1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2544 unsigned Depth) const { 2545 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2546 } 2547 2548 /// isSplatValue - Return true if the vector V has the same value 2549 /// across all DemandedElts. For scalable vectors it does not make 2550 /// sense to specify which elements are demanded or undefined, therefore 2551 /// they are simply ignored. 2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2553 APInt &UndefElts, unsigned Depth) const { 2554 unsigned Opcode = V.getOpcode(); 2555 EVT VT = V.getValueType(); 2556 assert(VT.isVector() && "Vector type expected"); 2557 2558 if (!VT.isScalableVector() && !DemandedElts) 2559 return false; // No demanded elts, better to assume we don't know anything. 2560 2561 if (Depth >= MaxRecursionDepth) 2562 return false; // Limit search depth. 2563 2564 // Deal with some common cases here that work for both fixed and scalable 2565 // vector types. 2566 switch (Opcode) { 2567 case ISD::SPLAT_VECTOR: 2568 UndefElts = V.getOperand(0).isUndef() 2569 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2570 : APInt(DemandedElts.getBitWidth(), 0); 2571 return true; 2572 case ISD::ADD: 2573 case ISD::SUB: 2574 case ISD::AND: 2575 case ISD::XOR: 2576 case ISD::OR: { 2577 APInt UndefLHS, UndefRHS; 2578 SDValue LHS = V.getOperand(0); 2579 SDValue RHS = V.getOperand(1); 2580 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2581 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2582 UndefElts = UndefLHS | UndefRHS; 2583 return true; 2584 } 2585 return false; 2586 } 2587 case ISD::ABS: 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2592 default: 2593 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2594 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2595 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2596 break; 2597 } 2598 2599 // We don't support other cases than those above for scalable vectors at 2600 // the moment. 2601 if (VT.isScalableVector()) 2602 return false; 2603 2604 unsigned NumElts = VT.getVectorNumElements(); 2605 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2606 UndefElts = APInt::getZero(NumElts); 2607 2608 switch (Opcode) { 2609 case ISD::BUILD_VECTOR: { 2610 SDValue Scl; 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 SDValue Op = V.getOperand(i); 2613 if (Op.isUndef()) { 2614 UndefElts.setBit(i); 2615 continue; 2616 } 2617 if (!DemandedElts[i]) 2618 continue; 2619 if (Scl && Scl != Op) 2620 return false; 2621 Scl = Op; 2622 } 2623 return true; 2624 } 2625 case ISD::VECTOR_SHUFFLE: { 2626 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2627 APInt DemandedLHS = APInt::getNullValue(NumElts); 2628 APInt DemandedRHS = APInt::getNullValue(NumElts); 2629 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2630 for (int i = 0; i != (int)NumElts; ++i) { 2631 int M = Mask[i]; 2632 if (M < 0) { 2633 UndefElts.setBit(i); 2634 continue; 2635 } 2636 if (!DemandedElts[i]) 2637 continue; 2638 if (M < (int)NumElts) 2639 DemandedLHS.setBit(M); 2640 else 2641 DemandedRHS.setBit(M - NumElts); 2642 } 2643 2644 // If we aren't demanding either op, assume there's no splat. 2645 // If we are demanding both ops, assume there's no splat. 2646 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2647 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2648 return false; 2649 2650 // See if the demanded elts of the source op is a splat or we only demand 2651 // one element, which should always be a splat. 2652 // TODO: Handle source ops splats with undefs. 2653 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2654 APInt SrcUndefs; 2655 return (SrcElts.countPopulation() == 1) || 2656 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2657 (SrcElts & SrcUndefs).isZero()); 2658 }; 2659 if (!DemandedLHS.isZero()) 2660 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2661 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2662 } 2663 case ISD::EXTRACT_SUBVECTOR: { 2664 // Offset the demanded elts by the subvector index. 2665 SDValue Src = V.getOperand(0); 2666 // We don't support scalable vectors at the moment. 2667 if (Src.getValueType().isScalableVector()) 2668 return false; 2669 uint64_t Idx = V.getConstantOperandVal(1); 2670 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2671 APInt UndefSrcElts; 2672 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2673 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2674 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2675 return true; 2676 } 2677 break; 2678 } 2679 case ISD::ANY_EXTEND_VECTOR_INREG: 2680 case ISD::SIGN_EXTEND_VECTOR_INREG: 2681 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2682 // Widen the demanded elts by the src element count. 2683 SDValue Src = V.getOperand(0); 2684 // We don't support scalable vectors at the moment. 2685 if (Src.getValueType().isScalableVector()) 2686 return false; 2687 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2688 APInt UndefSrcElts; 2689 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2690 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2691 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2692 return true; 2693 } 2694 break; 2695 } 2696 case ISD::BITCAST: { 2697 SDValue Src = V.getOperand(0); 2698 EVT SrcVT = Src.getValueType(); 2699 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2700 unsigned BitWidth = VT.getScalarSizeInBits(); 2701 2702 // Ignore bitcasts from unsupported types. 2703 // TODO: Add fp support? 2704 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2705 break; 2706 2707 // Bitcast 'small element' vector to 'large element' vector. 2708 if ((BitWidth % SrcBitWidth) == 0) { 2709 // See if each sub element is a splat. 2710 unsigned Scale = BitWidth / SrcBitWidth; 2711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2712 APInt ScaledDemandedElts = 2713 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2714 for (unsigned I = 0; I != Scale; ++I) { 2715 APInt SubUndefElts; 2716 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2717 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2718 SubDemandedElts &= ScaledDemandedElts; 2719 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2720 return false; 2721 // TODO: Add support for merging sub undef elements. 2722 if (SubDemandedElts.isSubsetOf(SubUndefElts)) 2723 return false; 2724 } 2725 return true; 2726 } 2727 break; 2728 } 2729 } 2730 2731 return false; 2732 } 2733 2734 /// Helper wrapper to main isSplatValue function. 2735 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2736 EVT VT = V.getValueType(); 2737 assert(VT.isVector() && "Vector type expected"); 2738 2739 APInt UndefElts; 2740 APInt DemandedElts; 2741 2742 // For now we don't support this with scalable vectors. 2743 if (!VT.isScalableVector()) 2744 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2745 return isSplatValue(V, DemandedElts, UndefElts) && 2746 (AllowUndefs || !UndefElts); 2747 } 2748 2749 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2750 V = peekThroughExtractSubvectors(V); 2751 2752 EVT VT = V.getValueType(); 2753 unsigned Opcode = V.getOpcode(); 2754 switch (Opcode) { 2755 default: { 2756 APInt UndefElts; 2757 APInt DemandedElts; 2758 2759 if (!VT.isScalableVector()) 2760 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2761 2762 if (isSplatValue(V, DemandedElts, UndefElts)) { 2763 if (VT.isScalableVector()) { 2764 // DemandedElts and UndefElts are ignored for scalable vectors, since 2765 // the only supported cases are SPLAT_VECTOR nodes. 2766 SplatIdx = 0; 2767 } else { 2768 // Handle case where all demanded elements are UNDEF. 2769 if (DemandedElts.isSubsetOf(UndefElts)) { 2770 SplatIdx = 0; 2771 return getUNDEF(VT); 2772 } 2773 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2774 } 2775 return V; 2776 } 2777 break; 2778 } 2779 case ISD::SPLAT_VECTOR: 2780 SplatIdx = 0; 2781 return V; 2782 case ISD::VECTOR_SHUFFLE: { 2783 if (VT.isScalableVector()) 2784 return SDValue(); 2785 2786 // Check if this is a shuffle node doing a splat. 2787 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2788 // getTargetVShiftNode currently struggles without the splat source. 2789 auto *SVN = cast<ShuffleVectorSDNode>(V); 2790 if (!SVN->isSplat()) 2791 break; 2792 int Idx = SVN->getSplatIndex(); 2793 int NumElts = V.getValueType().getVectorNumElements(); 2794 SplatIdx = Idx % NumElts; 2795 return V.getOperand(Idx / NumElts); 2796 } 2797 } 2798 2799 return SDValue(); 2800 } 2801 2802 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2803 int SplatIdx; 2804 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2805 EVT SVT = SrcVector.getValueType().getScalarType(); 2806 EVT LegalSVT = SVT; 2807 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2808 if (!SVT.isInteger()) 2809 return SDValue(); 2810 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2811 if (LegalSVT.bitsLT(SVT)) 2812 return SDValue(); 2813 } 2814 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2815 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2816 } 2817 return SDValue(); 2818 } 2819 2820 const APInt * 2821 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2822 const APInt &DemandedElts) const { 2823 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2824 V.getOpcode() == ISD::SRA) && 2825 "Unknown shift node"); 2826 unsigned BitWidth = V.getScalarValueSizeInBits(); 2827 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2828 // Shifting more than the bitwidth is not valid. 2829 const APInt &ShAmt = SA->getAPIntValue(); 2830 if (ShAmt.ult(BitWidth)) 2831 return &ShAmt; 2832 } 2833 return nullptr; 2834 } 2835 2836 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2837 SDValue V, const APInt &DemandedElts) const { 2838 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2839 V.getOpcode() == ISD::SRA) && 2840 "Unknown shift node"); 2841 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2842 return ValidAmt; 2843 unsigned BitWidth = V.getScalarValueSizeInBits(); 2844 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2845 if (!BV) 2846 return nullptr; 2847 const APInt *MinShAmt = nullptr; 2848 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2849 if (!DemandedElts[i]) 2850 continue; 2851 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2852 if (!SA) 2853 return nullptr; 2854 // Shifting more than the bitwidth is not valid. 2855 const APInt &ShAmt = SA->getAPIntValue(); 2856 if (ShAmt.uge(BitWidth)) 2857 return nullptr; 2858 if (MinShAmt && MinShAmt->ule(ShAmt)) 2859 continue; 2860 MinShAmt = &ShAmt; 2861 } 2862 return MinShAmt; 2863 } 2864 2865 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2866 SDValue V, const APInt &DemandedElts) const { 2867 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2868 V.getOpcode() == ISD::SRA) && 2869 "Unknown shift node"); 2870 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2871 return ValidAmt; 2872 unsigned BitWidth = V.getScalarValueSizeInBits(); 2873 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2874 if (!BV) 2875 return nullptr; 2876 const APInt *MaxShAmt = nullptr; 2877 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2878 if (!DemandedElts[i]) 2879 continue; 2880 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2881 if (!SA) 2882 return nullptr; 2883 // Shifting more than the bitwidth is not valid. 2884 const APInt &ShAmt = SA->getAPIntValue(); 2885 if (ShAmt.uge(BitWidth)) 2886 return nullptr; 2887 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2888 continue; 2889 MaxShAmt = &ShAmt; 2890 } 2891 return MaxShAmt; 2892 } 2893 2894 /// Determine which bits of Op are known to be either zero or one and return 2895 /// them in Known. For vectors, the known bits are those that are shared by 2896 /// every vector element. 2897 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2898 EVT VT = Op.getValueType(); 2899 2900 // TOOD: Until we have a plan for how to represent demanded elements for 2901 // scalable vectors, we can just bail out for now. 2902 if (Op.getValueType().isScalableVector()) { 2903 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2904 return KnownBits(BitWidth); 2905 } 2906 2907 APInt DemandedElts = VT.isVector() 2908 ? APInt::getAllOnes(VT.getVectorNumElements()) 2909 : APInt(1, 1); 2910 return computeKnownBits(Op, DemandedElts, Depth); 2911 } 2912 2913 /// Determine which bits of Op are known to be either zero or one and return 2914 /// them in Known. The DemandedElts argument allows us to only collect the known 2915 /// bits that are shared by the requested vector elements. 2916 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2917 unsigned Depth) const { 2918 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2919 2920 KnownBits Known(BitWidth); // Don't know anything. 2921 2922 // TOOD: Until we have a plan for how to represent demanded elements for 2923 // scalable vectors, we can just bail out for now. 2924 if (Op.getValueType().isScalableVector()) 2925 return Known; 2926 2927 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2928 // We know all of the bits for a constant! 2929 return KnownBits::makeConstant(C->getAPIntValue()); 2930 } 2931 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2932 // We know all of the bits for a constant fp! 2933 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2934 } 2935 2936 if (Depth >= MaxRecursionDepth) 2937 return Known; // Limit search depth. 2938 2939 KnownBits Known2; 2940 unsigned NumElts = DemandedElts.getBitWidth(); 2941 assert((!Op.getValueType().isVector() || 2942 NumElts == Op.getValueType().getVectorNumElements()) && 2943 "Unexpected vector size"); 2944 2945 if (!DemandedElts) 2946 return Known; // No demanded elts, better to assume we don't know anything. 2947 2948 unsigned Opcode = Op.getOpcode(); 2949 switch (Opcode) { 2950 case ISD::BUILD_VECTOR: 2951 // Collect the known bits that are shared by every demanded vector element. 2952 Known.Zero.setAllBits(); Known.One.setAllBits(); 2953 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2954 if (!DemandedElts[i]) 2955 continue; 2956 2957 SDValue SrcOp = Op.getOperand(i); 2958 Known2 = computeKnownBits(SrcOp, Depth + 1); 2959 2960 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2961 if (SrcOp.getValueSizeInBits() != BitWidth) { 2962 assert(SrcOp.getValueSizeInBits() > BitWidth && 2963 "Expected BUILD_VECTOR implicit truncation"); 2964 Known2 = Known2.trunc(BitWidth); 2965 } 2966 2967 // Known bits are the values that are shared by every demanded element. 2968 Known = KnownBits::commonBits(Known, Known2); 2969 2970 // If we don't know any bits, early out. 2971 if (Known.isUnknown()) 2972 break; 2973 } 2974 break; 2975 case ISD::VECTOR_SHUFFLE: { 2976 // Collect the known bits that are shared by every vector element referenced 2977 // by the shuffle. 2978 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2979 Known.Zero.setAllBits(); Known.One.setAllBits(); 2980 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2981 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2982 for (unsigned i = 0; i != NumElts; ++i) { 2983 if (!DemandedElts[i]) 2984 continue; 2985 2986 int M = SVN->getMaskElt(i); 2987 if (M < 0) { 2988 // For UNDEF elements, we don't know anything about the common state of 2989 // the shuffle result. 2990 Known.resetAll(); 2991 DemandedLHS.clearAllBits(); 2992 DemandedRHS.clearAllBits(); 2993 break; 2994 } 2995 2996 if ((unsigned)M < NumElts) 2997 DemandedLHS.setBit((unsigned)M % NumElts); 2998 else 2999 DemandedRHS.setBit((unsigned)M % NumElts); 3000 } 3001 // Known bits are the values that are shared by every demanded element. 3002 if (!!DemandedLHS) { 3003 SDValue LHS = Op.getOperand(0); 3004 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3005 Known = KnownBits::commonBits(Known, Known2); 3006 } 3007 // If we don't know any bits, early out. 3008 if (Known.isUnknown()) 3009 break; 3010 if (!!DemandedRHS) { 3011 SDValue RHS = Op.getOperand(1); 3012 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3013 Known = KnownBits::commonBits(Known, Known2); 3014 } 3015 break; 3016 } 3017 case ISD::CONCAT_VECTORS: { 3018 // Split DemandedElts and test each of the demanded subvectors. 3019 Known.Zero.setAllBits(); Known.One.setAllBits(); 3020 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3021 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3022 unsigned NumSubVectors = Op.getNumOperands(); 3023 for (unsigned i = 0; i != NumSubVectors; ++i) { 3024 APInt DemandedSub = 3025 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3026 if (!!DemandedSub) { 3027 SDValue Sub = Op.getOperand(i); 3028 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3029 Known = KnownBits::commonBits(Known, Known2); 3030 } 3031 // If we don't know any bits, early out. 3032 if (Known.isUnknown()) 3033 break; 3034 } 3035 break; 3036 } 3037 case ISD::INSERT_SUBVECTOR: { 3038 // Demand any elements from the subvector and the remainder from the src its 3039 // inserted into. 3040 SDValue Src = Op.getOperand(0); 3041 SDValue Sub = Op.getOperand(1); 3042 uint64_t Idx = Op.getConstantOperandVal(2); 3043 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3044 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3045 APInt DemandedSrcElts = DemandedElts; 3046 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3047 3048 Known.One.setAllBits(); 3049 Known.Zero.setAllBits(); 3050 if (!!DemandedSubElts) { 3051 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3052 if (Known.isUnknown()) 3053 break; // early-out. 3054 } 3055 if (!!DemandedSrcElts) { 3056 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3057 Known = KnownBits::commonBits(Known, Known2); 3058 } 3059 break; 3060 } 3061 case ISD::EXTRACT_SUBVECTOR: { 3062 // Offset the demanded elts by the subvector index. 3063 SDValue Src = Op.getOperand(0); 3064 // Bail until we can represent demanded elements for scalable vectors. 3065 if (Src.getValueType().isScalableVector()) 3066 break; 3067 uint64_t Idx = Op.getConstantOperandVal(1); 3068 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3069 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3070 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3071 break; 3072 } 3073 case ISD::SCALAR_TO_VECTOR: { 3074 // We know about scalar_to_vector as much as we know about it source, 3075 // which becomes the first element of otherwise unknown vector. 3076 if (DemandedElts != 1) 3077 break; 3078 3079 SDValue N0 = Op.getOperand(0); 3080 Known = computeKnownBits(N0, Depth + 1); 3081 if (N0.getValueSizeInBits() != BitWidth) 3082 Known = Known.trunc(BitWidth); 3083 3084 break; 3085 } 3086 case ISD::BITCAST: { 3087 SDValue N0 = Op.getOperand(0); 3088 EVT SubVT = N0.getValueType(); 3089 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3090 3091 // Ignore bitcasts from unsupported types. 3092 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3093 break; 3094 3095 // Fast handling of 'identity' bitcasts. 3096 if (BitWidth == SubBitWidth) { 3097 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3098 break; 3099 } 3100 3101 bool IsLE = getDataLayout().isLittleEndian(); 3102 3103 // Bitcast 'small element' vector to 'large element' scalar/vector. 3104 if ((BitWidth % SubBitWidth) == 0) { 3105 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3106 3107 // Collect known bits for the (larger) output by collecting the known 3108 // bits from each set of sub elements and shift these into place. 3109 // We need to separately call computeKnownBits for each set of 3110 // sub elements as the knownbits for each is likely to be different. 3111 unsigned SubScale = BitWidth / SubBitWidth; 3112 APInt SubDemandedElts(NumElts * SubScale, 0); 3113 for (unsigned i = 0; i != NumElts; ++i) 3114 if (DemandedElts[i]) 3115 SubDemandedElts.setBit(i * SubScale); 3116 3117 for (unsigned i = 0; i != SubScale; ++i) { 3118 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3119 Depth + 1); 3120 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3121 Known.insertBits(Known2, SubBitWidth * Shifts); 3122 } 3123 } 3124 3125 // Bitcast 'large element' scalar/vector to 'small element' vector. 3126 if ((SubBitWidth % BitWidth) == 0) { 3127 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3128 3129 // Collect known bits for the (smaller) output by collecting the known 3130 // bits from the overlapping larger input elements and extracting the 3131 // sub sections we actually care about. 3132 unsigned SubScale = SubBitWidth / BitWidth; 3133 APInt SubDemandedElts = 3134 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3135 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3136 3137 Known.Zero.setAllBits(); Known.One.setAllBits(); 3138 for (unsigned i = 0; i != NumElts; ++i) 3139 if (DemandedElts[i]) { 3140 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3141 unsigned Offset = (Shifts % SubScale) * BitWidth; 3142 Known = KnownBits::commonBits(Known, 3143 Known2.extractBits(BitWidth, Offset)); 3144 // If we don't know any bits, early out. 3145 if (Known.isUnknown()) 3146 break; 3147 } 3148 } 3149 break; 3150 } 3151 case ISD::AND: 3152 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 3155 Known &= Known2; 3156 break; 3157 case ISD::OR: 3158 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 3161 Known |= Known2; 3162 break; 3163 case ISD::XOR: 3164 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3165 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 3167 Known ^= Known2; 3168 break; 3169 case ISD::MUL: { 3170 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3171 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3173 // TODO: SelfMultiply can be poison, but not undef. 3174 if (SelfMultiply) 3175 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3176 Op.getOperand(0), DemandedElts, false, Depth + 1); 3177 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3178 break; 3179 } 3180 case ISD::MULHU: { 3181 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3182 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3183 Known = KnownBits::mulhu(Known, Known2); 3184 break; 3185 } 3186 case ISD::MULHS: { 3187 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known = KnownBits::mulhs(Known, Known2); 3190 break; 3191 } 3192 case ISD::UMUL_LOHI: { 3193 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3194 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3195 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3196 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3197 if (Op.getResNo() == 0) 3198 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3199 else 3200 Known = KnownBits::mulhu(Known, Known2); 3201 break; 3202 } 3203 case ISD::SMUL_LOHI: { 3204 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3205 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3206 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3207 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3208 if (Op.getResNo() == 0) 3209 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3210 else 3211 Known = KnownBits::mulhs(Known, Known2); 3212 break; 3213 } 3214 case ISD::UDIV: { 3215 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3217 Known = KnownBits::udiv(Known, Known2); 3218 break; 3219 } 3220 case ISD::AVGCEILU: { 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = Known.zext(BitWidth + 1); 3224 Known2 = Known2.zext(BitWidth + 1); 3225 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3226 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3227 Known = Known.extractBits(BitWidth, 1); 3228 break; 3229 } 3230 case ISD::SELECT: 3231 case ISD::VSELECT: 3232 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3233 // If we don't know any bits, early out. 3234 if (Known.isUnknown()) 3235 break; 3236 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3237 3238 // Only known if known in both the LHS and RHS. 3239 Known = KnownBits::commonBits(Known, Known2); 3240 break; 3241 case ISD::SELECT_CC: 3242 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3243 // If we don't know any bits, early out. 3244 if (Known.isUnknown()) 3245 break; 3246 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3247 3248 // Only known if known in both the LHS and RHS. 3249 Known = KnownBits::commonBits(Known, Known2); 3250 break; 3251 case ISD::SMULO: 3252 case ISD::UMULO: 3253 if (Op.getResNo() != 1) 3254 break; 3255 // The boolean result conforms to getBooleanContents. 3256 // If we know the result of a setcc has the top bits zero, use this info. 3257 // We know that we have an integer-based boolean since these operations 3258 // are only available for integer. 3259 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3260 TargetLowering::ZeroOrOneBooleanContent && 3261 BitWidth > 1) 3262 Known.Zero.setBitsFrom(1); 3263 break; 3264 case ISD::SETCC: 3265 case ISD::STRICT_FSETCC: 3266 case ISD::STRICT_FSETCCS: { 3267 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3268 // If we know the result of a setcc has the top bits zero, use this info. 3269 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3270 TargetLowering::ZeroOrOneBooleanContent && 3271 BitWidth > 1) 3272 Known.Zero.setBitsFrom(1); 3273 break; 3274 } 3275 case ISD::SHL: 3276 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3277 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3278 Known = KnownBits::shl(Known, Known2); 3279 3280 // Minimum shift low bits are known zero. 3281 if (const APInt *ShMinAmt = 3282 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3283 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3284 break; 3285 case ISD::SRL: 3286 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3287 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3288 Known = KnownBits::lshr(Known, Known2); 3289 3290 // Minimum shift high bits are known zero. 3291 if (const APInt *ShMinAmt = 3292 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3293 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3294 break; 3295 case ISD::SRA: 3296 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3297 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3298 Known = KnownBits::ashr(Known, Known2); 3299 // TODO: Add minimum shift high known sign bits. 3300 break; 3301 case ISD::FSHL: 3302 case ISD::FSHR: 3303 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3304 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3305 3306 // For fshl, 0-shift returns the 1st arg. 3307 // For fshr, 0-shift returns the 2nd arg. 3308 if (Amt == 0) { 3309 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3310 DemandedElts, Depth + 1); 3311 break; 3312 } 3313 3314 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3315 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3316 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3317 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3318 if (Opcode == ISD::FSHL) { 3319 Known.One <<= Amt; 3320 Known.Zero <<= Amt; 3321 Known2.One.lshrInPlace(BitWidth - Amt); 3322 Known2.Zero.lshrInPlace(BitWidth - Amt); 3323 } else { 3324 Known.One <<= BitWidth - Amt; 3325 Known.Zero <<= BitWidth - Amt; 3326 Known2.One.lshrInPlace(Amt); 3327 Known2.Zero.lshrInPlace(Amt); 3328 } 3329 Known.One |= Known2.One; 3330 Known.Zero |= Known2.Zero; 3331 } 3332 break; 3333 case ISD::SIGN_EXTEND_INREG: { 3334 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3335 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3336 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3337 break; 3338 } 3339 case ISD::CTTZ: 3340 case ISD::CTTZ_ZERO_UNDEF: { 3341 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3342 // If we have a known 1, its position is our upper bound. 3343 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3344 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3345 Known.Zero.setBitsFrom(LowBits); 3346 break; 3347 } 3348 case ISD::CTLZ: 3349 case ISD::CTLZ_ZERO_UNDEF: { 3350 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If we have a known 1, its position is our upper bound. 3352 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3353 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3354 Known.Zero.setBitsFrom(LowBits); 3355 break; 3356 } 3357 case ISD::CTPOP: { 3358 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3359 // If we know some of the bits are zero, they can't be one. 3360 unsigned PossibleOnes = Known2.countMaxPopulation(); 3361 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3362 break; 3363 } 3364 case ISD::PARITY: { 3365 // Parity returns 0 everywhere but the LSB. 3366 Known.Zero.setBitsFrom(1); 3367 break; 3368 } 3369 case ISD::LOAD: { 3370 LoadSDNode *LD = cast<LoadSDNode>(Op); 3371 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3372 if (ISD::isNON_EXTLoad(LD) && Cst) { 3373 // Determine any common known bits from the loaded constant pool value. 3374 Type *CstTy = Cst->getType(); 3375 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3376 // If its a vector splat, then we can (quickly) reuse the scalar path. 3377 // NOTE: We assume all elements match and none are UNDEF. 3378 if (CstTy->isVectorTy()) { 3379 if (const Constant *Splat = Cst->getSplatValue()) { 3380 Cst = Splat; 3381 CstTy = Cst->getType(); 3382 } 3383 } 3384 // TODO - do we need to handle different bitwidths? 3385 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3386 // Iterate across all vector elements finding common known bits. 3387 Known.One.setAllBits(); 3388 Known.Zero.setAllBits(); 3389 for (unsigned i = 0; i != NumElts; ++i) { 3390 if (!DemandedElts[i]) 3391 continue; 3392 if (Constant *Elt = Cst->getAggregateElement(i)) { 3393 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3394 const APInt &Value = CInt->getValue(); 3395 Known.One &= Value; 3396 Known.Zero &= ~Value; 3397 continue; 3398 } 3399 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3400 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3401 Known.One &= Value; 3402 Known.Zero &= ~Value; 3403 continue; 3404 } 3405 } 3406 Known.One.clearAllBits(); 3407 Known.Zero.clearAllBits(); 3408 break; 3409 } 3410 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3411 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3412 Known = KnownBits::makeConstant(CInt->getValue()); 3413 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3414 Known = 3415 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3416 } 3417 } 3418 } 3419 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3420 // If this is a ZEXTLoad and we are looking at the loaded value. 3421 EVT VT = LD->getMemoryVT(); 3422 unsigned MemBits = VT.getScalarSizeInBits(); 3423 Known.Zero.setBitsFrom(MemBits); 3424 } else if (const MDNode *Ranges = LD->getRanges()) { 3425 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3426 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3427 } 3428 break; 3429 } 3430 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3431 EVT InVT = Op.getOperand(0).getValueType(); 3432 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3433 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3434 Known = Known.zext(BitWidth); 3435 break; 3436 } 3437 case ISD::ZERO_EXTEND: { 3438 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3439 Known = Known.zext(BitWidth); 3440 break; 3441 } 3442 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3443 EVT InVT = Op.getOperand(0).getValueType(); 3444 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3445 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3446 // If the sign bit is known to be zero or one, then sext will extend 3447 // it to the top bits, else it will just zext. 3448 Known = Known.sext(BitWidth); 3449 break; 3450 } 3451 case ISD::SIGN_EXTEND: { 3452 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 // If the sign bit is known to be zero or one, then sext will extend 3454 // it to the top bits, else it will just zext. 3455 Known = Known.sext(BitWidth); 3456 break; 3457 } 3458 case ISD::ANY_EXTEND_VECTOR_INREG: { 3459 EVT InVT = Op.getOperand(0).getValueType(); 3460 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3461 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3462 Known = Known.anyext(BitWidth); 3463 break; 3464 } 3465 case ISD::ANY_EXTEND: { 3466 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3467 Known = Known.anyext(BitWidth); 3468 break; 3469 } 3470 case ISD::TRUNCATE: { 3471 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3472 Known = Known.trunc(BitWidth); 3473 break; 3474 } 3475 case ISD::AssertZext: { 3476 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3477 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3478 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3479 Known.Zero |= (~InMask); 3480 Known.One &= (~Known.Zero); 3481 break; 3482 } 3483 case ISD::AssertAlign: { 3484 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3485 assert(LogOfAlign != 0); 3486 3487 // TODO: Should use maximum with source 3488 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3489 // well as clearing one bits. 3490 Known.Zero.setLowBits(LogOfAlign); 3491 Known.One.clearLowBits(LogOfAlign); 3492 break; 3493 } 3494 case ISD::FGETSIGN: 3495 // All bits are zero except the low bit. 3496 Known.Zero.setBitsFrom(1); 3497 break; 3498 case ISD::USUBO: 3499 case ISD::SSUBO: 3500 if (Op.getResNo() == 1) { 3501 // If we know the result of a setcc has the top bits zero, use this info. 3502 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3503 TargetLowering::ZeroOrOneBooleanContent && 3504 BitWidth > 1) 3505 Known.Zero.setBitsFrom(1); 3506 break; 3507 } 3508 LLVM_FALLTHROUGH; 3509 case ISD::SUB: 3510 case ISD::SUBC: { 3511 assert(Op.getResNo() == 0 && 3512 "We only compute knownbits for the difference here."); 3513 3514 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3515 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3516 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3517 Known, Known2); 3518 break; 3519 } 3520 case ISD::UADDO: 3521 case ISD::SADDO: 3522 case ISD::ADDCARRY: 3523 if (Op.getResNo() == 1) { 3524 // If we know the result of a setcc has the top bits zero, use this info. 3525 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3526 TargetLowering::ZeroOrOneBooleanContent && 3527 BitWidth > 1) 3528 Known.Zero.setBitsFrom(1); 3529 break; 3530 } 3531 LLVM_FALLTHROUGH; 3532 case ISD::ADD: 3533 case ISD::ADDC: 3534 case ISD::ADDE: { 3535 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3536 3537 // With ADDE and ADDCARRY, a carry bit may be added in. 3538 KnownBits Carry(1); 3539 if (Opcode == ISD::ADDE) 3540 // Can't track carry from glue, set carry to unknown. 3541 Carry.resetAll(); 3542 else if (Opcode == ISD::ADDCARRY) 3543 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3544 // the trouble (how often will we find a known carry bit). And I haven't 3545 // tested this very much yet, but something like this might work: 3546 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3547 // Carry = Carry.zextOrTrunc(1, false); 3548 Carry.resetAll(); 3549 else 3550 Carry.setAllZero(); 3551 3552 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3553 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3554 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3555 break; 3556 } 3557 case ISD::SREM: { 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::srem(Known, Known2); 3561 break; 3562 } 3563 case ISD::UREM: { 3564 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3565 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3566 Known = KnownBits::urem(Known, Known2); 3567 break; 3568 } 3569 case ISD::EXTRACT_ELEMENT: { 3570 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3571 const unsigned Index = Op.getConstantOperandVal(1); 3572 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3573 3574 // Remove low part of known bits mask 3575 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3576 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3577 3578 // Remove high part of known bit mask 3579 Known = Known.trunc(EltBitWidth); 3580 break; 3581 } 3582 case ISD::EXTRACT_VECTOR_ELT: { 3583 SDValue InVec = Op.getOperand(0); 3584 SDValue EltNo = Op.getOperand(1); 3585 EVT VecVT = InVec.getValueType(); 3586 // computeKnownBits not yet implemented for scalable vectors. 3587 if (VecVT.isScalableVector()) 3588 break; 3589 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3590 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3591 3592 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3593 // anything about the extended bits. 3594 if (BitWidth > EltBitWidth) 3595 Known = Known.trunc(EltBitWidth); 3596 3597 // If we know the element index, just demand that vector element, else for 3598 // an unknown element index, ignore DemandedElts and demand them all. 3599 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3600 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3601 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3602 DemandedSrcElts = 3603 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3604 3605 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3606 if (BitWidth > EltBitWidth) 3607 Known = Known.anyext(BitWidth); 3608 break; 3609 } 3610 case ISD::INSERT_VECTOR_ELT: { 3611 // If we know the element index, split the demand between the 3612 // source vector and the inserted element, otherwise assume we need 3613 // the original demanded vector elements and the value. 3614 SDValue InVec = Op.getOperand(0); 3615 SDValue InVal = Op.getOperand(1); 3616 SDValue EltNo = Op.getOperand(2); 3617 bool DemandedVal = true; 3618 APInt DemandedVecElts = DemandedElts; 3619 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3620 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3621 unsigned EltIdx = CEltNo->getZExtValue(); 3622 DemandedVal = !!DemandedElts[EltIdx]; 3623 DemandedVecElts.clearBit(EltIdx); 3624 } 3625 Known.One.setAllBits(); 3626 Known.Zero.setAllBits(); 3627 if (DemandedVal) { 3628 Known2 = computeKnownBits(InVal, Depth + 1); 3629 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3630 } 3631 if (!!DemandedVecElts) { 3632 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3633 Known = KnownBits::commonBits(Known, Known2); 3634 } 3635 break; 3636 } 3637 case ISD::BITREVERSE: { 3638 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3639 Known = Known2.reverseBits(); 3640 break; 3641 } 3642 case ISD::BSWAP: { 3643 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3644 Known = Known2.byteSwap(); 3645 break; 3646 } 3647 case ISD::ABS: { 3648 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3649 Known = Known2.abs(); 3650 break; 3651 } 3652 case ISD::USUBSAT: { 3653 // The result of usubsat will never be larger than the LHS. 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3656 break; 3657 } 3658 case ISD::UMIN: { 3659 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3660 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3661 Known = KnownBits::umin(Known, Known2); 3662 break; 3663 } 3664 case ISD::UMAX: { 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::umax(Known, Known2); 3668 break; 3669 } 3670 case ISD::SMIN: 3671 case ISD::SMAX: { 3672 // If we have a clamp pattern, we know that the number of sign bits will be 3673 // the minimum of the clamp min/max range. 3674 bool IsMax = (Opcode == ISD::SMAX); 3675 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3676 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3677 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3678 CstHigh = 3679 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3680 if (CstLow && CstHigh) { 3681 if (!IsMax) 3682 std::swap(CstLow, CstHigh); 3683 3684 const APInt &ValueLow = CstLow->getAPIntValue(); 3685 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3686 if (ValueLow.sle(ValueHigh)) { 3687 unsigned LowSignBits = ValueLow.getNumSignBits(); 3688 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3689 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3690 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3691 Known.One.setHighBits(MinSignBits); 3692 break; 3693 } 3694 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3695 Known.Zero.setHighBits(MinSignBits); 3696 break; 3697 } 3698 } 3699 } 3700 3701 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3702 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3703 if (IsMax) 3704 Known = KnownBits::smax(Known, Known2); 3705 else 3706 Known = KnownBits::smin(Known, Known2); 3707 break; 3708 } 3709 case ISD::FP_TO_UINT_SAT: { 3710 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3711 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3712 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3713 break; 3714 } 3715 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3716 if (Op.getResNo() == 1) { 3717 // The boolean result conforms to getBooleanContents. 3718 // If we know the result of a setcc has the top bits zero, use this info. 3719 // We know that we have an integer-based boolean since these operations 3720 // are only available for integer. 3721 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3722 TargetLowering::ZeroOrOneBooleanContent && 3723 BitWidth > 1) 3724 Known.Zero.setBitsFrom(1); 3725 break; 3726 } 3727 LLVM_FALLTHROUGH; 3728 case ISD::ATOMIC_CMP_SWAP: 3729 case ISD::ATOMIC_SWAP: 3730 case ISD::ATOMIC_LOAD_ADD: 3731 case ISD::ATOMIC_LOAD_SUB: 3732 case ISD::ATOMIC_LOAD_AND: 3733 case ISD::ATOMIC_LOAD_CLR: 3734 case ISD::ATOMIC_LOAD_OR: 3735 case ISD::ATOMIC_LOAD_XOR: 3736 case ISD::ATOMIC_LOAD_NAND: 3737 case ISD::ATOMIC_LOAD_MIN: 3738 case ISD::ATOMIC_LOAD_MAX: 3739 case ISD::ATOMIC_LOAD_UMIN: 3740 case ISD::ATOMIC_LOAD_UMAX: 3741 case ISD::ATOMIC_LOAD: { 3742 unsigned MemBits = 3743 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3744 // If we are looking at the loaded value. 3745 if (Op.getResNo() == 0) { 3746 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3747 Known.Zero.setBitsFrom(MemBits); 3748 } 3749 break; 3750 } 3751 case ISD::FrameIndex: 3752 case ISD::TargetFrameIndex: 3753 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3754 Known, getMachineFunction()); 3755 break; 3756 3757 default: 3758 if (Opcode < ISD::BUILTIN_OP_END) 3759 break; 3760 LLVM_FALLTHROUGH; 3761 case ISD::INTRINSIC_WO_CHAIN: 3762 case ISD::INTRINSIC_W_CHAIN: 3763 case ISD::INTRINSIC_VOID: 3764 // Allow the target to implement this method for its nodes. 3765 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3766 break; 3767 } 3768 3769 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3770 return Known; 3771 } 3772 3773 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3774 SDValue N1) const { 3775 // X + 0 never overflow 3776 if (isNullConstant(N1)) 3777 return OFK_Never; 3778 3779 KnownBits N1Known = computeKnownBits(N1); 3780 if (N1Known.Zero.getBoolValue()) { 3781 KnownBits N0Known = computeKnownBits(N0); 3782 3783 bool overflow; 3784 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3785 if (!overflow) 3786 return OFK_Never; 3787 } 3788 3789 // mulhi + 1 never overflow 3790 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3791 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3792 return OFK_Never; 3793 3794 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3795 KnownBits N0Known = computeKnownBits(N0); 3796 3797 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3798 return OFK_Never; 3799 } 3800 3801 return OFK_Sometime; 3802 } 3803 3804 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3805 EVT OpVT = Val.getValueType(); 3806 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3807 3808 // Is the constant a known power of 2? 3809 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3810 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3811 3812 // A left-shift of a constant one will have exactly one bit set because 3813 // shifting the bit off the end is undefined. 3814 if (Val.getOpcode() == ISD::SHL) { 3815 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3816 if (C && C->getAPIntValue() == 1) 3817 return true; 3818 } 3819 3820 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3821 // one bit set. 3822 if (Val.getOpcode() == ISD::SRL) { 3823 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3824 if (C && C->getAPIntValue().isSignMask()) 3825 return true; 3826 } 3827 3828 // Are all operands of a build vector constant powers of two? 3829 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3830 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3831 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3832 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3833 return false; 3834 })) 3835 return true; 3836 3837 // Is the operand of a splat vector a constant power of two? 3838 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3839 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3840 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3841 return true; 3842 3843 // More could be done here, though the above checks are enough 3844 // to handle some common cases. 3845 3846 // Fall back to computeKnownBits to catch other known cases. 3847 KnownBits Known = computeKnownBits(Val); 3848 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3849 } 3850 3851 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3852 EVT VT = Op.getValueType(); 3853 3854 // TODO: Assume we don't know anything for now. 3855 if (VT.isScalableVector()) 3856 return 1; 3857 3858 APInt DemandedElts = VT.isVector() 3859 ? APInt::getAllOnes(VT.getVectorNumElements()) 3860 : APInt(1, 1); 3861 return ComputeNumSignBits(Op, DemandedElts, Depth); 3862 } 3863 3864 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3865 unsigned Depth) const { 3866 EVT VT = Op.getValueType(); 3867 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3868 unsigned VTBits = VT.getScalarSizeInBits(); 3869 unsigned NumElts = DemandedElts.getBitWidth(); 3870 unsigned Tmp, Tmp2; 3871 unsigned FirstAnswer = 1; 3872 3873 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3874 const APInt &Val = C->getAPIntValue(); 3875 return Val.getNumSignBits(); 3876 } 3877 3878 if (Depth >= MaxRecursionDepth) 3879 return 1; // Limit search depth. 3880 3881 if (!DemandedElts || VT.isScalableVector()) 3882 return 1; // No demanded elts, better to assume we don't know anything. 3883 3884 unsigned Opcode = Op.getOpcode(); 3885 switch (Opcode) { 3886 default: break; 3887 case ISD::AssertSext: 3888 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3889 return VTBits-Tmp+1; 3890 case ISD::AssertZext: 3891 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3892 return VTBits-Tmp; 3893 3894 case ISD::BUILD_VECTOR: 3895 Tmp = VTBits; 3896 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3897 if (!DemandedElts[i]) 3898 continue; 3899 3900 SDValue SrcOp = Op.getOperand(i); 3901 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3902 3903 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3904 if (SrcOp.getValueSizeInBits() != VTBits) { 3905 assert(SrcOp.getValueSizeInBits() > VTBits && 3906 "Expected BUILD_VECTOR implicit truncation"); 3907 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3908 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3909 } 3910 Tmp = std::min(Tmp, Tmp2); 3911 } 3912 return Tmp; 3913 3914 case ISD::VECTOR_SHUFFLE: { 3915 // Collect the minimum number of sign bits that are shared by every vector 3916 // element referenced by the shuffle. 3917 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3918 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3919 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3920 for (unsigned i = 0; i != NumElts; ++i) { 3921 int M = SVN->getMaskElt(i); 3922 if (!DemandedElts[i]) 3923 continue; 3924 // For UNDEF elements, we don't know anything about the common state of 3925 // the shuffle result. 3926 if (M < 0) 3927 return 1; 3928 if ((unsigned)M < NumElts) 3929 DemandedLHS.setBit((unsigned)M % NumElts); 3930 else 3931 DemandedRHS.setBit((unsigned)M % NumElts); 3932 } 3933 Tmp = std::numeric_limits<unsigned>::max(); 3934 if (!!DemandedLHS) 3935 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3936 if (!!DemandedRHS) { 3937 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3938 Tmp = std::min(Tmp, Tmp2); 3939 } 3940 // If we don't know anything, early out and try computeKnownBits fall-back. 3941 if (Tmp == 1) 3942 break; 3943 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3944 return Tmp; 3945 } 3946 3947 case ISD::BITCAST: { 3948 SDValue N0 = Op.getOperand(0); 3949 EVT SrcVT = N0.getValueType(); 3950 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3951 3952 // Ignore bitcasts from unsupported types.. 3953 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3954 break; 3955 3956 // Fast handling of 'identity' bitcasts. 3957 if (VTBits == SrcBits) 3958 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3959 3960 bool IsLE = getDataLayout().isLittleEndian(); 3961 3962 // Bitcast 'large element' scalar/vector to 'small element' vector. 3963 if ((SrcBits % VTBits) == 0) { 3964 assert(VT.isVector() && "Expected bitcast to vector"); 3965 3966 unsigned Scale = SrcBits / VTBits; 3967 APInt SrcDemandedElts = 3968 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3969 3970 // Fast case - sign splat can be simply split across the small elements. 3971 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3972 if (Tmp == SrcBits) 3973 return VTBits; 3974 3975 // Slow case - determine how far the sign extends into each sub-element. 3976 Tmp2 = VTBits; 3977 for (unsigned i = 0; i != NumElts; ++i) 3978 if (DemandedElts[i]) { 3979 unsigned SubOffset = i % Scale; 3980 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3981 SubOffset = SubOffset * VTBits; 3982 if (Tmp <= SubOffset) 3983 return 1; 3984 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3985 } 3986 return Tmp2; 3987 } 3988 break; 3989 } 3990 3991 case ISD::FP_TO_SINT_SAT: 3992 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3993 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3994 return VTBits - Tmp + 1; 3995 case ISD::SIGN_EXTEND: 3996 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3997 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3998 case ISD::SIGN_EXTEND_INREG: 3999 // Max of the input and what this extends. 4000 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4001 Tmp = VTBits-Tmp+1; 4002 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4003 return std::max(Tmp, Tmp2); 4004 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4005 SDValue Src = Op.getOperand(0); 4006 EVT SrcVT = Src.getValueType(); 4007 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 4008 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4009 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4010 } 4011 case ISD::SRA: 4012 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4013 // SRA X, C -> adds C sign bits. 4014 if (const APInt *ShAmt = 4015 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4016 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4017 return Tmp; 4018 case ISD::SHL: 4019 if (const APInt *ShAmt = 4020 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4021 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4022 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4023 if (ShAmt->ult(Tmp)) 4024 return Tmp - ShAmt->getZExtValue(); 4025 } 4026 break; 4027 case ISD::AND: 4028 case ISD::OR: 4029 case ISD::XOR: // NOT is handled here. 4030 // Logical binary ops preserve the number of sign bits at the worst. 4031 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4032 if (Tmp != 1) { 4033 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4034 FirstAnswer = std::min(Tmp, Tmp2); 4035 // We computed what we know about the sign bits as our first 4036 // answer. Now proceed to the generic code that uses 4037 // computeKnownBits, and pick whichever answer is better. 4038 } 4039 break; 4040 4041 case ISD::SELECT: 4042 case ISD::VSELECT: 4043 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4044 if (Tmp == 1) return 1; // Early out. 4045 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4046 return std::min(Tmp, Tmp2); 4047 case ISD::SELECT_CC: 4048 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4049 if (Tmp == 1) return 1; // Early out. 4050 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4051 return std::min(Tmp, Tmp2); 4052 4053 case ISD::SMIN: 4054 case ISD::SMAX: { 4055 // If we have a clamp pattern, we know that the number of sign bits will be 4056 // the minimum of the clamp min/max range. 4057 bool IsMax = (Opcode == ISD::SMAX); 4058 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4059 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4060 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4061 CstHigh = 4062 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4063 if (CstLow && CstHigh) { 4064 if (!IsMax) 4065 std::swap(CstLow, CstHigh); 4066 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4067 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4068 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4069 return std::min(Tmp, Tmp2); 4070 } 4071 } 4072 4073 // Fallback - just get the minimum number of sign bits of the operands. 4074 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4075 if (Tmp == 1) 4076 return 1; // Early out. 4077 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4078 return std::min(Tmp, Tmp2); 4079 } 4080 case ISD::UMIN: 4081 case ISD::UMAX: 4082 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4083 if (Tmp == 1) 4084 return 1; // Early out. 4085 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4086 return std::min(Tmp, Tmp2); 4087 case ISD::SADDO: 4088 case ISD::UADDO: 4089 case ISD::SSUBO: 4090 case ISD::USUBO: 4091 case ISD::SMULO: 4092 case ISD::UMULO: 4093 if (Op.getResNo() != 1) 4094 break; 4095 // The boolean result conforms to getBooleanContents. Fall through. 4096 // If setcc returns 0/-1, all bits are sign bits. 4097 // We know that we have an integer-based boolean since these operations 4098 // are only available for integer. 4099 if (TLI->getBooleanContents(VT.isVector(), false) == 4100 TargetLowering::ZeroOrNegativeOneBooleanContent) 4101 return VTBits; 4102 break; 4103 case ISD::SETCC: 4104 case ISD::STRICT_FSETCC: 4105 case ISD::STRICT_FSETCCS: { 4106 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4107 // If setcc returns 0/-1, all bits are sign bits. 4108 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4109 TargetLowering::ZeroOrNegativeOneBooleanContent) 4110 return VTBits; 4111 break; 4112 } 4113 case ISD::ROTL: 4114 case ISD::ROTR: 4115 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4116 4117 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4118 if (Tmp == VTBits) 4119 return VTBits; 4120 4121 if (ConstantSDNode *C = 4122 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4123 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4124 4125 // Handle rotate right by N like a rotate left by 32-N. 4126 if (Opcode == ISD::ROTR) 4127 RotAmt = (VTBits - RotAmt) % VTBits; 4128 4129 // If we aren't rotating out all of the known-in sign bits, return the 4130 // number that are left. This handles rotl(sext(x), 1) for example. 4131 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4132 } 4133 break; 4134 case ISD::ADD: 4135 case ISD::ADDC: 4136 // Add can have at most one carry bit. Thus we know that the output 4137 // is, at worst, one more bit than the inputs. 4138 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4139 if (Tmp == 1) return 1; // Early out. 4140 4141 // Special case decrementing a value (ADD X, -1): 4142 if (ConstantSDNode *CRHS = 4143 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4144 if (CRHS->isAllOnes()) { 4145 KnownBits Known = 4146 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4147 4148 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4149 // sign bits set. 4150 if ((Known.Zero | 1).isAllOnes()) 4151 return VTBits; 4152 4153 // If we are subtracting one from a positive number, there is no carry 4154 // out of the result. 4155 if (Known.isNonNegative()) 4156 return Tmp; 4157 } 4158 4159 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4160 if (Tmp2 == 1) return 1; // Early out. 4161 return std::min(Tmp, Tmp2) - 1; 4162 case ISD::SUB: 4163 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4164 if (Tmp2 == 1) return 1; // Early out. 4165 4166 // Handle NEG. 4167 if (ConstantSDNode *CLHS = 4168 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4169 if (CLHS->isZero()) { 4170 KnownBits Known = 4171 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4172 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4173 // sign bits set. 4174 if ((Known.Zero | 1).isAllOnes()) 4175 return VTBits; 4176 4177 // If the input is known to be positive (the sign bit is known clear), 4178 // the output of the NEG has the same number of sign bits as the input. 4179 if (Known.isNonNegative()) 4180 return Tmp2; 4181 4182 // Otherwise, we treat this like a SUB. 4183 } 4184 4185 // Sub can have at most one carry bit. Thus we know that the output 4186 // is, at worst, one more bit than the inputs. 4187 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4188 if (Tmp == 1) return 1; // Early out. 4189 return std::min(Tmp, Tmp2) - 1; 4190 case ISD::MUL: { 4191 // The output of the Mul can be at most twice the valid bits in the inputs. 4192 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4193 if (SignBitsOp0 == 1) 4194 break; 4195 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4196 if (SignBitsOp1 == 1) 4197 break; 4198 unsigned OutValidBits = 4199 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4200 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4201 } 4202 case ISD::SREM: 4203 // The sign bit is the LHS's sign bit, except when the result of the 4204 // remainder is zero. The magnitude of the result should be less than or 4205 // equal to the magnitude of the LHS. Therefore, the result should have 4206 // at least as many sign bits as the left hand side. 4207 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4208 case ISD::TRUNCATE: { 4209 // Check if the sign bits of source go down as far as the truncated value. 4210 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4211 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4212 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4213 return NumSrcSignBits - (NumSrcBits - VTBits); 4214 break; 4215 } 4216 case ISD::EXTRACT_ELEMENT: { 4217 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4218 const int BitWidth = Op.getValueSizeInBits(); 4219 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4220 4221 // Get reverse index (starting from 1), Op1 value indexes elements from 4222 // little end. Sign starts at big end. 4223 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4224 4225 // If the sign portion ends in our element the subtraction gives correct 4226 // result. Otherwise it gives either negative or > bitwidth result 4227 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4228 } 4229 case ISD::INSERT_VECTOR_ELT: { 4230 // If we know the element index, split the demand between the 4231 // source vector and the inserted element, otherwise assume we need 4232 // the original demanded vector elements and the value. 4233 SDValue InVec = Op.getOperand(0); 4234 SDValue InVal = Op.getOperand(1); 4235 SDValue EltNo = Op.getOperand(2); 4236 bool DemandedVal = true; 4237 APInt DemandedVecElts = DemandedElts; 4238 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4239 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4240 unsigned EltIdx = CEltNo->getZExtValue(); 4241 DemandedVal = !!DemandedElts[EltIdx]; 4242 DemandedVecElts.clearBit(EltIdx); 4243 } 4244 Tmp = std::numeric_limits<unsigned>::max(); 4245 if (DemandedVal) { 4246 // TODO - handle implicit truncation of inserted elements. 4247 if (InVal.getScalarValueSizeInBits() != VTBits) 4248 break; 4249 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4250 Tmp = std::min(Tmp, Tmp2); 4251 } 4252 if (!!DemandedVecElts) { 4253 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4254 Tmp = std::min(Tmp, Tmp2); 4255 } 4256 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4257 return Tmp; 4258 } 4259 case ISD::EXTRACT_VECTOR_ELT: { 4260 SDValue InVec = Op.getOperand(0); 4261 SDValue EltNo = Op.getOperand(1); 4262 EVT VecVT = InVec.getValueType(); 4263 // ComputeNumSignBits not yet implemented for scalable vectors. 4264 if (VecVT.isScalableVector()) 4265 break; 4266 const unsigned BitWidth = Op.getValueSizeInBits(); 4267 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4268 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4269 4270 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4271 // anything about sign bits. But if the sizes match we can derive knowledge 4272 // about sign bits from the vector operand. 4273 if (BitWidth != EltBitWidth) 4274 break; 4275 4276 // If we know the element index, just demand that vector element, else for 4277 // an unknown element index, ignore DemandedElts and demand them all. 4278 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4279 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4280 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4281 DemandedSrcElts = 4282 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4283 4284 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4285 } 4286 case ISD::EXTRACT_SUBVECTOR: { 4287 // Offset the demanded elts by the subvector index. 4288 SDValue Src = Op.getOperand(0); 4289 // Bail until we can represent demanded elements for scalable vectors. 4290 if (Src.getValueType().isScalableVector()) 4291 break; 4292 uint64_t Idx = Op.getConstantOperandVal(1); 4293 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4294 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4295 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4296 } 4297 case ISD::CONCAT_VECTORS: { 4298 // Determine the minimum number of sign bits across all demanded 4299 // elts of the input vectors. Early out if the result is already 1. 4300 Tmp = std::numeric_limits<unsigned>::max(); 4301 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4302 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4303 unsigned NumSubVectors = Op.getNumOperands(); 4304 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4305 APInt DemandedSub = 4306 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4307 if (!DemandedSub) 4308 continue; 4309 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4310 Tmp = std::min(Tmp, Tmp2); 4311 } 4312 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4313 return Tmp; 4314 } 4315 case ISD::INSERT_SUBVECTOR: { 4316 // Demand any elements from the subvector and the remainder from the src its 4317 // inserted into. 4318 SDValue Src = Op.getOperand(0); 4319 SDValue Sub = Op.getOperand(1); 4320 uint64_t Idx = Op.getConstantOperandVal(2); 4321 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4322 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4323 APInt DemandedSrcElts = DemandedElts; 4324 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4325 4326 Tmp = std::numeric_limits<unsigned>::max(); 4327 if (!!DemandedSubElts) { 4328 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4329 if (Tmp == 1) 4330 return 1; // early-out 4331 } 4332 if (!!DemandedSrcElts) { 4333 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4334 Tmp = std::min(Tmp, Tmp2); 4335 } 4336 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4337 return Tmp; 4338 } 4339 case ISD::ATOMIC_CMP_SWAP: 4340 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4341 case ISD::ATOMIC_SWAP: 4342 case ISD::ATOMIC_LOAD_ADD: 4343 case ISD::ATOMIC_LOAD_SUB: 4344 case ISD::ATOMIC_LOAD_AND: 4345 case ISD::ATOMIC_LOAD_CLR: 4346 case ISD::ATOMIC_LOAD_OR: 4347 case ISD::ATOMIC_LOAD_XOR: 4348 case ISD::ATOMIC_LOAD_NAND: 4349 case ISD::ATOMIC_LOAD_MIN: 4350 case ISD::ATOMIC_LOAD_MAX: 4351 case ISD::ATOMIC_LOAD_UMIN: 4352 case ISD::ATOMIC_LOAD_UMAX: 4353 case ISD::ATOMIC_LOAD: { 4354 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4355 // If we are looking at the loaded value. 4356 if (Op.getResNo() == 0) { 4357 if (Tmp == VTBits) 4358 return 1; // early-out 4359 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4360 return VTBits - Tmp + 1; 4361 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4362 return VTBits - Tmp; 4363 } 4364 break; 4365 } 4366 } 4367 4368 // If we are looking at the loaded value of the SDNode. 4369 if (Op.getResNo() == 0) { 4370 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4371 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4372 unsigned ExtType = LD->getExtensionType(); 4373 switch (ExtType) { 4374 default: break; 4375 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4376 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4377 return VTBits - Tmp + 1; 4378 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4379 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4380 return VTBits - Tmp; 4381 case ISD::NON_EXTLOAD: 4382 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4383 // We only need to handle vectors - computeKnownBits should handle 4384 // scalar cases. 4385 Type *CstTy = Cst->getType(); 4386 if (CstTy->isVectorTy() && 4387 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4388 VTBits == CstTy->getScalarSizeInBits()) { 4389 Tmp = VTBits; 4390 for (unsigned i = 0; i != NumElts; ++i) { 4391 if (!DemandedElts[i]) 4392 continue; 4393 if (Constant *Elt = Cst->getAggregateElement(i)) { 4394 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4395 const APInt &Value = CInt->getValue(); 4396 Tmp = std::min(Tmp, Value.getNumSignBits()); 4397 continue; 4398 } 4399 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4400 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4401 Tmp = std::min(Tmp, Value.getNumSignBits()); 4402 continue; 4403 } 4404 } 4405 // Unknown type. Conservatively assume no bits match sign bit. 4406 return 1; 4407 } 4408 return Tmp; 4409 } 4410 } 4411 break; 4412 } 4413 } 4414 } 4415 4416 // Allow the target to implement this method for its nodes. 4417 if (Opcode >= ISD::BUILTIN_OP_END || 4418 Opcode == ISD::INTRINSIC_WO_CHAIN || 4419 Opcode == ISD::INTRINSIC_W_CHAIN || 4420 Opcode == ISD::INTRINSIC_VOID) { 4421 unsigned NumBits = 4422 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4423 if (NumBits > 1) 4424 FirstAnswer = std::max(FirstAnswer, NumBits); 4425 } 4426 4427 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4428 // use this information. 4429 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4430 return std::max(FirstAnswer, Known.countMinSignBits()); 4431 } 4432 4433 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4434 unsigned Depth) const { 4435 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4436 return Op.getScalarValueSizeInBits() - SignBits + 1; 4437 } 4438 4439 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4440 const APInt &DemandedElts, 4441 unsigned Depth) const { 4442 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4443 return Op.getScalarValueSizeInBits() - SignBits + 1; 4444 } 4445 4446 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4447 unsigned Depth) const { 4448 // Early out for FREEZE. 4449 if (Op.getOpcode() == ISD::FREEZE) 4450 return true; 4451 4452 // TODO: Assume we don't know anything for now. 4453 EVT VT = Op.getValueType(); 4454 if (VT.isScalableVector()) 4455 return false; 4456 4457 APInt DemandedElts = VT.isVector() 4458 ? APInt::getAllOnes(VT.getVectorNumElements()) 4459 : APInt(1, 1); 4460 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4461 } 4462 4463 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4464 const APInt &DemandedElts, 4465 bool PoisonOnly, 4466 unsigned Depth) const { 4467 unsigned Opcode = Op.getOpcode(); 4468 4469 // Early out for FREEZE. 4470 if (Opcode == ISD::FREEZE) 4471 return true; 4472 4473 if (Depth >= MaxRecursionDepth) 4474 return false; // Limit search depth. 4475 4476 if (isIntOrFPConstant(Op)) 4477 return true; 4478 4479 switch (Opcode) { 4480 case ISD::UNDEF: 4481 return PoisonOnly; 4482 4483 case ISD::BUILD_VECTOR: 4484 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4485 // this shouldn't affect the result. 4486 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4487 if (!DemandedElts[i]) 4488 continue; 4489 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4490 Depth + 1)) 4491 return false; 4492 } 4493 return true; 4494 4495 // TODO: Search for noundef attributes from library functions. 4496 4497 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4498 4499 default: 4500 // Allow the target to implement this method for its nodes. 4501 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4502 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4503 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4504 Op, DemandedElts, *this, PoisonOnly, Depth); 4505 break; 4506 } 4507 4508 return false; 4509 } 4510 4511 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4512 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4513 !isa<ConstantSDNode>(Op.getOperand(1))) 4514 return false; 4515 4516 if (Op.getOpcode() == ISD::OR && 4517 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4518 return false; 4519 4520 return true; 4521 } 4522 4523 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4524 // If we're told that NaNs won't happen, assume they won't. 4525 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4526 return true; 4527 4528 if (Depth >= MaxRecursionDepth) 4529 return false; // Limit search depth. 4530 4531 // TODO: Handle vectors. 4532 // If the value is a constant, we can obviously see if it is a NaN or not. 4533 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4534 return !C->getValueAPF().isNaN() || 4535 (SNaN && !C->getValueAPF().isSignaling()); 4536 } 4537 4538 unsigned Opcode = Op.getOpcode(); 4539 switch (Opcode) { 4540 case ISD::FADD: 4541 case ISD::FSUB: 4542 case ISD::FMUL: 4543 case ISD::FDIV: 4544 case ISD::FREM: 4545 case ISD::FSIN: 4546 case ISD::FCOS: { 4547 if (SNaN) 4548 return true; 4549 // TODO: Need isKnownNeverInfinity 4550 return false; 4551 } 4552 case ISD::FCANONICALIZE: 4553 case ISD::FEXP: 4554 case ISD::FEXP2: 4555 case ISD::FTRUNC: 4556 case ISD::FFLOOR: 4557 case ISD::FCEIL: 4558 case ISD::FROUND: 4559 case ISD::FROUNDEVEN: 4560 case ISD::FRINT: 4561 case ISD::FNEARBYINT: { 4562 if (SNaN) 4563 return true; 4564 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4565 } 4566 case ISD::FABS: 4567 case ISD::FNEG: 4568 case ISD::FCOPYSIGN: { 4569 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4570 } 4571 case ISD::SELECT: 4572 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4573 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4574 case ISD::FP_EXTEND: 4575 case ISD::FP_ROUND: { 4576 if (SNaN) 4577 return true; 4578 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4579 } 4580 case ISD::SINT_TO_FP: 4581 case ISD::UINT_TO_FP: 4582 return true; 4583 case ISD::FMA: 4584 case ISD::FMAD: { 4585 if (SNaN) 4586 return true; 4587 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4588 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4589 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4590 } 4591 case ISD::FSQRT: // Need is known positive 4592 case ISD::FLOG: 4593 case ISD::FLOG2: 4594 case ISD::FLOG10: 4595 case ISD::FPOWI: 4596 case ISD::FPOW: { 4597 if (SNaN) 4598 return true; 4599 // TODO: Refine on operand 4600 return false; 4601 } 4602 case ISD::FMINNUM: 4603 case ISD::FMAXNUM: { 4604 // Only one needs to be known not-nan, since it will be returned if the 4605 // other ends up being one. 4606 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4607 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4608 } 4609 case ISD::FMINNUM_IEEE: 4610 case ISD::FMAXNUM_IEEE: { 4611 if (SNaN) 4612 return true; 4613 // This can return a NaN if either operand is an sNaN, or if both operands 4614 // are NaN. 4615 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4616 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4617 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4618 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4619 } 4620 case ISD::FMINIMUM: 4621 case ISD::FMAXIMUM: { 4622 // TODO: Does this quiet or return the origina NaN as-is? 4623 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4624 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4625 } 4626 case ISD::EXTRACT_VECTOR_ELT: { 4627 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4628 } 4629 default: 4630 if (Opcode >= ISD::BUILTIN_OP_END || 4631 Opcode == ISD::INTRINSIC_WO_CHAIN || 4632 Opcode == ISD::INTRINSIC_W_CHAIN || 4633 Opcode == ISD::INTRINSIC_VOID) { 4634 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4635 } 4636 4637 return false; 4638 } 4639 } 4640 4641 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4642 assert(Op.getValueType().isFloatingPoint() && 4643 "Floating point type expected"); 4644 4645 // If the value is a constant, we can obviously see if it is a zero or not. 4646 // TODO: Add BuildVector support. 4647 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4648 return !C->isZero(); 4649 return false; 4650 } 4651 4652 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4653 assert(!Op.getValueType().isFloatingPoint() && 4654 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4655 4656 // If the value is a constant, we can obviously see if it is a zero or not. 4657 if (ISD::matchUnaryPredicate(Op, 4658 [](ConstantSDNode *C) { return !C->isZero(); })) 4659 return true; 4660 4661 // TODO: Recognize more cases here. 4662 switch (Op.getOpcode()) { 4663 default: break; 4664 case ISD::OR: 4665 if (isKnownNeverZero(Op.getOperand(1)) || 4666 isKnownNeverZero(Op.getOperand(0))) 4667 return true; 4668 break; 4669 } 4670 4671 return false; 4672 } 4673 4674 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4675 // Check the obvious case. 4676 if (A == B) return true; 4677 4678 // For for negative and positive zero. 4679 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4680 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4681 if (CA->isZero() && CB->isZero()) return true; 4682 4683 // Otherwise they may not be equal. 4684 return false; 4685 } 4686 4687 // Only bits set in Mask must be negated, other bits may be arbitrary. 4688 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4689 if (isBitwiseNot(V, AllowUndefs)) 4690 return V.getOperand(0); 4691 4692 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4693 // bits in the non-extended part. 4694 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4695 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4696 return SDValue(); 4697 SDValue ExtArg = V.getOperand(0); 4698 if (ExtArg.getScalarValueSizeInBits() >= 4699 MaskC->getAPIntValue().getActiveBits() && 4700 isBitwiseNot(ExtArg, AllowUndefs) && 4701 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4702 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4703 return ExtArg.getOperand(0).getOperand(0); 4704 return SDValue(); 4705 } 4706 4707 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4708 // Match masked merge pattern (X & ~M) op (Y & M) 4709 // Including degenerate case (X & ~M) op M 4710 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4711 SDValue Other) { 4712 if (SDValue NotOperand = 4713 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4714 if (Other == NotOperand) 4715 return true; 4716 if (Other->getOpcode() == ISD::AND) 4717 return NotOperand == Other->getOperand(0) || 4718 NotOperand == Other->getOperand(1); 4719 } 4720 return false; 4721 }; 4722 if (A->getOpcode() == ISD::AND) 4723 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4724 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4725 return false; 4726 } 4727 4728 // FIXME: unify with llvm::haveNoCommonBitsSet. 4729 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4730 assert(A.getValueType() == B.getValueType() && 4731 "Values must have the same type"); 4732 if (haveNoCommonBitsSetCommutative(A, B) || 4733 haveNoCommonBitsSetCommutative(B, A)) 4734 return true; 4735 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4736 computeKnownBits(B)); 4737 } 4738 4739 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4740 SelectionDAG &DAG) { 4741 if (cast<ConstantSDNode>(Step)->isZero()) 4742 return DAG.getConstant(0, DL, VT); 4743 4744 return SDValue(); 4745 } 4746 4747 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4748 ArrayRef<SDValue> Ops, 4749 SelectionDAG &DAG) { 4750 int NumOps = Ops.size(); 4751 assert(NumOps != 0 && "Can't build an empty vector!"); 4752 assert(!VT.isScalableVector() && 4753 "BUILD_VECTOR cannot be used with scalable types"); 4754 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4755 "Incorrect element count in BUILD_VECTOR!"); 4756 4757 // BUILD_VECTOR of UNDEFs is UNDEF. 4758 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4759 return DAG.getUNDEF(VT); 4760 4761 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4762 SDValue IdentitySrc; 4763 bool IsIdentity = true; 4764 for (int i = 0; i != NumOps; ++i) { 4765 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4766 Ops[i].getOperand(0).getValueType() != VT || 4767 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4768 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4769 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4770 IsIdentity = false; 4771 break; 4772 } 4773 IdentitySrc = Ops[i].getOperand(0); 4774 } 4775 if (IsIdentity) 4776 return IdentitySrc; 4777 4778 return SDValue(); 4779 } 4780 4781 /// Try to simplify vector concatenation to an input value, undef, or build 4782 /// vector. 4783 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4784 ArrayRef<SDValue> Ops, 4785 SelectionDAG &DAG) { 4786 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4787 assert(llvm::all_of(Ops, 4788 [Ops](SDValue Op) { 4789 return Ops[0].getValueType() == Op.getValueType(); 4790 }) && 4791 "Concatenation of vectors with inconsistent value types!"); 4792 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4793 VT.getVectorElementCount() && 4794 "Incorrect element count in vector concatenation!"); 4795 4796 if (Ops.size() == 1) 4797 return Ops[0]; 4798 4799 // Concat of UNDEFs is UNDEF. 4800 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4801 return DAG.getUNDEF(VT); 4802 4803 // Scan the operands and look for extract operations from a single source 4804 // that correspond to insertion at the same location via this concatenation: 4805 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4806 SDValue IdentitySrc; 4807 bool IsIdentity = true; 4808 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4809 SDValue Op = Ops[i]; 4810 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4811 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4812 Op.getOperand(0).getValueType() != VT || 4813 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4814 Op.getConstantOperandVal(1) != IdentityIndex) { 4815 IsIdentity = false; 4816 break; 4817 } 4818 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4819 "Unexpected identity source vector for concat of extracts"); 4820 IdentitySrc = Op.getOperand(0); 4821 } 4822 if (IsIdentity) { 4823 assert(IdentitySrc && "Failed to set source vector of extracts"); 4824 return IdentitySrc; 4825 } 4826 4827 // The code below this point is only designed to work for fixed width 4828 // vectors, so we bail out for now. 4829 if (VT.isScalableVector()) 4830 return SDValue(); 4831 4832 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4833 // simplified to one big BUILD_VECTOR. 4834 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4835 EVT SVT = VT.getScalarType(); 4836 SmallVector<SDValue, 16> Elts; 4837 for (SDValue Op : Ops) { 4838 EVT OpVT = Op.getValueType(); 4839 if (Op.isUndef()) 4840 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4841 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4842 Elts.append(Op->op_begin(), Op->op_end()); 4843 else 4844 return SDValue(); 4845 } 4846 4847 // BUILD_VECTOR requires all inputs to be of the same type, find the 4848 // maximum type and extend them all. 4849 for (SDValue Op : Elts) 4850 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4851 4852 if (SVT.bitsGT(VT.getScalarType())) { 4853 for (SDValue &Op : Elts) { 4854 if (Op.isUndef()) 4855 Op = DAG.getUNDEF(SVT); 4856 else 4857 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4858 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4859 : DAG.getSExtOrTrunc(Op, DL, SVT); 4860 } 4861 } 4862 4863 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4864 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4865 return V; 4866 } 4867 4868 /// Gets or creates the specified node. 4869 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4870 FoldingSetNodeID ID; 4871 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4872 void *IP = nullptr; 4873 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4874 return SDValue(E, 0); 4875 4876 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4877 getVTList(VT)); 4878 CSEMap.InsertNode(N, IP); 4879 4880 InsertNode(N); 4881 SDValue V = SDValue(N, 0); 4882 NewSDValueDbgMsg(V, "Creating new node: ", this); 4883 return V; 4884 } 4885 4886 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4887 SDValue Operand) { 4888 SDNodeFlags Flags; 4889 if (Inserter) 4890 Flags = Inserter->getFlags(); 4891 return getNode(Opcode, DL, VT, Operand, Flags); 4892 } 4893 4894 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4895 SDValue Operand, const SDNodeFlags Flags) { 4896 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4897 "Operand is DELETED_NODE!"); 4898 // Constant fold unary operations with an integer constant operand. Even 4899 // opaque constant will be folded, because the folding of unary operations 4900 // doesn't create new constants with different values. Nevertheless, the 4901 // opaque flag is preserved during folding to prevent future folding with 4902 // other constants. 4903 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4904 const APInt &Val = C->getAPIntValue(); 4905 switch (Opcode) { 4906 default: break; 4907 case ISD::SIGN_EXTEND: 4908 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4909 C->isTargetOpcode(), C->isOpaque()); 4910 case ISD::TRUNCATE: 4911 if (C->isOpaque()) 4912 break; 4913 LLVM_FALLTHROUGH; 4914 case ISD::ZERO_EXTEND: 4915 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4916 C->isTargetOpcode(), C->isOpaque()); 4917 case ISD::ANY_EXTEND: 4918 // Some targets like RISCV prefer to sign extend some types. 4919 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4920 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4921 C->isTargetOpcode(), C->isOpaque()); 4922 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4923 C->isTargetOpcode(), C->isOpaque()); 4924 case ISD::UINT_TO_FP: 4925 case ISD::SINT_TO_FP: { 4926 APFloat apf(EVTToAPFloatSemantics(VT), 4927 APInt::getZero(VT.getSizeInBits())); 4928 (void)apf.convertFromAPInt(Val, 4929 Opcode==ISD::SINT_TO_FP, 4930 APFloat::rmNearestTiesToEven); 4931 return getConstantFP(apf, DL, VT); 4932 } 4933 case ISD::BITCAST: 4934 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4935 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4936 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4937 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4938 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4939 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4940 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4941 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4942 break; 4943 case ISD::ABS: 4944 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4945 C->isOpaque()); 4946 case ISD::BITREVERSE: 4947 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4948 C->isOpaque()); 4949 case ISD::BSWAP: 4950 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4951 C->isOpaque()); 4952 case ISD::CTPOP: 4953 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4954 C->isOpaque()); 4955 case ISD::CTLZ: 4956 case ISD::CTLZ_ZERO_UNDEF: 4957 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4958 C->isOpaque()); 4959 case ISD::CTTZ: 4960 case ISD::CTTZ_ZERO_UNDEF: 4961 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4962 C->isOpaque()); 4963 case ISD::FP16_TO_FP: { 4964 bool Ignored; 4965 APFloat FPV(APFloat::IEEEhalf(), 4966 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4967 4968 // This can return overflow, underflow, or inexact; we don't care. 4969 // FIXME need to be more flexible about rounding mode. 4970 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4971 APFloat::rmNearestTiesToEven, &Ignored); 4972 return getConstantFP(FPV, DL, VT); 4973 } 4974 case ISD::STEP_VECTOR: { 4975 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4976 return V; 4977 break; 4978 } 4979 } 4980 } 4981 4982 // Constant fold unary operations with a floating point constant operand. 4983 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4984 APFloat V = C->getValueAPF(); // make copy 4985 switch (Opcode) { 4986 case ISD::FNEG: 4987 V.changeSign(); 4988 return getConstantFP(V, DL, VT); 4989 case ISD::FABS: 4990 V.clearSign(); 4991 return getConstantFP(V, DL, VT); 4992 case ISD::FCEIL: { 4993 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4994 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4995 return getConstantFP(V, DL, VT); 4996 break; 4997 } 4998 case ISD::FTRUNC: { 4999 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5000 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5001 return getConstantFP(V, DL, VT); 5002 break; 5003 } 5004 case ISD::FFLOOR: { 5005 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5006 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5007 return getConstantFP(V, DL, VT); 5008 break; 5009 } 5010 case ISD::FP_EXTEND: { 5011 bool ignored; 5012 // This can return overflow, underflow, or inexact; we don't care. 5013 // FIXME need to be more flexible about rounding mode. 5014 (void)V.convert(EVTToAPFloatSemantics(VT), 5015 APFloat::rmNearestTiesToEven, &ignored); 5016 return getConstantFP(V, DL, VT); 5017 } 5018 case ISD::FP_TO_SINT: 5019 case ISD::FP_TO_UINT: { 5020 bool ignored; 5021 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5022 // FIXME need to be more flexible about rounding mode. 5023 APFloat::opStatus s = 5024 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5025 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5026 break; 5027 return getConstant(IntVal, DL, VT); 5028 } 5029 case ISD::BITCAST: 5030 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5031 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5032 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5033 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5034 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5035 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5036 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5037 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5038 break; 5039 case ISD::FP_TO_FP16: { 5040 bool Ignored; 5041 // This can return overflow, underflow, or inexact; we don't care. 5042 // FIXME need to be more flexible about rounding mode. 5043 (void)V.convert(APFloat::IEEEhalf(), 5044 APFloat::rmNearestTiesToEven, &Ignored); 5045 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5046 } 5047 } 5048 } 5049 5050 // Constant fold unary operations with a vector integer or float operand. 5051 switch (Opcode) { 5052 default: 5053 // FIXME: Entirely reasonable to perform folding of other unary 5054 // operations here as the need arises. 5055 break; 5056 case ISD::FNEG: 5057 case ISD::FABS: 5058 case ISD::FCEIL: 5059 case ISD::FTRUNC: 5060 case ISD::FFLOOR: 5061 case ISD::FP_EXTEND: 5062 case ISD::FP_TO_SINT: 5063 case ISD::FP_TO_UINT: 5064 case ISD::TRUNCATE: 5065 case ISD::ANY_EXTEND: 5066 case ISD::ZERO_EXTEND: 5067 case ISD::SIGN_EXTEND: 5068 case ISD::UINT_TO_FP: 5069 case ISD::SINT_TO_FP: 5070 case ISD::ABS: 5071 case ISD::BITREVERSE: 5072 case ISD::BSWAP: 5073 case ISD::CTLZ: 5074 case ISD::CTLZ_ZERO_UNDEF: 5075 case ISD::CTTZ: 5076 case ISD::CTTZ_ZERO_UNDEF: 5077 case ISD::CTPOP: { 5078 SDValue Ops = {Operand}; 5079 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5080 return Fold; 5081 } 5082 } 5083 5084 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5085 switch (Opcode) { 5086 case ISD::STEP_VECTOR: 5087 assert(VT.isScalableVector() && 5088 "STEP_VECTOR can only be used with scalable types"); 5089 assert(OpOpcode == ISD::TargetConstant && 5090 VT.getVectorElementType() == Operand.getValueType() && 5091 "Unexpected step operand"); 5092 break; 5093 case ISD::FREEZE: 5094 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5095 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5096 return Operand; 5097 break; 5098 case ISD::TokenFactor: 5099 case ISD::MERGE_VALUES: 5100 case ISD::CONCAT_VECTORS: 5101 return Operand; // Factor, merge or concat of one node? No need. 5102 case ISD::BUILD_VECTOR: { 5103 // Attempt to simplify BUILD_VECTOR. 5104 SDValue Ops[] = {Operand}; 5105 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5106 return V; 5107 break; 5108 } 5109 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5110 case ISD::FP_EXTEND: 5111 assert(VT.isFloatingPoint() && 5112 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5113 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5114 assert((!VT.isVector() || 5115 VT.getVectorElementCount() == 5116 Operand.getValueType().getVectorElementCount()) && 5117 "Vector element count mismatch!"); 5118 assert(Operand.getValueType().bitsLT(VT) && 5119 "Invalid fpext node, dst < src!"); 5120 if (Operand.isUndef()) 5121 return getUNDEF(VT); 5122 break; 5123 case ISD::FP_TO_SINT: 5124 case ISD::FP_TO_UINT: 5125 if (Operand.isUndef()) 5126 return getUNDEF(VT); 5127 break; 5128 case ISD::SINT_TO_FP: 5129 case ISD::UINT_TO_FP: 5130 // [us]itofp(undef) = 0, because the result value is bounded. 5131 if (Operand.isUndef()) 5132 return getConstantFP(0.0, DL, VT); 5133 break; 5134 case ISD::SIGN_EXTEND: 5135 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5136 "Invalid SIGN_EXTEND!"); 5137 assert(VT.isVector() == Operand.getValueType().isVector() && 5138 "SIGN_EXTEND result type type should be vector iff the operand " 5139 "type is vector!"); 5140 if (Operand.getValueType() == VT) return Operand; // noop extension 5141 assert((!VT.isVector() || 5142 VT.getVectorElementCount() == 5143 Operand.getValueType().getVectorElementCount()) && 5144 "Vector element count mismatch!"); 5145 assert(Operand.getValueType().bitsLT(VT) && 5146 "Invalid sext node, dst < src!"); 5147 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5148 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5149 if (OpOpcode == ISD::UNDEF) 5150 // sext(undef) = 0, because the top bits will all be the same. 5151 return getConstant(0, DL, VT); 5152 break; 5153 case ISD::ZERO_EXTEND: 5154 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5155 "Invalid ZERO_EXTEND!"); 5156 assert(VT.isVector() == Operand.getValueType().isVector() && 5157 "ZERO_EXTEND result type type should be vector iff the operand " 5158 "type is vector!"); 5159 if (Operand.getValueType() == VT) return Operand; // noop extension 5160 assert((!VT.isVector() || 5161 VT.getVectorElementCount() == 5162 Operand.getValueType().getVectorElementCount()) && 5163 "Vector element count mismatch!"); 5164 assert(Operand.getValueType().bitsLT(VT) && 5165 "Invalid zext node, dst < src!"); 5166 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5167 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5168 if (OpOpcode == ISD::UNDEF) 5169 // zext(undef) = 0, because the top bits will be zero. 5170 return getConstant(0, DL, VT); 5171 break; 5172 case ISD::ANY_EXTEND: 5173 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5174 "Invalid ANY_EXTEND!"); 5175 assert(VT.isVector() == Operand.getValueType().isVector() && 5176 "ANY_EXTEND result type type should be vector iff the operand " 5177 "type is vector!"); 5178 if (Operand.getValueType() == VT) return Operand; // noop extension 5179 assert((!VT.isVector() || 5180 VT.getVectorElementCount() == 5181 Operand.getValueType().getVectorElementCount()) && 5182 "Vector element count mismatch!"); 5183 assert(Operand.getValueType().bitsLT(VT) && 5184 "Invalid anyext node, dst < src!"); 5185 5186 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5187 OpOpcode == ISD::ANY_EXTEND) 5188 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5189 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5190 if (OpOpcode == ISD::UNDEF) 5191 return getUNDEF(VT); 5192 5193 // (ext (trunc x)) -> x 5194 if (OpOpcode == ISD::TRUNCATE) { 5195 SDValue OpOp = Operand.getOperand(0); 5196 if (OpOp.getValueType() == VT) { 5197 transferDbgValues(Operand, OpOp); 5198 return OpOp; 5199 } 5200 } 5201 break; 5202 case ISD::TRUNCATE: 5203 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5204 "Invalid TRUNCATE!"); 5205 assert(VT.isVector() == Operand.getValueType().isVector() && 5206 "TRUNCATE result type type should be vector iff the operand " 5207 "type is vector!"); 5208 if (Operand.getValueType() == VT) return Operand; // noop truncate 5209 assert((!VT.isVector() || 5210 VT.getVectorElementCount() == 5211 Operand.getValueType().getVectorElementCount()) && 5212 "Vector element count mismatch!"); 5213 assert(Operand.getValueType().bitsGT(VT) && 5214 "Invalid truncate node, src < dst!"); 5215 if (OpOpcode == ISD::TRUNCATE) 5216 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5217 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5218 OpOpcode == ISD::ANY_EXTEND) { 5219 // If the source is smaller than the dest, we still need an extend. 5220 if (Operand.getOperand(0).getValueType().getScalarType() 5221 .bitsLT(VT.getScalarType())) 5222 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5223 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5224 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5225 return Operand.getOperand(0); 5226 } 5227 if (OpOpcode == ISD::UNDEF) 5228 return getUNDEF(VT); 5229 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5230 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5231 break; 5232 case ISD::ANY_EXTEND_VECTOR_INREG: 5233 case ISD::ZERO_EXTEND_VECTOR_INREG: 5234 case ISD::SIGN_EXTEND_VECTOR_INREG: 5235 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5236 assert(Operand.getValueType().bitsLE(VT) && 5237 "The input must be the same size or smaller than the result."); 5238 assert(VT.getVectorMinNumElements() < 5239 Operand.getValueType().getVectorMinNumElements() && 5240 "The destination vector type must have fewer lanes than the input."); 5241 break; 5242 case ISD::ABS: 5243 assert(VT.isInteger() && VT == Operand.getValueType() && 5244 "Invalid ABS!"); 5245 if (OpOpcode == ISD::UNDEF) 5246 return getUNDEF(VT); 5247 break; 5248 case ISD::BSWAP: 5249 assert(VT.isInteger() && VT == Operand.getValueType() && 5250 "Invalid BSWAP!"); 5251 assert((VT.getScalarSizeInBits() % 16 == 0) && 5252 "BSWAP types must be a multiple of 16 bits!"); 5253 if (OpOpcode == ISD::UNDEF) 5254 return getUNDEF(VT); 5255 // bswap(bswap(X)) -> X. 5256 if (OpOpcode == ISD::BSWAP) 5257 return Operand.getOperand(0); 5258 break; 5259 case ISD::BITREVERSE: 5260 assert(VT.isInteger() && VT == Operand.getValueType() && 5261 "Invalid BITREVERSE!"); 5262 if (OpOpcode == ISD::UNDEF) 5263 return getUNDEF(VT); 5264 break; 5265 case ISD::BITCAST: 5266 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5267 "Cannot BITCAST between types of different sizes!"); 5268 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5269 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5270 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5271 if (OpOpcode == ISD::UNDEF) 5272 return getUNDEF(VT); 5273 break; 5274 case ISD::SCALAR_TO_VECTOR: 5275 assert(VT.isVector() && !Operand.getValueType().isVector() && 5276 (VT.getVectorElementType() == Operand.getValueType() || 5277 (VT.getVectorElementType().isInteger() && 5278 Operand.getValueType().isInteger() && 5279 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5280 "Illegal SCALAR_TO_VECTOR node!"); 5281 if (OpOpcode == ISD::UNDEF) 5282 return getUNDEF(VT); 5283 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5284 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5285 isa<ConstantSDNode>(Operand.getOperand(1)) && 5286 Operand.getConstantOperandVal(1) == 0 && 5287 Operand.getOperand(0).getValueType() == VT) 5288 return Operand.getOperand(0); 5289 break; 5290 case ISD::FNEG: 5291 // Negation of an unknown bag of bits is still completely undefined. 5292 if (OpOpcode == ISD::UNDEF) 5293 return getUNDEF(VT); 5294 5295 if (OpOpcode == ISD::FNEG) // --X -> X 5296 return Operand.getOperand(0); 5297 break; 5298 case ISD::FABS: 5299 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5300 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5301 break; 5302 case ISD::VSCALE: 5303 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5304 break; 5305 case ISD::CTPOP: 5306 if (Operand.getValueType().getScalarType() == MVT::i1) 5307 return Operand; 5308 break; 5309 case ISD::CTLZ: 5310 case ISD::CTTZ: 5311 if (Operand.getValueType().getScalarType() == MVT::i1) 5312 return getNOT(DL, Operand, Operand.getValueType()); 5313 break; 5314 case ISD::VECREDUCE_SMIN: 5315 case ISD::VECREDUCE_UMAX: 5316 if (Operand.getValueType().getScalarType() == MVT::i1) 5317 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5318 break; 5319 case ISD::VECREDUCE_SMAX: 5320 case ISD::VECREDUCE_UMIN: 5321 if (Operand.getValueType().getScalarType() == MVT::i1) 5322 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5323 break; 5324 } 5325 5326 SDNode *N; 5327 SDVTList VTs = getVTList(VT); 5328 SDValue Ops[] = {Operand}; 5329 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5330 FoldingSetNodeID ID; 5331 AddNodeIDNode(ID, Opcode, VTs, Ops); 5332 void *IP = nullptr; 5333 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5334 E->intersectFlagsWith(Flags); 5335 return SDValue(E, 0); 5336 } 5337 5338 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5339 N->setFlags(Flags); 5340 createOperands(N, Ops); 5341 CSEMap.InsertNode(N, IP); 5342 } else { 5343 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5344 createOperands(N, Ops); 5345 } 5346 5347 InsertNode(N); 5348 SDValue V = SDValue(N, 0); 5349 NewSDValueDbgMsg(V, "Creating new node: ", this); 5350 return V; 5351 } 5352 5353 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5354 const APInt &C2) { 5355 switch (Opcode) { 5356 case ISD::ADD: return C1 + C2; 5357 case ISD::SUB: return C1 - C2; 5358 case ISD::MUL: return C1 * C2; 5359 case ISD::AND: return C1 & C2; 5360 case ISD::OR: return C1 | C2; 5361 case ISD::XOR: return C1 ^ C2; 5362 case ISD::SHL: return C1 << C2; 5363 case ISD::SRL: return C1.lshr(C2); 5364 case ISD::SRA: return C1.ashr(C2); 5365 case ISD::ROTL: return C1.rotl(C2); 5366 case ISD::ROTR: return C1.rotr(C2); 5367 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5368 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5369 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5370 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5371 case ISD::SADDSAT: return C1.sadd_sat(C2); 5372 case ISD::UADDSAT: return C1.uadd_sat(C2); 5373 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5374 case ISD::USUBSAT: return C1.usub_sat(C2); 5375 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5376 case ISD::USHLSAT: return C1.ushl_sat(C2); 5377 case ISD::UDIV: 5378 if (!C2.getBoolValue()) 5379 break; 5380 return C1.udiv(C2); 5381 case ISD::UREM: 5382 if (!C2.getBoolValue()) 5383 break; 5384 return C1.urem(C2); 5385 case ISD::SDIV: 5386 if (!C2.getBoolValue()) 5387 break; 5388 return C1.sdiv(C2); 5389 case ISD::SREM: 5390 if (!C2.getBoolValue()) 5391 break; 5392 return C1.srem(C2); 5393 case ISD::MULHS: { 5394 unsigned FullWidth = C1.getBitWidth() * 2; 5395 APInt C1Ext = C1.sext(FullWidth); 5396 APInt C2Ext = C2.sext(FullWidth); 5397 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5398 } 5399 case ISD::MULHU: { 5400 unsigned FullWidth = C1.getBitWidth() * 2; 5401 APInt C1Ext = C1.zext(FullWidth); 5402 APInt C2Ext = C2.zext(FullWidth); 5403 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5404 } 5405 case ISD::AVGFLOORS: { 5406 unsigned FullWidth = C1.getBitWidth() + 1; 5407 APInt C1Ext = C1.sext(FullWidth); 5408 APInt C2Ext = C2.sext(FullWidth); 5409 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5410 } 5411 case ISD::AVGFLOORU: { 5412 unsigned FullWidth = C1.getBitWidth() + 1; 5413 APInt C1Ext = C1.zext(FullWidth); 5414 APInt C2Ext = C2.zext(FullWidth); 5415 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5416 } 5417 case ISD::AVGCEILS: { 5418 unsigned FullWidth = C1.getBitWidth() + 1; 5419 APInt C1Ext = C1.sext(FullWidth); 5420 APInt C2Ext = C2.sext(FullWidth); 5421 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5422 } 5423 case ISD::AVGCEILU: { 5424 unsigned FullWidth = C1.getBitWidth() + 1; 5425 APInt C1Ext = C1.zext(FullWidth); 5426 APInt C2Ext = C2.zext(FullWidth); 5427 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5428 } 5429 } 5430 return llvm::None; 5431 } 5432 5433 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5434 const GlobalAddressSDNode *GA, 5435 const SDNode *N2) { 5436 if (GA->getOpcode() != ISD::GlobalAddress) 5437 return SDValue(); 5438 if (!TLI->isOffsetFoldingLegal(GA)) 5439 return SDValue(); 5440 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5441 if (!C2) 5442 return SDValue(); 5443 int64_t Offset = C2->getSExtValue(); 5444 switch (Opcode) { 5445 case ISD::ADD: break; 5446 case ISD::SUB: Offset = -uint64_t(Offset); break; 5447 default: return SDValue(); 5448 } 5449 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5450 GA->getOffset() + uint64_t(Offset)); 5451 } 5452 5453 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5454 switch (Opcode) { 5455 case ISD::SDIV: 5456 case ISD::UDIV: 5457 case ISD::SREM: 5458 case ISD::UREM: { 5459 // If a divisor is zero/undef or any element of a divisor vector is 5460 // zero/undef, the whole op is undef. 5461 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5462 SDValue Divisor = Ops[1]; 5463 if (Divisor.isUndef() || isNullConstant(Divisor)) 5464 return true; 5465 5466 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5467 llvm::any_of(Divisor->op_values(), 5468 [](SDValue V) { return V.isUndef() || 5469 isNullConstant(V); }); 5470 // TODO: Handle signed overflow. 5471 } 5472 // TODO: Handle oversized shifts. 5473 default: 5474 return false; 5475 } 5476 } 5477 5478 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5479 EVT VT, ArrayRef<SDValue> Ops) { 5480 // If the opcode is a target-specific ISD node, there's nothing we can 5481 // do here and the operand rules may not line up with the below, so 5482 // bail early. 5483 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5484 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5485 // foldCONCAT_VECTORS in getNode before this is called. 5486 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5487 return SDValue(); 5488 5489 unsigned NumOps = Ops.size(); 5490 if (NumOps == 0) 5491 return SDValue(); 5492 5493 if (isUndef(Opcode, Ops)) 5494 return getUNDEF(VT); 5495 5496 // Handle binops special cases. 5497 if (NumOps == 2) { 5498 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5499 return CFP; 5500 5501 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5502 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5503 if (C1->isOpaque() || C2->isOpaque()) 5504 return SDValue(); 5505 5506 Optional<APInt> FoldAttempt = 5507 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5508 if (!FoldAttempt) 5509 return SDValue(); 5510 5511 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5512 assert((!Folded || !VT.isVector()) && 5513 "Can't fold vectors ops with scalar operands"); 5514 return Folded; 5515 } 5516 } 5517 5518 // fold (add Sym, c) -> Sym+c 5519 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5520 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5521 if (TLI->isCommutativeBinOp(Opcode)) 5522 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5523 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5524 } 5525 5526 // This is for vector folding only from here on. 5527 if (!VT.isVector()) 5528 return SDValue(); 5529 5530 ElementCount NumElts = VT.getVectorElementCount(); 5531 5532 // See if we can fold through bitcasted integer ops. 5533 // TODO: Can we handle undef elements? 5534 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5535 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5536 Ops[0].getOpcode() == ISD::BITCAST && 5537 Ops[1].getOpcode() == ISD::BITCAST) { 5538 SDValue N1 = peekThroughBitcasts(Ops[0]); 5539 SDValue N2 = peekThroughBitcasts(Ops[1]); 5540 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5541 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5542 EVT BVVT = N1.getValueType(); 5543 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5544 bool IsLE = getDataLayout().isLittleEndian(); 5545 unsigned EltBits = VT.getScalarSizeInBits(); 5546 SmallVector<APInt> RawBits1, RawBits2; 5547 BitVector UndefElts1, UndefElts2; 5548 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5549 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5550 UndefElts1.none() && UndefElts2.none()) { 5551 SmallVector<APInt> RawBits; 5552 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5553 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5554 if (!Fold) 5555 break; 5556 RawBits.push_back(Fold.getValue()); 5557 } 5558 if (RawBits.size() == NumElts.getFixedValue()) { 5559 // We have constant folded, but we need to cast this again back to 5560 // the original (possibly legalized) type. 5561 SmallVector<APInt> DstBits; 5562 BitVector DstUndefs; 5563 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5564 DstBits, RawBits, DstUndefs, 5565 BitVector(RawBits.size(), false)); 5566 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5567 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5568 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5569 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5570 if (DstUndefs[I]) 5571 continue; 5572 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5573 } 5574 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5575 } 5576 } 5577 } 5578 } 5579 5580 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5581 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5582 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5583 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5584 APInt RHSVal; 5585 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5586 APInt NewStep = Opcode == ISD::MUL 5587 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5588 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5589 return getStepVector(DL, VT, NewStep); 5590 } 5591 } 5592 5593 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5594 return !Op.getValueType().isVector() || 5595 Op.getValueType().getVectorElementCount() == NumElts; 5596 }; 5597 5598 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5599 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5600 Op.getOpcode() == ISD::BUILD_VECTOR || 5601 Op.getOpcode() == ISD::SPLAT_VECTOR; 5602 }; 5603 5604 // All operands must be vector types with the same number of elements as 5605 // the result type and must be either UNDEF or a build/splat vector 5606 // or UNDEF scalars. 5607 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5608 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5609 return SDValue(); 5610 5611 // If we are comparing vectors, then the result needs to be a i1 boolean that 5612 // is then extended back to the legal result type depending on how booleans 5613 // are represented. 5614 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5615 ISD::NodeType ExtendCode = 5616 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5617 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5618 : ISD::SIGN_EXTEND; 5619 5620 // Find legal integer scalar type for constant promotion and 5621 // ensure that its scalar size is at least as large as source. 5622 EVT LegalSVT = VT.getScalarType(); 5623 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5624 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5625 if (LegalSVT.bitsLT(VT.getScalarType())) 5626 return SDValue(); 5627 } 5628 5629 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5630 // only have one operand to check. For fixed-length vector types we may have 5631 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5632 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5633 5634 // Constant fold each scalar lane separately. 5635 SmallVector<SDValue, 4> ScalarResults; 5636 for (unsigned I = 0; I != NumVectorElts; I++) { 5637 SmallVector<SDValue, 4> ScalarOps; 5638 for (SDValue Op : Ops) { 5639 EVT InSVT = Op.getValueType().getScalarType(); 5640 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5641 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5642 if (Op.isUndef()) 5643 ScalarOps.push_back(getUNDEF(InSVT)); 5644 else 5645 ScalarOps.push_back(Op); 5646 continue; 5647 } 5648 5649 SDValue ScalarOp = 5650 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5651 EVT ScalarVT = ScalarOp.getValueType(); 5652 5653 // Build vector (integer) scalar operands may need implicit 5654 // truncation - do this before constant folding. 5655 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5656 // Don't create illegally-typed nodes unless they're constants or undef 5657 // - if we fail to constant fold we can't guarantee the (dead) nodes 5658 // we're creating will be cleaned up before being visited for 5659 // legalization. 5660 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5661 !isa<ConstantSDNode>(ScalarOp) && 5662 TLI->getTypeAction(*getContext(), InSVT) != 5663 TargetLowering::TypeLegal) 5664 return SDValue(); 5665 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5666 } 5667 5668 ScalarOps.push_back(ScalarOp); 5669 } 5670 5671 // Constant fold the scalar operands. 5672 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5673 5674 // Legalize the (integer) scalar constant if necessary. 5675 if (LegalSVT != SVT) 5676 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5677 5678 // Scalar folding only succeeded if the result is a constant or UNDEF. 5679 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5680 ScalarResult.getOpcode() != ISD::ConstantFP) 5681 return SDValue(); 5682 ScalarResults.push_back(ScalarResult); 5683 } 5684 5685 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5686 : getBuildVector(VT, DL, ScalarResults); 5687 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5688 return V; 5689 } 5690 5691 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5692 EVT VT, SDValue N1, SDValue N2) { 5693 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5694 // should. That will require dealing with a potentially non-default 5695 // rounding mode, checking the "opStatus" return value from the APFloat 5696 // math calculations, and possibly other variations. 5697 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5698 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5699 if (N1CFP && N2CFP) { 5700 APFloat C1 = N1CFP->getValueAPF(); // make copy 5701 const APFloat &C2 = N2CFP->getValueAPF(); 5702 switch (Opcode) { 5703 case ISD::FADD: 5704 C1.add(C2, APFloat::rmNearestTiesToEven); 5705 return getConstantFP(C1, DL, VT); 5706 case ISD::FSUB: 5707 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5708 return getConstantFP(C1, DL, VT); 5709 case ISD::FMUL: 5710 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5711 return getConstantFP(C1, DL, VT); 5712 case ISD::FDIV: 5713 C1.divide(C2, APFloat::rmNearestTiesToEven); 5714 return getConstantFP(C1, DL, VT); 5715 case ISD::FREM: 5716 C1.mod(C2); 5717 return getConstantFP(C1, DL, VT); 5718 case ISD::FCOPYSIGN: 5719 C1.copySign(C2); 5720 return getConstantFP(C1, DL, VT); 5721 case ISD::FMINNUM: 5722 return getConstantFP(minnum(C1, C2), DL, VT); 5723 case ISD::FMAXNUM: 5724 return getConstantFP(maxnum(C1, C2), DL, VT); 5725 case ISD::FMINIMUM: 5726 return getConstantFP(minimum(C1, C2), DL, VT); 5727 case ISD::FMAXIMUM: 5728 return getConstantFP(maximum(C1, C2), DL, VT); 5729 default: break; 5730 } 5731 } 5732 if (N1CFP && Opcode == ISD::FP_ROUND) { 5733 APFloat C1 = N1CFP->getValueAPF(); // make copy 5734 bool Unused; 5735 // This can return overflow, underflow, or inexact; we don't care. 5736 // FIXME need to be more flexible about rounding mode. 5737 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5738 &Unused); 5739 return getConstantFP(C1, DL, VT); 5740 } 5741 5742 switch (Opcode) { 5743 case ISD::FSUB: 5744 // -0.0 - undef --> undef (consistent with "fneg undef") 5745 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5746 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5747 return getUNDEF(VT); 5748 LLVM_FALLTHROUGH; 5749 5750 case ISD::FADD: 5751 case ISD::FMUL: 5752 case ISD::FDIV: 5753 case ISD::FREM: 5754 // If both operands are undef, the result is undef. If 1 operand is undef, 5755 // the result is NaN. This should match the behavior of the IR optimizer. 5756 if (N1.isUndef() && N2.isUndef()) 5757 return getUNDEF(VT); 5758 if (N1.isUndef() || N2.isUndef()) 5759 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5760 } 5761 return SDValue(); 5762 } 5763 5764 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5765 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5766 5767 // There's no need to assert on a byte-aligned pointer. All pointers are at 5768 // least byte aligned. 5769 if (A == Align(1)) 5770 return Val; 5771 5772 FoldingSetNodeID ID; 5773 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5774 ID.AddInteger(A.value()); 5775 5776 void *IP = nullptr; 5777 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5778 return SDValue(E, 0); 5779 5780 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5781 Val.getValueType(), A); 5782 createOperands(N, {Val}); 5783 5784 CSEMap.InsertNode(N, IP); 5785 InsertNode(N); 5786 5787 SDValue V(N, 0); 5788 NewSDValueDbgMsg(V, "Creating new node: ", this); 5789 return V; 5790 } 5791 5792 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5793 SDValue N1, SDValue N2) { 5794 SDNodeFlags Flags; 5795 if (Inserter) 5796 Flags = Inserter->getFlags(); 5797 return getNode(Opcode, DL, VT, N1, N2, Flags); 5798 } 5799 5800 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5801 SDValue &N2) const { 5802 if (!TLI->isCommutativeBinOp(Opcode)) 5803 return; 5804 5805 // Canonicalize: 5806 // binop(const, nonconst) -> binop(nonconst, const) 5807 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5808 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5809 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5810 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5811 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5812 std::swap(N1, N2); 5813 5814 // Canonicalize: 5815 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5816 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5817 N2.getOpcode() == ISD::STEP_VECTOR) 5818 std::swap(N1, N2); 5819 } 5820 5821 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5822 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5823 assert(N1.getOpcode() != ISD::DELETED_NODE && 5824 N2.getOpcode() != ISD::DELETED_NODE && 5825 "Operand is DELETED_NODE!"); 5826 5827 canonicalizeCommutativeBinop(Opcode, N1, N2); 5828 5829 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5830 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5831 5832 // Don't allow undefs in vector splats - we might be returning N2 when folding 5833 // to zero etc. 5834 ConstantSDNode *N2CV = 5835 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5836 5837 switch (Opcode) { 5838 default: break; 5839 case ISD::TokenFactor: 5840 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5841 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5842 // Fold trivial token factors. 5843 if (N1.getOpcode() == ISD::EntryToken) return N2; 5844 if (N2.getOpcode() == ISD::EntryToken) return N1; 5845 if (N1 == N2) return N1; 5846 break; 5847 case ISD::BUILD_VECTOR: { 5848 // Attempt to simplify BUILD_VECTOR. 5849 SDValue Ops[] = {N1, N2}; 5850 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5851 return V; 5852 break; 5853 } 5854 case ISD::CONCAT_VECTORS: { 5855 SDValue Ops[] = {N1, N2}; 5856 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5857 return V; 5858 break; 5859 } 5860 case ISD::AND: 5861 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5862 assert(N1.getValueType() == N2.getValueType() && 5863 N1.getValueType() == VT && "Binary operator types must match!"); 5864 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5865 // worth handling here. 5866 if (N2CV && N2CV->isZero()) 5867 return N2; 5868 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5869 return N1; 5870 break; 5871 case ISD::OR: 5872 case ISD::XOR: 5873 case ISD::ADD: 5874 case ISD::SUB: 5875 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5876 assert(N1.getValueType() == N2.getValueType() && 5877 N1.getValueType() == VT && "Binary operator types must match!"); 5878 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5879 // it's worth handling here. 5880 if (N2CV && N2CV->isZero()) 5881 return N1; 5882 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5883 VT.getVectorElementType() == MVT::i1) 5884 return getNode(ISD::XOR, DL, VT, N1, N2); 5885 break; 5886 case ISD::MUL: 5887 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5888 assert(N1.getValueType() == N2.getValueType() && 5889 N1.getValueType() == VT && "Binary operator types must match!"); 5890 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5891 return getNode(ISD::AND, DL, VT, N1, N2); 5892 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5893 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5894 const APInt &N2CImm = N2C->getAPIntValue(); 5895 return getVScale(DL, VT, MulImm * N2CImm); 5896 } 5897 break; 5898 case ISD::UDIV: 5899 case ISD::UREM: 5900 case ISD::MULHU: 5901 case ISD::MULHS: 5902 case ISD::SDIV: 5903 case ISD::SREM: 5904 case ISD::SADDSAT: 5905 case ISD::SSUBSAT: 5906 case ISD::UADDSAT: 5907 case ISD::USUBSAT: 5908 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5909 assert(N1.getValueType() == N2.getValueType() && 5910 N1.getValueType() == VT && "Binary operator types must match!"); 5911 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5912 // fold (add_sat x, y) -> (or x, y) for bool types. 5913 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5914 return getNode(ISD::OR, DL, VT, N1, N2); 5915 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5916 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5917 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5918 } 5919 break; 5920 case ISD::SMIN: 5921 case ISD::UMAX: 5922 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5923 assert(N1.getValueType() == N2.getValueType() && 5924 N1.getValueType() == VT && "Binary operator types must match!"); 5925 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5926 return getNode(ISD::OR, DL, VT, N1, N2); 5927 break; 5928 case ISD::SMAX: 5929 case ISD::UMIN: 5930 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5931 assert(N1.getValueType() == N2.getValueType() && 5932 N1.getValueType() == VT && "Binary operator types must match!"); 5933 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5934 return getNode(ISD::AND, DL, VT, N1, N2); 5935 break; 5936 case ISD::FADD: 5937 case ISD::FSUB: 5938 case ISD::FMUL: 5939 case ISD::FDIV: 5940 case ISD::FREM: 5941 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5942 assert(N1.getValueType() == N2.getValueType() && 5943 N1.getValueType() == VT && "Binary operator types must match!"); 5944 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5945 return V; 5946 break; 5947 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5948 assert(N1.getValueType() == VT && 5949 N1.getValueType().isFloatingPoint() && 5950 N2.getValueType().isFloatingPoint() && 5951 "Invalid FCOPYSIGN!"); 5952 break; 5953 case ISD::SHL: 5954 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5955 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5956 const APInt &ShiftImm = N2C->getAPIntValue(); 5957 return getVScale(DL, VT, MulImm << ShiftImm); 5958 } 5959 LLVM_FALLTHROUGH; 5960 case ISD::SRA: 5961 case ISD::SRL: 5962 if (SDValue V = simplifyShift(N1, N2)) 5963 return V; 5964 LLVM_FALLTHROUGH; 5965 case ISD::ROTL: 5966 case ISD::ROTR: 5967 assert(VT == N1.getValueType() && 5968 "Shift operators return type must be the same as their first arg"); 5969 assert(VT.isInteger() && N2.getValueType().isInteger() && 5970 "Shifts only work on integers"); 5971 assert((!VT.isVector() || VT == N2.getValueType()) && 5972 "Vector shift amounts must be in the same as their first arg"); 5973 // Verify that the shift amount VT is big enough to hold valid shift 5974 // amounts. This catches things like trying to shift an i1024 value by an 5975 // i8, which is easy to fall into in generic code that uses 5976 // TLI.getShiftAmount(). 5977 assert(N2.getValueType().getScalarSizeInBits() >= 5978 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5979 "Invalid use of small shift amount with oversized value!"); 5980 5981 // Always fold shifts of i1 values so the code generator doesn't need to 5982 // handle them. Since we know the size of the shift has to be less than the 5983 // size of the value, the shift/rotate count is guaranteed to be zero. 5984 if (VT == MVT::i1) 5985 return N1; 5986 if (N2CV && N2CV->isZero()) 5987 return N1; 5988 break; 5989 case ISD::FP_ROUND: 5990 assert(VT.isFloatingPoint() && 5991 N1.getValueType().isFloatingPoint() && 5992 VT.bitsLE(N1.getValueType()) && 5993 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5994 "Invalid FP_ROUND!"); 5995 if (N1.getValueType() == VT) return N1; // noop conversion. 5996 break; 5997 case ISD::AssertSext: 5998 case ISD::AssertZext: { 5999 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6000 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6001 assert(VT.isInteger() && EVT.isInteger() && 6002 "Cannot *_EXTEND_INREG FP types"); 6003 assert(!EVT.isVector() && 6004 "AssertSExt/AssertZExt type should be the vector element type " 6005 "rather than the vector type!"); 6006 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6007 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6008 break; 6009 } 6010 case ISD::SIGN_EXTEND_INREG: { 6011 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6012 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6013 assert(VT.isInteger() && EVT.isInteger() && 6014 "Cannot *_EXTEND_INREG FP types"); 6015 assert(EVT.isVector() == VT.isVector() && 6016 "SIGN_EXTEND_INREG type should be vector iff the operand " 6017 "type is vector!"); 6018 assert((!EVT.isVector() || 6019 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6020 "Vector element counts must match in SIGN_EXTEND_INREG"); 6021 assert(EVT.bitsLE(VT) && "Not extending!"); 6022 if (EVT == VT) return N1; // Not actually extending 6023 6024 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6025 unsigned FromBits = EVT.getScalarSizeInBits(); 6026 Val <<= Val.getBitWidth() - FromBits; 6027 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6028 return getConstant(Val, DL, ConstantVT); 6029 }; 6030 6031 if (N1C) { 6032 const APInt &Val = N1C->getAPIntValue(); 6033 return SignExtendInReg(Val, VT); 6034 } 6035 6036 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6037 SmallVector<SDValue, 8> Ops; 6038 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6039 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6040 SDValue Op = N1.getOperand(i); 6041 if (Op.isUndef()) { 6042 Ops.push_back(getUNDEF(OpVT)); 6043 continue; 6044 } 6045 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6046 APInt Val = C->getAPIntValue(); 6047 Ops.push_back(SignExtendInReg(Val, OpVT)); 6048 } 6049 return getBuildVector(VT, DL, Ops); 6050 } 6051 break; 6052 } 6053 case ISD::FP_TO_SINT_SAT: 6054 case ISD::FP_TO_UINT_SAT: { 6055 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6056 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6057 assert(N1.getValueType().isVector() == VT.isVector() && 6058 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6059 "vector!"); 6060 assert((!VT.isVector() || VT.getVectorNumElements() == 6061 N1.getValueType().getVectorNumElements()) && 6062 "Vector element counts must match in FP_TO_*INT_SAT"); 6063 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6064 "Type to saturate to must be a scalar."); 6065 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6066 "Not extending!"); 6067 break; 6068 } 6069 case ISD::EXTRACT_VECTOR_ELT: 6070 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6071 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6072 element type of the vector."); 6073 6074 // Extract from an undefined value or using an undefined index is undefined. 6075 if (N1.isUndef() || N2.isUndef()) 6076 return getUNDEF(VT); 6077 6078 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6079 // vectors. For scalable vectors we will provide appropriate support for 6080 // dealing with arbitrary indices. 6081 if (N2C && N1.getValueType().isFixedLengthVector() && 6082 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6083 return getUNDEF(VT); 6084 6085 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6086 // expanding copies of large vectors from registers. This only works for 6087 // fixed length vectors, since we need to know the exact number of 6088 // elements. 6089 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6090 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6091 unsigned Factor = 6092 N1.getOperand(0).getValueType().getVectorNumElements(); 6093 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6094 N1.getOperand(N2C->getZExtValue() / Factor), 6095 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6096 } 6097 6098 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6099 // lowering is expanding large vector constants. 6100 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6101 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6102 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6103 N1.getValueType().isFixedLengthVector()) && 6104 "BUILD_VECTOR used for scalable vectors"); 6105 unsigned Index = 6106 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6107 SDValue Elt = N1.getOperand(Index); 6108 6109 if (VT != Elt.getValueType()) 6110 // If the vector element type is not legal, the BUILD_VECTOR operands 6111 // are promoted and implicitly truncated, and the result implicitly 6112 // extended. Make that explicit here. 6113 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6114 6115 return Elt; 6116 } 6117 6118 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6119 // operations are lowered to scalars. 6120 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6121 // If the indices are the same, return the inserted element else 6122 // if the indices are known different, extract the element from 6123 // the original vector. 6124 SDValue N1Op2 = N1.getOperand(2); 6125 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6126 6127 if (N1Op2C && N2C) { 6128 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6129 if (VT == N1.getOperand(1).getValueType()) 6130 return N1.getOperand(1); 6131 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6132 } 6133 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6134 } 6135 } 6136 6137 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6138 // when vector types are scalarized and v1iX is legal. 6139 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6140 // Here we are completely ignoring the extract element index (N2), 6141 // which is fine for fixed width vectors, since any index other than 0 6142 // is undefined anyway. However, this cannot be ignored for scalable 6143 // vectors - in theory we could support this, but we don't want to do this 6144 // without a profitability check. 6145 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6146 N1.getValueType().isFixedLengthVector() && 6147 N1.getValueType().getVectorNumElements() == 1) { 6148 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6149 N1.getOperand(1)); 6150 } 6151 break; 6152 case ISD::EXTRACT_ELEMENT: 6153 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6154 assert(!N1.getValueType().isVector() && !VT.isVector() && 6155 (N1.getValueType().isInteger() == VT.isInteger()) && 6156 N1.getValueType() != VT && 6157 "Wrong types for EXTRACT_ELEMENT!"); 6158 6159 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6160 // 64-bit integers into 32-bit parts. Instead of building the extract of 6161 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6162 if (N1.getOpcode() == ISD::BUILD_PAIR) 6163 return N1.getOperand(N2C->getZExtValue()); 6164 6165 // EXTRACT_ELEMENT of a constant int is also very common. 6166 if (N1C) { 6167 unsigned ElementSize = VT.getSizeInBits(); 6168 unsigned Shift = ElementSize * N2C->getZExtValue(); 6169 const APInt &Val = N1C->getAPIntValue(); 6170 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6171 } 6172 break; 6173 case ISD::EXTRACT_SUBVECTOR: { 6174 EVT N1VT = N1.getValueType(); 6175 assert(VT.isVector() && N1VT.isVector() && 6176 "Extract subvector VTs must be vectors!"); 6177 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6178 "Extract subvector VTs must have the same element type!"); 6179 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6180 "Cannot extract a scalable vector from a fixed length vector!"); 6181 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6182 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6183 "Extract subvector must be from larger vector to smaller vector!"); 6184 assert(N2C && "Extract subvector index must be a constant"); 6185 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6186 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6187 N1VT.getVectorMinNumElements()) && 6188 "Extract subvector overflow!"); 6189 assert(N2C->getAPIntValue().getBitWidth() == 6190 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6191 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6192 6193 // Trivial extraction. 6194 if (VT == N1VT) 6195 return N1; 6196 6197 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6198 if (N1.isUndef()) 6199 return getUNDEF(VT); 6200 6201 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6202 // the concat have the same type as the extract. 6203 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6204 VT == N1.getOperand(0).getValueType()) { 6205 unsigned Factor = VT.getVectorMinNumElements(); 6206 return N1.getOperand(N2C->getZExtValue() / Factor); 6207 } 6208 6209 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6210 // during shuffle legalization. 6211 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6212 VT == N1.getOperand(1).getValueType()) 6213 return N1.getOperand(1); 6214 break; 6215 } 6216 } 6217 6218 // Perform trivial constant folding. 6219 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6220 return SV; 6221 6222 // Canonicalize an UNDEF to the RHS, even over a constant. 6223 if (N1.isUndef()) { 6224 if (TLI->isCommutativeBinOp(Opcode)) { 6225 std::swap(N1, N2); 6226 } else { 6227 switch (Opcode) { 6228 case ISD::SUB: 6229 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6230 case ISD::SIGN_EXTEND_INREG: 6231 case ISD::UDIV: 6232 case ISD::SDIV: 6233 case ISD::UREM: 6234 case ISD::SREM: 6235 case ISD::SSUBSAT: 6236 case ISD::USUBSAT: 6237 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6238 } 6239 } 6240 } 6241 6242 // Fold a bunch of operators when the RHS is undef. 6243 if (N2.isUndef()) { 6244 switch (Opcode) { 6245 case ISD::XOR: 6246 if (N1.isUndef()) 6247 // Handle undef ^ undef -> 0 special case. This is a common 6248 // idiom (misuse). 6249 return getConstant(0, DL, VT); 6250 LLVM_FALLTHROUGH; 6251 case ISD::ADD: 6252 case ISD::SUB: 6253 case ISD::UDIV: 6254 case ISD::SDIV: 6255 case ISD::UREM: 6256 case ISD::SREM: 6257 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6258 case ISD::MUL: 6259 case ISD::AND: 6260 case ISD::SSUBSAT: 6261 case ISD::USUBSAT: 6262 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6263 case ISD::OR: 6264 case ISD::SADDSAT: 6265 case ISD::UADDSAT: 6266 return getAllOnesConstant(DL, VT); 6267 } 6268 } 6269 6270 // Memoize this node if possible. 6271 SDNode *N; 6272 SDVTList VTs = getVTList(VT); 6273 SDValue Ops[] = {N1, N2}; 6274 if (VT != MVT::Glue) { 6275 FoldingSetNodeID ID; 6276 AddNodeIDNode(ID, Opcode, VTs, Ops); 6277 void *IP = nullptr; 6278 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6279 E->intersectFlagsWith(Flags); 6280 return SDValue(E, 0); 6281 } 6282 6283 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6284 N->setFlags(Flags); 6285 createOperands(N, Ops); 6286 CSEMap.InsertNode(N, IP); 6287 } else { 6288 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6289 createOperands(N, Ops); 6290 } 6291 6292 InsertNode(N); 6293 SDValue V = SDValue(N, 0); 6294 NewSDValueDbgMsg(V, "Creating new node: ", this); 6295 return V; 6296 } 6297 6298 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6299 SDValue N1, SDValue N2, SDValue N3) { 6300 SDNodeFlags Flags; 6301 if (Inserter) 6302 Flags = Inserter->getFlags(); 6303 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6304 } 6305 6306 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6307 SDValue N1, SDValue N2, SDValue N3, 6308 const SDNodeFlags Flags) { 6309 assert(N1.getOpcode() != ISD::DELETED_NODE && 6310 N2.getOpcode() != ISD::DELETED_NODE && 6311 N3.getOpcode() != ISD::DELETED_NODE && 6312 "Operand is DELETED_NODE!"); 6313 // Perform various simplifications. 6314 switch (Opcode) { 6315 case ISD::FMA: { 6316 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6317 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6318 N3.getValueType() == VT && "FMA types must match!"); 6319 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6320 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6321 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6322 if (N1CFP && N2CFP && N3CFP) { 6323 APFloat V1 = N1CFP->getValueAPF(); 6324 const APFloat &V2 = N2CFP->getValueAPF(); 6325 const APFloat &V3 = N3CFP->getValueAPF(); 6326 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6327 return getConstantFP(V1, DL, VT); 6328 } 6329 break; 6330 } 6331 case ISD::BUILD_VECTOR: { 6332 // Attempt to simplify BUILD_VECTOR. 6333 SDValue Ops[] = {N1, N2, N3}; 6334 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6335 return V; 6336 break; 6337 } 6338 case ISD::CONCAT_VECTORS: { 6339 SDValue Ops[] = {N1, N2, N3}; 6340 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6341 return V; 6342 break; 6343 } 6344 case ISD::SETCC: { 6345 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6346 assert(N1.getValueType() == N2.getValueType() && 6347 "SETCC operands must have the same type!"); 6348 assert(VT.isVector() == N1.getValueType().isVector() && 6349 "SETCC type should be vector iff the operand type is vector!"); 6350 assert((!VT.isVector() || VT.getVectorElementCount() == 6351 N1.getValueType().getVectorElementCount()) && 6352 "SETCC vector element counts must match!"); 6353 // Use FoldSetCC to simplify SETCC's. 6354 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6355 return V; 6356 // Vector constant folding. 6357 SDValue Ops[] = {N1, N2, N3}; 6358 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6359 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6360 return V; 6361 } 6362 break; 6363 } 6364 case ISD::SELECT: 6365 case ISD::VSELECT: 6366 if (SDValue V = simplifySelect(N1, N2, N3)) 6367 return V; 6368 break; 6369 case ISD::VECTOR_SHUFFLE: 6370 llvm_unreachable("should use getVectorShuffle constructor!"); 6371 case ISD::VECTOR_SPLICE: { 6372 if (cast<ConstantSDNode>(N3)->isNullValue()) 6373 return N1; 6374 break; 6375 } 6376 case ISD::INSERT_VECTOR_ELT: { 6377 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6378 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6379 // for scalable vectors where we will generate appropriate code to 6380 // deal with out-of-bounds cases correctly. 6381 if (N3C && N1.getValueType().isFixedLengthVector() && 6382 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6383 return getUNDEF(VT); 6384 6385 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6386 if (N3.isUndef()) 6387 return getUNDEF(VT); 6388 6389 // If the inserted element is an UNDEF, just use the input vector. 6390 if (N2.isUndef()) 6391 return N1; 6392 6393 break; 6394 } 6395 case ISD::INSERT_SUBVECTOR: { 6396 // Inserting undef into undef is still undef. 6397 if (N1.isUndef() && N2.isUndef()) 6398 return getUNDEF(VT); 6399 6400 EVT N2VT = N2.getValueType(); 6401 assert(VT == N1.getValueType() && 6402 "Dest and insert subvector source types must match!"); 6403 assert(VT.isVector() && N2VT.isVector() && 6404 "Insert subvector VTs must be vectors!"); 6405 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6406 "Cannot insert a scalable vector into a fixed length vector!"); 6407 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6408 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6409 "Insert subvector must be from smaller vector to larger vector!"); 6410 assert(isa<ConstantSDNode>(N3) && 6411 "Insert subvector index must be constant"); 6412 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6413 (N2VT.getVectorMinNumElements() + 6414 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6415 VT.getVectorMinNumElements()) && 6416 "Insert subvector overflow!"); 6417 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6418 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6419 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6420 6421 // Trivial insertion. 6422 if (VT == N2VT) 6423 return N2; 6424 6425 // If this is an insert of an extracted vector into an undef vector, we 6426 // can just use the input to the extract. 6427 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6428 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6429 return N2.getOperand(0); 6430 break; 6431 } 6432 case ISD::BITCAST: 6433 // Fold bit_convert nodes from a type to themselves. 6434 if (N1.getValueType() == VT) 6435 return N1; 6436 break; 6437 } 6438 6439 // Memoize node if it doesn't produce a flag. 6440 SDNode *N; 6441 SDVTList VTs = getVTList(VT); 6442 SDValue Ops[] = {N1, N2, N3}; 6443 if (VT != MVT::Glue) { 6444 FoldingSetNodeID ID; 6445 AddNodeIDNode(ID, Opcode, VTs, Ops); 6446 void *IP = nullptr; 6447 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6448 E->intersectFlagsWith(Flags); 6449 return SDValue(E, 0); 6450 } 6451 6452 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6453 N->setFlags(Flags); 6454 createOperands(N, Ops); 6455 CSEMap.InsertNode(N, IP); 6456 } else { 6457 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6458 createOperands(N, Ops); 6459 } 6460 6461 InsertNode(N); 6462 SDValue V = SDValue(N, 0); 6463 NewSDValueDbgMsg(V, "Creating new node: ", this); 6464 return V; 6465 } 6466 6467 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6468 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6469 SDValue Ops[] = { N1, N2, N3, N4 }; 6470 return getNode(Opcode, DL, VT, Ops); 6471 } 6472 6473 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6474 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6475 SDValue N5) { 6476 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6477 return getNode(Opcode, DL, VT, Ops); 6478 } 6479 6480 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6481 /// the incoming stack arguments to be loaded from the stack. 6482 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6483 SmallVector<SDValue, 8> ArgChains; 6484 6485 // Include the original chain at the beginning of the list. When this is 6486 // used by target LowerCall hooks, this helps legalize find the 6487 // CALLSEQ_BEGIN node. 6488 ArgChains.push_back(Chain); 6489 6490 // Add a chain value for each stack argument. 6491 for (SDNode *U : getEntryNode().getNode()->uses()) 6492 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6493 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6494 if (FI->getIndex() < 0) 6495 ArgChains.push_back(SDValue(L, 1)); 6496 6497 // Build a tokenfactor for all the chains. 6498 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6499 } 6500 6501 /// getMemsetValue - Vectorized representation of the memset value 6502 /// operand. 6503 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6504 const SDLoc &dl) { 6505 assert(!Value.isUndef()); 6506 6507 unsigned NumBits = VT.getScalarSizeInBits(); 6508 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6509 assert(C->getAPIntValue().getBitWidth() == 8); 6510 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6511 if (VT.isInteger()) { 6512 bool IsOpaque = VT.getSizeInBits() > 64 || 6513 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6514 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6515 } 6516 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6517 VT); 6518 } 6519 6520 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6521 EVT IntVT = VT.getScalarType(); 6522 if (!IntVT.isInteger()) 6523 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6524 6525 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6526 if (NumBits > 8) { 6527 // Use a multiplication with 0x010101... to extend the input to the 6528 // required length. 6529 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6530 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6531 DAG.getConstant(Magic, dl, IntVT)); 6532 } 6533 6534 if (VT != Value.getValueType() && !VT.isInteger()) 6535 Value = DAG.getBitcast(VT.getScalarType(), Value); 6536 if (VT != Value.getValueType()) 6537 Value = DAG.getSplatBuildVector(VT, dl, Value); 6538 6539 return Value; 6540 } 6541 6542 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6543 /// used when a memcpy is turned into a memset when the source is a constant 6544 /// string ptr. 6545 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6546 const TargetLowering &TLI, 6547 const ConstantDataArraySlice &Slice) { 6548 // Handle vector with all elements zero. 6549 if (Slice.Array == nullptr) { 6550 if (VT.isInteger()) 6551 return DAG.getConstant(0, dl, VT); 6552 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6553 return DAG.getConstantFP(0.0, dl, VT); 6554 if (VT.isVector()) { 6555 unsigned NumElts = VT.getVectorNumElements(); 6556 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6557 return DAG.getNode(ISD::BITCAST, dl, VT, 6558 DAG.getConstant(0, dl, 6559 EVT::getVectorVT(*DAG.getContext(), 6560 EltVT, NumElts))); 6561 } 6562 llvm_unreachable("Expected type!"); 6563 } 6564 6565 assert(!VT.isVector() && "Can't handle vector type here!"); 6566 unsigned NumVTBits = VT.getSizeInBits(); 6567 unsigned NumVTBytes = NumVTBits / 8; 6568 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6569 6570 APInt Val(NumVTBits, 0); 6571 if (DAG.getDataLayout().isLittleEndian()) { 6572 for (unsigned i = 0; i != NumBytes; ++i) 6573 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6574 } else { 6575 for (unsigned i = 0; i != NumBytes; ++i) 6576 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6577 } 6578 6579 // If the "cost" of materializing the integer immediate is less than the cost 6580 // of a load, then it is cost effective to turn the load into the immediate. 6581 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6582 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6583 return DAG.getConstant(Val, dl, VT); 6584 return SDValue(); 6585 } 6586 6587 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6588 const SDLoc &DL, 6589 const SDNodeFlags Flags) { 6590 EVT VT = Base.getValueType(); 6591 SDValue Index; 6592 6593 if (Offset.isScalable()) 6594 Index = getVScale(DL, Base.getValueType(), 6595 APInt(Base.getValueSizeInBits().getFixedSize(), 6596 Offset.getKnownMinSize())); 6597 else 6598 Index = getConstant(Offset.getFixedSize(), DL, VT); 6599 6600 return getMemBasePlusOffset(Base, Index, DL, Flags); 6601 } 6602 6603 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6604 const SDLoc &DL, 6605 const SDNodeFlags Flags) { 6606 assert(Offset.getValueType().isInteger()); 6607 EVT BasePtrVT = Ptr.getValueType(); 6608 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6609 } 6610 6611 /// Returns true if memcpy source is constant data. 6612 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6613 uint64_t SrcDelta = 0; 6614 GlobalAddressSDNode *G = nullptr; 6615 if (Src.getOpcode() == ISD::GlobalAddress) 6616 G = cast<GlobalAddressSDNode>(Src); 6617 else if (Src.getOpcode() == ISD::ADD && 6618 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6619 Src.getOperand(1).getOpcode() == ISD::Constant) { 6620 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6621 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6622 } 6623 if (!G) 6624 return false; 6625 6626 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6627 SrcDelta + G->getOffset()); 6628 } 6629 6630 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6631 SelectionDAG &DAG) { 6632 // On Darwin, -Os means optimize for size without hurting performance, so 6633 // only really optimize for size when -Oz (MinSize) is used. 6634 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6635 return MF.getFunction().hasMinSize(); 6636 return DAG.shouldOptForSize(); 6637 } 6638 6639 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6640 SmallVector<SDValue, 32> &OutChains, unsigned From, 6641 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6642 SmallVector<SDValue, 16> &OutStoreChains) { 6643 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6644 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6645 SmallVector<SDValue, 16> GluedLoadChains; 6646 for (unsigned i = From; i < To; ++i) { 6647 OutChains.push_back(OutLoadChains[i]); 6648 GluedLoadChains.push_back(OutLoadChains[i]); 6649 } 6650 6651 // Chain for all loads. 6652 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6653 GluedLoadChains); 6654 6655 for (unsigned i = From; i < To; ++i) { 6656 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6657 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6658 ST->getBasePtr(), ST->getMemoryVT(), 6659 ST->getMemOperand()); 6660 OutChains.push_back(NewStore); 6661 } 6662 } 6663 6664 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6665 SDValue Chain, SDValue Dst, SDValue Src, 6666 uint64_t Size, Align Alignment, 6667 bool isVol, bool AlwaysInline, 6668 MachinePointerInfo DstPtrInfo, 6669 MachinePointerInfo SrcPtrInfo, 6670 const AAMDNodes &AAInfo) { 6671 // Turn a memcpy of undef to nop. 6672 // FIXME: We need to honor volatile even is Src is undef. 6673 if (Src.isUndef()) 6674 return Chain; 6675 6676 // Expand memcpy to a series of load and store ops if the size operand falls 6677 // below a certain threshold. 6678 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6679 // rather than maybe a humongous number of loads and stores. 6680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6681 const DataLayout &DL = DAG.getDataLayout(); 6682 LLVMContext &C = *DAG.getContext(); 6683 std::vector<EVT> MemOps; 6684 bool DstAlignCanChange = false; 6685 MachineFunction &MF = DAG.getMachineFunction(); 6686 MachineFrameInfo &MFI = MF.getFrameInfo(); 6687 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6688 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6689 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6690 DstAlignCanChange = true; 6691 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6692 if (!SrcAlign || Alignment > *SrcAlign) 6693 SrcAlign = Alignment; 6694 assert(SrcAlign && "SrcAlign must be set"); 6695 ConstantDataArraySlice Slice; 6696 // If marked as volatile, perform a copy even when marked as constant. 6697 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6698 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6699 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6700 const MemOp Op = isZeroConstant 6701 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6702 /*IsZeroMemset*/ true, isVol) 6703 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6704 *SrcAlign, isVol, CopyFromConstant); 6705 if (!TLI.findOptimalMemOpLowering( 6706 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6707 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6708 return SDValue(); 6709 6710 if (DstAlignCanChange) { 6711 Type *Ty = MemOps[0].getTypeForEVT(C); 6712 Align NewAlign = DL.getABITypeAlign(Ty); 6713 6714 // Don't promote to an alignment that would require dynamic stack 6715 // realignment. 6716 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6717 if (!TRI->hasStackRealignment(MF)) 6718 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6719 NewAlign = NewAlign / 2; 6720 6721 if (NewAlign > Alignment) { 6722 // Give the stack frame object a larger alignment if needed. 6723 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6724 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6725 Alignment = NewAlign; 6726 } 6727 } 6728 6729 // Prepare AAInfo for loads/stores after lowering this memcpy. 6730 AAMDNodes NewAAInfo = AAInfo; 6731 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6732 6733 MachineMemOperand::Flags MMOFlags = 6734 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6735 SmallVector<SDValue, 16> OutLoadChains; 6736 SmallVector<SDValue, 16> OutStoreChains; 6737 SmallVector<SDValue, 32> OutChains; 6738 unsigned NumMemOps = MemOps.size(); 6739 uint64_t SrcOff = 0, DstOff = 0; 6740 for (unsigned i = 0; i != NumMemOps; ++i) { 6741 EVT VT = MemOps[i]; 6742 unsigned VTSize = VT.getSizeInBits() / 8; 6743 SDValue Value, Store; 6744 6745 if (VTSize > Size) { 6746 // Issuing an unaligned load / store pair that overlaps with the previous 6747 // pair. Adjust the offset accordingly. 6748 assert(i == NumMemOps-1 && i != 0); 6749 SrcOff -= VTSize - Size; 6750 DstOff -= VTSize - Size; 6751 } 6752 6753 if (CopyFromConstant && 6754 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6755 // It's unlikely a store of a vector immediate can be done in a single 6756 // instruction. It would require a load from a constantpool first. 6757 // We only handle zero vectors here. 6758 // FIXME: Handle other cases where store of vector immediate is done in 6759 // a single instruction. 6760 ConstantDataArraySlice SubSlice; 6761 if (SrcOff < Slice.Length) { 6762 SubSlice = Slice; 6763 SubSlice.move(SrcOff); 6764 } else { 6765 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6766 SubSlice.Array = nullptr; 6767 SubSlice.Offset = 0; 6768 SubSlice.Length = VTSize; 6769 } 6770 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6771 if (Value.getNode()) { 6772 Store = DAG.getStore( 6773 Chain, dl, Value, 6774 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6775 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6776 OutChains.push_back(Store); 6777 } 6778 } 6779 6780 if (!Store.getNode()) { 6781 // The type might not be legal for the target. This should only happen 6782 // if the type is smaller than a legal type, as on PPC, so the right 6783 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6784 // to Load/Store if NVT==VT. 6785 // FIXME does the case above also need this? 6786 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6787 assert(NVT.bitsGE(VT)); 6788 6789 bool isDereferenceable = 6790 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6791 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6792 if (isDereferenceable) 6793 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6794 6795 Value = DAG.getExtLoad( 6796 ISD::EXTLOAD, dl, NVT, Chain, 6797 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6798 SrcPtrInfo.getWithOffset(SrcOff), VT, 6799 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6800 OutLoadChains.push_back(Value.getValue(1)); 6801 6802 Store = DAG.getTruncStore( 6803 Chain, dl, Value, 6804 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6805 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6806 OutStoreChains.push_back(Store); 6807 } 6808 SrcOff += VTSize; 6809 DstOff += VTSize; 6810 Size -= VTSize; 6811 } 6812 6813 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6814 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6815 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6816 6817 if (NumLdStInMemcpy) { 6818 // It may be that memcpy might be converted to memset if it's memcpy 6819 // of constants. In such a case, we won't have loads and stores, but 6820 // just stores. In the absence of loads, there is nothing to gang up. 6821 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6822 // If target does not care, just leave as it. 6823 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6824 OutChains.push_back(OutLoadChains[i]); 6825 OutChains.push_back(OutStoreChains[i]); 6826 } 6827 } else { 6828 // Ld/St less than/equal limit set by target. 6829 if (NumLdStInMemcpy <= GluedLdStLimit) { 6830 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6831 NumLdStInMemcpy, OutLoadChains, 6832 OutStoreChains); 6833 } else { 6834 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6835 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6836 unsigned GlueIter = 0; 6837 6838 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6839 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6840 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6841 6842 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6843 OutLoadChains, OutStoreChains); 6844 GlueIter += GluedLdStLimit; 6845 } 6846 6847 // Residual ld/st. 6848 if (RemainingLdStInMemcpy) { 6849 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6850 RemainingLdStInMemcpy, OutLoadChains, 6851 OutStoreChains); 6852 } 6853 } 6854 } 6855 } 6856 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6857 } 6858 6859 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6860 SDValue Chain, SDValue Dst, SDValue Src, 6861 uint64_t Size, Align Alignment, 6862 bool isVol, bool AlwaysInline, 6863 MachinePointerInfo DstPtrInfo, 6864 MachinePointerInfo SrcPtrInfo, 6865 const AAMDNodes &AAInfo) { 6866 // Turn a memmove of undef to nop. 6867 // FIXME: We need to honor volatile even is Src is undef. 6868 if (Src.isUndef()) 6869 return Chain; 6870 6871 // Expand memmove to a series of load and store ops if the size operand falls 6872 // below a certain threshold. 6873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6874 const DataLayout &DL = DAG.getDataLayout(); 6875 LLVMContext &C = *DAG.getContext(); 6876 std::vector<EVT> MemOps; 6877 bool DstAlignCanChange = false; 6878 MachineFunction &MF = DAG.getMachineFunction(); 6879 MachineFrameInfo &MFI = MF.getFrameInfo(); 6880 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6881 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6882 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6883 DstAlignCanChange = true; 6884 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6885 if (!SrcAlign || Alignment > *SrcAlign) 6886 SrcAlign = Alignment; 6887 assert(SrcAlign && "SrcAlign must be set"); 6888 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6889 if (!TLI.findOptimalMemOpLowering( 6890 MemOps, Limit, 6891 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6892 /*IsVolatile*/ true), 6893 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6894 MF.getFunction().getAttributes())) 6895 return SDValue(); 6896 6897 if (DstAlignCanChange) { 6898 Type *Ty = MemOps[0].getTypeForEVT(C); 6899 Align NewAlign = DL.getABITypeAlign(Ty); 6900 if (NewAlign > Alignment) { 6901 // Give the stack frame object a larger alignment if needed. 6902 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6903 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6904 Alignment = NewAlign; 6905 } 6906 } 6907 6908 // Prepare AAInfo for loads/stores after lowering this memmove. 6909 AAMDNodes NewAAInfo = AAInfo; 6910 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6911 6912 MachineMemOperand::Flags MMOFlags = 6913 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6914 uint64_t SrcOff = 0, DstOff = 0; 6915 SmallVector<SDValue, 8> LoadValues; 6916 SmallVector<SDValue, 8> LoadChains; 6917 SmallVector<SDValue, 8> OutChains; 6918 unsigned NumMemOps = MemOps.size(); 6919 for (unsigned i = 0; i < NumMemOps; i++) { 6920 EVT VT = MemOps[i]; 6921 unsigned VTSize = VT.getSizeInBits() / 8; 6922 SDValue Value; 6923 6924 bool isDereferenceable = 6925 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6926 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6927 if (isDereferenceable) 6928 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6929 6930 Value = DAG.getLoad( 6931 VT, dl, Chain, 6932 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6933 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6934 LoadValues.push_back(Value); 6935 LoadChains.push_back(Value.getValue(1)); 6936 SrcOff += VTSize; 6937 } 6938 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6939 OutChains.clear(); 6940 for (unsigned i = 0; i < NumMemOps; i++) { 6941 EVT VT = MemOps[i]; 6942 unsigned VTSize = VT.getSizeInBits() / 8; 6943 SDValue Store; 6944 6945 Store = DAG.getStore( 6946 Chain, dl, LoadValues[i], 6947 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6948 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6949 OutChains.push_back(Store); 6950 DstOff += VTSize; 6951 } 6952 6953 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6954 } 6955 6956 /// Lower the call to 'memset' intrinsic function into a series of store 6957 /// operations. 6958 /// 6959 /// \param DAG Selection DAG where lowered code is placed. 6960 /// \param dl Link to corresponding IR location. 6961 /// \param Chain Control flow dependency. 6962 /// \param Dst Pointer to destination memory location. 6963 /// \param Src Value of byte to write into the memory. 6964 /// \param Size Number of bytes to write. 6965 /// \param Alignment Alignment of the destination in bytes. 6966 /// \param isVol True if destination is volatile. 6967 /// \param DstPtrInfo IR information on the memory pointer. 6968 /// \returns New head in the control flow, if lowering was successful, empty 6969 /// SDValue otherwise. 6970 /// 6971 /// The function tries to replace 'llvm.memset' intrinsic with several store 6972 /// operations and value calculation code. This is usually profitable for small 6973 /// memory size. 6974 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6975 SDValue Chain, SDValue Dst, SDValue Src, 6976 uint64_t Size, Align Alignment, bool isVol, 6977 MachinePointerInfo DstPtrInfo, 6978 const AAMDNodes &AAInfo) { 6979 // Turn a memset of undef to nop. 6980 // FIXME: We need to honor volatile even is Src is undef. 6981 if (Src.isUndef()) 6982 return Chain; 6983 6984 // Expand memset to a series of load/store ops if the size operand 6985 // falls below a certain threshold. 6986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6987 std::vector<EVT> MemOps; 6988 bool DstAlignCanChange = false; 6989 MachineFunction &MF = DAG.getMachineFunction(); 6990 MachineFrameInfo &MFI = MF.getFrameInfo(); 6991 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6992 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6993 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6994 DstAlignCanChange = true; 6995 bool IsZeroVal = 6996 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6997 if (!TLI.findOptimalMemOpLowering( 6998 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6999 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7000 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7001 return SDValue(); 7002 7003 if (DstAlignCanChange) { 7004 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7005 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7006 if (NewAlign > Alignment) { 7007 // Give the stack frame object a larger alignment if needed. 7008 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7009 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7010 Alignment = NewAlign; 7011 } 7012 } 7013 7014 SmallVector<SDValue, 8> OutChains; 7015 uint64_t DstOff = 0; 7016 unsigned NumMemOps = MemOps.size(); 7017 7018 // Find the largest store and generate the bit pattern for it. 7019 EVT LargestVT = MemOps[0]; 7020 for (unsigned i = 1; i < NumMemOps; i++) 7021 if (MemOps[i].bitsGT(LargestVT)) 7022 LargestVT = MemOps[i]; 7023 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7024 7025 // Prepare AAInfo for loads/stores after lowering this memset. 7026 AAMDNodes NewAAInfo = AAInfo; 7027 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7028 7029 for (unsigned i = 0; i < NumMemOps; i++) { 7030 EVT VT = MemOps[i]; 7031 unsigned VTSize = VT.getSizeInBits() / 8; 7032 if (VTSize > Size) { 7033 // Issuing an unaligned load / store pair that overlaps with the previous 7034 // pair. Adjust the offset accordingly. 7035 assert(i == NumMemOps-1 && i != 0); 7036 DstOff -= VTSize - Size; 7037 } 7038 7039 // If this store is smaller than the largest store see whether we can get 7040 // the smaller value for free with a truncate. 7041 SDValue Value = MemSetValue; 7042 if (VT.bitsLT(LargestVT)) { 7043 if (!LargestVT.isVector() && !VT.isVector() && 7044 TLI.isTruncateFree(LargestVT, VT)) 7045 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7046 else 7047 Value = getMemsetValue(Src, VT, DAG, dl); 7048 } 7049 assert(Value.getValueType() == VT && "Value with wrong type."); 7050 SDValue Store = DAG.getStore( 7051 Chain, dl, Value, 7052 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7053 DstPtrInfo.getWithOffset(DstOff), Alignment, 7054 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7055 NewAAInfo); 7056 OutChains.push_back(Store); 7057 DstOff += VT.getSizeInBits() / 8; 7058 Size -= VTSize; 7059 } 7060 7061 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7062 } 7063 7064 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7065 unsigned AS) { 7066 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7067 // pointer operands can be losslessly bitcasted to pointers of address space 0 7068 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7069 report_fatal_error("cannot lower memory intrinsic in address space " + 7070 Twine(AS)); 7071 } 7072 } 7073 7074 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7075 SDValue Src, SDValue Size, Align Alignment, 7076 bool isVol, bool AlwaysInline, bool isTailCall, 7077 MachinePointerInfo DstPtrInfo, 7078 MachinePointerInfo SrcPtrInfo, 7079 const AAMDNodes &AAInfo) { 7080 // Check to see if we should lower the memcpy to loads and stores first. 7081 // For cases within the target-specified limits, this is the best choice. 7082 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7083 if (ConstantSize) { 7084 // Memcpy with size zero? Just return the original chain. 7085 if (ConstantSize->isZero()) 7086 return Chain; 7087 7088 SDValue Result = getMemcpyLoadsAndStores( 7089 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7090 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7091 if (Result.getNode()) 7092 return Result; 7093 } 7094 7095 // Then check to see if we should lower the memcpy with target-specific 7096 // code. If the target chooses to do this, this is the next best. 7097 if (TSI) { 7098 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7099 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7100 DstPtrInfo, SrcPtrInfo); 7101 if (Result.getNode()) 7102 return Result; 7103 } 7104 7105 // If we really need inline code and the target declined to provide it, 7106 // use a (potentially long) sequence of loads and stores. 7107 if (AlwaysInline) { 7108 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7109 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7110 ConstantSize->getZExtValue(), Alignment, 7111 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7112 } 7113 7114 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7115 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7116 7117 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7118 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7119 // respect volatile, so they may do things like read or write memory 7120 // beyond the given memory regions. But fixing this isn't easy, and most 7121 // people don't care. 7122 7123 // Emit a library call. 7124 TargetLowering::ArgListTy Args; 7125 TargetLowering::ArgListEntry Entry; 7126 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7127 Entry.Node = Dst; Args.push_back(Entry); 7128 Entry.Node = Src; Args.push_back(Entry); 7129 7130 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7131 Entry.Node = Size; Args.push_back(Entry); 7132 // FIXME: pass in SDLoc 7133 TargetLowering::CallLoweringInfo CLI(*this); 7134 CLI.setDebugLoc(dl) 7135 .setChain(Chain) 7136 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7137 Dst.getValueType().getTypeForEVT(*getContext()), 7138 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7139 TLI->getPointerTy(getDataLayout())), 7140 std::move(Args)) 7141 .setDiscardResult() 7142 .setTailCall(isTailCall); 7143 7144 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7145 return CallResult.second; 7146 } 7147 7148 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7149 SDValue Dst, unsigned DstAlign, 7150 SDValue Src, unsigned SrcAlign, 7151 SDValue Size, Type *SizeTy, 7152 unsigned ElemSz, bool isTailCall, 7153 MachinePointerInfo DstPtrInfo, 7154 MachinePointerInfo SrcPtrInfo) { 7155 // Emit a library call. 7156 TargetLowering::ArgListTy Args; 7157 TargetLowering::ArgListEntry Entry; 7158 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7159 Entry.Node = Dst; 7160 Args.push_back(Entry); 7161 7162 Entry.Node = Src; 7163 Args.push_back(Entry); 7164 7165 Entry.Ty = SizeTy; 7166 Entry.Node = Size; 7167 Args.push_back(Entry); 7168 7169 RTLIB::Libcall LibraryCall = 7170 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7171 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7172 report_fatal_error("Unsupported element size"); 7173 7174 TargetLowering::CallLoweringInfo CLI(*this); 7175 CLI.setDebugLoc(dl) 7176 .setChain(Chain) 7177 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7178 Type::getVoidTy(*getContext()), 7179 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7180 TLI->getPointerTy(getDataLayout())), 7181 std::move(Args)) 7182 .setDiscardResult() 7183 .setTailCall(isTailCall); 7184 7185 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7186 return CallResult.second; 7187 } 7188 7189 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7190 SDValue Src, SDValue Size, Align Alignment, 7191 bool isVol, bool isTailCall, 7192 MachinePointerInfo DstPtrInfo, 7193 MachinePointerInfo SrcPtrInfo, 7194 const AAMDNodes &AAInfo) { 7195 // Check to see if we should lower the memmove to loads and stores first. 7196 // For cases within the target-specified limits, this is the best choice. 7197 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7198 if (ConstantSize) { 7199 // Memmove with size zero? Just return the original chain. 7200 if (ConstantSize->isZero()) 7201 return Chain; 7202 7203 SDValue Result = getMemmoveLoadsAndStores( 7204 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7205 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7206 if (Result.getNode()) 7207 return Result; 7208 } 7209 7210 // Then check to see if we should lower the memmove with target-specific 7211 // code. If the target chooses to do this, this is the next best. 7212 if (TSI) { 7213 SDValue Result = 7214 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7215 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7216 if (Result.getNode()) 7217 return Result; 7218 } 7219 7220 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7221 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7222 7223 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7224 // not be safe. See memcpy above for more details. 7225 7226 // Emit a library call. 7227 TargetLowering::ArgListTy Args; 7228 TargetLowering::ArgListEntry Entry; 7229 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7230 Entry.Node = Dst; Args.push_back(Entry); 7231 Entry.Node = Src; Args.push_back(Entry); 7232 7233 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7234 Entry.Node = Size; Args.push_back(Entry); 7235 // FIXME: pass in SDLoc 7236 TargetLowering::CallLoweringInfo CLI(*this); 7237 CLI.setDebugLoc(dl) 7238 .setChain(Chain) 7239 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7240 Dst.getValueType().getTypeForEVT(*getContext()), 7241 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7242 TLI->getPointerTy(getDataLayout())), 7243 std::move(Args)) 7244 .setDiscardResult() 7245 .setTailCall(isTailCall); 7246 7247 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7248 return CallResult.second; 7249 } 7250 7251 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7252 SDValue Dst, unsigned DstAlign, 7253 SDValue Src, unsigned SrcAlign, 7254 SDValue Size, Type *SizeTy, 7255 unsigned ElemSz, bool isTailCall, 7256 MachinePointerInfo DstPtrInfo, 7257 MachinePointerInfo SrcPtrInfo) { 7258 // Emit a library call. 7259 TargetLowering::ArgListTy Args; 7260 TargetLowering::ArgListEntry Entry; 7261 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7262 Entry.Node = Dst; 7263 Args.push_back(Entry); 7264 7265 Entry.Node = Src; 7266 Args.push_back(Entry); 7267 7268 Entry.Ty = SizeTy; 7269 Entry.Node = Size; 7270 Args.push_back(Entry); 7271 7272 RTLIB::Libcall LibraryCall = 7273 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7274 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7275 report_fatal_error("Unsupported element size"); 7276 7277 TargetLowering::CallLoweringInfo CLI(*this); 7278 CLI.setDebugLoc(dl) 7279 .setChain(Chain) 7280 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7281 Type::getVoidTy(*getContext()), 7282 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7283 TLI->getPointerTy(getDataLayout())), 7284 std::move(Args)) 7285 .setDiscardResult() 7286 .setTailCall(isTailCall); 7287 7288 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7289 return CallResult.second; 7290 } 7291 7292 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7293 SDValue Src, SDValue Size, Align Alignment, 7294 bool isVol, bool isTailCall, 7295 MachinePointerInfo DstPtrInfo, 7296 const AAMDNodes &AAInfo) { 7297 // Check to see if we should lower the memset to stores first. 7298 // For cases within the target-specified limits, this is the best choice. 7299 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7300 if (ConstantSize) { 7301 // Memset with size zero? Just return the original chain. 7302 if (ConstantSize->isZero()) 7303 return Chain; 7304 7305 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7306 ConstantSize->getZExtValue(), Alignment, 7307 isVol, DstPtrInfo, AAInfo); 7308 7309 if (Result.getNode()) 7310 return Result; 7311 } 7312 7313 // Then check to see if we should lower the memset with target-specific 7314 // code. If the target chooses to do this, this is the next best. 7315 if (TSI) { 7316 SDValue Result = TSI->EmitTargetCodeForMemset( 7317 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7318 if (Result.getNode()) 7319 return Result; 7320 } 7321 7322 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7323 7324 // Emit a library call. 7325 TargetLowering::ArgListTy Args; 7326 TargetLowering::ArgListEntry Entry; 7327 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7328 Args.push_back(Entry); 7329 Entry.Node = Src; 7330 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7331 Args.push_back(Entry); 7332 Entry.Node = Size; 7333 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7334 Args.push_back(Entry); 7335 7336 // FIXME: pass in SDLoc 7337 TargetLowering::CallLoweringInfo CLI(*this); 7338 CLI.setDebugLoc(dl) 7339 .setChain(Chain) 7340 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7341 Dst.getValueType().getTypeForEVT(*getContext()), 7342 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7343 TLI->getPointerTy(getDataLayout())), 7344 std::move(Args)) 7345 .setDiscardResult() 7346 .setTailCall(isTailCall); 7347 7348 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7349 return CallResult.second; 7350 } 7351 7352 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7353 SDValue Dst, unsigned DstAlign, 7354 SDValue Value, SDValue Size, Type *SizeTy, 7355 unsigned ElemSz, bool isTailCall, 7356 MachinePointerInfo DstPtrInfo) { 7357 // Emit a library call. 7358 TargetLowering::ArgListTy Args; 7359 TargetLowering::ArgListEntry Entry; 7360 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7361 Entry.Node = Dst; 7362 Args.push_back(Entry); 7363 7364 Entry.Ty = Type::getInt8Ty(*getContext()); 7365 Entry.Node = Value; 7366 Args.push_back(Entry); 7367 7368 Entry.Ty = SizeTy; 7369 Entry.Node = Size; 7370 Args.push_back(Entry); 7371 7372 RTLIB::Libcall LibraryCall = 7373 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7374 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7375 report_fatal_error("Unsupported element size"); 7376 7377 TargetLowering::CallLoweringInfo CLI(*this); 7378 CLI.setDebugLoc(dl) 7379 .setChain(Chain) 7380 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7381 Type::getVoidTy(*getContext()), 7382 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7383 TLI->getPointerTy(getDataLayout())), 7384 std::move(Args)) 7385 .setDiscardResult() 7386 .setTailCall(isTailCall); 7387 7388 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7389 return CallResult.second; 7390 } 7391 7392 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7393 SDVTList VTList, ArrayRef<SDValue> Ops, 7394 MachineMemOperand *MMO) { 7395 FoldingSetNodeID ID; 7396 ID.AddInteger(MemVT.getRawBits()); 7397 AddNodeIDNode(ID, Opcode, VTList, Ops); 7398 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7399 ID.AddInteger(MMO->getFlags()); 7400 void* IP = nullptr; 7401 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7402 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7403 return SDValue(E, 0); 7404 } 7405 7406 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7407 VTList, MemVT, MMO); 7408 createOperands(N, Ops); 7409 7410 CSEMap.InsertNode(N, IP); 7411 InsertNode(N); 7412 return SDValue(N, 0); 7413 } 7414 7415 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7416 EVT MemVT, SDVTList VTs, SDValue Chain, 7417 SDValue Ptr, SDValue Cmp, SDValue Swp, 7418 MachineMemOperand *MMO) { 7419 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7420 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7421 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7422 7423 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7424 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7425 } 7426 7427 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7428 SDValue Chain, SDValue Ptr, SDValue Val, 7429 MachineMemOperand *MMO) { 7430 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7431 Opcode == ISD::ATOMIC_LOAD_SUB || 7432 Opcode == ISD::ATOMIC_LOAD_AND || 7433 Opcode == ISD::ATOMIC_LOAD_CLR || 7434 Opcode == ISD::ATOMIC_LOAD_OR || 7435 Opcode == ISD::ATOMIC_LOAD_XOR || 7436 Opcode == ISD::ATOMIC_LOAD_NAND || 7437 Opcode == ISD::ATOMIC_LOAD_MIN || 7438 Opcode == ISD::ATOMIC_LOAD_MAX || 7439 Opcode == ISD::ATOMIC_LOAD_UMIN || 7440 Opcode == ISD::ATOMIC_LOAD_UMAX || 7441 Opcode == ISD::ATOMIC_LOAD_FADD || 7442 Opcode == ISD::ATOMIC_LOAD_FSUB || 7443 Opcode == ISD::ATOMIC_SWAP || 7444 Opcode == ISD::ATOMIC_STORE) && 7445 "Invalid Atomic Op"); 7446 7447 EVT VT = Val.getValueType(); 7448 7449 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7450 getVTList(VT, MVT::Other); 7451 SDValue Ops[] = {Chain, Ptr, Val}; 7452 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7453 } 7454 7455 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7456 EVT VT, SDValue Chain, SDValue Ptr, 7457 MachineMemOperand *MMO) { 7458 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7459 7460 SDVTList VTs = getVTList(VT, MVT::Other); 7461 SDValue Ops[] = {Chain, Ptr}; 7462 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7463 } 7464 7465 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7466 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7467 if (Ops.size() == 1) 7468 return Ops[0]; 7469 7470 SmallVector<EVT, 4> VTs; 7471 VTs.reserve(Ops.size()); 7472 for (const SDValue &Op : Ops) 7473 VTs.push_back(Op.getValueType()); 7474 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7475 } 7476 7477 SDValue SelectionDAG::getMemIntrinsicNode( 7478 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7479 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7480 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7481 if (!Size && MemVT.isScalableVector()) 7482 Size = MemoryLocation::UnknownSize; 7483 else if (!Size) 7484 Size = MemVT.getStoreSize(); 7485 7486 MachineFunction &MF = getMachineFunction(); 7487 MachineMemOperand *MMO = 7488 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7489 7490 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7491 } 7492 7493 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7494 SDVTList VTList, 7495 ArrayRef<SDValue> Ops, EVT MemVT, 7496 MachineMemOperand *MMO) { 7497 assert((Opcode == ISD::INTRINSIC_VOID || 7498 Opcode == ISD::INTRINSIC_W_CHAIN || 7499 Opcode == ISD::PREFETCH || 7500 ((int)Opcode <= std::numeric_limits<int>::max() && 7501 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7502 "Opcode is not a memory-accessing opcode!"); 7503 7504 // Memoize the node unless it returns a flag. 7505 MemIntrinsicSDNode *N; 7506 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7507 FoldingSetNodeID ID; 7508 AddNodeIDNode(ID, Opcode, VTList, Ops); 7509 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7510 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7511 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7512 ID.AddInteger(MMO->getFlags()); 7513 void *IP = nullptr; 7514 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7515 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7516 return SDValue(E, 0); 7517 } 7518 7519 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7520 VTList, MemVT, MMO); 7521 createOperands(N, Ops); 7522 7523 CSEMap.InsertNode(N, IP); 7524 } else { 7525 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7526 VTList, MemVT, MMO); 7527 createOperands(N, Ops); 7528 } 7529 InsertNode(N); 7530 SDValue V(N, 0); 7531 NewSDValueDbgMsg(V, "Creating new node: ", this); 7532 return V; 7533 } 7534 7535 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7536 SDValue Chain, int FrameIndex, 7537 int64_t Size, int64_t Offset) { 7538 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7539 const auto VTs = getVTList(MVT::Other); 7540 SDValue Ops[2] = { 7541 Chain, 7542 getFrameIndex(FrameIndex, 7543 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7544 true)}; 7545 7546 FoldingSetNodeID ID; 7547 AddNodeIDNode(ID, Opcode, VTs, Ops); 7548 ID.AddInteger(FrameIndex); 7549 ID.AddInteger(Size); 7550 ID.AddInteger(Offset); 7551 void *IP = nullptr; 7552 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7553 return SDValue(E, 0); 7554 7555 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7556 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7557 createOperands(N, Ops); 7558 CSEMap.InsertNode(N, IP); 7559 InsertNode(N); 7560 SDValue V(N, 0); 7561 NewSDValueDbgMsg(V, "Creating new node: ", this); 7562 return V; 7563 } 7564 7565 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7566 uint64_t Guid, uint64_t Index, 7567 uint32_t Attr) { 7568 const unsigned Opcode = ISD::PSEUDO_PROBE; 7569 const auto VTs = getVTList(MVT::Other); 7570 SDValue Ops[] = {Chain}; 7571 FoldingSetNodeID ID; 7572 AddNodeIDNode(ID, Opcode, VTs, Ops); 7573 ID.AddInteger(Guid); 7574 ID.AddInteger(Index); 7575 void *IP = nullptr; 7576 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7577 return SDValue(E, 0); 7578 7579 auto *N = newSDNode<PseudoProbeSDNode>( 7580 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7581 createOperands(N, Ops); 7582 CSEMap.InsertNode(N, IP); 7583 InsertNode(N); 7584 SDValue V(N, 0); 7585 NewSDValueDbgMsg(V, "Creating new node: ", this); 7586 return V; 7587 } 7588 7589 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7590 /// MachinePointerInfo record from it. This is particularly useful because the 7591 /// code generator has many cases where it doesn't bother passing in a 7592 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7593 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7594 SelectionDAG &DAG, SDValue Ptr, 7595 int64_t Offset = 0) { 7596 // If this is FI+Offset, we can model it. 7597 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7598 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7599 FI->getIndex(), Offset); 7600 7601 // If this is (FI+Offset1)+Offset2, we can model it. 7602 if (Ptr.getOpcode() != ISD::ADD || 7603 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7604 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7605 return Info; 7606 7607 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7608 return MachinePointerInfo::getFixedStack( 7609 DAG.getMachineFunction(), FI, 7610 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7611 } 7612 7613 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7614 /// MachinePointerInfo record from it. This is particularly useful because the 7615 /// code generator has many cases where it doesn't bother passing in a 7616 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7617 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7618 SelectionDAG &DAG, SDValue Ptr, 7619 SDValue OffsetOp) { 7620 // If the 'Offset' value isn't a constant, we can't handle this. 7621 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7622 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7623 if (OffsetOp.isUndef()) 7624 return InferPointerInfo(Info, DAG, Ptr); 7625 return Info; 7626 } 7627 7628 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7629 EVT VT, const SDLoc &dl, SDValue Chain, 7630 SDValue Ptr, SDValue Offset, 7631 MachinePointerInfo PtrInfo, EVT MemVT, 7632 Align Alignment, 7633 MachineMemOperand::Flags MMOFlags, 7634 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7635 assert(Chain.getValueType() == MVT::Other && 7636 "Invalid chain type"); 7637 7638 MMOFlags |= MachineMemOperand::MOLoad; 7639 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7640 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7641 // clients. 7642 if (PtrInfo.V.isNull()) 7643 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7644 7645 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7646 MachineFunction &MF = getMachineFunction(); 7647 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7648 Alignment, AAInfo, Ranges); 7649 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7650 } 7651 7652 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7653 EVT VT, const SDLoc &dl, SDValue Chain, 7654 SDValue Ptr, SDValue Offset, EVT MemVT, 7655 MachineMemOperand *MMO) { 7656 if (VT == MemVT) { 7657 ExtType = ISD::NON_EXTLOAD; 7658 } else if (ExtType == ISD::NON_EXTLOAD) { 7659 assert(VT == MemVT && "Non-extending load from different memory type!"); 7660 } else { 7661 // Extending load. 7662 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7663 "Should only be an extending load, not truncating!"); 7664 assert(VT.isInteger() == MemVT.isInteger() && 7665 "Cannot convert from FP to Int or Int -> FP!"); 7666 assert(VT.isVector() == MemVT.isVector() && 7667 "Cannot use an ext load to convert to or from a vector!"); 7668 assert((!VT.isVector() || 7669 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7670 "Cannot use an ext load to change the number of vector elements!"); 7671 } 7672 7673 bool Indexed = AM != ISD::UNINDEXED; 7674 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7675 7676 SDVTList VTs = Indexed ? 7677 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7678 SDValue Ops[] = { Chain, Ptr, Offset }; 7679 FoldingSetNodeID ID; 7680 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7681 ID.AddInteger(MemVT.getRawBits()); 7682 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7683 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7684 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7685 ID.AddInteger(MMO->getFlags()); 7686 void *IP = nullptr; 7687 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7688 cast<LoadSDNode>(E)->refineAlignment(MMO); 7689 return SDValue(E, 0); 7690 } 7691 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7692 ExtType, MemVT, MMO); 7693 createOperands(N, Ops); 7694 7695 CSEMap.InsertNode(N, IP); 7696 InsertNode(N); 7697 SDValue V(N, 0); 7698 NewSDValueDbgMsg(V, "Creating new node: ", this); 7699 return V; 7700 } 7701 7702 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7703 SDValue Ptr, MachinePointerInfo PtrInfo, 7704 MaybeAlign Alignment, 7705 MachineMemOperand::Flags MMOFlags, 7706 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7707 SDValue Undef = getUNDEF(Ptr.getValueType()); 7708 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7709 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7710 } 7711 7712 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7713 SDValue Ptr, MachineMemOperand *MMO) { 7714 SDValue Undef = getUNDEF(Ptr.getValueType()); 7715 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7716 VT, MMO); 7717 } 7718 7719 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7720 EVT VT, SDValue Chain, SDValue Ptr, 7721 MachinePointerInfo PtrInfo, EVT MemVT, 7722 MaybeAlign Alignment, 7723 MachineMemOperand::Flags MMOFlags, 7724 const AAMDNodes &AAInfo) { 7725 SDValue Undef = getUNDEF(Ptr.getValueType()); 7726 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7727 MemVT, Alignment, MMOFlags, AAInfo); 7728 } 7729 7730 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7731 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7732 MachineMemOperand *MMO) { 7733 SDValue Undef = getUNDEF(Ptr.getValueType()); 7734 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7735 MemVT, MMO); 7736 } 7737 7738 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7739 SDValue Base, SDValue Offset, 7740 ISD::MemIndexedMode AM) { 7741 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7742 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7743 // Don't propagate the invariant or dereferenceable flags. 7744 auto MMOFlags = 7745 LD->getMemOperand()->getFlags() & 7746 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7747 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7748 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7749 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7750 } 7751 7752 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7753 SDValue Ptr, MachinePointerInfo PtrInfo, 7754 Align Alignment, 7755 MachineMemOperand::Flags MMOFlags, 7756 const AAMDNodes &AAInfo) { 7757 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7758 7759 MMOFlags |= MachineMemOperand::MOStore; 7760 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7761 7762 if (PtrInfo.V.isNull()) 7763 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7764 7765 MachineFunction &MF = getMachineFunction(); 7766 uint64_t Size = 7767 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7768 MachineMemOperand *MMO = 7769 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7770 return getStore(Chain, dl, Val, Ptr, MMO); 7771 } 7772 7773 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7774 SDValue Ptr, MachineMemOperand *MMO) { 7775 assert(Chain.getValueType() == MVT::Other && 7776 "Invalid chain type"); 7777 EVT VT = Val.getValueType(); 7778 SDVTList VTs = getVTList(MVT::Other); 7779 SDValue Undef = getUNDEF(Ptr.getValueType()); 7780 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7781 FoldingSetNodeID ID; 7782 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7783 ID.AddInteger(VT.getRawBits()); 7784 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7785 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7786 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7787 ID.AddInteger(MMO->getFlags()); 7788 void *IP = nullptr; 7789 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7790 cast<StoreSDNode>(E)->refineAlignment(MMO); 7791 return SDValue(E, 0); 7792 } 7793 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7794 ISD::UNINDEXED, false, VT, MMO); 7795 createOperands(N, Ops); 7796 7797 CSEMap.InsertNode(N, IP); 7798 InsertNode(N); 7799 SDValue V(N, 0); 7800 NewSDValueDbgMsg(V, "Creating new node: ", this); 7801 return V; 7802 } 7803 7804 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7805 SDValue Ptr, MachinePointerInfo PtrInfo, 7806 EVT SVT, Align Alignment, 7807 MachineMemOperand::Flags MMOFlags, 7808 const AAMDNodes &AAInfo) { 7809 assert(Chain.getValueType() == MVT::Other && 7810 "Invalid chain type"); 7811 7812 MMOFlags |= MachineMemOperand::MOStore; 7813 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7814 7815 if (PtrInfo.V.isNull()) 7816 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7817 7818 MachineFunction &MF = getMachineFunction(); 7819 MachineMemOperand *MMO = MF.getMachineMemOperand( 7820 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7821 Alignment, AAInfo); 7822 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7823 } 7824 7825 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7826 SDValue Ptr, EVT SVT, 7827 MachineMemOperand *MMO) { 7828 EVT VT = Val.getValueType(); 7829 7830 assert(Chain.getValueType() == MVT::Other && 7831 "Invalid chain type"); 7832 if (VT == SVT) 7833 return getStore(Chain, dl, Val, Ptr, MMO); 7834 7835 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7836 "Should only be a truncating store, not extending!"); 7837 assert(VT.isInteger() == SVT.isInteger() && 7838 "Can't do FP-INT conversion!"); 7839 assert(VT.isVector() == SVT.isVector() && 7840 "Cannot use trunc store to convert to or from a vector!"); 7841 assert((!VT.isVector() || 7842 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7843 "Cannot use trunc store to change the number of vector elements!"); 7844 7845 SDVTList VTs = getVTList(MVT::Other); 7846 SDValue Undef = getUNDEF(Ptr.getValueType()); 7847 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7848 FoldingSetNodeID ID; 7849 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7850 ID.AddInteger(SVT.getRawBits()); 7851 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7852 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7853 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7854 ID.AddInteger(MMO->getFlags()); 7855 void *IP = nullptr; 7856 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7857 cast<StoreSDNode>(E)->refineAlignment(MMO); 7858 return SDValue(E, 0); 7859 } 7860 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7861 ISD::UNINDEXED, true, SVT, MMO); 7862 createOperands(N, Ops); 7863 7864 CSEMap.InsertNode(N, IP); 7865 InsertNode(N); 7866 SDValue V(N, 0); 7867 NewSDValueDbgMsg(V, "Creating new node: ", this); 7868 return V; 7869 } 7870 7871 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7872 SDValue Base, SDValue Offset, 7873 ISD::MemIndexedMode AM) { 7874 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7875 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7876 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7877 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7878 FoldingSetNodeID ID; 7879 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7880 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7881 ID.AddInteger(ST->getRawSubclassData()); 7882 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7883 ID.AddInteger(ST->getMemOperand()->getFlags()); 7884 void *IP = nullptr; 7885 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7886 return SDValue(E, 0); 7887 7888 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7889 ST->isTruncatingStore(), ST->getMemoryVT(), 7890 ST->getMemOperand()); 7891 createOperands(N, Ops); 7892 7893 CSEMap.InsertNode(N, IP); 7894 InsertNode(N); 7895 SDValue V(N, 0); 7896 NewSDValueDbgMsg(V, "Creating new node: ", this); 7897 return V; 7898 } 7899 7900 SDValue SelectionDAG::getLoadVP( 7901 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7902 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7903 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7904 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7905 const MDNode *Ranges, bool IsExpanding) { 7906 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7907 7908 MMOFlags |= MachineMemOperand::MOLoad; 7909 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7910 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7911 // clients. 7912 if (PtrInfo.V.isNull()) 7913 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7914 7915 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7916 MachineFunction &MF = getMachineFunction(); 7917 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7918 Alignment, AAInfo, Ranges); 7919 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7920 MMO, IsExpanding); 7921 } 7922 7923 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7924 ISD::LoadExtType ExtType, EVT VT, 7925 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7926 SDValue Offset, SDValue Mask, SDValue EVL, 7927 EVT MemVT, MachineMemOperand *MMO, 7928 bool IsExpanding) { 7929 bool Indexed = AM != ISD::UNINDEXED; 7930 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7931 7932 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7933 : getVTList(VT, MVT::Other); 7934 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7935 FoldingSetNodeID ID; 7936 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7937 ID.AddInteger(VT.getRawBits()); 7938 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7939 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7940 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7941 ID.AddInteger(MMO->getFlags()); 7942 void *IP = nullptr; 7943 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7944 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7945 return SDValue(E, 0); 7946 } 7947 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7948 ExtType, IsExpanding, MemVT, MMO); 7949 createOperands(N, Ops); 7950 7951 CSEMap.InsertNode(N, IP); 7952 InsertNode(N); 7953 SDValue V(N, 0); 7954 NewSDValueDbgMsg(V, "Creating new node: ", this); 7955 return V; 7956 } 7957 7958 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7959 SDValue Ptr, SDValue Mask, SDValue EVL, 7960 MachinePointerInfo PtrInfo, 7961 MaybeAlign Alignment, 7962 MachineMemOperand::Flags MMOFlags, 7963 const AAMDNodes &AAInfo, const MDNode *Ranges, 7964 bool IsExpanding) { 7965 SDValue Undef = getUNDEF(Ptr.getValueType()); 7966 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7967 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7968 IsExpanding); 7969 } 7970 7971 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7972 SDValue Ptr, SDValue Mask, SDValue EVL, 7973 MachineMemOperand *MMO, bool IsExpanding) { 7974 SDValue Undef = getUNDEF(Ptr.getValueType()); 7975 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7976 Mask, EVL, VT, MMO, IsExpanding); 7977 } 7978 7979 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7980 EVT VT, SDValue Chain, SDValue Ptr, 7981 SDValue Mask, SDValue EVL, 7982 MachinePointerInfo PtrInfo, EVT MemVT, 7983 MaybeAlign Alignment, 7984 MachineMemOperand::Flags MMOFlags, 7985 const AAMDNodes &AAInfo, bool IsExpanding) { 7986 SDValue Undef = getUNDEF(Ptr.getValueType()); 7987 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7988 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7989 IsExpanding); 7990 } 7991 7992 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7993 EVT VT, SDValue Chain, SDValue Ptr, 7994 SDValue Mask, SDValue EVL, EVT MemVT, 7995 MachineMemOperand *MMO, bool IsExpanding) { 7996 SDValue Undef = getUNDEF(Ptr.getValueType()); 7997 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7998 EVL, MemVT, MMO, IsExpanding); 7999 } 8000 8001 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8002 SDValue Base, SDValue Offset, 8003 ISD::MemIndexedMode AM) { 8004 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8005 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8006 // Don't propagate the invariant or dereferenceable flags. 8007 auto MMOFlags = 8008 LD->getMemOperand()->getFlags() & 8009 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8010 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8011 LD->getChain(), Base, Offset, LD->getMask(), 8012 LD->getVectorLength(), LD->getPointerInfo(), 8013 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8014 nullptr, LD->isExpandingLoad()); 8015 } 8016 8017 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8018 SDValue Ptr, SDValue Offset, SDValue Mask, 8019 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8020 ISD::MemIndexedMode AM, bool IsTruncating, 8021 bool IsCompressing) { 8022 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8023 bool Indexed = AM != ISD::UNINDEXED; 8024 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8025 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8026 : getVTList(MVT::Other); 8027 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8028 FoldingSetNodeID ID; 8029 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8030 ID.AddInteger(MemVT.getRawBits()); 8031 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8032 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8033 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8034 ID.AddInteger(MMO->getFlags()); 8035 void *IP = nullptr; 8036 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8037 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8038 return SDValue(E, 0); 8039 } 8040 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8041 IsTruncating, IsCompressing, MemVT, MMO); 8042 createOperands(N, Ops); 8043 8044 CSEMap.InsertNode(N, IP); 8045 InsertNode(N); 8046 SDValue V(N, 0); 8047 NewSDValueDbgMsg(V, "Creating new node: ", this); 8048 return V; 8049 } 8050 8051 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8052 SDValue Val, SDValue Ptr, SDValue Mask, 8053 SDValue EVL, MachinePointerInfo PtrInfo, 8054 EVT SVT, Align Alignment, 8055 MachineMemOperand::Flags MMOFlags, 8056 const AAMDNodes &AAInfo, 8057 bool IsCompressing) { 8058 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8059 8060 MMOFlags |= MachineMemOperand::MOStore; 8061 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8062 8063 if (PtrInfo.V.isNull()) 8064 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8065 8066 MachineFunction &MF = getMachineFunction(); 8067 MachineMemOperand *MMO = MF.getMachineMemOperand( 8068 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8069 Alignment, AAInfo); 8070 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8071 IsCompressing); 8072 } 8073 8074 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8075 SDValue Val, SDValue Ptr, SDValue Mask, 8076 SDValue EVL, EVT SVT, 8077 MachineMemOperand *MMO, 8078 bool IsCompressing) { 8079 EVT VT = Val.getValueType(); 8080 8081 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8082 if (VT == SVT) 8083 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8084 EVL, VT, MMO, ISD::UNINDEXED, 8085 /*IsTruncating*/ false, IsCompressing); 8086 8087 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8088 "Should only be a truncating store, not extending!"); 8089 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8090 assert(VT.isVector() == SVT.isVector() && 8091 "Cannot use trunc store to convert to or from a vector!"); 8092 assert((!VT.isVector() || 8093 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8094 "Cannot use trunc store to change the number of vector elements!"); 8095 8096 SDVTList VTs = getVTList(MVT::Other); 8097 SDValue Undef = getUNDEF(Ptr.getValueType()); 8098 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8099 FoldingSetNodeID ID; 8100 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8101 ID.AddInteger(SVT.getRawBits()); 8102 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8103 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8104 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8105 ID.AddInteger(MMO->getFlags()); 8106 void *IP = nullptr; 8107 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8108 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8109 return SDValue(E, 0); 8110 } 8111 auto *N = 8112 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8113 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8114 createOperands(N, Ops); 8115 8116 CSEMap.InsertNode(N, IP); 8117 InsertNode(N); 8118 SDValue V(N, 0); 8119 NewSDValueDbgMsg(V, "Creating new node: ", this); 8120 return V; 8121 } 8122 8123 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8124 SDValue Base, SDValue Offset, 8125 ISD::MemIndexedMode AM) { 8126 auto *ST = cast<VPStoreSDNode>(OrigStore); 8127 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8128 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8129 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8130 Offset, ST->getMask(), ST->getVectorLength()}; 8131 FoldingSetNodeID ID; 8132 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8133 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8134 ID.AddInteger(ST->getRawSubclassData()); 8135 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8136 ID.AddInteger(ST->getMemOperand()->getFlags()); 8137 void *IP = nullptr; 8138 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8139 return SDValue(E, 0); 8140 8141 auto *N = newSDNode<VPStoreSDNode>( 8142 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8143 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8144 createOperands(N, Ops); 8145 8146 CSEMap.InsertNode(N, IP); 8147 InsertNode(N); 8148 SDValue V(N, 0); 8149 NewSDValueDbgMsg(V, "Creating new node: ", this); 8150 return V; 8151 } 8152 8153 SDValue SelectionDAG::getStridedLoadVP( 8154 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8155 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8156 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8157 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8158 const MDNode *Ranges, bool IsExpanding) { 8159 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8160 8161 MMOFlags |= MachineMemOperand::MOLoad; 8162 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8163 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8164 // clients. 8165 if (PtrInfo.V.isNull()) 8166 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8167 8168 uint64_t Size = MemoryLocation::UnknownSize; 8169 MachineFunction &MF = getMachineFunction(); 8170 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8171 Alignment, AAInfo, Ranges); 8172 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8173 EVL, MemVT, MMO, IsExpanding); 8174 } 8175 8176 SDValue SelectionDAG::getStridedLoadVP( 8177 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8178 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8179 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8180 bool Indexed = AM != ISD::UNINDEXED; 8181 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8182 8183 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8184 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8185 : getVTList(VT, MVT::Other); 8186 FoldingSetNodeID ID; 8187 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8188 ID.AddInteger(VT.getRawBits()); 8189 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8190 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8191 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8192 8193 void *IP = nullptr; 8194 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8195 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8196 return SDValue(E, 0); 8197 } 8198 8199 auto *N = 8200 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8201 ExtType, IsExpanding, MemVT, MMO); 8202 createOperands(N, Ops); 8203 CSEMap.InsertNode(N, IP); 8204 InsertNode(N); 8205 SDValue V(N, 0); 8206 NewSDValueDbgMsg(V, "Creating new node: ", this); 8207 return V; 8208 } 8209 8210 SDValue SelectionDAG::getStridedLoadVP( 8211 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8212 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8213 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8214 const MDNode *Ranges, bool IsExpanding) { 8215 SDValue Undef = getUNDEF(Ptr.getValueType()); 8216 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8217 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8218 MMOFlags, AAInfo, Ranges, IsExpanding); 8219 } 8220 8221 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8222 SDValue Ptr, SDValue Stride, 8223 SDValue Mask, SDValue EVL, 8224 MachineMemOperand *MMO, 8225 bool IsExpanding) { 8226 SDValue Undef = getUNDEF(Ptr.getValueType()); 8227 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8228 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8229 } 8230 8231 SDValue SelectionDAG::getExtStridedLoadVP( 8232 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8233 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8234 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8235 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8236 bool IsExpanding) { 8237 SDValue Undef = getUNDEF(Ptr.getValueType()); 8238 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8239 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8240 MMOFlags, AAInfo, nullptr, IsExpanding); 8241 } 8242 8243 SDValue SelectionDAG::getExtStridedLoadVP( 8244 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8245 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8246 MachineMemOperand *MMO, bool IsExpanding) { 8247 SDValue Undef = getUNDEF(Ptr.getValueType()); 8248 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8249 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8250 } 8251 8252 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8253 SDValue Base, SDValue Offset, 8254 ISD::MemIndexedMode AM) { 8255 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8256 assert(SLD->getOffset().isUndef() && 8257 "Strided load is already a indexed load!"); 8258 // Don't propagate the invariant or dereferenceable flags. 8259 auto MMOFlags = 8260 SLD->getMemOperand()->getFlags() & 8261 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8262 return getStridedLoadVP( 8263 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8264 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8265 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8266 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8267 } 8268 8269 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8270 SDValue Val, SDValue Ptr, 8271 SDValue Offset, SDValue Stride, 8272 SDValue Mask, SDValue EVL, EVT MemVT, 8273 MachineMemOperand *MMO, 8274 ISD::MemIndexedMode AM, 8275 bool IsTruncating, bool IsCompressing) { 8276 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8277 bool Indexed = AM != ISD::UNINDEXED; 8278 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8279 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8280 : getVTList(MVT::Other); 8281 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8282 FoldingSetNodeID ID; 8283 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8284 ID.AddInteger(MemVT.getRawBits()); 8285 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8286 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8287 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8288 void *IP = nullptr; 8289 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8290 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8291 return SDValue(E, 0); 8292 } 8293 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8294 VTs, AM, IsTruncating, 8295 IsCompressing, MemVT, MMO); 8296 createOperands(N, Ops); 8297 8298 CSEMap.InsertNode(N, IP); 8299 InsertNode(N); 8300 SDValue V(N, 0); 8301 NewSDValueDbgMsg(V, "Creating new node: ", this); 8302 return V; 8303 } 8304 8305 SDValue SelectionDAG::getTruncStridedStoreVP( 8306 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8307 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8308 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8309 bool IsCompressing) { 8310 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8311 8312 MMOFlags |= MachineMemOperand::MOStore; 8313 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8314 8315 if (PtrInfo.V.isNull()) 8316 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8317 8318 MachineFunction &MF = getMachineFunction(); 8319 MachineMemOperand *MMO = MF.getMachineMemOperand( 8320 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8321 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8322 MMO, IsCompressing); 8323 } 8324 8325 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8326 SDValue Val, SDValue Ptr, 8327 SDValue Stride, SDValue Mask, 8328 SDValue EVL, EVT SVT, 8329 MachineMemOperand *MMO, 8330 bool IsCompressing) { 8331 EVT VT = Val.getValueType(); 8332 8333 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8334 if (VT == SVT) 8335 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8336 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8337 /*IsTruncating*/ false, IsCompressing); 8338 8339 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8340 "Should only be a truncating store, not extending!"); 8341 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8342 assert(VT.isVector() == SVT.isVector() && 8343 "Cannot use trunc store to convert to or from a vector!"); 8344 assert((!VT.isVector() || 8345 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8346 "Cannot use trunc store to change the number of vector elements!"); 8347 8348 SDVTList VTs = getVTList(MVT::Other); 8349 SDValue Undef = getUNDEF(Ptr.getValueType()); 8350 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8351 FoldingSetNodeID ID; 8352 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8353 ID.AddInteger(SVT.getRawBits()); 8354 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8355 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8356 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8357 void *IP = nullptr; 8358 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8359 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8360 return SDValue(E, 0); 8361 } 8362 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8363 VTs, ISD::UNINDEXED, true, 8364 IsCompressing, SVT, MMO); 8365 createOperands(N, Ops); 8366 8367 CSEMap.InsertNode(N, IP); 8368 InsertNode(N); 8369 SDValue V(N, 0); 8370 NewSDValueDbgMsg(V, "Creating new node: ", this); 8371 return V; 8372 } 8373 8374 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8375 const SDLoc &DL, SDValue Base, 8376 SDValue Offset, 8377 ISD::MemIndexedMode AM) { 8378 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8379 assert(SST->getOffset().isUndef() && 8380 "Strided store is already an indexed store!"); 8381 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8382 SDValue Ops[] = { 8383 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8384 SST->getMask(), SST->getVectorLength()}; 8385 FoldingSetNodeID ID; 8386 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8387 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8388 ID.AddInteger(SST->getRawSubclassData()); 8389 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8390 void *IP = nullptr; 8391 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8392 return SDValue(E, 0); 8393 8394 auto *N = newSDNode<VPStridedStoreSDNode>( 8395 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8396 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8397 createOperands(N, Ops); 8398 8399 CSEMap.InsertNode(N, IP); 8400 InsertNode(N); 8401 SDValue V(N, 0); 8402 NewSDValueDbgMsg(V, "Creating new node: ", this); 8403 return V; 8404 } 8405 8406 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8407 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8408 ISD::MemIndexType IndexType) { 8409 assert(Ops.size() == 6 && "Incompatible number of operands"); 8410 8411 FoldingSetNodeID ID; 8412 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8413 ID.AddInteger(VT.getRawBits()); 8414 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8415 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8416 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8417 ID.AddInteger(MMO->getFlags()); 8418 void *IP = nullptr; 8419 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8420 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8421 return SDValue(E, 0); 8422 } 8423 8424 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8425 VT, MMO, IndexType); 8426 createOperands(N, Ops); 8427 8428 assert(N->getMask().getValueType().getVectorElementCount() == 8429 N->getValueType(0).getVectorElementCount() && 8430 "Vector width mismatch between mask and data"); 8431 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8432 N->getValueType(0).getVectorElementCount().isScalable() && 8433 "Scalable flags of index and data do not match"); 8434 assert(ElementCount::isKnownGE( 8435 N->getIndex().getValueType().getVectorElementCount(), 8436 N->getValueType(0).getVectorElementCount()) && 8437 "Vector width mismatch between index and data"); 8438 assert(isa<ConstantSDNode>(N->getScale()) && 8439 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8440 "Scale should be a constant power of 2"); 8441 8442 CSEMap.InsertNode(N, IP); 8443 InsertNode(N); 8444 SDValue V(N, 0); 8445 NewSDValueDbgMsg(V, "Creating new node: ", this); 8446 return V; 8447 } 8448 8449 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8450 ArrayRef<SDValue> Ops, 8451 MachineMemOperand *MMO, 8452 ISD::MemIndexType IndexType) { 8453 assert(Ops.size() == 7 && "Incompatible number of operands"); 8454 8455 FoldingSetNodeID ID; 8456 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8457 ID.AddInteger(VT.getRawBits()); 8458 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8459 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8460 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8461 ID.AddInteger(MMO->getFlags()); 8462 void *IP = nullptr; 8463 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8464 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8465 return SDValue(E, 0); 8466 } 8467 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8468 VT, MMO, IndexType); 8469 createOperands(N, Ops); 8470 8471 assert(N->getMask().getValueType().getVectorElementCount() == 8472 N->getValue().getValueType().getVectorElementCount() && 8473 "Vector width mismatch between mask and data"); 8474 assert( 8475 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8476 N->getValue().getValueType().getVectorElementCount().isScalable() && 8477 "Scalable flags of index and data do not match"); 8478 assert(ElementCount::isKnownGE( 8479 N->getIndex().getValueType().getVectorElementCount(), 8480 N->getValue().getValueType().getVectorElementCount()) && 8481 "Vector width mismatch between index and data"); 8482 assert(isa<ConstantSDNode>(N->getScale()) && 8483 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8484 "Scale should be a constant power of 2"); 8485 8486 CSEMap.InsertNode(N, IP); 8487 InsertNode(N); 8488 SDValue V(N, 0); 8489 NewSDValueDbgMsg(V, "Creating new node: ", this); 8490 return V; 8491 } 8492 8493 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8494 SDValue Base, SDValue Offset, SDValue Mask, 8495 SDValue PassThru, EVT MemVT, 8496 MachineMemOperand *MMO, 8497 ISD::MemIndexedMode AM, 8498 ISD::LoadExtType ExtTy, bool isExpanding) { 8499 bool Indexed = AM != ISD::UNINDEXED; 8500 assert((Indexed || Offset.isUndef()) && 8501 "Unindexed masked load with an offset!"); 8502 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8503 : getVTList(VT, MVT::Other); 8504 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8505 FoldingSetNodeID ID; 8506 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8507 ID.AddInteger(MemVT.getRawBits()); 8508 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8509 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8510 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8511 ID.AddInteger(MMO->getFlags()); 8512 void *IP = nullptr; 8513 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8514 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8515 return SDValue(E, 0); 8516 } 8517 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8518 AM, ExtTy, isExpanding, MemVT, MMO); 8519 createOperands(N, Ops); 8520 8521 CSEMap.InsertNode(N, IP); 8522 InsertNode(N); 8523 SDValue V(N, 0); 8524 NewSDValueDbgMsg(V, "Creating new node: ", this); 8525 return V; 8526 } 8527 8528 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8529 SDValue Base, SDValue Offset, 8530 ISD::MemIndexedMode AM) { 8531 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8532 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8533 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8534 Offset, LD->getMask(), LD->getPassThru(), 8535 LD->getMemoryVT(), LD->getMemOperand(), AM, 8536 LD->getExtensionType(), LD->isExpandingLoad()); 8537 } 8538 8539 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8540 SDValue Val, SDValue Base, SDValue Offset, 8541 SDValue Mask, EVT MemVT, 8542 MachineMemOperand *MMO, 8543 ISD::MemIndexedMode AM, bool IsTruncating, 8544 bool IsCompressing) { 8545 assert(Chain.getValueType() == MVT::Other && 8546 "Invalid chain type"); 8547 bool Indexed = AM != ISD::UNINDEXED; 8548 assert((Indexed || Offset.isUndef()) && 8549 "Unindexed masked store with an offset!"); 8550 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8551 : getVTList(MVT::Other); 8552 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8553 FoldingSetNodeID ID; 8554 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8555 ID.AddInteger(MemVT.getRawBits()); 8556 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8557 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8558 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8559 ID.AddInteger(MMO->getFlags()); 8560 void *IP = nullptr; 8561 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8562 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8563 return SDValue(E, 0); 8564 } 8565 auto *N = 8566 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8567 IsTruncating, IsCompressing, MemVT, MMO); 8568 createOperands(N, Ops); 8569 8570 CSEMap.InsertNode(N, IP); 8571 InsertNode(N); 8572 SDValue V(N, 0); 8573 NewSDValueDbgMsg(V, "Creating new node: ", this); 8574 return V; 8575 } 8576 8577 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8578 SDValue Base, SDValue Offset, 8579 ISD::MemIndexedMode AM) { 8580 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8581 assert(ST->getOffset().isUndef() && 8582 "Masked store is already a indexed store!"); 8583 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8584 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8585 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8586 } 8587 8588 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8589 ArrayRef<SDValue> Ops, 8590 MachineMemOperand *MMO, 8591 ISD::MemIndexType IndexType, 8592 ISD::LoadExtType ExtTy) { 8593 assert(Ops.size() == 6 && "Incompatible number of operands"); 8594 8595 FoldingSetNodeID ID; 8596 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8597 ID.AddInteger(MemVT.getRawBits()); 8598 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8599 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8600 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8601 ID.AddInteger(MMO->getFlags()); 8602 void *IP = nullptr; 8603 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8604 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8605 return SDValue(E, 0); 8606 } 8607 8608 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8609 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8610 VTs, MemVT, MMO, IndexType, ExtTy); 8611 createOperands(N, Ops); 8612 8613 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8614 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8615 assert(N->getMask().getValueType().getVectorElementCount() == 8616 N->getValueType(0).getVectorElementCount() && 8617 "Vector width mismatch between mask and data"); 8618 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8619 N->getValueType(0).getVectorElementCount().isScalable() && 8620 "Scalable flags of index and data do not match"); 8621 assert(ElementCount::isKnownGE( 8622 N->getIndex().getValueType().getVectorElementCount(), 8623 N->getValueType(0).getVectorElementCount()) && 8624 "Vector width mismatch between index and data"); 8625 assert(isa<ConstantSDNode>(N->getScale()) && 8626 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8627 "Scale should be a constant power of 2"); 8628 8629 CSEMap.InsertNode(N, IP); 8630 InsertNode(N); 8631 SDValue V(N, 0); 8632 NewSDValueDbgMsg(V, "Creating new node: ", this); 8633 return V; 8634 } 8635 8636 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8637 ArrayRef<SDValue> Ops, 8638 MachineMemOperand *MMO, 8639 ISD::MemIndexType IndexType, 8640 bool IsTrunc) { 8641 assert(Ops.size() == 6 && "Incompatible number of operands"); 8642 8643 FoldingSetNodeID ID; 8644 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8645 ID.AddInteger(MemVT.getRawBits()); 8646 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8647 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8648 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8649 ID.AddInteger(MMO->getFlags()); 8650 void *IP = nullptr; 8651 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8652 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8653 return SDValue(E, 0); 8654 } 8655 8656 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8657 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8658 VTs, MemVT, MMO, IndexType, IsTrunc); 8659 createOperands(N, Ops); 8660 8661 assert(N->getMask().getValueType().getVectorElementCount() == 8662 N->getValue().getValueType().getVectorElementCount() && 8663 "Vector width mismatch between mask and data"); 8664 assert( 8665 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8666 N->getValue().getValueType().getVectorElementCount().isScalable() && 8667 "Scalable flags of index and data do not match"); 8668 assert(ElementCount::isKnownGE( 8669 N->getIndex().getValueType().getVectorElementCount(), 8670 N->getValue().getValueType().getVectorElementCount()) && 8671 "Vector width mismatch between index and data"); 8672 assert(isa<ConstantSDNode>(N->getScale()) && 8673 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8674 "Scale should be a constant power of 2"); 8675 8676 CSEMap.InsertNode(N, IP); 8677 InsertNode(N); 8678 SDValue V(N, 0); 8679 NewSDValueDbgMsg(V, "Creating new node: ", this); 8680 return V; 8681 } 8682 8683 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8684 // select undef, T, F --> T (if T is a constant), otherwise F 8685 // select, ?, undef, F --> F 8686 // select, ?, T, undef --> T 8687 if (Cond.isUndef()) 8688 return isConstantValueOfAnyType(T) ? T : F; 8689 if (T.isUndef()) 8690 return F; 8691 if (F.isUndef()) 8692 return T; 8693 8694 // select true, T, F --> T 8695 // select false, T, F --> F 8696 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8697 return CondC->isZero() ? F : T; 8698 8699 // TODO: This should simplify VSELECT with constant condition using something 8700 // like this (but check boolean contents to be complete?): 8701 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8702 // return T; 8703 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8704 // return F; 8705 8706 // select ?, T, T --> T 8707 if (T == F) 8708 return T; 8709 8710 return SDValue(); 8711 } 8712 8713 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8714 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8715 if (X.isUndef()) 8716 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8717 // shift X, undef --> undef (because it may shift by the bitwidth) 8718 if (Y.isUndef()) 8719 return getUNDEF(X.getValueType()); 8720 8721 // shift 0, Y --> 0 8722 // shift X, 0 --> X 8723 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8724 return X; 8725 8726 // shift X, C >= bitwidth(X) --> undef 8727 // All vector elements must be too big (or undef) to avoid partial undefs. 8728 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8729 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8730 }; 8731 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8732 return getUNDEF(X.getValueType()); 8733 8734 return SDValue(); 8735 } 8736 8737 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8738 SDNodeFlags Flags) { 8739 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8740 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8741 // operation is poison. That result can be relaxed to undef. 8742 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8743 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8744 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8745 (YC && YC->getValueAPF().isNaN()); 8746 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8747 (YC && YC->getValueAPF().isInfinity()); 8748 8749 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8750 return getUNDEF(X.getValueType()); 8751 8752 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8753 return getUNDEF(X.getValueType()); 8754 8755 if (!YC) 8756 return SDValue(); 8757 8758 // X + -0.0 --> X 8759 if (Opcode == ISD::FADD) 8760 if (YC->getValueAPF().isNegZero()) 8761 return X; 8762 8763 // X - +0.0 --> X 8764 if (Opcode == ISD::FSUB) 8765 if (YC->getValueAPF().isPosZero()) 8766 return X; 8767 8768 // X * 1.0 --> X 8769 // X / 1.0 --> X 8770 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8771 if (YC->getValueAPF().isExactlyValue(1.0)) 8772 return X; 8773 8774 // X * 0.0 --> 0.0 8775 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8776 if (YC->getValueAPF().isZero()) 8777 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8778 8779 return SDValue(); 8780 } 8781 8782 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8783 SDValue Ptr, SDValue SV, unsigned Align) { 8784 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8785 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8786 } 8787 8788 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8789 ArrayRef<SDUse> Ops) { 8790 switch (Ops.size()) { 8791 case 0: return getNode(Opcode, DL, VT); 8792 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8793 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8794 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8795 default: break; 8796 } 8797 8798 // Copy from an SDUse array into an SDValue array for use with 8799 // the regular getNode logic. 8800 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8801 return getNode(Opcode, DL, VT, NewOps); 8802 } 8803 8804 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8805 ArrayRef<SDValue> Ops) { 8806 SDNodeFlags Flags; 8807 if (Inserter) 8808 Flags = Inserter->getFlags(); 8809 return getNode(Opcode, DL, VT, Ops, Flags); 8810 } 8811 8812 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8813 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8814 unsigned NumOps = Ops.size(); 8815 switch (NumOps) { 8816 case 0: return getNode(Opcode, DL, VT); 8817 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8818 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8819 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8820 default: break; 8821 } 8822 8823 #ifndef NDEBUG 8824 for (auto &Op : Ops) 8825 assert(Op.getOpcode() != ISD::DELETED_NODE && 8826 "Operand is DELETED_NODE!"); 8827 #endif 8828 8829 switch (Opcode) { 8830 default: break; 8831 case ISD::BUILD_VECTOR: 8832 // Attempt to simplify BUILD_VECTOR. 8833 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8834 return V; 8835 break; 8836 case ISD::CONCAT_VECTORS: 8837 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8838 return V; 8839 break; 8840 case ISD::SELECT_CC: 8841 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8842 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8843 "LHS and RHS of condition must have same type!"); 8844 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8845 "True and False arms of SelectCC must have same type!"); 8846 assert(Ops[2].getValueType() == VT && 8847 "select_cc node must be of same type as true and false value!"); 8848 break; 8849 case ISD::BR_CC: 8850 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8851 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8852 "LHS/RHS of comparison should match types!"); 8853 break; 8854 case ISD::VP_ADD: 8855 case ISD::VP_SUB: 8856 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8857 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8858 Opcode = ISD::VP_XOR; 8859 break; 8860 case ISD::VP_MUL: 8861 // If it is VP_MUL mask operation then turn it to VP_AND 8862 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8863 Opcode = ISD::VP_AND; 8864 break; 8865 case ISD::VP_REDUCE_ADD: 8866 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8867 if (VT == MVT::i1) 8868 Opcode = ISD::VP_REDUCE_XOR; 8869 break; 8870 } 8871 8872 // Memoize nodes. 8873 SDNode *N; 8874 SDVTList VTs = getVTList(VT); 8875 8876 if (VT != MVT::Glue) { 8877 FoldingSetNodeID ID; 8878 AddNodeIDNode(ID, Opcode, VTs, Ops); 8879 void *IP = nullptr; 8880 8881 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8882 return SDValue(E, 0); 8883 8884 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8885 createOperands(N, Ops); 8886 8887 CSEMap.InsertNode(N, IP); 8888 } else { 8889 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8890 createOperands(N, Ops); 8891 } 8892 8893 N->setFlags(Flags); 8894 InsertNode(N); 8895 SDValue V(N, 0); 8896 NewSDValueDbgMsg(V, "Creating new node: ", this); 8897 return V; 8898 } 8899 8900 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8901 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8902 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8903 } 8904 8905 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8906 ArrayRef<SDValue> Ops) { 8907 SDNodeFlags Flags; 8908 if (Inserter) 8909 Flags = Inserter->getFlags(); 8910 return getNode(Opcode, DL, VTList, Ops, Flags); 8911 } 8912 8913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8914 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8915 if (VTList.NumVTs == 1) 8916 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8917 8918 #ifndef NDEBUG 8919 for (auto &Op : Ops) 8920 assert(Op.getOpcode() != ISD::DELETED_NODE && 8921 "Operand is DELETED_NODE!"); 8922 #endif 8923 8924 switch (Opcode) { 8925 case ISD::STRICT_FP_EXTEND: 8926 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8927 "Invalid STRICT_FP_EXTEND!"); 8928 assert(VTList.VTs[0].isFloatingPoint() && 8929 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8930 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8931 "STRICT_FP_EXTEND result type should be vector iff the operand " 8932 "type is vector!"); 8933 assert((!VTList.VTs[0].isVector() || 8934 VTList.VTs[0].getVectorNumElements() == 8935 Ops[1].getValueType().getVectorNumElements()) && 8936 "Vector element count mismatch!"); 8937 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8938 "Invalid fpext node, dst <= src!"); 8939 break; 8940 case ISD::STRICT_FP_ROUND: 8941 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8942 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8943 "STRICT_FP_ROUND result type should be vector iff the operand " 8944 "type is vector!"); 8945 assert((!VTList.VTs[0].isVector() || 8946 VTList.VTs[0].getVectorNumElements() == 8947 Ops[1].getValueType().getVectorNumElements()) && 8948 "Vector element count mismatch!"); 8949 assert(VTList.VTs[0].isFloatingPoint() && 8950 Ops[1].getValueType().isFloatingPoint() && 8951 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8952 isa<ConstantSDNode>(Ops[2]) && 8953 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8954 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8955 "Invalid STRICT_FP_ROUND!"); 8956 break; 8957 #if 0 8958 // FIXME: figure out how to safely handle things like 8959 // int foo(int x) { return 1 << (x & 255); } 8960 // int bar() { return foo(256); } 8961 case ISD::SRA_PARTS: 8962 case ISD::SRL_PARTS: 8963 case ISD::SHL_PARTS: 8964 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8965 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8966 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8967 else if (N3.getOpcode() == ISD::AND) 8968 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8969 // If the and is only masking out bits that cannot effect the shift, 8970 // eliminate the and. 8971 unsigned NumBits = VT.getScalarSizeInBits()*2; 8972 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8973 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8974 } 8975 break; 8976 #endif 8977 } 8978 8979 // Memoize the node unless it returns a flag. 8980 SDNode *N; 8981 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8982 FoldingSetNodeID ID; 8983 AddNodeIDNode(ID, Opcode, VTList, Ops); 8984 void *IP = nullptr; 8985 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8986 return SDValue(E, 0); 8987 8988 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8989 createOperands(N, Ops); 8990 CSEMap.InsertNode(N, IP); 8991 } else { 8992 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8993 createOperands(N, Ops); 8994 } 8995 8996 N->setFlags(Flags); 8997 InsertNode(N); 8998 SDValue V(N, 0); 8999 NewSDValueDbgMsg(V, "Creating new node: ", this); 9000 return V; 9001 } 9002 9003 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9004 SDVTList VTList) { 9005 return getNode(Opcode, DL, VTList, None); 9006 } 9007 9008 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9009 SDValue N1) { 9010 SDValue Ops[] = { N1 }; 9011 return getNode(Opcode, DL, VTList, Ops); 9012 } 9013 9014 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9015 SDValue N1, SDValue N2) { 9016 SDValue Ops[] = { N1, N2 }; 9017 return getNode(Opcode, DL, VTList, Ops); 9018 } 9019 9020 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9021 SDValue N1, SDValue N2, SDValue N3) { 9022 SDValue Ops[] = { N1, N2, N3 }; 9023 return getNode(Opcode, DL, VTList, Ops); 9024 } 9025 9026 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9027 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9028 SDValue Ops[] = { N1, N2, N3, N4 }; 9029 return getNode(Opcode, DL, VTList, Ops); 9030 } 9031 9032 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9033 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9034 SDValue N5) { 9035 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9036 return getNode(Opcode, DL, VTList, Ops); 9037 } 9038 9039 SDVTList SelectionDAG::getVTList(EVT VT) { 9040 return makeVTList(SDNode::getValueTypeList(VT), 1); 9041 } 9042 9043 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9044 FoldingSetNodeID ID; 9045 ID.AddInteger(2U); 9046 ID.AddInteger(VT1.getRawBits()); 9047 ID.AddInteger(VT2.getRawBits()); 9048 9049 void *IP = nullptr; 9050 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9051 if (!Result) { 9052 EVT *Array = Allocator.Allocate<EVT>(2); 9053 Array[0] = VT1; 9054 Array[1] = VT2; 9055 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9056 VTListMap.InsertNode(Result, IP); 9057 } 9058 return Result->getSDVTList(); 9059 } 9060 9061 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9062 FoldingSetNodeID ID; 9063 ID.AddInteger(3U); 9064 ID.AddInteger(VT1.getRawBits()); 9065 ID.AddInteger(VT2.getRawBits()); 9066 ID.AddInteger(VT3.getRawBits()); 9067 9068 void *IP = nullptr; 9069 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9070 if (!Result) { 9071 EVT *Array = Allocator.Allocate<EVT>(3); 9072 Array[0] = VT1; 9073 Array[1] = VT2; 9074 Array[2] = VT3; 9075 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9076 VTListMap.InsertNode(Result, IP); 9077 } 9078 return Result->getSDVTList(); 9079 } 9080 9081 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9082 FoldingSetNodeID ID; 9083 ID.AddInteger(4U); 9084 ID.AddInteger(VT1.getRawBits()); 9085 ID.AddInteger(VT2.getRawBits()); 9086 ID.AddInteger(VT3.getRawBits()); 9087 ID.AddInteger(VT4.getRawBits()); 9088 9089 void *IP = nullptr; 9090 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9091 if (!Result) { 9092 EVT *Array = Allocator.Allocate<EVT>(4); 9093 Array[0] = VT1; 9094 Array[1] = VT2; 9095 Array[2] = VT3; 9096 Array[3] = VT4; 9097 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9098 VTListMap.InsertNode(Result, IP); 9099 } 9100 return Result->getSDVTList(); 9101 } 9102 9103 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9104 unsigned NumVTs = VTs.size(); 9105 FoldingSetNodeID ID; 9106 ID.AddInteger(NumVTs); 9107 for (unsigned index = 0; index < NumVTs; index++) { 9108 ID.AddInteger(VTs[index].getRawBits()); 9109 } 9110 9111 void *IP = nullptr; 9112 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9113 if (!Result) { 9114 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9115 llvm::copy(VTs, Array); 9116 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9117 VTListMap.InsertNode(Result, IP); 9118 } 9119 return Result->getSDVTList(); 9120 } 9121 9122 9123 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9124 /// specified operands. If the resultant node already exists in the DAG, 9125 /// this does not modify the specified node, instead it returns the node that 9126 /// already exists. If the resultant node does not exist in the DAG, the 9127 /// input node is returned. As a degenerate case, if you specify the same 9128 /// input operands as the node already has, the input node is returned. 9129 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9130 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9131 9132 // Check to see if there is no change. 9133 if (Op == N->getOperand(0)) return N; 9134 9135 // See if the modified node already exists. 9136 void *InsertPos = nullptr; 9137 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9138 return Existing; 9139 9140 // Nope it doesn't. Remove the node from its current place in the maps. 9141 if (InsertPos) 9142 if (!RemoveNodeFromCSEMaps(N)) 9143 InsertPos = nullptr; 9144 9145 // Now we update the operands. 9146 N->OperandList[0].set(Op); 9147 9148 updateDivergence(N); 9149 // If this gets put into a CSE map, add it. 9150 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9151 return N; 9152 } 9153 9154 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9155 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9156 9157 // Check to see if there is no change. 9158 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9159 return N; // No operands changed, just return the input node. 9160 9161 // See if the modified node already exists. 9162 void *InsertPos = nullptr; 9163 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9164 return Existing; 9165 9166 // Nope it doesn't. Remove the node from its current place in the maps. 9167 if (InsertPos) 9168 if (!RemoveNodeFromCSEMaps(N)) 9169 InsertPos = nullptr; 9170 9171 // Now we update the operands. 9172 if (N->OperandList[0] != Op1) 9173 N->OperandList[0].set(Op1); 9174 if (N->OperandList[1] != Op2) 9175 N->OperandList[1].set(Op2); 9176 9177 updateDivergence(N); 9178 // If this gets put into a CSE map, add it. 9179 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9180 return N; 9181 } 9182 9183 SDNode *SelectionDAG:: 9184 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9185 SDValue Ops[] = { Op1, Op2, Op3 }; 9186 return UpdateNodeOperands(N, Ops); 9187 } 9188 9189 SDNode *SelectionDAG:: 9190 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9191 SDValue Op3, SDValue Op4) { 9192 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9193 return UpdateNodeOperands(N, Ops); 9194 } 9195 9196 SDNode *SelectionDAG:: 9197 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9198 SDValue Op3, SDValue Op4, SDValue Op5) { 9199 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9200 return UpdateNodeOperands(N, Ops); 9201 } 9202 9203 SDNode *SelectionDAG:: 9204 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9205 unsigned NumOps = Ops.size(); 9206 assert(N->getNumOperands() == NumOps && 9207 "Update with wrong number of operands"); 9208 9209 // If no operands changed just return the input node. 9210 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9211 return N; 9212 9213 // See if the modified node already exists. 9214 void *InsertPos = nullptr; 9215 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9216 return Existing; 9217 9218 // Nope it doesn't. Remove the node from its current place in the maps. 9219 if (InsertPos) 9220 if (!RemoveNodeFromCSEMaps(N)) 9221 InsertPos = nullptr; 9222 9223 // Now we update the operands. 9224 for (unsigned i = 0; i != NumOps; ++i) 9225 if (N->OperandList[i] != Ops[i]) 9226 N->OperandList[i].set(Ops[i]); 9227 9228 updateDivergence(N); 9229 // If this gets put into a CSE map, add it. 9230 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9231 return N; 9232 } 9233 9234 /// DropOperands - Release the operands and set this node to have 9235 /// zero operands. 9236 void SDNode::DropOperands() { 9237 // Unlike the code in MorphNodeTo that does this, we don't need to 9238 // watch for dead nodes here. 9239 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9240 SDUse &Use = *I++; 9241 Use.set(SDValue()); 9242 } 9243 } 9244 9245 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9246 ArrayRef<MachineMemOperand *> NewMemRefs) { 9247 if (NewMemRefs.empty()) { 9248 N->clearMemRefs(); 9249 return; 9250 } 9251 9252 // Check if we can avoid allocating by storing a single reference directly. 9253 if (NewMemRefs.size() == 1) { 9254 N->MemRefs = NewMemRefs[0]; 9255 N->NumMemRefs = 1; 9256 return; 9257 } 9258 9259 MachineMemOperand **MemRefsBuffer = 9260 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9261 llvm::copy(NewMemRefs, MemRefsBuffer); 9262 N->MemRefs = MemRefsBuffer; 9263 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9264 } 9265 9266 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9267 /// machine opcode. 9268 /// 9269 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9270 EVT VT) { 9271 SDVTList VTs = getVTList(VT); 9272 return SelectNodeTo(N, MachineOpc, VTs, None); 9273 } 9274 9275 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9276 EVT VT, SDValue Op1) { 9277 SDVTList VTs = getVTList(VT); 9278 SDValue Ops[] = { Op1 }; 9279 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9280 } 9281 9282 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9283 EVT VT, SDValue Op1, 9284 SDValue Op2) { 9285 SDVTList VTs = getVTList(VT); 9286 SDValue Ops[] = { Op1, Op2 }; 9287 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9288 } 9289 9290 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9291 EVT VT, SDValue Op1, 9292 SDValue Op2, SDValue Op3) { 9293 SDVTList VTs = getVTList(VT); 9294 SDValue Ops[] = { Op1, Op2, Op3 }; 9295 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9296 } 9297 9298 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9299 EVT VT, ArrayRef<SDValue> Ops) { 9300 SDVTList VTs = getVTList(VT); 9301 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9302 } 9303 9304 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9305 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9306 SDVTList VTs = getVTList(VT1, VT2); 9307 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9308 } 9309 9310 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9311 EVT VT1, EVT VT2) { 9312 SDVTList VTs = getVTList(VT1, VT2); 9313 return SelectNodeTo(N, MachineOpc, VTs, None); 9314 } 9315 9316 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9317 EVT VT1, EVT VT2, EVT VT3, 9318 ArrayRef<SDValue> Ops) { 9319 SDVTList VTs = getVTList(VT1, VT2, VT3); 9320 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9321 } 9322 9323 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9324 EVT VT1, EVT VT2, 9325 SDValue Op1, SDValue Op2) { 9326 SDVTList VTs = getVTList(VT1, VT2); 9327 SDValue Ops[] = { Op1, Op2 }; 9328 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9329 } 9330 9331 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9332 SDVTList VTs,ArrayRef<SDValue> Ops) { 9333 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9334 // Reset the NodeID to -1. 9335 New->setNodeId(-1); 9336 if (New != N) { 9337 ReplaceAllUsesWith(N, New); 9338 RemoveDeadNode(N); 9339 } 9340 return New; 9341 } 9342 9343 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9344 /// the line number information on the merged node since it is not possible to 9345 /// preserve the information that operation is associated with multiple lines. 9346 /// This will make the debugger working better at -O0, were there is a higher 9347 /// probability having other instructions associated with that line. 9348 /// 9349 /// For IROrder, we keep the smaller of the two 9350 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9351 DebugLoc NLoc = N->getDebugLoc(); 9352 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9353 N->setDebugLoc(DebugLoc()); 9354 } 9355 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9356 N->setIROrder(Order); 9357 return N; 9358 } 9359 9360 /// MorphNodeTo - This *mutates* the specified node to have the specified 9361 /// return type, opcode, and operands. 9362 /// 9363 /// Note that MorphNodeTo returns the resultant node. If there is already a 9364 /// node of the specified opcode and operands, it returns that node instead of 9365 /// the current one. Note that the SDLoc need not be the same. 9366 /// 9367 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9368 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9369 /// node, and because it doesn't require CSE recalculation for any of 9370 /// the node's users. 9371 /// 9372 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9373 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9374 /// the legalizer which maintain worklists that would need to be updated when 9375 /// deleting things. 9376 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9377 SDVTList VTs, ArrayRef<SDValue> Ops) { 9378 // If an identical node already exists, use it. 9379 void *IP = nullptr; 9380 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9381 FoldingSetNodeID ID; 9382 AddNodeIDNode(ID, Opc, VTs, Ops); 9383 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9384 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9385 } 9386 9387 if (!RemoveNodeFromCSEMaps(N)) 9388 IP = nullptr; 9389 9390 // Start the morphing. 9391 N->NodeType = Opc; 9392 N->ValueList = VTs.VTs; 9393 N->NumValues = VTs.NumVTs; 9394 9395 // Clear the operands list, updating used nodes to remove this from their 9396 // use list. Keep track of any operands that become dead as a result. 9397 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9398 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9399 SDUse &Use = *I++; 9400 SDNode *Used = Use.getNode(); 9401 Use.set(SDValue()); 9402 if (Used->use_empty()) 9403 DeadNodeSet.insert(Used); 9404 } 9405 9406 // For MachineNode, initialize the memory references information. 9407 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9408 MN->clearMemRefs(); 9409 9410 // Swap for an appropriately sized array from the recycler. 9411 removeOperands(N); 9412 createOperands(N, Ops); 9413 9414 // Delete any nodes that are still dead after adding the uses for the 9415 // new operands. 9416 if (!DeadNodeSet.empty()) { 9417 SmallVector<SDNode *, 16> DeadNodes; 9418 for (SDNode *N : DeadNodeSet) 9419 if (N->use_empty()) 9420 DeadNodes.push_back(N); 9421 RemoveDeadNodes(DeadNodes); 9422 } 9423 9424 if (IP) 9425 CSEMap.InsertNode(N, IP); // Memoize the new node. 9426 return N; 9427 } 9428 9429 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9430 unsigned OrigOpc = Node->getOpcode(); 9431 unsigned NewOpc; 9432 switch (OrigOpc) { 9433 default: 9434 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9435 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9436 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9437 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9438 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9439 #include "llvm/IR/ConstrainedOps.def" 9440 } 9441 9442 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9443 9444 // We're taking this node out of the chain, so we need to re-link things. 9445 SDValue InputChain = Node->getOperand(0); 9446 SDValue OutputChain = SDValue(Node, 1); 9447 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9448 9449 SmallVector<SDValue, 3> Ops; 9450 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9451 Ops.push_back(Node->getOperand(i)); 9452 9453 SDVTList VTs = getVTList(Node->getValueType(0)); 9454 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9455 9456 // MorphNodeTo can operate in two ways: if an existing node with the 9457 // specified operands exists, it can just return it. Otherwise, it 9458 // updates the node in place to have the requested operands. 9459 if (Res == Node) { 9460 // If we updated the node in place, reset the node ID. To the isel, 9461 // this should be just like a newly allocated machine node. 9462 Res->setNodeId(-1); 9463 } else { 9464 ReplaceAllUsesWith(Node, Res); 9465 RemoveDeadNode(Node); 9466 } 9467 9468 return Res; 9469 } 9470 9471 /// getMachineNode - These are used for target selectors to create a new node 9472 /// with specified return type(s), MachineInstr opcode, and operands. 9473 /// 9474 /// Note that getMachineNode returns the resultant node. If there is already a 9475 /// node of the specified opcode and operands, it returns that node instead of 9476 /// the current one. 9477 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9478 EVT VT) { 9479 SDVTList VTs = getVTList(VT); 9480 return getMachineNode(Opcode, dl, VTs, None); 9481 } 9482 9483 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9484 EVT VT, SDValue Op1) { 9485 SDVTList VTs = getVTList(VT); 9486 SDValue Ops[] = { Op1 }; 9487 return getMachineNode(Opcode, dl, VTs, Ops); 9488 } 9489 9490 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9491 EVT VT, SDValue Op1, SDValue Op2) { 9492 SDVTList VTs = getVTList(VT); 9493 SDValue Ops[] = { Op1, Op2 }; 9494 return getMachineNode(Opcode, dl, VTs, Ops); 9495 } 9496 9497 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9498 EVT VT, SDValue Op1, SDValue Op2, 9499 SDValue Op3) { 9500 SDVTList VTs = getVTList(VT); 9501 SDValue Ops[] = { Op1, Op2, Op3 }; 9502 return getMachineNode(Opcode, dl, VTs, Ops); 9503 } 9504 9505 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9506 EVT VT, ArrayRef<SDValue> Ops) { 9507 SDVTList VTs = getVTList(VT); 9508 return getMachineNode(Opcode, dl, VTs, Ops); 9509 } 9510 9511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9512 EVT VT1, EVT VT2, SDValue Op1, 9513 SDValue Op2) { 9514 SDVTList VTs = getVTList(VT1, VT2); 9515 SDValue Ops[] = { Op1, Op2 }; 9516 return getMachineNode(Opcode, dl, VTs, Ops); 9517 } 9518 9519 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9520 EVT VT1, EVT VT2, SDValue Op1, 9521 SDValue Op2, SDValue Op3) { 9522 SDVTList VTs = getVTList(VT1, VT2); 9523 SDValue Ops[] = { Op1, Op2, Op3 }; 9524 return getMachineNode(Opcode, dl, VTs, Ops); 9525 } 9526 9527 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9528 EVT VT1, EVT VT2, 9529 ArrayRef<SDValue> Ops) { 9530 SDVTList VTs = getVTList(VT1, VT2); 9531 return getMachineNode(Opcode, dl, VTs, Ops); 9532 } 9533 9534 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9535 EVT VT1, EVT VT2, EVT VT3, 9536 SDValue Op1, SDValue Op2) { 9537 SDVTList VTs = getVTList(VT1, VT2, VT3); 9538 SDValue Ops[] = { Op1, Op2 }; 9539 return getMachineNode(Opcode, dl, VTs, Ops); 9540 } 9541 9542 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9543 EVT VT1, EVT VT2, EVT VT3, 9544 SDValue Op1, SDValue Op2, 9545 SDValue Op3) { 9546 SDVTList VTs = getVTList(VT1, VT2, VT3); 9547 SDValue Ops[] = { Op1, Op2, Op3 }; 9548 return getMachineNode(Opcode, dl, VTs, Ops); 9549 } 9550 9551 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9552 EVT VT1, EVT VT2, EVT VT3, 9553 ArrayRef<SDValue> Ops) { 9554 SDVTList VTs = getVTList(VT1, VT2, VT3); 9555 return getMachineNode(Opcode, dl, VTs, Ops); 9556 } 9557 9558 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9559 ArrayRef<EVT> ResultTys, 9560 ArrayRef<SDValue> Ops) { 9561 SDVTList VTs = getVTList(ResultTys); 9562 return getMachineNode(Opcode, dl, VTs, Ops); 9563 } 9564 9565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9566 SDVTList VTs, 9567 ArrayRef<SDValue> Ops) { 9568 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9569 MachineSDNode *N; 9570 void *IP = nullptr; 9571 9572 if (DoCSE) { 9573 FoldingSetNodeID ID; 9574 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9575 IP = nullptr; 9576 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9577 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9578 } 9579 } 9580 9581 // Allocate a new MachineSDNode. 9582 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9583 createOperands(N, Ops); 9584 9585 if (DoCSE) 9586 CSEMap.InsertNode(N, IP); 9587 9588 InsertNode(N); 9589 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9590 return N; 9591 } 9592 9593 /// getTargetExtractSubreg - A convenience function for creating 9594 /// TargetOpcode::EXTRACT_SUBREG nodes. 9595 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9596 SDValue Operand) { 9597 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9598 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9599 VT, Operand, SRIdxVal); 9600 return SDValue(Subreg, 0); 9601 } 9602 9603 /// getTargetInsertSubreg - A convenience function for creating 9604 /// TargetOpcode::INSERT_SUBREG nodes. 9605 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9606 SDValue Operand, SDValue Subreg) { 9607 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9608 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9609 VT, Operand, Subreg, SRIdxVal); 9610 return SDValue(Result, 0); 9611 } 9612 9613 /// getNodeIfExists - Get the specified node if it's already available, or 9614 /// else return NULL. 9615 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9616 ArrayRef<SDValue> Ops) { 9617 SDNodeFlags Flags; 9618 if (Inserter) 9619 Flags = Inserter->getFlags(); 9620 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9621 } 9622 9623 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9624 ArrayRef<SDValue> Ops, 9625 const SDNodeFlags Flags) { 9626 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9627 FoldingSetNodeID ID; 9628 AddNodeIDNode(ID, Opcode, VTList, Ops); 9629 void *IP = nullptr; 9630 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9631 E->intersectFlagsWith(Flags); 9632 return E; 9633 } 9634 } 9635 return nullptr; 9636 } 9637 9638 /// doesNodeExist - Check if a node exists without modifying its flags. 9639 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9640 ArrayRef<SDValue> Ops) { 9641 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9642 FoldingSetNodeID ID; 9643 AddNodeIDNode(ID, Opcode, VTList, Ops); 9644 void *IP = nullptr; 9645 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9646 return true; 9647 } 9648 return false; 9649 } 9650 9651 /// getDbgValue - Creates a SDDbgValue node. 9652 /// 9653 /// SDNode 9654 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9655 SDNode *N, unsigned R, bool IsIndirect, 9656 const DebugLoc &DL, unsigned O) { 9657 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9658 "Expected inlined-at fields to agree"); 9659 return new (DbgInfo->getAlloc()) 9660 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9661 {}, IsIndirect, DL, O, 9662 /*IsVariadic=*/false); 9663 } 9664 9665 /// Constant 9666 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9667 DIExpression *Expr, 9668 const Value *C, 9669 const DebugLoc &DL, unsigned O) { 9670 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9671 "Expected inlined-at fields to agree"); 9672 return new (DbgInfo->getAlloc()) 9673 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9674 /*IsIndirect=*/false, DL, O, 9675 /*IsVariadic=*/false); 9676 } 9677 9678 /// FrameIndex 9679 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9680 DIExpression *Expr, unsigned FI, 9681 bool IsIndirect, 9682 const DebugLoc &DL, 9683 unsigned O) { 9684 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9685 "Expected inlined-at fields to agree"); 9686 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9687 } 9688 9689 /// FrameIndex with dependencies 9690 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9691 DIExpression *Expr, unsigned FI, 9692 ArrayRef<SDNode *> Dependencies, 9693 bool IsIndirect, 9694 const DebugLoc &DL, 9695 unsigned O) { 9696 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9697 "Expected inlined-at fields to agree"); 9698 return new (DbgInfo->getAlloc()) 9699 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9700 Dependencies, IsIndirect, DL, O, 9701 /*IsVariadic=*/false); 9702 } 9703 9704 /// VReg 9705 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9706 unsigned VReg, bool IsIndirect, 9707 const DebugLoc &DL, unsigned O) { 9708 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9709 "Expected inlined-at fields to agree"); 9710 return new (DbgInfo->getAlloc()) 9711 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9712 {}, IsIndirect, DL, O, 9713 /*IsVariadic=*/false); 9714 } 9715 9716 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9717 ArrayRef<SDDbgOperand> Locs, 9718 ArrayRef<SDNode *> Dependencies, 9719 bool IsIndirect, const DebugLoc &DL, 9720 unsigned O, bool IsVariadic) { 9721 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9722 "Expected inlined-at fields to agree"); 9723 return new (DbgInfo->getAlloc()) 9724 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9725 DL, O, IsVariadic); 9726 } 9727 9728 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9729 unsigned OffsetInBits, unsigned SizeInBits, 9730 bool InvalidateDbg) { 9731 SDNode *FromNode = From.getNode(); 9732 SDNode *ToNode = To.getNode(); 9733 assert(FromNode && ToNode && "Can't modify dbg values"); 9734 9735 // PR35338 9736 // TODO: assert(From != To && "Redundant dbg value transfer"); 9737 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9738 if (From == To || FromNode == ToNode) 9739 return; 9740 9741 if (!FromNode->getHasDebugValue()) 9742 return; 9743 9744 SDDbgOperand FromLocOp = 9745 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9746 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9747 9748 SmallVector<SDDbgValue *, 2> ClonedDVs; 9749 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9750 if (Dbg->isInvalidated()) 9751 continue; 9752 9753 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9754 9755 // Create a new location ops vector that is equal to the old vector, but 9756 // with each instance of FromLocOp replaced with ToLocOp. 9757 bool Changed = false; 9758 auto NewLocOps = Dbg->copyLocationOps(); 9759 std::replace_if( 9760 NewLocOps.begin(), NewLocOps.end(), 9761 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9762 bool Match = Op == FromLocOp; 9763 Changed |= Match; 9764 return Match; 9765 }, 9766 ToLocOp); 9767 // Ignore this SDDbgValue if we didn't find a matching location. 9768 if (!Changed) 9769 continue; 9770 9771 DIVariable *Var = Dbg->getVariable(); 9772 auto *Expr = Dbg->getExpression(); 9773 // If a fragment is requested, update the expression. 9774 if (SizeInBits) { 9775 // When splitting a larger (e.g., sign-extended) value whose 9776 // lower bits are described with an SDDbgValue, do not attempt 9777 // to transfer the SDDbgValue to the upper bits. 9778 if (auto FI = Expr->getFragmentInfo()) 9779 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9780 continue; 9781 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9782 SizeInBits); 9783 if (!Fragment) 9784 continue; 9785 Expr = *Fragment; 9786 } 9787 9788 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9789 // Clone the SDDbgValue and move it to To. 9790 SDDbgValue *Clone = getDbgValueList( 9791 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9792 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9793 Dbg->isVariadic()); 9794 ClonedDVs.push_back(Clone); 9795 9796 if (InvalidateDbg) { 9797 // Invalidate value and indicate the SDDbgValue should not be emitted. 9798 Dbg->setIsInvalidated(); 9799 Dbg->setIsEmitted(); 9800 } 9801 } 9802 9803 for (SDDbgValue *Dbg : ClonedDVs) { 9804 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9805 "Transferred DbgValues should depend on the new SDNode"); 9806 AddDbgValue(Dbg, false); 9807 } 9808 } 9809 9810 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9811 if (!N.getHasDebugValue()) 9812 return; 9813 9814 SmallVector<SDDbgValue *, 2> ClonedDVs; 9815 for (auto DV : GetDbgValues(&N)) { 9816 if (DV->isInvalidated()) 9817 continue; 9818 switch (N.getOpcode()) { 9819 default: 9820 break; 9821 case ISD::ADD: 9822 SDValue N0 = N.getOperand(0); 9823 SDValue N1 = N.getOperand(1); 9824 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9825 isConstantIntBuildVectorOrConstantInt(N1)) { 9826 uint64_t Offset = N.getConstantOperandVal(1); 9827 9828 // Rewrite an ADD constant node into a DIExpression. Since we are 9829 // performing arithmetic to compute the variable's *value* in the 9830 // DIExpression, we need to mark the expression with a 9831 // DW_OP_stack_value. 9832 auto *DIExpr = DV->getExpression(); 9833 auto NewLocOps = DV->copyLocationOps(); 9834 bool Changed = false; 9835 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9836 // We're not given a ResNo to compare against because the whole 9837 // node is going away. We know that any ISD::ADD only has one 9838 // result, so we can assume any node match is using the result. 9839 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9840 NewLocOps[i].getSDNode() != &N) 9841 continue; 9842 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9843 SmallVector<uint64_t, 3> ExprOps; 9844 DIExpression::appendOffset(ExprOps, Offset); 9845 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9846 Changed = true; 9847 } 9848 (void)Changed; 9849 assert(Changed && "Salvage target doesn't use N"); 9850 9851 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9852 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9853 NewLocOps, AdditionalDependencies, 9854 DV->isIndirect(), DV->getDebugLoc(), 9855 DV->getOrder(), DV->isVariadic()); 9856 ClonedDVs.push_back(Clone); 9857 DV->setIsInvalidated(); 9858 DV->setIsEmitted(); 9859 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9860 N0.getNode()->dumprFull(this); 9861 dbgs() << " into " << *DIExpr << '\n'); 9862 } 9863 } 9864 } 9865 9866 for (SDDbgValue *Dbg : ClonedDVs) { 9867 assert(!Dbg->getSDNodes().empty() && 9868 "Salvaged DbgValue should depend on a new SDNode"); 9869 AddDbgValue(Dbg, false); 9870 } 9871 } 9872 9873 /// Creates a SDDbgLabel node. 9874 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9875 const DebugLoc &DL, unsigned O) { 9876 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9877 "Expected inlined-at fields to agree"); 9878 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9879 } 9880 9881 namespace { 9882 9883 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9884 /// pointed to by a use iterator is deleted, increment the use iterator 9885 /// so that it doesn't dangle. 9886 /// 9887 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9888 SDNode::use_iterator &UI; 9889 SDNode::use_iterator &UE; 9890 9891 void NodeDeleted(SDNode *N, SDNode *E) override { 9892 // Increment the iterator as needed. 9893 while (UI != UE && N == *UI) 9894 ++UI; 9895 } 9896 9897 public: 9898 RAUWUpdateListener(SelectionDAG &d, 9899 SDNode::use_iterator &ui, 9900 SDNode::use_iterator &ue) 9901 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9902 }; 9903 9904 } // end anonymous namespace 9905 9906 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9907 /// This can cause recursive merging of nodes in the DAG. 9908 /// 9909 /// This version assumes From has a single result value. 9910 /// 9911 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9912 SDNode *From = FromN.getNode(); 9913 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9914 "Cannot replace with this method!"); 9915 assert(From != To.getNode() && "Cannot replace uses of with self"); 9916 9917 // Preserve Debug Values 9918 transferDbgValues(FromN, To); 9919 9920 // Iterate over all the existing uses of From. New uses will be added 9921 // to the beginning of the use list, which we avoid visiting. 9922 // This specifically avoids visiting uses of From that arise while the 9923 // replacement is happening, because any such uses would be the result 9924 // of CSE: If an existing node looks like From after one of its operands 9925 // is replaced by To, we don't want to replace of all its users with To 9926 // too. See PR3018 for more info. 9927 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9928 RAUWUpdateListener Listener(*this, UI, UE); 9929 while (UI != UE) { 9930 SDNode *User = *UI; 9931 9932 // This node is about to morph, remove its old self from the CSE maps. 9933 RemoveNodeFromCSEMaps(User); 9934 9935 // A user can appear in a use list multiple times, and when this 9936 // happens the uses are usually next to each other in the list. 9937 // To help reduce the number of CSE recomputations, process all 9938 // the uses of this user that we can find this way. 9939 do { 9940 SDUse &Use = UI.getUse(); 9941 ++UI; 9942 Use.set(To); 9943 if (To->isDivergent() != From->isDivergent()) 9944 updateDivergence(User); 9945 } while (UI != UE && *UI == User); 9946 // Now that we have modified User, add it back to the CSE maps. If it 9947 // already exists there, recursively merge the results together. 9948 AddModifiedNodeToCSEMaps(User); 9949 } 9950 9951 // If we just RAUW'd the root, take note. 9952 if (FromN == getRoot()) 9953 setRoot(To); 9954 } 9955 9956 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9957 /// This can cause recursive merging of nodes in the DAG. 9958 /// 9959 /// This version assumes that for each value of From, there is a 9960 /// corresponding value in To in the same position with the same type. 9961 /// 9962 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9963 #ifndef NDEBUG 9964 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9965 assert((!From->hasAnyUseOfValue(i) || 9966 From->getValueType(i) == To->getValueType(i)) && 9967 "Cannot use this version of ReplaceAllUsesWith!"); 9968 #endif 9969 9970 // Handle the trivial case. 9971 if (From == To) 9972 return; 9973 9974 // Preserve Debug Info. Only do this if there's a use. 9975 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9976 if (From->hasAnyUseOfValue(i)) { 9977 assert((i < To->getNumValues()) && "Invalid To location"); 9978 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9979 } 9980 9981 // Iterate over just the existing users of From. See the comments in 9982 // the ReplaceAllUsesWith above. 9983 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9984 RAUWUpdateListener Listener(*this, UI, UE); 9985 while (UI != UE) { 9986 SDNode *User = *UI; 9987 9988 // This node is about to morph, remove its old self from the CSE maps. 9989 RemoveNodeFromCSEMaps(User); 9990 9991 // A user can appear in a use list multiple times, and when this 9992 // happens the uses are usually next to each other in the list. 9993 // To help reduce the number of CSE recomputations, process all 9994 // the uses of this user that we can find this way. 9995 do { 9996 SDUse &Use = UI.getUse(); 9997 ++UI; 9998 Use.setNode(To); 9999 if (To->isDivergent() != From->isDivergent()) 10000 updateDivergence(User); 10001 } while (UI != UE && *UI == User); 10002 10003 // Now that we have modified User, add it back to the CSE maps. If it 10004 // already exists there, recursively merge the results together. 10005 AddModifiedNodeToCSEMaps(User); 10006 } 10007 10008 // If we just RAUW'd the root, take note. 10009 if (From == getRoot().getNode()) 10010 setRoot(SDValue(To, getRoot().getResNo())); 10011 } 10012 10013 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10014 /// This can cause recursive merging of nodes in the DAG. 10015 /// 10016 /// This version can replace From with any result values. To must match the 10017 /// number and types of values returned by From. 10018 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10019 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10020 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10021 10022 // Preserve Debug Info. 10023 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10024 transferDbgValues(SDValue(From, i), To[i]); 10025 10026 // Iterate over just the existing users of From. See the comments in 10027 // the ReplaceAllUsesWith above. 10028 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10029 RAUWUpdateListener Listener(*this, UI, UE); 10030 while (UI != UE) { 10031 SDNode *User = *UI; 10032 10033 // This node is about to morph, remove its old self from the CSE maps. 10034 RemoveNodeFromCSEMaps(User); 10035 10036 // A user can appear in a use list multiple times, and when this happens the 10037 // uses are usually next to each other in the list. To help reduce the 10038 // number of CSE and divergence recomputations, process all the uses of this 10039 // user that we can find this way. 10040 bool To_IsDivergent = false; 10041 do { 10042 SDUse &Use = UI.getUse(); 10043 const SDValue &ToOp = To[Use.getResNo()]; 10044 ++UI; 10045 Use.set(ToOp); 10046 To_IsDivergent |= ToOp->isDivergent(); 10047 } while (UI != UE && *UI == User); 10048 10049 if (To_IsDivergent != From->isDivergent()) 10050 updateDivergence(User); 10051 10052 // Now that we have modified User, add it back to the CSE maps. If it 10053 // already exists there, recursively merge the results together. 10054 AddModifiedNodeToCSEMaps(User); 10055 } 10056 10057 // If we just RAUW'd the root, take note. 10058 if (From == getRoot().getNode()) 10059 setRoot(SDValue(To[getRoot().getResNo()])); 10060 } 10061 10062 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10063 /// uses of other values produced by From.getNode() alone. The Deleted 10064 /// vector is handled the same way as for ReplaceAllUsesWith. 10065 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10066 // Handle the really simple, really trivial case efficiently. 10067 if (From == To) return; 10068 10069 // Handle the simple, trivial, case efficiently. 10070 if (From.getNode()->getNumValues() == 1) { 10071 ReplaceAllUsesWith(From, To); 10072 return; 10073 } 10074 10075 // Preserve Debug Info. 10076 transferDbgValues(From, To); 10077 10078 // Iterate over just the existing users of From. See the comments in 10079 // the ReplaceAllUsesWith above. 10080 SDNode::use_iterator UI = From.getNode()->use_begin(), 10081 UE = From.getNode()->use_end(); 10082 RAUWUpdateListener Listener(*this, UI, UE); 10083 while (UI != UE) { 10084 SDNode *User = *UI; 10085 bool UserRemovedFromCSEMaps = false; 10086 10087 // A user can appear in a use list multiple times, and when this 10088 // happens the uses are usually next to each other in the list. 10089 // To help reduce the number of CSE recomputations, process all 10090 // the uses of this user that we can find this way. 10091 do { 10092 SDUse &Use = UI.getUse(); 10093 10094 // Skip uses of different values from the same node. 10095 if (Use.getResNo() != From.getResNo()) { 10096 ++UI; 10097 continue; 10098 } 10099 10100 // If this node hasn't been modified yet, it's still in the CSE maps, 10101 // so remove its old self from the CSE maps. 10102 if (!UserRemovedFromCSEMaps) { 10103 RemoveNodeFromCSEMaps(User); 10104 UserRemovedFromCSEMaps = true; 10105 } 10106 10107 ++UI; 10108 Use.set(To); 10109 if (To->isDivergent() != From->isDivergent()) 10110 updateDivergence(User); 10111 } while (UI != UE && *UI == User); 10112 // We are iterating over all uses of the From node, so if a use 10113 // doesn't use the specific value, no changes are made. 10114 if (!UserRemovedFromCSEMaps) 10115 continue; 10116 10117 // Now that we have modified User, add it back to the CSE maps. If it 10118 // already exists there, recursively merge the results together. 10119 AddModifiedNodeToCSEMaps(User); 10120 } 10121 10122 // If we just RAUW'd the root, take note. 10123 if (From == getRoot()) 10124 setRoot(To); 10125 } 10126 10127 namespace { 10128 10129 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10130 /// to record information about a use. 10131 struct UseMemo { 10132 SDNode *User; 10133 unsigned Index; 10134 SDUse *Use; 10135 }; 10136 10137 /// operator< - Sort Memos by User. 10138 bool operator<(const UseMemo &L, const UseMemo &R) { 10139 return (intptr_t)L.User < (intptr_t)R.User; 10140 } 10141 10142 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10143 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10144 /// the node already has been taken care of recursively. 10145 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10146 SmallVector<UseMemo, 4> &Uses; 10147 10148 void NodeDeleted(SDNode *N, SDNode *E) override { 10149 for (UseMemo &Memo : Uses) 10150 if (Memo.User == N) 10151 Memo.User = nullptr; 10152 } 10153 10154 public: 10155 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10156 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10157 }; 10158 10159 } // end anonymous namespace 10160 10161 bool SelectionDAG::calculateDivergence(SDNode *N) { 10162 if (TLI->isSDNodeAlwaysUniform(N)) { 10163 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10164 "Conflicting divergence information!"); 10165 return false; 10166 } 10167 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10168 return true; 10169 for (auto &Op : N->ops()) { 10170 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10171 return true; 10172 } 10173 return false; 10174 } 10175 10176 void SelectionDAG::updateDivergence(SDNode *N) { 10177 SmallVector<SDNode *, 16> Worklist(1, N); 10178 do { 10179 N = Worklist.pop_back_val(); 10180 bool IsDivergent = calculateDivergence(N); 10181 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10182 N->SDNodeBits.IsDivergent = IsDivergent; 10183 llvm::append_range(Worklist, N->uses()); 10184 } 10185 } while (!Worklist.empty()); 10186 } 10187 10188 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10189 DenseMap<SDNode *, unsigned> Degree; 10190 Order.reserve(AllNodes.size()); 10191 for (auto &N : allnodes()) { 10192 unsigned NOps = N.getNumOperands(); 10193 Degree[&N] = NOps; 10194 if (0 == NOps) 10195 Order.push_back(&N); 10196 } 10197 for (size_t I = 0; I != Order.size(); ++I) { 10198 SDNode *N = Order[I]; 10199 for (auto U : N->uses()) { 10200 unsigned &UnsortedOps = Degree[U]; 10201 if (0 == --UnsortedOps) 10202 Order.push_back(U); 10203 } 10204 } 10205 } 10206 10207 #ifndef NDEBUG 10208 void SelectionDAG::VerifyDAGDivergence() { 10209 std::vector<SDNode *> TopoOrder; 10210 CreateTopologicalOrder(TopoOrder); 10211 for (auto *N : TopoOrder) { 10212 assert(calculateDivergence(N) == N->isDivergent() && 10213 "Divergence bit inconsistency detected"); 10214 } 10215 } 10216 #endif 10217 10218 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10219 /// uses of other values produced by From.getNode() alone. The same value 10220 /// may appear in both the From and To list. The Deleted vector is 10221 /// handled the same way as for ReplaceAllUsesWith. 10222 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10223 const SDValue *To, 10224 unsigned Num){ 10225 // Handle the simple, trivial case efficiently. 10226 if (Num == 1) 10227 return ReplaceAllUsesOfValueWith(*From, *To); 10228 10229 transferDbgValues(*From, *To); 10230 10231 // Read up all the uses and make records of them. This helps 10232 // processing new uses that are introduced during the 10233 // replacement process. 10234 SmallVector<UseMemo, 4> Uses; 10235 for (unsigned i = 0; i != Num; ++i) { 10236 unsigned FromResNo = From[i].getResNo(); 10237 SDNode *FromNode = From[i].getNode(); 10238 for (SDNode::use_iterator UI = FromNode->use_begin(), 10239 E = FromNode->use_end(); UI != E; ++UI) { 10240 SDUse &Use = UI.getUse(); 10241 if (Use.getResNo() == FromResNo) { 10242 UseMemo Memo = { *UI, i, &Use }; 10243 Uses.push_back(Memo); 10244 } 10245 } 10246 } 10247 10248 // Sort the uses, so that all the uses from a given User are together. 10249 llvm::sort(Uses); 10250 RAUOVWUpdateListener Listener(*this, Uses); 10251 10252 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10253 UseIndex != UseIndexEnd; ) { 10254 // We know that this user uses some value of From. If it is the right 10255 // value, update it. 10256 SDNode *User = Uses[UseIndex].User; 10257 // If the node has been deleted by recursive CSE updates when updating 10258 // another node, then just skip this entry. 10259 if (User == nullptr) { 10260 ++UseIndex; 10261 continue; 10262 } 10263 10264 // This node is about to morph, remove its old self from the CSE maps. 10265 RemoveNodeFromCSEMaps(User); 10266 10267 // The Uses array is sorted, so all the uses for a given User 10268 // are next to each other in the list. 10269 // To help reduce the number of CSE recomputations, process all 10270 // the uses of this user that we can find this way. 10271 do { 10272 unsigned i = Uses[UseIndex].Index; 10273 SDUse &Use = *Uses[UseIndex].Use; 10274 ++UseIndex; 10275 10276 Use.set(To[i]); 10277 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10278 10279 // Now that we have modified User, add it back to the CSE maps. If it 10280 // already exists there, recursively merge the results together. 10281 AddModifiedNodeToCSEMaps(User); 10282 } 10283 } 10284 10285 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10286 /// based on their topological order. It returns the maximum id and a vector 10287 /// of the SDNodes* in assigned order by reference. 10288 unsigned SelectionDAG::AssignTopologicalOrder() { 10289 unsigned DAGSize = 0; 10290 10291 // SortedPos tracks the progress of the algorithm. Nodes before it are 10292 // sorted, nodes after it are unsorted. When the algorithm completes 10293 // it is at the end of the list. 10294 allnodes_iterator SortedPos = allnodes_begin(); 10295 10296 // Visit all the nodes. Move nodes with no operands to the front of 10297 // the list immediately. Annotate nodes that do have operands with their 10298 // operand count. Before we do this, the Node Id fields of the nodes 10299 // may contain arbitrary values. After, the Node Id fields for nodes 10300 // before SortedPos will contain the topological sort index, and the 10301 // Node Id fields for nodes At SortedPos and after will contain the 10302 // count of outstanding operands. 10303 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10304 checkForCycles(&N, this); 10305 unsigned Degree = N.getNumOperands(); 10306 if (Degree == 0) { 10307 // A node with no uses, add it to the result array immediately. 10308 N.setNodeId(DAGSize++); 10309 allnodes_iterator Q(&N); 10310 if (Q != SortedPos) 10311 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10312 assert(SortedPos != AllNodes.end() && "Overran node list"); 10313 ++SortedPos; 10314 } else { 10315 // Temporarily use the Node Id as scratch space for the degree count. 10316 N.setNodeId(Degree); 10317 } 10318 } 10319 10320 // Visit all the nodes. As we iterate, move nodes into sorted order, 10321 // such that by the time the end is reached all nodes will be sorted. 10322 for (SDNode &Node : allnodes()) { 10323 SDNode *N = &Node; 10324 checkForCycles(N, this); 10325 // N is in sorted position, so all its uses have one less operand 10326 // that needs to be sorted. 10327 for (SDNode *P : N->uses()) { 10328 unsigned Degree = P->getNodeId(); 10329 assert(Degree != 0 && "Invalid node degree"); 10330 --Degree; 10331 if (Degree == 0) { 10332 // All of P's operands are sorted, so P may sorted now. 10333 P->setNodeId(DAGSize++); 10334 if (P->getIterator() != SortedPos) 10335 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10336 assert(SortedPos != AllNodes.end() && "Overran node list"); 10337 ++SortedPos; 10338 } else { 10339 // Update P's outstanding operand count. 10340 P->setNodeId(Degree); 10341 } 10342 } 10343 if (Node.getIterator() == SortedPos) { 10344 #ifndef NDEBUG 10345 allnodes_iterator I(N); 10346 SDNode *S = &*++I; 10347 dbgs() << "Overran sorted position:\n"; 10348 S->dumprFull(this); dbgs() << "\n"; 10349 dbgs() << "Checking if this is due to cycles\n"; 10350 checkForCycles(this, true); 10351 #endif 10352 llvm_unreachable(nullptr); 10353 } 10354 } 10355 10356 assert(SortedPos == AllNodes.end() && 10357 "Topological sort incomplete!"); 10358 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10359 "First node in topological sort is not the entry token!"); 10360 assert(AllNodes.front().getNodeId() == 0 && 10361 "First node in topological sort has non-zero id!"); 10362 assert(AllNodes.front().getNumOperands() == 0 && 10363 "First node in topological sort has operands!"); 10364 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10365 "Last node in topologic sort has unexpected id!"); 10366 assert(AllNodes.back().use_empty() && 10367 "Last node in topologic sort has users!"); 10368 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10369 return DAGSize; 10370 } 10371 10372 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10373 /// value is produced by SD. 10374 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10375 for (SDNode *SD : DB->getSDNodes()) { 10376 if (!SD) 10377 continue; 10378 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10379 SD->setHasDebugValue(true); 10380 } 10381 DbgInfo->add(DB, isParameter); 10382 } 10383 10384 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10385 10386 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10387 SDValue NewMemOpChain) { 10388 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10389 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10390 // The new memory operation must have the same position as the old load in 10391 // terms of memory dependency. Create a TokenFactor for the old load and new 10392 // memory operation and update uses of the old load's output chain to use that 10393 // TokenFactor. 10394 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10395 return NewMemOpChain; 10396 10397 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10398 OldChain, NewMemOpChain); 10399 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10400 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10401 return TokenFactor; 10402 } 10403 10404 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10405 SDValue NewMemOp) { 10406 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10407 SDValue OldChain = SDValue(OldLoad, 1); 10408 SDValue NewMemOpChain = NewMemOp.getValue(1); 10409 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10410 } 10411 10412 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10413 Function **OutFunction) { 10414 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10415 10416 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10417 auto *Module = MF->getFunction().getParent(); 10418 auto *Function = Module->getFunction(Symbol); 10419 10420 if (OutFunction != nullptr) 10421 *OutFunction = Function; 10422 10423 if (Function != nullptr) { 10424 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10425 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10426 } 10427 10428 std::string ErrorStr; 10429 raw_string_ostream ErrorFormatter(ErrorStr); 10430 ErrorFormatter << "Undefined external symbol "; 10431 ErrorFormatter << '"' << Symbol << '"'; 10432 report_fatal_error(Twine(ErrorFormatter.str())); 10433 } 10434 10435 //===----------------------------------------------------------------------===// 10436 // SDNode Class 10437 //===----------------------------------------------------------------------===// 10438 10439 bool llvm::isNullConstant(SDValue V) { 10440 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10441 return Const != nullptr && Const->isZero(); 10442 } 10443 10444 bool llvm::isNullFPConstant(SDValue V) { 10445 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10446 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10447 } 10448 10449 bool llvm::isAllOnesConstant(SDValue V) { 10450 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10451 return Const != nullptr && Const->isAllOnes(); 10452 } 10453 10454 bool llvm::isOneConstant(SDValue V) { 10455 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10456 return Const != nullptr && Const->isOne(); 10457 } 10458 10459 bool llvm::isMinSignedConstant(SDValue V) { 10460 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10461 return Const != nullptr && Const->isMinSignedValue(); 10462 } 10463 10464 SDValue llvm::peekThroughBitcasts(SDValue V) { 10465 while (V.getOpcode() == ISD::BITCAST) 10466 V = V.getOperand(0); 10467 return V; 10468 } 10469 10470 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10471 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10472 V = V.getOperand(0); 10473 return V; 10474 } 10475 10476 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10477 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10478 V = V.getOperand(0); 10479 return V; 10480 } 10481 10482 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10483 if (V.getOpcode() != ISD::XOR) 10484 return false; 10485 V = peekThroughBitcasts(V.getOperand(1)); 10486 unsigned NumBits = V.getScalarValueSizeInBits(); 10487 ConstantSDNode *C = 10488 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10489 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10490 } 10491 10492 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10493 bool AllowTruncation) { 10494 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10495 return CN; 10496 10497 // SplatVectors can truncate their operands. Ignore that case here unless 10498 // AllowTruncation is set. 10499 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10500 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10501 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10502 EVT CVT = CN->getValueType(0); 10503 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10504 if (AllowTruncation || CVT == VecEltVT) 10505 return CN; 10506 } 10507 } 10508 10509 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10510 BitVector UndefElements; 10511 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10512 10513 // BuildVectors can truncate their operands. Ignore that case here unless 10514 // AllowTruncation is set. 10515 if (CN && (UndefElements.none() || AllowUndefs)) { 10516 EVT CVT = CN->getValueType(0); 10517 EVT NSVT = N.getValueType().getScalarType(); 10518 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10519 if (AllowTruncation || (CVT == NSVT)) 10520 return CN; 10521 } 10522 } 10523 10524 return nullptr; 10525 } 10526 10527 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10528 bool AllowUndefs, 10529 bool AllowTruncation) { 10530 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10531 return CN; 10532 10533 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10534 BitVector UndefElements; 10535 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10536 10537 // BuildVectors can truncate their operands. Ignore that case here unless 10538 // AllowTruncation is set. 10539 if (CN && (UndefElements.none() || AllowUndefs)) { 10540 EVT CVT = CN->getValueType(0); 10541 EVT NSVT = N.getValueType().getScalarType(); 10542 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10543 if (AllowTruncation || (CVT == NSVT)) 10544 return CN; 10545 } 10546 } 10547 10548 return nullptr; 10549 } 10550 10551 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10552 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10553 return CN; 10554 10555 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10556 BitVector UndefElements; 10557 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10558 if (CN && (UndefElements.none() || AllowUndefs)) 10559 return CN; 10560 } 10561 10562 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10563 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10564 return CN; 10565 10566 return nullptr; 10567 } 10568 10569 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10570 const APInt &DemandedElts, 10571 bool AllowUndefs) { 10572 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10573 return CN; 10574 10575 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10576 BitVector UndefElements; 10577 ConstantFPSDNode *CN = 10578 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10579 if (CN && (UndefElements.none() || AllowUndefs)) 10580 return CN; 10581 } 10582 10583 return nullptr; 10584 } 10585 10586 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10587 // TODO: may want to use peekThroughBitcast() here. 10588 ConstantSDNode *C = 10589 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10590 return C && C->isZero(); 10591 } 10592 10593 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10594 // TODO: may want to use peekThroughBitcast() here. 10595 unsigned BitWidth = N.getScalarValueSizeInBits(); 10596 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10597 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10598 } 10599 10600 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10601 N = peekThroughBitcasts(N); 10602 unsigned BitWidth = N.getScalarValueSizeInBits(); 10603 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10604 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10605 } 10606 10607 HandleSDNode::~HandleSDNode() { 10608 DropOperands(); 10609 } 10610 10611 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10612 const DebugLoc &DL, 10613 const GlobalValue *GA, EVT VT, 10614 int64_t o, unsigned TF) 10615 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10616 TheGlobal = GA; 10617 } 10618 10619 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10620 EVT VT, unsigned SrcAS, 10621 unsigned DestAS) 10622 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10623 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10624 10625 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10626 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10627 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10628 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10629 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10630 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10631 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10632 10633 // We check here that the size of the memory operand fits within the size of 10634 // the MMO. This is because the MMO might indicate only a possible address 10635 // range instead of specifying the affected memory addresses precisely. 10636 // TODO: Make MachineMemOperands aware of scalable vectors. 10637 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10638 "Size mismatch!"); 10639 } 10640 10641 /// Profile - Gather unique data for the node. 10642 /// 10643 void SDNode::Profile(FoldingSetNodeID &ID) const { 10644 AddNodeIDNode(ID, this); 10645 } 10646 10647 namespace { 10648 10649 struct EVTArray { 10650 std::vector<EVT> VTs; 10651 10652 EVTArray() { 10653 VTs.reserve(MVT::VALUETYPE_SIZE); 10654 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10655 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10656 } 10657 }; 10658 10659 } // end anonymous namespace 10660 10661 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10662 static ManagedStatic<EVTArray> SimpleVTArray; 10663 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10664 10665 /// getValueTypeList - Return a pointer to the specified value type. 10666 /// 10667 const EVT *SDNode::getValueTypeList(EVT VT) { 10668 if (VT.isExtended()) { 10669 sys::SmartScopedLock<true> Lock(*VTMutex); 10670 return &(*EVTs->insert(VT).first); 10671 } 10672 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10673 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10674 } 10675 10676 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10677 /// indicated value. This method ignores uses of other values defined by this 10678 /// operation. 10679 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10680 assert(Value < getNumValues() && "Bad value!"); 10681 10682 // TODO: Only iterate over uses of a given value of the node 10683 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10684 if (UI.getUse().getResNo() == Value) { 10685 if (NUses == 0) 10686 return false; 10687 --NUses; 10688 } 10689 } 10690 10691 // Found exactly the right number of uses? 10692 return NUses == 0; 10693 } 10694 10695 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10696 /// value. This method ignores uses of other values defined by this operation. 10697 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10698 assert(Value < getNumValues() && "Bad value!"); 10699 10700 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10701 if (UI.getUse().getResNo() == Value) 10702 return true; 10703 10704 return false; 10705 } 10706 10707 /// isOnlyUserOf - Return true if this node is the only use of N. 10708 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10709 bool Seen = false; 10710 for (const SDNode *User : N->uses()) { 10711 if (User == this) 10712 Seen = true; 10713 else 10714 return false; 10715 } 10716 10717 return Seen; 10718 } 10719 10720 /// Return true if the only users of N are contained in Nodes. 10721 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10722 bool Seen = false; 10723 for (const SDNode *User : N->uses()) { 10724 if (llvm::is_contained(Nodes, User)) 10725 Seen = true; 10726 else 10727 return false; 10728 } 10729 10730 return Seen; 10731 } 10732 10733 /// isOperand - Return true if this node is an operand of N. 10734 bool SDValue::isOperandOf(const SDNode *N) const { 10735 return is_contained(N->op_values(), *this); 10736 } 10737 10738 bool SDNode::isOperandOf(const SDNode *N) const { 10739 return any_of(N->op_values(), 10740 [this](SDValue Op) { return this == Op.getNode(); }); 10741 } 10742 10743 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10744 /// be a chain) reaches the specified operand without crossing any 10745 /// side-effecting instructions on any chain path. In practice, this looks 10746 /// through token factors and non-volatile loads. In order to remain efficient, 10747 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10748 /// 10749 /// Note that we only need to examine chains when we're searching for 10750 /// side-effects; SelectionDAG requires that all side-effects are represented 10751 /// by chains, even if another operand would force a specific ordering. This 10752 /// constraint is necessary to allow transformations like splitting loads. 10753 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10754 unsigned Depth) const { 10755 if (*this == Dest) return true; 10756 10757 // Don't search too deeply, we just want to be able to see through 10758 // TokenFactor's etc. 10759 if (Depth == 0) return false; 10760 10761 // If this is a token factor, all inputs to the TF happen in parallel. 10762 if (getOpcode() == ISD::TokenFactor) { 10763 // First, try a shallow search. 10764 if (is_contained((*this)->ops(), Dest)) { 10765 // We found the chain we want as an operand of this TokenFactor. 10766 // Essentially, we reach the chain without side-effects if we could 10767 // serialize the TokenFactor into a simple chain of operations with 10768 // Dest as the last operation. This is automatically true if the 10769 // chain has one use: there are no other ordering constraints. 10770 // If the chain has more than one use, we give up: some other 10771 // use of Dest might force a side-effect between Dest and the current 10772 // node. 10773 if (Dest.hasOneUse()) 10774 return true; 10775 } 10776 // Next, try a deep search: check whether every operand of the TokenFactor 10777 // reaches Dest. 10778 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10779 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10780 }); 10781 } 10782 10783 // Loads don't have side effects, look through them. 10784 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10785 if (Ld->isUnordered()) 10786 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10787 } 10788 return false; 10789 } 10790 10791 bool SDNode::hasPredecessor(const SDNode *N) const { 10792 SmallPtrSet<const SDNode *, 32> Visited; 10793 SmallVector<const SDNode *, 16> Worklist; 10794 Worklist.push_back(this); 10795 return hasPredecessorHelper(N, Visited, Worklist); 10796 } 10797 10798 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10799 this->Flags.intersectWith(Flags); 10800 } 10801 10802 SDValue 10803 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10804 ArrayRef<ISD::NodeType> CandidateBinOps, 10805 bool AllowPartials) { 10806 // The pattern must end in an extract from index 0. 10807 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10808 !isNullConstant(Extract->getOperand(1))) 10809 return SDValue(); 10810 10811 // Match against one of the candidate binary ops. 10812 SDValue Op = Extract->getOperand(0); 10813 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10814 return Op.getOpcode() == unsigned(BinOp); 10815 })) 10816 return SDValue(); 10817 10818 // Floating-point reductions may require relaxed constraints on the final step 10819 // of the reduction because they may reorder intermediate operations. 10820 unsigned CandidateBinOp = Op.getOpcode(); 10821 if (Op.getValueType().isFloatingPoint()) { 10822 SDNodeFlags Flags = Op->getFlags(); 10823 switch (CandidateBinOp) { 10824 case ISD::FADD: 10825 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10826 return SDValue(); 10827 break; 10828 default: 10829 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10830 } 10831 } 10832 10833 // Matching failed - attempt to see if we did enough stages that a partial 10834 // reduction from a subvector is possible. 10835 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10836 if (!AllowPartials || !Op) 10837 return SDValue(); 10838 EVT OpVT = Op.getValueType(); 10839 EVT OpSVT = OpVT.getScalarType(); 10840 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10841 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10842 return SDValue(); 10843 BinOp = (ISD::NodeType)CandidateBinOp; 10844 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10845 getVectorIdxConstant(0, SDLoc(Op))); 10846 }; 10847 10848 // At each stage, we're looking for something that looks like: 10849 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10850 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10851 // i32 undef, i32 undef, i32 undef, i32 undef> 10852 // %a = binop <8 x i32> %op, %s 10853 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10854 // we expect something like: 10855 // <4,5,6,7,u,u,u,u> 10856 // <2,3,u,u,u,u,u,u> 10857 // <1,u,u,u,u,u,u,u> 10858 // While a partial reduction match would be: 10859 // <2,3,u,u,u,u,u,u> 10860 // <1,u,u,u,u,u,u,u> 10861 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10862 SDValue PrevOp; 10863 for (unsigned i = 0; i < Stages; ++i) { 10864 unsigned MaskEnd = (1 << i); 10865 10866 if (Op.getOpcode() != CandidateBinOp) 10867 return PartialReduction(PrevOp, MaskEnd); 10868 10869 SDValue Op0 = Op.getOperand(0); 10870 SDValue Op1 = Op.getOperand(1); 10871 10872 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10873 if (Shuffle) { 10874 Op = Op1; 10875 } else { 10876 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10877 Op = Op0; 10878 } 10879 10880 // The first operand of the shuffle should be the same as the other operand 10881 // of the binop. 10882 if (!Shuffle || Shuffle->getOperand(0) != Op) 10883 return PartialReduction(PrevOp, MaskEnd); 10884 10885 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10886 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10887 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10888 return PartialReduction(PrevOp, MaskEnd); 10889 10890 PrevOp = Op; 10891 } 10892 10893 // Handle subvector reductions, which tend to appear after the shuffle 10894 // reduction stages. 10895 while (Op.getOpcode() == CandidateBinOp) { 10896 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10897 SDValue Op0 = Op.getOperand(0); 10898 SDValue Op1 = Op.getOperand(1); 10899 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10900 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10901 Op0.getOperand(0) != Op1.getOperand(0)) 10902 break; 10903 SDValue Src = Op0.getOperand(0); 10904 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10905 if (NumSrcElts != (2 * NumElts)) 10906 break; 10907 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10908 Op1.getConstantOperandAPInt(1) == NumElts) && 10909 !(Op1.getConstantOperandAPInt(1) == 0 && 10910 Op0.getConstantOperandAPInt(1) == NumElts)) 10911 break; 10912 Op = Src; 10913 } 10914 10915 BinOp = (ISD::NodeType)CandidateBinOp; 10916 return Op; 10917 } 10918 10919 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10920 assert(N->getNumValues() == 1 && 10921 "Can't unroll a vector with multiple results!"); 10922 10923 EVT VT = N->getValueType(0); 10924 unsigned NE = VT.getVectorNumElements(); 10925 EVT EltVT = VT.getVectorElementType(); 10926 SDLoc dl(N); 10927 10928 SmallVector<SDValue, 8> Scalars; 10929 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10930 10931 // If ResNE is 0, fully unroll the vector op. 10932 if (ResNE == 0) 10933 ResNE = NE; 10934 else if (NE > ResNE) 10935 NE = ResNE; 10936 10937 unsigned i; 10938 for (i= 0; i != NE; ++i) { 10939 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10940 SDValue Operand = N->getOperand(j); 10941 EVT OperandVT = Operand.getValueType(); 10942 if (OperandVT.isVector()) { 10943 // A vector operand; extract a single element. 10944 EVT OperandEltVT = OperandVT.getVectorElementType(); 10945 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10946 Operand, getVectorIdxConstant(i, dl)); 10947 } else { 10948 // A scalar operand; just use it as is. 10949 Operands[j] = Operand; 10950 } 10951 } 10952 10953 switch (N->getOpcode()) { 10954 default: { 10955 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10956 N->getFlags())); 10957 break; 10958 } 10959 case ISD::VSELECT: 10960 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10961 break; 10962 case ISD::SHL: 10963 case ISD::SRA: 10964 case ISD::SRL: 10965 case ISD::ROTL: 10966 case ISD::ROTR: 10967 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10968 getShiftAmountOperand(Operands[0].getValueType(), 10969 Operands[1]))); 10970 break; 10971 case ISD::SIGN_EXTEND_INREG: { 10972 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10973 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10974 Operands[0], 10975 getValueType(ExtVT))); 10976 } 10977 } 10978 } 10979 10980 for (; i < ResNE; ++i) 10981 Scalars.push_back(getUNDEF(EltVT)); 10982 10983 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10984 return getBuildVector(VecVT, dl, Scalars); 10985 } 10986 10987 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10988 SDNode *N, unsigned ResNE) { 10989 unsigned Opcode = N->getOpcode(); 10990 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10991 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10992 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10993 "Expected an overflow opcode"); 10994 10995 EVT ResVT = N->getValueType(0); 10996 EVT OvVT = N->getValueType(1); 10997 EVT ResEltVT = ResVT.getVectorElementType(); 10998 EVT OvEltVT = OvVT.getVectorElementType(); 10999 SDLoc dl(N); 11000 11001 // If ResNE is 0, fully unroll the vector op. 11002 unsigned NE = ResVT.getVectorNumElements(); 11003 if (ResNE == 0) 11004 ResNE = NE; 11005 else if (NE > ResNE) 11006 NE = ResNE; 11007 11008 SmallVector<SDValue, 8> LHSScalars; 11009 SmallVector<SDValue, 8> RHSScalars; 11010 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11011 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11012 11013 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11014 SDVTList VTs = getVTList(ResEltVT, SVT); 11015 SmallVector<SDValue, 8> ResScalars; 11016 SmallVector<SDValue, 8> OvScalars; 11017 for (unsigned i = 0; i < NE; ++i) { 11018 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11019 SDValue Ov = 11020 getSelect(dl, OvEltVT, Res.getValue(1), 11021 getBoolConstant(true, dl, OvEltVT, ResVT), 11022 getConstant(0, dl, OvEltVT)); 11023 11024 ResScalars.push_back(Res); 11025 OvScalars.push_back(Ov); 11026 } 11027 11028 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11029 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11030 11031 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11032 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11033 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11034 getBuildVector(NewOvVT, dl, OvScalars)); 11035 } 11036 11037 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11038 LoadSDNode *Base, 11039 unsigned Bytes, 11040 int Dist) const { 11041 if (LD->isVolatile() || Base->isVolatile()) 11042 return false; 11043 // TODO: probably too restrictive for atomics, revisit 11044 if (!LD->isSimple()) 11045 return false; 11046 if (LD->isIndexed() || Base->isIndexed()) 11047 return false; 11048 if (LD->getChain() != Base->getChain()) 11049 return false; 11050 EVT VT = LD->getValueType(0); 11051 if (VT.getSizeInBits() / 8 != Bytes) 11052 return false; 11053 11054 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11055 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11056 11057 int64_t Offset = 0; 11058 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11059 return (Dist * Bytes == Offset); 11060 return false; 11061 } 11062 11063 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11064 /// if it cannot be inferred. 11065 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11066 // If this is a GlobalAddress + cst, return the alignment. 11067 const GlobalValue *GV = nullptr; 11068 int64_t GVOffset = 0; 11069 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11070 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11071 KnownBits Known(PtrWidth); 11072 llvm::computeKnownBits(GV, Known, getDataLayout()); 11073 unsigned AlignBits = Known.countMinTrailingZeros(); 11074 if (AlignBits) 11075 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11076 } 11077 11078 // If this is a direct reference to a stack slot, use information about the 11079 // stack slot's alignment. 11080 int FrameIdx = INT_MIN; 11081 int64_t FrameOffset = 0; 11082 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11083 FrameIdx = FI->getIndex(); 11084 } else if (isBaseWithConstantOffset(Ptr) && 11085 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11086 // Handle FI+Cst 11087 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11088 FrameOffset = Ptr.getConstantOperandVal(1); 11089 } 11090 11091 if (FrameIdx != INT_MIN) { 11092 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11093 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11094 } 11095 11096 return None; 11097 } 11098 11099 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11100 /// which is split (or expanded) into two not necessarily identical pieces. 11101 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11102 // Currently all types are split in half. 11103 EVT LoVT, HiVT; 11104 if (!VT.isVector()) 11105 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11106 else 11107 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11108 11109 return std::make_pair(LoVT, HiVT); 11110 } 11111 11112 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11113 /// type, dependent on an enveloping VT that has been split into two identical 11114 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11115 std::pair<EVT, EVT> 11116 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11117 bool *HiIsEmpty) const { 11118 EVT EltTp = VT.getVectorElementType(); 11119 // Examples: 11120 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11121 // custom VL=9 with enveloping VL=8/8 yields 8/1 11122 // custom VL=10 with enveloping VL=8/8 yields 8/2 11123 // etc. 11124 ElementCount VTNumElts = VT.getVectorElementCount(); 11125 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11126 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11127 "Mixing fixed width and scalable vectors when enveloping a type"); 11128 EVT LoVT, HiVT; 11129 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11130 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11131 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11132 *HiIsEmpty = false; 11133 } else { 11134 // Flag that hi type has zero storage size, but return split envelop type 11135 // (this would be easier if vector types with zero elements were allowed). 11136 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11137 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11138 *HiIsEmpty = true; 11139 } 11140 return std::make_pair(LoVT, HiVT); 11141 } 11142 11143 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11144 /// low/high part. 11145 std::pair<SDValue, SDValue> 11146 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11147 const EVT &HiVT) { 11148 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11149 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11150 "Splitting vector with an invalid mixture of fixed and scalable " 11151 "vector types"); 11152 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11153 N.getValueType().getVectorMinNumElements() && 11154 "More vector elements requested than available!"); 11155 SDValue Lo, Hi; 11156 Lo = 11157 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11158 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11159 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11160 // IDX with the runtime scaling factor of the result vector type. For 11161 // fixed-width result vectors, that runtime scaling factor is 1. 11162 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11163 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11164 return std::make_pair(Lo, Hi); 11165 } 11166 11167 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11168 const SDLoc &DL) { 11169 // Split the vector length parameter. 11170 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11171 EVT VT = N.getValueType(); 11172 assert(VecVT.getVectorElementCount().isKnownEven() && 11173 "Expecting the mask to be an evenly-sized vector"); 11174 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11175 SDValue HalfNumElts = 11176 VecVT.isFixedLengthVector() 11177 ? getConstant(HalfMinNumElts, DL, VT) 11178 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11179 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11180 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11181 return std::make_pair(Lo, Hi); 11182 } 11183 11184 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11185 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11186 EVT VT = N.getValueType(); 11187 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11188 NextPowerOf2(VT.getVectorNumElements())); 11189 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11190 getVectorIdxConstant(0, DL)); 11191 } 11192 11193 void SelectionDAG::ExtractVectorElements(SDValue Op, 11194 SmallVectorImpl<SDValue> &Args, 11195 unsigned Start, unsigned Count, 11196 EVT EltVT) { 11197 EVT VT = Op.getValueType(); 11198 if (Count == 0) 11199 Count = VT.getVectorNumElements(); 11200 if (EltVT == EVT()) 11201 EltVT = VT.getVectorElementType(); 11202 SDLoc SL(Op); 11203 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11204 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11205 getVectorIdxConstant(i, SL))); 11206 } 11207 } 11208 11209 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11210 unsigned GlobalAddressSDNode::getAddressSpace() const { 11211 return getGlobal()->getType()->getAddressSpace(); 11212 } 11213 11214 Type *ConstantPoolSDNode::getType() const { 11215 if (isMachineConstantPoolEntry()) 11216 return Val.MachineCPVal->getType(); 11217 return Val.ConstVal->getType(); 11218 } 11219 11220 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11221 unsigned &SplatBitSize, 11222 bool &HasAnyUndefs, 11223 unsigned MinSplatBits, 11224 bool IsBigEndian) const { 11225 EVT VT = getValueType(0); 11226 assert(VT.isVector() && "Expected a vector type"); 11227 unsigned VecWidth = VT.getSizeInBits(); 11228 if (MinSplatBits > VecWidth) 11229 return false; 11230 11231 // FIXME: The widths are based on this node's type, but build vectors can 11232 // truncate their operands. 11233 SplatValue = APInt(VecWidth, 0); 11234 SplatUndef = APInt(VecWidth, 0); 11235 11236 // Get the bits. Bits with undefined values (when the corresponding element 11237 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11238 // in SplatValue. If any of the values are not constant, give up and return 11239 // false. 11240 unsigned int NumOps = getNumOperands(); 11241 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11242 unsigned EltWidth = VT.getScalarSizeInBits(); 11243 11244 for (unsigned j = 0; j < NumOps; ++j) { 11245 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11246 SDValue OpVal = getOperand(i); 11247 unsigned BitPos = j * EltWidth; 11248 11249 if (OpVal.isUndef()) 11250 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11251 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11252 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11253 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11254 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11255 else 11256 return false; 11257 } 11258 11259 // The build_vector is all constants or undefs. Find the smallest element 11260 // size that splats the vector. 11261 HasAnyUndefs = (SplatUndef != 0); 11262 11263 // FIXME: This does not work for vectors with elements less than 8 bits. 11264 while (VecWidth > 8) { 11265 unsigned HalfSize = VecWidth / 2; 11266 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11267 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11268 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11269 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11270 11271 // If the two halves do not match (ignoring undef bits), stop here. 11272 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11273 MinSplatBits > HalfSize) 11274 break; 11275 11276 SplatValue = HighValue | LowValue; 11277 SplatUndef = HighUndef & LowUndef; 11278 11279 VecWidth = HalfSize; 11280 } 11281 11282 SplatBitSize = VecWidth; 11283 return true; 11284 } 11285 11286 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11287 BitVector *UndefElements) const { 11288 unsigned NumOps = getNumOperands(); 11289 if (UndefElements) { 11290 UndefElements->clear(); 11291 UndefElements->resize(NumOps); 11292 } 11293 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11294 if (!DemandedElts) 11295 return SDValue(); 11296 SDValue Splatted; 11297 for (unsigned i = 0; i != NumOps; ++i) { 11298 if (!DemandedElts[i]) 11299 continue; 11300 SDValue Op = getOperand(i); 11301 if (Op.isUndef()) { 11302 if (UndefElements) 11303 (*UndefElements)[i] = true; 11304 } else if (!Splatted) { 11305 Splatted = Op; 11306 } else if (Splatted != Op) { 11307 return SDValue(); 11308 } 11309 } 11310 11311 if (!Splatted) { 11312 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11313 assert(getOperand(FirstDemandedIdx).isUndef() && 11314 "Can only have a splat without a constant for all undefs."); 11315 return getOperand(FirstDemandedIdx); 11316 } 11317 11318 return Splatted; 11319 } 11320 11321 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11322 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11323 return getSplatValue(DemandedElts, UndefElements); 11324 } 11325 11326 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11327 SmallVectorImpl<SDValue> &Sequence, 11328 BitVector *UndefElements) const { 11329 unsigned NumOps = getNumOperands(); 11330 Sequence.clear(); 11331 if (UndefElements) { 11332 UndefElements->clear(); 11333 UndefElements->resize(NumOps); 11334 } 11335 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11336 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11337 return false; 11338 11339 // Set the undefs even if we don't find a sequence (like getSplatValue). 11340 if (UndefElements) 11341 for (unsigned I = 0; I != NumOps; ++I) 11342 if (DemandedElts[I] && getOperand(I).isUndef()) 11343 (*UndefElements)[I] = true; 11344 11345 // Iteratively widen the sequence length looking for repetitions. 11346 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11347 Sequence.append(SeqLen, SDValue()); 11348 for (unsigned I = 0; I != NumOps; ++I) { 11349 if (!DemandedElts[I]) 11350 continue; 11351 SDValue &SeqOp = Sequence[I % SeqLen]; 11352 SDValue Op = getOperand(I); 11353 if (Op.isUndef()) { 11354 if (!SeqOp) 11355 SeqOp = Op; 11356 continue; 11357 } 11358 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11359 Sequence.clear(); 11360 break; 11361 } 11362 SeqOp = Op; 11363 } 11364 if (!Sequence.empty()) 11365 return true; 11366 } 11367 11368 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11369 return false; 11370 } 11371 11372 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11373 BitVector *UndefElements) const { 11374 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11375 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11376 } 11377 11378 ConstantSDNode * 11379 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11380 BitVector *UndefElements) const { 11381 return dyn_cast_or_null<ConstantSDNode>( 11382 getSplatValue(DemandedElts, UndefElements)); 11383 } 11384 11385 ConstantSDNode * 11386 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11387 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11388 } 11389 11390 ConstantFPSDNode * 11391 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11392 BitVector *UndefElements) const { 11393 return dyn_cast_or_null<ConstantFPSDNode>( 11394 getSplatValue(DemandedElts, UndefElements)); 11395 } 11396 11397 ConstantFPSDNode * 11398 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11399 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11400 } 11401 11402 int32_t 11403 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11404 uint32_t BitWidth) const { 11405 if (ConstantFPSDNode *CN = 11406 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11407 bool IsExact; 11408 APSInt IntVal(BitWidth); 11409 const APFloat &APF = CN->getValueAPF(); 11410 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11411 APFloat::opOK || 11412 !IsExact) 11413 return -1; 11414 11415 return IntVal.exactLogBase2(); 11416 } 11417 return -1; 11418 } 11419 11420 bool BuildVectorSDNode::getConstantRawBits( 11421 bool IsLittleEndian, unsigned DstEltSizeInBits, 11422 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11423 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11424 if (!isConstant()) 11425 return false; 11426 11427 unsigned NumSrcOps = getNumOperands(); 11428 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11429 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11430 "Invalid bitcast scale"); 11431 11432 // Extract raw src bits. 11433 SmallVector<APInt> SrcBitElements(NumSrcOps, 11434 APInt::getNullValue(SrcEltSizeInBits)); 11435 BitVector SrcUndeElements(NumSrcOps, false); 11436 11437 for (unsigned I = 0; I != NumSrcOps; ++I) { 11438 SDValue Op = getOperand(I); 11439 if (Op.isUndef()) { 11440 SrcUndeElements.set(I); 11441 continue; 11442 } 11443 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11444 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11445 assert((CInt || CFP) && "Unknown constant"); 11446 SrcBitElements[I] = 11447 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 11448 : CFP->getValueAPF().bitcastToAPInt(); 11449 } 11450 11451 // Recast to dst width. 11452 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11453 SrcBitElements, UndefElements, SrcUndeElements); 11454 return true; 11455 } 11456 11457 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11458 unsigned DstEltSizeInBits, 11459 SmallVectorImpl<APInt> &DstBitElements, 11460 ArrayRef<APInt> SrcBitElements, 11461 BitVector &DstUndefElements, 11462 const BitVector &SrcUndefElements) { 11463 unsigned NumSrcOps = SrcBitElements.size(); 11464 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11465 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11466 "Invalid bitcast scale"); 11467 assert(NumSrcOps == SrcUndefElements.size() && 11468 "Vector size mismatch"); 11469 11470 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11471 DstUndefElements.clear(); 11472 DstUndefElements.resize(NumDstOps, false); 11473 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11474 11475 // Concatenate src elements constant bits together into dst element. 11476 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11477 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11478 for (unsigned I = 0; I != NumDstOps; ++I) { 11479 DstUndefElements.set(I); 11480 APInt &DstBits = DstBitElements[I]; 11481 for (unsigned J = 0; J != Scale; ++J) { 11482 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11483 if (SrcUndefElements[Idx]) 11484 continue; 11485 DstUndefElements.reset(I); 11486 const APInt &SrcBits = SrcBitElements[Idx]; 11487 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11488 "Illegal constant bitwidths"); 11489 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11490 } 11491 } 11492 return; 11493 } 11494 11495 // Split src element constant bits into dst elements. 11496 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11497 for (unsigned I = 0; I != NumSrcOps; ++I) { 11498 if (SrcUndefElements[I]) { 11499 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11500 continue; 11501 } 11502 const APInt &SrcBits = SrcBitElements[I]; 11503 for (unsigned J = 0; J != Scale; ++J) { 11504 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11505 APInt &DstBits = DstBitElements[Idx]; 11506 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11507 } 11508 } 11509 } 11510 11511 bool BuildVectorSDNode::isConstant() const { 11512 for (const SDValue &Op : op_values()) { 11513 unsigned Opc = Op.getOpcode(); 11514 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11515 return false; 11516 } 11517 return true; 11518 } 11519 11520 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11521 // Find the first non-undef value in the shuffle mask. 11522 unsigned i, e; 11523 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11524 /* search */; 11525 11526 // If all elements are undefined, this shuffle can be considered a splat 11527 // (although it should eventually get simplified away completely). 11528 if (i == e) 11529 return true; 11530 11531 // Make sure all remaining elements are either undef or the same as the first 11532 // non-undef value. 11533 for (int Idx = Mask[i]; i != e; ++i) 11534 if (Mask[i] >= 0 && Mask[i] != Idx) 11535 return false; 11536 return true; 11537 } 11538 11539 // Returns the SDNode if it is a constant integer BuildVector 11540 // or constant integer. 11541 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11542 if (isa<ConstantSDNode>(N)) 11543 return N.getNode(); 11544 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11545 return N.getNode(); 11546 // Treat a GlobalAddress supporting constant offset folding as a 11547 // constant integer. 11548 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11549 if (GA->getOpcode() == ISD::GlobalAddress && 11550 TLI->isOffsetFoldingLegal(GA)) 11551 return GA; 11552 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11553 isa<ConstantSDNode>(N.getOperand(0))) 11554 return N.getNode(); 11555 return nullptr; 11556 } 11557 11558 // Returns the SDNode if it is a constant float BuildVector 11559 // or constant float. 11560 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11561 if (isa<ConstantFPSDNode>(N)) 11562 return N.getNode(); 11563 11564 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11565 return N.getNode(); 11566 11567 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11568 isa<ConstantFPSDNode>(N.getOperand(0))) 11569 return N.getNode(); 11570 11571 return nullptr; 11572 } 11573 11574 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11575 assert(!Node->OperandList && "Node already has operands"); 11576 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11577 "too many operands to fit into SDNode"); 11578 SDUse *Ops = OperandRecycler.allocate( 11579 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11580 11581 bool IsDivergent = false; 11582 for (unsigned I = 0; I != Vals.size(); ++I) { 11583 Ops[I].setUser(Node); 11584 Ops[I].setInitial(Vals[I]); 11585 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11586 IsDivergent |= Ops[I].getNode()->isDivergent(); 11587 } 11588 Node->NumOperands = Vals.size(); 11589 Node->OperandList = Ops; 11590 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11591 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11592 Node->SDNodeBits.IsDivergent = IsDivergent; 11593 } 11594 checkForCycles(Node); 11595 } 11596 11597 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11598 SmallVectorImpl<SDValue> &Vals) { 11599 size_t Limit = SDNode::getMaxNumOperands(); 11600 while (Vals.size() > Limit) { 11601 unsigned SliceIdx = Vals.size() - Limit; 11602 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11603 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11604 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11605 Vals.emplace_back(NewTF); 11606 } 11607 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11608 } 11609 11610 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11611 EVT VT, SDNodeFlags Flags) { 11612 switch (Opcode) { 11613 default: 11614 return SDValue(); 11615 case ISD::ADD: 11616 case ISD::OR: 11617 case ISD::XOR: 11618 case ISD::UMAX: 11619 return getConstant(0, DL, VT); 11620 case ISD::MUL: 11621 return getConstant(1, DL, VT); 11622 case ISD::AND: 11623 case ISD::UMIN: 11624 return getAllOnesConstant(DL, VT); 11625 case ISD::SMAX: 11626 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11627 case ISD::SMIN: 11628 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11629 case ISD::FADD: 11630 return getConstantFP(-0.0, DL, VT); 11631 case ISD::FMUL: 11632 return getConstantFP(1.0, DL, VT); 11633 case ISD::FMINNUM: 11634 case ISD::FMAXNUM: { 11635 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11636 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11637 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11638 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11639 APFloat::getLargest(Semantics); 11640 if (Opcode == ISD::FMAXNUM) 11641 NeutralAF.changeSign(); 11642 11643 return getConstantFP(NeutralAF, DL, VT); 11644 } 11645 } 11646 } 11647 11648 #ifndef NDEBUG 11649 static void checkForCyclesHelper(const SDNode *N, 11650 SmallPtrSetImpl<const SDNode*> &Visited, 11651 SmallPtrSetImpl<const SDNode*> &Checked, 11652 const llvm::SelectionDAG *DAG) { 11653 // If this node has already been checked, don't check it again. 11654 if (Checked.count(N)) 11655 return; 11656 11657 // If a node has already been visited on this depth-first walk, reject it as 11658 // a cycle. 11659 if (!Visited.insert(N).second) { 11660 errs() << "Detected cycle in SelectionDAG\n"; 11661 dbgs() << "Offending node:\n"; 11662 N->dumprFull(DAG); dbgs() << "\n"; 11663 abort(); 11664 } 11665 11666 for (const SDValue &Op : N->op_values()) 11667 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11668 11669 Checked.insert(N); 11670 Visited.erase(N); 11671 } 11672 #endif 11673 11674 void llvm::checkForCycles(const llvm::SDNode *N, 11675 const llvm::SelectionDAG *DAG, 11676 bool force) { 11677 #ifndef NDEBUG 11678 bool check = force; 11679 #ifdef EXPENSIVE_CHECKS 11680 check = true; 11681 #endif // EXPENSIVE_CHECKS 11682 if (check) { 11683 assert(N && "Checking nonexistent SDNode"); 11684 SmallPtrSet<const SDNode*, 32> visited; 11685 SmallPtrSet<const SDNode*, 32> checked; 11686 checkForCyclesHelper(N, visited, checked, DAG); 11687 } 11688 #endif // !NDEBUG 11689 } 11690 11691 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11692 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11693 } 11694