1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MachineValueType.h" 64 #include "llvm/Support/ManagedStatic.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Mutex.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include "llvm/Transforms/Utils/SizeOpts.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <cstdlib> 75 #include <limits> 76 #include <set> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 83 /// makeVTList - Return an instance of the SDVTList struct initialized with the 84 /// specified members. 85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 86 SDVTList Res = {VTs, NumVTs}; 87 return Res; 88 } 89 90 // Default null implementations of the callbacks. 91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 94 95 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 96 97 #define DEBUG_TYPE "selectiondag" 98 99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 100 cl::Hidden, cl::init(true), 101 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 102 103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 104 cl::desc("Number limit for gluing ld/st of memcpy."), 105 cl::Hidden, cl::init(0)); 106 107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 108 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 109 } 110 111 //===----------------------------------------------------------------------===// 112 // ConstantFPSDNode Class 113 //===----------------------------------------------------------------------===// 114 115 /// isExactlyValue - We don't rely on operator== working on double values, as 116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 117 /// As such, this method can be used to do an exact bit-for-bit comparison of 118 /// two floating point values. 119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 120 return getValueAPF().bitwiseIsEqual(V); 121 } 122 123 bool ConstantFPSDNode::isValueValidForType(EVT VT, 124 const APFloat& Val) { 125 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 126 127 // convert modifies in place, so make a copy. 128 APFloat Val2 = APFloat(Val); 129 bool losesInfo; 130 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 131 APFloat::rmNearestTiesToEven, 132 &losesInfo); 133 return !losesInfo; 134 } 135 136 //===----------------------------------------------------------------------===// 137 // ISD Namespace 138 //===----------------------------------------------------------------------===// 139 140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 141 auto *BV = dyn_cast<BuildVectorSDNode>(N); 142 if (!BV) 143 return false; 144 145 APInt SplatUndef; 146 unsigned SplatBitSize; 147 bool HasUndefs; 148 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 149 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 150 EltSize) && 151 EltSize == SplatBitSize; 152 } 153 154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 155 // specializations of the more general isConstantSplatVector()? 156 157 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 158 // Look through a bit convert. 159 while (N->getOpcode() == ISD::BITCAST) 160 N = N->getOperand(0).getNode(); 161 162 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 163 164 unsigned i = 0, e = N->getNumOperands(); 165 166 // Skip over all of the undef values. 167 while (i != e && N->getOperand(i).isUndef()) 168 ++i; 169 170 // Do not accept an all-undef vector. 171 if (i == e) return false; 172 173 // Do not accept build_vectors that aren't all constants or which have non-~0 174 // elements. We have to be a bit careful here, as the type of the constant 175 // may not be the same as the type of the vector elements due to type 176 // legalization (the elements are promoted to a legal type for the target and 177 // a vector of a type may be legal when the base element type is not). 178 // We only want to check enough bits to cover the vector elements, because 179 // we care if the resultant vector is all ones, not whether the individual 180 // constants are. 181 SDValue NotZero = N->getOperand(i); 182 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 183 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 184 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 185 return false; 186 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 187 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 188 return false; 189 } else 190 return false; 191 192 // Okay, we have at least one ~0 value, check to see if the rest match or are 193 // undefs. Even with the above element type twiddling, this should be OK, as 194 // the same type legalization should have applied to all the elements. 195 for (++i; i != e; ++i) 196 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 197 return false; 198 return true; 199 } 200 201 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 202 // Look through a bit convert. 203 while (N->getOpcode() == ISD::BITCAST) 204 N = N->getOperand(0).getNode(); 205 206 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 207 208 bool IsAllUndef = true; 209 for (const SDValue &Op : N->op_values()) { 210 if (Op.isUndef()) 211 continue; 212 IsAllUndef = false; 213 // Do not accept build_vectors that aren't all constants or which have non-0 214 // elements. We have to be a bit careful here, as the type of the constant 215 // may not be the same as the type of the vector elements due to type 216 // legalization (the elements are promoted to a legal type for the target 217 // and a vector of a type may be legal when the base element type is not). 218 // We only want to check enough bits to cover the vector elements, because 219 // we care if the resultant vector is all zeros, not whether the individual 220 // constants are. 221 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 222 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 223 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 224 return false; 225 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 226 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 227 return false; 228 } else 229 return false; 230 } 231 232 // Do not accept an all-undef vector. 233 if (IsAllUndef) 234 return false; 235 return true; 236 } 237 238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 239 if (N->getOpcode() != ISD::BUILD_VECTOR) 240 return false; 241 242 for (const SDValue &Op : N->op_values()) { 243 if (Op.isUndef()) 244 continue; 245 if (!isa<ConstantSDNode>(Op)) 246 return false; 247 } 248 return true; 249 } 250 251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 252 if (N->getOpcode() != ISD::BUILD_VECTOR) 253 return false; 254 255 for (const SDValue &Op : N->op_values()) { 256 if (Op.isUndef()) 257 continue; 258 if (!isa<ConstantFPSDNode>(Op)) 259 return false; 260 } 261 return true; 262 } 263 264 bool ISD::allOperandsUndef(const SDNode *N) { 265 // Return false if the node has no operands. 266 // This is "logically inconsistent" with the definition of "all" but 267 // is probably the desired behavior. 268 if (N->getNumOperands() == 0) 269 return false; 270 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 271 } 272 273 bool ISD::matchUnaryPredicate(SDValue Op, 274 std::function<bool(ConstantSDNode *)> Match, 275 bool AllowUndefs) { 276 // FIXME: Add support for scalar UNDEF cases? 277 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 278 return Match(Cst); 279 280 // FIXME: Add support for vector UNDEF cases? 281 if (ISD::BUILD_VECTOR != Op.getOpcode()) 282 return false; 283 284 EVT SVT = Op.getValueType().getScalarType(); 285 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 286 if (AllowUndefs && Op.getOperand(i).isUndef()) { 287 if (!Match(nullptr)) 288 return false; 289 continue; 290 } 291 292 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 293 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 294 return false; 295 } 296 return true; 297 } 298 299 bool ISD::matchBinaryPredicate( 300 SDValue LHS, SDValue RHS, 301 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 302 bool AllowUndefs, bool AllowTypeMismatch) { 303 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 304 return false; 305 306 // TODO: Add support for scalar UNDEF cases? 307 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 308 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 309 return Match(LHSCst, RHSCst); 310 311 // TODO: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 313 ISD::BUILD_VECTOR != RHS.getOpcode()) 314 return false; 315 316 EVT SVT = LHS.getValueType().getScalarType(); 317 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 318 SDValue LHSOp = LHS.getOperand(i); 319 SDValue RHSOp = RHS.getOperand(i); 320 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 321 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 322 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 323 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 324 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 325 return false; 326 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 327 LHSOp.getValueType() != RHSOp.getValueType())) 328 return false; 329 if (!Match(LHSCst, RHSCst)) 330 return false; 331 } 332 return true; 333 } 334 335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 336 switch (ExtType) { 337 case ISD::EXTLOAD: 338 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 339 case ISD::SEXTLOAD: 340 return ISD::SIGN_EXTEND; 341 case ISD::ZEXTLOAD: 342 return ISD::ZERO_EXTEND; 343 default: 344 break; 345 } 346 347 llvm_unreachable("Invalid LoadExtType"); 348 } 349 350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 351 // To perform this operation, we just need to swap the L and G bits of the 352 // operation. 353 unsigned OldL = (Operation >> 2) & 1; 354 unsigned OldG = (Operation >> 1) & 1; 355 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 356 (OldL << 1) | // New G bit 357 (OldG << 2)); // New L bit. 358 } 359 360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 361 unsigned Operation = Op; 362 if (isIntegerLike) 363 Operation ^= 7; // Flip L, G, E bits, but not U. 364 else 365 Operation ^= 15; // Flip all of the condition bits. 366 367 if (Operation > ISD::SETTRUE2) 368 Operation &= ~8; // Don't let N and U bits get set. 369 370 return ISD::CondCode(Operation); 371 } 372 373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 374 return getSetCCInverseImpl(Op, Type.isInteger()); 375 } 376 377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 378 bool isIntegerLike) { 379 return getSetCCInverseImpl(Op, isIntegerLike); 380 } 381 382 /// For an integer comparison, return 1 if the comparison is a signed operation 383 /// and 2 if the result is an unsigned comparison. Return zero if the operation 384 /// does not depend on the sign of the input (setne and seteq). 385 static int isSignedOp(ISD::CondCode Opcode) { 386 switch (Opcode) { 387 default: llvm_unreachable("Illegal integer setcc operation!"); 388 case ISD::SETEQ: 389 case ISD::SETNE: return 0; 390 case ISD::SETLT: 391 case ISD::SETLE: 392 case ISD::SETGT: 393 case ISD::SETGE: return 1; 394 case ISD::SETULT: 395 case ISD::SETULE: 396 case ISD::SETUGT: 397 case ISD::SETUGE: return 2; 398 } 399 } 400 401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 402 EVT Type) { 403 bool IsInteger = Type.isInteger(); 404 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 405 // Cannot fold a signed integer setcc with an unsigned integer setcc. 406 return ISD::SETCC_INVALID; 407 408 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 409 410 // If the N and U bits get set, then the resultant comparison DOES suddenly 411 // care about orderedness, and it is true when ordered. 412 if (Op > ISD::SETTRUE2) 413 Op &= ~16; // Clear the U bit if the N bit is set. 414 415 // Canonicalize illegal integer setcc's. 416 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 417 Op = ISD::SETNE; 418 419 return ISD::CondCode(Op); 420 } 421 422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 423 EVT Type) { 424 bool IsInteger = Type.isInteger(); 425 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 426 // Cannot fold a signed setcc with an unsigned setcc. 427 return ISD::SETCC_INVALID; 428 429 // Combine all of the condition bits. 430 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 431 432 // Canonicalize illegal integer setcc's. 433 if (IsInteger) { 434 switch (Result) { 435 default: break; 436 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 437 case ISD::SETOEQ: // SETEQ & SETU[LG]E 438 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 439 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 440 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 441 } 442 } 443 444 return Result; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // SDNode Profile Support 449 //===----------------------------------------------------------------------===// 450 451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 453 ID.AddInteger(OpC); 454 } 455 456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 457 /// solely with their pointer. 458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 459 ID.AddPointer(VTList.VTs); 460 } 461 462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 463 static void AddNodeIDOperands(FoldingSetNodeID &ID, 464 ArrayRef<SDValue> Ops) { 465 for (auto& Op : Ops) { 466 ID.AddPointer(Op.getNode()); 467 ID.AddInteger(Op.getResNo()); 468 } 469 } 470 471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 472 static void AddNodeIDOperands(FoldingSetNodeID &ID, 473 ArrayRef<SDUse> Ops) { 474 for (auto& Op : Ops) { 475 ID.AddPointer(Op.getNode()); 476 ID.AddInteger(Op.getResNo()); 477 } 478 } 479 480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 481 SDVTList VTList, ArrayRef<SDValue> OpList) { 482 AddNodeIDOpcode(ID, OpC); 483 AddNodeIDValueTypes(ID, VTList); 484 AddNodeIDOperands(ID, OpList); 485 } 486 487 /// If this is an SDNode with special info, add this info to the NodeID data. 488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 489 switch (N->getOpcode()) { 490 case ISD::TargetExternalSymbol: 491 case ISD::ExternalSymbol: 492 case ISD::MCSymbol: 493 llvm_unreachable("Should only be used on nodes with operands"); 494 default: break; // Normal nodes don't need extra info. 495 case ISD::TargetConstant: 496 case ISD::Constant: { 497 const ConstantSDNode *C = cast<ConstantSDNode>(N); 498 ID.AddPointer(C->getConstantIntValue()); 499 ID.AddBoolean(C->isOpaque()); 500 break; 501 } 502 case ISD::TargetConstantFP: 503 case ISD::ConstantFP: 504 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 505 break; 506 case ISD::TargetGlobalAddress: 507 case ISD::GlobalAddress: 508 case ISD::TargetGlobalTLSAddress: 509 case ISD::GlobalTLSAddress: { 510 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 511 ID.AddPointer(GA->getGlobal()); 512 ID.AddInteger(GA->getOffset()); 513 ID.AddInteger(GA->getTargetFlags()); 514 break; 515 } 516 case ISD::BasicBlock: 517 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 518 break; 519 case ISD::Register: 520 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 521 break; 522 case ISD::RegisterMask: 523 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 524 break; 525 case ISD::SRCVALUE: 526 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 527 break; 528 case ISD::FrameIndex: 529 case ISD::TargetFrameIndex: 530 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 531 break; 532 case ISD::LIFETIME_START: 533 case ISD::LIFETIME_END: 534 if (cast<LifetimeSDNode>(N)->hasOffset()) { 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 537 } 538 break; 539 case ISD::JumpTable: 540 case ISD::TargetJumpTable: 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 543 break; 544 case ISD::ConstantPool: 545 case ISD::TargetConstantPool: { 546 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 547 ID.AddInteger(CP->getAlign().value()); 548 ID.AddInteger(CP->getOffset()); 549 if (CP->isMachineConstantPoolEntry()) 550 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 551 else 552 ID.AddPointer(CP->getConstVal()); 553 ID.AddInteger(CP->getTargetFlags()); 554 break; 555 } 556 case ISD::TargetIndex: { 557 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 558 ID.AddInteger(TI->getIndex()); 559 ID.AddInteger(TI->getOffset()); 560 ID.AddInteger(TI->getTargetFlags()); 561 break; 562 } 563 case ISD::LOAD: { 564 const LoadSDNode *LD = cast<LoadSDNode>(N); 565 ID.AddInteger(LD->getMemoryVT().getRawBits()); 566 ID.AddInteger(LD->getRawSubclassData()); 567 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 568 break; 569 } 570 case ISD::STORE: { 571 const StoreSDNode *ST = cast<StoreSDNode>(N); 572 ID.AddInteger(ST->getMemoryVT().getRawBits()); 573 ID.AddInteger(ST->getRawSubclassData()); 574 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 575 break; 576 } 577 case ISD::MLOAD: { 578 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 579 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 580 ID.AddInteger(MLD->getRawSubclassData()); 581 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 582 break; 583 } 584 case ISD::MSTORE: { 585 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 586 ID.AddInteger(MST->getMemoryVT().getRawBits()); 587 ID.AddInteger(MST->getRawSubclassData()); 588 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 589 break; 590 } 591 case ISD::MGATHER: { 592 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 593 ID.AddInteger(MG->getMemoryVT().getRawBits()); 594 ID.AddInteger(MG->getRawSubclassData()); 595 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 596 break; 597 } 598 case ISD::MSCATTER: { 599 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 600 ID.AddInteger(MS->getMemoryVT().getRawBits()); 601 ID.AddInteger(MS->getRawSubclassData()); 602 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 603 break; 604 } 605 case ISD::ATOMIC_CMP_SWAP: 606 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 607 case ISD::ATOMIC_SWAP: 608 case ISD::ATOMIC_LOAD_ADD: 609 case ISD::ATOMIC_LOAD_SUB: 610 case ISD::ATOMIC_LOAD_AND: 611 case ISD::ATOMIC_LOAD_CLR: 612 case ISD::ATOMIC_LOAD_OR: 613 case ISD::ATOMIC_LOAD_XOR: 614 case ISD::ATOMIC_LOAD_NAND: 615 case ISD::ATOMIC_LOAD_MIN: 616 case ISD::ATOMIC_LOAD_MAX: 617 case ISD::ATOMIC_LOAD_UMIN: 618 case ISD::ATOMIC_LOAD_UMAX: 619 case ISD::ATOMIC_LOAD: 620 case ISD::ATOMIC_STORE: { 621 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 622 ID.AddInteger(AT->getMemoryVT().getRawBits()); 623 ID.AddInteger(AT->getRawSubclassData()); 624 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::PREFETCH: { 628 const MemSDNode *PF = cast<MemSDNode>(N); 629 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 630 break; 631 } 632 case ISD::VECTOR_SHUFFLE: { 633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 634 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 635 i != e; ++i) 636 ID.AddInteger(SVN->getMaskElt(i)); 637 break; 638 } 639 case ISD::TargetBlockAddress: 640 case ISD::BlockAddress: { 641 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 642 ID.AddPointer(BA->getBlockAddress()); 643 ID.AddInteger(BA->getOffset()); 644 ID.AddInteger(BA->getTargetFlags()); 645 break; 646 } 647 } // end switch (N->getOpcode()) 648 649 // Target specific memory nodes could also have address spaces to check. 650 if (N->isTargetMemoryOpcode()) 651 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 652 } 653 654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 655 /// data. 656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 657 AddNodeIDOpcode(ID, N->getOpcode()); 658 // Add the return value info. 659 AddNodeIDValueTypes(ID, N->getVTList()); 660 // Add the operand info. 661 AddNodeIDOperands(ID, N->ops()); 662 663 // Handle SDNode leafs with special info. 664 AddNodeIDCustom(ID, N); 665 } 666 667 //===----------------------------------------------------------------------===// 668 // SelectionDAG Class 669 //===----------------------------------------------------------------------===// 670 671 /// doNotCSE - Return true if CSE should not be performed for this node. 672 static bool doNotCSE(SDNode *N) { 673 if (N->getValueType(0) == MVT::Glue) 674 return true; // Never CSE anything that produces a flag. 675 676 switch (N->getOpcode()) { 677 default: break; 678 case ISD::HANDLENODE: 679 case ISD::EH_LABEL: 680 return true; // Never CSE these nodes. 681 } 682 683 // Check that remaining values produced are not flags. 684 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 685 if (N->getValueType(i) == MVT::Glue) 686 return true; // Never CSE anything that produces a flag. 687 688 return false; 689 } 690 691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 692 /// SelectionDAG. 693 void SelectionDAG::RemoveDeadNodes() { 694 // Create a dummy node (which is not added to allnodes), that adds a reference 695 // to the root node, preventing it from being deleted. 696 HandleSDNode Dummy(getRoot()); 697 698 SmallVector<SDNode*, 128> DeadNodes; 699 700 // Add all obviously-dead nodes to the DeadNodes worklist. 701 for (SDNode &Node : allnodes()) 702 if (Node.use_empty()) 703 DeadNodes.push_back(&Node); 704 705 RemoveDeadNodes(DeadNodes); 706 707 // If the root changed (e.g. it was a dead load, update the root). 708 setRoot(Dummy.getValue()); 709 } 710 711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 712 /// given list, and any nodes that become unreachable as a result. 713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 714 715 // Process the worklist, deleting the nodes and adding their uses to the 716 // worklist. 717 while (!DeadNodes.empty()) { 718 SDNode *N = DeadNodes.pop_back_val(); 719 // Skip to next node if we've already managed to delete the node. This could 720 // happen if replacing a node causes a node previously added to the node to 721 // be deleted. 722 if (N->getOpcode() == ISD::DELETED_NODE) 723 continue; 724 725 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 726 DUL->NodeDeleted(N, nullptr); 727 728 // Take the node out of the appropriate CSE map. 729 RemoveNodeFromCSEMaps(N); 730 731 // Next, brutally remove the operand list. This is safe to do, as there are 732 // no cycles in the graph. 733 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 734 SDUse &Use = *I++; 735 SDNode *Operand = Use.getNode(); 736 Use.set(SDValue()); 737 738 // Now that we removed this operand, see if there are no uses of it left. 739 if (Operand->use_empty()) 740 DeadNodes.push_back(Operand); 741 } 742 743 DeallocateNode(N); 744 } 745 } 746 747 void SelectionDAG::RemoveDeadNode(SDNode *N){ 748 SmallVector<SDNode*, 16> DeadNodes(1, N); 749 750 // Create a dummy node that adds a reference to the root node, preventing 751 // it from being deleted. (This matters if the root is an operand of the 752 // dead node.) 753 HandleSDNode Dummy(getRoot()); 754 755 RemoveDeadNodes(DeadNodes); 756 } 757 758 void SelectionDAG::DeleteNode(SDNode *N) { 759 // First take this out of the appropriate CSE map. 760 RemoveNodeFromCSEMaps(N); 761 762 // Finally, remove uses due to operands of this node, remove from the 763 // AllNodes list, and delete the node. 764 DeleteNodeNotInCSEMaps(N); 765 } 766 767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 768 assert(N->getIterator() != AllNodes.begin() && 769 "Cannot delete the entry node!"); 770 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 771 772 // Drop all of the operands and decrement used node's use counts. 773 N->DropOperands(); 774 775 DeallocateNode(N); 776 } 777 778 void SDDbgInfo::erase(const SDNode *Node) { 779 DbgValMapType::iterator I = DbgValMap.find(Node); 780 if (I == DbgValMap.end()) 781 return; 782 for (auto &Val: I->second) 783 Val->setIsInvalidated(); 784 DbgValMap.erase(I); 785 } 786 787 void SelectionDAG::DeallocateNode(SDNode *N) { 788 // If we have operands, deallocate them. 789 removeOperands(N); 790 791 NodeAllocator.Deallocate(AllNodes.remove(N)); 792 793 // Set the opcode to DELETED_NODE to help catch bugs when node 794 // memory is reallocated. 795 // FIXME: There are places in SDag that have grown a dependency on the opcode 796 // value in the released node. 797 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 798 N->NodeType = ISD::DELETED_NODE; 799 800 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 801 // them and forget about that node. 802 DbgInfo->erase(N); 803 } 804 805 #ifndef NDEBUG 806 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 807 static void VerifySDNode(SDNode *N) { 808 switch (N->getOpcode()) { 809 default: 810 break; 811 case ISD::BUILD_PAIR: { 812 EVT VT = N->getValueType(0); 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 815 "Wrong return type!"); 816 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 817 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 818 "Mismatched operand types!"); 819 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 820 "Wrong operand type!"); 821 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 822 "Wrong return type size"); 823 break; 824 } 825 case ISD::BUILD_VECTOR: { 826 assert(N->getNumValues() == 1 && "Too many results!"); 827 assert(N->getValueType(0).isVector() && "Wrong return type!"); 828 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 829 "Wrong number of operands!"); 830 EVT EltVT = N->getValueType(0).getVectorElementType(); 831 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 832 assert((I->getValueType() == EltVT || 833 (EltVT.isInteger() && I->getValueType().isInteger() && 834 EltVT.bitsLE(I->getValueType()))) && 835 "Wrong operand type!"); 836 assert(I->getValueType() == N->getOperand(0).getValueType() && 837 "Operands must all have the same type"); 838 } 839 break; 840 } 841 } 842 } 843 #endif // NDEBUG 844 845 /// Insert a newly allocated node into the DAG. 846 /// 847 /// Handles insertion into the all nodes list and CSE map, as well as 848 /// verification and other common operations when a new node is allocated. 849 void SelectionDAG::InsertNode(SDNode *N) { 850 AllNodes.push_back(N); 851 #ifndef NDEBUG 852 N->PersistentId = NextPersistentId++; 853 VerifySDNode(N); 854 #endif 855 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 856 DUL->NodeInserted(N); 857 } 858 859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 860 /// correspond to it. This is useful when we're about to delete or repurpose 861 /// the node. We don't want future request for structurally identical nodes 862 /// to return N anymore. 863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 864 bool Erased = false; 865 switch (N->getOpcode()) { 866 case ISD::HANDLENODE: return false; // noop. 867 case ISD::CONDCODE: 868 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 869 "Cond code doesn't exist!"); 870 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 871 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 872 break; 873 case ISD::ExternalSymbol: 874 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 875 break; 876 case ISD::TargetExternalSymbol: { 877 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 878 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 879 ESN->getSymbol(), ESN->getTargetFlags())); 880 break; 881 } 882 case ISD::MCSymbol: { 883 auto *MCSN = cast<MCSymbolSDNode>(N); 884 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 885 break; 886 } 887 case ISD::VALUETYPE: { 888 EVT VT = cast<VTSDNode>(N)->getVT(); 889 if (VT.isExtended()) { 890 Erased = ExtendedValueTypeNodes.erase(VT); 891 } else { 892 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 893 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 894 } 895 break; 896 } 897 default: 898 // Remove it from the CSE Map. 899 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 900 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 901 Erased = CSEMap.RemoveNode(N); 902 break; 903 } 904 #ifndef NDEBUG 905 // Verify that the node was actually in one of the CSE maps, unless it has a 906 // flag result (which cannot be CSE'd) or is one of the special cases that are 907 // not subject to CSE. 908 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 909 !N->isMachineOpcode() && !doNotCSE(N)) { 910 N->dump(this); 911 dbgs() << "\n"; 912 llvm_unreachable("Node is not in map!"); 913 } 914 #endif 915 return Erased; 916 } 917 918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 919 /// maps and modified in place. Add it back to the CSE maps, unless an identical 920 /// node already exists, in which case transfer all its users to the existing 921 /// node. This transfer can potentially trigger recursive merging. 922 void 923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 924 // For node types that aren't CSE'd, just act as if no identical node 925 // already exists. 926 if (!doNotCSE(N)) { 927 SDNode *Existing = CSEMap.GetOrInsertNode(N); 928 if (Existing != N) { 929 // If there was already an existing matching node, use ReplaceAllUsesWith 930 // to replace the dead one with the existing one. This can cause 931 // recursive merging of other unrelated nodes down the line. 932 ReplaceAllUsesWith(N, Existing); 933 934 // N is now dead. Inform the listeners and delete it. 935 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 936 DUL->NodeDeleted(N, Existing); 937 DeleteNodeNotInCSEMaps(N); 938 return; 939 } 940 } 941 942 // If the node doesn't already exist, we updated it. Inform listeners. 943 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 944 DUL->NodeUpdated(N); 945 } 946 947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 948 /// were replaced with those specified. If this node is never memoized, 949 /// return null, otherwise return a pointer to the slot it would take. If a 950 /// node already exists with these operands, the slot will be non-null. 951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 952 void *&InsertPos) { 953 if (doNotCSE(N)) 954 return nullptr; 955 956 SDValue Ops[] = { Op }; 957 FoldingSetNodeID ID; 958 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 959 AddNodeIDCustom(ID, N); 960 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 961 if (Node) 962 Node->intersectFlagsWith(N->getFlags()); 963 return Node; 964 } 965 966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 967 /// were replaced with those specified. If this node is never memoized, 968 /// return null, otherwise return a pointer to the slot it would take. If a 969 /// node already exists with these operands, the slot will be non-null. 970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 971 SDValue Op1, SDValue Op2, 972 void *&InsertPos) { 973 if (doNotCSE(N)) 974 return nullptr; 975 976 SDValue Ops[] = { Op1, Op2 }; 977 FoldingSetNodeID ID; 978 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 979 AddNodeIDCustom(ID, N); 980 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 981 if (Node) 982 Node->intersectFlagsWith(N->getFlags()); 983 return Node; 984 } 985 986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 987 /// were replaced with those specified. If this node is never memoized, 988 /// return null, otherwise return a pointer to the slot it would take. If a 989 /// node already exists with these operands, the slot will be non-null. 990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 991 void *&InsertPos) { 992 if (doNotCSE(N)) 993 return nullptr; 994 995 FoldingSetNodeID ID; 996 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 997 AddNodeIDCustom(ID, N); 998 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 999 if (Node) 1000 Node->intersectFlagsWith(N->getFlags()); 1001 return Node; 1002 } 1003 1004 Align SelectionDAG::getEVTAlign(EVT VT) const { 1005 Type *Ty = VT == MVT::iPTR ? 1006 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1007 VT.getTypeForEVT(*getContext()); 1008 1009 return getDataLayout().getABITypeAlign(Ty); 1010 } 1011 1012 // EntryNode could meaningfully have debug info if we can find it... 1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1014 : TM(tm), OptLevel(OL), 1015 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1016 Root(getEntryNode()) { 1017 InsertNode(&EntryNode); 1018 DbgInfo = new SDDbgInfo(); 1019 } 1020 1021 void SelectionDAG::init(MachineFunction &NewMF, 1022 OptimizationRemarkEmitter &NewORE, 1023 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1024 LegacyDivergenceAnalysis * Divergence, 1025 ProfileSummaryInfo *PSIin, 1026 BlockFrequencyInfo *BFIin) { 1027 MF = &NewMF; 1028 SDAGISelPass = PassPtr; 1029 ORE = &NewORE; 1030 TLI = getSubtarget().getTargetLowering(); 1031 TSI = getSubtarget().getSelectionDAGInfo(); 1032 LibInfo = LibraryInfo; 1033 Context = &MF->getFunction().getContext(); 1034 DA = Divergence; 1035 PSI = PSIin; 1036 BFI = BFIin; 1037 } 1038 1039 SelectionDAG::~SelectionDAG() { 1040 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1041 allnodes_clear(); 1042 OperandRecycler.clear(OperandAllocator); 1043 delete DbgInfo; 1044 } 1045 1046 bool SelectionDAG::shouldOptForSize() const { 1047 return MF->getFunction().hasOptSize() || 1048 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1049 } 1050 1051 void SelectionDAG::allnodes_clear() { 1052 assert(&*AllNodes.begin() == &EntryNode); 1053 AllNodes.remove(AllNodes.begin()); 1054 while (!AllNodes.empty()) 1055 DeallocateNode(&AllNodes.front()); 1056 #ifndef NDEBUG 1057 NextPersistentId = 0; 1058 #endif 1059 } 1060 1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1062 void *&InsertPos) { 1063 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1064 if (N) { 1065 switch (N->getOpcode()) { 1066 default: break; 1067 case ISD::Constant: 1068 case ISD::ConstantFP: 1069 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1070 "debug location. Use another overload."); 1071 } 1072 } 1073 return N; 1074 } 1075 1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1077 const SDLoc &DL, void *&InsertPos) { 1078 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1079 if (N) { 1080 switch (N->getOpcode()) { 1081 case ISD::Constant: 1082 case ISD::ConstantFP: 1083 // Erase debug location from the node if the node is used at several 1084 // different places. Do not propagate one location to all uses as it 1085 // will cause a worse single stepping debugging experience. 1086 if (N->getDebugLoc() != DL.getDebugLoc()) 1087 N->setDebugLoc(DebugLoc()); 1088 break; 1089 default: 1090 // When the node's point of use is located earlier in the instruction 1091 // sequence than its prior point of use, update its debug info to the 1092 // earlier location. 1093 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1094 N->setDebugLoc(DL.getDebugLoc()); 1095 break; 1096 } 1097 } 1098 return N; 1099 } 1100 1101 void SelectionDAG::clear() { 1102 allnodes_clear(); 1103 OperandRecycler.clear(OperandAllocator); 1104 OperandAllocator.Reset(); 1105 CSEMap.clear(); 1106 1107 ExtendedValueTypeNodes.clear(); 1108 ExternalSymbols.clear(); 1109 TargetExternalSymbols.clear(); 1110 MCSymbols.clear(); 1111 SDCallSiteDbgInfo.clear(); 1112 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1113 static_cast<CondCodeSDNode*>(nullptr)); 1114 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1115 static_cast<SDNode*>(nullptr)); 1116 1117 EntryNode.UseList = nullptr; 1118 InsertNode(&EntryNode); 1119 Root = getEntryNode(); 1120 DbgInfo->clear(); 1121 } 1122 1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1124 return VT.bitsGT(Op.getValueType()) 1125 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1126 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1127 } 1128 1129 std::pair<SDValue, SDValue> 1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1131 const SDLoc &DL, EVT VT) { 1132 assert(!VT.bitsEq(Op.getValueType()) && 1133 "Strict no-op FP extend/round not allowed."); 1134 SDValue Res = 1135 VT.bitsGT(Op.getValueType()) 1136 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1137 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1138 {Chain, Op, getIntPtrConstant(0, DL)}); 1139 1140 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1141 } 1142 1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 return VT.bitsGT(Op.getValueType()) ? 1145 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1146 getNode(ISD::TRUNCATE, DL, VT, Op); 1147 } 1148 1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1150 return VT.bitsGT(Op.getValueType()) ? 1151 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1152 getNode(ISD::TRUNCATE, DL, VT, Op); 1153 } 1154 1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 return VT.bitsGT(Op.getValueType()) ? 1157 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1158 getNode(ISD::TRUNCATE, DL, VT, Op); 1159 } 1160 1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1162 EVT OpVT) { 1163 if (VT.bitsLE(Op.getValueType())) 1164 return getNode(ISD::TRUNCATE, SL, VT, Op); 1165 1166 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1167 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1168 } 1169 1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1171 EVT OpVT = Op.getValueType(); 1172 assert(VT.isInteger() && OpVT.isInteger() && 1173 "Cannot getZeroExtendInReg FP types"); 1174 assert(VT.isVector() == OpVT.isVector() && 1175 "getZeroExtendInReg type should be vector iff the operand " 1176 "type is vector!"); 1177 assert((!VT.isVector() || 1178 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1179 "Vector element counts must match in getZeroExtendInReg"); 1180 assert(VT.bitsLE(OpVT) && "Not extending!"); 1181 if (OpVT == VT) 1182 return Op; 1183 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1184 VT.getScalarSizeInBits()); 1185 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1186 } 1187 1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1189 // Only unsigned pointer semantics are supported right now. In the future this 1190 // might delegate to TLI to check pointer signedness. 1191 return getZExtOrTrunc(Op, DL, VT); 1192 } 1193 1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1195 // Only unsigned pointer semantics are supported right now. In the future this 1196 // might delegate to TLI to check pointer signedness. 1197 return getZeroExtendInReg(Op, DL, VT); 1198 } 1199 1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 EVT EltVT = VT.getScalarType(); 1203 SDValue NegOne = 1204 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1205 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1206 } 1207 1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1209 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1210 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1211 } 1212 1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1214 EVT OpVT) { 1215 if (!V) 1216 return getConstant(0, DL, VT); 1217 1218 switch (TLI->getBooleanContents(OpVT)) { 1219 case TargetLowering::ZeroOrOneBooleanContent: 1220 case TargetLowering::UndefinedBooleanContent: 1221 return getConstant(1, DL, VT); 1222 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1223 return getAllOnesConstant(DL, VT); 1224 } 1225 llvm_unreachable("Unexpected boolean content enum!"); 1226 } 1227 1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1229 bool isT, bool isO) { 1230 EVT EltVT = VT.getScalarType(); 1231 assert((EltVT.getSizeInBits() >= 64 || 1232 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1233 "getConstant with a uint64_t value that doesn't fit in the type!"); 1234 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1235 } 1236 1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1238 bool isT, bool isO) { 1239 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1240 } 1241 1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1243 EVT VT, bool isT, bool isO) { 1244 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1245 1246 EVT EltVT = VT.getScalarType(); 1247 const ConstantInt *Elt = &Val; 1248 1249 // In some cases the vector type is legal but the element type is illegal and 1250 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1251 // inserted value (the type does not need to match the vector element type). 1252 // Any extra bits introduced will be truncated away. 1253 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1254 TargetLowering::TypePromoteInteger) { 1255 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1256 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1257 Elt = ConstantInt::get(*getContext(), NewVal); 1258 } 1259 // In other cases the element type is illegal and needs to be expanded, for 1260 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1261 // the value into n parts and use a vector type with n-times the elements. 1262 // Then bitcast to the type requested. 1263 // Legalizing constants too early makes the DAGCombiner's job harder so we 1264 // only legalize if the DAG tells us we must produce legal types. 1265 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1266 TLI->getTypeAction(*getContext(), EltVT) == 1267 TargetLowering::TypeExpandInteger) { 1268 const APInt &NewVal = Elt->getValue(); 1269 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1270 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1271 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1272 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1273 1274 // Check the temporary vector is the correct size. If this fails then 1275 // getTypeToTransformTo() probably returned a type whose size (in bits) 1276 // isn't a power-of-2 factor of the requested type size. 1277 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1278 1279 SmallVector<SDValue, 2> EltParts; 1280 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1281 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1282 .zextOrTrunc(ViaEltSizeInBits), DL, 1283 ViaEltVT, isT, isO)); 1284 } 1285 1286 // EltParts is currently in little endian order. If we actually want 1287 // big-endian order then reverse it now. 1288 if (getDataLayout().isBigEndian()) 1289 std::reverse(EltParts.begin(), EltParts.end()); 1290 1291 // The elements must be reversed when the element order is different 1292 // to the endianness of the elements (because the BITCAST is itself a 1293 // vector shuffle in this situation). However, we do not need any code to 1294 // perform this reversal because getConstant() is producing a vector 1295 // splat. 1296 // This situation occurs in MIPS MSA. 1297 1298 SmallVector<SDValue, 8> Ops; 1299 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1300 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1301 1302 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1303 return V; 1304 } 1305 1306 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1307 "APInt size does not match type size!"); 1308 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1309 FoldingSetNodeID ID; 1310 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1311 ID.AddPointer(Elt); 1312 ID.AddBoolean(isO); 1313 void *IP = nullptr; 1314 SDNode *N = nullptr; 1315 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1316 if (!VT.isVector()) 1317 return SDValue(N, 0); 1318 1319 if (!N) { 1320 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1321 CSEMap.InsertNode(N, IP); 1322 InsertNode(N); 1323 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1324 } 1325 1326 SDValue Result(N, 0); 1327 if (VT.isScalableVector()) 1328 Result = getSplatVector(VT, DL, Result); 1329 else if (VT.isVector()) 1330 Result = getSplatBuildVector(VT, DL, Result); 1331 1332 return Result; 1333 } 1334 1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1336 bool isTarget) { 1337 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1338 } 1339 1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1341 const SDLoc &DL, bool LegalTypes) { 1342 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1343 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1344 return getConstant(Val, DL, ShiftVT); 1345 } 1346 1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1348 bool isTarget) { 1349 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1350 } 1351 1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1353 bool isTarget) { 1354 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1355 } 1356 1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1358 EVT VT, bool isTarget) { 1359 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 1363 // Do the map lookup using the actual bit pattern for the floating point 1364 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1365 // we don't have issues with SNANs. 1366 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1367 FoldingSetNodeID ID; 1368 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1369 ID.AddPointer(&V); 1370 void *IP = nullptr; 1371 SDNode *N = nullptr; 1372 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1373 if (!VT.isVector()) 1374 return SDValue(N, 0); 1375 1376 if (!N) { 1377 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1378 CSEMap.InsertNode(N, IP); 1379 InsertNode(N); 1380 } 1381 1382 SDValue Result(N, 0); 1383 if (VT.isVector()) 1384 Result = getSplatBuildVector(VT, DL, Result); 1385 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1386 return Result; 1387 } 1388 1389 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1390 bool isTarget) { 1391 EVT EltVT = VT.getScalarType(); 1392 if (EltVT == MVT::f32) 1393 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1394 else if (EltVT == MVT::f64) 1395 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1396 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1397 EltVT == MVT::f16) { 1398 bool Ignored; 1399 APFloat APF = APFloat(Val); 1400 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1401 &Ignored); 1402 return getConstantFP(APF, DL, VT, isTarget); 1403 } else 1404 llvm_unreachable("Unsupported type in getConstantFP"); 1405 } 1406 1407 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1408 EVT VT, int64_t Offset, bool isTargetGA, 1409 unsigned TargetFlags) { 1410 assert((TargetFlags == 0 || isTargetGA) && 1411 "Cannot set target flags on target-independent globals"); 1412 1413 // Truncate (with sign-extension) the offset value to the pointer size. 1414 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1415 if (BitWidth < 64) 1416 Offset = SignExtend64(Offset, BitWidth); 1417 1418 unsigned Opc; 1419 if (GV->isThreadLocal()) 1420 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1421 else 1422 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1423 1424 FoldingSetNodeID ID; 1425 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1426 ID.AddPointer(GV); 1427 ID.AddInteger(Offset); 1428 ID.AddInteger(TargetFlags); 1429 void *IP = nullptr; 1430 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1431 return SDValue(E, 0); 1432 1433 auto *N = newSDNode<GlobalAddressSDNode>( 1434 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1435 CSEMap.InsertNode(N, IP); 1436 InsertNode(N); 1437 return SDValue(N, 0); 1438 } 1439 1440 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1441 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1442 FoldingSetNodeID ID; 1443 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1444 ID.AddInteger(FI); 1445 void *IP = nullptr; 1446 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1447 return SDValue(E, 0); 1448 1449 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1450 CSEMap.InsertNode(N, IP); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1456 unsigned TargetFlags) { 1457 assert((TargetFlags == 0 || isTarget) && 1458 "Cannot set target flags on target-independent jump tables"); 1459 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1460 FoldingSetNodeID ID; 1461 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1462 ID.AddInteger(JTI); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1469 CSEMap.InsertNode(N, IP); 1470 InsertNode(N); 1471 return SDValue(N, 0); 1472 } 1473 1474 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1475 MaybeAlign Alignment, int Offset, 1476 bool isTarget, unsigned TargetFlags) { 1477 assert((TargetFlags == 0 || isTarget) && 1478 "Cannot set target flags on target-independent globals"); 1479 if (!Alignment) 1480 Alignment = shouldOptForSize() 1481 ? getDataLayout().getABITypeAlign(C->getType()) 1482 : getDataLayout().getPrefTypeAlign(C->getType()); 1483 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1484 FoldingSetNodeID ID; 1485 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1486 ID.AddInteger(Alignment->value()); 1487 ID.AddInteger(Offset); 1488 ID.AddPointer(C); 1489 ID.AddInteger(TargetFlags); 1490 void *IP = nullptr; 1491 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1492 return SDValue(E, 0); 1493 1494 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1495 TargetFlags); 1496 CSEMap.InsertNode(N, IP); 1497 InsertNode(N); 1498 SDValue V = SDValue(N, 0); 1499 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1500 return V; 1501 } 1502 1503 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1504 MaybeAlign Alignment, int Offset, 1505 bool isTarget, unsigned TargetFlags) { 1506 assert((TargetFlags == 0 || isTarget) && 1507 "Cannot set target flags on target-independent globals"); 1508 if (!Alignment) 1509 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1510 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1511 FoldingSetNodeID ID; 1512 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1513 ID.AddInteger(Alignment->value()); 1514 ID.AddInteger(Offset); 1515 C->addSelectionDAGCSEId(ID); 1516 ID.AddInteger(TargetFlags); 1517 void *IP = nullptr; 1518 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1519 return SDValue(E, 0); 1520 1521 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1522 TargetFlags); 1523 CSEMap.InsertNode(N, IP); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1529 unsigned TargetFlags) { 1530 FoldingSetNodeID ID; 1531 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1532 ID.AddInteger(Index); 1533 ID.AddInteger(Offset); 1534 ID.AddInteger(TargetFlags); 1535 void *IP = nullptr; 1536 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1537 return SDValue(E, 0); 1538 1539 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1540 CSEMap.InsertNode(N, IP); 1541 InsertNode(N); 1542 return SDValue(N, 0); 1543 } 1544 1545 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1548 ID.AddPointer(MBB); 1549 void *IP = nullptr; 1550 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1551 return SDValue(E, 0); 1552 1553 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1554 CSEMap.InsertNode(N, IP); 1555 InsertNode(N); 1556 return SDValue(N, 0); 1557 } 1558 1559 SDValue SelectionDAG::getValueType(EVT VT) { 1560 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1561 ValueTypeNodes.size()) 1562 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1563 1564 SDNode *&N = VT.isExtended() ? 1565 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1566 1567 if (N) return SDValue(N, 0); 1568 N = newSDNode<VTSDNode>(VT); 1569 InsertNode(N); 1570 return SDValue(N, 0); 1571 } 1572 1573 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1574 SDNode *&N = ExternalSymbols[Sym]; 1575 if (N) return SDValue(N, 0); 1576 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1577 InsertNode(N); 1578 return SDValue(N, 0); 1579 } 1580 1581 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1582 SDNode *&N = MCSymbols[Sym]; 1583 if (N) 1584 return SDValue(N, 0); 1585 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1586 InsertNode(N); 1587 return SDValue(N, 0); 1588 } 1589 1590 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1591 unsigned TargetFlags) { 1592 SDNode *&N = 1593 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1594 if (N) return SDValue(N, 0); 1595 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1596 InsertNode(N); 1597 return SDValue(N, 0); 1598 } 1599 1600 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1601 if ((unsigned)Cond >= CondCodeNodes.size()) 1602 CondCodeNodes.resize(Cond+1); 1603 1604 if (!CondCodeNodes[Cond]) { 1605 auto *N = newSDNode<CondCodeSDNode>(Cond); 1606 CondCodeNodes[Cond] = N; 1607 InsertNode(N); 1608 } 1609 1610 return SDValue(CondCodeNodes[Cond], 0); 1611 } 1612 1613 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1614 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1615 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1616 std::swap(N1, N2); 1617 ShuffleVectorSDNode::commuteMask(M); 1618 } 1619 1620 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1621 SDValue N2, ArrayRef<int> Mask) { 1622 assert(VT.getVectorNumElements() == Mask.size() && 1623 "Must have the same number of vector elements as mask elements!"); 1624 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1625 "Invalid VECTOR_SHUFFLE"); 1626 1627 // Canonicalize shuffle undef, undef -> undef 1628 if (N1.isUndef() && N2.isUndef()) 1629 return getUNDEF(VT); 1630 1631 // Validate that all indices in Mask are within the range of the elements 1632 // input to the shuffle. 1633 int NElts = Mask.size(); 1634 assert(llvm::all_of(Mask, 1635 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1636 "Index out of range"); 1637 1638 // Copy the mask so we can do any needed cleanup. 1639 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1640 1641 // Canonicalize shuffle v, v -> v, undef 1642 if (N1 == N2) { 1643 N2 = getUNDEF(VT); 1644 for (int i = 0; i != NElts; ++i) 1645 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1646 } 1647 1648 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1649 if (N1.isUndef()) 1650 commuteShuffle(N1, N2, MaskVec); 1651 1652 if (TLI->hasVectorBlend()) { 1653 // If shuffling a splat, try to blend the splat instead. We do this here so 1654 // that even when this arises during lowering we don't have to re-handle it. 1655 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1656 BitVector UndefElements; 1657 SDValue Splat = BV->getSplatValue(&UndefElements); 1658 if (!Splat) 1659 return; 1660 1661 for (int i = 0; i < NElts; ++i) { 1662 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1663 continue; 1664 1665 // If this input comes from undef, mark it as such. 1666 if (UndefElements[MaskVec[i] - Offset]) { 1667 MaskVec[i] = -1; 1668 continue; 1669 } 1670 1671 // If we can blend a non-undef lane, use that instead. 1672 if (!UndefElements[i]) 1673 MaskVec[i] = i + Offset; 1674 } 1675 }; 1676 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1677 BlendSplat(N1BV, 0); 1678 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1679 BlendSplat(N2BV, NElts); 1680 } 1681 1682 // Canonicalize all index into lhs, -> shuffle lhs, undef 1683 // Canonicalize all index into rhs, -> shuffle rhs, undef 1684 bool AllLHS = true, AllRHS = true; 1685 bool N2Undef = N2.isUndef(); 1686 for (int i = 0; i != NElts; ++i) { 1687 if (MaskVec[i] >= NElts) { 1688 if (N2Undef) 1689 MaskVec[i] = -1; 1690 else 1691 AllLHS = false; 1692 } else if (MaskVec[i] >= 0) { 1693 AllRHS = false; 1694 } 1695 } 1696 if (AllLHS && AllRHS) 1697 return getUNDEF(VT); 1698 if (AllLHS && !N2Undef) 1699 N2 = getUNDEF(VT); 1700 if (AllRHS) { 1701 N1 = getUNDEF(VT); 1702 commuteShuffle(N1, N2, MaskVec); 1703 } 1704 // Reset our undef status after accounting for the mask. 1705 N2Undef = N2.isUndef(); 1706 // Re-check whether both sides ended up undef. 1707 if (N1.isUndef() && N2Undef) 1708 return getUNDEF(VT); 1709 1710 // If Identity shuffle return that node. 1711 bool Identity = true, AllSame = true; 1712 for (int i = 0; i != NElts; ++i) { 1713 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1714 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1715 } 1716 if (Identity && NElts) 1717 return N1; 1718 1719 // Shuffling a constant splat doesn't change the result. 1720 if (N2Undef) { 1721 SDValue V = N1; 1722 1723 // Look through any bitcasts. We check that these don't change the number 1724 // (and size) of elements and just changes their types. 1725 while (V.getOpcode() == ISD::BITCAST) 1726 V = V->getOperand(0); 1727 1728 // A splat should always show up as a build vector node. 1729 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1730 BitVector UndefElements; 1731 SDValue Splat = BV->getSplatValue(&UndefElements); 1732 // If this is a splat of an undef, shuffling it is also undef. 1733 if (Splat && Splat.isUndef()) 1734 return getUNDEF(VT); 1735 1736 bool SameNumElts = 1737 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1738 1739 // We only have a splat which can skip shuffles if there is a splatted 1740 // value and no undef lanes rearranged by the shuffle. 1741 if (Splat && UndefElements.none()) { 1742 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1743 // number of elements match or the value splatted is a zero constant. 1744 if (SameNumElts) 1745 return N1; 1746 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1747 if (C->isNullValue()) 1748 return N1; 1749 } 1750 1751 // If the shuffle itself creates a splat, build the vector directly. 1752 if (AllSame && SameNumElts) { 1753 EVT BuildVT = BV->getValueType(0); 1754 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1755 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1756 1757 // We may have jumped through bitcasts, so the type of the 1758 // BUILD_VECTOR may not match the type of the shuffle. 1759 if (BuildVT != VT) 1760 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1761 return NewBV; 1762 } 1763 } 1764 } 1765 1766 FoldingSetNodeID ID; 1767 SDValue Ops[2] = { N1, N2 }; 1768 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1769 for (int i = 0; i != NElts; ++i) 1770 ID.AddInteger(MaskVec[i]); 1771 1772 void* IP = nullptr; 1773 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1774 return SDValue(E, 0); 1775 1776 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1777 // SDNode doesn't have access to it. This memory will be "leaked" when 1778 // the node is deallocated, but recovered when the NodeAllocator is released. 1779 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1780 llvm::copy(MaskVec, MaskAlloc); 1781 1782 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1783 dl.getDebugLoc(), MaskAlloc); 1784 createOperands(N, Ops); 1785 1786 CSEMap.InsertNode(N, IP); 1787 InsertNode(N); 1788 SDValue V = SDValue(N, 0); 1789 NewSDValueDbgMsg(V, "Creating new node: ", this); 1790 return V; 1791 } 1792 1793 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1794 EVT VT = SV.getValueType(0); 1795 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1796 ShuffleVectorSDNode::commuteMask(MaskVec); 1797 1798 SDValue Op0 = SV.getOperand(0); 1799 SDValue Op1 = SV.getOperand(1); 1800 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1801 } 1802 1803 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1804 FoldingSetNodeID ID; 1805 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1806 ID.AddInteger(RegNo); 1807 void *IP = nullptr; 1808 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1809 return SDValue(E, 0); 1810 1811 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1812 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1813 CSEMap.InsertNode(N, IP); 1814 InsertNode(N); 1815 return SDValue(N, 0); 1816 } 1817 1818 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1819 FoldingSetNodeID ID; 1820 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1821 ID.AddPointer(RegMask); 1822 void *IP = nullptr; 1823 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1824 return SDValue(E, 0); 1825 1826 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1827 CSEMap.InsertNode(N, IP); 1828 InsertNode(N); 1829 return SDValue(N, 0); 1830 } 1831 1832 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1833 MCSymbol *Label) { 1834 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1835 } 1836 1837 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1838 SDValue Root, MCSymbol *Label) { 1839 FoldingSetNodeID ID; 1840 SDValue Ops[] = { Root }; 1841 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1842 ID.AddPointer(Label); 1843 void *IP = nullptr; 1844 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1845 return SDValue(E, 0); 1846 1847 auto *N = 1848 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1849 createOperands(N, Ops); 1850 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1857 int64_t Offset, bool isTarget, 1858 unsigned TargetFlags) { 1859 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1860 1861 FoldingSetNodeID ID; 1862 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1863 ID.AddPointer(BA); 1864 ID.AddInteger(Offset); 1865 ID.AddInteger(TargetFlags); 1866 void *IP = nullptr; 1867 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1868 return SDValue(E, 0); 1869 1870 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1871 CSEMap.InsertNode(N, IP); 1872 InsertNode(N); 1873 return SDValue(N, 0); 1874 } 1875 1876 SDValue SelectionDAG::getSrcValue(const Value *V) { 1877 FoldingSetNodeID ID; 1878 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1879 ID.AddPointer(V); 1880 1881 void *IP = nullptr; 1882 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1883 return SDValue(E, 0); 1884 1885 auto *N = newSDNode<SrcValueSDNode>(V); 1886 CSEMap.InsertNode(N, IP); 1887 InsertNode(N); 1888 return SDValue(N, 0); 1889 } 1890 1891 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1892 FoldingSetNodeID ID; 1893 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1894 ID.AddPointer(MD); 1895 1896 void *IP = nullptr; 1897 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1898 return SDValue(E, 0); 1899 1900 auto *N = newSDNode<MDNodeSDNode>(MD); 1901 CSEMap.InsertNode(N, IP); 1902 InsertNode(N); 1903 return SDValue(N, 0); 1904 } 1905 1906 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1907 if (VT == V.getValueType()) 1908 return V; 1909 1910 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1911 } 1912 1913 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1914 unsigned SrcAS, unsigned DestAS) { 1915 SDValue Ops[] = {Ptr}; 1916 FoldingSetNodeID ID; 1917 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1918 ID.AddInteger(SrcAS); 1919 ID.AddInteger(DestAS); 1920 1921 void *IP = nullptr; 1922 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1923 return SDValue(E, 0); 1924 1925 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1926 VT, SrcAS, DestAS); 1927 createOperands(N, Ops); 1928 1929 CSEMap.InsertNode(N, IP); 1930 InsertNode(N); 1931 return SDValue(N, 0); 1932 } 1933 1934 SDValue SelectionDAG::getFreeze(SDValue V) { 1935 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1936 } 1937 1938 /// getShiftAmountOperand - Return the specified value casted to 1939 /// the target's desired shift amount type. 1940 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1941 EVT OpTy = Op.getValueType(); 1942 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1943 if (OpTy == ShTy || OpTy.isVector()) return Op; 1944 1945 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1946 } 1947 1948 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1949 SDLoc dl(Node); 1950 const TargetLowering &TLI = getTargetLoweringInfo(); 1951 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1952 EVT VT = Node->getValueType(0); 1953 SDValue Tmp1 = Node->getOperand(0); 1954 SDValue Tmp2 = Node->getOperand(1); 1955 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1956 1957 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1958 Tmp2, MachinePointerInfo(V)); 1959 SDValue VAList = VAListLoad; 1960 1961 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1962 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1963 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1964 1965 VAList = 1966 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1967 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1968 } 1969 1970 // Increment the pointer, VAList, to the next vaarg 1971 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1972 getConstant(getDataLayout().getTypeAllocSize( 1973 VT.getTypeForEVT(*getContext())), 1974 dl, VAList.getValueType())); 1975 // Store the incremented VAList to the legalized pointer 1976 Tmp1 = 1977 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1978 // Load the actual argument out of the pointer VAList 1979 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1980 } 1981 1982 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1983 SDLoc dl(Node); 1984 const TargetLowering &TLI = getTargetLoweringInfo(); 1985 // This defaults to loading a pointer from the input and storing it to the 1986 // output, returning the chain. 1987 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1988 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1989 SDValue Tmp1 = 1990 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1991 Node->getOperand(2), MachinePointerInfo(VS)); 1992 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1993 MachinePointerInfo(VD)); 1994 } 1995 1996 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 1997 const DataLayout &DL = getDataLayout(); 1998 Type *Ty = VT.getTypeForEVT(*getContext()); 1999 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2000 2001 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2002 return RedAlign; 2003 2004 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2005 const Align StackAlign = TFI->getStackAlign(); 2006 2007 // See if we can choose a smaller ABI alignment in cases where it's an 2008 // illegal vector type that will get broken down. 2009 if (RedAlign > StackAlign) { 2010 EVT IntermediateVT; 2011 MVT RegisterVT; 2012 unsigned NumIntermediates; 2013 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2014 NumIntermediates, RegisterVT); 2015 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2016 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2017 if (RedAlign2 < RedAlign) 2018 RedAlign = RedAlign2; 2019 } 2020 2021 return RedAlign; 2022 } 2023 2024 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2025 MachineFrameInfo &MFI = MF->getFrameInfo(); 2026 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false); 2027 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2028 } 2029 2030 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2031 Type *Ty = VT.getTypeForEVT(*getContext()); 2032 Align StackAlign = 2033 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2034 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2035 } 2036 2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2038 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2039 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2040 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2041 const DataLayout &DL = getDataLayout(); 2042 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2043 return CreateStackTemporary(Bytes, Align); 2044 } 2045 2046 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2047 ISD::CondCode Cond, const SDLoc &dl) { 2048 EVT OpVT = N1.getValueType(); 2049 2050 // These setcc operations always fold. 2051 switch (Cond) { 2052 default: break; 2053 case ISD::SETFALSE: 2054 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2055 case ISD::SETTRUE: 2056 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2057 2058 case ISD::SETOEQ: 2059 case ISD::SETOGT: 2060 case ISD::SETOGE: 2061 case ISD::SETOLT: 2062 case ISD::SETOLE: 2063 case ISD::SETONE: 2064 case ISD::SETO: 2065 case ISD::SETUO: 2066 case ISD::SETUEQ: 2067 case ISD::SETUNE: 2068 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2069 break; 2070 } 2071 2072 if (OpVT.isInteger()) { 2073 // For EQ and NE, we can always pick a value for the undef to make the 2074 // predicate pass or fail, so we can return undef. 2075 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2076 // icmp eq/ne X, undef -> undef. 2077 if ((N1.isUndef() || N2.isUndef()) && 2078 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2079 return getUNDEF(VT); 2080 2081 // If both operands are undef, we can return undef for int comparison. 2082 // icmp undef, undef -> undef. 2083 if (N1.isUndef() && N2.isUndef()) 2084 return getUNDEF(VT); 2085 2086 // icmp X, X -> true/false 2087 // icmp X, undef -> true/false because undef could be X. 2088 if (N1 == N2) 2089 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2090 } 2091 2092 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2093 const APInt &C2 = N2C->getAPIntValue(); 2094 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2095 const APInt &C1 = N1C->getAPIntValue(); 2096 2097 switch (Cond) { 2098 default: llvm_unreachable("Unknown integer setcc!"); 2099 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2100 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2101 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2102 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2103 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2104 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2105 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2106 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2107 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2108 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2109 } 2110 } 2111 } 2112 2113 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2114 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2115 2116 if (N1CFP && N2CFP) { 2117 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2118 switch (Cond) { 2119 default: break; 2120 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2121 return getUNDEF(VT); 2122 LLVM_FALLTHROUGH; 2123 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2124 OpVT); 2125 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2126 return getUNDEF(VT); 2127 LLVM_FALLTHROUGH; 2128 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2129 R==APFloat::cmpLessThan, dl, VT, 2130 OpVT); 2131 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2132 return getUNDEF(VT); 2133 LLVM_FALLTHROUGH; 2134 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2135 OpVT); 2136 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2137 return getUNDEF(VT); 2138 LLVM_FALLTHROUGH; 2139 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2140 VT, OpVT); 2141 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2142 return getUNDEF(VT); 2143 LLVM_FALLTHROUGH; 2144 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2145 R==APFloat::cmpEqual, dl, VT, 2146 OpVT); 2147 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2148 return getUNDEF(VT); 2149 LLVM_FALLTHROUGH; 2150 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2151 R==APFloat::cmpEqual, dl, VT, OpVT); 2152 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2153 OpVT); 2154 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2155 OpVT); 2156 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2157 R==APFloat::cmpEqual, dl, VT, 2158 OpVT); 2159 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2160 OpVT); 2161 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2162 R==APFloat::cmpLessThan, dl, VT, 2163 OpVT); 2164 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2165 R==APFloat::cmpUnordered, dl, VT, 2166 OpVT); 2167 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2168 VT, OpVT); 2169 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2170 OpVT); 2171 } 2172 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2173 // Ensure that the constant occurs on the RHS. 2174 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2175 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2176 return SDValue(); 2177 return getSetCC(dl, VT, N2, N1, SwappedCond); 2178 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2179 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2180 // If an operand is known to be a nan (or undef that could be a nan), we can 2181 // fold it. 2182 // Choosing NaN for the undef will always make unordered comparison succeed 2183 // and ordered comparison fails. 2184 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2185 switch (ISD::getUnorderedFlavor(Cond)) { 2186 default: 2187 llvm_unreachable("Unknown flavor!"); 2188 case 0: // Known false. 2189 return getBoolConstant(false, dl, VT, OpVT); 2190 case 1: // Known true. 2191 return getBoolConstant(true, dl, VT, OpVT); 2192 case 2: // Undefined. 2193 return getUNDEF(VT); 2194 } 2195 } 2196 2197 // Could not fold it. 2198 return SDValue(); 2199 } 2200 2201 /// See if the specified operand can be simplified with the knowledge that only 2202 /// the bits specified by DemandedBits are used. 2203 /// TODO: really we should be making this into the DAG equivalent of 2204 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2205 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2206 EVT VT = V.getValueType(); 2207 APInt DemandedElts = VT.isVector() 2208 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2209 : APInt(1, 1); 2210 return GetDemandedBits(V, DemandedBits, DemandedElts); 2211 } 2212 2213 /// See if the specified operand can be simplified with the knowledge that only 2214 /// the bits specified by DemandedBits are used in the elements specified by 2215 /// DemandedElts. 2216 /// TODO: really we should be making this into the DAG equivalent of 2217 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2218 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2219 const APInt &DemandedElts) { 2220 switch (V.getOpcode()) { 2221 default: 2222 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2223 *this, 0); 2224 break; 2225 case ISD::Constant: { 2226 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2227 APInt NewVal = CVal & DemandedBits; 2228 if (NewVal != CVal) 2229 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2230 break; 2231 } 2232 case ISD::SRL: 2233 // Only look at single-use SRLs. 2234 if (!V.getNode()->hasOneUse()) 2235 break; 2236 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2237 // See if we can recursively simplify the LHS. 2238 unsigned Amt = RHSC->getZExtValue(); 2239 2240 // Watch out for shift count overflow though. 2241 if (Amt >= DemandedBits.getBitWidth()) 2242 break; 2243 APInt SrcDemandedBits = DemandedBits << Amt; 2244 if (SDValue SimplifyLHS = 2245 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2246 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2247 V.getOperand(1)); 2248 } 2249 break; 2250 case ISD::AND: { 2251 // X & -1 -> X (ignoring bits which aren't demanded). 2252 // Also handle the case where masked out bits in X are known to be zero. 2253 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2254 const APInt &AndVal = RHSC->getAPIntValue(); 2255 if (DemandedBits.isSubsetOf(AndVal) || 2256 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2257 AndVal)) 2258 return V.getOperand(0); 2259 } 2260 break; 2261 } 2262 } 2263 return SDValue(); 2264 } 2265 2266 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2267 /// use this predicate to simplify operations downstream. 2268 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2269 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2270 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2271 } 2272 2273 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2274 /// this predicate to simplify operations downstream. Mask is known to be zero 2275 /// for bits that V cannot have. 2276 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2277 unsigned Depth) const { 2278 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2279 } 2280 2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2282 /// DemandedElts. We use this predicate to simplify operations downstream. 2283 /// Mask is known to be zero for bits that V cannot have. 2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2285 const APInt &DemandedElts, 2286 unsigned Depth) const { 2287 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2288 } 2289 2290 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2291 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2292 unsigned Depth) const { 2293 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2294 } 2295 2296 /// isSplatValue - Return true if the vector V has the same value 2297 /// across all DemandedElts. For scalable vectors it does not make 2298 /// sense to specify which elements are demanded or undefined, therefore 2299 /// they are simply ignored. 2300 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2301 APInt &UndefElts) { 2302 EVT VT = V.getValueType(); 2303 assert(VT.isVector() && "Vector type expected"); 2304 2305 if (!VT.isScalableVector() && !DemandedElts) 2306 return false; // No demanded elts, better to assume we don't know anything. 2307 2308 // Deal with some common cases here that work for both fixed and scalable 2309 // vector types. 2310 switch (V.getOpcode()) { 2311 case ISD::SPLAT_VECTOR: 2312 return true; 2313 case ISD::ADD: 2314 case ISD::SUB: 2315 case ISD::AND: { 2316 APInt UndefLHS, UndefRHS; 2317 SDValue LHS = V.getOperand(0); 2318 SDValue RHS = V.getOperand(1); 2319 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2320 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2321 UndefElts = UndefLHS | UndefRHS; 2322 return true; 2323 } 2324 break; 2325 } 2326 } 2327 2328 // We don't support other cases than those above for scalable vectors at 2329 // the moment. 2330 if (VT.isScalableVector()) 2331 return false; 2332 2333 unsigned NumElts = VT.getVectorNumElements(); 2334 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2335 UndefElts = APInt::getNullValue(NumElts); 2336 2337 switch (V.getOpcode()) { 2338 case ISD::BUILD_VECTOR: { 2339 SDValue Scl; 2340 for (unsigned i = 0; i != NumElts; ++i) { 2341 SDValue Op = V.getOperand(i); 2342 if (Op.isUndef()) { 2343 UndefElts.setBit(i); 2344 continue; 2345 } 2346 if (!DemandedElts[i]) 2347 continue; 2348 if (Scl && Scl != Op) 2349 return false; 2350 Scl = Op; 2351 } 2352 return true; 2353 } 2354 case ISD::VECTOR_SHUFFLE: { 2355 // Check if this is a shuffle node doing a splat. 2356 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2357 int SplatIndex = -1; 2358 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2359 for (int i = 0; i != (int)NumElts; ++i) { 2360 int M = Mask[i]; 2361 if (M < 0) { 2362 UndefElts.setBit(i); 2363 continue; 2364 } 2365 if (!DemandedElts[i]) 2366 continue; 2367 if (0 <= SplatIndex && SplatIndex != M) 2368 return false; 2369 SplatIndex = M; 2370 } 2371 return true; 2372 } 2373 case ISD::EXTRACT_SUBVECTOR: { 2374 // Offset the demanded elts by the subvector index. 2375 SDValue Src = V.getOperand(0); 2376 uint64_t Idx = V.getConstantOperandVal(1); 2377 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2378 APInt UndefSrcElts; 2379 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2380 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2381 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2382 return true; 2383 } 2384 break; 2385 } 2386 } 2387 2388 return false; 2389 } 2390 2391 /// Helper wrapper to main isSplatValue function. 2392 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2393 EVT VT = V.getValueType(); 2394 assert(VT.isVector() && "Vector type expected"); 2395 2396 APInt UndefElts; 2397 APInt DemandedElts; 2398 2399 // For now we don't support this with scalable vectors. 2400 if (!VT.isScalableVector()) 2401 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2402 return isSplatValue(V, DemandedElts, UndefElts) && 2403 (AllowUndefs || !UndefElts); 2404 } 2405 2406 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2407 V = peekThroughExtractSubvectors(V); 2408 2409 EVT VT = V.getValueType(); 2410 unsigned Opcode = V.getOpcode(); 2411 switch (Opcode) { 2412 default: { 2413 APInt UndefElts; 2414 APInt DemandedElts; 2415 2416 if (!VT.isScalableVector()) 2417 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2418 2419 if (isSplatValue(V, DemandedElts, UndefElts)) { 2420 if (VT.isScalableVector()) { 2421 // DemandedElts and UndefElts are ignored for scalable vectors, since 2422 // the only supported cases are SPLAT_VECTOR nodes. 2423 SplatIdx = 0; 2424 } else { 2425 // Handle case where all demanded elements are UNDEF. 2426 if (DemandedElts.isSubsetOf(UndefElts)) { 2427 SplatIdx = 0; 2428 return getUNDEF(VT); 2429 } 2430 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2431 } 2432 return V; 2433 } 2434 break; 2435 } 2436 case ISD::SPLAT_VECTOR: 2437 SplatIdx = 0; 2438 return V; 2439 case ISD::VECTOR_SHUFFLE: { 2440 if (VT.isScalableVector()) 2441 return SDValue(); 2442 2443 // Check if this is a shuffle node doing a splat. 2444 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2445 // getTargetVShiftNode currently struggles without the splat source. 2446 auto *SVN = cast<ShuffleVectorSDNode>(V); 2447 if (!SVN->isSplat()) 2448 break; 2449 int Idx = SVN->getSplatIndex(); 2450 int NumElts = V.getValueType().getVectorNumElements(); 2451 SplatIdx = Idx % NumElts; 2452 return V.getOperand(Idx / NumElts); 2453 } 2454 } 2455 2456 return SDValue(); 2457 } 2458 2459 SDValue SelectionDAG::getSplatValue(SDValue V) { 2460 int SplatIdx; 2461 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2462 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2463 SrcVector.getValueType().getScalarType(), SrcVector, 2464 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2465 return SDValue(); 2466 } 2467 2468 const APInt * 2469 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2470 const APInt &DemandedElts) const { 2471 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2472 V.getOpcode() == ISD::SRA) && 2473 "Unknown shift node"); 2474 unsigned BitWidth = V.getScalarValueSizeInBits(); 2475 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2476 // Shifting more than the bitwidth is not valid. 2477 const APInt &ShAmt = SA->getAPIntValue(); 2478 if (ShAmt.ult(BitWidth)) 2479 return &ShAmt; 2480 } 2481 return nullptr; 2482 } 2483 2484 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2485 SDValue V, const APInt &DemandedElts) const { 2486 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2487 V.getOpcode() == ISD::SRA) && 2488 "Unknown shift node"); 2489 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2490 return ValidAmt; 2491 unsigned BitWidth = V.getScalarValueSizeInBits(); 2492 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2493 if (!BV) 2494 return nullptr; 2495 const APInt *MinShAmt = nullptr; 2496 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2497 if (!DemandedElts[i]) 2498 continue; 2499 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2500 if (!SA) 2501 return nullptr; 2502 // Shifting more than the bitwidth is not valid. 2503 const APInt &ShAmt = SA->getAPIntValue(); 2504 if (ShAmt.uge(BitWidth)) 2505 return nullptr; 2506 if (MinShAmt && MinShAmt->ule(ShAmt)) 2507 continue; 2508 MinShAmt = &ShAmt; 2509 } 2510 return MinShAmt; 2511 } 2512 2513 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2514 SDValue V, const APInt &DemandedElts) const { 2515 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2516 V.getOpcode() == ISD::SRA) && 2517 "Unknown shift node"); 2518 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2519 return ValidAmt; 2520 unsigned BitWidth = V.getScalarValueSizeInBits(); 2521 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2522 if (!BV) 2523 return nullptr; 2524 const APInt *MaxShAmt = nullptr; 2525 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2526 if (!DemandedElts[i]) 2527 continue; 2528 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2529 if (!SA) 2530 return nullptr; 2531 // Shifting more than the bitwidth is not valid. 2532 const APInt &ShAmt = SA->getAPIntValue(); 2533 if (ShAmt.uge(BitWidth)) 2534 return nullptr; 2535 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2536 continue; 2537 MaxShAmt = &ShAmt; 2538 } 2539 return MaxShAmt; 2540 } 2541 2542 /// Determine which bits of Op are known to be either zero or one and return 2543 /// them in Known. For vectors, the known bits are those that are shared by 2544 /// every vector element. 2545 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2546 EVT VT = Op.getValueType(); 2547 2548 // TOOD: Until we have a plan for how to represent demanded elements for 2549 // scalable vectors, we can just bail out for now. 2550 if (Op.getValueType().isScalableVector()) { 2551 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2552 return KnownBits(BitWidth); 2553 } 2554 2555 APInt DemandedElts = VT.isVector() 2556 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2557 : APInt(1, 1); 2558 return computeKnownBits(Op, DemandedElts, Depth); 2559 } 2560 2561 /// Determine which bits of Op are known to be either zero or one and return 2562 /// them in Known. The DemandedElts argument allows us to only collect the known 2563 /// bits that are shared by the requested vector elements. 2564 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2565 unsigned Depth) const { 2566 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2567 2568 KnownBits Known(BitWidth); // Don't know anything. 2569 2570 // TOOD: Until we have a plan for how to represent demanded elements for 2571 // scalable vectors, we can just bail out for now. 2572 if (Op.getValueType().isScalableVector()) 2573 return Known; 2574 2575 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2576 // We know all of the bits for a constant! 2577 Known.One = C->getAPIntValue(); 2578 Known.Zero = ~Known.One; 2579 return Known; 2580 } 2581 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2582 // We know all of the bits for a constant fp! 2583 Known.One = C->getValueAPF().bitcastToAPInt(); 2584 Known.Zero = ~Known.One; 2585 return Known; 2586 } 2587 2588 if (Depth >= MaxRecursionDepth) 2589 return Known; // Limit search depth. 2590 2591 KnownBits Known2; 2592 unsigned NumElts = DemandedElts.getBitWidth(); 2593 assert((!Op.getValueType().isVector() || 2594 NumElts == Op.getValueType().getVectorNumElements()) && 2595 "Unexpected vector size"); 2596 2597 if (!DemandedElts) 2598 return Known; // No demanded elts, better to assume we don't know anything. 2599 2600 unsigned Opcode = Op.getOpcode(); 2601 switch (Opcode) { 2602 case ISD::BUILD_VECTOR: 2603 // Collect the known bits that are shared by every demanded vector element. 2604 Known.Zero.setAllBits(); Known.One.setAllBits(); 2605 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2606 if (!DemandedElts[i]) 2607 continue; 2608 2609 SDValue SrcOp = Op.getOperand(i); 2610 Known2 = computeKnownBits(SrcOp, Depth + 1); 2611 2612 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2613 if (SrcOp.getValueSizeInBits() != BitWidth) { 2614 assert(SrcOp.getValueSizeInBits() > BitWidth && 2615 "Expected BUILD_VECTOR implicit truncation"); 2616 Known2 = Known2.trunc(BitWidth); 2617 } 2618 2619 // Known bits are the values that are shared by every demanded element. 2620 Known.One &= Known2.One; 2621 Known.Zero &= Known2.Zero; 2622 2623 // If we don't know any bits, early out. 2624 if (Known.isUnknown()) 2625 break; 2626 } 2627 break; 2628 case ISD::VECTOR_SHUFFLE: { 2629 // Collect the known bits that are shared by every vector element referenced 2630 // by the shuffle. 2631 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2632 Known.Zero.setAllBits(); Known.One.setAllBits(); 2633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2634 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2635 for (unsigned i = 0; i != NumElts; ++i) { 2636 if (!DemandedElts[i]) 2637 continue; 2638 2639 int M = SVN->getMaskElt(i); 2640 if (M < 0) { 2641 // For UNDEF elements, we don't know anything about the common state of 2642 // the shuffle result. 2643 Known.resetAll(); 2644 DemandedLHS.clearAllBits(); 2645 DemandedRHS.clearAllBits(); 2646 break; 2647 } 2648 2649 if ((unsigned)M < NumElts) 2650 DemandedLHS.setBit((unsigned)M % NumElts); 2651 else 2652 DemandedRHS.setBit((unsigned)M % NumElts); 2653 } 2654 // Known bits are the values that are shared by every demanded element. 2655 if (!!DemandedLHS) { 2656 SDValue LHS = Op.getOperand(0); 2657 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2658 Known.One &= Known2.One; 2659 Known.Zero &= Known2.Zero; 2660 } 2661 // If we don't know any bits, early out. 2662 if (Known.isUnknown()) 2663 break; 2664 if (!!DemandedRHS) { 2665 SDValue RHS = Op.getOperand(1); 2666 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2667 Known.One &= Known2.One; 2668 Known.Zero &= Known2.Zero; 2669 } 2670 break; 2671 } 2672 case ISD::CONCAT_VECTORS: { 2673 // Split DemandedElts and test each of the demanded subvectors. 2674 Known.Zero.setAllBits(); Known.One.setAllBits(); 2675 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2676 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2677 unsigned NumSubVectors = Op.getNumOperands(); 2678 for (unsigned i = 0; i != NumSubVectors; ++i) { 2679 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2680 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2681 if (!!DemandedSub) { 2682 SDValue Sub = Op.getOperand(i); 2683 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2684 Known.One &= Known2.One; 2685 Known.Zero &= Known2.Zero; 2686 } 2687 // If we don't know any bits, early out. 2688 if (Known.isUnknown()) 2689 break; 2690 } 2691 break; 2692 } 2693 case ISD::INSERT_SUBVECTOR: { 2694 // Demand any elements from the subvector and the remainder from the src its 2695 // inserted into. 2696 SDValue Src = Op.getOperand(0); 2697 SDValue Sub = Op.getOperand(1); 2698 uint64_t Idx = Op.getConstantOperandVal(2); 2699 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2700 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2701 APInt DemandedSrcElts = DemandedElts; 2702 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2703 2704 Known.One.setAllBits(); 2705 Known.Zero.setAllBits(); 2706 if (!!DemandedSubElts) { 2707 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2708 if (Known.isUnknown()) 2709 break; // early-out. 2710 } 2711 if (!!DemandedSrcElts) { 2712 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2713 Known.One &= Known2.One; 2714 Known.Zero &= Known2.Zero; 2715 } 2716 break; 2717 } 2718 case ISD::EXTRACT_SUBVECTOR: { 2719 // Offset the demanded elts by the subvector index. 2720 SDValue Src = Op.getOperand(0); 2721 uint64_t Idx = Op.getConstantOperandVal(1); 2722 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2723 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2724 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2725 break; 2726 } 2727 case ISD::SCALAR_TO_VECTOR: { 2728 // We know about scalar_to_vector as much as we know about it source, 2729 // which becomes the first element of otherwise unknown vector. 2730 if (DemandedElts != 1) 2731 break; 2732 2733 SDValue N0 = Op.getOperand(0); 2734 Known = computeKnownBits(N0, Depth + 1); 2735 if (N0.getValueSizeInBits() != BitWidth) 2736 Known = Known.trunc(BitWidth); 2737 2738 break; 2739 } 2740 case ISD::BITCAST: { 2741 SDValue N0 = Op.getOperand(0); 2742 EVT SubVT = N0.getValueType(); 2743 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2744 2745 // Ignore bitcasts from unsupported types. 2746 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2747 break; 2748 2749 // Fast handling of 'identity' bitcasts. 2750 if (BitWidth == SubBitWidth) { 2751 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2752 break; 2753 } 2754 2755 bool IsLE = getDataLayout().isLittleEndian(); 2756 2757 // Bitcast 'small element' vector to 'large element' scalar/vector. 2758 if ((BitWidth % SubBitWidth) == 0) { 2759 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2760 2761 // Collect known bits for the (larger) output by collecting the known 2762 // bits from each set of sub elements and shift these into place. 2763 // We need to separately call computeKnownBits for each set of 2764 // sub elements as the knownbits for each is likely to be different. 2765 unsigned SubScale = BitWidth / SubBitWidth; 2766 APInt SubDemandedElts(NumElts * SubScale, 0); 2767 for (unsigned i = 0; i != NumElts; ++i) 2768 if (DemandedElts[i]) 2769 SubDemandedElts.setBit(i * SubScale); 2770 2771 for (unsigned i = 0; i != SubScale; ++i) { 2772 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2773 Depth + 1); 2774 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2775 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2776 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2777 } 2778 } 2779 2780 // Bitcast 'large element' scalar/vector to 'small element' vector. 2781 if ((SubBitWidth % BitWidth) == 0) { 2782 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2783 2784 // Collect known bits for the (smaller) output by collecting the known 2785 // bits from the overlapping larger input elements and extracting the 2786 // sub sections we actually care about. 2787 unsigned SubScale = SubBitWidth / BitWidth; 2788 APInt SubDemandedElts(NumElts / SubScale, 0); 2789 for (unsigned i = 0; i != NumElts; ++i) 2790 if (DemandedElts[i]) 2791 SubDemandedElts.setBit(i / SubScale); 2792 2793 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2794 2795 Known.Zero.setAllBits(); Known.One.setAllBits(); 2796 for (unsigned i = 0; i != NumElts; ++i) 2797 if (DemandedElts[i]) { 2798 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2799 unsigned Offset = (Shifts % SubScale) * BitWidth; 2800 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2801 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2802 // If we don't know any bits, early out. 2803 if (Known.isUnknown()) 2804 break; 2805 } 2806 } 2807 break; 2808 } 2809 case ISD::AND: 2810 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2811 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2812 2813 Known &= Known2; 2814 break; 2815 case ISD::OR: 2816 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2817 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2818 2819 Known |= Known2; 2820 break; 2821 case ISD::XOR: 2822 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2823 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2824 2825 Known ^= Known2; 2826 break; 2827 case ISD::MUL: { 2828 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2829 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2830 2831 // If low bits are zero in either operand, output low known-0 bits. 2832 // Also compute a conservative estimate for high known-0 bits. 2833 // More trickiness is possible, but this is sufficient for the 2834 // interesting case of alignment computation. 2835 unsigned TrailZ = Known.countMinTrailingZeros() + 2836 Known2.countMinTrailingZeros(); 2837 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2838 Known2.countMinLeadingZeros(), 2839 BitWidth) - BitWidth; 2840 2841 Known.resetAll(); 2842 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2843 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2844 break; 2845 } 2846 case ISD::UDIV: { 2847 // For the purposes of computing leading zeros we can conservatively 2848 // treat a udiv as a logical right shift by the power of 2 known to 2849 // be less than the denominator. 2850 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2851 unsigned LeadZ = Known2.countMinLeadingZeros(); 2852 2853 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2854 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2855 if (RHSMaxLeadingZeros != BitWidth) 2856 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2857 2858 Known.Zero.setHighBits(LeadZ); 2859 break; 2860 } 2861 case ISD::SELECT: 2862 case ISD::VSELECT: 2863 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2864 // If we don't know any bits, early out. 2865 if (Known.isUnknown()) 2866 break; 2867 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2868 2869 // Only known if known in both the LHS and RHS. 2870 Known.One &= Known2.One; 2871 Known.Zero &= Known2.Zero; 2872 break; 2873 case ISD::SELECT_CC: 2874 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2875 // If we don't know any bits, early out. 2876 if (Known.isUnknown()) 2877 break; 2878 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2879 2880 // Only known if known in both the LHS and RHS. 2881 Known.One &= Known2.One; 2882 Known.Zero &= Known2.Zero; 2883 break; 2884 case ISD::SMULO: 2885 case ISD::UMULO: 2886 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2887 if (Op.getResNo() != 1) 2888 break; 2889 // The boolean result conforms to getBooleanContents. 2890 // If we know the result of a setcc has the top bits zero, use this info. 2891 // We know that we have an integer-based boolean since these operations 2892 // are only available for integer. 2893 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2894 TargetLowering::ZeroOrOneBooleanContent && 2895 BitWidth > 1) 2896 Known.Zero.setBitsFrom(1); 2897 break; 2898 case ISD::SETCC: 2899 case ISD::STRICT_FSETCC: 2900 case ISD::STRICT_FSETCCS: { 2901 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2902 // If we know the result of a setcc has the top bits zero, use this info. 2903 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2904 TargetLowering::ZeroOrOneBooleanContent && 2905 BitWidth > 1) 2906 Known.Zero.setBitsFrom(1); 2907 break; 2908 } 2909 case ISD::SHL: 2910 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2911 2912 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2913 unsigned Shift = ShAmt->getZExtValue(); 2914 Known.Zero <<= Shift; 2915 Known.One <<= Shift; 2916 // Low bits are known zero. 2917 Known.Zero.setLowBits(Shift); 2918 break; 2919 } 2920 2921 // No matter the shift amount, the trailing zeros will stay zero. 2922 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2923 Known.One.clearAllBits(); 2924 2925 // Minimum shift low bits are known zero. 2926 if (const APInt *ShMinAmt = 2927 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2928 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2929 break; 2930 case ISD::SRL: 2931 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2932 2933 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2934 unsigned Shift = ShAmt->getZExtValue(); 2935 Known.Zero.lshrInPlace(Shift); 2936 Known.One.lshrInPlace(Shift); 2937 // High bits are known zero. 2938 Known.Zero.setHighBits(Shift); 2939 break; 2940 } 2941 2942 // No matter the shift amount, the leading zeros will stay zero. 2943 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2944 Known.One.clearAllBits(); 2945 2946 // Minimum shift high bits are known zero. 2947 if (const APInt *ShMinAmt = 2948 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2949 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2950 break; 2951 case ISD::SRA: 2952 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2953 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2954 unsigned Shift = ShAmt->getZExtValue(); 2955 // Sign extend known zero/one bit (else is unknown). 2956 Known.Zero.ashrInPlace(Shift); 2957 Known.One.ashrInPlace(Shift); 2958 } 2959 break; 2960 case ISD::FSHL: 2961 case ISD::FSHR: 2962 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2963 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2964 2965 // For fshl, 0-shift returns the 1st arg. 2966 // For fshr, 0-shift returns the 2nd arg. 2967 if (Amt == 0) { 2968 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2969 DemandedElts, Depth + 1); 2970 break; 2971 } 2972 2973 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2974 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2975 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2976 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2977 if (Opcode == ISD::FSHL) { 2978 Known.One <<= Amt; 2979 Known.Zero <<= Amt; 2980 Known2.One.lshrInPlace(BitWidth - Amt); 2981 Known2.Zero.lshrInPlace(BitWidth - Amt); 2982 } else { 2983 Known.One <<= BitWidth - Amt; 2984 Known.Zero <<= BitWidth - Amt; 2985 Known2.One.lshrInPlace(Amt); 2986 Known2.Zero.lshrInPlace(Amt); 2987 } 2988 Known.One |= Known2.One; 2989 Known.Zero |= Known2.Zero; 2990 } 2991 break; 2992 case ISD::SIGN_EXTEND_INREG: { 2993 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2994 unsigned EBits = EVT.getScalarSizeInBits(); 2995 2996 // Sign extension. Compute the demanded bits in the result that are not 2997 // present in the input. 2998 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2999 3000 APInt InSignMask = APInt::getSignMask(EBits); 3001 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3002 3003 // If the sign extended bits are demanded, we know that the sign 3004 // bit is demanded. 3005 InSignMask = InSignMask.zext(BitWidth); 3006 if (NewBits.getBoolValue()) 3007 InputDemandedBits |= InSignMask; 3008 3009 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known.One &= InputDemandedBits; 3011 Known.Zero &= InputDemandedBits; 3012 3013 // If the sign bit of the input is known set or clear, then we know the 3014 // top bits of the result. 3015 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3016 Known.Zero |= NewBits; 3017 Known.One &= ~NewBits; 3018 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3019 Known.One |= NewBits; 3020 Known.Zero &= ~NewBits; 3021 } else { // Input sign bit unknown 3022 Known.Zero &= ~NewBits; 3023 Known.One &= ~NewBits; 3024 } 3025 break; 3026 } 3027 case ISD::CTTZ: 3028 case ISD::CTTZ_ZERO_UNDEF: { 3029 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3030 // If we have a known 1, its position is our upper bound. 3031 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3032 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3033 Known.Zero.setBitsFrom(LowBits); 3034 break; 3035 } 3036 case ISD::CTLZ: 3037 case ISD::CTLZ_ZERO_UNDEF: { 3038 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 // If we have a known 1, its position is our upper bound. 3040 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3041 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3042 Known.Zero.setBitsFrom(LowBits); 3043 break; 3044 } 3045 case ISD::CTPOP: { 3046 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3047 // If we know some of the bits are zero, they can't be one. 3048 unsigned PossibleOnes = Known2.countMaxPopulation(); 3049 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3050 break; 3051 } 3052 case ISD::LOAD: { 3053 LoadSDNode *LD = cast<LoadSDNode>(Op); 3054 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3055 if (ISD::isNON_EXTLoad(LD) && Cst) { 3056 // Determine any common known bits from the loaded constant pool value. 3057 Type *CstTy = Cst->getType(); 3058 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3059 // If its a vector splat, then we can (quickly) reuse the scalar path. 3060 // NOTE: We assume all elements match and none are UNDEF. 3061 if (CstTy->isVectorTy()) { 3062 if (const Constant *Splat = Cst->getSplatValue()) { 3063 Cst = Splat; 3064 CstTy = Cst->getType(); 3065 } 3066 } 3067 // TODO - do we need to handle different bitwidths? 3068 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3069 // Iterate across all vector elements finding common known bits. 3070 Known.One.setAllBits(); 3071 Known.Zero.setAllBits(); 3072 for (unsigned i = 0; i != NumElts; ++i) { 3073 if (!DemandedElts[i]) 3074 continue; 3075 if (Constant *Elt = Cst->getAggregateElement(i)) { 3076 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3077 const APInt &Value = CInt->getValue(); 3078 Known.One &= Value; 3079 Known.Zero &= ~Value; 3080 continue; 3081 } 3082 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3083 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3084 Known.One &= Value; 3085 Known.Zero &= ~Value; 3086 continue; 3087 } 3088 } 3089 Known.One.clearAllBits(); 3090 Known.Zero.clearAllBits(); 3091 break; 3092 } 3093 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3094 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3095 const APInt &Value = CInt->getValue(); 3096 Known.One = Value; 3097 Known.Zero = ~Value; 3098 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3099 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3100 Known.One = Value; 3101 Known.Zero = ~Value; 3102 } 3103 } 3104 } 3105 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3106 // If this is a ZEXTLoad and we are looking at the loaded value. 3107 EVT VT = LD->getMemoryVT(); 3108 unsigned MemBits = VT.getScalarSizeInBits(); 3109 Known.Zero.setBitsFrom(MemBits); 3110 } else if (const MDNode *Ranges = LD->getRanges()) { 3111 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3112 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3113 } 3114 break; 3115 } 3116 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3117 EVT InVT = Op.getOperand(0).getValueType(); 3118 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3119 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3120 Known = Known.zext(BitWidth); 3121 break; 3122 } 3123 case ISD::ZERO_EXTEND: { 3124 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3125 Known = Known.zext(BitWidth); 3126 break; 3127 } 3128 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3129 EVT InVT = Op.getOperand(0).getValueType(); 3130 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3131 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3132 // If the sign bit is known to be zero or one, then sext will extend 3133 // it to the top bits, else it will just zext. 3134 Known = Known.sext(BitWidth); 3135 break; 3136 } 3137 case ISD::SIGN_EXTEND: { 3138 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3139 // If the sign bit is known to be zero or one, then sext will extend 3140 // it to the top bits, else it will just zext. 3141 Known = Known.sext(BitWidth); 3142 break; 3143 } 3144 case ISD::ANY_EXTEND_VECTOR_INREG: { 3145 EVT InVT = Op.getOperand(0).getValueType(); 3146 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3147 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3148 Known = Known.anyext(BitWidth); 3149 break; 3150 } 3151 case ISD::ANY_EXTEND: { 3152 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3153 Known = Known.anyext(BitWidth); 3154 break; 3155 } 3156 case ISD::TRUNCATE: { 3157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 Known = Known.trunc(BitWidth); 3159 break; 3160 } 3161 case ISD::AssertZext: { 3162 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3163 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3164 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3165 Known.Zero |= (~InMask); 3166 Known.One &= (~Known.Zero); 3167 break; 3168 } 3169 case ISD::FGETSIGN: 3170 // All bits are zero except the low bit. 3171 Known.Zero.setBitsFrom(1); 3172 break; 3173 case ISD::USUBO: 3174 case ISD::SSUBO: 3175 if (Op.getResNo() == 1) { 3176 // If we know the result of a setcc has the top bits zero, use this info. 3177 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3178 TargetLowering::ZeroOrOneBooleanContent && 3179 BitWidth > 1) 3180 Known.Zero.setBitsFrom(1); 3181 break; 3182 } 3183 LLVM_FALLTHROUGH; 3184 case ISD::SUB: 3185 case ISD::SUBC: { 3186 assert(Op.getResNo() == 0 && 3187 "We only compute knownbits for the difference here."); 3188 3189 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3190 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3191 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3192 Known, Known2); 3193 break; 3194 } 3195 case ISD::UADDO: 3196 case ISD::SADDO: 3197 case ISD::ADDCARRY: 3198 if (Op.getResNo() == 1) { 3199 // If we know the result of a setcc has the top bits zero, use this info. 3200 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3201 TargetLowering::ZeroOrOneBooleanContent && 3202 BitWidth > 1) 3203 Known.Zero.setBitsFrom(1); 3204 break; 3205 } 3206 LLVM_FALLTHROUGH; 3207 case ISD::ADD: 3208 case ISD::ADDC: 3209 case ISD::ADDE: { 3210 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3211 3212 // With ADDE and ADDCARRY, a carry bit may be added in. 3213 KnownBits Carry(1); 3214 if (Opcode == ISD::ADDE) 3215 // Can't track carry from glue, set carry to unknown. 3216 Carry.resetAll(); 3217 else if (Opcode == ISD::ADDCARRY) 3218 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3219 // the trouble (how often will we find a known carry bit). And I haven't 3220 // tested this very much yet, but something like this might work: 3221 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3222 // Carry = Carry.zextOrTrunc(1, false); 3223 Carry.resetAll(); 3224 else 3225 Carry.setAllZero(); 3226 3227 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3228 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3229 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3230 break; 3231 } 3232 case ISD::SREM: 3233 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3234 const APInt &RA = Rem->getAPIntValue().abs(); 3235 if (RA.isPowerOf2()) { 3236 APInt LowBits = RA - 1; 3237 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3238 3239 // The low bits of the first operand are unchanged by the srem. 3240 Known.Zero = Known2.Zero & LowBits; 3241 Known.One = Known2.One & LowBits; 3242 3243 // If the first operand is non-negative or has all low bits zero, then 3244 // the upper bits are all zero. 3245 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3246 Known.Zero |= ~LowBits; 3247 3248 // If the first operand is negative and not all low bits are zero, then 3249 // the upper bits are all one. 3250 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3251 Known.One |= ~LowBits; 3252 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3253 } 3254 } 3255 break; 3256 case ISD::UREM: { 3257 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3258 const APInt &RA = Rem->getAPIntValue(); 3259 if (RA.isPowerOf2()) { 3260 APInt LowBits = (RA - 1); 3261 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3262 3263 // The upper bits are all zero, the lower ones are unchanged. 3264 Known.Zero = Known2.Zero | ~LowBits; 3265 Known.One = Known2.One & LowBits; 3266 break; 3267 } 3268 } 3269 3270 // Since the result is less than or equal to either operand, any leading 3271 // zero bits in either operand must also exist in the result. 3272 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3273 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3274 3275 uint32_t Leaders = 3276 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3277 Known.resetAll(); 3278 Known.Zero.setHighBits(Leaders); 3279 break; 3280 } 3281 case ISD::EXTRACT_ELEMENT: { 3282 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3283 const unsigned Index = Op.getConstantOperandVal(1); 3284 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3285 3286 // Remove low part of known bits mask 3287 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3288 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3289 3290 // Remove high part of known bit mask 3291 Known = Known.trunc(EltBitWidth); 3292 break; 3293 } 3294 case ISD::EXTRACT_VECTOR_ELT: { 3295 SDValue InVec = Op.getOperand(0); 3296 SDValue EltNo = Op.getOperand(1); 3297 EVT VecVT = InVec.getValueType(); 3298 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3299 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3300 3301 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3302 // anything about the extended bits. 3303 if (BitWidth > EltBitWidth) 3304 Known = Known.trunc(EltBitWidth); 3305 3306 // If we know the element index, just demand that vector element, else for 3307 // an unknown element index, ignore DemandedElts and demand them all. 3308 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3309 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3310 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3311 DemandedSrcElts = 3312 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3313 3314 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3315 if (BitWidth > EltBitWidth) 3316 Known = Known.anyext(BitWidth); 3317 break; 3318 } 3319 case ISD::INSERT_VECTOR_ELT: { 3320 // If we know the element index, split the demand between the 3321 // source vector and the inserted element, otherwise assume we need 3322 // the original demanded vector elements and the value. 3323 SDValue InVec = Op.getOperand(0); 3324 SDValue InVal = Op.getOperand(1); 3325 SDValue EltNo = Op.getOperand(2); 3326 bool DemandedVal = true; 3327 APInt DemandedVecElts = DemandedElts; 3328 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3329 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3330 unsigned EltIdx = CEltNo->getZExtValue(); 3331 DemandedVal = !!DemandedElts[EltIdx]; 3332 DemandedVecElts.clearBit(EltIdx); 3333 } 3334 Known.One.setAllBits(); 3335 Known.Zero.setAllBits(); 3336 if (DemandedVal) { 3337 Known2 = computeKnownBits(InVal, Depth + 1); 3338 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3339 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3340 } 3341 if (!!DemandedVecElts) { 3342 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3343 Known.One &= Known2.One; 3344 Known.Zero &= Known2.Zero; 3345 } 3346 break; 3347 } 3348 case ISD::BITREVERSE: { 3349 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3350 Known.Zero = Known2.Zero.reverseBits(); 3351 Known.One = Known2.One.reverseBits(); 3352 break; 3353 } 3354 case ISD::BSWAP: { 3355 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3356 Known.Zero = Known2.Zero.byteSwap(); 3357 Known.One = Known2.One.byteSwap(); 3358 break; 3359 } 3360 case ISD::ABS: { 3361 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3362 3363 // If the source's MSB is zero then we know the rest of the bits already. 3364 if (Known2.isNonNegative()) { 3365 Known.Zero = Known2.Zero; 3366 Known.One = Known2.One; 3367 break; 3368 } 3369 3370 // We only know that the absolute values's MSB will be zero iff there is 3371 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3372 Known2.One.clearSignBit(); 3373 if (Known2.One.getBoolValue()) { 3374 Known.Zero = APInt::getSignMask(BitWidth); 3375 break; 3376 } 3377 break; 3378 } 3379 case ISD::UMIN: { 3380 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3381 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3382 3383 // UMIN - we know that the result will have the maximum of the 3384 // known zero leading bits of the inputs. 3385 unsigned LeadZero = Known.countMinLeadingZeros(); 3386 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3387 3388 Known.Zero &= Known2.Zero; 3389 Known.One &= Known2.One; 3390 Known.Zero.setHighBits(LeadZero); 3391 break; 3392 } 3393 case ISD::UMAX: { 3394 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3395 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3396 3397 // UMAX - we know that the result will have the maximum of the 3398 // known one leading bits of the inputs. 3399 unsigned LeadOne = Known.countMinLeadingOnes(); 3400 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3401 3402 Known.Zero &= Known2.Zero; 3403 Known.One &= Known2.One; 3404 Known.One.setHighBits(LeadOne); 3405 break; 3406 } 3407 case ISD::SMIN: 3408 case ISD::SMAX: { 3409 // If we have a clamp pattern, we know that the number of sign bits will be 3410 // the minimum of the clamp min/max range. 3411 bool IsMax = (Opcode == ISD::SMAX); 3412 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3413 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3414 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3415 CstHigh = 3416 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3417 if (CstLow && CstHigh) { 3418 if (!IsMax) 3419 std::swap(CstLow, CstHigh); 3420 3421 const APInt &ValueLow = CstLow->getAPIntValue(); 3422 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3423 if (ValueLow.sle(ValueHigh)) { 3424 unsigned LowSignBits = ValueLow.getNumSignBits(); 3425 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3426 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3427 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3428 Known.One.setHighBits(MinSignBits); 3429 break; 3430 } 3431 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3432 Known.Zero.setHighBits(MinSignBits); 3433 break; 3434 } 3435 } 3436 } 3437 3438 // Fallback - just get the shared known bits of the operands. 3439 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3440 if (Known.isUnknown()) break; // Early-out 3441 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3442 Known.Zero &= Known2.Zero; 3443 Known.One &= Known2.One; 3444 break; 3445 } 3446 case ISD::FrameIndex: 3447 case ISD::TargetFrameIndex: 3448 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3449 Known, getMachineFunction()); 3450 break; 3451 3452 default: 3453 if (Opcode < ISD::BUILTIN_OP_END) 3454 break; 3455 LLVM_FALLTHROUGH; 3456 case ISD::INTRINSIC_WO_CHAIN: 3457 case ISD::INTRINSIC_W_CHAIN: 3458 case ISD::INTRINSIC_VOID: 3459 // Allow the target to implement this method for its nodes. 3460 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3461 break; 3462 } 3463 3464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3465 return Known; 3466 } 3467 3468 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3469 SDValue N1) const { 3470 // X + 0 never overflow 3471 if (isNullConstant(N1)) 3472 return OFK_Never; 3473 3474 KnownBits N1Known = computeKnownBits(N1); 3475 if (N1Known.Zero.getBoolValue()) { 3476 KnownBits N0Known = computeKnownBits(N0); 3477 3478 bool overflow; 3479 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3480 if (!overflow) 3481 return OFK_Never; 3482 } 3483 3484 // mulhi + 1 never overflow 3485 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3486 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3487 return OFK_Never; 3488 3489 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3490 KnownBits N0Known = computeKnownBits(N0); 3491 3492 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3493 return OFK_Never; 3494 } 3495 3496 return OFK_Sometime; 3497 } 3498 3499 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3500 EVT OpVT = Val.getValueType(); 3501 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3502 3503 // Is the constant a known power of 2? 3504 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3505 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3506 3507 // A left-shift of a constant one will have exactly one bit set because 3508 // shifting the bit off the end is undefined. 3509 if (Val.getOpcode() == ISD::SHL) { 3510 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3511 if (C && C->getAPIntValue() == 1) 3512 return true; 3513 } 3514 3515 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3516 // one bit set. 3517 if (Val.getOpcode() == ISD::SRL) { 3518 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3519 if (C && C->getAPIntValue().isSignMask()) 3520 return true; 3521 } 3522 3523 // Are all operands of a build vector constant powers of two? 3524 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3525 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3526 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3527 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3528 return false; 3529 })) 3530 return true; 3531 3532 // More could be done here, though the above checks are enough 3533 // to handle some common cases. 3534 3535 // Fall back to computeKnownBits to catch other known cases. 3536 KnownBits Known = computeKnownBits(Val); 3537 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3538 } 3539 3540 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3541 EVT VT = Op.getValueType(); 3542 APInt DemandedElts = VT.isVector() 3543 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3544 : APInt(1, 1); 3545 return ComputeNumSignBits(Op, DemandedElts, Depth); 3546 } 3547 3548 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3549 unsigned Depth) const { 3550 EVT VT = Op.getValueType(); 3551 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3552 unsigned VTBits = VT.getScalarSizeInBits(); 3553 unsigned NumElts = DemandedElts.getBitWidth(); 3554 unsigned Tmp, Tmp2; 3555 unsigned FirstAnswer = 1; 3556 3557 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3558 const APInt &Val = C->getAPIntValue(); 3559 return Val.getNumSignBits(); 3560 } 3561 3562 if (Depth >= MaxRecursionDepth) 3563 return 1; // Limit search depth. 3564 3565 if (!DemandedElts) 3566 return 1; // No demanded elts, better to assume we don't know anything. 3567 3568 unsigned Opcode = Op.getOpcode(); 3569 switch (Opcode) { 3570 default: break; 3571 case ISD::AssertSext: 3572 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3573 return VTBits-Tmp+1; 3574 case ISD::AssertZext: 3575 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3576 return VTBits-Tmp; 3577 3578 case ISD::BUILD_VECTOR: 3579 Tmp = VTBits; 3580 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3581 if (!DemandedElts[i]) 3582 continue; 3583 3584 SDValue SrcOp = Op.getOperand(i); 3585 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3586 3587 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3588 if (SrcOp.getValueSizeInBits() != VTBits) { 3589 assert(SrcOp.getValueSizeInBits() > VTBits && 3590 "Expected BUILD_VECTOR implicit truncation"); 3591 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3592 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3593 } 3594 Tmp = std::min(Tmp, Tmp2); 3595 } 3596 return Tmp; 3597 3598 case ISD::VECTOR_SHUFFLE: { 3599 // Collect the minimum number of sign bits that are shared by every vector 3600 // element referenced by the shuffle. 3601 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3602 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3603 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3604 for (unsigned i = 0; i != NumElts; ++i) { 3605 int M = SVN->getMaskElt(i); 3606 if (!DemandedElts[i]) 3607 continue; 3608 // For UNDEF elements, we don't know anything about the common state of 3609 // the shuffle result. 3610 if (M < 0) 3611 return 1; 3612 if ((unsigned)M < NumElts) 3613 DemandedLHS.setBit((unsigned)M % NumElts); 3614 else 3615 DemandedRHS.setBit((unsigned)M % NumElts); 3616 } 3617 Tmp = std::numeric_limits<unsigned>::max(); 3618 if (!!DemandedLHS) 3619 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3620 if (!!DemandedRHS) { 3621 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3622 Tmp = std::min(Tmp, Tmp2); 3623 } 3624 // If we don't know anything, early out and try computeKnownBits fall-back. 3625 if (Tmp == 1) 3626 break; 3627 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3628 return Tmp; 3629 } 3630 3631 case ISD::BITCAST: { 3632 SDValue N0 = Op.getOperand(0); 3633 EVT SrcVT = N0.getValueType(); 3634 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3635 3636 // Ignore bitcasts from unsupported types.. 3637 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3638 break; 3639 3640 // Fast handling of 'identity' bitcasts. 3641 if (VTBits == SrcBits) 3642 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3643 3644 bool IsLE = getDataLayout().isLittleEndian(); 3645 3646 // Bitcast 'large element' scalar/vector to 'small element' vector. 3647 if ((SrcBits % VTBits) == 0) { 3648 assert(VT.isVector() && "Expected bitcast to vector"); 3649 3650 unsigned Scale = SrcBits / VTBits; 3651 APInt SrcDemandedElts(NumElts / Scale, 0); 3652 for (unsigned i = 0; i != NumElts; ++i) 3653 if (DemandedElts[i]) 3654 SrcDemandedElts.setBit(i / Scale); 3655 3656 // Fast case - sign splat can be simply split across the small elements. 3657 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3658 if (Tmp == SrcBits) 3659 return VTBits; 3660 3661 // Slow case - determine how far the sign extends into each sub-element. 3662 Tmp2 = VTBits; 3663 for (unsigned i = 0; i != NumElts; ++i) 3664 if (DemandedElts[i]) { 3665 unsigned SubOffset = i % Scale; 3666 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3667 SubOffset = SubOffset * VTBits; 3668 if (Tmp <= SubOffset) 3669 return 1; 3670 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3671 } 3672 return Tmp2; 3673 } 3674 break; 3675 } 3676 3677 case ISD::SIGN_EXTEND: 3678 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3679 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3680 case ISD::SIGN_EXTEND_INREG: 3681 // Max of the input and what this extends. 3682 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3683 Tmp = VTBits-Tmp+1; 3684 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3685 return std::max(Tmp, Tmp2); 3686 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3687 SDValue Src = Op.getOperand(0); 3688 EVT SrcVT = Src.getValueType(); 3689 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3690 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3691 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3692 } 3693 case ISD::SRA: 3694 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3695 // SRA X, C -> adds C sign bits. 3696 if (const APInt *ShAmt = 3697 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3698 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3699 return Tmp; 3700 case ISD::SHL: 3701 if (const APInt *ShAmt = 3702 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3703 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3704 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3705 if (ShAmt->ult(Tmp)) 3706 return Tmp - ShAmt->getZExtValue(); 3707 } 3708 break; 3709 case ISD::AND: 3710 case ISD::OR: 3711 case ISD::XOR: // NOT is handled here. 3712 // Logical binary ops preserve the number of sign bits at the worst. 3713 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3714 if (Tmp != 1) { 3715 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3716 FirstAnswer = std::min(Tmp, Tmp2); 3717 // We computed what we know about the sign bits as our first 3718 // answer. Now proceed to the generic code that uses 3719 // computeKnownBits, and pick whichever answer is better. 3720 } 3721 break; 3722 3723 case ISD::SELECT: 3724 case ISD::VSELECT: 3725 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3726 if (Tmp == 1) return 1; // Early out. 3727 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3728 return std::min(Tmp, Tmp2); 3729 case ISD::SELECT_CC: 3730 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3731 if (Tmp == 1) return 1; // Early out. 3732 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3733 return std::min(Tmp, Tmp2); 3734 3735 case ISD::SMIN: 3736 case ISD::SMAX: { 3737 // If we have a clamp pattern, we know that the number of sign bits will be 3738 // the minimum of the clamp min/max range. 3739 bool IsMax = (Opcode == ISD::SMAX); 3740 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3741 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3742 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3743 CstHigh = 3744 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3745 if (CstLow && CstHigh) { 3746 if (!IsMax) 3747 std::swap(CstLow, CstHigh); 3748 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3749 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3750 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3751 return std::min(Tmp, Tmp2); 3752 } 3753 } 3754 3755 // Fallback - just get the minimum number of sign bits of the operands. 3756 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3757 if (Tmp == 1) 3758 return 1; // Early out. 3759 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3760 return std::min(Tmp, Tmp2); 3761 } 3762 case ISD::UMIN: 3763 case ISD::UMAX: 3764 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3765 if (Tmp == 1) 3766 return 1; // Early out. 3767 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3768 return std::min(Tmp, Tmp2); 3769 case ISD::SADDO: 3770 case ISD::UADDO: 3771 case ISD::SSUBO: 3772 case ISD::USUBO: 3773 case ISD::SMULO: 3774 case ISD::UMULO: 3775 if (Op.getResNo() != 1) 3776 break; 3777 // The boolean result conforms to getBooleanContents. Fall through. 3778 // If setcc returns 0/-1, all bits are sign bits. 3779 // We know that we have an integer-based boolean since these operations 3780 // are only available for integer. 3781 if (TLI->getBooleanContents(VT.isVector(), false) == 3782 TargetLowering::ZeroOrNegativeOneBooleanContent) 3783 return VTBits; 3784 break; 3785 case ISD::SETCC: 3786 case ISD::STRICT_FSETCC: 3787 case ISD::STRICT_FSETCCS: { 3788 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3789 // If setcc returns 0/-1, all bits are sign bits. 3790 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3791 TargetLowering::ZeroOrNegativeOneBooleanContent) 3792 return VTBits; 3793 break; 3794 } 3795 case ISD::ROTL: 3796 case ISD::ROTR: 3797 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3798 3799 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3800 if (Tmp == VTBits) 3801 return VTBits; 3802 3803 if (ConstantSDNode *C = 3804 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3805 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3806 3807 // Handle rotate right by N like a rotate left by 32-N. 3808 if (Opcode == ISD::ROTR) 3809 RotAmt = (VTBits - RotAmt) % VTBits; 3810 3811 // If we aren't rotating out all of the known-in sign bits, return the 3812 // number that are left. This handles rotl(sext(x), 1) for example. 3813 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3814 } 3815 break; 3816 case ISD::ADD: 3817 case ISD::ADDC: 3818 // Add can have at most one carry bit. Thus we know that the output 3819 // is, at worst, one more bit than the inputs. 3820 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3821 if (Tmp == 1) return 1; // Early out. 3822 3823 // Special case decrementing a value (ADD X, -1): 3824 if (ConstantSDNode *CRHS = 3825 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3826 if (CRHS->isAllOnesValue()) { 3827 KnownBits Known = 3828 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3829 3830 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3831 // sign bits set. 3832 if ((Known.Zero | 1).isAllOnesValue()) 3833 return VTBits; 3834 3835 // If we are subtracting one from a positive number, there is no carry 3836 // out of the result. 3837 if (Known.isNonNegative()) 3838 return Tmp; 3839 } 3840 3841 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3842 if (Tmp2 == 1) return 1; // Early out. 3843 return std::min(Tmp, Tmp2) - 1; 3844 case ISD::SUB: 3845 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3846 if (Tmp2 == 1) return 1; // Early out. 3847 3848 // Handle NEG. 3849 if (ConstantSDNode *CLHS = 3850 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3851 if (CLHS->isNullValue()) { 3852 KnownBits Known = 3853 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3854 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3855 // sign bits set. 3856 if ((Known.Zero | 1).isAllOnesValue()) 3857 return VTBits; 3858 3859 // If the input is known to be positive (the sign bit is known clear), 3860 // the output of the NEG has the same number of sign bits as the input. 3861 if (Known.isNonNegative()) 3862 return Tmp2; 3863 3864 // Otherwise, we treat this like a SUB. 3865 } 3866 3867 // Sub can have at most one carry bit. Thus we know that the output 3868 // is, at worst, one more bit than the inputs. 3869 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3870 if (Tmp == 1) return 1; // Early out. 3871 return std::min(Tmp, Tmp2) - 1; 3872 case ISD::MUL: { 3873 // The output of the Mul can be at most twice the valid bits in the inputs. 3874 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3875 if (SignBitsOp0 == 1) 3876 break; 3877 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3878 if (SignBitsOp1 == 1) 3879 break; 3880 unsigned OutValidBits = 3881 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3882 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3883 } 3884 case ISD::TRUNCATE: { 3885 // Check if the sign bits of source go down as far as the truncated value. 3886 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3887 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3888 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3889 return NumSrcSignBits - (NumSrcBits - VTBits); 3890 break; 3891 } 3892 case ISD::EXTRACT_ELEMENT: { 3893 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3894 const int BitWidth = Op.getValueSizeInBits(); 3895 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3896 3897 // Get reverse index (starting from 1), Op1 value indexes elements from 3898 // little end. Sign starts at big end. 3899 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3900 3901 // If the sign portion ends in our element the subtraction gives correct 3902 // result. Otherwise it gives either negative or > bitwidth result 3903 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3904 } 3905 case ISD::INSERT_VECTOR_ELT: { 3906 // If we know the element index, split the demand between the 3907 // source vector and the inserted element, otherwise assume we need 3908 // the original demanded vector elements and the value. 3909 SDValue InVec = Op.getOperand(0); 3910 SDValue InVal = Op.getOperand(1); 3911 SDValue EltNo = Op.getOperand(2); 3912 bool DemandedVal = true; 3913 APInt DemandedVecElts = DemandedElts; 3914 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3915 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3916 unsigned EltIdx = CEltNo->getZExtValue(); 3917 DemandedVal = !!DemandedElts[EltIdx]; 3918 DemandedVecElts.clearBit(EltIdx); 3919 } 3920 Tmp = std::numeric_limits<unsigned>::max(); 3921 if (DemandedVal) { 3922 // TODO - handle implicit truncation of inserted elements. 3923 if (InVal.getScalarValueSizeInBits() != VTBits) 3924 break; 3925 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3926 Tmp = std::min(Tmp, Tmp2); 3927 } 3928 if (!!DemandedVecElts) { 3929 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3930 Tmp = std::min(Tmp, Tmp2); 3931 } 3932 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3933 return Tmp; 3934 } 3935 case ISD::EXTRACT_VECTOR_ELT: { 3936 SDValue InVec = Op.getOperand(0); 3937 SDValue EltNo = Op.getOperand(1); 3938 EVT VecVT = InVec.getValueType(); 3939 const unsigned BitWidth = Op.getValueSizeInBits(); 3940 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3941 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3942 3943 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3944 // anything about sign bits. But if the sizes match we can derive knowledge 3945 // about sign bits from the vector operand. 3946 if (BitWidth != EltBitWidth) 3947 break; 3948 3949 // If we know the element index, just demand that vector element, else for 3950 // an unknown element index, ignore DemandedElts and demand them all. 3951 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3952 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3953 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3954 DemandedSrcElts = 3955 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3956 3957 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3958 } 3959 case ISD::EXTRACT_SUBVECTOR: { 3960 // Offset the demanded elts by the subvector index. 3961 SDValue Src = Op.getOperand(0); 3962 uint64_t Idx = Op.getConstantOperandVal(1); 3963 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3964 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3965 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3966 } 3967 case ISD::CONCAT_VECTORS: { 3968 // Determine the minimum number of sign bits across all demanded 3969 // elts of the input vectors. Early out if the result is already 1. 3970 Tmp = std::numeric_limits<unsigned>::max(); 3971 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3972 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3973 unsigned NumSubVectors = Op.getNumOperands(); 3974 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3975 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3976 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3977 if (!DemandedSub) 3978 continue; 3979 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3980 Tmp = std::min(Tmp, Tmp2); 3981 } 3982 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3983 return Tmp; 3984 } 3985 case ISD::INSERT_SUBVECTOR: { 3986 // Demand any elements from the subvector and the remainder from the src its 3987 // inserted into. 3988 SDValue Src = Op.getOperand(0); 3989 SDValue Sub = Op.getOperand(1); 3990 uint64_t Idx = Op.getConstantOperandVal(2); 3991 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3992 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3993 APInt DemandedSrcElts = DemandedElts; 3994 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3995 3996 Tmp = std::numeric_limits<unsigned>::max(); 3997 if (!!DemandedSubElts) { 3998 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3999 if (Tmp == 1) 4000 return 1; // early-out 4001 } 4002 if (!!DemandedSrcElts) { 4003 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4004 Tmp = std::min(Tmp, Tmp2); 4005 } 4006 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4007 return Tmp; 4008 } 4009 } 4010 4011 // If we are looking at the loaded value of the SDNode. 4012 if (Op.getResNo() == 0) { 4013 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4014 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4015 unsigned ExtType = LD->getExtensionType(); 4016 switch (ExtType) { 4017 default: break; 4018 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4019 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4020 return VTBits - Tmp + 1; 4021 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4022 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4023 return VTBits - Tmp; 4024 case ISD::NON_EXTLOAD: 4025 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4026 // We only need to handle vectors - computeKnownBits should handle 4027 // scalar cases. 4028 Type *CstTy = Cst->getType(); 4029 if (CstTy->isVectorTy() && 4030 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4031 Tmp = VTBits; 4032 for (unsigned i = 0; i != NumElts; ++i) { 4033 if (!DemandedElts[i]) 4034 continue; 4035 if (Constant *Elt = Cst->getAggregateElement(i)) { 4036 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4037 const APInt &Value = CInt->getValue(); 4038 Tmp = std::min(Tmp, Value.getNumSignBits()); 4039 continue; 4040 } 4041 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4042 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4043 Tmp = std::min(Tmp, Value.getNumSignBits()); 4044 continue; 4045 } 4046 } 4047 // Unknown type. Conservatively assume no bits match sign bit. 4048 return 1; 4049 } 4050 return Tmp; 4051 } 4052 } 4053 break; 4054 } 4055 } 4056 } 4057 4058 // Allow the target to implement this method for its nodes. 4059 if (Opcode >= ISD::BUILTIN_OP_END || 4060 Opcode == ISD::INTRINSIC_WO_CHAIN || 4061 Opcode == ISD::INTRINSIC_W_CHAIN || 4062 Opcode == ISD::INTRINSIC_VOID) { 4063 unsigned NumBits = 4064 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4065 if (NumBits > 1) 4066 FirstAnswer = std::max(FirstAnswer, NumBits); 4067 } 4068 4069 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4070 // use this information. 4071 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4072 4073 APInt Mask; 4074 if (Known.isNonNegative()) { // sign bit is 0 4075 Mask = Known.Zero; 4076 } else if (Known.isNegative()) { // sign bit is 1; 4077 Mask = Known.One; 4078 } else { 4079 // Nothing known. 4080 return FirstAnswer; 4081 } 4082 4083 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4084 // the number of identical bits in the top of the input value. 4085 Mask <<= Mask.getBitWidth()-VTBits; 4086 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4087 } 4088 4089 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4090 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4091 !isa<ConstantSDNode>(Op.getOperand(1))) 4092 return false; 4093 4094 if (Op.getOpcode() == ISD::OR && 4095 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4096 return false; 4097 4098 return true; 4099 } 4100 4101 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4102 // If we're told that NaNs won't happen, assume they won't. 4103 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4104 return true; 4105 4106 if (Depth >= MaxRecursionDepth) 4107 return false; // Limit search depth. 4108 4109 // TODO: Handle vectors. 4110 // If the value is a constant, we can obviously see if it is a NaN or not. 4111 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4112 return !C->getValueAPF().isNaN() || 4113 (SNaN && !C->getValueAPF().isSignaling()); 4114 } 4115 4116 unsigned Opcode = Op.getOpcode(); 4117 switch (Opcode) { 4118 case ISD::FADD: 4119 case ISD::FSUB: 4120 case ISD::FMUL: 4121 case ISD::FDIV: 4122 case ISD::FREM: 4123 case ISD::FSIN: 4124 case ISD::FCOS: { 4125 if (SNaN) 4126 return true; 4127 // TODO: Need isKnownNeverInfinity 4128 return false; 4129 } 4130 case ISD::FCANONICALIZE: 4131 case ISD::FEXP: 4132 case ISD::FEXP2: 4133 case ISD::FTRUNC: 4134 case ISD::FFLOOR: 4135 case ISD::FCEIL: 4136 case ISD::FROUND: 4137 case ISD::FROUNDEVEN: 4138 case ISD::FRINT: 4139 case ISD::FNEARBYINT: { 4140 if (SNaN) 4141 return true; 4142 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4143 } 4144 case ISD::FABS: 4145 case ISD::FNEG: 4146 case ISD::FCOPYSIGN: { 4147 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4148 } 4149 case ISD::SELECT: 4150 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4151 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4152 case ISD::FP_EXTEND: 4153 case ISD::FP_ROUND: { 4154 if (SNaN) 4155 return true; 4156 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4157 } 4158 case ISD::SINT_TO_FP: 4159 case ISD::UINT_TO_FP: 4160 return true; 4161 case ISD::FMA: 4162 case ISD::FMAD: { 4163 if (SNaN) 4164 return true; 4165 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4166 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4167 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4168 } 4169 case ISD::FSQRT: // Need is known positive 4170 case ISD::FLOG: 4171 case ISD::FLOG2: 4172 case ISD::FLOG10: 4173 case ISD::FPOWI: 4174 case ISD::FPOW: { 4175 if (SNaN) 4176 return true; 4177 // TODO: Refine on operand 4178 return false; 4179 } 4180 case ISD::FMINNUM: 4181 case ISD::FMAXNUM: { 4182 // Only one needs to be known not-nan, since it will be returned if the 4183 // other ends up being one. 4184 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4185 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4186 } 4187 case ISD::FMINNUM_IEEE: 4188 case ISD::FMAXNUM_IEEE: { 4189 if (SNaN) 4190 return true; 4191 // This can return a NaN if either operand is an sNaN, or if both operands 4192 // are NaN. 4193 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4194 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4195 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4196 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4197 } 4198 case ISD::FMINIMUM: 4199 case ISD::FMAXIMUM: { 4200 // TODO: Does this quiet or return the origina NaN as-is? 4201 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4202 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4203 } 4204 case ISD::EXTRACT_VECTOR_ELT: { 4205 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4206 } 4207 default: 4208 if (Opcode >= ISD::BUILTIN_OP_END || 4209 Opcode == ISD::INTRINSIC_WO_CHAIN || 4210 Opcode == ISD::INTRINSIC_W_CHAIN || 4211 Opcode == ISD::INTRINSIC_VOID) { 4212 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4213 } 4214 4215 return false; 4216 } 4217 } 4218 4219 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4220 assert(Op.getValueType().isFloatingPoint() && 4221 "Floating point type expected"); 4222 4223 // If the value is a constant, we can obviously see if it is a zero or not. 4224 // TODO: Add BuildVector support. 4225 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4226 return !C->isZero(); 4227 return false; 4228 } 4229 4230 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4231 assert(!Op.getValueType().isFloatingPoint() && 4232 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4233 4234 // If the value is a constant, we can obviously see if it is a zero or not. 4235 if (ISD::matchUnaryPredicate( 4236 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4237 return true; 4238 4239 // TODO: Recognize more cases here. 4240 switch (Op.getOpcode()) { 4241 default: break; 4242 case ISD::OR: 4243 if (isKnownNeverZero(Op.getOperand(1)) || 4244 isKnownNeverZero(Op.getOperand(0))) 4245 return true; 4246 break; 4247 } 4248 4249 return false; 4250 } 4251 4252 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4253 // Check the obvious case. 4254 if (A == B) return true; 4255 4256 // For for negative and positive zero. 4257 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4258 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4259 if (CA->isZero() && CB->isZero()) return true; 4260 4261 // Otherwise they may not be equal. 4262 return false; 4263 } 4264 4265 // FIXME: unify with llvm::haveNoCommonBitsSet. 4266 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4267 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4268 assert(A.getValueType() == B.getValueType() && 4269 "Values must have the same type"); 4270 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4271 } 4272 4273 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4274 ArrayRef<SDValue> Ops, 4275 SelectionDAG &DAG) { 4276 int NumOps = Ops.size(); 4277 assert(NumOps != 0 && "Can't build an empty vector!"); 4278 assert(!VT.isScalableVector() && 4279 "BUILD_VECTOR cannot be used with scalable types"); 4280 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4281 "Incorrect element count in BUILD_VECTOR!"); 4282 4283 // BUILD_VECTOR of UNDEFs is UNDEF. 4284 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4285 return DAG.getUNDEF(VT); 4286 4287 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4288 SDValue IdentitySrc; 4289 bool IsIdentity = true; 4290 for (int i = 0; i != NumOps; ++i) { 4291 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4292 Ops[i].getOperand(0).getValueType() != VT || 4293 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4294 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4295 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4296 IsIdentity = false; 4297 break; 4298 } 4299 IdentitySrc = Ops[i].getOperand(0); 4300 } 4301 if (IsIdentity) 4302 return IdentitySrc; 4303 4304 return SDValue(); 4305 } 4306 4307 /// Try to simplify vector concatenation to an input value, undef, or build 4308 /// vector. 4309 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4310 ArrayRef<SDValue> Ops, 4311 SelectionDAG &DAG) { 4312 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4313 assert(llvm::all_of(Ops, 4314 [Ops](SDValue Op) { 4315 return Ops[0].getValueType() == Op.getValueType(); 4316 }) && 4317 "Concatenation of vectors with inconsistent value types!"); 4318 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4319 VT.getVectorNumElements() && 4320 "Incorrect element count in vector concatenation!"); 4321 4322 if (Ops.size() == 1) 4323 return Ops[0]; 4324 4325 // Concat of UNDEFs is UNDEF. 4326 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4327 return DAG.getUNDEF(VT); 4328 4329 // Scan the operands and look for extract operations from a single source 4330 // that correspond to insertion at the same location via this concatenation: 4331 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4332 SDValue IdentitySrc; 4333 bool IsIdentity = true; 4334 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4335 SDValue Op = Ops[i]; 4336 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4337 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4338 Op.getOperand(0).getValueType() != VT || 4339 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4340 Op.getConstantOperandVal(1) != IdentityIndex) { 4341 IsIdentity = false; 4342 break; 4343 } 4344 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4345 "Unexpected identity source vector for concat of extracts"); 4346 IdentitySrc = Op.getOperand(0); 4347 } 4348 if (IsIdentity) { 4349 assert(IdentitySrc && "Failed to set source vector of extracts"); 4350 return IdentitySrc; 4351 } 4352 4353 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4354 // simplified to one big BUILD_VECTOR. 4355 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4356 EVT SVT = VT.getScalarType(); 4357 SmallVector<SDValue, 16> Elts; 4358 for (SDValue Op : Ops) { 4359 EVT OpVT = Op.getValueType(); 4360 if (Op.isUndef()) 4361 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4362 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4363 Elts.append(Op->op_begin(), Op->op_end()); 4364 else 4365 return SDValue(); 4366 } 4367 4368 // BUILD_VECTOR requires all inputs to be of the same type, find the 4369 // maximum type and extend them all. 4370 for (SDValue Op : Elts) 4371 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4372 4373 if (SVT.bitsGT(VT.getScalarType())) 4374 for (SDValue &Op : Elts) 4375 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4376 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4377 : DAG.getSExtOrTrunc(Op, DL, SVT); 4378 4379 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4380 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4381 return V; 4382 } 4383 4384 /// Gets or creates the specified node. 4385 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4386 FoldingSetNodeID ID; 4387 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4388 void *IP = nullptr; 4389 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4390 return SDValue(E, 0); 4391 4392 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4393 getVTList(VT)); 4394 CSEMap.InsertNode(N, IP); 4395 4396 InsertNode(N); 4397 SDValue V = SDValue(N, 0); 4398 NewSDValueDbgMsg(V, "Creating new node: ", this); 4399 return V; 4400 } 4401 4402 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4403 SDValue Operand, const SDNodeFlags Flags) { 4404 // Constant fold unary operations with an integer constant operand. Even 4405 // opaque constant will be folded, because the folding of unary operations 4406 // doesn't create new constants with different values. Nevertheless, the 4407 // opaque flag is preserved during folding to prevent future folding with 4408 // other constants. 4409 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4410 const APInt &Val = C->getAPIntValue(); 4411 switch (Opcode) { 4412 default: break; 4413 case ISD::SIGN_EXTEND: 4414 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4415 C->isTargetOpcode(), C->isOpaque()); 4416 case ISD::TRUNCATE: 4417 if (C->isOpaque()) 4418 break; 4419 LLVM_FALLTHROUGH; 4420 case ISD::ANY_EXTEND: 4421 case ISD::ZERO_EXTEND: 4422 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4423 C->isTargetOpcode(), C->isOpaque()); 4424 case ISD::UINT_TO_FP: 4425 case ISD::SINT_TO_FP: { 4426 APFloat apf(EVTToAPFloatSemantics(VT), 4427 APInt::getNullValue(VT.getSizeInBits())); 4428 (void)apf.convertFromAPInt(Val, 4429 Opcode==ISD::SINT_TO_FP, 4430 APFloat::rmNearestTiesToEven); 4431 return getConstantFP(apf, DL, VT); 4432 } 4433 case ISD::BITCAST: 4434 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4435 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4436 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4437 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4438 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4439 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4440 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4441 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4442 break; 4443 case ISD::ABS: 4444 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4445 C->isOpaque()); 4446 case ISD::BITREVERSE: 4447 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4448 C->isOpaque()); 4449 case ISD::BSWAP: 4450 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4451 C->isOpaque()); 4452 case ISD::CTPOP: 4453 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4454 C->isOpaque()); 4455 case ISD::CTLZ: 4456 case ISD::CTLZ_ZERO_UNDEF: 4457 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4458 C->isOpaque()); 4459 case ISD::CTTZ: 4460 case ISD::CTTZ_ZERO_UNDEF: 4461 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4462 C->isOpaque()); 4463 case ISD::FP16_TO_FP: { 4464 bool Ignored; 4465 APFloat FPV(APFloat::IEEEhalf(), 4466 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4467 4468 // This can return overflow, underflow, or inexact; we don't care. 4469 // FIXME need to be more flexible about rounding mode. 4470 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4471 APFloat::rmNearestTiesToEven, &Ignored); 4472 return getConstantFP(FPV, DL, VT); 4473 } 4474 } 4475 } 4476 4477 // Constant fold unary operations with a floating point constant operand. 4478 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4479 APFloat V = C->getValueAPF(); // make copy 4480 switch (Opcode) { 4481 case ISD::FNEG: 4482 V.changeSign(); 4483 return getConstantFP(V, DL, VT); 4484 case ISD::FABS: 4485 V.clearSign(); 4486 return getConstantFP(V, DL, VT); 4487 case ISD::FCEIL: { 4488 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4489 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4490 return getConstantFP(V, DL, VT); 4491 break; 4492 } 4493 case ISD::FTRUNC: { 4494 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4495 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4496 return getConstantFP(V, DL, VT); 4497 break; 4498 } 4499 case ISD::FFLOOR: { 4500 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4501 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4502 return getConstantFP(V, DL, VT); 4503 break; 4504 } 4505 case ISD::FP_EXTEND: { 4506 bool ignored; 4507 // This can return overflow, underflow, or inexact; we don't care. 4508 // FIXME need to be more flexible about rounding mode. 4509 (void)V.convert(EVTToAPFloatSemantics(VT), 4510 APFloat::rmNearestTiesToEven, &ignored); 4511 return getConstantFP(V, DL, VT); 4512 } 4513 case ISD::FP_TO_SINT: 4514 case ISD::FP_TO_UINT: { 4515 bool ignored; 4516 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4517 // FIXME need to be more flexible about rounding mode. 4518 APFloat::opStatus s = 4519 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4520 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4521 break; 4522 return getConstant(IntVal, DL, VT); 4523 } 4524 case ISD::BITCAST: 4525 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4526 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4527 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4528 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4529 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4530 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4531 break; 4532 case ISD::FP_TO_FP16: { 4533 bool Ignored; 4534 // This can return overflow, underflow, or inexact; we don't care. 4535 // FIXME need to be more flexible about rounding mode. 4536 (void)V.convert(APFloat::IEEEhalf(), 4537 APFloat::rmNearestTiesToEven, &Ignored); 4538 return getConstant(V.bitcastToAPInt(), DL, VT); 4539 } 4540 } 4541 } 4542 4543 // Constant fold unary operations with a vector integer or float operand. 4544 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4545 if (BV->isConstant()) { 4546 switch (Opcode) { 4547 default: 4548 // FIXME: Entirely reasonable to perform folding of other unary 4549 // operations here as the need arises. 4550 break; 4551 case ISD::FNEG: 4552 case ISD::FABS: 4553 case ISD::FCEIL: 4554 case ISD::FTRUNC: 4555 case ISD::FFLOOR: 4556 case ISD::FP_EXTEND: 4557 case ISD::FP_TO_SINT: 4558 case ISD::FP_TO_UINT: 4559 case ISD::TRUNCATE: 4560 case ISD::ANY_EXTEND: 4561 case ISD::ZERO_EXTEND: 4562 case ISD::SIGN_EXTEND: 4563 case ISD::UINT_TO_FP: 4564 case ISD::SINT_TO_FP: 4565 case ISD::ABS: 4566 case ISD::BITREVERSE: 4567 case ISD::BSWAP: 4568 case ISD::CTLZ: 4569 case ISD::CTLZ_ZERO_UNDEF: 4570 case ISD::CTTZ: 4571 case ISD::CTTZ_ZERO_UNDEF: 4572 case ISD::CTPOP: { 4573 SDValue Ops = { Operand }; 4574 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4575 return Fold; 4576 } 4577 } 4578 } 4579 } 4580 4581 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4582 switch (Opcode) { 4583 case ISD::FREEZE: 4584 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4585 break; 4586 case ISD::TokenFactor: 4587 case ISD::MERGE_VALUES: 4588 case ISD::CONCAT_VECTORS: 4589 return Operand; // Factor, merge or concat of one node? No need. 4590 case ISD::BUILD_VECTOR: { 4591 // Attempt to simplify BUILD_VECTOR. 4592 SDValue Ops[] = {Operand}; 4593 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4594 return V; 4595 break; 4596 } 4597 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4598 case ISD::FP_EXTEND: 4599 assert(VT.isFloatingPoint() && 4600 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4601 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4602 assert((!VT.isVector() || 4603 VT.getVectorNumElements() == 4604 Operand.getValueType().getVectorNumElements()) && 4605 "Vector element count mismatch!"); 4606 assert(Operand.getValueType().bitsLT(VT) && 4607 "Invalid fpext node, dst < src!"); 4608 if (Operand.isUndef()) 4609 return getUNDEF(VT); 4610 break; 4611 case ISD::FP_TO_SINT: 4612 case ISD::FP_TO_UINT: 4613 if (Operand.isUndef()) 4614 return getUNDEF(VT); 4615 break; 4616 case ISD::SINT_TO_FP: 4617 case ISD::UINT_TO_FP: 4618 // [us]itofp(undef) = 0, because the result value is bounded. 4619 if (Operand.isUndef()) 4620 return getConstantFP(0.0, DL, VT); 4621 break; 4622 case ISD::SIGN_EXTEND: 4623 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4624 "Invalid SIGN_EXTEND!"); 4625 assert(VT.isVector() == Operand.getValueType().isVector() && 4626 "SIGN_EXTEND result type type should be vector iff the operand " 4627 "type is vector!"); 4628 if (Operand.getValueType() == VT) return Operand; // noop extension 4629 assert((!VT.isVector() || 4630 VT.getVectorElementCount() == 4631 Operand.getValueType().getVectorElementCount()) && 4632 "Vector element count mismatch!"); 4633 assert(Operand.getValueType().bitsLT(VT) && 4634 "Invalid sext node, dst < src!"); 4635 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4636 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4637 else if (OpOpcode == ISD::UNDEF) 4638 // sext(undef) = 0, because the top bits will all be the same. 4639 return getConstant(0, DL, VT); 4640 break; 4641 case ISD::ZERO_EXTEND: 4642 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4643 "Invalid ZERO_EXTEND!"); 4644 assert(VT.isVector() == Operand.getValueType().isVector() && 4645 "ZERO_EXTEND result type type should be vector iff the operand " 4646 "type is vector!"); 4647 if (Operand.getValueType() == VT) return Operand; // noop extension 4648 assert((!VT.isVector() || 4649 VT.getVectorElementCount() == 4650 Operand.getValueType().getVectorElementCount()) && 4651 "Vector element count mismatch!"); 4652 assert(Operand.getValueType().bitsLT(VT) && 4653 "Invalid zext node, dst < src!"); 4654 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4655 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4656 else if (OpOpcode == ISD::UNDEF) 4657 // zext(undef) = 0, because the top bits will be zero. 4658 return getConstant(0, DL, VT); 4659 break; 4660 case ISD::ANY_EXTEND: 4661 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4662 "Invalid ANY_EXTEND!"); 4663 assert(VT.isVector() == Operand.getValueType().isVector() && 4664 "ANY_EXTEND result type type should be vector iff the operand " 4665 "type is vector!"); 4666 if (Operand.getValueType() == VT) return Operand; // noop extension 4667 assert((!VT.isVector() || 4668 VT.getVectorElementCount() == 4669 Operand.getValueType().getVectorElementCount()) && 4670 "Vector element count mismatch!"); 4671 assert(Operand.getValueType().bitsLT(VT) && 4672 "Invalid anyext node, dst < src!"); 4673 4674 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4675 OpOpcode == ISD::ANY_EXTEND) 4676 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4677 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4678 else if (OpOpcode == ISD::UNDEF) 4679 return getUNDEF(VT); 4680 4681 // (ext (trunc x)) -> x 4682 if (OpOpcode == ISD::TRUNCATE) { 4683 SDValue OpOp = Operand.getOperand(0); 4684 if (OpOp.getValueType() == VT) { 4685 transferDbgValues(Operand, OpOp); 4686 return OpOp; 4687 } 4688 } 4689 break; 4690 case ISD::TRUNCATE: 4691 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4692 "Invalid TRUNCATE!"); 4693 assert(VT.isVector() == Operand.getValueType().isVector() && 4694 "TRUNCATE result type type should be vector iff the operand " 4695 "type is vector!"); 4696 if (Operand.getValueType() == VT) return Operand; // noop truncate 4697 assert((!VT.isVector() || 4698 VT.getVectorElementCount() == 4699 Operand.getValueType().getVectorElementCount()) && 4700 "Vector element count mismatch!"); 4701 assert(Operand.getValueType().bitsGT(VT) && 4702 "Invalid truncate node, src < dst!"); 4703 if (OpOpcode == ISD::TRUNCATE) 4704 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4705 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4706 OpOpcode == ISD::ANY_EXTEND) { 4707 // If the source is smaller than the dest, we still need an extend. 4708 if (Operand.getOperand(0).getValueType().getScalarType() 4709 .bitsLT(VT.getScalarType())) 4710 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4711 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4712 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4713 return Operand.getOperand(0); 4714 } 4715 if (OpOpcode == ISD::UNDEF) 4716 return getUNDEF(VT); 4717 break; 4718 case ISD::ANY_EXTEND_VECTOR_INREG: 4719 case ISD::ZERO_EXTEND_VECTOR_INREG: 4720 case ISD::SIGN_EXTEND_VECTOR_INREG: 4721 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4722 assert(Operand.getValueType().bitsLE(VT) && 4723 "The input must be the same size or smaller than the result."); 4724 assert(VT.getVectorNumElements() < 4725 Operand.getValueType().getVectorNumElements() && 4726 "The destination vector type must have fewer lanes than the input."); 4727 break; 4728 case ISD::ABS: 4729 assert(VT.isInteger() && VT == Operand.getValueType() && 4730 "Invalid ABS!"); 4731 if (OpOpcode == ISD::UNDEF) 4732 return getUNDEF(VT); 4733 break; 4734 case ISD::BSWAP: 4735 assert(VT.isInteger() && VT == Operand.getValueType() && 4736 "Invalid BSWAP!"); 4737 assert((VT.getScalarSizeInBits() % 16 == 0) && 4738 "BSWAP types must be a multiple of 16 bits!"); 4739 if (OpOpcode == ISD::UNDEF) 4740 return getUNDEF(VT); 4741 break; 4742 case ISD::BITREVERSE: 4743 assert(VT.isInteger() && VT == Operand.getValueType() && 4744 "Invalid BITREVERSE!"); 4745 if (OpOpcode == ISD::UNDEF) 4746 return getUNDEF(VT); 4747 break; 4748 case ISD::BITCAST: 4749 // Basic sanity checking. 4750 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4751 "Cannot BITCAST between types of different sizes!"); 4752 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4753 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4754 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4755 if (OpOpcode == ISD::UNDEF) 4756 return getUNDEF(VT); 4757 break; 4758 case ISD::SCALAR_TO_VECTOR: 4759 assert(VT.isVector() && !Operand.getValueType().isVector() && 4760 (VT.getVectorElementType() == Operand.getValueType() || 4761 (VT.getVectorElementType().isInteger() && 4762 Operand.getValueType().isInteger() && 4763 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4764 "Illegal SCALAR_TO_VECTOR node!"); 4765 if (OpOpcode == ISD::UNDEF) 4766 return getUNDEF(VT); 4767 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4768 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4769 isa<ConstantSDNode>(Operand.getOperand(1)) && 4770 Operand.getConstantOperandVal(1) == 0 && 4771 Operand.getOperand(0).getValueType() == VT) 4772 return Operand.getOperand(0); 4773 break; 4774 case ISD::FNEG: 4775 // Negation of an unknown bag of bits is still completely undefined. 4776 if (OpOpcode == ISD::UNDEF) 4777 return getUNDEF(VT); 4778 4779 if (OpOpcode == ISD::FNEG) // --X -> X 4780 return Operand.getOperand(0); 4781 break; 4782 case ISD::FABS: 4783 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4784 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4785 break; 4786 } 4787 4788 SDNode *N; 4789 SDVTList VTs = getVTList(VT); 4790 SDValue Ops[] = {Operand}; 4791 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4792 FoldingSetNodeID ID; 4793 AddNodeIDNode(ID, Opcode, VTs, Ops); 4794 void *IP = nullptr; 4795 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4796 E->intersectFlagsWith(Flags); 4797 return SDValue(E, 0); 4798 } 4799 4800 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4801 N->setFlags(Flags); 4802 createOperands(N, Ops); 4803 CSEMap.InsertNode(N, IP); 4804 } else { 4805 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4806 createOperands(N, Ops); 4807 } 4808 4809 InsertNode(N); 4810 SDValue V = SDValue(N, 0); 4811 NewSDValueDbgMsg(V, "Creating new node: ", this); 4812 return V; 4813 } 4814 4815 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4816 const APInt &C2) { 4817 switch (Opcode) { 4818 case ISD::ADD: return C1 + C2; 4819 case ISD::SUB: return C1 - C2; 4820 case ISD::MUL: return C1 * C2; 4821 case ISD::AND: return C1 & C2; 4822 case ISD::OR: return C1 | C2; 4823 case ISD::XOR: return C1 ^ C2; 4824 case ISD::SHL: return C1 << C2; 4825 case ISD::SRL: return C1.lshr(C2); 4826 case ISD::SRA: return C1.ashr(C2); 4827 case ISD::ROTL: return C1.rotl(C2); 4828 case ISD::ROTR: return C1.rotr(C2); 4829 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4830 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4831 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4832 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4833 case ISD::SADDSAT: return C1.sadd_sat(C2); 4834 case ISD::UADDSAT: return C1.uadd_sat(C2); 4835 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4836 case ISD::USUBSAT: return C1.usub_sat(C2); 4837 case ISD::UDIV: 4838 if (!C2.getBoolValue()) 4839 break; 4840 return C1.udiv(C2); 4841 case ISD::UREM: 4842 if (!C2.getBoolValue()) 4843 break; 4844 return C1.urem(C2); 4845 case ISD::SDIV: 4846 if (!C2.getBoolValue()) 4847 break; 4848 return C1.sdiv(C2); 4849 case ISD::SREM: 4850 if (!C2.getBoolValue()) 4851 break; 4852 return C1.srem(C2); 4853 } 4854 return llvm::None; 4855 } 4856 4857 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4858 const GlobalAddressSDNode *GA, 4859 const SDNode *N2) { 4860 if (GA->getOpcode() != ISD::GlobalAddress) 4861 return SDValue(); 4862 if (!TLI->isOffsetFoldingLegal(GA)) 4863 return SDValue(); 4864 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4865 if (!C2) 4866 return SDValue(); 4867 int64_t Offset = C2->getSExtValue(); 4868 switch (Opcode) { 4869 case ISD::ADD: break; 4870 case ISD::SUB: Offset = -uint64_t(Offset); break; 4871 default: return SDValue(); 4872 } 4873 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4874 GA->getOffset() + uint64_t(Offset)); 4875 } 4876 4877 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4878 switch (Opcode) { 4879 case ISD::SDIV: 4880 case ISD::UDIV: 4881 case ISD::SREM: 4882 case ISD::UREM: { 4883 // If a divisor is zero/undef or any element of a divisor vector is 4884 // zero/undef, the whole op is undef. 4885 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4886 SDValue Divisor = Ops[1]; 4887 if (Divisor.isUndef() || isNullConstant(Divisor)) 4888 return true; 4889 4890 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4891 llvm::any_of(Divisor->op_values(), 4892 [](SDValue V) { return V.isUndef() || 4893 isNullConstant(V); }); 4894 // TODO: Handle signed overflow. 4895 } 4896 // TODO: Handle oversized shifts. 4897 default: 4898 return false; 4899 } 4900 } 4901 4902 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4903 EVT VT, ArrayRef<SDValue> Ops) { 4904 // If the opcode is a target-specific ISD node, there's nothing we can 4905 // do here and the operand rules may not line up with the below, so 4906 // bail early. 4907 if (Opcode >= ISD::BUILTIN_OP_END) 4908 return SDValue(); 4909 4910 // For now, the array Ops should only contain two values. 4911 // This enforcement will be removed once this function is merged with 4912 // FoldConstantVectorArithmetic 4913 if (Ops.size() != 2) 4914 return SDValue(); 4915 4916 if (isUndef(Opcode, Ops)) 4917 return getUNDEF(VT); 4918 4919 SDNode *N1 = Ops[0].getNode(); 4920 SDNode *N2 = Ops[1].getNode(); 4921 4922 // Handle the case of two scalars. 4923 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4924 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4925 if (C1->isOpaque() || C2->isOpaque()) 4926 return SDValue(); 4927 4928 Optional<APInt> FoldAttempt = 4929 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4930 if (!FoldAttempt) 4931 return SDValue(); 4932 4933 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4934 assert((!Folded || !VT.isVector()) && 4935 "Can't fold vectors ops with scalar operands"); 4936 return Folded; 4937 } 4938 } 4939 4940 // fold (add Sym, c) -> Sym+c 4941 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4942 return FoldSymbolOffset(Opcode, VT, GA, N2); 4943 if (TLI->isCommutativeBinOp(Opcode)) 4944 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4945 return FoldSymbolOffset(Opcode, VT, GA, N1); 4946 4947 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4948 // vector width, however we should be able to do constant folds involving 4949 // splat vector nodes too. 4950 if (VT.isScalableVector()) 4951 return SDValue(); 4952 4953 // For fixed width vectors, extract each constant element and fold them 4954 // individually. Either input may be an undef value. 4955 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4956 if (!BV1 && !N1->isUndef()) 4957 return SDValue(); 4958 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4959 if (!BV2 && !N2->isUndef()) 4960 return SDValue(); 4961 // If both operands are undef, that's handled the same way as scalars. 4962 if (!BV1 && !BV2) 4963 return SDValue(); 4964 4965 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4966 "Vector binop with different number of elements in operands?"); 4967 4968 EVT SVT = VT.getScalarType(); 4969 EVT LegalSVT = SVT; 4970 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4971 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4972 if (LegalSVT.bitsLT(SVT)) 4973 return SDValue(); 4974 } 4975 SmallVector<SDValue, 4> Outputs; 4976 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4977 for (unsigned I = 0; I != NumOps; ++I) { 4978 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4979 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4980 if (SVT.isInteger()) { 4981 if (V1->getValueType(0).bitsGT(SVT)) 4982 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4983 if (V2->getValueType(0).bitsGT(SVT)) 4984 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4985 } 4986 4987 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4988 return SDValue(); 4989 4990 // Fold one vector element. 4991 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4992 if (LegalSVT != SVT) 4993 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4994 4995 // Scalar folding only succeeded if the result is a constant or UNDEF. 4996 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4997 ScalarResult.getOpcode() != ISD::ConstantFP) 4998 return SDValue(); 4999 Outputs.push_back(ScalarResult); 5000 } 5001 5002 assert(VT.getVectorNumElements() == Outputs.size() && 5003 "Vector size mismatch!"); 5004 5005 // We may have a vector type but a scalar result. Create a splat. 5006 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5007 5008 // Build a big vector out of the scalar elements we generated. 5009 return getBuildVector(VT, SDLoc(), Outputs); 5010 } 5011 5012 // TODO: Merge with FoldConstantArithmetic 5013 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5014 const SDLoc &DL, EVT VT, 5015 ArrayRef<SDValue> Ops, 5016 const SDNodeFlags Flags) { 5017 // If the opcode is a target-specific ISD node, there's nothing we can 5018 // do here and the operand rules may not line up with the below, so 5019 // bail early. 5020 if (Opcode >= ISD::BUILTIN_OP_END) 5021 return SDValue(); 5022 5023 if (isUndef(Opcode, Ops)) 5024 return getUNDEF(VT); 5025 5026 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5027 if (!VT.isVector()) 5028 return SDValue(); 5029 5030 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5031 // vector width, however we should be able to do constant folds involving 5032 // splat vector nodes too. 5033 if (VT.isScalableVector()) 5034 return SDValue(); 5035 5036 // From this point onwards all vectors are assumed to be fixed width. 5037 unsigned NumElts = VT.getVectorNumElements(); 5038 5039 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5040 return !Op.getValueType().isVector() || 5041 Op.getValueType().getVectorNumElements() == NumElts; 5042 }; 5043 5044 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5045 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5046 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5047 (BV && BV->isConstant()); 5048 }; 5049 5050 // All operands must be vector types with the same number of elements as 5051 // the result type and must be either UNDEF or a build vector of constant 5052 // or UNDEF scalars. 5053 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5054 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5055 return SDValue(); 5056 5057 // If we are comparing vectors, then the result needs to be a i1 boolean 5058 // that is then sign-extended back to the legal result type. 5059 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5060 5061 // Find legal integer scalar type for constant promotion and 5062 // ensure that its scalar size is at least as large as source. 5063 EVT LegalSVT = VT.getScalarType(); 5064 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5065 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5066 if (LegalSVT.bitsLT(VT.getScalarType())) 5067 return SDValue(); 5068 } 5069 5070 // Constant fold each scalar lane separately. 5071 SmallVector<SDValue, 4> ScalarResults; 5072 for (unsigned i = 0; i != NumElts; i++) { 5073 SmallVector<SDValue, 4> ScalarOps; 5074 for (SDValue Op : Ops) { 5075 EVT InSVT = Op.getValueType().getScalarType(); 5076 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5077 if (!InBV) { 5078 // We've checked that this is UNDEF or a constant of some kind. 5079 if (Op.isUndef()) 5080 ScalarOps.push_back(getUNDEF(InSVT)); 5081 else 5082 ScalarOps.push_back(Op); 5083 continue; 5084 } 5085 5086 SDValue ScalarOp = InBV->getOperand(i); 5087 EVT ScalarVT = ScalarOp.getValueType(); 5088 5089 // Build vector (integer) scalar operands may need implicit 5090 // truncation - do this before constant folding. 5091 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5092 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5093 5094 ScalarOps.push_back(ScalarOp); 5095 } 5096 5097 // Constant fold the scalar operands. 5098 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5099 5100 // Legalize the (integer) scalar constant if necessary. 5101 if (LegalSVT != SVT) 5102 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5103 5104 // Scalar folding only succeeded if the result is a constant or UNDEF. 5105 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5106 ScalarResult.getOpcode() != ISD::ConstantFP) 5107 return SDValue(); 5108 ScalarResults.push_back(ScalarResult); 5109 } 5110 5111 SDValue V = getBuildVector(VT, DL, ScalarResults); 5112 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5113 return V; 5114 } 5115 5116 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5117 EVT VT, SDValue N1, SDValue N2) { 5118 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5119 // should. That will require dealing with a potentially non-default 5120 // rounding mode, checking the "opStatus" return value from the APFloat 5121 // math calculations, and possibly other variations. 5122 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5123 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5124 if (N1CFP && N2CFP) { 5125 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5126 switch (Opcode) { 5127 case ISD::FADD: 5128 C1.add(C2, APFloat::rmNearestTiesToEven); 5129 return getConstantFP(C1, DL, VT); 5130 case ISD::FSUB: 5131 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5132 return getConstantFP(C1, DL, VT); 5133 case ISD::FMUL: 5134 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5135 return getConstantFP(C1, DL, VT); 5136 case ISD::FDIV: 5137 C1.divide(C2, APFloat::rmNearestTiesToEven); 5138 return getConstantFP(C1, DL, VT); 5139 case ISD::FREM: 5140 C1.mod(C2); 5141 return getConstantFP(C1, DL, VT); 5142 case ISD::FCOPYSIGN: 5143 C1.copySign(C2); 5144 return getConstantFP(C1, DL, VT); 5145 default: break; 5146 } 5147 } 5148 if (N1CFP && Opcode == ISD::FP_ROUND) { 5149 APFloat C1 = N1CFP->getValueAPF(); // make copy 5150 bool Unused; 5151 // This can return overflow, underflow, or inexact; we don't care. 5152 // FIXME need to be more flexible about rounding mode. 5153 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5154 &Unused); 5155 return getConstantFP(C1, DL, VT); 5156 } 5157 5158 switch (Opcode) { 5159 case ISD::FSUB: 5160 // -0.0 - undef --> undef (consistent with "fneg undef") 5161 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5162 return getUNDEF(VT); 5163 LLVM_FALLTHROUGH; 5164 5165 case ISD::FADD: 5166 case ISD::FMUL: 5167 case ISD::FDIV: 5168 case ISD::FREM: 5169 // If both operands are undef, the result is undef. If 1 operand is undef, 5170 // the result is NaN. This should match the behavior of the IR optimizer. 5171 if (N1.isUndef() && N2.isUndef()) 5172 return getUNDEF(VT); 5173 if (N1.isUndef() || N2.isUndef()) 5174 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5175 } 5176 return SDValue(); 5177 } 5178 5179 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5180 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5181 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5182 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5183 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5184 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5185 5186 // Canonicalize constant to RHS if commutative. 5187 if (TLI->isCommutativeBinOp(Opcode)) { 5188 if (N1C && !N2C) { 5189 std::swap(N1C, N2C); 5190 std::swap(N1, N2); 5191 } else if (N1CFP && !N2CFP) { 5192 std::swap(N1CFP, N2CFP); 5193 std::swap(N1, N2); 5194 } 5195 } 5196 5197 switch (Opcode) { 5198 default: break; 5199 case ISD::TokenFactor: 5200 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5201 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5202 // Fold trivial token factors. 5203 if (N1.getOpcode() == ISD::EntryToken) return N2; 5204 if (N2.getOpcode() == ISD::EntryToken) return N1; 5205 if (N1 == N2) return N1; 5206 break; 5207 case ISD::BUILD_VECTOR: { 5208 // Attempt to simplify BUILD_VECTOR. 5209 SDValue Ops[] = {N1, N2}; 5210 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5211 return V; 5212 break; 5213 } 5214 case ISD::CONCAT_VECTORS: { 5215 SDValue Ops[] = {N1, N2}; 5216 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5217 return V; 5218 break; 5219 } 5220 case ISD::AND: 5221 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5222 assert(N1.getValueType() == N2.getValueType() && 5223 N1.getValueType() == VT && "Binary operator types must match!"); 5224 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5225 // worth handling here. 5226 if (N2C && N2C->isNullValue()) 5227 return N2; 5228 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5229 return N1; 5230 break; 5231 case ISD::OR: 5232 case ISD::XOR: 5233 case ISD::ADD: 5234 case ISD::SUB: 5235 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5236 assert(N1.getValueType() == N2.getValueType() && 5237 N1.getValueType() == VT && "Binary operator types must match!"); 5238 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5239 // it's worth handling here. 5240 if (N2C && N2C->isNullValue()) 5241 return N1; 5242 break; 5243 case ISD::MUL: 5244 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5245 assert(N1.getValueType() == N2.getValueType() && 5246 N1.getValueType() == VT && "Binary operator types must match!"); 5247 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5248 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5249 APInt N2CImm = N2C->getAPIntValue(); 5250 return getVScale(DL, VT, MulImm * N2CImm); 5251 } 5252 break; 5253 case ISD::UDIV: 5254 case ISD::UREM: 5255 case ISD::MULHU: 5256 case ISD::MULHS: 5257 case ISD::SDIV: 5258 case ISD::SREM: 5259 case ISD::SMIN: 5260 case ISD::SMAX: 5261 case ISD::UMIN: 5262 case ISD::UMAX: 5263 case ISD::SADDSAT: 5264 case ISD::SSUBSAT: 5265 case ISD::UADDSAT: 5266 case ISD::USUBSAT: 5267 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5268 assert(N1.getValueType() == N2.getValueType() && 5269 N1.getValueType() == VT && "Binary operator types must match!"); 5270 break; 5271 case ISD::FADD: 5272 case ISD::FSUB: 5273 case ISD::FMUL: 5274 case ISD::FDIV: 5275 case ISD::FREM: 5276 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5277 assert(N1.getValueType() == N2.getValueType() && 5278 N1.getValueType() == VT && "Binary operator types must match!"); 5279 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5280 return V; 5281 break; 5282 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5283 assert(N1.getValueType() == VT && 5284 N1.getValueType().isFloatingPoint() && 5285 N2.getValueType().isFloatingPoint() && 5286 "Invalid FCOPYSIGN!"); 5287 break; 5288 case ISD::SHL: 5289 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5290 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5291 APInt ShiftImm = N2C->getAPIntValue(); 5292 return getVScale(DL, VT, MulImm << ShiftImm); 5293 } 5294 LLVM_FALLTHROUGH; 5295 case ISD::SRA: 5296 case ISD::SRL: 5297 if (SDValue V = simplifyShift(N1, N2)) 5298 return V; 5299 LLVM_FALLTHROUGH; 5300 case ISD::ROTL: 5301 case ISD::ROTR: 5302 assert(VT == N1.getValueType() && 5303 "Shift operators return type must be the same as their first arg"); 5304 assert(VT.isInteger() && N2.getValueType().isInteger() && 5305 "Shifts only work on integers"); 5306 assert((!VT.isVector() || VT == N2.getValueType()) && 5307 "Vector shift amounts must be in the same as their first arg"); 5308 // Verify that the shift amount VT is big enough to hold valid shift 5309 // amounts. This catches things like trying to shift an i1024 value by an 5310 // i8, which is easy to fall into in generic code that uses 5311 // TLI.getShiftAmount(). 5312 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5313 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5314 "Invalid use of small shift amount with oversized value!"); 5315 5316 // Always fold shifts of i1 values so the code generator doesn't need to 5317 // handle them. Since we know the size of the shift has to be less than the 5318 // size of the value, the shift/rotate count is guaranteed to be zero. 5319 if (VT == MVT::i1) 5320 return N1; 5321 if (N2C && N2C->isNullValue()) 5322 return N1; 5323 break; 5324 case ISD::FP_ROUND: 5325 assert(VT.isFloatingPoint() && 5326 N1.getValueType().isFloatingPoint() && 5327 VT.bitsLE(N1.getValueType()) && 5328 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5329 "Invalid FP_ROUND!"); 5330 if (N1.getValueType() == VT) return N1; // noop conversion. 5331 break; 5332 case ISD::AssertSext: 5333 case ISD::AssertZext: { 5334 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5335 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5336 assert(VT.isInteger() && EVT.isInteger() && 5337 "Cannot *_EXTEND_INREG FP types"); 5338 assert(!EVT.isVector() && 5339 "AssertSExt/AssertZExt type should be the vector element type " 5340 "rather than the vector type!"); 5341 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5342 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5343 break; 5344 } 5345 case ISD::SIGN_EXTEND_INREG: { 5346 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5347 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5348 assert(VT.isInteger() && EVT.isInteger() && 5349 "Cannot *_EXTEND_INREG FP types"); 5350 assert(EVT.isVector() == VT.isVector() && 5351 "SIGN_EXTEND_INREG type should be vector iff the operand " 5352 "type is vector!"); 5353 assert((!EVT.isVector() || 5354 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5355 "Vector element counts must match in SIGN_EXTEND_INREG"); 5356 assert(EVT.bitsLE(VT) && "Not extending!"); 5357 if (EVT == VT) return N1; // Not actually extending 5358 5359 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5360 unsigned FromBits = EVT.getScalarSizeInBits(); 5361 Val <<= Val.getBitWidth() - FromBits; 5362 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5363 return getConstant(Val, DL, ConstantVT); 5364 }; 5365 5366 if (N1C) { 5367 const APInt &Val = N1C->getAPIntValue(); 5368 return SignExtendInReg(Val, VT); 5369 } 5370 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5371 SmallVector<SDValue, 8> Ops; 5372 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5373 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5374 SDValue Op = N1.getOperand(i); 5375 if (Op.isUndef()) { 5376 Ops.push_back(getUNDEF(OpVT)); 5377 continue; 5378 } 5379 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5380 APInt Val = C->getAPIntValue(); 5381 Ops.push_back(SignExtendInReg(Val, OpVT)); 5382 } 5383 return getBuildVector(VT, DL, Ops); 5384 } 5385 break; 5386 } 5387 case ISD::EXTRACT_VECTOR_ELT: 5388 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5389 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5390 element type of the vector."); 5391 5392 // Extract from an undefined value or using an undefined index is undefined. 5393 if (N1.isUndef() || N2.isUndef()) 5394 return getUNDEF(VT); 5395 5396 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5397 // vectors. For scalable vectors we will provide appropriate support for 5398 // dealing with arbitrary indices. 5399 if (N2C && N1.getValueType().isFixedLengthVector() && 5400 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5401 return getUNDEF(VT); 5402 5403 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5404 // expanding copies of large vectors from registers. This only works for 5405 // fixed length vectors, since we need to know the exact number of 5406 // elements. 5407 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5408 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5409 unsigned Factor = 5410 N1.getOperand(0).getValueType().getVectorNumElements(); 5411 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5412 N1.getOperand(N2C->getZExtValue() / Factor), 5413 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5414 } 5415 5416 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5417 // lowering is expanding large vector constants. 5418 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5419 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5420 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5421 N1.getValueType().isFixedLengthVector()) && 5422 "BUILD_VECTOR used for scalable vectors"); 5423 unsigned Index = 5424 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5425 SDValue Elt = N1.getOperand(Index); 5426 5427 if (VT != Elt.getValueType()) 5428 // If the vector element type is not legal, the BUILD_VECTOR operands 5429 // are promoted and implicitly truncated, and the result implicitly 5430 // extended. Make that explicit here. 5431 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5432 5433 return Elt; 5434 } 5435 5436 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5437 // operations are lowered to scalars. 5438 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5439 // If the indices are the same, return the inserted element else 5440 // if the indices are known different, extract the element from 5441 // the original vector. 5442 SDValue N1Op2 = N1.getOperand(2); 5443 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5444 5445 if (N1Op2C && N2C) { 5446 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5447 if (VT == N1.getOperand(1).getValueType()) 5448 return N1.getOperand(1); 5449 else 5450 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5451 } 5452 5453 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5454 } 5455 } 5456 5457 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5458 // when vector types are scalarized and v1iX is legal. 5459 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5460 // Here we are completely ignoring the extract element index (N2), 5461 // which is fine for fixed width vectors, since any index other than 0 5462 // is undefined anyway. However, this cannot be ignored for scalable 5463 // vectors - in theory we could support this, but we don't want to do this 5464 // without a profitability check. 5465 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5466 N1.getValueType().isFixedLengthVector() && 5467 N1.getValueType().getVectorNumElements() == 1) { 5468 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5469 N1.getOperand(1)); 5470 } 5471 break; 5472 case ISD::EXTRACT_ELEMENT: 5473 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5474 assert(!N1.getValueType().isVector() && !VT.isVector() && 5475 (N1.getValueType().isInteger() == VT.isInteger()) && 5476 N1.getValueType() != VT && 5477 "Wrong types for EXTRACT_ELEMENT!"); 5478 5479 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5480 // 64-bit integers into 32-bit parts. Instead of building the extract of 5481 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5482 if (N1.getOpcode() == ISD::BUILD_PAIR) 5483 return N1.getOperand(N2C->getZExtValue()); 5484 5485 // EXTRACT_ELEMENT of a constant int is also very common. 5486 if (N1C) { 5487 unsigned ElementSize = VT.getSizeInBits(); 5488 unsigned Shift = ElementSize * N2C->getZExtValue(); 5489 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5490 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5491 } 5492 break; 5493 case ISD::EXTRACT_SUBVECTOR: 5494 EVT N1VT = N1.getValueType(); 5495 assert(VT.isVector() && N1VT.isVector() && 5496 "Extract subvector VTs must be vectors!"); 5497 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5498 "Extract subvector VTs must have the same element type!"); 5499 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5500 "Cannot extract a scalable vector from a fixed length vector!"); 5501 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5502 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5503 "Extract subvector must be from larger vector to smaller vector!"); 5504 assert(N2C && "Extract subvector index must be a constant"); 5505 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5506 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5507 N1VT.getVectorMinNumElements()) && 5508 "Extract subvector overflow!"); 5509 5510 // Trivial extraction. 5511 if (VT == N1VT) 5512 return N1; 5513 5514 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5515 if (N1.isUndef()) 5516 return getUNDEF(VT); 5517 5518 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5519 // the concat have the same type as the extract. 5520 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5521 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5522 unsigned Factor = VT.getVectorNumElements(); 5523 return N1.getOperand(N2C->getZExtValue() / Factor); 5524 } 5525 5526 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5527 // during shuffle legalization. 5528 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5529 VT == N1.getOperand(1).getValueType()) 5530 return N1.getOperand(1); 5531 break; 5532 } 5533 5534 // Perform trivial constant folding. 5535 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5536 return SV; 5537 5538 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5539 return V; 5540 5541 // Canonicalize an UNDEF to the RHS, even over a constant. 5542 if (N1.isUndef()) { 5543 if (TLI->isCommutativeBinOp(Opcode)) { 5544 std::swap(N1, N2); 5545 } else { 5546 switch (Opcode) { 5547 case ISD::SIGN_EXTEND_INREG: 5548 case ISD::SUB: 5549 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5550 case ISD::UDIV: 5551 case ISD::SDIV: 5552 case ISD::UREM: 5553 case ISD::SREM: 5554 case ISD::SSUBSAT: 5555 case ISD::USUBSAT: 5556 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5557 } 5558 } 5559 } 5560 5561 // Fold a bunch of operators when the RHS is undef. 5562 if (N2.isUndef()) { 5563 switch (Opcode) { 5564 case ISD::XOR: 5565 if (N1.isUndef()) 5566 // Handle undef ^ undef -> 0 special case. This is a common 5567 // idiom (misuse). 5568 return getConstant(0, DL, VT); 5569 LLVM_FALLTHROUGH; 5570 case ISD::ADD: 5571 case ISD::SUB: 5572 case ISD::UDIV: 5573 case ISD::SDIV: 5574 case ISD::UREM: 5575 case ISD::SREM: 5576 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5577 case ISD::MUL: 5578 case ISD::AND: 5579 case ISD::SSUBSAT: 5580 case ISD::USUBSAT: 5581 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5582 case ISD::OR: 5583 case ISD::SADDSAT: 5584 case ISD::UADDSAT: 5585 return getAllOnesConstant(DL, VT); 5586 } 5587 } 5588 5589 // Memoize this node if possible. 5590 SDNode *N; 5591 SDVTList VTs = getVTList(VT); 5592 SDValue Ops[] = {N1, N2}; 5593 if (VT != MVT::Glue) { 5594 FoldingSetNodeID ID; 5595 AddNodeIDNode(ID, Opcode, VTs, Ops); 5596 void *IP = nullptr; 5597 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5598 E->intersectFlagsWith(Flags); 5599 return SDValue(E, 0); 5600 } 5601 5602 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5603 N->setFlags(Flags); 5604 createOperands(N, Ops); 5605 CSEMap.InsertNode(N, IP); 5606 } else { 5607 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5608 createOperands(N, Ops); 5609 } 5610 5611 InsertNode(N); 5612 SDValue V = SDValue(N, 0); 5613 NewSDValueDbgMsg(V, "Creating new node: ", this); 5614 return V; 5615 } 5616 5617 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5618 SDValue N1, SDValue N2, SDValue N3, 5619 const SDNodeFlags Flags) { 5620 // Perform various simplifications. 5621 switch (Opcode) { 5622 case ISD::FMA: { 5623 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5624 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5625 N3.getValueType() == VT && "FMA types must match!"); 5626 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5627 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5628 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5629 if (N1CFP && N2CFP && N3CFP) { 5630 APFloat V1 = N1CFP->getValueAPF(); 5631 const APFloat &V2 = N2CFP->getValueAPF(); 5632 const APFloat &V3 = N3CFP->getValueAPF(); 5633 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5634 return getConstantFP(V1, DL, VT); 5635 } 5636 break; 5637 } 5638 case ISD::BUILD_VECTOR: { 5639 // Attempt to simplify BUILD_VECTOR. 5640 SDValue Ops[] = {N1, N2, N3}; 5641 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5642 return V; 5643 break; 5644 } 5645 case ISD::CONCAT_VECTORS: { 5646 SDValue Ops[] = {N1, N2, N3}; 5647 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5648 return V; 5649 break; 5650 } 5651 case ISD::SETCC: { 5652 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5653 assert(N1.getValueType() == N2.getValueType() && 5654 "SETCC operands must have the same type!"); 5655 assert(VT.isVector() == N1.getValueType().isVector() && 5656 "SETCC type should be vector iff the operand type is vector!"); 5657 assert((!VT.isVector() || VT.getVectorElementCount() == 5658 N1.getValueType().getVectorElementCount()) && 5659 "SETCC vector element counts must match!"); 5660 // Use FoldSetCC to simplify SETCC's. 5661 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5662 return V; 5663 // Vector constant folding. 5664 SDValue Ops[] = {N1, N2, N3}; 5665 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5666 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5667 return V; 5668 } 5669 break; 5670 } 5671 case ISD::SELECT: 5672 case ISD::VSELECT: 5673 if (SDValue V = simplifySelect(N1, N2, N3)) 5674 return V; 5675 break; 5676 case ISD::VECTOR_SHUFFLE: 5677 llvm_unreachable("should use getVectorShuffle constructor!"); 5678 case ISD::INSERT_VECTOR_ELT: { 5679 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5680 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5681 // for scalable vectors where we will generate appropriate code to 5682 // deal with out-of-bounds cases correctly. 5683 if (N3C && N1.getValueType().isFixedLengthVector() && 5684 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5685 return getUNDEF(VT); 5686 5687 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5688 if (N3.isUndef()) 5689 return getUNDEF(VT); 5690 5691 // If the inserted element is an UNDEF, just use the input vector. 5692 if (N2.isUndef()) 5693 return N1; 5694 5695 break; 5696 } 5697 case ISD::INSERT_SUBVECTOR: { 5698 // Inserting undef into undef is still undef. 5699 if (N1.isUndef() && N2.isUndef()) 5700 return getUNDEF(VT); 5701 5702 EVT N2VT = N2.getValueType(); 5703 assert(VT == N1.getValueType() && 5704 "Dest and insert subvector source types must match!"); 5705 assert(VT.isVector() && N2VT.isVector() && 5706 "Insert subvector VTs must be vectors!"); 5707 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5708 "Cannot insert a scalable vector into a fixed length vector!"); 5709 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5710 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5711 "Insert subvector must be from smaller vector to larger vector!"); 5712 assert(isa<ConstantSDNode>(N3) && 5713 "Insert subvector index must be constant"); 5714 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5715 (N2VT.getVectorMinNumElements() + 5716 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5717 VT.getVectorMinNumElements()) && 5718 "Insert subvector overflow!"); 5719 5720 // Trivial insertion. 5721 if (VT == N2VT) 5722 return N2; 5723 5724 // If this is an insert of an extracted vector into an undef vector, we 5725 // can just use the input to the extract. 5726 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5727 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5728 return N2.getOperand(0); 5729 break; 5730 } 5731 case ISD::BITCAST: 5732 // Fold bit_convert nodes from a type to themselves. 5733 if (N1.getValueType() == VT) 5734 return N1; 5735 break; 5736 } 5737 5738 // Memoize node if it doesn't produce a flag. 5739 SDNode *N; 5740 SDVTList VTs = getVTList(VT); 5741 SDValue Ops[] = {N1, N2, N3}; 5742 if (VT != MVT::Glue) { 5743 FoldingSetNodeID ID; 5744 AddNodeIDNode(ID, Opcode, VTs, Ops); 5745 void *IP = nullptr; 5746 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5747 E->intersectFlagsWith(Flags); 5748 return SDValue(E, 0); 5749 } 5750 5751 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5752 N->setFlags(Flags); 5753 createOperands(N, Ops); 5754 CSEMap.InsertNode(N, IP); 5755 } else { 5756 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5757 createOperands(N, Ops); 5758 } 5759 5760 InsertNode(N); 5761 SDValue V = SDValue(N, 0); 5762 NewSDValueDbgMsg(V, "Creating new node: ", this); 5763 return V; 5764 } 5765 5766 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5767 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5768 SDValue Ops[] = { N1, N2, N3, N4 }; 5769 return getNode(Opcode, DL, VT, Ops); 5770 } 5771 5772 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5773 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5774 SDValue N5) { 5775 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5776 return getNode(Opcode, DL, VT, Ops); 5777 } 5778 5779 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5780 /// the incoming stack arguments to be loaded from the stack. 5781 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5782 SmallVector<SDValue, 8> ArgChains; 5783 5784 // Include the original chain at the beginning of the list. When this is 5785 // used by target LowerCall hooks, this helps legalize find the 5786 // CALLSEQ_BEGIN node. 5787 ArgChains.push_back(Chain); 5788 5789 // Add a chain value for each stack argument. 5790 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5791 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5792 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5793 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5794 if (FI->getIndex() < 0) 5795 ArgChains.push_back(SDValue(L, 1)); 5796 5797 // Build a tokenfactor for all the chains. 5798 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5799 } 5800 5801 /// getMemsetValue - Vectorized representation of the memset value 5802 /// operand. 5803 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5804 const SDLoc &dl) { 5805 assert(!Value.isUndef()); 5806 5807 unsigned NumBits = VT.getScalarSizeInBits(); 5808 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5809 assert(C->getAPIntValue().getBitWidth() == 8); 5810 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5811 if (VT.isInteger()) { 5812 bool IsOpaque = VT.getSizeInBits() > 64 || 5813 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5814 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5815 } 5816 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5817 VT); 5818 } 5819 5820 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5821 EVT IntVT = VT.getScalarType(); 5822 if (!IntVT.isInteger()) 5823 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5824 5825 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5826 if (NumBits > 8) { 5827 // Use a multiplication with 0x010101... to extend the input to the 5828 // required length. 5829 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5830 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5831 DAG.getConstant(Magic, dl, IntVT)); 5832 } 5833 5834 if (VT != Value.getValueType() && !VT.isInteger()) 5835 Value = DAG.getBitcast(VT.getScalarType(), Value); 5836 if (VT != Value.getValueType()) 5837 Value = DAG.getSplatBuildVector(VT, dl, Value); 5838 5839 return Value; 5840 } 5841 5842 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5843 /// used when a memcpy is turned into a memset when the source is a constant 5844 /// string ptr. 5845 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5846 const TargetLowering &TLI, 5847 const ConstantDataArraySlice &Slice) { 5848 // Handle vector with all elements zero. 5849 if (Slice.Array == nullptr) { 5850 if (VT.isInteger()) 5851 return DAG.getConstant(0, dl, VT); 5852 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5853 return DAG.getConstantFP(0.0, dl, VT); 5854 else if (VT.isVector()) { 5855 unsigned NumElts = VT.getVectorNumElements(); 5856 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5857 return DAG.getNode(ISD::BITCAST, dl, VT, 5858 DAG.getConstant(0, dl, 5859 EVT::getVectorVT(*DAG.getContext(), 5860 EltVT, NumElts))); 5861 } else 5862 llvm_unreachable("Expected type!"); 5863 } 5864 5865 assert(!VT.isVector() && "Can't handle vector type here!"); 5866 unsigned NumVTBits = VT.getSizeInBits(); 5867 unsigned NumVTBytes = NumVTBits / 8; 5868 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5869 5870 APInt Val(NumVTBits, 0); 5871 if (DAG.getDataLayout().isLittleEndian()) { 5872 for (unsigned i = 0; i != NumBytes; ++i) 5873 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5874 } else { 5875 for (unsigned i = 0; i != NumBytes; ++i) 5876 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5877 } 5878 5879 // If the "cost" of materializing the integer immediate is less than the cost 5880 // of a load, then it is cost effective to turn the load into the immediate. 5881 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5882 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5883 return DAG.getConstant(Val, dl, VT); 5884 return SDValue(nullptr, 0); 5885 } 5886 5887 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5888 const SDLoc &DL, 5889 const SDNodeFlags Flags) { 5890 EVT VT = Base.getValueType(); 5891 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5892 } 5893 5894 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5895 const SDLoc &DL, 5896 const SDNodeFlags Flags) { 5897 assert(Offset.getValueType().isInteger()); 5898 EVT BasePtrVT = Ptr.getValueType(); 5899 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5900 } 5901 5902 /// Returns true if memcpy source is constant data. 5903 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5904 uint64_t SrcDelta = 0; 5905 GlobalAddressSDNode *G = nullptr; 5906 if (Src.getOpcode() == ISD::GlobalAddress) 5907 G = cast<GlobalAddressSDNode>(Src); 5908 else if (Src.getOpcode() == ISD::ADD && 5909 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5910 Src.getOperand(1).getOpcode() == ISD::Constant) { 5911 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5912 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5913 } 5914 if (!G) 5915 return false; 5916 5917 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5918 SrcDelta + G->getOffset()); 5919 } 5920 5921 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5922 SelectionDAG &DAG) { 5923 // On Darwin, -Os means optimize for size without hurting performance, so 5924 // only really optimize for size when -Oz (MinSize) is used. 5925 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5926 return MF.getFunction().hasMinSize(); 5927 return DAG.shouldOptForSize(); 5928 } 5929 5930 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5931 SmallVector<SDValue, 32> &OutChains, unsigned From, 5932 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5933 SmallVector<SDValue, 16> &OutStoreChains) { 5934 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5935 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5936 SmallVector<SDValue, 16> GluedLoadChains; 5937 for (unsigned i = From; i < To; ++i) { 5938 OutChains.push_back(OutLoadChains[i]); 5939 GluedLoadChains.push_back(OutLoadChains[i]); 5940 } 5941 5942 // Chain for all loads. 5943 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5944 GluedLoadChains); 5945 5946 for (unsigned i = From; i < To; ++i) { 5947 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5948 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5949 ST->getBasePtr(), ST->getMemoryVT(), 5950 ST->getMemOperand()); 5951 OutChains.push_back(NewStore); 5952 } 5953 } 5954 5955 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5956 SDValue Chain, SDValue Dst, SDValue Src, 5957 uint64_t Size, Align Alignment, 5958 bool isVol, bool AlwaysInline, 5959 MachinePointerInfo DstPtrInfo, 5960 MachinePointerInfo SrcPtrInfo) { 5961 // Turn a memcpy of undef to nop. 5962 // FIXME: We need to honor volatile even is Src is undef. 5963 if (Src.isUndef()) 5964 return Chain; 5965 5966 // Expand memcpy to a series of load and store ops if the size operand falls 5967 // below a certain threshold. 5968 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5969 // rather than maybe a humongous number of loads and stores. 5970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5971 const DataLayout &DL = DAG.getDataLayout(); 5972 LLVMContext &C = *DAG.getContext(); 5973 std::vector<EVT> MemOps; 5974 bool DstAlignCanChange = false; 5975 MachineFunction &MF = DAG.getMachineFunction(); 5976 MachineFrameInfo &MFI = MF.getFrameInfo(); 5977 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5978 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5979 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5980 DstAlignCanChange = true; 5981 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 5982 if (!SrcAlign || Alignment > *SrcAlign) 5983 SrcAlign = Alignment; 5984 assert(SrcAlign && "SrcAlign must be set"); 5985 ConstantDataArraySlice Slice; 5986 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5987 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5988 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5989 const MemOp Op = isZeroConstant 5990 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5991 /*IsZeroMemset*/ true, isVol) 5992 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5993 *SrcAlign, isVol, CopyFromConstant); 5994 if (!TLI.findOptimalMemOpLowering( 5995 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5996 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5997 return SDValue(); 5998 5999 if (DstAlignCanChange) { 6000 Type *Ty = MemOps[0].getTypeForEVT(C); 6001 Align NewAlign = DL.getABITypeAlign(Ty); 6002 6003 // Don't promote to an alignment that would require dynamic stack 6004 // realignment. 6005 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6006 if (!TRI->needsStackRealignment(MF)) 6007 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6008 NewAlign = NewAlign / 2; 6009 6010 if (NewAlign > Alignment) { 6011 // Give the stack frame object a larger alignment if needed. 6012 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6013 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6014 Alignment = NewAlign; 6015 } 6016 } 6017 6018 MachineMemOperand::Flags MMOFlags = 6019 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6020 SmallVector<SDValue, 16> OutLoadChains; 6021 SmallVector<SDValue, 16> OutStoreChains; 6022 SmallVector<SDValue, 32> OutChains; 6023 unsigned NumMemOps = MemOps.size(); 6024 uint64_t SrcOff = 0, DstOff = 0; 6025 for (unsigned i = 0; i != NumMemOps; ++i) { 6026 EVT VT = MemOps[i]; 6027 unsigned VTSize = VT.getSizeInBits() / 8; 6028 SDValue Value, Store; 6029 6030 if (VTSize > Size) { 6031 // Issuing an unaligned load / store pair that overlaps with the previous 6032 // pair. Adjust the offset accordingly. 6033 assert(i == NumMemOps-1 && i != 0); 6034 SrcOff -= VTSize - Size; 6035 DstOff -= VTSize - Size; 6036 } 6037 6038 if (CopyFromConstant && 6039 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6040 // It's unlikely a store of a vector immediate can be done in a single 6041 // instruction. It would require a load from a constantpool first. 6042 // We only handle zero vectors here. 6043 // FIXME: Handle other cases where store of vector immediate is done in 6044 // a single instruction. 6045 ConstantDataArraySlice SubSlice; 6046 if (SrcOff < Slice.Length) { 6047 SubSlice = Slice; 6048 SubSlice.move(SrcOff); 6049 } else { 6050 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6051 SubSlice.Array = nullptr; 6052 SubSlice.Offset = 0; 6053 SubSlice.Length = VTSize; 6054 } 6055 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6056 if (Value.getNode()) { 6057 Store = DAG.getStore( 6058 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6059 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6060 OutChains.push_back(Store); 6061 } 6062 } 6063 6064 if (!Store.getNode()) { 6065 // The type might not be legal for the target. This should only happen 6066 // if the type is smaller than a legal type, as on PPC, so the right 6067 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6068 // to Load/Store if NVT==VT. 6069 // FIXME does the case above also need this? 6070 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6071 assert(NVT.bitsGE(VT)); 6072 6073 bool isDereferenceable = 6074 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6075 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6076 if (isDereferenceable) 6077 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6078 6079 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6080 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6081 SrcPtrInfo.getWithOffset(SrcOff), VT, 6082 commonAlignment(*SrcAlign, SrcOff).value(), 6083 SrcMMOFlags); 6084 OutLoadChains.push_back(Value.getValue(1)); 6085 6086 Store = DAG.getTruncStore( 6087 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6088 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6089 OutStoreChains.push_back(Store); 6090 } 6091 SrcOff += VTSize; 6092 DstOff += VTSize; 6093 Size -= VTSize; 6094 } 6095 6096 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6097 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6098 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6099 6100 if (NumLdStInMemcpy) { 6101 // It may be that memcpy might be converted to memset if it's memcpy 6102 // of constants. In such a case, we won't have loads and stores, but 6103 // just stores. In the absence of loads, there is nothing to gang up. 6104 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6105 // If target does not care, just leave as it. 6106 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6107 OutChains.push_back(OutLoadChains[i]); 6108 OutChains.push_back(OutStoreChains[i]); 6109 } 6110 } else { 6111 // Ld/St less than/equal limit set by target. 6112 if (NumLdStInMemcpy <= GluedLdStLimit) { 6113 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6114 NumLdStInMemcpy, OutLoadChains, 6115 OutStoreChains); 6116 } else { 6117 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6118 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6119 unsigned GlueIter = 0; 6120 6121 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6122 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6123 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6124 6125 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6126 OutLoadChains, OutStoreChains); 6127 GlueIter += GluedLdStLimit; 6128 } 6129 6130 // Residual ld/st. 6131 if (RemainingLdStInMemcpy) { 6132 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6133 RemainingLdStInMemcpy, OutLoadChains, 6134 OutStoreChains); 6135 } 6136 } 6137 } 6138 } 6139 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6140 } 6141 6142 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6143 SDValue Chain, SDValue Dst, SDValue Src, 6144 uint64_t Size, Align Alignment, 6145 bool isVol, bool AlwaysInline, 6146 MachinePointerInfo DstPtrInfo, 6147 MachinePointerInfo SrcPtrInfo) { 6148 // Turn a memmove of undef to nop. 6149 // FIXME: We need to honor volatile even is Src is undef. 6150 if (Src.isUndef()) 6151 return Chain; 6152 6153 // Expand memmove to a series of load and store ops if the size operand falls 6154 // below a certain threshold. 6155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6156 const DataLayout &DL = DAG.getDataLayout(); 6157 LLVMContext &C = *DAG.getContext(); 6158 std::vector<EVT> MemOps; 6159 bool DstAlignCanChange = false; 6160 MachineFunction &MF = DAG.getMachineFunction(); 6161 MachineFrameInfo &MFI = MF.getFrameInfo(); 6162 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6163 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6164 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6165 DstAlignCanChange = true; 6166 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6167 if (!SrcAlign || Alignment > *SrcAlign) 6168 SrcAlign = Alignment; 6169 assert(SrcAlign && "SrcAlign must be set"); 6170 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6171 if (!TLI.findOptimalMemOpLowering( 6172 MemOps, Limit, 6173 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6174 /*IsVolatile*/ true), 6175 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6176 MF.getFunction().getAttributes())) 6177 return SDValue(); 6178 6179 if (DstAlignCanChange) { 6180 Type *Ty = MemOps[0].getTypeForEVT(C); 6181 Align NewAlign = DL.getABITypeAlign(Ty); 6182 if (NewAlign > Alignment) { 6183 // Give the stack frame object a larger alignment if needed. 6184 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6185 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6186 Alignment = NewAlign; 6187 } 6188 } 6189 6190 MachineMemOperand::Flags MMOFlags = 6191 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6192 uint64_t SrcOff = 0, DstOff = 0; 6193 SmallVector<SDValue, 8> LoadValues; 6194 SmallVector<SDValue, 8> LoadChains; 6195 SmallVector<SDValue, 8> OutChains; 6196 unsigned NumMemOps = MemOps.size(); 6197 for (unsigned i = 0; i < NumMemOps; i++) { 6198 EVT VT = MemOps[i]; 6199 unsigned VTSize = VT.getSizeInBits() / 8; 6200 SDValue Value; 6201 6202 bool isDereferenceable = 6203 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6204 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6205 if (isDereferenceable) 6206 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6207 6208 Value = DAG.getLoad( 6209 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6210 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6211 LoadValues.push_back(Value); 6212 LoadChains.push_back(Value.getValue(1)); 6213 SrcOff += VTSize; 6214 } 6215 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6216 OutChains.clear(); 6217 for (unsigned i = 0; i < NumMemOps; i++) { 6218 EVT VT = MemOps[i]; 6219 unsigned VTSize = VT.getSizeInBits() / 8; 6220 SDValue Store; 6221 6222 Store = DAG.getStore( 6223 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6224 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6225 OutChains.push_back(Store); 6226 DstOff += VTSize; 6227 } 6228 6229 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6230 } 6231 6232 /// Lower the call to 'memset' intrinsic function into a series of store 6233 /// operations. 6234 /// 6235 /// \param DAG Selection DAG where lowered code is placed. 6236 /// \param dl Link to corresponding IR location. 6237 /// \param Chain Control flow dependency. 6238 /// \param Dst Pointer to destination memory location. 6239 /// \param Src Value of byte to write into the memory. 6240 /// \param Size Number of bytes to write. 6241 /// \param Alignment Alignment of the destination in bytes. 6242 /// \param isVol True if destination is volatile. 6243 /// \param DstPtrInfo IR information on the memory pointer. 6244 /// \returns New head in the control flow, if lowering was successful, empty 6245 /// SDValue otherwise. 6246 /// 6247 /// The function tries to replace 'llvm.memset' intrinsic with several store 6248 /// operations and value calculation code. This is usually profitable for small 6249 /// memory size. 6250 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6251 SDValue Chain, SDValue Dst, SDValue Src, 6252 uint64_t Size, Align Alignment, bool isVol, 6253 MachinePointerInfo DstPtrInfo) { 6254 // Turn a memset of undef to nop. 6255 // FIXME: We need to honor volatile even is Src is undef. 6256 if (Src.isUndef()) 6257 return Chain; 6258 6259 // Expand memset to a series of load/store ops if the size operand 6260 // falls below a certain threshold. 6261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6262 std::vector<EVT> MemOps; 6263 bool DstAlignCanChange = false; 6264 MachineFunction &MF = DAG.getMachineFunction(); 6265 MachineFrameInfo &MFI = MF.getFrameInfo(); 6266 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6267 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6268 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6269 DstAlignCanChange = true; 6270 bool IsZeroVal = 6271 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6272 if (!TLI.findOptimalMemOpLowering( 6273 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6274 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6275 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6276 return SDValue(); 6277 6278 if (DstAlignCanChange) { 6279 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6280 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6281 if (NewAlign > Alignment) { 6282 // Give the stack frame object a larger alignment if needed. 6283 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6284 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6285 Alignment = NewAlign; 6286 } 6287 } 6288 6289 SmallVector<SDValue, 8> OutChains; 6290 uint64_t DstOff = 0; 6291 unsigned NumMemOps = MemOps.size(); 6292 6293 // Find the largest store and generate the bit pattern for it. 6294 EVT LargestVT = MemOps[0]; 6295 for (unsigned i = 1; i < NumMemOps; i++) 6296 if (MemOps[i].bitsGT(LargestVT)) 6297 LargestVT = MemOps[i]; 6298 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6299 6300 for (unsigned i = 0; i < NumMemOps; i++) { 6301 EVT VT = MemOps[i]; 6302 unsigned VTSize = VT.getSizeInBits() / 8; 6303 if (VTSize > Size) { 6304 // Issuing an unaligned load / store pair that overlaps with the previous 6305 // pair. Adjust the offset accordingly. 6306 assert(i == NumMemOps-1 && i != 0); 6307 DstOff -= VTSize - Size; 6308 } 6309 6310 // If this store is smaller than the largest store see whether we can get 6311 // the smaller value for free with a truncate. 6312 SDValue Value = MemSetValue; 6313 if (VT.bitsLT(LargestVT)) { 6314 if (!LargestVT.isVector() && !VT.isVector() && 6315 TLI.isTruncateFree(LargestVT, VT)) 6316 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6317 else 6318 Value = getMemsetValue(Src, VT, DAG, dl); 6319 } 6320 assert(Value.getValueType() == VT && "Value with wrong type."); 6321 SDValue Store = DAG.getStore( 6322 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6323 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6324 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6325 OutChains.push_back(Store); 6326 DstOff += VT.getSizeInBits() / 8; 6327 Size -= VTSize; 6328 } 6329 6330 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6331 } 6332 6333 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6334 unsigned AS) { 6335 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6336 // pointer operands can be losslessly bitcasted to pointers of address space 0 6337 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6338 report_fatal_error("cannot lower memory intrinsic in address space " + 6339 Twine(AS)); 6340 } 6341 } 6342 6343 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6344 SDValue Src, SDValue Size, Align Alignment, 6345 bool isVol, bool AlwaysInline, bool isTailCall, 6346 MachinePointerInfo DstPtrInfo, 6347 MachinePointerInfo SrcPtrInfo) { 6348 // Check to see if we should lower the memcpy to loads and stores first. 6349 // For cases within the target-specified limits, this is the best choice. 6350 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6351 if (ConstantSize) { 6352 // Memcpy with size zero? Just return the original chain. 6353 if (ConstantSize->isNullValue()) 6354 return Chain; 6355 6356 SDValue Result = getMemcpyLoadsAndStores( 6357 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6358 isVol, false, DstPtrInfo, SrcPtrInfo); 6359 if (Result.getNode()) 6360 return Result; 6361 } 6362 6363 // Then check to see if we should lower the memcpy with target-specific 6364 // code. If the target chooses to do this, this is the next best. 6365 if (TSI) { 6366 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6367 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6368 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6369 if (Result.getNode()) 6370 return Result; 6371 } 6372 6373 // If we really need inline code and the target declined to provide it, 6374 // use a (potentially long) sequence of loads and stores. 6375 if (AlwaysInline) { 6376 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6377 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6378 ConstantSize->getZExtValue(), Alignment, 6379 isVol, true, DstPtrInfo, SrcPtrInfo); 6380 } 6381 6382 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6383 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6384 6385 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6386 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6387 // respect volatile, so they may do things like read or write memory 6388 // beyond the given memory regions. But fixing this isn't easy, and most 6389 // people don't care. 6390 6391 // Emit a library call. 6392 TargetLowering::ArgListTy Args; 6393 TargetLowering::ArgListEntry Entry; 6394 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6395 Entry.Node = Dst; Args.push_back(Entry); 6396 Entry.Node = Src; Args.push_back(Entry); 6397 6398 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6399 Entry.Node = Size; Args.push_back(Entry); 6400 // FIXME: pass in SDLoc 6401 TargetLowering::CallLoweringInfo CLI(*this); 6402 CLI.setDebugLoc(dl) 6403 .setChain(Chain) 6404 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6405 Dst.getValueType().getTypeForEVT(*getContext()), 6406 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6407 TLI->getPointerTy(getDataLayout())), 6408 std::move(Args)) 6409 .setDiscardResult() 6410 .setTailCall(isTailCall); 6411 6412 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6413 return CallResult.second; 6414 } 6415 6416 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6417 SDValue Dst, unsigned DstAlign, 6418 SDValue Src, unsigned SrcAlign, 6419 SDValue Size, Type *SizeTy, 6420 unsigned ElemSz, bool isTailCall, 6421 MachinePointerInfo DstPtrInfo, 6422 MachinePointerInfo SrcPtrInfo) { 6423 // Emit a library call. 6424 TargetLowering::ArgListTy Args; 6425 TargetLowering::ArgListEntry Entry; 6426 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6427 Entry.Node = Dst; 6428 Args.push_back(Entry); 6429 6430 Entry.Node = Src; 6431 Args.push_back(Entry); 6432 6433 Entry.Ty = SizeTy; 6434 Entry.Node = Size; 6435 Args.push_back(Entry); 6436 6437 RTLIB::Libcall LibraryCall = 6438 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6439 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6440 report_fatal_error("Unsupported element size"); 6441 6442 TargetLowering::CallLoweringInfo CLI(*this); 6443 CLI.setDebugLoc(dl) 6444 .setChain(Chain) 6445 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6446 Type::getVoidTy(*getContext()), 6447 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6448 TLI->getPointerTy(getDataLayout())), 6449 std::move(Args)) 6450 .setDiscardResult() 6451 .setTailCall(isTailCall); 6452 6453 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6454 return CallResult.second; 6455 } 6456 6457 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6458 SDValue Src, SDValue Size, Align Alignment, 6459 bool isVol, bool isTailCall, 6460 MachinePointerInfo DstPtrInfo, 6461 MachinePointerInfo SrcPtrInfo) { 6462 // Check to see if we should lower the memmove to loads and stores first. 6463 // For cases within the target-specified limits, this is the best choice. 6464 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6465 if (ConstantSize) { 6466 // Memmove with size zero? Just return the original chain. 6467 if (ConstantSize->isNullValue()) 6468 return Chain; 6469 6470 SDValue Result = getMemmoveLoadsAndStores( 6471 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6472 isVol, false, DstPtrInfo, SrcPtrInfo); 6473 if (Result.getNode()) 6474 return Result; 6475 } 6476 6477 // Then check to see if we should lower the memmove with target-specific 6478 // code. If the target chooses to do this, this is the next best. 6479 if (TSI) { 6480 SDValue Result = TSI->EmitTargetCodeForMemmove( 6481 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6482 SrcPtrInfo); 6483 if (Result.getNode()) 6484 return Result; 6485 } 6486 6487 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6488 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6489 6490 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6491 // not be safe. See memcpy above for more details. 6492 6493 // Emit a library call. 6494 TargetLowering::ArgListTy Args; 6495 TargetLowering::ArgListEntry Entry; 6496 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6497 Entry.Node = Dst; Args.push_back(Entry); 6498 Entry.Node = Src; Args.push_back(Entry); 6499 6500 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6501 Entry.Node = Size; Args.push_back(Entry); 6502 // FIXME: pass in SDLoc 6503 TargetLowering::CallLoweringInfo CLI(*this); 6504 CLI.setDebugLoc(dl) 6505 .setChain(Chain) 6506 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6507 Dst.getValueType().getTypeForEVT(*getContext()), 6508 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6509 TLI->getPointerTy(getDataLayout())), 6510 std::move(Args)) 6511 .setDiscardResult() 6512 .setTailCall(isTailCall); 6513 6514 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6515 return CallResult.second; 6516 } 6517 6518 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6519 SDValue Dst, unsigned DstAlign, 6520 SDValue Src, unsigned SrcAlign, 6521 SDValue Size, Type *SizeTy, 6522 unsigned ElemSz, bool isTailCall, 6523 MachinePointerInfo DstPtrInfo, 6524 MachinePointerInfo SrcPtrInfo) { 6525 // Emit a library call. 6526 TargetLowering::ArgListTy Args; 6527 TargetLowering::ArgListEntry Entry; 6528 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6529 Entry.Node = Dst; 6530 Args.push_back(Entry); 6531 6532 Entry.Node = Src; 6533 Args.push_back(Entry); 6534 6535 Entry.Ty = SizeTy; 6536 Entry.Node = Size; 6537 Args.push_back(Entry); 6538 6539 RTLIB::Libcall LibraryCall = 6540 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6541 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6542 report_fatal_error("Unsupported element size"); 6543 6544 TargetLowering::CallLoweringInfo CLI(*this); 6545 CLI.setDebugLoc(dl) 6546 .setChain(Chain) 6547 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6548 Type::getVoidTy(*getContext()), 6549 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6550 TLI->getPointerTy(getDataLayout())), 6551 std::move(Args)) 6552 .setDiscardResult() 6553 .setTailCall(isTailCall); 6554 6555 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6556 return CallResult.second; 6557 } 6558 6559 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6560 SDValue Src, SDValue Size, Align Alignment, 6561 bool isVol, bool isTailCall, 6562 MachinePointerInfo DstPtrInfo) { 6563 // Check to see if we should lower the memset to stores first. 6564 // For cases within the target-specified limits, this is the best choice. 6565 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6566 if (ConstantSize) { 6567 // Memset with size zero? Just return the original chain. 6568 if (ConstantSize->isNullValue()) 6569 return Chain; 6570 6571 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6572 ConstantSize->getZExtValue(), Alignment, 6573 isVol, DstPtrInfo); 6574 6575 if (Result.getNode()) 6576 return Result; 6577 } 6578 6579 // Then check to see if we should lower the memset with target-specific 6580 // code. If the target chooses to do this, this is the next best. 6581 if (TSI) { 6582 SDValue Result = TSI->EmitTargetCodeForMemset( 6583 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6584 if (Result.getNode()) 6585 return Result; 6586 } 6587 6588 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6589 6590 // Emit a library call. 6591 TargetLowering::ArgListTy Args; 6592 TargetLowering::ArgListEntry Entry; 6593 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6594 Args.push_back(Entry); 6595 Entry.Node = Src; 6596 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6597 Args.push_back(Entry); 6598 Entry.Node = Size; 6599 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6600 Args.push_back(Entry); 6601 6602 // FIXME: pass in SDLoc 6603 TargetLowering::CallLoweringInfo CLI(*this); 6604 CLI.setDebugLoc(dl) 6605 .setChain(Chain) 6606 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6607 Dst.getValueType().getTypeForEVT(*getContext()), 6608 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6609 TLI->getPointerTy(getDataLayout())), 6610 std::move(Args)) 6611 .setDiscardResult() 6612 .setTailCall(isTailCall); 6613 6614 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6615 return CallResult.second; 6616 } 6617 6618 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6619 SDValue Dst, unsigned DstAlign, 6620 SDValue Value, SDValue Size, Type *SizeTy, 6621 unsigned ElemSz, bool isTailCall, 6622 MachinePointerInfo DstPtrInfo) { 6623 // Emit a library call. 6624 TargetLowering::ArgListTy Args; 6625 TargetLowering::ArgListEntry Entry; 6626 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6627 Entry.Node = Dst; 6628 Args.push_back(Entry); 6629 6630 Entry.Ty = Type::getInt8Ty(*getContext()); 6631 Entry.Node = Value; 6632 Args.push_back(Entry); 6633 6634 Entry.Ty = SizeTy; 6635 Entry.Node = Size; 6636 Args.push_back(Entry); 6637 6638 RTLIB::Libcall LibraryCall = 6639 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6640 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6641 report_fatal_error("Unsupported element size"); 6642 6643 TargetLowering::CallLoweringInfo CLI(*this); 6644 CLI.setDebugLoc(dl) 6645 .setChain(Chain) 6646 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6647 Type::getVoidTy(*getContext()), 6648 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6649 TLI->getPointerTy(getDataLayout())), 6650 std::move(Args)) 6651 .setDiscardResult() 6652 .setTailCall(isTailCall); 6653 6654 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6655 return CallResult.second; 6656 } 6657 6658 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6659 SDVTList VTList, ArrayRef<SDValue> Ops, 6660 MachineMemOperand *MMO) { 6661 FoldingSetNodeID ID; 6662 ID.AddInteger(MemVT.getRawBits()); 6663 AddNodeIDNode(ID, Opcode, VTList, Ops); 6664 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6665 void* IP = nullptr; 6666 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6667 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6668 return SDValue(E, 0); 6669 } 6670 6671 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6672 VTList, MemVT, MMO); 6673 createOperands(N, Ops); 6674 6675 CSEMap.InsertNode(N, IP); 6676 InsertNode(N); 6677 return SDValue(N, 0); 6678 } 6679 6680 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6681 EVT MemVT, SDVTList VTs, SDValue Chain, 6682 SDValue Ptr, SDValue Cmp, SDValue Swp, 6683 MachineMemOperand *MMO) { 6684 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6685 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6686 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6687 6688 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6689 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6690 } 6691 6692 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6693 SDValue Chain, SDValue Ptr, SDValue Val, 6694 MachineMemOperand *MMO) { 6695 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6696 Opcode == ISD::ATOMIC_LOAD_SUB || 6697 Opcode == ISD::ATOMIC_LOAD_AND || 6698 Opcode == ISD::ATOMIC_LOAD_CLR || 6699 Opcode == ISD::ATOMIC_LOAD_OR || 6700 Opcode == ISD::ATOMIC_LOAD_XOR || 6701 Opcode == ISD::ATOMIC_LOAD_NAND || 6702 Opcode == ISD::ATOMIC_LOAD_MIN || 6703 Opcode == ISD::ATOMIC_LOAD_MAX || 6704 Opcode == ISD::ATOMIC_LOAD_UMIN || 6705 Opcode == ISD::ATOMIC_LOAD_UMAX || 6706 Opcode == ISD::ATOMIC_LOAD_FADD || 6707 Opcode == ISD::ATOMIC_LOAD_FSUB || 6708 Opcode == ISD::ATOMIC_SWAP || 6709 Opcode == ISD::ATOMIC_STORE) && 6710 "Invalid Atomic Op"); 6711 6712 EVT VT = Val.getValueType(); 6713 6714 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6715 getVTList(VT, MVT::Other); 6716 SDValue Ops[] = {Chain, Ptr, Val}; 6717 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6718 } 6719 6720 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6721 EVT VT, SDValue Chain, SDValue Ptr, 6722 MachineMemOperand *MMO) { 6723 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6724 6725 SDVTList VTs = getVTList(VT, MVT::Other); 6726 SDValue Ops[] = {Chain, Ptr}; 6727 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6728 } 6729 6730 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6731 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6732 if (Ops.size() == 1) 6733 return Ops[0]; 6734 6735 SmallVector<EVT, 4> VTs; 6736 VTs.reserve(Ops.size()); 6737 for (unsigned i = 0; i < Ops.size(); ++i) 6738 VTs.push_back(Ops[i].getValueType()); 6739 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6740 } 6741 6742 SDValue SelectionDAG::getMemIntrinsicNode( 6743 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6744 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6745 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6746 if (!Size && MemVT.isScalableVector()) 6747 Size = MemoryLocation::UnknownSize; 6748 else if (!Size) 6749 Size = MemVT.getStoreSize(); 6750 6751 MachineFunction &MF = getMachineFunction(); 6752 MachineMemOperand *MMO = 6753 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6754 6755 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6756 } 6757 6758 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6759 SDVTList VTList, 6760 ArrayRef<SDValue> Ops, EVT MemVT, 6761 MachineMemOperand *MMO) { 6762 assert((Opcode == ISD::INTRINSIC_VOID || 6763 Opcode == ISD::INTRINSIC_W_CHAIN || 6764 Opcode == ISD::PREFETCH || 6765 ((int)Opcode <= std::numeric_limits<int>::max() && 6766 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6767 "Opcode is not a memory-accessing opcode!"); 6768 6769 // Memoize the node unless it returns a flag. 6770 MemIntrinsicSDNode *N; 6771 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6772 FoldingSetNodeID ID; 6773 AddNodeIDNode(ID, Opcode, VTList, Ops); 6774 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6775 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6776 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6777 void *IP = nullptr; 6778 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6779 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6780 return SDValue(E, 0); 6781 } 6782 6783 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6784 VTList, MemVT, MMO); 6785 createOperands(N, Ops); 6786 6787 CSEMap.InsertNode(N, IP); 6788 } else { 6789 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6790 VTList, MemVT, MMO); 6791 createOperands(N, Ops); 6792 } 6793 InsertNode(N); 6794 SDValue V(N, 0); 6795 NewSDValueDbgMsg(V, "Creating new node: ", this); 6796 return V; 6797 } 6798 6799 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6800 SDValue Chain, int FrameIndex, 6801 int64_t Size, int64_t Offset) { 6802 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6803 const auto VTs = getVTList(MVT::Other); 6804 SDValue Ops[2] = { 6805 Chain, 6806 getFrameIndex(FrameIndex, 6807 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6808 true)}; 6809 6810 FoldingSetNodeID ID; 6811 AddNodeIDNode(ID, Opcode, VTs, Ops); 6812 ID.AddInteger(FrameIndex); 6813 ID.AddInteger(Size); 6814 ID.AddInteger(Offset); 6815 void *IP = nullptr; 6816 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6817 return SDValue(E, 0); 6818 6819 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6820 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6821 createOperands(N, Ops); 6822 CSEMap.InsertNode(N, IP); 6823 InsertNode(N); 6824 SDValue V(N, 0); 6825 NewSDValueDbgMsg(V, "Creating new node: ", this); 6826 return V; 6827 } 6828 6829 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6830 /// MachinePointerInfo record from it. This is particularly useful because the 6831 /// code generator has many cases where it doesn't bother passing in a 6832 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6833 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6834 SelectionDAG &DAG, SDValue Ptr, 6835 int64_t Offset = 0) { 6836 // If this is FI+Offset, we can model it. 6837 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6838 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6839 FI->getIndex(), Offset); 6840 6841 // If this is (FI+Offset1)+Offset2, we can model it. 6842 if (Ptr.getOpcode() != ISD::ADD || 6843 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6844 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6845 return Info; 6846 6847 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6848 return MachinePointerInfo::getFixedStack( 6849 DAG.getMachineFunction(), FI, 6850 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6851 } 6852 6853 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6854 /// MachinePointerInfo record from it. This is particularly useful because the 6855 /// code generator has many cases where it doesn't bother passing in a 6856 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6857 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6858 SelectionDAG &DAG, SDValue Ptr, 6859 SDValue OffsetOp) { 6860 // If the 'Offset' value isn't a constant, we can't handle this. 6861 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6862 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6863 if (OffsetOp.isUndef()) 6864 return InferPointerInfo(Info, DAG, Ptr); 6865 return Info; 6866 } 6867 6868 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6869 EVT VT, const SDLoc &dl, SDValue Chain, 6870 SDValue Ptr, SDValue Offset, 6871 MachinePointerInfo PtrInfo, EVT MemVT, 6872 Align Alignment, 6873 MachineMemOperand::Flags MMOFlags, 6874 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6875 assert(Chain.getValueType() == MVT::Other && 6876 "Invalid chain type"); 6877 6878 MMOFlags |= MachineMemOperand::MOLoad; 6879 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6880 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6881 // clients. 6882 if (PtrInfo.V.isNull()) 6883 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6884 6885 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6886 MachineFunction &MF = getMachineFunction(); 6887 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6888 Alignment, AAInfo, Ranges); 6889 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6890 } 6891 6892 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6893 EVT VT, const SDLoc &dl, SDValue Chain, 6894 SDValue Ptr, SDValue Offset, EVT MemVT, 6895 MachineMemOperand *MMO) { 6896 if (VT == MemVT) { 6897 ExtType = ISD::NON_EXTLOAD; 6898 } else if (ExtType == ISD::NON_EXTLOAD) { 6899 assert(VT == MemVT && "Non-extending load from different memory type!"); 6900 } else { 6901 // Extending load. 6902 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6903 "Should only be an extending load, not truncating!"); 6904 assert(VT.isInteger() == MemVT.isInteger() && 6905 "Cannot convert from FP to Int or Int -> FP!"); 6906 assert(VT.isVector() == MemVT.isVector() && 6907 "Cannot use an ext load to convert to or from a vector!"); 6908 assert((!VT.isVector() || 6909 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6910 "Cannot use an ext load to change the number of vector elements!"); 6911 } 6912 6913 bool Indexed = AM != ISD::UNINDEXED; 6914 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6915 6916 SDVTList VTs = Indexed ? 6917 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6918 SDValue Ops[] = { Chain, Ptr, Offset }; 6919 FoldingSetNodeID ID; 6920 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6921 ID.AddInteger(MemVT.getRawBits()); 6922 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6923 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6924 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6925 void *IP = nullptr; 6926 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6927 cast<LoadSDNode>(E)->refineAlignment(MMO); 6928 return SDValue(E, 0); 6929 } 6930 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6931 ExtType, MemVT, MMO); 6932 createOperands(N, Ops); 6933 6934 CSEMap.InsertNode(N, IP); 6935 InsertNode(N); 6936 SDValue V(N, 0); 6937 NewSDValueDbgMsg(V, "Creating new node: ", this); 6938 return V; 6939 } 6940 6941 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6942 SDValue Ptr, MachinePointerInfo PtrInfo, 6943 MaybeAlign Alignment, 6944 MachineMemOperand::Flags MMOFlags, 6945 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6946 SDValue Undef = getUNDEF(Ptr.getValueType()); 6947 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6948 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6949 } 6950 6951 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6952 SDValue Ptr, MachineMemOperand *MMO) { 6953 SDValue Undef = getUNDEF(Ptr.getValueType()); 6954 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6955 VT, MMO); 6956 } 6957 6958 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6959 EVT VT, SDValue Chain, SDValue Ptr, 6960 MachinePointerInfo PtrInfo, EVT MemVT, 6961 MaybeAlign Alignment, 6962 MachineMemOperand::Flags MMOFlags, 6963 const AAMDNodes &AAInfo) { 6964 SDValue Undef = getUNDEF(Ptr.getValueType()); 6965 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6966 MemVT, Alignment, MMOFlags, AAInfo); 6967 } 6968 6969 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6970 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6971 MachineMemOperand *MMO) { 6972 SDValue Undef = getUNDEF(Ptr.getValueType()); 6973 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6974 MemVT, MMO); 6975 } 6976 6977 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6978 SDValue Base, SDValue Offset, 6979 ISD::MemIndexedMode AM) { 6980 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6981 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6982 // Don't propagate the invariant or dereferenceable flags. 6983 auto MMOFlags = 6984 LD->getMemOperand()->getFlags() & 6985 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6986 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6987 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6988 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6989 LD->getAAInfo()); 6990 } 6991 6992 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6993 SDValue Ptr, MachinePointerInfo PtrInfo, 6994 Align Alignment, 6995 MachineMemOperand::Flags MMOFlags, 6996 const AAMDNodes &AAInfo) { 6997 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6998 6999 MMOFlags |= MachineMemOperand::MOStore; 7000 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7001 7002 if (PtrInfo.V.isNull()) 7003 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7004 7005 MachineFunction &MF = getMachineFunction(); 7006 uint64_t Size = 7007 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7008 MachineMemOperand *MMO = 7009 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7010 return getStore(Chain, dl, Val, Ptr, MMO); 7011 } 7012 7013 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7014 SDValue Ptr, MachineMemOperand *MMO) { 7015 assert(Chain.getValueType() == MVT::Other && 7016 "Invalid chain type"); 7017 EVT VT = Val.getValueType(); 7018 SDVTList VTs = getVTList(MVT::Other); 7019 SDValue Undef = getUNDEF(Ptr.getValueType()); 7020 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7021 FoldingSetNodeID ID; 7022 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7023 ID.AddInteger(VT.getRawBits()); 7024 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7025 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7026 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7027 void *IP = nullptr; 7028 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7029 cast<StoreSDNode>(E)->refineAlignment(MMO); 7030 return SDValue(E, 0); 7031 } 7032 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7033 ISD::UNINDEXED, false, VT, MMO); 7034 createOperands(N, Ops); 7035 7036 CSEMap.InsertNode(N, IP); 7037 InsertNode(N); 7038 SDValue V(N, 0); 7039 NewSDValueDbgMsg(V, "Creating new node: ", this); 7040 return V; 7041 } 7042 7043 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7044 SDValue Ptr, MachinePointerInfo PtrInfo, 7045 EVT SVT, Align Alignment, 7046 MachineMemOperand::Flags MMOFlags, 7047 const AAMDNodes &AAInfo) { 7048 assert(Chain.getValueType() == MVT::Other && 7049 "Invalid chain type"); 7050 7051 MMOFlags |= MachineMemOperand::MOStore; 7052 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7053 7054 if (PtrInfo.V.isNull()) 7055 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7056 7057 MachineFunction &MF = getMachineFunction(); 7058 MachineMemOperand *MMO = MF.getMachineMemOperand( 7059 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7060 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7061 } 7062 7063 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7064 SDValue Ptr, EVT SVT, 7065 MachineMemOperand *MMO) { 7066 EVT VT = Val.getValueType(); 7067 7068 assert(Chain.getValueType() == MVT::Other && 7069 "Invalid chain type"); 7070 if (VT == SVT) 7071 return getStore(Chain, dl, Val, Ptr, MMO); 7072 7073 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7074 "Should only be a truncating store, not extending!"); 7075 assert(VT.isInteger() == SVT.isInteger() && 7076 "Can't do FP-INT conversion!"); 7077 assert(VT.isVector() == SVT.isVector() && 7078 "Cannot use trunc store to convert to or from a vector!"); 7079 assert((!VT.isVector() || 7080 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7081 "Cannot use trunc store to change the number of vector elements!"); 7082 7083 SDVTList VTs = getVTList(MVT::Other); 7084 SDValue Undef = getUNDEF(Ptr.getValueType()); 7085 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7086 FoldingSetNodeID ID; 7087 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7088 ID.AddInteger(SVT.getRawBits()); 7089 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7090 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7091 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7092 void *IP = nullptr; 7093 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7094 cast<StoreSDNode>(E)->refineAlignment(MMO); 7095 return SDValue(E, 0); 7096 } 7097 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7098 ISD::UNINDEXED, true, SVT, MMO); 7099 createOperands(N, Ops); 7100 7101 CSEMap.InsertNode(N, IP); 7102 InsertNode(N); 7103 SDValue V(N, 0); 7104 NewSDValueDbgMsg(V, "Creating new node: ", this); 7105 return V; 7106 } 7107 7108 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7109 SDValue Base, SDValue Offset, 7110 ISD::MemIndexedMode AM) { 7111 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7112 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7113 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7114 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7115 FoldingSetNodeID ID; 7116 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7117 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7118 ID.AddInteger(ST->getRawSubclassData()); 7119 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7120 void *IP = nullptr; 7121 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7122 return SDValue(E, 0); 7123 7124 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7125 ST->isTruncatingStore(), ST->getMemoryVT(), 7126 ST->getMemOperand()); 7127 createOperands(N, Ops); 7128 7129 CSEMap.InsertNode(N, IP); 7130 InsertNode(N); 7131 SDValue V(N, 0); 7132 NewSDValueDbgMsg(V, "Creating new node: ", this); 7133 return V; 7134 } 7135 7136 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7137 SDValue Base, SDValue Offset, SDValue Mask, 7138 SDValue PassThru, EVT MemVT, 7139 MachineMemOperand *MMO, 7140 ISD::MemIndexedMode AM, 7141 ISD::LoadExtType ExtTy, bool isExpanding) { 7142 bool Indexed = AM != ISD::UNINDEXED; 7143 assert((Indexed || Offset.isUndef()) && 7144 "Unindexed masked load with an offset!"); 7145 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7146 : getVTList(VT, MVT::Other); 7147 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7148 FoldingSetNodeID ID; 7149 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7150 ID.AddInteger(MemVT.getRawBits()); 7151 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7152 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7153 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7154 void *IP = nullptr; 7155 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7156 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7157 return SDValue(E, 0); 7158 } 7159 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7160 AM, ExtTy, isExpanding, MemVT, MMO); 7161 createOperands(N, Ops); 7162 7163 CSEMap.InsertNode(N, IP); 7164 InsertNode(N); 7165 SDValue V(N, 0); 7166 NewSDValueDbgMsg(V, "Creating new node: ", this); 7167 return V; 7168 } 7169 7170 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7171 SDValue Base, SDValue Offset, 7172 ISD::MemIndexedMode AM) { 7173 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7174 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7175 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7176 Offset, LD->getMask(), LD->getPassThru(), 7177 LD->getMemoryVT(), LD->getMemOperand(), AM, 7178 LD->getExtensionType(), LD->isExpandingLoad()); 7179 } 7180 7181 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7182 SDValue Val, SDValue Base, SDValue Offset, 7183 SDValue Mask, EVT MemVT, 7184 MachineMemOperand *MMO, 7185 ISD::MemIndexedMode AM, bool IsTruncating, 7186 bool IsCompressing) { 7187 assert(Chain.getValueType() == MVT::Other && 7188 "Invalid chain type"); 7189 bool Indexed = AM != ISD::UNINDEXED; 7190 assert((Indexed || Offset.isUndef()) && 7191 "Unindexed masked store with an offset!"); 7192 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7193 : getVTList(MVT::Other); 7194 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7195 FoldingSetNodeID ID; 7196 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7197 ID.AddInteger(MemVT.getRawBits()); 7198 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7199 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7200 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7201 void *IP = nullptr; 7202 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7203 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7204 return SDValue(E, 0); 7205 } 7206 auto *N = 7207 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7208 IsTruncating, IsCompressing, MemVT, MMO); 7209 createOperands(N, Ops); 7210 7211 CSEMap.InsertNode(N, IP); 7212 InsertNode(N); 7213 SDValue V(N, 0); 7214 NewSDValueDbgMsg(V, "Creating new node: ", this); 7215 return V; 7216 } 7217 7218 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7219 SDValue Base, SDValue Offset, 7220 ISD::MemIndexedMode AM) { 7221 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7222 assert(ST->getOffset().isUndef() && 7223 "Masked store is already a indexed store!"); 7224 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7225 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7226 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7227 } 7228 7229 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7230 ArrayRef<SDValue> Ops, 7231 MachineMemOperand *MMO, 7232 ISD::MemIndexType IndexType) { 7233 assert(Ops.size() == 6 && "Incompatible number of operands"); 7234 7235 FoldingSetNodeID ID; 7236 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7237 ID.AddInteger(VT.getRawBits()); 7238 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7239 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7240 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7241 void *IP = nullptr; 7242 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7243 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7244 return SDValue(E, 0); 7245 } 7246 7247 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7248 VTs, VT, MMO, IndexType); 7249 createOperands(N, Ops); 7250 7251 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7252 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7253 assert(N->getMask().getValueType().getVectorNumElements() == 7254 N->getValueType(0).getVectorNumElements() && 7255 "Vector width mismatch between mask and data"); 7256 assert(N->getIndex().getValueType().getVectorNumElements() >= 7257 N->getValueType(0).getVectorNumElements() && 7258 "Vector width mismatch between index and data"); 7259 assert(isa<ConstantSDNode>(N->getScale()) && 7260 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7261 "Scale should be a constant power of 2"); 7262 7263 CSEMap.InsertNode(N, IP); 7264 InsertNode(N); 7265 SDValue V(N, 0); 7266 NewSDValueDbgMsg(V, "Creating new node: ", this); 7267 return V; 7268 } 7269 7270 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7271 ArrayRef<SDValue> Ops, 7272 MachineMemOperand *MMO, 7273 ISD::MemIndexType IndexType) { 7274 assert(Ops.size() == 6 && "Incompatible number of operands"); 7275 7276 FoldingSetNodeID ID; 7277 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7278 ID.AddInteger(VT.getRawBits()); 7279 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7280 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7281 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7282 void *IP = nullptr; 7283 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7284 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7285 return SDValue(E, 0); 7286 } 7287 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7288 VTs, VT, MMO, IndexType); 7289 createOperands(N, Ops); 7290 7291 assert(N->getMask().getValueType().getVectorNumElements() == 7292 N->getValue().getValueType().getVectorNumElements() && 7293 "Vector width mismatch between mask and data"); 7294 assert(N->getIndex().getValueType().getVectorNumElements() >= 7295 N->getValue().getValueType().getVectorNumElements() && 7296 "Vector width mismatch between index and data"); 7297 assert(isa<ConstantSDNode>(N->getScale()) && 7298 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7299 "Scale should be a constant power of 2"); 7300 7301 CSEMap.InsertNode(N, IP); 7302 InsertNode(N); 7303 SDValue V(N, 0); 7304 NewSDValueDbgMsg(V, "Creating new node: ", this); 7305 return V; 7306 } 7307 7308 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7309 // select undef, T, F --> T (if T is a constant), otherwise F 7310 // select, ?, undef, F --> F 7311 // select, ?, T, undef --> T 7312 if (Cond.isUndef()) 7313 return isConstantValueOfAnyType(T) ? T : F; 7314 if (T.isUndef()) 7315 return F; 7316 if (F.isUndef()) 7317 return T; 7318 7319 // select true, T, F --> T 7320 // select false, T, F --> F 7321 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7322 return CondC->isNullValue() ? F : T; 7323 7324 // TODO: This should simplify VSELECT with constant condition using something 7325 // like this (but check boolean contents to be complete?): 7326 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7327 // return T; 7328 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7329 // return F; 7330 7331 // select ?, T, T --> T 7332 if (T == F) 7333 return T; 7334 7335 return SDValue(); 7336 } 7337 7338 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7339 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7340 if (X.isUndef()) 7341 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7342 // shift X, undef --> undef (because it may shift by the bitwidth) 7343 if (Y.isUndef()) 7344 return getUNDEF(X.getValueType()); 7345 7346 // shift 0, Y --> 0 7347 // shift X, 0 --> X 7348 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7349 return X; 7350 7351 // shift X, C >= bitwidth(X) --> undef 7352 // All vector elements must be too big (or undef) to avoid partial undefs. 7353 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7354 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7355 }; 7356 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7357 return getUNDEF(X.getValueType()); 7358 7359 return SDValue(); 7360 } 7361 7362 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7363 SDNodeFlags Flags) { 7364 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7365 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7366 // operation is poison. That result can be relaxed to undef. 7367 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7368 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7369 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7370 (YC && YC->getValueAPF().isNaN()); 7371 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7372 (YC && YC->getValueAPF().isInfinity()); 7373 7374 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7375 return getUNDEF(X.getValueType()); 7376 7377 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7378 return getUNDEF(X.getValueType()); 7379 7380 if (!YC) 7381 return SDValue(); 7382 7383 // X + -0.0 --> X 7384 if (Opcode == ISD::FADD) 7385 if (YC->getValueAPF().isNegZero()) 7386 return X; 7387 7388 // X - +0.0 --> X 7389 if (Opcode == ISD::FSUB) 7390 if (YC->getValueAPF().isPosZero()) 7391 return X; 7392 7393 // X * 1.0 --> X 7394 // X / 1.0 --> X 7395 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7396 if (YC->getValueAPF().isExactlyValue(1.0)) 7397 return X; 7398 7399 return SDValue(); 7400 } 7401 7402 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7403 SDValue Ptr, SDValue SV, unsigned Align) { 7404 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7405 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7406 } 7407 7408 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7409 ArrayRef<SDUse> Ops) { 7410 switch (Ops.size()) { 7411 case 0: return getNode(Opcode, DL, VT); 7412 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7413 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7414 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7415 default: break; 7416 } 7417 7418 // Copy from an SDUse array into an SDValue array for use with 7419 // the regular getNode logic. 7420 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7421 return getNode(Opcode, DL, VT, NewOps); 7422 } 7423 7424 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7425 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7426 unsigned NumOps = Ops.size(); 7427 switch (NumOps) { 7428 case 0: return getNode(Opcode, DL, VT); 7429 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7430 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7431 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7432 default: break; 7433 } 7434 7435 switch (Opcode) { 7436 default: break; 7437 case ISD::BUILD_VECTOR: 7438 // Attempt to simplify BUILD_VECTOR. 7439 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7440 return V; 7441 break; 7442 case ISD::CONCAT_VECTORS: 7443 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7444 return V; 7445 break; 7446 case ISD::SELECT_CC: 7447 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7448 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7449 "LHS and RHS of condition must have same type!"); 7450 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7451 "True and False arms of SelectCC must have same type!"); 7452 assert(Ops[2].getValueType() == VT && 7453 "select_cc node must be of same type as true and false value!"); 7454 break; 7455 case ISD::BR_CC: 7456 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7457 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7458 "LHS/RHS of comparison should match types!"); 7459 break; 7460 } 7461 7462 // Memoize nodes. 7463 SDNode *N; 7464 SDVTList VTs = getVTList(VT); 7465 7466 if (VT != MVT::Glue) { 7467 FoldingSetNodeID ID; 7468 AddNodeIDNode(ID, Opcode, VTs, Ops); 7469 void *IP = nullptr; 7470 7471 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7472 return SDValue(E, 0); 7473 7474 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7475 createOperands(N, Ops); 7476 7477 CSEMap.InsertNode(N, IP); 7478 } else { 7479 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7480 createOperands(N, Ops); 7481 } 7482 7483 N->setFlags(Flags); 7484 InsertNode(N); 7485 SDValue V(N, 0); 7486 NewSDValueDbgMsg(V, "Creating new node: ", this); 7487 return V; 7488 } 7489 7490 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7491 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7492 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7493 } 7494 7495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7496 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7497 if (VTList.NumVTs == 1) 7498 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7499 7500 switch (Opcode) { 7501 case ISD::STRICT_FP_EXTEND: 7502 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7503 "Invalid STRICT_FP_EXTEND!"); 7504 assert(VTList.VTs[0].isFloatingPoint() && 7505 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7506 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7507 "STRICT_FP_EXTEND result type should be vector iff the operand " 7508 "type is vector!"); 7509 assert((!VTList.VTs[0].isVector() || 7510 VTList.VTs[0].getVectorNumElements() == 7511 Ops[1].getValueType().getVectorNumElements()) && 7512 "Vector element count mismatch!"); 7513 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7514 "Invalid fpext node, dst <= src!"); 7515 break; 7516 case ISD::STRICT_FP_ROUND: 7517 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7518 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7519 "STRICT_FP_ROUND result type should be vector iff the operand " 7520 "type is vector!"); 7521 assert((!VTList.VTs[0].isVector() || 7522 VTList.VTs[0].getVectorNumElements() == 7523 Ops[1].getValueType().getVectorNumElements()) && 7524 "Vector element count mismatch!"); 7525 assert(VTList.VTs[0].isFloatingPoint() && 7526 Ops[1].getValueType().isFloatingPoint() && 7527 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7528 isa<ConstantSDNode>(Ops[2]) && 7529 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7530 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7531 "Invalid STRICT_FP_ROUND!"); 7532 break; 7533 #if 0 7534 // FIXME: figure out how to safely handle things like 7535 // int foo(int x) { return 1 << (x & 255); } 7536 // int bar() { return foo(256); } 7537 case ISD::SRA_PARTS: 7538 case ISD::SRL_PARTS: 7539 case ISD::SHL_PARTS: 7540 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7541 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7542 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7543 else if (N3.getOpcode() == ISD::AND) 7544 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7545 // If the and is only masking out bits that cannot effect the shift, 7546 // eliminate the and. 7547 unsigned NumBits = VT.getScalarSizeInBits()*2; 7548 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7549 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7550 } 7551 break; 7552 #endif 7553 } 7554 7555 // Memoize the node unless it returns a flag. 7556 SDNode *N; 7557 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7558 FoldingSetNodeID ID; 7559 AddNodeIDNode(ID, Opcode, VTList, Ops); 7560 void *IP = nullptr; 7561 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7562 return SDValue(E, 0); 7563 7564 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7565 createOperands(N, Ops); 7566 CSEMap.InsertNode(N, IP); 7567 } else { 7568 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7569 createOperands(N, Ops); 7570 } 7571 7572 N->setFlags(Flags); 7573 InsertNode(N); 7574 SDValue V(N, 0); 7575 NewSDValueDbgMsg(V, "Creating new node: ", this); 7576 return V; 7577 } 7578 7579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7580 SDVTList VTList) { 7581 return getNode(Opcode, DL, VTList, None); 7582 } 7583 7584 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7585 SDValue N1) { 7586 SDValue Ops[] = { N1 }; 7587 return getNode(Opcode, DL, VTList, Ops); 7588 } 7589 7590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7591 SDValue N1, SDValue N2) { 7592 SDValue Ops[] = { N1, N2 }; 7593 return getNode(Opcode, DL, VTList, Ops); 7594 } 7595 7596 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7597 SDValue N1, SDValue N2, SDValue N3) { 7598 SDValue Ops[] = { N1, N2, N3 }; 7599 return getNode(Opcode, DL, VTList, Ops); 7600 } 7601 7602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7603 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7604 SDValue Ops[] = { N1, N2, N3, N4 }; 7605 return getNode(Opcode, DL, VTList, Ops); 7606 } 7607 7608 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7609 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7610 SDValue N5) { 7611 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7612 return getNode(Opcode, DL, VTList, Ops); 7613 } 7614 7615 SDVTList SelectionDAG::getVTList(EVT VT) { 7616 return makeVTList(SDNode::getValueTypeList(VT), 1); 7617 } 7618 7619 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7620 FoldingSetNodeID ID; 7621 ID.AddInteger(2U); 7622 ID.AddInteger(VT1.getRawBits()); 7623 ID.AddInteger(VT2.getRawBits()); 7624 7625 void *IP = nullptr; 7626 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7627 if (!Result) { 7628 EVT *Array = Allocator.Allocate<EVT>(2); 7629 Array[0] = VT1; 7630 Array[1] = VT2; 7631 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7632 VTListMap.InsertNode(Result, IP); 7633 } 7634 return Result->getSDVTList(); 7635 } 7636 7637 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7638 FoldingSetNodeID ID; 7639 ID.AddInteger(3U); 7640 ID.AddInteger(VT1.getRawBits()); 7641 ID.AddInteger(VT2.getRawBits()); 7642 ID.AddInteger(VT3.getRawBits()); 7643 7644 void *IP = nullptr; 7645 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7646 if (!Result) { 7647 EVT *Array = Allocator.Allocate<EVT>(3); 7648 Array[0] = VT1; 7649 Array[1] = VT2; 7650 Array[2] = VT3; 7651 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7652 VTListMap.InsertNode(Result, IP); 7653 } 7654 return Result->getSDVTList(); 7655 } 7656 7657 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7658 FoldingSetNodeID ID; 7659 ID.AddInteger(4U); 7660 ID.AddInteger(VT1.getRawBits()); 7661 ID.AddInteger(VT2.getRawBits()); 7662 ID.AddInteger(VT3.getRawBits()); 7663 ID.AddInteger(VT4.getRawBits()); 7664 7665 void *IP = nullptr; 7666 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7667 if (!Result) { 7668 EVT *Array = Allocator.Allocate<EVT>(4); 7669 Array[0] = VT1; 7670 Array[1] = VT2; 7671 Array[2] = VT3; 7672 Array[3] = VT4; 7673 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7674 VTListMap.InsertNode(Result, IP); 7675 } 7676 return Result->getSDVTList(); 7677 } 7678 7679 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7680 unsigned NumVTs = VTs.size(); 7681 FoldingSetNodeID ID; 7682 ID.AddInteger(NumVTs); 7683 for (unsigned index = 0; index < NumVTs; index++) { 7684 ID.AddInteger(VTs[index].getRawBits()); 7685 } 7686 7687 void *IP = nullptr; 7688 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7689 if (!Result) { 7690 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7691 llvm::copy(VTs, Array); 7692 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7693 VTListMap.InsertNode(Result, IP); 7694 } 7695 return Result->getSDVTList(); 7696 } 7697 7698 7699 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7700 /// specified operands. If the resultant node already exists in the DAG, 7701 /// this does not modify the specified node, instead it returns the node that 7702 /// already exists. If the resultant node does not exist in the DAG, the 7703 /// input node is returned. As a degenerate case, if you specify the same 7704 /// input operands as the node already has, the input node is returned. 7705 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7706 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7707 7708 // Check to see if there is no change. 7709 if (Op == N->getOperand(0)) return N; 7710 7711 // See if the modified node already exists. 7712 void *InsertPos = nullptr; 7713 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7714 return Existing; 7715 7716 // Nope it doesn't. Remove the node from its current place in the maps. 7717 if (InsertPos) 7718 if (!RemoveNodeFromCSEMaps(N)) 7719 InsertPos = nullptr; 7720 7721 // Now we update the operands. 7722 N->OperandList[0].set(Op); 7723 7724 updateDivergence(N); 7725 // If this gets put into a CSE map, add it. 7726 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7727 return N; 7728 } 7729 7730 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7731 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7732 7733 // Check to see if there is no change. 7734 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7735 return N; // No operands changed, just return the input node. 7736 7737 // See if the modified node already exists. 7738 void *InsertPos = nullptr; 7739 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7740 return Existing; 7741 7742 // Nope it doesn't. Remove the node from its current place in the maps. 7743 if (InsertPos) 7744 if (!RemoveNodeFromCSEMaps(N)) 7745 InsertPos = nullptr; 7746 7747 // Now we update the operands. 7748 if (N->OperandList[0] != Op1) 7749 N->OperandList[0].set(Op1); 7750 if (N->OperandList[1] != Op2) 7751 N->OperandList[1].set(Op2); 7752 7753 updateDivergence(N); 7754 // If this gets put into a CSE map, add it. 7755 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7756 return N; 7757 } 7758 7759 SDNode *SelectionDAG:: 7760 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7761 SDValue Ops[] = { Op1, Op2, Op3 }; 7762 return UpdateNodeOperands(N, Ops); 7763 } 7764 7765 SDNode *SelectionDAG:: 7766 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7767 SDValue Op3, SDValue Op4) { 7768 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7769 return UpdateNodeOperands(N, Ops); 7770 } 7771 7772 SDNode *SelectionDAG:: 7773 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7774 SDValue Op3, SDValue Op4, SDValue Op5) { 7775 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7776 return UpdateNodeOperands(N, Ops); 7777 } 7778 7779 SDNode *SelectionDAG:: 7780 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7781 unsigned NumOps = Ops.size(); 7782 assert(N->getNumOperands() == NumOps && 7783 "Update with wrong number of operands"); 7784 7785 // If no operands changed just return the input node. 7786 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7787 return N; 7788 7789 // See if the modified node already exists. 7790 void *InsertPos = nullptr; 7791 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7792 return Existing; 7793 7794 // Nope it doesn't. Remove the node from its current place in the maps. 7795 if (InsertPos) 7796 if (!RemoveNodeFromCSEMaps(N)) 7797 InsertPos = nullptr; 7798 7799 // Now we update the operands. 7800 for (unsigned i = 0; i != NumOps; ++i) 7801 if (N->OperandList[i] != Ops[i]) 7802 N->OperandList[i].set(Ops[i]); 7803 7804 updateDivergence(N); 7805 // If this gets put into a CSE map, add it. 7806 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7807 return N; 7808 } 7809 7810 /// DropOperands - Release the operands and set this node to have 7811 /// zero operands. 7812 void SDNode::DropOperands() { 7813 // Unlike the code in MorphNodeTo that does this, we don't need to 7814 // watch for dead nodes here. 7815 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7816 SDUse &Use = *I++; 7817 Use.set(SDValue()); 7818 } 7819 } 7820 7821 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7822 ArrayRef<MachineMemOperand *> NewMemRefs) { 7823 if (NewMemRefs.empty()) { 7824 N->clearMemRefs(); 7825 return; 7826 } 7827 7828 // Check if we can avoid allocating by storing a single reference directly. 7829 if (NewMemRefs.size() == 1) { 7830 N->MemRefs = NewMemRefs[0]; 7831 N->NumMemRefs = 1; 7832 return; 7833 } 7834 7835 MachineMemOperand **MemRefsBuffer = 7836 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7837 llvm::copy(NewMemRefs, MemRefsBuffer); 7838 N->MemRefs = MemRefsBuffer; 7839 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7840 } 7841 7842 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7843 /// machine opcode. 7844 /// 7845 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7846 EVT VT) { 7847 SDVTList VTs = getVTList(VT); 7848 return SelectNodeTo(N, MachineOpc, VTs, None); 7849 } 7850 7851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7852 EVT VT, SDValue Op1) { 7853 SDVTList VTs = getVTList(VT); 7854 SDValue Ops[] = { Op1 }; 7855 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7856 } 7857 7858 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7859 EVT VT, SDValue Op1, 7860 SDValue Op2) { 7861 SDVTList VTs = getVTList(VT); 7862 SDValue Ops[] = { Op1, Op2 }; 7863 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7864 } 7865 7866 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7867 EVT VT, SDValue Op1, 7868 SDValue Op2, SDValue Op3) { 7869 SDVTList VTs = getVTList(VT); 7870 SDValue Ops[] = { Op1, Op2, Op3 }; 7871 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7872 } 7873 7874 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7875 EVT VT, ArrayRef<SDValue> Ops) { 7876 SDVTList VTs = getVTList(VT); 7877 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7878 } 7879 7880 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7881 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7882 SDVTList VTs = getVTList(VT1, VT2); 7883 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7884 } 7885 7886 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7887 EVT VT1, EVT VT2) { 7888 SDVTList VTs = getVTList(VT1, VT2); 7889 return SelectNodeTo(N, MachineOpc, VTs, None); 7890 } 7891 7892 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7893 EVT VT1, EVT VT2, EVT VT3, 7894 ArrayRef<SDValue> Ops) { 7895 SDVTList VTs = getVTList(VT1, VT2, VT3); 7896 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7897 } 7898 7899 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7900 EVT VT1, EVT VT2, 7901 SDValue Op1, SDValue Op2) { 7902 SDVTList VTs = getVTList(VT1, VT2); 7903 SDValue Ops[] = { Op1, Op2 }; 7904 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7905 } 7906 7907 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7908 SDVTList VTs,ArrayRef<SDValue> Ops) { 7909 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7910 // Reset the NodeID to -1. 7911 New->setNodeId(-1); 7912 if (New != N) { 7913 ReplaceAllUsesWith(N, New); 7914 RemoveDeadNode(N); 7915 } 7916 return New; 7917 } 7918 7919 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7920 /// the line number information on the merged node since it is not possible to 7921 /// preserve the information that operation is associated with multiple lines. 7922 /// This will make the debugger working better at -O0, were there is a higher 7923 /// probability having other instructions associated with that line. 7924 /// 7925 /// For IROrder, we keep the smaller of the two 7926 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7927 DebugLoc NLoc = N->getDebugLoc(); 7928 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7929 N->setDebugLoc(DebugLoc()); 7930 } 7931 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7932 N->setIROrder(Order); 7933 return N; 7934 } 7935 7936 /// MorphNodeTo - This *mutates* the specified node to have the specified 7937 /// return type, opcode, and operands. 7938 /// 7939 /// Note that MorphNodeTo returns the resultant node. If there is already a 7940 /// node of the specified opcode and operands, it returns that node instead of 7941 /// the current one. Note that the SDLoc need not be the same. 7942 /// 7943 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7944 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7945 /// node, and because it doesn't require CSE recalculation for any of 7946 /// the node's users. 7947 /// 7948 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7949 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7950 /// the legalizer which maintain worklists that would need to be updated when 7951 /// deleting things. 7952 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7953 SDVTList VTs, ArrayRef<SDValue> Ops) { 7954 // If an identical node already exists, use it. 7955 void *IP = nullptr; 7956 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7957 FoldingSetNodeID ID; 7958 AddNodeIDNode(ID, Opc, VTs, Ops); 7959 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7960 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7961 } 7962 7963 if (!RemoveNodeFromCSEMaps(N)) 7964 IP = nullptr; 7965 7966 // Start the morphing. 7967 N->NodeType = Opc; 7968 N->ValueList = VTs.VTs; 7969 N->NumValues = VTs.NumVTs; 7970 7971 // Clear the operands list, updating used nodes to remove this from their 7972 // use list. Keep track of any operands that become dead as a result. 7973 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7974 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7975 SDUse &Use = *I++; 7976 SDNode *Used = Use.getNode(); 7977 Use.set(SDValue()); 7978 if (Used->use_empty()) 7979 DeadNodeSet.insert(Used); 7980 } 7981 7982 // For MachineNode, initialize the memory references information. 7983 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7984 MN->clearMemRefs(); 7985 7986 // Swap for an appropriately sized array from the recycler. 7987 removeOperands(N); 7988 createOperands(N, Ops); 7989 7990 // Delete any nodes that are still dead after adding the uses for the 7991 // new operands. 7992 if (!DeadNodeSet.empty()) { 7993 SmallVector<SDNode *, 16> DeadNodes; 7994 for (SDNode *N : DeadNodeSet) 7995 if (N->use_empty()) 7996 DeadNodes.push_back(N); 7997 RemoveDeadNodes(DeadNodes); 7998 } 7999 8000 if (IP) 8001 CSEMap.InsertNode(N, IP); // Memoize the new node. 8002 return N; 8003 } 8004 8005 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8006 unsigned OrigOpc = Node->getOpcode(); 8007 unsigned NewOpc; 8008 switch (OrigOpc) { 8009 default: 8010 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8011 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8012 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8013 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8014 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8015 #include "llvm/IR/ConstrainedOps.def" 8016 } 8017 8018 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8019 8020 // We're taking this node out of the chain, so we need to re-link things. 8021 SDValue InputChain = Node->getOperand(0); 8022 SDValue OutputChain = SDValue(Node, 1); 8023 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8024 8025 SmallVector<SDValue, 3> Ops; 8026 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8027 Ops.push_back(Node->getOperand(i)); 8028 8029 SDVTList VTs = getVTList(Node->getValueType(0)); 8030 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8031 8032 // MorphNodeTo can operate in two ways: if an existing node with the 8033 // specified operands exists, it can just return it. Otherwise, it 8034 // updates the node in place to have the requested operands. 8035 if (Res == Node) { 8036 // If we updated the node in place, reset the node ID. To the isel, 8037 // this should be just like a newly allocated machine node. 8038 Res->setNodeId(-1); 8039 } else { 8040 ReplaceAllUsesWith(Node, Res); 8041 RemoveDeadNode(Node); 8042 } 8043 8044 return Res; 8045 } 8046 8047 /// getMachineNode - These are used for target selectors to create a new node 8048 /// with specified return type(s), MachineInstr opcode, and operands. 8049 /// 8050 /// Note that getMachineNode returns the resultant node. If there is already a 8051 /// node of the specified opcode and operands, it returns that node instead of 8052 /// the current one. 8053 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8054 EVT VT) { 8055 SDVTList VTs = getVTList(VT); 8056 return getMachineNode(Opcode, dl, VTs, None); 8057 } 8058 8059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8060 EVT VT, SDValue Op1) { 8061 SDVTList VTs = getVTList(VT); 8062 SDValue Ops[] = { Op1 }; 8063 return getMachineNode(Opcode, dl, VTs, Ops); 8064 } 8065 8066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8067 EVT VT, SDValue Op1, SDValue Op2) { 8068 SDVTList VTs = getVTList(VT); 8069 SDValue Ops[] = { Op1, Op2 }; 8070 return getMachineNode(Opcode, dl, VTs, Ops); 8071 } 8072 8073 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8074 EVT VT, SDValue Op1, SDValue Op2, 8075 SDValue Op3) { 8076 SDVTList VTs = getVTList(VT); 8077 SDValue Ops[] = { Op1, Op2, Op3 }; 8078 return getMachineNode(Opcode, dl, VTs, Ops); 8079 } 8080 8081 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8082 EVT VT, ArrayRef<SDValue> Ops) { 8083 SDVTList VTs = getVTList(VT); 8084 return getMachineNode(Opcode, dl, VTs, Ops); 8085 } 8086 8087 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8088 EVT VT1, EVT VT2, SDValue Op1, 8089 SDValue Op2) { 8090 SDVTList VTs = getVTList(VT1, VT2); 8091 SDValue Ops[] = { Op1, Op2 }; 8092 return getMachineNode(Opcode, dl, VTs, Ops); 8093 } 8094 8095 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8096 EVT VT1, EVT VT2, SDValue Op1, 8097 SDValue Op2, SDValue Op3) { 8098 SDVTList VTs = getVTList(VT1, VT2); 8099 SDValue Ops[] = { Op1, Op2, Op3 }; 8100 return getMachineNode(Opcode, dl, VTs, Ops); 8101 } 8102 8103 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8104 EVT VT1, EVT VT2, 8105 ArrayRef<SDValue> Ops) { 8106 SDVTList VTs = getVTList(VT1, VT2); 8107 return getMachineNode(Opcode, dl, VTs, Ops); 8108 } 8109 8110 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8111 EVT VT1, EVT VT2, EVT VT3, 8112 SDValue Op1, SDValue Op2) { 8113 SDVTList VTs = getVTList(VT1, VT2, VT3); 8114 SDValue Ops[] = { Op1, Op2 }; 8115 return getMachineNode(Opcode, dl, VTs, Ops); 8116 } 8117 8118 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8119 EVT VT1, EVT VT2, EVT VT3, 8120 SDValue Op1, SDValue Op2, 8121 SDValue Op3) { 8122 SDVTList VTs = getVTList(VT1, VT2, VT3); 8123 SDValue Ops[] = { Op1, Op2, Op3 }; 8124 return getMachineNode(Opcode, dl, VTs, Ops); 8125 } 8126 8127 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8128 EVT VT1, EVT VT2, EVT VT3, 8129 ArrayRef<SDValue> Ops) { 8130 SDVTList VTs = getVTList(VT1, VT2, VT3); 8131 return getMachineNode(Opcode, dl, VTs, Ops); 8132 } 8133 8134 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8135 ArrayRef<EVT> ResultTys, 8136 ArrayRef<SDValue> Ops) { 8137 SDVTList VTs = getVTList(ResultTys); 8138 return getMachineNode(Opcode, dl, VTs, Ops); 8139 } 8140 8141 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8142 SDVTList VTs, 8143 ArrayRef<SDValue> Ops) { 8144 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8145 MachineSDNode *N; 8146 void *IP = nullptr; 8147 8148 if (DoCSE) { 8149 FoldingSetNodeID ID; 8150 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8151 IP = nullptr; 8152 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8153 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8154 } 8155 } 8156 8157 // Allocate a new MachineSDNode. 8158 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8159 createOperands(N, Ops); 8160 8161 if (DoCSE) 8162 CSEMap.InsertNode(N, IP); 8163 8164 InsertNode(N); 8165 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8166 return N; 8167 } 8168 8169 /// getTargetExtractSubreg - A convenience function for creating 8170 /// TargetOpcode::EXTRACT_SUBREG nodes. 8171 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8172 SDValue Operand) { 8173 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8174 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8175 VT, Operand, SRIdxVal); 8176 return SDValue(Subreg, 0); 8177 } 8178 8179 /// getTargetInsertSubreg - A convenience function for creating 8180 /// TargetOpcode::INSERT_SUBREG nodes. 8181 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8182 SDValue Operand, SDValue Subreg) { 8183 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8184 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8185 VT, Operand, Subreg, SRIdxVal); 8186 return SDValue(Result, 0); 8187 } 8188 8189 /// getNodeIfExists - Get the specified node if it's already available, or 8190 /// else return NULL. 8191 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8192 ArrayRef<SDValue> Ops, 8193 const SDNodeFlags Flags) { 8194 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8195 FoldingSetNodeID ID; 8196 AddNodeIDNode(ID, Opcode, VTList, Ops); 8197 void *IP = nullptr; 8198 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8199 E->intersectFlagsWith(Flags); 8200 return E; 8201 } 8202 } 8203 return nullptr; 8204 } 8205 8206 /// getDbgValue - Creates a SDDbgValue node. 8207 /// 8208 /// SDNode 8209 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8210 SDNode *N, unsigned R, bool IsIndirect, 8211 const DebugLoc &DL, unsigned O) { 8212 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8213 "Expected inlined-at fields to agree"); 8214 return new (DbgInfo->getAlloc()) 8215 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8216 } 8217 8218 /// Constant 8219 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8220 DIExpression *Expr, 8221 const Value *C, 8222 const DebugLoc &DL, unsigned O) { 8223 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8224 "Expected inlined-at fields to agree"); 8225 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8226 } 8227 8228 /// FrameIndex 8229 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8230 DIExpression *Expr, unsigned FI, 8231 bool IsIndirect, 8232 const DebugLoc &DL, 8233 unsigned O) { 8234 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8235 "Expected inlined-at fields to agree"); 8236 return new (DbgInfo->getAlloc()) 8237 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8238 } 8239 8240 /// VReg 8241 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8242 DIExpression *Expr, 8243 unsigned VReg, bool IsIndirect, 8244 const DebugLoc &DL, unsigned O) { 8245 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8246 "Expected inlined-at fields to agree"); 8247 return new (DbgInfo->getAlloc()) 8248 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8249 } 8250 8251 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8252 unsigned OffsetInBits, unsigned SizeInBits, 8253 bool InvalidateDbg) { 8254 SDNode *FromNode = From.getNode(); 8255 SDNode *ToNode = To.getNode(); 8256 assert(FromNode && ToNode && "Can't modify dbg values"); 8257 8258 // PR35338 8259 // TODO: assert(From != To && "Redundant dbg value transfer"); 8260 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8261 if (From == To || FromNode == ToNode) 8262 return; 8263 8264 if (!FromNode->getHasDebugValue()) 8265 return; 8266 8267 SmallVector<SDDbgValue *, 2> ClonedDVs; 8268 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8269 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8270 continue; 8271 8272 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8273 8274 // Just transfer the dbg value attached to From. 8275 if (Dbg->getResNo() != From.getResNo()) 8276 continue; 8277 8278 DIVariable *Var = Dbg->getVariable(); 8279 auto *Expr = Dbg->getExpression(); 8280 // If a fragment is requested, update the expression. 8281 if (SizeInBits) { 8282 // When splitting a larger (e.g., sign-extended) value whose 8283 // lower bits are described with an SDDbgValue, do not attempt 8284 // to transfer the SDDbgValue to the upper bits. 8285 if (auto FI = Expr->getFragmentInfo()) 8286 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8287 continue; 8288 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8289 SizeInBits); 8290 if (!Fragment) 8291 continue; 8292 Expr = *Fragment; 8293 } 8294 // Clone the SDDbgValue and move it to To. 8295 SDDbgValue *Clone = getDbgValue( 8296 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8297 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8298 ClonedDVs.push_back(Clone); 8299 8300 if (InvalidateDbg) { 8301 // Invalidate value and indicate the SDDbgValue should not be emitted. 8302 Dbg->setIsInvalidated(); 8303 Dbg->setIsEmitted(); 8304 } 8305 } 8306 8307 for (SDDbgValue *Dbg : ClonedDVs) 8308 AddDbgValue(Dbg, ToNode, false); 8309 } 8310 8311 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8312 if (!N.getHasDebugValue()) 8313 return; 8314 8315 SmallVector<SDDbgValue *, 2> ClonedDVs; 8316 for (auto DV : GetDbgValues(&N)) { 8317 if (DV->isInvalidated()) 8318 continue; 8319 switch (N.getOpcode()) { 8320 default: 8321 break; 8322 case ISD::ADD: 8323 SDValue N0 = N.getOperand(0); 8324 SDValue N1 = N.getOperand(1); 8325 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8326 isConstantIntBuildVectorOrConstantInt(N1)) { 8327 uint64_t Offset = N.getConstantOperandVal(1); 8328 // Rewrite an ADD constant node into a DIExpression. Since we are 8329 // performing arithmetic to compute the variable's *value* in the 8330 // DIExpression, we need to mark the expression with a 8331 // DW_OP_stack_value. 8332 auto *DIExpr = DV->getExpression(); 8333 DIExpr = 8334 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8335 SDDbgValue *Clone = 8336 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8337 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8338 ClonedDVs.push_back(Clone); 8339 DV->setIsInvalidated(); 8340 DV->setIsEmitted(); 8341 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8342 N0.getNode()->dumprFull(this); 8343 dbgs() << " into " << *DIExpr << '\n'); 8344 } 8345 } 8346 } 8347 8348 for (SDDbgValue *Dbg : ClonedDVs) 8349 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8350 } 8351 8352 /// Creates a SDDbgLabel node. 8353 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8354 const DebugLoc &DL, unsigned O) { 8355 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8356 "Expected inlined-at fields to agree"); 8357 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8358 } 8359 8360 namespace { 8361 8362 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8363 /// pointed to by a use iterator is deleted, increment the use iterator 8364 /// so that it doesn't dangle. 8365 /// 8366 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8367 SDNode::use_iterator &UI; 8368 SDNode::use_iterator &UE; 8369 8370 void NodeDeleted(SDNode *N, SDNode *E) override { 8371 // Increment the iterator as needed. 8372 while (UI != UE && N == *UI) 8373 ++UI; 8374 } 8375 8376 public: 8377 RAUWUpdateListener(SelectionDAG &d, 8378 SDNode::use_iterator &ui, 8379 SDNode::use_iterator &ue) 8380 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8381 }; 8382 8383 } // end anonymous namespace 8384 8385 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8386 /// This can cause recursive merging of nodes in the DAG. 8387 /// 8388 /// This version assumes From has a single result value. 8389 /// 8390 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8391 SDNode *From = FromN.getNode(); 8392 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8393 "Cannot replace with this method!"); 8394 assert(From != To.getNode() && "Cannot replace uses of with self"); 8395 8396 // Preserve Debug Values 8397 transferDbgValues(FromN, To); 8398 8399 // Iterate over all the existing uses of From. New uses will be added 8400 // to the beginning of the use list, which we avoid visiting. 8401 // This specifically avoids visiting uses of From that arise while the 8402 // replacement is happening, because any such uses would be the result 8403 // of CSE: If an existing node looks like From after one of its operands 8404 // is replaced by To, we don't want to replace of all its users with To 8405 // too. See PR3018 for more info. 8406 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8407 RAUWUpdateListener Listener(*this, UI, UE); 8408 while (UI != UE) { 8409 SDNode *User = *UI; 8410 8411 // This node is about to morph, remove its old self from the CSE maps. 8412 RemoveNodeFromCSEMaps(User); 8413 8414 // A user can appear in a use list multiple times, and when this 8415 // happens the uses are usually next to each other in the list. 8416 // To help reduce the number of CSE recomputations, process all 8417 // the uses of this user that we can find this way. 8418 do { 8419 SDUse &Use = UI.getUse(); 8420 ++UI; 8421 Use.set(To); 8422 if (To->isDivergent() != From->isDivergent()) 8423 updateDivergence(User); 8424 } while (UI != UE && *UI == User); 8425 // Now that we have modified User, add it back to the CSE maps. If it 8426 // already exists there, recursively merge the results together. 8427 AddModifiedNodeToCSEMaps(User); 8428 } 8429 8430 // If we just RAUW'd the root, take note. 8431 if (FromN == getRoot()) 8432 setRoot(To); 8433 } 8434 8435 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8436 /// This can cause recursive merging of nodes in the DAG. 8437 /// 8438 /// This version assumes that for each value of From, there is a 8439 /// corresponding value in To in the same position with the same type. 8440 /// 8441 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8442 #ifndef NDEBUG 8443 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8444 assert((!From->hasAnyUseOfValue(i) || 8445 From->getValueType(i) == To->getValueType(i)) && 8446 "Cannot use this version of ReplaceAllUsesWith!"); 8447 #endif 8448 8449 // Handle the trivial case. 8450 if (From == To) 8451 return; 8452 8453 // Preserve Debug Info. Only do this if there's a use. 8454 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8455 if (From->hasAnyUseOfValue(i)) { 8456 assert((i < To->getNumValues()) && "Invalid To location"); 8457 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8458 } 8459 8460 // Iterate over just the existing users of From. See the comments in 8461 // the ReplaceAllUsesWith above. 8462 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8463 RAUWUpdateListener Listener(*this, UI, UE); 8464 while (UI != UE) { 8465 SDNode *User = *UI; 8466 8467 // This node is about to morph, remove its old self from the CSE maps. 8468 RemoveNodeFromCSEMaps(User); 8469 8470 // A user can appear in a use list multiple times, and when this 8471 // happens the uses are usually next to each other in the list. 8472 // To help reduce the number of CSE recomputations, process all 8473 // the uses of this user that we can find this way. 8474 do { 8475 SDUse &Use = UI.getUse(); 8476 ++UI; 8477 Use.setNode(To); 8478 if (To->isDivergent() != From->isDivergent()) 8479 updateDivergence(User); 8480 } while (UI != UE && *UI == User); 8481 8482 // Now that we have modified User, add it back to the CSE maps. If it 8483 // already exists there, recursively merge the results together. 8484 AddModifiedNodeToCSEMaps(User); 8485 } 8486 8487 // If we just RAUW'd the root, take note. 8488 if (From == getRoot().getNode()) 8489 setRoot(SDValue(To, getRoot().getResNo())); 8490 } 8491 8492 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8493 /// This can cause recursive merging of nodes in the DAG. 8494 /// 8495 /// This version can replace From with any result values. To must match the 8496 /// number and types of values returned by From. 8497 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8498 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8499 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8500 8501 // Preserve Debug Info. 8502 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8503 transferDbgValues(SDValue(From, i), To[i]); 8504 8505 // Iterate over just the existing users of From. See the comments in 8506 // the ReplaceAllUsesWith above. 8507 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8508 RAUWUpdateListener Listener(*this, UI, UE); 8509 while (UI != UE) { 8510 SDNode *User = *UI; 8511 8512 // This node is about to morph, remove its old self from the CSE maps. 8513 RemoveNodeFromCSEMaps(User); 8514 8515 // A user can appear in a use list multiple times, and when this happens the 8516 // uses are usually next to each other in the list. To help reduce the 8517 // number of CSE and divergence recomputations, process all the uses of this 8518 // user that we can find this way. 8519 bool To_IsDivergent = false; 8520 do { 8521 SDUse &Use = UI.getUse(); 8522 const SDValue &ToOp = To[Use.getResNo()]; 8523 ++UI; 8524 Use.set(ToOp); 8525 To_IsDivergent |= ToOp->isDivergent(); 8526 } while (UI != UE && *UI == User); 8527 8528 if (To_IsDivergent != From->isDivergent()) 8529 updateDivergence(User); 8530 8531 // Now that we have modified User, add it back to the CSE maps. If it 8532 // already exists there, recursively merge the results together. 8533 AddModifiedNodeToCSEMaps(User); 8534 } 8535 8536 // If we just RAUW'd the root, take note. 8537 if (From == getRoot().getNode()) 8538 setRoot(SDValue(To[getRoot().getResNo()])); 8539 } 8540 8541 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8542 /// uses of other values produced by From.getNode() alone. The Deleted 8543 /// vector is handled the same way as for ReplaceAllUsesWith. 8544 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8545 // Handle the really simple, really trivial case efficiently. 8546 if (From == To) return; 8547 8548 // Handle the simple, trivial, case efficiently. 8549 if (From.getNode()->getNumValues() == 1) { 8550 ReplaceAllUsesWith(From, To); 8551 return; 8552 } 8553 8554 // Preserve Debug Info. 8555 transferDbgValues(From, To); 8556 8557 // Iterate over just the existing users of From. See the comments in 8558 // the ReplaceAllUsesWith above. 8559 SDNode::use_iterator UI = From.getNode()->use_begin(), 8560 UE = From.getNode()->use_end(); 8561 RAUWUpdateListener Listener(*this, UI, UE); 8562 while (UI != UE) { 8563 SDNode *User = *UI; 8564 bool UserRemovedFromCSEMaps = false; 8565 8566 // A user can appear in a use list multiple times, and when this 8567 // happens the uses are usually next to each other in the list. 8568 // To help reduce the number of CSE recomputations, process all 8569 // the uses of this user that we can find this way. 8570 do { 8571 SDUse &Use = UI.getUse(); 8572 8573 // Skip uses of different values from the same node. 8574 if (Use.getResNo() != From.getResNo()) { 8575 ++UI; 8576 continue; 8577 } 8578 8579 // If this node hasn't been modified yet, it's still in the CSE maps, 8580 // so remove its old self from the CSE maps. 8581 if (!UserRemovedFromCSEMaps) { 8582 RemoveNodeFromCSEMaps(User); 8583 UserRemovedFromCSEMaps = true; 8584 } 8585 8586 ++UI; 8587 Use.set(To); 8588 if (To->isDivergent() != From->isDivergent()) 8589 updateDivergence(User); 8590 } while (UI != UE && *UI == User); 8591 // We are iterating over all uses of the From node, so if a use 8592 // doesn't use the specific value, no changes are made. 8593 if (!UserRemovedFromCSEMaps) 8594 continue; 8595 8596 // Now that we have modified User, add it back to the CSE maps. If it 8597 // already exists there, recursively merge the results together. 8598 AddModifiedNodeToCSEMaps(User); 8599 } 8600 8601 // If we just RAUW'd the root, take note. 8602 if (From == getRoot()) 8603 setRoot(To); 8604 } 8605 8606 namespace { 8607 8608 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8609 /// to record information about a use. 8610 struct UseMemo { 8611 SDNode *User; 8612 unsigned Index; 8613 SDUse *Use; 8614 }; 8615 8616 /// operator< - Sort Memos by User. 8617 bool operator<(const UseMemo &L, const UseMemo &R) { 8618 return (intptr_t)L.User < (intptr_t)R.User; 8619 } 8620 8621 } // end anonymous namespace 8622 8623 void SelectionDAG::updateDivergence(SDNode * N) 8624 { 8625 if (TLI->isSDNodeAlwaysUniform(N)) 8626 return; 8627 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8628 for (auto &Op : N->ops()) { 8629 if (Op.Val.getValueType() != MVT::Other) 8630 IsDivergent |= Op.getNode()->isDivergent(); 8631 } 8632 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8633 N->SDNodeBits.IsDivergent = IsDivergent; 8634 for (auto U : N->uses()) { 8635 updateDivergence(U); 8636 } 8637 } 8638 } 8639 8640 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8641 DenseMap<SDNode *, unsigned> Degree; 8642 Order.reserve(AllNodes.size()); 8643 for (auto &N : allnodes()) { 8644 unsigned NOps = N.getNumOperands(); 8645 Degree[&N] = NOps; 8646 if (0 == NOps) 8647 Order.push_back(&N); 8648 } 8649 for (size_t I = 0; I != Order.size(); ++I) { 8650 SDNode *N = Order[I]; 8651 for (auto U : N->uses()) { 8652 unsigned &UnsortedOps = Degree[U]; 8653 if (0 == --UnsortedOps) 8654 Order.push_back(U); 8655 } 8656 } 8657 } 8658 8659 #ifndef NDEBUG 8660 void SelectionDAG::VerifyDAGDiverence() { 8661 std::vector<SDNode *> TopoOrder; 8662 CreateTopologicalOrder(TopoOrder); 8663 const TargetLowering &TLI = getTargetLoweringInfo(); 8664 DenseMap<const SDNode *, bool> DivergenceMap; 8665 for (auto &N : allnodes()) { 8666 DivergenceMap[&N] = false; 8667 } 8668 for (auto N : TopoOrder) { 8669 bool IsDivergent = DivergenceMap[N]; 8670 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8671 for (auto &Op : N->ops()) { 8672 if (Op.Val.getValueType() != MVT::Other) 8673 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8674 } 8675 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8676 DivergenceMap[N] = true; 8677 } 8678 } 8679 for (auto &N : allnodes()) { 8680 (void)N; 8681 assert(DivergenceMap[&N] == N.isDivergent() && 8682 "Divergence bit inconsistency detected\n"); 8683 } 8684 } 8685 #endif 8686 8687 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8688 /// uses of other values produced by From.getNode() alone. The same value 8689 /// may appear in both the From and To list. The Deleted vector is 8690 /// handled the same way as for ReplaceAllUsesWith. 8691 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8692 const SDValue *To, 8693 unsigned Num){ 8694 // Handle the simple, trivial case efficiently. 8695 if (Num == 1) 8696 return ReplaceAllUsesOfValueWith(*From, *To); 8697 8698 transferDbgValues(*From, *To); 8699 8700 // Read up all the uses and make records of them. This helps 8701 // processing new uses that are introduced during the 8702 // replacement process. 8703 SmallVector<UseMemo, 4> Uses; 8704 for (unsigned i = 0; i != Num; ++i) { 8705 unsigned FromResNo = From[i].getResNo(); 8706 SDNode *FromNode = From[i].getNode(); 8707 for (SDNode::use_iterator UI = FromNode->use_begin(), 8708 E = FromNode->use_end(); UI != E; ++UI) { 8709 SDUse &Use = UI.getUse(); 8710 if (Use.getResNo() == FromResNo) { 8711 UseMemo Memo = { *UI, i, &Use }; 8712 Uses.push_back(Memo); 8713 } 8714 } 8715 } 8716 8717 // Sort the uses, so that all the uses from a given User are together. 8718 llvm::sort(Uses); 8719 8720 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8721 UseIndex != UseIndexEnd; ) { 8722 // We know that this user uses some value of From. If it is the right 8723 // value, update it. 8724 SDNode *User = Uses[UseIndex].User; 8725 8726 // This node is about to morph, remove its old self from the CSE maps. 8727 RemoveNodeFromCSEMaps(User); 8728 8729 // The Uses array is sorted, so all the uses for a given User 8730 // are next to each other in the list. 8731 // To help reduce the number of CSE recomputations, process all 8732 // the uses of this user that we can find this way. 8733 do { 8734 unsigned i = Uses[UseIndex].Index; 8735 SDUse &Use = *Uses[UseIndex].Use; 8736 ++UseIndex; 8737 8738 Use.set(To[i]); 8739 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8740 8741 // Now that we have modified User, add it back to the CSE maps. If it 8742 // already exists there, recursively merge the results together. 8743 AddModifiedNodeToCSEMaps(User); 8744 } 8745 } 8746 8747 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8748 /// based on their topological order. It returns the maximum id and a vector 8749 /// of the SDNodes* in assigned order by reference. 8750 unsigned SelectionDAG::AssignTopologicalOrder() { 8751 unsigned DAGSize = 0; 8752 8753 // SortedPos tracks the progress of the algorithm. Nodes before it are 8754 // sorted, nodes after it are unsorted. When the algorithm completes 8755 // it is at the end of the list. 8756 allnodes_iterator SortedPos = allnodes_begin(); 8757 8758 // Visit all the nodes. Move nodes with no operands to the front of 8759 // the list immediately. Annotate nodes that do have operands with their 8760 // operand count. Before we do this, the Node Id fields of the nodes 8761 // may contain arbitrary values. After, the Node Id fields for nodes 8762 // before SortedPos will contain the topological sort index, and the 8763 // Node Id fields for nodes At SortedPos and after will contain the 8764 // count of outstanding operands. 8765 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8766 SDNode *N = &*I++; 8767 checkForCycles(N, this); 8768 unsigned Degree = N->getNumOperands(); 8769 if (Degree == 0) { 8770 // A node with no uses, add it to the result array immediately. 8771 N->setNodeId(DAGSize++); 8772 allnodes_iterator Q(N); 8773 if (Q != SortedPos) 8774 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8775 assert(SortedPos != AllNodes.end() && "Overran node list"); 8776 ++SortedPos; 8777 } else { 8778 // Temporarily use the Node Id as scratch space for the degree count. 8779 N->setNodeId(Degree); 8780 } 8781 } 8782 8783 // Visit all the nodes. As we iterate, move nodes into sorted order, 8784 // such that by the time the end is reached all nodes will be sorted. 8785 for (SDNode &Node : allnodes()) { 8786 SDNode *N = &Node; 8787 checkForCycles(N, this); 8788 // N is in sorted position, so all its uses have one less operand 8789 // that needs to be sorted. 8790 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8791 UI != UE; ++UI) { 8792 SDNode *P = *UI; 8793 unsigned Degree = P->getNodeId(); 8794 assert(Degree != 0 && "Invalid node degree"); 8795 --Degree; 8796 if (Degree == 0) { 8797 // All of P's operands are sorted, so P may sorted now. 8798 P->setNodeId(DAGSize++); 8799 if (P->getIterator() != SortedPos) 8800 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8801 assert(SortedPos != AllNodes.end() && "Overran node list"); 8802 ++SortedPos; 8803 } else { 8804 // Update P's outstanding operand count. 8805 P->setNodeId(Degree); 8806 } 8807 } 8808 if (Node.getIterator() == SortedPos) { 8809 #ifndef NDEBUG 8810 allnodes_iterator I(N); 8811 SDNode *S = &*++I; 8812 dbgs() << "Overran sorted position:\n"; 8813 S->dumprFull(this); dbgs() << "\n"; 8814 dbgs() << "Checking if this is due to cycles\n"; 8815 checkForCycles(this, true); 8816 #endif 8817 llvm_unreachable(nullptr); 8818 } 8819 } 8820 8821 assert(SortedPos == AllNodes.end() && 8822 "Topological sort incomplete!"); 8823 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8824 "First node in topological sort is not the entry token!"); 8825 assert(AllNodes.front().getNodeId() == 0 && 8826 "First node in topological sort has non-zero id!"); 8827 assert(AllNodes.front().getNumOperands() == 0 && 8828 "First node in topological sort has operands!"); 8829 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8830 "Last node in topologic sort has unexpected id!"); 8831 assert(AllNodes.back().use_empty() && 8832 "Last node in topologic sort has users!"); 8833 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8834 return DAGSize; 8835 } 8836 8837 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8838 /// value is produced by SD. 8839 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8840 if (SD) { 8841 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8842 SD->setHasDebugValue(true); 8843 } 8844 DbgInfo->add(DB, SD, isParameter); 8845 } 8846 8847 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8848 DbgInfo->add(DB); 8849 } 8850 8851 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8852 SDValue NewMemOp) { 8853 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8854 // The new memory operation must have the same position as the old load in 8855 // terms of memory dependency. Create a TokenFactor for the old load and new 8856 // memory operation and update uses of the old load's output chain to use that 8857 // TokenFactor. 8858 SDValue OldChain = SDValue(OldLoad, 1); 8859 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8860 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8861 return NewChain; 8862 8863 SDValue TokenFactor = 8864 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8865 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8866 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8867 return TokenFactor; 8868 } 8869 8870 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8871 Function **OutFunction) { 8872 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8873 8874 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8875 auto *Module = MF->getFunction().getParent(); 8876 auto *Function = Module->getFunction(Symbol); 8877 8878 if (OutFunction != nullptr) 8879 *OutFunction = Function; 8880 8881 if (Function != nullptr) { 8882 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8883 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8884 } 8885 8886 std::string ErrorStr; 8887 raw_string_ostream ErrorFormatter(ErrorStr); 8888 8889 ErrorFormatter << "Undefined external symbol "; 8890 ErrorFormatter << '"' << Symbol << '"'; 8891 ErrorFormatter.flush(); 8892 8893 report_fatal_error(ErrorStr); 8894 } 8895 8896 //===----------------------------------------------------------------------===// 8897 // SDNode Class 8898 //===----------------------------------------------------------------------===// 8899 8900 bool llvm::isNullConstant(SDValue V) { 8901 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8902 return Const != nullptr && Const->isNullValue(); 8903 } 8904 8905 bool llvm::isNullFPConstant(SDValue V) { 8906 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8907 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8908 } 8909 8910 bool llvm::isAllOnesConstant(SDValue V) { 8911 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8912 return Const != nullptr && Const->isAllOnesValue(); 8913 } 8914 8915 bool llvm::isOneConstant(SDValue V) { 8916 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8917 return Const != nullptr && Const->isOne(); 8918 } 8919 8920 SDValue llvm::peekThroughBitcasts(SDValue V) { 8921 while (V.getOpcode() == ISD::BITCAST) 8922 V = V.getOperand(0); 8923 return V; 8924 } 8925 8926 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8927 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8928 V = V.getOperand(0); 8929 return V; 8930 } 8931 8932 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8933 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8934 V = V.getOperand(0); 8935 return V; 8936 } 8937 8938 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8939 if (V.getOpcode() != ISD::XOR) 8940 return false; 8941 V = peekThroughBitcasts(V.getOperand(1)); 8942 unsigned NumBits = V.getScalarValueSizeInBits(); 8943 ConstantSDNode *C = 8944 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8945 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8946 } 8947 8948 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8949 bool AllowTruncation) { 8950 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8951 return CN; 8952 8953 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8954 BitVector UndefElements; 8955 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8956 8957 // BuildVectors can truncate their operands. Ignore that case here unless 8958 // AllowTruncation is set. 8959 if (CN && (UndefElements.none() || AllowUndefs)) { 8960 EVT CVT = CN->getValueType(0); 8961 EVT NSVT = N.getValueType().getScalarType(); 8962 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8963 if (AllowTruncation || (CVT == NSVT)) 8964 return CN; 8965 } 8966 } 8967 8968 return nullptr; 8969 } 8970 8971 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8972 bool AllowUndefs, 8973 bool AllowTruncation) { 8974 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8975 return CN; 8976 8977 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8978 BitVector UndefElements; 8979 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8980 8981 // BuildVectors can truncate their operands. Ignore that case here unless 8982 // AllowTruncation is set. 8983 if (CN && (UndefElements.none() || AllowUndefs)) { 8984 EVT CVT = CN->getValueType(0); 8985 EVT NSVT = N.getValueType().getScalarType(); 8986 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8987 if (AllowTruncation || (CVT == NSVT)) 8988 return CN; 8989 } 8990 } 8991 8992 return nullptr; 8993 } 8994 8995 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8996 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8997 return CN; 8998 8999 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9000 BitVector UndefElements; 9001 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9002 if (CN && (UndefElements.none() || AllowUndefs)) 9003 return CN; 9004 } 9005 9006 return nullptr; 9007 } 9008 9009 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9010 const APInt &DemandedElts, 9011 bool AllowUndefs) { 9012 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9013 return CN; 9014 9015 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9016 BitVector UndefElements; 9017 ConstantFPSDNode *CN = 9018 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9019 if (CN && (UndefElements.none() || AllowUndefs)) 9020 return CN; 9021 } 9022 9023 return nullptr; 9024 } 9025 9026 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9027 // TODO: may want to use peekThroughBitcast() here. 9028 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9029 return C && C->isNullValue(); 9030 } 9031 9032 bool llvm::isOneOrOneSplat(SDValue N) { 9033 // TODO: may want to use peekThroughBitcast() here. 9034 unsigned BitWidth = N.getScalarValueSizeInBits(); 9035 ConstantSDNode *C = isConstOrConstSplat(N); 9036 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9037 } 9038 9039 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9040 N = peekThroughBitcasts(N); 9041 unsigned BitWidth = N.getScalarValueSizeInBits(); 9042 ConstantSDNode *C = isConstOrConstSplat(N); 9043 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9044 } 9045 9046 HandleSDNode::~HandleSDNode() { 9047 DropOperands(); 9048 } 9049 9050 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9051 const DebugLoc &DL, 9052 const GlobalValue *GA, EVT VT, 9053 int64_t o, unsigned TF) 9054 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9055 TheGlobal = GA; 9056 } 9057 9058 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9059 EVT VT, unsigned SrcAS, 9060 unsigned DestAS) 9061 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9062 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9063 9064 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9065 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9066 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9067 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9068 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9069 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9070 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9071 9072 // We check here that the size of the memory operand fits within the size of 9073 // the MMO. This is because the MMO might indicate only a possible address 9074 // range instead of specifying the affected memory addresses precisely. 9075 // TODO: Make MachineMemOperands aware of scalable vectors. 9076 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9077 "Size mismatch!"); 9078 } 9079 9080 /// Profile - Gather unique data for the node. 9081 /// 9082 void SDNode::Profile(FoldingSetNodeID &ID) const { 9083 AddNodeIDNode(ID, this); 9084 } 9085 9086 namespace { 9087 9088 struct EVTArray { 9089 std::vector<EVT> VTs; 9090 9091 EVTArray() { 9092 VTs.reserve(MVT::LAST_VALUETYPE); 9093 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9094 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9095 } 9096 }; 9097 9098 } // end anonymous namespace 9099 9100 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9101 static ManagedStatic<EVTArray> SimpleVTArray; 9102 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9103 9104 /// getValueTypeList - Return a pointer to the specified value type. 9105 /// 9106 const EVT *SDNode::getValueTypeList(EVT VT) { 9107 if (VT.isExtended()) { 9108 sys::SmartScopedLock<true> Lock(*VTMutex); 9109 return &(*EVTs->insert(VT).first); 9110 } else { 9111 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9112 "Value type out of range!"); 9113 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9114 } 9115 } 9116 9117 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9118 /// indicated value. This method ignores uses of other values defined by this 9119 /// operation. 9120 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9121 assert(Value < getNumValues() && "Bad value!"); 9122 9123 // TODO: Only iterate over uses of a given value of the node 9124 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9125 if (UI.getUse().getResNo() == Value) { 9126 if (NUses == 0) 9127 return false; 9128 --NUses; 9129 } 9130 } 9131 9132 // Found exactly the right number of uses? 9133 return NUses == 0; 9134 } 9135 9136 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9137 /// value. This method ignores uses of other values defined by this operation. 9138 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9139 assert(Value < getNumValues() && "Bad value!"); 9140 9141 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9142 if (UI.getUse().getResNo() == Value) 9143 return true; 9144 9145 return false; 9146 } 9147 9148 /// isOnlyUserOf - Return true if this node is the only use of N. 9149 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9150 bool Seen = false; 9151 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9152 SDNode *User = *I; 9153 if (User == this) 9154 Seen = true; 9155 else 9156 return false; 9157 } 9158 9159 return Seen; 9160 } 9161 9162 /// Return true if the only users of N are contained in Nodes. 9163 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9164 bool Seen = false; 9165 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9166 SDNode *User = *I; 9167 if (llvm::any_of(Nodes, 9168 [&User](const SDNode *Node) { return User == Node; })) 9169 Seen = true; 9170 else 9171 return false; 9172 } 9173 9174 return Seen; 9175 } 9176 9177 /// isOperand - Return true if this node is an operand of N. 9178 bool SDValue::isOperandOf(const SDNode *N) const { 9179 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9180 } 9181 9182 bool SDNode::isOperandOf(const SDNode *N) const { 9183 return any_of(N->op_values(), 9184 [this](SDValue Op) { return this == Op.getNode(); }); 9185 } 9186 9187 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9188 /// be a chain) reaches the specified operand without crossing any 9189 /// side-effecting instructions on any chain path. In practice, this looks 9190 /// through token factors and non-volatile loads. In order to remain efficient, 9191 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9192 /// 9193 /// Note that we only need to examine chains when we're searching for 9194 /// side-effects; SelectionDAG requires that all side-effects are represented 9195 /// by chains, even if another operand would force a specific ordering. This 9196 /// constraint is necessary to allow transformations like splitting loads. 9197 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9198 unsigned Depth) const { 9199 if (*this == Dest) return true; 9200 9201 // Don't search too deeply, we just want to be able to see through 9202 // TokenFactor's etc. 9203 if (Depth == 0) return false; 9204 9205 // If this is a token factor, all inputs to the TF happen in parallel. 9206 if (getOpcode() == ISD::TokenFactor) { 9207 // First, try a shallow search. 9208 if (is_contained((*this)->ops(), Dest)) { 9209 // We found the chain we want as an operand of this TokenFactor. 9210 // Essentially, we reach the chain without side-effects if we could 9211 // serialize the TokenFactor into a simple chain of operations with 9212 // Dest as the last operation. This is automatically true if the 9213 // chain has one use: there are no other ordering constraints. 9214 // If the chain has more than one use, we give up: some other 9215 // use of Dest might force a side-effect between Dest and the current 9216 // node. 9217 if (Dest.hasOneUse()) 9218 return true; 9219 } 9220 // Next, try a deep search: check whether every operand of the TokenFactor 9221 // reaches Dest. 9222 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9223 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9224 }); 9225 } 9226 9227 // Loads don't have side effects, look through them. 9228 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9229 if (Ld->isUnordered()) 9230 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9231 } 9232 return false; 9233 } 9234 9235 bool SDNode::hasPredecessor(const SDNode *N) const { 9236 SmallPtrSet<const SDNode *, 32> Visited; 9237 SmallVector<const SDNode *, 16> Worklist; 9238 Worklist.push_back(this); 9239 return hasPredecessorHelper(N, Visited, Worklist); 9240 } 9241 9242 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9243 this->Flags.intersectWith(Flags); 9244 } 9245 9246 SDValue 9247 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9248 ArrayRef<ISD::NodeType> CandidateBinOps, 9249 bool AllowPartials) { 9250 // The pattern must end in an extract from index 0. 9251 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9252 !isNullConstant(Extract->getOperand(1))) 9253 return SDValue(); 9254 9255 // Match against one of the candidate binary ops. 9256 SDValue Op = Extract->getOperand(0); 9257 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9258 return Op.getOpcode() == unsigned(BinOp); 9259 })) 9260 return SDValue(); 9261 9262 // Floating-point reductions may require relaxed constraints on the final step 9263 // of the reduction because they may reorder intermediate operations. 9264 unsigned CandidateBinOp = Op.getOpcode(); 9265 if (Op.getValueType().isFloatingPoint()) { 9266 SDNodeFlags Flags = Op->getFlags(); 9267 switch (CandidateBinOp) { 9268 case ISD::FADD: 9269 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9270 return SDValue(); 9271 break; 9272 default: 9273 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9274 } 9275 } 9276 9277 // Matching failed - attempt to see if we did enough stages that a partial 9278 // reduction from a subvector is possible. 9279 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9280 if (!AllowPartials || !Op) 9281 return SDValue(); 9282 EVT OpVT = Op.getValueType(); 9283 EVT OpSVT = OpVT.getScalarType(); 9284 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9285 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9286 return SDValue(); 9287 BinOp = (ISD::NodeType)CandidateBinOp; 9288 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9289 getVectorIdxConstant(0, SDLoc(Op))); 9290 }; 9291 9292 // At each stage, we're looking for something that looks like: 9293 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9294 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9295 // i32 undef, i32 undef, i32 undef, i32 undef> 9296 // %a = binop <8 x i32> %op, %s 9297 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9298 // we expect something like: 9299 // <4,5,6,7,u,u,u,u> 9300 // <2,3,u,u,u,u,u,u> 9301 // <1,u,u,u,u,u,u,u> 9302 // While a partial reduction match would be: 9303 // <2,3,u,u,u,u,u,u> 9304 // <1,u,u,u,u,u,u,u> 9305 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9306 SDValue PrevOp; 9307 for (unsigned i = 0; i < Stages; ++i) { 9308 unsigned MaskEnd = (1 << i); 9309 9310 if (Op.getOpcode() != CandidateBinOp) 9311 return PartialReduction(PrevOp, MaskEnd); 9312 9313 SDValue Op0 = Op.getOperand(0); 9314 SDValue Op1 = Op.getOperand(1); 9315 9316 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9317 if (Shuffle) { 9318 Op = Op1; 9319 } else { 9320 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9321 Op = Op0; 9322 } 9323 9324 // The first operand of the shuffle should be the same as the other operand 9325 // of the binop. 9326 if (!Shuffle || Shuffle->getOperand(0) != Op) 9327 return PartialReduction(PrevOp, MaskEnd); 9328 9329 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9330 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9331 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9332 return PartialReduction(PrevOp, MaskEnd); 9333 9334 PrevOp = Op; 9335 } 9336 9337 BinOp = (ISD::NodeType)CandidateBinOp; 9338 return Op; 9339 } 9340 9341 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9342 assert(N->getNumValues() == 1 && 9343 "Can't unroll a vector with multiple results!"); 9344 9345 EVT VT = N->getValueType(0); 9346 unsigned NE = VT.getVectorNumElements(); 9347 EVT EltVT = VT.getVectorElementType(); 9348 SDLoc dl(N); 9349 9350 SmallVector<SDValue, 8> Scalars; 9351 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9352 9353 // If ResNE is 0, fully unroll the vector op. 9354 if (ResNE == 0) 9355 ResNE = NE; 9356 else if (NE > ResNE) 9357 NE = ResNE; 9358 9359 unsigned i; 9360 for (i= 0; i != NE; ++i) { 9361 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9362 SDValue Operand = N->getOperand(j); 9363 EVT OperandVT = Operand.getValueType(); 9364 if (OperandVT.isVector()) { 9365 // A vector operand; extract a single element. 9366 EVT OperandEltVT = OperandVT.getVectorElementType(); 9367 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9368 Operand, getVectorIdxConstant(i, dl)); 9369 } else { 9370 // A scalar operand; just use it as is. 9371 Operands[j] = Operand; 9372 } 9373 } 9374 9375 switch (N->getOpcode()) { 9376 default: { 9377 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9378 N->getFlags())); 9379 break; 9380 } 9381 case ISD::VSELECT: 9382 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9383 break; 9384 case ISD::SHL: 9385 case ISD::SRA: 9386 case ISD::SRL: 9387 case ISD::ROTL: 9388 case ISD::ROTR: 9389 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9390 getShiftAmountOperand(Operands[0].getValueType(), 9391 Operands[1]))); 9392 break; 9393 case ISD::SIGN_EXTEND_INREG: { 9394 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9395 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9396 Operands[0], 9397 getValueType(ExtVT))); 9398 } 9399 } 9400 } 9401 9402 for (; i < ResNE; ++i) 9403 Scalars.push_back(getUNDEF(EltVT)); 9404 9405 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9406 return getBuildVector(VecVT, dl, Scalars); 9407 } 9408 9409 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9410 SDNode *N, unsigned ResNE) { 9411 unsigned Opcode = N->getOpcode(); 9412 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9413 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9414 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9415 "Expected an overflow opcode"); 9416 9417 EVT ResVT = N->getValueType(0); 9418 EVT OvVT = N->getValueType(1); 9419 EVT ResEltVT = ResVT.getVectorElementType(); 9420 EVT OvEltVT = OvVT.getVectorElementType(); 9421 SDLoc dl(N); 9422 9423 // If ResNE is 0, fully unroll the vector op. 9424 unsigned NE = ResVT.getVectorNumElements(); 9425 if (ResNE == 0) 9426 ResNE = NE; 9427 else if (NE > ResNE) 9428 NE = ResNE; 9429 9430 SmallVector<SDValue, 8> LHSScalars; 9431 SmallVector<SDValue, 8> RHSScalars; 9432 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9433 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9434 9435 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9436 SDVTList VTs = getVTList(ResEltVT, SVT); 9437 SmallVector<SDValue, 8> ResScalars; 9438 SmallVector<SDValue, 8> OvScalars; 9439 for (unsigned i = 0; i < NE; ++i) { 9440 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9441 SDValue Ov = 9442 getSelect(dl, OvEltVT, Res.getValue(1), 9443 getBoolConstant(true, dl, OvEltVT, ResVT), 9444 getConstant(0, dl, OvEltVT)); 9445 9446 ResScalars.push_back(Res); 9447 OvScalars.push_back(Ov); 9448 } 9449 9450 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9451 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9452 9453 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9454 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9455 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9456 getBuildVector(NewOvVT, dl, OvScalars)); 9457 } 9458 9459 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9460 LoadSDNode *Base, 9461 unsigned Bytes, 9462 int Dist) const { 9463 if (LD->isVolatile() || Base->isVolatile()) 9464 return false; 9465 // TODO: probably too restrictive for atomics, revisit 9466 if (!LD->isSimple()) 9467 return false; 9468 if (LD->isIndexed() || Base->isIndexed()) 9469 return false; 9470 if (LD->getChain() != Base->getChain()) 9471 return false; 9472 EVT VT = LD->getValueType(0); 9473 if (VT.getSizeInBits() / 8 != Bytes) 9474 return false; 9475 9476 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9477 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9478 9479 int64_t Offset = 0; 9480 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9481 return (Dist * Bytes == Offset); 9482 return false; 9483 } 9484 9485 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9486 /// if it cannot be inferred. 9487 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9488 // If this is a GlobalAddress + cst, return the alignment. 9489 const GlobalValue *GV = nullptr; 9490 int64_t GVOffset = 0; 9491 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9492 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9493 KnownBits Known(PtrWidth); 9494 llvm::computeKnownBits(GV, Known, getDataLayout()); 9495 unsigned AlignBits = Known.countMinTrailingZeros(); 9496 if (AlignBits) 9497 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9498 } 9499 9500 // If this is a direct reference to a stack slot, use information about the 9501 // stack slot's alignment. 9502 int FrameIdx = INT_MIN; 9503 int64_t FrameOffset = 0; 9504 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9505 FrameIdx = FI->getIndex(); 9506 } else if (isBaseWithConstantOffset(Ptr) && 9507 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9508 // Handle FI+Cst 9509 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9510 FrameOffset = Ptr.getConstantOperandVal(1); 9511 } 9512 9513 if (FrameIdx != INT_MIN) { 9514 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9515 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9516 } 9517 9518 return None; 9519 } 9520 9521 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9522 /// which is split (or expanded) into two not necessarily identical pieces. 9523 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9524 // Currently all types are split in half. 9525 EVT LoVT, HiVT; 9526 if (!VT.isVector()) 9527 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9528 else 9529 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9530 9531 return std::make_pair(LoVT, HiVT); 9532 } 9533 9534 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9535 /// type, dependent on an enveloping VT that has been split into two identical 9536 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9537 std::pair<EVT, EVT> 9538 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9539 bool *HiIsEmpty) const { 9540 EVT EltTp = VT.getVectorElementType(); 9541 bool IsScalable = VT.isScalableVector(); 9542 // Examples: 9543 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9544 // custom VL=9 with enveloping VL=8/8 yields 8/1 9545 // custom VL=10 with enveloping VL=8/8 yields 8/2 9546 // etc. 9547 unsigned VTNumElts = VT.getVectorNumElements(); 9548 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9549 EVT LoVT, HiVT; 9550 if (VTNumElts > EnvNumElts) { 9551 LoVT = EnvVT; 9552 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9553 IsScalable); 9554 *HiIsEmpty = false; 9555 } else { 9556 // Flag that hi type has zero storage size, but return split envelop type 9557 // (this would be easier if vector types with zero elements were allowed). 9558 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9559 HiVT = EnvVT; 9560 *HiIsEmpty = true; 9561 } 9562 return std::make_pair(LoVT, HiVT); 9563 } 9564 9565 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9566 /// low/high part. 9567 std::pair<SDValue, SDValue> 9568 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9569 const EVT &HiVT) { 9570 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9571 N.getValueType().getVectorNumElements() && 9572 "More vector elements requested than available!"); 9573 SDValue Lo, Hi; 9574 Lo = 9575 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9576 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9577 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9578 return std::make_pair(Lo, Hi); 9579 } 9580 9581 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9582 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9583 EVT VT = N.getValueType(); 9584 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9585 NextPowerOf2(VT.getVectorNumElements())); 9586 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9587 getVectorIdxConstant(0, DL)); 9588 } 9589 9590 void SelectionDAG::ExtractVectorElements(SDValue Op, 9591 SmallVectorImpl<SDValue> &Args, 9592 unsigned Start, unsigned Count, 9593 EVT EltVT) { 9594 EVT VT = Op.getValueType(); 9595 if (Count == 0) 9596 Count = VT.getVectorNumElements(); 9597 if (EltVT == EVT()) 9598 EltVT = VT.getVectorElementType(); 9599 SDLoc SL(Op); 9600 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9601 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9602 getVectorIdxConstant(i, SL))); 9603 } 9604 } 9605 9606 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9607 unsigned GlobalAddressSDNode::getAddressSpace() const { 9608 return getGlobal()->getType()->getAddressSpace(); 9609 } 9610 9611 Type *ConstantPoolSDNode::getType() const { 9612 if (isMachineConstantPoolEntry()) 9613 return Val.MachineCPVal->getType(); 9614 return Val.ConstVal->getType(); 9615 } 9616 9617 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9618 unsigned &SplatBitSize, 9619 bool &HasAnyUndefs, 9620 unsigned MinSplatBits, 9621 bool IsBigEndian) const { 9622 EVT VT = getValueType(0); 9623 assert(VT.isVector() && "Expected a vector type"); 9624 unsigned VecWidth = VT.getSizeInBits(); 9625 if (MinSplatBits > VecWidth) 9626 return false; 9627 9628 // FIXME: The widths are based on this node's type, but build vectors can 9629 // truncate their operands. 9630 SplatValue = APInt(VecWidth, 0); 9631 SplatUndef = APInt(VecWidth, 0); 9632 9633 // Get the bits. Bits with undefined values (when the corresponding element 9634 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9635 // in SplatValue. If any of the values are not constant, give up and return 9636 // false. 9637 unsigned int NumOps = getNumOperands(); 9638 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9639 unsigned EltWidth = VT.getScalarSizeInBits(); 9640 9641 for (unsigned j = 0; j < NumOps; ++j) { 9642 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9643 SDValue OpVal = getOperand(i); 9644 unsigned BitPos = j * EltWidth; 9645 9646 if (OpVal.isUndef()) 9647 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9648 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9649 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9650 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9651 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9652 else 9653 return false; 9654 } 9655 9656 // The build_vector is all constants or undefs. Find the smallest element 9657 // size that splats the vector. 9658 HasAnyUndefs = (SplatUndef != 0); 9659 9660 // FIXME: This does not work for vectors with elements less than 8 bits. 9661 while (VecWidth > 8) { 9662 unsigned HalfSize = VecWidth / 2; 9663 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9664 APInt LowValue = SplatValue.trunc(HalfSize); 9665 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9666 APInt LowUndef = SplatUndef.trunc(HalfSize); 9667 9668 // If the two halves do not match (ignoring undef bits), stop here. 9669 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9670 MinSplatBits > HalfSize) 9671 break; 9672 9673 SplatValue = HighValue | LowValue; 9674 SplatUndef = HighUndef & LowUndef; 9675 9676 VecWidth = HalfSize; 9677 } 9678 9679 SplatBitSize = VecWidth; 9680 return true; 9681 } 9682 9683 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9684 BitVector *UndefElements) const { 9685 if (UndefElements) { 9686 UndefElements->clear(); 9687 UndefElements->resize(getNumOperands()); 9688 } 9689 assert(getNumOperands() == DemandedElts.getBitWidth() && 9690 "Unexpected vector size"); 9691 if (!DemandedElts) 9692 return SDValue(); 9693 SDValue Splatted; 9694 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9695 if (!DemandedElts[i]) 9696 continue; 9697 SDValue Op = getOperand(i); 9698 if (Op.isUndef()) { 9699 if (UndefElements) 9700 (*UndefElements)[i] = true; 9701 } else if (!Splatted) { 9702 Splatted = Op; 9703 } else if (Splatted != Op) { 9704 return SDValue(); 9705 } 9706 } 9707 9708 if (!Splatted) { 9709 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9710 assert(getOperand(FirstDemandedIdx).isUndef() && 9711 "Can only have a splat without a constant for all undefs."); 9712 return getOperand(FirstDemandedIdx); 9713 } 9714 9715 return Splatted; 9716 } 9717 9718 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9719 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9720 return getSplatValue(DemandedElts, UndefElements); 9721 } 9722 9723 ConstantSDNode * 9724 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9725 BitVector *UndefElements) const { 9726 return dyn_cast_or_null<ConstantSDNode>( 9727 getSplatValue(DemandedElts, UndefElements)); 9728 } 9729 9730 ConstantSDNode * 9731 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9732 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9733 } 9734 9735 ConstantFPSDNode * 9736 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9737 BitVector *UndefElements) const { 9738 return dyn_cast_or_null<ConstantFPSDNode>( 9739 getSplatValue(DemandedElts, UndefElements)); 9740 } 9741 9742 ConstantFPSDNode * 9743 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9744 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9745 } 9746 9747 int32_t 9748 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9749 uint32_t BitWidth) const { 9750 if (ConstantFPSDNode *CN = 9751 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9752 bool IsExact; 9753 APSInt IntVal(BitWidth); 9754 const APFloat &APF = CN->getValueAPF(); 9755 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9756 APFloat::opOK || 9757 !IsExact) 9758 return -1; 9759 9760 return IntVal.exactLogBase2(); 9761 } 9762 return -1; 9763 } 9764 9765 bool BuildVectorSDNode::isConstant() const { 9766 for (const SDValue &Op : op_values()) { 9767 unsigned Opc = Op.getOpcode(); 9768 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9769 return false; 9770 } 9771 return true; 9772 } 9773 9774 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9775 // Find the first non-undef value in the shuffle mask. 9776 unsigned i, e; 9777 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9778 /* search */; 9779 9780 // If all elements are undefined, this shuffle can be considered a splat 9781 // (although it should eventually get simplified away completely). 9782 if (i == e) 9783 return true; 9784 9785 // Make sure all remaining elements are either undef or the same as the first 9786 // non-undef value. 9787 for (int Idx = Mask[i]; i != e; ++i) 9788 if (Mask[i] >= 0 && Mask[i] != Idx) 9789 return false; 9790 return true; 9791 } 9792 9793 // Returns the SDNode if it is a constant integer BuildVector 9794 // or constant integer. 9795 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9796 if (isa<ConstantSDNode>(N)) 9797 return N.getNode(); 9798 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9799 return N.getNode(); 9800 // Treat a GlobalAddress supporting constant offset folding as a 9801 // constant integer. 9802 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9803 if (GA->getOpcode() == ISD::GlobalAddress && 9804 TLI->isOffsetFoldingLegal(GA)) 9805 return GA; 9806 return nullptr; 9807 } 9808 9809 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9810 if (isa<ConstantFPSDNode>(N)) 9811 return N.getNode(); 9812 9813 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9814 return N.getNode(); 9815 9816 return nullptr; 9817 } 9818 9819 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9820 assert(!Node->OperandList && "Node already has operands"); 9821 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9822 "too many operands to fit into SDNode"); 9823 SDUse *Ops = OperandRecycler.allocate( 9824 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9825 9826 bool IsDivergent = false; 9827 for (unsigned I = 0; I != Vals.size(); ++I) { 9828 Ops[I].setUser(Node); 9829 Ops[I].setInitial(Vals[I]); 9830 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9831 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9832 } 9833 Node->NumOperands = Vals.size(); 9834 Node->OperandList = Ops; 9835 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9836 if (!TLI->isSDNodeAlwaysUniform(Node)) 9837 Node->SDNodeBits.IsDivergent = IsDivergent; 9838 checkForCycles(Node); 9839 } 9840 9841 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9842 SmallVectorImpl<SDValue> &Vals) { 9843 size_t Limit = SDNode::getMaxNumOperands(); 9844 while (Vals.size() > Limit) { 9845 unsigned SliceIdx = Vals.size() - Limit; 9846 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9847 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9848 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9849 Vals.emplace_back(NewTF); 9850 } 9851 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9852 } 9853 9854 #ifndef NDEBUG 9855 static void checkForCyclesHelper(const SDNode *N, 9856 SmallPtrSetImpl<const SDNode*> &Visited, 9857 SmallPtrSetImpl<const SDNode*> &Checked, 9858 const llvm::SelectionDAG *DAG) { 9859 // If this node has already been checked, don't check it again. 9860 if (Checked.count(N)) 9861 return; 9862 9863 // If a node has already been visited on this depth-first walk, reject it as 9864 // a cycle. 9865 if (!Visited.insert(N).second) { 9866 errs() << "Detected cycle in SelectionDAG\n"; 9867 dbgs() << "Offending node:\n"; 9868 N->dumprFull(DAG); dbgs() << "\n"; 9869 abort(); 9870 } 9871 9872 for (const SDValue &Op : N->op_values()) 9873 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9874 9875 Checked.insert(N); 9876 Visited.erase(N); 9877 } 9878 #endif 9879 9880 void llvm::checkForCycles(const llvm::SDNode *N, 9881 const llvm::SelectionDAG *DAG, 9882 bool force) { 9883 #ifndef NDEBUG 9884 bool check = force; 9885 #ifdef EXPENSIVE_CHECKS 9886 check = true; 9887 #endif // EXPENSIVE_CHECKS 9888 if (check) { 9889 assert(N && "Checking nonexistent SDNode"); 9890 SmallPtrSet<const SDNode*, 32> visited; 9891 SmallPtrSet<const SDNode*, 32> checked; 9892 checkForCyclesHelper(N, visited, checked, DAG); 9893 } 9894 #endif // !NDEBUG 9895 } 9896 9897 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9898 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9899 } 9900