1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 break; 407 } 408 case ISD::BasicBlock: 409 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 410 break; 411 case ISD::Register: 412 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 413 break; 414 case ISD::RegisterMask: 415 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 416 break; 417 case ISD::SRCVALUE: 418 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 419 break; 420 case ISD::FrameIndex: 421 case ISD::TargetFrameIndex: 422 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 423 break; 424 case ISD::JumpTable: 425 case ISD::TargetJumpTable: 426 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 428 break; 429 case ISD::ConstantPool: 430 case ISD::TargetConstantPool: { 431 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 432 ID.AddInteger(CP->getAlignment()); 433 ID.AddInteger(CP->getOffset()); 434 if (CP->isMachineConstantPoolEntry()) 435 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 436 else 437 ID.AddPointer(CP->getConstVal()); 438 ID.AddInteger(CP->getTargetFlags()); 439 break; 440 } 441 case ISD::TargetIndex: { 442 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 443 ID.AddInteger(TI->getIndex()); 444 ID.AddInteger(TI->getOffset()); 445 ID.AddInteger(TI->getTargetFlags()); 446 break; 447 } 448 case ISD::LOAD: { 449 const LoadSDNode *LD = cast<LoadSDNode>(N); 450 ID.AddInteger(LD->getMemoryVT().getRawBits()); 451 ID.AddInteger(LD->getRawSubclassData()); 452 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 453 break; 454 } 455 case ISD::STORE: { 456 const StoreSDNode *ST = cast<StoreSDNode>(N); 457 ID.AddInteger(ST->getMemoryVT().getRawBits()); 458 ID.AddInteger(ST->getRawSubclassData()); 459 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 460 break; 461 } 462 case ISD::ATOMIC_CMP_SWAP: 463 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 464 case ISD::ATOMIC_SWAP: 465 case ISD::ATOMIC_LOAD_ADD: 466 case ISD::ATOMIC_LOAD_SUB: 467 case ISD::ATOMIC_LOAD_AND: 468 case ISD::ATOMIC_LOAD_OR: 469 case ISD::ATOMIC_LOAD_XOR: 470 case ISD::ATOMIC_LOAD_NAND: 471 case ISD::ATOMIC_LOAD_MIN: 472 case ISD::ATOMIC_LOAD_MAX: 473 case ISD::ATOMIC_LOAD_UMIN: 474 case ISD::ATOMIC_LOAD_UMAX: 475 case ISD::ATOMIC_LOAD: 476 case ISD::ATOMIC_STORE: { 477 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 478 ID.AddInteger(AT->getMemoryVT().getRawBits()); 479 ID.AddInteger(AT->getRawSubclassData()); 480 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::PREFETCH: { 484 const MemSDNode *PF = cast<MemSDNode>(N); 485 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 486 break; 487 } 488 case ISD::VECTOR_SHUFFLE: { 489 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 490 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 491 i != e; ++i) 492 ID.AddInteger(SVN->getMaskElt(i)); 493 break; 494 } 495 case ISD::TargetBlockAddress: 496 case ISD::BlockAddress: { 497 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 498 ID.AddPointer(BA->getBlockAddress()); 499 ID.AddInteger(BA->getOffset()); 500 ID.AddInteger(BA->getTargetFlags()); 501 break; 502 } 503 } // end switch (N->getOpcode()) 504 505 // Target specific memory nodes could also have address spaces to check. 506 if (N->isTargetMemoryOpcode()) 507 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 508 } 509 510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 511 /// data. 512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 513 AddNodeIDOpcode(ID, N->getOpcode()); 514 // Add the return value info. 515 AddNodeIDValueTypes(ID, N->getVTList()); 516 // Add the operand info. 517 AddNodeIDOperands(ID, N->ops()); 518 519 // Handle SDNode leafs with special info. 520 AddNodeIDCustom(ID, N); 521 } 522 523 //===----------------------------------------------------------------------===// 524 // SelectionDAG Class 525 //===----------------------------------------------------------------------===// 526 527 /// doNotCSE - Return true if CSE should not be performed for this node. 528 static bool doNotCSE(SDNode *N) { 529 if (N->getValueType(0) == MVT::Glue) 530 return true; // Never CSE anything that produces a flag. 531 532 switch (N->getOpcode()) { 533 default: break; 534 case ISD::HANDLENODE: 535 case ISD::EH_LABEL: 536 return true; // Never CSE these nodes. 537 } 538 539 // Check that remaining values produced are not flags. 540 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 541 if (N->getValueType(i) == MVT::Glue) 542 return true; // Never CSE anything that produces a flag. 543 544 return false; 545 } 546 547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 548 /// SelectionDAG. 549 void SelectionDAG::RemoveDeadNodes() { 550 // Create a dummy node (which is not added to allnodes), that adds a reference 551 // to the root node, preventing it from being deleted. 552 HandleSDNode Dummy(getRoot()); 553 554 SmallVector<SDNode*, 128> DeadNodes; 555 556 // Add all obviously-dead nodes to the DeadNodes worklist. 557 for (SDNode &Node : allnodes()) 558 if (Node.use_empty()) 559 DeadNodes.push_back(&Node); 560 561 RemoveDeadNodes(DeadNodes); 562 563 // If the root changed (e.g. it was a dead load, update the root). 564 setRoot(Dummy.getValue()); 565 } 566 567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 568 /// given list, and any nodes that become unreachable as a result. 569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 570 571 // Process the worklist, deleting the nodes and adding their uses to the 572 // worklist. 573 while (!DeadNodes.empty()) { 574 SDNode *N = DeadNodes.pop_back_val(); 575 576 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 577 DUL->NodeDeleted(N, nullptr); 578 579 // Take the node out of the appropriate CSE map. 580 RemoveNodeFromCSEMaps(N); 581 582 // Next, brutally remove the operand list. This is safe to do, as there are 583 // no cycles in the graph. 584 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 585 SDUse &Use = *I++; 586 SDNode *Operand = Use.getNode(); 587 Use.set(SDValue()); 588 589 // Now that we removed this operand, see if there are no uses of it left. 590 if (Operand->use_empty()) 591 DeadNodes.push_back(Operand); 592 } 593 594 DeallocateNode(N); 595 } 596 } 597 598 void SelectionDAG::RemoveDeadNode(SDNode *N){ 599 SmallVector<SDNode*, 16> DeadNodes(1, N); 600 601 // Create a dummy node that adds a reference to the root node, preventing 602 // it from being deleted. (This matters if the root is an operand of the 603 // dead node.) 604 HandleSDNode Dummy(getRoot()); 605 606 RemoveDeadNodes(DeadNodes); 607 } 608 609 void SelectionDAG::DeleteNode(SDNode *N) { 610 // First take this out of the appropriate CSE map. 611 RemoveNodeFromCSEMaps(N); 612 613 // Finally, remove uses due to operands of this node, remove from the 614 // AllNodes list, and delete the node. 615 DeleteNodeNotInCSEMaps(N); 616 } 617 618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 619 assert(N->getIterator() != AllNodes.begin() && 620 "Cannot delete the entry node!"); 621 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 622 623 // Drop all of the operands and decrement used node's use counts. 624 N->DropOperands(); 625 626 DeallocateNode(N); 627 } 628 629 void SDDbgInfo::erase(const SDNode *Node) { 630 DbgValMapType::iterator I = DbgValMap.find(Node); 631 if (I == DbgValMap.end()) 632 return; 633 for (auto &Val: I->second) 634 Val->setIsInvalidated(); 635 DbgValMap.erase(I); 636 } 637 638 void SelectionDAG::DeallocateNode(SDNode *N) { 639 // If we have operands, deallocate them. 640 removeOperands(N); 641 642 // Set the opcode to DELETED_NODE to help catch bugs when node 643 // memory is reallocated. 644 N->NodeType = ISD::DELETED_NODE; 645 646 NodeAllocator.Deallocate(AllNodes.remove(N)); 647 648 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 649 // them and forget about that node. 650 DbgInfo->erase(N); 651 } 652 653 #ifndef NDEBUG 654 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 655 static void VerifySDNode(SDNode *N) { 656 switch (N->getOpcode()) { 657 default: 658 break; 659 case ISD::BUILD_PAIR: { 660 EVT VT = N->getValueType(0); 661 assert(N->getNumValues() == 1 && "Too many results!"); 662 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 663 "Wrong return type!"); 664 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 665 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 666 "Mismatched operand types!"); 667 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 668 "Wrong operand type!"); 669 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 670 "Wrong return type size"); 671 break; 672 } 673 case ISD::BUILD_VECTOR: { 674 assert(N->getNumValues() == 1 && "Too many results!"); 675 assert(N->getValueType(0).isVector() && "Wrong return type!"); 676 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 677 "Wrong number of operands!"); 678 EVT EltVT = N->getValueType(0).getVectorElementType(); 679 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 680 assert((I->getValueType() == EltVT || 681 (EltVT.isInteger() && I->getValueType().isInteger() && 682 EltVT.bitsLE(I->getValueType()))) && 683 "Wrong operand type!"); 684 assert(I->getValueType() == N->getOperand(0).getValueType() && 685 "Operands must all have the same type"); 686 } 687 break; 688 } 689 } 690 } 691 #endif // NDEBUG 692 693 /// \brief Insert a newly allocated node into the DAG. 694 /// 695 /// Handles insertion into the all nodes list and CSE map, as well as 696 /// verification and other common operations when a new node is allocated. 697 void SelectionDAG::InsertNode(SDNode *N) { 698 AllNodes.push_back(N); 699 #ifndef NDEBUG 700 N->PersistentId = NextPersistentId++; 701 VerifySDNode(N); 702 #endif 703 } 704 705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 706 /// correspond to it. This is useful when we're about to delete or repurpose 707 /// the node. We don't want future request for structurally identical nodes 708 /// to return N anymore. 709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 710 bool Erased = false; 711 switch (N->getOpcode()) { 712 case ISD::HANDLENODE: return false; // noop. 713 case ISD::CONDCODE: 714 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 715 "Cond code doesn't exist!"); 716 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 717 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 718 break; 719 case ISD::ExternalSymbol: 720 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 721 break; 722 case ISD::TargetExternalSymbol: { 723 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 724 Erased = TargetExternalSymbols.erase( 725 std::pair<std::string,unsigned char>(ESN->getSymbol(), 726 ESN->getTargetFlags())); 727 break; 728 } 729 case ISD::MCSymbol: { 730 auto *MCSN = cast<MCSymbolSDNode>(N); 731 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 732 break; 733 } 734 case ISD::VALUETYPE: { 735 EVT VT = cast<VTSDNode>(N)->getVT(); 736 if (VT.isExtended()) { 737 Erased = ExtendedValueTypeNodes.erase(VT); 738 } else { 739 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 740 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 741 } 742 break; 743 } 744 default: 745 // Remove it from the CSE Map. 746 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 747 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 748 Erased = CSEMap.RemoveNode(N); 749 break; 750 } 751 #ifndef NDEBUG 752 // Verify that the node was actually in one of the CSE maps, unless it has a 753 // flag result (which cannot be CSE'd) or is one of the special cases that are 754 // not subject to CSE. 755 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 756 !N->isMachineOpcode() && !doNotCSE(N)) { 757 N->dump(this); 758 dbgs() << "\n"; 759 llvm_unreachable("Node is not in map!"); 760 } 761 #endif 762 return Erased; 763 } 764 765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 766 /// maps and modified in place. Add it back to the CSE maps, unless an identical 767 /// node already exists, in which case transfer all its users to the existing 768 /// node. This transfer can potentially trigger recursive merging. 769 /// 770 void 771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 772 // For node types that aren't CSE'd, just act as if no identical node 773 // already exists. 774 if (!doNotCSE(N)) { 775 SDNode *Existing = CSEMap.GetOrInsertNode(N); 776 if (Existing != N) { 777 // If there was already an existing matching node, use ReplaceAllUsesWith 778 // to replace the dead one with the existing one. This can cause 779 // recursive merging of other unrelated nodes down the line. 780 ReplaceAllUsesWith(N, Existing); 781 782 // N is now dead. Inform the listeners and delete it. 783 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 784 DUL->NodeDeleted(N, Existing); 785 DeleteNodeNotInCSEMaps(N); 786 return; 787 } 788 } 789 790 // If the node doesn't already exist, we updated it. Inform listeners. 791 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 792 DUL->NodeUpdated(N); 793 } 794 795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 796 /// were replaced with those specified. If this node is never memoized, 797 /// return null, otherwise return a pointer to the slot it would take. If a 798 /// node already exists with these operands, the slot will be non-null. 799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 800 void *&InsertPos) { 801 if (doNotCSE(N)) 802 return nullptr; 803 804 SDValue Ops[] = { Op }; 805 FoldingSetNodeID ID; 806 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 807 AddNodeIDCustom(ID, N); 808 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 809 if (Node) 810 if (const SDNodeFlags *Flags = N->getFlags()) 811 Node->intersectFlagsWith(Flags); 812 return Node; 813 } 814 815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 816 /// were replaced with those specified. If this node is never memoized, 817 /// return null, otherwise return a pointer to the slot it would take. If a 818 /// node already exists with these operands, the slot will be non-null. 819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 820 SDValue Op1, SDValue Op2, 821 void *&InsertPos) { 822 if (doNotCSE(N)) 823 return nullptr; 824 825 SDValue Ops[] = { Op1, Op2 }; 826 FoldingSetNodeID ID; 827 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 828 AddNodeIDCustom(ID, N); 829 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 830 if (Node) 831 if (const SDNodeFlags *Flags = N->getFlags()) 832 Node->intersectFlagsWith(Flags); 833 return Node; 834 } 835 836 837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 838 /// were replaced with those specified. If this node is never memoized, 839 /// return null, otherwise return a pointer to the slot it would take. If a 840 /// node already exists with these operands, the slot will be non-null. 841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 842 void *&InsertPos) { 843 if (doNotCSE(N)) 844 return nullptr; 845 846 FoldingSetNodeID ID; 847 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 848 AddNodeIDCustom(ID, N); 849 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 850 if (Node) 851 if (const SDNodeFlags *Flags = N->getFlags()) 852 Node->intersectFlagsWith(Flags); 853 return Node; 854 } 855 856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 857 Type *Ty = VT == MVT::iPTR ? 858 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 859 VT.getTypeForEVT(*getContext()); 860 861 return getDataLayout().getABITypeAlignment(Ty); 862 } 863 864 // EntryNode could meaningfully have debug info if we can find it... 865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 866 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 867 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 868 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 869 UpdateListeners(nullptr) { 870 InsertNode(&EntryNode); 871 DbgInfo = new SDDbgInfo(); 872 } 873 874 void SelectionDAG::init(MachineFunction &mf) { 875 MF = &mf; 876 TLI = getSubtarget().getTargetLowering(); 877 TSI = getSubtarget().getSelectionDAGInfo(); 878 Context = &mf.getFunction()->getContext(); 879 } 880 881 SelectionDAG::~SelectionDAG() { 882 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 883 allnodes_clear(); 884 OperandRecycler.clear(OperandAllocator); 885 delete DbgInfo; 886 } 887 888 void SelectionDAG::allnodes_clear() { 889 assert(&*AllNodes.begin() == &EntryNode); 890 AllNodes.remove(AllNodes.begin()); 891 while (!AllNodes.empty()) 892 DeallocateNode(&AllNodes.front()); 893 #ifndef NDEBUG 894 NextPersistentId = 0; 895 #endif 896 } 897 898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 899 SDVTList VTs, SDValue N1, SDValue N2, 900 const SDNodeFlags *Flags) { 901 SDValue Ops[] = {N1, N2}; 902 903 if (isBinOpWithFlags(Opcode)) { 904 // If no flags were passed in, use a default flags object. 905 SDNodeFlags F; 906 if (Flags == nullptr) 907 Flags = &F; 908 909 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 910 DL.getDebugLoc(), VTs, *Flags); 911 createOperands(FN, Ops); 912 913 return FN; 914 } 915 916 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 917 createOperands(N, Ops); 918 return N; 919 } 920 921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 922 void *&InsertPos) { 923 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 924 if (N) { 925 switch (N->getOpcode()) { 926 default: break; 927 case ISD::Constant: 928 case ISD::ConstantFP: 929 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 930 "debug location. Use another overload."); 931 } 932 } 933 return N; 934 } 935 936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 937 const SDLoc &DL, void *&InsertPos) { 938 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 939 if (N) { 940 switch (N->getOpcode()) { 941 case ISD::Constant: 942 case ISD::ConstantFP: 943 // Erase debug location from the node if the node is used at several 944 // different places. Do not propagate one location to all uses as it 945 // will cause a worse single stepping debugging experience. 946 if (N->getDebugLoc() != DL.getDebugLoc()) 947 N->setDebugLoc(DebugLoc()); 948 break; 949 default: 950 // When the node's point of use is located earlier in the instruction 951 // sequence than its prior point of use, update its debug info to the 952 // earlier location. 953 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 954 N->setDebugLoc(DL.getDebugLoc()); 955 break; 956 } 957 } 958 return N; 959 } 960 961 void SelectionDAG::clear() { 962 allnodes_clear(); 963 OperandRecycler.clear(OperandAllocator); 964 OperandAllocator.Reset(); 965 CSEMap.clear(); 966 967 ExtendedValueTypeNodes.clear(); 968 ExternalSymbols.clear(); 969 TargetExternalSymbols.clear(); 970 MCSymbols.clear(); 971 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 972 static_cast<CondCodeSDNode*>(nullptr)); 973 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 974 static_cast<SDNode*>(nullptr)); 975 976 EntryNode.UseList = nullptr; 977 InsertNode(&EntryNode); 978 Root = getEntryNode(); 979 DbgInfo->clear(); 980 } 981 982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 983 return VT.bitsGT(Op.getValueType()) ? 984 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 985 getNode(ISD::TRUNCATE, DL, VT, Op); 986 } 987 988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 989 return VT.bitsGT(Op.getValueType()) ? 990 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 991 getNode(ISD::TRUNCATE, DL, VT, Op); 992 } 993 994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 995 return VT.bitsGT(Op.getValueType()) ? 996 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 997 getNode(ISD::TRUNCATE, DL, VT, Op); 998 } 999 1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1001 EVT OpVT) { 1002 if (VT.bitsLE(Op.getValueType())) 1003 return getNode(ISD::TRUNCATE, SL, VT, Op); 1004 1005 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1006 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1007 } 1008 1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1010 assert(!VT.isVector() && 1011 "getZeroExtendInReg should use the vector element type instead of " 1012 "the vector type!"); 1013 if (Op.getValueType() == VT) return Op; 1014 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1015 APInt Imm = APInt::getLowBitsSet(BitWidth, 1016 VT.getSizeInBits()); 1017 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1018 getConstant(Imm, DL, Op.getValueType())); 1019 } 1020 1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1022 EVT VT) { 1023 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1024 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1025 "The sizes of the input and result must match in order to perform the " 1026 "extend in-register."); 1027 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1028 "The destination vector type must have fewer lanes than the input."); 1029 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1030 } 1031 1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1033 EVT VT) { 1034 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1035 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1036 "The sizes of the input and result must match in order to perform the " 1037 "extend in-register."); 1038 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1039 "The destination vector type must have fewer lanes than the input."); 1040 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1041 } 1042 1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1044 EVT VT) { 1045 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1046 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1047 "The sizes of the input and result must match in order to perform the " 1048 "extend in-register."); 1049 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1050 "The destination vector type must have fewer lanes than the input."); 1051 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1052 } 1053 1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1055 /// 1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1057 EVT EltVT = VT.getScalarType(); 1058 SDValue NegOne = 1059 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1060 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1061 } 1062 1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1064 EVT EltVT = VT.getScalarType(); 1065 SDValue TrueValue; 1066 switch (TLI->getBooleanContents(VT)) { 1067 case TargetLowering::ZeroOrOneBooleanContent: 1068 case TargetLowering::UndefinedBooleanContent: 1069 TrueValue = getConstant(1, DL, VT); 1070 break; 1071 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1072 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1073 VT); 1074 break; 1075 } 1076 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1077 } 1078 1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1080 bool isT, bool isO) { 1081 EVT EltVT = VT.getScalarType(); 1082 assert((EltVT.getSizeInBits() >= 64 || 1083 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1084 "getConstant with a uint64_t value that doesn't fit in the type!"); 1085 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1086 } 1087 1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1089 bool isT, bool isO) { 1090 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1091 } 1092 1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1094 EVT VT, bool isT, bool isO) { 1095 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1096 1097 EVT EltVT = VT.getScalarType(); 1098 const ConstantInt *Elt = &Val; 1099 1100 // In some cases the vector type is legal but the element type is illegal and 1101 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1102 // inserted value (the type does not need to match the vector element type). 1103 // Any extra bits introduced will be truncated away. 1104 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1105 TargetLowering::TypePromoteInteger) { 1106 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1107 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1108 Elt = ConstantInt::get(*getContext(), NewVal); 1109 } 1110 // In other cases the element type is illegal and needs to be expanded, for 1111 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1112 // the value into n parts and use a vector type with n-times the elements. 1113 // Then bitcast to the type requested. 1114 // Legalizing constants too early makes the DAGCombiner's job harder so we 1115 // only legalize if the DAG tells us we must produce legal types. 1116 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1117 TLI->getTypeAction(*getContext(), EltVT) == 1118 TargetLowering::TypeExpandInteger) { 1119 const APInt &NewVal = Elt->getValue(); 1120 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1121 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1122 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1123 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1124 1125 // Check the temporary vector is the correct size. If this fails then 1126 // getTypeToTransformTo() probably returned a type whose size (in bits) 1127 // isn't a power-of-2 factor of the requested type size. 1128 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1129 1130 SmallVector<SDValue, 2> EltParts; 1131 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1132 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1133 .zextOrTrunc(ViaEltSizeInBits), DL, 1134 ViaEltVT, isT, isO)); 1135 } 1136 1137 // EltParts is currently in little endian order. If we actually want 1138 // big-endian order then reverse it now. 1139 if (getDataLayout().isBigEndian()) 1140 std::reverse(EltParts.begin(), EltParts.end()); 1141 1142 // The elements must be reversed when the element order is different 1143 // to the endianness of the elements (because the BITCAST is itself a 1144 // vector shuffle in this situation). However, we do not need any code to 1145 // perform this reversal because getConstant() is producing a vector 1146 // splat. 1147 // This situation occurs in MIPS MSA. 1148 1149 SmallVector<SDValue, 8> Ops; 1150 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1151 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1152 return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1153 } 1154 1155 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1156 "APInt size does not match type size!"); 1157 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1158 FoldingSetNodeID ID; 1159 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1160 ID.AddPointer(Elt); 1161 ID.AddBoolean(isO); 1162 void *IP = nullptr; 1163 SDNode *N = nullptr; 1164 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1165 if (!VT.isVector()) 1166 return SDValue(N, 0); 1167 1168 if (!N) { 1169 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1170 CSEMap.InsertNode(N, IP); 1171 InsertNode(N); 1172 } 1173 1174 SDValue Result(N, 0); 1175 if (VT.isVector()) 1176 Result = getSplatBuildVector(VT, DL, Result); 1177 return Result; 1178 } 1179 1180 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1181 bool isTarget) { 1182 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1183 } 1184 1185 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1186 bool isTarget) { 1187 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1188 } 1189 1190 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1191 EVT VT, bool isTarget) { 1192 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1193 1194 EVT EltVT = VT.getScalarType(); 1195 1196 // Do the map lookup using the actual bit pattern for the floating point 1197 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1198 // we don't have issues with SNANs. 1199 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1200 FoldingSetNodeID ID; 1201 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1202 ID.AddPointer(&V); 1203 void *IP = nullptr; 1204 SDNode *N = nullptr; 1205 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1206 if (!VT.isVector()) 1207 return SDValue(N, 0); 1208 1209 if (!N) { 1210 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1211 CSEMap.InsertNode(N, IP); 1212 InsertNode(N); 1213 } 1214 1215 SDValue Result(N, 0); 1216 if (VT.isVector()) 1217 Result = getSplatBuildVector(VT, DL, Result); 1218 return Result; 1219 } 1220 1221 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1222 bool isTarget) { 1223 EVT EltVT = VT.getScalarType(); 1224 if (EltVT == MVT::f32) 1225 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1226 else if (EltVT == MVT::f64) 1227 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1228 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1229 EltVT == MVT::f16) { 1230 bool Ignored; 1231 APFloat APF = APFloat(Val); 1232 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1233 &Ignored); 1234 return getConstantFP(APF, DL, VT, isTarget); 1235 } else 1236 llvm_unreachable("Unsupported type in getConstantFP"); 1237 } 1238 1239 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1240 EVT VT, int64_t Offset, bool isTargetGA, 1241 unsigned char TargetFlags) { 1242 assert((TargetFlags == 0 || isTargetGA) && 1243 "Cannot set target flags on target-independent globals"); 1244 1245 // Truncate (with sign-extension) the offset value to the pointer size. 1246 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1247 if (BitWidth < 64) 1248 Offset = SignExtend64(Offset, BitWidth); 1249 1250 unsigned Opc; 1251 if (GV->isThreadLocal()) 1252 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1253 else 1254 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1255 1256 FoldingSetNodeID ID; 1257 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1258 ID.AddPointer(GV); 1259 ID.AddInteger(Offset); 1260 ID.AddInteger(TargetFlags); 1261 void *IP = nullptr; 1262 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1263 return SDValue(E, 0); 1264 1265 auto *N = newSDNode<GlobalAddressSDNode>( 1266 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1267 CSEMap.InsertNode(N, IP); 1268 InsertNode(N); 1269 return SDValue(N, 0); 1270 } 1271 1272 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1273 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1274 FoldingSetNodeID ID; 1275 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1276 ID.AddInteger(FI); 1277 void *IP = nullptr; 1278 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1279 return SDValue(E, 0); 1280 1281 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1282 CSEMap.InsertNode(N, IP); 1283 InsertNode(N); 1284 return SDValue(N, 0); 1285 } 1286 1287 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1288 unsigned char TargetFlags) { 1289 assert((TargetFlags == 0 || isTarget) && 1290 "Cannot set target flags on target-independent jump tables"); 1291 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1292 FoldingSetNodeID ID; 1293 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1294 ID.AddInteger(JTI); 1295 ID.AddInteger(TargetFlags); 1296 void *IP = nullptr; 1297 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1298 return SDValue(E, 0); 1299 1300 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1301 CSEMap.InsertNode(N, IP); 1302 InsertNode(N); 1303 return SDValue(N, 0); 1304 } 1305 1306 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1307 unsigned Alignment, int Offset, 1308 bool isTarget, 1309 unsigned char TargetFlags) { 1310 assert((TargetFlags == 0 || isTarget) && 1311 "Cannot set target flags on target-independent globals"); 1312 if (Alignment == 0) 1313 Alignment = MF->getFunction()->optForSize() 1314 ? getDataLayout().getABITypeAlignment(C->getType()) 1315 : getDataLayout().getPrefTypeAlignment(C->getType()); 1316 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1317 FoldingSetNodeID ID; 1318 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1319 ID.AddInteger(Alignment); 1320 ID.AddInteger(Offset); 1321 ID.AddPointer(C); 1322 ID.AddInteger(TargetFlags); 1323 void *IP = nullptr; 1324 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1325 return SDValue(E, 0); 1326 1327 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1328 TargetFlags); 1329 CSEMap.InsertNode(N, IP); 1330 InsertNode(N); 1331 return SDValue(N, 0); 1332 } 1333 1334 1335 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1336 unsigned Alignment, int Offset, 1337 bool isTarget, 1338 unsigned char TargetFlags) { 1339 assert((TargetFlags == 0 || isTarget) && 1340 "Cannot set target flags on target-independent globals"); 1341 if (Alignment == 0) 1342 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1343 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1344 FoldingSetNodeID ID; 1345 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1346 ID.AddInteger(Alignment); 1347 ID.AddInteger(Offset); 1348 C->addSelectionDAGCSEId(ID); 1349 ID.AddInteger(TargetFlags); 1350 void *IP = nullptr; 1351 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1352 return SDValue(E, 0); 1353 1354 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1355 TargetFlags); 1356 CSEMap.InsertNode(N, IP); 1357 InsertNode(N); 1358 return SDValue(N, 0); 1359 } 1360 1361 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1362 unsigned char TargetFlags) { 1363 FoldingSetNodeID ID; 1364 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1365 ID.AddInteger(Index); 1366 ID.AddInteger(Offset); 1367 ID.AddInteger(TargetFlags); 1368 void *IP = nullptr; 1369 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1370 return SDValue(E, 0); 1371 1372 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1373 CSEMap.InsertNode(N, IP); 1374 InsertNode(N); 1375 return SDValue(N, 0); 1376 } 1377 1378 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1379 FoldingSetNodeID ID; 1380 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1381 ID.AddPointer(MBB); 1382 void *IP = nullptr; 1383 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1384 return SDValue(E, 0); 1385 1386 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1387 CSEMap.InsertNode(N, IP); 1388 InsertNode(N); 1389 return SDValue(N, 0); 1390 } 1391 1392 SDValue SelectionDAG::getValueType(EVT VT) { 1393 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1394 ValueTypeNodes.size()) 1395 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1396 1397 SDNode *&N = VT.isExtended() ? 1398 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1399 1400 if (N) return SDValue(N, 0); 1401 N = newSDNode<VTSDNode>(VT); 1402 InsertNode(N); 1403 return SDValue(N, 0); 1404 } 1405 1406 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1407 SDNode *&N = ExternalSymbols[Sym]; 1408 if (N) return SDValue(N, 0); 1409 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1410 InsertNode(N); 1411 return SDValue(N, 0); 1412 } 1413 1414 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1415 SDNode *&N = MCSymbols[Sym]; 1416 if (N) 1417 return SDValue(N, 0); 1418 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1419 InsertNode(N); 1420 return SDValue(N, 0); 1421 } 1422 1423 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1424 unsigned char TargetFlags) { 1425 SDNode *&N = 1426 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1427 TargetFlags)]; 1428 if (N) return SDValue(N, 0); 1429 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1430 InsertNode(N); 1431 return SDValue(N, 0); 1432 } 1433 1434 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1435 if ((unsigned)Cond >= CondCodeNodes.size()) 1436 CondCodeNodes.resize(Cond+1); 1437 1438 if (!CondCodeNodes[Cond]) { 1439 auto *N = newSDNode<CondCodeSDNode>(Cond); 1440 CondCodeNodes[Cond] = N; 1441 InsertNode(N); 1442 } 1443 1444 return SDValue(CondCodeNodes[Cond], 0); 1445 } 1446 1447 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1448 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1449 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1450 std::swap(N1, N2); 1451 ShuffleVectorSDNode::commuteMask(M); 1452 } 1453 1454 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1455 SDValue N2, ArrayRef<int> Mask) { 1456 assert(VT.getVectorNumElements() == Mask.size() && 1457 "Must have the same number of vector elements as mask elements!"); 1458 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1459 "Invalid VECTOR_SHUFFLE"); 1460 1461 // Canonicalize shuffle undef, undef -> undef 1462 if (N1.isUndef() && N2.isUndef()) 1463 return getUNDEF(VT); 1464 1465 // Validate that all indices in Mask are within the range of the elements 1466 // input to the shuffle. 1467 int NElts = Mask.size(); 1468 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1469 "Index out of range"); 1470 1471 // Copy the mask so we can do any needed cleanup. 1472 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1473 1474 // Canonicalize shuffle v, v -> v, undef 1475 if (N1 == N2) { 1476 N2 = getUNDEF(VT); 1477 for (int i = 0; i != NElts; ++i) 1478 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1479 } 1480 1481 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1482 if (N1.isUndef()) 1483 commuteShuffle(N1, N2, MaskVec); 1484 1485 // If shuffling a splat, try to blend the splat instead. We do this here so 1486 // that even when this arises during lowering we don't have to re-handle it. 1487 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1488 BitVector UndefElements; 1489 SDValue Splat = BV->getSplatValue(&UndefElements); 1490 if (!Splat) 1491 return; 1492 1493 for (int i = 0; i < NElts; ++i) { 1494 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1495 continue; 1496 1497 // If this input comes from undef, mark it as such. 1498 if (UndefElements[MaskVec[i] - Offset]) { 1499 MaskVec[i] = -1; 1500 continue; 1501 } 1502 1503 // If we can blend a non-undef lane, use that instead. 1504 if (!UndefElements[i]) 1505 MaskVec[i] = i + Offset; 1506 } 1507 }; 1508 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1509 BlendSplat(N1BV, 0); 1510 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1511 BlendSplat(N2BV, NElts); 1512 1513 // Canonicalize all index into lhs, -> shuffle lhs, undef 1514 // Canonicalize all index into rhs, -> shuffle rhs, undef 1515 bool AllLHS = true, AllRHS = true; 1516 bool N2Undef = N2.isUndef(); 1517 for (int i = 0; i != NElts; ++i) { 1518 if (MaskVec[i] >= NElts) { 1519 if (N2Undef) 1520 MaskVec[i] = -1; 1521 else 1522 AllLHS = false; 1523 } else if (MaskVec[i] >= 0) { 1524 AllRHS = false; 1525 } 1526 } 1527 if (AllLHS && AllRHS) 1528 return getUNDEF(VT); 1529 if (AllLHS && !N2Undef) 1530 N2 = getUNDEF(VT); 1531 if (AllRHS) { 1532 N1 = getUNDEF(VT); 1533 commuteShuffle(N1, N2, MaskVec); 1534 } 1535 // Reset our undef status after accounting for the mask. 1536 N2Undef = N2.isUndef(); 1537 // Re-check whether both sides ended up undef. 1538 if (N1.isUndef() && N2Undef) 1539 return getUNDEF(VT); 1540 1541 // If Identity shuffle return that node. 1542 bool Identity = true, AllSame = true; 1543 for (int i = 0; i != NElts; ++i) { 1544 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1545 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1546 } 1547 if (Identity && NElts) 1548 return N1; 1549 1550 // Shuffling a constant splat doesn't change the result. 1551 if (N2Undef) { 1552 SDValue V = N1; 1553 1554 // Look through any bitcasts. We check that these don't change the number 1555 // (and size) of elements and just changes their types. 1556 while (V.getOpcode() == ISD::BITCAST) 1557 V = V->getOperand(0); 1558 1559 // A splat should always show up as a build vector node. 1560 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1561 BitVector UndefElements; 1562 SDValue Splat = BV->getSplatValue(&UndefElements); 1563 // If this is a splat of an undef, shuffling it is also undef. 1564 if (Splat && Splat.isUndef()) 1565 return getUNDEF(VT); 1566 1567 bool SameNumElts = 1568 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1569 1570 // We only have a splat which can skip shuffles if there is a splatted 1571 // value and no undef lanes rearranged by the shuffle. 1572 if (Splat && UndefElements.none()) { 1573 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1574 // number of elements match or the value splatted is a zero constant. 1575 if (SameNumElts) 1576 return N1; 1577 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1578 if (C->isNullValue()) 1579 return N1; 1580 } 1581 1582 // If the shuffle itself creates a splat, build the vector directly. 1583 if (AllSame && SameNumElts) { 1584 EVT BuildVT = BV->getValueType(0); 1585 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1586 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1587 1588 // We may have jumped through bitcasts, so the type of the 1589 // BUILD_VECTOR may not match the type of the shuffle. 1590 if (BuildVT != VT) 1591 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1592 return NewBV; 1593 } 1594 } 1595 } 1596 1597 FoldingSetNodeID ID; 1598 SDValue Ops[2] = { N1, N2 }; 1599 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1600 for (int i = 0; i != NElts; ++i) 1601 ID.AddInteger(MaskVec[i]); 1602 1603 void* IP = nullptr; 1604 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1605 return SDValue(E, 0); 1606 1607 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1608 // SDNode doesn't have access to it. This memory will be "leaked" when 1609 // the node is deallocated, but recovered when the NodeAllocator is released. 1610 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1611 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1612 1613 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1614 dl.getDebugLoc(), MaskAlloc); 1615 createOperands(N, Ops); 1616 1617 CSEMap.InsertNode(N, IP); 1618 InsertNode(N); 1619 return SDValue(N, 0); 1620 } 1621 1622 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1623 MVT VT = SV.getSimpleValueType(0); 1624 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1625 ShuffleVectorSDNode::commuteMask(MaskVec); 1626 1627 SDValue Op0 = SV.getOperand(0); 1628 SDValue Op1 = SV.getOperand(1); 1629 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1630 } 1631 1632 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1633 FoldingSetNodeID ID; 1634 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1635 ID.AddInteger(RegNo); 1636 void *IP = nullptr; 1637 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1638 return SDValue(E, 0); 1639 1640 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1641 CSEMap.InsertNode(N, IP); 1642 InsertNode(N); 1643 return SDValue(N, 0); 1644 } 1645 1646 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1647 FoldingSetNodeID ID; 1648 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1649 ID.AddPointer(RegMask); 1650 void *IP = nullptr; 1651 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1652 return SDValue(E, 0); 1653 1654 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1661 MCSymbol *Label) { 1662 FoldingSetNodeID ID; 1663 SDValue Ops[] = { Root }; 1664 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1665 ID.AddPointer(Label); 1666 void *IP = nullptr; 1667 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1668 return SDValue(E, 0); 1669 1670 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1671 createOperands(N, Ops); 1672 1673 CSEMap.InsertNode(N, IP); 1674 InsertNode(N); 1675 return SDValue(N, 0); 1676 } 1677 1678 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1679 int64_t Offset, 1680 bool isTarget, 1681 unsigned char TargetFlags) { 1682 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1683 1684 FoldingSetNodeID ID; 1685 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1686 ID.AddPointer(BA); 1687 ID.AddInteger(Offset); 1688 ID.AddInteger(TargetFlags); 1689 void *IP = nullptr; 1690 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1691 return SDValue(E, 0); 1692 1693 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1694 CSEMap.InsertNode(N, IP); 1695 InsertNode(N); 1696 return SDValue(N, 0); 1697 } 1698 1699 SDValue SelectionDAG::getSrcValue(const Value *V) { 1700 assert((!V || V->getType()->isPointerTy()) && 1701 "SrcValue is not a pointer?"); 1702 1703 FoldingSetNodeID ID; 1704 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1705 ID.AddPointer(V); 1706 1707 void *IP = nullptr; 1708 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1709 return SDValue(E, 0); 1710 1711 auto *N = newSDNode<SrcValueSDNode>(V); 1712 CSEMap.InsertNode(N, IP); 1713 InsertNode(N); 1714 return SDValue(N, 0); 1715 } 1716 1717 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1720 ID.AddPointer(MD); 1721 1722 void *IP = nullptr; 1723 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1724 return SDValue(E, 0); 1725 1726 auto *N = newSDNode<MDNodeSDNode>(MD); 1727 CSEMap.InsertNode(N, IP); 1728 InsertNode(N); 1729 return SDValue(N, 0); 1730 } 1731 1732 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1733 if (VT == V.getValueType()) 1734 return V; 1735 1736 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1737 } 1738 1739 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1740 unsigned SrcAS, unsigned DestAS) { 1741 SDValue Ops[] = {Ptr}; 1742 FoldingSetNodeID ID; 1743 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1744 ID.AddInteger(SrcAS); 1745 ID.AddInteger(DestAS); 1746 1747 void *IP = nullptr; 1748 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1749 return SDValue(E, 0); 1750 1751 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1752 VT, SrcAS, DestAS); 1753 createOperands(N, Ops); 1754 1755 CSEMap.InsertNode(N, IP); 1756 InsertNode(N); 1757 return SDValue(N, 0); 1758 } 1759 1760 /// getShiftAmountOperand - Return the specified value casted to 1761 /// the target's desired shift amount type. 1762 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1763 EVT OpTy = Op.getValueType(); 1764 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1765 if (OpTy == ShTy || OpTy.isVector()) return Op; 1766 1767 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1768 } 1769 1770 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1771 SDLoc dl(Node); 1772 const TargetLowering &TLI = getTargetLoweringInfo(); 1773 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1774 EVT VT = Node->getValueType(0); 1775 SDValue Tmp1 = Node->getOperand(0); 1776 SDValue Tmp2 = Node->getOperand(1); 1777 unsigned Align = Node->getConstantOperandVal(3); 1778 1779 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1780 Tmp2, MachinePointerInfo(V)); 1781 SDValue VAList = VAListLoad; 1782 1783 if (Align > TLI.getMinStackArgumentAlignment()) { 1784 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1785 1786 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1787 getConstant(Align - 1, dl, VAList.getValueType())); 1788 1789 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1790 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1791 } 1792 1793 // Increment the pointer, VAList, to the next vaarg 1794 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1795 getConstant(getDataLayout().getTypeAllocSize( 1796 VT.getTypeForEVT(*getContext())), 1797 dl, VAList.getValueType())); 1798 // Store the incremented VAList to the legalized pointer 1799 Tmp1 = 1800 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1801 // Load the actual argument out of the pointer VAList 1802 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1803 } 1804 1805 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1806 SDLoc dl(Node); 1807 const TargetLowering &TLI = getTargetLoweringInfo(); 1808 // This defaults to loading a pointer from the input and storing it to the 1809 // output, returning the chain. 1810 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1811 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1812 SDValue Tmp1 = 1813 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1814 Node->getOperand(2), MachinePointerInfo(VS)); 1815 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1816 MachinePointerInfo(VD)); 1817 } 1818 1819 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1820 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1821 unsigned ByteSize = VT.getStoreSize(); 1822 Type *Ty = VT.getTypeForEVT(*getContext()); 1823 unsigned StackAlign = 1824 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1825 1826 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1827 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1828 } 1829 1830 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1831 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1832 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1833 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1834 const DataLayout &DL = getDataLayout(); 1835 unsigned Align = 1836 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1837 1838 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1839 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1840 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1841 } 1842 1843 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1844 ISD::CondCode Cond, const SDLoc &dl) { 1845 // These setcc operations always fold. 1846 switch (Cond) { 1847 default: break; 1848 case ISD::SETFALSE: 1849 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1850 case ISD::SETTRUE: 1851 case ISD::SETTRUE2: { 1852 TargetLowering::BooleanContent Cnt = 1853 TLI->getBooleanContents(N1->getValueType(0)); 1854 return getConstant( 1855 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1856 VT); 1857 } 1858 1859 case ISD::SETOEQ: 1860 case ISD::SETOGT: 1861 case ISD::SETOGE: 1862 case ISD::SETOLT: 1863 case ISD::SETOLE: 1864 case ISD::SETONE: 1865 case ISD::SETO: 1866 case ISD::SETUO: 1867 case ISD::SETUEQ: 1868 case ISD::SETUNE: 1869 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1870 break; 1871 } 1872 1873 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1874 const APInt &C2 = N2C->getAPIntValue(); 1875 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1876 const APInt &C1 = N1C->getAPIntValue(); 1877 1878 switch (Cond) { 1879 default: llvm_unreachable("Unknown integer setcc!"); 1880 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1881 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1882 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1883 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1884 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1885 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1886 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1887 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1888 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1889 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1890 } 1891 } 1892 } 1893 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1894 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1895 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1896 switch (Cond) { 1897 default: break; 1898 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1899 return getUNDEF(VT); 1900 LLVM_FALLTHROUGH; 1901 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1902 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1903 return getUNDEF(VT); 1904 LLVM_FALLTHROUGH; 1905 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1906 R==APFloat::cmpLessThan, dl, VT); 1907 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1908 return getUNDEF(VT); 1909 LLVM_FALLTHROUGH; 1910 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1911 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1912 return getUNDEF(VT); 1913 LLVM_FALLTHROUGH; 1914 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1915 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1916 return getUNDEF(VT); 1917 LLVM_FALLTHROUGH; 1918 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1919 R==APFloat::cmpEqual, dl, VT); 1920 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1921 return getUNDEF(VT); 1922 LLVM_FALLTHROUGH; 1923 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1924 R==APFloat::cmpEqual, dl, VT); 1925 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1926 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1927 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1928 R==APFloat::cmpEqual, dl, VT); 1929 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1930 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1931 R==APFloat::cmpLessThan, dl, VT); 1932 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1933 R==APFloat::cmpUnordered, dl, VT); 1934 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1935 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1936 } 1937 } else { 1938 // Ensure that the constant occurs on the RHS. 1939 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1940 MVT CompVT = N1.getValueType().getSimpleVT(); 1941 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1942 return SDValue(); 1943 1944 return getSetCC(dl, VT, N2, N1, SwappedCond); 1945 } 1946 } 1947 1948 // Could not fold it. 1949 return SDValue(); 1950 } 1951 1952 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 1953 /// use this predicate to simplify operations downstream. 1954 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 1955 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1956 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 1957 } 1958 1959 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1960 /// this predicate to simplify operations downstream. Mask is known to be zero 1961 /// for bits that V cannot have. 1962 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 1963 unsigned Depth) const { 1964 APInt KnownZero, KnownOne; 1965 computeKnownBits(Op, KnownZero, KnownOne, Depth); 1966 return (KnownZero & Mask) == Mask; 1967 } 1968 1969 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 1970 /// is less than the element bit-width of the shift node, return it. 1971 static const APInt *getValidShiftAmountConstant(SDValue V) { 1972 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 1973 // Shifting more than the bitwidth is not valid. 1974 const APInt &ShAmt = SA->getAPIntValue(); 1975 if (ShAmt.ult(V.getScalarValueSizeInBits())) 1976 return &ShAmt; 1977 } 1978 return nullptr; 1979 } 1980 1981 /// Determine which bits of Op are known to be either zero or one and return 1982 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are 1983 /// those that are shared by every vector element. 1984 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 1985 APInt &KnownOne, unsigned Depth) const { 1986 EVT VT = Op.getValueType(); 1987 APInt DemandedElts = VT.isVector() 1988 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 1989 : APInt(1, 1); 1990 computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth); 1991 } 1992 1993 /// Determine which bits of Op are known to be either zero or one and return 1994 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows 1995 /// us to only collect the known bits that are shared by the requested vector 1996 /// elements. 1997 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder 1998 /// should be added when they become necessary. 1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2000 APInt &KnownOne, const APInt &DemandedElts, 2001 unsigned Depth) const { 2002 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2003 2004 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2005 if (Depth == 6) 2006 return; // Limit search depth. 2007 2008 APInt KnownZero2, KnownOne2; 2009 unsigned NumElts = DemandedElts.getBitWidth(); 2010 2011 if (!DemandedElts) 2012 return; // No demanded elts, better to assume we don't know anything. 2013 2014 unsigned Opcode = Op.getOpcode(); 2015 switch (Opcode) { 2016 case ISD::Constant: 2017 // We know all of the bits for a constant! 2018 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2019 KnownZero = ~KnownOne; 2020 break; 2021 case ISD::BUILD_VECTOR: 2022 // Collect the known bits that are shared by every demanded vector element. 2023 assert(NumElts == Op.getValueType().getVectorNumElements() && 2024 "Unexpected vector size"); 2025 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2026 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2027 if (!DemandedElts[i]) 2028 continue; 2029 2030 SDValue SrcOp = Op.getOperand(i); 2031 computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); 2032 2033 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2034 if (SrcOp.getValueSizeInBits() != BitWidth) { 2035 assert(SrcOp.getValueSizeInBits() > BitWidth && 2036 "Expected BUILD_VECTOR implicit truncation"); 2037 KnownOne2 = KnownOne2.trunc(BitWidth); 2038 KnownZero2 = KnownZero2.trunc(BitWidth); 2039 } 2040 2041 // Known bits are the values that are shared by every demanded element. 2042 KnownOne &= KnownOne2; 2043 KnownZero &= KnownZero2; 2044 2045 // If we don't know any bits, early out. 2046 if (!KnownOne && !KnownZero) 2047 break; 2048 } 2049 break; 2050 case ISD::VECTOR_SHUFFLE: { 2051 // Collect the known bits that are shared by every vector element referenced 2052 // by the shuffle. 2053 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2054 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2055 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2056 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2057 for (unsigned i = 0; i != NumElts; ++i) { 2058 if (!DemandedElts[i]) 2059 continue; 2060 2061 int M = SVN->getMaskElt(i); 2062 if (M < 0) { 2063 // For UNDEF elements, we don't know anything about the common state of 2064 // the shuffle result. 2065 KnownOne.clearAllBits(); 2066 KnownZero.clearAllBits(); 2067 DemandedLHS.clearAllBits(); 2068 DemandedRHS.clearAllBits(); 2069 break; 2070 } 2071 2072 if ((unsigned)M < NumElts) 2073 DemandedLHS.setBit((unsigned)M % NumElts); 2074 else 2075 DemandedRHS.setBit((unsigned)M % NumElts); 2076 } 2077 // Known bits are the values that are shared by every demanded element. 2078 if (!!DemandedLHS) { 2079 SDValue LHS = Op.getOperand(0); 2080 computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1); 2081 KnownOne &= KnownOne2; 2082 KnownZero &= KnownZero2; 2083 } 2084 // If we don't know any bits, early out. 2085 if (!KnownOne && !KnownZero) 2086 break; 2087 if (!!DemandedRHS) { 2088 SDValue RHS = Op.getOperand(1); 2089 computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1); 2090 KnownOne &= KnownOne2; 2091 KnownZero &= KnownZero2; 2092 } 2093 break; 2094 } 2095 case ISD::CONCAT_VECTORS: { 2096 // Split DemandedElts and test each of the demanded subvectors. 2097 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2098 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2099 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2100 unsigned NumSubVectors = Op.getNumOperands(); 2101 for (unsigned i = 0; i != NumSubVectors; ++i) { 2102 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2103 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2104 if (!!DemandedSub) { 2105 SDValue Sub = Op.getOperand(i); 2106 computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1); 2107 KnownOne &= KnownOne2; 2108 KnownZero &= KnownZero2; 2109 } 2110 // If we don't know any bits, early out. 2111 if (!KnownOne && !KnownZero) 2112 break; 2113 } 2114 break; 2115 } 2116 case ISD::EXTRACT_SUBVECTOR: { 2117 // If we know the element index, just demand that subvector elements, 2118 // otherwise demand them all. 2119 SDValue Src = Op.getOperand(0); 2120 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2121 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2122 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2123 // Offset the demanded elts by the subvector index. 2124 uint64_t Idx = SubIdx->getZExtValue(); 2125 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2126 computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1); 2127 } else { 2128 computeKnownBits(Src, KnownZero, KnownOne, Depth + 1); 2129 } 2130 break; 2131 } 2132 case ISD::BITCAST: { 2133 SDValue N0 = Op.getOperand(0); 2134 unsigned SubBitWidth = N0.getScalarValueSizeInBits(); 2135 2136 // Ignore bitcasts from floating point. 2137 if (!N0.getValueType().isInteger()) 2138 break; 2139 2140 // Fast handling of 'identity' bitcasts. 2141 if (BitWidth == SubBitWidth) { 2142 computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1); 2143 break; 2144 } 2145 2146 // Support big-endian targets when it becomes useful. 2147 bool IsLE = getDataLayout().isLittleEndian(); 2148 if (!IsLE) 2149 break; 2150 2151 // Bitcast 'small element' vector to 'large element' scalar/vector. 2152 if ((BitWidth % SubBitWidth) == 0) { 2153 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2154 2155 // Collect known bits for the (larger) output by collecting the known 2156 // bits from each set of sub elements and shift these into place. 2157 // We need to separately call computeKnownBits for each set of 2158 // sub elements as the knownbits for each is likely to be different. 2159 unsigned SubScale = BitWidth / SubBitWidth; 2160 APInt SubDemandedElts(NumElts * SubScale, 0); 2161 for (unsigned i = 0; i != NumElts; ++i) 2162 if (DemandedElts[i]) 2163 SubDemandedElts.setBit(i * SubScale); 2164 2165 for (unsigned i = 0; i != SubScale; ++i) { 2166 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i), 2167 Depth + 1); 2168 KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i); 2169 KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i); 2170 } 2171 } 2172 2173 // Bitcast 'large element' scalar/vector to 'small element' vector. 2174 if ((SubBitWidth % BitWidth) == 0) { 2175 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2176 2177 // Collect known bits for the (smaller) output by collecting the known 2178 // bits from the overlapping larger input elements and extracting the 2179 // sub sections we actually care about. 2180 unsigned SubScale = SubBitWidth / BitWidth; 2181 APInt SubDemandedElts(NumElts / SubScale, 0); 2182 for (unsigned i = 0; i != NumElts; ++i) 2183 if (DemandedElts[i]) 2184 SubDemandedElts.setBit(i / SubScale); 2185 2186 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1); 2187 2188 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2189 for (unsigned i = 0; i != NumElts; ++i) 2190 if (DemandedElts[i]) { 2191 unsigned Offset = (i % SubScale) * BitWidth; 2192 KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth); 2193 KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth); 2194 // If we don't know any bits, early out. 2195 if (!KnownOne && !KnownZero) 2196 break; 2197 } 2198 } 2199 break; 2200 } 2201 case ISD::AND: 2202 // If either the LHS or the RHS are Zero, the result is zero. 2203 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2204 Depth + 1); 2205 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2206 Depth + 1); 2207 2208 // Output known-1 bits are only known if set in both the LHS & RHS. 2209 KnownOne &= KnownOne2; 2210 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2211 KnownZero |= KnownZero2; 2212 break; 2213 case ISD::OR: 2214 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2215 Depth + 1); 2216 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2217 Depth + 1); 2218 2219 // Output known-0 bits are only known if clear in both the LHS & RHS. 2220 KnownZero &= KnownZero2; 2221 // Output known-1 are known to be set if set in either the LHS | RHS. 2222 KnownOne |= KnownOne2; 2223 break; 2224 case ISD::XOR: { 2225 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2226 Depth + 1); 2227 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2228 Depth + 1); 2229 2230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2231 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2232 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2233 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2234 KnownZero = KnownZeroOut; 2235 break; 2236 } 2237 case ISD::MUL: { 2238 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2239 Depth + 1); 2240 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2241 Depth + 1); 2242 2243 // If low bits are zero in either operand, output low known-0 bits. 2244 // Also compute a conservative estimate for high known-0 bits. 2245 // More trickiness is possible, but this is sufficient for the 2246 // interesting case of alignment computation. 2247 KnownOne.clearAllBits(); 2248 unsigned TrailZ = KnownZero.countTrailingOnes() + 2249 KnownZero2.countTrailingOnes(); 2250 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2251 KnownZero2.countLeadingOnes(), 2252 BitWidth) - BitWidth; 2253 2254 KnownZero.clearAllBits(); 2255 KnownZero.setLowBits(std::min(TrailZ, BitWidth)); 2256 KnownZero.setHighBits(std::min(LeadZ, BitWidth)); 2257 break; 2258 } 2259 case ISD::UDIV: { 2260 // For the purposes of computing leading zeros we can conservatively 2261 // treat a udiv as a logical right shift by the power of 2 known to 2262 // be less than the denominator. 2263 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2264 Depth + 1); 2265 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2266 2267 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2268 Depth + 1); 2269 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2270 if (RHSUnknownLeadingOnes != BitWidth) 2271 LeadZ = std::min(BitWidth, 2272 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2273 2274 KnownZero.setHighBits(LeadZ); 2275 break; 2276 } 2277 case ISD::SELECT: 2278 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2279 // If we don't know any bits, early out. 2280 if (!KnownOne && !KnownZero) 2281 break; 2282 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2283 2284 // Only known if known in both the LHS and RHS. 2285 KnownOne &= KnownOne2; 2286 KnownZero &= KnownZero2; 2287 break; 2288 case ISD::SELECT_CC: 2289 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2290 // If we don't know any bits, early out. 2291 if (!KnownOne && !KnownZero) 2292 break; 2293 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2294 2295 // Only known if known in both the LHS and RHS. 2296 KnownOne &= KnownOne2; 2297 KnownZero &= KnownZero2; 2298 break; 2299 case ISD::SMULO: 2300 case ISD::UMULO: 2301 if (Op.getResNo() != 1) 2302 break; 2303 // The boolean result conforms to getBooleanContents. 2304 // If we know the result of a setcc has the top bits zero, use this info. 2305 // We know that we have an integer-based boolean since these operations 2306 // are only available for integer. 2307 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2308 TargetLowering::ZeroOrOneBooleanContent && 2309 BitWidth > 1) 2310 KnownZero.setBitsFrom(1); 2311 break; 2312 case ISD::SETCC: 2313 // If we know the result of a setcc has the top bits zero, use this info. 2314 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2315 TargetLowering::ZeroOrOneBooleanContent && 2316 BitWidth > 1) 2317 KnownZero.setBitsFrom(1); 2318 break; 2319 case ISD::SHL: 2320 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2321 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2322 Depth + 1); 2323 KnownZero = KnownZero << *ShAmt; 2324 KnownOne = KnownOne << *ShAmt; 2325 // Low bits are known zero. 2326 KnownZero.setLowBits(ShAmt->getZExtValue()); 2327 } 2328 break; 2329 case ISD::SRL: 2330 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2331 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2332 Depth + 1); 2333 KnownZero = KnownZero.lshr(*ShAmt); 2334 KnownOne = KnownOne.lshr(*ShAmt); 2335 // High bits are known zero. 2336 KnownZero.setHighBits(ShAmt->getZExtValue()); 2337 } 2338 break; 2339 case ISD::SRA: 2340 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2341 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2342 Depth + 1); 2343 KnownZero = KnownZero.lshr(*ShAmt); 2344 KnownOne = KnownOne.lshr(*ShAmt); 2345 // If we know the value of the sign bit, then we know it is copied across 2346 // the high bits by the shift amount. 2347 APInt SignBit = APInt::getSignBit(BitWidth); 2348 SignBit = SignBit.lshr(*ShAmt); // Adjust to where it is now in the mask. 2349 if (KnownZero.intersects(SignBit)) { 2350 KnownZero.setHighBits(ShAmt->getZExtValue());// New bits are known zero. 2351 } else if (KnownOne.intersects(SignBit)) { 2352 KnownOne.setHighBits(ShAmt->getZExtValue()); // New bits are known one. 2353 } 2354 } 2355 break; 2356 case ISD::SIGN_EXTEND_INREG: { 2357 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2358 unsigned EBits = EVT.getScalarSizeInBits(); 2359 2360 // Sign extension. Compute the demanded bits in the result that are not 2361 // present in the input. 2362 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2363 2364 APInt InSignBit = APInt::getSignBit(EBits); 2365 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2366 2367 // If the sign extended bits are demanded, we know that the sign 2368 // bit is demanded. 2369 InSignBit = InSignBit.zext(BitWidth); 2370 if (NewBits.getBoolValue()) 2371 InputDemandedBits |= InSignBit; 2372 2373 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2374 Depth + 1); 2375 KnownOne &= InputDemandedBits; 2376 KnownZero &= InputDemandedBits; 2377 2378 // If the sign bit of the input is known set or clear, then we know the 2379 // top bits of the result. 2380 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2381 KnownZero |= NewBits; 2382 KnownOne &= ~NewBits; 2383 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2384 KnownOne |= NewBits; 2385 KnownZero &= ~NewBits; 2386 } else { // Input sign bit unknown 2387 KnownZero &= ~NewBits; 2388 KnownOne &= ~NewBits; 2389 } 2390 break; 2391 } 2392 case ISD::CTTZ: 2393 case ISD::CTTZ_ZERO_UNDEF: 2394 case ISD::CTLZ: 2395 case ISD::CTLZ_ZERO_UNDEF: 2396 case ISD::CTPOP: { 2397 KnownZero.setBitsFrom(Log2_32(BitWidth)+1); 2398 break; 2399 } 2400 case ISD::LOAD: { 2401 LoadSDNode *LD = cast<LoadSDNode>(Op); 2402 // If this is a ZEXTLoad and we are looking at the loaded value. 2403 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2404 EVT VT = LD->getMemoryVT(); 2405 unsigned MemBits = VT.getScalarSizeInBits(); 2406 KnownZero.setBitsFrom(MemBits); 2407 } else if (const MDNode *Ranges = LD->getRanges()) { 2408 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2409 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2410 } 2411 break; 2412 } 2413 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2414 EVT InVT = Op.getOperand(0).getValueType(); 2415 unsigned InBits = InVT.getScalarSizeInBits(); 2416 KnownZero = KnownZero.trunc(InBits); 2417 KnownOne = KnownOne.trunc(InBits); 2418 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, 2419 DemandedElts.zext(InVT.getVectorNumElements()), 2420 Depth + 1); 2421 KnownZero = KnownZero.zext(BitWidth); 2422 KnownOne = KnownOne.zext(BitWidth); 2423 KnownZero.setBitsFrom(InBits); 2424 break; 2425 } 2426 case ISD::ZERO_EXTEND: { 2427 EVT InVT = Op.getOperand(0).getValueType(); 2428 unsigned InBits = InVT.getScalarSizeInBits(); 2429 KnownZero = KnownZero.trunc(InBits); 2430 KnownOne = KnownOne.trunc(InBits); 2431 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2432 Depth + 1); 2433 KnownZero = KnownZero.zext(BitWidth); 2434 KnownOne = KnownOne.zext(BitWidth); 2435 KnownZero.setBitsFrom(InBits); 2436 break; 2437 } 2438 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2439 case ISD::SIGN_EXTEND: { 2440 EVT InVT = Op.getOperand(0).getValueType(); 2441 unsigned InBits = InVT.getScalarSizeInBits(); 2442 2443 KnownZero = KnownZero.trunc(InBits); 2444 KnownOne = KnownOne.trunc(InBits); 2445 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2446 Depth + 1); 2447 2448 // If the sign bit is known to be zero or one, then sext will extend 2449 // it to the top bits, else it will just zext. 2450 KnownZero = KnownZero.sext(BitWidth); 2451 KnownOne = KnownOne.sext(BitWidth); 2452 break; 2453 } 2454 case ISD::ANY_EXTEND: { 2455 EVT InVT = Op.getOperand(0).getValueType(); 2456 unsigned InBits = InVT.getScalarSizeInBits(); 2457 KnownZero = KnownZero.trunc(InBits); 2458 KnownOne = KnownOne.trunc(InBits); 2459 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2460 KnownZero = KnownZero.zext(BitWidth); 2461 KnownOne = KnownOne.zext(BitWidth); 2462 break; 2463 } 2464 case ISD::TRUNCATE: { 2465 EVT InVT = Op.getOperand(0).getValueType(); 2466 unsigned InBits = InVT.getScalarSizeInBits(); 2467 KnownZero = KnownZero.zext(InBits); 2468 KnownOne = KnownOne.zext(InBits); 2469 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2470 Depth + 1); 2471 KnownZero = KnownZero.trunc(BitWidth); 2472 KnownOne = KnownOne.trunc(BitWidth); 2473 break; 2474 } 2475 case ISD::AssertZext: { 2476 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2477 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2478 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2479 KnownZero |= (~InMask); 2480 KnownOne &= (~KnownZero); 2481 break; 2482 } 2483 case ISD::FGETSIGN: 2484 // All bits are zero except the low bit. 2485 KnownZero.setBitsFrom(1); 2486 break; 2487 case ISD::USUBO: 2488 case ISD::SSUBO: 2489 if (Op.getResNo() == 1) { 2490 // If we know the result of a setcc has the top bits zero, use this info. 2491 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2492 TargetLowering::ZeroOrOneBooleanContent && 2493 BitWidth > 1) 2494 KnownZero.setBitsFrom(1); 2495 break; 2496 } 2497 LLVM_FALLTHROUGH; 2498 case ISD::SUB: 2499 case ISD::SUBC: { 2500 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2501 // We know that the top bits of C-X are clear if X contains less bits 2502 // than C (i.e. no wrap-around can happen). For example, 20-X is 2503 // positive if we can prove that X is >= 0 and < 16. 2504 if (CLHS->getAPIntValue().isNonNegative()) { 2505 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2506 // NLZ can't be BitWidth with no sign bit 2507 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2508 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2509 Depth + 1); 2510 2511 // If all of the MaskV bits are known to be zero, then we know the 2512 // output top bits are zero, because we now know that the output is 2513 // from [0-C]. 2514 if ((KnownZero2 & MaskV) == MaskV) { 2515 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2516 // Top bits known zero. 2517 KnownZero.setHighBits(NLZ2); 2518 } 2519 } 2520 } 2521 2522 // If low bits are know to be zero in both operands, then we know they are 2523 // going to be 0 in the result. Both addition and complement operations 2524 // preserve the low zero bits. 2525 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2526 Depth + 1); 2527 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2528 if (KnownZeroLow == 0) 2529 break; 2530 2531 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2532 Depth + 1); 2533 KnownZeroLow = std::min(KnownZeroLow, 2534 KnownZero2.countTrailingOnes()); 2535 KnownZero.setBits(0, KnownZeroLow); 2536 break; 2537 } 2538 case ISD::UADDO: 2539 case ISD::SADDO: 2540 if (Op.getResNo() == 1) { 2541 // If we know the result of a setcc has the top bits zero, use this info. 2542 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2543 TargetLowering::ZeroOrOneBooleanContent && 2544 BitWidth > 1) 2545 KnownZero.setBitsFrom(1); 2546 break; 2547 } 2548 LLVM_FALLTHROUGH; 2549 case ISD::ADD: 2550 case ISD::ADDC: 2551 case ISD::ADDE: { 2552 // Output known-0 bits are known if clear or set in both the low clear bits 2553 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2554 // low 3 bits clear. 2555 // Output known-0 bits are also known if the top bits of each input are 2556 // known to be clear. For example, if one input has the top 10 bits clear 2557 // and the other has the top 8 bits clear, we know the top 7 bits of the 2558 // output must be clear. 2559 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2560 Depth + 1); 2561 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2562 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2563 2564 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2565 Depth + 1); 2566 KnownZeroHigh = std::min(KnownZeroHigh, 2567 KnownZero2.countLeadingOnes()); 2568 KnownZeroLow = std::min(KnownZeroLow, 2569 KnownZero2.countTrailingOnes()); 2570 2571 if (Opcode == ISD::ADDE) { 2572 // With ADDE, a carry bit may be added in, so we can only use this 2573 // information if we know (at least) that the low two bits are clear. 2574 // We then return to the caller that the low bit is unknown but that 2575 // other bits are known zero. 2576 if (KnownZeroLow >= 2) 2577 KnownZero.setBits(1, KnownZeroLow); 2578 break; 2579 } 2580 2581 KnownZero.setLowBits(KnownZeroLow); 2582 if (KnownZeroHigh > 1) 2583 KnownZero.setHighBits(KnownZeroHigh - 1); 2584 break; 2585 } 2586 case ISD::SREM: 2587 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2588 const APInt &RA = Rem->getAPIntValue().abs(); 2589 if (RA.isPowerOf2()) { 2590 APInt LowBits = RA - 1; 2591 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2592 Depth + 1); 2593 2594 // The low bits of the first operand are unchanged by the srem. 2595 KnownZero = KnownZero2 & LowBits; 2596 KnownOne = KnownOne2 & LowBits; 2597 2598 // If the first operand is non-negative or has all low bits zero, then 2599 // the upper bits are all zero. 2600 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2601 KnownZero |= ~LowBits; 2602 2603 // If the first operand is negative and not all low bits are zero, then 2604 // the upper bits are all one. 2605 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2606 KnownOne |= ~LowBits; 2607 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2608 } 2609 } 2610 break; 2611 case ISD::UREM: { 2612 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2613 const APInt &RA = Rem->getAPIntValue(); 2614 if (RA.isPowerOf2()) { 2615 APInt LowBits = (RA - 1); 2616 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2617 Depth + 1); 2618 2619 // The upper bits are all zero, the lower ones are unchanged. 2620 KnownZero = KnownZero2 | ~LowBits; 2621 KnownOne = KnownOne2 & LowBits; 2622 break; 2623 } 2624 } 2625 2626 // Since the result is less than or equal to either operand, any leading 2627 // zero bits in either operand must also exist in the result. 2628 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2629 Depth + 1); 2630 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2631 Depth + 1); 2632 2633 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2634 KnownZero2.countLeadingOnes()); 2635 KnownOne.clearAllBits(); 2636 KnownZero.clearAllBits(); 2637 KnownZero.setHighBits(Leaders); 2638 break; 2639 } 2640 case ISD::EXTRACT_ELEMENT: { 2641 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2642 const unsigned Index = Op.getConstantOperandVal(1); 2643 const unsigned BitWidth = Op.getValueSizeInBits(); 2644 2645 // Remove low part of known bits mask 2646 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2647 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2648 2649 // Remove high part of known bit mask 2650 KnownZero = KnownZero.trunc(BitWidth); 2651 KnownOne = KnownOne.trunc(BitWidth); 2652 break; 2653 } 2654 case ISD::EXTRACT_VECTOR_ELT: { 2655 SDValue InVec = Op.getOperand(0); 2656 SDValue EltNo = Op.getOperand(1); 2657 EVT VecVT = InVec.getValueType(); 2658 const unsigned BitWidth = Op.getValueSizeInBits(); 2659 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2660 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2661 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2662 // anything about the extended bits. 2663 if (BitWidth > EltBitWidth) { 2664 KnownZero = KnownZero.trunc(EltBitWidth); 2665 KnownOne = KnownOne.trunc(EltBitWidth); 2666 } 2667 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2668 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2669 // If we know the element index, just demand that vector element. 2670 unsigned Idx = ConstEltNo->getZExtValue(); 2671 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2672 computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1); 2673 } else { 2674 // Unknown element index, so ignore DemandedElts and demand them all. 2675 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2676 } 2677 if (BitWidth > EltBitWidth) { 2678 KnownZero = KnownZero.zext(BitWidth); 2679 KnownOne = KnownOne.zext(BitWidth); 2680 } 2681 break; 2682 } 2683 case ISD::INSERT_VECTOR_ELT: { 2684 SDValue InVec = Op.getOperand(0); 2685 SDValue InVal = Op.getOperand(1); 2686 SDValue EltNo = Op.getOperand(2); 2687 2688 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2689 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2690 // If we know the element index, split the demand between the 2691 // source vector and the inserted element. 2692 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2693 unsigned EltIdx = CEltNo->getZExtValue(); 2694 2695 // If we demand the inserted element then add its common known bits. 2696 if (DemandedElts[EltIdx]) { 2697 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2698 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2699 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2700 } 2701 2702 // If we demand the source vector then add its common known bits, ensuring 2703 // that we don't demand the inserted element. 2704 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2705 if (!!VectorElts) { 2706 computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1); 2707 KnownOne &= KnownOne2; 2708 KnownZero &= KnownZero2; 2709 } 2710 } else { 2711 // Unknown element index, so ignore DemandedElts and demand them all. 2712 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2713 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2714 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2715 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2716 } 2717 break; 2718 } 2719 case ISD::BITREVERSE: { 2720 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2721 Depth + 1); 2722 KnownZero = KnownZero2.reverseBits(); 2723 KnownOne = KnownOne2.reverseBits(); 2724 break; 2725 } 2726 case ISD::BSWAP: { 2727 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2728 Depth + 1); 2729 KnownZero = KnownZero2.byteSwap(); 2730 KnownOne = KnownOne2.byteSwap(); 2731 break; 2732 } 2733 case ISD::ABS: { 2734 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2735 Depth + 1); 2736 2737 // If the source's MSB is zero then we know the rest of the bits already. 2738 if (KnownZero2[BitWidth - 1]) { 2739 KnownZero = KnownZero2; 2740 KnownOne = KnownOne2; 2741 break; 2742 } 2743 2744 // We only know that the absolute values's MSB will be zero iff there is 2745 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2746 KnownOne2.clearBit(BitWidth - 1); 2747 if (KnownOne2.getBoolValue()) { 2748 KnownZero = APInt::getSignBit(BitWidth); 2749 break; 2750 } 2751 break; 2752 } 2753 case ISD::UMIN: { 2754 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2755 Depth + 1); 2756 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2757 Depth + 1); 2758 2759 // UMIN - we know that the result will have the maximum of the 2760 // known zero leading bits of the inputs. 2761 unsigned LeadZero = KnownZero.countLeadingOnes(); 2762 LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes()); 2763 2764 KnownZero &= KnownZero2; 2765 KnownOne &= KnownOne2; 2766 KnownZero.setHighBits(LeadZero); 2767 break; 2768 } 2769 case ISD::UMAX: { 2770 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2771 Depth + 1); 2772 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2773 Depth + 1); 2774 2775 // UMAX - we know that the result will have the maximum of the 2776 // known one leading bits of the inputs. 2777 unsigned LeadOne = KnownOne.countLeadingOnes(); 2778 LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes()); 2779 2780 KnownZero &= KnownZero2; 2781 KnownOne &= KnownOne2; 2782 KnownOne.setHighBits(LeadOne); 2783 break; 2784 } 2785 case ISD::SMIN: 2786 case ISD::SMAX: { 2787 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2788 Depth + 1); 2789 // If we don't know any bits, early out. 2790 if (!KnownOne && !KnownZero) 2791 break; 2792 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2793 Depth + 1); 2794 KnownZero &= KnownZero2; 2795 KnownOne &= KnownOne2; 2796 break; 2797 } 2798 case ISD::FrameIndex: 2799 case ISD::TargetFrameIndex: 2800 if (unsigned Align = InferPtrAlignment(Op)) { 2801 // The low bits are known zero if the pointer is aligned. 2802 KnownZero.setLowBits(Log2_32(Align)); 2803 break; 2804 } 2805 break; 2806 2807 default: 2808 if (Opcode < ISD::BUILTIN_OP_END) 2809 break; 2810 LLVM_FALLTHROUGH; 2811 case ISD::INTRINSIC_WO_CHAIN: 2812 case ISD::INTRINSIC_W_CHAIN: 2813 case ISD::INTRINSIC_VOID: 2814 // Allow the target to implement this method for its nodes. 2815 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2816 break; 2817 } 2818 2819 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2820 } 2821 2822 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2823 SDValue N1) const { 2824 // X + 0 never overflow 2825 if (isNullConstant(N1)) 2826 return OFK_Never; 2827 2828 APInt N1Zero, N1One; 2829 computeKnownBits(N1, N1Zero, N1One); 2830 if (N1Zero.getBoolValue()) { 2831 APInt N0Zero, N0One; 2832 computeKnownBits(N0, N0Zero, N0One); 2833 2834 bool overflow; 2835 (~N0Zero).uadd_ov(~N1Zero, overflow); 2836 if (!overflow) 2837 return OFK_Never; 2838 } 2839 2840 // mulhi + 1 never overflow 2841 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2842 (~N1Zero & 0x01) == ~N1Zero) 2843 return OFK_Never; 2844 2845 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2846 APInt N0Zero, N0One; 2847 computeKnownBits(N0, N0Zero, N0One); 2848 2849 if ((~N0Zero & 0x01) == ~N0Zero) 2850 return OFK_Never; 2851 } 2852 2853 return OFK_Sometime; 2854 } 2855 2856 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2857 EVT OpVT = Val.getValueType(); 2858 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2859 2860 // Is the constant a known power of 2? 2861 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2862 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2863 2864 // A left-shift of a constant one will have exactly one bit set because 2865 // shifting the bit off the end is undefined. 2866 if (Val.getOpcode() == ISD::SHL) { 2867 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2868 if (C && C->getAPIntValue() == 1) 2869 return true; 2870 } 2871 2872 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2873 // one bit set. 2874 if (Val.getOpcode() == ISD::SRL) { 2875 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2876 if (C && C->getAPIntValue().isSignBit()) 2877 return true; 2878 } 2879 2880 // Are all operands of a build vector constant powers of two? 2881 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2882 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 2883 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 2884 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2885 return false; 2886 })) 2887 return true; 2888 2889 // More could be done here, though the above checks are enough 2890 // to handle some common cases. 2891 2892 // Fall back to computeKnownBits to catch other known cases. 2893 APInt KnownZero, KnownOne; 2894 computeKnownBits(Val, KnownZero, KnownOne); 2895 return (KnownZero.countPopulation() == BitWidth - 1) && 2896 (KnownOne.countPopulation() == 1); 2897 } 2898 2899 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2900 EVT VT = Op.getValueType(); 2901 assert(VT.isInteger() && "Invalid VT!"); 2902 unsigned VTBits = VT.getScalarSizeInBits(); 2903 unsigned Tmp, Tmp2; 2904 unsigned FirstAnswer = 1; 2905 2906 if (Depth == 6) 2907 return 1; // Limit search depth. 2908 2909 switch (Op.getOpcode()) { 2910 default: break; 2911 case ISD::AssertSext: 2912 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2913 return VTBits-Tmp+1; 2914 case ISD::AssertZext: 2915 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2916 return VTBits-Tmp; 2917 2918 case ISD::Constant: { 2919 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2920 return Val.getNumSignBits(); 2921 } 2922 2923 case ISD::BUILD_VECTOR: 2924 Tmp = VTBits; 2925 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 2926 SDValue SrcOp = Op.getOperand(i); 2927 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 2928 2929 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2930 if (SrcOp.getValueSizeInBits() != VTBits) { 2931 assert(SrcOp.getValueSizeInBits() > VTBits && 2932 "Expected BUILD_VECTOR implicit truncation"); 2933 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 2934 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 2935 } 2936 Tmp = std::min(Tmp, Tmp2); 2937 } 2938 return Tmp; 2939 2940 case ISD::SIGN_EXTEND: 2941 case ISD::SIGN_EXTEND_VECTOR_INREG: 2942 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 2943 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2944 2945 case ISD::SIGN_EXTEND_INREG: 2946 // Max of the input and what this extends. 2947 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 2948 Tmp = VTBits-Tmp+1; 2949 2950 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2951 return std::max(Tmp, Tmp2); 2952 2953 case ISD::SRA: 2954 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2955 // SRA X, C -> adds C sign bits. 2956 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2957 APInt ShiftVal = C->getAPIntValue(); 2958 ShiftVal += Tmp; 2959 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 2960 } 2961 return Tmp; 2962 case ISD::SHL: 2963 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2964 // shl destroys sign bits. 2965 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2966 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 2967 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 2968 return Tmp - C->getZExtValue(); 2969 } 2970 break; 2971 case ISD::AND: 2972 case ISD::OR: 2973 case ISD::XOR: // NOT is handled here. 2974 // Logical binary ops preserve the number of sign bits at the worst. 2975 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2976 if (Tmp != 1) { 2977 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2978 FirstAnswer = std::min(Tmp, Tmp2); 2979 // We computed what we know about the sign bits as our first 2980 // answer. Now proceed to the generic code that uses 2981 // computeKnownBits, and pick whichever answer is better. 2982 } 2983 break; 2984 2985 case ISD::SELECT: 2986 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2987 if (Tmp == 1) return 1; // Early out. 2988 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2989 return std::min(Tmp, Tmp2); 2990 case ISD::SELECT_CC: 2991 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2992 if (Tmp == 1) return 1; // Early out. 2993 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2994 return std::min(Tmp, Tmp2); 2995 case ISD::SMIN: 2996 case ISD::SMAX: 2997 case ISD::UMIN: 2998 case ISD::UMAX: 2999 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3000 if (Tmp == 1) 3001 return 1; // Early out. 3002 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3003 return std::min(Tmp, Tmp2); 3004 case ISD::SADDO: 3005 case ISD::UADDO: 3006 case ISD::SSUBO: 3007 case ISD::USUBO: 3008 case ISD::SMULO: 3009 case ISD::UMULO: 3010 if (Op.getResNo() != 1) 3011 break; 3012 // The boolean result conforms to getBooleanContents. Fall through. 3013 // If setcc returns 0/-1, all bits are sign bits. 3014 // We know that we have an integer-based boolean since these operations 3015 // are only available for integer. 3016 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3017 TargetLowering::ZeroOrNegativeOneBooleanContent) 3018 return VTBits; 3019 break; 3020 case ISD::SETCC: 3021 // If setcc returns 0/-1, all bits are sign bits. 3022 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3023 TargetLowering::ZeroOrNegativeOneBooleanContent) 3024 return VTBits; 3025 break; 3026 case ISD::ROTL: 3027 case ISD::ROTR: 3028 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3029 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 3030 3031 // Handle rotate right by N like a rotate left by 32-N. 3032 if (Op.getOpcode() == ISD::ROTR) 3033 RotAmt = (VTBits-RotAmt) & (VTBits-1); 3034 3035 // If we aren't rotating out all of the known-in sign bits, return the 3036 // number that are left. This handles rotl(sext(x), 1) for example. 3037 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3038 if (Tmp > RotAmt+1) return Tmp-RotAmt; 3039 } 3040 break; 3041 case ISD::ADD: 3042 case ISD::ADDC: 3043 // Add can have at most one carry bit. Thus we know that the output 3044 // is, at worst, one more bit than the inputs. 3045 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3046 if (Tmp == 1) return 1; // Early out. 3047 3048 // Special case decrementing a value (ADD X, -1): 3049 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3050 if (CRHS->isAllOnesValue()) { 3051 APInt KnownZero, KnownOne; 3052 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 3053 3054 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3055 // sign bits set. 3056 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 3057 return VTBits; 3058 3059 // If we are subtracting one from a positive number, there is no carry 3060 // out of the result. 3061 if (KnownZero.isNegative()) 3062 return Tmp; 3063 } 3064 3065 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3066 if (Tmp2 == 1) return 1; 3067 return std::min(Tmp, Tmp2)-1; 3068 3069 case ISD::SUB: 3070 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3071 if (Tmp2 == 1) return 1; 3072 3073 // Handle NEG. 3074 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3075 if (CLHS->isNullValue()) { 3076 APInt KnownZero, KnownOne; 3077 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 3078 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3079 // sign bits set. 3080 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 3081 return VTBits; 3082 3083 // If the input is known to be positive (the sign bit is known clear), 3084 // the output of the NEG has the same number of sign bits as the input. 3085 if (KnownZero.isNegative()) 3086 return Tmp2; 3087 3088 // Otherwise, we treat this like a SUB. 3089 } 3090 3091 // Sub can have at most one carry bit. Thus we know that the output 3092 // is, at worst, one more bit than the inputs. 3093 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3094 if (Tmp == 1) return 1; // Early out. 3095 return std::min(Tmp, Tmp2)-1; 3096 case ISD::TRUNCATE: { 3097 // Check if the sign bits of source go down as far as the truncated value. 3098 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3099 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3100 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3101 return NumSrcSignBits - (NumSrcBits - VTBits); 3102 break; 3103 } 3104 case ISD::EXTRACT_ELEMENT: { 3105 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3106 const int BitWidth = Op.getValueSizeInBits(); 3107 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3108 3109 // Get reverse index (starting from 1), Op1 value indexes elements from 3110 // little end. Sign starts at big end. 3111 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3112 3113 // If the sign portion ends in our element the subtraction gives correct 3114 // result. Otherwise it gives either negative or > bitwidth result 3115 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3116 } 3117 case ISD::EXTRACT_VECTOR_ELT: { 3118 // At the moment we keep this simple and skip tracking the specific 3119 // element. This way we get the lowest common denominator for all elements 3120 // of the vector. 3121 // TODO: get information for given vector element 3122 const unsigned BitWidth = Op.getValueSizeInBits(); 3123 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3124 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3125 // anything about sign bits. But if the sizes match we can derive knowledge 3126 // about sign bits from the vector operand. 3127 if (BitWidth == EltBitWidth) 3128 return ComputeNumSignBits(Op.getOperand(0), Depth+1); 3129 break; 3130 } 3131 case ISD::EXTRACT_SUBVECTOR: 3132 return ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3133 case ISD::CONCAT_VECTORS: 3134 // Determine the minimum number of sign bits across all input vectors. 3135 // Early out if the result is already 1. 3136 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3137 for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) 3138 Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1)); 3139 return Tmp; 3140 } 3141 3142 // If we are looking at the loaded value of the SDNode. 3143 if (Op.getResNo() == 0) { 3144 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3145 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3146 unsigned ExtType = LD->getExtensionType(); 3147 switch (ExtType) { 3148 default: break; 3149 case ISD::SEXTLOAD: // '17' bits known 3150 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3151 return VTBits-Tmp+1; 3152 case ISD::ZEXTLOAD: // '16' bits known 3153 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3154 return VTBits-Tmp; 3155 } 3156 } 3157 } 3158 3159 // Allow the target to implement this method for its nodes. 3160 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3161 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3162 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3163 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3164 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 3165 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 3166 } 3167 3168 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3169 // use this information. 3170 APInt KnownZero, KnownOne; 3171 computeKnownBits(Op, KnownZero, KnownOne, Depth); 3172 3173 APInt Mask; 3174 if (KnownZero.isNegative()) { // sign bit is 0 3175 Mask = KnownZero; 3176 } else if (KnownOne.isNegative()) { // sign bit is 1; 3177 Mask = KnownOne; 3178 } else { 3179 // Nothing known. 3180 return FirstAnswer; 3181 } 3182 3183 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3184 // the number of identical bits in the top of the input value. 3185 Mask = ~Mask; 3186 Mask <<= Mask.getBitWidth()-VTBits; 3187 // Return # leading zeros. We use 'min' here in case Val was zero before 3188 // shifting. We don't want to return '64' as for an i32 "0". 3189 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3190 } 3191 3192 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3193 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3194 !isa<ConstantSDNode>(Op.getOperand(1))) 3195 return false; 3196 3197 if (Op.getOpcode() == ISD::OR && 3198 !MaskedValueIsZero(Op.getOperand(0), 3199 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3200 return false; 3201 3202 return true; 3203 } 3204 3205 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3206 // If we're told that NaNs won't happen, assume they won't. 3207 if (getTarget().Options.NoNaNsFPMath) 3208 return true; 3209 3210 if (const BinaryWithFlagsSDNode *BF = dyn_cast<BinaryWithFlagsSDNode>(Op)) 3211 return BF->Flags.hasNoNaNs(); 3212 3213 // If the value is a constant, we can obviously see if it is a NaN or not. 3214 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3215 return !C->getValueAPF().isNaN(); 3216 3217 // TODO: Recognize more cases here. 3218 3219 return false; 3220 } 3221 3222 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3223 // If the value is a constant, we can obviously see if it is a zero or not. 3224 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3225 return !C->isZero(); 3226 3227 // TODO: Recognize more cases here. 3228 switch (Op.getOpcode()) { 3229 default: break; 3230 case ISD::OR: 3231 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3232 return !C->isNullValue(); 3233 break; 3234 } 3235 3236 return false; 3237 } 3238 3239 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3240 // Check the obvious case. 3241 if (A == B) return true; 3242 3243 // For for negative and positive zero. 3244 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3245 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3246 if (CA->isZero() && CB->isZero()) return true; 3247 3248 // Otherwise they may not be equal. 3249 return false; 3250 } 3251 3252 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3253 assert(A.getValueType() == B.getValueType() && 3254 "Values must have the same type"); 3255 APInt AZero, AOne; 3256 APInt BZero, BOne; 3257 computeKnownBits(A, AZero, AOne); 3258 computeKnownBits(B, BZero, BOne); 3259 return (AZero | BZero).isAllOnesValue(); 3260 } 3261 3262 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3263 ArrayRef<SDValue> Ops, 3264 llvm::SelectionDAG &DAG) { 3265 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3266 assert(llvm::all_of(Ops, 3267 [Ops](SDValue Op) { 3268 return Ops[0].getValueType() == Op.getValueType(); 3269 }) && 3270 "Concatenation of vectors with inconsistent value types!"); 3271 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3272 VT.getVectorNumElements() && 3273 "Incorrect element count in vector concatenation!"); 3274 3275 if (Ops.size() == 1) 3276 return Ops[0]; 3277 3278 // Concat of UNDEFs is UNDEF. 3279 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3280 return DAG.getUNDEF(VT); 3281 3282 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3283 // simplified to one big BUILD_VECTOR. 3284 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3285 EVT SVT = VT.getScalarType(); 3286 SmallVector<SDValue, 16> Elts; 3287 for (SDValue Op : Ops) { 3288 EVT OpVT = Op.getValueType(); 3289 if (Op.isUndef()) 3290 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3291 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3292 Elts.append(Op->op_begin(), Op->op_end()); 3293 else 3294 return SDValue(); 3295 } 3296 3297 // BUILD_VECTOR requires all inputs to be of the same type, find the 3298 // maximum type and extend them all. 3299 for (SDValue Op : Elts) 3300 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3301 3302 if (SVT.bitsGT(VT.getScalarType())) 3303 for (SDValue &Op : Elts) 3304 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3305 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3306 : DAG.getSExtOrTrunc(Op, DL, SVT); 3307 3308 return DAG.getBuildVector(VT, DL, Elts); 3309 } 3310 3311 /// Gets or creates the specified node. 3312 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3313 FoldingSetNodeID ID; 3314 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3315 void *IP = nullptr; 3316 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3317 return SDValue(E, 0); 3318 3319 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3320 getVTList(VT)); 3321 CSEMap.InsertNode(N, IP); 3322 3323 InsertNode(N); 3324 return SDValue(N, 0); 3325 } 3326 3327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3328 SDValue Operand) { 3329 // Constant fold unary operations with an integer constant operand. Even 3330 // opaque constant will be folded, because the folding of unary operations 3331 // doesn't create new constants with different values. Nevertheless, the 3332 // opaque flag is preserved during folding to prevent future folding with 3333 // other constants. 3334 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3335 const APInt &Val = C->getAPIntValue(); 3336 switch (Opcode) { 3337 default: break; 3338 case ISD::SIGN_EXTEND: 3339 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3340 C->isTargetOpcode(), C->isOpaque()); 3341 case ISD::ANY_EXTEND: 3342 case ISD::ZERO_EXTEND: 3343 case ISD::TRUNCATE: 3344 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3345 C->isTargetOpcode(), C->isOpaque()); 3346 case ISD::UINT_TO_FP: 3347 case ISD::SINT_TO_FP: { 3348 APFloat apf(EVTToAPFloatSemantics(VT), 3349 APInt::getNullValue(VT.getSizeInBits())); 3350 (void)apf.convertFromAPInt(Val, 3351 Opcode==ISD::SINT_TO_FP, 3352 APFloat::rmNearestTiesToEven); 3353 return getConstantFP(apf, DL, VT); 3354 } 3355 case ISD::BITCAST: 3356 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3357 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3358 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3359 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3360 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3361 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3362 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3363 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3364 break; 3365 case ISD::ABS: 3366 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3367 C->isOpaque()); 3368 case ISD::BITREVERSE: 3369 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3370 C->isOpaque()); 3371 case ISD::BSWAP: 3372 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3373 C->isOpaque()); 3374 case ISD::CTPOP: 3375 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3376 C->isOpaque()); 3377 case ISD::CTLZ: 3378 case ISD::CTLZ_ZERO_UNDEF: 3379 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3380 C->isOpaque()); 3381 case ISD::CTTZ: 3382 case ISD::CTTZ_ZERO_UNDEF: 3383 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3384 C->isOpaque()); 3385 case ISD::FP16_TO_FP: { 3386 bool Ignored; 3387 APFloat FPV(APFloat::IEEEhalf(), 3388 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3389 3390 // This can return overflow, underflow, or inexact; we don't care. 3391 // FIXME need to be more flexible about rounding mode. 3392 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3393 APFloat::rmNearestTiesToEven, &Ignored); 3394 return getConstantFP(FPV, DL, VT); 3395 } 3396 } 3397 } 3398 3399 // Constant fold unary operations with a floating point constant operand. 3400 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3401 APFloat V = C->getValueAPF(); // make copy 3402 switch (Opcode) { 3403 case ISD::FNEG: 3404 V.changeSign(); 3405 return getConstantFP(V, DL, VT); 3406 case ISD::FABS: 3407 V.clearSign(); 3408 return getConstantFP(V, DL, VT); 3409 case ISD::FCEIL: { 3410 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3411 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3412 return getConstantFP(V, DL, VT); 3413 break; 3414 } 3415 case ISD::FTRUNC: { 3416 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3417 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3418 return getConstantFP(V, DL, VT); 3419 break; 3420 } 3421 case ISD::FFLOOR: { 3422 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3423 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3424 return getConstantFP(V, DL, VT); 3425 break; 3426 } 3427 case ISD::FP_EXTEND: { 3428 bool ignored; 3429 // This can return overflow, underflow, or inexact; we don't care. 3430 // FIXME need to be more flexible about rounding mode. 3431 (void)V.convert(EVTToAPFloatSemantics(VT), 3432 APFloat::rmNearestTiesToEven, &ignored); 3433 return getConstantFP(V, DL, VT); 3434 } 3435 case ISD::FP_TO_SINT: 3436 case ISD::FP_TO_UINT: { 3437 bool ignored; 3438 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3439 // FIXME need to be more flexible about rounding mode. 3440 APFloat::opStatus s = 3441 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3442 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3443 break; 3444 return getConstant(IntVal, DL, VT); 3445 } 3446 case ISD::BITCAST: 3447 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3448 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3449 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3450 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3451 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3452 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3453 break; 3454 case ISD::FP_TO_FP16: { 3455 bool Ignored; 3456 // This can return overflow, underflow, or inexact; we don't care. 3457 // FIXME need to be more flexible about rounding mode. 3458 (void)V.convert(APFloat::IEEEhalf(), 3459 APFloat::rmNearestTiesToEven, &Ignored); 3460 return getConstant(V.bitcastToAPInt(), DL, VT); 3461 } 3462 } 3463 } 3464 3465 // Constant fold unary operations with a vector integer or float operand. 3466 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3467 if (BV->isConstant()) { 3468 switch (Opcode) { 3469 default: 3470 // FIXME: Entirely reasonable to perform folding of other unary 3471 // operations here as the need arises. 3472 break; 3473 case ISD::FNEG: 3474 case ISD::FABS: 3475 case ISD::FCEIL: 3476 case ISD::FTRUNC: 3477 case ISD::FFLOOR: 3478 case ISD::FP_EXTEND: 3479 case ISD::FP_TO_SINT: 3480 case ISD::FP_TO_UINT: 3481 case ISD::TRUNCATE: 3482 case ISD::UINT_TO_FP: 3483 case ISD::SINT_TO_FP: 3484 case ISD::ABS: 3485 case ISD::BITREVERSE: 3486 case ISD::BSWAP: 3487 case ISD::CTLZ: 3488 case ISD::CTLZ_ZERO_UNDEF: 3489 case ISD::CTTZ: 3490 case ISD::CTTZ_ZERO_UNDEF: 3491 case ISD::CTPOP: { 3492 SDValue Ops = { Operand }; 3493 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3494 return Fold; 3495 } 3496 } 3497 } 3498 } 3499 3500 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3501 switch (Opcode) { 3502 case ISD::TokenFactor: 3503 case ISD::MERGE_VALUES: 3504 case ISD::CONCAT_VECTORS: 3505 return Operand; // Factor, merge or concat of one node? No need. 3506 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3507 case ISD::FP_EXTEND: 3508 assert(VT.isFloatingPoint() && 3509 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3510 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3511 assert((!VT.isVector() || 3512 VT.getVectorNumElements() == 3513 Operand.getValueType().getVectorNumElements()) && 3514 "Vector element count mismatch!"); 3515 assert(Operand.getValueType().bitsLT(VT) && 3516 "Invalid fpext node, dst < src!"); 3517 if (Operand.isUndef()) 3518 return getUNDEF(VT); 3519 break; 3520 case ISD::SIGN_EXTEND: 3521 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3522 "Invalid SIGN_EXTEND!"); 3523 if (Operand.getValueType() == VT) return Operand; // noop extension 3524 assert((!VT.isVector() || 3525 VT.getVectorNumElements() == 3526 Operand.getValueType().getVectorNumElements()) && 3527 "Vector element count mismatch!"); 3528 assert(Operand.getValueType().bitsLT(VT) && 3529 "Invalid sext node, dst < src!"); 3530 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3531 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3532 else if (OpOpcode == ISD::UNDEF) 3533 // sext(undef) = 0, because the top bits will all be the same. 3534 return getConstant(0, DL, VT); 3535 break; 3536 case ISD::ZERO_EXTEND: 3537 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3538 "Invalid ZERO_EXTEND!"); 3539 if (Operand.getValueType() == VT) return Operand; // noop extension 3540 assert((!VT.isVector() || 3541 VT.getVectorNumElements() == 3542 Operand.getValueType().getVectorNumElements()) && 3543 "Vector element count mismatch!"); 3544 assert(Operand.getValueType().bitsLT(VT) && 3545 "Invalid zext node, dst < src!"); 3546 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3547 return getNode(ISD::ZERO_EXTEND, DL, VT, 3548 Operand.getNode()->getOperand(0)); 3549 else if (OpOpcode == ISD::UNDEF) 3550 // zext(undef) = 0, because the top bits will be zero. 3551 return getConstant(0, DL, VT); 3552 break; 3553 case ISD::ANY_EXTEND: 3554 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3555 "Invalid ANY_EXTEND!"); 3556 if (Operand.getValueType() == VT) return Operand; // noop extension 3557 assert((!VT.isVector() || 3558 VT.getVectorNumElements() == 3559 Operand.getValueType().getVectorNumElements()) && 3560 "Vector element count mismatch!"); 3561 assert(Operand.getValueType().bitsLT(VT) && 3562 "Invalid anyext node, dst < src!"); 3563 3564 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3565 OpOpcode == ISD::ANY_EXTEND) 3566 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3567 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3568 else if (OpOpcode == ISD::UNDEF) 3569 return getUNDEF(VT); 3570 3571 // (ext (trunx x)) -> x 3572 if (OpOpcode == ISD::TRUNCATE) { 3573 SDValue OpOp = Operand.getNode()->getOperand(0); 3574 if (OpOp.getValueType() == VT) 3575 return OpOp; 3576 } 3577 break; 3578 case ISD::TRUNCATE: 3579 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3580 "Invalid TRUNCATE!"); 3581 if (Operand.getValueType() == VT) return Operand; // noop truncate 3582 assert((!VT.isVector() || 3583 VT.getVectorNumElements() == 3584 Operand.getValueType().getVectorNumElements()) && 3585 "Vector element count mismatch!"); 3586 assert(Operand.getValueType().bitsGT(VT) && 3587 "Invalid truncate node, src < dst!"); 3588 if (OpOpcode == ISD::TRUNCATE) 3589 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3590 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3591 OpOpcode == ISD::ANY_EXTEND) { 3592 // If the source is smaller than the dest, we still need an extend. 3593 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3594 .bitsLT(VT.getScalarType())) 3595 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3596 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3597 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3598 return Operand.getNode()->getOperand(0); 3599 } 3600 if (OpOpcode == ISD::UNDEF) 3601 return getUNDEF(VT); 3602 break; 3603 case ISD::ABS: 3604 assert(VT.isInteger() && VT == Operand.getValueType() && 3605 "Invalid ABS!"); 3606 if (OpOpcode == ISD::UNDEF) 3607 return getUNDEF(VT); 3608 break; 3609 case ISD::BSWAP: 3610 assert(VT.isInteger() && VT == Operand.getValueType() && 3611 "Invalid BSWAP!"); 3612 assert((VT.getScalarSizeInBits() % 16 == 0) && 3613 "BSWAP types must be a multiple of 16 bits!"); 3614 if (OpOpcode == ISD::UNDEF) 3615 return getUNDEF(VT); 3616 break; 3617 case ISD::BITREVERSE: 3618 assert(VT.isInteger() && VT == Operand.getValueType() && 3619 "Invalid BITREVERSE!"); 3620 if (OpOpcode == ISD::UNDEF) 3621 return getUNDEF(VT); 3622 break; 3623 case ISD::BITCAST: 3624 // Basic sanity checking. 3625 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3626 "Cannot BITCAST between types of different sizes!"); 3627 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3628 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3629 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3630 if (OpOpcode == ISD::UNDEF) 3631 return getUNDEF(VT); 3632 break; 3633 case ISD::SCALAR_TO_VECTOR: 3634 assert(VT.isVector() && !Operand.getValueType().isVector() && 3635 (VT.getVectorElementType() == Operand.getValueType() || 3636 (VT.getVectorElementType().isInteger() && 3637 Operand.getValueType().isInteger() && 3638 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3639 "Illegal SCALAR_TO_VECTOR node!"); 3640 if (OpOpcode == ISD::UNDEF) 3641 return getUNDEF(VT); 3642 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3643 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3644 isa<ConstantSDNode>(Operand.getOperand(1)) && 3645 Operand.getConstantOperandVal(1) == 0 && 3646 Operand.getOperand(0).getValueType() == VT) 3647 return Operand.getOperand(0); 3648 break; 3649 case ISD::FNEG: 3650 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3651 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3652 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3653 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3654 Operand.getNode()->getOperand(0), 3655 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3656 if (OpOpcode == ISD::FNEG) // --X -> X 3657 return Operand.getNode()->getOperand(0); 3658 break; 3659 case ISD::FABS: 3660 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3661 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3662 break; 3663 } 3664 3665 SDNode *N; 3666 SDVTList VTs = getVTList(VT); 3667 SDValue Ops[] = {Operand}; 3668 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3669 FoldingSetNodeID ID; 3670 AddNodeIDNode(ID, Opcode, VTs, Ops); 3671 void *IP = nullptr; 3672 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3673 return SDValue(E, 0); 3674 3675 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3676 createOperands(N, Ops); 3677 CSEMap.InsertNode(N, IP); 3678 } else { 3679 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3680 createOperands(N, Ops); 3681 } 3682 3683 InsertNode(N); 3684 return SDValue(N, 0); 3685 } 3686 3687 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3688 const APInt &C2) { 3689 switch (Opcode) { 3690 case ISD::ADD: return std::make_pair(C1 + C2, true); 3691 case ISD::SUB: return std::make_pair(C1 - C2, true); 3692 case ISD::MUL: return std::make_pair(C1 * C2, true); 3693 case ISD::AND: return std::make_pair(C1 & C2, true); 3694 case ISD::OR: return std::make_pair(C1 | C2, true); 3695 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3696 case ISD::SHL: return std::make_pair(C1 << C2, true); 3697 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3698 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3699 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3700 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3701 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3702 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3703 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3704 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3705 case ISD::UDIV: 3706 if (!C2.getBoolValue()) 3707 break; 3708 return std::make_pair(C1.udiv(C2), true); 3709 case ISD::UREM: 3710 if (!C2.getBoolValue()) 3711 break; 3712 return std::make_pair(C1.urem(C2), true); 3713 case ISD::SDIV: 3714 if (!C2.getBoolValue()) 3715 break; 3716 return std::make_pair(C1.sdiv(C2), true); 3717 case ISD::SREM: 3718 if (!C2.getBoolValue()) 3719 break; 3720 return std::make_pair(C1.srem(C2), true); 3721 } 3722 return std::make_pair(APInt(1, 0), false); 3723 } 3724 3725 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3726 EVT VT, const ConstantSDNode *Cst1, 3727 const ConstantSDNode *Cst2) { 3728 if (Cst1->isOpaque() || Cst2->isOpaque()) 3729 return SDValue(); 3730 3731 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3732 Cst2->getAPIntValue()); 3733 if (!Folded.second) 3734 return SDValue(); 3735 return getConstant(Folded.first, DL, VT); 3736 } 3737 3738 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3739 const GlobalAddressSDNode *GA, 3740 const SDNode *N2) { 3741 if (GA->getOpcode() != ISD::GlobalAddress) 3742 return SDValue(); 3743 if (!TLI->isOffsetFoldingLegal(GA)) 3744 return SDValue(); 3745 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3746 if (!Cst2) 3747 return SDValue(); 3748 int64_t Offset = Cst2->getSExtValue(); 3749 switch (Opcode) { 3750 case ISD::ADD: break; 3751 case ISD::SUB: Offset = -uint64_t(Offset); break; 3752 default: return SDValue(); 3753 } 3754 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3755 GA->getOffset() + uint64_t(Offset)); 3756 } 3757 3758 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 3759 switch (Opcode) { 3760 case ISD::SDIV: 3761 case ISD::UDIV: 3762 case ISD::SREM: 3763 case ISD::UREM: { 3764 // If a divisor is zero/undef or any element of a divisor vector is 3765 // zero/undef, the whole op is undef. 3766 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 3767 SDValue Divisor = Ops[1]; 3768 if (Divisor.isUndef() || isNullConstant(Divisor)) 3769 return true; 3770 3771 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 3772 any_of(Divisor->op_values(), 3773 [](SDValue V) { return V.isUndef() || isNullConstant(V); }); 3774 // TODO: Handle signed overflow. 3775 } 3776 // TODO: Handle oversized shifts. 3777 default: 3778 return false; 3779 } 3780 } 3781 3782 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3783 EVT VT, SDNode *Cst1, 3784 SDNode *Cst2) { 3785 // If the opcode is a target-specific ISD node, there's nothing we can 3786 // do here and the operand rules may not line up with the below, so 3787 // bail early. 3788 if (Opcode >= ISD::BUILTIN_OP_END) 3789 return SDValue(); 3790 3791 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 3792 return getUNDEF(VT); 3793 3794 // Handle the case of two scalars. 3795 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3796 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3797 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3798 assert((!Folded || !VT.isVector()) && 3799 "Can't fold vectors ops with scalar operands"); 3800 return Folded; 3801 } 3802 } 3803 3804 // fold (add Sym, c) -> Sym+c 3805 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3806 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3807 if (isCommutativeBinOp(Opcode)) 3808 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3809 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3810 3811 // For vectors extract each constant element into Inputs so we can constant 3812 // fold them individually. 3813 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3814 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3815 if (!BV1 || !BV2) 3816 return SDValue(); 3817 3818 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3819 3820 EVT SVT = VT.getScalarType(); 3821 SmallVector<SDValue, 4> Outputs; 3822 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3823 SDValue V1 = BV1->getOperand(I); 3824 SDValue V2 = BV2->getOperand(I); 3825 3826 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3827 // FIXME: This is valid and could be handled by truncation. 3828 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3829 return SDValue(); 3830 3831 // Fold one vector element. 3832 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 3833 3834 // Scalar folding only succeeded if the result is a constant or UNDEF. 3835 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3836 ScalarResult.getOpcode() != ISD::ConstantFP) 3837 return SDValue(); 3838 Outputs.push_back(ScalarResult); 3839 } 3840 3841 assert(VT.getVectorNumElements() == Outputs.size() && 3842 "Vector size mismatch!"); 3843 3844 // We may have a vector type but a scalar result. Create a splat. 3845 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3846 3847 // Build a big vector out of the scalar elements we generated. 3848 return getBuildVector(VT, SDLoc(), Outputs); 3849 } 3850 3851 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3852 const SDLoc &DL, EVT VT, 3853 ArrayRef<SDValue> Ops, 3854 const SDNodeFlags *Flags) { 3855 // If the opcode is a target-specific ISD node, there's nothing we can 3856 // do here and the operand rules may not line up with the below, so 3857 // bail early. 3858 if (Opcode >= ISD::BUILTIN_OP_END) 3859 return SDValue(); 3860 3861 if (isUndef(Opcode, Ops)) 3862 return getUNDEF(VT); 3863 3864 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3865 if (!VT.isVector()) 3866 return SDValue(); 3867 3868 unsigned NumElts = VT.getVectorNumElements(); 3869 3870 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3871 return !Op.getValueType().isVector() || 3872 Op.getValueType().getVectorNumElements() == NumElts; 3873 }; 3874 3875 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3876 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3877 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3878 (BV && BV->isConstant()); 3879 }; 3880 3881 // All operands must be vector types with the same number of elements as 3882 // the result type and must be either UNDEF or a build vector of constant 3883 // or UNDEF scalars. 3884 if (!all_of(Ops, IsConstantBuildVectorOrUndef) || 3885 !all_of(Ops, IsScalarOrSameVectorSize)) 3886 return SDValue(); 3887 3888 // If we are comparing vectors, then the result needs to be a i1 boolean 3889 // that is then sign-extended back to the legal result type. 3890 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3891 3892 // Find legal integer scalar type for constant promotion and 3893 // ensure that its scalar size is at least as large as source. 3894 EVT LegalSVT = VT.getScalarType(); 3895 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 3896 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3897 if (LegalSVT.bitsLT(VT.getScalarType())) 3898 return SDValue(); 3899 } 3900 3901 // Constant fold each scalar lane separately. 3902 SmallVector<SDValue, 4> ScalarResults; 3903 for (unsigned i = 0; i != NumElts; i++) { 3904 SmallVector<SDValue, 4> ScalarOps; 3905 for (SDValue Op : Ops) { 3906 EVT InSVT = Op.getValueType().getScalarType(); 3907 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3908 if (!InBV) { 3909 // We've checked that this is UNDEF or a constant of some kind. 3910 if (Op.isUndef()) 3911 ScalarOps.push_back(getUNDEF(InSVT)); 3912 else 3913 ScalarOps.push_back(Op); 3914 continue; 3915 } 3916 3917 SDValue ScalarOp = InBV->getOperand(i); 3918 EVT ScalarVT = ScalarOp.getValueType(); 3919 3920 // Build vector (integer) scalar operands may need implicit 3921 // truncation - do this before constant folding. 3922 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3923 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3924 3925 ScalarOps.push_back(ScalarOp); 3926 } 3927 3928 // Constant fold the scalar operands. 3929 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3930 3931 // Legalize the (integer) scalar constant if necessary. 3932 if (LegalSVT != SVT) 3933 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3934 3935 // Scalar folding only succeeded if the result is a constant or UNDEF. 3936 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3937 ScalarResult.getOpcode() != ISD::ConstantFP) 3938 return SDValue(); 3939 ScalarResults.push_back(ScalarResult); 3940 } 3941 3942 return getBuildVector(VT, DL, ScalarResults); 3943 } 3944 3945 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3946 SDValue N1, SDValue N2, 3947 const SDNodeFlags *Flags) { 3948 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3949 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3950 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3951 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3952 3953 // Canonicalize constant to RHS if commutative. 3954 if (isCommutativeBinOp(Opcode)) { 3955 if (N1C && !N2C) { 3956 std::swap(N1C, N2C); 3957 std::swap(N1, N2); 3958 } else if (N1CFP && !N2CFP) { 3959 std::swap(N1CFP, N2CFP); 3960 std::swap(N1, N2); 3961 } 3962 } 3963 3964 switch (Opcode) { 3965 default: break; 3966 case ISD::TokenFactor: 3967 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3968 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3969 // Fold trivial token factors. 3970 if (N1.getOpcode() == ISD::EntryToken) return N2; 3971 if (N2.getOpcode() == ISD::EntryToken) return N1; 3972 if (N1 == N2) return N1; 3973 break; 3974 case ISD::CONCAT_VECTORS: { 3975 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3976 SDValue Ops[] = {N1, N2}; 3977 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3978 return V; 3979 break; 3980 } 3981 case ISD::AND: 3982 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3983 assert(N1.getValueType() == N2.getValueType() && 3984 N1.getValueType() == VT && "Binary operator types must match!"); 3985 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3986 // worth handling here. 3987 if (N2C && N2C->isNullValue()) 3988 return N2; 3989 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3990 return N1; 3991 break; 3992 case ISD::OR: 3993 case ISD::XOR: 3994 case ISD::ADD: 3995 case ISD::SUB: 3996 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3997 assert(N1.getValueType() == N2.getValueType() && 3998 N1.getValueType() == VT && "Binary operator types must match!"); 3999 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4000 // it's worth handling here. 4001 if (N2C && N2C->isNullValue()) 4002 return N1; 4003 break; 4004 case ISD::UDIV: 4005 case ISD::UREM: 4006 case ISD::MULHU: 4007 case ISD::MULHS: 4008 case ISD::MUL: 4009 case ISD::SDIV: 4010 case ISD::SREM: 4011 case ISD::SMIN: 4012 case ISD::SMAX: 4013 case ISD::UMIN: 4014 case ISD::UMAX: 4015 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4016 assert(N1.getValueType() == N2.getValueType() && 4017 N1.getValueType() == VT && "Binary operator types must match!"); 4018 break; 4019 case ISD::FADD: 4020 case ISD::FSUB: 4021 case ISD::FMUL: 4022 case ISD::FDIV: 4023 case ISD::FREM: 4024 if (getTarget().Options.UnsafeFPMath) { 4025 if (Opcode == ISD::FADD) { 4026 // x+0 --> x 4027 if (N2CFP && N2CFP->getValueAPF().isZero()) 4028 return N1; 4029 } else if (Opcode == ISD::FSUB) { 4030 // x-0 --> x 4031 if (N2CFP && N2CFP->getValueAPF().isZero()) 4032 return N1; 4033 } else if (Opcode == ISD::FMUL) { 4034 // x*0 --> 0 4035 if (N2CFP && N2CFP->isZero()) 4036 return N2; 4037 // x*1 --> x 4038 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4039 return N1; 4040 } 4041 } 4042 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4043 assert(N1.getValueType() == N2.getValueType() && 4044 N1.getValueType() == VT && "Binary operator types must match!"); 4045 break; 4046 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4047 assert(N1.getValueType() == VT && 4048 N1.getValueType().isFloatingPoint() && 4049 N2.getValueType().isFloatingPoint() && 4050 "Invalid FCOPYSIGN!"); 4051 break; 4052 case ISD::SHL: 4053 case ISD::SRA: 4054 case ISD::SRL: 4055 case ISD::ROTL: 4056 case ISD::ROTR: 4057 assert(VT == N1.getValueType() && 4058 "Shift operators return type must be the same as their first arg"); 4059 assert(VT.isInteger() && N2.getValueType().isInteger() && 4060 "Shifts only work on integers"); 4061 assert((!VT.isVector() || VT == N2.getValueType()) && 4062 "Vector shift amounts must be in the same as their first arg"); 4063 // Verify that the shift amount VT is bit enough to hold valid shift 4064 // amounts. This catches things like trying to shift an i1024 value by an 4065 // i8, which is easy to fall into in generic code that uses 4066 // TLI.getShiftAmount(). 4067 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4068 "Invalid use of small shift amount with oversized value!"); 4069 4070 // Always fold shifts of i1 values so the code generator doesn't need to 4071 // handle them. Since we know the size of the shift has to be less than the 4072 // size of the value, the shift/rotate count is guaranteed to be zero. 4073 if (VT == MVT::i1) 4074 return N1; 4075 if (N2C && N2C->isNullValue()) 4076 return N1; 4077 break; 4078 case ISD::FP_ROUND_INREG: { 4079 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4080 assert(VT == N1.getValueType() && "Not an inreg round!"); 4081 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4082 "Cannot FP_ROUND_INREG integer types"); 4083 assert(EVT.isVector() == VT.isVector() && 4084 "FP_ROUND_INREG type should be vector iff the operand " 4085 "type is vector!"); 4086 assert((!EVT.isVector() || 4087 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4088 "Vector element counts must match in FP_ROUND_INREG"); 4089 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4090 (void)EVT; 4091 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4092 break; 4093 } 4094 case ISD::FP_ROUND: 4095 assert(VT.isFloatingPoint() && 4096 N1.getValueType().isFloatingPoint() && 4097 VT.bitsLE(N1.getValueType()) && 4098 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4099 "Invalid FP_ROUND!"); 4100 if (N1.getValueType() == VT) return N1; // noop conversion. 4101 break; 4102 case ISD::AssertSext: 4103 case ISD::AssertZext: { 4104 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4105 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4106 assert(VT.isInteger() && EVT.isInteger() && 4107 "Cannot *_EXTEND_INREG FP types"); 4108 assert(!EVT.isVector() && 4109 "AssertSExt/AssertZExt type should be the vector element type " 4110 "rather than the vector type!"); 4111 assert(EVT.bitsLE(VT) && "Not extending!"); 4112 if (VT == EVT) return N1; // noop assertion. 4113 break; 4114 } 4115 case ISD::SIGN_EXTEND_INREG: { 4116 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4117 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4118 assert(VT.isInteger() && EVT.isInteger() && 4119 "Cannot *_EXTEND_INREG FP types"); 4120 assert(EVT.isVector() == VT.isVector() && 4121 "SIGN_EXTEND_INREG type should be vector iff the operand " 4122 "type is vector!"); 4123 assert((!EVT.isVector() || 4124 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4125 "Vector element counts must match in SIGN_EXTEND_INREG"); 4126 assert(EVT.bitsLE(VT) && "Not extending!"); 4127 if (EVT == VT) return N1; // Not actually extending 4128 4129 auto SignExtendInReg = [&](APInt Val) { 4130 unsigned FromBits = EVT.getScalarSizeInBits(); 4131 Val <<= Val.getBitWidth() - FromBits; 4132 Val = Val.ashr(Val.getBitWidth() - FromBits); 4133 return getConstant(Val, DL, VT.getScalarType()); 4134 }; 4135 4136 if (N1C) { 4137 const APInt &Val = N1C->getAPIntValue(); 4138 return SignExtendInReg(Val); 4139 } 4140 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4141 SmallVector<SDValue, 8> Ops; 4142 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4143 SDValue Op = N1.getOperand(i); 4144 if (Op.isUndef()) { 4145 Ops.push_back(getUNDEF(VT.getScalarType())); 4146 continue; 4147 } 4148 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4149 APInt Val = C->getAPIntValue(); 4150 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 4151 Ops.push_back(SignExtendInReg(Val)); 4152 continue; 4153 } 4154 break; 4155 } 4156 if (Ops.size() == VT.getVectorNumElements()) 4157 return getBuildVector(VT, DL, Ops); 4158 } 4159 break; 4160 } 4161 case ISD::EXTRACT_VECTOR_ELT: 4162 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4163 if (N1.isUndef()) 4164 return getUNDEF(VT); 4165 4166 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4167 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4168 return getUNDEF(VT); 4169 4170 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4171 // expanding copies of large vectors from registers. 4172 if (N2C && 4173 N1.getOpcode() == ISD::CONCAT_VECTORS && 4174 N1.getNumOperands() > 0) { 4175 unsigned Factor = 4176 N1.getOperand(0).getValueType().getVectorNumElements(); 4177 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4178 N1.getOperand(N2C->getZExtValue() / Factor), 4179 getConstant(N2C->getZExtValue() % Factor, DL, 4180 N2.getValueType())); 4181 } 4182 4183 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4184 // expanding large vector constants. 4185 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4186 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4187 4188 if (VT != Elt.getValueType()) 4189 // If the vector element type is not legal, the BUILD_VECTOR operands 4190 // are promoted and implicitly truncated, and the result implicitly 4191 // extended. Make that explicit here. 4192 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4193 4194 return Elt; 4195 } 4196 4197 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4198 // operations are lowered to scalars. 4199 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4200 // If the indices are the same, return the inserted element else 4201 // if the indices are known different, extract the element from 4202 // the original vector. 4203 SDValue N1Op2 = N1.getOperand(2); 4204 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4205 4206 if (N1Op2C && N2C) { 4207 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4208 if (VT == N1.getOperand(1).getValueType()) 4209 return N1.getOperand(1); 4210 else 4211 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4212 } 4213 4214 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4215 } 4216 } 4217 break; 4218 case ISD::EXTRACT_ELEMENT: 4219 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4220 assert(!N1.getValueType().isVector() && !VT.isVector() && 4221 (N1.getValueType().isInteger() == VT.isInteger()) && 4222 N1.getValueType() != VT && 4223 "Wrong types for EXTRACT_ELEMENT!"); 4224 4225 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4226 // 64-bit integers into 32-bit parts. Instead of building the extract of 4227 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4228 if (N1.getOpcode() == ISD::BUILD_PAIR) 4229 return N1.getOperand(N2C->getZExtValue()); 4230 4231 // EXTRACT_ELEMENT of a constant int is also very common. 4232 if (N1C) { 4233 unsigned ElementSize = VT.getSizeInBits(); 4234 unsigned Shift = ElementSize * N2C->getZExtValue(); 4235 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4236 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4237 } 4238 break; 4239 case ISD::EXTRACT_SUBVECTOR: 4240 if (VT.isSimple() && N1.getValueType().isSimple()) { 4241 assert(VT.isVector() && N1.getValueType().isVector() && 4242 "Extract subvector VTs must be a vectors!"); 4243 assert(VT.getVectorElementType() == 4244 N1.getValueType().getVectorElementType() && 4245 "Extract subvector VTs must have the same element type!"); 4246 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4247 "Extract subvector must be from larger vector to smaller vector!"); 4248 4249 if (N2C) { 4250 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4251 <= N1.getValueType().getVectorNumElements()) 4252 && "Extract subvector overflow!"); 4253 } 4254 4255 // Trivial extraction. 4256 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4257 return N1; 4258 4259 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4260 if (N1.isUndef()) 4261 return getUNDEF(VT); 4262 4263 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4264 // the concat have the same type as the extract. 4265 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4266 N1.getNumOperands() > 0 && 4267 VT == N1.getOperand(0).getValueType()) { 4268 unsigned Factor = VT.getVectorNumElements(); 4269 return N1.getOperand(N2C->getZExtValue() / Factor); 4270 } 4271 4272 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4273 // during shuffle legalization. 4274 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4275 VT == N1.getOperand(1).getValueType()) 4276 return N1.getOperand(1); 4277 } 4278 break; 4279 } 4280 4281 // Perform trivial constant folding. 4282 if (SDValue SV = 4283 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4284 return SV; 4285 4286 // Constant fold FP operations. 4287 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4288 if (N1CFP) { 4289 if (N2CFP) { 4290 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4291 APFloat::opStatus s; 4292 switch (Opcode) { 4293 case ISD::FADD: 4294 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4295 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4296 return getConstantFP(V1, DL, VT); 4297 break; 4298 case ISD::FSUB: 4299 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4300 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4301 return getConstantFP(V1, DL, VT); 4302 break; 4303 case ISD::FMUL: 4304 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4305 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4306 return getConstantFP(V1, DL, VT); 4307 break; 4308 case ISD::FDIV: 4309 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4310 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4311 s!=APFloat::opDivByZero)) { 4312 return getConstantFP(V1, DL, VT); 4313 } 4314 break; 4315 case ISD::FREM : 4316 s = V1.mod(V2); 4317 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4318 s!=APFloat::opDivByZero)) { 4319 return getConstantFP(V1, DL, VT); 4320 } 4321 break; 4322 case ISD::FCOPYSIGN: 4323 V1.copySign(V2); 4324 return getConstantFP(V1, DL, VT); 4325 default: break; 4326 } 4327 } 4328 4329 if (Opcode == ISD::FP_ROUND) { 4330 APFloat V = N1CFP->getValueAPF(); // make copy 4331 bool ignored; 4332 // This can return overflow, underflow, or inexact; we don't care. 4333 // FIXME need to be more flexible about rounding mode. 4334 (void)V.convert(EVTToAPFloatSemantics(VT), 4335 APFloat::rmNearestTiesToEven, &ignored); 4336 return getConstantFP(V, DL, VT); 4337 } 4338 } 4339 4340 // Canonicalize an UNDEF to the RHS, even over a constant. 4341 if (N1.isUndef()) { 4342 if (isCommutativeBinOp(Opcode)) { 4343 std::swap(N1, N2); 4344 } else { 4345 switch (Opcode) { 4346 case ISD::FP_ROUND_INREG: 4347 case ISD::SIGN_EXTEND_INREG: 4348 case ISD::SUB: 4349 case ISD::FSUB: 4350 case ISD::FDIV: 4351 case ISD::FREM: 4352 case ISD::SRA: 4353 return N1; // fold op(undef, arg2) -> undef 4354 case ISD::UDIV: 4355 case ISD::SDIV: 4356 case ISD::UREM: 4357 case ISD::SREM: 4358 case ISD::SRL: 4359 case ISD::SHL: 4360 if (!VT.isVector()) 4361 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4362 // For vectors, we can't easily build an all zero vector, just return 4363 // the LHS. 4364 return N2; 4365 } 4366 } 4367 } 4368 4369 // Fold a bunch of operators when the RHS is undef. 4370 if (N2.isUndef()) { 4371 switch (Opcode) { 4372 case ISD::XOR: 4373 if (N1.isUndef()) 4374 // Handle undef ^ undef -> 0 special case. This is a common 4375 // idiom (misuse). 4376 return getConstant(0, DL, VT); 4377 LLVM_FALLTHROUGH; 4378 case ISD::ADD: 4379 case ISD::ADDC: 4380 case ISD::ADDE: 4381 case ISD::SUB: 4382 case ISD::UDIV: 4383 case ISD::SDIV: 4384 case ISD::UREM: 4385 case ISD::SREM: 4386 return N2; // fold op(arg1, undef) -> undef 4387 case ISD::FADD: 4388 case ISD::FSUB: 4389 case ISD::FMUL: 4390 case ISD::FDIV: 4391 case ISD::FREM: 4392 if (getTarget().Options.UnsafeFPMath) 4393 return N2; 4394 break; 4395 case ISD::MUL: 4396 case ISD::AND: 4397 case ISD::SRL: 4398 case ISD::SHL: 4399 if (!VT.isVector()) 4400 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4401 // For vectors, we can't easily build an all zero vector, just return 4402 // the LHS. 4403 return N1; 4404 case ISD::OR: 4405 if (!VT.isVector()) 4406 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4407 // For vectors, we can't easily build an all one vector, just return 4408 // the LHS. 4409 return N1; 4410 case ISD::SRA: 4411 return N1; 4412 } 4413 } 4414 4415 // Memoize this node if possible. 4416 SDNode *N; 4417 SDVTList VTs = getVTList(VT); 4418 if (VT != MVT::Glue) { 4419 SDValue Ops[] = {N1, N2}; 4420 FoldingSetNodeID ID; 4421 AddNodeIDNode(ID, Opcode, VTs, Ops); 4422 void *IP = nullptr; 4423 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4424 if (Flags) 4425 E->intersectFlagsWith(Flags); 4426 return SDValue(E, 0); 4427 } 4428 4429 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4430 CSEMap.InsertNode(N, IP); 4431 } else { 4432 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4433 } 4434 4435 InsertNode(N); 4436 return SDValue(N, 0); 4437 } 4438 4439 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4440 SDValue N1, SDValue N2, SDValue N3) { 4441 // Perform various simplifications. 4442 switch (Opcode) { 4443 case ISD::FMA: { 4444 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4445 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4446 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4447 if (N1CFP && N2CFP && N3CFP) { 4448 APFloat V1 = N1CFP->getValueAPF(); 4449 const APFloat &V2 = N2CFP->getValueAPF(); 4450 const APFloat &V3 = N3CFP->getValueAPF(); 4451 APFloat::opStatus s = 4452 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4453 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4454 return getConstantFP(V1, DL, VT); 4455 } 4456 break; 4457 } 4458 case ISD::CONCAT_VECTORS: { 4459 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4460 SDValue Ops[] = {N1, N2, N3}; 4461 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4462 return V; 4463 break; 4464 } 4465 case ISD::SETCC: { 4466 // Use FoldSetCC to simplify SETCC's. 4467 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4468 return V; 4469 // Vector constant folding. 4470 SDValue Ops[] = {N1, N2, N3}; 4471 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4472 return V; 4473 break; 4474 } 4475 case ISD::SELECT: 4476 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4477 if (N1C->getZExtValue()) 4478 return N2; // select true, X, Y -> X 4479 return N3; // select false, X, Y -> Y 4480 } 4481 4482 if (N2 == N3) return N2; // select C, X, X -> X 4483 break; 4484 case ISD::VECTOR_SHUFFLE: 4485 llvm_unreachable("should use getVectorShuffle constructor!"); 4486 case ISD::INSERT_VECTOR_ELT: { 4487 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4488 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4489 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4490 return getUNDEF(VT); 4491 break; 4492 } 4493 case ISD::INSERT_SUBVECTOR: { 4494 SDValue Index = N3; 4495 if (VT.isSimple() && N1.getValueType().isSimple() 4496 && N2.getValueType().isSimple()) { 4497 assert(VT.isVector() && N1.getValueType().isVector() && 4498 N2.getValueType().isVector() && 4499 "Insert subvector VTs must be a vectors"); 4500 assert(VT == N1.getValueType() && 4501 "Dest and insert subvector source types must match!"); 4502 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4503 "Insert subvector must be from smaller vector to larger vector!"); 4504 if (isa<ConstantSDNode>(Index)) { 4505 assert((N2.getValueType().getVectorNumElements() + 4506 cast<ConstantSDNode>(Index)->getZExtValue() 4507 <= VT.getVectorNumElements()) 4508 && "Insert subvector overflow!"); 4509 } 4510 4511 // Trivial insertion. 4512 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4513 return N2; 4514 } 4515 break; 4516 } 4517 case ISD::BITCAST: 4518 // Fold bit_convert nodes from a type to themselves. 4519 if (N1.getValueType() == VT) 4520 return N1; 4521 break; 4522 } 4523 4524 // Memoize node if it doesn't produce a flag. 4525 SDNode *N; 4526 SDVTList VTs = getVTList(VT); 4527 SDValue Ops[] = {N1, N2, N3}; 4528 if (VT != MVT::Glue) { 4529 FoldingSetNodeID ID; 4530 AddNodeIDNode(ID, Opcode, VTs, Ops); 4531 void *IP = nullptr; 4532 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4533 return SDValue(E, 0); 4534 4535 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4536 createOperands(N, Ops); 4537 CSEMap.InsertNode(N, IP); 4538 } else { 4539 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4540 createOperands(N, Ops); 4541 } 4542 4543 InsertNode(N); 4544 return SDValue(N, 0); 4545 } 4546 4547 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4548 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4549 SDValue Ops[] = { N1, N2, N3, N4 }; 4550 return getNode(Opcode, DL, VT, Ops); 4551 } 4552 4553 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4554 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4555 SDValue N5) { 4556 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4557 return getNode(Opcode, DL, VT, Ops); 4558 } 4559 4560 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4561 /// the incoming stack arguments to be loaded from the stack. 4562 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4563 SmallVector<SDValue, 8> ArgChains; 4564 4565 // Include the original chain at the beginning of the list. When this is 4566 // used by target LowerCall hooks, this helps legalize find the 4567 // CALLSEQ_BEGIN node. 4568 ArgChains.push_back(Chain); 4569 4570 // Add a chain value for each stack argument. 4571 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4572 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4573 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4574 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4575 if (FI->getIndex() < 0) 4576 ArgChains.push_back(SDValue(L, 1)); 4577 4578 // Build a tokenfactor for all the chains. 4579 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4580 } 4581 4582 /// getMemsetValue - Vectorized representation of the memset value 4583 /// operand. 4584 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4585 const SDLoc &dl) { 4586 assert(!Value.isUndef()); 4587 4588 unsigned NumBits = VT.getScalarSizeInBits(); 4589 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4590 assert(C->getAPIntValue().getBitWidth() == 8); 4591 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4592 if (VT.isInteger()) 4593 return DAG.getConstant(Val, dl, VT); 4594 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4595 VT); 4596 } 4597 4598 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4599 EVT IntVT = VT.getScalarType(); 4600 if (!IntVT.isInteger()) 4601 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4602 4603 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4604 if (NumBits > 8) { 4605 // Use a multiplication with 0x010101... to extend the input to the 4606 // required length. 4607 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4608 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4609 DAG.getConstant(Magic, dl, IntVT)); 4610 } 4611 4612 if (VT != Value.getValueType() && !VT.isInteger()) 4613 Value = DAG.getBitcast(VT.getScalarType(), Value); 4614 if (VT != Value.getValueType()) 4615 Value = DAG.getSplatBuildVector(VT, dl, Value); 4616 4617 return Value; 4618 } 4619 4620 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4621 /// used when a memcpy is turned into a memset when the source is a constant 4622 /// string ptr. 4623 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4624 const TargetLowering &TLI, StringRef Str) { 4625 // Handle vector with all elements zero. 4626 if (Str.empty()) { 4627 if (VT.isInteger()) 4628 return DAG.getConstant(0, dl, VT); 4629 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4630 return DAG.getConstantFP(0.0, dl, VT); 4631 else if (VT.isVector()) { 4632 unsigned NumElts = VT.getVectorNumElements(); 4633 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4634 return DAG.getNode(ISD::BITCAST, dl, VT, 4635 DAG.getConstant(0, dl, 4636 EVT::getVectorVT(*DAG.getContext(), 4637 EltVT, NumElts))); 4638 } else 4639 llvm_unreachable("Expected type!"); 4640 } 4641 4642 assert(!VT.isVector() && "Can't handle vector type here!"); 4643 unsigned NumVTBits = VT.getSizeInBits(); 4644 unsigned NumVTBytes = NumVTBits / 8; 4645 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4646 4647 APInt Val(NumVTBits, 0); 4648 if (DAG.getDataLayout().isLittleEndian()) { 4649 for (unsigned i = 0; i != NumBytes; ++i) 4650 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4651 } else { 4652 for (unsigned i = 0; i != NumBytes; ++i) 4653 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4654 } 4655 4656 // If the "cost" of materializing the integer immediate is less than the cost 4657 // of a load, then it is cost effective to turn the load into the immediate. 4658 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4659 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4660 return DAG.getConstant(Val, dl, VT); 4661 return SDValue(nullptr, 0); 4662 } 4663 4664 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4665 const SDLoc &DL) { 4666 EVT VT = Base.getValueType(); 4667 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4668 } 4669 4670 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4671 /// 4672 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4673 uint64_t SrcDelta = 0; 4674 GlobalAddressSDNode *G = nullptr; 4675 if (Src.getOpcode() == ISD::GlobalAddress) 4676 G = cast<GlobalAddressSDNode>(Src); 4677 else if (Src.getOpcode() == ISD::ADD && 4678 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4679 Src.getOperand(1).getOpcode() == ISD::Constant) { 4680 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4681 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4682 } 4683 if (!G) 4684 return false; 4685 4686 return getConstantStringInfo(G->getGlobal(), Str, 4687 SrcDelta + G->getOffset(), false); 4688 } 4689 4690 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4691 /// Return true if the number of memory ops is below the threshold (Limit). 4692 /// It returns the types of the sequence of memory ops to perform 4693 /// memset / memcpy by reference. 4694 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4695 unsigned Limit, uint64_t Size, 4696 unsigned DstAlign, unsigned SrcAlign, 4697 bool IsMemset, 4698 bool ZeroMemset, 4699 bool MemcpyStrSrc, 4700 bool AllowOverlap, 4701 unsigned DstAS, unsigned SrcAS, 4702 SelectionDAG &DAG, 4703 const TargetLowering &TLI) { 4704 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4705 "Expecting memcpy / memset source to meet alignment requirement!"); 4706 // If 'SrcAlign' is zero, that means the memory operation does not need to 4707 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4708 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4709 // is the specified alignment of the memory operation. If it is zero, that 4710 // means it's possible to change the alignment of the destination. 4711 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4712 // not need to be loaded. 4713 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4714 IsMemset, ZeroMemset, MemcpyStrSrc, 4715 DAG.getMachineFunction()); 4716 4717 if (VT == MVT::Other) { 4718 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4719 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4720 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4721 } else { 4722 switch (DstAlign & 7) { 4723 case 0: VT = MVT::i64; break; 4724 case 4: VT = MVT::i32; break; 4725 case 2: VT = MVT::i16; break; 4726 default: VT = MVT::i8; break; 4727 } 4728 } 4729 4730 MVT LVT = MVT::i64; 4731 while (!TLI.isTypeLegal(LVT)) 4732 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4733 assert(LVT.isInteger()); 4734 4735 if (VT.bitsGT(LVT)) 4736 VT = LVT; 4737 } 4738 4739 unsigned NumMemOps = 0; 4740 while (Size != 0) { 4741 unsigned VTSize = VT.getSizeInBits() / 8; 4742 while (VTSize > Size) { 4743 // For now, only use non-vector load / store's for the left-over pieces. 4744 EVT NewVT = VT; 4745 unsigned NewVTSize; 4746 4747 bool Found = false; 4748 if (VT.isVector() || VT.isFloatingPoint()) { 4749 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4750 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4751 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4752 Found = true; 4753 else if (NewVT == MVT::i64 && 4754 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4755 TLI.isSafeMemOpType(MVT::f64)) { 4756 // i64 is usually not legal on 32-bit targets, but f64 may be. 4757 NewVT = MVT::f64; 4758 Found = true; 4759 } 4760 } 4761 4762 if (!Found) { 4763 do { 4764 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4765 if (NewVT == MVT::i8) 4766 break; 4767 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4768 } 4769 NewVTSize = NewVT.getSizeInBits() / 8; 4770 4771 // If the new VT cannot cover all of the remaining bits, then consider 4772 // issuing a (or a pair of) unaligned and overlapping load / store. 4773 // FIXME: Only does this for 64-bit or more since we don't have proper 4774 // cost model for unaligned load / store. 4775 bool Fast; 4776 if (NumMemOps && AllowOverlap && 4777 VTSize >= 8 && NewVTSize < Size && 4778 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4779 VTSize = Size; 4780 else { 4781 VT = NewVT; 4782 VTSize = NewVTSize; 4783 } 4784 } 4785 4786 if (++NumMemOps > Limit) 4787 return false; 4788 4789 MemOps.push_back(VT); 4790 Size -= VTSize; 4791 } 4792 4793 return true; 4794 } 4795 4796 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4797 // On Darwin, -Os means optimize for size without hurting performance, so 4798 // only really optimize for size when -Oz (MinSize) is used. 4799 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4800 return MF.getFunction()->optForMinSize(); 4801 return MF.getFunction()->optForSize(); 4802 } 4803 4804 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4805 SDValue Chain, SDValue Dst, SDValue Src, 4806 uint64_t Size, unsigned Align, 4807 bool isVol, bool AlwaysInline, 4808 MachinePointerInfo DstPtrInfo, 4809 MachinePointerInfo SrcPtrInfo) { 4810 // Turn a memcpy of undef to nop. 4811 if (Src.isUndef()) 4812 return Chain; 4813 4814 // Expand memcpy to a series of load and store ops if the size operand falls 4815 // below a certain threshold. 4816 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4817 // rather than maybe a humongous number of loads and stores. 4818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4819 std::vector<EVT> MemOps; 4820 bool DstAlignCanChange = false; 4821 MachineFunction &MF = DAG.getMachineFunction(); 4822 MachineFrameInfo &MFI = MF.getFrameInfo(); 4823 bool OptSize = shouldLowerMemFuncForSize(MF); 4824 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4825 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4826 DstAlignCanChange = true; 4827 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4828 if (Align > SrcAlign) 4829 SrcAlign = Align; 4830 StringRef Str; 4831 bool CopyFromStr = isMemSrcFromString(Src, Str); 4832 bool isZeroStr = CopyFromStr && Str.empty(); 4833 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4834 4835 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4836 (DstAlignCanChange ? 0 : Align), 4837 (isZeroStr ? 0 : SrcAlign), 4838 false, false, CopyFromStr, true, 4839 DstPtrInfo.getAddrSpace(), 4840 SrcPtrInfo.getAddrSpace(), 4841 DAG, TLI)) 4842 return SDValue(); 4843 4844 if (DstAlignCanChange) { 4845 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4846 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4847 4848 // Don't promote to an alignment that would require dynamic stack 4849 // realignment. 4850 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4851 if (!TRI->needsStackRealignment(MF)) 4852 while (NewAlign > Align && 4853 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4854 NewAlign /= 2; 4855 4856 if (NewAlign > Align) { 4857 // Give the stack frame object a larger alignment if needed. 4858 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4859 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4860 Align = NewAlign; 4861 } 4862 } 4863 4864 MachineMemOperand::Flags MMOFlags = 4865 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4866 SmallVector<SDValue, 8> OutChains; 4867 unsigned NumMemOps = MemOps.size(); 4868 uint64_t SrcOff = 0, DstOff = 0; 4869 for (unsigned i = 0; i != NumMemOps; ++i) { 4870 EVT VT = MemOps[i]; 4871 unsigned VTSize = VT.getSizeInBits() / 8; 4872 SDValue Value, Store; 4873 4874 if (VTSize > Size) { 4875 // Issuing an unaligned load / store pair that overlaps with the previous 4876 // pair. Adjust the offset accordingly. 4877 assert(i == NumMemOps-1 && i != 0); 4878 SrcOff -= VTSize - Size; 4879 DstOff -= VTSize - Size; 4880 } 4881 4882 if (CopyFromStr && 4883 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4884 // It's unlikely a store of a vector immediate can be done in a single 4885 // instruction. It would require a load from a constantpool first. 4886 // We only handle zero vectors here. 4887 // FIXME: Handle other cases where store of vector immediate is done in 4888 // a single instruction. 4889 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4890 if (Value.getNode()) 4891 Store = DAG.getStore(Chain, dl, Value, 4892 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4893 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4894 } 4895 4896 if (!Store.getNode()) { 4897 // The type might not be legal for the target. This should only happen 4898 // if the type is smaller than a legal type, as on PPC, so the right 4899 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4900 // to Load/Store if NVT==VT. 4901 // FIXME does the case above also need this? 4902 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4903 assert(NVT.bitsGE(VT)); 4904 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4905 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4906 SrcPtrInfo.getWithOffset(SrcOff), VT, 4907 MinAlign(SrcAlign, SrcOff), MMOFlags); 4908 OutChains.push_back(Value.getValue(1)); 4909 Store = DAG.getTruncStore( 4910 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4911 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 4912 } 4913 OutChains.push_back(Store); 4914 SrcOff += VTSize; 4915 DstOff += VTSize; 4916 Size -= VTSize; 4917 } 4918 4919 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4920 } 4921 4922 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4923 SDValue Chain, SDValue Dst, SDValue Src, 4924 uint64_t Size, unsigned Align, 4925 bool isVol, bool AlwaysInline, 4926 MachinePointerInfo DstPtrInfo, 4927 MachinePointerInfo SrcPtrInfo) { 4928 // Turn a memmove of undef to nop. 4929 if (Src.isUndef()) 4930 return Chain; 4931 4932 // Expand memmove to a series of load and store ops if the size operand falls 4933 // below a certain threshold. 4934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4935 std::vector<EVT> MemOps; 4936 bool DstAlignCanChange = false; 4937 MachineFunction &MF = DAG.getMachineFunction(); 4938 MachineFrameInfo &MFI = MF.getFrameInfo(); 4939 bool OptSize = shouldLowerMemFuncForSize(MF); 4940 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4941 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4942 DstAlignCanChange = true; 4943 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4944 if (Align > SrcAlign) 4945 SrcAlign = Align; 4946 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4947 4948 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4949 (DstAlignCanChange ? 0 : Align), SrcAlign, 4950 false, false, false, false, 4951 DstPtrInfo.getAddrSpace(), 4952 SrcPtrInfo.getAddrSpace(), 4953 DAG, TLI)) 4954 return SDValue(); 4955 4956 if (DstAlignCanChange) { 4957 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4958 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4959 if (NewAlign > Align) { 4960 // Give the stack frame object a larger alignment if needed. 4961 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4962 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4963 Align = NewAlign; 4964 } 4965 } 4966 4967 MachineMemOperand::Flags MMOFlags = 4968 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4969 uint64_t SrcOff = 0, DstOff = 0; 4970 SmallVector<SDValue, 8> LoadValues; 4971 SmallVector<SDValue, 8> LoadChains; 4972 SmallVector<SDValue, 8> OutChains; 4973 unsigned NumMemOps = MemOps.size(); 4974 for (unsigned i = 0; i < NumMemOps; i++) { 4975 EVT VT = MemOps[i]; 4976 unsigned VTSize = VT.getSizeInBits() / 8; 4977 SDValue Value; 4978 4979 Value = 4980 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4981 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags); 4982 LoadValues.push_back(Value); 4983 LoadChains.push_back(Value.getValue(1)); 4984 SrcOff += VTSize; 4985 } 4986 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4987 OutChains.clear(); 4988 for (unsigned i = 0; i < NumMemOps; i++) { 4989 EVT VT = MemOps[i]; 4990 unsigned VTSize = VT.getSizeInBits() / 8; 4991 SDValue Store; 4992 4993 Store = DAG.getStore(Chain, dl, LoadValues[i], 4994 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4995 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4996 OutChains.push_back(Store); 4997 DstOff += VTSize; 4998 } 4999 5000 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5001 } 5002 5003 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5004 /// operations. 5005 /// 5006 /// \param DAG Selection DAG where lowered code is placed. 5007 /// \param dl Link to corresponding IR location. 5008 /// \param Chain Control flow dependency. 5009 /// \param Dst Pointer to destination memory location. 5010 /// \param Src Value of byte to write into the memory. 5011 /// \param Size Number of bytes to write. 5012 /// \param Align Alignment of the destination in bytes. 5013 /// \param isVol True if destination is volatile. 5014 /// \param DstPtrInfo IR information on the memory pointer. 5015 /// \returns New head in the control flow, if lowering was successful, empty 5016 /// SDValue otherwise. 5017 /// 5018 /// The function tries to replace 'llvm.memset' intrinsic with several store 5019 /// operations and value calculation code. This is usually profitable for small 5020 /// memory size. 5021 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5022 SDValue Chain, SDValue Dst, SDValue Src, 5023 uint64_t Size, unsigned Align, bool isVol, 5024 MachinePointerInfo DstPtrInfo) { 5025 // Turn a memset of undef to nop. 5026 if (Src.isUndef()) 5027 return Chain; 5028 5029 // Expand memset to a series of load/store ops if the size operand 5030 // falls below a certain threshold. 5031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5032 std::vector<EVT> MemOps; 5033 bool DstAlignCanChange = false; 5034 MachineFunction &MF = DAG.getMachineFunction(); 5035 MachineFrameInfo &MFI = MF.getFrameInfo(); 5036 bool OptSize = shouldLowerMemFuncForSize(MF); 5037 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5038 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5039 DstAlignCanChange = true; 5040 bool IsZeroVal = 5041 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5042 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5043 Size, (DstAlignCanChange ? 0 : Align), 0, 5044 true, IsZeroVal, false, true, 5045 DstPtrInfo.getAddrSpace(), ~0u, 5046 DAG, TLI)) 5047 return SDValue(); 5048 5049 if (DstAlignCanChange) { 5050 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5051 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5052 if (NewAlign > Align) { 5053 // Give the stack frame object a larger alignment if needed. 5054 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5055 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5056 Align = NewAlign; 5057 } 5058 } 5059 5060 SmallVector<SDValue, 8> OutChains; 5061 uint64_t DstOff = 0; 5062 unsigned NumMemOps = MemOps.size(); 5063 5064 // Find the largest store and generate the bit pattern for it. 5065 EVT LargestVT = MemOps[0]; 5066 for (unsigned i = 1; i < NumMemOps; i++) 5067 if (MemOps[i].bitsGT(LargestVT)) 5068 LargestVT = MemOps[i]; 5069 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5070 5071 for (unsigned i = 0; i < NumMemOps; i++) { 5072 EVT VT = MemOps[i]; 5073 unsigned VTSize = VT.getSizeInBits() / 8; 5074 if (VTSize > Size) { 5075 // Issuing an unaligned load / store pair that overlaps with the previous 5076 // pair. Adjust the offset accordingly. 5077 assert(i == NumMemOps-1 && i != 0); 5078 DstOff -= VTSize - Size; 5079 } 5080 5081 // If this store is smaller than the largest store see whether we can get 5082 // the smaller value for free with a truncate. 5083 SDValue Value = MemSetValue; 5084 if (VT.bitsLT(LargestVT)) { 5085 if (!LargestVT.isVector() && !VT.isVector() && 5086 TLI.isTruncateFree(LargestVT, VT)) 5087 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5088 else 5089 Value = getMemsetValue(Src, VT, DAG, dl); 5090 } 5091 assert(Value.getValueType() == VT && "Value with wrong type."); 5092 SDValue Store = DAG.getStore( 5093 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5094 DstPtrInfo.getWithOffset(DstOff), Align, 5095 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5096 OutChains.push_back(Store); 5097 DstOff += VT.getSizeInBits() / 8; 5098 Size -= VTSize; 5099 } 5100 5101 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5102 } 5103 5104 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5105 unsigned AS) { 5106 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5107 // pointer operands can be losslessly bitcasted to pointers of address space 0 5108 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5109 report_fatal_error("cannot lower memory intrinsic in address space " + 5110 Twine(AS)); 5111 } 5112 } 5113 5114 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5115 SDValue Src, SDValue Size, unsigned Align, 5116 bool isVol, bool AlwaysInline, bool isTailCall, 5117 MachinePointerInfo DstPtrInfo, 5118 MachinePointerInfo SrcPtrInfo) { 5119 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5120 5121 // Check to see if we should lower the memcpy to loads and stores first. 5122 // For cases within the target-specified limits, this is the best choice. 5123 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5124 if (ConstantSize) { 5125 // Memcpy with size zero? Just return the original chain. 5126 if (ConstantSize->isNullValue()) 5127 return Chain; 5128 5129 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5130 ConstantSize->getZExtValue(),Align, 5131 isVol, false, DstPtrInfo, SrcPtrInfo); 5132 if (Result.getNode()) 5133 return Result; 5134 } 5135 5136 // Then check to see if we should lower the memcpy with target-specific 5137 // code. If the target chooses to do this, this is the next best. 5138 if (TSI) { 5139 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5140 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5141 DstPtrInfo, SrcPtrInfo); 5142 if (Result.getNode()) 5143 return Result; 5144 } 5145 5146 // If we really need inline code and the target declined to provide it, 5147 // use a (potentially long) sequence of loads and stores. 5148 if (AlwaysInline) { 5149 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5150 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5151 ConstantSize->getZExtValue(), Align, isVol, 5152 true, DstPtrInfo, SrcPtrInfo); 5153 } 5154 5155 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5156 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5157 5158 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5159 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5160 // respect volatile, so they may do things like read or write memory 5161 // beyond the given memory regions. But fixing this isn't easy, and most 5162 // people don't care. 5163 5164 // Emit a library call. 5165 TargetLowering::ArgListTy Args; 5166 TargetLowering::ArgListEntry Entry; 5167 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5168 Entry.Node = Dst; Args.push_back(Entry); 5169 Entry.Node = Src; Args.push_back(Entry); 5170 Entry.Node = Size; Args.push_back(Entry); 5171 // FIXME: pass in SDLoc 5172 TargetLowering::CallLoweringInfo CLI(*this); 5173 CLI.setDebugLoc(dl) 5174 .setChain(Chain) 5175 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5176 Dst.getValueType().getTypeForEVT(*getContext()), 5177 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5178 TLI->getPointerTy(getDataLayout())), 5179 std::move(Args)) 5180 .setDiscardResult() 5181 .setTailCall(isTailCall); 5182 5183 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5184 return CallResult.second; 5185 } 5186 5187 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5188 SDValue Src, SDValue Size, unsigned Align, 5189 bool isVol, bool isTailCall, 5190 MachinePointerInfo DstPtrInfo, 5191 MachinePointerInfo SrcPtrInfo) { 5192 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5193 5194 // Check to see if we should lower the memmove to loads and stores first. 5195 // For cases within the target-specified limits, this is the best choice. 5196 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5197 if (ConstantSize) { 5198 // Memmove with size zero? Just return the original chain. 5199 if (ConstantSize->isNullValue()) 5200 return Chain; 5201 5202 SDValue Result = 5203 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5204 ConstantSize->getZExtValue(), Align, isVol, 5205 false, DstPtrInfo, SrcPtrInfo); 5206 if (Result.getNode()) 5207 return Result; 5208 } 5209 5210 // Then check to see if we should lower the memmove with target-specific 5211 // code. If the target chooses to do this, this is the next best. 5212 if (TSI) { 5213 SDValue Result = TSI->EmitTargetCodeForMemmove( 5214 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5215 if (Result.getNode()) 5216 return Result; 5217 } 5218 5219 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5220 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5221 5222 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5223 // not be safe. See memcpy above for more details. 5224 5225 // Emit a library call. 5226 TargetLowering::ArgListTy Args; 5227 TargetLowering::ArgListEntry Entry; 5228 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5229 Entry.Node = Dst; Args.push_back(Entry); 5230 Entry.Node = Src; Args.push_back(Entry); 5231 Entry.Node = Size; Args.push_back(Entry); 5232 // FIXME: pass in SDLoc 5233 TargetLowering::CallLoweringInfo CLI(*this); 5234 CLI.setDebugLoc(dl) 5235 .setChain(Chain) 5236 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5237 Dst.getValueType().getTypeForEVT(*getContext()), 5238 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5239 TLI->getPointerTy(getDataLayout())), 5240 std::move(Args)) 5241 .setDiscardResult() 5242 .setTailCall(isTailCall); 5243 5244 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5245 return CallResult.second; 5246 } 5247 5248 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5249 SDValue Src, SDValue Size, unsigned Align, 5250 bool isVol, bool isTailCall, 5251 MachinePointerInfo DstPtrInfo) { 5252 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5253 5254 // Check to see if we should lower the memset to stores first. 5255 // For cases within the target-specified limits, this is the best choice. 5256 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5257 if (ConstantSize) { 5258 // Memset with size zero? Just return the original chain. 5259 if (ConstantSize->isNullValue()) 5260 return Chain; 5261 5262 SDValue Result = 5263 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5264 Align, isVol, DstPtrInfo); 5265 5266 if (Result.getNode()) 5267 return Result; 5268 } 5269 5270 // Then check to see if we should lower the memset with target-specific 5271 // code. If the target chooses to do this, this is the next best. 5272 if (TSI) { 5273 SDValue Result = TSI->EmitTargetCodeForMemset( 5274 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5275 if (Result.getNode()) 5276 return Result; 5277 } 5278 5279 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5280 5281 // Emit a library call. 5282 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5283 TargetLowering::ArgListTy Args; 5284 TargetLowering::ArgListEntry Entry; 5285 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5286 Args.push_back(Entry); 5287 Entry.Node = Src; 5288 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5289 Args.push_back(Entry); 5290 Entry.Node = Size; 5291 Entry.Ty = IntPtrTy; 5292 Args.push_back(Entry); 5293 5294 // FIXME: pass in SDLoc 5295 TargetLowering::CallLoweringInfo CLI(*this); 5296 CLI.setDebugLoc(dl) 5297 .setChain(Chain) 5298 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5299 Dst.getValueType().getTypeForEVT(*getContext()), 5300 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5301 TLI->getPointerTy(getDataLayout())), 5302 std::move(Args)) 5303 .setDiscardResult() 5304 .setTailCall(isTailCall); 5305 5306 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5307 return CallResult.second; 5308 } 5309 5310 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5311 SDVTList VTList, ArrayRef<SDValue> Ops, 5312 MachineMemOperand *MMO) { 5313 FoldingSetNodeID ID; 5314 ID.AddInteger(MemVT.getRawBits()); 5315 AddNodeIDNode(ID, Opcode, VTList, Ops); 5316 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5317 void* IP = nullptr; 5318 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5319 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5320 return SDValue(E, 0); 5321 } 5322 5323 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5324 VTList, MemVT, MMO); 5325 createOperands(N, Ops); 5326 5327 CSEMap.InsertNode(N, IP); 5328 InsertNode(N); 5329 return SDValue(N, 0); 5330 } 5331 5332 SDValue SelectionDAG::getAtomicCmpSwap( 5333 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5334 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5335 unsigned Alignment, AtomicOrdering SuccessOrdering, 5336 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 5337 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5338 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5339 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5340 5341 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5342 Alignment = getEVTAlignment(MemVT); 5343 5344 MachineFunction &MF = getMachineFunction(); 5345 5346 // FIXME: Volatile isn't really correct; we should keep track of atomic 5347 // orderings in the memoperand. 5348 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5349 MachineMemOperand::MOStore; 5350 MachineMemOperand *MMO = 5351 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5352 AAMDNodes(), nullptr, SynchScope, SuccessOrdering, 5353 FailureOrdering); 5354 5355 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5356 } 5357 5358 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5359 EVT MemVT, SDVTList VTs, SDValue Chain, 5360 SDValue Ptr, SDValue Cmp, SDValue Swp, 5361 MachineMemOperand *MMO) { 5362 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5363 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5364 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5365 5366 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5367 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5368 } 5369 5370 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5371 SDValue Chain, SDValue Ptr, SDValue Val, 5372 const Value *PtrVal, unsigned Alignment, 5373 AtomicOrdering Ordering, 5374 SynchronizationScope SynchScope) { 5375 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5376 Alignment = getEVTAlignment(MemVT); 5377 5378 MachineFunction &MF = getMachineFunction(); 5379 // An atomic store does not load. An atomic load does not store. 5380 // (An atomicrmw obviously both loads and stores.) 5381 // For now, atomics are considered to be volatile always, and they are 5382 // chained as such. 5383 // FIXME: Volatile isn't really correct; we should keep track of atomic 5384 // orderings in the memoperand. 5385 auto Flags = MachineMemOperand::MOVolatile; 5386 if (Opcode != ISD::ATOMIC_STORE) 5387 Flags |= MachineMemOperand::MOLoad; 5388 if (Opcode != ISD::ATOMIC_LOAD) 5389 Flags |= MachineMemOperand::MOStore; 5390 5391 MachineMemOperand *MMO = 5392 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5393 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5394 nullptr, SynchScope, Ordering); 5395 5396 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5397 } 5398 5399 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5400 SDValue Chain, SDValue Ptr, SDValue Val, 5401 MachineMemOperand *MMO) { 5402 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5403 Opcode == ISD::ATOMIC_LOAD_SUB || 5404 Opcode == ISD::ATOMIC_LOAD_AND || 5405 Opcode == ISD::ATOMIC_LOAD_OR || 5406 Opcode == ISD::ATOMIC_LOAD_XOR || 5407 Opcode == ISD::ATOMIC_LOAD_NAND || 5408 Opcode == ISD::ATOMIC_LOAD_MIN || 5409 Opcode == ISD::ATOMIC_LOAD_MAX || 5410 Opcode == ISD::ATOMIC_LOAD_UMIN || 5411 Opcode == ISD::ATOMIC_LOAD_UMAX || 5412 Opcode == ISD::ATOMIC_SWAP || 5413 Opcode == ISD::ATOMIC_STORE) && 5414 "Invalid Atomic Op"); 5415 5416 EVT VT = Val.getValueType(); 5417 5418 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5419 getVTList(VT, MVT::Other); 5420 SDValue Ops[] = {Chain, Ptr, Val}; 5421 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5422 } 5423 5424 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5425 EVT VT, SDValue Chain, SDValue Ptr, 5426 MachineMemOperand *MMO) { 5427 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5428 5429 SDVTList VTs = getVTList(VT, MVT::Other); 5430 SDValue Ops[] = {Chain, Ptr}; 5431 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5432 } 5433 5434 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5435 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5436 if (Ops.size() == 1) 5437 return Ops[0]; 5438 5439 SmallVector<EVT, 4> VTs; 5440 VTs.reserve(Ops.size()); 5441 for (unsigned i = 0; i < Ops.size(); ++i) 5442 VTs.push_back(Ops[i].getValueType()); 5443 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5444 } 5445 5446 SDValue SelectionDAG::getMemIntrinsicNode( 5447 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5448 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5449 bool ReadMem, bool WriteMem, unsigned Size) { 5450 if (Align == 0) // Ensure that codegen never sees alignment 0 5451 Align = getEVTAlignment(MemVT); 5452 5453 MachineFunction &MF = getMachineFunction(); 5454 auto Flags = MachineMemOperand::MONone; 5455 if (WriteMem) 5456 Flags |= MachineMemOperand::MOStore; 5457 if (ReadMem) 5458 Flags |= MachineMemOperand::MOLoad; 5459 if (Vol) 5460 Flags |= MachineMemOperand::MOVolatile; 5461 if (!Size) 5462 Size = MemVT.getStoreSize(); 5463 MachineMemOperand *MMO = 5464 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5465 5466 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5467 } 5468 5469 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5470 SDVTList VTList, 5471 ArrayRef<SDValue> Ops, EVT MemVT, 5472 MachineMemOperand *MMO) { 5473 assert((Opcode == ISD::INTRINSIC_VOID || 5474 Opcode == ISD::INTRINSIC_W_CHAIN || 5475 Opcode == ISD::PREFETCH || 5476 Opcode == ISD::LIFETIME_START || 5477 Opcode == ISD::LIFETIME_END || 5478 (Opcode <= INT_MAX && 5479 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5480 "Opcode is not a memory-accessing opcode!"); 5481 5482 // Memoize the node unless it returns a flag. 5483 MemIntrinsicSDNode *N; 5484 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5485 FoldingSetNodeID ID; 5486 AddNodeIDNode(ID, Opcode, VTList, Ops); 5487 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5488 void *IP = nullptr; 5489 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5490 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5491 return SDValue(E, 0); 5492 } 5493 5494 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5495 VTList, MemVT, MMO); 5496 createOperands(N, Ops); 5497 5498 CSEMap.InsertNode(N, IP); 5499 } else { 5500 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5501 VTList, MemVT, MMO); 5502 createOperands(N, Ops); 5503 } 5504 InsertNode(N); 5505 return SDValue(N, 0); 5506 } 5507 5508 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5509 /// MachinePointerInfo record from it. This is particularly useful because the 5510 /// code generator has many cases where it doesn't bother passing in a 5511 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5512 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5513 int64_t Offset = 0) { 5514 // If this is FI+Offset, we can model it. 5515 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5516 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5517 FI->getIndex(), Offset); 5518 5519 // If this is (FI+Offset1)+Offset2, we can model it. 5520 if (Ptr.getOpcode() != ISD::ADD || 5521 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5522 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5523 return MachinePointerInfo(); 5524 5525 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5526 return MachinePointerInfo::getFixedStack( 5527 DAG.getMachineFunction(), FI, 5528 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5529 } 5530 5531 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5532 /// MachinePointerInfo record from it. This is particularly useful because the 5533 /// code generator has many cases where it doesn't bother passing in a 5534 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5535 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5536 SDValue OffsetOp) { 5537 // If the 'Offset' value isn't a constant, we can't handle this. 5538 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5539 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5540 if (OffsetOp.isUndef()) 5541 return InferPointerInfo(DAG, Ptr); 5542 return MachinePointerInfo(); 5543 } 5544 5545 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5546 EVT VT, const SDLoc &dl, SDValue Chain, 5547 SDValue Ptr, SDValue Offset, 5548 MachinePointerInfo PtrInfo, EVT MemVT, 5549 unsigned Alignment, 5550 MachineMemOperand::Flags MMOFlags, 5551 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5552 assert(Chain.getValueType() == MVT::Other && 5553 "Invalid chain type"); 5554 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5555 Alignment = getEVTAlignment(MemVT); 5556 5557 MMOFlags |= MachineMemOperand::MOLoad; 5558 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5559 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5560 // clients. 5561 if (PtrInfo.V.isNull()) 5562 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5563 5564 MachineFunction &MF = getMachineFunction(); 5565 MachineMemOperand *MMO = MF.getMachineMemOperand( 5566 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5567 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5568 } 5569 5570 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5571 EVT VT, const SDLoc &dl, SDValue Chain, 5572 SDValue Ptr, SDValue Offset, EVT MemVT, 5573 MachineMemOperand *MMO) { 5574 if (VT == MemVT) { 5575 ExtType = ISD::NON_EXTLOAD; 5576 } else if (ExtType == ISD::NON_EXTLOAD) { 5577 assert(VT == MemVT && "Non-extending load from different memory type!"); 5578 } else { 5579 // Extending load. 5580 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5581 "Should only be an extending load, not truncating!"); 5582 assert(VT.isInteger() == MemVT.isInteger() && 5583 "Cannot convert from FP to Int or Int -> FP!"); 5584 assert(VT.isVector() == MemVT.isVector() && 5585 "Cannot use an ext load to convert to or from a vector!"); 5586 assert((!VT.isVector() || 5587 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5588 "Cannot use an ext load to change the number of vector elements!"); 5589 } 5590 5591 bool Indexed = AM != ISD::UNINDEXED; 5592 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5593 5594 SDVTList VTs = Indexed ? 5595 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5596 SDValue Ops[] = { Chain, Ptr, Offset }; 5597 FoldingSetNodeID ID; 5598 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5599 ID.AddInteger(MemVT.getRawBits()); 5600 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5601 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5602 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5603 void *IP = nullptr; 5604 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5605 cast<LoadSDNode>(E)->refineAlignment(MMO); 5606 return SDValue(E, 0); 5607 } 5608 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5609 ExtType, MemVT, MMO); 5610 createOperands(N, Ops); 5611 5612 CSEMap.InsertNode(N, IP); 5613 InsertNode(N); 5614 return SDValue(N, 0); 5615 } 5616 5617 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5618 SDValue Ptr, MachinePointerInfo PtrInfo, 5619 unsigned Alignment, 5620 MachineMemOperand::Flags MMOFlags, 5621 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5622 SDValue Undef = getUNDEF(Ptr.getValueType()); 5623 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5624 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5625 } 5626 5627 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5628 SDValue Ptr, MachineMemOperand *MMO) { 5629 SDValue Undef = getUNDEF(Ptr.getValueType()); 5630 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5631 VT, MMO); 5632 } 5633 5634 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5635 EVT VT, SDValue Chain, SDValue Ptr, 5636 MachinePointerInfo PtrInfo, EVT MemVT, 5637 unsigned Alignment, 5638 MachineMemOperand::Flags MMOFlags, 5639 const AAMDNodes &AAInfo) { 5640 SDValue Undef = getUNDEF(Ptr.getValueType()); 5641 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5642 MemVT, Alignment, MMOFlags, AAInfo); 5643 } 5644 5645 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5646 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5647 MachineMemOperand *MMO) { 5648 SDValue Undef = getUNDEF(Ptr.getValueType()); 5649 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5650 MemVT, MMO); 5651 } 5652 5653 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5654 SDValue Base, SDValue Offset, 5655 ISD::MemIndexedMode AM) { 5656 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5657 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5658 // Don't propagate the invariant or dereferenceable flags. 5659 auto MMOFlags = 5660 LD->getMemOperand()->getFlags() & 5661 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5662 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5663 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5664 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5665 LD->getAAInfo()); 5666 } 5667 5668 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5669 SDValue Ptr, MachinePointerInfo PtrInfo, 5670 unsigned Alignment, 5671 MachineMemOperand::Flags MMOFlags, 5672 const AAMDNodes &AAInfo) { 5673 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5674 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5675 Alignment = getEVTAlignment(Val.getValueType()); 5676 5677 MMOFlags |= MachineMemOperand::MOStore; 5678 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5679 5680 if (PtrInfo.V.isNull()) 5681 PtrInfo = InferPointerInfo(*this, Ptr); 5682 5683 MachineFunction &MF = getMachineFunction(); 5684 MachineMemOperand *MMO = MF.getMachineMemOperand( 5685 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5686 return getStore(Chain, dl, Val, Ptr, MMO); 5687 } 5688 5689 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5690 SDValue Ptr, MachineMemOperand *MMO) { 5691 assert(Chain.getValueType() == MVT::Other && 5692 "Invalid chain type"); 5693 EVT VT = Val.getValueType(); 5694 SDVTList VTs = getVTList(MVT::Other); 5695 SDValue Undef = getUNDEF(Ptr.getValueType()); 5696 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5697 FoldingSetNodeID ID; 5698 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5699 ID.AddInteger(VT.getRawBits()); 5700 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5701 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5702 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5703 void *IP = nullptr; 5704 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5705 cast<StoreSDNode>(E)->refineAlignment(MMO); 5706 return SDValue(E, 0); 5707 } 5708 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5709 ISD::UNINDEXED, false, VT, MMO); 5710 createOperands(N, Ops); 5711 5712 CSEMap.InsertNode(N, IP); 5713 InsertNode(N); 5714 return SDValue(N, 0); 5715 } 5716 5717 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5718 SDValue Ptr, MachinePointerInfo PtrInfo, 5719 EVT SVT, unsigned Alignment, 5720 MachineMemOperand::Flags MMOFlags, 5721 const AAMDNodes &AAInfo) { 5722 assert(Chain.getValueType() == MVT::Other && 5723 "Invalid chain type"); 5724 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5725 Alignment = getEVTAlignment(SVT); 5726 5727 MMOFlags |= MachineMemOperand::MOStore; 5728 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5729 5730 if (PtrInfo.V.isNull()) 5731 PtrInfo = InferPointerInfo(*this, Ptr); 5732 5733 MachineFunction &MF = getMachineFunction(); 5734 MachineMemOperand *MMO = MF.getMachineMemOperand( 5735 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5736 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5737 } 5738 5739 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5740 SDValue Ptr, EVT SVT, 5741 MachineMemOperand *MMO) { 5742 EVT VT = Val.getValueType(); 5743 5744 assert(Chain.getValueType() == MVT::Other && 5745 "Invalid chain type"); 5746 if (VT == SVT) 5747 return getStore(Chain, dl, Val, Ptr, MMO); 5748 5749 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5750 "Should only be a truncating store, not extending!"); 5751 assert(VT.isInteger() == SVT.isInteger() && 5752 "Can't do FP-INT conversion!"); 5753 assert(VT.isVector() == SVT.isVector() && 5754 "Cannot use trunc store to convert to or from a vector!"); 5755 assert((!VT.isVector() || 5756 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5757 "Cannot use trunc store to change the number of vector elements!"); 5758 5759 SDVTList VTs = getVTList(MVT::Other); 5760 SDValue Undef = getUNDEF(Ptr.getValueType()); 5761 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5762 FoldingSetNodeID ID; 5763 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5764 ID.AddInteger(SVT.getRawBits()); 5765 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5766 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5767 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5768 void *IP = nullptr; 5769 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5770 cast<StoreSDNode>(E)->refineAlignment(MMO); 5771 return SDValue(E, 0); 5772 } 5773 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5774 ISD::UNINDEXED, true, SVT, MMO); 5775 createOperands(N, Ops); 5776 5777 CSEMap.InsertNode(N, IP); 5778 InsertNode(N); 5779 return SDValue(N, 0); 5780 } 5781 5782 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5783 SDValue Base, SDValue Offset, 5784 ISD::MemIndexedMode AM) { 5785 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5786 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5787 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5788 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5789 FoldingSetNodeID ID; 5790 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5791 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5792 ID.AddInteger(ST->getRawSubclassData()); 5793 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5794 void *IP = nullptr; 5795 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5796 return SDValue(E, 0); 5797 5798 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5799 ST->isTruncatingStore(), ST->getMemoryVT(), 5800 ST->getMemOperand()); 5801 createOperands(N, Ops); 5802 5803 CSEMap.InsertNode(N, IP); 5804 InsertNode(N); 5805 return SDValue(N, 0); 5806 } 5807 5808 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5809 SDValue Ptr, SDValue Mask, SDValue Src0, 5810 EVT MemVT, MachineMemOperand *MMO, 5811 ISD::LoadExtType ExtTy, bool isExpanding) { 5812 5813 SDVTList VTs = getVTList(VT, MVT::Other); 5814 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5815 FoldingSetNodeID ID; 5816 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5817 ID.AddInteger(VT.getRawBits()); 5818 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5819 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5820 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5821 void *IP = nullptr; 5822 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5823 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5824 return SDValue(E, 0); 5825 } 5826 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5827 ExtTy, isExpanding, MemVT, MMO); 5828 createOperands(N, Ops); 5829 5830 CSEMap.InsertNode(N, IP); 5831 InsertNode(N); 5832 return SDValue(N, 0); 5833 } 5834 5835 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5836 SDValue Val, SDValue Ptr, SDValue Mask, 5837 EVT MemVT, MachineMemOperand *MMO, 5838 bool IsTruncating, bool IsCompressing) { 5839 assert(Chain.getValueType() == MVT::Other && 5840 "Invalid chain type"); 5841 EVT VT = Val.getValueType(); 5842 SDVTList VTs = getVTList(MVT::Other); 5843 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5844 FoldingSetNodeID ID; 5845 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5846 ID.AddInteger(VT.getRawBits()); 5847 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 5848 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 5849 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5850 void *IP = nullptr; 5851 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5852 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5853 return SDValue(E, 0); 5854 } 5855 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5856 IsTruncating, IsCompressing, MemVT, MMO); 5857 createOperands(N, Ops); 5858 5859 CSEMap.InsertNode(N, IP); 5860 InsertNode(N); 5861 return SDValue(N, 0); 5862 } 5863 5864 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5865 ArrayRef<SDValue> Ops, 5866 MachineMemOperand *MMO) { 5867 assert(Ops.size() == 5 && "Incompatible number of operands"); 5868 5869 FoldingSetNodeID ID; 5870 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5871 ID.AddInteger(VT.getRawBits()); 5872 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 5873 dl.getIROrder(), VTs, VT, MMO)); 5874 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5875 void *IP = nullptr; 5876 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5877 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5878 return SDValue(E, 0); 5879 } 5880 5881 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5882 VTs, VT, MMO); 5883 createOperands(N, Ops); 5884 5885 assert(N->getValue().getValueType() == N->getValueType(0) && 5886 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5887 assert(N->getMask().getValueType().getVectorNumElements() == 5888 N->getValueType(0).getVectorNumElements() && 5889 "Vector width mismatch between mask and data"); 5890 assert(N->getIndex().getValueType().getVectorNumElements() == 5891 N->getValueType(0).getVectorNumElements() && 5892 "Vector width mismatch between index and data"); 5893 5894 CSEMap.InsertNode(N, IP); 5895 InsertNode(N); 5896 return SDValue(N, 0); 5897 } 5898 5899 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5900 ArrayRef<SDValue> Ops, 5901 MachineMemOperand *MMO) { 5902 assert(Ops.size() == 5 && "Incompatible number of operands"); 5903 5904 FoldingSetNodeID ID; 5905 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5906 ID.AddInteger(VT.getRawBits()); 5907 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 5908 dl.getIROrder(), VTs, VT, MMO)); 5909 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5910 void *IP = nullptr; 5911 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5912 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5913 return SDValue(E, 0); 5914 } 5915 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5916 VTs, VT, MMO); 5917 createOperands(N, Ops); 5918 5919 assert(N->getMask().getValueType().getVectorNumElements() == 5920 N->getValue().getValueType().getVectorNumElements() && 5921 "Vector width mismatch between mask and data"); 5922 assert(N->getIndex().getValueType().getVectorNumElements() == 5923 N->getValue().getValueType().getVectorNumElements() && 5924 "Vector width mismatch between index and data"); 5925 5926 CSEMap.InsertNode(N, IP); 5927 InsertNode(N); 5928 return SDValue(N, 0); 5929 } 5930 5931 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5932 SDValue Ptr, SDValue SV, unsigned Align) { 5933 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5934 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5935 } 5936 5937 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5938 ArrayRef<SDUse> Ops) { 5939 switch (Ops.size()) { 5940 case 0: return getNode(Opcode, DL, VT); 5941 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5942 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5943 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5944 default: break; 5945 } 5946 5947 // Copy from an SDUse array into an SDValue array for use with 5948 // the regular getNode logic. 5949 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5950 return getNode(Opcode, DL, VT, NewOps); 5951 } 5952 5953 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5954 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5955 unsigned NumOps = Ops.size(); 5956 switch (NumOps) { 5957 case 0: return getNode(Opcode, DL, VT); 5958 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5959 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5960 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5961 default: break; 5962 } 5963 5964 switch (Opcode) { 5965 default: break; 5966 case ISD::CONCAT_VECTORS: { 5967 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5968 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5969 return V; 5970 break; 5971 } 5972 case ISD::SELECT_CC: { 5973 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5974 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5975 "LHS and RHS of condition must have same type!"); 5976 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5977 "True and False arms of SelectCC must have same type!"); 5978 assert(Ops[2].getValueType() == VT && 5979 "select_cc node must be of same type as true and false value!"); 5980 break; 5981 } 5982 case ISD::BR_CC: { 5983 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5984 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5985 "LHS/RHS of comparison should match types!"); 5986 break; 5987 } 5988 } 5989 5990 // Memoize nodes. 5991 SDNode *N; 5992 SDVTList VTs = getVTList(VT); 5993 5994 if (VT != MVT::Glue) { 5995 FoldingSetNodeID ID; 5996 AddNodeIDNode(ID, Opcode, VTs, Ops); 5997 void *IP = nullptr; 5998 5999 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6000 return SDValue(E, 0); 6001 6002 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6003 createOperands(N, Ops); 6004 6005 CSEMap.InsertNode(N, IP); 6006 } else { 6007 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6008 createOperands(N, Ops); 6009 } 6010 6011 InsertNode(N); 6012 return SDValue(N, 0); 6013 } 6014 6015 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6016 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6017 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6018 } 6019 6020 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6021 ArrayRef<SDValue> Ops) { 6022 if (VTList.NumVTs == 1) 6023 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6024 6025 #if 0 6026 switch (Opcode) { 6027 // FIXME: figure out how to safely handle things like 6028 // int foo(int x) { return 1 << (x & 255); } 6029 // int bar() { return foo(256); } 6030 case ISD::SRA_PARTS: 6031 case ISD::SRL_PARTS: 6032 case ISD::SHL_PARTS: 6033 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6034 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6035 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6036 else if (N3.getOpcode() == ISD::AND) 6037 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6038 // If the and is only masking out bits that cannot effect the shift, 6039 // eliminate the and. 6040 unsigned NumBits = VT.getScalarSizeInBits()*2; 6041 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6042 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6043 } 6044 break; 6045 } 6046 #endif 6047 6048 // Memoize the node unless it returns a flag. 6049 SDNode *N; 6050 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6051 FoldingSetNodeID ID; 6052 AddNodeIDNode(ID, Opcode, VTList, Ops); 6053 void *IP = nullptr; 6054 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6055 return SDValue(E, 0); 6056 6057 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6058 createOperands(N, Ops); 6059 CSEMap.InsertNode(N, IP); 6060 } else { 6061 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6062 createOperands(N, Ops); 6063 } 6064 InsertNode(N); 6065 return SDValue(N, 0); 6066 } 6067 6068 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6069 SDVTList VTList) { 6070 return getNode(Opcode, DL, VTList, None); 6071 } 6072 6073 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6074 SDValue N1) { 6075 SDValue Ops[] = { N1 }; 6076 return getNode(Opcode, DL, VTList, Ops); 6077 } 6078 6079 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6080 SDValue N1, SDValue N2) { 6081 SDValue Ops[] = { N1, N2 }; 6082 return getNode(Opcode, DL, VTList, Ops); 6083 } 6084 6085 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6086 SDValue N1, SDValue N2, SDValue N3) { 6087 SDValue Ops[] = { N1, N2, N3 }; 6088 return getNode(Opcode, DL, VTList, Ops); 6089 } 6090 6091 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6092 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6093 SDValue Ops[] = { N1, N2, N3, N4 }; 6094 return getNode(Opcode, DL, VTList, Ops); 6095 } 6096 6097 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6098 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6099 SDValue N5) { 6100 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6101 return getNode(Opcode, DL, VTList, Ops); 6102 } 6103 6104 SDVTList SelectionDAG::getVTList(EVT VT) { 6105 return makeVTList(SDNode::getValueTypeList(VT), 1); 6106 } 6107 6108 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6109 FoldingSetNodeID ID; 6110 ID.AddInteger(2U); 6111 ID.AddInteger(VT1.getRawBits()); 6112 ID.AddInteger(VT2.getRawBits()); 6113 6114 void *IP = nullptr; 6115 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6116 if (!Result) { 6117 EVT *Array = Allocator.Allocate<EVT>(2); 6118 Array[0] = VT1; 6119 Array[1] = VT2; 6120 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6121 VTListMap.InsertNode(Result, IP); 6122 } 6123 return Result->getSDVTList(); 6124 } 6125 6126 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6127 FoldingSetNodeID ID; 6128 ID.AddInteger(3U); 6129 ID.AddInteger(VT1.getRawBits()); 6130 ID.AddInteger(VT2.getRawBits()); 6131 ID.AddInteger(VT3.getRawBits()); 6132 6133 void *IP = nullptr; 6134 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6135 if (!Result) { 6136 EVT *Array = Allocator.Allocate<EVT>(3); 6137 Array[0] = VT1; 6138 Array[1] = VT2; 6139 Array[2] = VT3; 6140 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6141 VTListMap.InsertNode(Result, IP); 6142 } 6143 return Result->getSDVTList(); 6144 } 6145 6146 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6147 FoldingSetNodeID ID; 6148 ID.AddInteger(4U); 6149 ID.AddInteger(VT1.getRawBits()); 6150 ID.AddInteger(VT2.getRawBits()); 6151 ID.AddInteger(VT3.getRawBits()); 6152 ID.AddInteger(VT4.getRawBits()); 6153 6154 void *IP = nullptr; 6155 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6156 if (!Result) { 6157 EVT *Array = Allocator.Allocate<EVT>(4); 6158 Array[0] = VT1; 6159 Array[1] = VT2; 6160 Array[2] = VT3; 6161 Array[3] = VT4; 6162 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6163 VTListMap.InsertNode(Result, IP); 6164 } 6165 return Result->getSDVTList(); 6166 } 6167 6168 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6169 unsigned NumVTs = VTs.size(); 6170 FoldingSetNodeID ID; 6171 ID.AddInteger(NumVTs); 6172 for (unsigned index = 0; index < NumVTs; index++) { 6173 ID.AddInteger(VTs[index].getRawBits()); 6174 } 6175 6176 void *IP = nullptr; 6177 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6178 if (!Result) { 6179 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6180 std::copy(VTs.begin(), VTs.end(), Array); 6181 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6182 VTListMap.InsertNode(Result, IP); 6183 } 6184 return Result->getSDVTList(); 6185 } 6186 6187 6188 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6189 /// specified operands. If the resultant node already exists in the DAG, 6190 /// this does not modify the specified node, instead it returns the node that 6191 /// already exists. If the resultant node does not exist in the DAG, the 6192 /// input node is returned. As a degenerate case, if you specify the same 6193 /// input operands as the node already has, the input node is returned. 6194 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6195 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6196 6197 // Check to see if there is no change. 6198 if (Op == N->getOperand(0)) return N; 6199 6200 // See if the modified node already exists. 6201 void *InsertPos = nullptr; 6202 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6203 return Existing; 6204 6205 // Nope it doesn't. Remove the node from its current place in the maps. 6206 if (InsertPos) 6207 if (!RemoveNodeFromCSEMaps(N)) 6208 InsertPos = nullptr; 6209 6210 // Now we update the operands. 6211 N->OperandList[0].set(Op); 6212 6213 // If this gets put into a CSE map, add it. 6214 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6215 return N; 6216 } 6217 6218 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6219 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6220 6221 // Check to see if there is no change. 6222 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6223 return N; // No operands changed, just return the input node. 6224 6225 // See if the modified node already exists. 6226 void *InsertPos = nullptr; 6227 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6228 return Existing; 6229 6230 // Nope it doesn't. Remove the node from its current place in the maps. 6231 if (InsertPos) 6232 if (!RemoveNodeFromCSEMaps(N)) 6233 InsertPos = nullptr; 6234 6235 // Now we update the operands. 6236 if (N->OperandList[0] != Op1) 6237 N->OperandList[0].set(Op1); 6238 if (N->OperandList[1] != Op2) 6239 N->OperandList[1].set(Op2); 6240 6241 // If this gets put into a CSE map, add it. 6242 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6243 return N; 6244 } 6245 6246 SDNode *SelectionDAG:: 6247 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6248 SDValue Ops[] = { Op1, Op2, Op3 }; 6249 return UpdateNodeOperands(N, Ops); 6250 } 6251 6252 SDNode *SelectionDAG:: 6253 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6254 SDValue Op3, SDValue Op4) { 6255 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6256 return UpdateNodeOperands(N, Ops); 6257 } 6258 6259 SDNode *SelectionDAG:: 6260 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6261 SDValue Op3, SDValue Op4, SDValue Op5) { 6262 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6263 return UpdateNodeOperands(N, Ops); 6264 } 6265 6266 SDNode *SelectionDAG:: 6267 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6268 unsigned NumOps = Ops.size(); 6269 assert(N->getNumOperands() == NumOps && 6270 "Update with wrong number of operands"); 6271 6272 // If no operands changed just return the input node. 6273 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6274 return N; 6275 6276 // See if the modified node already exists. 6277 void *InsertPos = nullptr; 6278 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6279 return Existing; 6280 6281 // Nope it doesn't. Remove the node from its current place in the maps. 6282 if (InsertPos) 6283 if (!RemoveNodeFromCSEMaps(N)) 6284 InsertPos = nullptr; 6285 6286 // Now we update the operands. 6287 for (unsigned i = 0; i != NumOps; ++i) 6288 if (N->OperandList[i] != Ops[i]) 6289 N->OperandList[i].set(Ops[i]); 6290 6291 // If this gets put into a CSE map, add it. 6292 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6293 return N; 6294 } 6295 6296 /// DropOperands - Release the operands and set this node to have 6297 /// zero operands. 6298 void SDNode::DropOperands() { 6299 // Unlike the code in MorphNodeTo that does this, we don't need to 6300 // watch for dead nodes here. 6301 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6302 SDUse &Use = *I++; 6303 Use.set(SDValue()); 6304 } 6305 } 6306 6307 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6308 /// machine opcode. 6309 /// 6310 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6311 EVT VT) { 6312 SDVTList VTs = getVTList(VT); 6313 return SelectNodeTo(N, MachineOpc, VTs, None); 6314 } 6315 6316 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6317 EVT VT, SDValue Op1) { 6318 SDVTList VTs = getVTList(VT); 6319 SDValue Ops[] = { Op1 }; 6320 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6321 } 6322 6323 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6324 EVT VT, SDValue Op1, 6325 SDValue Op2) { 6326 SDVTList VTs = getVTList(VT); 6327 SDValue Ops[] = { Op1, Op2 }; 6328 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6329 } 6330 6331 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6332 EVT VT, SDValue Op1, 6333 SDValue Op2, SDValue Op3) { 6334 SDVTList VTs = getVTList(VT); 6335 SDValue Ops[] = { Op1, Op2, Op3 }; 6336 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6337 } 6338 6339 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6340 EVT VT, ArrayRef<SDValue> Ops) { 6341 SDVTList VTs = getVTList(VT); 6342 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6343 } 6344 6345 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6346 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6347 SDVTList VTs = getVTList(VT1, VT2); 6348 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6349 } 6350 6351 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6352 EVT VT1, EVT VT2) { 6353 SDVTList VTs = getVTList(VT1, VT2); 6354 return SelectNodeTo(N, MachineOpc, VTs, None); 6355 } 6356 6357 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6358 EVT VT1, EVT VT2, EVT VT3, 6359 ArrayRef<SDValue> Ops) { 6360 SDVTList VTs = getVTList(VT1, VT2, VT3); 6361 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6362 } 6363 6364 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6365 EVT VT1, EVT VT2, 6366 SDValue Op1, SDValue Op2) { 6367 SDVTList VTs = getVTList(VT1, VT2); 6368 SDValue Ops[] = { Op1, Op2 }; 6369 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6370 } 6371 6372 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6373 SDVTList VTs,ArrayRef<SDValue> Ops) { 6374 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6375 // Reset the NodeID to -1. 6376 New->setNodeId(-1); 6377 if (New != N) { 6378 ReplaceAllUsesWith(N, New); 6379 RemoveDeadNode(N); 6380 } 6381 return New; 6382 } 6383 6384 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6385 /// the line number information on the merged node since it is not possible to 6386 /// preserve the information that operation is associated with multiple lines. 6387 /// This will make the debugger working better at -O0, were there is a higher 6388 /// probability having other instructions associated with that line. 6389 /// 6390 /// For IROrder, we keep the smaller of the two 6391 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6392 DebugLoc NLoc = N->getDebugLoc(); 6393 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6394 N->setDebugLoc(DebugLoc()); 6395 } 6396 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6397 N->setIROrder(Order); 6398 return N; 6399 } 6400 6401 /// MorphNodeTo - This *mutates* the specified node to have the specified 6402 /// return type, opcode, and operands. 6403 /// 6404 /// Note that MorphNodeTo returns the resultant node. If there is already a 6405 /// node of the specified opcode and operands, it returns that node instead of 6406 /// the current one. Note that the SDLoc need not be the same. 6407 /// 6408 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6409 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6410 /// node, and because it doesn't require CSE recalculation for any of 6411 /// the node's users. 6412 /// 6413 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6414 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6415 /// the legalizer which maintain worklists that would need to be updated when 6416 /// deleting things. 6417 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6418 SDVTList VTs, ArrayRef<SDValue> Ops) { 6419 // If an identical node already exists, use it. 6420 void *IP = nullptr; 6421 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6422 FoldingSetNodeID ID; 6423 AddNodeIDNode(ID, Opc, VTs, Ops); 6424 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6425 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6426 } 6427 6428 if (!RemoveNodeFromCSEMaps(N)) 6429 IP = nullptr; 6430 6431 // Start the morphing. 6432 N->NodeType = Opc; 6433 N->ValueList = VTs.VTs; 6434 N->NumValues = VTs.NumVTs; 6435 6436 // Clear the operands list, updating used nodes to remove this from their 6437 // use list. Keep track of any operands that become dead as a result. 6438 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6439 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6440 SDUse &Use = *I++; 6441 SDNode *Used = Use.getNode(); 6442 Use.set(SDValue()); 6443 if (Used->use_empty()) 6444 DeadNodeSet.insert(Used); 6445 } 6446 6447 // For MachineNode, initialize the memory references information. 6448 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6449 MN->setMemRefs(nullptr, nullptr); 6450 6451 // Swap for an appropriately sized array from the recycler. 6452 removeOperands(N); 6453 createOperands(N, Ops); 6454 6455 // Delete any nodes that are still dead after adding the uses for the 6456 // new operands. 6457 if (!DeadNodeSet.empty()) { 6458 SmallVector<SDNode *, 16> DeadNodes; 6459 for (SDNode *N : DeadNodeSet) 6460 if (N->use_empty()) 6461 DeadNodes.push_back(N); 6462 RemoveDeadNodes(DeadNodes); 6463 } 6464 6465 if (IP) 6466 CSEMap.InsertNode(N, IP); // Memoize the new node. 6467 return N; 6468 } 6469 6470 6471 /// getMachineNode - These are used for target selectors to create a new node 6472 /// with specified return type(s), MachineInstr opcode, and operands. 6473 /// 6474 /// Note that getMachineNode returns the resultant node. If there is already a 6475 /// node of the specified opcode and operands, it returns that node instead of 6476 /// the current one. 6477 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6478 EVT VT) { 6479 SDVTList VTs = getVTList(VT); 6480 return getMachineNode(Opcode, dl, VTs, None); 6481 } 6482 6483 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6484 EVT VT, SDValue Op1) { 6485 SDVTList VTs = getVTList(VT); 6486 SDValue Ops[] = { Op1 }; 6487 return getMachineNode(Opcode, dl, VTs, Ops); 6488 } 6489 6490 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6491 EVT VT, SDValue Op1, SDValue Op2) { 6492 SDVTList VTs = getVTList(VT); 6493 SDValue Ops[] = { Op1, Op2 }; 6494 return getMachineNode(Opcode, dl, VTs, Ops); 6495 } 6496 6497 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6498 EVT VT, SDValue Op1, SDValue Op2, 6499 SDValue Op3) { 6500 SDVTList VTs = getVTList(VT); 6501 SDValue Ops[] = { Op1, Op2, Op3 }; 6502 return getMachineNode(Opcode, dl, VTs, Ops); 6503 } 6504 6505 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6506 EVT VT, ArrayRef<SDValue> Ops) { 6507 SDVTList VTs = getVTList(VT); 6508 return getMachineNode(Opcode, dl, VTs, Ops); 6509 } 6510 6511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6512 EVT VT1, EVT VT2, SDValue Op1, 6513 SDValue Op2) { 6514 SDVTList VTs = getVTList(VT1, VT2); 6515 SDValue Ops[] = { Op1, Op2 }; 6516 return getMachineNode(Opcode, dl, VTs, Ops); 6517 } 6518 6519 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6520 EVT VT1, EVT VT2, SDValue Op1, 6521 SDValue Op2, SDValue Op3) { 6522 SDVTList VTs = getVTList(VT1, VT2); 6523 SDValue Ops[] = { Op1, Op2, Op3 }; 6524 return getMachineNode(Opcode, dl, VTs, Ops); 6525 } 6526 6527 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6528 EVT VT1, EVT VT2, 6529 ArrayRef<SDValue> Ops) { 6530 SDVTList VTs = getVTList(VT1, VT2); 6531 return getMachineNode(Opcode, dl, VTs, Ops); 6532 } 6533 6534 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6535 EVT VT1, EVT VT2, EVT VT3, 6536 SDValue Op1, SDValue Op2) { 6537 SDVTList VTs = getVTList(VT1, VT2, VT3); 6538 SDValue Ops[] = { Op1, Op2 }; 6539 return getMachineNode(Opcode, dl, VTs, Ops); 6540 } 6541 6542 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6543 EVT VT1, EVT VT2, EVT VT3, 6544 SDValue Op1, SDValue Op2, 6545 SDValue Op3) { 6546 SDVTList VTs = getVTList(VT1, VT2, VT3); 6547 SDValue Ops[] = { Op1, Op2, Op3 }; 6548 return getMachineNode(Opcode, dl, VTs, Ops); 6549 } 6550 6551 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6552 EVT VT1, EVT VT2, EVT VT3, 6553 ArrayRef<SDValue> Ops) { 6554 SDVTList VTs = getVTList(VT1, VT2, VT3); 6555 return getMachineNode(Opcode, dl, VTs, Ops); 6556 } 6557 6558 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6559 ArrayRef<EVT> ResultTys, 6560 ArrayRef<SDValue> Ops) { 6561 SDVTList VTs = getVTList(ResultTys); 6562 return getMachineNode(Opcode, dl, VTs, Ops); 6563 } 6564 6565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6566 SDVTList VTs, 6567 ArrayRef<SDValue> Ops) { 6568 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6569 MachineSDNode *N; 6570 void *IP = nullptr; 6571 6572 if (DoCSE) { 6573 FoldingSetNodeID ID; 6574 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6575 IP = nullptr; 6576 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6577 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6578 } 6579 } 6580 6581 // Allocate a new MachineSDNode. 6582 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6583 createOperands(N, Ops); 6584 6585 if (DoCSE) 6586 CSEMap.InsertNode(N, IP); 6587 6588 InsertNode(N); 6589 return N; 6590 } 6591 6592 /// getTargetExtractSubreg - A convenience function for creating 6593 /// TargetOpcode::EXTRACT_SUBREG nodes. 6594 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6595 SDValue Operand) { 6596 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6597 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6598 VT, Operand, SRIdxVal); 6599 return SDValue(Subreg, 0); 6600 } 6601 6602 /// getTargetInsertSubreg - A convenience function for creating 6603 /// TargetOpcode::INSERT_SUBREG nodes. 6604 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6605 SDValue Operand, SDValue Subreg) { 6606 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6607 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6608 VT, Operand, Subreg, SRIdxVal); 6609 return SDValue(Result, 0); 6610 } 6611 6612 /// getNodeIfExists - Get the specified node if it's already available, or 6613 /// else return NULL. 6614 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6615 ArrayRef<SDValue> Ops, 6616 const SDNodeFlags *Flags) { 6617 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6618 FoldingSetNodeID ID; 6619 AddNodeIDNode(ID, Opcode, VTList, Ops); 6620 void *IP = nullptr; 6621 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6622 if (Flags) 6623 E->intersectFlagsWith(Flags); 6624 return E; 6625 } 6626 } 6627 return nullptr; 6628 } 6629 6630 /// getDbgValue - Creates a SDDbgValue node. 6631 /// 6632 /// SDNode 6633 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6634 unsigned R, bool IsIndirect, uint64_t Off, 6635 const DebugLoc &DL, unsigned O) { 6636 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6637 "Expected inlined-at fields to agree"); 6638 return new (DbgInfo->getAlloc()) 6639 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6640 } 6641 6642 /// Constant 6643 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6644 const Value *C, uint64_t Off, 6645 const DebugLoc &DL, unsigned O) { 6646 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6647 "Expected inlined-at fields to agree"); 6648 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6649 } 6650 6651 /// FrameIndex 6652 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6653 unsigned FI, uint64_t Off, 6654 const DebugLoc &DL, 6655 unsigned O) { 6656 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6657 "Expected inlined-at fields to agree"); 6658 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6659 } 6660 6661 namespace { 6662 6663 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6664 /// pointed to by a use iterator is deleted, increment the use iterator 6665 /// so that it doesn't dangle. 6666 /// 6667 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6668 SDNode::use_iterator &UI; 6669 SDNode::use_iterator &UE; 6670 6671 void NodeDeleted(SDNode *N, SDNode *E) override { 6672 // Increment the iterator as needed. 6673 while (UI != UE && N == *UI) 6674 ++UI; 6675 } 6676 6677 public: 6678 RAUWUpdateListener(SelectionDAG &d, 6679 SDNode::use_iterator &ui, 6680 SDNode::use_iterator &ue) 6681 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6682 }; 6683 6684 } 6685 6686 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6687 /// This can cause recursive merging of nodes in the DAG. 6688 /// 6689 /// This version assumes From has a single result value. 6690 /// 6691 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6692 SDNode *From = FromN.getNode(); 6693 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6694 "Cannot replace with this method!"); 6695 assert(From != To.getNode() && "Cannot replace uses of with self"); 6696 6697 // Preserve Debug Values 6698 TransferDbgValues(FromN, To); 6699 6700 // Iterate over all the existing uses of From. New uses will be added 6701 // to the beginning of the use list, which we avoid visiting. 6702 // This specifically avoids visiting uses of From that arise while the 6703 // replacement is happening, because any such uses would be the result 6704 // of CSE: If an existing node looks like From after one of its operands 6705 // is replaced by To, we don't want to replace of all its users with To 6706 // too. See PR3018 for more info. 6707 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6708 RAUWUpdateListener Listener(*this, UI, UE); 6709 while (UI != UE) { 6710 SDNode *User = *UI; 6711 6712 // This node is about to morph, remove its old self from the CSE maps. 6713 RemoveNodeFromCSEMaps(User); 6714 6715 // A user can appear in a use list multiple times, and when this 6716 // happens the uses are usually next to each other in the list. 6717 // To help reduce the number of CSE recomputations, process all 6718 // the uses of this user that we can find this way. 6719 do { 6720 SDUse &Use = UI.getUse(); 6721 ++UI; 6722 Use.set(To); 6723 } while (UI != UE && *UI == User); 6724 6725 // Now that we have modified User, add it back to the CSE maps. If it 6726 // already exists there, recursively merge the results together. 6727 AddModifiedNodeToCSEMaps(User); 6728 } 6729 6730 6731 // If we just RAUW'd the root, take note. 6732 if (FromN == getRoot()) 6733 setRoot(To); 6734 } 6735 6736 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6737 /// This can cause recursive merging of nodes in the DAG. 6738 /// 6739 /// This version assumes that for each value of From, there is a 6740 /// corresponding value in To in the same position with the same type. 6741 /// 6742 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6743 #ifndef NDEBUG 6744 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6745 assert((!From->hasAnyUseOfValue(i) || 6746 From->getValueType(i) == To->getValueType(i)) && 6747 "Cannot use this version of ReplaceAllUsesWith!"); 6748 #endif 6749 6750 // Handle the trivial case. 6751 if (From == To) 6752 return; 6753 6754 // Preserve Debug Info. Only do this if there's a use. 6755 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6756 if (From->hasAnyUseOfValue(i)) { 6757 assert((i < To->getNumValues()) && "Invalid To location"); 6758 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6759 } 6760 6761 // Iterate over just the existing users of From. See the comments in 6762 // the ReplaceAllUsesWith above. 6763 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6764 RAUWUpdateListener Listener(*this, UI, UE); 6765 while (UI != UE) { 6766 SDNode *User = *UI; 6767 6768 // This node is about to morph, remove its old self from the CSE maps. 6769 RemoveNodeFromCSEMaps(User); 6770 6771 // A user can appear in a use list multiple times, and when this 6772 // happens the uses are usually next to each other in the list. 6773 // To help reduce the number of CSE recomputations, process all 6774 // the uses of this user that we can find this way. 6775 do { 6776 SDUse &Use = UI.getUse(); 6777 ++UI; 6778 Use.setNode(To); 6779 } while (UI != UE && *UI == User); 6780 6781 // Now that we have modified User, add it back to the CSE maps. If it 6782 // already exists there, recursively merge the results together. 6783 AddModifiedNodeToCSEMaps(User); 6784 } 6785 6786 // If we just RAUW'd the root, take note. 6787 if (From == getRoot().getNode()) 6788 setRoot(SDValue(To, getRoot().getResNo())); 6789 } 6790 6791 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6792 /// This can cause recursive merging of nodes in the DAG. 6793 /// 6794 /// This version can replace From with any result values. To must match the 6795 /// number and types of values returned by From. 6796 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6797 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6798 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6799 6800 // Preserve Debug Info. 6801 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6802 TransferDbgValues(SDValue(From, i), *To); 6803 6804 // Iterate over just the existing users of From. See the comments in 6805 // the ReplaceAllUsesWith above. 6806 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6807 RAUWUpdateListener Listener(*this, UI, UE); 6808 while (UI != UE) { 6809 SDNode *User = *UI; 6810 6811 // This node is about to morph, remove its old self from the CSE maps. 6812 RemoveNodeFromCSEMaps(User); 6813 6814 // A user can appear in a use list multiple times, and when this 6815 // happens the uses are usually next to each other in the list. 6816 // To help reduce the number of CSE recomputations, process all 6817 // the uses of this user that we can find this way. 6818 do { 6819 SDUse &Use = UI.getUse(); 6820 const SDValue &ToOp = To[Use.getResNo()]; 6821 ++UI; 6822 Use.set(ToOp); 6823 } while (UI != UE && *UI == User); 6824 6825 // Now that we have modified User, add it back to the CSE maps. If it 6826 // already exists there, recursively merge the results together. 6827 AddModifiedNodeToCSEMaps(User); 6828 } 6829 6830 // If we just RAUW'd the root, take note. 6831 if (From == getRoot().getNode()) 6832 setRoot(SDValue(To[getRoot().getResNo()])); 6833 } 6834 6835 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6836 /// uses of other values produced by From.getNode() alone. The Deleted 6837 /// vector is handled the same way as for ReplaceAllUsesWith. 6838 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6839 // Handle the really simple, really trivial case efficiently. 6840 if (From == To) return; 6841 6842 // Handle the simple, trivial, case efficiently. 6843 if (From.getNode()->getNumValues() == 1) { 6844 ReplaceAllUsesWith(From, To); 6845 return; 6846 } 6847 6848 // Preserve Debug Info. 6849 TransferDbgValues(From, To); 6850 6851 // Iterate over just the existing users of From. See the comments in 6852 // the ReplaceAllUsesWith above. 6853 SDNode::use_iterator UI = From.getNode()->use_begin(), 6854 UE = From.getNode()->use_end(); 6855 RAUWUpdateListener Listener(*this, UI, UE); 6856 while (UI != UE) { 6857 SDNode *User = *UI; 6858 bool UserRemovedFromCSEMaps = false; 6859 6860 // A user can appear in a use list multiple times, and when this 6861 // happens the uses are usually next to each other in the list. 6862 // To help reduce the number of CSE recomputations, process all 6863 // the uses of this user that we can find this way. 6864 do { 6865 SDUse &Use = UI.getUse(); 6866 6867 // Skip uses of different values from the same node. 6868 if (Use.getResNo() != From.getResNo()) { 6869 ++UI; 6870 continue; 6871 } 6872 6873 // If this node hasn't been modified yet, it's still in the CSE maps, 6874 // so remove its old self from the CSE maps. 6875 if (!UserRemovedFromCSEMaps) { 6876 RemoveNodeFromCSEMaps(User); 6877 UserRemovedFromCSEMaps = true; 6878 } 6879 6880 ++UI; 6881 Use.set(To); 6882 } while (UI != UE && *UI == User); 6883 6884 // We are iterating over all uses of the From node, so if a use 6885 // doesn't use the specific value, no changes are made. 6886 if (!UserRemovedFromCSEMaps) 6887 continue; 6888 6889 // Now that we have modified User, add it back to the CSE maps. If it 6890 // already exists there, recursively merge the results together. 6891 AddModifiedNodeToCSEMaps(User); 6892 } 6893 6894 // If we just RAUW'd the root, take note. 6895 if (From == getRoot()) 6896 setRoot(To); 6897 } 6898 6899 namespace { 6900 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6901 /// to record information about a use. 6902 struct UseMemo { 6903 SDNode *User; 6904 unsigned Index; 6905 SDUse *Use; 6906 }; 6907 6908 /// operator< - Sort Memos by User. 6909 bool operator<(const UseMemo &L, const UseMemo &R) { 6910 return (intptr_t)L.User < (intptr_t)R.User; 6911 } 6912 } 6913 6914 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6915 /// uses of other values produced by From.getNode() alone. The same value 6916 /// may appear in both the From and To list. The Deleted vector is 6917 /// handled the same way as for ReplaceAllUsesWith. 6918 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6919 const SDValue *To, 6920 unsigned Num){ 6921 // Handle the simple, trivial case efficiently. 6922 if (Num == 1) 6923 return ReplaceAllUsesOfValueWith(*From, *To); 6924 6925 TransferDbgValues(*From, *To); 6926 6927 // Read up all the uses and make records of them. This helps 6928 // processing new uses that are introduced during the 6929 // replacement process. 6930 SmallVector<UseMemo, 4> Uses; 6931 for (unsigned i = 0; i != Num; ++i) { 6932 unsigned FromResNo = From[i].getResNo(); 6933 SDNode *FromNode = From[i].getNode(); 6934 for (SDNode::use_iterator UI = FromNode->use_begin(), 6935 E = FromNode->use_end(); UI != E; ++UI) { 6936 SDUse &Use = UI.getUse(); 6937 if (Use.getResNo() == FromResNo) { 6938 UseMemo Memo = { *UI, i, &Use }; 6939 Uses.push_back(Memo); 6940 } 6941 } 6942 } 6943 6944 // Sort the uses, so that all the uses from a given User are together. 6945 std::sort(Uses.begin(), Uses.end()); 6946 6947 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6948 UseIndex != UseIndexEnd; ) { 6949 // We know that this user uses some value of From. If it is the right 6950 // value, update it. 6951 SDNode *User = Uses[UseIndex].User; 6952 6953 // This node is about to morph, remove its old self from the CSE maps. 6954 RemoveNodeFromCSEMaps(User); 6955 6956 // The Uses array is sorted, so all the uses for a given User 6957 // are next to each other in the list. 6958 // To help reduce the number of CSE recomputations, process all 6959 // the uses of this user that we can find this way. 6960 do { 6961 unsigned i = Uses[UseIndex].Index; 6962 SDUse &Use = *Uses[UseIndex].Use; 6963 ++UseIndex; 6964 6965 Use.set(To[i]); 6966 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6967 6968 // Now that we have modified User, add it back to the CSE maps. If it 6969 // already exists there, recursively merge the results together. 6970 AddModifiedNodeToCSEMaps(User); 6971 } 6972 } 6973 6974 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6975 /// based on their topological order. It returns the maximum id and a vector 6976 /// of the SDNodes* in assigned order by reference. 6977 unsigned SelectionDAG::AssignTopologicalOrder() { 6978 6979 unsigned DAGSize = 0; 6980 6981 // SortedPos tracks the progress of the algorithm. Nodes before it are 6982 // sorted, nodes after it are unsorted. When the algorithm completes 6983 // it is at the end of the list. 6984 allnodes_iterator SortedPos = allnodes_begin(); 6985 6986 // Visit all the nodes. Move nodes with no operands to the front of 6987 // the list immediately. Annotate nodes that do have operands with their 6988 // operand count. Before we do this, the Node Id fields of the nodes 6989 // may contain arbitrary values. After, the Node Id fields for nodes 6990 // before SortedPos will contain the topological sort index, and the 6991 // Node Id fields for nodes At SortedPos and after will contain the 6992 // count of outstanding operands. 6993 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6994 SDNode *N = &*I++; 6995 checkForCycles(N, this); 6996 unsigned Degree = N->getNumOperands(); 6997 if (Degree == 0) { 6998 // A node with no uses, add it to the result array immediately. 6999 N->setNodeId(DAGSize++); 7000 allnodes_iterator Q(N); 7001 if (Q != SortedPos) 7002 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7003 assert(SortedPos != AllNodes.end() && "Overran node list"); 7004 ++SortedPos; 7005 } else { 7006 // Temporarily use the Node Id as scratch space for the degree count. 7007 N->setNodeId(Degree); 7008 } 7009 } 7010 7011 // Visit all the nodes. As we iterate, move nodes into sorted order, 7012 // such that by the time the end is reached all nodes will be sorted. 7013 for (SDNode &Node : allnodes()) { 7014 SDNode *N = &Node; 7015 checkForCycles(N, this); 7016 // N is in sorted position, so all its uses have one less operand 7017 // that needs to be sorted. 7018 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7019 UI != UE; ++UI) { 7020 SDNode *P = *UI; 7021 unsigned Degree = P->getNodeId(); 7022 assert(Degree != 0 && "Invalid node degree"); 7023 --Degree; 7024 if (Degree == 0) { 7025 // All of P's operands are sorted, so P may sorted now. 7026 P->setNodeId(DAGSize++); 7027 if (P->getIterator() != SortedPos) 7028 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7029 assert(SortedPos != AllNodes.end() && "Overran node list"); 7030 ++SortedPos; 7031 } else { 7032 // Update P's outstanding operand count. 7033 P->setNodeId(Degree); 7034 } 7035 } 7036 if (Node.getIterator() == SortedPos) { 7037 #ifndef NDEBUG 7038 allnodes_iterator I(N); 7039 SDNode *S = &*++I; 7040 dbgs() << "Overran sorted position:\n"; 7041 S->dumprFull(this); dbgs() << "\n"; 7042 dbgs() << "Checking if this is due to cycles\n"; 7043 checkForCycles(this, true); 7044 #endif 7045 llvm_unreachable(nullptr); 7046 } 7047 } 7048 7049 assert(SortedPos == AllNodes.end() && 7050 "Topological sort incomplete!"); 7051 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7052 "First node in topological sort is not the entry token!"); 7053 assert(AllNodes.front().getNodeId() == 0 && 7054 "First node in topological sort has non-zero id!"); 7055 assert(AllNodes.front().getNumOperands() == 0 && 7056 "First node in topological sort has operands!"); 7057 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7058 "Last node in topologic sort has unexpected id!"); 7059 assert(AllNodes.back().use_empty() && 7060 "Last node in topologic sort has users!"); 7061 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7062 return DAGSize; 7063 } 7064 7065 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7066 /// value is produced by SD. 7067 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7068 if (SD) { 7069 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7070 SD->setHasDebugValue(true); 7071 } 7072 DbgInfo->add(DB, SD, isParameter); 7073 } 7074 7075 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 7076 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 7077 if (From == To || !From.getNode()->getHasDebugValue()) 7078 return; 7079 SDNode *FromNode = From.getNode(); 7080 SDNode *ToNode = To.getNode(); 7081 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 7082 SmallVector<SDDbgValue *, 2> ClonedDVs; 7083 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 7084 I != E; ++I) { 7085 SDDbgValue *Dbg = *I; 7086 // Only add Dbgvalues attached to same ResNo. 7087 if (Dbg->getKind() == SDDbgValue::SDNODE && 7088 Dbg->getSDNode() == From.getNode() && 7089 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 7090 assert(FromNode != ToNode && 7091 "Should not transfer Debug Values intranode"); 7092 SDDbgValue *Clone = 7093 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 7094 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 7095 Dbg->getDebugLoc(), Dbg->getOrder()); 7096 ClonedDVs.push_back(Clone); 7097 Dbg->setIsInvalidated(); 7098 } 7099 } 7100 for (SDDbgValue *I : ClonedDVs) 7101 AddDbgValue(I, ToNode, false); 7102 } 7103 7104 //===----------------------------------------------------------------------===// 7105 // SDNode Class 7106 //===----------------------------------------------------------------------===// 7107 7108 bool llvm::isNullConstant(SDValue V) { 7109 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7110 return Const != nullptr && Const->isNullValue(); 7111 } 7112 7113 bool llvm::isNullFPConstant(SDValue V) { 7114 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7115 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7116 } 7117 7118 bool llvm::isAllOnesConstant(SDValue V) { 7119 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7120 return Const != nullptr && Const->isAllOnesValue(); 7121 } 7122 7123 bool llvm::isOneConstant(SDValue V) { 7124 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7125 return Const != nullptr && Const->isOne(); 7126 } 7127 7128 bool llvm::isBitwiseNot(SDValue V) { 7129 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7130 } 7131 7132 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7133 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7134 return CN; 7135 7136 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7137 BitVector UndefElements; 7138 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7139 7140 // BuildVectors can truncate their operands. Ignore that case here. 7141 // FIXME: We blindly ignore splats which include undef which is overly 7142 // pessimistic. 7143 if (CN && UndefElements.none() && 7144 CN->getValueType(0) == N.getValueType().getScalarType()) 7145 return CN; 7146 } 7147 7148 return nullptr; 7149 } 7150 7151 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7152 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7153 return CN; 7154 7155 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7156 BitVector UndefElements; 7157 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7158 7159 if (CN && UndefElements.none()) 7160 return CN; 7161 } 7162 7163 return nullptr; 7164 } 7165 7166 HandleSDNode::~HandleSDNode() { 7167 DropOperands(); 7168 } 7169 7170 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7171 const DebugLoc &DL, 7172 const GlobalValue *GA, EVT VT, 7173 int64_t o, unsigned char TF) 7174 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7175 TheGlobal = GA; 7176 } 7177 7178 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7179 EVT VT, unsigned SrcAS, 7180 unsigned DestAS) 7181 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7182 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7183 7184 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7185 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7186 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7187 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7188 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7189 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7190 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7191 7192 // We check here that the size of the memory operand fits within the size of 7193 // the MMO. This is because the MMO might indicate only a possible address 7194 // range instead of specifying the affected memory addresses precisely. 7195 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7196 } 7197 7198 /// Profile - Gather unique data for the node. 7199 /// 7200 void SDNode::Profile(FoldingSetNodeID &ID) const { 7201 AddNodeIDNode(ID, this); 7202 } 7203 7204 namespace { 7205 struct EVTArray { 7206 std::vector<EVT> VTs; 7207 7208 EVTArray() { 7209 VTs.reserve(MVT::LAST_VALUETYPE); 7210 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7211 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7212 } 7213 }; 7214 } 7215 7216 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 7217 static ManagedStatic<EVTArray> SimpleVTArray; 7218 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 7219 7220 /// getValueTypeList - Return a pointer to the specified value type. 7221 /// 7222 const EVT *SDNode::getValueTypeList(EVT VT) { 7223 if (VT.isExtended()) { 7224 sys::SmartScopedLock<true> Lock(*VTMutex); 7225 return &(*EVTs->insert(VT).first); 7226 } else { 7227 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7228 "Value type out of range!"); 7229 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7230 } 7231 } 7232 7233 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7234 /// indicated value. This method ignores uses of other values defined by this 7235 /// operation. 7236 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7237 assert(Value < getNumValues() && "Bad value!"); 7238 7239 // TODO: Only iterate over uses of a given value of the node 7240 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7241 if (UI.getUse().getResNo() == Value) { 7242 if (NUses == 0) 7243 return false; 7244 --NUses; 7245 } 7246 } 7247 7248 // Found exactly the right number of uses? 7249 return NUses == 0; 7250 } 7251 7252 7253 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7254 /// value. This method ignores uses of other values defined by this operation. 7255 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7256 assert(Value < getNumValues() && "Bad value!"); 7257 7258 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7259 if (UI.getUse().getResNo() == Value) 7260 return true; 7261 7262 return false; 7263 } 7264 7265 7266 /// isOnlyUserOf - Return true if this node is the only use of N. 7267 /// 7268 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7269 bool Seen = false; 7270 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7271 SDNode *User = *I; 7272 if (User == this) 7273 Seen = true; 7274 else 7275 return false; 7276 } 7277 7278 return Seen; 7279 } 7280 7281 /// Return true if the only users of N are contained in Nodes. 7282 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7283 bool Seen = false; 7284 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7285 SDNode *User = *I; 7286 if (llvm::any_of(Nodes, 7287 [&User](const SDNode *Node) { return User == Node; })) 7288 Seen = true; 7289 else 7290 return false; 7291 } 7292 7293 return Seen; 7294 } 7295 7296 /// isOperand - Return true if this node is an operand of N. 7297 /// 7298 bool SDValue::isOperandOf(const SDNode *N) const { 7299 for (const SDValue &Op : N->op_values()) 7300 if (*this == Op) 7301 return true; 7302 return false; 7303 } 7304 7305 bool SDNode::isOperandOf(const SDNode *N) const { 7306 for (const SDValue &Op : N->op_values()) 7307 if (this == Op.getNode()) 7308 return true; 7309 return false; 7310 } 7311 7312 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7313 /// be a chain) reaches the specified operand without crossing any 7314 /// side-effecting instructions on any chain path. In practice, this looks 7315 /// through token factors and non-volatile loads. In order to remain efficient, 7316 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7317 /// 7318 /// Note that we only need to examine chains when we're searching for 7319 /// side-effects; SelectionDAG requires that all side-effects are represented 7320 /// by chains, even if another operand would force a specific ordering. This 7321 /// constraint is necessary to allow transformations like splitting loads. 7322 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7323 unsigned Depth) const { 7324 if (*this == Dest) return true; 7325 7326 // Don't search too deeply, we just want to be able to see through 7327 // TokenFactor's etc. 7328 if (Depth == 0) return false; 7329 7330 // If this is a token factor, all inputs to the TF happen in parallel. 7331 if (getOpcode() == ISD::TokenFactor) { 7332 // First, try a shallow search. 7333 if (is_contained((*this)->ops(), Dest)) { 7334 // We found the chain we want as an operand of this TokenFactor. 7335 // Essentially, we reach the chain without side-effects if we could 7336 // serialize the TokenFactor into a simple chain of operations with 7337 // Dest as the last operation. This is automatically true if the 7338 // chain has one use: there are no other ordering constraints. 7339 // If the chain has more than one use, we give up: some other 7340 // use of Dest might force a side-effect between Dest and the current 7341 // node. 7342 if (Dest.hasOneUse()) 7343 return true; 7344 } 7345 // Next, try a deep search: check whether every operand of the TokenFactor 7346 // reaches Dest. 7347 return all_of((*this)->ops(), [=](SDValue Op) { 7348 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 7349 }); 7350 } 7351 7352 // Loads don't have side effects, look through them. 7353 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7354 if (!Ld->isVolatile()) 7355 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7356 } 7357 return false; 7358 } 7359 7360 bool SDNode::hasPredecessor(const SDNode *N) const { 7361 SmallPtrSet<const SDNode *, 32> Visited; 7362 SmallVector<const SDNode *, 16> Worklist; 7363 Worklist.push_back(this); 7364 return hasPredecessorHelper(N, Visited, Worklist); 7365 } 7366 7367 const SDNodeFlags *SDNode::getFlags() const { 7368 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7369 return &FlagsNode->Flags; 7370 return nullptr; 7371 } 7372 7373 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 7374 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7375 FlagsNode->Flags.intersectWith(Flags); 7376 } 7377 7378 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7379 assert(N->getNumValues() == 1 && 7380 "Can't unroll a vector with multiple results!"); 7381 7382 EVT VT = N->getValueType(0); 7383 unsigned NE = VT.getVectorNumElements(); 7384 EVT EltVT = VT.getVectorElementType(); 7385 SDLoc dl(N); 7386 7387 SmallVector<SDValue, 8> Scalars; 7388 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7389 7390 // If ResNE is 0, fully unroll the vector op. 7391 if (ResNE == 0) 7392 ResNE = NE; 7393 else if (NE > ResNE) 7394 NE = ResNE; 7395 7396 unsigned i; 7397 for (i= 0; i != NE; ++i) { 7398 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7399 SDValue Operand = N->getOperand(j); 7400 EVT OperandVT = Operand.getValueType(); 7401 if (OperandVT.isVector()) { 7402 // A vector operand; extract a single element. 7403 EVT OperandEltVT = OperandVT.getVectorElementType(); 7404 Operands[j] = 7405 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7406 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7407 } else { 7408 // A scalar operand; just use it as is. 7409 Operands[j] = Operand; 7410 } 7411 } 7412 7413 switch (N->getOpcode()) { 7414 default: { 7415 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7416 N->getFlags())); 7417 break; 7418 } 7419 case ISD::VSELECT: 7420 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7421 break; 7422 case ISD::SHL: 7423 case ISD::SRA: 7424 case ISD::SRL: 7425 case ISD::ROTL: 7426 case ISD::ROTR: 7427 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7428 getShiftAmountOperand(Operands[0].getValueType(), 7429 Operands[1]))); 7430 break; 7431 case ISD::SIGN_EXTEND_INREG: 7432 case ISD::FP_ROUND_INREG: { 7433 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7434 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7435 Operands[0], 7436 getValueType(ExtVT))); 7437 } 7438 } 7439 } 7440 7441 for (; i < ResNE; ++i) 7442 Scalars.push_back(getUNDEF(EltVT)); 7443 7444 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7445 return getBuildVector(VecVT, dl, Scalars); 7446 } 7447 7448 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7449 LoadSDNode *Base, 7450 unsigned Bytes, 7451 int Dist) const { 7452 if (LD->isVolatile() || Base->isVolatile()) 7453 return false; 7454 if (LD->isIndexed() || Base->isIndexed()) 7455 return false; 7456 if (LD->getChain() != Base->getChain()) 7457 return false; 7458 EVT VT = LD->getValueType(0); 7459 if (VT.getSizeInBits() / 8 != Bytes) 7460 return false; 7461 7462 SDValue Loc = LD->getOperand(1); 7463 SDValue BaseLoc = Base->getOperand(1); 7464 if (Loc.getOpcode() == ISD::FrameIndex) { 7465 if (BaseLoc.getOpcode() != ISD::FrameIndex) 7466 return false; 7467 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7468 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 7469 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 7470 int FS = MFI.getObjectSize(FI); 7471 int BFS = MFI.getObjectSize(BFI); 7472 if (FS != BFS || FS != (int)Bytes) return false; 7473 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 7474 } 7475 7476 // Handle X + C. 7477 if (isBaseWithConstantOffset(Loc)) { 7478 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 7479 if (Loc.getOperand(0) == BaseLoc) { 7480 // If the base location is a simple address with no offset itself, then 7481 // the second load's first add operand should be the base address. 7482 if (LocOffset == Dist * (int)Bytes) 7483 return true; 7484 } else if (isBaseWithConstantOffset(BaseLoc)) { 7485 // The base location itself has an offset, so subtract that value from the 7486 // second load's offset before comparing to distance * size. 7487 int64_t BOffset = 7488 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 7489 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 7490 if ((LocOffset - BOffset) == Dist * (int)Bytes) 7491 return true; 7492 } 7493 } 7494 } 7495 const GlobalValue *GV1 = nullptr; 7496 const GlobalValue *GV2 = nullptr; 7497 int64_t Offset1 = 0; 7498 int64_t Offset2 = 0; 7499 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 7500 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 7501 if (isGA1 && isGA2 && GV1 == GV2) 7502 return Offset1 == (Offset2 + Dist*Bytes); 7503 return false; 7504 } 7505 7506 7507 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7508 /// it cannot be inferred. 7509 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7510 // If this is a GlobalAddress + cst, return the alignment. 7511 const GlobalValue *GV; 7512 int64_t GVOffset = 0; 7513 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7514 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7515 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7516 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7517 getDataLayout()); 7518 unsigned AlignBits = KnownZero.countTrailingOnes(); 7519 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7520 if (Align) 7521 return MinAlign(Align, GVOffset); 7522 } 7523 7524 // If this is a direct reference to a stack slot, use information about the 7525 // stack slot's alignment. 7526 int FrameIdx = 1 << 31; 7527 int64_t FrameOffset = 0; 7528 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7529 FrameIdx = FI->getIndex(); 7530 } else if (isBaseWithConstantOffset(Ptr) && 7531 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7532 // Handle FI+Cst 7533 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7534 FrameOffset = Ptr.getConstantOperandVal(1); 7535 } 7536 7537 if (FrameIdx != (1 << 31)) { 7538 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7539 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7540 FrameOffset); 7541 return FIInfoAlign; 7542 } 7543 7544 return 0; 7545 } 7546 7547 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7548 /// which is split (or expanded) into two not necessarily identical pieces. 7549 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7550 // Currently all types are split in half. 7551 EVT LoVT, HiVT; 7552 if (!VT.isVector()) { 7553 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7554 } else { 7555 unsigned NumElements = VT.getVectorNumElements(); 7556 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7557 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7558 NumElements/2); 7559 } 7560 return std::make_pair(LoVT, HiVT); 7561 } 7562 7563 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7564 /// low/high part. 7565 std::pair<SDValue, SDValue> 7566 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7567 const EVT &HiVT) { 7568 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7569 N.getValueType().getVectorNumElements() && 7570 "More vector elements requested than available!"); 7571 SDValue Lo, Hi; 7572 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7573 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7574 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7575 getConstant(LoVT.getVectorNumElements(), DL, 7576 TLI->getVectorIdxTy(getDataLayout()))); 7577 return std::make_pair(Lo, Hi); 7578 } 7579 7580 void SelectionDAG::ExtractVectorElements(SDValue Op, 7581 SmallVectorImpl<SDValue> &Args, 7582 unsigned Start, unsigned Count) { 7583 EVT VT = Op.getValueType(); 7584 if (Count == 0) 7585 Count = VT.getVectorNumElements(); 7586 7587 EVT EltVT = VT.getVectorElementType(); 7588 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7589 SDLoc SL(Op); 7590 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7591 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7592 Op, getConstant(i, SL, IdxTy))); 7593 } 7594 } 7595 7596 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7597 unsigned GlobalAddressSDNode::getAddressSpace() const { 7598 return getGlobal()->getType()->getAddressSpace(); 7599 } 7600 7601 7602 Type *ConstantPoolSDNode::getType() const { 7603 if (isMachineConstantPoolEntry()) 7604 return Val.MachineCPVal->getType(); 7605 return Val.ConstVal->getType(); 7606 } 7607 7608 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7609 APInt &SplatUndef, 7610 unsigned &SplatBitSize, 7611 bool &HasAnyUndefs, 7612 unsigned MinSplatBits, 7613 bool isBigEndian) const { 7614 EVT VT = getValueType(0); 7615 assert(VT.isVector() && "Expected a vector type"); 7616 unsigned sz = VT.getSizeInBits(); 7617 if (MinSplatBits > sz) 7618 return false; 7619 7620 SplatValue = APInt(sz, 0); 7621 SplatUndef = APInt(sz, 0); 7622 7623 // Get the bits. Bits with undefined values (when the corresponding element 7624 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7625 // in SplatValue. If any of the values are not constant, give up and return 7626 // false. 7627 unsigned int nOps = getNumOperands(); 7628 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7629 unsigned EltBitSize = VT.getScalarSizeInBits(); 7630 7631 for (unsigned j = 0; j < nOps; ++j) { 7632 unsigned i = isBigEndian ? nOps-1-j : j; 7633 SDValue OpVal = getOperand(i); 7634 unsigned BitPos = j * EltBitSize; 7635 7636 if (OpVal.isUndef()) 7637 SplatUndef.setBits(BitPos, BitPos + EltBitSize); 7638 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7639 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltBitSize), 7640 BitPos); 7641 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7642 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 7643 else 7644 return false; 7645 } 7646 7647 // The build_vector is all constants or undefs. Find the smallest element 7648 // size that splats the vector. 7649 7650 HasAnyUndefs = (SplatUndef != 0); 7651 while (sz > 8) { 7652 7653 unsigned HalfSize = sz / 2; 7654 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7655 APInt LowValue = SplatValue.trunc(HalfSize); 7656 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7657 APInt LowUndef = SplatUndef.trunc(HalfSize); 7658 7659 // If the two halves do not match (ignoring undef bits), stop here. 7660 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7661 MinSplatBits > HalfSize) 7662 break; 7663 7664 SplatValue = HighValue | LowValue; 7665 SplatUndef = HighUndef & LowUndef; 7666 7667 sz = HalfSize; 7668 } 7669 7670 SplatBitSize = sz; 7671 return true; 7672 } 7673 7674 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7675 if (UndefElements) { 7676 UndefElements->clear(); 7677 UndefElements->resize(getNumOperands()); 7678 } 7679 SDValue Splatted; 7680 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7681 SDValue Op = getOperand(i); 7682 if (Op.isUndef()) { 7683 if (UndefElements) 7684 (*UndefElements)[i] = true; 7685 } else if (!Splatted) { 7686 Splatted = Op; 7687 } else if (Splatted != Op) { 7688 return SDValue(); 7689 } 7690 } 7691 7692 if (!Splatted) { 7693 assert(getOperand(0).isUndef() && 7694 "Can only have a splat without a constant for all undefs."); 7695 return getOperand(0); 7696 } 7697 7698 return Splatted; 7699 } 7700 7701 ConstantSDNode * 7702 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7703 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7704 } 7705 7706 ConstantFPSDNode * 7707 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7708 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7709 } 7710 7711 int32_t 7712 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7713 uint32_t BitWidth) const { 7714 if (ConstantFPSDNode *CN = 7715 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7716 bool IsExact; 7717 APSInt IntVal(BitWidth); 7718 const APFloat &APF = CN->getValueAPF(); 7719 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7720 APFloat::opOK || 7721 !IsExact) 7722 return -1; 7723 7724 return IntVal.exactLogBase2(); 7725 } 7726 return -1; 7727 } 7728 7729 bool BuildVectorSDNode::isConstant() const { 7730 for (const SDValue &Op : op_values()) { 7731 unsigned Opc = Op.getOpcode(); 7732 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7733 return false; 7734 } 7735 return true; 7736 } 7737 7738 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7739 // Find the first non-undef value in the shuffle mask. 7740 unsigned i, e; 7741 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7742 /* search */; 7743 7744 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7745 7746 // Make sure all remaining elements are either undef or the same as the first 7747 // non-undef value. 7748 for (int Idx = Mask[i]; i != e; ++i) 7749 if (Mask[i] >= 0 && Mask[i] != Idx) 7750 return false; 7751 return true; 7752 } 7753 7754 // \brief Returns the SDNode if it is a constant integer BuildVector 7755 // or constant integer. 7756 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7757 if (isa<ConstantSDNode>(N)) 7758 return N.getNode(); 7759 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7760 return N.getNode(); 7761 // Treat a GlobalAddress supporting constant offset folding as a 7762 // constant integer. 7763 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7764 if (GA->getOpcode() == ISD::GlobalAddress && 7765 TLI->isOffsetFoldingLegal(GA)) 7766 return GA; 7767 return nullptr; 7768 } 7769 7770 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 7771 if (isa<ConstantFPSDNode>(N)) 7772 return N.getNode(); 7773 7774 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 7775 return N.getNode(); 7776 7777 return nullptr; 7778 } 7779 7780 #ifndef NDEBUG 7781 static void checkForCyclesHelper(const SDNode *N, 7782 SmallPtrSetImpl<const SDNode*> &Visited, 7783 SmallPtrSetImpl<const SDNode*> &Checked, 7784 const llvm::SelectionDAG *DAG) { 7785 // If this node has already been checked, don't check it again. 7786 if (Checked.count(N)) 7787 return; 7788 7789 // If a node has already been visited on this depth-first walk, reject it as 7790 // a cycle. 7791 if (!Visited.insert(N).second) { 7792 errs() << "Detected cycle in SelectionDAG\n"; 7793 dbgs() << "Offending node:\n"; 7794 N->dumprFull(DAG); dbgs() << "\n"; 7795 abort(); 7796 } 7797 7798 for (const SDValue &Op : N->op_values()) 7799 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7800 7801 Checked.insert(N); 7802 Visited.erase(N); 7803 } 7804 #endif 7805 7806 void llvm::checkForCycles(const llvm::SDNode *N, 7807 const llvm::SelectionDAG *DAG, 7808 bool force) { 7809 #ifndef NDEBUG 7810 bool check = force; 7811 #ifdef EXPENSIVE_CHECKS 7812 check = true; 7813 #endif // EXPENSIVE_CHECKS 7814 if (check) { 7815 assert(N && "Checking nonexistent SDNode"); 7816 SmallPtrSet<const SDNode*, 32> visited; 7817 SmallPtrSet<const SDNode*, 32> checked; 7818 checkForCyclesHelper(N, visited, checked, DAG); 7819 } 7820 #endif // !NDEBUG 7821 } 7822 7823 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7824 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7825 } 7826