1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 150 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 151 return true; 152 } 153 } 154 155 auto *BV = dyn_cast<BuildVectorSDNode>(N); 156 if (!BV) 157 return false; 158 159 APInt SplatUndef; 160 unsigned SplatBitSize; 161 bool HasUndefs; 162 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 163 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 164 EltSize) && 165 EltSize == SplatBitSize; 166 } 167 168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 169 // specializations of the more general isConstantSplatVector()? 170 171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 172 // Look through a bit convert. 173 while (N->getOpcode() == ISD::BITCAST) 174 N = N->getOperand(0).getNode(); 175 176 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 177 APInt SplatVal; 178 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 179 } 180 181 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 182 183 unsigned i = 0, e = N->getNumOperands(); 184 185 // Skip over all of the undef values. 186 while (i != e && N->getOperand(i).isUndef()) 187 ++i; 188 189 // Do not accept an all-undef vector. 190 if (i == e) return false; 191 192 // Do not accept build_vectors that aren't all constants or which have non-~0 193 // elements. We have to be a bit careful here, as the type of the constant 194 // may not be the same as the type of the vector elements due to type 195 // legalization (the elements are promoted to a legal type for the target and 196 // a vector of a type may be legal when the base element type is not). 197 // We only want to check enough bits to cover the vector elements, because 198 // we care if the resultant vector is all ones, not whether the individual 199 // constants are. 200 SDValue NotZero = N->getOperand(i); 201 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 202 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 203 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 204 return false; 205 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 206 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 207 return false; 208 } else 209 return false; 210 211 // Okay, we have at least one ~0 value, check to see if the rest match or are 212 // undefs. Even with the above element type twiddling, this should be OK, as 213 // the same type legalization should have applied to all the elements. 214 for (++i; i != e; ++i) 215 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 216 return false; 217 return true; 218 } 219 220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 221 // Look through a bit convert. 222 while (N->getOpcode() == ISD::BITCAST) 223 N = N->getOperand(0).getNode(); 224 225 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 226 APInt SplatVal; 227 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 228 } 229 230 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 231 232 bool IsAllUndef = true; 233 for (const SDValue &Op : N->op_values()) { 234 if (Op.isUndef()) 235 continue; 236 IsAllUndef = false; 237 // Do not accept build_vectors that aren't all constants or which have non-0 238 // elements. We have to be a bit careful here, as the type of the constant 239 // may not be the same as the type of the vector elements due to type 240 // legalization (the elements are promoted to a legal type for the target 241 // and a vector of a type may be legal when the base element type is not). 242 // We only want to check enough bits to cover the vector elements, because 243 // we care if the resultant vector is all zeros, not whether the individual 244 // constants are. 245 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 246 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 247 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 248 return false; 249 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 250 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 251 return false; 252 } else 253 return false; 254 } 255 256 // Do not accept an all-undef vector. 257 if (IsAllUndef) 258 return false; 259 return true; 260 } 261 262 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 263 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 267 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 268 } 269 270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 271 if (N->getOpcode() != ISD::BUILD_VECTOR) 272 return false; 273 274 for (const SDValue &Op : N->op_values()) { 275 if (Op.isUndef()) 276 continue; 277 if (!isa<ConstantSDNode>(Op)) 278 return false; 279 } 280 return true; 281 } 282 283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 284 if (N->getOpcode() != ISD::BUILD_VECTOR) 285 return false; 286 287 for (const SDValue &Op : N->op_values()) { 288 if (Op.isUndef()) 289 continue; 290 if (!isa<ConstantFPSDNode>(Op)) 291 return false; 292 } 293 return true; 294 } 295 296 bool ISD::allOperandsUndef(const SDNode *N) { 297 // Return false if the node has no operands. 298 // This is "logically inconsistent" with the definition of "all" but 299 // is probably the desired behavior. 300 if (N->getNumOperands() == 0) 301 return false; 302 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 303 } 304 305 bool ISD::matchUnaryPredicate(SDValue Op, 306 std::function<bool(ConstantSDNode *)> Match, 307 bool AllowUndefs) { 308 // FIXME: Add support for scalar UNDEF cases? 309 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 310 return Match(Cst); 311 312 // FIXME: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != Op.getOpcode() && 314 ISD::SPLAT_VECTOR != Op.getOpcode()) 315 return false; 316 317 EVT SVT = Op.getValueType().getScalarType(); 318 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 319 if (AllowUndefs && Op.getOperand(i).isUndef()) { 320 if (!Match(nullptr)) 321 return false; 322 continue; 323 } 324 325 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 326 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 327 return false; 328 } 329 return true; 330 } 331 332 bool ISD::matchBinaryPredicate( 333 SDValue LHS, SDValue RHS, 334 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 335 bool AllowUndefs, bool AllowTypeMismatch) { 336 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 337 return false; 338 339 // TODO: Add support for scalar UNDEF cases? 340 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 341 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 342 return Match(LHSCst, RHSCst); 343 344 // TODO: Add support for vector UNDEF cases? 345 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 346 ISD::BUILD_VECTOR != RHS.getOpcode()) 347 return false; 348 349 EVT SVT = LHS.getValueType().getScalarType(); 350 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 351 SDValue LHSOp = LHS.getOperand(i); 352 SDValue RHSOp = RHS.getOperand(i); 353 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 354 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 355 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 356 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 357 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 358 return false; 359 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 360 LHSOp.getValueType() != RHSOp.getValueType())) 361 return false; 362 if (!Match(LHSCst, RHSCst)) 363 return false; 364 } 365 return true; 366 } 367 368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 369 switch (VecReduceOpcode) { 370 default: 371 llvm_unreachable("Expected VECREDUCE opcode"); 372 case ISD::VECREDUCE_FADD: 373 case ISD::VECREDUCE_SEQ_FADD: 374 return ISD::FADD; 375 case ISD::VECREDUCE_FMUL: 376 case ISD::VECREDUCE_SEQ_FMUL: 377 return ISD::FMUL; 378 case ISD::VECREDUCE_ADD: 379 return ISD::ADD; 380 case ISD::VECREDUCE_MUL: 381 return ISD::MUL; 382 case ISD::VECREDUCE_AND: 383 return ISD::AND; 384 case ISD::VECREDUCE_OR: 385 return ISD::OR; 386 case ISD::VECREDUCE_XOR: 387 return ISD::XOR; 388 case ISD::VECREDUCE_SMAX: 389 return ISD::SMAX; 390 case ISD::VECREDUCE_SMIN: 391 return ISD::SMIN; 392 case ISD::VECREDUCE_UMAX: 393 return ISD::UMAX; 394 case ISD::VECREDUCE_UMIN: 395 return ISD::UMIN; 396 case ISD::VECREDUCE_FMAX: 397 return ISD::FMAXNUM; 398 case ISD::VECREDUCE_FMIN: 399 return ISD::FMINNUM; 400 } 401 } 402 403 bool ISD::isVPOpcode(unsigned Opcode) { 404 switch (Opcode) { 405 default: 406 return false; 407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 408 case ISD::SDOPC: \ 409 return true; 410 #include "llvm/IR/VPIntrinsics.def" 411 } 412 } 413 414 /// The operand position of the vector mask. 415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 416 switch (Opcode) { 417 default: 418 return None; 419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 420 case ISD::SDOPC: \ 421 return MASKPOS; 422 #include "llvm/IR/VPIntrinsics.def" 423 } 424 } 425 426 /// The operand position of the explicit vector length parameter. 427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 return None; 431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 432 case ISD::SDOPC: \ 433 return EVLPOS; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 } 437 438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 439 switch (ExtType) { 440 case ISD::EXTLOAD: 441 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 442 case ISD::SEXTLOAD: 443 return ISD::SIGN_EXTEND; 444 case ISD::ZEXTLOAD: 445 return ISD::ZERO_EXTEND; 446 default: 447 break; 448 } 449 450 llvm_unreachable("Invalid LoadExtType"); 451 } 452 453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 454 // To perform this operation, we just need to swap the L and G bits of the 455 // operation. 456 unsigned OldL = (Operation >> 2) & 1; 457 unsigned OldG = (Operation >> 1) & 1; 458 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 459 (OldL << 1) | // New G bit 460 (OldG << 2)); // New L bit. 461 } 462 463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 464 unsigned Operation = Op; 465 if (isIntegerLike) 466 Operation ^= 7; // Flip L, G, E bits, but not U. 467 else 468 Operation ^= 15; // Flip all of the condition bits. 469 470 if (Operation > ISD::SETTRUE2) 471 Operation &= ~8; // Don't let N and U bits get set. 472 473 return ISD::CondCode(Operation); 474 } 475 476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 477 return getSetCCInverseImpl(Op, Type.isInteger()); 478 } 479 480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 481 bool isIntegerLike) { 482 return getSetCCInverseImpl(Op, isIntegerLike); 483 } 484 485 /// For an integer comparison, return 1 if the comparison is a signed operation 486 /// and 2 if the result is an unsigned comparison. Return zero if the operation 487 /// does not depend on the sign of the input (setne and seteq). 488 static int isSignedOp(ISD::CondCode Opcode) { 489 switch (Opcode) { 490 default: llvm_unreachable("Illegal integer setcc operation!"); 491 case ISD::SETEQ: 492 case ISD::SETNE: return 0; 493 case ISD::SETLT: 494 case ISD::SETLE: 495 case ISD::SETGT: 496 case ISD::SETGE: return 1; 497 case ISD::SETULT: 498 case ISD::SETULE: 499 case ISD::SETUGT: 500 case ISD::SETUGE: return 2; 501 } 502 } 503 504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 505 EVT Type) { 506 bool IsInteger = Type.isInteger(); 507 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 508 // Cannot fold a signed integer setcc with an unsigned integer setcc. 509 return ISD::SETCC_INVALID; 510 511 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 512 513 // If the N and U bits get set, then the resultant comparison DOES suddenly 514 // care about orderedness, and it is true when ordered. 515 if (Op > ISD::SETTRUE2) 516 Op &= ~16; // Clear the U bit if the N bit is set. 517 518 // Canonicalize illegal integer setcc's. 519 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 520 Op = ISD::SETNE; 521 522 return ISD::CondCode(Op); 523 } 524 525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 526 EVT Type) { 527 bool IsInteger = Type.isInteger(); 528 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 529 // Cannot fold a signed setcc with an unsigned setcc. 530 return ISD::SETCC_INVALID; 531 532 // Combine all of the condition bits. 533 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 534 535 // Canonicalize illegal integer setcc's. 536 if (IsInteger) { 537 switch (Result) { 538 default: break; 539 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 540 case ISD::SETOEQ: // SETEQ & SETU[LG]E 541 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 542 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 543 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 544 } 545 } 546 547 return Result; 548 } 549 550 //===----------------------------------------------------------------------===// 551 // SDNode Profile Support 552 //===----------------------------------------------------------------------===// 553 554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 556 ID.AddInteger(OpC); 557 } 558 559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 560 /// solely with their pointer. 561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 562 ID.AddPointer(VTList.VTs); 563 } 564 565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 566 static void AddNodeIDOperands(FoldingSetNodeID &ID, 567 ArrayRef<SDValue> Ops) { 568 for (auto& Op : Ops) { 569 ID.AddPointer(Op.getNode()); 570 ID.AddInteger(Op.getResNo()); 571 } 572 } 573 574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 575 static void AddNodeIDOperands(FoldingSetNodeID &ID, 576 ArrayRef<SDUse> Ops) { 577 for (auto& Op : Ops) { 578 ID.AddPointer(Op.getNode()); 579 ID.AddInteger(Op.getResNo()); 580 } 581 } 582 583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 584 SDVTList VTList, ArrayRef<SDValue> OpList) { 585 AddNodeIDOpcode(ID, OpC); 586 AddNodeIDValueTypes(ID, VTList); 587 AddNodeIDOperands(ID, OpList); 588 } 589 590 /// If this is an SDNode with special info, add this info to the NodeID data. 591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 592 switch (N->getOpcode()) { 593 case ISD::TargetExternalSymbol: 594 case ISD::ExternalSymbol: 595 case ISD::MCSymbol: 596 llvm_unreachable("Should only be used on nodes with operands"); 597 default: break; // Normal nodes don't need extra info. 598 case ISD::TargetConstant: 599 case ISD::Constant: { 600 const ConstantSDNode *C = cast<ConstantSDNode>(N); 601 ID.AddPointer(C->getConstantIntValue()); 602 ID.AddBoolean(C->isOpaque()); 603 break; 604 } 605 case ISD::TargetConstantFP: 606 case ISD::ConstantFP: 607 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 608 break; 609 case ISD::TargetGlobalAddress: 610 case ISD::GlobalAddress: 611 case ISD::TargetGlobalTLSAddress: 612 case ISD::GlobalTLSAddress: { 613 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 614 ID.AddPointer(GA->getGlobal()); 615 ID.AddInteger(GA->getOffset()); 616 ID.AddInteger(GA->getTargetFlags()); 617 break; 618 } 619 case ISD::BasicBlock: 620 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 621 break; 622 case ISD::Register: 623 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 624 break; 625 case ISD::RegisterMask: 626 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 627 break; 628 case ISD::SRCVALUE: 629 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 630 break; 631 case ISD::FrameIndex: 632 case ISD::TargetFrameIndex: 633 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 634 break; 635 case ISD::LIFETIME_START: 636 case ISD::LIFETIME_END: 637 if (cast<LifetimeSDNode>(N)->hasOffset()) { 638 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 639 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 640 } 641 break; 642 case ISD::PSEUDO_PROBE: 643 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 645 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 646 break; 647 case ISD::JumpTable: 648 case ISD::TargetJumpTable: 649 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 650 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 651 break; 652 case ISD::ConstantPool: 653 case ISD::TargetConstantPool: { 654 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 655 ID.AddInteger(CP->getAlign().value()); 656 ID.AddInteger(CP->getOffset()); 657 if (CP->isMachineConstantPoolEntry()) 658 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 659 else 660 ID.AddPointer(CP->getConstVal()); 661 ID.AddInteger(CP->getTargetFlags()); 662 break; 663 } 664 case ISD::TargetIndex: { 665 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 666 ID.AddInteger(TI->getIndex()); 667 ID.AddInteger(TI->getOffset()); 668 ID.AddInteger(TI->getTargetFlags()); 669 break; 670 } 671 case ISD::LOAD: { 672 const LoadSDNode *LD = cast<LoadSDNode>(N); 673 ID.AddInteger(LD->getMemoryVT().getRawBits()); 674 ID.AddInteger(LD->getRawSubclassData()); 675 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 676 break; 677 } 678 case ISD::STORE: { 679 const StoreSDNode *ST = cast<StoreSDNode>(N); 680 ID.AddInteger(ST->getMemoryVT().getRawBits()); 681 ID.AddInteger(ST->getRawSubclassData()); 682 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 683 break; 684 } 685 case ISD::MLOAD: { 686 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 687 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 688 ID.AddInteger(MLD->getRawSubclassData()); 689 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 690 break; 691 } 692 case ISD::MSTORE: { 693 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 694 ID.AddInteger(MST->getMemoryVT().getRawBits()); 695 ID.AddInteger(MST->getRawSubclassData()); 696 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 697 break; 698 } 699 case ISD::MGATHER: { 700 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 701 ID.AddInteger(MG->getMemoryVT().getRawBits()); 702 ID.AddInteger(MG->getRawSubclassData()); 703 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 704 break; 705 } 706 case ISD::MSCATTER: { 707 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 708 ID.AddInteger(MS->getMemoryVT().getRawBits()); 709 ID.AddInteger(MS->getRawSubclassData()); 710 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 711 break; 712 } 713 case ISD::ATOMIC_CMP_SWAP: 714 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 715 case ISD::ATOMIC_SWAP: 716 case ISD::ATOMIC_LOAD_ADD: 717 case ISD::ATOMIC_LOAD_SUB: 718 case ISD::ATOMIC_LOAD_AND: 719 case ISD::ATOMIC_LOAD_CLR: 720 case ISD::ATOMIC_LOAD_OR: 721 case ISD::ATOMIC_LOAD_XOR: 722 case ISD::ATOMIC_LOAD_NAND: 723 case ISD::ATOMIC_LOAD_MIN: 724 case ISD::ATOMIC_LOAD_MAX: 725 case ISD::ATOMIC_LOAD_UMIN: 726 case ISD::ATOMIC_LOAD_UMAX: 727 case ISD::ATOMIC_LOAD: 728 case ISD::ATOMIC_STORE: { 729 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 730 ID.AddInteger(AT->getMemoryVT().getRawBits()); 731 ID.AddInteger(AT->getRawSubclassData()); 732 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 733 break; 734 } 735 case ISD::PREFETCH: { 736 const MemSDNode *PF = cast<MemSDNode>(N); 737 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VECTOR_SHUFFLE: { 741 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 742 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 743 i != e; ++i) 744 ID.AddInteger(SVN->getMaskElt(i)); 745 break; 746 } 747 case ISD::TargetBlockAddress: 748 case ISD::BlockAddress: { 749 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 750 ID.AddPointer(BA->getBlockAddress()); 751 ID.AddInteger(BA->getOffset()); 752 ID.AddInteger(BA->getTargetFlags()); 753 break; 754 } 755 } // end switch (N->getOpcode()) 756 757 // Target specific memory nodes could also have address spaces to check. 758 if (N->isTargetMemoryOpcode()) 759 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 760 } 761 762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 763 /// data. 764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 765 AddNodeIDOpcode(ID, N->getOpcode()); 766 // Add the return value info. 767 AddNodeIDValueTypes(ID, N->getVTList()); 768 // Add the operand info. 769 AddNodeIDOperands(ID, N->ops()); 770 771 // Handle SDNode leafs with special info. 772 AddNodeIDCustom(ID, N); 773 } 774 775 //===----------------------------------------------------------------------===// 776 // SelectionDAG Class 777 //===----------------------------------------------------------------------===// 778 779 /// doNotCSE - Return true if CSE should not be performed for this node. 780 static bool doNotCSE(SDNode *N) { 781 if (N->getValueType(0) == MVT::Glue) 782 return true; // Never CSE anything that produces a flag. 783 784 switch (N->getOpcode()) { 785 default: break; 786 case ISD::HANDLENODE: 787 case ISD::EH_LABEL: 788 return true; // Never CSE these nodes. 789 } 790 791 // Check that remaining values produced are not flags. 792 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 793 if (N->getValueType(i) == MVT::Glue) 794 return true; // Never CSE anything that produces a flag. 795 796 return false; 797 } 798 799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 800 /// SelectionDAG. 801 void SelectionDAG::RemoveDeadNodes() { 802 // Create a dummy node (which is not added to allnodes), that adds a reference 803 // to the root node, preventing it from being deleted. 804 HandleSDNode Dummy(getRoot()); 805 806 SmallVector<SDNode*, 128> DeadNodes; 807 808 // Add all obviously-dead nodes to the DeadNodes worklist. 809 for (SDNode &Node : allnodes()) 810 if (Node.use_empty()) 811 DeadNodes.push_back(&Node); 812 813 RemoveDeadNodes(DeadNodes); 814 815 // If the root changed (e.g. it was a dead load, update the root). 816 setRoot(Dummy.getValue()); 817 } 818 819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 820 /// given list, and any nodes that become unreachable as a result. 821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 822 823 // Process the worklist, deleting the nodes and adding their uses to the 824 // worklist. 825 while (!DeadNodes.empty()) { 826 SDNode *N = DeadNodes.pop_back_val(); 827 // Skip to next node if we've already managed to delete the node. This could 828 // happen if replacing a node causes a node previously added to the node to 829 // be deleted. 830 if (N->getOpcode() == ISD::DELETED_NODE) 831 continue; 832 833 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 834 DUL->NodeDeleted(N, nullptr); 835 836 // Take the node out of the appropriate CSE map. 837 RemoveNodeFromCSEMaps(N); 838 839 // Next, brutally remove the operand list. This is safe to do, as there are 840 // no cycles in the graph. 841 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 842 SDUse &Use = *I++; 843 SDNode *Operand = Use.getNode(); 844 Use.set(SDValue()); 845 846 // Now that we removed this operand, see if there are no uses of it left. 847 if (Operand->use_empty()) 848 DeadNodes.push_back(Operand); 849 } 850 851 DeallocateNode(N); 852 } 853 } 854 855 void SelectionDAG::RemoveDeadNode(SDNode *N){ 856 SmallVector<SDNode*, 16> DeadNodes(1, N); 857 858 // Create a dummy node that adds a reference to the root node, preventing 859 // it from being deleted. (This matters if the root is an operand of the 860 // dead node.) 861 HandleSDNode Dummy(getRoot()); 862 863 RemoveDeadNodes(DeadNodes); 864 } 865 866 void SelectionDAG::DeleteNode(SDNode *N) { 867 // First take this out of the appropriate CSE map. 868 RemoveNodeFromCSEMaps(N); 869 870 // Finally, remove uses due to operands of this node, remove from the 871 // AllNodes list, and delete the node. 872 DeleteNodeNotInCSEMaps(N); 873 } 874 875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 876 assert(N->getIterator() != AllNodes.begin() && 877 "Cannot delete the entry node!"); 878 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 879 880 // Drop all of the operands and decrement used node's use counts. 881 N->DropOperands(); 882 883 DeallocateNode(N); 884 } 885 886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 887 assert(!(V->isVariadic() && isParameter)); 888 if (isParameter) 889 ByvalParmDbgValues.push_back(V); 890 else 891 DbgValues.push_back(V); 892 for (const SDNode *Node : V->getSDNodes()) 893 if (Node) 894 DbgValMap[Node].push_back(V); 895 } 896 897 void SDDbgInfo::erase(const SDNode *Node) { 898 DbgValMapType::iterator I = DbgValMap.find(Node); 899 if (I == DbgValMap.end()) 900 return; 901 for (auto &Val: I->second) 902 Val->setIsInvalidated(); 903 DbgValMap.erase(I); 904 } 905 906 void SelectionDAG::DeallocateNode(SDNode *N) { 907 // If we have operands, deallocate them. 908 removeOperands(N); 909 910 NodeAllocator.Deallocate(AllNodes.remove(N)); 911 912 // Set the opcode to DELETED_NODE to help catch bugs when node 913 // memory is reallocated. 914 // FIXME: There are places in SDag that have grown a dependency on the opcode 915 // value in the released node. 916 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 917 N->NodeType = ISD::DELETED_NODE; 918 919 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 920 // them and forget about that node. 921 DbgInfo->erase(N); 922 } 923 924 #ifndef NDEBUG 925 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 926 static void VerifySDNode(SDNode *N) { 927 switch (N->getOpcode()) { 928 default: 929 break; 930 case ISD::BUILD_PAIR: { 931 EVT VT = N->getValueType(0); 932 assert(N->getNumValues() == 1 && "Too many results!"); 933 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 934 "Wrong return type!"); 935 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 936 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 937 "Mismatched operand types!"); 938 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 939 "Wrong operand type!"); 940 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 941 "Wrong return type size"); 942 break; 943 } 944 case ISD::BUILD_VECTOR: { 945 assert(N->getNumValues() == 1 && "Too many results!"); 946 assert(N->getValueType(0).isVector() && "Wrong return type!"); 947 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 948 "Wrong number of operands!"); 949 EVT EltVT = N->getValueType(0).getVectorElementType(); 950 for (const SDUse &Op : N->ops()) { 951 assert((Op.getValueType() == EltVT || 952 (EltVT.isInteger() && Op.getValueType().isInteger() && 953 EltVT.bitsLE(Op.getValueType()))) && 954 "Wrong operand type!"); 955 assert(Op.getValueType() == N->getOperand(0).getValueType() && 956 "Operands must all have the same type"); 957 } 958 break; 959 } 960 } 961 } 962 #endif // NDEBUG 963 964 /// Insert a newly allocated node into the DAG. 965 /// 966 /// Handles insertion into the all nodes list and CSE map, as well as 967 /// verification and other common operations when a new node is allocated. 968 void SelectionDAG::InsertNode(SDNode *N) { 969 AllNodes.push_back(N); 970 #ifndef NDEBUG 971 N->PersistentId = NextPersistentId++; 972 VerifySDNode(N); 973 #endif 974 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 975 DUL->NodeInserted(N); 976 } 977 978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 979 /// correspond to it. This is useful when we're about to delete or repurpose 980 /// the node. We don't want future request for structurally identical nodes 981 /// to return N anymore. 982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 983 bool Erased = false; 984 switch (N->getOpcode()) { 985 case ISD::HANDLENODE: return false; // noop. 986 case ISD::CONDCODE: 987 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 988 "Cond code doesn't exist!"); 989 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 990 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 991 break; 992 case ISD::ExternalSymbol: 993 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 994 break; 995 case ISD::TargetExternalSymbol: { 996 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 997 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 998 ESN->getSymbol(), ESN->getTargetFlags())); 999 break; 1000 } 1001 case ISD::MCSymbol: { 1002 auto *MCSN = cast<MCSymbolSDNode>(N); 1003 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1004 break; 1005 } 1006 case ISD::VALUETYPE: { 1007 EVT VT = cast<VTSDNode>(N)->getVT(); 1008 if (VT.isExtended()) { 1009 Erased = ExtendedValueTypeNodes.erase(VT); 1010 } else { 1011 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1012 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1013 } 1014 break; 1015 } 1016 default: 1017 // Remove it from the CSE Map. 1018 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1019 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1020 Erased = CSEMap.RemoveNode(N); 1021 break; 1022 } 1023 #ifndef NDEBUG 1024 // Verify that the node was actually in one of the CSE maps, unless it has a 1025 // flag result (which cannot be CSE'd) or is one of the special cases that are 1026 // not subject to CSE. 1027 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1028 !N->isMachineOpcode() && !doNotCSE(N)) { 1029 N->dump(this); 1030 dbgs() << "\n"; 1031 llvm_unreachable("Node is not in map!"); 1032 } 1033 #endif 1034 return Erased; 1035 } 1036 1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1039 /// node already exists, in which case transfer all its users to the existing 1040 /// node. This transfer can potentially trigger recursive merging. 1041 void 1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1043 // For node types that aren't CSE'd, just act as if no identical node 1044 // already exists. 1045 if (!doNotCSE(N)) { 1046 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1047 if (Existing != N) { 1048 // If there was already an existing matching node, use ReplaceAllUsesWith 1049 // to replace the dead one with the existing one. This can cause 1050 // recursive merging of other unrelated nodes down the line. 1051 ReplaceAllUsesWith(N, Existing); 1052 1053 // N is now dead. Inform the listeners and delete it. 1054 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1055 DUL->NodeDeleted(N, Existing); 1056 DeleteNodeNotInCSEMaps(N); 1057 return; 1058 } 1059 } 1060 1061 // If the node doesn't already exist, we updated it. Inform listeners. 1062 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1063 DUL->NodeUpdated(N); 1064 } 1065 1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1067 /// were replaced with those specified. If this node is never memoized, 1068 /// return null, otherwise return a pointer to the slot it would take. If a 1069 /// node already exists with these operands, the slot will be non-null. 1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1071 void *&InsertPos) { 1072 if (doNotCSE(N)) 1073 return nullptr; 1074 1075 SDValue Ops[] = { Op }; 1076 FoldingSetNodeID ID; 1077 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1078 AddNodeIDCustom(ID, N); 1079 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1080 if (Node) 1081 Node->intersectFlagsWith(N->getFlags()); 1082 return Node; 1083 } 1084 1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1086 /// were replaced with those specified. If this node is never memoized, 1087 /// return null, otherwise return a pointer to the slot it would take. If a 1088 /// node already exists with these operands, the slot will be non-null. 1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1090 SDValue Op1, SDValue Op2, 1091 void *&InsertPos) { 1092 if (doNotCSE(N)) 1093 return nullptr; 1094 1095 SDValue Ops[] = { Op1, Op2 }; 1096 FoldingSetNodeID ID; 1097 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1098 AddNodeIDCustom(ID, N); 1099 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1100 if (Node) 1101 Node->intersectFlagsWith(N->getFlags()); 1102 return Node; 1103 } 1104 1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1106 /// were replaced with those specified. If this node is never memoized, 1107 /// return null, otherwise return a pointer to the slot it would take. If a 1108 /// node already exists with these operands, the slot will be non-null. 1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1110 void *&InsertPos) { 1111 if (doNotCSE(N)) 1112 return nullptr; 1113 1114 FoldingSetNodeID ID; 1115 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1116 AddNodeIDCustom(ID, N); 1117 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1118 if (Node) 1119 Node->intersectFlagsWith(N->getFlags()); 1120 return Node; 1121 } 1122 1123 Align SelectionDAG::getEVTAlign(EVT VT) const { 1124 Type *Ty = VT == MVT::iPTR ? 1125 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1126 VT.getTypeForEVT(*getContext()); 1127 1128 return getDataLayout().getABITypeAlign(Ty); 1129 } 1130 1131 // EntryNode could meaningfully have debug info if we can find it... 1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1133 : TM(tm), OptLevel(OL), 1134 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1135 Root(getEntryNode()) { 1136 InsertNode(&EntryNode); 1137 DbgInfo = new SDDbgInfo(); 1138 } 1139 1140 void SelectionDAG::init(MachineFunction &NewMF, 1141 OptimizationRemarkEmitter &NewORE, 1142 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1143 LegacyDivergenceAnalysis * Divergence, 1144 ProfileSummaryInfo *PSIin, 1145 BlockFrequencyInfo *BFIin) { 1146 MF = &NewMF; 1147 SDAGISelPass = PassPtr; 1148 ORE = &NewORE; 1149 TLI = getSubtarget().getTargetLowering(); 1150 TSI = getSubtarget().getSelectionDAGInfo(); 1151 LibInfo = LibraryInfo; 1152 Context = &MF->getFunction().getContext(); 1153 DA = Divergence; 1154 PSI = PSIin; 1155 BFI = BFIin; 1156 } 1157 1158 SelectionDAG::~SelectionDAG() { 1159 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1160 allnodes_clear(); 1161 OperandRecycler.clear(OperandAllocator); 1162 delete DbgInfo; 1163 } 1164 1165 bool SelectionDAG::shouldOptForSize() const { 1166 return MF->getFunction().hasOptSize() || 1167 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1168 } 1169 1170 void SelectionDAG::allnodes_clear() { 1171 assert(&*AllNodes.begin() == &EntryNode); 1172 AllNodes.remove(AllNodes.begin()); 1173 while (!AllNodes.empty()) 1174 DeallocateNode(&AllNodes.front()); 1175 #ifndef NDEBUG 1176 NextPersistentId = 0; 1177 #endif 1178 } 1179 1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1181 void *&InsertPos) { 1182 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1183 if (N) { 1184 switch (N->getOpcode()) { 1185 default: break; 1186 case ISD::Constant: 1187 case ISD::ConstantFP: 1188 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1189 "debug location. Use another overload."); 1190 } 1191 } 1192 return N; 1193 } 1194 1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1196 const SDLoc &DL, void *&InsertPos) { 1197 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1198 if (N) { 1199 switch (N->getOpcode()) { 1200 case ISD::Constant: 1201 case ISD::ConstantFP: 1202 // Erase debug location from the node if the node is used at several 1203 // different places. Do not propagate one location to all uses as it 1204 // will cause a worse single stepping debugging experience. 1205 if (N->getDebugLoc() != DL.getDebugLoc()) 1206 N->setDebugLoc(DebugLoc()); 1207 break; 1208 default: 1209 // When the node's point of use is located earlier in the instruction 1210 // sequence than its prior point of use, update its debug info to the 1211 // earlier location. 1212 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1213 N->setDebugLoc(DL.getDebugLoc()); 1214 break; 1215 } 1216 } 1217 return N; 1218 } 1219 1220 void SelectionDAG::clear() { 1221 allnodes_clear(); 1222 OperandRecycler.clear(OperandAllocator); 1223 OperandAllocator.Reset(); 1224 CSEMap.clear(); 1225 1226 ExtendedValueTypeNodes.clear(); 1227 ExternalSymbols.clear(); 1228 TargetExternalSymbols.clear(); 1229 MCSymbols.clear(); 1230 SDCallSiteDbgInfo.clear(); 1231 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1232 static_cast<CondCodeSDNode*>(nullptr)); 1233 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1234 static_cast<SDNode*>(nullptr)); 1235 1236 EntryNode.UseList = nullptr; 1237 InsertNode(&EntryNode); 1238 Root = getEntryNode(); 1239 DbgInfo->clear(); 1240 } 1241 1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1243 return VT.bitsGT(Op.getValueType()) 1244 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1245 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1246 } 1247 1248 std::pair<SDValue, SDValue> 1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1250 const SDLoc &DL, EVT VT) { 1251 assert(!VT.bitsEq(Op.getValueType()) && 1252 "Strict no-op FP extend/round not allowed."); 1253 SDValue Res = 1254 VT.bitsGT(Op.getValueType()) 1255 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1256 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1257 {Chain, Op, getIntPtrConstant(0, DL)}); 1258 1259 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1260 } 1261 1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1263 return VT.bitsGT(Op.getValueType()) ? 1264 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1265 getNode(ISD::TRUNCATE, DL, VT, Op); 1266 } 1267 1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1269 return VT.bitsGT(Op.getValueType()) ? 1270 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1271 getNode(ISD::TRUNCATE, DL, VT, Op); 1272 } 1273 1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1275 return VT.bitsGT(Op.getValueType()) ? 1276 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1277 getNode(ISD::TRUNCATE, DL, VT, Op); 1278 } 1279 1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1281 EVT OpVT) { 1282 if (VT.bitsLE(Op.getValueType())) 1283 return getNode(ISD::TRUNCATE, SL, VT, Op); 1284 1285 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1286 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1287 } 1288 1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1290 EVT OpVT = Op.getValueType(); 1291 assert(VT.isInteger() && OpVT.isInteger() && 1292 "Cannot getZeroExtendInReg FP types"); 1293 assert(VT.isVector() == OpVT.isVector() && 1294 "getZeroExtendInReg type should be vector iff the operand " 1295 "type is vector!"); 1296 assert((!VT.isVector() || 1297 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1298 "Vector element counts must match in getZeroExtendInReg"); 1299 assert(VT.bitsLE(OpVT) && "Not extending!"); 1300 if (OpVT == VT) 1301 return Op; 1302 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1303 VT.getScalarSizeInBits()); 1304 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1305 } 1306 1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1308 // Only unsigned pointer semantics are supported right now. In the future this 1309 // might delegate to TLI to check pointer signedness. 1310 return getZExtOrTrunc(Op, DL, VT); 1311 } 1312 1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1314 // Only unsigned pointer semantics are supported right now. In the future this 1315 // might delegate to TLI to check pointer signedness. 1316 return getZeroExtendInReg(Op, DL, VT); 1317 } 1318 1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1321 EVT EltVT = VT.getScalarType(); 1322 SDValue NegOne = 1323 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1324 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1325 } 1326 1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1328 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1329 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1330 } 1331 1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1333 EVT OpVT) { 1334 if (!V) 1335 return getConstant(0, DL, VT); 1336 1337 switch (TLI->getBooleanContents(OpVT)) { 1338 case TargetLowering::ZeroOrOneBooleanContent: 1339 case TargetLowering::UndefinedBooleanContent: 1340 return getConstant(1, DL, VT); 1341 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1342 return getAllOnesConstant(DL, VT); 1343 } 1344 llvm_unreachable("Unexpected boolean content enum!"); 1345 } 1346 1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1348 bool isT, bool isO) { 1349 EVT EltVT = VT.getScalarType(); 1350 assert((EltVT.getSizeInBits() >= 64 || 1351 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1352 "getConstant with a uint64_t value that doesn't fit in the type!"); 1353 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1354 } 1355 1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1357 bool isT, bool isO) { 1358 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1359 } 1360 1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1362 EVT VT, bool isT, bool isO) { 1363 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1364 1365 EVT EltVT = VT.getScalarType(); 1366 const ConstantInt *Elt = &Val; 1367 1368 // In some cases the vector type is legal but the element type is illegal and 1369 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1370 // inserted value (the type does not need to match the vector element type). 1371 // Any extra bits introduced will be truncated away. 1372 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1373 TargetLowering::TypePromoteInteger) { 1374 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1375 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1376 Elt = ConstantInt::get(*getContext(), NewVal); 1377 } 1378 // In other cases the element type is illegal and needs to be expanded, for 1379 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1380 // the value into n parts and use a vector type with n-times the elements. 1381 // Then bitcast to the type requested. 1382 // Legalizing constants too early makes the DAGCombiner's job harder so we 1383 // only legalize if the DAG tells us we must produce legal types. 1384 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1385 TLI->getTypeAction(*getContext(), EltVT) == 1386 TargetLowering::TypeExpandInteger) { 1387 const APInt &NewVal = Elt->getValue(); 1388 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1389 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1390 1391 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1392 if (VT.isScalableVector()) { 1393 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1394 "Can only handle an even split!"); 1395 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1396 1397 SmallVector<SDValue, 2> ScalarParts; 1398 for (unsigned i = 0; i != Parts; ++i) 1399 ScalarParts.push_back(getConstant( 1400 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1401 ViaEltVT, isT, isO)); 1402 1403 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1404 } 1405 1406 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1407 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1408 1409 // Check the temporary vector is the correct size. If this fails then 1410 // getTypeToTransformTo() probably returned a type whose size (in bits) 1411 // isn't a power-of-2 factor of the requested type size. 1412 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1413 1414 SmallVector<SDValue, 2> EltParts; 1415 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1416 EltParts.push_back(getConstant( 1417 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1418 ViaEltVT, isT, isO)); 1419 1420 // EltParts is currently in little endian order. If we actually want 1421 // big-endian order then reverse it now. 1422 if (getDataLayout().isBigEndian()) 1423 std::reverse(EltParts.begin(), EltParts.end()); 1424 1425 // The elements must be reversed when the element order is different 1426 // to the endianness of the elements (because the BITCAST is itself a 1427 // vector shuffle in this situation). However, we do not need any code to 1428 // perform this reversal because getConstant() is producing a vector 1429 // splat. 1430 // This situation occurs in MIPS MSA. 1431 1432 SmallVector<SDValue, 8> Ops; 1433 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1434 llvm::append_range(Ops, EltParts); 1435 1436 SDValue V = 1437 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1438 return V; 1439 } 1440 1441 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1442 "APInt size does not match type size!"); 1443 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1444 FoldingSetNodeID ID; 1445 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1446 ID.AddPointer(Elt); 1447 ID.AddBoolean(isO); 1448 void *IP = nullptr; 1449 SDNode *N = nullptr; 1450 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1451 if (!VT.isVector()) 1452 return SDValue(N, 0); 1453 1454 if (!N) { 1455 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1456 CSEMap.InsertNode(N, IP); 1457 InsertNode(N); 1458 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1459 } 1460 1461 SDValue Result(N, 0); 1462 if (VT.isScalableVector()) 1463 Result = getSplatVector(VT, DL, Result); 1464 else if (VT.isVector()) 1465 Result = getSplatBuildVector(VT, DL, Result); 1466 1467 return Result; 1468 } 1469 1470 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1471 bool isTarget) { 1472 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1473 } 1474 1475 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1476 const SDLoc &DL, bool LegalTypes) { 1477 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1478 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1479 return getConstant(Val, DL, ShiftVT); 1480 } 1481 1482 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1483 bool isTarget) { 1484 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1485 } 1486 1487 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1488 bool isTarget) { 1489 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1490 } 1491 1492 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1493 EVT VT, bool isTarget) { 1494 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1495 1496 EVT EltVT = VT.getScalarType(); 1497 1498 // Do the map lookup using the actual bit pattern for the floating point 1499 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1500 // we don't have issues with SNANs. 1501 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1502 FoldingSetNodeID ID; 1503 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1504 ID.AddPointer(&V); 1505 void *IP = nullptr; 1506 SDNode *N = nullptr; 1507 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1508 if (!VT.isVector()) 1509 return SDValue(N, 0); 1510 1511 if (!N) { 1512 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1513 CSEMap.InsertNode(N, IP); 1514 InsertNode(N); 1515 } 1516 1517 SDValue Result(N, 0); 1518 if (VT.isScalableVector()) 1519 Result = getSplatVector(VT, DL, Result); 1520 else if (VT.isVector()) 1521 Result = getSplatBuildVector(VT, DL, Result); 1522 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1523 return Result; 1524 } 1525 1526 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1527 bool isTarget) { 1528 EVT EltVT = VT.getScalarType(); 1529 if (EltVT == MVT::f32) 1530 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1531 if (EltVT == MVT::f64) 1532 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1533 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1534 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1535 bool Ignored; 1536 APFloat APF = APFloat(Val); 1537 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1538 &Ignored); 1539 return getConstantFP(APF, DL, VT, isTarget); 1540 } 1541 llvm_unreachable("Unsupported type in getConstantFP"); 1542 } 1543 1544 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1545 EVT VT, int64_t Offset, bool isTargetGA, 1546 unsigned TargetFlags) { 1547 assert((TargetFlags == 0 || isTargetGA) && 1548 "Cannot set target flags on target-independent globals"); 1549 1550 // Truncate (with sign-extension) the offset value to the pointer size. 1551 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1552 if (BitWidth < 64) 1553 Offset = SignExtend64(Offset, BitWidth); 1554 1555 unsigned Opc; 1556 if (GV->isThreadLocal()) 1557 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1558 else 1559 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1560 1561 FoldingSetNodeID ID; 1562 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1563 ID.AddPointer(GV); 1564 ID.AddInteger(Offset); 1565 ID.AddInteger(TargetFlags); 1566 void *IP = nullptr; 1567 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1568 return SDValue(E, 0); 1569 1570 auto *N = newSDNode<GlobalAddressSDNode>( 1571 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1572 CSEMap.InsertNode(N, IP); 1573 InsertNode(N); 1574 return SDValue(N, 0); 1575 } 1576 1577 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1578 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1579 FoldingSetNodeID ID; 1580 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1581 ID.AddInteger(FI); 1582 void *IP = nullptr; 1583 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1584 return SDValue(E, 0); 1585 1586 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1587 CSEMap.InsertNode(N, IP); 1588 InsertNode(N); 1589 return SDValue(N, 0); 1590 } 1591 1592 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1593 unsigned TargetFlags) { 1594 assert((TargetFlags == 0 || isTarget) && 1595 "Cannot set target flags on target-independent jump tables"); 1596 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1597 FoldingSetNodeID ID; 1598 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1599 ID.AddInteger(JTI); 1600 ID.AddInteger(TargetFlags); 1601 void *IP = nullptr; 1602 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1603 return SDValue(E, 0); 1604 1605 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1606 CSEMap.InsertNode(N, IP); 1607 InsertNode(N); 1608 return SDValue(N, 0); 1609 } 1610 1611 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1612 MaybeAlign Alignment, int Offset, 1613 bool isTarget, unsigned TargetFlags) { 1614 assert((TargetFlags == 0 || isTarget) && 1615 "Cannot set target flags on target-independent globals"); 1616 if (!Alignment) 1617 Alignment = shouldOptForSize() 1618 ? getDataLayout().getABITypeAlign(C->getType()) 1619 : getDataLayout().getPrefTypeAlign(C->getType()); 1620 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1621 FoldingSetNodeID ID; 1622 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1623 ID.AddInteger(Alignment->value()); 1624 ID.AddInteger(Offset); 1625 ID.AddPointer(C); 1626 ID.AddInteger(TargetFlags); 1627 void *IP = nullptr; 1628 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1629 return SDValue(E, 0); 1630 1631 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1632 TargetFlags); 1633 CSEMap.InsertNode(N, IP); 1634 InsertNode(N); 1635 SDValue V = SDValue(N, 0); 1636 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1637 return V; 1638 } 1639 1640 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1641 MaybeAlign Alignment, int Offset, 1642 bool isTarget, unsigned TargetFlags) { 1643 assert((TargetFlags == 0 || isTarget) && 1644 "Cannot set target flags on target-independent globals"); 1645 if (!Alignment) 1646 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1647 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(Alignment->value()); 1651 ID.AddInteger(Offset); 1652 C->addSelectionDAGCSEId(ID); 1653 ID.AddInteger(TargetFlags); 1654 void *IP = nullptr; 1655 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1656 return SDValue(E, 0); 1657 1658 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1659 TargetFlags); 1660 CSEMap.InsertNode(N, IP); 1661 InsertNode(N); 1662 return SDValue(N, 0); 1663 } 1664 1665 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1666 unsigned TargetFlags) { 1667 FoldingSetNodeID ID; 1668 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1669 ID.AddInteger(Index); 1670 ID.AddInteger(Offset); 1671 ID.AddInteger(TargetFlags); 1672 void *IP = nullptr; 1673 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1674 return SDValue(E, 0); 1675 1676 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1677 CSEMap.InsertNode(N, IP); 1678 InsertNode(N); 1679 return SDValue(N, 0); 1680 } 1681 1682 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1683 FoldingSetNodeID ID; 1684 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1685 ID.AddPointer(MBB); 1686 void *IP = nullptr; 1687 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1688 return SDValue(E, 0); 1689 1690 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1691 CSEMap.InsertNode(N, IP); 1692 InsertNode(N); 1693 return SDValue(N, 0); 1694 } 1695 1696 SDValue SelectionDAG::getValueType(EVT VT) { 1697 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1698 ValueTypeNodes.size()) 1699 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1700 1701 SDNode *&N = VT.isExtended() ? 1702 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1703 1704 if (N) return SDValue(N, 0); 1705 N = newSDNode<VTSDNode>(VT); 1706 InsertNode(N); 1707 return SDValue(N, 0); 1708 } 1709 1710 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1711 SDNode *&N = ExternalSymbols[Sym]; 1712 if (N) return SDValue(N, 0); 1713 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1714 InsertNode(N); 1715 return SDValue(N, 0); 1716 } 1717 1718 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1719 SDNode *&N = MCSymbols[Sym]; 1720 if (N) 1721 return SDValue(N, 0); 1722 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1723 InsertNode(N); 1724 return SDValue(N, 0); 1725 } 1726 1727 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1728 unsigned TargetFlags) { 1729 SDNode *&N = 1730 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1731 if (N) return SDValue(N, 0); 1732 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1733 InsertNode(N); 1734 return SDValue(N, 0); 1735 } 1736 1737 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1738 if ((unsigned)Cond >= CondCodeNodes.size()) 1739 CondCodeNodes.resize(Cond+1); 1740 1741 if (!CondCodeNodes[Cond]) { 1742 auto *N = newSDNode<CondCodeSDNode>(Cond); 1743 CondCodeNodes[Cond] = N; 1744 InsertNode(N); 1745 } 1746 1747 return SDValue(CondCodeNodes[Cond], 0); 1748 } 1749 1750 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) { 1751 if (ResVT.isScalableVector()) 1752 return getNode(ISD::STEP_VECTOR, DL, ResVT, Step); 1753 1754 EVT OpVT = Step.getValueType(); 1755 APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue(); 1756 SmallVector<SDValue, 16> OpsStepConstants; 1757 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1758 OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT)); 1759 return getBuildVector(ResVT, DL, OpsStepConstants); 1760 } 1761 1762 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1763 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1764 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1765 std::swap(N1, N2); 1766 ShuffleVectorSDNode::commuteMask(M); 1767 } 1768 1769 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1770 SDValue N2, ArrayRef<int> Mask) { 1771 assert(VT.getVectorNumElements() == Mask.size() && 1772 "Must have the same number of vector elements as mask elements!"); 1773 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1774 "Invalid VECTOR_SHUFFLE"); 1775 1776 // Canonicalize shuffle undef, undef -> undef 1777 if (N1.isUndef() && N2.isUndef()) 1778 return getUNDEF(VT); 1779 1780 // Validate that all indices in Mask are within the range of the elements 1781 // input to the shuffle. 1782 int NElts = Mask.size(); 1783 assert(llvm::all_of(Mask, 1784 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1785 "Index out of range"); 1786 1787 // Copy the mask so we can do any needed cleanup. 1788 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1789 1790 // Canonicalize shuffle v, v -> v, undef 1791 if (N1 == N2) { 1792 N2 = getUNDEF(VT); 1793 for (int i = 0; i != NElts; ++i) 1794 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1795 } 1796 1797 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1798 if (N1.isUndef()) 1799 commuteShuffle(N1, N2, MaskVec); 1800 1801 if (TLI->hasVectorBlend()) { 1802 // If shuffling a splat, try to blend the splat instead. We do this here so 1803 // that even when this arises during lowering we don't have to re-handle it. 1804 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1805 BitVector UndefElements; 1806 SDValue Splat = BV->getSplatValue(&UndefElements); 1807 if (!Splat) 1808 return; 1809 1810 for (int i = 0; i < NElts; ++i) { 1811 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1812 continue; 1813 1814 // If this input comes from undef, mark it as such. 1815 if (UndefElements[MaskVec[i] - Offset]) { 1816 MaskVec[i] = -1; 1817 continue; 1818 } 1819 1820 // If we can blend a non-undef lane, use that instead. 1821 if (!UndefElements[i]) 1822 MaskVec[i] = i + Offset; 1823 } 1824 }; 1825 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1826 BlendSplat(N1BV, 0); 1827 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1828 BlendSplat(N2BV, NElts); 1829 } 1830 1831 // Canonicalize all index into lhs, -> shuffle lhs, undef 1832 // Canonicalize all index into rhs, -> shuffle rhs, undef 1833 bool AllLHS = true, AllRHS = true; 1834 bool N2Undef = N2.isUndef(); 1835 for (int i = 0; i != NElts; ++i) { 1836 if (MaskVec[i] >= NElts) { 1837 if (N2Undef) 1838 MaskVec[i] = -1; 1839 else 1840 AllLHS = false; 1841 } else if (MaskVec[i] >= 0) { 1842 AllRHS = false; 1843 } 1844 } 1845 if (AllLHS && AllRHS) 1846 return getUNDEF(VT); 1847 if (AllLHS && !N2Undef) 1848 N2 = getUNDEF(VT); 1849 if (AllRHS) { 1850 N1 = getUNDEF(VT); 1851 commuteShuffle(N1, N2, MaskVec); 1852 } 1853 // Reset our undef status after accounting for the mask. 1854 N2Undef = N2.isUndef(); 1855 // Re-check whether both sides ended up undef. 1856 if (N1.isUndef() && N2Undef) 1857 return getUNDEF(VT); 1858 1859 // If Identity shuffle return that node. 1860 bool Identity = true, AllSame = true; 1861 for (int i = 0; i != NElts; ++i) { 1862 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1863 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1864 } 1865 if (Identity && NElts) 1866 return N1; 1867 1868 // Shuffling a constant splat doesn't change the result. 1869 if (N2Undef) { 1870 SDValue V = N1; 1871 1872 // Look through any bitcasts. We check that these don't change the number 1873 // (and size) of elements and just changes their types. 1874 while (V.getOpcode() == ISD::BITCAST) 1875 V = V->getOperand(0); 1876 1877 // A splat should always show up as a build vector node. 1878 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1879 BitVector UndefElements; 1880 SDValue Splat = BV->getSplatValue(&UndefElements); 1881 // If this is a splat of an undef, shuffling it is also undef. 1882 if (Splat && Splat.isUndef()) 1883 return getUNDEF(VT); 1884 1885 bool SameNumElts = 1886 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1887 1888 // We only have a splat which can skip shuffles if there is a splatted 1889 // value and no undef lanes rearranged by the shuffle. 1890 if (Splat && UndefElements.none()) { 1891 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1892 // number of elements match or the value splatted is a zero constant. 1893 if (SameNumElts) 1894 return N1; 1895 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1896 if (C->isNullValue()) 1897 return N1; 1898 } 1899 1900 // If the shuffle itself creates a splat, build the vector directly. 1901 if (AllSame && SameNumElts) { 1902 EVT BuildVT = BV->getValueType(0); 1903 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1904 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1905 1906 // We may have jumped through bitcasts, so the type of the 1907 // BUILD_VECTOR may not match the type of the shuffle. 1908 if (BuildVT != VT) 1909 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1910 return NewBV; 1911 } 1912 } 1913 } 1914 1915 FoldingSetNodeID ID; 1916 SDValue Ops[2] = { N1, N2 }; 1917 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1918 for (int i = 0; i != NElts; ++i) 1919 ID.AddInteger(MaskVec[i]); 1920 1921 void* IP = nullptr; 1922 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1923 return SDValue(E, 0); 1924 1925 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1926 // SDNode doesn't have access to it. This memory will be "leaked" when 1927 // the node is deallocated, but recovered when the NodeAllocator is released. 1928 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1929 llvm::copy(MaskVec, MaskAlloc); 1930 1931 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1932 dl.getDebugLoc(), MaskAlloc); 1933 createOperands(N, Ops); 1934 1935 CSEMap.InsertNode(N, IP); 1936 InsertNode(N); 1937 SDValue V = SDValue(N, 0); 1938 NewSDValueDbgMsg(V, "Creating new node: ", this); 1939 return V; 1940 } 1941 1942 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1943 EVT VT = SV.getValueType(0); 1944 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1945 ShuffleVectorSDNode::commuteMask(MaskVec); 1946 1947 SDValue Op0 = SV.getOperand(0); 1948 SDValue Op1 = SV.getOperand(1); 1949 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1950 } 1951 1952 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1953 FoldingSetNodeID ID; 1954 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1955 ID.AddInteger(RegNo); 1956 void *IP = nullptr; 1957 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1958 return SDValue(E, 0); 1959 1960 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1961 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1962 CSEMap.InsertNode(N, IP); 1963 InsertNode(N); 1964 return SDValue(N, 0); 1965 } 1966 1967 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1968 FoldingSetNodeID ID; 1969 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1970 ID.AddPointer(RegMask); 1971 void *IP = nullptr; 1972 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1973 return SDValue(E, 0); 1974 1975 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1976 CSEMap.InsertNode(N, IP); 1977 InsertNode(N); 1978 return SDValue(N, 0); 1979 } 1980 1981 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1982 MCSymbol *Label) { 1983 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1984 } 1985 1986 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1987 SDValue Root, MCSymbol *Label) { 1988 FoldingSetNodeID ID; 1989 SDValue Ops[] = { Root }; 1990 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1991 ID.AddPointer(Label); 1992 void *IP = nullptr; 1993 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1994 return SDValue(E, 0); 1995 1996 auto *N = 1997 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1998 createOperands(N, Ops); 1999 2000 CSEMap.InsertNode(N, IP); 2001 InsertNode(N); 2002 return SDValue(N, 0); 2003 } 2004 2005 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2006 int64_t Offset, bool isTarget, 2007 unsigned TargetFlags) { 2008 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2009 2010 FoldingSetNodeID ID; 2011 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2012 ID.AddPointer(BA); 2013 ID.AddInteger(Offset); 2014 ID.AddInteger(TargetFlags); 2015 void *IP = nullptr; 2016 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2017 return SDValue(E, 0); 2018 2019 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getSrcValue(const Value *V) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2028 ID.AddPointer(V); 2029 2030 void *IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2032 return SDValue(E, 0); 2033 2034 auto *N = newSDNode<SrcValueSDNode>(V); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2043 ID.AddPointer(MD); 2044 2045 void *IP = nullptr; 2046 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2047 return SDValue(E, 0); 2048 2049 auto *N = newSDNode<MDNodeSDNode>(MD); 2050 CSEMap.InsertNode(N, IP); 2051 InsertNode(N); 2052 return SDValue(N, 0); 2053 } 2054 2055 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2056 if (VT == V.getValueType()) 2057 return V; 2058 2059 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2060 } 2061 2062 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2063 unsigned SrcAS, unsigned DestAS) { 2064 SDValue Ops[] = {Ptr}; 2065 FoldingSetNodeID ID; 2066 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2067 ID.AddInteger(SrcAS); 2068 ID.AddInteger(DestAS); 2069 2070 void *IP = nullptr; 2071 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2072 return SDValue(E, 0); 2073 2074 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2075 VT, SrcAS, DestAS); 2076 createOperands(N, Ops); 2077 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getFreeze(SDValue V) { 2084 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2085 } 2086 2087 /// getShiftAmountOperand - Return the specified value casted to 2088 /// the target's desired shift amount type. 2089 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2090 EVT OpTy = Op.getValueType(); 2091 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2092 if (OpTy == ShTy || OpTy.isVector()) return Op; 2093 2094 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2095 } 2096 2097 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2098 SDLoc dl(Node); 2099 const TargetLowering &TLI = getTargetLoweringInfo(); 2100 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2101 EVT VT = Node->getValueType(0); 2102 SDValue Tmp1 = Node->getOperand(0); 2103 SDValue Tmp2 = Node->getOperand(1); 2104 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2105 2106 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2107 Tmp2, MachinePointerInfo(V)); 2108 SDValue VAList = VAListLoad; 2109 2110 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2111 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2112 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2113 2114 VAList = 2115 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2116 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2117 } 2118 2119 // Increment the pointer, VAList, to the next vaarg 2120 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2121 getConstant(getDataLayout().getTypeAllocSize( 2122 VT.getTypeForEVT(*getContext())), 2123 dl, VAList.getValueType())); 2124 // Store the incremented VAList to the legalized pointer 2125 Tmp1 = 2126 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2127 // Load the actual argument out of the pointer VAList 2128 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2129 } 2130 2131 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2132 SDLoc dl(Node); 2133 const TargetLowering &TLI = getTargetLoweringInfo(); 2134 // This defaults to loading a pointer from the input and storing it to the 2135 // output, returning the chain. 2136 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2137 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2138 SDValue Tmp1 = 2139 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2140 Node->getOperand(2), MachinePointerInfo(VS)); 2141 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2142 MachinePointerInfo(VD)); 2143 } 2144 2145 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2146 const DataLayout &DL = getDataLayout(); 2147 Type *Ty = VT.getTypeForEVT(*getContext()); 2148 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2149 2150 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2151 return RedAlign; 2152 2153 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2154 const Align StackAlign = TFI->getStackAlign(); 2155 2156 // See if we can choose a smaller ABI alignment in cases where it's an 2157 // illegal vector type that will get broken down. 2158 if (RedAlign > StackAlign) { 2159 EVT IntermediateVT; 2160 MVT RegisterVT; 2161 unsigned NumIntermediates; 2162 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2163 NumIntermediates, RegisterVT); 2164 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2165 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2166 if (RedAlign2 < RedAlign) 2167 RedAlign = RedAlign2; 2168 } 2169 2170 return RedAlign; 2171 } 2172 2173 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2174 MachineFrameInfo &MFI = MF->getFrameInfo(); 2175 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2176 int StackID = 0; 2177 if (Bytes.isScalable()) 2178 StackID = TFI->getStackIDForScalableVectors(); 2179 // The stack id gives an indication of whether the object is scalable or 2180 // not, so it's safe to pass in the minimum size here. 2181 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2182 false, nullptr, StackID); 2183 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2184 } 2185 2186 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2187 Type *Ty = VT.getTypeForEVT(*getContext()); 2188 Align StackAlign = 2189 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2190 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2191 } 2192 2193 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2194 TypeSize VT1Size = VT1.getStoreSize(); 2195 TypeSize VT2Size = VT2.getStoreSize(); 2196 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2197 "Don't know how to choose the maximum size when creating a stack " 2198 "temporary"); 2199 TypeSize Bytes = 2200 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2201 2202 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2203 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2204 const DataLayout &DL = getDataLayout(); 2205 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2206 return CreateStackTemporary(Bytes, Align); 2207 } 2208 2209 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2210 ISD::CondCode Cond, const SDLoc &dl) { 2211 EVT OpVT = N1.getValueType(); 2212 2213 // These setcc operations always fold. 2214 switch (Cond) { 2215 default: break; 2216 case ISD::SETFALSE: 2217 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2218 case ISD::SETTRUE: 2219 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2220 2221 case ISD::SETOEQ: 2222 case ISD::SETOGT: 2223 case ISD::SETOGE: 2224 case ISD::SETOLT: 2225 case ISD::SETOLE: 2226 case ISD::SETONE: 2227 case ISD::SETO: 2228 case ISD::SETUO: 2229 case ISD::SETUEQ: 2230 case ISD::SETUNE: 2231 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2232 break; 2233 } 2234 2235 if (OpVT.isInteger()) { 2236 // For EQ and NE, we can always pick a value for the undef to make the 2237 // predicate pass or fail, so we can return undef. 2238 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2239 // icmp eq/ne X, undef -> undef. 2240 if ((N1.isUndef() || N2.isUndef()) && 2241 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2242 return getUNDEF(VT); 2243 2244 // If both operands are undef, we can return undef for int comparison. 2245 // icmp undef, undef -> undef. 2246 if (N1.isUndef() && N2.isUndef()) 2247 return getUNDEF(VT); 2248 2249 // icmp X, X -> true/false 2250 // icmp X, undef -> true/false because undef could be X. 2251 if (N1 == N2) 2252 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2253 } 2254 2255 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2256 const APInt &C2 = N2C->getAPIntValue(); 2257 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2258 const APInt &C1 = N1C->getAPIntValue(); 2259 2260 switch (Cond) { 2261 default: llvm_unreachable("Unknown integer setcc!"); 2262 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2263 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2264 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2265 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2266 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2267 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2268 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2269 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2270 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2271 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2272 } 2273 } 2274 } 2275 2276 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2277 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2278 2279 if (N1CFP && N2CFP) { 2280 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2281 switch (Cond) { 2282 default: break; 2283 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2284 return getUNDEF(VT); 2285 LLVM_FALLTHROUGH; 2286 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2287 OpVT); 2288 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2289 return getUNDEF(VT); 2290 LLVM_FALLTHROUGH; 2291 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2292 R==APFloat::cmpLessThan, dl, VT, 2293 OpVT); 2294 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2295 return getUNDEF(VT); 2296 LLVM_FALLTHROUGH; 2297 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2298 OpVT); 2299 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2300 return getUNDEF(VT); 2301 LLVM_FALLTHROUGH; 2302 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2303 VT, OpVT); 2304 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2305 return getUNDEF(VT); 2306 LLVM_FALLTHROUGH; 2307 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2308 R==APFloat::cmpEqual, dl, VT, 2309 OpVT); 2310 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2311 return getUNDEF(VT); 2312 LLVM_FALLTHROUGH; 2313 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2314 R==APFloat::cmpEqual, dl, VT, OpVT); 2315 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2316 OpVT); 2317 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2318 OpVT); 2319 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2320 R==APFloat::cmpEqual, dl, VT, 2321 OpVT); 2322 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2323 OpVT); 2324 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2325 R==APFloat::cmpLessThan, dl, VT, 2326 OpVT); 2327 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2328 R==APFloat::cmpUnordered, dl, VT, 2329 OpVT); 2330 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2331 VT, OpVT); 2332 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2333 OpVT); 2334 } 2335 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2336 // Ensure that the constant occurs on the RHS. 2337 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2338 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2339 return SDValue(); 2340 return getSetCC(dl, VT, N2, N1, SwappedCond); 2341 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2342 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2343 // If an operand is known to be a nan (or undef that could be a nan), we can 2344 // fold it. 2345 // Choosing NaN for the undef will always make unordered comparison succeed 2346 // and ordered comparison fails. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 switch (ISD::getUnorderedFlavor(Cond)) { 2349 default: 2350 llvm_unreachable("Unknown flavor!"); 2351 case 0: // Known false. 2352 return getBoolConstant(false, dl, VT, OpVT); 2353 case 1: // Known true. 2354 return getBoolConstant(true, dl, VT, OpVT); 2355 case 2: // Undefined. 2356 return getUNDEF(VT); 2357 } 2358 } 2359 2360 // Could not fold it. 2361 return SDValue(); 2362 } 2363 2364 /// See if the specified operand can be simplified with the knowledge that only 2365 /// the bits specified by DemandedBits are used. 2366 /// TODO: really we should be making this into the DAG equivalent of 2367 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2368 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2369 EVT VT = V.getValueType(); 2370 2371 if (VT.isScalableVector()) 2372 return SDValue(); 2373 2374 APInt DemandedElts = VT.isVector() 2375 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2376 : APInt(1, 1); 2377 return GetDemandedBits(V, DemandedBits, DemandedElts); 2378 } 2379 2380 /// See if the specified operand can be simplified with the knowledge that only 2381 /// the bits specified by DemandedBits are used in the elements specified by 2382 /// DemandedElts. 2383 /// TODO: really we should be making this into the DAG equivalent of 2384 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2385 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2386 const APInt &DemandedElts) { 2387 switch (V.getOpcode()) { 2388 default: 2389 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2390 *this, 0); 2391 case ISD::Constant: { 2392 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2393 APInt NewVal = CVal & DemandedBits; 2394 if (NewVal != CVal) 2395 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2396 break; 2397 } 2398 case ISD::SRL: 2399 // Only look at single-use SRLs. 2400 if (!V.getNode()->hasOneUse()) 2401 break; 2402 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2403 // See if we can recursively simplify the LHS. 2404 unsigned Amt = RHSC->getZExtValue(); 2405 2406 // Watch out for shift count overflow though. 2407 if (Amt >= DemandedBits.getBitWidth()) 2408 break; 2409 APInt SrcDemandedBits = DemandedBits << Amt; 2410 if (SDValue SimplifyLHS = 2411 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2412 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2413 V.getOperand(1)); 2414 } 2415 break; 2416 } 2417 return SDValue(); 2418 } 2419 2420 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2421 /// use this predicate to simplify operations downstream. 2422 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2423 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2424 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2425 } 2426 2427 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2428 /// this predicate to simplify operations downstream. Mask is known to be zero 2429 /// for bits that V cannot have. 2430 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2431 unsigned Depth) const { 2432 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2433 } 2434 2435 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2436 /// DemandedElts. We use this predicate to simplify operations downstream. 2437 /// Mask is known to be zero for bits that V cannot have. 2438 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2439 const APInt &DemandedElts, 2440 unsigned Depth) const { 2441 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2442 } 2443 2444 /// Return true if the DemandedElts of the vector Op are all zero. We 2445 /// use this predicate to simplify operations downstream. 2446 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts, 2447 unsigned Depth) const { 2448 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2449 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 2450 return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth); 2451 } 2452 2453 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2454 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2455 unsigned Depth) const { 2456 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2457 } 2458 2459 /// isSplatValue - Return true if the vector V has the same value 2460 /// across all DemandedElts. For scalable vectors it does not make 2461 /// sense to specify which elements are demanded or undefined, therefore 2462 /// they are simply ignored. 2463 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2464 APInt &UndefElts, unsigned Depth) { 2465 EVT VT = V.getValueType(); 2466 assert(VT.isVector() && "Vector type expected"); 2467 2468 if (!VT.isScalableVector() && !DemandedElts) 2469 return false; // No demanded elts, better to assume we don't know anything. 2470 2471 if (Depth >= MaxRecursionDepth) 2472 return false; // Limit search depth. 2473 2474 // Deal with some common cases here that work for both fixed and scalable 2475 // vector types. 2476 switch (V.getOpcode()) { 2477 case ISD::SPLAT_VECTOR: 2478 UndefElts = V.getOperand(0).isUndef() 2479 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2480 : APInt(DemandedElts.getBitWidth(), 0); 2481 return true; 2482 case ISD::ADD: 2483 case ISD::SUB: 2484 case ISD::AND: 2485 case ISD::XOR: 2486 case ISD::OR: { 2487 APInt UndefLHS, UndefRHS; 2488 SDValue LHS = V.getOperand(0); 2489 SDValue RHS = V.getOperand(1); 2490 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2491 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2492 UndefElts = UndefLHS | UndefRHS; 2493 return true; 2494 } 2495 return false; 2496 } 2497 case ISD::ABS: 2498 case ISD::TRUNCATE: 2499 case ISD::SIGN_EXTEND: 2500 case ISD::ZERO_EXTEND: 2501 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2502 } 2503 2504 // We don't support other cases than those above for scalable vectors at 2505 // the moment. 2506 if (VT.isScalableVector()) 2507 return false; 2508 2509 unsigned NumElts = VT.getVectorNumElements(); 2510 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2511 UndefElts = APInt::getNullValue(NumElts); 2512 2513 switch (V.getOpcode()) { 2514 case ISD::BUILD_VECTOR: { 2515 SDValue Scl; 2516 for (unsigned i = 0; i != NumElts; ++i) { 2517 SDValue Op = V.getOperand(i); 2518 if (Op.isUndef()) { 2519 UndefElts.setBit(i); 2520 continue; 2521 } 2522 if (!DemandedElts[i]) 2523 continue; 2524 if (Scl && Scl != Op) 2525 return false; 2526 Scl = Op; 2527 } 2528 return true; 2529 } 2530 case ISD::VECTOR_SHUFFLE: { 2531 // Check if this is a shuffle node doing a splat. 2532 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2533 int SplatIndex = -1; 2534 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2535 for (int i = 0; i != (int)NumElts; ++i) { 2536 int M = Mask[i]; 2537 if (M < 0) { 2538 UndefElts.setBit(i); 2539 continue; 2540 } 2541 if (!DemandedElts[i]) 2542 continue; 2543 if (0 <= SplatIndex && SplatIndex != M) 2544 return false; 2545 SplatIndex = M; 2546 } 2547 return true; 2548 } 2549 case ISD::EXTRACT_SUBVECTOR: { 2550 // Offset the demanded elts by the subvector index. 2551 SDValue Src = V.getOperand(0); 2552 // We don't support scalable vectors at the moment. 2553 if (Src.getValueType().isScalableVector()) 2554 return false; 2555 uint64_t Idx = V.getConstantOperandVal(1); 2556 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2557 APInt UndefSrcElts; 2558 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2559 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2560 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2561 return true; 2562 } 2563 break; 2564 } 2565 } 2566 2567 return false; 2568 } 2569 2570 /// Helper wrapper to main isSplatValue function. 2571 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2572 EVT VT = V.getValueType(); 2573 assert(VT.isVector() && "Vector type expected"); 2574 2575 APInt UndefElts; 2576 APInt DemandedElts; 2577 2578 // For now we don't support this with scalable vectors. 2579 if (!VT.isScalableVector()) 2580 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2581 return isSplatValue(V, DemandedElts, UndefElts) && 2582 (AllowUndefs || !UndefElts); 2583 } 2584 2585 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2586 V = peekThroughExtractSubvectors(V); 2587 2588 EVT VT = V.getValueType(); 2589 unsigned Opcode = V.getOpcode(); 2590 switch (Opcode) { 2591 default: { 2592 APInt UndefElts; 2593 APInt DemandedElts; 2594 2595 if (!VT.isScalableVector()) 2596 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2597 2598 if (isSplatValue(V, DemandedElts, UndefElts)) { 2599 if (VT.isScalableVector()) { 2600 // DemandedElts and UndefElts are ignored for scalable vectors, since 2601 // the only supported cases are SPLAT_VECTOR nodes. 2602 SplatIdx = 0; 2603 } else { 2604 // Handle case where all demanded elements are UNDEF. 2605 if (DemandedElts.isSubsetOf(UndefElts)) { 2606 SplatIdx = 0; 2607 return getUNDEF(VT); 2608 } 2609 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2610 } 2611 return V; 2612 } 2613 break; 2614 } 2615 case ISD::SPLAT_VECTOR: 2616 SplatIdx = 0; 2617 return V; 2618 case ISD::VECTOR_SHUFFLE: { 2619 if (VT.isScalableVector()) 2620 return SDValue(); 2621 2622 // Check if this is a shuffle node doing a splat. 2623 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2624 // getTargetVShiftNode currently struggles without the splat source. 2625 auto *SVN = cast<ShuffleVectorSDNode>(V); 2626 if (!SVN->isSplat()) 2627 break; 2628 int Idx = SVN->getSplatIndex(); 2629 int NumElts = V.getValueType().getVectorNumElements(); 2630 SplatIdx = Idx % NumElts; 2631 return V.getOperand(Idx / NumElts); 2632 } 2633 } 2634 2635 return SDValue(); 2636 } 2637 2638 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2639 int SplatIdx; 2640 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2641 EVT SVT = SrcVector.getValueType().getScalarType(); 2642 EVT LegalSVT = SVT; 2643 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2644 if (!SVT.isInteger()) 2645 return SDValue(); 2646 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2647 if (LegalSVT.bitsLT(SVT)) 2648 return SDValue(); 2649 } 2650 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2651 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2652 } 2653 return SDValue(); 2654 } 2655 2656 const APInt * 2657 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2658 const APInt &DemandedElts) const { 2659 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2660 V.getOpcode() == ISD::SRA) && 2661 "Unknown shift node"); 2662 unsigned BitWidth = V.getScalarValueSizeInBits(); 2663 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2664 // Shifting more than the bitwidth is not valid. 2665 const APInt &ShAmt = SA->getAPIntValue(); 2666 if (ShAmt.ult(BitWidth)) 2667 return &ShAmt; 2668 } 2669 return nullptr; 2670 } 2671 2672 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2673 SDValue V, const APInt &DemandedElts) const { 2674 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2675 V.getOpcode() == ISD::SRA) && 2676 "Unknown shift node"); 2677 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2678 return ValidAmt; 2679 unsigned BitWidth = V.getScalarValueSizeInBits(); 2680 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2681 if (!BV) 2682 return nullptr; 2683 const APInt *MinShAmt = nullptr; 2684 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2685 if (!DemandedElts[i]) 2686 continue; 2687 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2688 if (!SA) 2689 return nullptr; 2690 // Shifting more than the bitwidth is not valid. 2691 const APInt &ShAmt = SA->getAPIntValue(); 2692 if (ShAmt.uge(BitWidth)) 2693 return nullptr; 2694 if (MinShAmt && MinShAmt->ule(ShAmt)) 2695 continue; 2696 MinShAmt = &ShAmt; 2697 } 2698 return MinShAmt; 2699 } 2700 2701 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2702 SDValue V, const APInt &DemandedElts) const { 2703 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2704 V.getOpcode() == ISD::SRA) && 2705 "Unknown shift node"); 2706 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2707 return ValidAmt; 2708 unsigned BitWidth = V.getScalarValueSizeInBits(); 2709 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2710 if (!BV) 2711 return nullptr; 2712 const APInt *MaxShAmt = nullptr; 2713 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2714 if (!DemandedElts[i]) 2715 continue; 2716 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2717 if (!SA) 2718 return nullptr; 2719 // Shifting more than the bitwidth is not valid. 2720 const APInt &ShAmt = SA->getAPIntValue(); 2721 if (ShAmt.uge(BitWidth)) 2722 return nullptr; 2723 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2724 continue; 2725 MaxShAmt = &ShAmt; 2726 } 2727 return MaxShAmt; 2728 } 2729 2730 /// Determine which bits of Op are known to be either zero or one and return 2731 /// them in Known. For vectors, the known bits are those that are shared by 2732 /// every vector element. 2733 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2734 EVT VT = Op.getValueType(); 2735 2736 // TOOD: Until we have a plan for how to represent demanded elements for 2737 // scalable vectors, we can just bail out for now. 2738 if (Op.getValueType().isScalableVector()) { 2739 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2740 return KnownBits(BitWidth); 2741 } 2742 2743 APInt DemandedElts = VT.isVector() 2744 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2745 : APInt(1, 1); 2746 return computeKnownBits(Op, DemandedElts, Depth); 2747 } 2748 2749 /// Determine which bits of Op are known to be either zero or one and return 2750 /// them in Known. The DemandedElts argument allows us to only collect the known 2751 /// bits that are shared by the requested vector elements. 2752 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2753 unsigned Depth) const { 2754 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2755 2756 KnownBits Known(BitWidth); // Don't know anything. 2757 2758 // TOOD: Until we have a plan for how to represent demanded elements for 2759 // scalable vectors, we can just bail out for now. 2760 if (Op.getValueType().isScalableVector()) 2761 return Known; 2762 2763 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2764 // We know all of the bits for a constant! 2765 return KnownBits::makeConstant(C->getAPIntValue()); 2766 } 2767 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2768 // We know all of the bits for a constant fp! 2769 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2770 } 2771 2772 if (Depth >= MaxRecursionDepth) 2773 return Known; // Limit search depth. 2774 2775 KnownBits Known2; 2776 unsigned NumElts = DemandedElts.getBitWidth(); 2777 assert((!Op.getValueType().isVector() || 2778 NumElts == Op.getValueType().getVectorNumElements()) && 2779 "Unexpected vector size"); 2780 2781 if (!DemandedElts) 2782 return Known; // No demanded elts, better to assume we don't know anything. 2783 2784 unsigned Opcode = Op.getOpcode(); 2785 switch (Opcode) { 2786 case ISD::BUILD_VECTOR: 2787 // Collect the known bits that are shared by every demanded vector element. 2788 Known.Zero.setAllBits(); Known.One.setAllBits(); 2789 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2790 if (!DemandedElts[i]) 2791 continue; 2792 2793 SDValue SrcOp = Op.getOperand(i); 2794 Known2 = computeKnownBits(SrcOp, Depth + 1); 2795 2796 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2797 if (SrcOp.getValueSizeInBits() != BitWidth) { 2798 assert(SrcOp.getValueSizeInBits() > BitWidth && 2799 "Expected BUILD_VECTOR implicit truncation"); 2800 Known2 = Known2.trunc(BitWidth); 2801 } 2802 2803 // Known bits are the values that are shared by every demanded element. 2804 Known = KnownBits::commonBits(Known, Known2); 2805 2806 // If we don't know any bits, early out. 2807 if (Known.isUnknown()) 2808 break; 2809 } 2810 break; 2811 case ISD::VECTOR_SHUFFLE: { 2812 // Collect the known bits that are shared by every vector element referenced 2813 // by the shuffle. 2814 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2815 Known.Zero.setAllBits(); Known.One.setAllBits(); 2816 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2817 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2818 for (unsigned i = 0; i != NumElts; ++i) { 2819 if (!DemandedElts[i]) 2820 continue; 2821 2822 int M = SVN->getMaskElt(i); 2823 if (M < 0) { 2824 // For UNDEF elements, we don't know anything about the common state of 2825 // the shuffle result. 2826 Known.resetAll(); 2827 DemandedLHS.clearAllBits(); 2828 DemandedRHS.clearAllBits(); 2829 break; 2830 } 2831 2832 if ((unsigned)M < NumElts) 2833 DemandedLHS.setBit((unsigned)M % NumElts); 2834 else 2835 DemandedRHS.setBit((unsigned)M % NumElts); 2836 } 2837 // Known bits are the values that are shared by every demanded element. 2838 if (!!DemandedLHS) { 2839 SDValue LHS = Op.getOperand(0); 2840 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2841 Known = KnownBits::commonBits(Known, Known2); 2842 } 2843 // If we don't know any bits, early out. 2844 if (Known.isUnknown()) 2845 break; 2846 if (!!DemandedRHS) { 2847 SDValue RHS = Op.getOperand(1); 2848 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2849 Known = KnownBits::commonBits(Known, Known2); 2850 } 2851 break; 2852 } 2853 case ISD::CONCAT_VECTORS: { 2854 // Split DemandedElts and test each of the demanded subvectors. 2855 Known.Zero.setAllBits(); Known.One.setAllBits(); 2856 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2857 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2858 unsigned NumSubVectors = Op.getNumOperands(); 2859 for (unsigned i = 0; i != NumSubVectors; ++i) { 2860 APInt DemandedSub = 2861 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2862 if (!!DemandedSub) { 2863 SDValue Sub = Op.getOperand(i); 2864 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2865 Known = KnownBits::commonBits(Known, Known2); 2866 } 2867 // If we don't know any bits, early out. 2868 if (Known.isUnknown()) 2869 break; 2870 } 2871 break; 2872 } 2873 case ISD::INSERT_SUBVECTOR: { 2874 // Demand any elements from the subvector and the remainder from the src its 2875 // inserted into. 2876 SDValue Src = Op.getOperand(0); 2877 SDValue Sub = Op.getOperand(1); 2878 uint64_t Idx = Op.getConstantOperandVal(2); 2879 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2880 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2881 APInt DemandedSrcElts = DemandedElts; 2882 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2883 2884 Known.One.setAllBits(); 2885 Known.Zero.setAllBits(); 2886 if (!!DemandedSubElts) { 2887 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2888 if (Known.isUnknown()) 2889 break; // early-out. 2890 } 2891 if (!!DemandedSrcElts) { 2892 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2893 Known = KnownBits::commonBits(Known, Known2); 2894 } 2895 break; 2896 } 2897 case ISD::EXTRACT_SUBVECTOR: { 2898 // Offset the demanded elts by the subvector index. 2899 SDValue Src = Op.getOperand(0); 2900 // Bail until we can represent demanded elements for scalable vectors. 2901 if (Src.getValueType().isScalableVector()) 2902 break; 2903 uint64_t Idx = Op.getConstantOperandVal(1); 2904 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2905 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2906 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2907 break; 2908 } 2909 case ISD::SCALAR_TO_VECTOR: { 2910 // We know about scalar_to_vector as much as we know about it source, 2911 // which becomes the first element of otherwise unknown vector. 2912 if (DemandedElts != 1) 2913 break; 2914 2915 SDValue N0 = Op.getOperand(0); 2916 Known = computeKnownBits(N0, Depth + 1); 2917 if (N0.getValueSizeInBits() != BitWidth) 2918 Known = Known.trunc(BitWidth); 2919 2920 break; 2921 } 2922 case ISD::BITCAST: { 2923 SDValue N0 = Op.getOperand(0); 2924 EVT SubVT = N0.getValueType(); 2925 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2926 2927 // Ignore bitcasts from unsupported types. 2928 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2929 break; 2930 2931 // Fast handling of 'identity' bitcasts. 2932 if (BitWidth == SubBitWidth) { 2933 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2934 break; 2935 } 2936 2937 bool IsLE = getDataLayout().isLittleEndian(); 2938 2939 // Bitcast 'small element' vector to 'large element' scalar/vector. 2940 if ((BitWidth % SubBitWidth) == 0) { 2941 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2942 2943 // Collect known bits for the (larger) output by collecting the known 2944 // bits from each set of sub elements and shift these into place. 2945 // We need to separately call computeKnownBits for each set of 2946 // sub elements as the knownbits for each is likely to be different. 2947 unsigned SubScale = BitWidth / SubBitWidth; 2948 APInt SubDemandedElts(NumElts * SubScale, 0); 2949 for (unsigned i = 0; i != NumElts; ++i) 2950 if (DemandedElts[i]) 2951 SubDemandedElts.setBit(i * SubScale); 2952 2953 for (unsigned i = 0; i != SubScale; ++i) { 2954 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2955 Depth + 1); 2956 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2957 Known.insertBits(Known2, SubBitWidth * Shifts); 2958 } 2959 } 2960 2961 // Bitcast 'large element' scalar/vector to 'small element' vector. 2962 if ((SubBitWidth % BitWidth) == 0) { 2963 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2964 2965 // Collect known bits for the (smaller) output by collecting the known 2966 // bits from the overlapping larger input elements and extracting the 2967 // sub sections we actually care about. 2968 unsigned SubScale = SubBitWidth / BitWidth; 2969 APInt SubDemandedElts(NumElts / SubScale, 0); 2970 for (unsigned i = 0; i != NumElts; ++i) 2971 if (DemandedElts[i]) 2972 SubDemandedElts.setBit(i / SubScale); 2973 2974 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2975 2976 Known.Zero.setAllBits(); Known.One.setAllBits(); 2977 for (unsigned i = 0; i != NumElts; ++i) 2978 if (DemandedElts[i]) { 2979 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2980 unsigned Offset = (Shifts % SubScale) * BitWidth; 2981 Known = KnownBits::commonBits(Known, 2982 Known2.extractBits(BitWidth, Offset)); 2983 // If we don't know any bits, early out. 2984 if (Known.isUnknown()) 2985 break; 2986 } 2987 } 2988 break; 2989 } 2990 case ISD::AND: 2991 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2992 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2993 2994 Known &= Known2; 2995 break; 2996 case ISD::OR: 2997 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2998 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2999 3000 Known |= Known2; 3001 break; 3002 case ISD::XOR: 3003 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3004 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3005 3006 Known ^= Known2; 3007 break; 3008 case ISD::MUL: { 3009 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3010 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3011 Known = KnownBits::mul(Known, Known2); 3012 break; 3013 } 3014 case ISD::MULHU: { 3015 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3016 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3017 Known = KnownBits::mulhu(Known, Known2); 3018 break; 3019 } 3020 case ISD::MULHS: { 3021 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3022 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 Known = KnownBits::mulhs(Known, Known2); 3024 break; 3025 } 3026 case ISD::UMUL_LOHI: { 3027 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3028 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3029 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3030 if (Op.getResNo() == 0) 3031 Known = KnownBits::mul(Known, Known2); 3032 else 3033 Known = KnownBits::mulhu(Known, Known2); 3034 break; 3035 } 3036 case ISD::SMUL_LOHI: { 3037 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3038 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3039 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3040 if (Op.getResNo() == 0) 3041 Known = KnownBits::mul(Known, Known2); 3042 else 3043 Known = KnownBits::mulhs(Known, Known2); 3044 break; 3045 } 3046 case ISD::UDIV: { 3047 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3048 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3049 Known = KnownBits::udiv(Known, Known2); 3050 break; 3051 } 3052 case ISD::SELECT: 3053 case ISD::VSELECT: 3054 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3055 // If we don't know any bits, early out. 3056 if (Known.isUnknown()) 3057 break; 3058 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3059 3060 // Only known if known in both the LHS and RHS. 3061 Known = KnownBits::commonBits(Known, Known2); 3062 break; 3063 case ISD::SELECT_CC: 3064 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3065 // If we don't know any bits, early out. 3066 if (Known.isUnknown()) 3067 break; 3068 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3069 3070 // Only known if known in both the LHS and RHS. 3071 Known = KnownBits::commonBits(Known, Known2); 3072 break; 3073 case ISD::SMULO: 3074 case ISD::UMULO: 3075 if (Op.getResNo() != 1) 3076 break; 3077 // The boolean result conforms to getBooleanContents. 3078 // If we know the result of a setcc has the top bits zero, use this info. 3079 // We know that we have an integer-based boolean since these operations 3080 // are only available for integer. 3081 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3082 TargetLowering::ZeroOrOneBooleanContent && 3083 BitWidth > 1) 3084 Known.Zero.setBitsFrom(1); 3085 break; 3086 case ISD::SETCC: 3087 case ISD::STRICT_FSETCC: 3088 case ISD::STRICT_FSETCCS: { 3089 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3090 // If we know the result of a setcc has the top bits zero, use this info. 3091 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3092 TargetLowering::ZeroOrOneBooleanContent && 3093 BitWidth > 1) 3094 Known.Zero.setBitsFrom(1); 3095 break; 3096 } 3097 case ISD::SHL: 3098 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3099 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3100 Known = KnownBits::shl(Known, Known2); 3101 3102 // Minimum shift low bits are known zero. 3103 if (const APInt *ShMinAmt = 3104 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3105 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3106 break; 3107 case ISD::SRL: 3108 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3109 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3110 Known = KnownBits::lshr(Known, Known2); 3111 3112 // Minimum shift high bits are known zero. 3113 if (const APInt *ShMinAmt = 3114 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3115 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3116 break; 3117 case ISD::SRA: 3118 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3119 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3120 Known = KnownBits::ashr(Known, Known2); 3121 // TODO: Add minimum shift high known sign bits. 3122 break; 3123 case ISD::FSHL: 3124 case ISD::FSHR: 3125 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3126 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3127 3128 // For fshl, 0-shift returns the 1st arg. 3129 // For fshr, 0-shift returns the 2nd arg. 3130 if (Amt == 0) { 3131 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3132 DemandedElts, Depth + 1); 3133 break; 3134 } 3135 3136 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3137 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3138 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3139 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3140 if (Opcode == ISD::FSHL) { 3141 Known.One <<= Amt; 3142 Known.Zero <<= Amt; 3143 Known2.One.lshrInPlace(BitWidth - Amt); 3144 Known2.Zero.lshrInPlace(BitWidth - Amt); 3145 } else { 3146 Known.One <<= BitWidth - Amt; 3147 Known.Zero <<= BitWidth - Amt; 3148 Known2.One.lshrInPlace(Amt); 3149 Known2.Zero.lshrInPlace(Amt); 3150 } 3151 Known.One |= Known2.One; 3152 Known.Zero |= Known2.Zero; 3153 } 3154 break; 3155 case ISD::SIGN_EXTEND_INREG: { 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3158 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3159 break; 3160 } 3161 case ISD::CTTZ: 3162 case ISD::CTTZ_ZERO_UNDEF: { 3163 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 // If we have a known 1, its position is our upper bound. 3165 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3166 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3167 Known.Zero.setBitsFrom(LowBits); 3168 break; 3169 } 3170 case ISD::CTLZ: 3171 case ISD::CTLZ_ZERO_UNDEF: { 3172 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3173 // If we have a known 1, its position is our upper bound. 3174 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3175 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3176 Known.Zero.setBitsFrom(LowBits); 3177 break; 3178 } 3179 case ISD::CTPOP: { 3180 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3181 // If we know some of the bits are zero, they can't be one. 3182 unsigned PossibleOnes = Known2.countMaxPopulation(); 3183 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3184 break; 3185 } 3186 case ISD::PARITY: { 3187 // Parity returns 0 everywhere but the LSB. 3188 Known.Zero.setBitsFrom(1); 3189 break; 3190 } 3191 case ISD::LOAD: { 3192 LoadSDNode *LD = cast<LoadSDNode>(Op); 3193 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3194 if (ISD::isNON_EXTLoad(LD) && Cst) { 3195 // Determine any common known bits from the loaded constant pool value. 3196 Type *CstTy = Cst->getType(); 3197 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3198 // If its a vector splat, then we can (quickly) reuse the scalar path. 3199 // NOTE: We assume all elements match and none are UNDEF. 3200 if (CstTy->isVectorTy()) { 3201 if (const Constant *Splat = Cst->getSplatValue()) { 3202 Cst = Splat; 3203 CstTy = Cst->getType(); 3204 } 3205 } 3206 // TODO - do we need to handle different bitwidths? 3207 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3208 // Iterate across all vector elements finding common known bits. 3209 Known.One.setAllBits(); 3210 Known.Zero.setAllBits(); 3211 for (unsigned i = 0; i != NumElts; ++i) { 3212 if (!DemandedElts[i]) 3213 continue; 3214 if (Constant *Elt = Cst->getAggregateElement(i)) { 3215 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3216 const APInt &Value = CInt->getValue(); 3217 Known.One &= Value; 3218 Known.Zero &= ~Value; 3219 continue; 3220 } 3221 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3222 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3223 Known.One &= Value; 3224 Known.Zero &= ~Value; 3225 continue; 3226 } 3227 } 3228 Known.One.clearAllBits(); 3229 Known.Zero.clearAllBits(); 3230 break; 3231 } 3232 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3233 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3234 Known = KnownBits::makeConstant(CInt->getValue()); 3235 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3236 Known = 3237 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3238 } 3239 } 3240 } 3241 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3242 // If this is a ZEXTLoad and we are looking at the loaded value. 3243 EVT VT = LD->getMemoryVT(); 3244 unsigned MemBits = VT.getScalarSizeInBits(); 3245 Known.Zero.setBitsFrom(MemBits); 3246 } else if (const MDNode *Ranges = LD->getRanges()) { 3247 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3248 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3249 } 3250 break; 3251 } 3252 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3253 EVT InVT = Op.getOperand(0).getValueType(); 3254 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3255 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3256 Known = Known.zext(BitWidth); 3257 break; 3258 } 3259 case ISD::ZERO_EXTEND: { 3260 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3261 Known = Known.zext(BitWidth); 3262 break; 3263 } 3264 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3265 EVT InVT = Op.getOperand(0).getValueType(); 3266 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3267 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3268 // If the sign bit is known to be zero or one, then sext will extend 3269 // it to the top bits, else it will just zext. 3270 Known = Known.sext(BitWidth); 3271 break; 3272 } 3273 case ISD::SIGN_EXTEND: { 3274 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3275 // If the sign bit is known to be zero or one, then sext will extend 3276 // it to the top bits, else it will just zext. 3277 Known = Known.sext(BitWidth); 3278 break; 3279 } 3280 case ISD::ANY_EXTEND_VECTOR_INREG: { 3281 EVT InVT = Op.getOperand(0).getValueType(); 3282 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3283 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3284 Known = Known.anyext(BitWidth); 3285 break; 3286 } 3287 case ISD::ANY_EXTEND: { 3288 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3289 Known = Known.anyext(BitWidth); 3290 break; 3291 } 3292 case ISD::TRUNCATE: { 3293 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3294 Known = Known.trunc(BitWidth); 3295 break; 3296 } 3297 case ISD::AssertZext: { 3298 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3299 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3300 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3301 Known.Zero |= (~InMask); 3302 Known.One &= (~Known.Zero); 3303 break; 3304 } 3305 case ISD::AssertAlign: { 3306 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3307 assert(LogOfAlign != 0); 3308 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3309 // well as clearing one bits. 3310 Known.Zero.setLowBits(LogOfAlign); 3311 Known.One.clearLowBits(LogOfAlign); 3312 break; 3313 } 3314 case ISD::FGETSIGN: 3315 // All bits are zero except the low bit. 3316 Known.Zero.setBitsFrom(1); 3317 break; 3318 case ISD::USUBO: 3319 case ISD::SSUBO: 3320 if (Op.getResNo() == 1) { 3321 // If we know the result of a setcc has the top bits zero, use this info. 3322 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3323 TargetLowering::ZeroOrOneBooleanContent && 3324 BitWidth > 1) 3325 Known.Zero.setBitsFrom(1); 3326 break; 3327 } 3328 LLVM_FALLTHROUGH; 3329 case ISD::SUB: 3330 case ISD::SUBC: { 3331 assert(Op.getResNo() == 0 && 3332 "We only compute knownbits for the difference here."); 3333 3334 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3335 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3336 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3337 Known, Known2); 3338 break; 3339 } 3340 case ISD::UADDO: 3341 case ISD::SADDO: 3342 case ISD::ADDCARRY: 3343 if (Op.getResNo() == 1) { 3344 // If we know the result of a setcc has the top bits zero, use this info. 3345 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3346 TargetLowering::ZeroOrOneBooleanContent && 3347 BitWidth > 1) 3348 Known.Zero.setBitsFrom(1); 3349 break; 3350 } 3351 LLVM_FALLTHROUGH; 3352 case ISD::ADD: 3353 case ISD::ADDC: 3354 case ISD::ADDE: { 3355 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3356 3357 // With ADDE and ADDCARRY, a carry bit may be added in. 3358 KnownBits Carry(1); 3359 if (Opcode == ISD::ADDE) 3360 // Can't track carry from glue, set carry to unknown. 3361 Carry.resetAll(); 3362 else if (Opcode == ISD::ADDCARRY) 3363 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3364 // the trouble (how often will we find a known carry bit). And I haven't 3365 // tested this very much yet, but something like this might work: 3366 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3367 // Carry = Carry.zextOrTrunc(1, false); 3368 Carry.resetAll(); 3369 else 3370 Carry.setAllZero(); 3371 3372 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3373 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3374 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3375 break; 3376 } 3377 case ISD::SREM: { 3378 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3379 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3380 Known = KnownBits::srem(Known, Known2); 3381 break; 3382 } 3383 case ISD::UREM: { 3384 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3385 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3386 Known = KnownBits::urem(Known, Known2); 3387 break; 3388 } 3389 case ISD::EXTRACT_ELEMENT: { 3390 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3391 const unsigned Index = Op.getConstantOperandVal(1); 3392 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3393 3394 // Remove low part of known bits mask 3395 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3396 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3397 3398 // Remove high part of known bit mask 3399 Known = Known.trunc(EltBitWidth); 3400 break; 3401 } 3402 case ISD::EXTRACT_VECTOR_ELT: { 3403 SDValue InVec = Op.getOperand(0); 3404 SDValue EltNo = Op.getOperand(1); 3405 EVT VecVT = InVec.getValueType(); 3406 // computeKnownBits not yet implemented for scalable vectors. 3407 if (VecVT.isScalableVector()) 3408 break; 3409 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3410 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3411 3412 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3413 // anything about the extended bits. 3414 if (BitWidth > EltBitWidth) 3415 Known = Known.trunc(EltBitWidth); 3416 3417 // If we know the element index, just demand that vector element, else for 3418 // an unknown element index, ignore DemandedElts and demand them all. 3419 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3420 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3421 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3422 DemandedSrcElts = 3423 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3424 3425 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3426 if (BitWidth > EltBitWidth) 3427 Known = Known.anyext(BitWidth); 3428 break; 3429 } 3430 case ISD::INSERT_VECTOR_ELT: { 3431 // If we know the element index, split the demand between the 3432 // source vector and the inserted element, otherwise assume we need 3433 // the original demanded vector elements and the value. 3434 SDValue InVec = Op.getOperand(0); 3435 SDValue InVal = Op.getOperand(1); 3436 SDValue EltNo = Op.getOperand(2); 3437 bool DemandedVal = true; 3438 APInt DemandedVecElts = DemandedElts; 3439 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3440 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3441 unsigned EltIdx = CEltNo->getZExtValue(); 3442 DemandedVal = !!DemandedElts[EltIdx]; 3443 DemandedVecElts.clearBit(EltIdx); 3444 } 3445 Known.One.setAllBits(); 3446 Known.Zero.setAllBits(); 3447 if (DemandedVal) { 3448 Known2 = computeKnownBits(InVal, Depth + 1); 3449 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3450 } 3451 if (!!DemandedVecElts) { 3452 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3453 Known = KnownBits::commonBits(Known, Known2); 3454 } 3455 break; 3456 } 3457 case ISD::BITREVERSE: { 3458 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3459 Known = Known2.reverseBits(); 3460 break; 3461 } 3462 case ISD::BSWAP: { 3463 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3464 Known = Known2.byteSwap(); 3465 break; 3466 } 3467 case ISD::ABS: { 3468 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3469 Known = Known2.abs(); 3470 break; 3471 } 3472 case ISD::USUBSAT: { 3473 // The result of usubsat will never be larger than the LHS. 3474 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3475 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3476 break; 3477 } 3478 case ISD::UMIN: { 3479 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3480 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3481 Known = KnownBits::umin(Known, Known2); 3482 break; 3483 } 3484 case ISD::UMAX: { 3485 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3486 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3487 Known = KnownBits::umax(Known, Known2); 3488 break; 3489 } 3490 case ISD::SMIN: 3491 case ISD::SMAX: { 3492 // If we have a clamp pattern, we know that the number of sign bits will be 3493 // the minimum of the clamp min/max range. 3494 bool IsMax = (Opcode == ISD::SMAX); 3495 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3496 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3497 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3498 CstHigh = 3499 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3500 if (CstLow && CstHigh) { 3501 if (!IsMax) 3502 std::swap(CstLow, CstHigh); 3503 3504 const APInt &ValueLow = CstLow->getAPIntValue(); 3505 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3506 if (ValueLow.sle(ValueHigh)) { 3507 unsigned LowSignBits = ValueLow.getNumSignBits(); 3508 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3509 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3510 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3511 Known.One.setHighBits(MinSignBits); 3512 break; 3513 } 3514 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3515 Known.Zero.setHighBits(MinSignBits); 3516 break; 3517 } 3518 } 3519 } 3520 3521 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3522 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3523 if (IsMax) 3524 Known = KnownBits::smax(Known, Known2); 3525 else 3526 Known = KnownBits::smin(Known, Known2); 3527 break; 3528 } 3529 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3530 if (Op.getResNo() == 1) { 3531 // The boolean result conforms to getBooleanContents. 3532 // If we know the result of a setcc has the top bits zero, use this info. 3533 // We know that we have an integer-based boolean since these operations 3534 // are only available for integer. 3535 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3536 TargetLowering::ZeroOrOneBooleanContent && 3537 BitWidth > 1) 3538 Known.Zero.setBitsFrom(1); 3539 break; 3540 } 3541 LLVM_FALLTHROUGH; 3542 case ISD::ATOMIC_CMP_SWAP: 3543 case ISD::ATOMIC_SWAP: 3544 case ISD::ATOMIC_LOAD_ADD: 3545 case ISD::ATOMIC_LOAD_SUB: 3546 case ISD::ATOMIC_LOAD_AND: 3547 case ISD::ATOMIC_LOAD_CLR: 3548 case ISD::ATOMIC_LOAD_OR: 3549 case ISD::ATOMIC_LOAD_XOR: 3550 case ISD::ATOMIC_LOAD_NAND: 3551 case ISD::ATOMIC_LOAD_MIN: 3552 case ISD::ATOMIC_LOAD_MAX: 3553 case ISD::ATOMIC_LOAD_UMIN: 3554 case ISD::ATOMIC_LOAD_UMAX: 3555 case ISD::ATOMIC_LOAD: { 3556 unsigned MemBits = 3557 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3558 // If we are looking at the loaded value. 3559 if (Op.getResNo() == 0) { 3560 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3561 Known.Zero.setBitsFrom(MemBits); 3562 } 3563 break; 3564 } 3565 case ISD::FrameIndex: 3566 case ISD::TargetFrameIndex: 3567 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3568 Known, getMachineFunction()); 3569 break; 3570 3571 default: 3572 if (Opcode < ISD::BUILTIN_OP_END) 3573 break; 3574 LLVM_FALLTHROUGH; 3575 case ISD::INTRINSIC_WO_CHAIN: 3576 case ISD::INTRINSIC_W_CHAIN: 3577 case ISD::INTRINSIC_VOID: 3578 // Allow the target to implement this method for its nodes. 3579 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3580 break; 3581 } 3582 3583 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3584 return Known; 3585 } 3586 3587 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3588 SDValue N1) const { 3589 // X + 0 never overflow 3590 if (isNullConstant(N1)) 3591 return OFK_Never; 3592 3593 KnownBits N1Known = computeKnownBits(N1); 3594 if (N1Known.Zero.getBoolValue()) { 3595 KnownBits N0Known = computeKnownBits(N0); 3596 3597 bool overflow; 3598 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3599 if (!overflow) 3600 return OFK_Never; 3601 } 3602 3603 // mulhi + 1 never overflow 3604 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3605 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3606 return OFK_Never; 3607 3608 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3609 KnownBits N0Known = computeKnownBits(N0); 3610 3611 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3612 return OFK_Never; 3613 } 3614 3615 return OFK_Sometime; 3616 } 3617 3618 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3619 EVT OpVT = Val.getValueType(); 3620 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3621 3622 // Is the constant a known power of 2? 3623 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3624 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3625 3626 // A left-shift of a constant one will have exactly one bit set because 3627 // shifting the bit off the end is undefined. 3628 if (Val.getOpcode() == ISD::SHL) { 3629 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3630 if (C && C->getAPIntValue() == 1) 3631 return true; 3632 } 3633 3634 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3635 // one bit set. 3636 if (Val.getOpcode() == ISD::SRL) { 3637 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3638 if (C && C->getAPIntValue().isSignMask()) 3639 return true; 3640 } 3641 3642 // Are all operands of a build vector constant powers of two? 3643 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3644 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3645 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3646 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3647 return false; 3648 })) 3649 return true; 3650 3651 // More could be done here, though the above checks are enough 3652 // to handle some common cases. 3653 3654 // Fall back to computeKnownBits to catch other known cases. 3655 KnownBits Known = computeKnownBits(Val); 3656 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3657 } 3658 3659 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3660 EVT VT = Op.getValueType(); 3661 3662 // TODO: Assume we don't know anything for now. 3663 if (VT.isScalableVector()) 3664 return 1; 3665 3666 APInt DemandedElts = VT.isVector() 3667 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3668 : APInt(1, 1); 3669 return ComputeNumSignBits(Op, DemandedElts, Depth); 3670 } 3671 3672 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3673 unsigned Depth) const { 3674 EVT VT = Op.getValueType(); 3675 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3676 unsigned VTBits = VT.getScalarSizeInBits(); 3677 unsigned NumElts = DemandedElts.getBitWidth(); 3678 unsigned Tmp, Tmp2; 3679 unsigned FirstAnswer = 1; 3680 3681 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3682 const APInt &Val = C->getAPIntValue(); 3683 return Val.getNumSignBits(); 3684 } 3685 3686 if (Depth >= MaxRecursionDepth) 3687 return 1; // Limit search depth. 3688 3689 if (!DemandedElts || VT.isScalableVector()) 3690 return 1; // No demanded elts, better to assume we don't know anything. 3691 3692 unsigned Opcode = Op.getOpcode(); 3693 switch (Opcode) { 3694 default: break; 3695 case ISD::AssertSext: 3696 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3697 return VTBits-Tmp+1; 3698 case ISD::AssertZext: 3699 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3700 return VTBits-Tmp; 3701 3702 case ISD::BUILD_VECTOR: 3703 Tmp = VTBits; 3704 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3705 if (!DemandedElts[i]) 3706 continue; 3707 3708 SDValue SrcOp = Op.getOperand(i); 3709 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3710 3711 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3712 if (SrcOp.getValueSizeInBits() != VTBits) { 3713 assert(SrcOp.getValueSizeInBits() > VTBits && 3714 "Expected BUILD_VECTOR implicit truncation"); 3715 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3716 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3717 } 3718 Tmp = std::min(Tmp, Tmp2); 3719 } 3720 return Tmp; 3721 3722 case ISD::VECTOR_SHUFFLE: { 3723 // Collect the minimum number of sign bits that are shared by every vector 3724 // element referenced by the shuffle. 3725 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3726 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3727 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3728 for (unsigned i = 0; i != NumElts; ++i) { 3729 int M = SVN->getMaskElt(i); 3730 if (!DemandedElts[i]) 3731 continue; 3732 // For UNDEF elements, we don't know anything about the common state of 3733 // the shuffle result. 3734 if (M < 0) 3735 return 1; 3736 if ((unsigned)M < NumElts) 3737 DemandedLHS.setBit((unsigned)M % NumElts); 3738 else 3739 DemandedRHS.setBit((unsigned)M % NumElts); 3740 } 3741 Tmp = std::numeric_limits<unsigned>::max(); 3742 if (!!DemandedLHS) 3743 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3744 if (!!DemandedRHS) { 3745 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3746 Tmp = std::min(Tmp, Tmp2); 3747 } 3748 // If we don't know anything, early out and try computeKnownBits fall-back. 3749 if (Tmp == 1) 3750 break; 3751 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3752 return Tmp; 3753 } 3754 3755 case ISD::BITCAST: { 3756 SDValue N0 = Op.getOperand(0); 3757 EVT SrcVT = N0.getValueType(); 3758 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3759 3760 // Ignore bitcasts from unsupported types.. 3761 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3762 break; 3763 3764 // Fast handling of 'identity' bitcasts. 3765 if (VTBits == SrcBits) 3766 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3767 3768 bool IsLE = getDataLayout().isLittleEndian(); 3769 3770 // Bitcast 'large element' scalar/vector to 'small element' vector. 3771 if ((SrcBits % VTBits) == 0) { 3772 assert(VT.isVector() && "Expected bitcast to vector"); 3773 3774 unsigned Scale = SrcBits / VTBits; 3775 APInt SrcDemandedElts(NumElts / Scale, 0); 3776 for (unsigned i = 0; i != NumElts; ++i) 3777 if (DemandedElts[i]) 3778 SrcDemandedElts.setBit(i / Scale); 3779 3780 // Fast case - sign splat can be simply split across the small elements. 3781 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3782 if (Tmp == SrcBits) 3783 return VTBits; 3784 3785 // Slow case - determine how far the sign extends into each sub-element. 3786 Tmp2 = VTBits; 3787 for (unsigned i = 0; i != NumElts; ++i) 3788 if (DemandedElts[i]) { 3789 unsigned SubOffset = i % Scale; 3790 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3791 SubOffset = SubOffset * VTBits; 3792 if (Tmp <= SubOffset) 3793 return 1; 3794 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3795 } 3796 return Tmp2; 3797 } 3798 break; 3799 } 3800 3801 case ISD::SIGN_EXTEND: 3802 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3803 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3804 case ISD::SIGN_EXTEND_INREG: 3805 // Max of the input and what this extends. 3806 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3807 Tmp = VTBits-Tmp+1; 3808 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3809 return std::max(Tmp, Tmp2); 3810 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3811 SDValue Src = Op.getOperand(0); 3812 EVT SrcVT = Src.getValueType(); 3813 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3814 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3815 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3816 } 3817 case ISD::SRA: 3818 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3819 // SRA X, C -> adds C sign bits. 3820 if (const APInt *ShAmt = 3821 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3822 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3823 return Tmp; 3824 case ISD::SHL: 3825 if (const APInt *ShAmt = 3826 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3827 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3828 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3829 if (ShAmt->ult(Tmp)) 3830 return Tmp - ShAmt->getZExtValue(); 3831 } 3832 break; 3833 case ISD::AND: 3834 case ISD::OR: 3835 case ISD::XOR: // NOT is handled here. 3836 // Logical binary ops preserve the number of sign bits at the worst. 3837 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3838 if (Tmp != 1) { 3839 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3840 FirstAnswer = std::min(Tmp, Tmp2); 3841 // We computed what we know about the sign bits as our first 3842 // answer. Now proceed to the generic code that uses 3843 // computeKnownBits, and pick whichever answer is better. 3844 } 3845 break; 3846 3847 case ISD::SELECT: 3848 case ISD::VSELECT: 3849 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3850 if (Tmp == 1) return 1; // Early out. 3851 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3852 return std::min(Tmp, Tmp2); 3853 case ISD::SELECT_CC: 3854 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3855 if (Tmp == 1) return 1; // Early out. 3856 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3857 return std::min(Tmp, Tmp2); 3858 3859 case ISD::SMIN: 3860 case ISD::SMAX: { 3861 // If we have a clamp pattern, we know that the number of sign bits will be 3862 // the minimum of the clamp min/max range. 3863 bool IsMax = (Opcode == ISD::SMAX); 3864 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3865 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3866 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3867 CstHigh = 3868 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3869 if (CstLow && CstHigh) { 3870 if (!IsMax) 3871 std::swap(CstLow, CstHigh); 3872 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3873 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3874 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3875 return std::min(Tmp, Tmp2); 3876 } 3877 } 3878 3879 // Fallback - just get the minimum number of sign bits of the operands. 3880 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3881 if (Tmp == 1) 3882 return 1; // Early out. 3883 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3884 return std::min(Tmp, Tmp2); 3885 } 3886 case ISD::UMIN: 3887 case ISD::UMAX: 3888 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3889 if (Tmp == 1) 3890 return 1; // Early out. 3891 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3892 return std::min(Tmp, Tmp2); 3893 case ISD::SADDO: 3894 case ISD::UADDO: 3895 case ISD::SSUBO: 3896 case ISD::USUBO: 3897 case ISD::SMULO: 3898 case ISD::UMULO: 3899 if (Op.getResNo() != 1) 3900 break; 3901 // The boolean result conforms to getBooleanContents. Fall through. 3902 // If setcc returns 0/-1, all bits are sign bits. 3903 // We know that we have an integer-based boolean since these operations 3904 // are only available for integer. 3905 if (TLI->getBooleanContents(VT.isVector(), false) == 3906 TargetLowering::ZeroOrNegativeOneBooleanContent) 3907 return VTBits; 3908 break; 3909 case ISD::SETCC: 3910 case ISD::STRICT_FSETCC: 3911 case ISD::STRICT_FSETCCS: { 3912 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3913 // If setcc returns 0/-1, all bits are sign bits. 3914 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3915 TargetLowering::ZeroOrNegativeOneBooleanContent) 3916 return VTBits; 3917 break; 3918 } 3919 case ISD::ROTL: 3920 case ISD::ROTR: 3921 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3922 3923 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3924 if (Tmp == VTBits) 3925 return VTBits; 3926 3927 if (ConstantSDNode *C = 3928 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3929 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3930 3931 // Handle rotate right by N like a rotate left by 32-N. 3932 if (Opcode == ISD::ROTR) 3933 RotAmt = (VTBits - RotAmt) % VTBits; 3934 3935 // If we aren't rotating out all of the known-in sign bits, return the 3936 // number that are left. This handles rotl(sext(x), 1) for example. 3937 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3938 } 3939 break; 3940 case ISD::ADD: 3941 case ISD::ADDC: 3942 // Add can have at most one carry bit. Thus we know that the output 3943 // is, at worst, one more bit than the inputs. 3944 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3945 if (Tmp == 1) return 1; // Early out. 3946 3947 // Special case decrementing a value (ADD X, -1): 3948 if (ConstantSDNode *CRHS = 3949 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3950 if (CRHS->isAllOnesValue()) { 3951 KnownBits Known = 3952 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3953 3954 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3955 // sign bits set. 3956 if ((Known.Zero | 1).isAllOnesValue()) 3957 return VTBits; 3958 3959 // If we are subtracting one from a positive number, there is no carry 3960 // out of the result. 3961 if (Known.isNonNegative()) 3962 return Tmp; 3963 } 3964 3965 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3966 if (Tmp2 == 1) return 1; // Early out. 3967 return std::min(Tmp, Tmp2) - 1; 3968 case ISD::SUB: 3969 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3970 if (Tmp2 == 1) return 1; // Early out. 3971 3972 // Handle NEG. 3973 if (ConstantSDNode *CLHS = 3974 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3975 if (CLHS->isNullValue()) { 3976 KnownBits Known = 3977 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3978 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3979 // sign bits set. 3980 if ((Known.Zero | 1).isAllOnesValue()) 3981 return VTBits; 3982 3983 // If the input is known to be positive (the sign bit is known clear), 3984 // the output of the NEG has the same number of sign bits as the input. 3985 if (Known.isNonNegative()) 3986 return Tmp2; 3987 3988 // Otherwise, we treat this like a SUB. 3989 } 3990 3991 // Sub can have at most one carry bit. Thus we know that the output 3992 // is, at worst, one more bit than the inputs. 3993 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3994 if (Tmp == 1) return 1; // Early out. 3995 return std::min(Tmp, Tmp2) - 1; 3996 case ISD::MUL: { 3997 // The output of the Mul can be at most twice the valid bits in the inputs. 3998 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3999 if (SignBitsOp0 == 1) 4000 break; 4001 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4002 if (SignBitsOp1 == 1) 4003 break; 4004 unsigned OutValidBits = 4005 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4006 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4007 } 4008 case ISD::SREM: 4009 // The sign bit is the LHS's sign bit, except when the result of the 4010 // remainder is zero. The magnitude of the result should be less than or 4011 // equal to the magnitude of the LHS. Therefore, the result should have 4012 // at least as many sign bits as the left hand side. 4013 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4014 case ISD::TRUNCATE: { 4015 // Check if the sign bits of source go down as far as the truncated value. 4016 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4017 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4018 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4019 return NumSrcSignBits - (NumSrcBits - VTBits); 4020 break; 4021 } 4022 case ISD::EXTRACT_ELEMENT: { 4023 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4024 const int BitWidth = Op.getValueSizeInBits(); 4025 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4026 4027 // Get reverse index (starting from 1), Op1 value indexes elements from 4028 // little end. Sign starts at big end. 4029 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4030 4031 // If the sign portion ends in our element the subtraction gives correct 4032 // result. Otherwise it gives either negative or > bitwidth result 4033 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4034 } 4035 case ISD::INSERT_VECTOR_ELT: { 4036 // If we know the element index, split the demand between the 4037 // source vector and the inserted element, otherwise assume we need 4038 // the original demanded vector elements and the value. 4039 SDValue InVec = Op.getOperand(0); 4040 SDValue InVal = Op.getOperand(1); 4041 SDValue EltNo = Op.getOperand(2); 4042 bool DemandedVal = true; 4043 APInt DemandedVecElts = DemandedElts; 4044 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4045 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4046 unsigned EltIdx = CEltNo->getZExtValue(); 4047 DemandedVal = !!DemandedElts[EltIdx]; 4048 DemandedVecElts.clearBit(EltIdx); 4049 } 4050 Tmp = std::numeric_limits<unsigned>::max(); 4051 if (DemandedVal) { 4052 // TODO - handle implicit truncation of inserted elements. 4053 if (InVal.getScalarValueSizeInBits() != VTBits) 4054 break; 4055 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4056 Tmp = std::min(Tmp, Tmp2); 4057 } 4058 if (!!DemandedVecElts) { 4059 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4060 Tmp = std::min(Tmp, Tmp2); 4061 } 4062 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4063 return Tmp; 4064 } 4065 case ISD::EXTRACT_VECTOR_ELT: { 4066 SDValue InVec = Op.getOperand(0); 4067 SDValue EltNo = Op.getOperand(1); 4068 EVT VecVT = InVec.getValueType(); 4069 // ComputeNumSignBits not yet implemented for scalable vectors. 4070 if (VecVT.isScalableVector()) 4071 break; 4072 const unsigned BitWidth = Op.getValueSizeInBits(); 4073 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4074 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4075 4076 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4077 // anything about sign bits. But if the sizes match we can derive knowledge 4078 // about sign bits from the vector operand. 4079 if (BitWidth != EltBitWidth) 4080 break; 4081 4082 // If we know the element index, just demand that vector element, else for 4083 // an unknown element index, ignore DemandedElts and demand them all. 4084 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 4085 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4086 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4087 DemandedSrcElts = 4088 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4089 4090 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4091 } 4092 case ISD::EXTRACT_SUBVECTOR: { 4093 // Offset the demanded elts by the subvector index. 4094 SDValue Src = Op.getOperand(0); 4095 // Bail until we can represent demanded elements for scalable vectors. 4096 if (Src.getValueType().isScalableVector()) 4097 break; 4098 uint64_t Idx = Op.getConstantOperandVal(1); 4099 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4100 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4101 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4102 } 4103 case ISD::CONCAT_VECTORS: { 4104 // Determine the minimum number of sign bits across all demanded 4105 // elts of the input vectors. Early out if the result is already 1. 4106 Tmp = std::numeric_limits<unsigned>::max(); 4107 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4108 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4109 unsigned NumSubVectors = Op.getNumOperands(); 4110 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4111 APInt DemandedSub = 4112 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4113 if (!DemandedSub) 4114 continue; 4115 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4116 Tmp = std::min(Tmp, Tmp2); 4117 } 4118 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4119 return Tmp; 4120 } 4121 case ISD::INSERT_SUBVECTOR: { 4122 // Demand any elements from the subvector and the remainder from the src its 4123 // inserted into. 4124 SDValue Src = Op.getOperand(0); 4125 SDValue Sub = Op.getOperand(1); 4126 uint64_t Idx = Op.getConstantOperandVal(2); 4127 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4128 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4129 APInt DemandedSrcElts = DemandedElts; 4130 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4131 4132 Tmp = std::numeric_limits<unsigned>::max(); 4133 if (!!DemandedSubElts) { 4134 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4135 if (Tmp == 1) 4136 return 1; // early-out 4137 } 4138 if (!!DemandedSrcElts) { 4139 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4140 Tmp = std::min(Tmp, Tmp2); 4141 } 4142 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4143 return Tmp; 4144 } 4145 case ISD::ATOMIC_CMP_SWAP: 4146 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4147 case ISD::ATOMIC_SWAP: 4148 case ISD::ATOMIC_LOAD_ADD: 4149 case ISD::ATOMIC_LOAD_SUB: 4150 case ISD::ATOMIC_LOAD_AND: 4151 case ISD::ATOMIC_LOAD_CLR: 4152 case ISD::ATOMIC_LOAD_OR: 4153 case ISD::ATOMIC_LOAD_XOR: 4154 case ISD::ATOMIC_LOAD_NAND: 4155 case ISD::ATOMIC_LOAD_MIN: 4156 case ISD::ATOMIC_LOAD_MAX: 4157 case ISD::ATOMIC_LOAD_UMIN: 4158 case ISD::ATOMIC_LOAD_UMAX: 4159 case ISD::ATOMIC_LOAD: { 4160 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4161 // If we are looking at the loaded value. 4162 if (Op.getResNo() == 0) { 4163 if (Tmp == VTBits) 4164 return 1; // early-out 4165 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4166 return VTBits - Tmp + 1; 4167 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4168 return VTBits - Tmp; 4169 } 4170 break; 4171 } 4172 } 4173 4174 // If we are looking at the loaded value of the SDNode. 4175 if (Op.getResNo() == 0) { 4176 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4177 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4178 unsigned ExtType = LD->getExtensionType(); 4179 switch (ExtType) { 4180 default: break; 4181 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4182 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4183 return VTBits - Tmp + 1; 4184 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4185 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4186 return VTBits - Tmp; 4187 case ISD::NON_EXTLOAD: 4188 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4189 // We only need to handle vectors - computeKnownBits should handle 4190 // scalar cases. 4191 Type *CstTy = Cst->getType(); 4192 if (CstTy->isVectorTy() && 4193 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4194 Tmp = VTBits; 4195 for (unsigned i = 0; i != NumElts; ++i) { 4196 if (!DemandedElts[i]) 4197 continue; 4198 if (Constant *Elt = Cst->getAggregateElement(i)) { 4199 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4200 const APInt &Value = CInt->getValue(); 4201 Tmp = std::min(Tmp, Value.getNumSignBits()); 4202 continue; 4203 } 4204 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4205 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4206 Tmp = std::min(Tmp, Value.getNumSignBits()); 4207 continue; 4208 } 4209 } 4210 // Unknown type. Conservatively assume no bits match sign bit. 4211 return 1; 4212 } 4213 return Tmp; 4214 } 4215 } 4216 break; 4217 } 4218 } 4219 } 4220 4221 // Allow the target to implement this method for its nodes. 4222 if (Opcode >= ISD::BUILTIN_OP_END || 4223 Opcode == ISD::INTRINSIC_WO_CHAIN || 4224 Opcode == ISD::INTRINSIC_W_CHAIN || 4225 Opcode == ISD::INTRINSIC_VOID) { 4226 unsigned NumBits = 4227 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4228 if (NumBits > 1) 4229 FirstAnswer = std::max(FirstAnswer, NumBits); 4230 } 4231 4232 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4233 // use this information. 4234 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4235 4236 APInt Mask; 4237 if (Known.isNonNegative()) { // sign bit is 0 4238 Mask = Known.Zero; 4239 } else if (Known.isNegative()) { // sign bit is 1; 4240 Mask = Known.One; 4241 } else { 4242 // Nothing known. 4243 return FirstAnswer; 4244 } 4245 4246 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4247 // the number of identical bits in the top of the input value. 4248 Mask <<= Mask.getBitWidth()-VTBits; 4249 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4250 } 4251 4252 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4253 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4254 !isa<ConstantSDNode>(Op.getOperand(1))) 4255 return false; 4256 4257 if (Op.getOpcode() == ISD::OR && 4258 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4259 return false; 4260 4261 return true; 4262 } 4263 4264 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4265 // If we're told that NaNs won't happen, assume they won't. 4266 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4267 return true; 4268 4269 if (Depth >= MaxRecursionDepth) 4270 return false; // Limit search depth. 4271 4272 // TODO: Handle vectors. 4273 // If the value is a constant, we can obviously see if it is a NaN or not. 4274 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4275 return !C->getValueAPF().isNaN() || 4276 (SNaN && !C->getValueAPF().isSignaling()); 4277 } 4278 4279 unsigned Opcode = Op.getOpcode(); 4280 switch (Opcode) { 4281 case ISD::FADD: 4282 case ISD::FSUB: 4283 case ISD::FMUL: 4284 case ISD::FDIV: 4285 case ISD::FREM: 4286 case ISD::FSIN: 4287 case ISD::FCOS: { 4288 if (SNaN) 4289 return true; 4290 // TODO: Need isKnownNeverInfinity 4291 return false; 4292 } 4293 case ISD::FCANONICALIZE: 4294 case ISD::FEXP: 4295 case ISD::FEXP2: 4296 case ISD::FTRUNC: 4297 case ISD::FFLOOR: 4298 case ISD::FCEIL: 4299 case ISD::FROUND: 4300 case ISD::FROUNDEVEN: 4301 case ISD::FRINT: 4302 case ISD::FNEARBYINT: { 4303 if (SNaN) 4304 return true; 4305 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4306 } 4307 case ISD::FABS: 4308 case ISD::FNEG: 4309 case ISD::FCOPYSIGN: { 4310 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4311 } 4312 case ISD::SELECT: 4313 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4314 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4315 case ISD::FP_EXTEND: 4316 case ISD::FP_ROUND: { 4317 if (SNaN) 4318 return true; 4319 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4320 } 4321 case ISD::SINT_TO_FP: 4322 case ISD::UINT_TO_FP: 4323 return true; 4324 case ISD::FMA: 4325 case ISD::FMAD: { 4326 if (SNaN) 4327 return true; 4328 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4329 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4330 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4331 } 4332 case ISD::FSQRT: // Need is known positive 4333 case ISD::FLOG: 4334 case ISD::FLOG2: 4335 case ISD::FLOG10: 4336 case ISD::FPOWI: 4337 case ISD::FPOW: { 4338 if (SNaN) 4339 return true; 4340 // TODO: Refine on operand 4341 return false; 4342 } 4343 case ISD::FMINNUM: 4344 case ISD::FMAXNUM: { 4345 // Only one needs to be known not-nan, since it will be returned if the 4346 // other ends up being one. 4347 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4348 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4349 } 4350 case ISD::FMINNUM_IEEE: 4351 case ISD::FMAXNUM_IEEE: { 4352 if (SNaN) 4353 return true; 4354 // This can return a NaN if either operand is an sNaN, or if both operands 4355 // are NaN. 4356 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4357 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4358 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4359 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4360 } 4361 case ISD::FMINIMUM: 4362 case ISD::FMAXIMUM: { 4363 // TODO: Does this quiet or return the origina NaN as-is? 4364 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4365 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4366 } 4367 case ISD::EXTRACT_VECTOR_ELT: { 4368 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4369 } 4370 default: 4371 if (Opcode >= ISD::BUILTIN_OP_END || 4372 Opcode == ISD::INTRINSIC_WO_CHAIN || 4373 Opcode == ISD::INTRINSIC_W_CHAIN || 4374 Opcode == ISD::INTRINSIC_VOID) { 4375 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4376 } 4377 4378 return false; 4379 } 4380 } 4381 4382 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4383 assert(Op.getValueType().isFloatingPoint() && 4384 "Floating point type expected"); 4385 4386 // If the value is a constant, we can obviously see if it is a zero or not. 4387 // TODO: Add BuildVector support. 4388 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4389 return !C->isZero(); 4390 return false; 4391 } 4392 4393 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4394 assert(!Op.getValueType().isFloatingPoint() && 4395 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4396 4397 // If the value is a constant, we can obviously see if it is a zero or not. 4398 if (ISD::matchUnaryPredicate( 4399 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4400 return true; 4401 4402 // TODO: Recognize more cases here. 4403 switch (Op.getOpcode()) { 4404 default: break; 4405 case ISD::OR: 4406 if (isKnownNeverZero(Op.getOperand(1)) || 4407 isKnownNeverZero(Op.getOperand(0))) 4408 return true; 4409 break; 4410 } 4411 4412 return false; 4413 } 4414 4415 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4416 // Check the obvious case. 4417 if (A == B) return true; 4418 4419 // For for negative and positive zero. 4420 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4421 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4422 if (CA->isZero() && CB->isZero()) return true; 4423 4424 // Otherwise they may not be equal. 4425 return false; 4426 } 4427 4428 // FIXME: unify with llvm::haveNoCommonBitsSet. 4429 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4430 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4431 assert(A.getValueType() == B.getValueType() && 4432 "Values must have the same type"); 4433 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4434 computeKnownBits(B)); 4435 } 4436 4437 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4438 SelectionDAG &DAG) { 4439 if (cast<ConstantSDNode>(Step)->isNullValue()) 4440 return DAG.getConstant(0, DL, VT); 4441 4442 return SDValue(); 4443 } 4444 4445 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4446 ArrayRef<SDValue> Ops, 4447 SelectionDAG &DAG) { 4448 int NumOps = Ops.size(); 4449 assert(NumOps != 0 && "Can't build an empty vector!"); 4450 assert(!VT.isScalableVector() && 4451 "BUILD_VECTOR cannot be used with scalable types"); 4452 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4453 "Incorrect element count in BUILD_VECTOR!"); 4454 4455 // BUILD_VECTOR of UNDEFs is UNDEF. 4456 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4457 return DAG.getUNDEF(VT); 4458 4459 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4460 SDValue IdentitySrc; 4461 bool IsIdentity = true; 4462 for (int i = 0; i != NumOps; ++i) { 4463 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4464 Ops[i].getOperand(0).getValueType() != VT || 4465 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4466 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4467 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4468 IsIdentity = false; 4469 break; 4470 } 4471 IdentitySrc = Ops[i].getOperand(0); 4472 } 4473 if (IsIdentity) 4474 return IdentitySrc; 4475 4476 return SDValue(); 4477 } 4478 4479 /// Try to simplify vector concatenation to an input value, undef, or build 4480 /// vector. 4481 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4482 ArrayRef<SDValue> Ops, 4483 SelectionDAG &DAG) { 4484 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4485 assert(llvm::all_of(Ops, 4486 [Ops](SDValue Op) { 4487 return Ops[0].getValueType() == Op.getValueType(); 4488 }) && 4489 "Concatenation of vectors with inconsistent value types!"); 4490 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4491 VT.getVectorElementCount() && 4492 "Incorrect element count in vector concatenation!"); 4493 4494 if (Ops.size() == 1) 4495 return Ops[0]; 4496 4497 // Concat of UNDEFs is UNDEF. 4498 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4499 return DAG.getUNDEF(VT); 4500 4501 // Scan the operands and look for extract operations from a single source 4502 // that correspond to insertion at the same location via this concatenation: 4503 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4504 SDValue IdentitySrc; 4505 bool IsIdentity = true; 4506 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4507 SDValue Op = Ops[i]; 4508 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4509 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4510 Op.getOperand(0).getValueType() != VT || 4511 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4512 Op.getConstantOperandVal(1) != IdentityIndex) { 4513 IsIdentity = false; 4514 break; 4515 } 4516 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4517 "Unexpected identity source vector for concat of extracts"); 4518 IdentitySrc = Op.getOperand(0); 4519 } 4520 if (IsIdentity) { 4521 assert(IdentitySrc && "Failed to set source vector of extracts"); 4522 return IdentitySrc; 4523 } 4524 4525 // The code below this point is only designed to work for fixed width 4526 // vectors, so we bail out for now. 4527 if (VT.isScalableVector()) 4528 return SDValue(); 4529 4530 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4531 // simplified to one big BUILD_VECTOR. 4532 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4533 EVT SVT = VT.getScalarType(); 4534 SmallVector<SDValue, 16> Elts; 4535 for (SDValue Op : Ops) { 4536 EVT OpVT = Op.getValueType(); 4537 if (Op.isUndef()) 4538 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4539 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4540 Elts.append(Op->op_begin(), Op->op_end()); 4541 else 4542 return SDValue(); 4543 } 4544 4545 // BUILD_VECTOR requires all inputs to be of the same type, find the 4546 // maximum type and extend them all. 4547 for (SDValue Op : Elts) 4548 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4549 4550 if (SVT.bitsGT(VT.getScalarType())) { 4551 for (SDValue &Op : Elts) { 4552 if (Op.isUndef()) 4553 Op = DAG.getUNDEF(SVT); 4554 else 4555 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4556 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4557 : DAG.getSExtOrTrunc(Op, DL, SVT); 4558 } 4559 } 4560 4561 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4562 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4563 return V; 4564 } 4565 4566 /// Gets or creates the specified node. 4567 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4568 FoldingSetNodeID ID; 4569 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4570 void *IP = nullptr; 4571 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4572 return SDValue(E, 0); 4573 4574 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4575 getVTList(VT)); 4576 CSEMap.InsertNode(N, IP); 4577 4578 InsertNode(N); 4579 SDValue V = SDValue(N, 0); 4580 NewSDValueDbgMsg(V, "Creating new node: ", this); 4581 return V; 4582 } 4583 4584 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4585 SDValue Operand) { 4586 SDNodeFlags Flags; 4587 if (Inserter) 4588 Flags = Inserter->getFlags(); 4589 return getNode(Opcode, DL, VT, Operand, Flags); 4590 } 4591 4592 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4593 SDValue Operand, const SDNodeFlags Flags) { 4594 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4595 "Operand is DELETED_NODE!"); 4596 // Constant fold unary operations with an integer constant operand. Even 4597 // opaque constant will be folded, because the folding of unary operations 4598 // doesn't create new constants with different values. Nevertheless, the 4599 // opaque flag is preserved during folding to prevent future folding with 4600 // other constants. 4601 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4602 const APInt &Val = C->getAPIntValue(); 4603 switch (Opcode) { 4604 default: break; 4605 case ISD::SIGN_EXTEND: 4606 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4607 C->isTargetOpcode(), C->isOpaque()); 4608 case ISD::TRUNCATE: 4609 if (C->isOpaque()) 4610 break; 4611 LLVM_FALLTHROUGH; 4612 case ISD::ANY_EXTEND: 4613 case ISD::ZERO_EXTEND: 4614 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4615 C->isTargetOpcode(), C->isOpaque()); 4616 case ISD::UINT_TO_FP: 4617 case ISD::SINT_TO_FP: { 4618 APFloat apf(EVTToAPFloatSemantics(VT), 4619 APInt::getNullValue(VT.getSizeInBits())); 4620 (void)apf.convertFromAPInt(Val, 4621 Opcode==ISD::SINT_TO_FP, 4622 APFloat::rmNearestTiesToEven); 4623 return getConstantFP(apf, DL, VT); 4624 } 4625 case ISD::BITCAST: 4626 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4627 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4628 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4629 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4630 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4631 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4632 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4633 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4634 break; 4635 case ISD::ABS: 4636 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4637 C->isOpaque()); 4638 case ISD::BITREVERSE: 4639 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4640 C->isOpaque()); 4641 case ISD::BSWAP: 4642 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4643 C->isOpaque()); 4644 case ISD::CTPOP: 4645 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4646 C->isOpaque()); 4647 case ISD::CTLZ: 4648 case ISD::CTLZ_ZERO_UNDEF: 4649 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4650 C->isOpaque()); 4651 case ISD::CTTZ: 4652 case ISD::CTTZ_ZERO_UNDEF: 4653 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4654 C->isOpaque()); 4655 case ISD::FP16_TO_FP: { 4656 bool Ignored; 4657 APFloat FPV(APFloat::IEEEhalf(), 4658 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4659 4660 // This can return overflow, underflow, or inexact; we don't care. 4661 // FIXME need to be more flexible about rounding mode. 4662 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4663 APFloat::rmNearestTiesToEven, &Ignored); 4664 return getConstantFP(FPV, DL, VT); 4665 } 4666 case ISD::STEP_VECTOR: { 4667 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4668 return V; 4669 break; 4670 } 4671 } 4672 } 4673 4674 // Constant fold unary operations with a floating point constant operand. 4675 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4676 APFloat V = C->getValueAPF(); // make copy 4677 switch (Opcode) { 4678 case ISD::FNEG: 4679 V.changeSign(); 4680 return getConstantFP(V, DL, VT); 4681 case ISD::FABS: 4682 V.clearSign(); 4683 return getConstantFP(V, DL, VT); 4684 case ISD::FCEIL: { 4685 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4686 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4687 return getConstantFP(V, DL, VT); 4688 break; 4689 } 4690 case ISD::FTRUNC: { 4691 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4692 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4693 return getConstantFP(V, DL, VT); 4694 break; 4695 } 4696 case ISD::FFLOOR: { 4697 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4698 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4699 return getConstantFP(V, DL, VT); 4700 break; 4701 } 4702 case ISD::FP_EXTEND: { 4703 bool ignored; 4704 // This can return overflow, underflow, or inexact; we don't care. 4705 // FIXME need to be more flexible about rounding mode. 4706 (void)V.convert(EVTToAPFloatSemantics(VT), 4707 APFloat::rmNearestTiesToEven, &ignored); 4708 return getConstantFP(V, DL, VT); 4709 } 4710 case ISD::FP_TO_SINT: 4711 case ISD::FP_TO_UINT: { 4712 bool ignored; 4713 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4714 // FIXME need to be more flexible about rounding mode. 4715 APFloat::opStatus s = 4716 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4717 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4718 break; 4719 return getConstant(IntVal, DL, VT); 4720 } 4721 case ISD::BITCAST: 4722 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4723 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4724 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4725 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4726 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4727 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4728 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4729 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4730 break; 4731 case ISD::FP_TO_FP16: { 4732 bool Ignored; 4733 // This can return overflow, underflow, or inexact; we don't care. 4734 // FIXME need to be more flexible about rounding mode. 4735 (void)V.convert(APFloat::IEEEhalf(), 4736 APFloat::rmNearestTiesToEven, &Ignored); 4737 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4738 } 4739 } 4740 } 4741 4742 // Constant fold unary operations with a vector integer or float operand. 4743 switch (Opcode) { 4744 default: 4745 // FIXME: Entirely reasonable to perform folding of other unary 4746 // operations here as the need arises. 4747 break; 4748 case ISD::FNEG: 4749 case ISD::FABS: 4750 case ISD::FCEIL: 4751 case ISD::FTRUNC: 4752 case ISD::FFLOOR: 4753 case ISD::FP_EXTEND: 4754 case ISD::FP_TO_SINT: 4755 case ISD::FP_TO_UINT: 4756 case ISD::TRUNCATE: 4757 case ISD::ANY_EXTEND: 4758 case ISD::ZERO_EXTEND: 4759 case ISD::SIGN_EXTEND: 4760 case ISD::UINT_TO_FP: 4761 case ISD::SINT_TO_FP: 4762 case ISD::ABS: 4763 case ISD::BITREVERSE: 4764 case ISD::BSWAP: 4765 case ISD::CTLZ: 4766 case ISD::CTLZ_ZERO_UNDEF: 4767 case ISD::CTTZ: 4768 case ISD::CTTZ_ZERO_UNDEF: 4769 case ISD::CTPOP: { 4770 SDValue Ops = {Operand}; 4771 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4772 return Fold; 4773 } 4774 } 4775 4776 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4777 switch (Opcode) { 4778 case ISD::STEP_VECTOR: 4779 assert(VT.isScalableVector() && 4780 "STEP_VECTOR can only be used with scalable types"); 4781 assert(VT.getScalarSizeInBits() >= 8 && 4782 "STEP_VECTOR can only be used with vectors of integers that are at " 4783 "least 8 bits wide"); 4784 assert(isa<ConstantSDNode>(Operand) && 4785 cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN( 4786 VT.getScalarSizeInBits()) && 4787 "Expected STEP_VECTOR integer constant to fit in " 4788 "the vector element type"); 4789 break; 4790 case ISD::FREEZE: 4791 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4792 break; 4793 case ISD::TokenFactor: 4794 case ISD::MERGE_VALUES: 4795 case ISD::CONCAT_VECTORS: 4796 return Operand; // Factor, merge or concat of one node? No need. 4797 case ISD::BUILD_VECTOR: { 4798 // Attempt to simplify BUILD_VECTOR. 4799 SDValue Ops[] = {Operand}; 4800 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4801 return V; 4802 break; 4803 } 4804 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4805 case ISD::FP_EXTEND: 4806 assert(VT.isFloatingPoint() && 4807 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4808 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4809 assert((!VT.isVector() || 4810 VT.getVectorElementCount() == 4811 Operand.getValueType().getVectorElementCount()) && 4812 "Vector element count mismatch!"); 4813 assert(Operand.getValueType().bitsLT(VT) && 4814 "Invalid fpext node, dst < src!"); 4815 if (Operand.isUndef()) 4816 return getUNDEF(VT); 4817 break; 4818 case ISD::FP_TO_SINT: 4819 case ISD::FP_TO_UINT: 4820 if (Operand.isUndef()) 4821 return getUNDEF(VT); 4822 break; 4823 case ISD::SINT_TO_FP: 4824 case ISD::UINT_TO_FP: 4825 // [us]itofp(undef) = 0, because the result value is bounded. 4826 if (Operand.isUndef()) 4827 return getConstantFP(0.0, DL, VT); 4828 break; 4829 case ISD::SIGN_EXTEND: 4830 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4831 "Invalid SIGN_EXTEND!"); 4832 assert(VT.isVector() == Operand.getValueType().isVector() && 4833 "SIGN_EXTEND result type type should be vector iff the operand " 4834 "type is vector!"); 4835 if (Operand.getValueType() == VT) return Operand; // noop extension 4836 assert((!VT.isVector() || 4837 VT.getVectorElementCount() == 4838 Operand.getValueType().getVectorElementCount()) && 4839 "Vector element count mismatch!"); 4840 assert(Operand.getValueType().bitsLT(VT) && 4841 "Invalid sext node, dst < src!"); 4842 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4843 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4844 if (OpOpcode == ISD::UNDEF) 4845 // sext(undef) = 0, because the top bits will all be the same. 4846 return getConstant(0, DL, VT); 4847 break; 4848 case ISD::ZERO_EXTEND: 4849 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4850 "Invalid ZERO_EXTEND!"); 4851 assert(VT.isVector() == Operand.getValueType().isVector() && 4852 "ZERO_EXTEND result type type should be vector iff the operand " 4853 "type is vector!"); 4854 if (Operand.getValueType() == VT) return Operand; // noop extension 4855 assert((!VT.isVector() || 4856 VT.getVectorElementCount() == 4857 Operand.getValueType().getVectorElementCount()) && 4858 "Vector element count mismatch!"); 4859 assert(Operand.getValueType().bitsLT(VT) && 4860 "Invalid zext node, dst < src!"); 4861 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4862 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4863 if (OpOpcode == ISD::UNDEF) 4864 // zext(undef) = 0, because the top bits will be zero. 4865 return getConstant(0, DL, VT); 4866 break; 4867 case ISD::ANY_EXTEND: 4868 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4869 "Invalid ANY_EXTEND!"); 4870 assert(VT.isVector() == Operand.getValueType().isVector() && 4871 "ANY_EXTEND result type type should be vector iff the operand " 4872 "type is vector!"); 4873 if (Operand.getValueType() == VT) return Operand; // noop extension 4874 assert((!VT.isVector() || 4875 VT.getVectorElementCount() == 4876 Operand.getValueType().getVectorElementCount()) && 4877 "Vector element count mismatch!"); 4878 assert(Operand.getValueType().bitsLT(VT) && 4879 "Invalid anyext node, dst < src!"); 4880 4881 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4882 OpOpcode == ISD::ANY_EXTEND) 4883 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4884 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4885 if (OpOpcode == ISD::UNDEF) 4886 return getUNDEF(VT); 4887 4888 // (ext (trunc x)) -> x 4889 if (OpOpcode == ISD::TRUNCATE) { 4890 SDValue OpOp = Operand.getOperand(0); 4891 if (OpOp.getValueType() == VT) { 4892 transferDbgValues(Operand, OpOp); 4893 return OpOp; 4894 } 4895 } 4896 break; 4897 case ISD::TRUNCATE: 4898 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4899 "Invalid TRUNCATE!"); 4900 assert(VT.isVector() == Operand.getValueType().isVector() && 4901 "TRUNCATE result type type should be vector iff the operand " 4902 "type is vector!"); 4903 if (Operand.getValueType() == VT) return Operand; // noop truncate 4904 assert((!VT.isVector() || 4905 VT.getVectorElementCount() == 4906 Operand.getValueType().getVectorElementCount()) && 4907 "Vector element count mismatch!"); 4908 assert(Operand.getValueType().bitsGT(VT) && 4909 "Invalid truncate node, src < dst!"); 4910 if (OpOpcode == ISD::TRUNCATE) 4911 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4912 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4913 OpOpcode == ISD::ANY_EXTEND) { 4914 // If the source is smaller than the dest, we still need an extend. 4915 if (Operand.getOperand(0).getValueType().getScalarType() 4916 .bitsLT(VT.getScalarType())) 4917 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4918 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4919 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4920 return Operand.getOperand(0); 4921 } 4922 if (OpOpcode == ISD::UNDEF) 4923 return getUNDEF(VT); 4924 break; 4925 case ISD::ANY_EXTEND_VECTOR_INREG: 4926 case ISD::ZERO_EXTEND_VECTOR_INREG: 4927 case ISD::SIGN_EXTEND_VECTOR_INREG: 4928 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4929 assert(Operand.getValueType().bitsLE(VT) && 4930 "The input must be the same size or smaller than the result."); 4931 assert(VT.getVectorMinNumElements() < 4932 Operand.getValueType().getVectorMinNumElements() && 4933 "The destination vector type must have fewer lanes than the input."); 4934 break; 4935 case ISD::ABS: 4936 assert(VT.isInteger() && VT == Operand.getValueType() && 4937 "Invalid ABS!"); 4938 if (OpOpcode == ISD::UNDEF) 4939 return getUNDEF(VT); 4940 break; 4941 case ISD::BSWAP: 4942 assert(VT.isInteger() && VT == Operand.getValueType() && 4943 "Invalid BSWAP!"); 4944 assert((VT.getScalarSizeInBits() % 16 == 0) && 4945 "BSWAP types must be a multiple of 16 bits!"); 4946 if (OpOpcode == ISD::UNDEF) 4947 return getUNDEF(VT); 4948 break; 4949 case ISD::BITREVERSE: 4950 assert(VT.isInteger() && VT == Operand.getValueType() && 4951 "Invalid BITREVERSE!"); 4952 if (OpOpcode == ISD::UNDEF) 4953 return getUNDEF(VT); 4954 break; 4955 case ISD::BITCAST: 4956 // Basic sanity checking. 4957 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4958 "Cannot BITCAST between types of different sizes!"); 4959 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4960 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4961 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4962 if (OpOpcode == ISD::UNDEF) 4963 return getUNDEF(VT); 4964 break; 4965 case ISD::SCALAR_TO_VECTOR: 4966 assert(VT.isVector() && !Operand.getValueType().isVector() && 4967 (VT.getVectorElementType() == Operand.getValueType() || 4968 (VT.getVectorElementType().isInteger() && 4969 Operand.getValueType().isInteger() && 4970 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4971 "Illegal SCALAR_TO_VECTOR node!"); 4972 if (OpOpcode == ISD::UNDEF) 4973 return getUNDEF(VT); 4974 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4975 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4976 isa<ConstantSDNode>(Operand.getOperand(1)) && 4977 Operand.getConstantOperandVal(1) == 0 && 4978 Operand.getOperand(0).getValueType() == VT) 4979 return Operand.getOperand(0); 4980 break; 4981 case ISD::FNEG: 4982 // Negation of an unknown bag of bits is still completely undefined. 4983 if (OpOpcode == ISD::UNDEF) 4984 return getUNDEF(VT); 4985 4986 if (OpOpcode == ISD::FNEG) // --X -> X 4987 return Operand.getOperand(0); 4988 break; 4989 case ISD::FABS: 4990 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4991 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4992 break; 4993 case ISD::VSCALE: 4994 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4995 break; 4996 case ISD::CTPOP: 4997 if (Operand.getValueType().getScalarType() == MVT::i1) 4998 return Operand; 4999 break; 5000 case ISD::CTLZ: 5001 case ISD::CTTZ: 5002 if (Operand.getValueType().getScalarType() == MVT::i1) 5003 return getNOT(DL, Operand, Operand.getValueType()); 5004 break; 5005 case ISD::VECREDUCE_SMIN: 5006 case ISD::VECREDUCE_UMAX: 5007 if (Operand.getValueType().getScalarType() == MVT::i1) 5008 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5009 break; 5010 case ISD::VECREDUCE_SMAX: 5011 case ISD::VECREDUCE_UMIN: 5012 if (Operand.getValueType().getScalarType() == MVT::i1) 5013 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5014 break; 5015 } 5016 5017 SDNode *N; 5018 SDVTList VTs = getVTList(VT); 5019 SDValue Ops[] = {Operand}; 5020 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5021 FoldingSetNodeID ID; 5022 AddNodeIDNode(ID, Opcode, VTs, Ops); 5023 void *IP = nullptr; 5024 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5025 E->intersectFlagsWith(Flags); 5026 return SDValue(E, 0); 5027 } 5028 5029 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5030 N->setFlags(Flags); 5031 createOperands(N, Ops); 5032 CSEMap.InsertNode(N, IP); 5033 } else { 5034 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5035 createOperands(N, Ops); 5036 } 5037 5038 InsertNode(N); 5039 SDValue V = SDValue(N, 0); 5040 NewSDValueDbgMsg(V, "Creating new node: ", this); 5041 return V; 5042 } 5043 5044 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5045 const APInt &C2) { 5046 switch (Opcode) { 5047 case ISD::ADD: return C1 + C2; 5048 case ISD::SUB: return C1 - C2; 5049 case ISD::MUL: return C1 * C2; 5050 case ISD::AND: return C1 & C2; 5051 case ISD::OR: return C1 | C2; 5052 case ISD::XOR: return C1 ^ C2; 5053 case ISD::SHL: return C1 << C2; 5054 case ISD::SRL: return C1.lshr(C2); 5055 case ISD::SRA: return C1.ashr(C2); 5056 case ISD::ROTL: return C1.rotl(C2); 5057 case ISD::ROTR: return C1.rotr(C2); 5058 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5059 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5060 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5061 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5062 case ISD::SADDSAT: return C1.sadd_sat(C2); 5063 case ISD::UADDSAT: return C1.uadd_sat(C2); 5064 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5065 case ISD::USUBSAT: return C1.usub_sat(C2); 5066 case ISD::UDIV: 5067 if (!C2.getBoolValue()) 5068 break; 5069 return C1.udiv(C2); 5070 case ISD::UREM: 5071 if (!C2.getBoolValue()) 5072 break; 5073 return C1.urem(C2); 5074 case ISD::SDIV: 5075 if (!C2.getBoolValue()) 5076 break; 5077 return C1.sdiv(C2); 5078 case ISD::SREM: 5079 if (!C2.getBoolValue()) 5080 break; 5081 return C1.srem(C2); 5082 case ISD::MULHS: { 5083 unsigned FullWidth = C1.getBitWidth() * 2; 5084 APInt C1Ext = C1.sext(FullWidth); 5085 APInt C2Ext = C2.sext(FullWidth); 5086 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5087 } 5088 case ISD::MULHU: { 5089 unsigned FullWidth = C1.getBitWidth() * 2; 5090 APInt C1Ext = C1.zext(FullWidth); 5091 APInt C2Ext = C2.zext(FullWidth); 5092 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5093 } 5094 } 5095 return llvm::None; 5096 } 5097 5098 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5099 const GlobalAddressSDNode *GA, 5100 const SDNode *N2) { 5101 if (GA->getOpcode() != ISD::GlobalAddress) 5102 return SDValue(); 5103 if (!TLI->isOffsetFoldingLegal(GA)) 5104 return SDValue(); 5105 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5106 if (!C2) 5107 return SDValue(); 5108 int64_t Offset = C2->getSExtValue(); 5109 switch (Opcode) { 5110 case ISD::ADD: break; 5111 case ISD::SUB: Offset = -uint64_t(Offset); break; 5112 default: return SDValue(); 5113 } 5114 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5115 GA->getOffset() + uint64_t(Offset)); 5116 } 5117 5118 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5119 switch (Opcode) { 5120 case ISD::SDIV: 5121 case ISD::UDIV: 5122 case ISD::SREM: 5123 case ISD::UREM: { 5124 // If a divisor is zero/undef or any element of a divisor vector is 5125 // zero/undef, the whole op is undef. 5126 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5127 SDValue Divisor = Ops[1]; 5128 if (Divisor.isUndef() || isNullConstant(Divisor)) 5129 return true; 5130 5131 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5132 llvm::any_of(Divisor->op_values(), 5133 [](SDValue V) { return V.isUndef() || 5134 isNullConstant(V); }); 5135 // TODO: Handle signed overflow. 5136 } 5137 // TODO: Handle oversized shifts. 5138 default: 5139 return false; 5140 } 5141 } 5142 5143 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5144 EVT VT, ArrayRef<SDValue> Ops) { 5145 // If the opcode is a target-specific ISD node, there's nothing we can 5146 // do here and the operand rules may not line up with the below, so 5147 // bail early. 5148 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5149 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5150 // foldCONCAT_VECTORS in getNode before this is called. 5151 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5152 return SDValue(); 5153 5154 // For now, the array Ops should only contain two values. 5155 // This enforcement will be removed once this function is merged with 5156 // FoldConstantVectorArithmetic 5157 if (Ops.size() != 2) 5158 return SDValue(); 5159 5160 if (isUndef(Opcode, Ops)) 5161 return getUNDEF(VT); 5162 5163 SDNode *N1 = Ops[0].getNode(); 5164 SDNode *N2 = Ops[1].getNode(); 5165 5166 // Handle the case of two scalars. 5167 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5168 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5169 if (C1->isOpaque() || C2->isOpaque()) 5170 return SDValue(); 5171 5172 Optional<APInt> FoldAttempt = 5173 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5174 if (!FoldAttempt) 5175 return SDValue(); 5176 5177 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5178 assert((!Folded || !VT.isVector()) && 5179 "Can't fold vectors ops with scalar operands"); 5180 return Folded; 5181 } 5182 } 5183 5184 // fold (add Sym, c) -> Sym+c 5185 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5186 return FoldSymbolOffset(Opcode, VT, GA, N2); 5187 if (TLI->isCommutativeBinOp(Opcode)) 5188 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5189 return FoldSymbolOffset(Opcode, VT, GA, N1); 5190 5191 // For fixed width vectors, extract each constant element and fold them 5192 // individually. Either input may be an undef value. 5193 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5194 N1->getOpcode() == ISD::SPLAT_VECTOR; 5195 if (!IsBVOrSV1 && !N1->isUndef()) 5196 return SDValue(); 5197 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5198 N2->getOpcode() == ISD::SPLAT_VECTOR; 5199 if (!IsBVOrSV2 && !N2->isUndef()) 5200 return SDValue(); 5201 // If both operands are undef, that's handled the same way as scalars. 5202 if (!IsBVOrSV1 && !IsBVOrSV2) 5203 return SDValue(); 5204 5205 EVT SVT = VT.getScalarType(); 5206 EVT LegalSVT = SVT; 5207 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5208 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5209 if (LegalSVT.bitsLT(SVT)) 5210 return SDValue(); 5211 } 5212 5213 SmallVector<SDValue, 4> Outputs; 5214 unsigned NumOps = 0; 5215 if (IsBVOrSV1) 5216 NumOps = std::max(NumOps, N1->getNumOperands()); 5217 if (IsBVOrSV2) 5218 NumOps = std::max(NumOps, N2->getNumOperands()); 5219 assert(NumOps != 0 && "Expected non-zero operands"); 5220 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5221 // one iteration for that. 5222 assert((!VT.isScalableVector() || NumOps == 1) && 5223 "Scalable vector should only have one scalar"); 5224 5225 for (unsigned I = 0; I != NumOps; ++I) { 5226 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5227 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5228 SDValue V1; 5229 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5230 V1 = N1->getOperand(I); 5231 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5232 V1 = N1->getOperand(0); 5233 else 5234 V1 = getUNDEF(SVT); 5235 5236 SDValue V2; 5237 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5238 V2 = N2->getOperand(I); 5239 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5240 V2 = N2->getOperand(0); 5241 else 5242 V2 = getUNDEF(SVT); 5243 5244 if (SVT.isInteger()) { 5245 if (V1.getValueType().bitsGT(SVT)) 5246 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5247 if (V2.getValueType().bitsGT(SVT)) 5248 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5249 } 5250 5251 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5252 return SDValue(); 5253 5254 // Fold one vector element. 5255 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5256 if (LegalSVT != SVT) 5257 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5258 5259 // Scalar folding only succeeded if the result is a constant or UNDEF. 5260 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5261 ScalarResult.getOpcode() != ISD::ConstantFP) 5262 return SDValue(); 5263 Outputs.push_back(ScalarResult); 5264 } 5265 5266 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5267 N2->getOpcode() == ISD::BUILD_VECTOR) { 5268 assert(VT.getVectorNumElements() == Outputs.size() && 5269 "Vector size mismatch!"); 5270 5271 // Build a big vector out of the scalar elements we generated. 5272 return getBuildVector(VT, SDLoc(), Outputs); 5273 } 5274 5275 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5276 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5277 "One operand should be a splat vector"); 5278 5279 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5280 return getSplatVector(VT, SDLoc(), Outputs[0]); 5281 } 5282 5283 // TODO: Merge with FoldConstantArithmetic 5284 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5285 const SDLoc &DL, EVT VT, 5286 ArrayRef<SDValue> Ops, 5287 const SDNodeFlags Flags) { 5288 // If the opcode is a target-specific ISD node, there's nothing we can 5289 // do here and the operand rules may not line up with the below, so 5290 // bail early. 5291 if (Opcode >= ISD::BUILTIN_OP_END) 5292 return SDValue(); 5293 5294 if (isUndef(Opcode, Ops)) 5295 return getUNDEF(VT); 5296 5297 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5298 if (!VT.isVector()) 5299 return SDValue(); 5300 5301 ElementCount NumElts = VT.getVectorElementCount(); 5302 5303 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5304 return !Op.getValueType().isVector() || 5305 Op.getValueType().getVectorElementCount() == NumElts; 5306 }; 5307 5308 auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5309 APInt SplatVal; 5310 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5311 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5312 (BV && BV->isConstant()) || 5313 (Op.getOpcode() == ISD::SPLAT_VECTOR && 5314 ISD::isConstantSplatVector(Op.getNode(), SplatVal)); 5315 }; 5316 5317 // All operands must be vector types with the same number of elements as 5318 // the result type and must be either UNDEF or a build vector of constant 5319 // or UNDEF scalars. 5320 if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) || 5321 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5322 return SDValue(); 5323 5324 // If we are comparing vectors, then the result needs to be a i1 boolean 5325 // that is then sign-extended back to the legal result type. 5326 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5327 5328 // Find legal integer scalar type for constant promotion and 5329 // ensure that its scalar size is at least as large as source. 5330 EVT LegalSVT = VT.getScalarType(); 5331 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5332 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5333 if (LegalSVT.bitsLT(VT.getScalarType())) 5334 return SDValue(); 5335 } 5336 5337 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5338 // only have one operand to check. For fixed-length vector types we may have 5339 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5340 unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5341 5342 // Constant fold each scalar lane separately. 5343 SmallVector<SDValue, 4> ScalarResults; 5344 for (unsigned I = 0; I != NumOperands; I++) { 5345 SmallVector<SDValue, 4> ScalarOps; 5346 for (SDValue Op : Ops) { 5347 EVT InSVT = Op.getValueType().getScalarType(); 5348 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5349 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5350 // We've checked that this is UNDEF or a constant of some kind. 5351 if (Op.isUndef()) 5352 ScalarOps.push_back(getUNDEF(InSVT)); 5353 else 5354 ScalarOps.push_back(Op); 5355 continue; 5356 } 5357 5358 SDValue ScalarOp = 5359 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5360 EVT ScalarVT = ScalarOp.getValueType(); 5361 5362 // Build vector (integer) scalar operands may need implicit 5363 // truncation - do this before constant folding. 5364 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5365 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5366 5367 ScalarOps.push_back(ScalarOp); 5368 } 5369 5370 // Constant fold the scalar operands. 5371 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5372 5373 // Legalize the (integer) scalar constant if necessary. 5374 if (LegalSVT != SVT) 5375 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5376 5377 // Scalar folding only succeeded if the result is a constant or UNDEF. 5378 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5379 ScalarResult.getOpcode() != ISD::ConstantFP) 5380 return SDValue(); 5381 ScalarResults.push_back(ScalarResult); 5382 } 5383 5384 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5385 : getBuildVector(VT, DL, ScalarResults); 5386 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5387 return V; 5388 } 5389 5390 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5391 EVT VT, SDValue N1, SDValue N2) { 5392 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5393 // should. That will require dealing with a potentially non-default 5394 // rounding mode, checking the "opStatus" return value from the APFloat 5395 // math calculations, and possibly other variations. 5396 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5397 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5398 if (N1CFP && N2CFP) { 5399 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5400 switch (Opcode) { 5401 case ISD::FADD: 5402 C1.add(C2, APFloat::rmNearestTiesToEven); 5403 return getConstantFP(C1, DL, VT); 5404 case ISD::FSUB: 5405 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5406 return getConstantFP(C1, DL, VT); 5407 case ISD::FMUL: 5408 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5409 return getConstantFP(C1, DL, VT); 5410 case ISD::FDIV: 5411 C1.divide(C2, APFloat::rmNearestTiesToEven); 5412 return getConstantFP(C1, DL, VT); 5413 case ISD::FREM: 5414 C1.mod(C2); 5415 return getConstantFP(C1, DL, VT); 5416 case ISD::FCOPYSIGN: 5417 C1.copySign(C2); 5418 return getConstantFP(C1, DL, VT); 5419 default: break; 5420 } 5421 } 5422 if (N1CFP && Opcode == ISD::FP_ROUND) { 5423 APFloat C1 = N1CFP->getValueAPF(); // make copy 5424 bool Unused; 5425 // This can return overflow, underflow, or inexact; we don't care. 5426 // FIXME need to be more flexible about rounding mode. 5427 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5428 &Unused); 5429 return getConstantFP(C1, DL, VT); 5430 } 5431 5432 switch (Opcode) { 5433 case ISD::FSUB: 5434 // -0.0 - undef --> undef (consistent with "fneg undef") 5435 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5436 return getUNDEF(VT); 5437 LLVM_FALLTHROUGH; 5438 5439 case ISD::FADD: 5440 case ISD::FMUL: 5441 case ISD::FDIV: 5442 case ISD::FREM: 5443 // If both operands are undef, the result is undef. If 1 operand is undef, 5444 // the result is NaN. This should match the behavior of the IR optimizer. 5445 if (N1.isUndef() && N2.isUndef()) 5446 return getUNDEF(VT); 5447 if (N1.isUndef() || N2.isUndef()) 5448 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5449 } 5450 return SDValue(); 5451 } 5452 5453 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5454 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5455 5456 // There's no need to assert on a byte-aligned pointer. All pointers are at 5457 // least byte aligned. 5458 if (A == Align(1)) 5459 return Val; 5460 5461 FoldingSetNodeID ID; 5462 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5463 ID.AddInteger(A.value()); 5464 5465 void *IP = nullptr; 5466 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5467 return SDValue(E, 0); 5468 5469 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5470 Val.getValueType(), A); 5471 createOperands(N, {Val}); 5472 5473 CSEMap.InsertNode(N, IP); 5474 InsertNode(N); 5475 5476 SDValue V(N, 0); 5477 NewSDValueDbgMsg(V, "Creating new node: ", this); 5478 return V; 5479 } 5480 5481 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5482 SDValue N1, SDValue N2) { 5483 SDNodeFlags Flags; 5484 if (Inserter) 5485 Flags = Inserter->getFlags(); 5486 return getNode(Opcode, DL, VT, N1, N2, Flags); 5487 } 5488 5489 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5490 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5491 assert(N1.getOpcode() != ISD::DELETED_NODE && 5492 N2.getOpcode() != ISD::DELETED_NODE && 5493 "Operand is DELETED_NODE!"); 5494 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5495 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5496 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5497 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5498 5499 // Canonicalize constant to RHS if commutative. 5500 if (TLI->isCommutativeBinOp(Opcode)) { 5501 if (N1C && !N2C) { 5502 std::swap(N1C, N2C); 5503 std::swap(N1, N2); 5504 } else if (N1CFP && !N2CFP) { 5505 std::swap(N1CFP, N2CFP); 5506 std::swap(N1, N2); 5507 } 5508 } 5509 5510 switch (Opcode) { 5511 default: break; 5512 case ISD::TokenFactor: 5513 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5514 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5515 // Fold trivial token factors. 5516 if (N1.getOpcode() == ISD::EntryToken) return N2; 5517 if (N2.getOpcode() == ISD::EntryToken) return N1; 5518 if (N1 == N2) return N1; 5519 break; 5520 case ISD::BUILD_VECTOR: { 5521 // Attempt to simplify BUILD_VECTOR. 5522 SDValue Ops[] = {N1, N2}; 5523 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5524 return V; 5525 break; 5526 } 5527 case ISD::CONCAT_VECTORS: { 5528 SDValue Ops[] = {N1, N2}; 5529 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5530 return V; 5531 break; 5532 } 5533 case ISD::AND: 5534 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5535 assert(N1.getValueType() == N2.getValueType() && 5536 N1.getValueType() == VT && "Binary operator types must match!"); 5537 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5538 // worth handling here. 5539 if (N2C && N2C->isNullValue()) 5540 return N2; 5541 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5542 return N1; 5543 break; 5544 case ISD::OR: 5545 case ISD::XOR: 5546 case ISD::ADD: 5547 case ISD::SUB: 5548 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5549 assert(N1.getValueType() == N2.getValueType() && 5550 N1.getValueType() == VT && "Binary operator types must match!"); 5551 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5552 // it's worth handling here. 5553 if (N2C && N2C->isNullValue()) 5554 return N1; 5555 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5556 VT.getVectorElementType() == MVT::i1) 5557 return getNode(ISD::XOR, DL, VT, N1, N2); 5558 break; 5559 case ISD::MUL: 5560 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5561 assert(N1.getValueType() == N2.getValueType() && 5562 N1.getValueType() == VT && "Binary operator types must match!"); 5563 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5564 return getNode(ISD::AND, DL, VT, N1, N2); 5565 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5566 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5567 const APInt &N2CImm = N2C->getAPIntValue(); 5568 return getVScale(DL, VT, MulImm * N2CImm); 5569 } 5570 break; 5571 case ISD::UDIV: 5572 case ISD::UREM: 5573 case ISD::MULHU: 5574 case ISD::MULHS: 5575 case ISD::SDIV: 5576 case ISD::SREM: 5577 case ISD::SADDSAT: 5578 case ISD::SSUBSAT: 5579 case ISD::UADDSAT: 5580 case ISD::USUBSAT: 5581 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5582 assert(N1.getValueType() == N2.getValueType() && 5583 N1.getValueType() == VT && "Binary operator types must match!"); 5584 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5585 // fold (add_sat x, y) -> (or x, y) for bool types. 5586 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5587 return getNode(ISD::OR, DL, VT, N1, N2); 5588 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5589 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5590 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5591 } 5592 break; 5593 case ISD::SMIN: 5594 case ISD::UMAX: 5595 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5596 assert(N1.getValueType() == N2.getValueType() && 5597 N1.getValueType() == VT && "Binary operator types must match!"); 5598 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5599 return getNode(ISD::OR, DL, VT, N1, N2); 5600 break; 5601 case ISD::SMAX: 5602 case ISD::UMIN: 5603 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5604 assert(N1.getValueType() == N2.getValueType() && 5605 N1.getValueType() == VT && "Binary operator types must match!"); 5606 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5607 return getNode(ISD::AND, DL, VT, N1, N2); 5608 break; 5609 case ISD::FADD: 5610 case ISD::FSUB: 5611 case ISD::FMUL: 5612 case ISD::FDIV: 5613 case ISD::FREM: 5614 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5615 assert(N1.getValueType() == N2.getValueType() && 5616 N1.getValueType() == VT && "Binary operator types must match!"); 5617 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5618 return V; 5619 break; 5620 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5621 assert(N1.getValueType() == VT && 5622 N1.getValueType().isFloatingPoint() && 5623 N2.getValueType().isFloatingPoint() && 5624 "Invalid FCOPYSIGN!"); 5625 break; 5626 case ISD::SHL: 5627 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5628 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5629 const APInt &ShiftImm = N2C->getAPIntValue(); 5630 return getVScale(DL, VT, MulImm << ShiftImm); 5631 } 5632 LLVM_FALLTHROUGH; 5633 case ISD::SRA: 5634 case ISD::SRL: 5635 if (SDValue V = simplifyShift(N1, N2)) 5636 return V; 5637 LLVM_FALLTHROUGH; 5638 case ISD::ROTL: 5639 case ISD::ROTR: 5640 assert(VT == N1.getValueType() && 5641 "Shift operators return type must be the same as their first arg"); 5642 assert(VT.isInteger() && N2.getValueType().isInteger() && 5643 "Shifts only work on integers"); 5644 assert((!VT.isVector() || VT == N2.getValueType()) && 5645 "Vector shift amounts must be in the same as their first arg"); 5646 // Verify that the shift amount VT is big enough to hold valid shift 5647 // amounts. This catches things like trying to shift an i1024 value by an 5648 // i8, which is easy to fall into in generic code that uses 5649 // TLI.getShiftAmount(). 5650 assert(N2.getValueType().getScalarSizeInBits() >= 5651 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5652 "Invalid use of small shift amount with oversized value!"); 5653 5654 // Always fold shifts of i1 values so the code generator doesn't need to 5655 // handle them. Since we know the size of the shift has to be less than the 5656 // size of the value, the shift/rotate count is guaranteed to be zero. 5657 if (VT == MVT::i1) 5658 return N1; 5659 if (N2C && N2C->isNullValue()) 5660 return N1; 5661 break; 5662 case ISD::FP_ROUND: 5663 assert(VT.isFloatingPoint() && 5664 N1.getValueType().isFloatingPoint() && 5665 VT.bitsLE(N1.getValueType()) && 5666 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5667 "Invalid FP_ROUND!"); 5668 if (N1.getValueType() == VT) return N1; // noop conversion. 5669 break; 5670 case ISD::AssertSext: 5671 case ISD::AssertZext: { 5672 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5673 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5674 assert(VT.isInteger() && EVT.isInteger() && 5675 "Cannot *_EXTEND_INREG FP types"); 5676 assert(!EVT.isVector() && 5677 "AssertSExt/AssertZExt type should be the vector element type " 5678 "rather than the vector type!"); 5679 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5680 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5681 break; 5682 } 5683 case ISD::SIGN_EXTEND_INREG: { 5684 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5685 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5686 assert(VT.isInteger() && EVT.isInteger() && 5687 "Cannot *_EXTEND_INREG FP types"); 5688 assert(EVT.isVector() == VT.isVector() && 5689 "SIGN_EXTEND_INREG type should be vector iff the operand " 5690 "type is vector!"); 5691 assert((!EVT.isVector() || 5692 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5693 "Vector element counts must match in SIGN_EXTEND_INREG"); 5694 assert(EVT.bitsLE(VT) && "Not extending!"); 5695 if (EVT == VT) return N1; // Not actually extending 5696 5697 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5698 unsigned FromBits = EVT.getScalarSizeInBits(); 5699 Val <<= Val.getBitWidth() - FromBits; 5700 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5701 return getConstant(Val, DL, ConstantVT); 5702 }; 5703 5704 if (N1C) { 5705 const APInt &Val = N1C->getAPIntValue(); 5706 return SignExtendInReg(Val, VT); 5707 } 5708 5709 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5710 SmallVector<SDValue, 8> Ops; 5711 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5712 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5713 SDValue Op = N1.getOperand(i); 5714 if (Op.isUndef()) { 5715 Ops.push_back(getUNDEF(OpVT)); 5716 continue; 5717 } 5718 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5719 APInt Val = C->getAPIntValue(); 5720 Ops.push_back(SignExtendInReg(Val, OpVT)); 5721 } 5722 return getBuildVector(VT, DL, Ops); 5723 } 5724 break; 5725 } 5726 case ISD::FP_TO_SINT_SAT: 5727 case ISD::FP_TO_UINT_SAT: { 5728 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5729 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5730 assert(N1.getValueType().isVector() == VT.isVector() && 5731 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5732 "vector!"); 5733 assert((!VT.isVector() || VT.getVectorNumElements() == 5734 N1.getValueType().getVectorNumElements()) && 5735 "Vector element counts must match in FP_TO_*INT_SAT"); 5736 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5737 "Type to saturate to must be a scalar."); 5738 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5739 "Not extending!"); 5740 break; 5741 } 5742 case ISD::EXTRACT_VECTOR_ELT: 5743 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5744 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5745 element type of the vector."); 5746 5747 // Extract from an undefined value or using an undefined index is undefined. 5748 if (N1.isUndef() || N2.isUndef()) 5749 return getUNDEF(VT); 5750 5751 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5752 // vectors. For scalable vectors we will provide appropriate support for 5753 // dealing with arbitrary indices. 5754 if (N2C && N1.getValueType().isFixedLengthVector() && 5755 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5756 return getUNDEF(VT); 5757 5758 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5759 // expanding copies of large vectors from registers. This only works for 5760 // fixed length vectors, since we need to know the exact number of 5761 // elements. 5762 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5763 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5764 unsigned Factor = 5765 N1.getOperand(0).getValueType().getVectorNumElements(); 5766 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5767 N1.getOperand(N2C->getZExtValue() / Factor), 5768 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5769 } 5770 5771 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5772 // lowering is expanding large vector constants. 5773 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5774 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5775 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5776 N1.getValueType().isFixedLengthVector()) && 5777 "BUILD_VECTOR used for scalable vectors"); 5778 unsigned Index = 5779 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5780 SDValue Elt = N1.getOperand(Index); 5781 5782 if (VT != Elt.getValueType()) 5783 // If the vector element type is not legal, the BUILD_VECTOR operands 5784 // are promoted and implicitly truncated, and the result implicitly 5785 // extended. Make that explicit here. 5786 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5787 5788 return Elt; 5789 } 5790 5791 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5792 // operations are lowered to scalars. 5793 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5794 // If the indices are the same, return the inserted element else 5795 // if the indices are known different, extract the element from 5796 // the original vector. 5797 SDValue N1Op2 = N1.getOperand(2); 5798 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5799 5800 if (N1Op2C && N2C) { 5801 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5802 if (VT == N1.getOperand(1).getValueType()) 5803 return N1.getOperand(1); 5804 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5805 } 5806 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5807 } 5808 } 5809 5810 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5811 // when vector types are scalarized and v1iX is legal. 5812 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5813 // Here we are completely ignoring the extract element index (N2), 5814 // which is fine for fixed width vectors, since any index other than 0 5815 // is undefined anyway. However, this cannot be ignored for scalable 5816 // vectors - in theory we could support this, but we don't want to do this 5817 // without a profitability check. 5818 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5819 N1.getValueType().isFixedLengthVector() && 5820 N1.getValueType().getVectorNumElements() == 1) { 5821 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5822 N1.getOperand(1)); 5823 } 5824 break; 5825 case ISD::EXTRACT_ELEMENT: 5826 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5827 assert(!N1.getValueType().isVector() && !VT.isVector() && 5828 (N1.getValueType().isInteger() == VT.isInteger()) && 5829 N1.getValueType() != VT && 5830 "Wrong types for EXTRACT_ELEMENT!"); 5831 5832 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5833 // 64-bit integers into 32-bit parts. Instead of building the extract of 5834 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5835 if (N1.getOpcode() == ISD::BUILD_PAIR) 5836 return N1.getOperand(N2C->getZExtValue()); 5837 5838 // EXTRACT_ELEMENT of a constant int is also very common. 5839 if (N1C) { 5840 unsigned ElementSize = VT.getSizeInBits(); 5841 unsigned Shift = ElementSize * N2C->getZExtValue(); 5842 const APInt &Val = N1C->getAPIntValue(); 5843 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5844 } 5845 break; 5846 case ISD::EXTRACT_SUBVECTOR: { 5847 EVT N1VT = N1.getValueType(); 5848 assert(VT.isVector() && N1VT.isVector() && 5849 "Extract subvector VTs must be vectors!"); 5850 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5851 "Extract subvector VTs must have the same element type!"); 5852 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5853 "Cannot extract a scalable vector from a fixed length vector!"); 5854 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5855 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5856 "Extract subvector must be from larger vector to smaller vector!"); 5857 assert(N2C && "Extract subvector index must be a constant"); 5858 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5859 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5860 N1VT.getVectorMinNumElements()) && 5861 "Extract subvector overflow!"); 5862 assert(N2C->getAPIntValue().getBitWidth() == 5863 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5864 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5865 5866 // Trivial extraction. 5867 if (VT == N1VT) 5868 return N1; 5869 5870 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5871 if (N1.isUndef()) 5872 return getUNDEF(VT); 5873 5874 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5875 // the concat have the same type as the extract. 5876 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5877 VT == N1.getOperand(0).getValueType()) { 5878 unsigned Factor = VT.getVectorMinNumElements(); 5879 return N1.getOperand(N2C->getZExtValue() / Factor); 5880 } 5881 5882 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5883 // during shuffle legalization. 5884 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5885 VT == N1.getOperand(1).getValueType()) 5886 return N1.getOperand(1); 5887 break; 5888 } 5889 } 5890 5891 // Perform trivial constant folding. 5892 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5893 return SV; 5894 5895 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5896 return V; 5897 5898 // Canonicalize an UNDEF to the RHS, even over a constant. 5899 if (N1.isUndef()) { 5900 if (TLI->isCommutativeBinOp(Opcode)) { 5901 std::swap(N1, N2); 5902 } else { 5903 switch (Opcode) { 5904 case ISD::SIGN_EXTEND_INREG: 5905 case ISD::SUB: 5906 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5907 case ISD::UDIV: 5908 case ISD::SDIV: 5909 case ISD::UREM: 5910 case ISD::SREM: 5911 case ISD::SSUBSAT: 5912 case ISD::USUBSAT: 5913 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5914 } 5915 } 5916 } 5917 5918 // Fold a bunch of operators when the RHS is undef. 5919 if (N2.isUndef()) { 5920 switch (Opcode) { 5921 case ISD::XOR: 5922 if (N1.isUndef()) 5923 // Handle undef ^ undef -> 0 special case. This is a common 5924 // idiom (misuse). 5925 return getConstant(0, DL, VT); 5926 LLVM_FALLTHROUGH; 5927 case ISD::ADD: 5928 case ISD::SUB: 5929 case ISD::UDIV: 5930 case ISD::SDIV: 5931 case ISD::UREM: 5932 case ISD::SREM: 5933 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5934 case ISD::MUL: 5935 case ISD::AND: 5936 case ISD::SSUBSAT: 5937 case ISD::USUBSAT: 5938 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5939 case ISD::OR: 5940 case ISD::SADDSAT: 5941 case ISD::UADDSAT: 5942 return getAllOnesConstant(DL, VT); 5943 } 5944 } 5945 5946 // Memoize this node if possible. 5947 SDNode *N; 5948 SDVTList VTs = getVTList(VT); 5949 SDValue Ops[] = {N1, N2}; 5950 if (VT != MVT::Glue) { 5951 FoldingSetNodeID ID; 5952 AddNodeIDNode(ID, Opcode, VTs, Ops); 5953 void *IP = nullptr; 5954 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5955 E->intersectFlagsWith(Flags); 5956 return SDValue(E, 0); 5957 } 5958 5959 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5960 N->setFlags(Flags); 5961 createOperands(N, Ops); 5962 CSEMap.InsertNode(N, IP); 5963 } else { 5964 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5965 createOperands(N, Ops); 5966 } 5967 5968 InsertNode(N); 5969 SDValue V = SDValue(N, 0); 5970 NewSDValueDbgMsg(V, "Creating new node: ", this); 5971 return V; 5972 } 5973 5974 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5975 SDValue N1, SDValue N2, SDValue N3) { 5976 SDNodeFlags Flags; 5977 if (Inserter) 5978 Flags = Inserter->getFlags(); 5979 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5980 } 5981 5982 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5983 SDValue N1, SDValue N2, SDValue N3, 5984 const SDNodeFlags Flags) { 5985 assert(N1.getOpcode() != ISD::DELETED_NODE && 5986 N2.getOpcode() != ISD::DELETED_NODE && 5987 N3.getOpcode() != ISD::DELETED_NODE && 5988 "Operand is DELETED_NODE!"); 5989 // Perform various simplifications. 5990 switch (Opcode) { 5991 case ISD::FMA: { 5992 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5993 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5994 N3.getValueType() == VT && "FMA types must match!"); 5995 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5996 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5997 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5998 if (N1CFP && N2CFP && N3CFP) { 5999 APFloat V1 = N1CFP->getValueAPF(); 6000 const APFloat &V2 = N2CFP->getValueAPF(); 6001 const APFloat &V3 = N3CFP->getValueAPF(); 6002 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6003 return getConstantFP(V1, DL, VT); 6004 } 6005 break; 6006 } 6007 case ISD::BUILD_VECTOR: { 6008 // Attempt to simplify BUILD_VECTOR. 6009 SDValue Ops[] = {N1, N2, N3}; 6010 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6011 return V; 6012 break; 6013 } 6014 case ISD::CONCAT_VECTORS: { 6015 SDValue Ops[] = {N1, N2, N3}; 6016 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6017 return V; 6018 break; 6019 } 6020 case ISD::SETCC: { 6021 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6022 assert(N1.getValueType() == N2.getValueType() && 6023 "SETCC operands must have the same type!"); 6024 assert(VT.isVector() == N1.getValueType().isVector() && 6025 "SETCC type should be vector iff the operand type is vector!"); 6026 assert((!VT.isVector() || VT.getVectorElementCount() == 6027 N1.getValueType().getVectorElementCount()) && 6028 "SETCC vector element counts must match!"); 6029 // Use FoldSetCC to simplify SETCC's. 6030 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6031 return V; 6032 // Vector constant folding. 6033 SDValue Ops[] = {N1, N2, N3}; 6034 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 6035 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6036 return V; 6037 } 6038 break; 6039 } 6040 case ISD::SELECT: 6041 case ISD::VSELECT: 6042 if (SDValue V = simplifySelect(N1, N2, N3)) 6043 return V; 6044 break; 6045 case ISD::VECTOR_SHUFFLE: 6046 llvm_unreachable("should use getVectorShuffle constructor!"); 6047 case ISD::INSERT_VECTOR_ELT: { 6048 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6049 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6050 // for scalable vectors where we will generate appropriate code to 6051 // deal with out-of-bounds cases correctly. 6052 if (N3C && N1.getValueType().isFixedLengthVector() && 6053 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6054 return getUNDEF(VT); 6055 6056 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6057 if (N3.isUndef()) 6058 return getUNDEF(VT); 6059 6060 // If the inserted element is an UNDEF, just use the input vector. 6061 if (N2.isUndef()) 6062 return N1; 6063 6064 break; 6065 } 6066 case ISD::INSERT_SUBVECTOR: { 6067 // Inserting undef into undef is still undef. 6068 if (N1.isUndef() && N2.isUndef()) 6069 return getUNDEF(VT); 6070 6071 EVT N2VT = N2.getValueType(); 6072 assert(VT == N1.getValueType() && 6073 "Dest and insert subvector source types must match!"); 6074 assert(VT.isVector() && N2VT.isVector() && 6075 "Insert subvector VTs must be vectors!"); 6076 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6077 "Cannot insert a scalable vector into a fixed length vector!"); 6078 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6079 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6080 "Insert subvector must be from smaller vector to larger vector!"); 6081 assert(isa<ConstantSDNode>(N3) && 6082 "Insert subvector index must be constant"); 6083 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6084 (N2VT.getVectorMinNumElements() + 6085 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6086 VT.getVectorMinNumElements()) && 6087 "Insert subvector overflow!"); 6088 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6089 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6090 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6091 6092 // Trivial insertion. 6093 if (VT == N2VT) 6094 return N2; 6095 6096 // If this is an insert of an extracted vector into an undef vector, we 6097 // can just use the input to the extract. 6098 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6099 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6100 return N2.getOperand(0); 6101 break; 6102 } 6103 case ISD::BITCAST: 6104 // Fold bit_convert nodes from a type to themselves. 6105 if (N1.getValueType() == VT) 6106 return N1; 6107 break; 6108 } 6109 6110 // Memoize node if it doesn't produce a flag. 6111 SDNode *N; 6112 SDVTList VTs = getVTList(VT); 6113 SDValue Ops[] = {N1, N2, N3}; 6114 if (VT != MVT::Glue) { 6115 FoldingSetNodeID ID; 6116 AddNodeIDNode(ID, Opcode, VTs, Ops); 6117 void *IP = nullptr; 6118 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6119 E->intersectFlagsWith(Flags); 6120 return SDValue(E, 0); 6121 } 6122 6123 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6124 N->setFlags(Flags); 6125 createOperands(N, Ops); 6126 CSEMap.InsertNode(N, IP); 6127 } else { 6128 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6129 createOperands(N, Ops); 6130 } 6131 6132 InsertNode(N); 6133 SDValue V = SDValue(N, 0); 6134 NewSDValueDbgMsg(V, "Creating new node: ", this); 6135 return V; 6136 } 6137 6138 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6139 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6140 SDValue Ops[] = { N1, N2, N3, N4 }; 6141 return getNode(Opcode, DL, VT, Ops); 6142 } 6143 6144 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6145 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6146 SDValue N5) { 6147 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6148 return getNode(Opcode, DL, VT, Ops); 6149 } 6150 6151 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6152 /// the incoming stack arguments to be loaded from the stack. 6153 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6154 SmallVector<SDValue, 8> ArgChains; 6155 6156 // Include the original chain at the beginning of the list. When this is 6157 // used by target LowerCall hooks, this helps legalize find the 6158 // CALLSEQ_BEGIN node. 6159 ArgChains.push_back(Chain); 6160 6161 // Add a chain value for each stack argument. 6162 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6163 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6164 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6165 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6166 if (FI->getIndex() < 0) 6167 ArgChains.push_back(SDValue(L, 1)); 6168 6169 // Build a tokenfactor for all the chains. 6170 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6171 } 6172 6173 /// getMemsetValue - Vectorized representation of the memset value 6174 /// operand. 6175 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6176 const SDLoc &dl) { 6177 assert(!Value.isUndef()); 6178 6179 unsigned NumBits = VT.getScalarSizeInBits(); 6180 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6181 assert(C->getAPIntValue().getBitWidth() == 8); 6182 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6183 if (VT.isInteger()) { 6184 bool IsOpaque = VT.getSizeInBits() > 64 || 6185 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6186 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6187 } 6188 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6189 VT); 6190 } 6191 6192 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6193 EVT IntVT = VT.getScalarType(); 6194 if (!IntVT.isInteger()) 6195 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6196 6197 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6198 if (NumBits > 8) { 6199 // Use a multiplication with 0x010101... to extend the input to the 6200 // required length. 6201 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6202 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6203 DAG.getConstant(Magic, dl, IntVT)); 6204 } 6205 6206 if (VT != Value.getValueType() && !VT.isInteger()) 6207 Value = DAG.getBitcast(VT.getScalarType(), Value); 6208 if (VT != Value.getValueType()) 6209 Value = DAG.getSplatBuildVector(VT, dl, Value); 6210 6211 return Value; 6212 } 6213 6214 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6215 /// used when a memcpy is turned into a memset when the source is a constant 6216 /// string ptr. 6217 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6218 const TargetLowering &TLI, 6219 const ConstantDataArraySlice &Slice) { 6220 // Handle vector with all elements zero. 6221 if (Slice.Array == nullptr) { 6222 if (VT.isInteger()) 6223 return DAG.getConstant(0, dl, VT); 6224 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6225 return DAG.getConstantFP(0.0, dl, VT); 6226 if (VT.isVector()) { 6227 unsigned NumElts = VT.getVectorNumElements(); 6228 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6229 return DAG.getNode(ISD::BITCAST, dl, VT, 6230 DAG.getConstant(0, dl, 6231 EVT::getVectorVT(*DAG.getContext(), 6232 EltVT, NumElts))); 6233 } 6234 llvm_unreachable("Expected type!"); 6235 } 6236 6237 assert(!VT.isVector() && "Can't handle vector type here!"); 6238 unsigned NumVTBits = VT.getSizeInBits(); 6239 unsigned NumVTBytes = NumVTBits / 8; 6240 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6241 6242 APInt Val(NumVTBits, 0); 6243 if (DAG.getDataLayout().isLittleEndian()) { 6244 for (unsigned i = 0; i != NumBytes; ++i) 6245 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6246 } else { 6247 for (unsigned i = 0; i != NumBytes; ++i) 6248 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6249 } 6250 6251 // If the "cost" of materializing the integer immediate is less than the cost 6252 // of a load, then it is cost effective to turn the load into the immediate. 6253 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6254 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6255 return DAG.getConstant(Val, dl, VT); 6256 return SDValue(nullptr, 0); 6257 } 6258 6259 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6260 const SDLoc &DL, 6261 const SDNodeFlags Flags) { 6262 EVT VT = Base.getValueType(); 6263 SDValue Index; 6264 6265 if (Offset.isScalable()) 6266 Index = getVScale(DL, Base.getValueType(), 6267 APInt(Base.getValueSizeInBits().getFixedSize(), 6268 Offset.getKnownMinSize())); 6269 else 6270 Index = getConstant(Offset.getFixedSize(), DL, VT); 6271 6272 return getMemBasePlusOffset(Base, Index, DL, Flags); 6273 } 6274 6275 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6276 const SDLoc &DL, 6277 const SDNodeFlags Flags) { 6278 assert(Offset.getValueType().isInteger()); 6279 EVT BasePtrVT = Ptr.getValueType(); 6280 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6281 } 6282 6283 /// Returns true if memcpy source is constant data. 6284 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6285 uint64_t SrcDelta = 0; 6286 GlobalAddressSDNode *G = nullptr; 6287 if (Src.getOpcode() == ISD::GlobalAddress) 6288 G = cast<GlobalAddressSDNode>(Src); 6289 else if (Src.getOpcode() == ISD::ADD && 6290 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6291 Src.getOperand(1).getOpcode() == ISD::Constant) { 6292 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6293 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6294 } 6295 if (!G) 6296 return false; 6297 6298 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6299 SrcDelta + G->getOffset()); 6300 } 6301 6302 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6303 SelectionDAG &DAG) { 6304 // On Darwin, -Os means optimize for size without hurting performance, so 6305 // only really optimize for size when -Oz (MinSize) is used. 6306 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6307 return MF.getFunction().hasMinSize(); 6308 return DAG.shouldOptForSize(); 6309 } 6310 6311 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6312 SmallVector<SDValue, 32> &OutChains, unsigned From, 6313 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6314 SmallVector<SDValue, 16> &OutStoreChains) { 6315 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6316 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6317 SmallVector<SDValue, 16> GluedLoadChains; 6318 for (unsigned i = From; i < To; ++i) { 6319 OutChains.push_back(OutLoadChains[i]); 6320 GluedLoadChains.push_back(OutLoadChains[i]); 6321 } 6322 6323 // Chain for all loads. 6324 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6325 GluedLoadChains); 6326 6327 for (unsigned i = From; i < To; ++i) { 6328 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6329 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6330 ST->getBasePtr(), ST->getMemoryVT(), 6331 ST->getMemOperand()); 6332 OutChains.push_back(NewStore); 6333 } 6334 } 6335 6336 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6337 SDValue Chain, SDValue Dst, SDValue Src, 6338 uint64_t Size, Align Alignment, 6339 bool isVol, bool AlwaysInline, 6340 MachinePointerInfo DstPtrInfo, 6341 MachinePointerInfo SrcPtrInfo, 6342 const AAMDNodes &AAInfo) { 6343 // Turn a memcpy of undef to nop. 6344 // FIXME: We need to honor volatile even is Src is undef. 6345 if (Src.isUndef()) 6346 return Chain; 6347 6348 // Expand memcpy to a series of load and store ops if the size operand falls 6349 // below a certain threshold. 6350 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6351 // rather than maybe a humongous number of loads and stores. 6352 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6353 const DataLayout &DL = DAG.getDataLayout(); 6354 LLVMContext &C = *DAG.getContext(); 6355 std::vector<EVT> MemOps; 6356 bool DstAlignCanChange = false; 6357 MachineFunction &MF = DAG.getMachineFunction(); 6358 MachineFrameInfo &MFI = MF.getFrameInfo(); 6359 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6360 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6361 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6362 DstAlignCanChange = true; 6363 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6364 if (!SrcAlign || Alignment > *SrcAlign) 6365 SrcAlign = Alignment; 6366 assert(SrcAlign && "SrcAlign must be set"); 6367 ConstantDataArraySlice Slice; 6368 // If marked as volatile, perform a copy even when marked as constant. 6369 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6370 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6371 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6372 const MemOp Op = isZeroConstant 6373 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6374 /*IsZeroMemset*/ true, isVol) 6375 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6376 *SrcAlign, isVol, CopyFromConstant); 6377 if (!TLI.findOptimalMemOpLowering( 6378 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6379 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6380 return SDValue(); 6381 6382 if (DstAlignCanChange) { 6383 Type *Ty = MemOps[0].getTypeForEVT(C); 6384 Align NewAlign = DL.getABITypeAlign(Ty); 6385 6386 // Don't promote to an alignment that would require dynamic stack 6387 // realignment. 6388 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6389 if (!TRI->hasStackRealignment(MF)) 6390 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6391 NewAlign = NewAlign / 2; 6392 6393 if (NewAlign > Alignment) { 6394 // Give the stack frame object a larger alignment if needed. 6395 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6396 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6397 Alignment = NewAlign; 6398 } 6399 } 6400 6401 // Prepare AAInfo for loads/stores after lowering this memcpy. 6402 AAMDNodes NewAAInfo = AAInfo; 6403 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6404 6405 MachineMemOperand::Flags MMOFlags = 6406 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6407 SmallVector<SDValue, 16> OutLoadChains; 6408 SmallVector<SDValue, 16> OutStoreChains; 6409 SmallVector<SDValue, 32> OutChains; 6410 unsigned NumMemOps = MemOps.size(); 6411 uint64_t SrcOff = 0, DstOff = 0; 6412 for (unsigned i = 0; i != NumMemOps; ++i) { 6413 EVT VT = MemOps[i]; 6414 unsigned VTSize = VT.getSizeInBits() / 8; 6415 SDValue Value, Store; 6416 6417 if (VTSize > Size) { 6418 // Issuing an unaligned load / store pair that overlaps with the previous 6419 // pair. Adjust the offset accordingly. 6420 assert(i == NumMemOps-1 && i != 0); 6421 SrcOff -= VTSize - Size; 6422 DstOff -= VTSize - Size; 6423 } 6424 6425 if (CopyFromConstant && 6426 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6427 // It's unlikely a store of a vector immediate can be done in a single 6428 // instruction. It would require a load from a constantpool first. 6429 // We only handle zero vectors here. 6430 // FIXME: Handle other cases where store of vector immediate is done in 6431 // a single instruction. 6432 ConstantDataArraySlice SubSlice; 6433 if (SrcOff < Slice.Length) { 6434 SubSlice = Slice; 6435 SubSlice.move(SrcOff); 6436 } else { 6437 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6438 SubSlice.Array = nullptr; 6439 SubSlice.Offset = 0; 6440 SubSlice.Length = VTSize; 6441 } 6442 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6443 if (Value.getNode()) { 6444 Store = DAG.getStore( 6445 Chain, dl, Value, 6446 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6447 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6448 OutChains.push_back(Store); 6449 } 6450 } 6451 6452 if (!Store.getNode()) { 6453 // The type might not be legal for the target. This should only happen 6454 // if the type is smaller than a legal type, as on PPC, so the right 6455 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6456 // to Load/Store if NVT==VT. 6457 // FIXME does the case above also need this? 6458 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6459 assert(NVT.bitsGE(VT)); 6460 6461 bool isDereferenceable = 6462 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6463 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6464 if (isDereferenceable) 6465 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6466 6467 Value = DAG.getExtLoad( 6468 ISD::EXTLOAD, dl, NVT, Chain, 6469 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6470 SrcPtrInfo.getWithOffset(SrcOff), VT, 6471 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6472 OutLoadChains.push_back(Value.getValue(1)); 6473 6474 Store = DAG.getTruncStore( 6475 Chain, dl, Value, 6476 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6477 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6478 OutStoreChains.push_back(Store); 6479 } 6480 SrcOff += VTSize; 6481 DstOff += VTSize; 6482 Size -= VTSize; 6483 } 6484 6485 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6486 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6487 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6488 6489 if (NumLdStInMemcpy) { 6490 // It may be that memcpy might be converted to memset if it's memcpy 6491 // of constants. In such a case, we won't have loads and stores, but 6492 // just stores. In the absence of loads, there is nothing to gang up. 6493 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6494 // If target does not care, just leave as it. 6495 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6496 OutChains.push_back(OutLoadChains[i]); 6497 OutChains.push_back(OutStoreChains[i]); 6498 } 6499 } else { 6500 // Ld/St less than/equal limit set by target. 6501 if (NumLdStInMemcpy <= GluedLdStLimit) { 6502 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6503 NumLdStInMemcpy, OutLoadChains, 6504 OutStoreChains); 6505 } else { 6506 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6507 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6508 unsigned GlueIter = 0; 6509 6510 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6511 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6512 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6513 6514 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6515 OutLoadChains, OutStoreChains); 6516 GlueIter += GluedLdStLimit; 6517 } 6518 6519 // Residual ld/st. 6520 if (RemainingLdStInMemcpy) { 6521 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6522 RemainingLdStInMemcpy, OutLoadChains, 6523 OutStoreChains); 6524 } 6525 } 6526 } 6527 } 6528 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6529 } 6530 6531 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6532 SDValue Chain, SDValue Dst, SDValue Src, 6533 uint64_t Size, Align Alignment, 6534 bool isVol, bool AlwaysInline, 6535 MachinePointerInfo DstPtrInfo, 6536 MachinePointerInfo SrcPtrInfo, 6537 const AAMDNodes &AAInfo) { 6538 // Turn a memmove of undef to nop. 6539 // FIXME: We need to honor volatile even is Src is undef. 6540 if (Src.isUndef()) 6541 return Chain; 6542 6543 // Expand memmove to a series of load and store ops if the size operand falls 6544 // below a certain threshold. 6545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6546 const DataLayout &DL = DAG.getDataLayout(); 6547 LLVMContext &C = *DAG.getContext(); 6548 std::vector<EVT> MemOps; 6549 bool DstAlignCanChange = false; 6550 MachineFunction &MF = DAG.getMachineFunction(); 6551 MachineFrameInfo &MFI = MF.getFrameInfo(); 6552 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6553 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6554 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6555 DstAlignCanChange = true; 6556 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6557 if (!SrcAlign || Alignment > *SrcAlign) 6558 SrcAlign = Alignment; 6559 assert(SrcAlign && "SrcAlign must be set"); 6560 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6561 if (!TLI.findOptimalMemOpLowering( 6562 MemOps, Limit, 6563 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6564 /*IsVolatile*/ true), 6565 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6566 MF.getFunction().getAttributes())) 6567 return SDValue(); 6568 6569 if (DstAlignCanChange) { 6570 Type *Ty = MemOps[0].getTypeForEVT(C); 6571 Align NewAlign = DL.getABITypeAlign(Ty); 6572 if (NewAlign > Alignment) { 6573 // Give the stack frame object a larger alignment if needed. 6574 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6575 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6576 Alignment = NewAlign; 6577 } 6578 } 6579 6580 // Prepare AAInfo for loads/stores after lowering this memmove. 6581 AAMDNodes NewAAInfo = AAInfo; 6582 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6583 6584 MachineMemOperand::Flags MMOFlags = 6585 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6586 uint64_t SrcOff = 0, DstOff = 0; 6587 SmallVector<SDValue, 8> LoadValues; 6588 SmallVector<SDValue, 8> LoadChains; 6589 SmallVector<SDValue, 8> OutChains; 6590 unsigned NumMemOps = MemOps.size(); 6591 for (unsigned i = 0; i < NumMemOps; i++) { 6592 EVT VT = MemOps[i]; 6593 unsigned VTSize = VT.getSizeInBits() / 8; 6594 SDValue Value; 6595 6596 bool isDereferenceable = 6597 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6598 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6599 if (isDereferenceable) 6600 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6601 6602 Value = DAG.getLoad( 6603 VT, dl, Chain, 6604 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6605 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6606 LoadValues.push_back(Value); 6607 LoadChains.push_back(Value.getValue(1)); 6608 SrcOff += VTSize; 6609 } 6610 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6611 OutChains.clear(); 6612 for (unsigned i = 0; i < NumMemOps; i++) { 6613 EVT VT = MemOps[i]; 6614 unsigned VTSize = VT.getSizeInBits() / 8; 6615 SDValue Store; 6616 6617 Store = DAG.getStore( 6618 Chain, dl, LoadValues[i], 6619 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6620 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6621 OutChains.push_back(Store); 6622 DstOff += VTSize; 6623 } 6624 6625 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6626 } 6627 6628 /// Lower the call to 'memset' intrinsic function into a series of store 6629 /// operations. 6630 /// 6631 /// \param DAG Selection DAG where lowered code is placed. 6632 /// \param dl Link to corresponding IR location. 6633 /// \param Chain Control flow dependency. 6634 /// \param Dst Pointer to destination memory location. 6635 /// \param Src Value of byte to write into the memory. 6636 /// \param Size Number of bytes to write. 6637 /// \param Alignment Alignment of the destination in bytes. 6638 /// \param isVol True if destination is volatile. 6639 /// \param DstPtrInfo IR information on the memory pointer. 6640 /// \returns New head in the control flow, if lowering was successful, empty 6641 /// SDValue otherwise. 6642 /// 6643 /// The function tries to replace 'llvm.memset' intrinsic with several store 6644 /// operations and value calculation code. This is usually profitable for small 6645 /// memory size. 6646 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6647 SDValue Chain, SDValue Dst, SDValue Src, 6648 uint64_t Size, Align Alignment, bool isVol, 6649 MachinePointerInfo DstPtrInfo, 6650 const AAMDNodes &AAInfo) { 6651 // Turn a memset of undef to nop. 6652 // FIXME: We need to honor volatile even is Src is undef. 6653 if (Src.isUndef()) 6654 return Chain; 6655 6656 // Expand memset to a series of load/store ops if the size operand 6657 // falls below a certain threshold. 6658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6659 std::vector<EVT> MemOps; 6660 bool DstAlignCanChange = false; 6661 MachineFunction &MF = DAG.getMachineFunction(); 6662 MachineFrameInfo &MFI = MF.getFrameInfo(); 6663 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6664 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6665 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6666 DstAlignCanChange = true; 6667 bool IsZeroVal = 6668 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6669 if (!TLI.findOptimalMemOpLowering( 6670 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6671 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6672 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6673 return SDValue(); 6674 6675 if (DstAlignCanChange) { 6676 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6677 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6678 if (NewAlign > Alignment) { 6679 // Give the stack frame object a larger alignment if needed. 6680 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6681 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6682 Alignment = NewAlign; 6683 } 6684 } 6685 6686 SmallVector<SDValue, 8> OutChains; 6687 uint64_t DstOff = 0; 6688 unsigned NumMemOps = MemOps.size(); 6689 6690 // Find the largest store and generate the bit pattern for it. 6691 EVT LargestVT = MemOps[0]; 6692 for (unsigned i = 1; i < NumMemOps; i++) 6693 if (MemOps[i].bitsGT(LargestVT)) 6694 LargestVT = MemOps[i]; 6695 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6696 6697 // Prepare AAInfo for loads/stores after lowering this memset. 6698 AAMDNodes NewAAInfo = AAInfo; 6699 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6700 6701 for (unsigned i = 0; i < NumMemOps; i++) { 6702 EVT VT = MemOps[i]; 6703 unsigned VTSize = VT.getSizeInBits() / 8; 6704 if (VTSize > Size) { 6705 // Issuing an unaligned load / store pair that overlaps with the previous 6706 // pair. Adjust the offset accordingly. 6707 assert(i == NumMemOps-1 && i != 0); 6708 DstOff -= VTSize - Size; 6709 } 6710 6711 // If this store is smaller than the largest store see whether we can get 6712 // the smaller value for free with a truncate. 6713 SDValue Value = MemSetValue; 6714 if (VT.bitsLT(LargestVT)) { 6715 if (!LargestVT.isVector() && !VT.isVector() && 6716 TLI.isTruncateFree(LargestVT, VT)) 6717 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6718 else 6719 Value = getMemsetValue(Src, VT, DAG, dl); 6720 } 6721 assert(Value.getValueType() == VT && "Value with wrong type."); 6722 SDValue Store = DAG.getStore( 6723 Chain, dl, Value, 6724 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6725 DstPtrInfo.getWithOffset(DstOff), Alignment, 6726 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6727 NewAAInfo); 6728 OutChains.push_back(Store); 6729 DstOff += VT.getSizeInBits() / 8; 6730 Size -= VTSize; 6731 } 6732 6733 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6734 } 6735 6736 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6737 unsigned AS) { 6738 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6739 // pointer operands can be losslessly bitcasted to pointers of address space 0 6740 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6741 report_fatal_error("cannot lower memory intrinsic in address space " + 6742 Twine(AS)); 6743 } 6744 } 6745 6746 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6747 SDValue Src, SDValue Size, Align Alignment, 6748 bool isVol, bool AlwaysInline, bool isTailCall, 6749 MachinePointerInfo DstPtrInfo, 6750 MachinePointerInfo SrcPtrInfo, 6751 const AAMDNodes &AAInfo) { 6752 // Check to see if we should lower the memcpy to loads and stores first. 6753 // For cases within the target-specified limits, this is the best choice. 6754 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6755 if (ConstantSize) { 6756 // Memcpy with size zero? Just return the original chain. 6757 if (ConstantSize->isNullValue()) 6758 return Chain; 6759 6760 SDValue Result = getMemcpyLoadsAndStores( 6761 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6762 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6763 if (Result.getNode()) 6764 return Result; 6765 } 6766 6767 // Then check to see if we should lower the memcpy with target-specific 6768 // code. If the target chooses to do this, this is the next best. 6769 if (TSI) { 6770 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6771 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6772 DstPtrInfo, SrcPtrInfo); 6773 if (Result.getNode()) 6774 return Result; 6775 } 6776 6777 // If we really need inline code and the target declined to provide it, 6778 // use a (potentially long) sequence of loads and stores. 6779 if (AlwaysInline) { 6780 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6781 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6782 ConstantSize->getZExtValue(), Alignment, 6783 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6784 } 6785 6786 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6787 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6788 6789 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6790 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6791 // respect volatile, so they may do things like read or write memory 6792 // beyond the given memory regions. But fixing this isn't easy, and most 6793 // people don't care. 6794 6795 // Emit a library call. 6796 TargetLowering::ArgListTy Args; 6797 TargetLowering::ArgListEntry Entry; 6798 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6799 Entry.Node = Dst; Args.push_back(Entry); 6800 Entry.Node = Src; Args.push_back(Entry); 6801 6802 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6803 Entry.Node = Size; Args.push_back(Entry); 6804 // FIXME: pass in SDLoc 6805 TargetLowering::CallLoweringInfo CLI(*this); 6806 CLI.setDebugLoc(dl) 6807 .setChain(Chain) 6808 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6809 Dst.getValueType().getTypeForEVT(*getContext()), 6810 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6811 TLI->getPointerTy(getDataLayout())), 6812 std::move(Args)) 6813 .setDiscardResult() 6814 .setTailCall(isTailCall); 6815 6816 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6817 return CallResult.second; 6818 } 6819 6820 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6821 SDValue Dst, unsigned DstAlign, 6822 SDValue Src, unsigned SrcAlign, 6823 SDValue Size, Type *SizeTy, 6824 unsigned ElemSz, bool isTailCall, 6825 MachinePointerInfo DstPtrInfo, 6826 MachinePointerInfo SrcPtrInfo) { 6827 // Emit a library call. 6828 TargetLowering::ArgListTy Args; 6829 TargetLowering::ArgListEntry Entry; 6830 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6831 Entry.Node = Dst; 6832 Args.push_back(Entry); 6833 6834 Entry.Node = Src; 6835 Args.push_back(Entry); 6836 6837 Entry.Ty = SizeTy; 6838 Entry.Node = Size; 6839 Args.push_back(Entry); 6840 6841 RTLIB::Libcall LibraryCall = 6842 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6843 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6844 report_fatal_error("Unsupported element size"); 6845 6846 TargetLowering::CallLoweringInfo CLI(*this); 6847 CLI.setDebugLoc(dl) 6848 .setChain(Chain) 6849 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6850 Type::getVoidTy(*getContext()), 6851 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6852 TLI->getPointerTy(getDataLayout())), 6853 std::move(Args)) 6854 .setDiscardResult() 6855 .setTailCall(isTailCall); 6856 6857 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6858 return CallResult.second; 6859 } 6860 6861 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6862 SDValue Src, SDValue Size, Align Alignment, 6863 bool isVol, bool isTailCall, 6864 MachinePointerInfo DstPtrInfo, 6865 MachinePointerInfo SrcPtrInfo, 6866 const AAMDNodes &AAInfo) { 6867 // Check to see if we should lower the memmove to loads and stores first. 6868 // For cases within the target-specified limits, this is the best choice. 6869 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6870 if (ConstantSize) { 6871 // Memmove with size zero? Just return the original chain. 6872 if (ConstantSize->isNullValue()) 6873 return Chain; 6874 6875 SDValue Result = getMemmoveLoadsAndStores( 6876 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6877 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6878 if (Result.getNode()) 6879 return Result; 6880 } 6881 6882 // Then check to see if we should lower the memmove with target-specific 6883 // code. If the target chooses to do this, this is the next best. 6884 if (TSI) { 6885 SDValue Result = 6886 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6887 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6888 if (Result.getNode()) 6889 return Result; 6890 } 6891 6892 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6893 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6894 6895 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6896 // not be safe. See memcpy above for more details. 6897 6898 // Emit a library call. 6899 TargetLowering::ArgListTy Args; 6900 TargetLowering::ArgListEntry Entry; 6901 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6902 Entry.Node = Dst; Args.push_back(Entry); 6903 Entry.Node = Src; Args.push_back(Entry); 6904 6905 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6906 Entry.Node = Size; Args.push_back(Entry); 6907 // FIXME: pass in SDLoc 6908 TargetLowering::CallLoweringInfo CLI(*this); 6909 CLI.setDebugLoc(dl) 6910 .setChain(Chain) 6911 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6912 Dst.getValueType().getTypeForEVT(*getContext()), 6913 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6914 TLI->getPointerTy(getDataLayout())), 6915 std::move(Args)) 6916 .setDiscardResult() 6917 .setTailCall(isTailCall); 6918 6919 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6920 return CallResult.second; 6921 } 6922 6923 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6924 SDValue Dst, unsigned DstAlign, 6925 SDValue Src, unsigned SrcAlign, 6926 SDValue Size, Type *SizeTy, 6927 unsigned ElemSz, bool isTailCall, 6928 MachinePointerInfo DstPtrInfo, 6929 MachinePointerInfo SrcPtrInfo) { 6930 // Emit a library call. 6931 TargetLowering::ArgListTy Args; 6932 TargetLowering::ArgListEntry Entry; 6933 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6934 Entry.Node = Dst; 6935 Args.push_back(Entry); 6936 6937 Entry.Node = Src; 6938 Args.push_back(Entry); 6939 6940 Entry.Ty = SizeTy; 6941 Entry.Node = Size; 6942 Args.push_back(Entry); 6943 6944 RTLIB::Libcall LibraryCall = 6945 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6946 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6947 report_fatal_error("Unsupported element size"); 6948 6949 TargetLowering::CallLoweringInfo CLI(*this); 6950 CLI.setDebugLoc(dl) 6951 .setChain(Chain) 6952 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6953 Type::getVoidTy(*getContext()), 6954 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6955 TLI->getPointerTy(getDataLayout())), 6956 std::move(Args)) 6957 .setDiscardResult() 6958 .setTailCall(isTailCall); 6959 6960 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6961 return CallResult.second; 6962 } 6963 6964 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6965 SDValue Src, SDValue Size, Align Alignment, 6966 bool isVol, bool isTailCall, 6967 MachinePointerInfo DstPtrInfo, 6968 const AAMDNodes &AAInfo) { 6969 // Check to see if we should lower the memset to stores first. 6970 // For cases within the target-specified limits, this is the best choice. 6971 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6972 if (ConstantSize) { 6973 // Memset with size zero? Just return the original chain. 6974 if (ConstantSize->isNullValue()) 6975 return Chain; 6976 6977 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6978 ConstantSize->getZExtValue(), Alignment, 6979 isVol, DstPtrInfo, AAInfo); 6980 6981 if (Result.getNode()) 6982 return Result; 6983 } 6984 6985 // Then check to see if we should lower the memset with target-specific 6986 // code. If the target chooses to do this, this is the next best. 6987 if (TSI) { 6988 SDValue Result = TSI->EmitTargetCodeForMemset( 6989 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6990 if (Result.getNode()) 6991 return Result; 6992 } 6993 6994 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6995 6996 // Emit a library call. 6997 TargetLowering::ArgListTy Args; 6998 TargetLowering::ArgListEntry Entry; 6999 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7000 Args.push_back(Entry); 7001 Entry.Node = Src; 7002 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7003 Args.push_back(Entry); 7004 Entry.Node = Size; 7005 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7006 Args.push_back(Entry); 7007 7008 // FIXME: pass in SDLoc 7009 TargetLowering::CallLoweringInfo CLI(*this); 7010 CLI.setDebugLoc(dl) 7011 .setChain(Chain) 7012 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7013 Dst.getValueType().getTypeForEVT(*getContext()), 7014 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7015 TLI->getPointerTy(getDataLayout())), 7016 std::move(Args)) 7017 .setDiscardResult() 7018 .setTailCall(isTailCall); 7019 7020 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7021 return CallResult.second; 7022 } 7023 7024 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7025 SDValue Dst, unsigned DstAlign, 7026 SDValue Value, SDValue Size, Type *SizeTy, 7027 unsigned ElemSz, bool isTailCall, 7028 MachinePointerInfo DstPtrInfo) { 7029 // Emit a library call. 7030 TargetLowering::ArgListTy Args; 7031 TargetLowering::ArgListEntry Entry; 7032 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7033 Entry.Node = Dst; 7034 Args.push_back(Entry); 7035 7036 Entry.Ty = Type::getInt8Ty(*getContext()); 7037 Entry.Node = Value; 7038 Args.push_back(Entry); 7039 7040 Entry.Ty = SizeTy; 7041 Entry.Node = Size; 7042 Args.push_back(Entry); 7043 7044 RTLIB::Libcall LibraryCall = 7045 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7046 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7047 report_fatal_error("Unsupported element size"); 7048 7049 TargetLowering::CallLoweringInfo CLI(*this); 7050 CLI.setDebugLoc(dl) 7051 .setChain(Chain) 7052 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7053 Type::getVoidTy(*getContext()), 7054 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7055 TLI->getPointerTy(getDataLayout())), 7056 std::move(Args)) 7057 .setDiscardResult() 7058 .setTailCall(isTailCall); 7059 7060 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7061 return CallResult.second; 7062 } 7063 7064 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7065 SDVTList VTList, ArrayRef<SDValue> Ops, 7066 MachineMemOperand *MMO) { 7067 FoldingSetNodeID ID; 7068 ID.AddInteger(MemVT.getRawBits()); 7069 AddNodeIDNode(ID, Opcode, VTList, Ops); 7070 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7071 void* IP = nullptr; 7072 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7073 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7074 return SDValue(E, 0); 7075 } 7076 7077 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7078 VTList, MemVT, MMO); 7079 createOperands(N, Ops); 7080 7081 CSEMap.InsertNode(N, IP); 7082 InsertNode(N); 7083 return SDValue(N, 0); 7084 } 7085 7086 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7087 EVT MemVT, SDVTList VTs, SDValue Chain, 7088 SDValue Ptr, SDValue Cmp, SDValue Swp, 7089 MachineMemOperand *MMO) { 7090 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7091 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7092 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7093 7094 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7095 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7096 } 7097 7098 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7099 SDValue Chain, SDValue Ptr, SDValue Val, 7100 MachineMemOperand *MMO) { 7101 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7102 Opcode == ISD::ATOMIC_LOAD_SUB || 7103 Opcode == ISD::ATOMIC_LOAD_AND || 7104 Opcode == ISD::ATOMIC_LOAD_CLR || 7105 Opcode == ISD::ATOMIC_LOAD_OR || 7106 Opcode == ISD::ATOMIC_LOAD_XOR || 7107 Opcode == ISD::ATOMIC_LOAD_NAND || 7108 Opcode == ISD::ATOMIC_LOAD_MIN || 7109 Opcode == ISD::ATOMIC_LOAD_MAX || 7110 Opcode == ISD::ATOMIC_LOAD_UMIN || 7111 Opcode == ISD::ATOMIC_LOAD_UMAX || 7112 Opcode == ISD::ATOMIC_LOAD_FADD || 7113 Opcode == ISD::ATOMIC_LOAD_FSUB || 7114 Opcode == ISD::ATOMIC_SWAP || 7115 Opcode == ISD::ATOMIC_STORE) && 7116 "Invalid Atomic Op"); 7117 7118 EVT VT = Val.getValueType(); 7119 7120 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7121 getVTList(VT, MVT::Other); 7122 SDValue Ops[] = {Chain, Ptr, Val}; 7123 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7124 } 7125 7126 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7127 EVT VT, SDValue Chain, SDValue Ptr, 7128 MachineMemOperand *MMO) { 7129 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7130 7131 SDVTList VTs = getVTList(VT, MVT::Other); 7132 SDValue Ops[] = {Chain, Ptr}; 7133 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7134 } 7135 7136 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7137 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7138 if (Ops.size() == 1) 7139 return Ops[0]; 7140 7141 SmallVector<EVT, 4> VTs; 7142 VTs.reserve(Ops.size()); 7143 for (const SDValue &Op : Ops) 7144 VTs.push_back(Op.getValueType()); 7145 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7146 } 7147 7148 SDValue SelectionDAG::getMemIntrinsicNode( 7149 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7150 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7151 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7152 if (!Size && MemVT.isScalableVector()) 7153 Size = MemoryLocation::UnknownSize; 7154 else if (!Size) 7155 Size = MemVT.getStoreSize(); 7156 7157 MachineFunction &MF = getMachineFunction(); 7158 MachineMemOperand *MMO = 7159 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7160 7161 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7162 } 7163 7164 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7165 SDVTList VTList, 7166 ArrayRef<SDValue> Ops, EVT MemVT, 7167 MachineMemOperand *MMO) { 7168 assert((Opcode == ISD::INTRINSIC_VOID || 7169 Opcode == ISD::INTRINSIC_W_CHAIN || 7170 Opcode == ISD::PREFETCH || 7171 ((int)Opcode <= std::numeric_limits<int>::max() && 7172 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7173 "Opcode is not a memory-accessing opcode!"); 7174 7175 // Memoize the node unless it returns a flag. 7176 MemIntrinsicSDNode *N; 7177 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7178 FoldingSetNodeID ID; 7179 AddNodeIDNode(ID, Opcode, VTList, Ops); 7180 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7181 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7182 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7183 void *IP = nullptr; 7184 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7185 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7186 return SDValue(E, 0); 7187 } 7188 7189 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7190 VTList, MemVT, MMO); 7191 createOperands(N, Ops); 7192 7193 CSEMap.InsertNode(N, IP); 7194 } else { 7195 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7196 VTList, MemVT, MMO); 7197 createOperands(N, Ops); 7198 } 7199 InsertNode(N); 7200 SDValue V(N, 0); 7201 NewSDValueDbgMsg(V, "Creating new node: ", this); 7202 return V; 7203 } 7204 7205 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7206 SDValue Chain, int FrameIndex, 7207 int64_t Size, int64_t Offset) { 7208 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7209 const auto VTs = getVTList(MVT::Other); 7210 SDValue Ops[2] = { 7211 Chain, 7212 getFrameIndex(FrameIndex, 7213 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7214 true)}; 7215 7216 FoldingSetNodeID ID; 7217 AddNodeIDNode(ID, Opcode, VTs, Ops); 7218 ID.AddInteger(FrameIndex); 7219 ID.AddInteger(Size); 7220 ID.AddInteger(Offset); 7221 void *IP = nullptr; 7222 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7223 return SDValue(E, 0); 7224 7225 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7226 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7227 createOperands(N, Ops); 7228 CSEMap.InsertNode(N, IP); 7229 InsertNode(N); 7230 SDValue V(N, 0); 7231 NewSDValueDbgMsg(V, "Creating new node: ", this); 7232 return V; 7233 } 7234 7235 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7236 uint64_t Guid, uint64_t Index, 7237 uint32_t Attr) { 7238 const unsigned Opcode = ISD::PSEUDO_PROBE; 7239 const auto VTs = getVTList(MVT::Other); 7240 SDValue Ops[] = {Chain}; 7241 FoldingSetNodeID ID; 7242 AddNodeIDNode(ID, Opcode, VTs, Ops); 7243 ID.AddInteger(Guid); 7244 ID.AddInteger(Index); 7245 void *IP = nullptr; 7246 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7247 return SDValue(E, 0); 7248 7249 auto *N = newSDNode<PseudoProbeSDNode>( 7250 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7251 createOperands(N, Ops); 7252 CSEMap.InsertNode(N, IP); 7253 InsertNode(N); 7254 SDValue V(N, 0); 7255 NewSDValueDbgMsg(V, "Creating new node: ", this); 7256 return V; 7257 } 7258 7259 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7260 /// MachinePointerInfo record from it. This is particularly useful because the 7261 /// code generator has many cases where it doesn't bother passing in a 7262 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7263 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7264 SelectionDAG &DAG, SDValue Ptr, 7265 int64_t Offset = 0) { 7266 // If this is FI+Offset, we can model it. 7267 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7268 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7269 FI->getIndex(), Offset); 7270 7271 // If this is (FI+Offset1)+Offset2, we can model it. 7272 if (Ptr.getOpcode() != ISD::ADD || 7273 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7274 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7275 return Info; 7276 7277 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7278 return MachinePointerInfo::getFixedStack( 7279 DAG.getMachineFunction(), FI, 7280 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7281 } 7282 7283 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7284 /// MachinePointerInfo record from it. This is particularly useful because the 7285 /// code generator has many cases where it doesn't bother passing in a 7286 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7287 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7288 SelectionDAG &DAG, SDValue Ptr, 7289 SDValue OffsetOp) { 7290 // If the 'Offset' value isn't a constant, we can't handle this. 7291 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7292 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7293 if (OffsetOp.isUndef()) 7294 return InferPointerInfo(Info, DAG, Ptr); 7295 return Info; 7296 } 7297 7298 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7299 EVT VT, const SDLoc &dl, SDValue Chain, 7300 SDValue Ptr, SDValue Offset, 7301 MachinePointerInfo PtrInfo, EVT MemVT, 7302 Align Alignment, 7303 MachineMemOperand::Flags MMOFlags, 7304 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7305 assert(Chain.getValueType() == MVT::Other && 7306 "Invalid chain type"); 7307 7308 MMOFlags |= MachineMemOperand::MOLoad; 7309 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7310 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7311 // clients. 7312 if (PtrInfo.V.isNull()) 7313 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7314 7315 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7316 MachineFunction &MF = getMachineFunction(); 7317 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7318 Alignment, AAInfo, Ranges); 7319 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7320 } 7321 7322 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7323 EVT VT, const SDLoc &dl, SDValue Chain, 7324 SDValue Ptr, SDValue Offset, EVT MemVT, 7325 MachineMemOperand *MMO) { 7326 if (VT == MemVT) { 7327 ExtType = ISD::NON_EXTLOAD; 7328 } else if (ExtType == ISD::NON_EXTLOAD) { 7329 assert(VT == MemVT && "Non-extending load from different memory type!"); 7330 } else { 7331 // Extending load. 7332 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7333 "Should only be an extending load, not truncating!"); 7334 assert(VT.isInteger() == MemVT.isInteger() && 7335 "Cannot convert from FP to Int or Int -> FP!"); 7336 assert(VT.isVector() == MemVT.isVector() && 7337 "Cannot use an ext load to convert to or from a vector!"); 7338 assert((!VT.isVector() || 7339 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7340 "Cannot use an ext load to change the number of vector elements!"); 7341 } 7342 7343 bool Indexed = AM != ISD::UNINDEXED; 7344 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7345 7346 SDVTList VTs = Indexed ? 7347 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7348 SDValue Ops[] = { Chain, Ptr, Offset }; 7349 FoldingSetNodeID ID; 7350 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7351 ID.AddInteger(MemVT.getRawBits()); 7352 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7353 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7354 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7355 void *IP = nullptr; 7356 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7357 cast<LoadSDNode>(E)->refineAlignment(MMO); 7358 return SDValue(E, 0); 7359 } 7360 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7361 ExtType, MemVT, MMO); 7362 createOperands(N, Ops); 7363 7364 CSEMap.InsertNode(N, IP); 7365 InsertNode(N); 7366 SDValue V(N, 0); 7367 NewSDValueDbgMsg(V, "Creating new node: ", this); 7368 return V; 7369 } 7370 7371 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7372 SDValue Ptr, MachinePointerInfo PtrInfo, 7373 MaybeAlign Alignment, 7374 MachineMemOperand::Flags MMOFlags, 7375 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7376 SDValue Undef = getUNDEF(Ptr.getValueType()); 7377 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7378 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7379 } 7380 7381 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7382 SDValue Ptr, MachineMemOperand *MMO) { 7383 SDValue Undef = getUNDEF(Ptr.getValueType()); 7384 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7385 VT, MMO); 7386 } 7387 7388 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7389 EVT VT, SDValue Chain, SDValue Ptr, 7390 MachinePointerInfo PtrInfo, EVT MemVT, 7391 MaybeAlign Alignment, 7392 MachineMemOperand::Flags MMOFlags, 7393 const AAMDNodes &AAInfo) { 7394 SDValue Undef = getUNDEF(Ptr.getValueType()); 7395 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7396 MemVT, Alignment, MMOFlags, AAInfo); 7397 } 7398 7399 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7400 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7401 MachineMemOperand *MMO) { 7402 SDValue Undef = getUNDEF(Ptr.getValueType()); 7403 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7404 MemVT, MMO); 7405 } 7406 7407 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7408 SDValue Base, SDValue Offset, 7409 ISD::MemIndexedMode AM) { 7410 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7411 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7412 // Don't propagate the invariant or dereferenceable flags. 7413 auto MMOFlags = 7414 LD->getMemOperand()->getFlags() & 7415 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7416 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7417 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7418 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7419 } 7420 7421 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7422 SDValue Ptr, MachinePointerInfo PtrInfo, 7423 Align Alignment, 7424 MachineMemOperand::Flags MMOFlags, 7425 const AAMDNodes &AAInfo) { 7426 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7427 7428 MMOFlags |= MachineMemOperand::MOStore; 7429 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7430 7431 if (PtrInfo.V.isNull()) 7432 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7433 7434 MachineFunction &MF = getMachineFunction(); 7435 uint64_t Size = 7436 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7437 MachineMemOperand *MMO = 7438 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7439 return getStore(Chain, dl, Val, Ptr, MMO); 7440 } 7441 7442 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7443 SDValue Ptr, MachineMemOperand *MMO) { 7444 assert(Chain.getValueType() == MVT::Other && 7445 "Invalid chain type"); 7446 EVT VT = Val.getValueType(); 7447 SDVTList VTs = getVTList(MVT::Other); 7448 SDValue Undef = getUNDEF(Ptr.getValueType()); 7449 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7450 FoldingSetNodeID ID; 7451 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7452 ID.AddInteger(VT.getRawBits()); 7453 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7454 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7455 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7456 void *IP = nullptr; 7457 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7458 cast<StoreSDNode>(E)->refineAlignment(MMO); 7459 return SDValue(E, 0); 7460 } 7461 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7462 ISD::UNINDEXED, false, VT, MMO); 7463 createOperands(N, Ops); 7464 7465 CSEMap.InsertNode(N, IP); 7466 InsertNode(N); 7467 SDValue V(N, 0); 7468 NewSDValueDbgMsg(V, "Creating new node: ", this); 7469 return V; 7470 } 7471 7472 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7473 SDValue Ptr, MachinePointerInfo PtrInfo, 7474 EVT SVT, Align Alignment, 7475 MachineMemOperand::Flags MMOFlags, 7476 const AAMDNodes &AAInfo) { 7477 assert(Chain.getValueType() == MVT::Other && 7478 "Invalid chain type"); 7479 7480 MMOFlags |= MachineMemOperand::MOStore; 7481 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7482 7483 if (PtrInfo.V.isNull()) 7484 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7485 7486 MachineFunction &MF = getMachineFunction(); 7487 MachineMemOperand *MMO = MF.getMachineMemOperand( 7488 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7489 Alignment, AAInfo); 7490 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7491 } 7492 7493 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7494 SDValue Ptr, EVT SVT, 7495 MachineMemOperand *MMO) { 7496 EVT VT = Val.getValueType(); 7497 7498 assert(Chain.getValueType() == MVT::Other && 7499 "Invalid chain type"); 7500 if (VT == SVT) 7501 return getStore(Chain, dl, Val, Ptr, MMO); 7502 7503 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7504 "Should only be a truncating store, not extending!"); 7505 assert(VT.isInteger() == SVT.isInteger() && 7506 "Can't do FP-INT conversion!"); 7507 assert(VT.isVector() == SVT.isVector() && 7508 "Cannot use trunc store to convert to or from a vector!"); 7509 assert((!VT.isVector() || 7510 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7511 "Cannot use trunc store to change the number of vector elements!"); 7512 7513 SDVTList VTs = getVTList(MVT::Other); 7514 SDValue Undef = getUNDEF(Ptr.getValueType()); 7515 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7516 FoldingSetNodeID ID; 7517 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7518 ID.AddInteger(SVT.getRawBits()); 7519 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7520 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7521 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7522 void *IP = nullptr; 7523 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7524 cast<StoreSDNode>(E)->refineAlignment(MMO); 7525 return SDValue(E, 0); 7526 } 7527 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7528 ISD::UNINDEXED, true, SVT, MMO); 7529 createOperands(N, Ops); 7530 7531 CSEMap.InsertNode(N, IP); 7532 InsertNode(N); 7533 SDValue V(N, 0); 7534 NewSDValueDbgMsg(V, "Creating new node: ", this); 7535 return V; 7536 } 7537 7538 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7539 SDValue Base, SDValue Offset, 7540 ISD::MemIndexedMode AM) { 7541 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7542 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7543 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7544 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7545 FoldingSetNodeID ID; 7546 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7547 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7548 ID.AddInteger(ST->getRawSubclassData()); 7549 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7550 void *IP = nullptr; 7551 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7552 return SDValue(E, 0); 7553 7554 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7555 ST->isTruncatingStore(), ST->getMemoryVT(), 7556 ST->getMemOperand()); 7557 createOperands(N, Ops); 7558 7559 CSEMap.InsertNode(N, IP); 7560 InsertNode(N); 7561 SDValue V(N, 0); 7562 NewSDValueDbgMsg(V, "Creating new node: ", this); 7563 return V; 7564 } 7565 7566 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7567 SDValue Base, SDValue Offset, SDValue Mask, 7568 SDValue PassThru, EVT MemVT, 7569 MachineMemOperand *MMO, 7570 ISD::MemIndexedMode AM, 7571 ISD::LoadExtType ExtTy, bool isExpanding) { 7572 bool Indexed = AM != ISD::UNINDEXED; 7573 assert((Indexed || Offset.isUndef()) && 7574 "Unindexed masked load with an offset!"); 7575 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7576 : getVTList(VT, MVT::Other); 7577 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7578 FoldingSetNodeID ID; 7579 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7580 ID.AddInteger(MemVT.getRawBits()); 7581 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7582 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7583 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7584 void *IP = nullptr; 7585 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7586 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7587 return SDValue(E, 0); 7588 } 7589 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7590 AM, ExtTy, isExpanding, MemVT, MMO); 7591 createOperands(N, Ops); 7592 7593 CSEMap.InsertNode(N, IP); 7594 InsertNode(N); 7595 SDValue V(N, 0); 7596 NewSDValueDbgMsg(V, "Creating new node: ", this); 7597 return V; 7598 } 7599 7600 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7601 SDValue Base, SDValue Offset, 7602 ISD::MemIndexedMode AM) { 7603 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7604 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7605 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7606 Offset, LD->getMask(), LD->getPassThru(), 7607 LD->getMemoryVT(), LD->getMemOperand(), AM, 7608 LD->getExtensionType(), LD->isExpandingLoad()); 7609 } 7610 7611 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7612 SDValue Val, SDValue Base, SDValue Offset, 7613 SDValue Mask, EVT MemVT, 7614 MachineMemOperand *MMO, 7615 ISD::MemIndexedMode AM, bool IsTruncating, 7616 bool IsCompressing) { 7617 assert(Chain.getValueType() == MVT::Other && 7618 "Invalid chain type"); 7619 bool Indexed = AM != ISD::UNINDEXED; 7620 assert((Indexed || Offset.isUndef()) && 7621 "Unindexed masked store with an offset!"); 7622 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7623 : getVTList(MVT::Other); 7624 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7625 FoldingSetNodeID ID; 7626 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7627 ID.AddInteger(MemVT.getRawBits()); 7628 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7629 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7630 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7631 void *IP = nullptr; 7632 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7633 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7634 return SDValue(E, 0); 7635 } 7636 auto *N = 7637 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7638 IsTruncating, IsCompressing, MemVT, MMO); 7639 createOperands(N, Ops); 7640 7641 CSEMap.InsertNode(N, IP); 7642 InsertNode(N); 7643 SDValue V(N, 0); 7644 NewSDValueDbgMsg(V, "Creating new node: ", this); 7645 return V; 7646 } 7647 7648 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7649 SDValue Base, SDValue Offset, 7650 ISD::MemIndexedMode AM) { 7651 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7652 assert(ST->getOffset().isUndef() && 7653 "Masked store is already a indexed store!"); 7654 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7655 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7656 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7657 } 7658 7659 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 7660 ArrayRef<SDValue> Ops, 7661 MachineMemOperand *MMO, 7662 ISD::MemIndexType IndexType, 7663 ISD::LoadExtType ExtTy) { 7664 assert(Ops.size() == 6 && "Incompatible number of operands"); 7665 7666 FoldingSetNodeID ID; 7667 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7668 ID.AddInteger(MemVT.getRawBits()); 7669 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7670 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 7671 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7672 void *IP = nullptr; 7673 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7674 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7675 return SDValue(E, 0); 7676 } 7677 7678 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 7679 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7680 VTs, MemVT, MMO, IndexType, ExtTy); 7681 createOperands(N, Ops); 7682 7683 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7684 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7685 assert(N->getMask().getValueType().getVectorElementCount() == 7686 N->getValueType(0).getVectorElementCount() && 7687 "Vector width mismatch between mask and data"); 7688 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7689 N->getValueType(0).getVectorElementCount().isScalable() && 7690 "Scalable flags of index and data do not match"); 7691 assert(ElementCount::isKnownGE( 7692 N->getIndex().getValueType().getVectorElementCount(), 7693 N->getValueType(0).getVectorElementCount()) && 7694 "Vector width mismatch between index and data"); 7695 assert(isa<ConstantSDNode>(N->getScale()) && 7696 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7697 "Scale should be a constant power of 2"); 7698 7699 CSEMap.InsertNode(N, IP); 7700 InsertNode(N); 7701 SDValue V(N, 0); 7702 NewSDValueDbgMsg(V, "Creating new node: ", this); 7703 return V; 7704 } 7705 7706 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 7707 ArrayRef<SDValue> Ops, 7708 MachineMemOperand *MMO, 7709 ISD::MemIndexType IndexType, 7710 bool IsTrunc) { 7711 assert(Ops.size() == 6 && "Incompatible number of operands"); 7712 7713 FoldingSetNodeID ID; 7714 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7715 ID.AddInteger(MemVT.getRawBits()); 7716 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7717 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 7718 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7719 void *IP = nullptr; 7720 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7721 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7722 return SDValue(E, 0); 7723 } 7724 7725 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 7726 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7727 VTs, MemVT, MMO, IndexType, IsTrunc); 7728 createOperands(N, Ops); 7729 7730 assert(N->getMask().getValueType().getVectorElementCount() == 7731 N->getValue().getValueType().getVectorElementCount() && 7732 "Vector width mismatch between mask and data"); 7733 assert( 7734 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7735 N->getValue().getValueType().getVectorElementCount().isScalable() && 7736 "Scalable flags of index and data do not match"); 7737 assert(ElementCount::isKnownGE( 7738 N->getIndex().getValueType().getVectorElementCount(), 7739 N->getValue().getValueType().getVectorElementCount()) && 7740 "Vector width mismatch between index and data"); 7741 assert(isa<ConstantSDNode>(N->getScale()) && 7742 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7743 "Scale should be a constant power of 2"); 7744 7745 CSEMap.InsertNode(N, IP); 7746 InsertNode(N); 7747 SDValue V(N, 0); 7748 NewSDValueDbgMsg(V, "Creating new node: ", this); 7749 return V; 7750 } 7751 7752 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7753 // select undef, T, F --> T (if T is a constant), otherwise F 7754 // select, ?, undef, F --> F 7755 // select, ?, T, undef --> T 7756 if (Cond.isUndef()) 7757 return isConstantValueOfAnyType(T) ? T : F; 7758 if (T.isUndef()) 7759 return F; 7760 if (F.isUndef()) 7761 return T; 7762 7763 // select true, T, F --> T 7764 // select false, T, F --> F 7765 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7766 return CondC->isNullValue() ? F : T; 7767 7768 // TODO: This should simplify VSELECT with constant condition using something 7769 // like this (but check boolean contents to be complete?): 7770 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7771 // return T; 7772 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7773 // return F; 7774 7775 // select ?, T, T --> T 7776 if (T == F) 7777 return T; 7778 7779 return SDValue(); 7780 } 7781 7782 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7783 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7784 if (X.isUndef()) 7785 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7786 // shift X, undef --> undef (because it may shift by the bitwidth) 7787 if (Y.isUndef()) 7788 return getUNDEF(X.getValueType()); 7789 7790 // shift 0, Y --> 0 7791 // shift X, 0 --> X 7792 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7793 return X; 7794 7795 // shift X, C >= bitwidth(X) --> undef 7796 // All vector elements must be too big (or undef) to avoid partial undefs. 7797 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7798 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7799 }; 7800 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7801 return getUNDEF(X.getValueType()); 7802 7803 return SDValue(); 7804 } 7805 7806 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7807 SDNodeFlags Flags) { 7808 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7809 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7810 // operation is poison. That result can be relaxed to undef. 7811 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7812 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7813 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7814 (YC && YC->getValueAPF().isNaN()); 7815 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7816 (YC && YC->getValueAPF().isInfinity()); 7817 7818 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7819 return getUNDEF(X.getValueType()); 7820 7821 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7822 return getUNDEF(X.getValueType()); 7823 7824 if (!YC) 7825 return SDValue(); 7826 7827 // X + -0.0 --> X 7828 if (Opcode == ISD::FADD) 7829 if (YC->getValueAPF().isNegZero()) 7830 return X; 7831 7832 // X - +0.0 --> X 7833 if (Opcode == ISD::FSUB) 7834 if (YC->getValueAPF().isPosZero()) 7835 return X; 7836 7837 // X * 1.0 --> X 7838 // X / 1.0 --> X 7839 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7840 if (YC->getValueAPF().isExactlyValue(1.0)) 7841 return X; 7842 7843 // X * 0.0 --> 0.0 7844 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7845 if (YC->getValueAPF().isZero()) 7846 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7847 7848 return SDValue(); 7849 } 7850 7851 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7852 SDValue Ptr, SDValue SV, unsigned Align) { 7853 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7854 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7855 } 7856 7857 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7858 ArrayRef<SDUse> Ops) { 7859 switch (Ops.size()) { 7860 case 0: return getNode(Opcode, DL, VT); 7861 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7862 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7863 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7864 default: break; 7865 } 7866 7867 // Copy from an SDUse array into an SDValue array for use with 7868 // the regular getNode logic. 7869 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7870 return getNode(Opcode, DL, VT, NewOps); 7871 } 7872 7873 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7874 ArrayRef<SDValue> Ops) { 7875 SDNodeFlags Flags; 7876 if (Inserter) 7877 Flags = Inserter->getFlags(); 7878 return getNode(Opcode, DL, VT, Ops, Flags); 7879 } 7880 7881 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7882 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7883 unsigned NumOps = Ops.size(); 7884 switch (NumOps) { 7885 case 0: return getNode(Opcode, DL, VT); 7886 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7887 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7888 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7889 default: break; 7890 } 7891 7892 #ifndef NDEBUG 7893 for (auto &Op : Ops) 7894 assert(Op.getOpcode() != ISD::DELETED_NODE && 7895 "Operand is DELETED_NODE!"); 7896 #endif 7897 7898 switch (Opcode) { 7899 default: break; 7900 case ISD::BUILD_VECTOR: 7901 // Attempt to simplify BUILD_VECTOR. 7902 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7903 return V; 7904 break; 7905 case ISD::CONCAT_VECTORS: 7906 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7907 return V; 7908 break; 7909 case ISD::SELECT_CC: 7910 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7911 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7912 "LHS and RHS of condition must have same type!"); 7913 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7914 "True and False arms of SelectCC must have same type!"); 7915 assert(Ops[2].getValueType() == VT && 7916 "select_cc node must be of same type as true and false value!"); 7917 break; 7918 case ISD::BR_CC: 7919 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7920 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7921 "LHS/RHS of comparison should match types!"); 7922 break; 7923 } 7924 7925 // Memoize nodes. 7926 SDNode *N; 7927 SDVTList VTs = getVTList(VT); 7928 7929 if (VT != MVT::Glue) { 7930 FoldingSetNodeID ID; 7931 AddNodeIDNode(ID, Opcode, VTs, Ops); 7932 void *IP = nullptr; 7933 7934 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7935 return SDValue(E, 0); 7936 7937 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7938 createOperands(N, Ops); 7939 7940 CSEMap.InsertNode(N, IP); 7941 } else { 7942 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7943 createOperands(N, Ops); 7944 } 7945 7946 N->setFlags(Flags); 7947 InsertNode(N); 7948 SDValue V(N, 0); 7949 NewSDValueDbgMsg(V, "Creating new node: ", this); 7950 return V; 7951 } 7952 7953 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7954 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7955 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7956 } 7957 7958 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7959 ArrayRef<SDValue> Ops) { 7960 SDNodeFlags Flags; 7961 if (Inserter) 7962 Flags = Inserter->getFlags(); 7963 return getNode(Opcode, DL, VTList, Ops, Flags); 7964 } 7965 7966 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7967 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7968 if (VTList.NumVTs == 1) 7969 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7970 7971 #ifndef NDEBUG 7972 for (auto &Op : Ops) 7973 assert(Op.getOpcode() != ISD::DELETED_NODE && 7974 "Operand is DELETED_NODE!"); 7975 #endif 7976 7977 switch (Opcode) { 7978 case ISD::STRICT_FP_EXTEND: 7979 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7980 "Invalid STRICT_FP_EXTEND!"); 7981 assert(VTList.VTs[0].isFloatingPoint() && 7982 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7983 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7984 "STRICT_FP_EXTEND result type should be vector iff the operand " 7985 "type is vector!"); 7986 assert((!VTList.VTs[0].isVector() || 7987 VTList.VTs[0].getVectorNumElements() == 7988 Ops[1].getValueType().getVectorNumElements()) && 7989 "Vector element count mismatch!"); 7990 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7991 "Invalid fpext node, dst <= src!"); 7992 break; 7993 case ISD::STRICT_FP_ROUND: 7994 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7995 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7996 "STRICT_FP_ROUND result type should be vector iff the operand " 7997 "type is vector!"); 7998 assert((!VTList.VTs[0].isVector() || 7999 VTList.VTs[0].getVectorNumElements() == 8000 Ops[1].getValueType().getVectorNumElements()) && 8001 "Vector element count mismatch!"); 8002 assert(VTList.VTs[0].isFloatingPoint() && 8003 Ops[1].getValueType().isFloatingPoint() && 8004 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8005 isa<ConstantSDNode>(Ops[2]) && 8006 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8007 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8008 "Invalid STRICT_FP_ROUND!"); 8009 break; 8010 #if 0 8011 // FIXME: figure out how to safely handle things like 8012 // int foo(int x) { return 1 << (x & 255); } 8013 // int bar() { return foo(256); } 8014 case ISD::SRA_PARTS: 8015 case ISD::SRL_PARTS: 8016 case ISD::SHL_PARTS: 8017 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8018 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8019 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8020 else if (N3.getOpcode() == ISD::AND) 8021 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8022 // If the and is only masking out bits that cannot effect the shift, 8023 // eliminate the and. 8024 unsigned NumBits = VT.getScalarSizeInBits()*2; 8025 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8026 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8027 } 8028 break; 8029 #endif 8030 } 8031 8032 // Memoize the node unless it returns a flag. 8033 SDNode *N; 8034 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8035 FoldingSetNodeID ID; 8036 AddNodeIDNode(ID, Opcode, VTList, Ops); 8037 void *IP = nullptr; 8038 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8039 return SDValue(E, 0); 8040 8041 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8042 createOperands(N, Ops); 8043 CSEMap.InsertNode(N, IP); 8044 } else { 8045 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8046 createOperands(N, Ops); 8047 } 8048 8049 N->setFlags(Flags); 8050 InsertNode(N); 8051 SDValue V(N, 0); 8052 NewSDValueDbgMsg(V, "Creating new node: ", this); 8053 return V; 8054 } 8055 8056 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8057 SDVTList VTList) { 8058 return getNode(Opcode, DL, VTList, None); 8059 } 8060 8061 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8062 SDValue N1) { 8063 SDValue Ops[] = { N1 }; 8064 return getNode(Opcode, DL, VTList, Ops); 8065 } 8066 8067 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8068 SDValue N1, SDValue N2) { 8069 SDValue Ops[] = { N1, N2 }; 8070 return getNode(Opcode, DL, VTList, Ops); 8071 } 8072 8073 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8074 SDValue N1, SDValue N2, SDValue N3) { 8075 SDValue Ops[] = { N1, N2, N3 }; 8076 return getNode(Opcode, DL, VTList, Ops); 8077 } 8078 8079 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8080 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8081 SDValue Ops[] = { N1, N2, N3, N4 }; 8082 return getNode(Opcode, DL, VTList, Ops); 8083 } 8084 8085 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8086 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8087 SDValue N5) { 8088 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8089 return getNode(Opcode, DL, VTList, Ops); 8090 } 8091 8092 SDVTList SelectionDAG::getVTList(EVT VT) { 8093 return makeVTList(SDNode::getValueTypeList(VT), 1); 8094 } 8095 8096 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8097 FoldingSetNodeID ID; 8098 ID.AddInteger(2U); 8099 ID.AddInteger(VT1.getRawBits()); 8100 ID.AddInteger(VT2.getRawBits()); 8101 8102 void *IP = nullptr; 8103 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8104 if (!Result) { 8105 EVT *Array = Allocator.Allocate<EVT>(2); 8106 Array[0] = VT1; 8107 Array[1] = VT2; 8108 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8109 VTListMap.InsertNode(Result, IP); 8110 } 8111 return Result->getSDVTList(); 8112 } 8113 8114 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8115 FoldingSetNodeID ID; 8116 ID.AddInteger(3U); 8117 ID.AddInteger(VT1.getRawBits()); 8118 ID.AddInteger(VT2.getRawBits()); 8119 ID.AddInteger(VT3.getRawBits()); 8120 8121 void *IP = nullptr; 8122 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8123 if (!Result) { 8124 EVT *Array = Allocator.Allocate<EVT>(3); 8125 Array[0] = VT1; 8126 Array[1] = VT2; 8127 Array[2] = VT3; 8128 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8129 VTListMap.InsertNode(Result, IP); 8130 } 8131 return Result->getSDVTList(); 8132 } 8133 8134 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8135 FoldingSetNodeID ID; 8136 ID.AddInteger(4U); 8137 ID.AddInteger(VT1.getRawBits()); 8138 ID.AddInteger(VT2.getRawBits()); 8139 ID.AddInteger(VT3.getRawBits()); 8140 ID.AddInteger(VT4.getRawBits()); 8141 8142 void *IP = nullptr; 8143 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8144 if (!Result) { 8145 EVT *Array = Allocator.Allocate<EVT>(4); 8146 Array[0] = VT1; 8147 Array[1] = VT2; 8148 Array[2] = VT3; 8149 Array[3] = VT4; 8150 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8151 VTListMap.InsertNode(Result, IP); 8152 } 8153 return Result->getSDVTList(); 8154 } 8155 8156 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8157 unsigned NumVTs = VTs.size(); 8158 FoldingSetNodeID ID; 8159 ID.AddInteger(NumVTs); 8160 for (unsigned index = 0; index < NumVTs; index++) { 8161 ID.AddInteger(VTs[index].getRawBits()); 8162 } 8163 8164 void *IP = nullptr; 8165 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8166 if (!Result) { 8167 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8168 llvm::copy(VTs, Array); 8169 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8170 VTListMap.InsertNode(Result, IP); 8171 } 8172 return Result->getSDVTList(); 8173 } 8174 8175 8176 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8177 /// specified operands. If the resultant node already exists in the DAG, 8178 /// this does not modify the specified node, instead it returns the node that 8179 /// already exists. If the resultant node does not exist in the DAG, the 8180 /// input node is returned. As a degenerate case, if you specify the same 8181 /// input operands as the node already has, the input node is returned. 8182 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8183 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8184 8185 // Check to see if there is no change. 8186 if (Op == N->getOperand(0)) return N; 8187 8188 // See if the modified node already exists. 8189 void *InsertPos = nullptr; 8190 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8191 return Existing; 8192 8193 // Nope it doesn't. Remove the node from its current place in the maps. 8194 if (InsertPos) 8195 if (!RemoveNodeFromCSEMaps(N)) 8196 InsertPos = nullptr; 8197 8198 // Now we update the operands. 8199 N->OperandList[0].set(Op); 8200 8201 updateDivergence(N); 8202 // If this gets put into a CSE map, add it. 8203 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8204 return N; 8205 } 8206 8207 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8208 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8209 8210 // Check to see if there is no change. 8211 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8212 return N; // No operands changed, just return the input node. 8213 8214 // See if the modified node already exists. 8215 void *InsertPos = nullptr; 8216 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8217 return Existing; 8218 8219 // Nope it doesn't. Remove the node from its current place in the maps. 8220 if (InsertPos) 8221 if (!RemoveNodeFromCSEMaps(N)) 8222 InsertPos = nullptr; 8223 8224 // Now we update the operands. 8225 if (N->OperandList[0] != Op1) 8226 N->OperandList[0].set(Op1); 8227 if (N->OperandList[1] != Op2) 8228 N->OperandList[1].set(Op2); 8229 8230 updateDivergence(N); 8231 // If this gets put into a CSE map, add it. 8232 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8233 return N; 8234 } 8235 8236 SDNode *SelectionDAG:: 8237 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8238 SDValue Ops[] = { Op1, Op2, Op3 }; 8239 return UpdateNodeOperands(N, Ops); 8240 } 8241 8242 SDNode *SelectionDAG:: 8243 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8244 SDValue Op3, SDValue Op4) { 8245 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8246 return UpdateNodeOperands(N, Ops); 8247 } 8248 8249 SDNode *SelectionDAG:: 8250 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8251 SDValue Op3, SDValue Op4, SDValue Op5) { 8252 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8253 return UpdateNodeOperands(N, Ops); 8254 } 8255 8256 SDNode *SelectionDAG:: 8257 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8258 unsigned NumOps = Ops.size(); 8259 assert(N->getNumOperands() == NumOps && 8260 "Update with wrong number of operands"); 8261 8262 // If no operands changed just return the input node. 8263 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8264 return N; 8265 8266 // See if the modified node already exists. 8267 void *InsertPos = nullptr; 8268 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8269 return Existing; 8270 8271 // Nope it doesn't. Remove the node from its current place in the maps. 8272 if (InsertPos) 8273 if (!RemoveNodeFromCSEMaps(N)) 8274 InsertPos = nullptr; 8275 8276 // Now we update the operands. 8277 for (unsigned i = 0; i != NumOps; ++i) 8278 if (N->OperandList[i] != Ops[i]) 8279 N->OperandList[i].set(Ops[i]); 8280 8281 updateDivergence(N); 8282 // If this gets put into a CSE map, add it. 8283 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8284 return N; 8285 } 8286 8287 /// DropOperands - Release the operands and set this node to have 8288 /// zero operands. 8289 void SDNode::DropOperands() { 8290 // Unlike the code in MorphNodeTo that does this, we don't need to 8291 // watch for dead nodes here. 8292 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8293 SDUse &Use = *I++; 8294 Use.set(SDValue()); 8295 } 8296 } 8297 8298 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8299 ArrayRef<MachineMemOperand *> NewMemRefs) { 8300 if (NewMemRefs.empty()) { 8301 N->clearMemRefs(); 8302 return; 8303 } 8304 8305 // Check if we can avoid allocating by storing a single reference directly. 8306 if (NewMemRefs.size() == 1) { 8307 N->MemRefs = NewMemRefs[0]; 8308 N->NumMemRefs = 1; 8309 return; 8310 } 8311 8312 MachineMemOperand **MemRefsBuffer = 8313 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8314 llvm::copy(NewMemRefs, MemRefsBuffer); 8315 N->MemRefs = MemRefsBuffer; 8316 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8317 } 8318 8319 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8320 /// machine opcode. 8321 /// 8322 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8323 EVT VT) { 8324 SDVTList VTs = getVTList(VT); 8325 return SelectNodeTo(N, MachineOpc, VTs, None); 8326 } 8327 8328 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8329 EVT VT, SDValue Op1) { 8330 SDVTList VTs = getVTList(VT); 8331 SDValue Ops[] = { Op1 }; 8332 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8333 } 8334 8335 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8336 EVT VT, SDValue Op1, 8337 SDValue Op2) { 8338 SDVTList VTs = getVTList(VT); 8339 SDValue Ops[] = { Op1, Op2 }; 8340 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8341 } 8342 8343 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8344 EVT VT, SDValue Op1, 8345 SDValue Op2, SDValue Op3) { 8346 SDVTList VTs = getVTList(VT); 8347 SDValue Ops[] = { Op1, Op2, Op3 }; 8348 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8349 } 8350 8351 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8352 EVT VT, ArrayRef<SDValue> Ops) { 8353 SDVTList VTs = getVTList(VT); 8354 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8355 } 8356 8357 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8358 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8359 SDVTList VTs = getVTList(VT1, VT2); 8360 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8361 } 8362 8363 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8364 EVT VT1, EVT VT2) { 8365 SDVTList VTs = getVTList(VT1, VT2); 8366 return SelectNodeTo(N, MachineOpc, VTs, None); 8367 } 8368 8369 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8370 EVT VT1, EVT VT2, EVT VT3, 8371 ArrayRef<SDValue> Ops) { 8372 SDVTList VTs = getVTList(VT1, VT2, VT3); 8373 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8374 } 8375 8376 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8377 EVT VT1, EVT VT2, 8378 SDValue Op1, SDValue Op2) { 8379 SDVTList VTs = getVTList(VT1, VT2); 8380 SDValue Ops[] = { Op1, Op2 }; 8381 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8382 } 8383 8384 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8385 SDVTList VTs,ArrayRef<SDValue> Ops) { 8386 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8387 // Reset the NodeID to -1. 8388 New->setNodeId(-1); 8389 if (New != N) { 8390 ReplaceAllUsesWith(N, New); 8391 RemoveDeadNode(N); 8392 } 8393 return New; 8394 } 8395 8396 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8397 /// the line number information on the merged node since it is not possible to 8398 /// preserve the information that operation is associated with multiple lines. 8399 /// This will make the debugger working better at -O0, were there is a higher 8400 /// probability having other instructions associated with that line. 8401 /// 8402 /// For IROrder, we keep the smaller of the two 8403 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8404 DebugLoc NLoc = N->getDebugLoc(); 8405 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8406 N->setDebugLoc(DebugLoc()); 8407 } 8408 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8409 N->setIROrder(Order); 8410 return N; 8411 } 8412 8413 /// MorphNodeTo - This *mutates* the specified node to have the specified 8414 /// return type, opcode, and operands. 8415 /// 8416 /// Note that MorphNodeTo returns the resultant node. If there is already a 8417 /// node of the specified opcode and operands, it returns that node instead of 8418 /// the current one. Note that the SDLoc need not be the same. 8419 /// 8420 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8421 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8422 /// node, and because it doesn't require CSE recalculation for any of 8423 /// the node's users. 8424 /// 8425 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8426 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8427 /// the legalizer which maintain worklists that would need to be updated when 8428 /// deleting things. 8429 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8430 SDVTList VTs, ArrayRef<SDValue> Ops) { 8431 // If an identical node already exists, use it. 8432 void *IP = nullptr; 8433 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8434 FoldingSetNodeID ID; 8435 AddNodeIDNode(ID, Opc, VTs, Ops); 8436 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8437 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8438 } 8439 8440 if (!RemoveNodeFromCSEMaps(N)) 8441 IP = nullptr; 8442 8443 // Start the morphing. 8444 N->NodeType = Opc; 8445 N->ValueList = VTs.VTs; 8446 N->NumValues = VTs.NumVTs; 8447 8448 // Clear the operands list, updating used nodes to remove this from their 8449 // use list. Keep track of any operands that become dead as a result. 8450 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8451 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8452 SDUse &Use = *I++; 8453 SDNode *Used = Use.getNode(); 8454 Use.set(SDValue()); 8455 if (Used->use_empty()) 8456 DeadNodeSet.insert(Used); 8457 } 8458 8459 // For MachineNode, initialize the memory references information. 8460 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8461 MN->clearMemRefs(); 8462 8463 // Swap for an appropriately sized array from the recycler. 8464 removeOperands(N); 8465 createOperands(N, Ops); 8466 8467 // Delete any nodes that are still dead after adding the uses for the 8468 // new operands. 8469 if (!DeadNodeSet.empty()) { 8470 SmallVector<SDNode *, 16> DeadNodes; 8471 for (SDNode *N : DeadNodeSet) 8472 if (N->use_empty()) 8473 DeadNodes.push_back(N); 8474 RemoveDeadNodes(DeadNodes); 8475 } 8476 8477 if (IP) 8478 CSEMap.InsertNode(N, IP); // Memoize the new node. 8479 return N; 8480 } 8481 8482 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8483 unsigned OrigOpc = Node->getOpcode(); 8484 unsigned NewOpc; 8485 switch (OrigOpc) { 8486 default: 8487 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8488 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8489 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8490 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8491 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8492 #include "llvm/IR/ConstrainedOps.def" 8493 } 8494 8495 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8496 8497 // We're taking this node out of the chain, so we need to re-link things. 8498 SDValue InputChain = Node->getOperand(0); 8499 SDValue OutputChain = SDValue(Node, 1); 8500 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8501 8502 SmallVector<SDValue, 3> Ops; 8503 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8504 Ops.push_back(Node->getOperand(i)); 8505 8506 SDVTList VTs = getVTList(Node->getValueType(0)); 8507 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8508 8509 // MorphNodeTo can operate in two ways: if an existing node with the 8510 // specified operands exists, it can just return it. Otherwise, it 8511 // updates the node in place to have the requested operands. 8512 if (Res == Node) { 8513 // If we updated the node in place, reset the node ID. To the isel, 8514 // this should be just like a newly allocated machine node. 8515 Res->setNodeId(-1); 8516 } else { 8517 ReplaceAllUsesWith(Node, Res); 8518 RemoveDeadNode(Node); 8519 } 8520 8521 return Res; 8522 } 8523 8524 /// getMachineNode - These are used for target selectors to create a new node 8525 /// with specified return type(s), MachineInstr opcode, and operands. 8526 /// 8527 /// Note that getMachineNode returns the resultant node. If there is already a 8528 /// node of the specified opcode and operands, it returns that node instead of 8529 /// the current one. 8530 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8531 EVT VT) { 8532 SDVTList VTs = getVTList(VT); 8533 return getMachineNode(Opcode, dl, VTs, None); 8534 } 8535 8536 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8537 EVT VT, SDValue Op1) { 8538 SDVTList VTs = getVTList(VT); 8539 SDValue Ops[] = { Op1 }; 8540 return getMachineNode(Opcode, dl, VTs, Ops); 8541 } 8542 8543 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8544 EVT VT, SDValue Op1, SDValue Op2) { 8545 SDVTList VTs = getVTList(VT); 8546 SDValue Ops[] = { Op1, Op2 }; 8547 return getMachineNode(Opcode, dl, VTs, Ops); 8548 } 8549 8550 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8551 EVT VT, SDValue Op1, SDValue Op2, 8552 SDValue Op3) { 8553 SDVTList VTs = getVTList(VT); 8554 SDValue Ops[] = { Op1, Op2, Op3 }; 8555 return getMachineNode(Opcode, dl, VTs, Ops); 8556 } 8557 8558 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8559 EVT VT, ArrayRef<SDValue> Ops) { 8560 SDVTList VTs = getVTList(VT); 8561 return getMachineNode(Opcode, dl, VTs, Ops); 8562 } 8563 8564 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8565 EVT VT1, EVT VT2, SDValue Op1, 8566 SDValue Op2) { 8567 SDVTList VTs = getVTList(VT1, VT2); 8568 SDValue Ops[] = { Op1, Op2 }; 8569 return getMachineNode(Opcode, dl, VTs, Ops); 8570 } 8571 8572 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8573 EVT VT1, EVT VT2, SDValue Op1, 8574 SDValue Op2, SDValue Op3) { 8575 SDVTList VTs = getVTList(VT1, VT2); 8576 SDValue Ops[] = { Op1, Op2, Op3 }; 8577 return getMachineNode(Opcode, dl, VTs, Ops); 8578 } 8579 8580 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8581 EVT VT1, EVT VT2, 8582 ArrayRef<SDValue> Ops) { 8583 SDVTList VTs = getVTList(VT1, VT2); 8584 return getMachineNode(Opcode, dl, VTs, Ops); 8585 } 8586 8587 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8588 EVT VT1, EVT VT2, EVT VT3, 8589 SDValue Op1, SDValue Op2) { 8590 SDVTList VTs = getVTList(VT1, VT2, VT3); 8591 SDValue Ops[] = { Op1, Op2 }; 8592 return getMachineNode(Opcode, dl, VTs, Ops); 8593 } 8594 8595 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8596 EVT VT1, EVT VT2, EVT VT3, 8597 SDValue Op1, SDValue Op2, 8598 SDValue Op3) { 8599 SDVTList VTs = getVTList(VT1, VT2, VT3); 8600 SDValue Ops[] = { Op1, Op2, Op3 }; 8601 return getMachineNode(Opcode, dl, VTs, Ops); 8602 } 8603 8604 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8605 EVT VT1, EVT VT2, EVT VT3, 8606 ArrayRef<SDValue> Ops) { 8607 SDVTList VTs = getVTList(VT1, VT2, VT3); 8608 return getMachineNode(Opcode, dl, VTs, Ops); 8609 } 8610 8611 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8612 ArrayRef<EVT> ResultTys, 8613 ArrayRef<SDValue> Ops) { 8614 SDVTList VTs = getVTList(ResultTys); 8615 return getMachineNode(Opcode, dl, VTs, Ops); 8616 } 8617 8618 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8619 SDVTList VTs, 8620 ArrayRef<SDValue> Ops) { 8621 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8622 MachineSDNode *N; 8623 void *IP = nullptr; 8624 8625 if (DoCSE) { 8626 FoldingSetNodeID ID; 8627 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8628 IP = nullptr; 8629 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8630 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8631 } 8632 } 8633 8634 // Allocate a new MachineSDNode. 8635 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8636 createOperands(N, Ops); 8637 8638 if (DoCSE) 8639 CSEMap.InsertNode(N, IP); 8640 8641 InsertNode(N); 8642 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8643 return N; 8644 } 8645 8646 /// getTargetExtractSubreg - A convenience function for creating 8647 /// TargetOpcode::EXTRACT_SUBREG nodes. 8648 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8649 SDValue Operand) { 8650 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8651 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8652 VT, Operand, SRIdxVal); 8653 return SDValue(Subreg, 0); 8654 } 8655 8656 /// getTargetInsertSubreg - A convenience function for creating 8657 /// TargetOpcode::INSERT_SUBREG nodes. 8658 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8659 SDValue Operand, SDValue Subreg) { 8660 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8661 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8662 VT, Operand, Subreg, SRIdxVal); 8663 return SDValue(Result, 0); 8664 } 8665 8666 /// getNodeIfExists - Get the specified node if it's already available, or 8667 /// else return NULL. 8668 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8669 ArrayRef<SDValue> Ops) { 8670 SDNodeFlags Flags; 8671 if (Inserter) 8672 Flags = Inserter->getFlags(); 8673 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8674 } 8675 8676 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8677 ArrayRef<SDValue> Ops, 8678 const SDNodeFlags Flags) { 8679 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8680 FoldingSetNodeID ID; 8681 AddNodeIDNode(ID, Opcode, VTList, Ops); 8682 void *IP = nullptr; 8683 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8684 E->intersectFlagsWith(Flags); 8685 return E; 8686 } 8687 } 8688 return nullptr; 8689 } 8690 8691 /// doesNodeExist - Check if a node exists without modifying its flags. 8692 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8693 ArrayRef<SDValue> Ops) { 8694 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8695 FoldingSetNodeID ID; 8696 AddNodeIDNode(ID, Opcode, VTList, Ops); 8697 void *IP = nullptr; 8698 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8699 return true; 8700 } 8701 return false; 8702 } 8703 8704 /// getDbgValue - Creates a SDDbgValue node. 8705 /// 8706 /// SDNode 8707 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8708 SDNode *N, unsigned R, bool IsIndirect, 8709 const DebugLoc &DL, unsigned O) { 8710 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8711 "Expected inlined-at fields to agree"); 8712 return new (DbgInfo->getAlloc()) 8713 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 8714 {}, IsIndirect, DL, O, 8715 /*IsVariadic=*/false); 8716 } 8717 8718 /// Constant 8719 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8720 DIExpression *Expr, 8721 const Value *C, 8722 const DebugLoc &DL, unsigned O) { 8723 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8724 "Expected inlined-at fields to agree"); 8725 return new (DbgInfo->getAlloc()) 8726 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 8727 /*IsIndirect=*/false, DL, O, 8728 /*IsVariadic=*/false); 8729 } 8730 8731 /// FrameIndex 8732 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8733 DIExpression *Expr, unsigned FI, 8734 bool IsIndirect, 8735 const DebugLoc &DL, 8736 unsigned O) { 8737 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8738 "Expected inlined-at fields to agree"); 8739 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8740 } 8741 8742 /// FrameIndex with dependencies 8743 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8744 DIExpression *Expr, unsigned FI, 8745 ArrayRef<SDNode *> Dependencies, 8746 bool IsIndirect, 8747 const DebugLoc &DL, 8748 unsigned O) { 8749 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8750 "Expected inlined-at fields to agree"); 8751 return new (DbgInfo->getAlloc()) 8752 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 8753 Dependencies, IsIndirect, DL, O, 8754 /*IsVariadic=*/false); 8755 } 8756 8757 /// VReg 8758 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8759 unsigned VReg, bool IsIndirect, 8760 const DebugLoc &DL, unsigned O) { 8761 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8762 "Expected inlined-at fields to agree"); 8763 return new (DbgInfo->getAlloc()) 8764 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 8765 {}, IsIndirect, DL, O, 8766 /*IsVariadic=*/false); 8767 } 8768 8769 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8770 ArrayRef<SDDbgOperand> Locs, 8771 ArrayRef<SDNode *> Dependencies, 8772 bool IsIndirect, const DebugLoc &DL, 8773 unsigned O, bool IsVariadic) { 8774 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8775 "Expected inlined-at fields to agree"); 8776 return new (DbgInfo->getAlloc()) 8777 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 8778 DL, O, IsVariadic); 8779 } 8780 8781 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8782 unsigned OffsetInBits, unsigned SizeInBits, 8783 bool InvalidateDbg) { 8784 SDNode *FromNode = From.getNode(); 8785 SDNode *ToNode = To.getNode(); 8786 assert(FromNode && ToNode && "Can't modify dbg values"); 8787 8788 // PR35338 8789 // TODO: assert(From != To && "Redundant dbg value transfer"); 8790 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8791 if (From == To || FromNode == ToNode) 8792 return; 8793 8794 if (!FromNode->getHasDebugValue()) 8795 return; 8796 8797 SDDbgOperand FromLocOp = 8798 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8799 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8800 8801 SmallVector<SDDbgValue *, 2> ClonedDVs; 8802 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8803 if (Dbg->isInvalidated()) 8804 continue; 8805 8806 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8807 8808 // Create a new location ops vector that is equal to the old vector, but 8809 // with each instance of FromLocOp replaced with ToLocOp. 8810 bool Changed = false; 8811 auto NewLocOps = Dbg->copyLocationOps(); 8812 std::replace_if( 8813 NewLocOps.begin(), NewLocOps.end(), 8814 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8815 bool Match = Op == FromLocOp; 8816 Changed |= Match; 8817 return Match; 8818 }, 8819 ToLocOp); 8820 // Ignore this SDDbgValue if we didn't find a matching location. 8821 if (!Changed) 8822 continue; 8823 8824 DIVariable *Var = Dbg->getVariable(); 8825 auto *Expr = Dbg->getExpression(); 8826 // If a fragment is requested, update the expression. 8827 if (SizeInBits) { 8828 // When splitting a larger (e.g., sign-extended) value whose 8829 // lower bits are described with an SDDbgValue, do not attempt 8830 // to transfer the SDDbgValue to the upper bits. 8831 if (auto FI = Expr->getFragmentInfo()) 8832 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8833 continue; 8834 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8835 SizeInBits); 8836 if (!Fragment) 8837 continue; 8838 Expr = *Fragment; 8839 } 8840 8841 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 8842 // Clone the SDDbgValue and move it to To. 8843 SDDbgValue *Clone = getDbgValueList( 8844 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 8845 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8846 Dbg->isVariadic()); 8847 ClonedDVs.push_back(Clone); 8848 8849 if (InvalidateDbg) { 8850 // Invalidate value and indicate the SDDbgValue should not be emitted. 8851 Dbg->setIsInvalidated(); 8852 Dbg->setIsEmitted(); 8853 } 8854 } 8855 8856 for (SDDbgValue *Dbg : ClonedDVs) { 8857 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8858 "Transferred DbgValues should depend on the new SDNode"); 8859 AddDbgValue(Dbg, false); 8860 } 8861 } 8862 8863 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8864 if (!N.getHasDebugValue()) 8865 return; 8866 8867 SmallVector<SDDbgValue *, 2> ClonedDVs; 8868 for (auto DV : GetDbgValues(&N)) { 8869 if (DV->isInvalidated()) 8870 continue; 8871 switch (N.getOpcode()) { 8872 default: 8873 break; 8874 case ISD::ADD: 8875 SDValue N0 = N.getOperand(0); 8876 SDValue N1 = N.getOperand(1); 8877 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8878 isConstantIntBuildVectorOrConstantInt(N1)) { 8879 uint64_t Offset = N.getConstantOperandVal(1); 8880 8881 // Rewrite an ADD constant node into a DIExpression. Since we are 8882 // performing arithmetic to compute the variable's *value* in the 8883 // DIExpression, we need to mark the expression with a 8884 // DW_OP_stack_value. 8885 auto *DIExpr = DV->getExpression(); 8886 auto NewLocOps = DV->copyLocationOps(); 8887 bool Changed = false; 8888 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8889 // We're not given a ResNo to compare against because the whole 8890 // node is going away. We know that any ISD::ADD only has one 8891 // result, so we can assume any node match is using the result. 8892 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8893 NewLocOps[i].getSDNode() != &N) 8894 continue; 8895 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8896 SmallVector<uint64_t, 3> ExprOps; 8897 DIExpression::appendOffset(ExprOps, Offset); 8898 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8899 Changed = true; 8900 } 8901 (void)Changed; 8902 assert(Changed && "Salvage target doesn't use N"); 8903 8904 auto AdditionalDependencies = DV->getAdditionalDependencies(); 8905 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8906 NewLocOps, AdditionalDependencies, 8907 DV->isIndirect(), DV->getDebugLoc(), 8908 DV->getOrder(), DV->isVariadic()); 8909 ClonedDVs.push_back(Clone); 8910 DV->setIsInvalidated(); 8911 DV->setIsEmitted(); 8912 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8913 N0.getNode()->dumprFull(this); 8914 dbgs() << " into " << *DIExpr << '\n'); 8915 } 8916 } 8917 } 8918 8919 for (SDDbgValue *Dbg : ClonedDVs) { 8920 assert(!Dbg->getSDNodes().empty() && 8921 "Salvaged DbgValue should depend on a new SDNode"); 8922 AddDbgValue(Dbg, false); 8923 } 8924 } 8925 8926 /// Creates a SDDbgLabel node. 8927 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8928 const DebugLoc &DL, unsigned O) { 8929 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8930 "Expected inlined-at fields to agree"); 8931 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8932 } 8933 8934 namespace { 8935 8936 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8937 /// pointed to by a use iterator is deleted, increment the use iterator 8938 /// so that it doesn't dangle. 8939 /// 8940 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8941 SDNode::use_iterator &UI; 8942 SDNode::use_iterator &UE; 8943 8944 void NodeDeleted(SDNode *N, SDNode *E) override { 8945 // Increment the iterator as needed. 8946 while (UI != UE && N == *UI) 8947 ++UI; 8948 } 8949 8950 public: 8951 RAUWUpdateListener(SelectionDAG &d, 8952 SDNode::use_iterator &ui, 8953 SDNode::use_iterator &ue) 8954 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8955 }; 8956 8957 } // end anonymous namespace 8958 8959 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8960 /// This can cause recursive merging of nodes in the DAG. 8961 /// 8962 /// This version assumes From has a single result value. 8963 /// 8964 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8965 SDNode *From = FromN.getNode(); 8966 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8967 "Cannot replace with this method!"); 8968 assert(From != To.getNode() && "Cannot replace uses of with self"); 8969 8970 // Preserve Debug Values 8971 transferDbgValues(FromN, To); 8972 8973 // Iterate over all the existing uses of From. New uses will be added 8974 // to the beginning of the use list, which we avoid visiting. 8975 // This specifically avoids visiting uses of From that arise while the 8976 // replacement is happening, because any such uses would be the result 8977 // of CSE: If an existing node looks like From after one of its operands 8978 // is replaced by To, we don't want to replace of all its users with To 8979 // too. See PR3018 for more info. 8980 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8981 RAUWUpdateListener Listener(*this, UI, UE); 8982 while (UI != UE) { 8983 SDNode *User = *UI; 8984 8985 // This node is about to morph, remove its old self from the CSE maps. 8986 RemoveNodeFromCSEMaps(User); 8987 8988 // A user can appear in a use list multiple times, and when this 8989 // happens the uses are usually next to each other in the list. 8990 // To help reduce the number of CSE recomputations, process all 8991 // the uses of this user that we can find this way. 8992 do { 8993 SDUse &Use = UI.getUse(); 8994 ++UI; 8995 Use.set(To); 8996 if (To->isDivergent() != From->isDivergent()) 8997 updateDivergence(User); 8998 } while (UI != UE && *UI == User); 8999 // Now that we have modified User, add it back to the CSE maps. If it 9000 // already exists there, recursively merge the results together. 9001 AddModifiedNodeToCSEMaps(User); 9002 } 9003 9004 // If we just RAUW'd the root, take note. 9005 if (FromN == getRoot()) 9006 setRoot(To); 9007 } 9008 9009 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9010 /// This can cause recursive merging of nodes in the DAG. 9011 /// 9012 /// This version assumes that for each value of From, there is a 9013 /// corresponding value in To in the same position with the same type. 9014 /// 9015 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9016 #ifndef NDEBUG 9017 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9018 assert((!From->hasAnyUseOfValue(i) || 9019 From->getValueType(i) == To->getValueType(i)) && 9020 "Cannot use this version of ReplaceAllUsesWith!"); 9021 #endif 9022 9023 // Handle the trivial case. 9024 if (From == To) 9025 return; 9026 9027 // Preserve Debug Info. Only do this if there's a use. 9028 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9029 if (From->hasAnyUseOfValue(i)) { 9030 assert((i < To->getNumValues()) && "Invalid To location"); 9031 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9032 } 9033 9034 // Iterate over just the existing users of From. See the comments in 9035 // the ReplaceAllUsesWith above. 9036 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9037 RAUWUpdateListener Listener(*this, UI, UE); 9038 while (UI != UE) { 9039 SDNode *User = *UI; 9040 9041 // This node is about to morph, remove its old self from the CSE maps. 9042 RemoveNodeFromCSEMaps(User); 9043 9044 // A user can appear in a use list multiple times, and when this 9045 // happens the uses are usually next to each other in the list. 9046 // To help reduce the number of CSE recomputations, process all 9047 // the uses of this user that we can find this way. 9048 do { 9049 SDUse &Use = UI.getUse(); 9050 ++UI; 9051 Use.setNode(To); 9052 if (To->isDivergent() != From->isDivergent()) 9053 updateDivergence(User); 9054 } while (UI != UE && *UI == User); 9055 9056 // Now that we have modified User, add it back to the CSE maps. If it 9057 // already exists there, recursively merge the results together. 9058 AddModifiedNodeToCSEMaps(User); 9059 } 9060 9061 // If we just RAUW'd the root, take note. 9062 if (From == getRoot().getNode()) 9063 setRoot(SDValue(To, getRoot().getResNo())); 9064 } 9065 9066 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9067 /// This can cause recursive merging of nodes in the DAG. 9068 /// 9069 /// This version can replace From with any result values. To must match the 9070 /// number and types of values returned by From. 9071 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9072 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9073 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9074 9075 // Preserve Debug Info. 9076 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9077 transferDbgValues(SDValue(From, i), To[i]); 9078 9079 // Iterate over just the existing users of From. See the comments in 9080 // the ReplaceAllUsesWith above. 9081 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9082 RAUWUpdateListener Listener(*this, UI, UE); 9083 while (UI != UE) { 9084 SDNode *User = *UI; 9085 9086 // This node is about to morph, remove its old self from the CSE maps. 9087 RemoveNodeFromCSEMaps(User); 9088 9089 // A user can appear in a use list multiple times, and when this happens the 9090 // uses are usually next to each other in the list. To help reduce the 9091 // number of CSE and divergence recomputations, process all the uses of this 9092 // user that we can find this way. 9093 bool To_IsDivergent = false; 9094 do { 9095 SDUse &Use = UI.getUse(); 9096 const SDValue &ToOp = To[Use.getResNo()]; 9097 ++UI; 9098 Use.set(ToOp); 9099 To_IsDivergent |= ToOp->isDivergent(); 9100 } while (UI != UE && *UI == User); 9101 9102 if (To_IsDivergent != From->isDivergent()) 9103 updateDivergence(User); 9104 9105 // Now that we have modified User, add it back to the CSE maps. If it 9106 // already exists there, recursively merge the results together. 9107 AddModifiedNodeToCSEMaps(User); 9108 } 9109 9110 // If we just RAUW'd the root, take note. 9111 if (From == getRoot().getNode()) 9112 setRoot(SDValue(To[getRoot().getResNo()])); 9113 } 9114 9115 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9116 /// uses of other values produced by From.getNode() alone. The Deleted 9117 /// vector is handled the same way as for ReplaceAllUsesWith. 9118 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9119 // Handle the really simple, really trivial case efficiently. 9120 if (From == To) return; 9121 9122 // Handle the simple, trivial, case efficiently. 9123 if (From.getNode()->getNumValues() == 1) { 9124 ReplaceAllUsesWith(From, To); 9125 return; 9126 } 9127 9128 // Preserve Debug Info. 9129 transferDbgValues(From, To); 9130 9131 // Iterate over just the existing users of From. See the comments in 9132 // the ReplaceAllUsesWith above. 9133 SDNode::use_iterator UI = From.getNode()->use_begin(), 9134 UE = From.getNode()->use_end(); 9135 RAUWUpdateListener Listener(*this, UI, UE); 9136 while (UI != UE) { 9137 SDNode *User = *UI; 9138 bool UserRemovedFromCSEMaps = false; 9139 9140 // A user can appear in a use list multiple times, and when this 9141 // happens the uses are usually next to each other in the list. 9142 // To help reduce the number of CSE recomputations, process all 9143 // the uses of this user that we can find this way. 9144 do { 9145 SDUse &Use = UI.getUse(); 9146 9147 // Skip uses of different values from the same node. 9148 if (Use.getResNo() != From.getResNo()) { 9149 ++UI; 9150 continue; 9151 } 9152 9153 // If this node hasn't been modified yet, it's still in the CSE maps, 9154 // so remove its old self from the CSE maps. 9155 if (!UserRemovedFromCSEMaps) { 9156 RemoveNodeFromCSEMaps(User); 9157 UserRemovedFromCSEMaps = true; 9158 } 9159 9160 ++UI; 9161 Use.set(To); 9162 if (To->isDivergent() != From->isDivergent()) 9163 updateDivergence(User); 9164 } while (UI != UE && *UI == User); 9165 // We are iterating over all uses of the From node, so if a use 9166 // doesn't use the specific value, no changes are made. 9167 if (!UserRemovedFromCSEMaps) 9168 continue; 9169 9170 // Now that we have modified User, add it back to the CSE maps. If it 9171 // already exists there, recursively merge the results together. 9172 AddModifiedNodeToCSEMaps(User); 9173 } 9174 9175 // If we just RAUW'd the root, take note. 9176 if (From == getRoot()) 9177 setRoot(To); 9178 } 9179 9180 namespace { 9181 9182 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9183 /// to record information about a use. 9184 struct UseMemo { 9185 SDNode *User; 9186 unsigned Index; 9187 SDUse *Use; 9188 }; 9189 9190 /// operator< - Sort Memos by User. 9191 bool operator<(const UseMemo &L, const UseMemo &R) { 9192 return (intptr_t)L.User < (intptr_t)R.User; 9193 } 9194 9195 } // end anonymous namespace 9196 9197 bool SelectionDAG::calculateDivergence(SDNode *N) { 9198 if (TLI->isSDNodeAlwaysUniform(N)) { 9199 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9200 "Conflicting divergence information!"); 9201 return false; 9202 } 9203 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9204 return true; 9205 for (auto &Op : N->ops()) { 9206 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9207 return true; 9208 } 9209 return false; 9210 } 9211 9212 void SelectionDAG::updateDivergence(SDNode *N) { 9213 SmallVector<SDNode *, 16> Worklist(1, N); 9214 do { 9215 N = Worklist.pop_back_val(); 9216 bool IsDivergent = calculateDivergence(N); 9217 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9218 N->SDNodeBits.IsDivergent = IsDivergent; 9219 llvm::append_range(Worklist, N->uses()); 9220 } 9221 } while (!Worklist.empty()); 9222 } 9223 9224 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9225 DenseMap<SDNode *, unsigned> Degree; 9226 Order.reserve(AllNodes.size()); 9227 for (auto &N : allnodes()) { 9228 unsigned NOps = N.getNumOperands(); 9229 Degree[&N] = NOps; 9230 if (0 == NOps) 9231 Order.push_back(&N); 9232 } 9233 for (size_t I = 0; I != Order.size(); ++I) { 9234 SDNode *N = Order[I]; 9235 for (auto U : N->uses()) { 9236 unsigned &UnsortedOps = Degree[U]; 9237 if (0 == --UnsortedOps) 9238 Order.push_back(U); 9239 } 9240 } 9241 } 9242 9243 #ifndef NDEBUG 9244 void SelectionDAG::VerifyDAGDiverence() { 9245 std::vector<SDNode *> TopoOrder; 9246 CreateTopologicalOrder(TopoOrder); 9247 for (auto *N : TopoOrder) { 9248 assert(calculateDivergence(N) == N->isDivergent() && 9249 "Divergence bit inconsistency detected"); 9250 } 9251 } 9252 #endif 9253 9254 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9255 /// uses of other values produced by From.getNode() alone. The same value 9256 /// may appear in both the From and To list. The Deleted vector is 9257 /// handled the same way as for ReplaceAllUsesWith. 9258 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9259 const SDValue *To, 9260 unsigned Num){ 9261 // Handle the simple, trivial case efficiently. 9262 if (Num == 1) 9263 return ReplaceAllUsesOfValueWith(*From, *To); 9264 9265 transferDbgValues(*From, *To); 9266 9267 // Read up all the uses and make records of them. This helps 9268 // processing new uses that are introduced during the 9269 // replacement process. 9270 SmallVector<UseMemo, 4> Uses; 9271 for (unsigned i = 0; i != Num; ++i) { 9272 unsigned FromResNo = From[i].getResNo(); 9273 SDNode *FromNode = From[i].getNode(); 9274 for (SDNode::use_iterator UI = FromNode->use_begin(), 9275 E = FromNode->use_end(); UI != E; ++UI) { 9276 SDUse &Use = UI.getUse(); 9277 if (Use.getResNo() == FromResNo) { 9278 UseMemo Memo = { *UI, i, &Use }; 9279 Uses.push_back(Memo); 9280 } 9281 } 9282 } 9283 9284 // Sort the uses, so that all the uses from a given User are together. 9285 llvm::sort(Uses); 9286 9287 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9288 UseIndex != UseIndexEnd; ) { 9289 // We know that this user uses some value of From. If it is the right 9290 // value, update it. 9291 SDNode *User = Uses[UseIndex].User; 9292 9293 // This node is about to morph, remove its old self from the CSE maps. 9294 RemoveNodeFromCSEMaps(User); 9295 9296 // The Uses array is sorted, so all the uses for a given User 9297 // are next to each other in the list. 9298 // To help reduce the number of CSE recomputations, process all 9299 // the uses of this user that we can find this way. 9300 do { 9301 unsigned i = Uses[UseIndex].Index; 9302 SDUse &Use = *Uses[UseIndex].Use; 9303 ++UseIndex; 9304 9305 Use.set(To[i]); 9306 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9307 9308 // Now that we have modified User, add it back to the CSE maps. If it 9309 // already exists there, recursively merge the results together. 9310 AddModifiedNodeToCSEMaps(User); 9311 } 9312 } 9313 9314 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9315 /// based on their topological order. It returns the maximum id and a vector 9316 /// of the SDNodes* in assigned order by reference. 9317 unsigned SelectionDAG::AssignTopologicalOrder() { 9318 unsigned DAGSize = 0; 9319 9320 // SortedPos tracks the progress of the algorithm. Nodes before it are 9321 // sorted, nodes after it are unsorted. When the algorithm completes 9322 // it is at the end of the list. 9323 allnodes_iterator SortedPos = allnodes_begin(); 9324 9325 // Visit all the nodes. Move nodes with no operands to the front of 9326 // the list immediately. Annotate nodes that do have operands with their 9327 // operand count. Before we do this, the Node Id fields of the nodes 9328 // may contain arbitrary values. After, the Node Id fields for nodes 9329 // before SortedPos will contain the topological sort index, and the 9330 // Node Id fields for nodes At SortedPos and after will contain the 9331 // count of outstanding operands. 9332 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9333 SDNode *N = &*I++; 9334 checkForCycles(N, this); 9335 unsigned Degree = N->getNumOperands(); 9336 if (Degree == 0) { 9337 // A node with no uses, add it to the result array immediately. 9338 N->setNodeId(DAGSize++); 9339 allnodes_iterator Q(N); 9340 if (Q != SortedPos) 9341 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9342 assert(SortedPos != AllNodes.end() && "Overran node list"); 9343 ++SortedPos; 9344 } else { 9345 // Temporarily use the Node Id as scratch space for the degree count. 9346 N->setNodeId(Degree); 9347 } 9348 } 9349 9350 // Visit all the nodes. As we iterate, move nodes into sorted order, 9351 // such that by the time the end is reached all nodes will be sorted. 9352 for (SDNode &Node : allnodes()) { 9353 SDNode *N = &Node; 9354 checkForCycles(N, this); 9355 // N is in sorted position, so all its uses have one less operand 9356 // that needs to be sorted. 9357 for (SDNode *P : N->uses()) { 9358 unsigned Degree = P->getNodeId(); 9359 assert(Degree != 0 && "Invalid node degree"); 9360 --Degree; 9361 if (Degree == 0) { 9362 // All of P's operands are sorted, so P may sorted now. 9363 P->setNodeId(DAGSize++); 9364 if (P->getIterator() != SortedPos) 9365 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9366 assert(SortedPos != AllNodes.end() && "Overran node list"); 9367 ++SortedPos; 9368 } else { 9369 // Update P's outstanding operand count. 9370 P->setNodeId(Degree); 9371 } 9372 } 9373 if (Node.getIterator() == SortedPos) { 9374 #ifndef NDEBUG 9375 allnodes_iterator I(N); 9376 SDNode *S = &*++I; 9377 dbgs() << "Overran sorted position:\n"; 9378 S->dumprFull(this); dbgs() << "\n"; 9379 dbgs() << "Checking if this is due to cycles\n"; 9380 checkForCycles(this, true); 9381 #endif 9382 llvm_unreachable(nullptr); 9383 } 9384 } 9385 9386 assert(SortedPos == AllNodes.end() && 9387 "Topological sort incomplete!"); 9388 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9389 "First node in topological sort is not the entry token!"); 9390 assert(AllNodes.front().getNodeId() == 0 && 9391 "First node in topological sort has non-zero id!"); 9392 assert(AllNodes.front().getNumOperands() == 0 && 9393 "First node in topological sort has operands!"); 9394 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9395 "Last node in topologic sort has unexpected id!"); 9396 assert(AllNodes.back().use_empty() && 9397 "Last node in topologic sort has users!"); 9398 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9399 return DAGSize; 9400 } 9401 9402 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9403 /// value is produced by SD. 9404 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9405 for (SDNode *SD : DB->getSDNodes()) { 9406 if (!SD) 9407 continue; 9408 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9409 SD->setHasDebugValue(true); 9410 } 9411 DbgInfo->add(DB, isParameter); 9412 } 9413 9414 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9415 9416 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9417 SDValue NewMemOpChain) { 9418 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9419 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9420 // The new memory operation must have the same position as the old load in 9421 // terms of memory dependency. Create a TokenFactor for the old load and new 9422 // memory operation and update uses of the old load's output chain to use that 9423 // TokenFactor. 9424 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9425 return NewMemOpChain; 9426 9427 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9428 OldChain, NewMemOpChain); 9429 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9430 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9431 return TokenFactor; 9432 } 9433 9434 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9435 SDValue NewMemOp) { 9436 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9437 SDValue OldChain = SDValue(OldLoad, 1); 9438 SDValue NewMemOpChain = NewMemOp.getValue(1); 9439 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9440 } 9441 9442 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9443 Function **OutFunction) { 9444 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9445 9446 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9447 auto *Module = MF->getFunction().getParent(); 9448 auto *Function = Module->getFunction(Symbol); 9449 9450 if (OutFunction != nullptr) 9451 *OutFunction = Function; 9452 9453 if (Function != nullptr) { 9454 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9455 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9456 } 9457 9458 std::string ErrorStr; 9459 raw_string_ostream ErrorFormatter(ErrorStr); 9460 9461 ErrorFormatter << "Undefined external symbol "; 9462 ErrorFormatter << '"' << Symbol << '"'; 9463 ErrorFormatter.flush(); 9464 9465 report_fatal_error(ErrorStr); 9466 } 9467 9468 //===----------------------------------------------------------------------===// 9469 // SDNode Class 9470 //===----------------------------------------------------------------------===// 9471 9472 bool llvm::isNullConstant(SDValue V) { 9473 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9474 return Const != nullptr && Const->isNullValue(); 9475 } 9476 9477 bool llvm::isNullFPConstant(SDValue V) { 9478 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9479 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9480 } 9481 9482 bool llvm::isAllOnesConstant(SDValue V) { 9483 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9484 return Const != nullptr && Const->isAllOnesValue(); 9485 } 9486 9487 bool llvm::isOneConstant(SDValue V) { 9488 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9489 return Const != nullptr && Const->isOne(); 9490 } 9491 9492 SDValue llvm::peekThroughBitcasts(SDValue V) { 9493 while (V.getOpcode() == ISD::BITCAST) 9494 V = V.getOperand(0); 9495 return V; 9496 } 9497 9498 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9499 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9500 V = V.getOperand(0); 9501 return V; 9502 } 9503 9504 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9505 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9506 V = V.getOperand(0); 9507 return V; 9508 } 9509 9510 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9511 if (V.getOpcode() != ISD::XOR) 9512 return false; 9513 V = peekThroughBitcasts(V.getOperand(1)); 9514 unsigned NumBits = V.getScalarValueSizeInBits(); 9515 ConstantSDNode *C = 9516 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9517 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9518 } 9519 9520 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9521 bool AllowTruncation) { 9522 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9523 return CN; 9524 9525 // SplatVectors can truncate their operands. Ignore that case here unless 9526 // AllowTruncation is set. 9527 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9528 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9529 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9530 EVT CVT = CN->getValueType(0); 9531 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9532 if (AllowTruncation || CVT == VecEltVT) 9533 return CN; 9534 } 9535 } 9536 9537 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9538 BitVector UndefElements; 9539 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9540 9541 // BuildVectors can truncate their operands. Ignore that case here unless 9542 // AllowTruncation is set. 9543 if (CN && (UndefElements.none() || AllowUndefs)) { 9544 EVT CVT = CN->getValueType(0); 9545 EVT NSVT = N.getValueType().getScalarType(); 9546 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9547 if (AllowTruncation || (CVT == NSVT)) 9548 return CN; 9549 } 9550 } 9551 9552 return nullptr; 9553 } 9554 9555 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9556 bool AllowUndefs, 9557 bool AllowTruncation) { 9558 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9559 return CN; 9560 9561 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9562 BitVector UndefElements; 9563 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9564 9565 // BuildVectors can truncate their operands. Ignore that case here unless 9566 // AllowTruncation is set. 9567 if (CN && (UndefElements.none() || AllowUndefs)) { 9568 EVT CVT = CN->getValueType(0); 9569 EVT NSVT = N.getValueType().getScalarType(); 9570 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9571 if (AllowTruncation || (CVT == NSVT)) 9572 return CN; 9573 } 9574 } 9575 9576 return nullptr; 9577 } 9578 9579 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9580 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9581 return CN; 9582 9583 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9584 BitVector UndefElements; 9585 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9586 if (CN && (UndefElements.none() || AllowUndefs)) 9587 return CN; 9588 } 9589 9590 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9591 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9592 return CN; 9593 9594 return nullptr; 9595 } 9596 9597 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9598 const APInt &DemandedElts, 9599 bool AllowUndefs) { 9600 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9601 return CN; 9602 9603 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9604 BitVector UndefElements; 9605 ConstantFPSDNode *CN = 9606 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9607 if (CN && (UndefElements.none() || AllowUndefs)) 9608 return CN; 9609 } 9610 9611 return nullptr; 9612 } 9613 9614 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9615 // TODO: may want to use peekThroughBitcast() here. 9616 ConstantSDNode *C = 9617 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 9618 return C && C->isNullValue(); 9619 } 9620 9621 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9622 // TODO: may want to use peekThroughBitcast() here. 9623 unsigned BitWidth = N.getScalarValueSizeInBits(); 9624 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9625 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9626 } 9627 9628 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9629 N = peekThroughBitcasts(N); 9630 unsigned BitWidth = N.getScalarValueSizeInBits(); 9631 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9632 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9633 } 9634 9635 HandleSDNode::~HandleSDNode() { 9636 DropOperands(); 9637 } 9638 9639 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9640 const DebugLoc &DL, 9641 const GlobalValue *GA, EVT VT, 9642 int64_t o, unsigned TF) 9643 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9644 TheGlobal = GA; 9645 } 9646 9647 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9648 EVT VT, unsigned SrcAS, 9649 unsigned DestAS) 9650 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9651 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9652 9653 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9654 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9655 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9656 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9657 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9658 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9659 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9660 9661 // We check here that the size of the memory operand fits within the size of 9662 // the MMO. This is because the MMO might indicate only a possible address 9663 // range instead of specifying the affected memory addresses precisely. 9664 // TODO: Make MachineMemOperands aware of scalable vectors. 9665 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9666 "Size mismatch!"); 9667 } 9668 9669 /// Profile - Gather unique data for the node. 9670 /// 9671 void SDNode::Profile(FoldingSetNodeID &ID) const { 9672 AddNodeIDNode(ID, this); 9673 } 9674 9675 namespace { 9676 9677 struct EVTArray { 9678 std::vector<EVT> VTs; 9679 9680 EVTArray() { 9681 VTs.reserve(MVT::VALUETYPE_SIZE); 9682 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 9683 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9684 } 9685 }; 9686 9687 } // end anonymous namespace 9688 9689 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9690 static ManagedStatic<EVTArray> SimpleVTArray; 9691 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9692 9693 /// getValueTypeList - Return a pointer to the specified value type. 9694 /// 9695 const EVT *SDNode::getValueTypeList(EVT VT) { 9696 if (VT.isExtended()) { 9697 sys::SmartScopedLock<true> Lock(*VTMutex); 9698 return &(*EVTs->insert(VT).first); 9699 } 9700 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 9701 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9702 } 9703 9704 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9705 /// indicated value. This method ignores uses of other values defined by this 9706 /// operation. 9707 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9708 assert(Value < getNumValues() && "Bad value!"); 9709 9710 // TODO: Only iterate over uses of a given value of the node 9711 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9712 if (UI.getUse().getResNo() == Value) { 9713 if (NUses == 0) 9714 return false; 9715 --NUses; 9716 } 9717 } 9718 9719 // Found exactly the right number of uses? 9720 return NUses == 0; 9721 } 9722 9723 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9724 /// value. This method ignores uses of other values defined by this operation. 9725 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9726 assert(Value < getNumValues() && "Bad value!"); 9727 9728 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9729 if (UI.getUse().getResNo() == Value) 9730 return true; 9731 9732 return false; 9733 } 9734 9735 /// isOnlyUserOf - Return true if this node is the only use of N. 9736 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9737 bool Seen = false; 9738 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9739 SDNode *User = *I; 9740 if (User == this) 9741 Seen = true; 9742 else 9743 return false; 9744 } 9745 9746 return Seen; 9747 } 9748 9749 /// Return true if the only users of N are contained in Nodes. 9750 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9751 bool Seen = false; 9752 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9753 SDNode *User = *I; 9754 if (llvm::is_contained(Nodes, User)) 9755 Seen = true; 9756 else 9757 return false; 9758 } 9759 9760 return Seen; 9761 } 9762 9763 /// isOperand - Return true if this node is an operand of N. 9764 bool SDValue::isOperandOf(const SDNode *N) const { 9765 return is_contained(N->op_values(), *this); 9766 } 9767 9768 bool SDNode::isOperandOf(const SDNode *N) const { 9769 return any_of(N->op_values(), 9770 [this](SDValue Op) { return this == Op.getNode(); }); 9771 } 9772 9773 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9774 /// be a chain) reaches the specified operand without crossing any 9775 /// side-effecting instructions on any chain path. In practice, this looks 9776 /// through token factors and non-volatile loads. In order to remain efficient, 9777 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9778 /// 9779 /// Note that we only need to examine chains when we're searching for 9780 /// side-effects; SelectionDAG requires that all side-effects are represented 9781 /// by chains, even if another operand would force a specific ordering. This 9782 /// constraint is necessary to allow transformations like splitting loads. 9783 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9784 unsigned Depth) const { 9785 if (*this == Dest) return true; 9786 9787 // Don't search too deeply, we just want to be able to see through 9788 // TokenFactor's etc. 9789 if (Depth == 0) return false; 9790 9791 // If this is a token factor, all inputs to the TF happen in parallel. 9792 if (getOpcode() == ISD::TokenFactor) { 9793 // First, try a shallow search. 9794 if (is_contained((*this)->ops(), Dest)) { 9795 // We found the chain we want as an operand of this TokenFactor. 9796 // Essentially, we reach the chain without side-effects if we could 9797 // serialize the TokenFactor into a simple chain of operations with 9798 // Dest as the last operation. This is automatically true if the 9799 // chain has one use: there are no other ordering constraints. 9800 // If the chain has more than one use, we give up: some other 9801 // use of Dest might force a side-effect between Dest and the current 9802 // node. 9803 if (Dest.hasOneUse()) 9804 return true; 9805 } 9806 // Next, try a deep search: check whether every operand of the TokenFactor 9807 // reaches Dest. 9808 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9809 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9810 }); 9811 } 9812 9813 // Loads don't have side effects, look through them. 9814 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9815 if (Ld->isUnordered()) 9816 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9817 } 9818 return false; 9819 } 9820 9821 bool SDNode::hasPredecessor(const SDNode *N) const { 9822 SmallPtrSet<const SDNode *, 32> Visited; 9823 SmallVector<const SDNode *, 16> Worklist; 9824 Worklist.push_back(this); 9825 return hasPredecessorHelper(N, Visited, Worklist); 9826 } 9827 9828 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9829 this->Flags.intersectWith(Flags); 9830 } 9831 9832 SDValue 9833 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9834 ArrayRef<ISD::NodeType> CandidateBinOps, 9835 bool AllowPartials) { 9836 // The pattern must end in an extract from index 0. 9837 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9838 !isNullConstant(Extract->getOperand(1))) 9839 return SDValue(); 9840 9841 // Match against one of the candidate binary ops. 9842 SDValue Op = Extract->getOperand(0); 9843 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9844 return Op.getOpcode() == unsigned(BinOp); 9845 })) 9846 return SDValue(); 9847 9848 // Floating-point reductions may require relaxed constraints on the final step 9849 // of the reduction because they may reorder intermediate operations. 9850 unsigned CandidateBinOp = Op.getOpcode(); 9851 if (Op.getValueType().isFloatingPoint()) { 9852 SDNodeFlags Flags = Op->getFlags(); 9853 switch (CandidateBinOp) { 9854 case ISD::FADD: 9855 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9856 return SDValue(); 9857 break; 9858 default: 9859 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9860 } 9861 } 9862 9863 // Matching failed - attempt to see if we did enough stages that a partial 9864 // reduction from a subvector is possible. 9865 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9866 if (!AllowPartials || !Op) 9867 return SDValue(); 9868 EVT OpVT = Op.getValueType(); 9869 EVT OpSVT = OpVT.getScalarType(); 9870 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9871 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9872 return SDValue(); 9873 BinOp = (ISD::NodeType)CandidateBinOp; 9874 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9875 getVectorIdxConstant(0, SDLoc(Op))); 9876 }; 9877 9878 // At each stage, we're looking for something that looks like: 9879 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9880 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9881 // i32 undef, i32 undef, i32 undef, i32 undef> 9882 // %a = binop <8 x i32> %op, %s 9883 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9884 // we expect something like: 9885 // <4,5,6,7,u,u,u,u> 9886 // <2,3,u,u,u,u,u,u> 9887 // <1,u,u,u,u,u,u,u> 9888 // While a partial reduction match would be: 9889 // <2,3,u,u,u,u,u,u> 9890 // <1,u,u,u,u,u,u,u> 9891 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9892 SDValue PrevOp; 9893 for (unsigned i = 0; i < Stages; ++i) { 9894 unsigned MaskEnd = (1 << i); 9895 9896 if (Op.getOpcode() != CandidateBinOp) 9897 return PartialReduction(PrevOp, MaskEnd); 9898 9899 SDValue Op0 = Op.getOperand(0); 9900 SDValue Op1 = Op.getOperand(1); 9901 9902 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9903 if (Shuffle) { 9904 Op = Op1; 9905 } else { 9906 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9907 Op = Op0; 9908 } 9909 9910 // The first operand of the shuffle should be the same as the other operand 9911 // of the binop. 9912 if (!Shuffle || Shuffle->getOperand(0) != Op) 9913 return PartialReduction(PrevOp, MaskEnd); 9914 9915 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9916 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9917 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9918 return PartialReduction(PrevOp, MaskEnd); 9919 9920 PrevOp = Op; 9921 } 9922 9923 // Handle subvector reductions, which tend to appear after the shuffle 9924 // reduction stages. 9925 while (Op.getOpcode() == CandidateBinOp) { 9926 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9927 SDValue Op0 = Op.getOperand(0); 9928 SDValue Op1 = Op.getOperand(1); 9929 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9930 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9931 Op0.getOperand(0) != Op1.getOperand(0)) 9932 break; 9933 SDValue Src = Op0.getOperand(0); 9934 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9935 if (NumSrcElts != (2 * NumElts)) 9936 break; 9937 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9938 Op1.getConstantOperandAPInt(1) == NumElts) && 9939 !(Op1.getConstantOperandAPInt(1) == 0 && 9940 Op0.getConstantOperandAPInt(1) == NumElts)) 9941 break; 9942 Op = Src; 9943 } 9944 9945 BinOp = (ISD::NodeType)CandidateBinOp; 9946 return Op; 9947 } 9948 9949 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9950 assert(N->getNumValues() == 1 && 9951 "Can't unroll a vector with multiple results!"); 9952 9953 EVT VT = N->getValueType(0); 9954 unsigned NE = VT.getVectorNumElements(); 9955 EVT EltVT = VT.getVectorElementType(); 9956 SDLoc dl(N); 9957 9958 SmallVector<SDValue, 8> Scalars; 9959 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9960 9961 // If ResNE is 0, fully unroll the vector op. 9962 if (ResNE == 0) 9963 ResNE = NE; 9964 else if (NE > ResNE) 9965 NE = ResNE; 9966 9967 unsigned i; 9968 for (i= 0; i != NE; ++i) { 9969 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9970 SDValue Operand = N->getOperand(j); 9971 EVT OperandVT = Operand.getValueType(); 9972 if (OperandVT.isVector()) { 9973 // A vector operand; extract a single element. 9974 EVT OperandEltVT = OperandVT.getVectorElementType(); 9975 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9976 Operand, getVectorIdxConstant(i, dl)); 9977 } else { 9978 // A scalar operand; just use it as is. 9979 Operands[j] = Operand; 9980 } 9981 } 9982 9983 switch (N->getOpcode()) { 9984 default: { 9985 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9986 N->getFlags())); 9987 break; 9988 } 9989 case ISD::VSELECT: 9990 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9991 break; 9992 case ISD::SHL: 9993 case ISD::SRA: 9994 case ISD::SRL: 9995 case ISD::ROTL: 9996 case ISD::ROTR: 9997 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9998 getShiftAmountOperand(Operands[0].getValueType(), 9999 Operands[1]))); 10000 break; 10001 case ISD::SIGN_EXTEND_INREG: { 10002 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10003 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10004 Operands[0], 10005 getValueType(ExtVT))); 10006 } 10007 } 10008 } 10009 10010 for (; i < ResNE; ++i) 10011 Scalars.push_back(getUNDEF(EltVT)); 10012 10013 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10014 return getBuildVector(VecVT, dl, Scalars); 10015 } 10016 10017 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10018 SDNode *N, unsigned ResNE) { 10019 unsigned Opcode = N->getOpcode(); 10020 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10021 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10022 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10023 "Expected an overflow opcode"); 10024 10025 EVT ResVT = N->getValueType(0); 10026 EVT OvVT = N->getValueType(1); 10027 EVT ResEltVT = ResVT.getVectorElementType(); 10028 EVT OvEltVT = OvVT.getVectorElementType(); 10029 SDLoc dl(N); 10030 10031 // If ResNE is 0, fully unroll the vector op. 10032 unsigned NE = ResVT.getVectorNumElements(); 10033 if (ResNE == 0) 10034 ResNE = NE; 10035 else if (NE > ResNE) 10036 NE = ResNE; 10037 10038 SmallVector<SDValue, 8> LHSScalars; 10039 SmallVector<SDValue, 8> RHSScalars; 10040 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10041 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10042 10043 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10044 SDVTList VTs = getVTList(ResEltVT, SVT); 10045 SmallVector<SDValue, 8> ResScalars; 10046 SmallVector<SDValue, 8> OvScalars; 10047 for (unsigned i = 0; i < NE; ++i) { 10048 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10049 SDValue Ov = 10050 getSelect(dl, OvEltVT, Res.getValue(1), 10051 getBoolConstant(true, dl, OvEltVT, ResVT), 10052 getConstant(0, dl, OvEltVT)); 10053 10054 ResScalars.push_back(Res); 10055 OvScalars.push_back(Ov); 10056 } 10057 10058 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10059 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10060 10061 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10062 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10063 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10064 getBuildVector(NewOvVT, dl, OvScalars)); 10065 } 10066 10067 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10068 LoadSDNode *Base, 10069 unsigned Bytes, 10070 int Dist) const { 10071 if (LD->isVolatile() || Base->isVolatile()) 10072 return false; 10073 // TODO: probably too restrictive for atomics, revisit 10074 if (!LD->isSimple()) 10075 return false; 10076 if (LD->isIndexed() || Base->isIndexed()) 10077 return false; 10078 if (LD->getChain() != Base->getChain()) 10079 return false; 10080 EVT VT = LD->getValueType(0); 10081 if (VT.getSizeInBits() / 8 != Bytes) 10082 return false; 10083 10084 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10085 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10086 10087 int64_t Offset = 0; 10088 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10089 return (Dist * Bytes == Offset); 10090 return false; 10091 } 10092 10093 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10094 /// if it cannot be inferred. 10095 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10096 // If this is a GlobalAddress + cst, return the alignment. 10097 const GlobalValue *GV = nullptr; 10098 int64_t GVOffset = 0; 10099 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10100 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10101 KnownBits Known(PtrWidth); 10102 llvm::computeKnownBits(GV, Known, getDataLayout()); 10103 unsigned AlignBits = Known.countMinTrailingZeros(); 10104 if (AlignBits) 10105 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10106 } 10107 10108 // If this is a direct reference to a stack slot, use information about the 10109 // stack slot's alignment. 10110 int FrameIdx = INT_MIN; 10111 int64_t FrameOffset = 0; 10112 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10113 FrameIdx = FI->getIndex(); 10114 } else if (isBaseWithConstantOffset(Ptr) && 10115 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10116 // Handle FI+Cst 10117 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10118 FrameOffset = Ptr.getConstantOperandVal(1); 10119 } 10120 10121 if (FrameIdx != INT_MIN) { 10122 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10123 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10124 } 10125 10126 return None; 10127 } 10128 10129 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10130 /// which is split (or expanded) into two not necessarily identical pieces. 10131 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10132 // Currently all types are split in half. 10133 EVT LoVT, HiVT; 10134 if (!VT.isVector()) 10135 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10136 else 10137 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10138 10139 return std::make_pair(LoVT, HiVT); 10140 } 10141 10142 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10143 /// type, dependent on an enveloping VT that has been split into two identical 10144 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10145 std::pair<EVT, EVT> 10146 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10147 bool *HiIsEmpty) const { 10148 EVT EltTp = VT.getVectorElementType(); 10149 // Examples: 10150 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10151 // custom VL=9 with enveloping VL=8/8 yields 8/1 10152 // custom VL=10 with enveloping VL=8/8 yields 8/2 10153 // etc. 10154 ElementCount VTNumElts = VT.getVectorElementCount(); 10155 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10156 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10157 "Mixing fixed width and scalable vectors when enveloping a type"); 10158 EVT LoVT, HiVT; 10159 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10160 LoVT = EnvVT; 10161 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10162 *HiIsEmpty = false; 10163 } else { 10164 // Flag that hi type has zero storage size, but return split envelop type 10165 // (this would be easier if vector types with zero elements were allowed). 10166 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10167 HiVT = EnvVT; 10168 *HiIsEmpty = true; 10169 } 10170 return std::make_pair(LoVT, HiVT); 10171 } 10172 10173 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10174 /// low/high part. 10175 std::pair<SDValue, SDValue> 10176 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10177 const EVT &HiVT) { 10178 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10179 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10180 "Splitting vector with an invalid mixture of fixed and scalable " 10181 "vector types"); 10182 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10183 N.getValueType().getVectorMinNumElements() && 10184 "More vector elements requested than available!"); 10185 SDValue Lo, Hi; 10186 Lo = 10187 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10188 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10189 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10190 // IDX with the runtime scaling factor of the result vector type. For 10191 // fixed-width result vectors, that runtime scaling factor is 1. 10192 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10193 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10194 return std::make_pair(Lo, Hi); 10195 } 10196 10197 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10198 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10199 EVT VT = N.getValueType(); 10200 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10201 NextPowerOf2(VT.getVectorNumElements())); 10202 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10203 getVectorIdxConstant(0, DL)); 10204 } 10205 10206 void SelectionDAG::ExtractVectorElements(SDValue Op, 10207 SmallVectorImpl<SDValue> &Args, 10208 unsigned Start, unsigned Count, 10209 EVT EltVT) { 10210 EVT VT = Op.getValueType(); 10211 if (Count == 0) 10212 Count = VT.getVectorNumElements(); 10213 if (EltVT == EVT()) 10214 EltVT = VT.getVectorElementType(); 10215 SDLoc SL(Op); 10216 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10217 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10218 getVectorIdxConstant(i, SL))); 10219 } 10220 } 10221 10222 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10223 unsigned GlobalAddressSDNode::getAddressSpace() const { 10224 return getGlobal()->getType()->getAddressSpace(); 10225 } 10226 10227 Type *ConstantPoolSDNode::getType() const { 10228 if (isMachineConstantPoolEntry()) 10229 return Val.MachineCPVal->getType(); 10230 return Val.ConstVal->getType(); 10231 } 10232 10233 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10234 unsigned &SplatBitSize, 10235 bool &HasAnyUndefs, 10236 unsigned MinSplatBits, 10237 bool IsBigEndian) const { 10238 EVT VT = getValueType(0); 10239 assert(VT.isVector() && "Expected a vector type"); 10240 unsigned VecWidth = VT.getSizeInBits(); 10241 if (MinSplatBits > VecWidth) 10242 return false; 10243 10244 // FIXME: The widths are based on this node's type, but build vectors can 10245 // truncate their operands. 10246 SplatValue = APInt(VecWidth, 0); 10247 SplatUndef = APInt(VecWidth, 0); 10248 10249 // Get the bits. Bits with undefined values (when the corresponding element 10250 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10251 // in SplatValue. If any of the values are not constant, give up and return 10252 // false. 10253 unsigned int NumOps = getNumOperands(); 10254 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10255 unsigned EltWidth = VT.getScalarSizeInBits(); 10256 10257 for (unsigned j = 0; j < NumOps; ++j) { 10258 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10259 SDValue OpVal = getOperand(i); 10260 unsigned BitPos = j * EltWidth; 10261 10262 if (OpVal.isUndef()) 10263 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10264 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10265 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10266 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10267 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10268 else 10269 return false; 10270 } 10271 10272 // The build_vector is all constants or undefs. Find the smallest element 10273 // size that splats the vector. 10274 HasAnyUndefs = (SplatUndef != 0); 10275 10276 // FIXME: This does not work for vectors with elements less than 8 bits. 10277 while (VecWidth > 8) { 10278 unsigned HalfSize = VecWidth / 2; 10279 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10280 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10281 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10282 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10283 10284 // If the two halves do not match (ignoring undef bits), stop here. 10285 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10286 MinSplatBits > HalfSize) 10287 break; 10288 10289 SplatValue = HighValue | LowValue; 10290 SplatUndef = HighUndef & LowUndef; 10291 10292 VecWidth = HalfSize; 10293 } 10294 10295 SplatBitSize = VecWidth; 10296 return true; 10297 } 10298 10299 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10300 BitVector *UndefElements) const { 10301 unsigned NumOps = getNumOperands(); 10302 if (UndefElements) { 10303 UndefElements->clear(); 10304 UndefElements->resize(NumOps); 10305 } 10306 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10307 if (!DemandedElts) 10308 return SDValue(); 10309 SDValue Splatted; 10310 for (unsigned i = 0; i != NumOps; ++i) { 10311 if (!DemandedElts[i]) 10312 continue; 10313 SDValue Op = getOperand(i); 10314 if (Op.isUndef()) { 10315 if (UndefElements) 10316 (*UndefElements)[i] = true; 10317 } else if (!Splatted) { 10318 Splatted = Op; 10319 } else if (Splatted != Op) { 10320 return SDValue(); 10321 } 10322 } 10323 10324 if (!Splatted) { 10325 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10326 assert(getOperand(FirstDemandedIdx).isUndef() && 10327 "Can only have a splat without a constant for all undefs."); 10328 return getOperand(FirstDemandedIdx); 10329 } 10330 10331 return Splatted; 10332 } 10333 10334 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10335 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10336 return getSplatValue(DemandedElts, UndefElements); 10337 } 10338 10339 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10340 SmallVectorImpl<SDValue> &Sequence, 10341 BitVector *UndefElements) const { 10342 unsigned NumOps = getNumOperands(); 10343 Sequence.clear(); 10344 if (UndefElements) { 10345 UndefElements->clear(); 10346 UndefElements->resize(NumOps); 10347 } 10348 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10349 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10350 return false; 10351 10352 // Set the undefs even if we don't find a sequence (like getSplatValue). 10353 if (UndefElements) 10354 for (unsigned I = 0; I != NumOps; ++I) 10355 if (DemandedElts[I] && getOperand(I).isUndef()) 10356 (*UndefElements)[I] = true; 10357 10358 // Iteratively widen the sequence length looking for repetitions. 10359 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10360 Sequence.append(SeqLen, SDValue()); 10361 for (unsigned I = 0; I != NumOps; ++I) { 10362 if (!DemandedElts[I]) 10363 continue; 10364 SDValue &SeqOp = Sequence[I % SeqLen]; 10365 SDValue Op = getOperand(I); 10366 if (Op.isUndef()) { 10367 if (!SeqOp) 10368 SeqOp = Op; 10369 continue; 10370 } 10371 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10372 Sequence.clear(); 10373 break; 10374 } 10375 SeqOp = Op; 10376 } 10377 if (!Sequence.empty()) 10378 return true; 10379 } 10380 10381 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10382 return false; 10383 } 10384 10385 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10386 BitVector *UndefElements) const { 10387 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10388 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10389 } 10390 10391 ConstantSDNode * 10392 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10393 BitVector *UndefElements) const { 10394 return dyn_cast_or_null<ConstantSDNode>( 10395 getSplatValue(DemandedElts, UndefElements)); 10396 } 10397 10398 ConstantSDNode * 10399 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10400 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10401 } 10402 10403 ConstantFPSDNode * 10404 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10405 BitVector *UndefElements) const { 10406 return dyn_cast_or_null<ConstantFPSDNode>( 10407 getSplatValue(DemandedElts, UndefElements)); 10408 } 10409 10410 ConstantFPSDNode * 10411 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10412 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10413 } 10414 10415 int32_t 10416 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10417 uint32_t BitWidth) const { 10418 if (ConstantFPSDNode *CN = 10419 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10420 bool IsExact; 10421 APSInt IntVal(BitWidth); 10422 const APFloat &APF = CN->getValueAPF(); 10423 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10424 APFloat::opOK || 10425 !IsExact) 10426 return -1; 10427 10428 return IntVal.exactLogBase2(); 10429 } 10430 return -1; 10431 } 10432 10433 bool BuildVectorSDNode::isConstant() const { 10434 for (const SDValue &Op : op_values()) { 10435 unsigned Opc = Op.getOpcode(); 10436 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10437 return false; 10438 } 10439 return true; 10440 } 10441 10442 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10443 // Find the first non-undef value in the shuffle mask. 10444 unsigned i, e; 10445 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10446 /* search */; 10447 10448 // If all elements are undefined, this shuffle can be considered a splat 10449 // (although it should eventually get simplified away completely). 10450 if (i == e) 10451 return true; 10452 10453 // Make sure all remaining elements are either undef or the same as the first 10454 // non-undef value. 10455 for (int Idx = Mask[i]; i != e; ++i) 10456 if (Mask[i] >= 0 && Mask[i] != Idx) 10457 return false; 10458 return true; 10459 } 10460 10461 // Returns the SDNode if it is a constant integer BuildVector 10462 // or constant integer. 10463 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10464 if (isa<ConstantSDNode>(N)) 10465 return N.getNode(); 10466 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10467 return N.getNode(); 10468 // Treat a GlobalAddress supporting constant offset folding as a 10469 // constant integer. 10470 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10471 if (GA->getOpcode() == ISD::GlobalAddress && 10472 TLI->isOffsetFoldingLegal(GA)) 10473 return GA; 10474 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10475 isa<ConstantSDNode>(N.getOperand(0))) 10476 return N.getNode(); 10477 return nullptr; 10478 } 10479 10480 // Returns the SDNode if it is a constant float BuildVector 10481 // or constant float. 10482 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10483 if (isa<ConstantFPSDNode>(N)) 10484 return N.getNode(); 10485 10486 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10487 return N.getNode(); 10488 10489 return nullptr; 10490 } 10491 10492 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10493 assert(!Node->OperandList && "Node already has operands"); 10494 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10495 "too many operands to fit into SDNode"); 10496 SDUse *Ops = OperandRecycler.allocate( 10497 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10498 10499 bool IsDivergent = false; 10500 for (unsigned I = 0; I != Vals.size(); ++I) { 10501 Ops[I].setUser(Node); 10502 Ops[I].setInitial(Vals[I]); 10503 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10504 IsDivergent |= Ops[I].getNode()->isDivergent(); 10505 } 10506 Node->NumOperands = Vals.size(); 10507 Node->OperandList = Ops; 10508 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10509 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10510 Node->SDNodeBits.IsDivergent = IsDivergent; 10511 } 10512 checkForCycles(Node); 10513 } 10514 10515 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10516 SmallVectorImpl<SDValue> &Vals) { 10517 size_t Limit = SDNode::getMaxNumOperands(); 10518 while (Vals.size() > Limit) { 10519 unsigned SliceIdx = Vals.size() - Limit; 10520 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10521 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10522 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10523 Vals.emplace_back(NewTF); 10524 } 10525 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10526 } 10527 10528 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10529 EVT VT, SDNodeFlags Flags) { 10530 switch (Opcode) { 10531 default: 10532 return SDValue(); 10533 case ISD::ADD: 10534 case ISD::OR: 10535 case ISD::XOR: 10536 case ISD::UMAX: 10537 return getConstant(0, DL, VT); 10538 case ISD::MUL: 10539 return getConstant(1, DL, VT); 10540 case ISD::AND: 10541 case ISD::UMIN: 10542 return getAllOnesConstant(DL, VT); 10543 case ISD::SMAX: 10544 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10545 case ISD::SMIN: 10546 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10547 case ISD::FADD: 10548 return getConstantFP(-0.0, DL, VT); 10549 case ISD::FMUL: 10550 return getConstantFP(1.0, DL, VT); 10551 case ISD::FMINNUM: 10552 case ISD::FMAXNUM: { 10553 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10554 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10555 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10556 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10557 APFloat::getLargest(Semantics); 10558 if (Opcode == ISD::FMAXNUM) 10559 NeutralAF.changeSign(); 10560 10561 return getConstantFP(NeutralAF, DL, VT); 10562 } 10563 } 10564 } 10565 10566 #ifndef NDEBUG 10567 static void checkForCyclesHelper(const SDNode *N, 10568 SmallPtrSetImpl<const SDNode*> &Visited, 10569 SmallPtrSetImpl<const SDNode*> &Checked, 10570 const llvm::SelectionDAG *DAG) { 10571 // If this node has already been checked, don't check it again. 10572 if (Checked.count(N)) 10573 return; 10574 10575 // If a node has already been visited on this depth-first walk, reject it as 10576 // a cycle. 10577 if (!Visited.insert(N).second) { 10578 errs() << "Detected cycle in SelectionDAG\n"; 10579 dbgs() << "Offending node:\n"; 10580 N->dumprFull(DAG); dbgs() << "\n"; 10581 abort(); 10582 } 10583 10584 for (const SDValue &Op : N->op_values()) 10585 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10586 10587 Checked.insert(N); 10588 Visited.erase(N); 10589 } 10590 #endif 10591 10592 void llvm::checkForCycles(const llvm::SDNode *N, 10593 const llvm::SelectionDAG *DAG, 10594 bool force) { 10595 #ifndef NDEBUG 10596 bool check = force; 10597 #ifdef EXPENSIVE_CHECKS 10598 check = true; 10599 #endif // EXPENSIVE_CHECKS 10600 if (check) { 10601 assert(N && "Checking nonexistent SDNode"); 10602 SmallPtrSet<const SDNode*, 32> visited; 10603 SmallPtrSet<const SDNode*, 32> checked; 10604 checkForCyclesHelper(N, visited, checked, DAG); 10605 } 10606 #endif // !NDEBUG 10607 } 10608 10609 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10610 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10611 } 10612