1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/Mutex.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include "llvm/Target/TargetOptions.h" 68 #include "llvm/Transforms/Utils/SizeOpts.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <cstdlib> 73 #include <limits> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 /// makeVTList - Return an instance of the SDVTList struct initialized with the 82 /// specified members. 83 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 84 SDVTList Res = {VTs, NumVTs}; 85 return Res; 86 } 87 88 // Default null implementations of the callbacks. 89 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 90 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 92 93 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 94 95 #define DEBUG_TYPE "selectiondag" 96 97 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 98 cl::Hidden, cl::init(true), 99 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 100 101 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 102 cl::desc("Number limit for gluing ld/st of memcpy."), 103 cl::Hidden, cl::init(0)); 104 105 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 106 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 107 } 108 109 //===----------------------------------------------------------------------===// 110 // ConstantFPSDNode Class 111 //===----------------------------------------------------------------------===// 112 113 /// isExactlyValue - We don't rely on operator== working on double values, as 114 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 115 /// As such, this method can be used to do an exact bit-for-bit comparison of 116 /// two floating point values. 117 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 118 return getValueAPF().bitwiseIsEqual(V); 119 } 120 121 bool ConstantFPSDNode::isValueValidForType(EVT VT, 122 const APFloat& Val) { 123 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 124 125 // convert modifies in place, so make a copy. 126 APFloat Val2 = APFloat(Val); 127 bool losesInfo; 128 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 129 APFloat::rmNearestTiesToEven, 130 &losesInfo); 131 return !losesInfo; 132 } 133 134 //===----------------------------------------------------------------------===// 135 // ISD Namespace 136 //===----------------------------------------------------------------------===// 137 138 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 139 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 140 unsigned EltSize = 141 N->getValueType(0).getVectorElementType().getSizeInBits(); 142 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 143 SplatVal = Op0->getAPIntValue().trunc(EltSize); 144 return true; 145 } 146 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 148 return true; 149 } 150 } 151 152 auto *BV = dyn_cast<BuildVectorSDNode>(N); 153 if (!BV) 154 return false; 155 156 APInt SplatUndef; 157 unsigned SplatBitSize; 158 bool HasUndefs; 159 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 160 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 161 EltSize) && 162 EltSize == SplatBitSize; 163 } 164 165 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 166 // specializations of the more general isConstantSplatVector()? 167 168 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 169 // Look through a bit convert. 170 while (N->getOpcode() == ISD::BITCAST) 171 N = N->getOperand(0).getNode(); 172 173 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 174 APInt SplatVal; 175 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 176 } 177 178 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 179 180 unsigned i = 0, e = N->getNumOperands(); 181 182 // Skip over all of the undef values. 183 while (i != e && N->getOperand(i).isUndef()) 184 ++i; 185 186 // Do not accept an all-undef vector. 187 if (i == e) return false; 188 189 // Do not accept build_vectors that aren't all constants or which have non-~0 190 // elements. We have to be a bit careful here, as the type of the constant 191 // may not be the same as the type of the vector elements due to type 192 // legalization (the elements are promoted to a legal type for the target and 193 // a vector of a type may be legal when the base element type is not). 194 // We only want to check enough bits to cover the vector elements, because 195 // we care if the resultant vector is all ones, not whether the individual 196 // constants are. 197 SDValue NotZero = N->getOperand(i); 198 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 199 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 200 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 201 return false; 202 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 203 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 204 return false; 205 } else 206 return false; 207 208 // Okay, we have at least one ~0 value, check to see if the rest match or are 209 // undefs. Even with the above element type twiddling, this should be OK, as 210 // the same type legalization should have applied to all the elements. 211 for (++i; i != e; ++i) 212 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 213 return false; 214 return true; 215 } 216 217 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 218 // Look through a bit convert. 219 while (N->getOpcode() == ISD::BITCAST) 220 N = N->getOperand(0).getNode(); 221 222 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 223 APInt SplatVal; 224 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 225 } 226 227 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 228 229 bool IsAllUndef = true; 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 IsAllUndef = false; 234 // Do not accept build_vectors that aren't all constants or which have non-0 235 // elements. We have to be a bit careful here, as the type of the constant 236 // may not be the same as the type of the vector elements due to type 237 // legalization (the elements are promoted to a legal type for the target 238 // and a vector of a type may be legal when the base element type is not). 239 // We only want to check enough bits to cover the vector elements, because 240 // we care if the resultant vector is all zeros, not whether the individual 241 // constants are. 242 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 243 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 244 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 245 return false; 246 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 247 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 248 return false; 249 } else 250 return false; 251 } 252 253 // Do not accept an all-undef vector. 254 if (IsAllUndef) 255 return false; 256 return true; 257 } 258 259 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 260 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 261 } 262 263 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 264 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 268 if (N->getOpcode() != ISD::BUILD_VECTOR) 269 return false; 270 271 for (const SDValue &Op : N->op_values()) { 272 if (Op.isUndef()) 273 continue; 274 if (!isa<ConstantSDNode>(Op)) 275 return false; 276 } 277 return true; 278 } 279 280 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 281 if (N->getOpcode() != ISD::BUILD_VECTOR) 282 return false; 283 284 for (const SDValue &Op : N->op_values()) { 285 if (Op.isUndef()) 286 continue; 287 if (!isa<ConstantFPSDNode>(Op)) 288 return false; 289 } 290 return true; 291 } 292 293 bool ISD::allOperandsUndef(const SDNode *N) { 294 // Return false if the node has no operands. 295 // This is "logically inconsistent" with the definition of "all" but 296 // is probably the desired behavior. 297 if (N->getNumOperands() == 0) 298 return false; 299 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 300 } 301 302 bool ISD::matchUnaryPredicate(SDValue Op, 303 std::function<bool(ConstantSDNode *)> Match, 304 bool AllowUndefs) { 305 // FIXME: Add support for scalar UNDEF cases? 306 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 307 return Match(Cst); 308 309 // FIXME: Add support for vector UNDEF cases? 310 if (ISD::BUILD_VECTOR != Op.getOpcode() && 311 ISD::SPLAT_VECTOR != Op.getOpcode()) 312 return false; 313 314 EVT SVT = Op.getValueType().getScalarType(); 315 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 316 if (AllowUndefs && Op.getOperand(i).isUndef()) { 317 if (!Match(nullptr)) 318 return false; 319 continue; 320 } 321 322 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 323 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 324 return false; 325 } 326 return true; 327 } 328 329 bool ISD::matchBinaryPredicate( 330 SDValue LHS, SDValue RHS, 331 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 332 bool AllowUndefs, bool AllowTypeMismatch) { 333 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 334 return false; 335 336 // TODO: Add support for scalar UNDEF cases? 337 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 338 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 339 return Match(LHSCst, RHSCst); 340 341 // TODO: Add support for vector UNDEF cases? 342 if (LHS.getOpcode() != RHS.getOpcode() || 343 (LHS.getOpcode() != ISD::BUILD_VECTOR && 344 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 345 return false; 346 347 EVT SVT = LHS.getValueType().getScalarType(); 348 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 349 SDValue LHSOp = LHS.getOperand(i); 350 SDValue RHSOp = RHS.getOperand(i); 351 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 352 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 353 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 354 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 355 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 356 return false; 357 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 358 LHSOp.getValueType() != RHSOp.getValueType())) 359 return false; 360 if (!Match(LHSCst, RHSCst)) 361 return false; 362 } 363 return true; 364 } 365 366 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 367 switch (VecReduceOpcode) { 368 default: 369 llvm_unreachable("Expected VECREDUCE opcode"); 370 case ISD::VECREDUCE_FADD: 371 case ISD::VECREDUCE_SEQ_FADD: 372 case ISD::VP_REDUCE_FADD: 373 case ISD::VP_REDUCE_SEQ_FADD: 374 return ISD::FADD; 375 case ISD::VECREDUCE_FMUL: 376 case ISD::VECREDUCE_SEQ_FMUL: 377 case ISD::VP_REDUCE_FMUL: 378 case ISD::VP_REDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 case ISD::VP_REDUCE_ADD: 382 return ISD::ADD; 383 case ISD::VECREDUCE_MUL: 384 case ISD::VP_REDUCE_MUL: 385 return ISD::MUL; 386 case ISD::VECREDUCE_AND: 387 case ISD::VP_REDUCE_AND: 388 return ISD::AND; 389 case ISD::VECREDUCE_OR: 390 case ISD::VP_REDUCE_OR: 391 return ISD::OR; 392 case ISD::VECREDUCE_XOR: 393 case ISD::VP_REDUCE_XOR: 394 return ISD::XOR; 395 case ISD::VECREDUCE_SMAX: 396 case ISD::VP_REDUCE_SMAX: 397 return ISD::SMAX; 398 case ISD::VECREDUCE_SMIN: 399 case ISD::VP_REDUCE_SMIN: 400 return ISD::SMIN; 401 case ISD::VECREDUCE_UMAX: 402 case ISD::VP_REDUCE_UMAX: 403 return ISD::UMAX; 404 case ISD::VECREDUCE_UMIN: 405 case ISD::VP_REDUCE_UMIN: 406 return ISD::UMIN; 407 case ISD::VECREDUCE_FMAX: 408 case ISD::VP_REDUCE_FMAX: 409 return ISD::FMAXNUM; 410 case ISD::VECREDUCE_FMIN: 411 case ISD::VP_REDUCE_FMIN: 412 return ISD::FMINNUM; 413 } 414 } 415 416 bool ISD::isVPOpcode(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return false; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 421 case ISD::VPSD: \ 422 return true; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 bool ISD::isVPBinaryOp(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 break; 431 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 432 #define VP_PROPERTY_BINARYOP return true; 433 #define END_REGISTER_VP_SDNODE(VPSD) break; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 return false; 437 } 438 439 bool ISD::isVPReduction(unsigned Opcode) { 440 switch (Opcode) { 441 default: 442 break; 443 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 444 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 445 #define END_REGISTER_VP_SDNODE(VPSD) break; 446 #include "llvm/IR/VPIntrinsics.def" 447 } 448 return false; 449 } 450 451 /// The operand position of the vector mask. 452 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 453 switch (Opcode) { 454 default: 455 return None; 456 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 457 case ISD::VPSD: \ 458 return MASKPOS; 459 #include "llvm/IR/VPIntrinsics.def" 460 } 461 } 462 463 /// The operand position of the explicit vector length parameter. 464 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 465 switch (Opcode) { 466 default: 467 return None; 468 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 469 case ISD::VPSD: \ 470 return EVLPOS; 471 #include "llvm/IR/VPIntrinsics.def" 472 } 473 } 474 475 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 476 switch (ExtType) { 477 case ISD::EXTLOAD: 478 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 479 case ISD::SEXTLOAD: 480 return ISD::SIGN_EXTEND; 481 case ISD::ZEXTLOAD: 482 return ISD::ZERO_EXTEND; 483 default: 484 break; 485 } 486 487 llvm_unreachable("Invalid LoadExtType"); 488 } 489 490 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 491 // To perform this operation, we just need to swap the L and G bits of the 492 // operation. 493 unsigned OldL = (Operation >> 2) & 1; 494 unsigned OldG = (Operation >> 1) & 1; 495 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 496 (OldL << 1) | // New G bit 497 (OldG << 2)); // New L bit. 498 } 499 500 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 501 unsigned Operation = Op; 502 if (isIntegerLike) 503 Operation ^= 7; // Flip L, G, E bits, but not U. 504 else 505 Operation ^= 15; // Flip all of the condition bits. 506 507 if (Operation > ISD::SETTRUE2) 508 Operation &= ~8; // Don't let N and U bits get set. 509 510 return ISD::CondCode(Operation); 511 } 512 513 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 514 return getSetCCInverseImpl(Op, Type.isInteger()); 515 } 516 517 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 518 bool isIntegerLike) { 519 return getSetCCInverseImpl(Op, isIntegerLike); 520 } 521 522 /// For an integer comparison, return 1 if the comparison is a signed operation 523 /// and 2 if the result is an unsigned comparison. Return zero if the operation 524 /// does not depend on the sign of the input (setne and seteq). 525 static int isSignedOp(ISD::CondCode Opcode) { 526 switch (Opcode) { 527 default: llvm_unreachable("Illegal integer setcc operation!"); 528 case ISD::SETEQ: 529 case ISD::SETNE: return 0; 530 case ISD::SETLT: 531 case ISD::SETLE: 532 case ISD::SETGT: 533 case ISD::SETGE: return 1; 534 case ISD::SETULT: 535 case ISD::SETULE: 536 case ISD::SETUGT: 537 case ISD::SETUGE: return 2; 538 } 539 } 540 541 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 542 EVT Type) { 543 bool IsInteger = Type.isInteger(); 544 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 545 // Cannot fold a signed integer setcc with an unsigned integer setcc. 546 return ISD::SETCC_INVALID; 547 548 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 549 550 // If the N and U bits get set, then the resultant comparison DOES suddenly 551 // care about orderedness, and it is true when ordered. 552 if (Op > ISD::SETTRUE2) 553 Op &= ~16; // Clear the U bit if the N bit is set. 554 555 // Canonicalize illegal integer setcc's. 556 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 557 Op = ISD::SETNE; 558 559 return ISD::CondCode(Op); 560 } 561 562 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 563 EVT Type) { 564 bool IsInteger = Type.isInteger(); 565 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 566 // Cannot fold a signed setcc with an unsigned setcc. 567 return ISD::SETCC_INVALID; 568 569 // Combine all of the condition bits. 570 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 571 572 // Canonicalize illegal integer setcc's. 573 if (IsInteger) { 574 switch (Result) { 575 default: break; 576 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 577 case ISD::SETOEQ: // SETEQ & SETU[LG]E 578 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 579 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 580 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 581 } 582 } 583 584 return Result; 585 } 586 587 //===----------------------------------------------------------------------===// 588 // SDNode Profile Support 589 //===----------------------------------------------------------------------===// 590 591 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 592 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 593 ID.AddInteger(OpC); 594 } 595 596 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 597 /// solely with their pointer. 598 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 599 ID.AddPointer(VTList.VTs); 600 } 601 602 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 603 static void AddNodeIDOperands(FoldingSetNodeID &ID, 604 ArrayRef<SDValue> Ops) { 605 for (auto& Op : Ops) { 606 ID.AddPointer(Op.getNode()); 607 ID.AddInteger(Op.getResNo()); 608 } 609 } 610 611 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 612 static void AddNodeIDOperands(FoldingSetNodeID &ID, 613 ArrayRef<SDUse> Ops) { 614 for (auto& Op : Ops) { 615 ID.AddPointer(Op.getNode()); 616 ID.AddInteger(Op.getResNo()); 617 } 618 } 619 620 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 621 SDVTList VTList, ArrayRef<SDValue> OpList) { 622 AddNodeIDOpcode(ID, OpC); 623 AddNodeIDValueTypes(ID, VTList); 624 AddNodeIDOperands(ID, OpList); 625 } 626 627 /// If this is an SDNode with special info, add this info to the NodeID data. 628 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 629 switch (N->getOpcode()) { 630 case ISD::TargetExternalSymbol: 631 case ISD::ExternalSymbol: 632 case ISD::MCSymbol: 633 llvm_unreachable("Should only be used on nodes with operands"); 634 default: break; // Normal nodes don't need extra info. 635 case ISD::TargetConstant: 636 case ISD::Constant: { 637 const ConstantSDNode *C = cast<ConstantSDNode>(N); 638 ID.AddPointer(C->getConstantIntValue()); 639 ID.AddBoolean(C->isOpaque()); 640 break; 641 } 642 case ISD::TargetConstantFP: 643 case ISD::ConstantFP: 644 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 645 break; 646 case ISD::TargetGlobalAddress: 647 case ISD::GlobalAddress: 648 case ISD::TargetGlobalTLSAddress: 649 case ISD::GlobalTLSAddress: { 650 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 651 ID.AddPointer(GA->getGlobal()); 652 ID.AddInteger(GA->getOffset()); 653 ID.AddInteger(GA->getTargetFlags()); 654 break; 655 } 656 case ISD::BasicBlock: 657 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 658 break; 659 case ISD::Register: 660 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 661 break; 662 case ISD::RegisterMask: 663 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 664 break; 665 case ISD::SRCVALUE: 666 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 667 break; 668 case ISD::FrameIndex: 669 case ISD::TargetFrameIndex: 670 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 671 break; 672 case ISD::LIFETIME_START: 673 case ISD::LIFETIME_END: 674 if (cast<LifetimeSDNode>(N)->hasOffset()) { 675 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 677 } 678 break; 679 case ISD::PSEUDO_PROBE: 680 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 683 break; 684 case ISD::JumpTable: 685 case ISD::TargetJumpTable: 686 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 688 break; 689 case ISD::ConstantPool: 690 case ISD::TargetConstantPool: { 691 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 692 ID.AddInteger(CP->getAlign().value()); 693 ID.AddInteger(CP->getOffset()); 694 if (CP->isMachineConstantPoolEntry()) 695 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 696 else 697 ID.AddPointer(CP->getConstVal()); 698 ID.AddInteger(CP->getTargetFlags()); 699 break; 700 } 701 case ISD::TargetIndex: { 702 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 703 ID.AddInteger(TI->getIndex()); 704 ID.AddInteger(TI->getOffset()); 705 ID.AddInteger(TI->getTargetFlags()); 706 break; 707 } 708 case ISD::LOAD: { 709 const LoadSDNode *LD = cast<LoadSDNode>(N); 710 ID.AddInteger(LD->getMemoryVT().getRawBits()); 711 ID.AddInteger(LD->getRawSubclassData()); 712 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 713 ID.AddInteger(LD->getMemOperand()->getFlags()); 714 break; 715 } 716 case ISD::STORE: { 717 const StoreSDNode *ST = cast<StoreSDNode>(N); 718 ID.AddInteger(ST->getMemoryVT().getRawBits()); 719 ID.AddInteger(ST->getRawSubclassData()); 720 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 721 ID.AddInteger(ST->getMemOperand()->getFlags()); 722 break; 723 } 724 case ISD::VP_LOAD: { 725 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 726 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 727 ID.AddInteger(ELD->getRawSubclassData()); 728 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 729 ID.AddInteger(ELD->getMemOperand()->getFlags()); 730 break; 731 } 732 case ISD::VP_STORE: { 733 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 734 ID.AddInteger(EST->getMemoryVT().getRawBits()); 735 ID.AddInteger(EST->getRawSubclassData()); 736 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 737 ID.AddInteger(EST->getMemOperand()->getFlags()); 738 break; 739 } 740 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 741 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 742 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 743 ID.AddInteger(SLD->getRawSubclassData()); 744 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 748 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 749 ID.AddInteger(SST->getMemoryVT().getRawBits()); 750 ID.AddInteger(SST->getRawSubclassData()); 751 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::VP_GATHER: { 755 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 756 ID.AddInteger(EG->getMemoryVT().getRawBits()); 757 ID.AddInteger(EG->getRawSubclassData()); 758 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 759 ID.AddInteger(EG->getMemOperand()->getFlags()); 760 break; 761 } 762 case ISD::VP_SCATTER: { 763 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 764 ID.AddInteger(ES->getMemoryVT().getRawBits()); 765 ID.AddInteger(ES->getRawSubclassData()); 766 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 767 ID.AddInteger(ES->getMemOperand()->getFlags()); 768 break; 769 } 770 case ISD::MLOAD: { 771 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 772 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 773 ID.AddInteger(MLD->getRawSubclassData()); 774 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 775 ID.AddInteger(MLD->getMemOperand()->getFlags()); 776 break; 777 } 778 case ISD::MSTORE: { 779 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 780 ID.AddInteger(MST->getMemoryVT().getRawBits()); 781 ID.AddInteger(MST->getRawSubclassData()); 782 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 783 ID.AddInteger(MST->getMemOperand()->getFlags()); 784 break; 785 } 786 case ISD::MGATHER: { 787 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 788 ID.AddInteger(MG->getMemoryVT().getRawBits()); 789 ID.AddInteger(MG->getRawSubclassData()); 790 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 791 ID.AddInteger(MG->getMemOperand()->getFlags()); 792 break; 793 } 794 case ISD::MSCATTER: { 795 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 796 ID.AddInteger(MS->getMemoryVT().getRawBits()); 797 ID.AddInteger(MS->getRawSubclassData()); 798 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 799 ID.AddInteger(MS->getMemOperand()->getFlags()); 800 break; 801 } 802 case ISD::ATOMIC_CMP_SWAP: 803 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 804 case ISD::ATOMIC_SWAP: 805 case ISD::ATOMIC_LOAD_ADD: 806 case ISD::ATOMIC_LOAD_SUB: 807 case ISD::ATOMIC_LOAD_AND: 808 case ISD::ATOMIC_LOAD_CLR: 809 case ISD::ATOMIC_LOAD_OR: 810 case ISD::ATOMIC_LOAD_XOR: 811 case ISD::ATOMIC_LOAD_NAND: 812 case ISD::ATOMIC_LOAD_MIN: 813 case ISD::ATOMIC_LOAD_MAX: 814 case ISD::ATOMIC_LOAD_UMIN: 815 case ISD::ATOMIC_LOAD_UMAX: 816 case ISD::ATOMIC_LOAD: 817 case ISD::ATOMIC_STORE: { 818 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 819 ID.AddInteger(AT->getMemoryVT().getRawBits()); 820 ID.AddInteger(AT->getRawSubclassData()); 821 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 822 ID.AddInteger(AT->getMemOperand()->getFlags()); 823 break; 824 } 825 case ISD::PREFETCH: { 826 const MemSDNode *PF = cast<MemSDNode>(N); 827 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 828 ID.AddInteger(PF->getMemOperand()->getFlags()); 829 break; 830 } 831 case ISD::VECTOR_SHUFFLE: { 832 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 833 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 834 i != e; ++i) 835 ID.AddInteger(SVN->getMaskElt(i)); 836 break; 837 } 838 case ISD::TargetBlockAddress: 839 case ISD::BlockAddress: { 840 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 841 ID.AddPointer(BA->getBlockAddress()); 842 ID.AddInteger(BA->getOffset()); 843 ID.AddInteger(BA->getTargetFlags()); 844 break; 845 } 846 case ISD::AssertAlign: 847 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 848 break; 849 } // end switch (N->getOpcode()) 850 851 // Target specific memory nodes could also have address spaces and flags 852 // to check. 853 if (N->isTargetMemoryOpcode()) { 854 const MemSDNode *MN = cast<MemSDNode>(N); 855 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 856 ID.AddInteger(MN->getMemOperand()->getFlags()); 857 } 858 } 859 860 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 861 /// data. 862 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 863 AddNodeIDOpcode(ID, N->getOpcode()); 864 // Add the return value info. 865 AddNodeIDValueTypes(ID, N->getVTList()); 866 // Add the operand info. 867 AddNodeIDOperands(ID, N->ops()); 868 869 // Handle SDNode leafs with special info. 870 AddNodeIDCustom(ID, N); 871 } 872 873 //===----------------------------------------------------------------------===// 874 // SelectionDAG Class 875 //===----------------------------------------------------------------------===// 876 877 /// doNotCSE - Return true if CSE should not be performed for this node. 878 static bool doNotCSE(SDNode *N) { 879 if (N->getValueType(0) == MVT::Glue) 880 return true; // Never CSE anything that produces a flag. 881 882 switch (N->getOpcode()) { 883 default: break; 884 case ISD::HANDLENODE: 885 case ISD::EH_LABEL: 886 return true; // Never CSE these nodes. 887 } 888 889 // Check that remaining values produced are not flags. 890 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 891 if (N->getValueType(i) == MVT::Glue) 892 return true; // Never CSE anything that produces a flag. 893 894 return false; 895 } 896 897 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 898 /// SelectionDAG. 899 void SelectionDAG::RemoveDeadNodes() { 900 // Create a dummy node (which is not added to allnodes), that adds a reference 901 // to the root node, preventing it from being deleted. 902 HandleSDNode Dummy(getRoot()); 903 904 SmallVector<SDNode*, 128> DeadNodes; 905 906 // Add all obviously-dead nodes to the DeadNodes worklist. 907 for (SDNode &Node : allnodes()) 908 if (Node.use_empty()) 909 DeadNodes.push_back(&Node); 910 911 RemoveDeadNodes(DeadNodes); 912 913 // If the root changed (e.g. it was a dead load, update the root). 914 setRoot(Dummy.getValue()); 915 } 916 917 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 918 /// given list, and any nodes that become unreachable as a result. 919 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 920 921 // Process the worklist, deleting the nodes and adding their uses to the 922 // worklist. 923 while (!DeadNodes.empty()) { 924 SDNode *N = DeadNodes.pop_back_val(); 925 // Skip to next node if we've already managed to delete the node. This could 926 // happen if replacing a node causes a node previously added to the node to 927 // be deleted. 928 if (N->getOpcode() == ISD::DELETED_NODE) 929 continue; 930 931 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 932 DUL->NodeDeleted(N, nullptr); 933 934 // Take the node out of the appropriate CSE map. 935 RemoveNodeFromCSEMaps(N); 936 937 // Next, brutally remove the operand list. This is safe to do, as there are 938 // no cycles in the graph. 939 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 940 SDUse &Use = *I++; 941 SDNode *Operand = Use.getNode(); 942 Use.set(SDValue()); 943 944 // Now that we removed this operand, see if there are no uses of it left. 945 if (Operand->use_empty()) 946 DeadNodes.push_back(Operand); 947 } 948 949 DeallocateNode(N); 950 } 951 } 952 953 void SelectionDAG::RemoveDeadNode(SDNode *N){ 954 SmallVector<SDNode*, 16> DeadNodes(1, N); 955 956 // Create a dummy node that adds a reference to the root node, preventing 957 // it from being deleted. (This matters if the root is an operand of the 958 // dead node.) 959 HandleSDNode Dummy(getRoot()); 960 961 RemoveDeadNodes(DeadNodes); 962 } 963 964 void SelectionDAG::DeleteNode(SDNode *N) { 965 // First take this out of the appropriate CSE map. 966 RemoveNodeFromCSEMaps(N); 967 968 // Finally, remove uses due to operands of this node, remove from the 969 // AllNodes list, and delete the node. 970 DeleteNodeNotInCSEMaps(N); 971 } 972 973 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 974 assert(N->getIterator() != AllNodes.begin() && 975 "Cannot delete the entry node!"); 976 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 977 978 // Drop all of the operands and decrement used node's use counts. 979 N->DropOperands(); 980 981 DeallocateNode(N); 982 } 983 984 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 985 assert(!(V->isVariadic() && isParameter)); 986 if (isParameter) 987 ByvalParmDbgValues.push_back(V); 988 else 989 DbgValues.push_back(V); 990 for (const SDNode *Node : V->getSDNodes()) 991 if (Node) 992 DbgValMap[Node].push_back(V); 993 } 994 995 void SDDbgInfo::erase(const SDNode *Node) { 996 DbgValMapType::iterator I = DbgValMap.find(Node); 997 if (I == DbgValMap.end()) 998 return; 999 for (auto &Val: I->second) 1000 Val->setIsInvalidated(); 1001 DbgValMap.erase(I); 1002 } 1003 1004 void SelectionDAG::DeallocateNode(SDNode *N) { 1005 // If we have operands, deallocate them. 1006 removeOperands(N); 1007 1008 NodeAllocator.Deallocate(AllNodes.remove(N)); 1009 1010 // Set the opcode to DELETED_NODE to help catch bugs when node 1011 // memory is reallocated. 1012 // FIXME: There are places in SDag that have grown a dependency on the opcode 1013 // value in the released node. 1014 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1015 N->NodeType = ISD::DELETED_NODE; 1016 1017 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1018 // them and forget about that node. 1019 DbgInfo->erase(N); 1020 } 1021 1022 #ifndef NDEBUG 1023 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1024 static void VerifySDNode(SDNode *N) { 1025 switch (N->getOpcode()) { 1026 default: 1027 break; 1028 case ISD::BUILD_PAIR: { 1029 EVT VT = N->getValueType(0); 1030 assert(N->getNumValues() == 1 && "Too many results!"); 1031 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1032 "Wrong return type!"); 1033 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1034 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1035 "Mismatched operand types!"); 1036 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1037 "Wrong operand type!"); 1038 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1039 "Wrong return type size"); 1040 break; 1041 } 1042 case ISD::BUILD_VECTOR: { 1043 assert(N->getNumValues() == 1 && "Too many results!"); 1044 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1045 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1046 "Wrong number of operands!"); 1047 EVT EltVT = N->getValueType(0).getVectorElementType(); 1048 for (const SDUse &Op : N->ops()) { 1049 assert((Op.getValueType() == EltVT || 1050 (EltVT.isInteger() && Op.getValueType().isInteger() && 1051 EltVT.bitsLE(Op.getValueType()))) && 1052 "Wrong operand type!"); 1053 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1054 "Operands must all have the same type"); 1055 } 1056 break; 1057 } 1058 } 1059 } 1060 #endif // NDEBUG 1061 1062 /// Insert a newly allocated node into the DAG. 1063 /// 1064 /// Handles insertion into the all nodes list and CSE map, as well as 1065 /// verification and other common operations when a new node is allocated. 1066 void SelectionDAG::InsertNode(SDNode *N) { 1067 AllNodes.push_back(N); 1068 #ifndef NDEBUG 1069 N->PersistentId = NextPersistentId++; 1070 VerifySDNode(N); 1071 #endif 1072 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1073 DUL->NodeInserted(N); 1074 } 1075 1076 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1077 /// correspond to it. This is useful when we're about to delete or repurpose 1078 /// the node. We don't want future request for structurally identical nodes 1079 /// to return N anymore. 1080 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1081 bool Erased = false; 1082 switch (N->getOpcode()) { 1083 case ISD::HANDLENODE: return false; // noop. 1084 case ISD::CONDCODE: 1085 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1086 "Cond code doesn't exist!"); 1087 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1088 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1089 break; 1090 case ISD::ExternalSymbol: 1091 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1092 break; 1093 case ISD::TargetExternalSymbol: { 1094 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1095 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1096 ESN->getSymbol(), ESN->getTargetFlags())); 1097 break; 1098 } 1099 case ISD::MCSymbol: { 1100 auto *MCSN = cast<MCSymbolSDNode>(N); 1101 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1102 break; 1103 } 1104 case ISD::VALUETYPE: { 1105 EVT VT = cast<VTSDNode>(N)->getVT(); 1106 if (VT.isExtended()) { 1107 Erased = ExtendedValueTypeNodes.erase(VT); 1108 } else { 1109 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1110 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1111 } 1112 break; 1113 } 1114 default: 1115 // Remove it from the CSE Map. 1116 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1117 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1118 Erased = CSEMap.RemoveNode(N); 1119 break; 1120 } 1121 #ifndef NDEBUG 1122 // Verify that the node was actually in one of the CSE maps, unless it has a 1123 // flag result (which cannot be CSE'd) or is one of the special cases that are 1124 // not subject to CSE. 1125 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1126 !N->isMachineOpcode() && !doNotCSE(N)) { 1127 N->dump(this); 1128 dbgs() << "\n"; 1129 llvm_unreachable("Node is not in map!"); 1130 } 1131 #endif 1132 return Erased; 1133 } 1134 1135 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1136 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1137 /// node already exists, in which case transfer all its users to the existing 1138 /// node. This transfer can potentially trigger recursive merging. 1139 void 1140 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1141 // For node types that aren't CSE'd, just act as if no identical node 1142 // already exists. 1143 if (!doNotCSE(N)) { 1144 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1145 if (Existing != N) { 1146 // If there was already an existing matching node, use ReplaceAllUsesWith 1147 // to replace the dead one with the existing one. This can cause 1148 // recursive merging of other unrelated nodes down the line. 1149 ReplaceAllUsesWith(N, Existing); 1150 1151 // N is now dead. Inform the listeners and delete it. 1152 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1153 DUL->NodeDeleted(N, Existing); 1154 DeleteNodeNotInCSEMaps(N); 1155 return; 1156 } 1157 } 1158 1159 // If the node doesn't already exist, we updated it. Inform listeners. 1160 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1161 DUL->NodeUpdated(N); 1162 } 1163 1164 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1165 /// were replaced with those specified. If this node is never memoized, 1166 /// return null, otherwise return a pointer to the slot it would take. If a 1167 /// node already exists with these operands, the slot will be non-null. 1168 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1169 void *&InsertPos) { 1170 if (doNotCSE(N)) 1171 return nullptr; 1172 1173 SDValue Ops[] = { Op }; 1174 FoldingSetNodeID ID; 1175 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1176 AddNodeIDCustom(ID, N); 1177 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1178 if (Node) 1179 Node->intersectFlagsWith(N->getFlags()); 1180 return Node; 1181 } 1182 1183 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1184 /// were replaced with those specified. If this node is never memoized, 1185 /// return null, otherwise return a pointer to the slot it would take. If a 1186 /// node already exists with these operands, the slot will be non-null. 1187 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1188 SDValue Op1, SDValue Op2, 1189 void *&InsertPos) { 1190 if (doNotCSE(N)) 1191 return nullptr; 1192 1193 SDValue Ops[] = { Op1, Op2 }; 1194 FoldingSetNodeID ID; 1195 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1196 AddNodeIDCustom(ID, N); 1197 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1198 if (Node) 1199 Node->intersectFlagsWith(N->getFlags()); 1200 return Node; 1201 } 1202 1203 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1204 /// were replaced with those specified. If this node is never memoized, 1205 /// return null, otherwise return a pointer to the slot it would take. If a 1206 /// node already exists with these operands, the slot will be non-null. 1207 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1208 void *&InsertPos) { 1209 if (doNotCSE(N)) 1210 return nullptr; 1211 1212 FoldingSetNodeID ID; 1213 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1214 AddNodeIDCustom(ID, N); 1215 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1216 if (Node) 1217 Node->intersectFlagsWith(N->getFlags()); 1218 return Node; 1219 } 1220 1221 Align SelectionDAG::getEVTAlign(EVT VT) const { 1222 Type *Ty = VT == MVT::iPTR ? 1223 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1224 VT.getTypeForEVT(*getContext()); 1225 1226 return getDataLayout().getABITypeAlign(Ty); 1227 } 1228 1229 // EntryNode could meaningfully have debug info if we can find it... 1230 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1231 : TM(tm), OptLevel(OL), 1232 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1233 Root(getEntryNode()) { 1234 InsertNode(&EntryNode); 1235 DbgInfo = new SDDbgInfo(); 1236 } 1237 1238 void SelectionDAG::init(MachineFunction &NewMF, 1239 OptimizationRemarkEmitter &NewORE, 1240 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1241 LegacyDivergenceAnalysis * Divergence, 1242 ProfileSummaryInfo *PSIin, 1243 BlockFrequencyInfo *BFIin) { 1244 MF = &NewMF; 1245 SDAGISelPass = PassPtr; 1246 ORE = &NewORE; 1247 TLI = getSubtarget().getTargetLowering(); 1248 TSI = getSubtarget().getSelectionDAGInfo(); 1249 LibInfo = LibraryInfo; 1250 Context = &MF->getFunction().getContext(); 1251 DA = Divergence; 1252 PSI = PSIin; 1253 BFI = BFIin; 1254 } 1255 1256 SelectionDAG::~SelectionDAG() { 1257 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1258 allnodes_clear(); 1259 OperandRecycler.clear(OperandAllocator); 1260 delete DbgInfo; 1261 } 1262 1263 bool SelectionDAG::shouldOptForSize() const { 1264 return MF->getFunction().hasOptSize() || 1265 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1266 } 1267 1268 void SelectionDAG::allnodes_clear() { 1269 assert(&*AllNodes.begin() == &EntryNode); 1270 AllNodes.remove(AllNodes.begin()); 1271 while (!AllNodes.empty()) 1272 DeallocateNode(&AllNodes.front()); 1273 #ifndef NDEBUG 1274 NextPersistentId = 0; 1275 #endif 1276 } 1277 1278 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1279 void *&InsertPos) { 1280 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1281 if (N) { 1282 switch (N->getOpcode()) { 1283 default: break; 1284 case ISD::Constant: 1285 case ISD::ConstantFP: 1286 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1287 "debug location. Use another overload."); 1288 } 1289 } 1290 return N; 1291 } 1292 1293 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1294 const SDLoc &DL, void *&InsertPos) { 1295 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1296 if (N) { 1297 switch (N->getOpcode()) { 1298 case ISD::Constant: 1299 case ISD::ConstantFP: 1300 // Erase debug location from the node if the node is used at several 1301 // different places. Do not propagate one location to all uses as it 1302 // will cause a worse single stepping debugging experience. 1303 if (N->getDebugLoc() != DL.getDebugLoc()) 1304 N->setDebugLoc(DebugLoc()); 1305 break; 1306 default: 1307 // When the node's point of use is located earlier in the instruction 1308 // sequence than its prior point of use, update its debug info to the 1309 // earlier location. 1310 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1311 N->setDebugLoc(DL.getDebugLoc()); 1312 break; 1313 } 1314 } 1315 return N; 1316 } 1317 1318 void SelectionDAG::clear() { 1319 allnodes_clear(); 1320 OperandRecycler.clear(OperandAllocator); 1321 OperandAllocator.Reset(); 1322 CSEMap.clear(); 1323 1324 ExtendedValueTypeNodes.clear(); 1325 ExternalSymbols.clear(); 1326 TargetExternalSymbols.clear(); 1327 MCSymbols.clear(); 1328 SDCallSiteDbgInfo.clear(); 1329 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1330 static_cast<CondCodeSDNode*>(nullptr)); 1331 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1332 static_cast<SDNode*>(nullptr)); 1333 1334 EntryNode.UseList = nullptr; 1335 InsertNode(&EntryNode); 1336 Root = getEntryNode(); 1337 DbgInfo->clear(); 1338 } 1339 1340 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1341 return VT.bitsGT(Op.getValueType()) 1342 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1343 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1344 } 1345 1346 std::pair<SDValue, SDValue> 1347 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1348 const SDLoc &DL, EVT VT) { 1349 assert(!VT.bitsEq(Op.getValueType()) && 1350 "Strict no-op FP extend/round not allowed."); 1351 SDValue Res = 1352 VT.bitsGT(Op.getValueType()) 1353 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1354 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1355 {Chain, Op, getIntPtrConstant(0, DL)}); 1356 1357 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1358 } 1359 1360 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1361 return VT.bitsGT(Op.getValueType()) ? 1362 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1363 getNode(ISD::TRUNCATE, DL, VT, Op); 1364 } 1365 1366 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1367 return VT.bitsGT(Op.getValueType()) ? 1368 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1369 getNode(ISD::TRUNCATE, DL, VT, Op); 1370 } 1371 1372 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1373 return VT.bitsGT(Op.getValueType()) ? 1374 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1375 getNode(ISD::TRUNCATE, DL, VT, Op); 1376 } 1377 1378 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1379 EVT OpVT) { 1380 if (VT.bitsLE(Op.getValueType())) 1381 return getNode(ISD::TRUNCATE, SL, VT, Op); 1382 1383 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1384 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1385 } 1386 1387 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1388 EVT OpVT = Op.getValueType(); 1389 assert(VT.isInteger() && OpVT.isInteger() && 1390 "Cannot getZeroExtendInReg FP types"); 1391 assert(VT.isVector() == OpVT.isVector() && 1392 "getZeroExtendInReg type should be vector iff the operand " 1393 "type is vector!"); 1394 assert((!VT.isVector() || 1395 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1396 "Vector element counts must match in getZeroExtendInReg"); 1397 assert(VT.bitsLE(OpVT) && "Not extending!"); 1398 if (OpVT == VT) 1399 return Op; 1400 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1401 VT.getScalarSizeInBits()); 1402 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1403 } 1404 1405 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1406 // Only unsigned pointer semantics are supported right now. In the future this 1407 // might delegate to TLI to check pointer signedness. 1408 return getZExtOrTrunc(Op, DL, VT); 1409 } 1410 1411 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1412 // Only unsigned pointer semantics are supported right now. In the future this 1413 // might delegate to TLI to check pointer signedness. 1414 return getZeroExtendInReg(Op, DL, VT); 1415 } 1416 1417 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1418 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1419 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1420 } 1421 1422 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1423 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1424 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1425 } 1426 1427 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1428 SDValue Mask, SDValue EVL, EVT VT) { 1429 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1430 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1431 } 1432 1433 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1434 EVT OpVT) { 1435 if (!V) 1436 return getConstant(0, DL, VT); 1437 1438 switch (TLI->getBooleanContents(OpVT)) { 1439 case TargetLowering::ZeroOrOneBooleanContent: 1440 case TargetLowering::UndefinedBooleanContent: 1441 return getConstant(1, DL, VT); 1442 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1443 return getAllOnesConstant(DL, VT); 1444 } 1445 llvm_unreachable("Unexpected boolean content enum!"); 1446 } 1447 1448 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1449 bool isT, bool isO) { 1450 EVT EltVT = VT.getScalarType(); 1451 assert((EltVT.getSizeInBits() >= 64 || 1452 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1453 "getConstant with a uint64_t value that doesn't fit in the type!"); 1454 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1455 } 1456 1457 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1458 bool isT, bool isO) { 1459 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1460 } 1461 1462 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1463 EVT VT, bool isT, bool isO) { 1464 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1465 1466 EVT EltVT = VT.getScalarType(); 1467 const ConstantInt *Elt = &Val; 1468 1469 // In some cases the vector type is legal but the element type is illegal and 1470 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1471 // inserted value (the type does not need to match the vector element type). 1472 // Any extra bits introduced will be truncated away. 1473 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1474 TargetLowering::TypePromoteInteger) { 1475 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1476 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1477 Elt = ConstantInt::get(*getContext(), NewVal); 1478 } 1479 // In other cases the element type is illegal and needs to be expanded, for 1480 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1481 // the value into n parts and use a vector type with n-times the elements. 1482 // Then bitcast to the type requested. 1483 // Legalizing constants too early makes the DAGCombiner's job harder so we 1484 // only legalize if the DAG tells us we must produce legal types. 1485 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1486 TLI->getTypeAction(*getContext(), EltVT) == 1487 TargetLowering::TypeExpandInteger) { 1488 const APInt &NewVal = Elt->getValue(); 1489 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1490 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1491 1492 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1493 if (VT.isScalableVector()) { 1494 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1495 "Can only handle an even split!"); 1496 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1497 1498 SmallVector<SDValue, 2> ScalarParts; 1499 for (unsigned i = 0; i != Parts; ++i) 1500 ScalarParts.push_back(getConstant( 1501 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1502 ViaEltVT, isT, isO)); 1503 1504 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1505 } 1506 1507 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1508 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1509 1510 // Check the temporary vector is the correct size. If this fails then 1511 // getTypeToTransformTo() probably returned a type whose size (in bits) 1512 // isn't a power-of-2 factor of the requested type size. 1513 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1514 1515 SmallVector<SDValue, 2> EltParts; 1516 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1517 EltParts.push_back(getConstant( 1518 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1519 ViaEltVT, isT, isO)); 1520 1521 // EltParts is currently in little endian order. If we actually want 1522 // big-endian order then reverse it now. 1523 if (getDataLayout().isBigEndian()) 1524 std::reverse(EltParts.begin(), EltParts.end()); 1525 1526 // The elements must be reversed when the element order is different 1527 // to the endianness of the elements (because the BITCAST is itself a 1528 // vector shuffle in this situation). However, we do not need any code to 1529 // perform this reversal because getConstant() is producing a vector 1530 // splat. 1531 // This situation occurs in MIPS MSA. 1532 1533 SmallVector<SDValue, 8> Ops; 1534 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1535 llvm::append_range(Ops, EltParts); 1536 1537 SDValue V = 1538 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1539 return V; 1540 } 1541 1542 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1543 "APInt size does not match type size!"); 1544 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1545 FoldingSetNodeID ID; 1546 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1547 ID.AddPointer(Elt); 1548 ID.AddBoolean(isO); 1549 void *IP = nullptr; 1550 SDNode *N = nullptr; 1551 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1552 if (!VT.isVector()) 1553 return SDValue(N, 0); 1554 1555 if (!N) { 1556 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1557 CSEMap.InsertNode(N, IP); 1558 InsertNode(N); 1559 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1560 } 1561 1562 SDValue Result(N, 0); 1563 if (VT.isScalableVector()) 1564 Result = getSplatVector(VT, DL, Result); 1565 else if (VT.isVector()) 1566 Result = getSplatBuildVector(VT, DL, Result); 1567 1568 return Result; 1569 } 1570 1571 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1572 bool isTarget) { 1573 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1574 } 1575 1576 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1577 const SDLoc &DL, bool LegalTypes) { 1578 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1579 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1580 return getConstant(Val, DL, ShiftVT); 1581 } 1582 1583 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1584 bool isTarget) { 1585 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1586 } 1587 1588 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1589 bool isTarget) { 1590 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1591 } 1592 1593 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1594 EVT VT, bool isTarget) { 1595 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1596 1597 EVT EltVT = VT.getScalarType(); 1598 1599 // Do the map lookup using the actual bit pattern for the floating point 1600 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1601 // we don't have issues with SNANs. 1602 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1603 FoldingSetNodeID ID; 1604 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1605 ID.AddPointer(&V); 1606 void *IP = nullptr; 1607 SDNode *N = nullptr; 1608 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1609 if (!VT.isVector()) 1610 return SDValue(N, 0); 1611 1612 if (!N) { 1613 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1614 CSEMap.InsertNode(N, IP); 1615 InsertNode(N); 1616 } 1617 1618 SDValue Result(N, 0); 1619 if (VT.isScalableVector()) 1620 Result = getSplatVector(VT, DL, Result); 1621 else if (VT.isVector()) 1622 Result = getSplatBuildVector(VT, DL, Result); 1623 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1624 return Result; 1625 } 1626 1627 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1628 bool isTarget) { 1629 EVT EltVT = VT.getScalarType(); 1630 if (EltVT == MVT::f32) 1631 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1632 if (EltVT == MVT::f64) 1633 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1634 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1635 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1636 bool Ignored; 1637 APFloat APF = APFloat(Val); 1638 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1639 &Ignored); 1640 return getConstantFP(APF, DL, VT, isTarget); 1641 } 1642 llvm_unreachable("Unsupported type in getConstantFP"); 1643 } 1644 1645 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1646 EVT VT, int64_t Offset, bool isTargetGA, 1647 unsigned TargetFlags) { 1648 assert((TargetFlags == 0 || isTargetGA) && 1649 "Cannot set target flags on target-independent globals"); 1650 1651 // Truncate (with sign-extension) the offset value to the pointer size. 1652 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1653 if (BitWidth < 64) 1654 Offset = SignExtend64(Offset, BitWidth); 1655 1656 unsigned Opc; 1657 if (GV->isThreadLocal()) 1658 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1659 else 1660 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1661 1662 FoldingSetNodeID ID; 1663 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1664 ID.AddPointer(GV); 1665 ID.AddInteger(Offset); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<GlobalAddressSDNode>( 1672 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1673 CSEMap.InsertNode(N, IP); 1674 InsertNode(N); 1675 return SDValue(N, 0); 1676 } 1677 1678 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1679 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1680 FoldingSetNodeID ID; 1681 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1682 ID.AddInteger(FI); 1683 void *IP = nullptr; 1684 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1685 return SDValue(E, 0); 1686 1687 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1688 CSEMap.InsertNode(N, IP); 1689 InsertNode(N); 1690 return SDValue(N, 0); 1691 } 1692 1693 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1694 unsigned TargetFlags) { 1695 assert((TargetFlags == 0 || isTarget) && 1696 "Cannot set target flags on target-independent jump tables"); 1697 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1698 FoldingSetNodeID ID; 1699 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1700 ID.AddInteger(JTI); 1701 ID.AddInteger(TargetFlags); 1702 void *IP = nullptr; 1703 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1704 return SDValue(E, 0); 1705 1706 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1707 CSEMap.InsertNode(N, IP); 1708 InsertNode(N); 1709 return SDValue(N, 0); 1710 } 1711 1712 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1713 MaybeAlign Alignment, int Offset, 1714 bool isTarget, unsigned TargetFlags) { 1715 assert((TargetFlags == 0 || isTarget) && 1716 "Cannot set target flags on target-independent globals"); 1717 if (!Alignment) 1718 Alignment = shouldOptForSize() 1719 ? getDataLayout().getABITypeAlign(C->getType()) 1720 : getDataLayout().getPrefTypeAlign(C->getType()); 1721 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1722 FoldingSetNodeID ID; 1723 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1724 ID.AddInteger(Alignment->value()); 1725 ID.AddInteger(Offset); 1726 ID.AddPointer(C); 1727 ID.AddInteger(TargetFlags); 1728 void *IP = nullptr; 1729 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1730 return SDValue(E, 0); 1731 1732 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1733 TargetFlags); 1734 CSEMap.InsertNode(N, IP); 1735 InsertNode(N); 1736 SDValue V = SDValue(N, 0); 1737 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1738 return V; 1739 } 1740 1741 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1742 MaybeAlign Alignment, int Offset, 1743 bool isTarget, unsigned TargetFlags) { 1744 assert((TargetFlags == 0 || isTarget) && 1745 "Cannot set target flags on target-independent globals"); 1746 if (!Alignment) 1747 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1748 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1751 ID.AddInteger(Alignment->value()); 1752 ID.AddInteger(Offset); 1753 C->addSelectionDAGCSEId(ID); 1754 ID.AddInteger(TargetFlags); 1755 void *IP = nullptr; 1756 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1757 return SDValue(E, 0); 1758 1759 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1760 TargetFlags); 1761 CSEMap.InsertNode(N, IP); 1762 InsertNode(N); 1763 return SDValue(N, 0); 1764 } 1765 1766 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1767 unsigned TargetFlags) { 1768 FoldingSetNodeID ID; 1769 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1770 ID.AddInteger(Index); 1771 ID.AddInteger(Offset); 1772 ID.AddInteger(TargetFlags); 1773 void *IP = nullptr; 1774 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1775 return SDValue(E, 0); 1776 1777 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1778 CSEMap.InsertNode(N, IP); 1779 InsertNode(N); 1780 return SDValue(N, 0); 1781 } 1782 1783 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1784 FoldingSetNodeID ID; 1785 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1786 ID.AddPointer(MBB); 1787 void *IP = nullptr; 1788 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1789 return SDValue(E, 0); 1790 1791 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1792 CSEMap.InsertNode(N, IP); 1793 InsertNode(N); 1794 return SDValue(N, 0); 1795 } 1796 1797 SDValue SelectionDAG::getValueType(EVT VT) { 1798 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1799 ValueTypeNodes.size()) 1800 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1801 1802 SDNode *&N = VT.isExtended() ? 1803 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1804 1805 if (N) return SDValue(N, 0); 1806 N = newSDNode<VTSDNode>(VT); 1807 InsertNode(N); 1808 return SDValue(N, 0); 1809 } 1810 1811 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1812 SDNode *&N = ExternalSymbols[Sym]; 1813 if (N) return SDValue(N, 0); 1814 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1815 InsertNode(N); 1816 return SDValue(N, 0); 1817 } 1818 1819 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1820 SDNode *&N = MCSymbols[Sym]; 1821 if (N) 1822 return SDValue(N, 0); 1823 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1824 InsertNode(N); 1825 return SDValue(N, 0); 1826 } 1827 1828 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1829 unsigned TargetFlags) { 1830 SDNode *&N = 1831 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1832 if (N) return SDValue(N, 0); 1833 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1834 InsertNode(N); 1835 return SDValue(N, 0); 1836 } 1837 1838 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1839 if ((unsigned)Cond >= CondCodeNodes.size()) 1840 CondCodeNodes.resize(Cond+1); 1841 1842 if (!CondCodeNodes[Cond]) { 1843 auto *N = newSDNode<CondCodeSDNode>(Cond); 1844 CondCodeNodes[Cond] = N; 1845 InsertNode(N); 1846 } 1847 1848 return SDValue(CondCodeNodes[Cond], 0); 1849 } 1850 1851 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1852 APInt One(ResVT.getScalarSizeInBits(), 1); 1853 return getStepVector(DL, ResVT, One); 1854 } 1855 1856 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1857 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1858 if (ResVT.isScalableVector()) 1859 return getNode( 1860 ISD::STEP_VECTOR, DL, ResVT, 1861 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1862 1863 SmallVector<SDValue, 16> OpsStepConstants; 1864 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1865 OpsStepConstants.push_back( 1866 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1867 return getBuildVector(ResVT, DL, OpsStepConstants); 1868 } 1869 1870 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1871 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1872 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1873 std::swap(N1, N2); 1874 ShuffleVectorSDNode::commuteMask(M); 1875 } 1876 1877 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1878 SDValue N2, ArrayRef<int> Mask) { 1879 assert(VT.getVectorNumElements() == Mask.size() && 1880 "Must have the same number of vector elements as mask elements!"); 1881 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1882 "Invalid VECTOR_SHUFFLE"); 1883 1884 // Canonicalize shuffle undef, undef -> undef 1885 if (N1.isUndef() && N2.isUndef()) 1886 return getUNDEF(VT); 1887 1888 // Validate that all indices in Mask are within the range of the elements 1889 // input to the shuffle. 1890 int NElts = Mask.size(); 1891 assert(llvm::all_of(Mask, 1892 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1893 "Index out of range"); 1894 1895 // Copy the mask so we can do any needed cleanup. 1896 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1897 1898 // Canonicalize shuffle v, v -> v, undef 1899 if (N1 == N2) { 1900 N2 = getUNDEF(VT); 1901 for (int i = 0; i != NElts; ++i) 1902 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1903 } 1904 1905 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1906 if (N1.isUndef()) 1907 commuteShuffle(N1, N2, MaskVec); 1908 1909 if (TLI->hasVectorBlend()) { 1910 // If shuffling a splat, try to blend the splat instead. We do this here so 1911 // that even when this arises during lowering we don't have to re-handle it. 1912 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1913 BitVector UndefElements; 1914 SDValue Splat = BV->getSplatValue(&UndefElements); 1915 if (!Splat) 1916 return; 1917 1918 for (int i = 0; i < NElts; ++i) { 1919 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1920 continue; 1921 1922 // If this input comes from undef, mark it as such. 1923 if (UndefElements[MaskVec[i] - Offset]) { 1924 MaskVec[i] = -1; 1925 continue; 1926 } 1927 1928 // If we can blend a non-undef lane, use that instead. 1929 if (!UndefElements[i]) 1930 MaskVec[i] = i + Offset; 1931 } 1932 }; 1933 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1934 BlendSplat(N1BV, 0); 1935 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1936 BlendSplat(N2BV, NElts); 1937 } 1938 1939 // Canonicalize all index into lhs, -> shuffle lhs, undef 1940 // Canonicalize all index into rhs, -> shuffle rhs, undef 1941 bool AllLHS = true, AllRHS = true; 1942 bool N2Undef = N2.isUndef(); 1943 for (int i = 0; i != NElts; ++i) { 1944 if (MaskVec[i] >= NElts) { 1945 if (N2Undef) 1946 MaskVec[i] = -1; 1947 else 1948 AllLHS = false; 1949 } else if (MaskVec[i] >= 0) { 1950 AllRHS = false; 1951 } 1952 } 1953 if (AllLHS && AllRHS) 1954 return getUNDEF(VT); 1955 if (AllLHS && !N2Undef) 1956 N2 = getUNDEF(VT); 1957 if (AllRHS) { 1958 N1 = getUNDEF(VT); 1959 commuteShuffle(N1, N2, MaskVec); 1960 } 1961 // Reset our undef status after accounting for the mask. 1962 N2Undef = N2.isUndef(); 1963 // Re-check whether both sides ended up undef. 1964 if (N1.isUndef() && N2Undef) 1965 return getUNDEF(VT); 1966 1967 // If Identity shuffle return that node. 1968 bool Identity = true, AllSame = true; 1969 for (int i = 0; i != NElts; ++i) { 1970 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1971 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1972 } 1973 if (Identity && NElts) 1974 return N1; 1975 1976 // Shuffling a constant splat doesn't change the result. 1977 if (N2Undef) { 1978 SDValue V = N1; 1979 1980 // Look through any bitcasts. We check that these don't change the number 1981 // (and size) of elements and just changes their types. 1982 while (V.getOpcode() == ISD::BITCAST) 1983 V = V->getOperand(0); 1984 1985 // A splat should always show up as a build vector node. 1986 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1987 BitVector UndefElements; 1988 SDValue Splat = BV->getSplatValue(&UndefElements); 1989 // If this is a splat of an undef, shuffling it is also undef. 1990 if (Splat && Splat.isUndef()) 1991 return getUNDEF(VT); 1992 1993 bool SameNumElts = 1994 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1995 1996 // We only have a splat which can skip shuffles if there is a splatted 1997 // value and no undef lanes rearranged by the shuffle. 1998 if (Splat && UndefElements.none()) { 1999 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2000 // number of elements match or the value splatted is a zero constant. 2001 if (SameNumElts) 2002 return N1; 2003 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2004 if (C->isZero()) 2005 return N1; 2006 } 2007 2008 // If the shuffle itself creates a splat, build the vector directly. 2009 if (AllSame && SameNumElts) { 2010 EVT BuildVT = BV->getValueType(0); 2011 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2012 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2013 2014 // We may have jumped through bitcasts, so the type of the 2015 // BUILD_VECTOR may not match the type of the shuffle. 2016 if (BuildVT != VT) 2017 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2018 return NewBV; 2019 } 2020 } 2021 } 2022 2023 FoldingSetNodeID ID; 2024 SDValue Ops[2] = { N1, N2 }; 2025 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2026 for (int i = 0; i != NElts; ++i) 2027 ID.AddInteger(MaskVec[i]); 2028 2029 void* IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2031 return SDValue(E, 0); 2032 2033 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2034 // SDNode doesn't have access to it. This memory will be "leaked" when 2035 // the node is deallocated, but recovered when the NodeAllocator is released. 2036 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2037 llvm::copy(MaskVec, MaskAlloc); 2038 2039 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2040 dl.getDebugLoc(), MaskAlloc); 2041 createOperands(N, Ops); 2042 2043 CSEMap.InsertNode(N, IP); 2044 InsertNode(N); 2045 SDValue V = SDValue(N, 0); 2046 NewSDValueDbgMsg(V, "Creating new node: ", this); 2047 return V; 2048 } 2049 2050 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2051 EVT VT = SV.getValueType(0); 2052 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2053 ShuffleVectorSDNode::commuteMask(MaskVec); 2054 2055 SDValue Op0 = SV.getOperand(0); 2056 SDValue Op1 = SV.getOperand(1); 2057 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2058 } 2059 2060 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2061 FoldingSetNodeID ID; 2062 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2063 ID.AddInteger(RegNo); 2064 void *IP = nullptr; 2065 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2066 return SDValue(E, 0); 2067 2068 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2069 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2070 CSEMap.InsertNode(N, IP); 2071 InsertNode(N); 2072 return SDValue(N, 0); 2073 } 2074 2075 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2076 FoldingSetNodeID ID; 2077 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2078 ID.AddPointer(RegMask); 2079 void *IP = nullptr; 2080 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2081 return SDValue(E, 0); 2082 2083 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2084 CSEMap.InsertNode(N, IP); 2085 InsertNode(N); 2086 return SDValue(N, 0); 2087 } 2088 2089 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2090 MCSymbol *Label) { 2091 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2092 } 2093 2094 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2095 SDValue Root, MCSymbol *Label) { 2096 FoldingSetNodeID ID; 2097 SDValue Ops[] = { Root }; 2098 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2099 ID.AddPointer(Label); 2100 void *IP = nullptr; 2101 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2102 return SDValue(E, 0); 2103 2104 auto *N = 2105 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2106 createOperands(N, Ops); 2107 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2114 int64_t Offset, bool isTarget, 2115 unsigned TargetFlags) { 2116 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2117 2118 FoldingSetNodeID ID; 2119 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2120 ID.AddPointer(BA); 2121 ID.AddInteger(Offset); 2122 ID.AddInteger(TargetFlags); 2123 void *IP = nullptr; 2124 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2125 return SDValue(E, 0); 2126 2127 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2128 CSEMap.InsertNode(N, IP); 2129 InsertNode(N); 2130 return SDValue(N, 0); 2131 } 2132 2133 SDValue SelectionDAG::getSrcValue(const Value *V) { 2134 FoldingSetNodeID ID; 2135 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2136 ID.AddPointer(V); 2137 2138 void *IP = nullptr; 2139 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2140 return SDValue(E, 0); 2141 2142 auto *N = newSDNode<SrcValueSDNode>(V); 2143 CSEMap.InsertNode(N, IP); 2144 InsertNode(N); 2145 return SDValue(N, 0); 2146 } 2147 2148 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2149 FoldingSetNodeID ID; 2150 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2151 ID.AddPointer(MD); 2152 2153 void *IP = nullptr; 2154 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2155 return SDValue(E, 0); 2156 2157 auto *N = newSDNode<MDNodeSDNode>(MD); 2158 CSEMap.InsertNode(N, IP); 2159 InsertNode(N); 2160 return SDValue(N, 0); 2161 } 2162 2163 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2164 if (VT == V.getValueType()) 2165 return V; 2166 2167 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2168 } 2169 2170 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2171 unsigned SrcAS, unsigned DestAS) { 2172 SDValue Ops[] = {Ptr}; 2173 FoldingSetNodeID ID; 2174 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2175 ID.AddInteger(SrcAS); 2176 ID.AddInteger(DestAS); 2177 2178 void *IP = nullptr; 2179 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2180 return SDValue(E, 0); 2181 2182 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2183 VT, SrcAS, DestAS); 2184 createOperands(N, Ops); 2185 2186 CSEMap.InsertNode(N, IP); 2187 InsertNode(N); 2188 return SDValue(N, 0); 2189 } 2190 2191 SDValue SelectionDAG::getFreeze(SDValue V) { 2192 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2193 } 2194 2195 /// getShiftAmountOperand - Return the specified value casted to 2196 /// the target's desired shift amount type. 2197 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2198 EVT OpTy = Op.getValueType(); 2199 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2200 if (OpTy == ShTy || OpTy.isVector()) return Op; 2201 2202 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2203 } 2204 2205 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2206 SDLoc dl(Node); 2207 const TargetLowering &TLI = getTargetLoweringInfo(); 2208 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2209 EVT VT = Node->getValueType(0); 2210 SDValue Tmp1 = Node->getOperand(0); 2211 SDValue Tmp2 = Node->getOperand(1); 2212 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2213 2214 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2215 Tmp2, MachinePointerInfo(V)); 2216 SDValue VAList = VAListLoad; 2217 2218 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2219 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2220 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2221 2222 VAList = 2223 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2224 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2225 } 2226 2227 // Increment the pointer, VAList, to the next vaarg 2228 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2229 getConstant(getDataLayout().getTypeAllocSize( 2230 VT.getTypeForEVT(*getContext())), 2231 dl, VAList.getValueType())); 2232 // Store the incremented VAList to the legalized pointer 2233 Tmp1 = 2234 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2235 // Load the actual argument out of the pointer VAList 2236 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2237 } 2238 2239 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2240 SDLoc dl(Node); 2241 const TargetLowering &TLI = getTargetLoweringInfo(); 2242 // This defaults to loading a pointer from the input and storing it to the 2243 // output, returning the chain. 2244 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2245 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2246 SDValue Tmp1 = 2247 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2248 Node->getOperand(2), MachinePointerInfo(VS)); 2249 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2250 MachinePointerInfo(VD)); 2251 } 2252 2253 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2254 const DataLayout &DL = getDataLayout(); 2255 Type *Ty = VT.getTypeForEVT(*getContext()); 2256 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2257 2258 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2259 return RedAlign; 2260 2261 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2262 const Align StackAlign = TFI->getStackAlign(); 2263 2264 // See if we can choose a smaller ABI alignment in cases where it's an 2265 // illegal vector type that will get broken down. 2266 if (RedAlign > StackAlign) { 2267 EVT IntermediateVT; 2268 MVT RegisterVT; 2269 unsigned NumIntermediates; 2270 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2271 NumIntermediates, RegisterVT); 2272 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2273 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2274 if (RedAlign2 < RedAlign) 2275 RedAlign = RedAlign2; 2276 } 2277 2278 return RedAlign; 2279 } 2280 2281 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2282 MachineFrameInfo &MFI = MF->getFrameInfo(); 2283 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2284 int StackID = 0; 2285 if (Bytes.isScalable()) 2286 StackID = TFI->getStackIDForScalableVectors(); 2287 // The stack id gives an indication of whether the object is scalable or 2288 // not, so it's safe to pass in the minimum size here. 2289 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2290 false, nullptr, StackID); 2291 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2292 } 2293 2294 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2295 Type *Ty = VT.getTypeForEVT(*getContext()); 2296 Align StackAlign = 2297 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2298 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2299 } 2300 2301 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2302 TypeSize VT1Size = VT1.getStoreSize(); 2303 TypeSize VT2Size = VT2.getStoreSize(); 2304 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2305 "Don't know how to choose the maximum size when creating a stack " 2306 "temporary"); 2307 TypeSize Bytes = 2308 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2309 2310 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2311 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2312 const DataLayout &DL = getDataLayout(); 2313 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2314 return CreateStackTemporary(Bytes, Align); 2315 } 2316 2317 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2318 ISD::CondCode Cond, const SDLoc &dl) { 2319 EVT OpVT = N1.getValueType(); 2320 2321 // These setcc operations always fold. 2322 switch (Cond) { 2323 default: break; 2324 case ISD::SETFALSE: 2325 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2326 case ISD::SETTRUE: 2327 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2328 2329 case ISD::SETOEQ: 2330 case ISD::SETOGT: 2331 case ISD::SETOGE: 2332 case ISD::SETOLT: 2333 case ISD::SETOLE: 2334 case ISD::SETONE: 2335 case ISD::SETO: 2336 case ISD::SETUO: 2337 case ISD::SETUEQ: 2338 case ISD::SETUNE: 2339 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2340 break; 2341 } 2342 2343 if (OpVT.isInteger()) { 2344 // For EQ and NE, we can always pick a value for the undef to make the 2345 // predicate pass or fail, so we can return undef. 2346 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2347 // icmp eq/ne X, undef -> undef. 2348 if ((N1.isUndef() || N2.isUndef()) && 2349 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2350 return getUNDEF(VT); 2351 2352 // If both operands are undef, we can return undef for int comparison. 2353 // icmp undef, undef -> undef. 2354 if (N1.isUndef() && N2.isUndef()) 2355 return getUNDEF(VT); 2356 2357 // icmp X, X -> true/false 2358 // icmp X, undef -> true/false because undef could be X. 2359 if (N1 == N2) 2360 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2361 } 2362 2363 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2364 const APInt &C2 = N2C->getAPIntValue(); 2365 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2366 const APInt &C1 = N1C->getAPIntValue(); 2367 2368 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2369 dl, VT, OpVT); 2370 } 2371 } 2372 2373 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2374 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2375 2376 if (N1CFP && N2CFP) { 2377 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2378 switch (Cond) { 2379 default: break; 2380 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2381 return getUNDEF(VT); 2382 LLVM_FALLTHROUGH; 2383 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2384 OpVT); 2385 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2386 return getUNDEF(VT); 2387 LLVM_FALLTHROUGH; 2388 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2389 R==APFloat::cmpLessThan, dl, VT, 2390 OpVT); 2391 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2392 return getUNDEF(VT); 2393 LLVM_FALLTHROUGH; 2394 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2397 return getUNDEF(VT); 2398 LLVM_FALLTHROUGH; 2399 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2400 VT, OpVT); 2401 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2402 return getUNDEF(VT); 2403 LLVM_FALLTHROUGH; 2404 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2405 R==APFloat::cmpEqual, dl, VT, 2406 OpVT); 2407 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2408 return getUNDEF(VT); 2409 LLVM_FALLTHROUGH; 2410 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2411 R==APFloat::cmpEqual, dl, VT, OpVT); 2412 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2413 OpVT); 2414 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2415 OpVT); 2416 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2417 R==APFloat::cmpEqual, dl, VT, 2418 OpVT); 2419 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2420 OpVT); 2421 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2422 R==APFloat::cmpLessThan, dl, VT, 2423 OpVT); 2424 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2425 R==APFloat::cmpUnordered, dl, VT, 2426 OpVT); 2427 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2428 VT, OpVT); 2429 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2430 OpVT); 2431 } 2432 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2433 // Ensure that the constant occurs on the RHS. 2434 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2435 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2436 return SDValue(); 2437 return getSetCC(dl, VT, N2, N1, SwappedCond); 2438 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2439 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2440 // If an operand is known to be a nan (or undef that could be a nan), we can 2441 // fold it. 2442 // Choosing NaN for the undef will always make unordered comparison succeed 2443 // and ordered comparison fails. 2444 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2445 switch (ISD::getUnorderedFlavor(Cond)) { 2446 default: 2447 llvm_unreachable("Unknown flavor!"); 2448 case 0: // Known false. 2449 return getBoolConstant(false, dl, VT, OpVT); 2450 case 1: // Known true. 2451 return getBoolConstant(true, dl, VT, OpVT); 2452 case 2: // Undefined. 2453 return getUNDEF(VT); 2454 } 2455 } 2456 2457 // Could not fold it. 2458 return SDValue(); 2459 } 2460 2461 /// See if the specified operand can be simplified with the knowledge that only 2462 /// the bits specified by DemandedBits are used. 2463 /// TODO: really we should be making this into the DAG equivalent of 2464 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2465 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2466 EVT VT = V.getValueType(); 2467 2468 if (VT.isScalableVector()) 2469 return SDValue(); 2470 2471 switch (V.getOpcode()) { 2472 default: 2473 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this); 2474 case ISD::Constant: { 2475 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2476 APInt NewVal = CVal & DemandedBits; 2477 if (NewVal != CVal) 2478 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2479 break; 2480 } 2481 case ISD::SRL: 2482 // Only look at single-use SRLs. 2483 if (!V.getNode()->hasOneUse()) 2484 break; 2485 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2486 // See if we can recursively simplify the LHS. 2487 unsigned Amt = RHSC->getZExtValue(); 2488 2489 // Watch out for shift count overflow though. 2490 if (Amt >= DemandedBits.getBitWidth()) 2491 break; 2492 APInt SrcDemandedBits = DemandedBits << Amt; 2493 if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits( 2494 V.getOperand(0), SrcDemandedBits, *this)) 2495 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2496 V.getOperand(1)); 2497 } 2498 break; 2499 } 2500 return SDValue(); 2501 } 2502 2503 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2504 /// use this predicate to simplify operations downstream. 2505 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2506 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2507 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2508 } 2509 2510 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2511 /// this predicate to simplify operations downstream. Mask is known to be zero 2512 /// for bits that V cannot have. 2513 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2514 unsigned Depth) const { 2515 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2516 } 2517 2518 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2519 /// DemandedElts. We use this predicate to simplify operations downstream. 2520 /// Mask is known to be zero for bits that V cannot have. 2521 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2522 const APInt &DemandedElts, 2523 unsigned Depth) const { 2524 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2525 } 2526 2527 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2528 /// DemandedElts. We use this predicate to simplify operations downstream. 2529 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2530 unsigned Depth /* = 0 */) const { 2531 APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits()); 2532 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2533 } 2534 2535 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2536 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2537 unsigned Depth) const { 2538 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2539 } 2540 2541 /// isSplatValue - Return true if the vector V has the same value 2542 /// across all DemandedElts. For scalable vectors it does not make 2543 /// sense to specify which elements are demanded or undefined, therefore 2544 /// they are simply ignored. 2545 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2546 APInt &UndefElts, unsigned Depth) const { 2547 unsigned Opcode = V.getOpcode(); 2548 EVT VT = V.getValueType(); 2549 assert(VT.isVector() && "Vector type expected"); 2550 2551 if (!VT.isScalableVector() && !DemandedElts) 2552 return false; // No demanded elts, better to assume we don't know anything. 2553 2554 if (Depth >= MaxRecursionDepth) 2555 return false; // Limit search depth. 2556 2557 // Deal with some common cases here that work for both fixed and scalable 2558 // vector types. 2559 switch (Opcode) { 2560 case ISD::SPLAT_VECTOR: 2561 UndefElts = V.getOperand(0).isUndef() 2562 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2563 : APInt(DemandedElts.getBitWidth(), 0); 2564 return true; 2565 case ISD::ADD: 2566 case ISD::SUB: 2567 case ISD::AND: 2568 case ISD::XOR: 2569 case ISD::OR: { 2570 APInt UndefLHS, UndefRHS; 2571 SDValue LHS = V.getOperand(0); 2572 SDValue RHS = V.getOperand(1); 2573 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2574 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2575 UndefElts = UndefLHS | UndefRHS; 2576 return true; 2577 } 2578 return false; 2579 } 2580 case ISD::ABS: 2581 case ISD::TRUNCATE: 2582 case ISD::SIGN_EXTEND: 2583 case ISD::ZERO_EXTEND: 2584 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2585 default: 2586 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2587 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2588 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2589 break; 2590 } 2591 2592 // We don't support other cases than those above for scalable vectors at 2593 // the moment. 2594 if (VT.isScalableVector()) 2595 return false; 2596 2597 unsigned NumElts = VT.getVectorNumElements(); 2598 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2599 UndefElts = APInt::getZero(NumElts); 2600 2601 switch (Opcode) { 2602 case ISD::BUILD_VECTOR: { 2603 SDValue Scl; 2604 for (unsigned i = 0; i != NumElts; ++i) { 2605 SDValue Op = V.getOperand(i); 2606 if (Op.isUndef()) { 2607 UndefElts.setBit(i); 2608 continue; 2609 } 2610 if (!DemandedElts[i]) 2611 continue; 2612 if (Scl && Scl != Op) 2613 return false; 2614 Scl = Op; 2615 } 2616 return true; 2617 } 2618 case ISD::VECTOR_SHUFFLE: { 2619 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2620 APInt DemandedLHS = APInt::getNullValue(NumElts); 2621 APInt DemandedRHS = APInt::getNullValue(NumElts); 2622 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2623 for (int i = 0; i != (int)NumElts; ++i) { 2624 int M = Mask[i]; 2625 if (M < 0) { 2626 UndefElts.setBit(i); 2627 continue; 2628 } 2629 if (!DemandedElts[i]) 2630 continue; 2631 if (M < (int)NumElts) 2632 DemandedLHS.setBit(M); 2633 else 2634 DemandedRHS.setBit(M - NumElts); 2635 } 2636 2637 // If we aren't demanding either op, assume there's no splat. 2638 // If we are demanding both ops, assume there's no splat. 2639 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2640 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2641 return false; 2642 2643 // See if the demanded elts of the source op is a splat or we only demand 2644 // one element, which should always be a splat. 2645 // TODO: Handle source ops splats with undefs. 2646 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2647 APInt SrcUndefs; 2648 return (SrcElts.countPopulation() == 1) || 2649 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2650 (SrcElts & SrcUndefs).isZero()); 2651 }; 2652 if (!DemandedLHS.isZero()) 2653 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2654 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2655 } 2656 case ISD::EXTRACT_SUBVECTOR: { 2657 // Offset the demanded elts by the subvector index. 2658 SDValue Src = V.getOperand(0); 2659 // We don't support scalable vectors at the moment. 2660 if (Src.getValueType().isScalableVector()) 2661 return false; 2662 uint64_t Idx = V.getConstantOperandVal(1); 2663 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2664 APInt UndefSrcElts; 2665 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2666 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2667 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2668 return true; 2669 } 2670 break; 2671 } 2672 case ISD::ANY_EXTEND_VECTOR_INREG: 2673 case ISD::SIGN_EXTEND_VECTOR_INREG: 2674 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2675 // Widen the demanded elts by the src element count. 2676 SDValue Src = V.getOperand(0); 2677 // We don't support scalable vectors at the moment. 2678 if (Src.getValueType().isScalableVector()) 2679 return false; 2680 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2681 APInt UndefSrcElts; 2682 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2683 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2684 UndefElts = UndefSrcElts.trunc(NumElts); 2685 return true; 2686 } 2687 break; 2688 } 2689 case ISD::BITCAST: { 2690 SDValue Src = V.getOperand(0); 2691 EVT SrcVT = Src.getValueType(); 2692 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2693 unsigned BitWidth = VT.getScalarSizeInBits(); 2694 2695 // Ignore bitcasts from unsupported types. 2696 // TODO: Add fp support? 2697 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2698 break; 2699 2700 // Bitcast 'small element' vector to 'large element' vector. 2701 if ((BitWidth % SrcBitWidth) == 0) { 2702 // See if each sub element is a splat. 2703 unsigned Scale = BitWidth / SrcBitWidth; 2704 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2705 APInt ScaledDemandedElts = 2706 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2707 for (unsigned I = 0; I != Scale; ++I) { 2708 APInt SubUndefElts; 2709 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2710 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2711 SubDemandedElts &= ScaledDemandedElts; 2712 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2713 return false; 2714 2715 // Here we can't do "MatchAnyBits" operation merge for undef bits. 2716 // Because some operation only use part value of the source. 2717 // Take llvm.fshl.* for example: 2718 // t1: v4i32 = Constant:i32<12>, undef:i32, Constant:i32<12>, undef:i32 2719 // t2: v2i64 = bitcast t1 2720 // t5: v2i64 = fshl t3, t4, t2 2721 // We can not convert t2 to {i64 undef, i64 undef} 2722 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts, 2723 /*MatchAllBits=*/true); 2724 } 2725 return true; 2726 } 2727 break; 2728 } 2729 } 2730 2731 return false; 2732 } 2733 2734 /// Helper wrapper to main isSplatValue function. 2735 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2736 EVT VT = V.getValueType(); 2737 assert(VT.isVector() && "Vector type expected"); 2738 2739 APInt UndefElts; 2740 APInt DemandedElts; 2741 2742 // For now we don't support this with scalable vectors. 2743 if (!VT.isScalableVector()) 2744 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2745 return isSplatValue(V, DemandedElts, UndefElts) && 2746 (AllowUndefs || !UndefElts); 2747 } 2748 2749 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2750 V = peekThroughExtractSubvectors(V); 2751 2752 EVT VT = V.getValueType(); 2753 unsigned Opcode = V.getOpcode(); 2754 switch (Opcode) { 2755 default: { 2756 APInt UndefElts; 2757 APInt DemandedElts; 2758 2759 if (!VT.isScalableVector()) 2760 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2761 2762 if (isSplatValue(V, DemandedElts, UndefElts)) { 2763 if (VT.isScalableVector()) { 2764 // DemandedElts and UndefElts are ignored for scalable vectors, since 2765 // the only supported cases are SPLAT_VECTOR nodes. 2766 SplatIdx = 0; 2767 } else { 2768 // Handle case where all demanded elements are UNDEF. 2769 if (DemandedElts.isSubsetOf(UndefElts)) { 2770 SplatIdx = 0; 2771 return getUNDEF(VT); 2772 } 2773 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2774 } 2775 return V; 2776 } 2777 break; 2778 } 2779 case ISD::SPLAT_VECTOR: 2780 SplatIdx = 0; 2781 return V; 2782 case ISD::VECTOR_SHUFFLE: { 2783 if (VT.isScalableVector()) 2784 return SDValue(); 2785 2786 // Check if this is a shuffle node doing a splat. 2787 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2788 // getTargetVShiftNode currently struggles without the splat source. 2789 auto *SVN = cast<ShuffleVectorSDNode>(V); 2790 if (!SVN->isSplat()) 2791 break; 2792 int Idx = SVN->getSplatIndex(); 2793 int NumElts = V.getValueType().getVectorNumElements(); 2794 SplatIdx = Idx % NumElts; 2795 return V.getOperand(Idx / NumElts); 2796 } 2797 } 2798 2799 return SDValue(); 2800 } 2801 2802 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2803 int SplatIdx; 2804 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2805 EVT SVT = SrcVector.getValueType().getScalarType(); 2806 EVT LegalSVT = SVT; 2807 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2808 if (!SVT.isInteger()) 2809 return SDValue(); 2810 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2811 if (LegalSVT.bitsLT(SVT)) 2812 return SDValue(); 2813 } 2814 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2815 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2816 } 2817 return SDValue(); 2818 } 2819 2820 const APInt * 2821 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2822 const APInt &DemandedElts) const { 2823 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2824 V.getOpcode() == ISD::SRA) && 2825 "Unknown shift node"); 2826 unsigned BitWidth = V.getScalarValueSizeInBits(); 2827 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2828 // Shifting more than the bitwidth is not valid. 2829 const APInt &ShAmt = SA->getAPIntValue(); 2830 if (ShAmt.ult(BitWidth)) 2831 return &ShAmt; 2832 } 2833 return nullptr; 2834 } 2835 2836 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2837 SDValue V, const APInt &DemandedElts) const { 2838 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2839 V.getOpcode() == ISD::SRA) && 2840 "Unknown shift node"); 2841 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2842 return ValidAmt; 2843 unsigned BitWidth = V.getScalarValueSizeInBits(); 2844 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2845 if (!BV) 2846 return nullptr; 2847 const APInt *MinShAmt = nullptr; 2848 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2849 if (!DemandedElts[i]) 2850 continue; 2851 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2852 if (!SA) 2853 return nullptr; 2854 // Shifting more than the bitwidth is not valid. 2855 const APInt &ShAmt = SA->getAPIntValue(); 2856 if (ShAmt.uge(BitWidth)) 2857 return nullptr; 2858 if (MinShAmt && MinShAmt->ule(ShAmt)) 2859 continue; 2860 MinShAmt = &ShAmt; 2861 } 2862 return MinShAmt; 2863 } 2864 2865 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2866 SDValue V, const APInt &DemandedElts) const { 2867 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2868 V.getOpcode() == ISD::SRA) && 2869 "Unknown shift node"); 2870 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2871 return ValidAmt; 2872 unsigned BitWidth = V.getScalarValueSizeInBits(); 2873 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2874 if (!BV) 2875 return nullptr; 2876 const APInt *MaxShAmt = nullptr; 2877 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2878 if (!DemandedElts[i]) 2879 continue; 2880 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2881 if (!SA) 2882 return nullptr; 2883 // Shifting more than the bitwidth is not valid. 2884 const APInt &ShAmt = SA->getAPIntValue(); 2885 if (ShAmt.uge(BitWidth)) 2886 return nullptr; 2887 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2888 continue; 2889 MaxShAmt = &ShAmt; 2890 } 2891 return MaxShAmt; 2892 } 2893 2894 /// Determine which bits of Op are known to be either zero or one and return 2895 /// them in Known. For vectors, the known bits are those that are shared by 2896 /// every vector element. 2897 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2898 EVT VT = Op.getValueType(); 2899 2900 // TOOD: Until we have a plan for how to represent demanded elements for 2901 // scalable vectors, we can just bail out for now. 2902 if (Op.getValueType().isScalableVector()) { 2903 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2904 return KnownBits(BitWidth); 2905 } 2906 2907 APInt DemandedElts = VT.isVector() 2908 ? APInt::getAllOnes(VT.getVectorNumElements()) 2909 : APInt(1, 1); 2910 return computeKnownBits(Op, DemandedElts, Depth); 2911 } 2912 2913 /// Determine which bits of Op are known to be either zero or one and return 2914 /// them in Known. The DemandedElts argument allows us to only collect the known 2915 /// bits that are shared by the requested vector elements. 2916 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2917 unsigned Depth) const { 2918 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2919 2920 KnownBits Known(BitWidth); // Don't know anything. 2921 2922 // TOOD: Until we have a plan for how to represent demanded elements for 2923 // scalable vectors, we can just bail out for now. 2924 if (Op.getValueType().isScalableVector()) 2925 return Known; 2926 2927 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2928 // We know all of the bits for a constant! 2929 return KnownBits::makeConstant(C->getAPIntValue()); 2930 } 2931 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2932 // We know all of the bits for a constant fp! 2933 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2934 } 2935 2936 if (Depth >= MaxRecursionDepth) 2937 return Known; // Limit search depth. 2938 2939 KnownBits Known2; 2940 unsigned NumElts = DemandedElts.getBitWidth(); 2941 assert((!Op.getValueType().isVector() || 2942 NumElts == Op.getValueType().getVectorNumElements()) && 2943 "Unexpected vector size"); 2944 2945 if (!DemandedElts) 2946 return Known; // No demanded elts, better to assume we don't know anything. 2947 2948 unsigned Opcode = Op.getOpcode(); 2949 switch (Opcode) { 2950 case ISD::BUILD_VECTOR: 2951 // Collect the known bits that are shared by every demanded vector element. 2952 Known.Zero.setAllBits(); Known.One.setAllBits(); 2953 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2954 if (!DemandedElts[i]) 2955 continue; 2956 2957 SDValue SrcOp = Op.getOperand(i); 2958 Known2 = computeKnownBits(SrcOp, Depth + 1); 2959 2960 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2961 if (SrcOp.getValueSizeInBits() != BitWidth) { 2962 assert(SrcOp.getValueSizeInBits() > BitWidth && 2963 "Expected BUILD_VECTOR implicit truncation"); 2964 Known2 = Known2.trunc(BitWidth); 2965 } 2966 2967 // Known bits are the values that are shared by every demanded element. 2968 Known = KnownBits::commonBits(Known, Known2); 2969 2970 // If we don't know any bits, early out. 2971 if (Known.isUnknown()) 2972 break; 2973 } 2974 break; 2975 case ISD::VECTOR_SHUFFLE: { 2976 // Collect the known bits that are shared by every vector element referenced 2977 // by the shuffle. 2978 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2979 Known.Zero.setAllBits(); Known.One.setAllBits(); 2980 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2981 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2982 for (unsigned i = 0; i != NumElts; ++i) { 2983 if (!DemandedElts[i]) 2984 continue; 2985 2986 int M = SVN->getMaskElt(i); 2987 if (M < 0) { 2988 // For UNDEF elements, we don't know anything about the common state of 2989 // the shuffle result. 2990 Known.resetAll(); 2991 DemandedLHS.clearAllBits(); 2992 DemandedRHS.clearAllBits(); 2993 break; 2994 } 2995 2996 if ((unsigned)M < NumElts) 2997 DemandedLHS.setBit((unsigned)M % NumElts); 2998 else 2999 DemandedRHS.setBit((unsigned)M % NumElts); 3000 } 3001 // Known bits are the values that are shared by every demanded element. 3002 if (!!DemandedLHS) { 3003 SDValue LHS = Op.getOperand(0); 3004 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3005 Known = KnownBits::commonBits(Known, Known2); 3006 } 3007 // If we don't know any bits, early out. 3008 if (Known.isUnknown()) 3009 break; 3010 if (!!DemandedRHS) { 3011 SDValue RHS = Op.getOperand(1); 3012 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3013 Known = KnownBits::commonBits(Known, Known2); 3014 } 3015 break; 3016 } 3017 case ISD::CONCAT_VECTORS: { 3018 // Split DemandedElts and test each of the demanded subvectors. 3019 Known.Zero.setAllBits(); Known.One.setAllBits(); 3020 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3021 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3022 unsigned NumSubVectors = Op.getNumOperands(); 3023 for (unsigned i = 0; i != NumSubVectors; ++i) { 3024 APInt DemandedSub = 3025 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3026 if (!!DemandedSub) { 3027 SDValue Sub = Op.getOperand(i); 3028 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3029 Known = KnownBits::commonBits(Known, Known2); 3030 } 3031 // If we don't know any bits, early out. 3032 if (Known.isUnknown()) 3033 break; 3034 } 3035 break; 3036 } 3037 case ISD::INSERT_SUBVECTOR: { 3038 // Demand any elements from the subvector and the remainder from the src its 3039 // inserted into. 3040 SDValue Src = Op.getOperand(0); 3041 SDValue Sub = Op.getOperand(1); 3042 uint64_t Idx = Op.getConstantOperandVal(2); 3043 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3044 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3045 APInt DemandedSrcElts = DemandedElts; 3046 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3047 3048 Known.One.setAllBits(); 3049 Known.Zero.setAllBits(); 3050 if (!!DemandedSubElts) { 3051 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3052 if (Known.isUnknown()) 3053 break; // early-out. 3054 } 3055 if (!!DemandedSrcElts) { 3056 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3057 Known = KnownBits::commonBits(Known, Known2); 3058 } 3059 break; 3060 } 3061 case ISD::EXTRACT_SUBVECTOR: { 3062 // Offset the demanded elts by the subvector index. 3063 SDValue Src = Op.getOperand(0); 3064 // Bail until we can represent demanded elements for scalable vectors. 3065 if (Src.getValueType().isScalableVector()) 3066 break; 3067 uint64_t Idx = Op.getConstantOperandVal(1); 3068 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3069 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3070 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3071 break; 3072 } 3073 case ISD::SCALAR_TO_VECTOR: { 3074 // We know about scalar_to_vector as much as we know about it source, 3075 // which becomes the first element of otherwise unknown vector. 3076 if (DemandedElts != 1) 3077 break; 3078 3079 SDValue N0 = Op.getOperand(0); 3080 Known = computeKnownBits(N0, Depth + 1); 3081 if (N0.getValueSizeInBits() != BitWidth) 3082 Known = Known.trunc(BitWidth); 3083 3084 break; 3085 } 3086 case ISD::BITCAST: { 3087 SDValue N0 = Op.getOperand(0); 3088 EVT SubVT = N0.getValueType(); 3089 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3090 3091 // Ignore bitcasts from unsupported types. 3092 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3093 break; 3094 3095 // Fast handling of 'identity' bitcasts. 3096 if (BitWidth == SubBitWidth) { 3097 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3098 break; 3099 } 3100 3101 bool IsLE = getDataLayout().isLittleEndian(); 3102 3103 // Bitcast 'small element' vector to 'large element' scalar/vector. 3104 if ((BitWidth % SubBitWidth) == 0) { 3105 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3106 3107 // Collect known bits for the (larger) output by collecting the known 3108 // bits from each set of sub elements and shift these into place. 3109 // We need to separately call computeKnownBits for each set of 3110 // sub elements as the knownbits for each is likely to be different. 3111 unsigned SubScale = BitWidth / SubBitWidth; 3112 APInt SubDemandedElts(NumElts * SubScale, 0); 3113 for (unsigned i = 0; i != NumElts; ++i) 3114 if (DemandedElts[i]) 3115 SubDemandedElts.setBit(i * SubScale); 3116 3117 for (unsigned i = 0; i != SubScale; ++i) { 3118 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3119 Depth + 1); 3120 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3121 Known.insertBits(Known2, SubBitWidth * Shifts); 3122 } 3123 } 3124 3125 // Bitcast 'large element' scalar/vector to 'small element' vector. 3126 if ((SubBitWidth % BitWidth) == 0) { 3127 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3128 3129 // Collect known bits for the (smaller) output by collecting the known 3130 // bits from the overlapping larger input elements and extracting the 3131 // sub sections we actually care about. 3132 unsigned SubScale = SubBitWidth / BitWidth; 3133 APInt SubDemandedElts = 3134 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3135 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3136 3137 Known.Zero.setAllBits(); Known.One.setAllBits(); 3138 for (unsigned i = 0; i != NumElts; ++i) 3139 if (DemandedElts[i]) { 3140 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3141 unsigned Offset = (Shifts % SubScale) * BitWidth; 3142 Known = KnownBits::commonBits(Known, 3143 Known2.extractBits(BitWidth, Offset)); 3144 // If we don't know any bits, early out. 3145 if (Known.isUnknown()) 3146 break; 3147 } 3148 } 3149 break; 3150 } 3151 case ISD::AND: 3152 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 3155 Known &= Known2; 3156 break; 3157 case ISD::OR: 3158 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 3161 Known |= Known2; 3162 break; 3163 case ISD::XOR: 3164 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3165 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 3167 Known ^= Known2; 3168 break; 3169 case ISD::MUL: { 3170 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3171 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3173 // TODO: SelfMultiply can be poison, but not undef. 3174 if (SelfMultiply) 3175 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3176 Op.getOperand(0), DemandedElts, false, Depth + 1); 3177 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3178 3179 // If the multiplication is known not to overflow, the product of a number 3180 // with itself is non-negative. Only do this if we didn't already computed 3181 // the opposite value for the sign bit. 3182 if (Op->getFlags().hasNoSignedWrap() && 3183 Op.getOperand(0) == Op.getOperand(1) && 3184 !Known.isNegative()) 3185 Known.makeNonNegative(); 3186 break; 3187 } 3188 case ISD::MULHU: { 3189 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3190 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3191 Known = KnownBits::mulhu(Known, Known2); 3192 break; 3193 } 3194 case ISD::MULHS: { 3195 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3196 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known = KnownBits::mulhs(Known, Known2); 3198 break; 3199 } 3200 case ISD::UMUL_LOHI: { 3201 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3202 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3203 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3204 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3205 if (Op.getResNo() == 0) 3206 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3207 else 3208 Known = KnownBits::mulhu(Known, Known2); 3209 break; 3210 } 3211 case ISD::SMUL_LOHI: { 3212 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3213 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3214 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3216 if (Op.getResNo() == 0) 3217 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3218 else 3219 Known = KnownBits::mulhs(Known, Known2); 3220 break; 3221 } 3222 case ISD::UDIV: { 3223 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3224 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3225 Known = KnownBits::udiv(Known, Known2); 3226 break; 3227 } 3228 case ISD::AVGCEILU: { 3229 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3230 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3231 Known = Known.zext(BitWidth + 1); 3232 Known2 = Known2.zext(BitWidth + 1); 3233 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3234 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3235 Known = Known.extractBits(BitWidth, 1); 3236 break; 3237 } 3238 case ISD::SELECT: 3239 case ISD::VSELECT: 3240 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3241 // If we don't know any bits, early out. 3242 if (Known.isUnknown()) 3243 break; 3244 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3245 3246 // Only known if known in both the LHS and RHS. 3247 Known = KnownBits::commonBits(Known, Known2); 3248 break; 3249 case ISD::SELECT_CC: 3250 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3251 // If we don't know any bits, early out. 3252 if (Known.isUnknown()) 3253 break; 3254 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3255 3256 // Only known if known in both the LHS and RHS. 3257 Known = KnownBits::commonBits(Known, Known2); 3258 break; 3259 case ISD::SMULO: 3260 case ISD::UMULO: 3261 if (Op.getResNo() != 1) 3262 break; 3263 // The boolean result conforms to getBooleanContents. 3264 // If we know the result of a setcc has the top bits zero, use this info. 3265 // We know that we have an integer-based boolean since these operations 3266 // are only available for integer. 3267 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3268 TargetLowering::ZeroOrOneBooleanContent && 3269 BitWidth > 1) 3270 Known.Zero.setBitsFrom(1); 3271 break; 3272 case ISD::SETCC: 3273 case ISD::SETCCCARRY: 3274 case ISD::STRICT_FSETCC: 3275 case ISD::STRICT_FSETCCS: { 3276 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3277 // If we know the result of a setcc has the top bits zero, use this info. 3278 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3279 TargetLowering::ZeroOrOneBooleanContent && 3280 BitWidth > 1) 3281 Known.Zero.setBitsFrom(1); 3282 break; 3283 } 3284 case ISD::SHL: 3285 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3286 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3287 Known = KnownBits::shl(Known, Known2); 3288 3289 // Minimum shift low bits are known zero. 3290 if (const APInt *ShMinAmt = 3291 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3292 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3293 break; 3294 case ISD::SRL: 3295 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3296 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3297 Known = KnownBits::lshr(Known, Known2); 3298 3299 // Minimum shift high bits are known zero. 3300 if (const APInt *ShMinAmt = 3301 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3302 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3303 break; 3304 case ISD::SRA: 3305 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3306 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3307 Known = KnownBits::ashr(Known, Known2); 3308 // TODO: Add minimum shift high known sign bits. 3309 break; 3310 case ISD::FSHL: 3311 case ISD::FSHR: 3312 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3313 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3314 3315 // For fshl, 0-shift returns the 1st arg. 3316 // For fshr, 0-shift returns the 2nd arg. 3317 if (Amt == 0) { 3318 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3319 DemandedElts, Depth + 1); 3320 break; 3321 } 3322 3323 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3324 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3325 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3326 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3327 if (Opcode == ISD::FSHL) { 3328 Known.One <<= Amt; 3329 Known.Zero <<= Amt; 3330 Known2.One.lshrInPlace(BitWidth - Amt); 3331 Known2.Zero.lshrInPlace(BitWidth - Amt); 3332 } else { 3333 Known.One <<= BitWidth - Amt; 3334 Known.Zero <<= BitWidth - Amt; 3335 Known2.One.lshrInPlace(Amt); 3336 Known2.Zero.lshrInPlace(Amt); 3337 } 3338 Known.One |= Known2.One; 3339 Known.Zero |= Known2.Zero; 3340 } 3341 break; 3342 case ISD::SIGN_EXTEND_INREG: { 3343 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3344 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3345 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3346 break; 3347 } 3348 case ISD::CTTZ: 3349 case ISD::CTTZ_ZERO_UNDEF: { 3350 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If we have a known 1, its position is our upper bound. 3352 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3353 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3354 Known.Zero.setBitsFrom(LowBits); 3355 break; 3356 } 3357 case ISD::CTLZ: 3358 case ISD::CTLZ_ZERO_UNDEF: { 3359 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3360 // If we have a known 1, its position is our upper bound. 3361 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3362 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3363 Known.Zero.setBitsFrom(LowBits); 3364 break; 3365 } 3366 case ISD::CTPOP: { 3367 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 // If we know some of the bits are zero, they can't be one. 3369 unsigned PossibleOnes = Known2.countMaxPopulation(); 3370 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3371 break; 3372 } 3373 case ISD::PARITY: { 3374 // Parity returns 0 everywhere but the LSB. 3375 Known.Zero.setBitsFrom(1); 3376 break; 3377 } 3378 case ISD::LOAD: { 3379 LoadSDNode *LD = cast<LoadSDNode>(Op); 3380 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3381 if (ISD::isNON_EXTLoad(LD) && Cst) { 3382 // Determine any common known bits from the loaded constant pool value. 3383 Type *CstTy = Cst->getType(); 3384 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3385 // If its a vector splat, then we can (quickly) reuse the scalar path. 3386 // NOTE: We assume all elements match and none are UNDEF. 3387 if (CstTy->isVectorTy()) { 3388 if (const Constant *Splat = Cst->getSplatValue()) { 3389 Cst = Splat; 3390 CstTy = Cst->getType(); 3391 } 3392 } 3393 // TODO - do we need to handle different bitwidths? 3394 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3395 // Iterate across all vector elements finding common known bits. 3396 Known.One.setAllBits(); 3397 Known.Zero.setAllBits(); 3398 for (unsigned i = 0; i != NumElts; ++i) { 3399 if (!DemandedElts[i]) 3400 continue; 3401 if (Constant *Elt = Cst->getAggregateElement(i)) { 3402 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3403 const APInt &Value = CInt->getValue(); 3404 Known.One &= Value; 3405 Known.Zero &= ~Value; 3406 continue; 3407 } 3408 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3409 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3410 Known.One &= Value; 3411 Known.Zero &= ~Value; 3412 continue; 3413 } 3414 } 3415 Known.One.clearAllBits(); 3416 Known.Zero.clearAllBits(); 3417 break; 3418 } 3419 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3420 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3421 Known = KnownBits::makeConstant(CInt->getValue()); 3422 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3423 Known = 3424 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3425 } 3426 } 3427 } 3428 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3429 // If this is a ZEXTLoad and we are looking at the loaded value. 3430 EVT VT = LD->getMemoryVT(); 3431 unsigned MemBits = VT.getScalarSizeInBits(); 3432 Known.Zero.setBitsFrom(MemBits); 3433 } else if (const MDNode *Ranges = LD->getRanges()) { 3434 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3435 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3436 } 3437 break; 3438 } 3439 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3440 EVT InVT = Op.getOperand(0).getValueType(); 3441 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3442 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3443 Known = Known.zext(BitWidth); 3444 break; 3445 } 3446 case ISD::ZERO_EXTEND: { 3447 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3448 Known = Known.zext(BitWidth); 3449 break; 3450 } 3451 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3452 EVT InVT = Op.getOperand(0).getValueType(); 3453 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3454 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3455 // If the sign bit is known to be zero or one, then sext will extend 3456 // it to the top bits, else it will just zext. 3457 Known = Known.sext(BitWidth); 3458 break; 3459 } 3460 case ISD::SIGN_EXTEND: { 3461 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3462 // If the sign bit is known to be zero or one, then sext will extend 3463 // it to the top bits, else it will just zext. 3464 Known = Known.sext(BitWidth); 3465 break; 3466 } 3467 case ISD::ANY_EXTEND_VECTOR_INREG: { 3468 EVT InVT = Op.getOperand(0).getValueType(); 3469 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3470 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3471 Known = Known.anyext(BitWidth); 3472 break; 3473 } 3474 case ISD::ANY_EXTEND: { 3475 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3476 Known = Known.anyext(BitWidth); 3477 break; 3478 } 3479 case ISD::TRUNCATE: { 3480 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3481 Known = Known.trunc(BitWidth); 3482 break; 3483 } 3484 case ISD::AssertZext: { 3485 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3486 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3487 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3488 Known.Zero |= (~InMask); 3489 Known.One &= (~Known.Zero); 3490 break; 3491 } 3492 case ISD::AssertAlign: { 3493 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3494 assert(LogOfAlign != 0); 3495 3496 // TODO: Should use maximum with source 3497 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3498 // well as clearing one bits. 3499 Known.Zero.setLowBits(LogOfAlign); 3500 Known.One.clearLowBits(LogOfAlign); 3501 break; 3502 } 3503 case ISD::FGETSIGN: 3504 // All bits are zero except the low bit. 3505 Known.Zero.setBitsFrom(1); 3506 break; 3507 case ISD::USUBO: 3508 case ISD::SSUBO: 3509 case ISD::SUBCARRY: 3510 case ISD::SSUBO_CARRY: 3511 if (Op.getResNo() == 1) { 3512 // If we know the result of a setcc has the top bits zero, use this info. 3513 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3514 TargetLowering::ZeroOrOneBooleanContent && 3515 BitWidth > 1) 3516 Known.Zero.setBitsFrom(1); 3517 break; 3518 } 3519 LLVM_FALLTHROUGH; 3520 case ISD::SUB: 3521 case ISD::SUBC: { 3522 assert(Op.getResNo() == 0 && 3523 "We only compute knownbits for the difference here."); 3524 3525 // TODO: Compute influence of the carry operand. 3526 if (Opcode == ISD::SUBCARRY || Opcode == ISD::SSUBO_CARRY) 3527 break; 3528 3529 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3530 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3531 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3532 Known, Known2); 3533 break; 3534 } 3535 case ISD::UADDO: 3536 case ISD::SADDO: 3537 case ISD::ADDCARRY: 3538 case ISD::SADDO_CARRY: 3539 if (Op.getResNo() == 1) { 3540 // If we know the result of a setcc has the top bits zero, use this info. 3541 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3542 TargetLowering::ZeroOrOneBooleanContent && 3543 BitWidth > 1) 3544 Known.Zero.setBitsFrom(1); 3545 break; 3546 } 3547 LLVM_FALLTHROUGH; 3548 case ISD::ADD: 3549 case ISD::ADDC: 3550 case ISD::ADDE: { 3551 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3552 3553 // With ADDE and ADDCARRY, a carry bit may be added in. 3554 KnownBits Carry(1); 3555 if (Opcode == ISD::ADDE) 3556 // Can't track carry from glue, set carry to unknown. 3557 Carry.resetAll(); 3558 else if (Opcode == ISD::ADDCARRY || Opcode == ISD::SADDO_CARRY) 3559 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3560 // the trouble (how often will we find a known carry bit). And I haven't 3561 // tested this very much yet, but something like this might work: 3562 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3563 // Carry = Carry.zextOrTrunc(1, false); 3564 Carry.resetAll(); 3565 else 3566 Carry.setAllZero(); 3567 3568 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3569 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3570 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3571 break; 3572 } 3573 case ISD::SREM: { 3574 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3575 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3576 Known = KnownBits::srem(Known, Known2); 3577 break; 3578 } 3579 case ISD::UREM: { 3580 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3581 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3582 Known = KnownBits::urem(Known, Known2); 3583 break; 3584 } 3585 case ISD::EXTRACT_ELEMENT: { 3586 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3587 const unsigned Index = Op.getConstantOperandVal(1); 3588 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3589 3590 // Remove low part of known bits mask 3591 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3592 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3593 3594 // Remove high part of known bit mask 3595 Known = Known.trunc(EltBitWidth); 3596 break; 3597 } 3598 case ISD::EXTRACT_VECTOR_ELT: { 3599 SDValue InVec = Op.getOperand(0); 3600 SDValue EltNo = Op.getOperand(1); 3601 EVT VecVT = InVec.getValueType(); 3602 // computeKnownBits not yet implemented for scalable vectors. 3603 if (VecVT.isScalableVector()) 3604 break; 3605 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3606 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3607 3608 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3609 // anything about the extended bits. 3610 if (BitWidth > EltBitWidth) 3611 Known = Known.trunc(EltBitWidth); 3612 3613 // If we know the element index, just demand that vector element, else for 3614 // an unknown element index, ignore DemandedElts and demand them all. 3615 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3616 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3617 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3618 DemandedSrcElts = 3619 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3620 3621 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3622 if (BitWidth > EltBitWidth) 3623 Known = Known.anyext(BitWidth); 3624 break; 3625 } 3626 case ISD::INSERT_VECTOR_ELT: { 3627 // If we know the element index, split the demand between the 3628 // source vector and the inserted element, otherwise assume we need 3629 // the original demanded vector elements and the value. 3630 SDValue InVec = Op.getOperand(0); 3631 SDValue InVal = Op.getOperand(1); 3632 SDValue EltNo = Op.getOperand(2); 3633 bool DemandedVal = true; 3634 APInt DemandedVecElts = DemandedElts; 3635 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3636 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3637 unsigned EltIdx = CEltNo->getZExtValue(); 3638 DemandedVal = !!DemandedElts[EltIdx]; 3639 DemandedVecElts.clearBit(EltIdx); 3640 } 3641 Known.One.setAllBits(); 3642 Known.Zero.setAllBits(); 3643 if (DemandedVal) { 3644 Known2 = computeKnownBits(InVal, Depth + 1); 3645 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3646 } 3647 if (!!DemandedVecElts) { 3648 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3649 Known = KnownBits::commonBits(Known, Known2); 3650 } 3651 break; 3652 } 3653 case ISD::BITREVERSE: { 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known = Known2.reverseBits(); 3656 break; 3657 } 3658 case ISD::BSWAP: { 3659 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3660 Known = Known2.byteSwap(); 3661 break; 3662 } 3663 case ISD::ABS: { 3664 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3665 Known = Known2.abs(); 3666 break; 3667 } 3668 case ISD::USUBSAT: { 3669 // The result of usubsat will never be larger than the LHS. 3670 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3671 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3672 break; 3673 } 3674 case ISD::UMIN: { 3675 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3676 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3677 Known = KnownBits::umin(Known, Known2); 3678 break; 3679 } 3680 case ISD::UMAX: { 3681 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3682 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3683 Known = KnownBits::umax(Known, Known2); 3684 break; 3685 } 3686 case ISD::SMIN: 3687 case ISD::SMAX: { 3688 // If we have a clamp pattern, we know that the number of sign bits will be 3689 // the minimum of the clamp min/max range. 3690 bool IsMax = (Opcode == ISD::SMAX); 3691 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3692 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3693 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3694 CstHigh = 3695 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3696 if (CstLow && CstHigh) { 3697 if (!IsMax) 3698 std::swap(CstLow, CstHigh); 3699 3700 const APInt &ValueLow = CstLow->getAPIntValue(); 3701 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3702 if (ValueLow.sle(ValueHigh)) { 3703 unsigned LowSignBits = ValueLow.getNumSignBits(); 3704 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3705 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3706 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3707 Known.One.setHighBits(MinSignBits); 3708 break; 3709 } 3710 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3711 Known.Zero.setHighBits(MinSignBits); 3712 break; 3713 } 3714 } 3715 } 3716 3717 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3718 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3719 if (IsMax) 3720 Known = KnownBits::smax(Known, Known2); 3721 else 3722 Known = KnownBits::smin(Known, Known2); 3723 3724 // For SMAX, if CstLow is non-negative we know the result will be 3725 // non-negative and thus all sign bits are 0. 3726 // TODO: There's an equivalent of this for smin with negative constant for 3727 // known ones. 3728 if (IsMax && CstLow) { 3729 const APInt &ValueLow = CstLow->getAPIntValue(); 3730 if (ValueLow.isNonNegative()) { 3731 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3732 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3733 } 3734 } 3735 3736 break; 3737 } 3738 case ISD::FP_TO_UINT_SAT: { 3739 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3740 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3741 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3742 break; 3743 } 3744 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3745 if (Op.getResNo() == 1) { 3746 // The boolean result conforms to getBooleanContents. 3747 // If we know the result of a setcc has the top bits zero, use this info. 3748 // We know that we have an integer-based boolean since these operations 3749 // are only available for integer. 3750 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3751 TargetLowering::ZeroOrOneBooleanContent && 3752 BitWidth > 1) 3753 Known.Zero.setBitsFrom(1); 3754 break; 3755 } 3756 LLVM_FALLTHROUGH; 3757 case ISD::ATOMIC_CMP_SWAP: 3758 case ISD::ATOMIC_SWAP: 3759 case ISD::ATOMIC_LOAD_ADD: 3760 case ISD::ATOMIC_LOAD_SUB: 3761 case ISD::ATOMIC_LOAD_AND: 3762 case ISD::ATOMIC_LOAD_CLR: 3763 case ISD::ATOMIC_LOAD_OR: 3764 case ISD::ATOMIC_LOAD_XOR: 3765 case ISD::ATOMIC_LOAD_NAND: 3766 case ISD::ATOMIC_LOAD_MIN: 3767 case ISD::ATOMIC_LOAD_MAX: 3768 case ISD::ATOMIC_LOAD_UMIN: 3769 case ISD::ATOMIC_LOAD_UMAX: 3770 case ISD::ATOMIC_LOAD: { 3771 unsigned MemBits = 3772 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3773 // If we are looking at the loaded value. 3774 if (Op.getResNo() == 0) { 3775 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3776 Known.Zero.setBitsFrom(MemBits); 3777 } 3778 break; 3779 } 3780 case ISD::FrameIndex: 3781 case ISD::TargetFrameIndex: 3782 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3783 Known, getMachineFunction()); 3784 break; 3785 3786 default: 3787 if (Opcode < ISD::BUILTIN_OP_END) 3788 break; 3789 LLVM_FALLTHROUGH; 3790 case ISD::INTRINSIC_WO_CHAIN: 3791 case ISD::INTRINSIC_W_CHAIN: 3792 case ISD::INTRINSIC_VOID: 3793 // Allow the target to implement this method for its nodes. 3794 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3795 break; 3796 } 3797 3798 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3799 return Known; 3800 } 3801 3802 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3803 SDValue N1) const { 3804 // X + 0 never overflow 3805 if (isNullConstant(N1)) 3806 return OFK_Never; 3807 3808 KnownBits N1Known = computeKnownBits(N1); 3809 if (N1Known.Zero.getBoolValue()) { 3810 KnownBits N0Known = computeKnownBits(N0); 3811 3812 bool overflow; 3813 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3814 if (!overflow) 3815 return OFK_Never; 3816 } 3817 3818 // mulhi + 1 never overflow 3819 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3820 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3821 return OFK_Never; 3822 3823 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3824 KnownBits N0Known = computeKnownBits(N0); 3825 3826 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3827 return OFK_Never; 3828 } 3829 3830 return OFK_Sometime; 3831 } 3832 3833 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3834 EVT OpVT = Val.getValueType(); 3835 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3836 3837 // Is the constant a known power of 2? 3838 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3839 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3840 3841 // A left-shift of a constant one will have exactly one bit set because 3842 // shifting the bit off the end is undefined. 3843 if (Val.getOpcode() == ISD::SHL) { 3844 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3845 if (C && C->getAPIntValue() == 1) 3846 return true; 3847 } 3848 3849 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3850 // one bit set. 3851 if (Val.getOpcode() == ISD::SRL) { 3852 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3853 if (C && C->getAPIntValue().isSignMask()) 3854 return true; 3855 } 3856 3857 // Are all operands of a build vector constant powers of two? 3858 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3859 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3860 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3861 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3862 return false; 3863 })) 3864 return true; 3865 3866 // Is the operand of a splat vector a constant power of two? 3867 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3868 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3869 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3870 return true; 3871 3872 // More could be done here, though the above checks are enough 3873 // to handle some common cases. 3874 3875 // Fall back to computeKnownBits to catch other known cases. 3876 KnownBits Known = computeKnownBits(Val); 3877 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3878 } 3879 3880 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3881 EVT VT = Op.getValueType(); 3882 3883 // TODO: Assume we don't know anything for now. 3884 if (VT.isScalableVector()) 3885 return 1; 3886 3887 APInt DemandedElts = VT.isVector() 3888 ? APInt::getAllOnes(VT.getVectorNumElements()) 3889 : APInt(1, 1); 3890 return ComputeNumSignBits(Op, DemandedElts, Depth); 3891 } 3892 3893 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3894 unsigned Depth) const { 3895 EVT VT = Op.getValueType(); 3896 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3897 unsigned VTBits = VT.getScalarSizeInBits(); 3898 unsigned NumElts = DemandedElts.getBitWidth(); 3899 unsigned Tmp, Tmp2; 3900 unsigned FirstAnswer = 1; 3901 3902 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3903 const APInt &Val = C->getAPIntValue(); 3904 return Val.getNumSignBits(); 3905 } 3906 3907 if (Depth >= MaxRecursionDepth) 3908 return 1; // Limit search depth. 3909 3910 if (!DemandedElts || VT.isScalableVector()) 3911 return 1; // No demanded elts, better to assume we don't know anything. 3912 3913 unsigned Opcode = Op.getOpcode(); 3914 switch (Opcode) { 3915 default: break; 3916 case ISD::AssertSext: 3917 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3918 return VTBits-Tmp+1; 3919 case ISD::AssertZext: 3920 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3921 return VTBits-Tmp; 3922 3923 case ISD::BUILD_VECTOR: 3924 Tmp = VTBits; 3925 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3926 if (!DemandedElts[i]) 3927 continue; 3928 3929 SDValue SrcOp = Op.getOperand(i); 3930 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3931 3932 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3933 if (SrcOp.getValueSizeInBits() != VTBits) { 3934 assert(SrcOp.getValueSizeInBits() > VTBits && 3935 "Expected BUILD_VECTOR implicit truncation"); 3936 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3937 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3938 } 3939 Tmp = std::min(Tmp, Tmp2); 3940 } 3941 return Tmp; 3942 3943 case ISD::VECTOR_SHUFFLE: { 3944 // Collect the minimum number of sign bits that are shared by every vector 3945 // element referenced by the shuffle. 3946 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3947 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3948 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3949 for (unsigned i = 0; i != NumElts; ++i) { 3950 int M = SVN->getMaskElt(i); 3951 if (!DemandedElts[i]) 3952 continue; 3953 // For UNDEF elements, we don't know anything about the common state of 3954 // the shuffle result. 3955 if (M < 0) 3956 return 1; 3957 if ((unsigned)M < NumElts) 3958 DemandedLHS.setBit((unsigned)M % NumElts); 3959 else 3960 DemandedRHS.setBit((unsigned)M % NumElts); 3961 } 3962 Tmp = std::numeric_limits<unsigned>::max(); 3963 if (!!DemandedLHS) 3964 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3965 if (!!DemandedRHS) { 3966 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3967 Tmp = std::min(Tmp, Tmp2); 3968 } 3969 // If we don't know anything, early out and try computeKnownBits fall-back. 3970 if (Tmp == 1) 3971 break; 3972 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3973 return Tmp; 3974 } 3975 3976 case ISD::BITCAST: { 3977 SDValue N0 = Op.getOperand(0); 3978 EVT SrcVT = N0.getValueType(); 3979 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3980 3981 // Ignore bitcasts from unsupported types.. 3982 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3983 break; 3984 3985 // Fast handling of 'identity' bitcasts. 3986 if (VTBits == SrcBits) 3987 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3988 3989 bool IsLE = getDataLayout().isLittleEndian(); 3990 3991 // Bitcast 'large element' scalar/vector to 'small element' vector. 3992 if ((SrcBits % VTBits) == 0) { 3993 assert(VT.isVector() && "Expected bitcast to vector"); 3994 3995 unsigned Scale = SrcBits / VTBits; 3996 APInt SrcDemandedElts = 3997 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3998 3999 // Fast case - sign splat can be simply split across the small elements. 4000 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 4001 if (Tmp == SrcBits) 4002 return VTBits; 4003 4004 // Slow case - determine how far the sign extends into each sub-element. 4005 Tmp2 = VTBits; 4006 for (unsigned i = 0; i != NumElts; ++i) 4007 if (DemandedElts[i]) { 4008 unsigned SubOffset = i % Scale; 4009 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4010 SubOffset = SubOffset * VTBits; 4011 if (Tmp <= SubOffset) 4012 return 1; 4013 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4014 } 4015 return Tmp2; 4016 } 4017 break; 4018 } 4019 4020 case ISD::FP_TO_SINT_SAT: 4021 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4022 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4023 return VTBits - Tmp + 1; 4024 case ISD::SIGN_EXTEND: 4025 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4026 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4027 case ISD::SIGN_EXTEND_INREG: 4028 // Max of the input and what this extends. 4029 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4030 Tmp = VTBits-Tmp+1; 4031 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4032 return std::max(Tmp, Tmp2); 4033 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4034 SDValue Src = Op.getOperand(0); 4035 EVT SrcVT = Src.getValueType(); 4036 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4037 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4038 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4039 } 4040 case ISD::SRA: 4041 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4042 // SRA X, C -> adds C sign bits. 4043 if (const APInt *ShAmt = 4044 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4045 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4046 return Tmp; 4047 case ISD::SHL: 4048 if (const APInt *ShAmt = 4049 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4050 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4051 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4052 if (ShAmt->ult(Tmp)) 4053 return Tmp - ShAmt->getZExtValue(); 4054 } 4055 break; 4056 case ISD::AND: 4057 case ISD::OR: 4058 case ISD::XOR: // NOT is handled here. 4059 // Logical binary ops preserve the number of sign bits at the worst. 4060 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4061 if (Tmp != 1) { 4062 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4063 FirstAnswer = std::min(Tmp, Tmp2); 4064 // We computed what we know about the sign bits as our first 4065 // answer. Now proceed to the generic code that uses 4066 // computeKnownBits, and pick whichever answer is better. 4067 } 4068 break; 4069 4070 case ISD::SELECT: 4071 case ISD::VSELECT: 4072 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4073 if (Tmp == 1) return 1; // Early out. 4074 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4075 return std::min(Tmp, Tmp2); 4076 case ISD::SELECT_CC: 4077 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4078 if (Tmp == 1) return 1; // Early out. 4079 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4080 return std::min(Tmp, Tmp2); 4081 4082 case ISD::SMIN: 4083 case ISD::SMAX: { 4084 // If we have a clamp pattern, we know that the number of sign bits will be 4085 // the minimum of the clamp min/max range. 4086 bool IsMax = (Opcode == ISD::SMAX); 4087 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4088 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4089 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4090 CstHigh = 4091 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4092 if (CstLow && CstHigh) { 4093 if (!IsMax) 4094 std::swap(CstLow, CstHigh); 4095 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4096 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4097 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4098 return std::min(Tmp, Tmp2); 4099 } 4100 } 4101 4102 // Fallback - just get the minimum number of sign bits of the operands. 4103 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4104 if (Tmp == 1) 4105 return 1; // Early out. 4106 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4107 return std::min(Tmp, Tmp2); 4108 } 4109 case ISD::UMIN: 4110 case ISD::UMAX: 4111 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4112 if (Tmp == 1) 4113 return 1; // Early out. 4114 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4115 return std::min(Tmp, Tmp2); 4116 case ISD::SADDO: 4117 case ISD::UADDO: 4118 case ISD::SADDO_CARRY: 4119 case ISD::ADDCARRY: 4120 case ISD::SSUBO: 4121 case ISD::USUBO: 4122 case ISD::SSUBO_CARRY: 4123 case ISD::SUBCARRY: 4124 case ISD::SMULO: 4125 case ISD::UMULO: 4126 if (Op.getResNo() != 1) 4127 break; 4128 // The boolean result conforms to getBooleanContents. Fall through. 4129 // If setcc returns 0/-1, all bits are sign bits. 4130 // We know that we have an integer-based boolean since these operations 4131 // are only available for integer. 4132 if (TLI->getBooleanContents(VT.isVector(), false) == 4133 TargetLowering::ZeroOrNegativeOneBooleanContent) 4134 return VTBits; 4135 break; 4136 case ISD::SETCC: 4137 case ISD::SETCCCARRY: 4138 case ISD::STRICT_FSETCC: 4139 case ISD::STRICT_FSETCCS: { 4140 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4141 // If setcc returns 0/-1, all bits are sign bits. 4142 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4143 TargetLowering::ZeroOrNegativeOneBooleanContent) 4144 return VTBits; 4145 break; 4146 } 4147 case ISD::ROTL: 4148 case ISD::ROTR: 4149 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4150 4151 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4152 if (Tmp == VTBits) 4153 return VTBits; 4154 4155 if (ConstantSDNode *C = 4156 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4157 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4158 4159 // Handle rotate right by N like a rotate left by 32-N. 4160 if (Opcode == ISD::ROTR) 4161 RotAmt = (VTBits - RotAmt) % VTBits; 4162 4163 // If we aren't rotating out all of the known-in sign bits, return the 4164 // number that are left. This handles rotl(sext(x), 1) for example. 4165 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4166 } 4167 break; 4168 case ISD::ADD: 4169 case ISD::ADDC: 4170 // Add can have at most one carry bit. Thus we know that the output 4171 // is, at worst, one more bit than the inputs. 4172 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4173 if (Tmp == 1) return 1; // Early out. 4174 4175 // Special case decrementing a value (ADD X, -1): 4176 if (ConstantSDNode *CRHS = 4177 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4178 if (CRHS->isAllOnes()) { 4179 KnownBits Known = 4180 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4181 4182 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4183 // sign bits set. 4184 if ((Known.Zero | 1).isAllOnes()) 4185 return VTBits; 4186 4187 // If we are subtracting one from a positive number, there is no carry 4188 // out of the result. 4189 if (Known.isNonNegative()) 4190 return Tmp; 4191 } 4192 4193 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4194 if (Tmp2 == 1) return 1; // Early out. 4195 return std::min(Tmp, Tmp2) - 1; 4196 case ISD::SUB: 4197 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4198 if (Tmp2 == 1) return 1; // Early out. 4199 4200 // Handle NEG. 4201 if (ConstantSDNode *CLHS = 4202 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4203 if (CLHS->isZero()) { 4204 KnownBits Known = 4205 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4206 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4207 // sign bits set. 4208 if ((Known.Zero | 1).isAllOnes()) 4209 return VTBits; 4210 4211 // If the input is known to be positive (the sign bit is known clear), 4212 // the output of the NEG has the same number of sign bits as the input. 4213 if (Known.isNonNegative()) 4214 return Tmp2; 4215 4216 // Otherwise, we treat this like a SUB. 4217 } 4218 4219 // Sub can have at most one carry bit. Thus we know that the output 4220 // is, at worst, one more bit than the inputs. 4221 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4222 if (Tmp == 1) return 1; // Early out. 4223 return std::min(Tmp, Tmp2) - 1; 4224 case ISD::MUL: { 4225 // The output of the Mul can be at most twice the valid bits in the inputs. 4226 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4227 if (SignBitsOp0 == 1) 4228 break; 4229 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4230 if (SignBitsOp1 == 1) 4231 break; 4232 unsigned OutValidBits = 4233 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4234 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4235 } 4236 case ISD::SREM: 4237 // The sign bit is the LHS's sign bit, except when the result of the 4238 // remainder is zero. The magnitude of the result should be less than or 4239 // equal to the magnitude of the LHS. Therefore, the result should have 4240 // at least as many sign bits as the left hand side. 4241 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4242 case ISD::TRUNCATE: { 4243 // Check if the sign bits of source go down as far as the truncated value. 4244 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4245 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4246 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4247 return NumSrcSignBits - (NumSrcBits - VTBits); 4248 break; 4249 } 4250 case ISD::EXTRACT_ELEMENT: { 4251 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4252 const int BitWidth = Op.getValueSizeInBits(); 4253 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4254 4255 // Get reverse index (starting from 1), Op1 value indexes elements from 4256 // little end. Sign starts at big end. 4257 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4258 4259 // If the sign portion ends in our element the subtraction gives correct 4260 // result. Otherwise it gives either negative or > bitwidth result 4261 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4262 } 4263 case ISD::INSERT_VECTOR_ELT: { 4264 // If we know the element index, split the demand between the 4265 // source vector and the inserted element, otherwise assume we need 4266 // the original demanded vector elements and the value. 4267 SDValue InVec = Op.getOperand(0); 4268 SDValue InVal = Op.getOperand(1); 4269 SDValue EltNo = Op.getOperand(2); 4270 bool DemandedVal = true; 4271 APInt DemandedVecElts = DemandedElts; 4272 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4273 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4274 unsigned EltIdx = CEltNo->getZExtValue(); 4275 DemandedVal = !!DemandedElts[EltIdx]; 4276 DemandedVecElts.clearBit(EltIdx); 4277 } 4278 Tmp = std::numeric_limits<unsigned>::max(); 4279 if (DemandedVal) { 4280 // TODO - handle implicit truncation of inserted elements. 4281 if (InVal.getScalarValueSizeInBits() != VTBits) 4282 break; 4283 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4284 Tmp = std::min(Tmp, Tmp2); 4285 } 4286 if (!!DemandedVecElts) { 4287 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4288 Tmp = std::min(Tmp, Tmp2); 4289 } 4290 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4291 return Tmp; 4292 } 4293 case ISD::EXTRACT_VECTOR_ELT: { 4294 SDValue InVec = Op.getOperand(0); 4295 SDValue EltNo = Op.getOperand(1); 4296 EVT VecVT = InVec.getValueType(); 4297 // ComputeNumSignBits not yet implemented for scalable vectors. 4298 if (VecVT.isScalableVector()) 4299 break; 4300 const unsigned BitWidth = Op.getValueSizeInBits(); 4301 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4302 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4303 4304 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4305 // anything about sign bits. But if the sizes match we can derive knowledge 4306 // about sign bits from the vector operand. 4307 if (BitWidth != EltBitWidth) 4308 break; 4309 4310 // If we know the element index, just demand that vector element, else for 4311 // an unknown element index, ignore DemandedElts and demand them all. 4312 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4313 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4314 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4315 DemandedSrcElts = 4316 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4317 4318 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4319 } 4320 case ISD::EXTRACT_SUBVECTOR: { 4321 // Offset the demanded elts by the subvector index. 4322 SDValue Src = Op.getOperand(0); 4323 // Bail until we can represent demanded elements for scalable vectors. 4324 if (Src.getValueType().isScalableVector()) 4325 break; 4326 uint64_t Idx = Op.getConstantOperandVal(1); 4327 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4328 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4329 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4330 } 4331 case ISD::CONCAT_VECTORS: { 4332 // Determine the minimum number of sign bits across all demanded 4333 // elts of the input vectors. Early out if the result is already 1. 4334 Tmp = std::numeric_limits<unsigned>::max(); 4335 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4336 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4337 unsigned NumSubVectors = Op.getNumOperands(); 4338 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4339 APInt DemandedSub = 4340 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4341 if (!DemandedSub) 4342 continue; 4343 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4344 Tmp = std::min(Tmp, Tmp2); 4345 } 4346 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4347 return Tmp; 4348 } 4349 case ISD::INSERT_SUBVECTOR: { 4350 // Demand any elements from the subvector and the remainder from the src its 4351 // inserted into. 4352 SDValue Src = Op.getOperand(0); 4353 SDValue Sub = Op.getOperand(1); 4354 uint64_t Idx = Op.getConstantOperandVal(2); 4355 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4356 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4357 APInt DemandedSrcElts = DemandedElts; 4358 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4359 4360 Tmp = std::numeric_limits<unsigned>::max(); 4361 if (!!DemandedSubElts) { 4362 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4363 if (Tmp == 1) 4364 return 1; // early-out 4365 } 4366 if (!!DemandedSrcElts) { 4367 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4368 Tmp = std::min(Tmp, Tmp2); 4369 } 4370 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4371 return Tmp; 4372 } 4373 case ISD::ATOMIC_CMP_SWAP: 4374 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4375 case ISD::ATOMIC_SWAP: 4376 case ISD::ATOMIC_LOAD_ADD: 4377 case ISD::ATOMIC_LOAD_SUB: 4378 case ISD::ATOMIC_LOAD_AND: 4379 case ISD::ATOMIC_LOAD_CLR: 4380 case ISD::ATOMIC_LOAD_OR: 4381 case ISD::ATOMIC_LOAD_XOR: 4382 case ISD::ATOMIC_LOAD_NAND: 4383 case ISD::ATOMIC_LOAD_MIN: 4384 case ISD::ATOMIC_LOAD_MAX: 4385 case ISD::ATOMIC_LOAD_UMIN: 4386 case ISD::ATOMIC_LOAD_UMAX: 4387 case ISD::ATOMIC_LOAD: { 4388 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4389 // If we are looking at the loaded value. 4390 if (Op.getResNo() == 0) { 4391 if (Tmp == VTBits) 4392 return 1; // early-out 4393 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4394 return VTBits - Tmp + 1; 4395 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4396 return VTBits - Tmp; 4397 } 4398 break; 4399 } 4400 } 4401 4402 // If we are looking at the loaded value of the SDNode. 4403 if (Op.getResNo() == 0) { 4404 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4405 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4406 unsigned ExtType = LD->getExtensionType(); 4407 switch (ExtType) { 4408 default: break; 4409 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4410 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4411 return VTBits - Tmp + 1; 4412 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4413 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4414 return VTBits - Tmp; 4415 case ISD::NON_EXTLOAD: 4416 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4417 // We only need to handle vectors - computeKnownBits should handle 4418 // scalar cases. 4419 Type *CstTy = Cst->getType(); 4420 if (CstTy->isVectorTy() && 4421 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4422 VTBits == CstTy->getScalarSizeInBits()) { 4423 Tmp = VTBits; 4424 for (unsigned i = 0; i != NumElts; ++i) { 4425 if (!DemandedElts[i]) 4426 continue; 4427 if (Constant *Elt = Cst->getAggregateElement(i)) { 4428 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4429 const APInt &Value = CInt->getValue(); 4430 Tmp = std::min(Tmp, Value.getNumSignBits()); 4431 continue; 4432 } 4433 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4434 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4435 Tmp = std::min(Tmp, Value.getNumSignBits()); 4436 continue; 4437 } 4438 } 4439 // Unknown type. Conservatively assume no bits match sign bit. 4440 return 1; 4441 } 4442 return Tmp; 4443 } 4444 } 4445 break; 4446 } 4447 } 4448 } 4449 4450 // Allow the target to implement this method for its nodes. 4451 if (Opcode >= ISD::BUILTIN_OP_END || 4452 Opcode == ISD::INTRINSIC_WO_CHAIN || 4453 Opcode == ISD::INTRINSIC_W_CHAIN || 4454 Opcode == ISD::INTRINSIC_VOID) { 4455 unsigned NumBits = 4456 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4457 if (NumBits > 1) 4458 FirstAnswer = std::max(FirstAnswer, NumBits); 4459 } 4460 4461 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4462 // use this information. 4463 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4464 return std::max(FirstAnswer, Known.countMinSignBits()); 4465 } 4466 4467 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4468 unsigned Depth) const { 4469 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4470 return Op.getScalarValueSizeInBits() - SignBits + 1; 4471 } 4472 4473 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4474 const APInt &DemandedElts, 4475 unsigned Depth) const { 4476 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4477 return Op.getScalarValueSizeInBits() - SignBits + 1; 4478 } 4479 4480 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4481 unsigned Depth) const { 4482 // Early out for FREEZE. 4483 if (Op.getOpcode() == ISD::FREEZE) 4484 return true; 4485 4486 // TODO: Assume we don't know anything for now. 4487 EVT VT = Op.getValueType(); 4488 if (VT.isScalableVector()) 4489 return false; 4490 4491 APInt DemandedElts = VT.isVector() 4492 ? APInt::getAllOnes(VT.getVectorNumElements()) 4493 : APInt(1, 1); 4494 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4495 } 4496 4497 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4498 const APInt &DemandedElts, 4499 bool PoisonOnly, 4500 unsigned Depth) const { 4501 unsigned Opcode = Op.getOpcode(); 4502 4503 // Early out for FREEZE. 4504 if (Opcode == ISD::FREEZE) 4505 return true; 4506 4507 if (Depth >= MaxRecursionDepth) 4508 return false; // Limit search depth. 4509 4510 if (isIntOrFPConstant(Op)) 4511 return true; 4512 4513 switch (Opcode) { 4514 case ISD::UNDEF: 4515 return PoisonOnly; 4516 4517 case ISD::BUILD_VECTOR: 4518 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4519 // this shouldn't affect the result. 4520 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4521 if (!DemandedElts[i]) 4522 continue; 4523 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4524 Depth + 1)) 4525 return false; 4526 } 4527 return true; 4528 4529 // TODO: Search for noundef attributes from library functions. 4530 4531 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4532 4533 default: 4534 // Allow the target to implement this method for its nodes. 4535 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4536 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4537 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4538 Op, DemandedElts, *this, PoisonOnly, Depth); 4539 break; 4540 } 4541 4542 return false; 4543 } 4544 4545 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4546 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4547 !isa<ConstantSDNode>(Op.getOperand(1))) 4548 return false; 4549 4550 if (Op.getOpcode() == ISD::OR && 4551 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4552 return false; 4553 4554 return true; 4555 } 4556 4557 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4558 // If we're told that NaNs won't happen, assume they won't. 4559 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4560 return true; 4561 4562 if (Depth >= MaxRecursionDepth) 4563 return false; // Limit search depth. 4564 4565 // TODO: Handle vectors. 4566 // If the value is a constant, we can obviously see if it is a NaN or not. 4567 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4568 return !C->getValueAPF().isNaN() || 4569 (SNaN && !C->getValueAPF().isSignaling()); 4570 } 4571 4572 unsigned Opcode = Op.getOpcode(); 4573 switch (Opcode) { 4574 case ISD::FADD: 4575 case ISD::FSUB: 4576 case ISD::FMUL: 4577 case ISD::FDIV: 4578 case ISD::FREM: 4579 case ISD::FSIN: 4580 case ISD::FCOS: { 4581 if (SNaN) 4582 return true; 4583 // TODO: Need isKnownNeverInfinity 4584 return false; 4585 } 4586 case ISD::FCANONICALIZE: 4587 case ISD::FEXP: 4588 case ISD::FEXP2: 4589 case ISD::FTRUNC: 4590 case ISD::FFLOOR: 4591 case ISD::FCEIL: 4592 case ISD::FROUND: 4593 case ISD::FROUNDEVEN: 4594 case ISD::FRINT: 4595 case ISD::FNEARBYINT: { 4596 if (SNaN) 4597 return true; 4598 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4599 } 4600 case ISD::FABS: 4601 case ISD::FNEG: 4602 case ISD::FCOPYSIGN: { 4603 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4604 } 4605 case ISD::SELECT: 4606 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4607 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4608 case ISD::FP_EXTEND: 4609 case ISD::FP_ROUND: { 4610 if (SNaN) 4611 return true; 4612 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4613 } 4614 case ISD::SINT_TO_FP: 4615 case ISD::UINT_TO_FP: 4616 return true; 4617 case ISD::FMA: 4618 case ISD::FMAD: { 4619 if (SNaN) 4620 return true; 4621 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4622 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4623 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4624 } 4625 case ISD::FSQRT: // Need is known positive 4626 case ISD::FLOG: 4627 case ISD::FLOG2: 4628 case ISD::FLOG10: 4629 case ISD::FPOWI: 4630 case ISD::FPOW: { 4631 if (SNaN) 4632 return true; 4633 // TODO: Refine on operand 4634 return false; 4635 } 4636 case ISD::FMINNUM: 4637 case ISD::FMAXNUM: { 4638 // Only one needs to be known not-nan, since it will be returned if the 4639 // other ends up being one. 4640 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4641 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4642 } 4643 case ISD::FMINNUM_IEEE: 4644 case ISD::FMAXNUM_IEEE: { 4645 if (SNaN) 4646 return true; 4647 // This can return a NaN if either operand is an sNaN, or if both operands 4648 // are NaN. 4649 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4650 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4651 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4652 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4653 } 4654 case ISD::FMINIMUM: 4655 case ISD::FMAXIMUM: { 4656 // TODO: Does this quiet or return the origina NaN as-is? 4657 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4658 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4659 } 4660 case ISD::EXTRACT_VECTOR_ELT: { 4661 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4662 } 4663 default: 4664 if (Opcode >= ISD::BUILTIN_OP_END || 4665 Opcode == ISD::INTRINSIC_WO_CHAIN || 4666 Opcode == ISD::INTRINSIC_W_CHAIN || 4667 Opcode == ISD::INTRINSIC_VOID) { 4668 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4669 } 4670 4671 return false; 4672 } 4673 } 4674 4675 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4676 assert(Op.getValueType().isFloatingPoint() && 4677 "Floating point type expected"); 4678 4679 // If the value is a constant, we can obviously see if it is a zero or not. 4680 // TODO: Add BuildVector support. 4681 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4682 return !C->isZero(); 4683 return false; 4684 } 4685 4686 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4687 assert(!Op.getValueType().isFloatingPoint() && 4688 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4689 4690 // If the value is a constant, we can obviously see if it is a zero or not. 4691 if (ISD::matchUnaryPredicate(Op, 4692 [](ConstantSDNode *C) { return !C->isZero(); })) 4693 return true; 4694 4695 // TODO: Recognize more cases here. 4696 switch (Op.getOpcode()) { 4697 default: break; 4698 case ISD::OR: 4699 if (isKnownNeverZero(Op.getOperand(1)) || 4700 isKnownNeverZero(Op.getOperand(0))) 4701 return true; 4702 break; 4703 } 4704 4705 return false; 4706 } 4707 4708 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4709 // Check the obvious case. 4710 if (A == B) return true; 4711 4712 // For for negative and positive zero. 4713 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4714 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4715 if (CA->isZero() && CB->isZero()) return true; 4716 4717 // Otherwise they may not be equal. 4718 return false; 4719 } 4720 4721 // Only bits set in Mask must be negated, other bits may be arbitrary. 4722 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4723 if (isBitwiseNot(V, AllowUndefs)) 4724 return V.getOperand(0); 4725 4726 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4727 // bits in the non-extended part. 4728 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4729 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4730 return SDValue(); 4731 SDValue ExtArg = V.getOperand(0); 4732 if (ExtArg.getScalarValueSizeInBits() >= 4733 MaskC->getAPIntValue().getActiveBits() && 4734 isBitwiseNot(ExtArg, AllowUndefs) && 4735 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4736 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4737 return ExtArg.getOperand(0).getOperand(0); 4738 return SDValue(); 4739 } 4740 4741 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4742 // Match masked merge pattern (X & ~M) op (Y & M) 4743 // Including degenerate case (X & ~M) op M 4744 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4745 SDValue Other) { 4746 if (SDValue NotOperand = 4747 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4748 if (Other == NotOperand) 4749 return true; 4750 if (Other->getOpcode() == ISD::AND) 4751 return NotOperand == Other->getOperand(0) || 4752 NotOperand == Other->getOperand(1); 4753 } 4754 return false; 4755 }; 4756 if (A->getOpcode() == ISD::AND) 4757 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4758 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4759 return false; 4760 } 4761 4762 // FIXME: unify with llvm::haveNoCommonBitsSet. 4763 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4764 assert(A.getValueType() == B.getValueType() && 4765 "Values must have the same type"); 4766 if (haveNoCommonBitsSetCommutative(A, B) || 4767 haveNoCommonBitsSetCommutative(B, A)) 4768 return true; 4769 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4770 computeKnownBits(B)); 4771 } 4772 4773 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4774 SelectionDAG &DAG) { 4775 if (cast<ConstantSDNode>(Step)->isZero()) 4776 return DAG.getConstant(0, DL, VT); 4777 4778 return SDValue(); 4779 } 4780 4781 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4782 ArrayRef<SDValue> Ops, 4783 SelectionDAG &DAG) { 4784 int NumOps = Ops.size(); 4785 assert(NumOps != 0 && "Can't build an empty vector!"); 4786 assert(!VT.isScalableVector() && 4787 "BUILD_VECTOR cannot be used with scalable types"); 4788 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4789 "Incorrect element count in BUILD_VECTOR!"); 4790 4791 // BUILD_VECTOR of UNDEFs is UNDEF. 4792 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4793 return DAG.getUNDEF(VT); 4794 4795 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4796 SDValue IdentitySrc; 4797 bool IsIdentity = true; 4798 for (int i = 0; i != NumOps; ++i) { 4799 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4800 Ops[i].getOperand(0).getValueType() != VT || 4801 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4802 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4803 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4804 IsIdentity = false; 4805 break; 4806 } 4807 IdentitySrc = Ops[i].getOperand(0); 4808 } 4809 if (IsIdentity) 4810 return IdentitySrc; 4811 4812 return SDValue(); 4813 } 4814 4815 /// Try to simplify vector concatenation to an input value, undef, or build 4816 /// vector. 4817 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4818 ArrayRef<SDValue> Ops, 4819 SelectionDAG &DAG) { 4820 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4821 assert(llvm::all_of(Ops, 4822 [Ops](SDValue Op) { 4823 return Ops[0].getValueType() == Op.getValueType(); 4824 }) && 4825 "Concatenation of vectors with inconsistent value types!"); 4826 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4827 VT.getVectorElementCount() && 4828 "Incorrect element count in vector concatenation!"); 4829 4830 if (Ops.size() == 1) 4831 return Ops[0]; 4832 4833 // Concat of UNDEFs is UNDEF. 4834 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4835 return DAG.getUNDEF(VT); 4836 4837 // Scan the operands and look for extract operations from a single source 4838 // that correspond to insertion at the same location via this concatenation: 4839 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4840 SDValue IdentitySrc; 4841 bool IsIdentity = true; 4842 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4843 SDValue Op = Ops[i]; 4844 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4845 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4846 Op.getOperand(0).getValueType() != VT || 4847 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4848 Op.getConstantOperandVal(1) != IdentityIndex) { 4849 IsIdentity = false; 4850 break; 4851 } 4852 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4853 "Unexpected identity source vector for concat of extracts"); 4854 IdentitySrc = Op.getOperand(0); 4855 } 4856 if (IsIdentity) { 4857 assert(IdentitySrc && "Failed to set source vector of extracts"); 4858 return IdentitySrc; 4859 } 4860 4861 // The code below this point is only designed to work for fixed width 4862 // vectors, so we bail out for now. 4863 if (VT.isScalableVector()) 4864 return SDValue(); 4865 4866 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4867 // simplified to one big BUILD_VECTOR. 4868 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4869 EVT SVT = VT.getScalarType(); 4870 SmallVector<SDValue, 16> Elts; 4871 for (SDValue Op : Ops) { 4872 EVT OpVT = Op.getValueType(); 4873 if (Op.isUndef()) 4874 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4875 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4876 Elts.append(Op->op_begin(), Op->op_end()); 4877 else 4878 return SDValue(); 4879 } 4880 4881 // BUILD_VECTOR requires all inputs to be of the same type, find the 4882 // maximum type and extend them all. 4883 for (SDValue Op : Elts) 4884 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4885 4886 if (SVT.bitsGT(VT.getScalarType())) { 4887 for (SDValue &Op : Elts) { 4888 if (Op.isUndef()) 4889 Op = DAG.getUNDEF(SVT); 4890 else 4891 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4892 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4893 : DAG.getSExtOrTrunc(Op, DL, SVT); 4894 } 4895 } 4896 4897 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4898 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4899 return V; 4900 } 4901 4902 /// Gets or creates the specified node. 4903 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4904 FoldingSetNodeID ID; 4905 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4906 void *IP = nullptr; 4907 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4908 return SDValue(E, 0); 4909 4910 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4911 getVTList(VT)); 4912 CSEMap.InsertNode(N, IP); 4913 4914 InsertNode(N); 4915 SDValue V = SDValue(N, 0); 4916 NewSDValueDbgMsg(V, "Creating new node: ", this); 4917 return V; 4918 } 4919 4920 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4921 SDValue Operand) { 4922 SDNodeFlags Flags; 4923 if (Inserter) 4924 Flags = Inserter->getFlags(); 4925 return getNode(Opcode, DL, VT, Operand, Flags); 4926 } 4927 4928 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4929 SDValue Operand, const SDNodeFlags Flags) { 4930 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4931 "Operand is DELETED_NODE!"); 4932 // Constant fold unary operations with an integer constant operand. Even 4933 // opaque constant will be folded, because the folding of unary operations 4934 // doesn't create new constants with different values. Nevertheless, the 4935 // opaque flag is preserved during folding to prevent future folding with 4936 // other constants. 4937 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4938 const APInt &Val = C->getAPIntValue(); 4939 switch (Opcode) { 4940 default: break; 4941 case ISD::SIGN_EXTEND: 4942 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4943 C->isTargetOpcode(), C->isOpaque()); 4944 case ISD::TRUNCATE: 4945 if (C->isOpaque()) 4946 break; 4947 LLVM_FALLTHROUGH; 4948 case ISD::ZERO_EXTEND: 4949 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4950 C->isTargetOpcode(), C->isOpaque()); 4951 case ISD::ANY_EXTEND: 4952 // Some targets like RISCV prefer to sign extend some types. 4953 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4954 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4955 C->isTargetOpcode(), C->isOpaque()); 4956 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4957 C->isTargetOpcode(), C->isOpaque()); 4958 case ISD::UINT_TO_FP: 4959 case ISD::SINT_TO_FP: { 4960 APFloat apf(EVTToAPFloatSemantics(VT), 4961 APInt::getZero(VT.getSizeInBits())); 4962 (void)apf.convertFromAPInt(Val, 4963 Opcode==ISD::SINT_TO_FP, 4964 APFloat::rmNearestTiesToEven); 4965 return getConstantFP(apf, DL, VT); 4966 } 4967 case ISD::BITCAST: 4968 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4969 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4970 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4971 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4972 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4973 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4974 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4975 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4976 break; 4977 case ISD::ABS: 4978 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4979 C->isOpaque()); 4980 case ISD::BITREVERSE: 4981 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4982 C->isOpaque()); 4983 case ISD::BSWAP: 4984 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4985 C->isOpaque()); 4986 case ISD::CTPOP: 4987 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4988 C->isOpaque()); 4989 case ISD::CTLZ: 4990 case ISD::CTLZ_ZERO_UNDEF: 4991 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4992 C->isOpaque()); 4993 case ISD::CTTZ: 4994 case ISD::CTTZ_ZERO_UNDEF: 4995 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4996 C->isOpaque()); 4997 case ISD::FP16_TO_FP: 4998 case ISD::BF16_TO_FP: { 4999 bool Ignored; 5000 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 5001 : APFloat::BFloat(), 5002 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 5003 5004 // This can return overflow, underflow, or inexact; we don't care. 5005 // FIXME need to be more flexible about rounding mode. 5006 (void)FPV.convert(EVTToAPFloatSemantics(VT), 5007 APFloat::rmNearestTiesToEven, &Ignored); 5008 return getConstantFP(FPV, DL, VT); 5009 } 5010 case ISD::STEP_VECTOR: { 5011 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 5012 return V; 5013 break; 5014 } 5015 } 5016 } 5017 5018 // Constant fold unary operations with a floating point constant operand. 5019 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5020 APFloat V = C->getValueAPF(); // make copy 5021 switch (Opcode) { 5022 case ISD::FNEG: 5023 V.changeSign(); 5024 return getConstantFP(V, DL, VT); 5025 case ISD::FABS: 5026 V.clearSign(); 5027 return getConstantFP(V, DL, VT); 5028 case ISD::FCEIL: { 5029 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5030 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5031 return getConstantFP(V, DL, VT); 5032 break; 5033 } 5034 case ISD::FTRUNC: { 5035 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5036 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5037 return getConstantFP(V, DL, VT); 5038 break; 5039 } 5040 case ISD::FFLOOR: { 5041 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5042 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5043 return getConstantFP(V, DL, VT); 5044 break; 5045 } 5046 case ISD::FP_EXTEND: { 5047 bool ignored; 5048 // This can return overflow, underflow, or inexact; we don't care. 5049 // FIXME need to be more flexible about rounding mode. 5050 (void)V.convert(EVTToAPFloatSemantics(VT), 5051 APFloat::rmNearestTiesToEven, &ignored); 5052 return getConstantFP(V, DL, VT); 5053 } 5054 case ISD::FP_TO_SINT: 5055 case ISD::FP_TO_UINT: { 5056 bool ignored; 5057 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5058 // FIXME need to be more flexible about rounding mode. 5059 APFloat::opStatus s = 5060 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5061 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5062 break; 5063 return getConstant(IntVal, DL, VT); 5064 } 5065 case ISD::BITCAST: 5066 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5067 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5068 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5069 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5070 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5071 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5072 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5073 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5074 break; 5075 case ISD::FP_TO_FP16: 5076 case ISD::FP_TO_BF16: { 5077 bool Ignored; 5078 // This can return overflow, underflow, or inexact; we don't care. 5079 // FIXME need to be more flexible about rounding mode. 5080 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5081 : APFloat::BFloat(), 5082 APFloat::rmNearestTiesToEven, &Ignored); 5083 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5084 } 5085 } 5086 } 5087 5088 // Constant fold unary operations with a vector integer or float operand. 5089 switch (Opcode) { 5090 default: 5091 // FIXME: Entirely reasonable to perform folding of other unary 5092 // operations here as the need arises. 5093 break; 5094 case ISD::FNEG: 5095 case ISD::FABS: 5096 case ISD::FCEIL: 5097 case ISD::FTRUNC: 5098 case ISD::FFLOOR: 5099 case ISD::FP_EXTEND: 5100 case ISD::FP_TO_SINT: 5101 case ISD::FP_TO_UINT: 5102 case ISD::TRUNCATE: 5103 case ISD::ANY_EXTEND: 5104 case ISD::ZERO_EXTEND: 5105 case ISD::SIGN_EXTEND: 5106 case ISD::UINT_TO_FP: 5107 case ISD::SINT_TO_FP: 5108 case ISD::ABS: 5109 case ISD::BITREVERSE: 5110 case ISD::BSWAP: 5111 case ISD::CTLZ: 5112 case ISD::CTLZ_ZERO_UNDEF: 5113 case ISD::CTTZ: 5114 case ISD::CTTZ_ZERO_UNDEF: 5115 case ISD::CTPOP: { 5116 SDValue Ops = {Operand}; 5117 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5118 return Fold; 5119 } 5120 } 5121 5122 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5123 switch (Opcode) { 5124 case ISD::STEP_VECTOR: 5125 assert(VT.isScalableVector() && 5126 "STEP_VECTOR can only be used with scalable types"); 5127 assert(OpOpcode == ISD::TargetConstant && 5128 VT.getVectorElementType() == Operand.getValueType() && 5129 "Unexpected step operand"); 5130 break; 5131 case ISD::FREEZE: 5132 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5133 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5134 return Operand; 5135 break; 5136 case ISD::TokenFactor: 5137 case ISD::MERGE_VALUES: 5138 case ISD::CONCAT_VECTORS: 5139 return Operand; // Factor, merge or concat of one node? No need. 5140 case ISD::BUILD_VECTOR: { 5141 // Attempt to simplify BUILD_VECTOR. 5142 SDValue Ops[] = {Operand}; 5143 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5144 return V; 5145 break; 5146 } 5147 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5148 case ISD::FP_EXTEND: 5149 assert(VT.isFloatingPoint() && 5150 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5151 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5152 assert((!VT.isVector() || 5153 VT.getVectorElementCount() == 5154 Operand.getValueType().getVectorElementCount()) && 5155 "Vector element count mismatch!"); 5156 assert(Operand.getValueType().bitsLT(VT) && 5157 "Invalid fpext node, dst < src!"); 5158 if (Operand.isUndef()) 5159 return getUNDEF(VT); 5160 break; 5161 case ISD::FP_TO_SINT: 5162 case ISD::FP_TO_UINT: 5163 if (Operand.isUndef()) 5164 return getUNDEF(VT); 5165 break; 5166 case ISD::SINT_TO_FP: 5167 case ISD::UINT_TO_FP: 5168 // [us]itofp(undef) = 0, because the result value is bounded. 5169 if (Operand.isUndef()) 5170 return getConstantFP(0.0, DL, VT); 5171 break; 5172 case ISD::SIGN_EXTEND: 5173 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5174 "Invalid SIGN_EXTEND!"); 5175 assert(VT.isVector() == Operand.getValueType().isVector() && 5176 "SIGN_EXTEND result type type should be vector iff the operand " 5177 "type is vector!"); 5178 if (Operand.getValueType() == VT) return Operand; // noop extension 5179 assert((!VT.isVector() || 5180 VT.getVectorElementCount() == 5181 Operand.getValueType().getVectorElementCount()) && 5182 "Vector element count mismatch!"); 5183 assert(Operand.getValueType().bitsLT(VT) && 5184 "Invalid sext node, dst < src!"); 5185 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5186 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5187 if (OpOpcode == ISD::UNDEF) 5188 // sext(undef) = 0, because the top bits will all be the same. 5189 return getConstant(0, DL, VT); 5190 break; 5191 case ISD::ZERO_EXTEND: 5192 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5193 "Invalid ZERO_EXTEND!"); 5194 assert(VT.isVector() == Operand.getValueType().isVector() && 5195 "ZERO_EXTEND result type type should be vector iff the operand " 5196 "type is vector!"); 5197 if (Operand.getValueType() == VT) return Operand; // noop extension 5198 assert((!VT.isVector() || 5199 VT.getVectorElementCount() == 5200 Operand.getValueType().getVectorElementCount()) && 5201 "Vector element count mismatch!"); 5202 assert(Operand.getValueType().bitsLT(VT) && 5203 "Invalid zext node, dst < src!"); 5204 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5205 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5206 if (OpOpcode == ISD::UNDEF) 5207 // zext(undef) = 0, because the top bits will be zero. 5208 return getConstant(0, DL, VT); 5209 break; 5210 case ISD::ANY_EXTEND: 5211 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5212 "Invalid ANY_EXTEND!"); 5213 assert(VT.isVector() == Operand.getValueType().isVector() && 5214 "ANY_EXTEND result type type should be vector iff the operand " 5215 "type is vector!"); 5216 if (Operand.getValueType() == VT) return Operand; // noop extension 5217 assert((!VT.isVector() || 5218 VT.getVectorElementCount() == 5219 Operand.getValueType().getVectorElementCount()) && 5220 "Vector element count mismatch!"); 5221 assert(Operand.getValueType().bitsLT(VT) && 5222 "Invalid anyext node, dst < src!"); 5223 5224 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5225 OpOpcode == ISD::ANY_EXTEND) 5226 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5227 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5228 if (OpOpcode == ISD::UNDEF) 5229 return getUNDEF(VT); 5230 5231 // (ext (trunc x)) -> x 5232 if (OpOpcode == ISD::TRUNCATE) { 5233 SDValue OpOp = Operand.getOperand(0); 5234 if (OpOp.getValueType() == VT) { 5235 transferDbgValues(Operand, OpOp); 5236 return OpOp; 5237 } 5238 } 5239 break; 5240 case ISD::TRUNCATE: 5241 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5242 "Invalid TRUNCATE!"); 5243 assert(VT.isVector() == Operand.getValueType().isVector() && 5244 "TRUNCATE result type type should be vector iff the operand " 5245 "type is vector!"); 5246 if (Operand.getValueType() == VT) return Operand; // noop truncate 5247 assert((!VT.isVector() || 5248 VT.getVectorElementCount() == 5249 Operand.getValueType().getVectorElementCount()) && 5250 "Vector element count mismatch!"); 5251 assert(Operand.getValueType().bitsGT(VT) && 5252 "Invalid truncate node, src < dst!"); 5253 if (OpOpcode == ISD::TRUNCATE) 5254 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5255 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5256 OpOpcode == ISD::ANY_EXTEND) { 5257 // If the source is smaller than the dest, we still need an extend. 5258 if (Operand.getOperand(0).getValueType().getScalarType() 5259 .bitsLT(VT.getScalarType())) 5260 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5261 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5262 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5263 return Operand.getOperand(0); 5264 } 5265 if (OpOpcode == ISD::UNDEF) 5266 return getUNDEF(VT); 5267 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5268 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5269 break; 5270 case ISD::ANY_EXTEND_VECTOR_INREG: 5271 case ISD::ZERO_EXTEND_VECTOR_INREG: 5272 case ISD::SIGN_EXTEND_VECTOR_INREG: 5273 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5274 assert(Operand.getValueType().bitsLE(VT) && 5275 "The input must be the same size or smaller than the result."); 5276 assert(VT.getVectorMinNumElements() < 5277 Operand.getValueType().getVectorMinNumElements() && 5278 "The destination vector type must have fewer lanes than the input."); 5279 break; 5280 case ISD::ABS: 5281 assert(VT.isInteger() && VT == Operand.getValueType() && 5282 "Invalid ABS!"); 5283 if (OpOpcode == ISD::UNDEF) 5284 return getConstant(0, DL, VT); 5285 break; 5286 case ISD::BSWAP: 5287 assert(VT.isInteger() && VT == Operand.getValueType() && 5288 "Invalid BSWAP!"); 5289 assert((VT.getScalarSizeInBits() % 16 == 0) && 5290 "BSWAP types must be a multiple of 16 bits!"); 5291 if (OpOpcode == ISD::UNDEF) 5292 return getUNDEF(VT); 5293 // bswap(bswap(X)) -> X. 5294 if (OpOpcode == ISD::BSWAP) 5295 return Operand.getOperand(0); 5296 break; 5297 case ISD::BITREVERSE: 5298 assert(VT.isInteger() && VT == Operand.getValueType() && 5299 "Invalid BITREVERSE!"); 5300 if (OpOpcode == ISD::UNDEF) 5301 return getUNDEF(VT); 5302 break; 5303 case ISD::BITCAST: 5304 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5305 "Cannot BITCAST between types of different sizes!"); 5306 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5307 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5308 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5309 if (OpOpcode == ISD::UNDEF) 5310 return getUNDEF(VT); 5311 break; 5312 case ISD::SCALAR_TO_VECTOR: 5313 assert(VT.isVector() && !Operand.getValueType().isVector() && 5314 (VT.getVectorElementType() == Operand.getValueType() || 5315 (VT.getVectorElementType().isInteger() && 5316 Operand.getValueType().isInteger() && 5317 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5318 "Illegal SCALAR_TO_VECTOR node!"); 5319 if (OpOpcode == ISD::UNDEF) 5320 return getUNDEF(VT); 5321 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5322 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5323 isa<ConstantSDNode>(Operand.getOperand(1)) && 5324 Operand.getConstantOperandVal(1) == 0 && 5325 Operand.getOperand(0).getValueType() == VT) 5326 return Operand.getOperand(0); 5327 break; 5328 case ISD::FNEG: 5329 // Negation of an unknown bag of bits is still completely undefined. 5330 if (OpOpcode == ISD::UNDEF) 5331 return getUNDEF(VT); 5332 5333 if (OpOpcode == ISD::FNEG) // --X -> X 5334 return Operand.getOperand(0); 5335 break; 5336 case ISD::FABS: 5337 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5338 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5339 break; 5340 case ISD::VSCALE: 5341 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5342 break; 5343 case ISD::CTPOP: 5344 if (Operand.getValueType().getScalarType() == MVT::i1) 5345 return Operand; 5346 break; 5347 case ISD::CTLZ: 5348 case ISD::CTTZ: 5349 if (Operand.getValueType().getScalarType() == MVT::i1) 5350 return getNOT(DL, Operand, Operand.getValueType()); 5351 break; 5352 case ISD::VECREDUCE_ADD: 5353 if (Operand.getValueType().getScalarType() == MVT::i1) 5354 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5355 break; 5356 case ISD::VECREDUCE_SMIN: 5357 case ISD::VECREDUCE_UMAX: 5358 if (Operand.getValueType().getScalarType() == MVT::i1) 5359 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5360 break; 5361 case ISD::VECREDUCE_SMAX: 5362 case ISD::VECREDUCE_UMIN: 5363 if (Operand.getValueType().getScalarType() == MVT::i1) 5364 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5365 break; 5366 } 5367 5368 SDNode *N; 5369 SDVTList VTs = getVTList(VT); 5370 SDValue Ops[] = {Operand}; 5371 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5372 FoldingSetNodeID ID; 5373 AddNodeIDNode(ID, Opcode, VTs, Ops); 5374 void *IP = nullptr; 5375 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5376 E->intersectFlagsWith(Flags); 5377 return SDValue(E, 0); 5378 } 5379 5380 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5381 N->setFlags(Flags); 5382 createOperands(N, Ops); 5383 CSEMap.InsertNode(N, IP); 5384 } else { 5385 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5386 createOperands(N, Ops); 5387 } 5388 5389 InsertNode(N); 5390 SDValue V = SDValue(N, 0); 5391 NewSDValueDbgMsg(V, "Creating new node: ", this); 5392 return V; 5393 } 5394 5395 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5396 const APInt &C2) { 5397 switch (Opcode) { 5398 case ISD::ADD: return C1 + C2; 5399 case ISD::SUB: return C1 - C2; 5400 case ISD::MUL: return C1 * C2; 5401 case ISD::AND: return C1 & C2; 5402 case ISD::OR: return C1 | C2; 5403 case ISD::XOR: return C1 ^ C2; 5404 case ISD::SHL: return C1 << C2; 5405 case ISD::SRL: return C1.lshr(C2); 5406 case ISD::SRA: return C1.ashr(C2); 5407 case ISD::ROTL: return C1.rotl(C2); 5408 case ISD::ROTR: return C1.rotr(C2); 5409 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5410 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5411 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5412 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5413 case ISD::SADDSAT: return C1.sadd_sat(C2); 5414 case ISD::UADDSAT: return C1.uadd_sat(C2); 5415 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5416 case ISD::USUBSAT: return C1.usub_sat(C2); 5417 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5418 case ISD::USHLSAT: return C1.ushl_sat(C2); 5419 case ISD::UDIV: 5420 if (!C2.getBoolValue()) 5421 break; 5422 return C1.udiv(C2); 5423 case ISD::UREM: 5424 if (!C2.getBoolValue()) 5425 break; 5426 return C1.urem(C2); 5427 case ISD::SDIV: 5428 if (!C2.getBoolValue()) 5429 break; 5430 return C1.sdiv(C2); 5431 case ISD::SREM: 5432 if (!C2.getBoolValue()) 5433 break; 5434 return C1.srem(C2); 5435 case ISD::MULHS: { 5436 unsigned FullWidth = C1.getBitWidth() * 2; 5437 APInt C1Ext = C1.sext(FullWidth); 5438 APInt C2Ext = C2.sext(FullWidth); 5439 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5440 } 5441 case ISD::MULHU: { 5442 unsigned FullWidth = C1.getBitWidth() * 2; 5443 APInt C1Ext = C1.zext(FullWidth); 5444 APInt C2Ext = C2.zext(FullWidth); 5445 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5446 } 5447 case ISD::AVGFLOORS: { 5448 unsigned FullWidth = C1.getBitWidth() + 1; 5449 APInt C1Ext = C1.sext(FullWidth); 5450 APInt C2Ext = C2.sext(FullWidth); 5451 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5452 } 5453 case ISD::AVGFLOORU: { 5454 unsigned FullWidth = C1.getBitWidth() + 1; 5455 APInt C1Ext = C1.zext(FullWidth); 5456 APInt C2Ext = C2.zext(FullWidth); 5457 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5458 } 5459 case ISD::AVGCEILS: { 5460 unsigned FullWidth = C1.getBitWidth() + 1; 5461 APInt C1Ext = C1.sext(FullWidth); 5462 APInt C2Ext = C2.sext(FullWidth); 5463 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5464 } 5465 case ISD::AVGCEILU: { 5466 unsigned FullWidth = C1.getBitWidth() + 1; 5467 APInt C1Ext = C1.zext(FullWidth); 5468 APInt C2Ext = C2.zext(FullWidth); 5469 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5470 } 5471 } 5472 return llvm::None; 5473 } 5474 5475 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5476 const GlobalAddressSDNode *GA, 5477 const SDNode *N2) { 5478 if (GA->getOpcode() != ISD::GlobalAddress) 5479 return SDValue(); 5480 if (!TLI->isOffsetFoldingLegal(GA)) 5481 return SDValue(); 5482 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5483 if (!C2) 5484 return SDValue(); 5485 int64_t Offset = C2->getSExtValue(); 5486 switch (Opcode) { 5487 case ISD::ADD: break; 5488 case ISD::SUB: Offset = -uint64_t(Offset); break; 5489 default: return SDValue(); 5490 } 5491 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5492 GA->getOffset() + uint64_t(Offset)); 5493 } 5494 5495 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5496 switch (Opcode) { 5497 case ISD::SDIV: 5498 case ISD::UDIV: 5499 case ISD::SREM: 5500 case ISD::UREM: { 5501 // If a divisor is zero/undef or any element of a divisor vector is 5502 // zero/undef, the whole op is undef. 5503 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5504 SDValue Divisor = Ops[1]; 5505 if (Divisor.isUndef() || isNullConstant(Divisor)) 5506 return true; 5507 5508 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5509 llvm::any_of(Divisor->op_values(), 5510 [](SDValue V) { return V.isUndef() || 5511 isNullConstant(V); }); 5512 // TODO: Handle signed overflow. 5513 } 5514 // TODO: Handle oversized shifts. 5515 default: 5516 return false; 5517 } 5518 } 5519 5520 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5521 EVT VT, ArrayRef<SDValue> Ops) { 5522 // If the opcode is a target-specific ISD node, there's nothing we can 5523 // do here and the operand rules may not line up with the below, so 5524 // bail early. 5525 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5526 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5527 // foldCONCAT_VECTORS in getNode before this is called. 5528 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5529 return SDValue(); 5530 5531 unsigned NumOps = Ops.size(); 5532 if (NumOps == 0) 5533 return SDValue(); 5534 5535 if (isUndef(Opcode, Ops)) 5536 return getUNDEF(VT); 5537 5538 // Handle binops special cases. 5539 if (NumOps == 2) { 5540 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5541 return CFP; 5542 5543 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5544 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5545 if (C1->isOpaque() || C2->isOpaque()) 5546 return SDValue(); 5547 5548 Optional<APInt> FoldAttempt = 5549 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5550 if (!FoldAttempt) 5551 return SDValue(); 5552 5553 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 5554 assert((!Folded || !VT.isVector()) && 5555 "Can't fold vectors ops with scalar operands"); 5556 return Folded; 5557 } 5558 } 5559 5560 // fold (add Sym, c) -> Sym+c 5561 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5562 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5563 if (TLI->isCommutativeBinOp(Opcode)) 5564 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5565 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5566 } 5567 5568 // This is for vector folding only from here on. 5569 if (!VT.isVector()) 5570 return SDValue(); 5571 5572 ElementCount NumElts = VT.getVectorElementCount(); 5573 5574 // See if we can fold through bitcasted integer ops. 5575 // TODO: Can we handle undef elements? 5576 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5577 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5578 Ops[0].getOpcode() == ISD::BITCAST && 5579 Ops[1].getOpcode() == ISD::BITCAST) { 5580 SDValue N1 = peekThroughBitcasts(Ops[0]); 5581 SDValue N2 = peekThroughBitcasts(Ops[1]); 5582 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5583 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5584 EVT BVVT = N1.getValueType(); 5585 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5586 bool IsLE = getDataLayout().isLittleEndian(); 5587 unsigned EltBits = VT.getScalarSizeInBits(); 5588 SmallVector<APInt> RawBits1, RawBits2; 5589 BitVector UndefElts1, UndefElts2; 5590 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5591 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5592 UndefElts1.none() && UndefElts2.none()) { 5593 SmallVector<APInt> RawBits; 5594 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5595 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5596 if (!Fold) 5597 break; 5598 RawBits.push_back(*Fold); 5599 } 5600 if (RawBits.size() == NumElts.getFixedValue()) { 5601 // We have constant folded, but we need to cast this again back to 5602 // the original (possibly legalized) type. 5603 SmallVector<APInt> DstBits; 5604 BitVector DstUndefs; 5605 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5606 DstBits, RawBits, DstUndefs, 5607 BitVector(RawBits.size(), false)); 5608 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5609 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5610 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5611 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5612 if (DstUndefs[I]) 5613 continue; 5614 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5615 } 5616 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5617 } 5618 } 5619 } 5620 } 5621 5622 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5623 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5624 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5625 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5626 APInt RHSVal; 5627 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5628 APInt NewStep = Opcode == ISD::MUL 5629 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5630 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5631 return getStepVector(DL, VT, NewStep); 5632 } 5633 } 5634 5635 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5636 return !Op.getValueType().isVector() || 5637 Op.getValueType().getVectorElementCount() == NumElts; 5638 }; 5639 5640 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5641 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5642 Op.getOpcode() == ISD::BUILD_VECTOR || 5643 Op.getOpcode() == ISD::SPLAT_VECTOR; 5644 }; 5645 5646 // All operands must be vector types with the same number of elements as 5647 // the result type and must be either UNDEF or a build/splat vector 5648 // or UNDEF scalars. 5649 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5650 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5651 return SDValue(); 5652 5653 // If we are comparing vectors, then the result needs to be a i1 boolean that 5654 // is then extended back to the legal result type depending on how booleans 5655 // are represented. 5656 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5657 ISD::NodeType ExtendCode = 5658 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5659 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5660 : ISD::SIGN_EXTEND; 5661 5662 // Find legal integer scalar type for constant promotion and 5663 // ensure that its scalar size is at least as large as source. 5664 EVT LegalSVT = VT.getScalarType(); 5665 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5666 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5667 if (LegalSVT.bitsLT(VT.getScalarType())) 5668 return SDValue(); 5669 } 5670 5671 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5672 // only have one operand to check. For fixed-length vector types we may have 5673 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5674 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5675 5676 // Constant fold each scalar lane separately. 5677 SmallVector<SDValue, 4> ScalarResults; 5678 for (unsigned I = 0; I != NumVectorElts; I++) { 5679 SmallVector<SDValue, 4> ScalarOps; 5680 for (SDValue Op : Ops) { 5681 EVT InSVT = Op.getValueType().getScalarType(); 5682 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5683 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5684 if (Op.isUndef()) 5685 ScalarOps.push_back(getUNDEF(InSVT)); 5686 else 5687 ScalarOps.push_back(Op); 5688 continue; 5689 } 5690 5691 SDValue ScalarOp = 5692 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5693 EVT ScalarVT = ScalarOp.getValueType(); 5694 5695 // Build vector (integer) scalar operands may need implicit 5696 // truncation - do this before constant folding. 5697 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5698 // Don't create illegally-typed nodes unless they're constants or undef 5699 // - if we fail to constant fold we can't guarantee the (dead) nodes 5700 // we're creating will be cleaned up before being visited for 5701 // legalization. 5702 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5703 !isa<ConstantSDNode>(ScalarOp) && 5704 TLI->getTypeAction(*getContext(), InSVT) != 5705 TargetLowering::TypeLegal) 5706 return SDValue(); 5707 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5708 } 5709 5710 ScalarOps.push_back(ScalarOp); 5711 } 5712 5713 // Constant fold the scalar operands. 5714 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5715 5716 // Legalize the (integer) scalar constant if necessary. 5717 if (LegalSVT != SVT) 5718 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5719 5720 // Scalar folding only succeeded if the result is a constant or UNDEF. 5721 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5722 ScalarResult.getOpcode() != ISD::ConstantFP) 5723 return SDValue(); 5724 ScalarResults.push_back(ScalarResult); 5725 } 5726 5727 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5728 : getBuildVector(VT, DL, ScalarResults); 5729 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5730 return V; 5731 } 5732 5733 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5734 EVT VT, SDValue N1, SDValue N2) { 5735 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5736 // should. That will require dealing with a potentially non-default 5737 // rounding mode, checking the "opStatus" return value from the APFloat 5738 // math calculations, and possibly other variations. 5739 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5740 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5741 if (N1CFP && N2CFP) { 5742 APFloat C1 = N1CFP->getValueAPF(); // make copy 5743 const APFloat &C2 = N2CFP->getValueAPF(); 5744 switch (Opcode) { 5745 case ISD::FADD: 5746 C1.add(C2, APFloat::rmNearestTiesToEven); 5747 return getConstantFP(C1, DL, VT); 5748 case ISD::FSUB: 5749 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5750 return getConstantFP(C1, DL, VT); 5751 case ISD::FMUL: 5752 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5753 return getConstantFP(C1, DL, VT); 5754 case ISD::FDIV: 5755 C1.divide(C2, APFloat::rmNearestTiesToEven); 5756 return getConstantFP(C1, DL, VT); 5757 case ISD::FREM: 5758 C1.mod(C2); 5759 return getConstantFP(C1, DL, VT); 5760 case ISD::FCOPYSIGN: 5761 C1.copySign(C2); 5762 return getConstantFP(C1, DL, VT); 5763 case ISD::FMINNUM: 5764 return getConstantFP(minnum(C1, C2), DL, VT); 5765 case ISD::FMAXNUM: 5766 return getConstantFP(maxnum(C1, C2), DL, VT); 5767 case ISD::FMINIMUM: 5768 return getConstantFP(minimum(C1, C2), DL, VT); 5769 case ISD::FMAXIMUM: 5770 return getConstantFP(maximum(C1, C2), DL, VT); 5771 default: break; 5772 } 5773 } 5774 if (N1CFP && Opcode == ISD::FP_ROUND) { 5775 APFloat C1 = N1CFP->getValueAPF(); // make copy 5776 bool Unused; 5777 // This can return overflow, underflow, or inexact; we don't care. 5778 // FIXME need to be more flexible about rounding mode. 5779 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5780 &Unused); 5781 return getConstantFP(C1, DL, VT); 5782 } 5783 5784 switch (Opcode) { 5785 case ISD::FSUB: 5786 // -0.0 - undef --> undef (consistent with "fneg undef") 5787 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5788 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5789 return getUNDEF(VT); 5790 LLVM_FALLTHROUGH; 5791 5792 case ISD::FADD: 5793 case ISD::FMUL: 5794 case ISD::FDIV: 5795 case ISD::FREM: 5796 // If both operands are undef, the result is undef. If 1 operand is undef, 5797 // the result is NaN. This should match the behavior of the IR optimizer. 5798 if (N1.isUndef() && N2.isUndef()) 5799 return getUNDEF(VT); 5800 if (N1.isUndef() || N2.isUndef()) 5801 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5802 } 5803 return SDValue(); 5804 } 5805 5806 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5807 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5808 5809 // There's no need to assert on a byte-aligned pointer. All pointers are at 5810 // least byte aligned. 5811 if (A == Align(1)) 5812 return Val; 5813 5814 FoldingSetNodeID ID; 5815 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5816 ID.AddInteger(A.value()); 5817 5818 void *IP = nullptr; 5819 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5820 return SDValue(E, 0); 5821 5822 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5823 Val.getValueType(), A); 5824 createOperands(N, {Val}); 5825 5826 CSEMap.InsertNode(N, IP); 5827 InsertNode(N); 5828 5829 SDValue V(N, 0); 5830 NewSDValueDbgMsg(V, "Creating new node: ", this); 5831 return V; 5832 } 5833 5834 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5835 SDValue N1, SDValue N2) { 5836 SDNodeFlags Flags; 5837 if (Inserter) 5838 Flags = Inserter->getFlags(); 5839 return getNode(Opcode, DL, VT, N1, N2, Flags); 5840 } 5841 5842 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5843 SDValue &N2) const { 5844 if (!TLI->isCommutativeBinOp(Opcode)) 5845 return; 5846 5847 // Canonicalize: 5848 // binop(const, nonconst) -> binop(nonconst, const) 5849 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5850 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5851 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5852 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5853 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5854 std::swap(N1, N2); 5855 5856 // Canonicalize: 5857 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5858 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5859 N2.getOpcode() == ISD::STEP_VECTOR) 5860 std::swap(N1, N2); 5861 } 5862 5863 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5864 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5865 assert(N1.getOpcode() != ISD::DELETED_NODE && 5866 N2.getOpcode() != ISD::DELETED_NODE && 5867 "Operand is DELETED_NODE!"); 5868 5869 canonicalizeCommutativeBinop(Opcode, N1, N2); 5870 5871 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5872 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5873 5874 // Don't allow undefs in vector splats - we might be returning N2 when folding 5875 // to zero etc. 5876 ConstantSDNode *N2CV = 5877 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5878 5879 switch (Opcode) { 5880 default: break; 5881 case ISD::TokenFactor: 5882 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5883 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5884 // Fold trivial token factors. 5885 if (N1.getOpcode() == ISD::EntryToken) return N2; 5886 if (N2.getOpcode() == ISD::EntryToken) return N1; 5887 if (N1 == N2) return N1; 5888 break; 5889 case ISD::BUILD_VECTOR: { 5890 // Attempt to simplify BUILD_VECTOR. 5891 SDValue Ops[] = {N1, N2}; 5892 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5893 return V; 5894 break; 5895 } 5896 case ISD::CONCAT_VECTORS: { 5897 SDValue Ops[] = {N1, N2}; 5898 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5899 return V; 5900 break; 5901 } 5902 case ISD::AND: 5903 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5904 assert(N1.getValueType() == N2.getValueType() && 5905 N1.getValueType() == VT && "Binary operator types must match!"); 5906 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5907 // worth handling here. 5908 if (N2CV && N2CV->isZero()) 5909 return N2; 5910 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5911 return N1; 5912 break; 5913 case ISD::OR: 5914 case ISD::XOR: 5915 case ISD::ADD: 5916 case ISD::SUB: 5917 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5918 assert(N1.getValueType() == N2.getValueType() && 5919 N1.getValueType() == VT && "Binary operator types must match!"); 5920 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5921 // it's worth handling here. 5922 if (N2CV && N2CV->isZero()) 5923 return N1; 5924 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5925 VT.getVectorElementType() == MVT::i1) 5926 return getNode(ISD::XOR, DL, VT, N1, N2); 5927 break; 5928 case ISD::MUL: 5929 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5930 assert(N1.getValueType() == N2.getValueType() && 5931 N1.getValueType() == VT && "Binary operator types must match!"); 5932 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5933 return getNode(ISD::AND, DL, VT, N1, N2); 5934 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5935 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5936 const APInt &N2CImm = N2C->getAPIntValue(); 5937 return getVScale(DL, VT, MulImm * N2CImm); 5938 } 5939 break; 5940 case ISD::UDIV: 5941 case ISD::UREM: 5942 case ISD::MULHU: 5943 case ISD::MULHS: 5944 case ISD::SDIV: 5945 case ISD::SREM: 5946 case ISD::SADDSAT: 5947 case ISD::SSUBSAT: 5948 case ISD::UADDSAT: 5949 case ISD::USUBSAT: 5950 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5951 assert(N1.getValueType() == N2.getValueType() && 5952 N1.getValueType() == VT && "Binary operator types must match!"); 5953 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5954 // fold (add_sat x, y) -> (or x, y) for bool types. 5955 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5956 return getNode(ISD::OR, DL, VT, N1, N2); 5957 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5958 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5959 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5960 } 5961 break; 5962 case ISD::SMIN: 5963 case ISD::UMAX: 5964 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5965 assert(N1.getValueType() == N2.getValueType() && 5966 N1.getValueType() == VT && "Binary operator types must match!"); 5967 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5968 return getNode(ISD::OR, DL, VT, N1, N2); 5969 break; 5970 case ISD::SMAX: 5971 case ISD::UMIN: 5972 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5973 assert(N1.getValueType() == N2.getValueType() && 5974 N1.getValueType() == VT && "Binary operator types must match!"); 5975 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5976 return getNode(ISD::AND, DL, VT, N1, N2); 5977 break; 5978 case ISD::FADD: 5979 case ISD::FSUB: 5980 case ISD::FMUL: 5981 case ISD::FDIV: 5982 case ISD::FREM: 5983 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5984 assert(N1.getValueType() == N2.getValueType() && 5985 N1.getValueType() == VT && "Binary operator types must match!"); 5986 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5987 return V; 5988 break; 5989 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5990 assert(N1.getValueType() == VT && 5991 N1.getValueType().isFloatingPoint() && 5992 N2.getValueType().isFloatingPoint() && 5993 "Invalid FCOPYSIGN!"); 5994 break; 5995 case ISD::SHL: 5996 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5997 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5998 const APInt &ShiftImm = N2C->getAPIntValue(); 5999 return getVScale(DL, VT, MulImm << ShiftImm); 6000 } 6001 LLVM_FALLTHROUGH; 6002 case ISD::SRA: 6003 case ISD::SRL: 6004 if (SDValue V = simplifyShift(N1, N2)) 6005 return V; 6006 LLVM_FALLTHROUGH; 6007 case ISD::ROTL: 6008 case ISD::ROTR: 6009 assert(VT == N1.getValueType() && 6010 "Shift operators return type must be the same as their first arg"); 6011 assert(VT.isInteger() && N2.getValueType().isInteger() && 6012 "Shifts only work on integers"); 6013 assert((!VT.isVector() || VT == N2.getValueType()) && 6014 "Vector shift amounts must be in the same as their first arg"); 6015 // Verify that the shift amount VT is big enough to hold valid shift 6016 // amounts. This catches things like trying to shift an i1024 value by an 6017 // i8, which is easy to fall into in generic code that uses 6018 // TLI.getShiftAmount(). 6019 assert(N2.getValueType().getScalarSizeInBits() >= 6020 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6021 "Invalid use of small shift amount with oversized value!"); 6022 6023 // Always fold shifts of i1 values so the code generator doesn't need to 6024 // handle them. Since we know the size of the shift has to be less than the 6025 // size of the value, the shift/rotate count is guaranteed to be zero. 6026 if (VT == MVT::i1) 6027 return N1; 6028 if (N2CV && N2CV->isZero()) 6029 return N1; 6030 break; 6031 case ISD::FP_ROUND: 6032 assert(VT.isFloatingPoint() && 6033 N1.getValueType().isFloatingPoint() && 6034 VT.bitsLE(N1.getValueType()) && 6035 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6036 "Invalid FP_ROUND!"); 6037 if (N1.getValueType() == VT) return N1; // noop conversion. 6038 break; 6039 case ISD::AssertSext: 6040 case ISD::AssertZext: { 6041 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6042 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6043 assert(VT.isInteger() && EVT.isInteger() && 6044 "Cannot *_EXTEND_INREG FP types"); 6045 assert(!EVT.isVector() && 6046 "AssertSExt/AssertZExt type should be the vector element type " 6047 "rather than the vector type!"); 6048 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6049 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6050 break; 6051 } 6052 case ISD::SIGN_EXTEND_INREG: { 6053 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6054 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6055 assert(VT.isInteger() && EVT.isInteger() && 6056 "Cannot *_EXTEND_INREG FP types"); 6057 assert(EVT.isVector() == VT.isVector() && 6058 "SIGN_EXTEND_INREG type should be vector iff the operand " 6059 "type is vector!"); 6060 assert((!EVT.isVector() || 6061 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6062 "Vector element counts must match in SIGN_EXTEND_INREG"); 6063 assert(EVT.bitsLE(VT) && "Not extending!"); 6064 if (EVT == VT) return N1; // Not actually extending 6065 6066 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6067 unsigned FromBits = EVT.getScalarSizeInBits(); 6068 Val <<= Val.getBitWidth() - FromBits; 6069 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6070 return getConstant(Val, DL, ConstantVT); 6071 }; 6072 6073 if (N1C) { 6074 const APInt &Val = N1C->getAPIntValue(); 6075 return SignExtendInReg(Val, VT); 6076 } 6077 6078 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6079 SmallVector<SDValue, 8> Ops; 6080 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6081 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6082 SDValue Op = N1.getOperand(i); 6083 if (Op.isUndef()) { 6084 Ops.push_back(getUNDEF(OpVT)); 6085 continue; 6086 } 6087 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6088 APInt Val = C->getAPIntValue(); 6089 Ops.push_back(SignExtendInReg(Val, OpVT)); 6090 } 6091 return getBuildVector(VT, DL, Ops); 6092 } 6093 break; 6094 } 6095 case ISD::FP_TO_SINT_SAT: 6096 case ISD::FP_TO_UINT_SAT: { 6097 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6098 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6099 assert(N1.getValueType().isVector() == VT.isVector() && 6100 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6101 "vector!"); 6102 assert((!VT.isVector() || VT.getVectorNumElements() == 6103 N1.getValueType().getVectorNumElements()) && 6104 "Vector element counts must match in FP_TO_*INT_SAT"); 6105 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6106 "Type to saturate to must be a scalar."); 6107 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6108 "Not extending!"); 6109 break; 6110 } 6111 case ISD::EXTRACT_VECTOR_ELT: 6112 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6113 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6114 element type of the vector."); 6115 6116 // Extract from an undefined value or using an undefined index is undefined. 6117 if (N1.isUndef() || N2.isUndef()) 6118 return getUNDEF(VT); 6119 6120 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6121 // vectors. For scalable vectors we will provide appropriate support for 6122 // dealing with arbitrary indices. 6123 if (N2C && N1.getValueType().isFixedLengthVector() && 6124 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6125 return getUNDEF(VT); 6126 6127 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6128 // expanding copies of large vectors from registers. This only works for 6129 // fixed length vectors, since we need to know the exact number of 6130 // elements. 6131 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6132 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6133 unsigned Factor = 6134 N1.getOperand(0).getValueType().getVectorNumElements(); 6135 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6136 N1.getOperand(N2C->getZExtValue() / Factor), 6137 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6138 } 6139 6140 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6141 // lowering is expanding large vector constants. 6142 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6143 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6144 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6145 N1.getValueType().isFixedLengthVector()) && 6146 "BUILD_VECTOR used for scalable vectors"); 6147 unsigned Index = 6148 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6149 SDValue Elt = N1.getOperand(Index); 6150 6151 if (VT != Elt.getValueType()) 6152 // If the vector element type is not legal, the BUILD_VECTOR operands 6153 // are promoted and implicitly truncated, and the result implicitly 6154 // extended. Make that explicit here. 6155 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6156 6157 return Elt; 6158 } 6159 6160 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6161 // operations are lowered to scalars. 6162 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6163 // If the indices are the same, return the inserted element else 6164 // if the indices are known different, extract the element from 6165 // the original vector. 6166 SDValue N1Op2 = N1.getOperand(2); 6167 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6168 6169 if (N1Op2C && N2C) { 6170 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6171 if (VT == N1.getOperand(1).getValueType()) 6172 return N1.getOperand(1); 6173 if (VT.isFloatingPoint()) { 6174 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits()); 6175 return getFPExtendOrRound(N1.getOperand(1), DL, VT); 6176 } 6177 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6178 } 6179 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6180 } 6181 } 6182 6183 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6184 // when vector types are scalarized and v1iX is legal. 6185 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6186 // Here we are completely ignoring the extract element index (N2), 6187 // which is fine for fixed width vectors, since any index other than 0 6188 // is undefined anyway. However, this cannot be ignored for scalable 6189 // vectors - in theory we could support this, but we don't want to do this 6190 // without a profitability check. 6191 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6192 N1.getValueType().isFixedLengthVector() && 6193 N1.getValueType().getVectorNumElements() == 1) { 6194 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6195 N1.getOperand(1)); 6196 } 6197 break; 6198 case ISD::EXTRACT_ELEMENT: 6199 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6200 assert(!N1.getValueType().isVector() && !VT.isVector() && 6201 (N1.getValueType().isInteger() == VT.isInteger()) && 6202 N1.getValueType() != VT && 6203 "Wrong types for EXTRACT_ELEMENT!"); 6204 6205 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6206 // 64-bit integers into 32-bit parts. Instead of building the extract of 6207 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6208 if (N1.getOpcode() == ISD::BUILD_PAIR) 6209 return N1.getOperand(N2C->getZExtValue()); 6210 6211 // EXTRACT_ELEMENT of a constant int is also very common. 6212 if (N1C) { 6213 unsigned ElementSize = VT.getSizeInBits(); 6214 unsigned Shift = ElementSize * N2C->getZExtValue(); 6215 const APInt &Val = N1C->getAPIntValue(); 6216 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6217 } 6218 break; 6219 case ISD::EXTRACT_SUBVECTOR: { 6220 EVT N1VT = N1.getValueType(); 6221 assert(VT.isVector() && N1VT.isVector() && 6222 "Extract subvector VTs must be vectors!"); 6223 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6224 "Extract subvector VTs must have the same element type!"); 6225 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6226 "Cannot extract a scalable vector from a fixed length vector!"); 6227 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6228 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6229 "Extract subvector must be from larger vector to smaller vector!"); 6230 assert(N2C && "Extract subvector index must be a constant"); 6231 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6232 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6233 N1VT.getVectorMinNumElements()) && 6234 "Extract subvector overflow!"); 6235 assert(N2C->getAPIntValue().getBitWidth() == 6236 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6237 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6238 6239 // Trivial extraction. 6240 if (VT == N1VT) 6241 return N1; 6242 6243 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6244 if (N1.isUndef()) 6245 return getUNDEF(VT); 6246 6247 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6248 // the concat have the same type as the extract. 6249 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6250 VT == N1.getOperand(0).getValueType()) { 6251 unsigned Factor = VT.getVectorMinNumElements(); 6252 return N1.getOperand(N2C->getZExtValue() / Factor); 6253 } 6254 6255 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6256 // during shuffle legalization. 6257 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6258 VT == N1.getOperand(1).getValueType()) 6259 return N1.getOperand(1); 6260 break; 6261 } 6262 } 6263 6264 // Perform trivial constant folding. 6265 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6266 return SV; 6267 6268 // Canonicalize an UNDEF to the RHS, even over a constant. 6269 if (N1.isUndef()) { 6270 if (TLI->isCommutativeBinOp(Opcode)) { 6271 std::swap(N1, N2); 6272 } else { 6273 switch (Opcode) { 6274 case ISD::SUB: 6275 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6276 case ISD::SIGN_EXTEND_INREG: 6277 case ISD::UDIV: 6278 case ISD::SDIV: 6279 case ISD::UREM: 6280 case ISD::SREM: 6281 case ISD::SSUBSAT: 6282 case ISD::USUBSAT: 6283 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6284 } 6285 } 6286 } 6287 6288 // Fold a bunch of operators when the RHS is undef. 6289 if (N2.isUndef()) { 6290 switch (Opcode) { 6291 case ISD::XOR: 6292 if (N1.isUndef()) 6293 // Handle undef ^ undef -> 0 special case. This is a common 6294 // idiom (misuse). 6295 return getConstant(0, DL, VT); 6296 LLVM_FALLTHROUGH; 6297 case ISD::ADD: 6298 case ISD::SUB: 6299 case ISD::UDIV: 6300 case ISD::SDIV: 6301 case ISD::UREM: 6302 case ISD::SREM: 6303 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6304 case ISD::MUL: 6305 case ISD::AND: 6306 case ISD::SSUBSAT: 6307 case ISD::USUBSAT: 6308 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6309 case ISD::OR: 6310 case ISD::SADDSAT: 6311 case ISD::UADDSAT: 6312 return getAllOnesConstant(DL, VT); 6313 } 6314 } 6315 6316 // Memoize this node if possible. 6317 SDNode *N; 6318 SDVTList VTs = getVTList(VT); 6319 SDValue Ops[] = {N1, N2}; 6320 if (VT != MVT::Glue) { 6321 FoldingSetNodeID ID; 6322 AddNodeIDNode(ID, Opcode, VTs, Ops); 6323 void *IP = nullptr; 6324 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6325 E->intersectFlagsWith(Flags); 6326 return SDValue(E, 0); 6327 } 6328 6329 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6330 N->setFlags(Flags); 6331 createOperands(N, Ops); 6332 CSEMap.InsertNode(N, IP); 6333 } else { 6334 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6335 createOperands(N, Ops); 6336 } 6337 6338 InsertNode(N); 6339 SDValue V = SDValue(N, 0); 6340 NewSDValueDbgMsg(V, "Creating new node: ", this); 6341 return V; 6342 } 6343 6344 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6345 SDValue N1, SDValue N2, SDValue N3) { 6346 SDNodeFlags Flags; 6347 if (Inserter) 6348 Flags = Inserter->getFlags(); 6349 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6350 } 6351 6352 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6353 SDValue N1, SDValue N2, SDValue N3, 6354 const SDNodeFlags Flags) { 6355 assert(N1.getOpcode() != ISD::DELETED_NODE && 6356 N2.getOpcode() != ISD::DELETED_NODE && 6357 N3.getOpcode() != ISD::DELETED_NODE && 6358 "Operand is DELETED_NODE!"); 6359 // Perform various simplifications. 6360 switch (Opcode) { 6361 case ISD::FMA: { 6362 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6363 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6364 N3.getValueType() == VT && "FMA types must match!"); 6365 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6366 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6367 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6368 if (N1CFP && N2CFP && N3CFP) { 6369 APFloat V1 = N1CFP->getValueAPF(); 6370 const APFloat &V2 = N2CFP->getValueAPF(); 6371 const APFloat &V3 = N3CFP->getValueAPF(); 6372 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6373 return getConstantFP(V1, DL, VT); 6374 } 6375 break; 6376 } 6377 case ISD::BUILD_VECTOR: { 6378 // Attempt to simplify BUILD_VECTOR. 6379 SDValue Ops[] = {N1, N2, N3}; 6380 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6381 return V; 6382 break; 6383 } 6384 case ISD::CONCAT_VECTORS: { 6385 SDValue Ops[] = {N1, N2, N3}; 6386 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6387 return V; 6388 break; 6389 } 6390 case ISD::SETCC: { 6391 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6392 assert(N1.getValueType() == N2.getValueType() && 6393 "SETCC operands must have the same type!"); 6394 assert(VT.isVector() == N1.getValueType().isVector() && 6395 "SETCC type should be vector iff the operand type is vector!"); 6396 assert((!VT.isVector() || VT.getVectorElementCount() == 6397 N1.getValueType().getVectorElementCount()) && 6398 "SETCC vector element counts must match!"); 6399 // Use FoldSetCC to simplify SETCC's. 6400 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6401 return V; 6402 // Vector constant folding. 6403 SDValue Ops[] = {N1, N2, N3}; 6404 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6405 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6406 return V; 6407 } 6408 break; 6409 } 6410 case ISD::SELECT: 6411 case ISD::VSELECT: 6412 if (SDValue V = simplifySelect(N1, N2, N3)) 6413 return V; 6414 break; 6415 case ISD::VECTOR_SHUFFLE: 6416 llvm_unreachable("should use getVectorShuffle constructor!"); 6417 case ISD::VECTOR_SPLICE: { 6418 if (cast<ConstantSDNode>(N3)->isNullValue()) 6419 return N1; 6420 break; 6421 } 6422 case ISD::INSERT_VECTOR_ELT: { 6423 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6424 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6425 // for scalable vectors where we will generate appropriate code to 6426 // deal with out-of-bounds cases correctly. 6427 if (N3C && N1.getValueType().isFixedLengthVector() && 6428 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6429 return getUNDEF(VT); 6430 6431 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6432 if (N3.isUndef()) 6433 return getUNDEF(VT); 6434 6435 // If the inserted element is an UNDEF, just use the input vector. 6436 if (N2.isUndef()) 6437 return N1; 6438 6439 break; 6440 } 6441 case ISD::INSERT_SUBVECTOR: { 6442 // Inserting undef into undef is still undef. 6443 if (N1.isUndef() && N2.isUndef()) 6444 return getUNDEF(VT); 6445 6446 EVT N2VT = N2.getValueType(); 6447 assert(VT == N1.getValueType() && 6448 "Dest and insert subvector source types must match!"); 6449 assert(VT.isVector() && N2VT.isVector() && 6450 "Insert subvector VTs must be vectors!"); 6451 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6452 "Cannot insert a scalable vector into a fixed length vector!"); 6453 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6454 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6455 "Insert subvector must be from smaller vector to larger vector!"); 6456 assert(isa<ConstantSDNode>(N3) && 6457 "Insert subvector index must be constant"); 6458 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6459 (N2VT.getVectorMinNumElements() + 6460 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6461 VT.getVectorMinNumElements()) && 6462 "Insert subvector overflow!"); 6463 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6464 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6465 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6466 6467 // Trivial insertion. 6468 if (VT == N2VT) 6469 return N2; 6470 6471 // If this is an insert of an extracted vector into an undef vector, we 6472 // can just use the input to the extract. 6473 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6474 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6475 return N2.getOperand(0); 6476 break; 6477 } 6478 case ISD::BITCAST: 6479 // Fold bit_convert nodes from a type to themselves. 6480 if (N1.getValueType() == VT) 6481 return N1; 6482 break; 6483 } 6484 6485 // Memoize node if it doesn't produce a flag. 6486 SDNode *N; 6487 SDVTList VTs = getVTList(VT); 6488 SDValue Ops[] = {N1, N2, N3}; 6489 if (VT != MVT::Glue) { 6490 FoldingSetNodeID ID; 6491 AddNodeIDNode(ID, Opcode, VTs, Ops); 6492 void *IP = nullptr; 6493 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6494 E->intersectFlagsWith(Flags); 6495 return SDValue(E, 0); 6496 } 6497 6498 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6499 N->setFlags(Flags); 6500 createOperands(N, Ops); 6501 CSEMap.InsertNode(N, IP); 6502 } else { 6503 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6504 createOperands(N, Ops); 6505 } 6506 6507 InsertNode(N); 6508 SDValue V = SDValue(N, 0); 6509 NewSDValueDbgMsg(V, "Creating new node: ", this); 6510 return V; 6511 } 6512 6513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6514 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6515 SDValue Ops[] = { N1, N2, N3, N4 }; 6516 return getNode(Opcode, DL, VT, Ops); 6517 } 6518 6519 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6520 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6521 SDValue N5) { 6522 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6523 return getNode(Opcode, DL, VT, Ops); 6524 } 6525 6526 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6527 /// the incoming stack arguments to be loaded from the stack. 6528 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6529 SmallVector<SDValue, 8> ArgChains; 6530 6531 // Include the original chain at the beginning of the list. When this is 6532 // used by target LowerCall hooks, this helps legalize find the 6533 // CALLSEQ_BEGIN node. 6534 ArgChains.push_back(Chain); 6535 6536 // Add a chain value for each stack argument. 6537 for (SDNode *U : getEntryNode().getNode()->uses()) 6538 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6539 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6540 if (FI->getIndex() < 0) 6541 ArgChains.push_back(SDValue(L, 1)); 6542 6543 // Build a tokenfactor for all the chains. 6544 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6545 } 6546 6547 /// getMemsetValue - Vectorized representation of the memset value 6548 /// operand. 6549 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6550 const SDLoc &dl) { 6551 assert(!Value.isUndef()); 6552 6553 unsigned NumBits = VT.getScalarSizeInBits(); 6554 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6555 assert(C->getAPIntValue().getBitWidth() == 8); 6556 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6557 if (VT.isInteger()) { 6558 bool IsOpaque = VT.getSizeInBits() > 64 || 6559 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6560 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6561 } 6562 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6563 VT); 6564 } 6565 6566 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6567 EVT IntVT = VT.getScalarType(); 6568 if (!IntVT.isInteger()) 6569 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6570 6571 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6572 if (NumBits > 8) { 6573 // Use a multiplication with 0x010101... to extend the input to the 6574 // required length. 6575 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6576 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6577 DAG.getConstant(Magic, dl, IntVT)); 6578 } 6579 6580 if (VT != Value.getValueType() && !VT.isInteger()) 6581 Value = DAG.getBitcast(VT.getScalarType(), Value); 6582 if (VT != Value.getValueType()) 6583 Value = DAG.getSplatBuildVector(VT, dl, Value); 6584 6585 return Value; 6586 } 6587 6588 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6589 /// used when a memcpy is turned into a memset when the source is a constant 6590 /// string ptr. 6591 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6592 const TargetLowering &TLI, 6593 const ConstantDataArraySlice &Slice) { 6594 // Handle vector with all elements zero. 6595 if (Slice.Array == nullptr) { 6596 if (VT.isInteger()) 6597 return DAG.getConstant(0, dl, VT); 6598 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6599 return DAG.getConstantFP(0.0, dl, VT); 6600 if (VT.isVector()) { 6601 unsigned NumElts = VT.getVectorNumElements(); 6602 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6603 return DAG.getNode(ISD::BITCAST, dl, VT, 6604 DAG.getConstant(0, dl, 6605 EVT::getVectorVT(*DAG.getContext(), 6606 EltVT, NumElts))); 6607 } 6608 llvm_unreachable("Expected type!"); 6609 } 6610 6611 assert(!VT.isVector() && "Can't handle vector type here!"); 6612 unsigned NumVTBits = VT.getSizeInBits(); 6613 unsigned NumVTBytes = NumVTBits / 8; 6614 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6615 6616 APInt Val(NumVTBits, 0); 6617 if (DAG.getDataLayout().isLittleEndian()) { 6618 for (unsigned i = 0; i != NumBytes; ++i) 6619 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6620 } else { 6621 for (unsigned i = 0; i != NumBytes; ++i) 6622 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6623 } 6624 6625 // If the "cost" of materializing the integer immediate is less than the cost 6626 // of a load, then it is cost effective to turn the load into the immediate. 6627 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6628 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6629 return DAG.getConstant(Val, dl, VT); 6630 return SDValue(); 6631 } 6632 6633 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6634 const SDLoc &DL, 6635 const SDNodeFlags Flags) { 6636 EVT VT = Base.getValueType(); 6637 SDValue Index; 6638 6639 if (Offset.isScalable()) 6640 Index = getVScale(DL, Base.getValueType(), 6641 APInt(Base.getValueSizeInBits().getFixedSize(), 6642 Offset.getKnownMinSize())); 6643 else 6644 Index = getConstant(Offset.getFixedSize(), DL, VT); 6645 6646 return getMemBasePlusOffset(Base, Index, DL, Flags); 6647 } 6648 6649 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6650 const SDLoc &DL, 6651 const SDNodeFlags Flags) { 6652 assert(Offset.getValueType().isInteger()); 6653 EVT BasePtrVT = Ptr.getValueType(); 6654 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6655 } 6656 6657 /// Returns true if memcpy source is constant data. 6658 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6659 uint64_t SrcDelta = 0; 6660 GlobalAddressSDNode *G = nullptr; 6661 if (Src.getOpcode() == ISD::GlobalAddress) 6662 G = cast<GlobalAddressSDNode>(Src); 6663 else if (Src.getOpcode() == ISD::ADD && 6664 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6665 Src.getOperand(1).getOpcode() == ISD::Constant) { 6666 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6667 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6668 } 6669 if (!G) 6670 return false; 6671 6672 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6673 SrcDelta + G->getOffset()); 6674 } 6675 6676 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6677 SelectionDAG &DAG) { 6678 // On Darwin, -Os means optimize for size without hurting performance, so 6679 // only really optimize for size when -Oz (MinSize) is used. 6680 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6681 return MF.getFunction().hasMinSize(); 6682 return DAG.shouldOptForSize(); 6683 } 6684 6685 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6686 SmallVector<SDValue, 32> &OutChains, unsigned From, 6687 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6688 SmallVector<SDValue, 16> &OutStoreChains) { 6689 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6690 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6691 SmallVector<SDValue, 16> GluedLoadChains; 6692 for (unsigned i = From; i < To; ++i) { 6693 OutChains.push_back(OutLoadChains[i]); 6694 GluedLoadChains.push_back(OutLoadChains[i]); 6695 } 6696 6697 // Chain for all loads. 6698 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6699 GluedLoadChains); 6700 6701 for (unsigned i = From; i < To; ++i) { 6702 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6703 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6704 ST->getBasePtr(), ST->getMemoryVT(), 6705 ST->getMemOperand()); 6706 OutChains.push_back(NewStore); 6707 } 6708 } 6709 6710 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6711 SDValue Chain, SDValue Dst, SDValue Src, 6712 uint64_t Size, Align Alignment, 6713 bool isVol, bool AlwaysInline, 6714 MachinePointerInfo DstPtrInfo, 6715 MachinePointerInfo SrcPtrInfo, 6716 const AAMDNodes &AAInfo) { 6717 // Turn a memcpy of undef to nop. 6718 // FIXME: We need to honor volatile even is Src is undef. 6719 if (Src.isUndef()) 6720 return Chain; 6721 6722 // Expand memcpy to a series of load and store ops if the size operand falls 6723 // below a certain threshold. 6724 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6725 // rather than maybe a humongous number of loads and stores. 6726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6727 const DataLayout &DL = DAG.getDataLayout(); 6728 LLVMContext &C = *DAG.getContext(); 6729 std::vector<EVT> MemOps; 6730 bool DstAlignCanChange = false; 6731 MachineFunction &MF = DAG.getMachineFunction(); 6732 MachineFrameInfo &MFI = MF.getFrameInfo(); 6733 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6734 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6735 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6736 DstAlignCanChange = true; 6737 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6738 if (!SrcAlign || Alignment > *SrcAlign) 6739 SrcAlign = Alignment; 6740 assert(SrcAlign && "SrcAlign must be set"); 6741 ConstantDataArraySlice Slice; 6742 // If marked as volatile, perform a copy even when marked as constant. 6743 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6744 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6745 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6746 const MemOp Op = isZeroConstant 6747 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6748 /*IsZeroMemset*/ true, isVol) 6749 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6750 *SrcAlign, isVol, CopyFromConstant); 6751 if (!TLI.findOptimalMemOpLowering( 6752 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6753 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6754 return SDValue(); 6755 6756 if (DstAlignCanChange) { 6757 Type *Ty = MemOps[0].getTypeForEVT(C); 6758 Align NewAlign = DL.getABITypeAlign(Ty); 6759 6760 // Don't promote to an alignment that would require dynamic stack 6761 // realignment. 6762 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6763 if (!TRI->hasStackRealignment(MF)) 6764 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6765 NewAlign = NewAlign.previous(); 6766 6767 if (NewAlign > Alignment) { 6768 // Give the stack frame object a larger alignment if needed. 6769 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6770 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6771 Alignment = NewAlign; 6772 } 6773 } 6774 6775 // Prepare AAInfo for loads/stores after lowering this memcpy. 6776 AAMDNodes NewAAInfo = AAInfo; 6777 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6778 6779 MachineMemOperand::Flags MMOFlags = 6780 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6781 SmallVector<SDValue, 16> OutLoadChains; 6782 SmallVector<SDValue, 16> OutStoreChains; 6783 SmallVector<SDValue, 32> OutChains; 6784 unsigned NumMemOps = MemOps.size(); 6785 uint64_t SrcOff = 0, DstOff = 0; 6786 for (unsigned i = 0; i != NumMemOps; ++i) { 6787 EVT VT = MemOps[i]; 6788 unsigned VTSize = VT.getSizeInBits() / 8; 6789 SDValue Value, Store; 6790 6791 if (VTSize > Size) { 6792 // Issuing an unaligned load / store pair that overlaps with the previous 6793 // pair. Adjust the offset accordingly. 6794 assert(i == NumMemOps-1 && i != 0); 6795 SrcOff -= VTSize - Size; 6796 DstOff -= VTSize - Size; 6797 } 6798 6799 if (CopyFromConstant && 6800 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6801 // It's unlikely a store of a vector immediate can be done in a single 6802 // instruction. It would require a load from a constantpool first. 6803 // We only handle zero vectors here. 6804 // FIXME: Handle other cases where store of vector immediate is done in 6805 // a single instruction. 6806 ConstantDataArraySlice SubSlice; 6807 if (SrcOff < Slice.Length) { 6808 SubSlice = Slice; 6809 SubSlice.move(SrcOff); 6810 } else { 6811 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6812 SubSlice.Array = nullptr; 6813 SubSlice.Offset = 0; 6814 SubSlice.Length = VTSize; 6815 } 6816 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6817 if (Value.getNode()) { 6818 Store = DAG.getStore( 6819 Chain, dl, Value, 6820 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6821 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6822 OutChains.push_back(Store); 6823 } 6824 } 6825 6826 if (!Store.getNode()) { 6827 // The type might not be legal for the target. This should only happen 6828 // if the type is smaller than a legal type, as on PPC, so the right 6829 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6830 // to Load/Store if NVT==VT. 6831 // FIXME does the case above also need this? 6832 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6833 assert(NVT.bitsGE(VT)); 6834 6835 bool isDereferenceable = 6836 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6837 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6838 if (isDereferenceable) 6839 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6840 6841 Value = DAG.getExtLoad( 6842 ISD::EXTLOAD, dl, NVT, Chain, 6843 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6844 SrcPtrInfo.getWithOffset(SrcOff), VT, 6845 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6846 OutLoadChains.push_back(Value.getValue(1)); 6847 6848 Store = DAG.getTruncStore( 6849 Chain, dl, Value, 6850 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6851 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6852 OutStoreChains.push_back(Store); 6853 } 6854 SrcOff += VTSize; 6855 DstOff += VTSize; 6856 Size -= VTSize; 6857 } 6858 6859 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6860 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6861 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6862 6863 if (NumLdStInMemcpy) { 6864 // It may be that memcpy might be converted to memset if it's memcpy 6865 // of constants. In such a case, we won't have loads and stores, but 6866 // just stores. In the absence of loads, there is nothing to gang up. 6867 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6868 // If target does not care, just leave as it. 6869 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6870 OutChains.push_back(OutLoadChains[i]); 6871 OutChains.push_back(OutStoreChains[i]); 6872 } 6873 } else { 6874 // Ld/St less than/equal limit set by target. 6875 if (NumLdStInMemcpy <= GluedLdStLimit) { 6876 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6877 NumLdStInMemcpy, OutLoadChains, 6878 OutStoreChains); 6879 } else { 6880 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6881 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6882 unsigned GlueIter = 0; 6883 6884 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6885 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6886 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6887 6888 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6889 OutLoadChains, OutStoreChains); 6890 GlueIter += GluedLdStLimit; 6891 } 6892 6893 // Residual ld/st. 6894 if (RemainingLdStInMemcpy) { 6895 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6896 RemainingLdStInMemcpy, OutLoadChains, 6897 OutStoreChains); 6898 } 6899 } 6900 } 6901 } 6902 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6903 } 6904 6905 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6906 SDValue Chain, SDValue Dst, SDValue Src, 6907 uint64_t Size, Align Alignment, 6908 bool isVol, bool AlwaysInline, 6909 MachinePointerInfo DstPtrInfo, 6910 MachinePointerInfo SrcPtrInfo, 6911 const AAMDNodes &AAInfo) { 6912 // Turn a memmove of undef to nop. 6913 // FIXME: We need to honor volatile even is Src is undef. 6914 if (Src.isUndef()) 6915 return Chain; 6916 6917 // Expand memmove to a series of load and store ops if the size operand falls 6918 // below a certain threshold. 6919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6920 const DataLayout &DL = DAG.getDataLayout(); 6921 LLVMContext &C = *DAG.getContext(); 6922 std::vector<EVT> MemOps; 6923 bool DstAlignCanChange = false; 6924 MachineFunction &MF = DAG.getMachineFunction(); 6925 MachineFrameInfo &MFI = MF.getFrameInfo(); 6926 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6927 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6928 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6929 DstAlignCanChange = true; 6930 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6931 if (!SrcAlign || Alignment > *SrcAlign) 6932 SrcAlign = Alignment; 6933 assert(SrcAlign && "SrcAlign must be set"); 6934 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6935 if (!TLI.findOptimalMemOpLowering( 6936 MemOps, Limit, 6937 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6938 /*IsVolatile*/ true), 6939 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6940 MF.getFunction().getAttributes())) 6941 return SDValue(); 6942 6943 if (DstAlignCanChange) { 6944 Type *Ty = MemOps[0].getTypeForEVT(C); 6945 Align NewAlign = DL.getABITypeAlign(Ty); 6946 if (NewAlign > Alignment) { 6947 // Give the stack frame object a larger alignment if needed. 6948 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6949 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6950 Alignment = NewAlign; 6951 } 6952 } 6953 6954 // Prepare AAInfo for loads/stores after lowering this memmove. 6955 AAMDNodes NewAAInfo = AAInfo; 6956 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6957 6958 MachineMemOperand::Flags MMOFlags = 6959 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6960 uint64_t SrcOff = 0, DstOff = 0; 6961 SmallVector<SDValue, 8> LoadValues; 6962 SmallVector<SDValue, 8> LoadChains; 6963 SmallVector<SDValue, 8> OutChains; 6964 unsigned NumMemOps = MemOps.size(); 6965 for (unsigned i = 0; i < NumMemOps; i++) { 6966 EVT VT = MemOps[i]; 6967 unsigned VTSize = VT.getSizeInBits() / 8; 6968 SDValue Value; 6969 6970 bool isDereferenceable = 6971 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6972 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6973 if (isDereferenceable) 6974 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6975 6976 Value = DAG.getLoad( 6977 VT, dl, Chain, 6978 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6979 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6980 LoadValues.push_back(Value); 6981 LoadChains.push_back(Value.getValue(1)); 6982 SrcOff += VTSize; 6983 } 6984 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6985 OutChains.clear(); 6986 for (unsigned i = 0; i < NumMemOps; i++) { 6987 EVT VT = MemOps[i]; 6988 unsigned VTSize = VT.getSizeInBits() / 8; 6989 SDValue Store; 6990 6991 Store = DAG.getStore( 6992 Chain, dl, LoadValues[i], 6993 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6994 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6995 OutChains.push_back(Store); 6996 DstOff += VTSize; 6997 } 6998 6999 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7000 } 7001 7002 /// Lower the call to 'memset' intrinsic function into a series of store 7003 /// operations. 7004 /// 7005 /// \param DAG Selection DAG where lowered code is placed. 7006 /// \param dl Link to corresponding IR location. 7007 /// \param Chain Control flow dependency. 7008 /// \param Dst Pointer to destination memory location. 7009 /// \param Src Value of byte to write into the memory. 7010 /// \param Size Number of bytes to write. 7011 /// \param Alignment Alignment of the destination in bytes. 7012 /// \param isVol True if destination is volatile. 7013 /// \param AlwaysInline Makes sure no function call is generated. 7014 /// \param DstPtrInfo IR information on the memory pointer. 7015 /// \returns New head in the control flow, if lowering was successful, empty 7016 /// SDValue otherwise. 7017 /// 7018 /// The function tries to replace 'llvm.memset' intrinsic with several store 7019 /// operations and value calculation code. This is usually profitable for small 7020 /// memory size or when the semantic requires inlining. 7021 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7022 SDValue Chain, SDValue Dst, SDValue Src, 7023 uint64_t Size, Align Alignment, bool isVol, 7024 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7025 const AAMDNodes &AAInfo) { 7026 // Turn a memset of undef to nop. 7027 // FIXME: We need to honor volatile even is Src is undef. 7028 if (Src.isUndef()) 7029 return Chain; 7030 7031 // Expand memset to a series of load/store ops if the size operand 7032 // falls below a certain threshold. 7033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7034 std::vector<EVT> MemOps; 7035 bool DstAlignCanChange = false; 7036 MachineFunction &MF = DAG.getMachineFunction(); 7037 MachineFrameInfo &MFI = MF.getFrameInfo(); 7038 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7039 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7040 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7041 DstAlignCanChange = true; 7042 bool IsZeroVal = 7043 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7044 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7045 7046 if (!TLI.findOptimalMemOpLowering( 7047 MemOps, Limit, 7048 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7049 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7050 return SDValue(); 7051 7052 if (DstAlignCanChange) { 7053 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7054 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7055 if (NewAlign > Alignment) { 7056 // Give the stack frame object a larger alignment if needed. 7057 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7058 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7059 Alignment = NewAlign; 7060 } 7061 } 7062 7063 SmallVector<SDValue, 8> OutChains; 7064 uint64_t DstOff = 0; 7065 unsigned NumMemOps = MemOps.size(); 7066 7067 // Find the largest store and generate the bit pattern for it. 7068 EVT LargestVT = MemOps[0]; 7069 for (unsigned i = 1; i < NumMemOps; i++) 7070 if (MemOps[i].bitsGT(LargestVT)) 7071 LargestVT = MemOps[i]; 7072 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7073 7074 // Prepare AAInfo for loads/stores after lowering this memset. 7075 AAMDNodes NewAAInfo = AAInfo; 7076 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7077 7078 for (unsigned i = 0; i < NumMemOps; i++) { 7079 EVT VT = MemOps[i]; 7080 unsigned VTSize = VT.getSizeInBits() / 8; 7081 if (VTSize > Size) { 7082 // Issuing an unaligned load / store pair that overlaps with the previous 7083 // pair. Adjust the offset accordingly. 7084 assert(i == NumMemOps-1 && i != 0); 7085 DstOff -= VTSize - Size; 7086 } 7087 7088 // If this store is smaller than the largest store see whether we can get 7089 // the smaller value for free with a truncate. 7090 SDValue Value = MemSetValue; 7091 if (VT.bitsLT(LargestVT)) { 7092 if (!LargestVT.isVector() && !VT.isVector() && 7093 TLI.isTruncateFree(LargestVT, VT)) 7094 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7095 else 7096 Value = getMemsetValue(Src, VT, DAG, dl); 7097 } 7098 assert(Value.getValueType() == VT && "Value with wrong type."); 7099 SDValue Store = DAG.getStore( 7100 Chain, dl, Value, 7101 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7102 DstPtrInfo.getWithOffset(DstOff), Alignment, 7103 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7104 NewAAInfo); 7105 OutChains.push_back(Store); 7106 DstOff += VT.getSizeInBits() / 8; 7107 Size -= VTSize; 7108 } 7109 7110 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7111 } 7112 7113 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7114 unsigned AS) { 7115 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7116 // pointer operands can be losslessly bitcasted to pointers of address space 0 7117 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7118 report_fatal_error("cannot lower memory intrinsic in address space " + 7119 Twine(AS)); 7120 } 7121 } 7122 7123 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7124 SDValue Src, SDValue Size, Align Alignment, 7125 bool isVol, bool AlwaysInline, bool isTailCall, 7126 MachinePointerInfo DstPtrInfo, 7127 MachinePointerInfo SrcPtrInfo, 7128 const AAMDNodes &AAInfo) { 7129 // Check to see if we should lower the memcpy to loads and stores first. 7130 // For cases within the target-specified limits, this is the best choice. 7131 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7132 if (ConstantSize) { 7133 // Memcpy with size zero? Just return the original chain. 7134 if (ConstantSize->isZero()) 7135 return Chain; 7136 7137 SDValue Result = getMemcpyLoadsAndStores( 7138 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7139 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7140 if (Result.getNode()) 7141 return Result; 7142 } 7143 7144 // Then check to see if we should lower the memcpy with target-specific 7145 // code. If the target chooses to do this, this is the next best. 7146 if (TSI) { 7147 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7148 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7149 DstPtrInfo, SrcPtrInfo); 7150 if (Result.getNode()) 7151 return Result; 7152 } 7153 7154 // If we really need inline code and the target declined to provide it, 7155 // use a (potentially long) sequence of loads and stores. 7156 if (AlwaysInline) { 7157 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7158 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7159 ConstantSize->getZExtValue(), Alignment, 7160 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7161 } 7162 7163 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7164 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7165 7166 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7167 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7168 // respect volatile, so they may do things like read or write memory 7169 // beyond the given memory regions. But fixing this isn't easy, and most 7170 // people don't care. 7171 7172 // Emit a library call. 7173 TargetLowering::ArgListTy Args; 7174 TargetLowering::ArgListEntry Entry; 7175 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7176 Entry.Node = Dst; Args.push_back(Entry); 7177 Entry.Node = Src; Args.push_back(Entry); 7178 7179 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7180 Entry.Node = Size; Args.push_back(Entry); 7181 // FIXME: pass in SDLoc 7182 TargetLowering::CallLoweringInfo CLI(*this); 7183 CLI.setDebugLoc(dl) 7184 .setChain(Chain) 7185 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7186 Dst.getValueType().getTypeForEVT(*getContext()), 7187 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7188 TLI->getPointerTy(getDataLayout())), 7189 std::move(Args)) 7190 .setDiscardResult() 7191 .setTailCall(isTailCall); 7192 7193 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7194 return CallResult.second; 7195 } 7196 7197 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7198 SDValue Dst, SDValue Src, SDValue Size, 7199 Type *SizeTy, unsigned ElemSz, 7200 bool isTailCall, 7201 MachinePointerInfo DstPtrInfo, 7202 MachinePointerInfo SrcPtrInfo) { 7203 // Emit a library call. 7204 TargetLowering::ArgListTy Args; 7205 TargetLowering::ArgListEntry Entry; 7206 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7207 Entry.Node = Dst; 7208 Args.push_back(Entry); 7209 7210 Entry.Node = Src; 7211 Args.push_back(Entry); 7212 7213 Entry.Ty = SizeTy; 7214 Entry.Node = Size; 7215 Args.push_back(Entry); 7216 7217 RTLIB::Libcall LibraryCall = 7218 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7219 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7220 report_fatal_error("Unsupported element size"); 7221 7222 TargetLowering::CallLoweringInfo CLI(*this); 7223 CLI.setDebugLoc(dl) 7224 .setChain(Chain) 7225 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7226 Type::getVoidTy(*getContext()), 7227 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7228 TLI->getPointerTy(getDataLayout())), 7229 std::move(Args)) 7230 .setDiscardResult() 7231 .setTailCall(isTailCall); 7232 7233 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7234 return CallResult.second; 7235 } 7236 7237 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7238 SDValue Src, SDValue Size, Align Alignment, 7239 bool isVol, bool isTailCall, 7240 MachinePointerInfo DstPtrInfo, 7241 MachinePointerInfo SrcPtrInfo, 7242 const AAMDNodes &AAInfo) { 7243 // Check to see if we should lower the memmove to loads and stores first. 7244 // For cases within the target-specified limits, this is the best choice. 7245 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7246 if (ConstantSize) { 7247 // Memmove with size zero? Just return the original chain. 7248 if (ConstantSize->isZero()) 7249 return Chain; 7250 7251 SDValue Result = getMemmoveLoadsAndStores( 7252 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7253 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7254 if (Result.getNode()) 7255 return Result; 7256 } 7257 7258 // Then check to see if we should lower the memmove with target-specific 7259 // code. If the target chooses to do this, this is the next best. 7260 if (TSI) { 7261 SDValue Result = 7262 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7263 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7264 if (Result.getNode()) 7265 return Result; 7266 } 7267 7268 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7269 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7270 7271 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7272 // not be safe. See memcpy above for more details. 7273 7274 // Emit a library call. 7275 TargetLowering::ArgListTy Args; 7276 TargetLowering::ArgListEntry Entry; 7277 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7278 Entry.Node = Dst; Args.push_back(Entry); 7279 Entry.Node = Src; Args.push_back(Entry); 7280 7281 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7282 Entry.Node = Size; Args.push_back(Entry); 7283 // FIXME: pass in SDLoc 7284 TargetLowering::CallLoweringInfo CLI(*this); 7285 CLI.setDebugLoc(dl) 7286 .setChain(Chain) 7287 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7288 Dst.getValueType().getTypeForEVT(*getContext()), 7289 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7290 TLI->getPointerTy(getDataLayout())), 7291 std::move(Args)) 7292 .setDiscardResult() 7293 .setTailCall(isTailCall); 7294 7295 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7296 return CallResult.second; 7297 } 7298 7299 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7300 SDValue Dst, SDValue Src, SDValue Size, 7301 Type *SizeTy, unsigned ElemSz, 7302 bool isTailCall, 7303 MachinePointerInfo DstPtrInfo, 7304 MachinePointerInfo SrcPtrInfo) { 7305 // Emit a library call. 7306 TargetLowering::ArgListTy Args; 7307 TargetLowering::ArgListEntry Entry; 7308 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7309 Entry.Node = Dst; 7310 Args.push_back(Entry); 7311 7312 Entry.Node = Src; 7313 Args.push_back(Entry); 7314 7315 Entry.Ty = SizeTy; 7316 Entry.Node = Size; 7317 Args.push_back(Entry); 7318 7319 RTLIB::Libcall LibraryCall = 7320 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7321 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7322 report_fatal_error("Unsupported element size"); 7323 7324 TargetLowering::CallLoweringInfo CLI(*this); 7325 CLI.setDebugLoc(dl) 7326 .setChain(Chain) 7327 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7328 Type::getVoidTy(*getContext()), 7329 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7330 TLI->getPointerTy(getDataLayout())), 7331 std::move(Args)) 7332 .setDiscardResult() 7333 .setTailCall(isTailCall); 7334 7335 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7336 return CallResult.second; 7337 } 7338 7339 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7340 SDValue Src, SDValue Size, Align Alignment, 7341 bool isVol, bool AlwaysInline, bool isTailCall, 7342 MachinePointerInfo DstPtrInfo, 7343 const AAMDNodes &AAInfo) { 7344 // Check to see if we should lower the memset to stores first. 7345 // For cases within the target-specified limits, this is the best choice. 7346 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7347 if (ConstantSize) { 7348 // Memset with size zero? Just return the original chain. 7349 if (ConstantSize->isZero()) 7350 return Chain; 7351 7352 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7353 ConstantSize->getZExtValue(), Alignment, 7354 isVol, false, DstPtrInfo, AAInfo); 7355 7356 if (Result.getNode()) 7357 return Result; 7358 } 7359 7360 // Then check to see if we should lower the memset with target-specific 7361 // code. If the target chooses to do this, this is the next best. 7362 if (TSI) { 7363 SDValue Result = TSI->EmitTargetCodeForMemset( 7364 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7365 if (Result.getNode()) 7366 return Result; 7367 } 7368 7369 // If we really need inline code and the target declined to provide it, 7370 // use a (potentially long) sequence of loads and stores. 7371 if (AlwaysInline) { 7372 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7373 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7374 ConstantSize->getZExtValue(), Alignment, 7375 isVol, true, DstPtrInfo, AAInfo); 7376 assert(Result && 7377 "getMemsetStores must return a valid sequence when AlwaysInline"); 7378 return Result; 7379 } 7380 7381 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7382 7383 // Emit a library call. 7384 auto &Ctx = *getContext(); 7385 const auto& DL = getDataLayout(); 7386 7387 TargetLowering::CallLoweringInfo CLI(*this); 7388 // FIXME: pass in SDLoc 7389 CLI.setDebugLoc(dl).setChain(Chain); 7390 7391 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7392 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7393 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7394 7395 // Helper function to create an Entry from Node and Type. 7396 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7397 TargetLowering::ArgListEntry Entry; 7398 Entry.Node = Node; 7399 Entry.Ty = Ty; 7400 return Entry; 7401 }; 7402 7403 // If zeroing out and bzero is present, use it. 7404 if (SrcIsZero && BzeroName) { 7405 TargetLowering::ArgListTy Args; 7406 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7407 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7408 CLI.setLibCallee( 7409 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7410 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7411 } else { 7412 TargetLowering::ArgListTy Args; 7413 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7414 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7415 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7416 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7417 Dst.getValueType().getTypeForEVT(Ctx), 7418 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7419 TLI->getPointerTy(DL)), 7420 std::move(Args)); 7421 } 7422 7423 CLI.setDiscardResult().setTailCall(isTailCall); 7424 7425 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7426 return CallResult.second; 7427 } 7428 7429 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7430 SDValue Dst, SDValue Value, SDValue Size, 7431 Type *SizeTy, unsigned ElemSz, 7432 bool isTailCall, 7433 MachinePointerInfo DstPtrInfo) { 7434 // Emit a library call. 7435 TargetLowering::ArgListTy Args; 7436 TargetLowering::ArgListEntry Entry; 7437 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7438 Entry.Node = Dst; 7439 Args.push_back(Entry); 7440 7441 Entry.Ty = Type::getInt8Ty(*getContext()); 7442 Entry.Node = Value; 7443 Args.push_back(Entry); 7444 7445 Entry.Ty = SizeTy; 7446 Entry.Node = Size; 7447 Args.push_back(Entry); 7448 7449 RTLIB::Libcall LibraryCall = 7450 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7451 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7452 report_fatal_error("Unsupported element size"); 7453 7454 TargetLowering::CallLoweringInfo CLI(*this); 7455 CLI.setDebugLoc(dl) 7456 .setChain(Chain) 7457 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7458 Type::getVoidTy(*getContext()), 7459 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7460 TLI->getPointerTy(getDataLayout())), 7461 std::move(Args)) 7462 .setDiscardResult() 7463 .setTailCall(isTailCall); 7464 7465 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7466 return CallResult.second; 7467 } 7468 7469 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7470 SDVTList VTList, ArrayRef<SDValue> Ops, 7471 MachineMemOperand *MMO) { 7472 FoldingSetNodeID ID; 7473 ID.AddInteger(MemVT.getRawBits()); 7474 AddNodeIDNode(ID, Opcode, VTList, Ops); 7475 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7476 ID.AddInteger(MMO->getFlags()); 7477 void* IP = nullptr; 7478 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7479 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7480 return SDValue(E, 0); 7481 } 7482 7483 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7484 VTList, MemVT, MMO); 7485 createOperands(N, Ops); 7486 7487 CSEMap.InsertNode(N, IP); 7488 InsertNode(N); 7489 return SDValue(N, 0); 7490 } 7491 7492 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7493 EVT MemVT, SDVTList VTs, SDValue Chain, 7494 SDValue Ptr, SDValue Cmp, SDValue Swp, 7495 MachineMemOperand *MMO) { 7496 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7497 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7498 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7499 7500 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7501 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7502 } 7503 7504 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7505 SDValue Chain, SDValue Ptr, SDValue Val, 7506 MachineMemOperand *MMO) { 7507 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7508 Opcode == ISD::ATOMIC_LOAD_SUB || 7509 Opcode == ISD::ATOMIC_LOAD_AND || 7510 Opcode == ISD::ATOMIC_LOAD_CLR || 7511 Opcode == ISD::ATOMIC_LOAD_OR || 7512 Opcode == ISD::ATOMIC_LOAD_XOR || 7513 Opcode == ISD::ATOMIC_LOAD_NAND || 7514 Opcode == ISD::ATOMIC_LOAD_MIN || 7515 Opcode == ISD::ATOMIC_LOAD_MAX || 7516 Opcode == ISD::ATOMIC_LOAD_UMIN || 7517 Opcode == ISD::ATOMIC_LOAD_UMAX || 7518 Opcode == ISD::ATOMIC_LOAD_FADD || 7519 Opcode == ISD::ATOMIC_LOAD_FSUB || 7520 Opcode == ISD::ATOMIC_LOAD_FMAX || 7521 Opcode == ISD::ATOMIC_LOAD_FMIN || 7522 Opcode == ISD::ATOMIC_SWAP || 7523 Opcode == ISD::ATOMIC_STORE) && 7524 "Invalid Atomic Op"); 7525 7526 EVT VT = Val.getValueType(); 7527 7528 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7529 getVTList(VT, MVT::Other); 7530 SDValue Ops[] = {Chain, Ptr, Val}; 7531 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7532 } 7533 7534 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7535 EVT VT, SDValue Chain, SDValue Ptr, 7536 MachineMemOperand *MMO) { 7537 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7538 7539 SDVTList VTs = getVTList(VT, MVT::Other); 7540 SDValue Ops[] = {Chain, Ptr}; 7541 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7542 } 7543 7544 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7545 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7546 if (Ops.size() == 1) 7547 return Ops[0]; 7548 7549 SmallVector<EVT, 4> VTs; 7550 VTs.reserve(Ops.size()); 7551 for (const SDValue &Op : Ops) 7552 VTs.push_back(Op.getValueType()); 7553 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7554 } 7555 7556 SDValue SelectionDAG::getMemIntrinsicNode( 7557 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7558 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7559 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7560 if (!Size && MemVT.isScalableVector()) 7561 Size = MemoryLocation::UnknownSize; 7562 else if (!Size) 7563 Size = MemVT.getStoreSize(); 7564 7565 MachineFunction &MF = getMachineFunction(); 7566 MachineMemOperand *MMO = 7567 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7568 7569 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7570 } 7571 7572 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7573 SDVTList VTList, 7574 ArrayRef<SDValue> Ops, EVT MemVT, 7575 MachineMemOperand *MMO) { 7576 assert((Opcode == ISD::INTRINSIC_VOID || 7577 Opcode == ISD::INTRINSIC_W_CHAIN || 7578 Opcode == ISD::PREFETCH || 7579 ((int)Opcode <= std::numeric_limits<int>::max() && 7580 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7581 "Opcode is not a memory-accessing opcode!"); 7582 7583 // Memoize the node unless it returns a flag. 7584 MemIntrinsicSDNode *N; 7585 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7586 FoldingSetNodeID ID; 7587 AddNodeIDNode(ID, Opcode, VTList, Ops); 7588 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7589 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7590 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7591 ID.AddInteger(MMO->getFlags()); 7592 void *IP = nullptr; 7593 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7594 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7595 return SDValue(E, 0); 7596 } 7597 7598 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7599 VTList, MemVT, MMO); 7600 createOperands(N, Ops); 7601 7602 CSEMap.InsertNode(N, IP); 7603 } else { 7604 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7605 VTList, MemVT, MMO); 7606 createOperands(N, Ops); 7607 } 7608 InsertNode(N); 7609 SDValue V(N, 0); 7610 NewSDValueDbgMsg(V, "Creating new node: ", this); 7611 return V; 7612 } 7613 7614 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7615 SDValue Chain, int FrameIndex, 7616 int64_t Size, int64_t Offset) { 7617 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7618 const auto VTs = getVTList(MVT::Other); 7619 SDValue Ops[2] = { 7620 Chain, 7621 getFrameIndex(FrameIndex, 7622 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7623 true)}; 7624 7625 FoldingSetNodeID ID; 7626 AddNodeIDNode(ID, Opcode, VTs, Ops); 7627 ID.AddInteger(FrameIndex); 7628 ID.AddInteger(Size); 7629 ID.AddInteger(Offset); 7630 void *IP = nullptr; 7631 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7632 return SDValue(E, 0); 7633 7634 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7635 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7636 createOperands(N, Ops); 7637 CSEMap.InsertNode(N, IP); 7638 InsertNode(N); 7639 SDValue V(N, 0); 7640 NewSDValueDbgMsg(V, "Creating new node: ", this); 7641 return V; 7642 } 7643 7644 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7645 uint64_t Guid, uint64_t Index, 7646 uint32_t Attr) { 7647 const unsigned Opcode = ISD::PSEUDO_PROBE; 7648 const auto VTs = getVTList(MVT::Other); 7649 SDValue Ops[] = {Chain}; 7650 FoldingSetNodeID ID; 7651 AddNodeIDNode(ID, Opcode, VTs, Ops); 7652 ID.AddInteger(Guid); 7653 ID.AddInteger(Index); 7654 void *IP = nullptr; 7655 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7656 return SDValue(E, 0); 7657 7658 auto *N = newSDNode<PseudoProbeSDNode>( 7659 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7660 createOperands(N, Ops); 7661 CSEMap.InsertNode(N, IP); 7662 InsertNode(N); 7663 SDValue V(N, 0); 7664 NewSDValueDbgMsg(V, "Creating new node: ", this); 7665 return V; 7666 } 7667 7668 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7669 /// MachinePointerInfo record from it. This is particularly useful because the 7670 /// code generator has many cases where it doesn't bother passing in a 7671 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7672 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7673 SelectionDAG &DAG, SDValue Ptr, 7674 int64_t Offset = 0) { 7675 // If this is FI+Offset, we can model it. 7676 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7677 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7678 FI->getIndex(), Offset); 7679 7680 // If this is (FI+Offset1)+Offset2, we can model it. 7681 if (Ptr.getOpcode() != ISD::ADD || 7682 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7683 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7684 return Info; 7685 7686 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7687 return MachinePointerInfo::getFixedStack( 7688 DAG.getMachineFunction(), FI, 7689 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7690 } 7691 7692 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7693 /// MachinePointerInfo record from it. This is particularly useful because the 7694 /// code generator has many cases where it doesn't bother passing in a 7695 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7696 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7697 SelectionDAG &DAG, SDValue Ptr, 7698 SDValue OffsetOp) { 7699 // If the 'Offset' value isn't a constant, we can't handle this. 7700 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7701 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7702 if (OffsetOp.isUndef()) 7703 return InferPointerInfo(Info, DAG, Ptr); 7704 return Info; 7705 } 7706 7707 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7708 EVT VT, const SDLoc &dl, SDValue Chain, 7709 SDValue Ptr, SDValue Offset, 7710 MachinePointerInfo PtrInfo, EVT MemVT, 7711 Align Alignment, 7712 MachineMemOperand::Flags MMOFlags, 7713 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7714 assert(Chain.getValueType() == MVT::Other && 7715 "Invalid chain type"); 7716 7717 MMOFlags |= MachineMemOperand::MOLoad; 7718 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7719 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7720 // clients. 7721 if (PtrInfo.V.isNull()) 7722 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7723 7724 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7725 MachineFunction &MF = getMachineFunction(); 7726 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7727 Alignment, AAInfo, Ranges); 7728 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7729 } 7730 7731 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7732 EVT VT, const SDLoc &dl, SDValue Chain, 7733 SDValue Ptr, SDValue Offset, EVT MemVT, 7734 MachineMemOperand *MMO) { 7735 if (VT == MemVT) { 7736 ExtType = ISD::NON_EXTLOAD; 7737 } else if (ExtType == ISD::NON_EXTLOAD) { 7738 assert(VT == MemVT && "Non-extending load from different memory type!"); 7739 } else { 7740 // Extending load. 7741 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7742 "Should only be an extending load, not truncating!"); 7743 assert(VT.isInteger() == MemVT.isInteger() && 7744 "Cannot convert from FP to Int or Int -> FP!"); 7745 assert(VT.isVector() == MemVT.isVector() && 7746 "Cannot use an ext load to convert to or from a vector!"); 7747 assert((!VT.isVector() || 7748 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7749 "Cannot use an ext load to change the number of vector elements!"); 7750 } 7751 7752 bool Indexed = AM != ISD::UNINDEXED; 7753 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7754 7755 SDVTList VTs = Indexed ? 7756 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7757 SDValue Ops[] = { Chain, Ptr, Offset }; 7758 FoldingSetNodeID ID; 7759 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7760 ID.AddInteger(MemVT.getRawBits()); 7761 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7762 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7763 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7764 ID.AddInteger(MMO->getFlags()); 7765 void *IP = nullptr; 7766 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7767 cast<LoadSDNode>(E)->refineAlignment(MMO); 7768 return SDValue(E, 0); 7769 } 7770 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7771 ExtType, MemVT, MMO); 7772 createOperands(N, Ops); 7773 7774 CSEMap.InsertNode(N, IP); 7775 InsertNode(N); 7776 SDValue V(N, 0); 7777 NewSDValueDbgMsg(V, "Creating new node: ", this); 7778 return V; 7779 } 7780 7781 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7782 SDValue Ptr, MachinePointerInfo PtrInfo, 7783 MaybeAlign Alignment, 7784 MachineMemOperand::Flags MMOFlags, 7785 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7786 SDValue Undef = getUNDEF(Ptr.getValueType()); 7787 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7788 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7789 } 7790 7791 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7792 SDValue Ptr, MachineMemOperand *MMO) { 7793 SDValue Undef = getUNDEF(Ptr.getValueType()); 7794 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7795 VT, MMO); 7796 } 7797 7798 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7799 EVT VT, SDValue Chain, SDValue Ptr, 7800 MachinePointerInfo PtrInfo, EVT MemVT, 7801 MaybeAlign Alignment, 7802 MachineMemOperand::Flags MMOFlags, 7803 const AAMDNodes &AAInfo) { 7804 SDValue Undef = getUNDEF(Ptr.getValueType()); 7805 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7806 MemVT, Alignment, MMOFlags, AAInfo); 7807 } 7808 7809 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7810 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7811 MachineMemOperand *MMO) { 7812 SDValue Undef = getUNDEF(Ptr.getValueType()); 7813 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7814 MemVT, MMO); 7815 } 7816 7817 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7818 SDValue Base, SDValue Offset, 7819 ISD::MemIndexedMode AM) { 7820 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7821 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7822 // Don't propagate the invariant or dereferenceable flags. 7823 auto MMOFlags = 7824 LD->getMemOperand()->getFlags() & 7825 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7826 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7827 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7828 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7829 } 7830 7831 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7832 SDValue Ptr, MachinePointerInfo PtrInfo, 7833 Align Alignment, 7834 MachineMemOperand::Flags MMOFlags, 7835 const AAMDNodes &AAInfo) { 7836 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7837 7838 MMOFlags |= MachineMemOperand::MOStore; 7839 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7840 7841 if (PtrInfo.V.isNull()) 7842 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7843 7844 MachineFunction &MF = getMachineFunction(); 7845 uint64_t Size = 7846 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7847 MachineMemOperand *MMO = 7848 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7849 return getStore(Chain, dl, Val, Ptr, MMO); 7850 } 7851 7852 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7853 SDValue Ptr, MachineMemOperand *MMO) { 7854 assert(Chain.getValueType() == MVT::Other && 7855 "Invalid chain type"); 7856 EVT VT = Val.getValueType(); 7857 SDVTList VTs = getVTList(MVT::Other); 7858 SDValue Undef = getUNDEF(Ptr.getValueType()); 7859 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7860 FoldingSetNodeID ID; 7861 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7862 ID.AddInteger(VT.getRawBits()); 7863 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7864 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7865 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7866 ID.AddInteger(MMO->getFlags()); 7867 void *IP = nullptr; 7868 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7869 cast<StoreSDNode>(E)->refineAlignment(MMO); 7870 return SDValue(E, 0); 7871 } 7872 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7873 ISD::UNINDEXED, false, VT, MMO); 7874 createOperands(N, Ops); 7875 7876 CSEMap.InsertNode(N, IP); 7877 InsertNode(N); 7878 SDValue V(N, 0); 7879 NewSDValueDbgMsg(V, "Creating new node: ", this); 7880 return V; 7881 } 7882 7883 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7884 SDValue Ptr, MachinePointerInfo PtrInfo, 7885 EVT SVT, Align Alignment, 7886 MachineMemOperand::Flags MMOFlags, 7887 const AAMDNodes &AAInfo) { 7888 assert(Chain.getValueType() == MVT::Other && 7889 "Invalid chain type"); 7890 7891 MMOFlags |= MachineMemOperand::MOStore; 7892 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7893 7894 if (PtrInfo.V.isNull()) 7895 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7896 7897 MachineFunction &MF = getMachineFunction(); 7898 MachineMemOperand *MMO = MF.getMachineMemOperand( 7899 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7900 Alignment, AAInfo); 7901 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7902 } 7903 7904 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7905 SDValue Ptr, EVT SVT, 7906 MachineMemOperand *MMO) { 7907 EVT VT = Val.getValueType(); 7908 7909 assert(Chain.getValueType() == MVT::Other && 7910 "Invalid chain type"); 7911 if (VT == SVT) 7912 return getStore(Chain, dl, Val, Ptr, MMO); 7913 7914 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7915 "Should only be a truncating store, not extending!"); 7916 assert(VT.isInteger() == SVT.isInteger() && 7917 "Can't do FP-INT conversion!"); 7918 assert(VT.isVector() == SVT.isVector() && 7919 "Cannot use trunc store to convert to or from a vector!"); 7920 assert((!VT.isVector() || 7921 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7922 "Cannot use trunc store to change the number of vector elements!"); 7923 7924 SDVTList VTs = getVTList(MVT::Other); 7925 SDValue Undef = getUNDEF(Ptr.getValueType()); 7926 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7927 FoldingSetNodeID ID; 7928 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7929 ID.AddInteger(SVT.getRawBits()); 7930 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7931 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7932 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7933 ID.AddInteger(MMO->getFlags()); 7934 void *IP = nullptr; 7935 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7936 cast<StoreSDNode>(E)->refineAlignment(MMO); 7937 return SDValue(E, 0); 7938 } 7939 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7940 ISD::UNINDEXED, true, SVT, MMO); 7941 createOperands(N, Ops); 7942 7943 CSEMap.InsertNode(N, IP); 7944 InsertNode(N); 7945 SDValue V(N, 0); 7946 NewSDValueDbgMsg(V, "Creating new node: ", this); 7947 return V; 7948 } 7949 7950 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7951 SDValue Base, SDValue Offset, 7952 ISD::MemIndexedMode AM) { 7953 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7954 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7955 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7956 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7957 FoldingSetNodeID ID; 7958 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7959 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7960 ID.AddInteger(ST->getRawSubclassData()); 7961 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7962 ID.AddInteger(ST->getMemOperand()->getFlags()); 7963 void *IP = nullptr; 7964 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7965 return SDValue(E, 0); 7966 7967 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7968 ST->isTruncatingStore(), ST->getMemoryVT(), 7969 ST->getMemOperand()); 7970 createOperands(N, Ops); 7971 7972 CSEMap.InsertNode(N, IP); 7973 InsertNode(N); 7974 SDValue V(N, 0); 7975 NewSDValueDbgMsg(V, "Creating new node: ", this); 7976 return V; 7977 } 7978 7979 SDValue SelectionDAG::getLoadVP( 7980 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7981 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7982 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7983 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7984 const MDNode *Ranges, bool IsExpanding) { 7985 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7986 7987 MMOFlags |= MachineMemOperand::MOLoad; 7988 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7989 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7990 // clients. 7991 if (PtrInfo.V.isNull()) 7992 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7993 7994 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7995 MachineFunction &MF = getMachineFunction(); 7996 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7997 Alignment, AAInfo, Ranges); 7998 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7999 MMO, IsExpanding); 8000 } 8001 8002 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 8003 ISD::LoadExtType ExtType, EVT VT, 8004 const SDLoc &dl, SDValue Chain, SDValue Ptr, 8005 SDValue Offset, SDValue Mask, SDValue EVL, 8006 EVT MemVT, MachineMemOperand *MMO, 8007 bool IsExpanding) { 8008 bool Indexed = AM != ISD::UNINDEXED; 8009 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8010 8011 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8012 : getVTList(VT, MVT::Other); 8013 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 8014 FoldingSetNodeID ID; 8015 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 8016 ID.AddInteger(VT.getRawBits()); 8017 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 8018 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8019 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8020 ID.AddInteger(MMO->getFlags()); 8021 void *IP = nullptr; 8022 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8023 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8024 return SDValue(E, 0); 8025 } 8026 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8027 ExtType, IsExpanding, MemVT, MMO); 8028 createOperands(N, Ops); 8029 8030 CSEMap.InsertNode(N, IP); 8031 InsertNode(N); 8032 SDValue V(N, 0); 8033 NewSDValueDbgMsg(V, "Creating new node: ", this); 8034 return V; 8035 } 8036 8037 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8038 SDValue Ptr, SDValue Mask, SDValue EVL, 8039 MachinePointerInfo PtrInfo, 8040 MaybeAlign Alignment, 8041 MachineMemOperand::Flags MMOFlags, 8042 const AAMDNodes &AAInfo, const MDNode *Ranges, 8043 bool IsExpanding) { 8044 SDValue Undef = getUNDEF(Ptr.getValueType()); 8045 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8046 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8047 IsExpanding); 8048 } 8049 8050 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8051 SDValue Ptr, SDValue Mask, SDValue EVL, 8052 MachineMemOperand *MMO, bool IsExpanding) { 8053 SDValue Undef = getUNDEF(Ptr.getValueType()); 8054 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8055 Mask, EVL, VT, MMO, IsExpanding); 8056 } 8057 8058 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8059 EVT VT, SDValue Chain, SDValue Ptr, 8060 SDValue Mask, SDValue EVL, 8061 MachinePointerInfo PtrInfo, EVT MemVT, 8062 MaybeAlign Alignment, 8063 MachineMemOperand::Flags MMOFlags, 8064 const AAMDNodes &AAInfo, bool IsExpanding) { 8065 SDValue Undef = getUNDEF(Ptr.getValueType()); 8066 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8067 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8068 IsExpanding); 8069 } 8070 8071 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8072 EVT VT, SDValue Chain, SDValue Ptr, 8073 SDValue Mask, SDValue EVL, EVT MemVT, 8074 MachineMemOperand *MMO, bool IsExpanding) { 8075 SDValue Undef = getUNDEF(Ptr.getValueType()); 8076 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8077 EVL, MemVT, MMO, IsExpanding); 8078 } 8079 8080 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8081 SDValue Base, SDValue Offset, 8082 ISD::MemIndexedMode AM) { 8083 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8084 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8085 // Don't propagate the invariant or dereferenceable flags. 8086 auto MMOFlags = 8087 LD->getMemOperand()->getFlags() & 8088 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8089 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8090 LD->getChain(), Base, Offset, LD->getMask(), 8091 LD->getVectorLength(), LD->getPointerInfo(), 8092 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8093 nullptr, LD->isExpandingLoad()); 8094 } 8095 8096 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8097 SDValue Ptr, SDValue Offset, SDValue Mask, 8098 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8099 ISD::MemIndexedMode AM, bool IsTruncating, 8100 bool IsCompressing) { 8101 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8102 bool Indexed = AM != ISD::UNINDEXED; 8103 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8104 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8105 : getVTList(MVT::Other); 8106 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8107 FoldingSetNodeID ID; 8108 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8109 ID.AddInteger(MemVT.getRawBits()); 8110 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8111 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8112 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8113 ID.AddInteger(MMO->getFlags()); 8114 void *IP = nullptr; 8115 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8116 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8117 return SDValue(E, 0); 8118 } 8119 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8120 IsTruncating, IsCompressing, MemVT, MMO); 8121 createOperands(N, Ops); 8122 8123 CSEMap.InsertNode(N, IP); 8124 InsertNode(N); 8125 SDValue V(N, 0); 8126 NewSDValueDbgMsg(V, "Creating new node: ", this); 8127 return V; 8128 } 8129 8130 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8131 SDValue Val, SDValue Ptr, SDValue Mask, 8132 SDValue EVL, MachinePointerInfo PtrInfo, 8133 EVT SVT, Align Alignment, 8134 MachineMemOperand::Flags MMOFlags, 8135 const AAMDNodes &AAInfo, 8136 bool IsCompressing) { 8137 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8138 8139 MMOFlags |= MachineMemOperand::MOStore; 8140 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8141 8142 if (PtrInfo.V.isNull()) 8143 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8144 8145 MachineFunction &MF = getMachineFunction(); 8146 MachineMemOperand *MMO = MF.getMachineMemOperand( 8147 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8148 Alignment, AAInfo); 8149 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8150 IsCompressing); 8151 } 8152 8153 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8154 SDValue Val, SDValue Ptr, SDValue Mask, 8155 SDValue EVL, EVT SVT, 8156 MachineMemOperand *MMO, 8157 bool IsCompressing) { 8158 EVT VT = Val.getValueType(); 8159 8160 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8161 if (VT == SVT) 8162 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8163 EVL, VT, MMO, ISD::UNINDEXED, 8164 /*IsTruncating*/ false, IsCompressing); 8165 8166 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8167 "Should only be a truncating store, not extending!"); 8168 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8169 assert(VT.isVector() == SVT.isVector() && 8170 "Cannot use trunc store to convert to or from a vector!"); 8171 assert((!VT.isVector() || 8172 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8173 "Cannot use trunc store to change the number of vector elements!"); 8174 8175 SDVTList VTs = getVTList(MVT::Other); 8176 SDValue Undef = getUNDEF(Ptr.getValueType()); 8177 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8178 FoldingSetNodeID ID; 8179 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8180 ID.AddInteger(SVT.getRawBits()); 8181 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8182 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8183 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8184 ID.AddInteger(MMO->getFlags()); 8185 void *IP = nullptr; 8186 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8187 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8188 return SDValue(E, 0); 8189 } 8190 auto *N = 8191 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8192 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8193 createOperands(N, Ops); 8194 8195 CSEMap.InsertNode(N, IP); 8196 InsertNode(N); 8197 SDValue V(N, 0); 8198 NewSDValueDbgMsg(V, "Creating new node: ", this); 8199 return V; 8200 } 8201 8202 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8203 SDValue Base, SDValue Offset, 8204 ISD::MemIndexedMode AM) { 8205 auto *ST = cast<VPStoreSDNode>(OrigStore); 8206 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8207 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8208 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8209 Offset, ST->getMask(), ST->getVectorLength()}; 8210 FoldingSetNodeID ID; 8211 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8212 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8213 ID.AddInteger(ST->getRawSubclassData()); 8214 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8215 ID.AddInteger(ST->getMemOperand()->getFlags()); 8216 void *IP = nullptr; 8217 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8218 return SDValue(E, 0); 8219 8220 auto *N = newSDNode<VPStoreSDNode>( 8221 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8222 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8223 createOperands(N, Ops); 8224 8225 CSEMap.InsertNode(N, IP); 8226 InsertNode(N); 8227 SDValue V(N, 0); 8228 NewSDValueDbgMsg(V, "Creating new node: ", this); 8229 return V; 8230 } 8231 8232 SDValue SelectionDAG::getStridedLoadVP( 8233 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8234 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8235 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8236 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8237 const MDNode *Ranges, bool IsExpanding) { 8238 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8239 8240 MMOFlags |= MachineMemOperand::MOLoad; 8241 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8242 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8243 // clients. 8244 if (PtrInfo.V.isNull()) 8245 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8246 8247 uint64_t Size = MemoryLocation::UnknownSize; 8248 MachineFunction &MF = getMachineFunction(); 8249 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8250 Alignment, AAInfo, Ranges); 8251 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8252 EVL, MemVT, MMO, IsExpanding); 8253 } 8254 8255 SDValue SelectionDAG::getStridedLoadVP( 8256 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8257 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8258 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8259 bool Indexed = AM != ISD::UNINDEXED; 8260 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8261 8262 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8263 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8264 : getVTList(VT, MVT::Other); 8265 FoldingSetNodeID ID; 8266 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8267 ID.AddInteger(VT.getRawBits()); 8268 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8269 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8270 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8271 8272 void *IP = nullptr; 8273 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8274 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8275 return SDValue(E, 0); 8276 } 8277 8278 auto *N = 8279 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8280 ExtType, IsExpanding, MemVT, MMO); 8281 createOperands(N, Ops); 8282 CSEMap.InsertNode(N, IP); 8283 InsertNode(N); 8284 SDValue V(N, 0); 8285 NewSDValueDbgMsg(V, "Creating new node: ", this); 8286 return V; 8287 } 8288 8289 SDValue SelectionDAG::getStridedLoadVP( 8290 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8291 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8292 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8293 const MDNode *Ranges, bool IsExpanding) { 8294 SDValue Undef = getUNDEF(Ptr.getValueType()); 8295 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8296 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8297 MMOFlags, AAInfo, Ranges, IsExpanding); 8298 } 8299 8300 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8301 SDValue Ptr, SDValue Stride, 8302 SDValue Mask, SDValue EVL, 8303 MachineMemOperand *MMO, 8304 bool IsExpanding) { 8305 SDValue Undef = getUNDEF(Ptr.getValueType()); 8306 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8307 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8308 } 8309 8310 SDValue SelectionDAG::getExtStridedLoadVP( 8311 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8312 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8313 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8314 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8315 bool IsExpanding) { 8316 SDValue Undef = getUNDEF(Ptr.getValueType()); 8317 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8318 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8319 MMOFlags, AAInfo, nullptr, IsExpanding); 8320 } 8321 8322 SDValue SelectionDAG::getExtStridedLoadVP( 8323 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8324 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8325 MachineMemOperand *MMO, bool IsExpanding) { 8326 SDValue Undef = getUNDEF(Ptr.getValueType()); 8327 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8328 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8329 } 8330 8331 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8332 SDValue Base, SDValue Offset, 8333 ISD::MemIndexedMode AM) { 8334 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8335 assert(SLD->getOffset().isUndef() && 8336 "Strided load is already a indexed load!"); 8337 // Don't propagate the invariant or dereferenceable flags. 8338 auto MMOFlags = 8339 SLD->getMemOperand()->getFlags() & 8340 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8341 return getStridedLoadVP( 8342 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8343 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8344 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8345 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8346 } 8347 8348 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8349 SDValue Val, SDValue Ptr, 8350 SDValue Offset, SDValue Stride, 8351 SDValue Mask, SDValue EVL, EVT MemVT, 8352 MachineMemOperand *MMO, 8353 ISD::MemIndexedMode AM, 8354 bool IsTruncating, bool IsCompressing) { 8355 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8356 bool Indexed = AM != ISD::UNINDEXED; 8357 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8358 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8359 : getVTList(MVT::Other); 8360 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8361 FoldingSetNodeID ID; 8362 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8363 ID.AddInteger(MemVT.getRawBits()); 8364 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8365 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8366 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8367 void *IP = nullptr; 8368 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8369 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8370 return SDValue(E, 0); 8371 } 8372 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8373 VTs, AM, IsTruncating, 8374 IsCompressing, MemVT, MMO); 8375 createOperands(N, Ops); 8376 8377 CSEMap.InsertNode(N, IP); 8378 InsertNode(N); 8379 SDValue V(N, 0); 8380 NewSDValueDbgMsg(V, "Creating new node: ", this); 8381 return V; 8382 } 8383 8384 SDValue SelectionDAG::getTruncStridedStoreVP( 8385 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8386 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8387 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8388 bool IsCompressing) { 8389 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8390 8391 MMOFlags |= MachineMemOperand::MOStore; 8392 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8393 8394 if (PtrInfo.V.isNull()) 8395 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8396 8397 MachineFunction &MF = getMachineFunction(); 8398 MachineMemOperand *MMO = MF.getMachineMemOperand( 8399 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8400 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8401 MMO, IsCompressing); 8402 } 8403 8404 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8405 SDValue Val, SDValue Ptr, 8406 SDValue Stride, SDValue Mask, 8407 SDValue EVL, EVT SVT, 8408 MachineMemOperand *MMO, 8409 bool IsCompressing) { 8410 EVT VT = Val.getValueType(); 8411 8412 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8413 if (VT == SVT) 8414 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8415 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8416 /*IsTruncating*/ false, IsCompressing); 8417 8418 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8419 "Should only be a truncating store, not extending!"); 8420 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8421 assert(VT.isVector() == SVT.isVector() && 8422 "Cannot use trunc store to convert to or from a vector!"); 8423 assert((!VT.isVector() || 8424 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8425 "Cannot use trunc store to change the number of vector elements!"); 8426 8427 SDVTList VTs = getVTList(MVT::Other); 8428 SDValue Undef = getUNDEF(Ptr.getValueType()); 8429 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8430 FoldingSetNodeID ID; 8431 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8432 ID.AddInteger(SVT.getRawBits()); 8433 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8434 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8435 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8436 void *IP = nullptr; 8437 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8438 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8439 return SDValue(E, 0); 8440 } 8441 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8442 VTs, ISD::UNINDEXED, true, 8443 IsCompressing, SVT, MMO); 8444 createOperands(N, Ops); 8445 8446 CSEMap.InsertNode(N, IP); 8447 InsertNode(N); 8448 SDValue V(N, 0); 8449 NewSDValueDbgMsg(V, "Creating new node: ", this); 8450 return V; 8451 } 8452 8453 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8454 const SDLoc &DL, SDValue Base, 8455 SDValue Offset, 8456 ISD::MemIndexedMode AM) { 8457 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8458 assert(SST->getOffset().isUndef() && 8459 "Strided store is already an indexed store!"); 8460 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8461 SDValue Ops[] = { 8462 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8463 SST->getMask(), SST->getVectorLength()}; 8464 FoldingSetNodeID ID; 8465 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8466 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8467 ID.AddInteger(SST->getRawSubclassData()); 8468 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8469 void *IP = nullptr; 8470 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8471 return SDValue(E, 0); 8472 8473 auto *N = newSDNode<VPStridedStoreSDNode>( 8474 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8475 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8476 createOperands(N, Ops); 8477 8478 CSEMap.InsertNode(N, IP); 8479 InsertNode(N); 8480 SDValue V(N, 0); 8481 NewSDValueDbgMsg(V, "Creating new node: ", this); 8482 return V; 8483 } 8484 8485 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8486 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8487 ISD::MemIndexType IndexType) { 8488 assert(Ops.size() == 6 && "Incompatible number of operands"); 8489 8490 FoldingSetNodeID ID; 8491 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8492 ID.AddInteger(VT.getRawBits()); 8493 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8494 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8495 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8496 ID.AddInteger(MMO->getFlags()); 8497 void *IP = nullptr; 8498 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8499 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8500 return SDValue(E, 0); 8501 } 8502 8503 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8504 VT, MMO, IndexType); 8505 createOperands(N, Ops); 8506 8507 assert(N->getMask().getValueType().getVectorElementCount() == 8508 N->getValueType(0).getVectorElementCount() && 8509 "Vector width mismatch between mask and data"); 8510 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8511 N->getValueType(0).getVectorElementCount().isScalable() && 8512 "Scalable flags of index and data do not match"); 8513 assert(ElementCount::isKnownGE( 8514 N->getIndex().getValueType().getVectorElementCount(), 8515 N->getValueType(0).getVectorElementCount()) && 8516 "Vector width mismatch between index and data"); 8517 assert(isa<ConstantSDNode>(N->getScale()) && 8518 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8519 "Scale should be a constant power of 2"); 8520 8521 CSEMap.InsertNode(N, IP); 8522 InsertNode(N); 8523 SDValue V(N, 0); 8524 NewSDValueDbgMsg(V, "Creating new node: ", this); 8525 return V; 8526 } 8527 8528 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8529 ArrayRef<SDValue> Ops, 8530 MachineMemOperand *MMO, 8531 ISD::MemIndexType IndexType) { 8532 assert(Ops.size() == 7 && "Incompatible number of operands"); 8533 8534 FoldingSetNodeID ID; 8535 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8536 ID.AddInteger(VT.getRawBits()); 8537 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8538 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8539 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8540 ID.AddInteger(MMO->getFlags()); 8541 void *IP = nullptr; 8542 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8543 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8544 return SDValue(E, 0); 8545 } 8546 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8547 VT, MMO, IndexType); 8548 createOperands(N, Ops); 8549 8550 assert(N->getMask().getValueType().getVectorElementCount() == 8551 N->getValue().getValueType().getVectorElementCount() && 8552 "Vector width mismatch between mask and data"); 8553 assert( 8554 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8555 N->getValue().getValueType().getVectorElementCount().isScalable() && 8556 "Scalable flags of index and data do not match"); 8557 assert(ElementCount::isKnownGE( 8558 N->getIndex().getValueType().getVectorElementCount(), 8559 N->getValue().getValueType().getVectorElementCount()) && 8560 "Vector width mismatch between index and data"); 8561 assert(isa<ConstantSDNode>(N->getScale()) && 8562 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8563 "Scale should be a constant power of 2"); 8564 8565 CSEMap.InsertNode(N, IP); 8566 InsertNode(N); 8567 SDValue V(N, 0); 8568 NewSDValueDbgMsg(V, "Creating new node: ", this); 8569 return V; 8570 } 8571 8572 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8573 SDValue Base, SDValue Offset, SDValue Mask, 8574 SDValue PassThru, EVT MemVT, 8575 MachineMemOperand *MMO, 8576 ISD::MemIndexedMode AM, 8577 ISD::LoadExtType ExtTy, bool isExpanding) { 8578 bool Indexed = AM != ISD::UNINDEXED; 8579 assert((Indexed || Offset.isUndef()) && 8580 "Unindexed masked load with an offset!"); 8581 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8582 : getVTList(VT, MVT::Other); 8583 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8584 FoldingSetNodeID ID; 8585 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8586 ID.AddInteger(MemVT.getRawBits()); 8587 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8588 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8589 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8590 ID.AddInteger(MMO->getFlags()); 8591 void *IP = nullptr; 8592 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8593 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8594 return SDValue(E, 0); 8595 } 8596 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8597 AM, ExtTy, isExpanding, MemVT, MMO); 8598 createOperands(N, Ops); 8599 8600 CSEMap.InsertNode(N, IP); 8601 InsertNode(N); 8602 SDValue V(N, 0); 8603 NewSDValueDbgMsg(V, "Creating new node: ", this); 8604 return V; 8605 } 8606 8607 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8608 SDValue Base, SDValue Offset, 8609 ISD::MemIndexedMode AM) { 8610 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8611 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8612 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8613 Offset, LD->getMask(), LD->getPassThru(), 8614 LD->getMemoryVT(), LD->getMemOperand(), AM, 8615 LD->getExtensionType(), LD->isExpandingLoad()); 8616 } 8617 8618 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8619 SDValue Val, SDValue Base, SDValue Offset, 8620 SDValue Mask, EVT MemVT, 8621 MachineMemOperand *MMO, 8622 ISD::MemIndexedMode AM, bool IsTruncating, 8623 bool IsCompressing) { 8624 assert(Chain.getValueType() == MVT::Other && 8625 "Invalid chain type"); 8626 bool Indexed = AM != ISD::UNINDEXED; 8627 assert((Indexed || Offset.isUndef()) && 8628 "Unindexed masked store with an offset!"); 8629 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8630 : getVTList(MVT::Other); 8631 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8632 FoldingSetNodeID ID; 8633 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8634 ID.AddInteger(MemVT.getRawBits()); 8635 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8636 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8637 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8638 ID.AddInteger(MMO->getFlags()); 8639 void *IP = nullptr; 8640 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8641 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8642 return SDValue(E, 0); 8643 } 8644 auto *N = 8645 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8646 IsTruncating, IsCompressing, MemVT, MMO); 8647 createOperands(N, Ops); 8648 8649 CSEMap.InsertNode(N, IP); 8650 InsertNode(N); 8651 SDValue V(N, 0); 8652 NewSDValueDbgMsg(V, "Creating new node: ", this); 8653 return V; 8654 } 8655 8656 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8657 SDValue Base, SDValue Offset, 8658 ISD::MemIndexedMode AM) { 8659 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8660 assert(ST->getOffset().isUndef() && 8661 "Masked store is already a indexed store!"); 8662 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8663 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8664 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8665 } 8666 8667 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8668 ArrayRef<SDValue> Ops, 8669 MachineMemOperand *MMO, 8670 ISD::MemIndexType IndexType, 8671 ISD::LoadExtType ExtTy) { 8672 assert(Ops.size() == 6 && "Incompatible number of operands"); 8673 8674 FoldingSetNodeID ID; 8675 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8676 ID.AddInteger(MemVT.getRawBits()); 8677 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8678 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8679 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8680 ID.AddInteger(MMO->getFlags()); 8681 void *IP = nullptr; 8682 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8683 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8684 return SDValue(E, 0); 8685 } 8686 8687 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8688 VTs, MemVT, MMO, IndexType, ExtTy); 8689 createOperands(N, Ops); 8690 8691 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8692 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8693 assert(N->getMask().getValueType().getVectorElementCount() == 8694 N->getValueType(0).getVectorElementCount() && 8695 "Vector width mismatch between mask and data"); 8696 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8697 N->getValueType(0).getVectorElementCount().isScalable() && 8698 "Scalable flags of index and data do not match"); 8699 assert(ElementCount::isKnownGE( 8700 N->getIndex().getValueType().getVectorElementCount(), 8701 N->getValueType(0).getVectorElementCount()) && 8702 "Vector width mismatch between index and data"); 8703 assert(isa<ConstantSDNode>(N->getScale()) && 8704 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8705 "Scale should be a constant power of 2"); 8706 8707 CSEMap.InsertNode(N, IP); 8708 InsertNode(N); 8709 SDValue V(N, 0); 8710 NewSDValueDbgMsg(V, "Creating new node: ", this); 8711 return V; 8712 } 8713 8714 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8715 ArrayRef<SDValue> Ops, 8716 MachineMemOperand *MMO, 8717 ISD::MemIndexType IndexType, 8718 bool IsTrunc) { 8719 assert(Ops.size() == 6 && "Incompatible number of operands"); 8720 8721 FoldingSetNodeID ID; 8722 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8723 ID.AddInteger(MemVT.getRawBits()); 8724 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8725 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8726 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8727 ID.AddInteger(MMO->getFlags()); 8728 void *IP = nullptr; 8729 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8730 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8731 return SDValue(E, 0); 8732 } 8733 8734 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8735 VTs, MemVT, MMO, IndexType, IsTrunc); 8736 createOperands(N, Ops); 8737 8738 assert(N->getMask().getValueType().getVectorElementCount() == 8739 N->getValue().getValueType().getVectorElementCount() && 8740 "Vector width mismatch between mask and data"); 8741 assert( 8742 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8743 N->getValue().getValueType().getVectorElementCount().isScalable() && 8744 "Scalable flags of index and data do not match"); 8745 assert(ElementCount::isKnownGE( 8746 N->getIndex().getValueType().getVectorElementCount(), 8747 N->getValue().getValueType().getVectorElementCount()) && 8748 "Vector width mismatch between index and data"); 8749 assert(isa<ConstantSDNode>(N->getScale()) && 8750 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8751 "Scale should be a constant power of 2"); 8752 8753 CSEMap.InsertNode(N, IP); 8754 InsertNode(N); 8755 SDValue V(N, 0); 8756 NewSDValueDbgMsg(V, "Creating new node: ", this); 8757 return V; 8758 } 8759 8760 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8761 // select undef, T, F --> T (if T is a constant), otherwise F 8762 // select, ?, undef, F --> F 8763 // select, ?, T, undef --> T 8764 if (Cond.isUndef()) 8765 return isConstantValueOfAnyType(T) ? T : F; 8766 if (T.isUndef()) 8767 return F; 8768 if (F.isUndef()) 8769 return T; 8770 8771 // select true, T, F --> T 8772 // select false, T, F --> F 8773 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8774 return CondC->isZero() ? F : T; 8775 8776 // TODO: This should simplify VSELECT with constant condition using something 8777 // like this (but check boolean contents to be complete?): 8778 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8779 // return T; 8780 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8781 // return F; 8782 8783 // select ?, T, T --> T 8784 if (T == F) 8785 return T; 8786 8787 return SDValue(); 8788 } 8789 8790 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8791 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8792 if (X.isUndef()) 8793 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8794 // shift X, undef --> undef (because it may shift by the bitwidth) 8795 if (Y.isUndef()) 8796 return getUNDEF(X.getValueType()); 8797 8798 // shift 0, Y --> 0 8799 // shift X, 0 --> X 8800 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8801 return X; 8802 8803 // shift X, C >= bitwidth(X) --> undef 8804 // All vector elements must be too big (or undef) to avoid partial undefs. 8805 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8806 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8807 }; 8808 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8809 return getUNDEF(X.getValueType()); 8810 8811 return SDValue(); 8812 } 8813 8814 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8815 SDNodeFlags Flags) { 8816 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8817 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8818 // operation is poison. That result can be relaxed to undef. 8819 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8820 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8821 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8822 (YC && YC->getValueAPF().isNaN()); 8823 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8824 (YC && YC->getValueAPF().isInfinity()); 8825 8826 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8827 return getUNDEF(X.getValueType()); 8828 8829 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8830 return getUNDEF(X.getValueType()); 8831 8832 if (!YC) 8833 return SDValue(); 8834 8835 // X + -0.0 --> X 8836 if (Opcode == ISD::FADD) 8837 if (YC->getValueAPF().isNegZero()) 8838 return X; 8839 8840 // X - +0.0 --> X 8841 if (Opcode == ISD::FSUB) 8842 if (YC->getValueAPF().isPosZero()) 8843 return X; 8844 8845 // X * 1.0 --> X 8846 // X / 1.0 --> X 8847 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8848 if (YC->getValueAPF().isExactlyValue(1.0)) 8849 return X; 8850 8851 // X * 0.0 --> 0.0 8852 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8853 if (YC->getValueAPF().isZero()) 8854 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8855 8856 return SDValue(); 8857 } 8858 8859 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8860 SDValue Ptr, SDValue SV, unsigned Align) { 8861 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8862 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8863 } 8864 8865 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8866 ArrayRef<SDUse> Ops) { 8867 switch (Ops.size()) { 8868 case 0: return getNode(Opcode, DL, VT); 8869 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8870 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8871 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8872 default: break; 8873 } 8874 8875 // Copy from an SDUse array into an SDValue array for use with 8876 // the regular getNode logic. 8877 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8878 return getNode(Opcode, DL, VT, NewOps); 8879 } 8880 8881 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8882 ArrayRef<SDValue> Ops) { 8883 SDNodeFlags Flags; 8884 if (Inserter) 8885 Flags = Inserter->getFlags(); 8886 return getNode(Opcode, DL, VT, Ops, Flags); 8887 } 8888 8889 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8890 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8891 unsigned NumOps = Ops.size(); 8892 switch (NumOps) { 8893 case 0: return getNode(Opcode, DL, VT); 8894 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8895 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8896 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8897 default: break; 8898 } 8899 8900 #ifndef NDEBUG 8901 for (auto &Op : Ops) 8902 assert(Op.getOpcode() != ISD::DELETED_NODE && 8903 "Operand is DELETED_NODE!"); 8904 #endif 8905 8906 switch (Opcode) { 8907 default: break; 8908 case ISD::BUILD_VECTOR: 8909 // Attempt to simplify BUILD_VECTOR. 8910 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8911 return V; 8912 break; 8913 case ISD::CONCAT_VECTORS: 8914 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8915 return V; 8916 break; 8917 case ISD::SELECT_CC: 8918 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8919 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8920 "LHS and RHS of condition must have same type!"); 8921 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8922 "True and False arms of SelectCC must have same type!"); 8923 assert(Ops[2].getValueType() == VT && 8924 "select_cc node must be of same type as true and false value!"); 8925 break; 8926 case ISD::BR_CC: 8927 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8928 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8929 "LHS/RHS of comparison should match types!"); 8930 break; 8931 case ISD::VP_ADD: 8932 case ISD::VP_SUB: 8933 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8934 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8935 Opcode = ISD::VP_XOR; 8936 break; 8937 case ISD::VP_MUL: 8938 // If it is VP_MUL mask operation then turn it to VP_AND 8939 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8940 Opcode = ISD::VP_AND; 8941 break; 8942 case ISD::VP_REDUCE_MUL: 8943 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8944 if (VT == MVT::i1) 8945 Opcode = ISD::VP_REDUCE_AND; 8946 break; 8947 case ISD::VP_REDUCE_ADD: 8948 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8949 if (VT == MVT::i1) 8950 Opcode = ISD::VP_REDUCE_XOR; 8951 break; 8952 case ISD::VP_REDUCE_SMAX: 8953 case ISD::VP_REDUCE_UMIN: 8954 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8955 // VP_REDUCE_AND. 8956 if (VT == MVT::i1) 8957 Opcode = ISD::VP_REDUCE_AND; 8958 break; 8959 case ISD::VP_REDUCE_SMIN: 8960 case ISD::VP_REDUCE_UMAX: 8961 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8962 // VP_REDUCE_OR. 8963 if (VT == MVT::i1) 8964 Opcode = ISD::VP_REDUCE_OR; 8965 break; 8966 } 8967 8968 // Memoize nodes. 8969 SDNode *N; 8970 SDVTList VTs = getVTList(VT); 8971 8972 if (VT != MVT::Glue) { 8973 FoldingSetNodeID ID; 8974 AddNodeIDNode(ID, Opcode, VTs, Ops); 8975 void *IP = nullptr; 8976 8977 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8978 return SDValue(E, 0); 8979 8980 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8981 createOperands(N, Ops); 8982 8983 CSEMap.InsertNode(N, IP); 8984 } else { 8985 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8986 createOperands(N, Ops); 8987 } 8988 8989 N->setFlags(Flags); 8990 InsertNode(N); 8991 SDValue V(N, 0); 8992 NewSDValueDbgMsg(V, "Creating new node: ", this); 8993 return V; 8994 } 8995 8996 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8997 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8998 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8999 } 9000 9001 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9002 ArrayRef<SDValue> Ops) { 9003 SDNodeFlags Flags; 9004 if (Inserter) 9005 Flags = Inserter->getFlags(); 9006 return getNode(Opcode, DL, VTList, Ops, Flags); 9007 } 9008 9009 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9010 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9011 if (VTList.NumVTs == 1) 9012 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 9013 9014 #ifndef NDEBUG 9015 for (auto &Op : Ops) 9016 assert(Op.getOpcode() != ISD::DELETED_NODE && 9017 "Operand is DELETED_NODE!"); 9018 #endif 9019 9020 switch (Opcode) { 9021 case ISD::STRICT_FP_EXTEND: 9022 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9023 "Invalid STRICT_FP_EXTEND!"); 9024 assert(VTList.VTs[0].isFloatingPoint() && 9025 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9026 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9027 "STRICT_FP_EXTEND result type should be vector iff the operand " 9028 "type is vector!"); 9029 assert((!VTList.VTs[0].isVector() || 9030 VTList.VTs[0].getVectorNumElements() == 9031 Ops[1].getValueType().getVectorNumElements()) && 9032 "Vector element count mismatch!"); 9033 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9034 "Invalid fpext node, dst <= src!"); 9035 break; 9036 case ISD::STRICT_FP_ROUND: 9037 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9038 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9039 "STRICT_FP_ROUND result type should be vector iff the operand " 9040 "type is vector!"); 9041 assert((!VTList.VTs[0].isVector() || 9042 VTList.VTs[0].getVectorNumElements() == 9043 Ops[1].getValueType().getVectorNumElements()) && 9044 "Vector element count mismatch!"); 9045 assert(VTList.VTs[0].isFloatingPoint() && 9046 Ops[1].getValueType().isFloatingPoint() && 9047 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9048 isa<ConstantSDNode>(Ops[2]) && 9049 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9050 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9051 "Invalid STRICT_FP_ROUND!"); 9052 break; 9053 #if 0 9054 // FIXME: figure out how to safely handle things like 9055 // int foo(int x) { return 1 << (x & 255); } 9056 // int bar() { return foo(256); } 9057 case ISD::SRA_PARTS: 9058 case ISD::SRL_PARTS: 9059 case ISD::SHL_PARTS: 9060 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9061 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9062 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9063 else if (N3.getOpcode() == ISD::AND) 9064 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9065 // If the and is only masking out bits that cannot effect the shift, 9066 // eliminate the and. 9067 unsigned NumBits = VT.getScalarSizeInBits()*2; 9068 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9069 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9070 } 9071 break; 9072 #endif 9073 } 9074 9075 // Memoize the node unless it returns a flag. 9076 SDNode *N; 9077 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9078 FoldingSetNodeID ID; 9079 AddNodeIDNode(ID, Opcode, VTList, Ops); 9080 void *IP = nullptr; 9081 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9082 return SDValue(E, 0); 9083 9084 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9085 createOperands(N, Ops); 9086 CSEMap.InsertNode(N, IP); 9087 } else { 9088 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9089 createOperands(N, Ops); 9090 } 9091 9092 N->setFlags(Flags); 9093 InsertNode(N); 9094 SDValue V(N, 0); 9095 NewSDValueDbgMsg(V, "Creating new node: ", this); 9096 return V; 9097 } 9098 9099 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9100 SDVTList VTList) { 9101 return getNode(Opcode, DL, VTList, None); 9102 } 9103 9104 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9105 SDValue N1) { 9106 SDValue Ops[] = { N1 }; 9107 return getNode(Opcode, DL, VTList, Ops); 9108 } 9109 9110 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9111 SDValue N1, SDValue N2) { 9112 SDValue Ops[] = { N1, N2 }; 9113 return getNode(Opcode, DL, VTList, Ops); 9114 } 9115 9116 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9117 SDValue N1, SDValue N2, SDValue N3) { 9118 SDValue Ops[] = { N1, N2, N3 }; 9119 return getNode(Opcode, DL, VTList, Ops); 9120 } 9121 9122 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9123 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9124 SDValue Ops[] = { N1, N2, N3, N4 }; 9125 return getNode(Opcode, DL, VTList, Ops); 9126 } 9127 9128 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9129 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9130 SDValue N5) { 9131 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9132 return getNode(Opcode, DL, VTList, Ops); 9133 } 9134 9135 SDVTList SelectionDAG::getVTList(EVT VT) { 9136 return makeVTList(SDNode::getValueTypeList(VT), 1); 9137 } 9138 9139 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9140 FoldingSetNodeID ID; 9141 ID.AddInteger(2U); 9142 ID.AddInteger(VT1.getRawBits()); 9143 ID.AddInteger(VT2.getRawBits()); 9144 9145 void *IP = nullptr; 9146 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9147 if (!Result) { 9148 EVT *Array = Allocator.Allocate<EVT>(2); 9149 Array[0] = VT1; 9150 Array[1] = VT2; 9151 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9152 VTListMap.InsertNode(Result, IP); 9153 } 9154 return Result->getSDVTList(); 9155 } 9156 9157 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9158 FoldingSetNodeID ID; 9159 ID.AddInteger(3U); 9160 ID.AddInteger(VT1.getRawBits()); 9161 ID.AddInteger(VT2.getRawBits()); 9162 ID.AddInteger(VT3.getRawBits()); 9163 9164 void *IP = nullptr; 9165 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9166 if (!Result) { 9167 EVT *Array = Allocator.Allocate<EVT>(3); 9168 Array[0] = VT1; 9169 Array[1] = VT2; 9170 Array[2] = VT3; 9171 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9172 VTListMap.InsertNode(Result, IP); 9173 } 9174 return Result->getSDVTList(); 9175 } 9176 9177 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9178 FoldingSetNodeID ID; 9179 ID.AddInteger(4U); 9180 ID.AddInteger(VT1.getRawBits()); 9181 ID.AddInteger(VT2.getRawBits()); 9182 ID.AddInteger(VT3.getRawBits()); 9183 ID.AddInteger(VT4.getRawBits()); 9184 9185 void *IP = nullptr; 9186 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9187 if (!Result) { 9188 EVT *Array = Allocator.Allocate<EVT>(4); 9189 Array[0] = VT1; 9190 Array[1] = VT2; 9191 Array[2] = VT3; 9192 Array[3] = VT4; 9193 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9194 VTListMap.InsertNode(Result, IP); 9195 } 9196 return Result->getSDVTList(); 9197 } 9198 9199 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9200 unsigned NumVTs = VTs.size(); 9201 FoldingSetNodeID ID; 9202 ID.AddInteger(NumVTs); 9203 for (unsigned index = 0; index < NumVTs; index++) { 9204 ID.AddInteger(VTs[index].getRawBits()); 9205 } 9206 9207 void *IP = nullptr; 9208 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9209 if (!Result) { 9210 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9211 llvm::copy(VTs, Array); 9212 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9213 VTListMap.InsertNode(Result, IP); 9214 } 9215 return Result->getSDVTList(); 9216 } 9217 9218 9219 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9220 /// specified operands. If the resultant node already exists in the DAG, 9221 /// this does not modify the specified node, instead it returns the node that 9222 /// already exists. If the resultant node does not exist in the DAG, the 9223 /// input node is returned. As a degenerate case, if you specify the same 9224 /// input operands as the node already has, the input node is returned. 9225 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9226 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9227 9228 // Check to see if there is no change. 9229 if (Op == N->getOperand(0)) return N; 9230 9231 // See if the modified node already exists. 9232 void *InsertPos = nullptr; 9233 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9234 return Existing; 9235 9236 // Nope it doesn't. Remove the node from its current place in the maps. 9237 if (InsertPos) 9238 if (!RemoveNodeFromCSEMaps(N)) 9239 InsertPos = nullptr; 9240 9241 // Now we update the operands. 9242 N->OperandList[0].set(Op); 9243 9244 updateDivergence(N); 9245 // If this gets put into a CSE map, add it. 9246 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9247 return N; 9248 } 9249 9250 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9251 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9252 9253 // Check to see if there is no change. 9254 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9255 return N; // No operands changed, just return the input node. 9256 9257 // See if the modified node already exists. 9258 void *InsertPos = nullptr; 9259 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9260 return Existing; 9261 9262 // Nope it doesn't. Remove the node from its current place in the maps. 9263 if (InsertPos) 9264 if (!RemoveNodeFromCSEMaps(N)) 9265 InsertPos = nullptr; 9266 9267 // Now we update the operands. 9268 if (N->OperandList[0] != Op1) 9269 N->OperandList[0].set(Op1); 9270 if (N->OperandList[1] != Op2) 9271 N->OperandList[1].set(Op2); 9272 9273 updateDivergence(N); 9274 // If this gets put into a CSE map, add it. 9275 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9276 return N; 9277 } 9278 9279 SDNode *SelectionDAG:: 9280 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9281 SDValue Ops[] = { Op1, Op2, Op3 }; 9282 return UpdateNodeOperands(N, Ops); 9283 } 9284 9285 SDNode *SelectionDAG:: 9286 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9287 SDValue Op3, SDValue Op4) { 9288 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9289 return UpdateNodeOperands(N, Ops); 9290 } 9291 9292 SDNode *SelectionDAG:: 9293 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9294 SDValue Op3, SDValue Op4, SDValue Op5) { 9295 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9296 return UpdateNodeOperands(N, Ops); 9297 } 9298 9299 SDNode *SelectionDAG:: 9300 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9301 unsigned NumOps = Ops.size(); 9302 assert(N->getNumOperands() == NumOps && 9303 "Update with wrong number of operands"); 9304 9305 // If no operands changed just return the input node. 9306 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9307 return N; 9308 9309 // See if the modified node already exists. 9310 void *InsertPos = nullptr; 9311 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9312 return Existing; 9313 9314 // Nope it doesn't. Remove the node from its current place in the maps. 9315 if (InsertPos) 9316 if (!RemoveNodeFromCSEMaps(N)) 9317 InsertPos = nullptr; 9318 9319 // Now we update the operands. 9320 for (unsigned i = 0; i != NumOps; ++i) 9321 if (N->OperandList[i] != Ops[i]) 9322 N->OperandList[i].set(Ops[i]); 9323 9324 updateDivergence(N); 9325 // If this gets put into a CSE map, add it. 9326 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9327 return N; 9328 } 9329 9330 /// DropOperands - Release the operands and set this node to have 9331 /// zero operands. 9332 void SDNode::DropOperands() { 9333 // Unlike the code in MorphNodeTo that does this, we don't need to 9334 // watch for dead nodes here. 9335 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9336 SDUse &Use = *I++; 9337 Use.set(SDValue()); 9338 } 9339 } 9340 9341 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9342 ArrayRef<MachineMemOperand *> NewMemRefs) { 9343 if (NewMemRefs.empty()) { 9344 N->clearMemRefs(); 9345 return; 9346 } 9347 9348 // Check if we can avoid allocating by storing a single reference directly. 9349 if (NewMemRefs.size() == 1) { 9350 N->MemRefs = NewMemRefs[0]; 9351 N->NumMemRefs = 1; 9352 return; 9353 } 9354 9355 MachineMemOperand **MemRefsBuffer = 9356 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9357 llvm::copy(NewMemRefs, MemRefsBuffer); 9358 N->MemRefs = MemRefsBuffer; 9359 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9360 } 9361 9362 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9363 /// machine opcode. 9364 /// 9365 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9366 EVT VT) { 9367 SDVTList VTs = getVTList(VT); 9368 return SelectNodeTo(N, MachineOpc, VTs, None); 9369 } 9370 9371 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9372 EVT VT, SDValue Op1) { 9373 SDVTList VTs = getVTList(VT); 9374 SDValue Ops[] = { Op1 }; 9375 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9376 } 9377 9378 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9379 EVT VT, SDValue Op1, 9380 SDValue Op2) { 9381 SDVTList VTs = getVTList(VT); 9382 SDValue Ops[] = { Op1, Op2 }; 9383 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9384 } 9385 9386 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9387 EVT VT, SDValue Op1, 9388 SDValue Op2, SDValue Op3) { 9389 SDVTList VTs = getVTList(VT); 9390 SDValue Ops[] = { Op1, Op2, Op3 }; 9391 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9392 } 9393 9394 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9395 EVT VT, ArrayRef<SDValue> Ops) { 9396 SDVTList VTs = getVTList(VT); 9397 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9398 } 9399 9400 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9401 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9402 SDVTList VTs = getVTList(VT1, VT2); 9403 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9404 } 9405 9406 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9407 EVT VT1, EVT VT2) { 9408 SDVTList VTs = getVTList(VT1, VT2); 9409 return SelectNodeTo(N, MachineOpc, VTs, None); 9410 } 9411 9412 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9413 EVT VT1, EVT VT2, EVT VT3, 9414 ArrayRef<SDValue> Ops) { 9415 SDVTList VTs = getVTList(VT1, VT2, VT3); 9416 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9417 } 9418 9419 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9420 EVT VT1, EVT VT2, 9421 SDValue Op1, SDValue Op2) { 9422 SDVTList VTs = getVTList(VT1, VT2); 9423 SDValue Ops[] = { Op1, Op2 }; 9424 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9425 } 9426 9427 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9428 SDVTList VTs,ArrayRef<SDValue> Ops) { 9429 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9430 // Reset the NodeID to -1. 9431 New->setNodeId(-1); 9432 if (New != N) { 9433 ReplaceAllUsesWith(N, New); 9434 RemoveDeadNode(N); 9435 } 9436 return New; 9437 } 9438 9439 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9440 /// the line number information on the merged node since it is not possible to 9441 /// preserve the information that operation is associated with multiple lines. 9442 /// This will make the debugger working better at -O0, were there is a higher 9443 /// probability having other instructions associated with that line. 9444 /// 9445 /// For IROrder, we keep the smaller of the two 9446 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9447 DebugLoc NLoc = N->getDebugLoc(); 9448 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9449 N->setDebugLoc(DebugLoc()); 9450 } 9451 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9452 N->setIROrder(Order); 9453 return N; 9454 } 9455 9456 /// MorphNodeTo - This *mutates* the specified node to have the specified 9457 /// return type, opcode, and operands. 9458 /// 9459 /// Note that MorphNodeTo returns the resultant node. If there is already a 9460 /// node of the specified opcode and operands, it returns that node instead of 9461 /// the current one. Note that the SDLoc need not be the same. 9462 /// 9463 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9464 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9465 /// node, and because it doesn't require CSE recalculation for any of 9466 /// the node's users. 9467 /// 9468 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9469 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9470 /// the legalizer which maintain worklists that would need to be updated when 9471 /// deleting things. 9472 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9473 SDVTList VTs, ArrayRef<SDValue> Ops) { 9474 // If an identical node already exists, use it. 9475 void *IP = nullptr; 9476 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9477 FoldingSetNodeID ID; 9478 AddNodeIDNode(ID, Opc, VTs, Ops); 9479 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9480 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9481 } 9482 9483 if (!RemoveNodeFromCSEMaps(N)) 9484 IP = nullptr; 9485 9486 // Start the morphing. 9487 N->NodeType = Opc; 9488 N->ValueList = VTs.VTs; 9489 N->NumValues = VTs.NumVTs; 9490 9491 // Clear the operands list, updating used nodes to remove this from their 9492 // use list. Keep track of any operands that become dead as a result. 9493 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9494 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9495 SDUse &Use = *I++; 9496 SDNode *Used = Use.getNode(); 9497 Use.set(SDValue()); 9498 if (Used->use_empty()) 9499 DeadNodeSet.insert(Used); 9500 } 9501 9502 // For MachineNode, initialize the memory references information. 9503 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9504 MN->clearMemRefs(); 9505 9506 // Swap for an appropriately sized array from the recycler. 9507 removeOperands(N); 9508 createOperands(N, Ops); 9509 9510 // Delete any nodes that are still dead after adding the uses for the 9511 // new operands. 9512 if (!DeadNodeSet.empty()) { 9513 SmallVector<SDNode *, 16> DeadNodes; 9514 for (SDNode *N : DeadNodeSet) 9515 if (N->use_empty()) 9516 DeadNodes.push_back(N); 9517 RemoveDeadNodes(DeadNodes); 9518 } 9519 9520 if (IP) 9521 CSEMap.InsertNode(N, IP); // Memoize the new node. 9522 return N; 9523 } 9524 9525 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9526 unsigned OrigOpc = Node->getOpcode(); 9527 unsigned NewOpc; 9528 switch (OrigOpc) { 9529 default: 9530 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9531 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9532 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9533 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9534 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9535 #include "llvm/IR/ConstrainedOps.def" 9536 } 9537 9538 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9539 9540 // We're taking this node out of the chain, so we need to re-link things. 9541 SDValue InputChain = Node->getOperand(0); 9542 SDValue OutputChain = SDValue(Node, 1); 9543 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9544 9545 SmallVector<SDValue, 3> Ops; 9546 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9547 Ops.push_back(Node->getOperand(i)); 9548 9549 SDVTList VTs = getVTList(Node->getValueType(0)); 9550 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9551 9552 // MorphNodeTo can operate in two ways: if an existing node with the 9553 // specified operands exists, it can just return it. Otherwise, it 9554 // updates the node in place to have the requested operands. 9555 if (Res == Node) { 9556 // If we updated the node in place, reset the node ID. To the isel, 9557 // this should be just like a newly allocated machine node. 9558 Res->setNodeId(-1); 9559 } else { 9560 ReplaceAllUsesWith(Node, Res); 9561 RemoveDeadNode(Node); 9562 } 9563 9564 return Res; 9565 } 9566 9567 /// getMachineNode - These are used for target selectors to create a new node 9568 /// with specified return type(s), MachineInstr opcode, and operands. 9569 /// 9570 /// Note that getMachineNode returns the resultant node. If there is already a 9571 /// node of the specified opcode and operands, it returns that node instead of 9572 /// the current one. 9573 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9574 EVT VT) { 9575 SDVTList VTs = getVTList(VT); 9576 return getMachineNode(Opcode, dl, VTs, None); 9577 } 9578 9579 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9580 EVT VT, SDValue Op1) { 9581 SDVTList VTs = getVTList(VT); 9582 SDValue Ops[] = { Op1 }; 9583 return getMachineNode(Opcode, dl, VTs, Ops); 9584 } 9585 9586 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9587 EVT VT, SDValue Op1, SDValue Op2) { 9588 SDVTList VTs = getVTList(VT); 9589 SDValue Ops[] = { Op1, Op2 }; 9590 return getMachineNode(Opcode, dl, VTs, Ops); 9591 } 9592 9593 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9594 EVT VT, SDValue Op1, SDValue Op2, 9595 SDValue Op3) { 9596 SDVTList VTs = getVTList(VT); 9597 SDValue Ops[] = { Op1, Op2, Op3 }; 9598 return getMachineNode(Opcode, dl, VTs, Ops); 9599 } 9600 9601 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9602 EVT VT, ArrayRef<SDValue> Ops) { 9603 SDVTList VTs = getVTList(VT); 9604 return getMachineNode(Opcode, dl, VTs, Ops); 9605 } 9606 9607 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9608 EVT VT1, EVT VT2, SDValue Op1, 9609 SDValue Op2) { 9610 SDVTList VTs = getVTList(VT1, VT2); 9611 SDValue Ops[] = { Op1, Op2 }; 9612 return getMachineNode(Opcode, dl, VTs, Ops); 9613 } 9614 9615 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9616 EVT VT1, EVT VT2, SDValue Op1, 9617 SDValue Op2, SDValue Op3) { 9618 SDVTList VTs = getVTList(VT1, VT2); 9619 SDValue Ops[] = { Op1, Op2, Op3 }; 9620 return getMachineNode(Opcode, dl, VTs, Ops); 9621 } 9622 9623 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9624 EVT VT1, EVT VT2, 9625 ArrayRef<SDValue> Ops) { 9626 SDVTList VTs = getVTList(VT1, VT2); 9627 return getMachineNode(Opcode, dl, VTs, Ops); 9628 } 9629 9630 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9631 EVT VT1, EVT VT2, EVT VT3, 9632 SDValue Op1, SDValue Op2) { 9633 SDVTList VTs = getVTList(VT1, VT2, VT3); 9634 SDValue Ops[] = { Op1, Op2 }; 9635 return getMachineNode(Opcode, dl, VTs, Ops); 9636 } 9637 9638 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9639 EVT VT1, EVT VT2, EVT VT3, 9640 SDValue Op1, SDValue Op2, 9641 SDValue Op3) { 9642 SDVTList VTs = getVTList(VT1, VT2, VT3); 9643 SDValue Ops[] = { Op1, Op2, Op3 }; 9644 return getMachineNode(Opcode, dl, VTs, Ops); 9645 } 9646 9647 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9648 EVT VT1, EVT VT2, EVT VT3, 9649 ArrayRef<SDValue> Ops) { 9650 SDVTList VTs = getVTList(VT1, VT2, VT3); 9651 return getMachineNode(Opcode, dl, VTs, Ops); 9652 } 9653 9654 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9655 ArrayRef<EVT> ResultTys, 9656 ArrayRef<SDValue> Ops) { 9657 SDVTList VTs = getVTList(ResultTys); 9658 return getMachineNode(Opcode, dl, VTs, Ops); 9659 } 9660 9661 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9662 SDVTList VTs, 9663 ArrayRef<SDValue> Ops) { 9664 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9665 MachineSDNode *N; 9666 void *IP = nullptr; 9667 9668 if (DoCSE) { 9669 FoldingSetNodeID ID; 9670 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9671 IP = nullptr; 9672 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9673 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9674 } 9675 } 9676 9677 // Allocate a new MachineSDNode. 9678 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9679 createOperands(N, Ops); 9680 9681 if (DoCSE) 9682 CSEMap.InsertNode(N, IP); 9683 9684 InsertNode(N); 9685 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9686 return N; 9687 } 9688 9689 /// getTargetExtractSubreg - A convenience function for creating 9690 /// TargetOpcode::EXTRACT_SUBREG nodes. 9691 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9692 SDValue Operand) { 9693 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9694 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9695 VT, Operand, SRIdxVal); 9696 return SDValue(Subreg, 0); 9697 } 9698 9699 /// getTargetInsertSubreg - A convenience function for creating 9700 /// TargetOpcode::INSERT_SUBREG nodes. 9701 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9702 SDValue Operand, SDValue Subreg) { 9703 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9704 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9705 VT, Operand, Subreg, SRIdxVal); 9706 return SDValue(Result, 0); 9707 } 9708 9709 /// getNodeIfExists - Get the specified node if it's already available, or 9710 /// else return NULL. 9711 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9712 ArrayRef<SDValue> Ops) { 9713 SDNodeFlags Flags; 9714 if (Inserter) 9715 Flags = Inserter->getFlags(); 9716 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9717 } 9718 9719 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9720 ArrayRef<SDValue> Ops, 9721 const SDNodeFlags Flags) { 9722 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9723 FoldingSetNodeID ID; 9724 AddNodeIDNode(ID, Opcode, VTList, Ops); 9725 void *IP = nullptr; 9726 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9727 E->intersectFlagsWith(Flags); 9728 return E; 9729 } 9730 } 9731 return nullptr; 9732 } 9733 9734 /// doesNodeExist - Check if a node exists without modifying its flags. 9735 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9736 ArrayRef<SDValue> Ops) { 9737 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9738 FoldingSetNodeID ID; 9739 AddNodeIDNode(ID, Opcode, VTList, Ops); 9740 void *IP = nullptr; 9741 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9742 return true; 9743 } 9744 return false; 9745 } 9746 9747 /// getDbgValue - Creates a SDDbgValue node. 9748 /// 9749 /// SDNode 9750 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9751 SDNode *N, unsigned R, bool IsIndirect, 9752 const DebugLoc &DL, unsigned O) { 9753 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9754 "Expected inlined-at fields to agree"); 9755 return new (DbgInfo->getAlloc()) 9756 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9757 {}, IsIndirect, DL, O, 9758 /*IsVariadic=*/false); 9759 } 9760 9761 /// Constant 9762 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9763 DIExpression *Expr, 9764 const Value *C, 9765 const DebugLoc &DL, unsigned O) { 9766 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9767 "Expected inlined-at fields to agree"); 9768 return new (DbgInfo->getAlloc()) 9769 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9770 /*IsIndirect=*/false, DL, O, 9771 /*IsVariadic=*/false); 9772 } 9773 9774 /// FrameIndex 9775 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9776 DIExpression *Expr, unsigned FI, 9777 bool IsIndirect, 9778 const DebugLoc &DL, 9779 unsigned O) { 9780 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9781 "Expected inlined-at fields to agree"); 9782 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9783 } 9784 9785 /// FrameIndex with dependencies 9786 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9787 DIExpression *Expr, unsigned FI, 9788 ArrayRef<SDNode *> Dependencies, 9789 bool IsIndirect, 9790 const DebugLoc &DL, 9791 unsigned O) { 9792 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9793 "Expected inlined-at fields to agree"); 9794 return new (DbgInfo->getAlloc()) 9795 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9796 Dependencies, IsIndirect, DL, O, 9797 /*IsVariadic=*/false); 9798 } 9799 9800 /// VReg 9801 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9802 unsigned VReg, bool IsIndirect, 9803 const DebugLoc &DL, unsigned O) { 9804 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9805 "Expected inlined-at fields to agree"); 9806 return new (DbgInfo->getAlloc()) 9807 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9808 {}, IsIndirect, DL, O, 9809 /*IsVariadic=*/false); 9810 } 9811 9812 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9813 ArrayRef<SDDbgOperand> Locs, 9814 ArrayRef<SDNode *> Dependencies, 9815 bool IsIndirect, const DebugLoc &DL, 9816 unsigned O, bool IsVariadic) { 9817 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9818 "Expected inlined-at fields to agree"); 9819 return new (DbgInfo->getAlloc()) 9820 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9821 DL, O, IsVariadic); 9822 } 9823 9824 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9825 unsigned OffsetInBits, unsigned SizeInBits, 9826 bool InvalidateDbg) { 9827 SDNode *FromNode = From.getNode(); 9828 SDNode *ToNode = To.getNode(); 9829 assert(FromNode && ToNode && "Can't modify dbg values"); 9830 9831 // PR35338 9832 // TODO: assert(From != To && "Redundant dbg value transfer"); 9833 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9834 if (From == To || FromNode == ToNode) 9835 return; 9836 9837 if (!FromNode->getHasDebugValue()) 9838 return; 9839 9840 SDDbgOperand FromLocOp = 9841 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9842 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9843 9844 SmallVector<SDDbgValue *, 2> ClonedDVs; 9845 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9846 if (Dbg->isInvalidated()) 9847 continue; 9848 9849 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9850 9851 // Create a new location ops vector that is equal to the old vector, but 9852 // with each instance of FromLocOp replaced with ToLocOp. 9853 bool Changed = false; 9854 auto NewLocOps = Dbg->copyLocationOps(); 9855 std::replace_if( 9856 NewLocOps.begin(), NewLocOps.end(), 9857 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9858 bool Match = Op == FromLocOp; 9859 Changed |= Match; 9860 return Match; 9861 }, 9862 ToLocOp); 9863 // Ignore this SDDbgValue if we didn't find a matching location. 9864 if (!Changed) 9865 continue; 9866 9867 DIVariable *Var = Dbg->getVariable(); 9868 auto *Expr = Dbg->getExpression(); 9869 // If a fragment is requested, update the expression. 9870 if (SizeInBits) { 9871 // When splitting a larger (e.g., sign-extended) value whose 9872 // lower bits are described with an SDDbgValue, do not attempt 9873 // to transfer the SDDbgValue to the upper bits. 9874 if (auto FI = Expr->getFragmentInfo()) 9875 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9876 continue; 9877 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9878 SizeInBits); 9879 if (!Fragment) 9880 continue; 9881 Expr = *Fragment; 9882 } 9883 9884 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9885 // Clone the SDDbgValue and move it to To. 9886 SDDbgValue *Clone = getDbgValueList( 9887 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9888 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9889 Dbg->isVariadic()); 9890 ClonedDVs.push_back(Clone); 9891 9892 if (InvalidateDbg) { 9893 // Invalidate value and indicate the SDDbgValue should not be emitted. 9894 Dbg->setIsInvalidated(); 9895 Dbg->setIsEmitted(); 9896 } 9897 } 9898 9899 for (SDDbgValue *Dbg : ClonedDVs) { 9900 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9901 "Transferred DbgValues should depend on the new SDNode"); 9902 AddDbgValue(Dbg, false); 9903 } 9904 } 9905 9906 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9907 if (!N.getHasDebugValue()) 9908 return; 9909 9910 SmallVector<SDDbgValue *, 2> ClonedDVs; 9911 for (auto DV : GetDbgValues(&N)) { 9912 if (DV->isInvalidated()) 9913 continue; 9914 switch (N.getOpcode()) { 9915 default: 9916 break; 9917 case ISD::ADD: 9918 SDValue N0 = N.getOperand(0); 9919 SDValue N1 = N.getOperand(1); 9920 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9921 isConstantIntBuildVectorOrConstantInt(N1)) { 9922 uint64_t Offset = N.getConstantOperandVal(1); 9923 9924 // Rewrite an ADD constant node into a DIExpression. Since we are 9925 // performing arithmetic to compute the variable's *value* in the 9926 // DIExpression, we need to mark the expression with a 9927 // DW_OP_stack_value. 9928 auto *DIExpr = DV->getExpression(); 9929 auto NewLocOps = DV->copyLocationOps(); 9930 bool Changed = false; 9931 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9932 // We're not given a ResNo to compare against because the whole 9933 // node is going away. We know that any ISD::ADD only has one 9934 // result, so we can assume any node match is using the result. 9935 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9936 NewLocOps[i].getSDNode() != &N) 9937 continue; 9938 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9939 SmallVector<uint64_t, 3> ExprOps; 9940 DIExpression::appendOffset(ExprOps, Offset); 9941 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9942 Changed = true; 9943 } 9944 (void)Changed; 9945 assert(Changed && "Salvage target doesn't use N"); 9946 9947 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9948 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9949 NewLocOps, AdditionalDependencies, 9950 DV->isIndirect(), DV->getDebugLoc(), 9951 DV->getOrder(), DV->isVariadic()); 9952 ClonedDVs.push_back(Clone); 9953 DV->setIsInvalidated(); 9954 DV->setIsEmitted(); 9955 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9956 N0.getNode()->dumprFull(this); 9957 dbgs() << " into " << *DIExpr << '\n'); 9958 } 9959 } 9960 } 9961 9962 for (SDDbgValue *Dbg : ClonedDVs) { 9963 assert(!Dbg->getSDNodes().empty() && 9964 "Salvaged DbgValue should depend on a new SDNode"); 9965 AddDbgValue(Dbg, false); 9966 } 9967 } 9968 9969 /// Creates a SDDbgLabel node. 9970 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9971 const DebugLoc &DL, unsigned O) { 9972 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9973 "Expected inlined-at fields to agree"); 9974 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9975 } 9976 9977 namespace { 9978 9979 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9980 /// pointed to by a use iterator is deleted, increment the use iterator 9981 /// so that it doesn't dangle. 9982 /// 9983 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9984 SDNode::use_iterator &UI; 9985 SDNode::use_iterator &UE; 9986 9987 void NodeDeleted(SDNode *N, SDNode *E) override { 9988 // Increment the iterator as needed. 9989 while (UI != UE && N == *UI) 9990 ++UI; 9991 } 9992 9993 public: 9994 RAUWUpdateListener(SelectionDAG &d, 9995 SDNode::use_iterator &ui, 9996 SDNode::use_iterator &ue) 9997 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9998 }; 9999 10000 } // end anonymous namespace 10001 10002 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10003 /// This can cause recursive merging of nodes in the DAG. 10004 /// 10005 /// This version assumes From has a single result value. 10006 /// 10007 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 10008 SDNode *From = FromN.getNode(); 10009 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 10010 "Cannot replace with this method!"); 10011 assert(From != To.getNode() && "Cannot replace uses of with self"); 10012 10013 // Preserve Debug Values 10014 transferDbgValues(FromN, To); 10015 10016 // Iterate over all the existing uses of From. New uses will be added 10017 // to the beginning of the use list, which we avoid visiting. 10018 // This specifically avoids visiting uses of From that arise while the 10019 // replacement is happening, because any such uses would be the result 10020 // of CSE: If an existing node looks like From after one of its operands 10021 // is replaced by To, we don't want to replace of all its users with To 10022 // too. See PR3018 for more info. 10023 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10024 RAUWUpdateListener Listener(*this, UI, UE); 10025 while (UI != UE) { 10026 SDNode *User = *UI; 10027 10028 // This node is about to morph, remove its old self from the CSE maps. 10029 RemoveNodeFromCSEMaps(User); 10030 10031 // A user can appear in a use list multiple times, and when this 10032 // happens the uses are usually next to each other in the list. 10033 // To help reduce the number of CSE recomputations, process all 10034 // the uses of this user that we can find this way. 10035 do { 10036 SDUse &Use = UI.getUse(); 10037 ++UI; 10038 Use.set(To); 10039 if (To->isDivergent() != From->isDivergent()) 10040 updateDivergence(User); 10041 } while (UI != UE && *UI == User); 10042 // Now that we have modified User, add it back to the CSE maps. If it 10043 // already exists there, recursively merge the results together. 10044 AddModifiedNodeToCSEMaps(User); 10045 } 10046 10047 // If we just RAUW'd the root, take note. 10048 if (FromN == getRoot()) 10049 setRoot(To); 10050 } 10051 10052 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10053 /// This can cause recursive merging of nodes in the DAG. 10054 /// 10055 /// This version assumes that for each value of From, there is a 10056 /// corresponding value in To in the same position with the same type. 10057 /// 10058 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10059 #ifndef NDEBUG 10060 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10061 assert((!From->hasAnyUseOfValue(i) || 10062 From->getValueType(i) == To->getValueType(i)) && 10063 "Cannot use this version of ReplaceAllUsesWith!"); 10064 #endif 10065 10066 // Handle the trivial case. 10067 if (From == To) 10068 return; 10069 10070 // Preserve Debug Info. Only do this if there's a use. 10071 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10072 if (From->hasAnyUseOfValue(i)) { 10073 assert((i < To->getNumValues()) && "Invalid To location"); 10074 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10075 } 10076 10077 // Iterate over just the existing users of From. See the comments in 10078 // the ReplaceAllUsesWith above. 10079 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10080 RAUWUpdateListener Listener(*this, UI, UE); 10081 while (UI != UE) { 10082 SDNode *User = *UI; 10083 10084 // This node is about to morph, remove its old self from the CSE maps. 10085 RemoveNodeFromCSEMaps(User); 10086 10087 // A user can appear in a use list multiple times, and when this 10088 // happens the uses are usually next to each other in the list. 10089 // To help reduce the number of CSE recomputations, process all 10090 // the uses of this user that we can find this way. 10091 do { 10092 SDUse &Use = UI.getUse(); 10093 ++UI; 10094 Use.setNode(To); 10095 if (To->isDivergent() != From->isDivergent()) 10096 updateDivergence(User); 10097 } while (UI != UE && *UI == User); 10098 10099 // Now that we have modified User, add it back to the CSE maps. If it 10100 // already exists there, recursively merge the results together. 10101 AddModifiedNodeToCSEMaps(User); 10102 } 10103 10104 // If we just RAUW'd the root, take note. 10105 if (From == getRoot().getNode()) 10106 setRoot(SDValue(To, getRoot().getResNo())); 10107 } 10108 10109 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10110 /// This can cause recursive merging of nodes in the DAG. 10111 /// 10112 /// This version can replace From with any result values. To must match the 10113 /// number and types of values returned by From. 10114 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10115 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10116 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10117 10118 // Preserve Debug Info. 10119 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10120 transferDbgValues(SDValue(From, i), To[i]); 10121 10122 // Iterate over just the existing users of From. See the comments in 10123 // the ReplaceAllUsesWith above. 10124 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10125 RAUWUpdateListener Listener(*this, UI, UE); 10126 while (UI != UE) { 10127 SDNode *User = *UI; 10128 10129 // This node is about to morph, remove its old self from the CSE maps. 10130 RemoveNodeFromCSEMaps(User); 10131 10132 // A user can appear in a use list multiple times, and when this happens the 10133 // uses are usually next to each other in the list. To help reduce the 10134 // number of CSE and divergence recomputations, process all the uses of this 10135 // user that we can find this way. 10136 bool To_IsDivergent = false; 10137 do { 10138 SDUse &Use = UI.getUse(); 10139 const SDValue &ToOp = To[Use.getResNo()]; 10140 ++UI; 10141 Use.set(ToOp); 10142 To_IsDivergent |= ToOp->isDivergent(); 10143 } while (UI != UE && *UI == User); 10144 10145 if (To_IsDivergent != From->isDivergent()) 10146 updateDivergence(User); 10147 10148 // Now that we have modified User, add it back to the CSE maps. If it 10149 // already exists there, recursively merge the results together. 10150 AddModifiedNodeToCSEMaps(User); 10151 } 10152 10153 // If we just RAUW'd the root, take note. 10154 if (From == getRoot().getNode()) 10155 setRoot(SDValue(To[getRoot().getResNo()])); 10156 } 10157 10158 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10159 /// uses of other values produced by From.getNode() alone. The Deleted 10160 /// vector is handled the same way as for ReplaceAllUsesWith. 10161 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10162 // Handle the really simple, really trivial case efficiently. 10163 if (From == To) return; 10164 10165 // Handle the simple, trivial, case efficiently. 10166 if (From.getNode()->getNumValues() == 1) { 10167 ReplaceAllUsesWith(From, To); 10168 return; 10169 } 10170 10171 // Preserve Debug Info. 10172 transferDbgValues(From, To); 10173 10174 // Iterate over just the existing users of From. See the comments in 10175 // the ReplaceAllUsesWith above. 10176 SDNode::use_iterator UI = From.getNode()->use_begin(), 10177 UE = From.getNode()->use_end(); 10178 RAUWUpdateListener Listener(*this, UI, UE); 10179 while (UI != UE) { 10180 SDNode *User = *UI; 10181 bool UserRemovedFromCSEMaps = false; 10182 10183 // A user can appear in a use list multiple times, and when this 10184 // happens the uses are usually next to each other in the list. 10185 // To help reduce the number of CSE recomputations, process all 10186 // the uses of this user that we can find this way. 10187 do { 10188 SDUse &Use = UI.getUse(); 10189 10190 // Skip uses of different values from the same node. 10191 if (Use.getResNo() != From.getResNo()) { 10192 ++UI; 10193 continue; 10194 } 10195 10196 // If this node hasn't been modified yet, it's still in the CSE maps, 10197 // so remove its old self from the CSE maps. 10198 if (!UserRemovedFromCSEMaps) { 10199 RemoveNodeFromCSEMaps(User); 10200 UserRemovedFromCSEMaps = true; 10201 } 10202 10203 ++UI; 10204 Use.set(To); 10205 if (To->isDivergent() != From->isDivergent()) 10206 updateDivergence(User); 10207 } while (UI != UE && *UI == User); 10208 // We are iterating over all uses of the From node, so if a use 10209 // doesn't use the specific value, no changes are made. 10210 if (!UserRemovedFromCSEMaps) 10211 continue; 10212 10213 // Now that we have modified User, add it back to the CSE maps. If it 10214 // already exists there, recursively merge the results together. 10215 AddModifiedNodeToCSEMaps(User); 10216 } 10217 10218 // If we just RAUW'd the root, take note. 10219 if (From == getRoot()) 10220 setRoot(To); 10221 } 10222 10223 namespace { 10224 10225 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10226 /// to record information about a use. 10227 struct UseMemo { 10228 SDNode *User; 10229 unsigned Index; 10230 SDUse *Use; 10231 }; 10232 10233 /// operator< - Sort Memos by User. 10234 bool operator<(const UseMemo &L, const UseMemo &R) { 10235 return (intptr_t)L.User < (intptr_t)R.User; 10236 } 10237 10238 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10239 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10240 /// the node already has been taken care of recursively. 10241 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10242 SmallVector<UseMemo, 4> &Uses; 10243 10244 void NodeDeleted(SDNode *N, SDNode *E) override { 10245 for (UseMemo &Memo : Uses) 10246 if (Memo.User == N) 10247 Memo.User = nullptr; 10248 } 10249 10250 public: 10251 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10252 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10253 }; 10254 10255 } // end anonymous namespace 10256 10257 bool SelectionDAG::calculateDivergence(SDNode *N) { 10258 if (TLI->isSDNodeAlwaysUniform(N)) { 10259 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10260 "Conflicting divergence information!"); 10261 return false; 10262 } 10263 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10264 return true; 10265 for (auto &Op : N->ops()) { 10266 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10267 return true; 10268 } 10269 return false; 10270 } 10271 10272 void SelectionDAG::updateDivergence(SDNode *N) { 10273 SmallVector<SDNode *, 16> Worklist(1, N); 10274 do { 10275 N = Worklist.pop_back_val(); 10276 bool IsDivergent = calculateDivergence(N); 10277 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10278 N->SDNodeBits.IsDivergent = IsDivergent; 10279 llvm::append_range(Worklist, N->uses()); 10280 } 10281 } while (!Worklist.empty()); 10282 } 10283 10284 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10285 DenseMap<SDNode *, unsigned> Degree; 10286 Order.reserve(AllNodes.size()); 10287 for (auto &N : allnodes()) { 10288 unsigned NOps = N.getNumOperands(); 10289 Degree[&N] = NOps; 10290 if (0 == NOps) 10291 Order.push_back(&N); 10292 } 10293 for (size_t I = 0; I != Order.size(); ++I) { 10294 SDNode *N = Order[I]; 10295 for (auto U : N->uses()) { 10296 unsigned &UnsortedOps = Degree[U]; 10297 if (0 == --UnsortedOps) 10298 Order.push_back(U); 10299 } 10300 } 10301 } 10302 10303 #ifndef NDEBUG 10304 void SelectionDAG::VerifyDAGDivergence() { 10305 std::vector<SDNode *> TopoOrder; 10306 CreateTopologicalOrder(TopoOrder); 10307 for (auto *N : TopoOrder) { 10308 assert(calculateDivergence(N) == N->isDivergent() && 10309 "Divergence bit inconsistency detected"); 10310 } 10311 } 10312 #endif 10313 10314 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10315 /// uses of other values produced by From.getNode() alone. The same value 10316 /// may appear in both the From and To list. The Deleted vector is 10317 /// handled the same way as for ReplaceAllUsesWith. 10318 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10319 const SDValue *To, 10320 unsigned Num){ 10321 // Handle the simple, trivial case efficiently. 10322 if (Num == 1) 10323 return ReplaceAllUsesOfValueWith(*From, *To); 10324 10325 transferDbgValues(*From, *To); 10326 10327 // Read up all the uses and make records of them. This helps 10328 // processing new uses that are introduced during the 10329 // replacement process. 10330 SmallVector<UseMemo, 4> Uses; 10331 for (unsigned i = 0; i != Num; ++i) { 10332 unsigned FromResNo = From[i].getResNo(); 10333 SDNode *FromNode = From[i].getNode(); 10334 for (SDNode::use_iterator UI = FromNode->use_begin(), 10335 E = FromNode->use_end(); UI != E; ++UI) { 10336 SDUse &Use = UI.getUse(); 10337 if (Use.getResNo() == FromResNo) { 10338 UseMemo Memo = { *UI, i, &Use }; 10339 Uses.push_back(Memo); 10340 } 10341 } 10342 } 10343 10344 // Sort the uses, so that all the uses from a given User are together. 10345 llvm::sort(Uses); 10346 RAUOVWUpdateListener Listener(*this, Uses); 10347 10348 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10349 UseIndex != UseIndexEnd; ) { 10350 // We know that this user uses some value of From. If it is the right 10351 // value, update it. 10352 SDNode *User = Uses[UseIndex].User; 10353 // If the node has been deleted by recursive CSE updates when updating 10354 // another node, then just skip this entry. 10355 if (User == nullptr) { 10356 ++UseIndex; 10357 continue; 10358 } 10359 10360 // This node is about to morph, remove its old self from the CSE maps. 10361 RemoveNodeFromCSEMaps(User); 10362 10363 // The Uses array is sorted, so all the uses for a given User 10364 // are next to each other in the list. 10365 // To help reduce the number of CSE recomputations, process all 10366 // the uses of this user that we can find this way. 10367 do { 10368 unsigned i = Uses[UseIndex].Index; 10369 SDUse &Use = *Uses[UseIndex].Use; 10370 ++UseIndex; 10371 10372 Use.set(To[i]); 10373 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10374 10375 // Now that we have modified User, add it back to the CSE maps. If it 10376 // already exists there, recursively merge the results together. 10377 AddModifiedNodeToCSEMaps(User); 10378 } 10379 } 10380 10381 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10382 /// based on their topological order. It returns the maximum id and a vector 10383 /// of the SDNodes* in assigned order by reference. 10384 unsigned SelectionDAG::AssignTopologicalOrder() { 10385 unsigned DAGSize = 0; 10386 10387 // SortedPos tracks the progress of the algorithm. Nodes before it are 10388 // sorted, nodes after it are unsorted. When the algorithm completes 10389 // it is at the end of the list. 10390 allnodes_iterator SortedPos = allnodes_begin(); 10391 10392 // Visit all the nodes. Move nodes with no operands to the front of 10393 // the list immediately. Annotate nodes that do have operands with their 10394 // operand count. Before we do this, the Node Id fields of the nodes 10395 // may contain arbitrary values. After, the Node Id fields for nodes 10396 // before SortedPos will contain the topological sort index, and the 10397 // Node Id fields for nodes At SortedPos and after will contain the 10398 // count of outstanding operands. 10399 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10400 checkForCycles(&N, this); 10401 unsigned Degree = N.getNumOperands(); 10402 if (Degree == 0) { 10403 // A node with no uses, add it to the result array immediately. 10404 N.setNodeId(DAGSize++); 10405 allnodes_iterator Q(&N); 10406 if (Q != SortedPos) 10407 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10408 assert(SortedPos != AllNodes.end() && "Overran node list"); 10409 ++SortedPos; 10410 } else { 10411 // Temporarily use the Node Id as scratch space for the degree count. 10412 N.setNodeId(Degree); 10413 } 10414 } 10415 10416 // Visit all the nodes. As we iterate, move nodes into sorted order, 10417 // such that by the time the end is reached all nodes will be sorted. 10418 for (SDNode &Node : allnodes()) { 10419 SDNode *N = &Node; 10420 checkForCycles(N, this); 10421 // N is in sorted position, so all its uses have one less operand 10422 // that needs to be sorted. 10423 for (SDNode *P : N->uses()) { 10424 unsigned Degree = P->getNodeId(); 10425 assert(Degree != 0 && "Invalid node degree"); 10426 --Degree; 10427 if (Degree == 0) { 10428 // All of P's operands are sorted, so P may sorted now. 10429 P->setNodeId(DAGSize++); 10430 if (P->getIterator() != SortedPos) 10431 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10432 assert(SortedPos != AllNodes.end() && "Overran node list"); 10433 ++SortedPos; 10434 } else { 10435 // Update P's outstanding operand count. 10436 P->setNodeId(Degree); 10437 } 10438 } 10439 if (Node.getIterator() == SortedPos) { 10440 #ifndef NDEBUG 10441 allnodes_iterator I(N); 10442 SDNode *S = &*++I; 10443 dbgs() << "Overran sorted position:\n"; 10444 S->dumprFull(this); dbgs() << "\n"; 10445 dbgs() << "Checking if this is due to cycles\n"; 10446 checkForCycles(this, true); 10447 #endif 10448 llvm_unreachable(nullptr); 10449 } 10450 } 10451 10452 assert(SortedPos == AllNodes.end() && 10453 "Topological sort incomplete!"); 10454 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10455 "First node in topological sort is not the entry token!"); 10456 assert(AllNodes.front().getNodeId() == 0 && 10457 "First node in topological sort has non-zero id!"); 10458 assert(AllNodes.front().getNumOperands() == 0 && 10459 "First node in topological sort has operands!"); 10460 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10461 "Last node in topologic sort has unexpected id!"); 10462 assert(AllNodes.back().use_empty() && 10463 "Last node in topologic sort has users!"); 10464 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10465 return DAGSize; 10466 } 10467 10468 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10469 /// value is produced by SD. 10470 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10471 for (SDNode *SD : DB->getSDNodes()) { 10472 if (!SD) 10473 continue; 10474 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10475 SD->setHasDebugValue(true); 10476 } 10477 DbgInfo->add(DB, isParameter); 10478 } 10479 10480 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10481 10482 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10483 SDValue NewMemOpChain) { 10484 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10485 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10486 // The new memory operation must have the same position as the old load in 10487 // terms of memory dependency. Create a TokenFactor for the old load and new 10488 // memory operation and update uses of the old load's output chain to use that 10489 // TokenFactor. 10490 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10491 return NewMemOpChain; 10492 10493 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10494 OldChain, NewMemOpChain); 10495 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10496 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10497 return TokenFactor; 10498 } 10499 10500 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10501 SDValue NewMemOp) { 10502 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10503 SDValue OldChain = SDValue(OldLoad, 1); 10504 SDValue NewMemOpChain = NewMemOp.getValue(1); 10505 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10506 } 10507 10508 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10509 Function **OutFunction) { 10510 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10511 10512 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10513 auto *Module = MF->getFunction().getParent(); 10514 auto *Function = Module->getFunction(Symbol); 10515 10516 if (OutFunction != nullptr) 10517 *OutFunction = Function; 10518 10519 if (Function != nullptr) { 10520 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10521 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10522 } 10523 10524 std::string ErrorStr; 10525 raw_string_ostream ErrorFormatter(ErrorStr); 10526 ErrorFormatter << "Undefined external symbol "; 10527 ErrorFormatter << '"' << Symbol << '"'; 10528 report_fatal_error(Twine(ErrorFormatter.str())); 10529 } 10530 10531 //===----------------------------------------------------------------------===// 10532 // SDNode Class 10533 //===----------------------------------------------------------------------===// 10534 10535 bool llvm::isNullConstant(SDValue V) { 10536 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10537 return Const != nullptr && Const->isZero(); 10538 } 10539 10540 bool llvm::isNullFPConstant(SDValue V) { 10541 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10542 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10543 } 10544 10545 bool llvm::isAllOnesConstant(SDValue V) { 10546 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10547 return Const != nullptr && Const->isAllOnes(); 10548 } 10549 10550 bool llvm::isOneConstant(SDValue V) { 10551 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10552 return Const != nullptr && Const->isOne(); 10553 } 10554 10555 bool llvm::isMinSignedConstant(SDValue V) { 10556 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10557 return Const != nullptr && Const->isMinSignedValue(); 10558 } 10559 10560 SDValue llvm::peekThroughBitcasts(SDValue V) { 10561 while (V.getOpcode() == ISD::BITCAST) 10562 V = V.getOperand(0); 10563 return V; 10564 } 10565 10566 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10567 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10568 V = V.getOperand(0); 10569 return V; 10570 } 10571 10572 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10573 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10574 V = V.getOperand(0); 10575 return V; 10576 } 10577 10578 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10579 if (V.getOpcode() != ISD::XOR) 10580 return false; 10581 V = peekThroughBitcasts(V.getOperand(1)); 10582 unsigned NumBits = V.getScalarValueSizeInBits(); 10583 ConstantSDNode *C = 10584 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10585 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10586 } 10587 10588 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10589 bool AllowTruncation) { 10590 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10591 return CN; 10592 10593 // SplatVectors can truncate their operands. Ignore that case here unless 10594 // AllowTruncation is set. 10595 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10596 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10597 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10598 EVT CVT = CN->getValueType(0); 10599 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10600 if (AllowTruncation || CVT == VecEltVT) 10601 return CN; 10602 } 10603 } 10604 10605 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10606 BitVector UndefElements; 10607 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10608 10609 // BuildVectors can truncate their operands. Ignore that case here unless 10610 // AllowTruncation is set. 10611 if (CN && (UndefElements.none() || AllowUndefs)) { 10612 EVT CVT = CN->getValueType(0); 10613 EVT NSVT = N.getValueType().getScalarType(); 10614 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10615 if (AllowTruncation || (CVT == NSVT)) 10616 return CN; 10617 } 10618 } 10619 10620 return nullptr; 10621 } 10622 10623 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10624 bool AllowUndefs, 10625 bool AllowTruncation) { 10626 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10627 return CN; 10628 10629 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10630 BitVector UndefElements; 10631 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10632 10633 // BuildVectors can truncate their operands. Ignore that case here unless 10634 // AllowTruncation is set. 10635 if (CN && (UndefElements.none() || AllowUndefs)) { 10636 EVT CVT = CN->getValueType(0); 10637 EVT NSVT = N.getValueType().getScalarType(); 10638 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10639 if (AllowTruncation || (CVT == NSVT)) 10640 return CN; 10641 } 10642 } 10643 10644 return nullptr; 10645 } 10646 10647 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10648 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10649 return CN; 10650 10651 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10652 BitVector UndefElements; 10653 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10654 if (CN && (UndefElements.none() || AllowUndefs)) 10655 return CN; 10656 } 10657 10658 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10659 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10660 return CN; 10661 10662 return nullptr; 10663 } 10664 10665 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10666 const APInt &DemandedElts, 10667 bool AllowUndefs) { 10668 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10669 return CN; 10670 10671 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10672 BitVector UndefElements; 10673 ConstantFPSDNode *CN = 10674 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10675 if (CN && (UndefElements.none() || AllowUndefs)) 10676 return CN; 10677 } 10678 10679 return nullptr; 10680 } 10681 10682 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10683 // TODO: may want to use peekThroughBitcast() here. 10684 ConstantSDNode *C = 10685 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10686 return C && C->isZero(); 10687 } 10688 10689 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10690 ConstantSDNode *C = 10691 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 10692 return C && C->isOne(); 10693 } 10694 10695 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10696 N = peekThroughBitcasts(N); 10697 unsigned BitWidth = N.getScalarValueSizeInBits(); 10698 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10699 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10700 } 10701 10702 HandleSDNode::~HandleSDNode() { 10703 DropOperands(); 10704 } 10705 10706 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10707 const DebugLoc &DL, 10708 const GlobalValue *GA, EVT VT, 10709 int64_t o, unsigned TF) 10710 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10711 TheGlobal = GA; 10712 } 10713 10714 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10715 EVT VT, unsigned SrcAS, 10716 unsigned DestAS) 10717 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10718 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10719 10720 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10721 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10722 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10723 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10724 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10725 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10726 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10727 10728 // We check here that the size of the memory operand fits within the size of 10729 // the MMO. This is because the MMO might indicate only a possible address 10730 // range instead of specifying the affected memory addresses precisely. 10731 // TODO: Make MachineMemOperands aware of scalable vectors. 10732 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10733 "Size mismatch!"); 10734 } 10735 10736 /// Profile - Gather unique data for the node. 10737 /// 10738 void SDNode::Profile(FoldingSetNodeID &ID) const { 10739 AddNodeIDNode(ID, this); 10740 } 10741 10742 namespace { 10743 10744 struct EVTArray { 10745 std::vector<EVT> VTs; 10746 10747 EVTArray() { 10748 VTs.reserve(MVT::VALUETYPE_SIZE); 10749 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10750 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10751 } 10752 }; 10753 10754 } // end anonymous namespace 10755 10756 /// getValueTypeList - Return a pointer to the specified value type. 10757 /// 10758 const EVT *SDNode::getValueTypeList(EVT VT) { 10759 static std::set<EVT, EVT::compareRawBits> EVTs; 10760 static EVTArray SimpleVTArray; 10761 static sys::SmartMutex<true> VTMutex; 10762 10763 if (VT.isExtended()) { 10764 sys::SmartScopedLock<true> Lock(VTMutex); 10765 return &(*EVTs.insert(VT).first); 10766 } 10767 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10768 return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy]; 10769 } 10770 10771 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10772 /// indicated value. This method ignores uses of other values defined by this 10773 /// operation. 10774 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10775 assert(Value < getNumValues() && "Bad value!"); 10776 10777 // TODO: Only iterate over uses of a given value of the node 10778 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10779 if (UI.getUse().getResNo() == Value) { 10780 if (NUses == 0) 10781 return false; 10782 --NUses; 10783 } 10784 } 10785 10786 // Found exactly the right number of uses? 10787 return NUses == 0; 10788 } 10789 10790 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10791 /// value. This method ignores uses of other values defined by this operation. 10792 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10793 assert(Value < getNumValues() && "Bad value!"); 10794 10795 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10796 if (UI.getUse().getResNo() == Value) 10797 return true; 10798 10799 return false; 10800 } 10801 10802 /// isOnlyUserOf - Return true if this node is the only use of N. 10803 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10804 bool Seen = false; 10805 for (const SDNode *User : N->uses()) { 10806 if (User == this) 10807 Seen = true; 10808 else 10809 return false; 10810 } 10811 10812 return Seen; 10813 } 10814 10815 /// Return true if the only users of N are contained in Nodes. 10816 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10817 bool Seen = false; 10818 for (const SDNode *User : N->uses()) { 10819 if (llvm::is_contained(Nodes, User)) 10820 Seen = true; 10821 else 10822 return false; 10823 } 10824 10825 return Seen; 10826 } 10827 10828 /// isOperand - Return true if this node is an operand of N. 10829 bool SDValue::isOperandOf(const SDNode *N) const { 10830 return is_contained(N->op_values(), *this); 10831 } 10832 10833 bool SDNode::isOperandOf(const SDNode *N) const { 10834 return any_of(N->op_values(), 10835 [this](SDValue Op) { return this == Op.getNode(); }); 10836 } 10837 10838 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10839 /// be a chain) reaches the specified operand without crossing any 10840 /// side-effecting instructions on any chain path. In practice, this looks 10841 /// through token factors and non-volatile loads. In order to remain efficient, 10842 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10843 /// 10844 /// Note that we only need to examine chains when we're searching for 10845 /// side-effects; SelectionDAG requires that all side-effects are represented 10846 /// by chains, even if another operand would force a specific ordering. This 10847 /// constraint is necessary to allow transformations like splitting loads. 10848 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10849 unsigned Depth) const { 10850 if (*this == Dest) return true; 10851 10852 // Don't search too deeply, we just want to be able to see through 10853 // TokenFactor's etc. 10854 if (Depth == 0) return false; 10855 10856 // If this is a token factor, all inputs to the TF happen in parallel. 10857 if (getOpcode() == ISD::TokenFactor) { 10858 // First, try a shallow search. 10859 if (is_contained((*this)->ops(), Dest)) { 10860 // We found the chain we want as an operand of this TokenFactor. 10861 // Essentially, we reach the chain without side-effects if we could 10862 // serialize the TokenFactor into a simple chain of operations with 10863 // Dest as the last operation. This is automatically true if the 10864 // chain has one use: there are no other ordering constraints. 10865 // If the chain has more than one use, we give up: some other 10866 // use of Dest might force a side-effect between Dest and the current 10867 // node. 10868 if (Dest.hasOneUse()) 10869 return true; 10870 } 10871 // Next, try a deep search: check whether every operand of the TokenFactor 10872 // reaches Dest. 10873 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10874 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10875 }); 10876 } 10877 10878 // Loads don't have side effects, look through them. 10879 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10880 if (Ld->isUnordered()) 10881 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10882 } 10883 return false; 10884 } 10885 10886 bool SDNode::hasPredecessor(const SDNode *N) const { 10887 SmallPtrSet<const SDNode *, 32> Visited; 10888 SmallVector<const SDNode *, 16> Worklist; 10889 Worklist.push_back(this); 10890 return hasPredecessorHelper(N, Visited, Worklist); 10891 } 10892 10893 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10894 this->Flags.intersectWith(Flags); 10895 } 10896 10897 SDValue 10898 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10899 ArrayRef<ISD::NodeType> CandidateBinOps, 10900 bool AllowPartials) { 10901 // The pattern must end in an extract from index 0. 10902 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10903 !isNullConstant(Extract->getOperand(1))) 10904 return SDValue(); 10905 10906 // Match against one of the candidate binary ops. 10907 SDValue Op = Extract->getOperand(0); 10908 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10909 return Op.getOpcode() == unsigned(BinOp); 10910 })) 10911 return SDValue(); 10912 10913 // Floating-point reductions may require relaxed constraints on the final step 10914 // of the reduction because they may reorder intermediate operations. 10915 unsigned CandidateBinOp = Op.getOpcode(); 10916 if (Op.getValueType().isFloatingPoint()) { 10917 SDNodeFlags Flags = Op->getFlags(); 10918 switch (CandidateBinOp) { 10919 case ISD::FADD: 10920 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10921 return SDValue(); 10922 break; 10923 default: 10924 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10925 } 10926 } 10927 10928 // Matching failed - attempt to see if we did enough stages that a partial 10929 // reduction from a subvector is possible. 10930 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10931 if (!AllowPartials || !Op) 10932 return SDValue(); 10933 EVT OpVT = Op.getValueType(); 10934 EVT OpSVT = OpVT.getScalarType(); 10935 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10936 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10937 return SDValue(); 10938 BinOp = (ISD::NodeType)CandidateBinOp; 10939 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10940 getVectorIdxConstant(0, SDLoc(Op))); 10941 }; 10942 10943 // At each stage, we're looking for something that looks like: 10944 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10945 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10946 // i32 undef, i32 undef, i32 undef, i32 undef> 10947 // %a = binop <8 x i32> %op, %s 10948 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10949 // we expect something like: 10950 // <4,5,6,7,u,u,u,u> 10951 // <2,3,u,u,u,u,u,u> 10952 // <1,u,u,u,u,u,u,u> 10953 // While a partial reduction match would be: 10954 // <2,3,u,u,u,u,u,u> 10955 // <1,u,u,u,u,u,u,u> 10956 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10957 SDValue PrevOp; 10958 for (unsigned i = 0; i < Stages; ++i) { 10959 unsigned MaskEnd = (1 << i); 10960 10961 if (Op.getOpcode() != CandidateBinOp) 10962 return PartialReduction(PrevOp, MaskEnd); 10963 10964 SDValue Op0 = Op.getOperand(0); 10965 SDValue Op1 = Op.getOperand(1); 10966 10967 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10968 if (Shuffle) { 10969 Op = Op1; 10970 } else { 10971 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10972 Op = Op0; 10973 } 10974 10975 // The first operand of the shuffle should be the same as the other operand 10976 // of the binop. 10977 if (!Shuffle || Shuffle->getOperand(0) != Op) 10978 return PartialReduction(PrevOp, MaskEnd); 10979 10980 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10981 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10982 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10983 return PartialReduction(PrevOp, MaskEnd); 10984 10985 PrevOp = Op; 10986 } 10987 10988 // Handle subvector reductions, which tend to appear after the shuffle 10989 // reduction stages. 10990 while (Op.getOpcode() == CandidateBinOp) { 10991 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10992 SDValue Op0 = Op.getOperand(0); 10993 SDValue Op1 = Op.getOperand(1); 10994 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10995 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10996 Op0.getOperand(0) != Op1.getOperand(0)) 10997 break; 10998 SDValue Src = Op0.getOperand(0); 10999 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 11000 if (NumSrcElts != (2 * NumElts)) 11001 break; 11002 if (!(Op0.getConstantOperandAPInt(1) == 0 && 11003 Op1.getConstantOperandAPInt(1) == NumElts) && 11004 !(Op1.getConstantOperandAPInt(1) == 0 && 11005 Op0.getConstantOperandAPInt(1) == NumElts)) 11006 break; 11007 Op = Src; 11008 } 11009 11010 BinOp = (ISD::NodeType)CandidateBinOp; 11011 return Op; 11012 } 11013 11014 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 11015 assert(N->getNumValues() == 1 && 11016 "Can't unroll a vector with multiple results!"); 11017 11018 EVT VT = N->getValueType(0); 11019 unsigned NE = VT.getVectorNumElements(); 11020 EVT EltVT = VT.getVectorElementType(); 11021 SDLoc dl(N); 11022 11023 SmallVector<SDValue, 8> Scalars; 11024 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11025 11026 // If ResNE is 0, fully unroll the vector op. 11027 if (ResNE == 0) 11028 ResNE = NE; 11029 else if (NE > ResNE) 11030 NE = ResNE; 11031 11032 unsigned i; 11033 for (i= 0; i != NE; ++i) { 11034 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11035 SDValue Operand = N->getOperand(j); 11036 EVT OperandVT = Operand.getValueType(); 11037 if (OperandVT.isVector()) { 11038 // A vector operand; extract a single element. 11039 EVT OperandEltVT = OperandVT.getVectorElementType(); 11040 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11041 Operand, getVectorIdxConstant(i, dl)); 11042 } else { 11043 // A scalar operand; just use it as is. 11044 Operands[j] = Operand; 11045 } 11046 } 11047 11048 switch (N->getOpcode()) { 11049 default: { 11050 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11051 N->getFlags())); 11052 break; 11053 } 11054 case ISD::VSELECT: 11055 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11056 break; 11057 case ISD::SHL: 11058 case ISD::SRA: 11059 case ISD::SRL: 11060 case ISD::ROTL: 11061 case ISD::ROTR: 11062 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11063 getShiftAmountOperand(Operands[0].getValueType(), 11064 Operands[1]))); 11065 break; 11066 case ISD::SIGN_EXTEND_INREG: { 11067 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11068 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11069 Operands[0], 11070 getValueType(ExtVT))); 11071 } 11072 } 11073 } 11074 11075 for (; i < ResNE; ++i) 11076 Scalars.push_back(getUNDEF(EltVT)); 11077 11078 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11079 return getBuildVector(VecVT, dl, Scalars); 11080 } 11081 11082 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11083 SDNode *N, unsigned ResNE) { 11084 unsigned Opcode = N->getOpcode(); 11085 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11086 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11087 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11088 "Expected an overflow opcode"); 11089 11090 EVT ResVT = N->getValueType(0); 11091 EVT OvVT = N->getValueType(1); 11092 EVT ResEltVT = ResVT.getVectorElementType(); 11093 EVT OvEltVT = OvVT.getVectorElementType(); 11094 SDLoc dl(N); 11095 11096 // If ResNE is 0, fully unroll the vector op. 11097 unsigned NE = ResVT.getVectorNumElements(); 11098 if (ResNE == 0) 11099 ResNE = NE; 11100 else if (NE > ResNE) 11101 NE = ResNE; 11102 11103 SmallVector<SDValue, 8> LHSScalars; 11104 SmallVector<SDValue, 8> RHSScalars; 11105 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11106 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11107 11108 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11109 SDVTList VTs = getVTList(ResEltVT, SVT); 11110 SmallVector<SDValue, 8> ResScalars; 11111 SmallVector<SDValue, 8> OvScalars; 11112 for (unsigned i = 0; i < NE; ++i) { 11113 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11114 SDValue Ov = 11115 getSelect(dl, OvEltVT, Res.getValue(1), 11116 getBoolConstant(true, dl, OvEltVT, ResVT), 11117 getConstant(0, dl, OvEltVT)); 11118 11119 ResScalars.push_back(Res); 11120 OvScalars.push_back(Ov); 11121 } 11122 11123 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11124 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11125 11126 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11127 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11128 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11129 getBuildVector(NewOvVT, dl, OvScalars)); 11130 } 11131 11132 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11133 LoadSDNode *Base, 11134 unsigned Bytes, 11135 int Dist) const { 11136 if (LD->isVolatile() || Base->isVolatile()) 11137 return false; 11138 // TODO: probably too restrictive for atomics, revisit 11139 if (!LD->isSimple()) 11140 return false; 11141 if (LD->isIndexed() || Base->isIndexed()) 11142 return false; 11143 if (LD->getChain() != Base->getChain()) 11144 return false; 11145 EVT VT = LD->getValueType(0); 11146 if (VT.getSizeInBits() / 8 != Bytes) 11147 return false; 11148 11149 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11150 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11151 11152 int64_t Offset = 0; 11153 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11154 return (Dist * Bytes == Offset); 11155 return false; 11156 } 11157 11158 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11159 /// if it cannot be inferred. 11160 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11161 // If this is a GlobalAddress + cst, return the alignment. 11162 const GlobalValue *GV = nullptr; 11163 int64_t GVOffset = 0; 11164 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11165 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11166 KnownBits Known(PtrWidth); 11167 llvm::computeKnownBits(GV, Known, getDataLayout()); 11168 unsigned AlignBits = Known.countMinTrailingZeros(); 11169 if (AlignBits) 11170 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11171 } 11172 11173 // If this is a direct reference to a stack slot, use information about the 11174 // stack slot's alignment. 11175 int FrameIdx = INT_MIN; 11176 int64_t FrameOffset = 0; 11177 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11178 FrameIdx = FI->getIndex(); 11179 } else if (isBaseWithConstantOffset(Ptr) && 11180 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11181 // Handle FI+Cst 11182 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11183 FrameOffset = Ptr.getConstantOperandVal(1); 11184 } 11185 11186 if (FrameIdx != INT_MIN) { 11187 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11188 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11189 } 11190 11191 return None; 11192 } 11193 11194 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11195 /// which is split (or expanded) into two not necessarily identical pieces. 11196 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11197 // Currently all types are split in half. 11198 EVT LoVT, HiVT; 11199 if (!VT.isVector()) 11200 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11201 else 11202 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11203 11204 return std::make_pair(LoVT, HiVT); 11205 } 11206 11207 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11208 /// type, dependent on an enveloping VT that has been split into two identical 11209 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11210 std::pair<EVT, EVT> 11211 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11212 bool *HiIsEmpty) const { 11213 EVT EltTp = VT.getVectorElementType(); 11214 // Examples: 11215 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11216 // custom VL=9 with enveloping VL=8/8 yields 8/1 11217 // custom VL=10 with enveloping VL=8/8 yields 8/2 11218 // etc. 11219 ElementCount VTNumElts = VT.getVectorElementCount(); 11220 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11221 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11222 "Mixing fixed width and scalable vectors when enveloping a type"); 11223 EVT LoVT, HiVT; 11224 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11225 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11226 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11227 *HiIsEmpty = false; 11228 } else { 11229 // Flag that hi type has zero storage size, but return split envelop type 11230 // (this would be easier if vector types with zero elements were allowed). 11231 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11232 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11233 *HiIsEmpty = true; 11234 } 11235 return std::make_pair(LoVT, HiVT); 11236 } 11237 11238 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11239 /// low/high part. 11240 std::pair<SDValue, SDValue> 11241 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11242 const EVT &HiVT) { 11243 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11244 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11245 "Splitting vector with an invalid mixture of fixed and scalable " 11246 "vector types"); 11247 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11248 N.getValueType().getVectorMinNumElements() && 11249 "More vector elements requested than available!"); 11250 SDValue Lo, Hi; 11251 Lo = 11252 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11253 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11254 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11255 // IDX with the runtime scaling factor of the result vector type. For 11256 // fixed-width result vectors, that runtime scaling factor is 1. 11257 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11258 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11259 return std::make_pair(Lo, Hi); 11260 } 11261 11262 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11263 const SDLoc &DL) { 11264 // Split the vector length parameter. 11265 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11266 EVT VT = N.getValueType(); 11267 assert(VecVT.getVectorElementCount().isKnownEven() && 11268 "Expecting the mask to be an evenly-sized vector"); 11269 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11270 SDValue HalfNumElts = 11271 VecVT.isFixedLengthVector() 11272 ? getConstant(HalfMinNumElts, DL, VT) 11273 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11274 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11275 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11276 return std::make_pair(Lo, Hi); 11277 } 11278 11279 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11280 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11281 EVT VT = N.getValueType(); 11282 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11283 NextPowerOf2(VT.getVectorNumElements())); 11284 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11285 getVectorIdxConstant(0, DL)); 11286 } 11287 11288 void SelectionDAG::ExtractVectorElements(SDValue Op, 11289 SmallVectorImpl<SDValue> &Args, 11290 unsigned Start, unsigned Count, 11291 EVT EltVT) { 11292 EVT VT = Op.getValueType(); 11293 if (Count == 0) 11294 Count = VT.getVectorNumElements(); 11295 if (EltVT == EVT()) 11296 EltVT = VT.getVectorElementType(); 11297 SDLoc SL(Op); 11298 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11299 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11300 getVectorIdxConstant(i, SL))); 11301 } 11302 } 11303 11304 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11305 unsigned GlobalAddressSDNode::getAddressSpace() const { 11306 return getGlobal()->getType()->getAddressSpace(); 11307 } 11308 11309 Type *ConstantPoolSDNode::getType() const { 11310 if (isMachineConstantPoolEntry()) 11311 return Val.MachineCPVal->getType(); 11312 return Val.ConstVal->getType(); 11313 } 11314 11315 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11316 unsigned &SplatBitSize, 11317 bool &HasAnyUndefs, 11318 unsigned MinSplatBits, 11319 bool IsBigEndian) const { 11320 EVT VT = getValueType(0); 11321 assert(VT.isVector() && "Expected a vector type"); 11322 unsigned VecWidth = VT.getSizeInBits(); 11323 if (MinSplatBits > VecWidth) 11324 return false; 11325 11326 // FIXME: The widths are based on this node's type, but build vectors can 11327 // truncate their operands. 11328 SplatValue = APInt(VecWidth, 0); 11329 SplatUndef = APInt(VecWidth, 0); 11330 11331 // Get the bits. Bits with undefined values (when the corresponding element 11332 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11333 // in SplatValue. If any of the values are not constant, give up and return 11334 // false. 11335 unsigned int NumOps = getNumOperands(); 11336 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11337 unsigned EltWidth = VT.getScalarSizeInBits(); 11338 11339 for (unsigned j = 0; j < NumOps; ++j) { 11340 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11341 SDValue OpVal = getOperand(i); 11342 unsigned BitPos = j * EltWidth; 11343 11344 if (OpVal.isUndef()) 11345 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11346 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11347 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11348 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11349 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11350 else 11351 return false; 11352 } 11353 11354 // The build_vector is all constants or undefs. Find the smallest element 11355 // size that splats the vector. 11356 HasAnyUndefs = (SplatUndef != 0); 11357 11358 // FIXME: This does not work for vectors with elements less than 8 bits. 11359 while (VecWidth > 8) { 11360 unsigned HalfSize = VecWidth / 2; 11361 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11362 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11363 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11364 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11365 11366 // If the two halves do not match (ignoring undef bits), stop here. 11367 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11368 MinSplatBits > HalfSize) 11369 break; 11370 11371 SplatValue = HighValue | LowValue; 11372 SplatUndef = HighUndef & LowUndef; 11373 11374 VecWidth = HalfSize; 11375 } 11376 11377 SplatBitSize = VecWidth; 11378 return true; 11379 } 11380 11381 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11382 BitVector *UndefElements) const { 11383 unsigned NumOps = getNumOperands(); 11384 if (UndefElements) { 11385 UndefElements->clear(); 11386 UndefElements->resize(NumOps); 11387 } 11388 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11389 if (!DemandedElts) 11390 return SDValue(); 11391 SDValue Splatted; 11392 for (unsigned i = 0; i != NumOps; ++i) { 11393 if (!DemandedElts[i]) 11394 continue; 11395 SDValue Op = getOperand(i); 11396 if (Op.isUndef()) { 11397 if (UndefElements) 11398 (*UndefElements)[i] = true; 11399 } else if (!Splatted) { 11400 Splatted = Op; 11401 } else if (Splatted != Op) { 11402 return SDValue(); 11403 } 11404 } 11405 11406 if (!Splatted) { 11407 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11408 assert(getOperand(FirstDemandedIdx).isUndef() && 11409 "Can only have a splat without a constant for all undefs."); 11410 return getOperand(FirstDemandedIdx); 11411 } 11412 11413 return Splatted; 11414 } 11415 11416 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11417 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11418 return getSplatValue(DemandedElts, UndefElements); 11419 } 11420 11421 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11422 SmallVectorImpl<SDValue> &Sequence, 11423 BitVector *UndefElements) const { 11424 unsigned NumOps = getNumOperands(); 11425 Sequence.clear(); 11426 if (UndefElements) { 11427 UndefElements->clear(); 11428 UndefElements->resize(NumOps); 11429 } 11430 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11431 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11432 return false; 11433 11434 // Set the undefs even if we don't find a sequence (like getSplatValue). 11435 if (UndefElements) 11436 for (unsigned I = 0; I != NumOps; ++I) 11437 if (DemandedElts[I] && getOperand(I).isUndef()) 11438 (*UndefElements)[I] = true; 11439 11440 // Iteratively widen the sequence length looking for repetitions. 11441 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11442 Sequence.append(SeqLen, SDValue()); 11443 for (unsigned I = 0; I != NumOps; ++I) { 11444 if (!DemandedElts[I]) 11445 continue; 11446 SDValue &SeqOp = Sequence[I % SeqLen]; 11447 SDValue Op = getOperand(I); 11448 if (Op.isUndef()) { 11449 if (!SeqOp) 11450 SeqOp = Op; 11451 continue; 11452 } 11453 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11454 Sequence.clear(); 11455 break; 11456 } 11457 SeqOp = Op; 11458 } 11459 if (!Sequence.empty()) 11460 return true; 11461 } 11462 11463 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11464 return false; 11465 } 11466 11467 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11468 BitVector *UndefElements) const { 11469 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11470 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11471 } 11472 11473 ConstantSDNode * 11474 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11475 BitVector *UndefElements) const { 11476 return dyn_cast_or_null<ConstantSDNode>( 11477 getSplatValue(DemandedElts, UndefElements)); 11478 } 11479 11480 ConstantSDNode * 11481 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11482 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11483 } 11484 11485 ConstantFPSDNode * 11486 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11487 BitVector *UndefElements) const { 11488 return dyn_cast_or_null<ConstantFPSDNode>( 11489 getSplatValue(DemandedElts, UndefElements)); 11490 } 11491 11492 ConstantFPSDNode * 11493 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11494 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11495 } 11496 11497 int32_t 11498 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11499 uint32_t BitWidth) const { 11500 if (ConstantFPSDNode *CN = 11501 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11502 bool IsExact; 11503 APSInt IntVal(BitWidth); 11504 const APFloat &APF = CN->getValueAPF(); 11505 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11506 APFloat::opOK || 11507 !IsExact) 11508 return -1; 11509 11510 return IntVal.exactLogBase2(); 11511 } 11512 return -1; 11513 } 11514 11515 bool BuildVectorSDNode::getConstantRawBits( 11516 bool IsLittleEndian, unsigned DstEltSizeInBits, 11517 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11518 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11519 if (!isConstant()) 11520 return false; 11521 11522 unsigned NumSrcOps = getNumOperands(); 11523 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11524 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11525 "Invalid bitcast scale"); 11526 11527 // Extract raw src bits. 11528 SmallVector<APInt> SrcBitElements(NumSrcOps, 11529 APInt::getNullValue(SrcEltSizeInBits)); 11530 BitVector SrcUndeElements(NumSrcOps, false); 11531 11532 for (unsigned I = 0; I != NumSrcOps; ++I) { 11533 SDValue Op = getOperand(I); 11534 if (Op.isUndef()) { 11535 SrcUndeElements.set(I); 11536 continue; 11537 } 11538 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11539 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11540 assert((CInt || CFP) && "Unknown constant"); 11541 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11542 : CFP->getValueAPF().bitcastToAPInt(); 11543 } 11544 11545 // Recast to dst width. 11546 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11547 SrcBitElements, UndefElements, SrcUndeElements); 11548 return true; 11549 } 11550 11551 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11552 unsigned DstEltSizeInBits, 11553 SmallVectorImpl<APInt> &DstBitElements, 11554 ArrayRef<APInt> SrcBitElements, 11555 BitVector &DstUndefElements, 11556 const BitVector &SrcUndefElements) { 11557 unsigned NumSrcOps = SrcBitElements.size(); 11558 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11559 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11560 "Invalid bitcast scale"); 11561 assert(NumSrcOps == SrcUndefElements.size() && 11562 "Vector size mismatch"); 11563 11564 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11565 DstUndefElements.clear(); 11566 DstUndefElements.resize(NumDstOps, false); 11567 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11568 11569 // Concatenate src elements constant bits together into dst element. 11570 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11571 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11572 for (unsigned I = 0; I != NumDstOps; ++I) { 11573 DstUndefElements.set(I); 11574 APInt &DstBits = DstBitElements[I]; 11575 for (unsigned J = 0; J != Scale; ++J) { 11576 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11577 if (SrcUndefElements[Idx]) 11578 continue; 11579 DstUndefElements.reset(I); 11580 const APInt &SrcBits = SrcBitElements[Idx]; 11581 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11582 "Illegal constant bitwidths"); 11583 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11584 } 11585 } 11586 return; 11587 } 11588 11589 // Split src element constant bits into dst elements. 11590 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11591 for (unsigned I = 0; I != NumSrcOps; ++I) { 11592 if (SrcUndefElements[I]) { 11593 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11594 continue; 11595 } 11596 const APInt &SrcBits = SrcBitElements[I]; 11597 for (unsigned J = 0; J != Scale; ++J) { 11598 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11599 APInt &DstBits = DstBitElements[Idx]; 11600 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11601 } 11602 } 11603 } 11604 11605 bool BuildVectorSDNode::isConstant() const { 11606 for (const SDValue &Op : op_values()) { 11607 unsigned Opc = Op.getOpcode(); 11608 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11609 return false; 11610 } 11611 return true; 11612 } 11613 11614 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11615 // Find the first non-undef value in the shuffle mask. 11616 unsigned i, e; 11617 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11618 /* search */; 11619 11620 // If all elements are undefined, this shuffle can be considered a splat 11621 // (although it should eventually get simplified away completely). 11622 if (i == e) 11623 return true; 11624 11625 // Make sure all remaining elements are either undef or the same as the first 11626 // non-undef value. 11627 for (int Idx = Mask[i]; i != e; ++i) 11628 if (Mask[i] >= 0 && Mask[i] != Idx) 11629 return false; 11630 return true; 11631 } 11632 11633 // Returns the SDNode if it is a constant integer BuildVector 11634 // or constant integer. 11635 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11636 if (isa<ConstantSDNode>(N)) 11637 return N.getNode(); 11638 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11639 return N.getNode(); 11640 // Treat a GlobalAddress supporting constant offset folding as a 11641 // constant integer. 11642 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11643 if (GA->getOpcode() == ISD::GlobalAddress && 11644 TLI->isOffsetFoldingLegal(GA)) 11645 return GA; 11646 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11647 isa<ConstantSDNode>(N.getOperand(0))) 11648 return N.getNode(); 11649 return nullptr; 11650 } 11651 11652 // Returns the SDNode if it is a constant float BuildVector 11653 // or constant float. 11654 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11655 if (isa<ConstantFPSDNode>(N)) 11656 return N.getNode(); 11657 11658 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11659 return N.getNode(); 11660 11661 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11662 isa<ConstantFPSDNode>(N.getOperand(0))) 11663 return N.getNode(); 11664 11665 return nullptr; 11666 } 11667 11668 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11669 assert(!Node->OperandList && "Node already has operands"); 11670 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11671 "too many operands to fit into SDNode"); 11672 SDUse *Ops = OperandRecycler.allocate( 11673 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11674 11675 bool IsDivergent = false; 11676 for (unsigned I = 0; I != Vals.size(); ++I) { 11677 Ops[I].setUser(Node); 11678 Ops[I].setInitial(Vals[I]); 11679 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11680 IsDivergent |= Ops[I].getNode()->isDivergent(); 11681 } 11682 Node->NumOperands = Vals.size(); 11683 Node->OperandList = Ops; 11684 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11685 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11686 Node->SDNodeBits.IsDivergent = IsDivergent; 11687 } 11688 checkForCycles(Node); 11689 } 11690 11691 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11692 SmallVectorImpl<SDValue> &Vals) { 11693 size_t Limit = SDNode::getMaxNumOperands(); 11694 while (Vals.size() > Limit) { 11695 unsigned SliceIdx = Vals.size() - Limit; 11696 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11697 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11698 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11699 Vals.emplace_back(NewTF); 11700 } 11701 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11702 } 11703 11704 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11705 EVT VT, SDNodeFlags Flags) { 11706 switch (Opcode) { 11707 default: 11708 return SDValue(); 11709 case ISD::ADD: 11710 case ISD::OR: 11711 case ISD::XOR: 11712 case ISD::UMAX: 11713 return getConstant(0, DL, VT); 11714 case ISD::MUL: 11715 return getConstant(1, DL, VT); 11716 case ISD::AND: 11717 case ISD::UMIN: 11718 return getAllOnesConstant(DL, VT); 11719 case ISD::SMAX: 11720 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11721 case ISD::SMIN: 11722 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11723 case ISD::FADD: 11724 return getConstantFP(-0.0, DL, VT); 11725 case ISD::FMUL: 11726 return getConstantFP(1.0, DL, VT); 11727 case ISD::FMINNUM: 11728 case ISD::FMAXNUM: { 11729 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11730 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11731 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11732 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11733 APFloat::getLargest(Semantics); 11734 if (Opcode == ISD::FMAXNUM) 11735 NeutralAF.changeSign(); 11736 11737 return getConstantFP(NeutralAF, DL, VT); 11738 } 11739 } 11740 } 11741 11742 #ifndef NDEBUG 11743 static void checkForCyclesHelper(const SDNode *N, 11744 SmallPtrSetImpl<const SDNode*> &Visited, 11745 SmallPtrSetImpl<const SDNode*> &Checked, 11746 const llvm::SelectionDAG *DAG) { 11747 // If this node has already been checked, don't check it again. 11748 if (Checked.count(N)) 11749 return; 11750 11751 // If a node has already been visited on this depth-first walk, reject it as 11752 // a cycle. 11753 if (!Visited.insert(N).second) { 11754 errs() << "Detected cycle in SelectionDAG\n"; 11755 dbgs() << "Offending node:\n"; 11756 N->dumprFull(DAG); dbgs() << "\n"; 11757 abort(); 11758 } 11759 11760 for (const SDValue &Op : N->op_values()) 11761 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11762 11763 Checked.insert(N); 11764 Visited.erase(N); 11765 } 11766 #endif 11767 11768 void llvm::checkForCycles(const llvm::SDNode *N, 11769 const llvm::SelectionDAG *DAG, 11770 bool force) { 11771 #ifndef NDEBUG 11772 bool check = force; 11773 #ifdef EXPENSIVE_CHECKS 11774 check = true; 11775 #endif // EXPENSIVE_CHECKS 11776 if (check) { 11777 assert(N && "Checking nonexistent SDNode"); 11778 SmallPtrSet<const SDNode*, 32> visited; 11779 SmallPtrSet<const SDNode*, 32> checked; 11780 checkForCyclesHelper(N, visited, checked, DAG); 11781 } 11782 #endif // !NDEBUG 11783 } 11784 11785 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11786 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11787 } 11788