT ResEltVT = ResVT.getVectorElementType(); 9492 EVT OvEltVT = OvVT.getVectorElementType(); 9493 SDLoc dl(N); 9494 9495 // If ResNE is 0, fully unroll the vector op. 9496 unsigned NE = ResVT.getVectorNumElements(); 9497 if (ResNE == 0) 9498 ResNE = NE; 9499 else if (NE > ResNE) 9500 NE = ResNE; 9501 9502 SmallVector<SDValue, 8> LHSScalars; 9503 SmallVector<SDValue, 8> RHSScalars; 9504 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9505 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9506 9507 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9508 SDVTList VTs = getVTList(ResEltVT, SVT); 9509 SmallVector<SDValue, 8> ResScalars; 9510 SmallVector<SDValue, 8> OvScalars; 9511 for (unsigned i = 0; i < NE; ++i) { 9512 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9513 SDValue Ov = 9514 getSelect(dl, OvEltVT, Res.getValue(1), 9515 getBoolConstant(true, dl, OvEltVT, ResVT), 9516 getConstant(0, dl, OvEltVT)); 9517 9518 ResScalars.push_back(Res); 9519 OvScalars.push_back(Ov); 9520 } 9521 9522 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9523 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9524 9525 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9526 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9527 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9528 getBuildVector(NewOvVT, dl, OvScalars)); 9529 } 9530 9531 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9532 LoadSDNode *Base, 9533 unsigned Bytes, 9534 int Dist) const { 9535 if (LD->isVolatile() || Base->isVolatile()) 9536 return false; 9537 // TODO: probably too restrictive for atomics, revisit 9538 if (!LD->isSimple()) 9539 return false; 9540 if (LD->isIndexed() || Base->isIndexed()) 9541 return false; 9542 if (LD->getChain() != Base->getChain()) 9543 return false; 9544 EVT VT = LD->getValueType(0); 9545 if (VT.getSizeInBits() / 8 != Bytes) 9546 return false; 9547 9548 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9549 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9550 9551 int64_t Offset = 0; 9552 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9553 return (Dist * Bytes == Offset); 9554 return false; 9555 } 9556 9557 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9558 /// if it cannot be inferred. 9559 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9560 // If this is a GlobalAddress + cst, return the alignment. 9561 const GlobalValue *GV = nullptr; 9562 int64_t GVOffset = 0; 9563 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9564 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9565 KnownBits Known(PtrWidth); 9566 llvm::computeKnownBits(GV, Known, getDataLayout()); 9567 unsigned AlignBits = Known.countMinTrailingZeros(); 9568 if (AlignBits) 9569 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9570 } 9571 9572 // If this is a direct reference to a stack slot, use information about the 9573 // stack slot's alignment. 9574 int FrameIdx = INT_MIN; 9575 int64_t FrameOffset = 0; 9576 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9577 FrameIdx = FI->getIndex(); 9578 } else if (isBaseWithConstantOffset(Ptr) && 9579 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9580 // Handle FI+Cst 9581 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9582 FrameOffset = Ptr.getConstantOperandVal(1); 9583 } 9584 9585 if (FrameIdx != INT_MIN) { 9586 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9587 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9588 } 9589 9590 return None; 9591 } 9592 9593 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9594 /// which is split (or expanded) into two not necessarily identical pieces. 9595 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9596 // Currently all types are split in half. 9597 EVT LoVT, HiVT; 9598 if (!VT.isVector()) 9599 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9600 else 9601 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9602 9603 return std::make_pair(LoVT, HiVT); 9604 } 9605 9606 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9607 /// type, dependent on an enveloping VT that has been split into two identical 9608 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9609 std::pair<EVT, EVT> 9610 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9611 bool *HiIsEmpty) const { 9612 EVT EltTp = VT.getVectorElementType(); 9613 bool IsScalable = VT.isScalableVector(); 9614 // Examples: 9615 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9616 // custom VL=9 with enveloping VL=8/8 yields 8/1 9617 // custom VL=10 with enveloping VL=8/8 yields 8/2 9618 // etc. 9619 unsigned VTNumElts = VT.getVectorNumElements(); 9620 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9621 EVT LoVT, HiVT; 9622 if (VTNumElts > EnvNumElts) { 9623 LoVT = EnvVT; 9624 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9625 IsScalable); 9626 *HiIsEmpty = false; 9627 } else { 9628 // Flag that hi type has zero storage size, but return split envelop type 9629 // (this would be easier if vector types with zero elements were allowed). 9630 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9631 HiVT = EnvVT; 9632 *HiIsEmpty = true; 9633 } 9634 return std::make_pair(LoVT, HiVT); 9635 } 9636 9637 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9638 /// low/high part. 9639 std::pair<SDValue, SDValue> 9640 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9641 const EVT &HiVT) { 9642 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9643 N.getValueType().getVectorNumElements() && 9644 "More vector elements requested than available!"); 9645 SDValue Lo, Hi; 9646 Lo = 9647 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9648 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9649 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9650 return std::make_pair(Lo, Hi); 9651 } 9652 9653 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9654 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9655 EVT VT = N.getValueType(); 9656 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9657 NextPowerOf2(VT.getVectorNumElements())); 9658 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9659 getVectorIdxConstant(0, DL)); 9660 } 9661 9662 void SelectionDAG::ExtractVectorElements(SDValue Op, 9663 SmallVectorImpl<SDValue> &Args, 9664 unsigned Start, unsigned Count, 9665 EVT EltVT) { 9666 EVT VT = Op.getValueType(); 9667 if (Count == 0) 9668 Count = VT.getVectorNumElements(); 9669 if (EltVT == EVT()) 9670 EltVT = VT.getVectorElementType(); 9671 SDLoc SL(Op); 9672 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9673 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9674 getVectorIdxConstant(i, SL))); 9675 } 9676 } 9677 9678 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9679 unsigned GlobalAddressSDNode::getAddressSpace() const { 9680 return getGlobal()->getType()->getAddressSpace(); 9681 } 9682 9683 Type *ConstantPoolSDNode::getType() const { 9684 if (isMachineConstantPoolEntry()) 9685 return Val.MachineCPVal->getType(); 9686 return Val.ConstVal->getType(); 9687 } 9688 9689 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9690 unsigned &SplatBitSize, 9691 bool &HasAnyUndefs, 9692 unsigned MinSplatBits, 9693 bool IsBigEndian) const { 9694 EVT VT = getValueType(0); 9695 assert(VT.isVector() && "Expected a vector type"); 9696 unsigned VecWidth = VT.getSizeInBits(); 9697 if (MinSplatBits > VecWidth) 9698 return false; 9699 9700 // FIXME: The widths are based on this node's type, but build vectors can 9701 // truncate their operands. 9702 SplatValue = APInt(VecWidth, 0); 9703 SplatUndef = APInt(VecWidth, 0); 9704 9705 // Get the bits. Bits with undefined values (when the corresponding element 9706 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9707 // in SplatValue. If any of the values are not constant, give up and return 9708 // false. 9709 unsigned int NumOps = getNumOperands(); 9710 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9711 unsigned EltWidth = VT.getScalarSizeInBits(); 9712 9713 for (unsigned j = 0; j < NumOps; ++j) { 9714 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9715 SDValue OpVal = getOperand(i); 9716 unsigned BitPos = j * EltWidth; 9717 9718 if (OpVal.isUndef()) 9719 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9720 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9721 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9722 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9723 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9724 else 9725 return false; 9726 } 9727 9728 // The build_vector is all constants or undefs. Find the smallest element 9729 // size that splats the vector. 9730 HasAnyUndefs = (SplatUndef != 0); 9731 9732 // FIXME: This does not work for vectors with elements less than 8 bits. 9733 while (VecWidth > 8) { 9734 unsigned HalfSize = VecWidth / 2; 9735 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9736 APInt LowValue = SplatValue.trunc(HalfSize); 9737 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9738 APInt LowUndef = SplatUndef.trunc(HalfSize); 9739 9740 // If the two halves do not match (ignoring undef bits), stop here. 9741 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9742 MinSplatBits > HalfSize) 9743 break; 9744 9745 SplatValue = HighValue | LowValue; 9746 SplatUndef = HighUndef & LowUndef; 9747 9748 VecWidth = HalfSize; 9749 } 9750 9751 SplatBitSize = VecWidth; 9752 return true; 9753 } 9754 9755 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9756 BitVector *UndefElements) const { 9757 if (UndefElements) { 9758 UndefElements->clear(); 9759 UndefElements->resize(getNumOperands()); 9760 } 9761 assert(getNumOperands() == DemandedElts.getBitWidth() && 9762 "Unexpected vector size"); 9763 if (!DemandedElts) 9764 return SDValue(); 9765 SDValue Splatted; 9766 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9767 if (!DemandedElts[i]) 9768 continue; 9769 SDValue Op = getOperand(i); 9770 if (Op.isUndef()) { 9771 if (UndefElements) 9772 (*UndefElements)[i] = true; 9773 } else if (!Splatted) { 9774 Splatted = Op; 9775 } else if (Splatted != Op) { 9776 return SDValue(); 9777 } 9778 } 9779 9780 if (!Splatted) { 9781 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9782 assert(getOperand(FirstDemandedIdx).isUndef() && 9783 "Can only have a splat without a constant for all undefs."); 9784 return getOperand(FirstDemandedIdx); 9785 } 9786 9787 return Splatted; 9788 } 9789 9790 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9791 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9792 return getSplatValue(DemandedElts, UndefElements); 9793 } 9794 9795 ConstantSDNode * 9796 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9797 BitVector *UndefElements) const { 9798 return dyn_cast_or_null<ConstantSDNode>( 9799 getSplatValue(DemandedElts, UndefElements)); 9800 } 9801 9802 ConstantSDNode * 9803 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9804 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9805 } 9806 9807 ConstantFPSDNode * 9808 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9809 BitVector *UndefElements) const { 9810 return dyn_cast_or_null<ConstantFPSDNode>( 9811 getSplatValue(DemandedElts, UndefElements)); 9812 } 9813 9814 ConstantFPSDNode * 9815 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9816 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9817 } 9818 9819 int32_t 9820 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9821 uint32_t BitWidth) const { 9822 if (ConstantFPSDNode *CN = 9823 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9824 bool IsExact; 9825 APSInt IntVal(BitWidth); 9826 const APFloat &APF = CN->getValueAPF(); 9827 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9828 APFloat::opOK || 9829 !IsExact) 9830 return -1; 9831 9832 return IntVal.exactLogBase2(); 9833 } 9834 return -1; 9835 } 9836 9837 bool BuildVectorSDNode::isConstant() const { 9838 for (const SDValue &Op : op_values()) { 9839 unsigned Opc = Op.getOpcode(); 9840 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9841 return false; 9842 } 9843 return true; 9844 } 9845 9846 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9847 // Find the first non-undef value in the shuffle mask. 9848 unsigned i, e; 9849 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9850 /* search */; 9851 9852 // If all elements are undefined, this shuffle can be considered a splat 9853 // (although it should eventually get simplified away completely). 9854 if (i == e) 9855 return true; 9856 9857 // Make sure all remaining elements are either undef or the same as the first 9858 // non-undef value. 9859 for (int Idx = Mask[i]; i != e; ++i) 9860 if (Mask[i] >= 0 && Mask[i] != Idx) 9861 return false; 9862 return true; 9863 } 9864 9865 // Returns the SDNode if it is a constant integer BuildVector 9866 // or constant integer. 9867 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9868 if (isa<ConstantSDNode>(N)) 9869 return N.getNode(); 9870 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9871 return N.getNode(); 9872 // Treat a GlobalAddress supporting constant offset folding as a 9873 // constant integer. 9874 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9875 if (GA->getOpcode() == ISD::GlobalAddress && 9876 TLI->isOffsetFoldingLegal(GA)) 9877 return GA; 9878 return nullptr; 9879 } 9880 9881 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9882 if (isa<ConstantFPSDNode>(N)) 9883 return N.getNode(); 9884 9885 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9886 return N.getNode(); 9887 9888 return nullptr; 9889 } 9890 9891 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9892 assert(!Node->OperandList && "Node already has operands"); 9893 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9894 "too many operands to fit into SDNode"); 9895 SDUse *Ops = OperandRecycler.allocate( 9896 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9897 9898 bool IsDivergent = false; 9899 for (unsigned I = 0; I != Vals.size(); ++I) { 9900 Ops[I].setUser(Node); 9901 Ops[I].setInitial(Vals[I]); 9902 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9903 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9904 } 9905 Node->NumOperands = Vals.size(); 9906 Node->OperandList = Ops; 9907 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9908 if (!TLI->isSDNodeAlwaysUniform(Node)) 9909 Node->SDNodeBits.IsDivergent = IsDivergent; 9910 checkForCycles(Node); 9911 } 9912 9913 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9914 SmallVectorImpl<SDValue> &Vals) { 9915 size_t Limit = SDNode::getMaxNumOperands(); 9916 while (Vals.size() > Limit) { 9917 unsigned SliceIdx = Vals.size() - Limit; 9918 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9919 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9920 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9921 Vals.emplace_back(NewTF); 9922 } 9923 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9924 } 9925 9926 #ifndef NDEBUG 9927 static void checkForCyclesHelper(const SDNode *N, 9928 SmallPtrSetImpl<const SDNode*> &Visited, 9929 SmallPtrSetImpl<const SDNode*> &Checked, 9930 const llvm::SelectionDAG *DAG) { 9931 // If this node has already been checked, don't check it again. 9932 if (Checked.count(N)) 9933 return; 9934 9935 // If a node has already been visited on this depth-first walk, reject it as 9936 // a cycle. 9937 if (!Visited.insert(N).second) { 9938 errs() << "Detected cycle in SelectionDAG\n"; 9939 dbgs() << "Offending node:\n"; 9940 N->dumprFull(DAG); dbgs() << "\n"; 9941 abort(); 9942 } 9943 9944 for (const SDValue &Op : N->op_values()) 9945 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9946 9947 Checked.insert(N); 9948 Visited.erase(N); 9949 } 9950 #endif 9951 9952 void llvm::checkForCycles(const llvm::SDNode *N, 9953 const llvm::SelectionDAG *DAG, 9954 bool force) { 9955 #ifndef NDEBUG 9956 bool check = force; 9957 #ifdef EXPENSIVE_CHECKS 9958 check = true; 9959 #endif // EXPENSIVE_CHECKS 9960 if (check) { 9961 assert(N && "Checking nonexistent SDNode"); 9962 SmallPtrSet<const SDNode*, 32> visited; 9963 SmallPtrSet<const SDNode*, 32> checked; 9964 checkForCyclesHelper(N, visited, checked, DAG); 9965 } 9966 #endif // !NDEBUG 9967 } 9968 9969 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9970 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9971 } 9972