1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MachineValueType.h" 64 #include "llvm/Support/ManagedStatic.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Mutex.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include "llvm/Transforms/Utils/SizeOpts.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <cstdlib> 75 #include <limits> 76 #include <set> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 83 /// makeVTList - Return an instance of the SDVTList struct initialized with the 84 /// specified members. 85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 86 SDVTList Res = {VTs, NumVTs}; 87 return Res; 88 } 89 90 // Default null implementations of the callbacks. 91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 94 95 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 96 97 #define DEBUG_TYPE "selectiondag" 98 99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 100 cl::Hidden, cl::init(true), 101 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 102 103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 104 cl::desc("Number limit for gluing ld/st of memcpy."), 105 cl::Hidden, cl::init(0)); 106 107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 108 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 109 } 110 111 //===----------------------------------------------------------------------===// 112 // ConstantFPSDNode Class 113 //===----------------------------------------------------------------------===// 114 115 /// isExactlyValue - We don't rely on operator== working on double values, as 116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 117 /// As such, this method can be used to do an exact bit-for-bit comparison of 118 /// two floating point values. 119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 120 return getValueAPF().bitwiseIsEqual(V); 121 } 122 123 bool ConstantFPSDNode::isValueValidForType(EVT VT, 124 const APFloat& Val) { 125 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 126 127 // convert modifies in place, so make a copy. 128 APFloat Val2 = APFloat(Val); 129 bool losesInfo; 130 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 131 APFloat::rmNearestTiesToEven, 132 &losesInfo); 133 return !losesInfo; 134 } 135 136 //===----------------------------------------------------------------------===// 137 // ISD Namespace 138 //===----------------------------------------------------------------------===// 139 140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 141 auto *BV = dyn_cast<BuildVectorSDNode>(N); 142 if (!BV) 143 return false; 144 145 APInt SplatUndef; 146 unsigned SplatBitSize; 147 bool HasUndefs; 148 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 149 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 150 EltSize) && 151 EltSize == SplatBitSize; 152 } 153 154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 155 // specializations of the more general isConstantSplatVector()? 156 157 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 158 // Look through a bit convert. 159 while (N->getOpcode() == ISD::BITCAST) 160 N = N->getOperand(0).getNode(); 161 162 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 163 164 unsigned i = 0, e = N->getNumOperands(); 165 166 // Skip over all of the undef values. 167 while (i != e && N->getOperand(i).isUndef()) 168 ++i; 169 170 // Do not accept an all-undef vector. 171 if (i == e) return false; 172 173 // Do not accept build_vectors that aren't all constants or which have non-~0 174 // elements. We have to be a bit careful here, as the type of the constant 175 // may not be the same as the type of the vector elements due to type 176 // legalization (the elements are promoted to a legal type for the target and 177 // a vector of a type may be legal when the base element type is not). 178 // We only want to check enough bits to cover the vector elements, because 179 // we care if the resultant vector is all ones, not whether the individual 180 // constants are. 181 SDValue NotZero = N->getOperand(i); 182 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 183 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 184 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 185 return false; 186 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 187 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 188 return false; 189 } else 190 return false; 191 192 // Okay, we have at least one ~0 value, check to see if the rest match or are 193 // undefs. Even with the above element type twiddling, this should be OK, as 194 // the same type legalization should have applied to all the elements. 195 for (++i; i != e; ++i) 196 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 197 return false; 198 return true; 199 } 200 201 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 202 // Look through a bit convert. 203 while (N->getOpcode() == ISD::BITCAST) 204 N = N->getOperand(0).getNode(); 205 206 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 207 208 bool IsAllUndef = true; 209 for (const SDValue &Op : N->op_values()) { 210 if (Op.isUndef()) 211 continue; 212 IsAllUndef = false; 213 // Do not accept build_vectors that aren't all constants or which have non-0 214 // elements. We have to be a bit careful here, as the type of the constant 215 // may not be the same as the type of the vector elements due to type 216 // legalization (the elements are promoted to a legal type for the target 217 // and a vector of a type may be legal when the base element type is not). 218 // We only want to check enough bits to cover the vector elements, because 219 // we care if the resultant vector is all zeros, not whether the individual 220 // constants are. 221 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 222 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 223 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 224 return false; 225 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 226 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 227 return false; 228 } else 229 return false; 230 } 231 232 // Do not accept an all-undef vector. 233 if (IsAllUndef) 234 return false; 235 return true; 236 } 237 238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 239 if (N->getOpcode() != ISD::BUILD_VECTOR) 240 return false; 241 242 for (const SDValue &Op : N->op_values()) { 243 if (Op.isUndef()) 244 continue; 245 if (!isa<ConstantSDNode>(Op)) 246 return false; 247 } 248 return true; 249 } 250 251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 252 if (N->getOpcode() != ISD::BUILD_VECTOR) 253 return false; 254 255 for (const SDValue &Op : N->op_values()) { 256 if (Op.isUndef()) 257 continue; 258 if (!isa<ConstantFPSDNode>(Op)) 259 return false; 260 } 261 return true; 262 } 263 264 bool ISD::allOperandsUndef(const SDNode *N) { 265 // Return false if the node has no operands. 266 // This is "logically inconsistent" with the definition of "all" but 267 // is probably the desired behavior. 268 if (N->getNumOperands() == 0) 269 return false; 270 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 271 } 272 273 bool ISD::matchUnaryPredicate(SDValue Op, 274 std::function<bool(ConstantSDNode *)> Match, 275 bool AllowUndefs) { 276 // FIXME: Add support for scalar UNDEF cases? 277 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 278 return Match(Cst); 279 280 // FIXME: Add support for vector UNDEF cases? 281 if (ISD::BUILD_VECTOR != Op.getOpcode()) 282 return false; 283 284 EVT SVT = Op.getValueType().getScalarType(); 285 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 286 if (AllowUndefs && Op.getOperand(i).isUndef()) { 287 if (!Match(nullptr)) 288 return false; 289 continue; 290 } 291 292 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 293 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 294 return false; 295 } 296 return true; 297 } 298 299 bool ISD::matchBinaryPredicate( 300 SDValue LHS, SDValue RHS, 301 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 302 bool AllowUndefs, bool AllowTypeMismatch) { 303 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 304 return false; 305 306 // TODO: Add support for scalar UNDEF cases? 307 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 308 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 309 return Match(LHSCst, RHSCst); 310 311 // TODO: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 313 ISD::BUILD_VECTOR != RHS.getOpcode()) 314 return false; 315 316 EVT SVT = LHS.getValueType().getScalarType(); 317 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 318 SDValue LHSOp = LHS.getOperand(i); 319 SDValue RHSOp = RHS.getOperand(i); 320 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 321 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 322 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 323 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 324 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 325 return false; 326 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 327 LHSOp.getValueType() != RHSOp.getValueType())) 328 return false; 329 if (!Match(LHSCst, RHSCst)) 330 return false; 331 } 332 return true; 333 } 334 335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 336 switch (ExtType) { 337 case ISD::EXTLOAD: 338 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 339 case ISD::SEXTLOAD: 340 return ISD::SIGN_EXTEND; 341 case ISD::ZEXTLOAD: 342 return ISD::ZERO_EXTEND; 343 default: 344 break; 345 } 346 347 llvm_unreachable("Invalid LoadExtType"); 348 } 349 350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 351 // To perform this operation, we just need to swap the L and G bits of the 352 // operation. 353 unsigned OldL = (Operation >> 2) & 1; 354 unsigned OldG = (Operation >> 1) & 1; 355 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 356 (OldL << 1) | // New G bit 357 (OldG << 2)); // New L bit. 358 } 359 360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 361 unsigned Operation = Op; 362 if (isIntegerLike) 363 Operation ^= 7; // Flip L, G, E bits, but not U. 364 else 365 Operation ^= 15; // Flip all of the condition bits. 366 367 if (Operation > ISD::SETTRUE2) 368 Operation &= ~8; // Don't let N and U bits get set. 369 370 return ISD::CondCode(Operation); 371 } 372 373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 374 return getSetCCInverseImpl(Op, Type.isInteger()); 375 } 376 377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 378 bool isIntegerLike) { 379 return getSetCCInverseImpl(Op, isIntegerLike); 380 } 381 382 /// For an integer comparison, return 1 if the comparison is a signed operation 383 /// and 2 if the result is an unsigned comparison. Return zero if the operation 384 /// does not depend on the sign of the input (setne and seteq). 385 static int isSignedOp(ISD::CondCode Opcode) { 386 switch (Opcode) { 387 default: llvm_unreachable("Illegal integer setcc operation!"); 388 case ISD::SETEQ: 389 case ISD::SETNE: return 0; 390 case ISD::SETLT: 391 case ISD::SETLE: 392 case ISD::SETGT: 393 case ISD::SETGE: return 1; 394 case ISD::SETULT: 395 case ISD::SETULE: 396 case ISD::SETUGT: 397 case ISD::SETUGE: return 2; 398 } 399 } 400 401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 402 EVT Type) { 403 bool IsInteger = Type.isInteger(); 404 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 405 // Cannot fold a signed integer setcc with an unsigned integer setcc. 406 return ISD::SETCC_INVALID; 407 408 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 409 410 // If the N and U bits get set, then the resultant comparison DOES suddenly 411 // care about orderedness, and it is true when ordered. 412 if (Op > ISD::SETTRUE2) 413 Op &= ~16; // Clear the U bit if the N bit is set. 414 415 // Canonicalize illegal integer setcc's. 416 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 417 Op = ISD::SETNE; 418 419 return ISD::CondCode(Op); 420 } 421 422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 423 EVT Type) { 424 bool IsInteger = Type.isInteger(); 425 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 426 // Cannot fold a signed setcc with an unsigned setcc. 427 return ISD::SETCC_INVALID; 428 429 // Combine all of the condition bits. 430 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 431 432 // Canonicalize illegal integer setcc's. 433 if (IsInteger) { 434 switch (Result) { 435 default: break; 436 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 437 case ISD::SETOEQ: // SETEQ & SETU[LG]E 438 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 439 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 440 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 441 } 442 } 443 444 return Result; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // SDNode Profile Support 449 //===----------------------------------------------------------------------===// 450 451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 453 ID.AddInteger(OpC); 454 } 455 456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 457 /// solely with their pointer. 458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 459 ID.AddPointer(VTList.VTs); 460 } 461 462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 463 static void AddNodeIDOperands(FoldingSetNodeID &ID, 464 ArrayRef<SDValue> Ops) { 465 for (auto& Op : Ops) { 466 ID.AddPointer(Op.getNode()); 467 ID.AddInteger(Op.getResNo()); 468 } 469 } 470 471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 472 static void AddNodeIDOperands(FoldingSetNodeID &ID, 473 ArrayRef<SDUse> Ops) { 474 for (auto& Op : Ops) { 475 ID.AddPointer(Op.getNode()); 476 ID.AddInteger(Op.getResNo()); 477 } 478 } 479 480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 481 SDVTList VTList, ArrayRef<SDValue> OpList) { 482 AddNodeIDOpcode(ID, OpC); 483 AddNodeIDValueTypes(ID, VTList); 484 AddNodeIDOperands(ID, OpList); 485 } 486 487 /// If this is an SDNode with special info, add this info to the NodeID data. 488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 489 switch (N->getOpcode()) { 490 case ISD::TargetExternalSymbol: 491 case ISD::ExternalSymbol: 492 case ISD::MCSymbol: 493 llvm_unreachable("Should only be used on nodes with operands"); 494 default: break; // Normal nodes don't need extra info. 495 case ISD::TargetConstant: 496 case ISD::Constant: { 497 const ConstantSDNode *C = cast<ConstantSDNode>(N); 498 ID.AddPointer(C->getConstantIntValue()); 499 ID.AddBoolean(C->isOpaque()); 500 break; 501 } 502 case ISD::TargetConstantFP: 503 case ISD::ConstantFP: 504 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 505 break; 506 case ISD::TargetGlobalAddress: 507 case ISD::GlobalAddress: 508 case ISD::TargetGlobalTLSAddress: 509 case ISD::GlobalTLSAddress: { 510 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 511 ID.AddPointer(GA->getGlobal()); 512 ID.AddInteger(GA->getOffset()); 513 ID.AddInteger(GA->getTargetFlags()); 514 break; 515 } 516 case ISD::BasicBlock: 517 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 518 break; 519 case ISD::Register: 520 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 521 break; 522 case ISD::RegisterMask: 523 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 524 break; 525 case ISD::SRCVALUE: 526 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 527 break; 528 case ISD::FrameIndex: 529 case ISD::TargetFrameIndex: 530 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 531 break; 532 case ISD::LIFETIME_START: 533 case ISD::LIFETIME_END: 534 if (cast<LifetimeSDNode>(N)->hasOffset()) { 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 537 } 538 break; 539 case ISD::JumpTable: 540 case ISD::TargetJumpTable: 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 543 break; 544 case ISD::ConstantPool: 545 case ISD::TargetConstantPool: { 546 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 547 ID.AddInteger(CP->getAlign().value()); 548 ID.AddInteger(CP->getOffset()); 549 if (CP->isMachineConstantPoolEntry()) 550 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 551 else 552 ID.AddPointer(CP->getConstVal()); 553 ID.AddInteger(CP->getTargetFlags()); 554 break; 555 } 556 case ISD::TargetIndex: { 557 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 558 ID.AddInteger(TI->getIndex()); 559 ID.AddInteger(TI->getOffset()); 560 ID.AddInteger(TI->getTargetFlags()); 561 break; 562 } 563 case ISD::LOAD: { 564 const LoadSDNode *LD = cast<LoadSDNode>(N); 565 ID.AddInteger(LD->getMemoryVT().getRawBits()); 566 ID.AddInteger(LD->getRawSubclassData()); 567 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 568 break; 569 } 570 case ISD::STORE: { 571 const StoreSDNode *ST = cast<StoreSDNode>(N); 572 ID.AddInteger(ST->getMemoryVT().getRawBits()); 573 ID.AddInteger(ST->getRawSubclassData()); 574 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 575 break; 576 } 577 case ISD::MLOAD: { 578 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 579 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 580 ID.AddInteger(MLD->getRawSubclassData()); 581 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 582 break; 583 } 584 case ISD::MSTORE: { 585 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 586 ID.AddInteger(MST->getMemoryVT().getRawBits()); 587 ID.AddInteger(MST->getRawSubclassData()); 588 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 589 break; 590 } 591 case ISD::MGATHER: { 592 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 593 ID.AddInteger(MG->getMemoryVT().getRawBits()); 594 ID.AddInteger(MG->getRawSubclassData()); 595 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 596 break; 597 } 598 case ISD::MSCATTER: { 599 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 600 ID.AddInteger(MS->getMemoryVT().getRawBits()); 601 ID.AddInteger(MS->getRawSubclassData()); 602 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 603 break; 604 } 605 case ISD::ATOMIC_CMP_SWAP: 606 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 607 case ISD::ATOMIC_SWAP: 608 case ISD::ATOMIC_LOAD_ADD: 609 case ISD::ATOMIC_LOAD_SUB: 610 case ISD::ATOMIC_LOAD_AND: 611 case ISD::ATOMIC_LOAD_CLR: 612 case ISD::ATOMIC_LOAD_OR: 613 case ISD::ATOMIC_LOAD_XOR: 614 case ISD::ATOMIC_LOAD_NAND: 615 case ISD::ATOMIC_LOAD_MIN: 616 case ISD::ATOMIC_LOAD_MAX: 617 case ISD::ATOMIC_LOAD_UMIN: 618 case ISD::ATOMIC_LOAD_UMAX: 619 case ISD::ATOMIC_LOAD: 620 case ISD::ATOMIC_STORE: { 621 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 622 ID.AddInteger(AT->getMemoryVT().getRawBits()); 623 ID.AddInteger(AT->getRawSubclassData()); 624 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::PREFETCH: { 628 const MemSDNode *PF = cast<MemSDNode>(N); 629 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 630 break; 631 } 632 case ISD::VECTOR_SHUFFLE: { 633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 634 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 635 i != e; ++i) 636 ID.AddInteger(SVN->getMaskElt(i)); 637 break; 638 } 639 case ISD::TargetBlockAddress: 640 case ISD::BlockAddress: { 641 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 642 ID.AddPointer(BA->getBlockAddress()); 643 ID.AddInteger(BA->getOffset()); 644 ID.AddInteger(BA->getTargetFlags()); 645 break; 646 } 647 } // end switch (N->getOpcode()) 648 649 // Target specific memory nodes could also have address spaces to check. 650 if (N->isTargetMemoryOpcode()) 651 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 652 } 653 654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 655 /// data. 656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 657 AddNodeIDOpcode(ID, N->getOpcode()); 658 // Add the return value info. 659 AddNodeIDValueTypes(ID, N->getVTList()); 660 // Add the operand info. 661 AddNodeIDOperands(ID, N->ops()); 662 663 // Handle SDNode leafs with special info. 664 AddNodeIDCustom(ID, N); 665 } 666 667 //===----------------------------------------------------------------------===// 668 // SelectionDAG Class 669 //===----------------------------------------------------------------------===// 670 671 /// doNotCSE - Return true if CSE should not be performed for this node. 672 static bool doNotCSE(SDNode *N) { 673 if (N->getValueType(0) == MVT::Glue) 674 return true; // Never CSE anything that produces a flag. 675 676 switch (N->getOpcode()) { 677 default: break; 678 case ISD::HANDLENODE: 679 case ISD::EH_LABEL: 680 return true; // Never CSE these nodes. 681 } 682 683 // Check that remaining values produced are not flags. 684 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 685 if (N->getValueType(i) == MVT::Glue) 686 return true; // Never CSE anything that produces a flag. 687 688 return false; 689 } 690 691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 692 /// SelectionDAG. 693 void SelectionDAG::RemoveDeadNodes() { 694 // Create a dummy node (which is not added to allnodes), that adds a reference 695 // to the root node, preventing it from being deleted. 696 HandleSDNode Dummy(getRoot()); 697 698 SmallVector<SDNode*, 128> DeadNodes; 699 700 // Add all obviously-dead nodes to the DeadNodes worklist. 701 for (SDNode &Node : allnodes()) 702 if (Node.use_empty()) 703 DeadNodes.push_back(&Node); 704 705 RemoveDeadNodes(DeadNodes); 706 707 // If the root changed (e.g. it was a dead load, update the root). 708 setRoot(Dummy.getValue()); 709 } 710 711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 712 /// given list, and any nodes that become unreachable as a result. 713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 714 715 // Process the worklist, deleting the nodes and adding their uses to the 716 // worklist. 717 while (!DeadNodes.empty()) { 718 SDNode *N = DeadNodes.pop_back_val(); 719 // Skip to next node if we've already managed to delete the node. This could 720 // happen if replacing a node causes a node previously added to the node to 721 // be deleted. 722 if (N->getOpcode() == ISD::DELETED_NODE) 723 continue; 724 725 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 726 DUL->NodeDeleted(N, nullptr); 727 728 // Take the node out of the appropriate CSE map. 729 RemoveNodeFromCSEMaps(N); 730 731 // Next, brutally remove the operand list. This is safe to do, as there are 732 // no cycles in the graph. 733 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 734 SDUse &Use = *I++; 735 SDNode *Operand = Use.getNode(); 736 Use.set(SDValue()); 737 738 // Now that we removed this operand, see if there are no uses of it left. 739 if (Operand->use_empty()) 740 DeadNodes.push_back(Operand); 741 } 742 743 DeallocateNode(N); 744 } 745 } 746 747 void SelectionDAG::RemoveDeadNode(SDNode *N){ 748 SmallVector<SDNode*, 16> DeadNodes(1, N); 749 750 // Create a dummy node that adds a reference to the root node, preventing 751 // it from being deleted. (This matters if the root is an operand of the 752 // dead node.) 753 HandleSDNode Dummy(getRoot()); 754 755 RemoveDeadNodes(DeadNodes); 756 } 757 758 void SelectionDAG::DeleteNode(SDNode *N) { 759 // First take this out of the appropriate CSE map. 760 RemoveNodeFromCSEMaps(N); 761 762 // Finally, remove uses due to operands of this node, remove from the 763 // AllNodes list, and delete the node. 764 DeleteNodeNotInCSEMaps(N); 765 } 766 767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 768 assert(N->getIterator() != AllNodes.begin() && 769 "Cannot delete the entry node!"); 770 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 771 772 // Drop all of the operands and decrement used node's use counts. 773 N->DropOperands(); 774 775 DeallocateNode(N); 776 } 777 778 void SDDbgInfo::erase(const SDNode *Node) { 779 DbgValMapType::iterator I = DbgValMap.find(Node); 780 if (I == DbgValMap.end()) 781 return; 782 for (auto &Val: I->second) 783 Val->setIsInvalidated(); 784 DbgValMap.erase(I); 785 } 786 787 void SelectionDAG::DeallocateNode(SDNode *N) { 788 // If we have operands, deallocate them. 789 removeOperands(N); 790 791 NodeAllocator.Deallocate(AllNodes.remove(N)); 792 793 // Set the opcode to DELETED_NODE to help catch bugs when node 794 // memory is reallocated. 795 // FIXME: There are places in SDag that have grown a dependency on the opcode 796 // value in the released node. 797 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 798 N->NodeType = ISD::DELETED_NODE; 799 800 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 801 // them and forget about that node. 802 DbgInfo->erase(N); 803 } 804 805 #ifndef NDEBUG 806 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 807 static void VerifySDNode(SDNode *N) { 808 switch (N->getOpcode()) { 809 default: 810 break; 811 case ISD::BUILD_PAIR: { 812 EVT VT = N->getValueType(0); 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 815 "Wrong return type!"); 816 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 817 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 818 "Mismatched operand types!"); 819 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 820 "Wrong operand type!"); 821 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 822 "Wrong return type size"); 823 break; 824 } 825 case ISD::BUILD_VECTOR: { 826 assert(N->getNumValues() == 1 && "Too many results!"); 827 assert(N->getValueType(0).isVector() && "Wrong return type!"); 828 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 829 "Wrong number of operands!"); 830 EVT EltVT = N->getValueType(0).getVectorElementType(); 831 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 832 assert((I->getValueType() == EltVT || 833 (EltVT.isInteger() && I->getValueType().isInteger() && 834 EltVT.bitsLE(I->getValueType()))) && 835 "Wrong operand type!"); 836 assert(I->getValueType() == N->getOperand(0).getValueType() && 837 "Operands must all have the same type"); 838 } 839 break; 840 } 841 } 842 } 843 #endif // NDEBUG 844 845 /// Insert a newly allocated node into the DAG. 846 /// 847 /// Handles insertion into the all nodes list and CSE map, as well as 848 /// verification and other common operations when a new node is allocated. 849 void SelectionDAG::InsertNode(SDNode *N) { 850 AllNodes.push_back(N); 851 #ifndef NDEBUG 852 N->PersistentId = NextPersistentId++; 853 VerifySDNode(N); 854 #endif 855 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 856 DUL->NodeInserted(N); 857 } 858 859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 860 /// correspond to it. This is useful when we're about to delete or repurpose 861 /// the node. We don't want future request for structurally identical nodes 862 /// to return N anymore. 863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 864 bool Erased = false; 865 switch (N->getOpcode()) { 866 case ISD::HANDLENODE: return false; // noop. 867 case ISD::CONDCODE: 868 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 869 "Cond code doesn't exist!"); 870 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 871 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 872 break; 873 case ISD::ExternalSymbol: 874 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 875 break; 876 case ISD::TargetExternalSymbol: { 877 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 878 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 879 ESN->getSymbol(), ESN->getTargetFlags())); 880 break; 881 } 882 case ISD::MCSymbol: { 883 auto *MCSN = cast<MCSymbolSDNode>(N); 884 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 885 break; 886 } 887 case ISD::VALUETYPE: { 888 EVT VT = cast<VTSDNode>(N)->getVT(); 889 if (VT.isExtended()) { 890 Erased = ExtendedValueTypeNodes.erase(VT); 891 } else { 892 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 893 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 894 } 895 break; 896 } 897 default: 898 // Remove it from the CSE Map. 899 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 900 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 901 Erased = CSEMap.RemoveNode(N); 902 break; 903 } 904 #ifndef NDEBUG 905 // Verify that the node was actually in one of the CSE maps, unless it has a 906 // flag result (which cannot be CSE'd) or is one of the special cases that are 907 // not subject to CSE. 908 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 909 !N->isMachineOpcode() && !doNotCSE(N)) { 910 N->dump(this); 911 dbgs() << "\n"; 912 llvm_unreachable("Node is not in map!"); 913 } 914 #endif 915 return Erased; 916 } 917 918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 919 /// maps and modified in place. Add it back to the CSE maps, unless an identical 920 /// node already exists, in which case transfer all its users to the existing 921 /// node. This transfer can potentially trigger recursive merging. 922 void 923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 924 // For node types that aren't CSE'd, just act as if no identical node 925 // already exists. 926 if (!doNotCSE(N)) { 927 SDNode *Existing = CSEMap.GetOrInsertNode(N); 928 if (Existing != N) { 929 // If there was already an existing matching node, use ReplaceAllUsesWith 930 // to replace the dead one with the existing one. This can cause 931 // recursive merging of other unrelated nodes down the line. 932 ReplaceAllUsesWith(N, Existing); 933 934 // N is now dead. Inform the listeners and delete it. 935 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 936 DUL->NodeDeleted(N, Existing); 937 DeleteNodeNotInCSEMaps(N); 938 return; 939 } 940 } 941 942 // If the node doesn't already exist, we updated it. Inform listeners. 943 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 944 DUL->NodeUpdated(N); 945 } 946 947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 948 /// were replaced with those specified. If this node is never memoized, 949 /// return null, otherwise return a pointer to the slot it would take. If a 950 /// node already exists with these operands, the slot will be non-null. 951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 952 void *&InsertPos) { 953 if (doNotCSE(N)) 954 return nullptr; 955 956 SDValue Ops[] = { Op }; 957 FoldingSetNodeID ID; 958 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 959 AddNodeIDCustom(ID, N); 960 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 961 if (Node) 962 Node->intersectFlagsWith(N->getFlags()); 963 return Node; 964 } 965 966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 967 /// were replaced with those specified. If this node is never memoized, 968 /// return null, otherwise return a pointer to the slot it would take. If a 969 /// node already exists with these operands, the slot will be non-null. 970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 971 SDValue Op1, SDValue Op2, 972 void *&InsertPos) { 973 if (doNotCSE(N)) 974 return nullptr; 975 976 SDValue Ops[] = { Op1, Op2 }; 977 FoldingSetNodeID ID; 978 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 979 AddNodeIDCustom(ID, N); 980 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 981 if (Node) 982 Node->intersectFlagsWith(N->getFlags()); 983 return Node; 984 } 985 986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 987 /// were replaced with those specified. If this node is never memoized, 988 /// return null, otherwise return a pointer to the slot it would take. If a 989 /// node already exists with these operands, the slot will be non-null. 990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 991 void *&InsertPos) { 992 if (doNotCSE(N)) 993 return nullptr; 994 995 FoldingSetNodeID ID; 996 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 997 AddNodeIDCustom(ID, N); 998 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 999 if (Node) 1000 Node->intersectFlagsWith(N->getFlags()); 1001 return Node; 1002 } 1003 1004 Align SelectionDAG::getEVTAlign(EVT VT) const { 1005 Type *Ty = VT == MVT::iPTR ? 1006 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1007 VT.getTypeForEVT(*getContext()); 1008 1009 return getDataLayout().getABITypeAlign(Ty); 1010 } 1011 1012 // EntryNode could meaningfully have debug info if we can find it... 1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1014 : TM(tm), OptLevel(OL), 1015 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1016 Root(getEntryNode()) { 1017 InsertNode(&EntryNode); 1018 DbgInfo = new SDDbgInfo(); 1019 } 1020 1021 void SelectionDAG::init(MachineFunction &NewMF, 1022 OptimizationRemarkEmitter &NewORE, 1023 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1024 LegacyDivergenceAnalysis * Divergence, 1025 ProfileSummaryInfo *PSIin, 1026 BlockFrequencyInfo *BFIin) { 1027 MF = &NewMF; 1028 SDAGISelPass = PassPtr; 1029 ORE = &NewORE; 1030 TLI = getSubtarget().getTargetLowering(); 1031 TSI = getSubtarget().getSelectionDAGInfo(); 1032 LibInfo = LibraryInfo; 1033 Context = &MF->getFunction().getContext(); 1034 DA = Divergence; 1035 PSI = PSIin; 1036 BFI = BFIin; 1037 } 1038 1039 SelectionDAG::~SelectionDAG() { 1040 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1041 allnodes_clear(); 1042 OperandRecycler.clear(OperandAllocator); 1043 delete DbgInfo; 1044 } 1045 1046 bool SelectionDAG::shouldOptForSize() const { 1047 return MF->getFunction().hasOptSize() || 1048 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1049 } 1050 1051 void SelectionDAG::allnodes_clear() { 1052 assert(&*AllNodes.begin() == &EntryNode); 1053 AllNodes.remove(AllNodes.begin()); 1054 while (!AllNodes.empty()) 1055 DeallocateNode(&AllNodes.front()); 1056 #ifndef NDEBUG 1057 NextPersistentId = 0; 1058 #endif 1059 } 1060 1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1062 void *&InsertPos) { 1063 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1064 if (N) { 1065 switch (N->getOpcode()) { 1066 default: break; 1067 case ISD::Constant: 1068 case ISD::ConstantFP: 1069 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1070 "debug location. Use another overload."); 1071 } 1072 } 1073 return N; 1074 } 1075 1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1077 const SDLoc &DL, void *&InsertPos) { 1078 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1079 if (N) { 1080 switch (N->getOpcode()) { 1081 case ISD::Constant: 1082 case ISD::ConstantFP: 1083 // Erase debug location from the node if the node is used at several 1084 // different places. Do not propagate one location to all uses as it 1085 // will cause a worse single stepping debugging experience. 1086 if (N->getDebugLoc() != DL.getDebugLoc()) 1087 N->setDebugLoc(DebugLoc()); 1088 break; 1089 default: 1090 // When the node's point of use is located earlier in the instruction 1091 // sequence than its prior point of use, update its debug info to the 1092 // earlier location. 1093 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1094 N->setDebugLoc(DL.getDebugLoc()); 1095 break; 1096 } 1097 } 1098 return N; 1099 } 1100 1101 void SelectionDAG::clear() { 1102 allnodes_clear(); 1103 OperandRecycler.clear(OperandAllocator); 1104 OperandAllocator.Reset(); 1105 CSEMap.clear(); 1106 1107 ExtendedValueTypeNodes.clear(); 1108 ExternalSymbols.clear(); 1109 TargetExternalSymbols.clear(); 1110 MCSymbols.clear(); 1111 SDCallSiteDbgInfo.clear(); 1112 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1113 static_cast<CondCodeSDNode*>(nullptr)); 1114 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1115 static_cast<SDNode*>(nullptr)); 1116 1117 EntryNode.UseList = nullptr; 1118 InsertNode(&EntryNode); 1119 Root = getEntryNode(); 1120 DbgInfo->clear(); 1121 } 1122 1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1124 return VT.bitsGT(Op.getValueType()) 1125 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1126 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1127 } 1128 1129 std::pair<SDValue, SDValue> 1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1131 const SDLoc &DL, EVT VT) { 1132 assert(!VT.bitsEq(Op.getValueType()) && 1133 "Strict no-op FP extend/round not allowed."); 1134 SDValue Res = 1135 VT.bitsGT(Op.getValueType()) 1136 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1137 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1138 {Chain, Op, getIntPtrConstant(0, DL)}); 1139 1140 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1141 } 1142 1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 return VT.bitsGT(Op.getValueType()) ? 1145 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1146 getNode(ISD::TRUNCATE, DL, VT, Op); 1147 } 1148 1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1150 return VT.bitsGT(Op.getValueType()) ? 1151 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1152 getNode(ISD::TRUNCATE, DL, VT, Op); 1153 } 1154 1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 return VT.bitsGT(Op.getValueType()) ? 1157 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1158 getNode(ISD::TRUNCATE, DL, VT, Op); 1159 } 1160 1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1162 EVT OpVT) { 1163 if (VT.bitsLE(Op.getValueType())) 1164 return getNode(ISD::TRUNCATE, SL, VT, Op); 1165 1166 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1167 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1168 } 1169 1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1171 EVT OpVT = Op.getValueType(); 1172 assert(VT.isInteger() && OpVT.isInteger() && 1173 "Cannot getZeroExtendInReg FP types"); 1174 assert(VT.isVector() == OpVT.isVector() && 1175 "getZeroExtendInReg type should be vector iff the operand " 1176 "type is vector!"); 1177 assert((!VT.isVector() || 1178 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1179 "Vector element counts must match in getZeroExtendInReg"); 1180 assert(VT.bitsLE(OpVT) && "Not extending!"); 1181 if (OpVT == VT) 1182 return Op; 1183 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1184 VT.getScalarSizeInBits()); 1185 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1186 } 1187 1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1189 // Only unsigned pointer semantics are supported right now. In the future this 1190 // might delegate to TLI to check pointer signedness. 1191 return getZExtOrTrunc(Op, DL, VT); 1192 } 1193 1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1195 // Only unsigned pointer semantics are supported right now. In the future this 1196 // might delegate to TLI to check pointer signedness. 1197 return getZeroExtendInReg(Op, DL, VT); 1198 } 1199 1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 EVT EltVT = VT.getScalarType(); 1203 SDValue NegOne = 1204 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1205 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1206 } 1207 1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1209 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1210 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1211 } 1212 1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1214 EVT OpVT) { 1215 if (!V) 1216 return getConstant(0, DL, VT); 1217 1218 switch (TLI->getBooleanContents(OpVT)) { 1219 case TargetLowering::ZeroOrOneBooleanContent: 1220 case TargetLowering::UndefinedBooleanContent: 1221 return getConstant(1, DL, VT); 1222 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1223 return getAllOnesConstant(DL, VT); 1224 } 1225 llvm_unreachable("Unexpected boolean content enum!"); 1226 } 1227 1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1229 bool isT, bool isO) { 1230 EVT EltVT = VT.getScalarType(); 1231 assert((EltVT.getSizeInBits() >= 64 || 1232 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1233 "getConstant with a uint64_t value that doesn't fit in the type!"); 1234 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1235 } 1236 1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1238 bool isT, bool isO) { 1239 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1240 } 1241 1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1243 EVT VT, bool isT, bool isO) { 1244 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1245 1246 EVT EltVT = VT.getScalarType(); 1247 const ConstantInt *Elt = &Val; 1248 1249 // In some cases the vector type is legal but the element type is illegal and 1250 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1251 // inserted value (the type does not need to match the vector element type). 1252 // Any extra bits introduced will be truncated away. 1253 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1254 TargetLowering::TypePromoteInteger) { 1255 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1256 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1257 Elt = ConstantInt::get(*getContext(), NewVal); 1258 } 1259 // In other cases the element type is illegal and needs to be expanded, for 1260 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1261 // the value into n parts and use a vector type with n-times the elements. 1262 // Then bitcast to the type requested. 1263 // Legalizing constants too early makes the DAGCombiner's job harder so we 1264 // only legalize if the DAG tells us we must produce legal types. 1265 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1266 TLI->getTypeAction(*getContext(), EltVT) == 1267 TargetLowering::TypeExpandInteger) { 1268 const APInt &NewVal = Elt->getValue(); 1269 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1270 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1271 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1272 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1273 1274 // Check the temporary vector is the correct size. If this fails then 1275 // getTypeToTransformTo() probably returned a type whose size (in bits) 1276 // isn't a power-of-2 factor of the requested type size. 1277 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1278 1279 SmallVector<SDValue, 2> EltParts; 1280 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1281 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1282 .zextOrTrunc(ViaEltSizeInBits), DL, 1283 ViaEltVT, isT, isO)); 1284 } 1285 1286 // EltParts is currently in little endian order. If we actually want 1287 // big-endian order then reverse it now. 1288 if (getDataLayout().isBigEndian()) 1289 std::reverse(EltParts.begin(), EltParts.end()); 1290 1291 // The elements must be reversed when the element order is different 1292 // to the endianness of the elements (because the BITCAST is itself a 1293 // vector shuffle in this situation). However, we do not need any code to 1294 // perform this reversal because getConstant() is producing a vector 1295 // splat. 1296 // This situation occurs in MIPS MSA. 1297 1298 SmallVector<SDValue, 8> Ops; 1299 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1300 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1301 1302 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1303 return V; 1304 } 1305 1306 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1307 "APInt size does not match type size!"); 1308 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1309 FoldingSetNodeID ID; 1310 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1311 ID.AddPointer(Elt); 1312 ID.AddBoolean(isO); 1313 void *IP = nullptr; 1314 SDNode *N = nullptr; 1315 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1316 if (!VT.isVector()) 1317 return SDValue(N, 0); 1318 1319 if (!N) { 1320 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1321 CSEMap.InsertNode(N, IP); 1322 InsertNode(N); 1323 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1324 } 1325 1326 SDValue Result(N, 0); 1327 if (VT.isScalableVector()) 1328 Result = getSplatVector(VT, DL, Result); 1329 else if (VT.isVector()) 1330 Result = getSplatBuildVector(VT, DL, Result); 1331 1332 return Result; 1333 } 1334 1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1336 bool isTarget) { 1337 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1338 } 1339 1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1341 const SDLoc &DL, bool LegalTypes) { 1342 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1343 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1344 return getConstant(Val, DL, ShiftVT); 1345 } 1346 1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1348 bool isTarget) { 1349 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1350 } 1351 1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1353 bool isTarget) { 1354 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1355 } 1356 1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1358 EVT VT, bool isTarget) { 1359 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 1363 // Do the map lookup using the actual bit pattern for the floating point 1364 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1365 // we don't have issues with SNANs. 1366 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1367 FoldingSetNodeID ID; 1368 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1369 ID.AddPointer(&V); 1370 void *IP = nullptr; 1371 SDNode *N = nullptr; 1372 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1373 if (!VT.isVector()) 1374 return SDValue(N, 0); 1375 1376 if (!N) { 1377 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1378 CSEMap.InsertNode(N, IP); 1379 InsertNode(N); 1380 } 1381 1382 SDValue Result(N, 0); 1383 if (VT.isScalableVector()) 1384 Result = getSplatVector(VT, DL, Result); 1385 else if (VT.isVector()) 1386 Result = getSplatBuildVector(VT, DL, Result); 1387 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1388 return Result; 1389 } 1390 1391 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1392 bool isTarget) { 1393 EVT EltVT = VT.getScalarType(); 1394 if (EltVT == MVT::f32) 1395 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1396 else if (EltVT == MVT::f64) 1397 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1398 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1399 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1400 bool Ignored; 1401 APFloat APF = APFloat(Val); 1402 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1403 &Ignored); 1404 return getConstantFP(APF, DL, VT, isTarget); 1405 } else 1406 llvm_unreachable("Unsupported type in getConstantFP"); 1407 } 1408 1409 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1410 EVT VT, int64_t Offset, bool isTargetGA, 1411 unsigned TargetFlags) { 1412 assert((TargetFlags == 0 || isTargetGA) && 1413 "Cannot set target flags on target-independent globals"); 1414 1415 // Truncate (with sign-extension) the offset value to the pointer size. 1416 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1417 if (BitWidth < 64) 1418 Offset = SignExtend64(Offset, BitWidth); 1419 1420 unsigned Opc; 1421 if (GV->isThreadLocal()) 1422 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1423 else 1424 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1425 1426 FoldingSetNodeID ID; 1427 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1428 ID.AddPointer(GV); 1429 ID.AddInteger(Offset); 1430 ID.AddInteger(TargetFlags); 1431 void *IP = nullptr; 1432 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1433 return SDValue(E, 0); 1434 1435 auto *N = newSDNode<GlobalAddressSDNode>( 1436 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1437 CSEMap.InsertNode(N, IP); 1438 InsertNode(N); 1439 return SDValue(N, 0); 1440 } 1441 1442 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1443 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1444 FoldingSetNodeID ID; 1445 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1446 ID.AddInteger(FI); 1447 void *IP = nullptr; 1448 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1449 return SDValue(E, 0); 1450 1451 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1452 CSEMap.InsertNode(N, IP); 1453 InsertNode(N); 1454 return SDValue(N, 0); 1455 } 1456 1457 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1458 unsigned TargetFlags) { 1459 assert((TargetFlags == 0 || isTarget) && 1460 "Cannot set target flags on target-independent jump tables"); 1461 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1462 FoldingSetNodeID ID; 1463 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1464 ID.AddInteger(JTI); 1465 ID.AddInteger(TargetFlags); 1466 void *IP = nullptr; 1467 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1468 return SDValue(E, 0); 1469 1470 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1471 CSEMap.InsertNode(N, IP); 1472 InsertNode(N); 1473 return SDValue(N, 0); 1474 } 1475 1476 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1477 MaybeAlign Alignment, int Offset, 1478 bool isTarget, unsigned TargetFlags) { 1479 assert((TargetFlags == 0 || isTarget) && 1480 "Cannot set target flags on target-independent globals"); 1481 if (!Alignment) 1482 Alignment = shouldOptForSize() 1483 ? getDataLayout().getABITypeAlign(C->getType()) 1484 : getDataLayout().getPrefTypeAlign(C->getType()); 1485 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1486 FoldingSetNodeID ID; 1487 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1488 ID.AddInteger(Alignment->value()); 1489 ID.AddInteger(Offset); 1490 ID.AddPointer(C); 1491 ID.AddInteger(TargetFlags); 1492 void *IP = nullptr; 1493 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1494 return SDValue(E, 0); 1495 1496 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1497 TargetFlags); 1498 CSEMap.InsertNode(N, IP); 1499 InsertNode(N); 1500 SDValue V = SDValue(N, 0); 1501 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1502 return V; 1503 } 1504 1505 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1506 MaybeAlign Alignment, int Offset, 1507 bool isTarget, unsigned TargetFlags) { 1508 assert((TargetFlags == 0 || isTarget) && 1509 "Cannot set target flags on target-independent globals"); 1510 if (!Alignment) 1511 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1512 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1513 FoldingSetNodeID ID; 1514 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1515 ID.AddInteger(Alignment->value()); 1516 ID.AddInteger(Offset); 1517 C->addSelectionDAGCSEId(ID); 1518 ID.AddInteger(TargetFlags); 1519 void *IP = nullptr; 1520 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1521 return SDValue(E, 0); 1522 1523 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1524 TargetFlags); 1525 CSEMap.InsertNode(N, IP); 1526 InsertNode(N); 1527 return SDValue(N, 0); 1528 } 1529 1530 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1531 unsigned TargetFlags) { 1532 FoldingSetNodeID ID; 1533 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1534 ID.AddInteger(Index); 1535 ID.AddInteger(Offset); 1536 ID.AddInteger(TargetFlags); 1537 void *IP = nullptr; 1538 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1539 return SDValue(E, 0); 1540 1541 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1542 CSEMap.InsertNode(N, IP); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1548 FoldingSetNodeID ID; 1549 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1550 ID.AddPointer(MBB); 1551 void *IP = nullptr; 1552 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1553 return SDValue(E, 0); 1554 1555 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1556 CSEMap.InsertNode(N, IP); 1557 InsertNode(N); 1558 return SDValue(N, 0); 1559 } 1560 1561 SDValue SelectionDAG::getValueType(EVT VT) { 1562 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1563 ValueTypeNodes.size()) 1564 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1565 1566 SDNode *&N = VT.isExtended() ? 1567 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1568 1569 if (N) return SDValue(N, 0); 1570 N = newSDNode<VTSDNode>(VT); 1571 InsertNode(N); 1572 return SDValue(N, 0); 1573 } 1574 1575 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1576 SDNode *&N = ExternalSymbols[Sym]; 1577 if (N) return SDValue(N, 0); 1578 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1584 SDNode *&N = MCSymbols[Sym]; 1585 if (N) 1586 return SDValue(N, 0); 1587 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1588 InsertNode(N); 1589 return SDValue(N, 0); 1590 } 1591 1592 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1593 unsigned TargetFlags) { 1594 SDNode *&N = 1595 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1596 if (N) return SDValue(N, 0); 1597 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1598 InsertNode(N); 1599 return SDValue(N, 0); 1600 } 1601 1602 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1603 if ((unsigned)Cond >= CondCodeNodes.size()) 1604 CondCodeNodes.resize(Cond+1); 1605 1606 if (!CondCodeNodes[Cond]) { 1607 auto *N = newSDNode<CondCodeSDNode>(Cond); 1608 CondCodeNodes[Cond] = N; 1609 InsertNode(N); 1610 } 1611 1612 return SDValue(CondCodeNodes[Cond], 0); 1613 } 1614 1615 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1616 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1617 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1618 std::swap(N1, N2); 1619 ShuffleVectorSDNode::commuteMask(M); 1620 } 1621 1622 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1623 SDValue N2, ArrayRef<int> Mask) { 1624 assert(VT.getVectorNumElements() == Mask.size() && 1625 "Must have the same number of vector elements as mask elements!"); 1626 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1627 "Invalid VECTOR_SHUFFLE"); 1628 1629 // Canonicalize shuffle undef, undef -> undef 1630 if (N1.isUndef() && N2.isUndef()) 1631 return getUNDEF(VT); 1632 1633 // Validate that all indices in Mask are within the range of the elements 1634 // input to the shuffle. 1635 int NElts = Mask.size(); 1636 assert(llvm::all_of(Mask, 1637 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1638 "Index out of range"); 1639 1640 // Copy the mask so we can do any needed cleanup. 1641 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1642 1643 // Canonicalize shuffle v, v -> v, undef 1644 if (N1 == N2) { 1645 N2 = getUNDEF(VT); 1646 for (int i = 0; i != NElts; ++i) 1647 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1648 } 1649 1650 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1651 if (N1.isUndef()) 1652 commuteShuffle(N1, N2, MaskVec); 1653 1654 if (TLI->hasVectorBlend()) { 1655 // If shuffling a splat, try to blend the splat instead. We do this here so 1656 // that even when this arises during lowering we don't have to re-handle it. 1657 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1658 BitVector UndefElements; 1659 SDValue Splat = BV->getSplatValue(&UndefElements); 1660 if (!Splat) 1661 return; 1662 1663 for (int i = 0; i < NElts; ++i) { 1664 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1665 continue; 1666 1667 // If this input comes from undef, mark it as such. 1668 if (UndefElements[MaskVec[i] - Offset]) { 1669 MaskVec[i] = -1; 1670 continue; 1671 } 1672 1673 // If we can blend a non-undef lane, use that instead. 1674 if (!UndefElements[i]) 1675 MaskVec[i] = i + Offset; 1676 } 1677 }; 1678 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1679 BlendSplat(N1BV, 0); 1680 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1681 BlendSplat(N2BV, NElts); 1682 } 1683 1684 // Canonicalize all index into lhs, -> shuffle lhs, undef 1685 // Canonicalize all index into rhs, -> shuffle rhs, undef 1686 bool AllLHS = true, AllRHS = true; 1687 bool N2Undef = N2.isUndef(); 1688 for (int i = 0; i != NElts; ++i) { 1689 if (MaskVec[i] >= NElts) { 1690 if (N2Undef) 1691 MaskVec[i] = -1; 1692 else 1693 AllLHS = false; 1694 } else if (MaskVec[i] >= 0) { 1695 AllRHS = false; 1696 } 1697 } 1698 if (AllLHS && AllRHS) 1699 return getUNDEF(VT); 1700 if (AllLHS && !N2Undef) 1701 N2 = getUNDEF(VT); 1702 if (AllRHS) { 1703 N1 = getUNDEF(VT); 1704 commuteShuffle(N1, N2, MaskVec); 1705 } 1706 // Reset our undef status after accounting for the mask. 1707 N2Undef = N2.isUndef(); 1708 // Re-check whether both sides ended up undef. 1709 if (N1.isUndef() && N2Undef) 1710 return getUNDEF(VT); 1711 1712 // If Identity shuffle return that node. 1713 bool Identity = true, AllSame = true; 1714 for (int i = 0; i != NElts; ++i) { 1715 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1716 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1717 } 1718 if (Identity && NElts) 1719 return N1; 1720 1721 // Shuffling a constant splat doesn't change the result. 1722 if (N2Undef) { 1723 SDValue V = N1; 1724 1725 // Look through any bitcasts. We check that these don't change the number 1726 // (and size) of elements and just changes their types. 1727 while (V.getOpcode() == ISD::BITCAST) 1728 V = V->getOperand(0); 1729 1730 // A splat should always show up as a build vector node. 1731 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1732 BitVector UndefElements; 1733 SDValue Splat = BV->getSplatValue(&UndefElements); 1734 // If this is a splat of an undef, shuffling it is also undef. 1735 if (Splat && Splat.isUndef()) 1736 return getUNDEF(VT); 1737 1738 bool SameNumElts = 1739 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1740 1741 // We only have a splat which can skip shuffles if there is a splatted 1742 // value and no undef lanes rearranged by the shuffle. 1743 if (Splat && UndefElements.none()) { 1744 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1745 // number of elements match or the value splatted is a zero constant. 1746 if (SameNumElts) 1747 return N1; 1748 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1749 if (C->isNullValue()) 1750 return N1; 1751 } 1752 1753 // If the shuffle itself creates a splat, build the vector directly. 1754 if (AllSame && SameNumElts) { 1755 EVT BuildVT = BV->getValueType(0); 1756 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1757 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1758 1759 // We may have jumped through bitcasts, so the type of the 1760 // BUILD_VECTOR may not match the type of the shuffle. 1761 if (BuildVT != VT) 1762 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1763 return NewBV; 1764 } 1765 } 1766 } 1767 1768 FoldingSetNodeID ID; 1769 SDValue Ops[2] = { N1, N2 }; 1770 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1771 for (int i = 0; i != NElts; ++i) 1772 ID.AddInteger(MaskVec[i]); 1773 1774 void* IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1776 return SDValue(E, 0); 1777 1778 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1779 // SDNode doesn't have access to it. This memory will be "leaked" when 1780 // the node is deallocated, but recovered when the NodeAllocator is released. 1781 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1782 llvm::copy(MaskVec, MaskAlloc); 1783 1784 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1785 dl.getDebugLoc(), MaskAlloc); 1786 createOperands(N, Ops); 1787 1788 CSEMap.InsertNode(N, IP); 1789 InsertNode(N); 1790 SDValue V = SDValue(N, 0); 1791 NewSDValueDbgMsg(V, "Creating new node: ", this); 1792 return V; 1793 } 1794 1795 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1796 EVT VT = SV.getValueType(0); 1797 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1798 ShuffleVectorSDNode::commuteMask(MaskVec); 1799 1800 SDValue Op0 = SV.getOperand(0); 1801 SDValue Op1 = SV.getOperand(1); 1802 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1803 } 1804 1805 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1806 FoldingSetNodeID ID; 1807 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1808 ID.AddInteger(RegNo); 1809 void *IP = nullptr; 1810 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1811 return SDValue(E, 0); 1812 1813 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1814 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1815 CSEMap.InsertNode(N, IP); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1821 FoldingSetNodeID ID; 1822 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1823 ID.AddPointer(RegMask); 1824 void *IP = nullptr; 1825 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1826 return SDValue(E, 0); 1827 1828 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1829 CSEMap.InsertNode(N, IP); 1830 InsertNode(N); 1831 return SDValue(N, 0); 1832 } 1833 1834 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1835 MCSymbol *Label) { 1836 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1837 } 1838 1839 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1840 SDValue Root, MCSymbol *Label) { 1841 FoldingSetNodeID ID; 1842 SDValue Ops[] = { Root }; 1843 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1844 ID.AddPointer(Label); 1845 void *IP = nullptr; 1846 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1847 return SDValue(E, 0); 1848 1849 auto *N = 1850 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1851 createOperands(N, Ops); 1852 1853 CSEMap.InsertNode(N, IP); 1854 InsertNode(N); 1855 return SDValue(N, 0); 1856 } 1857 1858 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1859 int64_t Offset, bool isTarget, 1860 unsigned TargetFlags) { 1861 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1862 1863 FoldingSetNodeID ID; 1864 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1865 ID.AddPointer(BA); 1866 ID.AddInteger(Offset); 1867 ID.AddInteger(TargetFlags); 1868 void *IP = nullptr; 1869 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1870 return SDValue(E, 0); 1871 1872 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1873 CSEMap.InsertNode(N, IP); 1874 InsertNode(N); 1875 return SDValue(N, 0); 1876 } 1877 1878 SDValue SelectionDAG::getSrcValue(const Value *V) { 1879 FoldingSetNodeID ID; 1880 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1881 ID.AddPointer(V); 1882 1883 void *IP = nullptr; 1884 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1885 return SDValue(E, 0); 1886 1887 auto *N = newSDNode<SrcValueSDNode>(V); 1888 CSEMap.InsertNode(N, IP); 1889 InsertNode(N); 1890 return SDValue(N, 0); 1891 } 1892 1893 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1894 FoldingSetNodeID ID; 1895 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1896 ID.AddPointer(MD); 1897 1898 void *IP = nullptr; 1899 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1900 return SDValue(E, 0); 1901 1902 auto *N = newSDNode<MDNodeSDNode>(MD); 1903 CSEMap.InsertNode(N, IP); 1904 InsertNode(N); 1905 return SDValue(N, 0); 1906 } 1907 1908 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1909 if (VT == V.getValueType()) 1910 return V; 1911 1912 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1913 } 1914 1915 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1916 unsigned SrcAS, unsigned DestAS) { 1917 SDValue Ops[] = {Ptr}; 1918 FoldingSetNodeID ID; 1919 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1920 ID.AddInteger(SrcAS); 1921 ID.AddInteger(DestAS); 1922 1923 void *IP = nullptr; 1924 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1925 return SDValue(E, 0); 1926 1927 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1928 VT, SrcAS, DestAS); 1929 createOperands(N, Ops); 1930 1931 CSEMap.InsertNode(N, IP); 1932 InsertNode(N); 1933 return SDValue(N, 0); 1934 } 1935 1936 SDValue SelectionDAG::getFreeze(SDValue V) { 1937 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1938 } 1939 1940 /// getShiftAmountOperand - Return the specified value casted to 1941 /// the target's desired shift amount type. 1942 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1943 EVT OpTy = Op.getValueType(); 1944 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1945 if (OpTy == ShTy || OpTy.isVector()) return Op; 1946 1947 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1948 } 1949 1950 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1951 SDLoc dl(Node); 1952 const TargetLowering &TLI = getTargetLoweringInfo(); 1953 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1954 EVT VT = Node->getValueType(0); 1955 SDValue Tmp1 = Node->getOperand(0); 1956 SDValue Tmp2 = Node->getOperand(1); 1957 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1958 1959 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1960 Tmp2, MachinePointerInfo(V)); 1961 SDValue VAList = VAListLoad; 1962 1963 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1964 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1965 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1966 1967 VAList = 1968 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1969 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1970 } 1971 1972 // Increment the pointer, VAList, to the next vaarg 1973 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1974 getConstant(getDataLayout().getTypeAllocSize( 1975 VT.getTypeForEVT(*getContext())), 1976 dl, VAList.getValueType())); 1977 // Store the incremented VAList to the legalized pointer 1978 Tmp1 = 1979 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1980 // Load the actual argument out of the pointer VAList 1981 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1982 } 1983 1984 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1985 SDLoc dl(Node); 1986 const TargetLowering &TLI = getTargetLoweringInfo(); 1987 // This defaults to loading a pointer from the input and storing it to the 1988 // output, returning the chain. 1989 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1990 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1991 SDValue Tmp1 = 1992 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1993 Node->getOperand(2), MachinePointerInfo(VS)); 1994 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1995 MachinePointerInfo(VD)); 1996 } 1997 1998 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 1999 const DataLayout &DL = getDataLayout(); 2000 Type *Ty = VT.getTypeForEVT(*getContext()); 2001 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2002 2003 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2004 return RedAlign; 2005 2006 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2007 const Align StackAlign = TFI->getStackAlign(); 2008 2009 // See if we can choose a smaller ABI alignment in cases where it's an 2010 // illegal vector type that will get broken down. 2011 if (RedAlign > StackAlign) { 2012 EVT IntermediateVT; 2013 MVT RegisterVT; 2014 unsigned NumIntermediates; 2015 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2016 NumIntermediates, RegisterVT); 2017 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2018 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2019 if (RedAlign2 < RedAlign) 2020 RedAlign = RedAlign2; 2021 } 2022 2023 return RedAlign; 2024 } 2025 2026 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2027 MachineFrameInfo &MFI = MF->getFrameInfo(); 2028 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false); 2029 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2030 } 2031 2032 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2033 Type *Ty = VT.getTypeForEVT(*getContext()); 2034 Align StackAlign = 2035 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2036 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2037 } 2038 2039 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2040 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2041 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2042 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2043 const DataLayout &DL = getDataLayout(); 2044 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2045 return CreateStackTemporary(Bytes, Align); 2046 } 2047 2048 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2049 ISD::CondCode Cond, const SDLoc &dl) { 2050 EVT OpVT = N1.getValueType(); 2051 2052 // These setcc operations always fold. 2053 switch (Cond) { 2054 default: break; 2055 case ISD::SETFALSE: 2056 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2057 case ISD::SETTRUE: 2058 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2059 2060 case ISD::SETOEQ: 2061 case ISD::SETOGT: 2062 case ISD::SETOGE: 2063 case ISD::SETOLT: 2064 case ISD::SETOLE: 2065 case ISD::SETONE: 2066 case ISD::SETO: 2067 case ISD::SETUO: 2068 case ISD::SETUEQ: 2069 case ISD::SETUNE: 2070 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2071 break; 2072 } 2073 2074 if (OpVT.isInteger()) { 2075 // For EQ and NE, we can always pick a value for the undef to make the 2076 // predicate pass or fail, so we can return undef. 2077 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2078 // icmp eq/ne X, undef -> undef. 2079 if ((N1.isUndef() || N2.isUndef()) && 2080 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2081 return getUNDEF(VT); 2082 2083 // If both operands are undef, we can return undef for int comparison. 2084 // icmp undef, undef -> undef. 2085 if (N1.isUndef() && N2.isUndef()) 2086 return getUNDEF(VT); 2087 2088 // icmp X, X -> true/false 2089 // icmp X, undef -> true/false because undef could be X. 2090 if (N1 == N2) 2091 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2092 } 2093 2094 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2095 const APInt &C2 = N2C->getAPIntValue(); 2096 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2097 const APInt &C1 = N1C->getAPIntValue(); 2098 2099 switch (Cond) { 2100 default: llvm_unreachable("Unknown integer setcc!"); 2101 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2102 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2103 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2104 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2105 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2106 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2107 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2108 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2109 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2110 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2111 } 2112 } 2113 } 2114 2115 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2116 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2117 2118 if (N1CFP && N2CFP) { 2119 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2120 switch (Cond) { 2121 default: break; 2122 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2123 return getUNDEF(VT); 2124 LLVM_FALLTHROUGH; 2125 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2126 OpVT); 2127 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2128 return getUNDEF(VT); 2129 LLVM_FALLTHROUGH; 2130 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2131 R==APFloat::cmpLessThan, dl, VT, 2132 OpVT); 2133 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2134 return getUNDEF(VT); 2135 LLVM_FALLTHROUGH; 2136 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2137 OpVT); 2138 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2139 return getUNDEF(VT); 2140 LLVM_FALLTHROUGH; 2141 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2142 VT, OpVT); 2143 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2144 return getUNDEF(VT); 2145 LLVM_FALLTHROUGH; 2146 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2147 R==APFloat::cmpEqual, dl, VT, 2148 OpVT); 2149 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2150 return getUNDEF(VT); 2151 LLVM_FALLTHROUGH; 2152 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2153 R==APFloat::cmpEqual, dl, VT, OpVT); 2154 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2155 OpVT); 2156 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2157 OpVT); 2158 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2159 R==APFloat::cmpEqual, dl, VT, 2160 OpVT); 2161 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2162 OpVT); 2163 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2164 R==APFloat::cmpLessThan, dl, VT, 2165 OpVT); 2166 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2167 R==APFloat::cmpUnordered, dl, VT, 2168 OpVT); 2169 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2170 VT, OpVT); 2171 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2172 OpVT); 2173 } 2174 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2175 // Ensure that the constant occurs on the RHS. 2176 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2177 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2178 return SDValue(); 2179 return getSetCC(dl, VT, N2, N1, SwappedCond); 2180 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2181 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2182 // If an operand is known to be a nan (or undef that could be a nan), we can 2183 // fold it. 2184 // Choosing NaN for the undef will always make unordered comparison succeed 2185 // and ordered comparison fails. 2186 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2187 switch (ISD::getUnorderedFlavor(Cond)) { 2188 default: 2189 llvm_unreachable("Unknown flavor!"); 2190 case 0: // Known false. 2191 return getBoolConstant(false, dl, VT, OpVT); 2192 case 1: // Known true. 2193 return getBoolConstant(true, dl, VT, OpVT); 2194 case 2: // Undefined. 2195 return getUNDEF(VT); 2196 } 2197 } 2198 2199 // Could not fold it. 2200 return SDValue(); 2201 } 2202 2203 /// See if the specified operand can be simplified with the knowledge that only 2204 /// the bits specified by DemandedBits are used. 2205 /// TODO: really we should be making this into the DAG equivalent of 2206 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2207 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2208 EVT VT = V.getValueType(); 2209 APInt DemandedElts = VT.isVector() 2210 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2211 : APInt(1, 1); 2212 return GetDemandedBits(V, DemandedBits, DemandedElts); 2213 } 2214 2215 /// See if the specified operand can be simplified with the knowledge that only 2216 /// the bits specified by DemandedBits are used in the elements specified by 2217 /// DemandedElts. 2218 /// TODO: really we should be making this into the DAG equivalent of 2219 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2220 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2221 const APInt &DemandedElts) { 2222 switch (V.getOpcode()) { 2223 default: 2224 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2225 *this, 0); 2226 break; 2227 case ISD::Constant: { 2228 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2229 APInt NewVal = CVal & DemandedBits; 2230 if (NewVal != CVal) 2231 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2232 break; 2233 } 2234 case ISD::SRL: 2235 // Only look at single-use SRLs. 2236 if (!V.getNode()->hasOneUse()) 2237 break; 2238 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2239 // See if we can recursively simplify the LHS. 2240 unsigned Amt = RHSC->getZExtValue(); 2241 2242 // Watch out for shift count overflow though. 2243 if (Amt >= DemandedBits.getBitWidth()) 2244 break; 2245 APInt SrcDemandedBits = DemandedBits << Amt; 2246 if (SDValue SimplifyLHS = 2247 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2248 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2249 V.getOperand(1)); 2250 } 2251 break; 2252 case ISD::AND: { 2253 // X & -1 -> X (ignoring bits which aren't demanded). 2254 // Also handle the case where masked out bits in X are known to be zero. 2255 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2256 const APInt &AndVal = RHSC->getAPIntValue(); 2257 if (DemandedBits.isSubsetOf(AndVal) || 2258 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2259 AndVal)) 2260 return V.getOperand(0); 2261 } 2262 break; 2263 } 2264 } 2265 return SDValue(); 2266 } 2267 2268 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2269 /// use this predicate to simplify operations downstream. 2270 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2271 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2272 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2273 } 2274 2275 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2276 /// this predicate to simplify operations downstream. Mask is known to be zero 2277 /// for bits that V cannot have. 2278 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2279 unsigned Depth) const { 2280 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2281 } 2282 2283 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2284 /// DemandedElts. We use this predicate to simplify operations downstream. 2285 /// Mask is known to be zero for bits that V cannot have. 2286 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2287 const APInt &DemandedElts, 2288 unsigned Depth) const { 2289 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2290 } 2291 2292 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2293 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2294 unsigned Depth) const { 2295 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2296 } 2297 2298 /// isSplatValue - Return true if the vector V has the same value 2299 /// across all DemandedElts. For scalable vectors it does not make 2300 /// sense to specify which elements are demanded or undefined, therefore 2301 /// they are simply ignored. 2302 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2303 APInt &UndefElts) { 2304 EVT VT = V.getValueType(); 2305 assert(VT.isVector() && "Vector type expected"); 2306 2307 if (!VT.isScalableVector() && !DemandedElts) 2308 return false; // No demanded elts, better to assume we don't know anything. 2309 2310 // Deal with some common cases here that work for both fixed and scalable 2311 // vector types. 2312 switch (V.getOpcode()) { 2313 case ISD::SPLAT_VECTOR: 2314 return true; 2315 case ISD::ADD: 2316 case ISD::SUB: 2317 case ISD::AND: { 2318 APInt UndefLHS, UndefRHS; 2319 SDValue LHS = V.getOperand(0); 2320 SDValue RHS = V.getOperand(1); 2321 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2322 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2323 UndefElts = UndefLHS | UndefRHS; 2324 return true; 2325 } 2326 break; 2327 } 2328 case ISD::TRUNCATE: 2329 case ISD::SIGN_EXTEND: 2330 case ISD::ZERO_EXTEND: 2331 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2332 } 2333 2334 // We don't support other cases than those above for scalable vectors at 2335 // the moment. 2336 if (VT.isScalableVector()) 2337 return false; 2338 2339 unsigned NumElts = VT.getVectorNumElements(); 2340 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2341 UndefElts = APInt::getNullValue(NumElts); 2342 2343 switch (V.getOpcode()) { 2344 case ISD::BUILD_VECTOR: { 2345 SDValue Scl; 2346 for (unsigned i = 0; i != NumElts; ++i) { 2347 SDValue Op = V.getOperand(i); 2348 if (Op.isUndef()) { 2349 UndefElts.setBit(i); 2350 continue; 2351 } 2352 if (!DemandedElts[i]) 2353 continue; 2354 if (Scl && Scl != Op) 2355 return false; 2356 Scl = Op; 2357 } 2358 return true; 2359 } 2360 case ISD::VECTOR_SHUFFLE: { 2361 // Check if this is a shuffle node doing a splat. 2362 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2363 int SplatIndex = -1; 2364 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2365 for (int i = 0; i != (int)NumElts; ++i) { 2366 int M = Mask[i]; 2367 if (M < 0) { 2368 UndefElts.setBit(i); 2369 continue; 2370 } 2371 if (!DemandedElts[i]) 2372 continue; 2373 if (0 <= SplatIndex && SplatIndex != M) 2374 return false; 2375 SplatIndex = M; 2376 } 2377 return true; 2378 } 2379 case ISD::EXTRACT_SUBVECTOR: { 2380 // Offset the demanded elts by the subvector index. 2381 SDValue Src = V.getOperand(0); 2382 uint64_t Idx = V.getConstantOperandVal(1); 2383 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2384 APInt UndefSrcElts; 2385 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2386 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2387 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2388 return true; 2389 } 2390 break; 2391 } 2392 } 2393 2394 return false; 2395 } 2396 2397 /// Helper wrapper to main isSplatValue function. 2398 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2399 EVT VT = V.getValueType(); 2400 assert(VT.isVector() && "Vector type expected"); 2401 2402 APInt UndefElts; 2403 APInt DemandedElts; 2404 2405 // For now we don't support this with scalable vectors. 2406 if (!VT.isScalableVector()) 2407 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2408 return isSplatValue(V, DemandedElts, UndefElts) && 2409 (AllowUndefs || !UndefElts); 2410 } 2411 2412 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2413 V = peekThroughExtractSubvectors(V); 2414 2415 EVT VT = V.getValueType(); 2416 unsigned Opcode = V.getOpcode(); 2417 switch (Opcode) { 2418 default: { 2419 APInt UndefElts; 2420 APInt DemandedElts; 2421 2422 if (!VT.isScalableVector()) 2423 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2424 2425 if (isSplatValue(V, DemandedElts, UndefElts)) { 2426 if (VT.isScalableVector()) { 2427 // DemandedElts and UndefElts are ignored for scalable vectors, since 2428 // the only supported cases are SPLAT_VECTOR nodes. 2429 SplatIdx = 0; 2430 } else { 2431 // Handle case where all demanded elements are UNDEF. 2432 if (DemandedElts.isSubsetOf(UndefElts)) { 2433 SplatIdx = 0; 2434 return getUNDEF(VT); 2435 } 2436 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2437 } 2438 return V; 2439 } 2440 break; 2441 } 2442 case ISD::SPLAT_VECTOR: 2443 SplatIdx = 0; 2444 return V; 2445 case ISD::VECTOR_SHUFFLE: { 2446 if (VT.isScalableVector()) 2447 return SDValue(); 2448 2449 // Check if this is a shuffle node doing a splat. 2450 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2451 // getTargetVShiftNode currently struggles without the splat source. 2452 auto *SVN = cast<ShuffleVectorSDNode>(V); 2453 if (!SVN->isSplat()) 2454 break; 2455 int Idx = SVN->getSplatIndex(); 2456 int NumElts = V.getValueType().getVectorNumElements(); 2457 SplatIdx = Idx % NumElts; 2458 return V.getOperand(Idx / NumElts); 2459 } 2460 } 2461 2462 return SDValue(); 2463 } 2464 2465 SDValue SelectionDAG::getSplatValue(SDValue V) { 2466 int SplatIdx; 2467 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2468 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2469 SrcVector.getValueType().getScalarType(), SrcVector, 2470 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2471 return SDValue(); 2472 } 2473 2474 const APInt * 2475 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2476 const APInt &DemandedElts) const { 2477 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2478 V.getOpcode() == ISD::SRA) && 2479 "Unknown shift node"); 2480 unsigned BitWidth = V.getScalarValueSizeInBits(); 2481 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2482 // Shifting more than the bitwidth is not valid. 2483 const APInt &ShAmt = SA->getAPIntValue(); 2484 if (ShAmt.ult(BitWidth)) 2485 return &ShAmt; 2486 } 2487 return nullptr; 2488 } 2489 2490 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2491 SDValue V, const APInt &DemandedElts) const { 2492 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2493 V.getOpcode() == ISD::SRA) && 2494 "Unknown shift node"); 2495 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2496 return ValidAmt; 2497 unsigned BitWidth = V.getScalarValueSizeInBits(); 2498 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2499 if (!BV) 2500 return nullptr; 2501 const APInt *MinShAmt = nullptr; 2502 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2503 if (!DemandedElts[i]) 2504 continue; 2505 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2506 if (!SA) 2507 return nullptr; 2508 // Shifting more than the bitwidth is not valid. 2509 const APInt &ShAmt = SA->getAPIntValue(); 2510 if (ShAmt.uge(BitWidth)) 2511 return nullptr; 2512 if (MinShAmt && MinShAmt->ule(ShAmt)) 2513 continue; 2514 MinShAmt = &ShAmt; 2515 } 2516 return MinShAmt; 2517 } 2518 2519 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2520 SDValue V, const APInt &DemandedElts) const { 2521 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2522 V.getOpcode() == ISD::SRA) && 2523 "Unknown shift node"); 2524 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2525 return ValidAmt; 2526 unsigned BitWidth = V.getScalarValueSizeInBits(); 2527 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2528 if (!BV) 2529 return nullptr; 2530 const APInt *MaxShAmt = nullptr; 2531 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2532 if (!DemandedElts[i]) 2533 continue; 2534 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2535 if (!SA) 2536 return nullptr; 2537 // Shifting more than the bitwidth is not valid. 2538 const APInt &ShAmt = SA->getAPIntValue(); 2539 if (ShAmt.uge(BitWidth)) 2540 return nullptr; 2541 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2542 continue; 2543 MaxShAmt = &ShAmt; 2544 } 2545 return MaxShAmt; 2546 } 2547 2548 /// Determine which bits of Op are known to be either zero or one and return 2549 /// them in Known. For vectors, the known bits are those that are shared by 2550 /// every vector element. 2551 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2552 EVT VT = Op.getValueType(); 2553 2554 // TOOD: Until we have a plan for how to represent demanded elements for 2555 // scalable vectors, we can just bail out for now. 2556 if (Op.getValueType().isScalableVector()) { 2557 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2558 return KnownBits(BitWidth); 2559 } 2560 2561 APInt DemandedElts = VT.isVector() 2562 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2563 : APInt(1, 1); 2564 return computeKnownBits(Op, DemandedElts, Depth); 2565 } 2566 2567 /// Determine which bits of Op are known to be either zero or one and return 2568 /// them in Known. The DemandedElts argument allows us to only collect the known 2569 /// bits that are shared by the requested vector elements. 2570 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2571 unsigned Depth) const { 2572 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2573 2574 KnownBits Known(BitWidth); // Don't know anything. 2575 2576 // TOOD: Until we have a plan for how to represent demanded elements for 2577 // scalable vectors, we can just bail out for now. 2578 if (Op.getValueType().isScalableVector()) 2579 return Known; 2580 2581 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2582 // We know all of the bits for a constant! 2583 Known.One = C->getAPIntValue(); 2584 Known.Zero = ~Known.One; 2585 return Known; 2586 } 2587 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2588 // We know all of the bits for a constant fp! 2589 Known.One = C->getValueAPF().bitcastToAPInt(); 2590 Known.Zero = ~Known.One; 2591 return Known; 2592 } 2593 2594 if (Depth >= MaxRecursionDepth) 2595 return Known; // Limit search depth. 2596 2597 KnownBits Known2; 2598 unsigned NumElts = DemandedElts.getBitWidth(); 2599 assert((!Op.getValueType().isVector() || 2600 NumElts == Op.getValueType().getVectorNumElements()) && 2601 "Unexpected vector size"); 2602 2603 if (!DemandedElts) 2604 return Known; // No demanded elts, better to assume we don't know anything. 2605 2606 unsigned Opcode = Op.getOpcode(); 2607 switch (Opcode) { 2608 case ISD::BUILD_VECTOR: 2609 // Collect the known bits that are shared by every demanded vector element. 2610 Known.Zero.setAllBits(); Known.One.setAllBits(); 2611 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2612 if (!DemandedElts[i]) 2613 continue; 2614 2615 SDValue SrcOp = Op.getOperand(i); 2616 Known2 = computeKnownBits(SrcOp, Depth + 1); 2617 2618 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2619 if (SrcOp.getValueSizeInBits() != BitWidth) { 2620 assert(SrcOp.getValueSizeInBits() > BitWidth && 2621 "Expected BUILD_VECTOR implicit truncation"); 2622 Known2 = Known2.trunc(BitWidth); 2623 } 2624 2625 // Known bits are the values that are shared by every demanded element. 2626 Known.One &= Known2.One; 2627 Known.Zero &= Known2.Zero; 2628 2629 // If we don't know any bits, early out. 2630 if (Known.isUnknown()) 2631 break; 2632 } 2633 break; 2634 case ISD::VECTOR_SHUFFLE: { 2635 // Collect the known bits that are shared by every vector element referenced 2636 // by the shuffle. 2637 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2638 Known.Zero.setAllBits(); Known.One.setAllBits(); 2639 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2640 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2641 for (unsigned i = 0; i != NumElts; ++i) { 2642 if (!DemandedElts[i]) 2643 continue; 2644 2645 int M = SVN->getMaskElt(i); 2646 if (M < 0) { 2647 // For UNDEF elements, we don't know anything about the common state of 2648 // the shuffle result. 2649 Known.resetAll(); 2650 DemandedLHS.clearAllBits(); 2651 DemandedRHS.clearAllBits(); 2652 break; 2653 } 2654 2655 if ((unsigned)M < NumElts) 2656 DemandedLHS.setBit((unsigned)M % NumElts); 2657 else 2658 DemandedRHS.setBit((unsigned)M % NumElts); 2659 } 2660 // Known bits are the values that are shared by every demanded element. 2661 if (!!DemandedLHS) { 2662 SDValue LHS = Op.getOperand(0); 2663 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2664 Known.One &= Known2.One; 2665 Known.Zero &= Known2.Zero; 2666 } 2667 // If we don't know any bits, early out. 2668 if (Known.isUnknown()) 2669 break; 2670 if (!!DemandedRHS) { 2671 SDValue RHS = Op.getOperand(1); 2672 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2673 Known.One &= Known2.One; 2674 Known.Zero &= Known2.Zero; 2675 } 2676 break; 2677 } 2678 case ISD::CONCAT_VECTORS: { 2679 // Split DemandedElts and test each of the demanded subvectors. 2680 Known.Zero.setAllBits(); Known.One.setAllBits(); 2681 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2682 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2683 unsigned NumSubVectors = Op.getNumOperands(); 2684 for (unsigned i = 0; i != NumSubVectors; ++i) { 2685 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2686 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2687 if (!!DemandedSub) { 2688 SDValue Sub = Op.getOperand(i); 2689 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2690 Known.One &= Known2.One; 2691 Known.Zero &= Known2.Zero; 2692 } 2693 // If we don't know any bits, early out. 2694 if (Known.isUnknown()) 2695 break; 2696 } 2697 break; 2698 } 2699 case ISD::INSERT_SUBVECTOR: { 2700 // Demand any elements from the subvector and the remainder from the src its 2701 // inserted into. 2702 SDValue Src = Op.getOperand(0); 2703 SDValue Sub = Op.getOperand(1); 2704 uint64_t Idx = Op.getConstantOperandVal(2); 2705 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2706 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2707 APInt DemandedSrcElts = DemandedElts; 2708 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2709 2710 Known.One.setAllBits(); 2711 Known.Zero.setAllBits(); 2712 if (!!DemandedSubElts) { 2713 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2714 if (Known.isUnknown()) 2715 break; // early-out. 2716 } 2717 if (!!DemandedSrcElts) { 2718 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2719 Known.One &= Known2.One; 2720 Known.Zero &= Known2.Zero; 2721 } 2722 break; 2723 } 2724 case ISD::EXTRACT_SUBVECTOR: { 2725 // Offset the demanded elts by the subvector index. 2726 SDValue Src = Op.getOperand(0); 2727 // Bail until we can represent demanded elements for scalable vectors. 2728 if (Src.getValueType().isScalableVector()) 2729 break; 2730 uint64_t Idx = Op.getConstantOperandVal(1); 2731 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2732 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2733 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2734 break; 2735 } 2736 case ISD::SCALAR_TO_VECTOR: { 2737 // We know about scalar_to_vector as much as we know about it source, 2738 // which becomes the first element of otherwise unknown vector. 2739 if (DemandedElts != 1) 2740 break; 2741 2742 SDValue N0 = Op.getOperand(0); 2743 Known = computeKnownBits(N0, Depth + 1); 2744 if (N0.getValueSizeInBits() != BitWidth) 2745 Known = Known.trunc(BitWidth); 2746 2747 break; 2748 } 2749 case ISD::BITCAST: { 2750 SDValue N0 = Op.getOperand(0); 2751 EVT SubVT = N0.getValueType(); 2752 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2753 2754 // Ignore bitcasts from unsupported types. 2755 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2756 break; 2757 2758 // Fast handling of 'identity' bitcasts. 2759 if (BitWidth == SubBitWidth) { 2760 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2761 break; 2762 } 2763 2764 bool IsLE = getDataLayout().isLittleEndian(); 2765 2766 // Bitcast 'small element' vector to 'large element' scalar/vector. 2767 if ((BitWidth % SubBitWidth) == 0) { 2768 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2769 2770 // Collect known bits for the (larger) output by collecting the known 2771 // bits from each set of sub elements and shift these into place. 2772 // We need to separately call computeKnownBits for each set of 2773 // sub elements as the knownbits for each is likely to be different. 2774 unsigned SubScale = BitWidth / SubBitWidth; 2775 APInt SubDemandedElts(NumElts * SubScale, 0); 2776 for (unsigned i = 0; i != NumElts; ++i) 2777 if (DemandedElts[i]) 2778 SubDemandedElts.setBit(i * SubScale); 2779 2780 for (unsigned i = 0; i != SubScale; ++i) { 2781 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2782 Depth + 1); 2783 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2784 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2785 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2786 } 2787 } 2788 2789 // Bitcast 'large element' scalar/vector to 'small element' vector. 2790 if ((SubBitWidth % BitWidth) == 0) { 2791 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2792 2793 // Collect known bits for the (smaller) output by collecting the known 2794 // bits from the overlapping larger input elements and extracting the 2795 // sub sections we actually care about. 2796 unsigned SubScale = SubBitWidth / BitWidth; 2797 APInt SubDemandedElts(NumElts / SubScale, 0); 2798 for (unsigned i = 0; i != NumElts; ++i) 2799 if (DemandedElts[i]) 2800 SubDemandedElts.setBit(i / SubScale); 2801 2802 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2803 2804 Known.Zero.setAllBits(); Known.One.setAllBits(); 2805 for (unsigned i = 0; i != NumElts; ++i) 2806 if (DemandedElts[i]) { 2807 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2808 unsigned Offset = (Shifts % SubScale) * BitWidth; 2809 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2810 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2811 // If we don't know any bits, early out. 2812 if (Known.isUnknown()) 2813 break; 2814 } 2815 } 2816 break; 2817 } 2818 case ISD::AND: 2819 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2820 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2821 2822 Known &= Known2; 2823 break; 2824 case ISD::OR: 2825 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2826 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2827 2828 Known |= Known2; 2829 break; 2830 case ISD::XOR: 2831 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2832 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2833 2834 Known ^= Known2; 2835 break; 2836 case ISD::MUL: { 2837 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2838 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2839 2840 // If low bits are zero in either operand, output low known-0 bits. 2841 // Also compute a conservative estimate for high known-0 bits. 2842 // More trickiness is possible, but this is sufficient for the 2843 // interesting case of alignment computation. 2844 unsigned TrailZ = Known.countMinTrailingZeros() + 2845 Known2.countMinTrailingZeros(); 2846 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2847 Known2.countMinLeadingZeros(), 2848 BitWidth) - BitWidth; 2849 2850 Known.resetAll(); 2851 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2852 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2853 break; 2854 } 2855 case ISD::UDIV: { 2856 // For the purposes of computing leading zeros we can conservatively 2857 // treat a udiv as a logical right shift by the power of 2 known to 2858 // be less than the denominator. 2859 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2860 unsigned LeadZ = Known2.countMinLeadingZeros(); 2861 2862 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2863 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2864 if (RHSMaxLeadingZeros != BitWidth) 2865 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2866 2867 Known.Zero.setHighBits(LeadZ); 2868 break; 2869 } 2870 case ISD::SELECT: 2871 case ISD::VSELECT: 2872 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2873 // If we don't know any bits, early out. 2874 if (Known.isUnknown()) 2875 break; 2876 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2877 2878 // Only known if known in both the LHS and RHS. 2879 Known.One &= Known2.One; 2880 Known.Zero &= Known2.Zero; 2881 break; 2882 case ISD::SELECT_CC: 2883 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2884 // If we don't know any bits, early out. 2885 if (Known.isUnknown()) 2886 break; 2887 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2888 2889 // Only known if known in both the LHS and RHS. 2890 Known.One &= Known2.One; 2891 Known.Zero &= Known2.Zero; 2892 break; 2893 case ISD::SMULO: 2894 case ISD::UMULO: 2895 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2896 if (Op.getResNo() != 1) 2897 break; 2898 // The boolean result conforms to getBooleanContents. 2899 // If we know the result of a setcc has the top bits zero, use this info. 2900 // We know that we have an integer-based boolean since these operations 2901 // are only available for integer. 2902 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2903 TargetLowering::ZeroOrOneBooleanContent && 2904 BitWidth > 1) 2905 Known.Zero.setBitsFrom(1); 2906 break; 2907 case ISD::SETCC: 2908 case ISD::STRICT_FSETCC: 2909 case ISD::STRICT_FSETCCS: { 2910 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2911 // If we know the result of a setcc has the top bits zero, use this info. 2912 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2913 TargetLowering::ZeroOrOneBooleanContent && 2914 BitWidth > 1) 2915 Known.Zero.setBitsFrom(1); 2916 break; 2917 } 2918 case ISD::SHL: 2919 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2920 2921 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2922 unsigned Shift = ShAmt->getZExtValue(); 2923 Known.Zero <<= Shift; 2924 Known.One <<= Shift; 2925 // Low bits are known zero. 2926 Known.Zero.setLowBits(Shift); 2927 break; 2928 } 2929 2930 // No matter the shift amount, the trailing zeros will stay zero. 2931 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2932 Known.One.clearAllBits(); 2933 2934 // Minimum shift low bits are known zero. 2935 if (const APInt *ShMinAmt = 2936 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2937 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2938 break; 2939 case ISD::SRL: 2940 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2941 2942 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2943 unsigned Shift = ShAmt->getZExtValue(); 2944 Known.Zero.lshrInPlace(Shift); 2945 Known.One.lshrInPlace(Shift); 2946 // High bits are known zero. 2947 Known.Zero.setHighBits(Shift); 2948 break; 2949 } 2950 2951 // No matter the shift amount, the leading zeros will stay zero. 2952 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2953 Known.One.clearAllBits(); 2954 2955 // Minimum shift high bits are known zero. 2956 if (const APInt *ShMinAmt = 2957 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2958 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2959 break; 2960 case ISD::SRA: 2961 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2962 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2963 unsigned Shift = ShAmt->getZExtValue(); 2964 // Sign extend known zero/one bit (else is unknown). 2965 Known.Zero.ashrInPlace(Shift); 2966 Known.One.ashrInPlace(Shift); 2967 } 2968 break; 2969 case ISD::FSHL: 2970 case ISD::FSHR: 2971 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2972 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2973 2974 // For fshl, 0-shift returns the 1st arg. 2975 // For fshr, 0-shift returns the 2nd arg. 2976 if (Amt == 0) { 2977 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2978 DemandedElts, Depth + 1); 2979 break; 2980 } 2981 2982 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2983 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2984 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2985 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2986 if (Opcode == ISD::FSHL) { 2987 Known.One <<= Amt; 2988 Known.Zero <<= Amt; 2989 Known2.One.lshrInPlace(BitWidth - Amt); 2990 Known2.Zero.lshrInPlace(BitWidth - Amt); 2991 } else { 2992 Known.One <<= BitWidth - Amt; 2993 Known.Zero <<= BitWidth - Amt; 2994 Known2.One.lshrInPlace(Amt); 2995 Known2.Zero.lshrInPlace(Amt); 2996 } 2997 Known.One |= Known2.One; 2998 Known.Zero |= Known2.Zero; 2999 } 3000 break; 3001 case ISD::SIGN_EXTEND_INREG: { 3002 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3003 unsigned EBits = EVT.getScalarSizeInBits(); 3004 3005 // Sign extension. Compute the demanded bits in the result that are not 3006 // present in the input. 3007 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 3008 3009 APInt InSignMask = APInt::getSignMask(EBits); 3010 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3011 3012 // If the sign extended bits are demanded, we know that the sign 3013 // bit is demanded. 3014 InSignMask = InSignMask.zext(BitWidth); 3015 if (NewBits.getBoolValue()) 3016 InputDemandedBits |= InSignMask; 3017 3018 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3019 Known.One &= InputDemandedBits; 3020 Known.Zero &= InputDemandedBits; 3021 3022 // If the sign bit of the input is known set or clear, then we know the 3023 // top bits of the result. 3024 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3025 Known.Zero |= NewBits; 3026 Known.One &= ~NewBits; 3027 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3028 Known.One |= NewBits; 3029 Known.Zero &= ~NewBits; 3030 } else { // Input sign bit unknown 3031 Known.Zero &= ~NewBits; 3032 Known.One &= ~NewBits; 3033 } 3034 break; 3035 } 3036 case ISD::CTTZ: 3037 case ISD::CTTZ_ZERO_UNDEF: { 3038 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 // If we have a known 1, its position is our upper bound. 3040 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3041 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3042 Known.Zero.setBitsFrom(LowBits); 3043 break; 3044 } 3045 case ISD::CTLZ: 3046 case ISD::CTLZ_ZERO_UNDEF: { 3047 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3048 // If we have a known 1, its position is our upper bound. 3049 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3050 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3051 Known.Zero.setBitsFrom(LowBits); 3052 break; 3053 } 3054 case ISD::CTPOP: { 3055 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3056 // If we know some of the bits are zero, they can't be one. 3057 unsigned PossibleOnes = Known2.countMaxPopulation(); 3058 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3059 break; 3060 } 3061 case ISD::LOAD: { 3062 LoadSDNode *LD = cast<LoadSDNode>(Op); 3063 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3064 if (ISD::isNON_EXTLoad(LD) && Cst) { 3065 // Determine any common known bits from the loaded constant pool value. 3066 Type *CstTy = Cst->getType(); 3067 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3068 // If its a vector splat, then we can (quickly) reuse the scalar path. 3069 // NOTE: We assume all elements match and none are UNDEF. 3070 if (CstTy->isVectorTy()) { 3071 if (const Constant *Splat = Cst->getSplatValue()) { 3072 Cst = Splat; 3073 CstTy = Cst->getType(); 3074 } 3075 } 3076 // TODO - do we need to handle different bitwidths? 3077 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3078 // Iterate across all vector elements finding common known bits. 3079 Known.One.setAllBits(); 3080 Known.Zero.setAllBits(); 3081 for (unsigned i = 0; i != NumElts; ++i) { 3082 if (!DemandedElts[i]) 3083 continue; 3084 if (Constant *Elt = Cst->getAggregateElement(i)) { 3085 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3086 const APInt &Value = CInt->getValue(); 3087 Known.One &= Value; 3088 Known.Zero &= ~Value; 3089 continue; 3090 } 3091 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3092 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3093 Known.One &= Value; 3094 Known.Zero &= ~Value; 3095 continue; 3096 } 3097 } 3098 Known.One.clearAllBits(); 3099 Known.Zero.clearAllBits(); 3100 break; 3101 } 3102 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3103 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3104 const APInt &Value = CInt->getValue(); 3105 Known.One = Value; 3106 Known.Zero = ~Value; 3107 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3108 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3109 Known.One = Value; 3110 Known.Zero = ~Value; 3111 } 3112 } 3113 } 3114 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3115 // If this is a ZEXTLoad and we are looking at the loaded value. 3116 EVT VT = LD->getMemoryVT(); 3117 unsigned MemBits = VT.getScalarSizeInBits(); 3118 Known.Zero.setBitsFrom(MemBits); 3119 } else if (const MDNode *Ranges = LD->getRanges()) { 3120 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3121 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3122 } 3123 break; 3124 } 3125 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3126 EVT InVT = Op.getOperand(0).getValueType(); 3127 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3128 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3129 Known = Known.zext(BitWidth); 3130 break; 3131 } 3132 case ISD::ZERO_EXTEND: { 3133 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3134 Known = Known.zext(BitWidth); 3135 break; 3136 } 3137 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3138 EVT InVT = Op.getOperand(0).getValueType(); 3139 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3140 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3141 // If the sign bit is known to be zero or one, then sext will extend 3142 // it to the top bits, else it will just zext. 3143 Known = Known.sext(BitWidth); 3144 break; 3145 } 3146 case ISD::SIGN_EXTEND: { 3147 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3148 // If the sign bit is known to be zero or one, then sext will extend 3149 // it to the top bits, else it will just zext. 3150 Known = Known.sext(BitWidth); 3151 break; 3152 } 3153 case ISD::ANY_EXTEND_VECTOR_INREG: { 3154 EVT InVT = Op.getOperand(0).getValueType(); 3155 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3156 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3157 Known = Known.anyext(BitWidth); 3158 break; 3159 } 3160 case ISD::ANY_EXTEND: { 3161 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3162 Known = Known.anyext(BitWidth); 3163 break; 3164 } 3165 case ISD::TRUNCATE: { 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 Known = Known.trunc(BitWidth); 3168 break; 3169 } 3170 case ISD::AssertZext: { 3171 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3172 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3173 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3174 Known.Zero |= (~InMask); 3175 Known.One &= (~Known.Zero); 3176 break; 3177 } 3178 case ISD::AssertAlign: { 3179 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3180 assert(LogOfAlign != 0); 3181 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3182 // well as clearing one bits. 3183 Known.Zero.setLowBits(LogOfAlign); 3184 Known.One.clearLowBits(LogOfAlign); 3185 break; 3186 } 3187 case ISD::FGETSIGN: 3188 // All bits are zero except the low bit. 3189 Known.Zero.setBitsFrom(1); 3190 break; 3191 case ISD::USUBO: 3192 case ISD::SSUBO: 3193 if (Op.getResNo() == 1) { 3194 // If we know the result of a setcc has the top bits zero, use this info. 3195 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3196 TargetLowering::ZeroOrOneBooleanContent && 3197 BitWidth > 1) 3198 Known.Zero.setBitsFrom(1); 3199 break; 3200 } 3201 LLVM_FALLTHROUGH; 3202 case ISD::SUB: 3203 case ISD::SUBC: { 3204 assert(Op.getResNo() == 0 && 3205 "We only compute knownbits for the difference here."); 3206 3207 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3208 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3209 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3210 Known, Known2); 3211 break; 3212 } 3213 case ISD::UADDO: 3214 case ISD::SADDO: 3215 case ISD::ADDCARRY: 3216 if (Op.getResNo() == 1) { 3217 // If we know the result of a setcc has the top bits zero, use this info. 3218 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3219 TargetLowering::ZeroOrOneBooleanContent && 3220 BitWidth > 1) 3221 Known.Zero.setBitsFrom(1); 3222 break; 3223 } 3224 LLVM_FALLTHROUGH; 3225 case ISD::ADD: 3226 case ISD::ADDC: 3227 case ISD::ADDE: { 3228 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3229 3230 // With ADDE and ADDCARRY, a carry bit may be added in. 3231 KnownBits Carry(1); 3232 if (Opcode == ISD::ADDE) 3233 // Can't track carry from glue, set carry to unknown. 3234 Carry.resetAll(); 3235 else if (Opcode == ISD::ADDCARRY) 3236 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3237 // the trouble (how often will we find a known carry bit). And I haven't 3238 // tested this very much yet, but something like this might work: 3239 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3240 // Carry = Carry.zextOrTrunc(1, false); 3241 Carry.resetAll(); 3242 else 3243 Carry.setAllZero(); 3244 3245 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3246 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3247 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3248 break; 3249 } 3250 case ISD::SREM: 3251 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3252 const APInt &RA = Rem->getAPIntValue().abs(); 3253 if (RA.isPowerOf2()) { 3254 APInt LowBits = RA - 1; 3255 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3256 3257 // The low bits of the first operand are unchanged by the srem. 3258 Known.Zero = Known2.Zero & LowBits; 3259 Known.One = Known2.One & LowBits; 3260 3261 // If the first operand is non-negative or has all low bits zero, then 3262 // the upper bits are all zero. 3263 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3264 Known.Zero |= ~LowBits; 3265 3266 // If the first operand is negative and not all low bits are zero, then 3267 // the upper bits are all one. 3268 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3269 Known.One |= ~LowBits; 3270 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3271 } 3272 } 3273 break; 3274 case ISD::UREM: { 3275 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3276 const APInt &RA = Rem->getAPIntValue(); 3277 if (RA.isPowerOf2()) { 3278 APInt LowBits = (RA - 1); 3279 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3280 3281 // The upper bits are all zero, the lower ones are unchanged. 3282 Known.Zero = Known2.Zero | ~LowBits; 3283 Known.One = Known2.One & LowBits; 3284 break; 3285 } 3286 } 3287 3288 // Since the result is less than or equal to either operand, any leading 3289 // zero bits in either operand must also exist in the result. 3290 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3291 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3292 3293 uint32_t Leaders = 3294 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3295 Known.resetAll(); 3296 Known.Zero.setHighBits(Leaders); 3297 break; 3298 } 3299 case ISD::EXTRACT_ELEMENT: { 3300 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3301 const unsigned Index = Op.getConstantOperandVal(1); 3302 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3303 3304 // Remove low part of known bits mask 3305 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3306 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3307 3308 // Remove high part of known bit mask 3309 Known = Known.trunc(EltBitWidth); 3310 break; 3311 } 3312 case ISD::EXTRACT_VECTOR_ELT: { 3313 SDValue InVec = Op.getOperand(0); 3314 SDValue EltNo = Op.getOperand(1); 3315 EVT VecVT = InVec.getValueType(); 3316 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3317 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3318 3319 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3320 // anything about the extended bits. 3321 if (BitWidth > EltBitWidth) 3322 Known = Known.trunc(EltBitWidth); 3323 3324 // If we know the element index, just demand that vector element, else for 3325 // an unknown element index, ignore DemandedElts and demand them all. 3326 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3327 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3328 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3329 DemandedSrcElts = 3330 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3331 3332 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3333 if (BitWidth > EltBitWidth) 3334 Known = Known.anyext(BitWidth); 3335 break; 3336 } 3337 case ISD::INSERT_VECTOR_ELT: { 3338 // If we know the element index, split the demand between the 3339 // source vector and the inserted element, otherwise assume we need 3340 // the original demanded vector elements and the value. 3341 SDValue InVec = Op.getOperand(0); 3342 SDValue InVal = Op.getOperand(1); 3343 SDValue EltNo = Op.getOperand(2); 3344 bool DemandedVal = true; 3345 APInt DemandedVecElts = DemandedElts; 3346 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3347 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3348 unsigned EltIdx = CEltNo->getZExtValue(); 3349 DemandedVal = !!DemandedElts[EltIdx]; 3350 DemandedVecElts.clearBit(EltIdx); 3351 } 3352 Known.One.setAllBits(); 3353 Known.Zero.setAllBits(); 3354 if (DemandedVal) { 3355 Known2 = computeKnownBits(InVal, Depth + 1); 3356 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3357 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3358 } 3359 if (!!DemandedVecElts) { 3360 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3361 Known.One &= Known2.One; 3362 Known.Zero &= Known2.Zero; 3363 } 3364 break; 3365 } 3366 case ISD::BITREVERSE: { 3367 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known.Zero = Known2.Zero.reverseBits(); 3369 Known.One = Known2.One.reverseBits(); 3370 break; 3371 } 3372 case ISD::BSWAP: { 3373 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3374 Known.Zero = Known2.Zero.byteSwap(); 3375 Known.One = Known2.One.byteSwap(); 3376 break; 3377 } 3378 case ISD::ABS: { 3379 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3380 3381 // If the source's MSB is zero then we know the rest of the bits already. 3382 if (Known2.isNonNegative()) { 3383 Known.Zero = Known2.Zero; 3384 Known.One = Known2.One; 3385 break; 3386 } 3387 3388 // We only know that the absolute values's MSB will be zero iff there is 3389 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3390 Known2.One.clearSignBit(); 3391 if (Known2.One.getBoolValue()) { 3392 Known.Zero = APInt::getSignMask(BitWidth); 3393 break; 3394 } 3395 break; 3396 } 3397 case ISD::UMIN: { 3398 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3399 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3400 3401 // UMIN - we know that the result will have the maximum of the 3402 // known zero leading bits of the inputs. 3403 unsigned LeadZero = Known.countMinLeadingZeros(); 3404 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3405 3406 Known.Zero &= Known2.Zero; 3407 Known.One &= Known2.One; 3408 Known.Zero.setHighBits(LeadZero); 3409 break; 3410 } 3411 case ISD::UMAX: { 3412 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3413 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3414 3415 // UMAX - we know that the result will have the maximum of the 3416 // known one leading bits of the inputs. 3417 unsigned LeadOne = Known.countMinLeadingOnes(); 3418 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3419 3420 Known.Zero &= Known2.Zero; 3421 Known.One &= Known2.One; 3422 Known.One.setHighBits(LeadOne); 3423 break; 3424 } 3425 case ISD::SMIN: 3426 case ISD::SMAX: { 3427 // If we have a clamp pattern, we know that the number of sign bits will be 3428 // the minimum of the clamp min/max range. 3429 bool IsMax = (Opcode == ISD::SMAX); 3430 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3431 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3432 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3433 CstHigh = 3434 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3435 if (CstLow && CstHigh) { 3436 if (!IsMax) 3437 std::swap(CstLow, CstHigh); 3438 3439 const APInt &ValueLow = CstLow->getAPIntValue(); 3440 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3441 if (ValueLow.sle(ValueHigh)) { 3442 unsigned LowSignBits = ValueLow.getNumSignBits(); 3443 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3444 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3445 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3446 Known.One.setHighBits(MinSignBits); 3447 break; 3448 } 3449 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3450 Known.Zero.setHighBits(MinSignBits); 3451 break; 3452 } 3453 } 3454 } 3455 3456 // Fallback - just get the shared known bits of the operands. 3457 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3458 if (Known.isUnknown()) break; // Early-out 3459 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3460 Known.Zero &= Known2.Zero; 3461 Known.One &= Known2.One; 3462 break; 3463 } 3464 case ISD::FrameIndex: 3465 case ISD::TargetFrameIndex: 3466 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3467 Known, getMachineFunction()); 3468 break; 3469 3470 default: 3471 if (Opcode < ISD::BUILTIN_OP_END) 3472 break; 3473 LLVM_FALLTHROUGH; 3474 case ISD::INTRINSIC_WO_CHAIN: 3475 case ISD::INTRINSIC_W_CHAIN: 3476 case ISD::INTRINSIC_VOID: 3477 // Allow the target to implement this method for its nodes. 3478 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3479 break; 3480 } 3481 3482 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3483 return Known; 3484 } 3485 3486 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3487 SDValue N1) const { 3488 // X + 0 never overflow 3489 if (isNullConstant(N1)) 3490 return OFK_Never; 3491 3492 KnownBits N1Known = computeKnownBits(N1); 3493 if (N1Known.Zero.getBoolValue()) { 3494 KnownBits N0Known = computeKnownBits(N0); 3495 3496 bool overflow; 3497 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3498 if (!overflow) 3499 return OFK_Never; 3500 } 3501 3502 // mulhi + 1 never overflow 3503 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3504 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3505 return OFK_Never; 3506 3507 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3508 KnownBits N0Known = computeKnownBits(N0); 3509 3510 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3511 return OFK_Never; 3512 } 3513 3514 return OFK_Sometime; 3515 } 3516 3517 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3518 EVT OpVT = Val.getValueType(); 3519 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3520 3521 // Is the constant a known power of 2? 3522 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3523 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3524 3525 // A left-shift of a constant one will have exactly one bit set because 3526 // shifting the bit off the end is undefined. 3527 if (Val.getOpcode() == ISD::SHL) { 3528 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3529 if (C && C->getAPIntValue() == 1) 3530 return true; 3531 } 3532 3533 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3534 // one bit set. 3535 if (Val.getOpcode() == ISD::SRL) { 3536 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3537 if (C && C->getAPIntValue().isSignMask()) 3538 return true; 3539 } 3540 3541 // Are all operands of a build vector constant powers of two? 3542 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3543 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3544 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3545 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3546 return false; 3547 })) 3548 return true; 3549 3550 // More could be done here, though the above checks are enough 3551 // to handle some common cases. 3552 3553 // Fall back to computeKnownBits to catch other known cases. 3554 KnownBits Known = computeKnownBits(Val); 3555 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3556 } 3557 3558 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3559 EVT VT = Op.getValueType(); 3560 3561 // TODO: Assume we don't know anything for now. 3562 if (VT.isScalableVector()) 3563 return 1; 3564 3565 APInt DemandedElts = VT.isVector() 3566 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3567 : APInt(1, 1); 3568 return ComputeNumSignBits(Op, DemandedElts, Depth); 3569 } 3570 3571 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3572 unsigned Depth) const { 3573 EVT VT = Op.getValueType(); 3574 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3575 unsigned VTBits = VT.getScalarSizeInBits(); 3576 unsigned NumElts = DemandedElts.getBitWidth(); 3577 unsigned Tmp, Tmp2; 3578 unsigned FirstAnswer = 1; 3579 3580 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3581 const APInt &Val = C->getAPIntValue(); 3582 return Val.getNumSignBits(); 3583 } 3584 3585 if (Depth >= MaxRecursionDepth) 3586 return 1; // Limit search depth. 3587 3588 if (!DemandedElts || VT.isScalableVector()) 3589 return 1; // No demanded elts, better to assume we don't know anything. 3590 3591 unsigned Opcode = Op.getOpcode(); 3592 switch (Opcode) { 3593 default: break; 3594 case ISD::AssertSext: 3595 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3596 return VTBits-Tmp+1; 3597 case ISD::AssertZext: 3598 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3599 return VTBits-Tmp; 3600 3601 case ISD::BUILD_VECTOR: 3602 Tmp = VTBits; 3603 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3604 if (!DemandedElts[i]) 3605 continue; 3606 3607 SDValue SrcOp = Op.getOperand(i); 3608 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3609 3610 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3611 if (SrcOp.getValueSizeInBits() != VTBits) { 3612 assert(SrcOp.getValueSizeInBits() > VTBits && 3613 "Expected BUILD_VECTOR implicit truncation"); 3614 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3615 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3616 } 3617 Tmp = std::min(Tmp, Tmp2); 3618 } 3619 return Tmp; 3620 3621 case ISD::VECTOR_SHUFFLE: { 3622 // Collect the minimum number of sign bits that are shared by every vector 3623 // element referenced by the shuffle. 3624 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3625 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3626 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3627 for (unsigned i = 0; i != NumElts; ++i) { 3628 int M = SVN->getMaskElt(i); 3629 if (!DemandedElts[i]) 3630 continue; 3631 // For UNDEF elements, we don't know anything about the common state of 3632 // the shuffle result. 3633 if (M < 0) 3634 return 1; 3635 if ((unsigned)M < NumElts) 3636 DemandedLHS.setBit((unsigned)M % NumElts); 3637 else 3638 DemandedRHS.setBit((unsigned)M % NumElts); 3639 } 3640 Tmp = std::numeric_limits<unsigned>::max(); 3641 if (!!DemandedLHS) 3642 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3643 if (!!DemandedRHS) { 3644 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3645 Tmp = std::min(Tmp, Tmp2); 3646 } 3647 // If we don't know anything, early out and try computeKnownBits fall-back. 3648 if (Tmp == 1) 3649 break; 3650 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3651 return Tmp; 3652 } 3653 3654 case ISD::BITCAST: { 3655 SDValue N0 = Op.getOperand(0); 3656 EVT SrcVT = N0.getValueType(); 3657 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3658 3659 // Ignore bitcasts from unsupported types.. 3660 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3661 break; 3662 3663 // Fast handling of 'identity' bitcasts. 3664 if (VTBits == SrcBits) 3665 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3666 3667 bool IsLE = getDataLayout().isLittleEndian(); 3668 3669 // Bitcast 'large element' scalar/vector to 'small element' vector. 3670 if ((SrcBits % VTBits) == 0) { 3671 assert(VT.isVector() && "Expected bitcast to vector"); 3672 3673 unsigned Scale = SrcBits / VTBits; 3674 APInt SrcDemandedElts(NumElts / Scale, 0); 3675 for (unsigned i = 0; i != NumElts; ++i) 3676 if (DemandedElts[i]) 3677 SrcDemandedElts.setBit(i / Scale); 3678 3679 // Fast case - sign splat can be simply split across the small elements. 3680 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3681 if (Tmp == SrcBits) 3682 return VTBits; 3683 3684 // Slow case - determine how far the sign extends into each sub-element. 3685 Tmp2 = VTBits; 3686 for (unsigned i = 0; i != NumElts; ++i) 3687 if (DemandedElts[i]) { 3688 unsigned SubOffset = i % Scale; 3689 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3690 SubOffset = SubOffset * VTBits; 3691 if (Tmp <= SubOffset) 3692 return 1; 3693 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3694 } 3695 return Tmp2; 3696 } 3697 break; 3698 } 3699 3700 case ISD::SIGN_EXTEND: 3701 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3702 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3703 case ISD::SIGN_EXTEND_INREG: 3704 // Max of the input and what this extends. 3705 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3706 Tmp = VTBits-Tmp+1; 3707 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3708 return std::max(Tmp, Tmp2); 3709 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3710 SDValue Src = Op.getOperand(0); 3711 EVT SrcVT = Src.getValueType(); 3712 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3713 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3714 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3715 } 3716 case ISD::SRA: 3717 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3718 // SRA X, C -> adds C sign bits. 3719 if (const APInt *ShAmt = 3720 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3721 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3722 return Tmp; 3723 case ISD::SHL: 3724 if (const APInt *ShAmt = 3725 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3726 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3727 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3728 if (ShAmt->ult(Tmp)) 3729 return Tmp - ShAmt->getZExtValue(); 3730 } 3731 break; 3732 case ISD::AND: 3733 case ISD::OR: 3734 case ISD::XOR: // NOT is handled here. 3735 // Logical binary ops preserve the number of sign bits at the worst. 3736 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3737 if (Tmp != 1) { 3738 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3739 FirstAnswer = std::min(Tmp, Tmp2); 3740 // We computed what we know about the sign bits as our first 3741 // answer. Now proceed to the generic code that uses 3742 // computeKnownBits, and pick whichever answer is better. 3743 } 3744 break; 3745 3746 case ISD::SELECT: 3747 case ISD::VSELECT: 3748 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3749 if (Tmp == 1) return 1; // Early out. 3750 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3751 return std::min(Tmp, Tmp2); 3752 case ISD::SELECT_CC: 3753 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3754 if (Tmp == 1) return 1; // Early out. 3755 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3756 return std::min(Tmp, Tmp2); 3757 3758 case ISD::SMIN: 3759 case ISD::SMAX: { 3760 // If we have a clamp pattern, we know that the number of sign bits will be 3761 // the minimum of the clamp min/max range. 3762 bool IsMax = (Opcode == ISD::SMAX); 3763 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3764 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3765 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3766 CstHigh = 3767 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3768 if (CstLow && CstHigh) { 3769 if (!IsMax) 3770 std::swap(CstLow, CstHigh); 3771 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3772 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3773 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3774 return std::min(Tmp, Tmp2); 3775 } 3776 } 3777 3778 // Fallback - just get the minimum number of sign bits of the operands. 3779 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3780 if (Tmp == 1) 3781 return 1; // Early out. 3782 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3783 return std::min(Tmp, Tmp2); 3784 } 3785 case ISD::UMIN: 3786 case ISD::UMAX: 3787 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3788 if (Tmp == 1) 3789 return 1; // Early out. 3790 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3791 return std::min(Tmp, Tmp2); 3792 case ISD::SADDO: 3793 case ISD::UADDO: 3794 case ISD::SSUBO: 3795 case ISD::USUBO: 3796 case ISD::SMULO: 3797 case ISD::UMULO: 3798 if (Op.getResNo() != 1) 3799 break; 3800 // The boolean result conforms to getBooleanContents. Fall through. 3801 // If setcc returns 0/-1, all bits are sign bits. 3802 // We know that we have an integer-based boolean since these operations 3803 // are only available for integer. 3804 if (TLI->getBooleanContents(VT.isVector(), false) == 3805 TargetLowering::ZeroOrNegativeOneBooleanContent) 3806 return VTBits; 3807 break; 3808 case ISD::SETCC: 3809 case ISD::STRICT_FSETCC: 3810 case ISD::STRICT_FSETCCS: { 3811 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3812 // If setcc returns 0/-1, all bits are sign bits. 3813 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3814 TargetLowering::ZeroOrNegativeOneBooleanContent) 3815 return VTBits; 3816 break; 3817 } 3818 case ISD::ROTL: 3819 case ISD::ROTR: 3820 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3821 3822 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3823 if (Tmp == VTBits) 3824 return VTBits; 3825 3826 if (ConstantSDNode *C = 3827 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3828 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3829 3830 // Handle rotate right by N like a rotate left by 32-N. 3831 if (Opcode == ISD::ROTR) 3832 RotAmt = (VTBits - RotAmt) % VTBits; 3833 3834 // If we aren't rotating out all of the known-in sign bits, return the 3835 // number that are left. This handles rotl(sext(x), 1) for example. 3836 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3837 } 3838 break; 3839 case ISD::ADD: 3840 case ISD::ADDC: 3841 // Add can have at most one carry bit. Thus we know that the output 3842 // is, at worst, one more bit than the inputs. 3843 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3844 if (Tmp == 1) return 1; // Early out. 3845 3846 // Special case decrementing a value (ADD X, -1): 3847 if (ConstantSDNode *CRHS = 3848 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3849 if (CRHS->isAllOnesValue()) { 3850 KnownBits Known = 3851 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3852 3853 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3854 // sign bits set. 3855 if ((Known.Zero | 1).isAllOnesValue()) 3856 return VTBits; 3857 3858 // If we are subtracting one from a positive number, there is no carry 3859 // out of the result. 3860 if (Known.isNonNegative()) 3861 return Tmp; 3862 } 3863 3864 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3865 if (Tmp2 == 1) return 1; // Early out. 3866 return std::min(Tmp, Tmp2) - 1; 3867 case ISD::SUB: 3868 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3869 if (Tmp2 == 1) return 1; // Early out. 3870 3871 // Handle NEG. 3872 if (ConstantSDNode *CLHS = 3873 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3874 if (CLHS->isNullValue()) { 3875 KnownBits Known = 3876 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3877 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3878 // sign bits set. 3879 if ((Known.Zero | 1).isAllOnesValue()) 3880 return VTBits; 3881 3882 // If the input is known to be positive (the sign bit is known clear), 3883 // the output of the NEG has the same number of sign bits as the input. 3884 if (Known.isNonNegative()) 3885 return Tmp2; 3886 3887 // Otherwise, we treat this like a SUB. 3888 } 3889 3890 // Sub can have at most one carry bit. Thus we know that the output 3891 // is, at worst, one more bit than the inputs. 3892 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3893 if (Tmp == 1) return 1; // Early out. 3894 return std::min(Tmp, Tmp2) - 1; 3895 case ISD::MUL: { 3896 // The output of the Mul can be at most twice the valid bits in the inputs. 3897 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3898 if (SignBitsOp0 == 1) 3899 break; 3900 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3901 if (SignBitsOp1 == 1) 3902 break; 3903 unsigned OutValidBits = 3904 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3905 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3906 } 3907 case ISD::TRUNCATE: { 3908 // Check if the sign bits of source go down as far as the truncated value. 3909 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3910 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3911 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3912 return NumSrcSignBits - (NumSrcBits - VTBits); 3913 break; 3914 } 3915 case ISD::EXTRACT_ELEMENT: { 3916 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3917 const int BitWidth = Op.getValueSizeInBits(); 3918 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3919 3920 // Get reverse index (starting from 1), Op1 value indexes elements from 3921 // little end. Sign starts at big end. 3922 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3923 3924 // If the sign portion ends in our element the subtraction gives correct 3925 // result. Otherwise it gives either negative or > bitwidth result 3926 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3927 } 3928 case ISD::INSERT_VECTOR_ELT: { 3929 // If we know the element index, split the demand between the 3930 // source vector and the inserted element, otherwise assume we need 3931 // the original demanded vector elements and the value. 3932 SDValue InVec = Op.getOperand(0); 3933 SDValue InVal = Op.getOperand(1); 3934 SDValue EltNo = Op.getOperand(2); 3935 bool DemandedVal = true; 3936 APInt DemandedVecElts = DemandedElts; 3937 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3938 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3939 unsigned EltIdx = CEltNo->getZExtValue(); 3940 DemandedVal = !!DemandedElts[EltIdx]; 3941 DemandedVecElts.clearBit(EltIdx); 3942 } 3943 Tmp = std::numeric_limits<unsigned>::max(); 3944 if (DemandedVal) { 3945 // TODO - handle implicit truncation of inserted elements. 3946 if (InVal.getScalarValueSizeInBits() != VTBits) 3947 break; 3948 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3949 Tmp = std::min(Tmp, Tmp2); 3950 } 3951 if (!!DemandedVecElts) { 3952 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3953 Tmp = std::min(Tmp, Tmp2); 3954 } 3955 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3956 return Tmp; 3957 } 3958 case ISD::EXTRACT_VECTOR_ELT: { 3959 SDValue InVec = Op.getOperand(0); 3960 SDValue EltNo = Op.getOperand(1); 3961 EVT VecVT = InVec.getValueType(); 3962 const unsigned BitWidth = Op.getValueSizeInBits(); 3963 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3964 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3965 3966 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3967 // anything about sign bits. But if the sizes match we can derive knowledge 3968 // about sign bits from the vector operand. 3969 if (BitWidth != EltBitWidth) 3970 break; 3971 3972 // If we know the element index, just demand that vector element, else for 3973 // an unknown element index, ignore DemandedElts and demand them all. 3974 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3975 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3976 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3977 DemandedSrcElts = 3978 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3979 3980 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3981 } 3982 case ISD::EXTRACT_SUBVECTOR: { 3983 // Offset the demanded elts by the subvector index. 3984 SDValue Src = Op.getOperand(0); 3985 // Bail until we can represent demanded elements for scalable vectors. 3986 if (Src.getValueType().isScalableVector()) 3987 break; 3988 uint64_t Idx = Op.getConstantOperandVal(1); 3989 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3990 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3991 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3992 } 3993 case ISD::CONCAT_VECTORS: { 3994 // Determine the minimum number of sign bits across all demanded 3995 // elts of the input vectors. Early out if the result is already 1. 3996 Tmp = std::numeric_limits<unsigned>::max(); 3997 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3998 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3999 unsigned NumSubVectors = Op.getNumOperands(); 4000 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4001 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 4002 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 4003 if (!DemandedSub) 4004 continue; 4005 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4006 Tmp = std::min(Tmp, Tmp2); 4007 } 4008 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4009 return Tmp; 4010 } 4011 case ISD::INSERT_SUBVECTOR: { 4012 // Demand any elements from the subvector and the remainder from the src its 4013 // inserted into. 4014 SDValue Src = Op.getOperand(0); 4015 SDValue Sub = Op.getOperand(1); 4016 uint64_t Idx = Op.getConstantOperandVal(2); 4017 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4018 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4019 APInt DemandedSrcElts = DemandedElts; 4020 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4021 4022 Tmp = std::numeric_limits<unsigned>::max(); 4023 if (!!DemandedSubElts) { 4024 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4025 if (Tmp == 1) 4026 return 1; // early-out 4027 } 4028 if (!!DemandedSrcElts) { 4029 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4030 Tmp = std::min(Tmp, Tmp2); 4031 } 4032 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4033 return Tmp; 4034 } 4035 } 4036 4037 // If we are looking at the loaded value of the SDNode. 4038 if (Op.getResNo() == 0) { 4039 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4040 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4041 unsigned ExtType = LD->getExtensionType(); 4042 switch (ExtType) { 4043 default: break; 4044 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4045 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4046 return VTBits - Tmp + 1; 4047 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4048 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4049 return VTBits - Tmp; 4050 case ISD::NON_EXTLOAD: 4051 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4052 // We only need to handle vectors - computeKnownBits should handle 4053 // scalar cases. 4054 Type *CstTy = Cst->getType(); 4055 if (CstTy->isVectorTy() && 4056 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4057 Tmp = VTBits; 4058 for (unsigned i = 0; i != NumElts; ++i) { 4059 if (!DemandedElts[i]) 4060 continue; 4061 if (Constant *Elt = Cst->getAggregateElement(i)) { 4062 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4063 const APInt &Value = CInt->getValue(); 4064 Tmp = std::min(Tmp, Value.getNumSignBits()); 4065 continue; 4066 } 4067 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4068 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4069 Tmp = std::min(Tmp, Value.getNumSignBits()); 4070 continue; 4071 } 4072 } 4073 // Unknown type. Conservatively assume no bits match sign bit. 4074 return 1; 4075 } 4076 return Tmp; 4077 } 4078 } 4079 break; 4080 } 4081 } 4082 } 4083 4084 // Allow the target to implement this method for its nodes. 4085 if (Opcode >= ISD::BUILTIN_OP_END || 4086 Opcode == ISD::INTRINSIC_WO_CHAIN || 4087 Opcode == ISD::INTRINSIC_W_CHAIN || 4088 Opcode == ISD::INTRINSIC_VOID) { 4089 unsigned NumBits = 4090 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4091 if (NumBits > 1) 4092 FirstAnswer = std::max(FirstAnswer, NumBits); 4093 } 4094 4095 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4096 // use this information. 4097 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4098 4099 APInt Mask; 4100 if (Known.isNonNegative()) { // sign bit is 0 4101 Mask = Known.Zero; 4102 } else if (Known.isNegative()) { // sign bit is 1; 4103 Mask = Known.One; 4104 } else { 4105 // Nothing known. 4106 return FirstAnswer; 4107 } 4108 4109 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4110 // the number of identical bits in the top of the input value. 4111 Mask <<= Mask.getBitWidth()-VTBits; 4112 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4113 } 4114 4115 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4116 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4117 !isa<ConstantSDNode>(Op.getOperand(1))) 4118 return false; 4119 4120 if (Op.getOpcode() == ISD::OR && 4121 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4122 return false; 4123 4124 return true; 4125 } 4126 4127 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4128 // If we're told that NaNs won't happen, assume they won't. 4129 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4130 return true; 4131 4132 if (Depth >= MaxRecursionDepth) 4133 return false; // Limit search depth. 4134 4135 // TODO: Handle vectors. 4136 // If the value is a constant, we can obviously see if it is a NaN or not. 4137 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4138 return !C->getValueAPF().isNaN() || 4139 (SNaN && !C->getValueAPF().isSignaling()); 4140 } 4141 4142 unsigned Opcode = Op.getOpcode(); 4143 switch (Opcode) { 4144 case ISD::FADD: 4145 case ISD::FSUB: 4146 case ISD::FMUL: 4147 case ISD::FDIV: 4148 case ISD::FREM: 4149 case ISD::FSIN: 4150 case ISD::FCOS: { 4151 if (SNaN) 4152 return true; 4153 // TODO: Need isKnownNeverInfinity 4154 return false; 4155 } 4156 case ISD::FCANONICALIZE: 4157 case ISD::FEXP: 4158 case ISD::FEXP2: 4159 case ISD::FTRUNC: 4160 case ISD::FFLOOR: 4161 case ISD::FCEIL: 4162 case ISD::FROUND: 4163 case ISD::FROUNDEVEN: 4164 case ISD::FRINT: 4165 case ISD::FNEARBYINT: { 4166 if (SNaN) 4167 return true; 4168 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4169 } 4170 case ISD::FABS: 4171 case ISD::FNEG: 4172 case ISD::FCOPYSIGN: { 4173 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4174 } 4175 case ISD::SELECT: 4176 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4177 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4178 case ISD::FP_EXTEND: 4179 case ISD::FP_ROUND: { 4180 if (SNaN) 4181 return true; 4182 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4183 } 4184 case ISD::SINT_TO_FP: 4185 case ISD::UINT_TO_FP: 4186 return true; 4187 case ISD::FMA: 4188 case ISD::FMAD: { 4189 if (SNaN) 4190 return true; 4191 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4192 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4193 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4194 } 4195 case ISD::FSQRT: // Need is known positive 4196 case ISD::FLOG: 4197 case ISD::FLOG2: 4198 case ISD::FLOG10: 4199 case ISD::FPOWI: 4200 case ISD::FPOW: { 4201 if (SNaN) 4202 return true; 4203 // TODO: Refine on operand 4204 return false; 4205 } 4206 case ISD::FMINNUM: 4207 case ISD::FMAXNUM: { 4208 // Only one needs to be known not-nan, since it will be returned if the 4209 // other ends up being one. 4210 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4211 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4212 } 4213 case ISD::FMINNUM_IEEE: 4214 case ISD::FMAXNUM_IEEE: { 4215 if (SNaN) 4216 return true; 4217 // This can return a NaN if either operand is an sNaN, or if both operands 4218 // are NaN. 4219 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4220 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4221 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4222 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4223 } 4224 case ISD::FMINIMUM: 4225 case ISD::FMAXIMUM: { 4226 // TODO: Does this quiet or return the origina NaN as-is? 4227 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4228 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4229 } 4230 case ISD::EXTRACT_VECTOR_ELT: { 4231 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4232 } 4233 default: 4234 if (Opcode >= ISD::BUILTIN_OP_END || 4235 Opcode == ISD::INTRINSIC_WO_CHAIN || 4236 Opcode == ISD::INTRINSIC_W_CHAIN || 4237 Opcode == ISD::INTRINSIC_VOID) { 4238 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4239 } 4240 4241 return false; 4242 } 4243 } 4244 4245 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4246 assert(Op.getValueType().isFloatingPoint() && 4247 "Floating point type expected"); 4248 4249 // If the value is a constant, we can obviously see if it is a zero or not. 4250 // TODO: Add BuildVector support. 4251 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4252 return !C->isZero(); 4253 return false; 4254 } 4255 4256 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4257 assert(!Op.getValueType().isFloatingPoint() && 4258 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4259 4260 // If the value is a constant, we can obviously see if it is a zero or not. 4261 if (ISD::matchUnaryPredicate( 4262 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4263 return true; 4264 4265 // TODO: Recognize more cases here. 4266 switch (Op.getOpcode()) { 4267 default: break; 4268 case ISD::OR: 4269 if (isKnownNeverZero(Op.getOperand(1)) || 4270 isKnownNeverZero(Op.getOperand(0))) 4271 return true; 4272 break; 4273 } 4274 4275 return false; 4276 } 4277 4278 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4279 // Check the obvious case. 4280 if (A == B) return true; 4281 4282 // For for negative and positive zero. 4283 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4284 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4285 if (CA->isZero() && CB->isZero()) return true; 4286 4287 // Otherwise they may not be equal. 4288 return false; 4289 } 4290 4291 // FIXME: unify with llvm::haveNoCommonBitsSet. 4292 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4293 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4294 assert(A.getValueType() == B.getValueType() && 4295 "Values must have the same type"); 4296 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4297 } 4298 4299 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4300 ArrayRef<SDValue> Ops, 4301 SelectionDAG &DAG) { 4302 int NumOps = Ops.size(); 4303 assert(NumOps != 0 && "Can't build an empty vector!"); 4304 assert(!VT.isScalableVector() && 4305 "BUILD_VECTOR cannot be used with scalable types"); 4306 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4307 "Incorrect element count in BUILD_VECTOR!"); 4308 4309 // BUILD_VECTOR of UNDEFs is UNDEF. 4310 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4311 return DAG.getUNDEF(VT); 4312 4313 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4314 SDValue IdentitySrc; 4315 bool IsIdentity = true; 4316 for (int i = 0; i != NumOps; ++i) { 4317 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4318 Ops[i].getOperand(0).getValueType() != VT || 4319 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4320 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4321 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4322 IsIdentity = false; 4323 break; 4324 } 4325 IdentitySrc = Ops[i].getOperand(0); 4326 } 4327 if (IsIdentity) 4328 return IdentitySrc; 4329 4330 return SDValue(); 4331 } 4332 4333 /// Try to simplify vector concatenation to an input value, undef, or build 4334 /// vector. 4335 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4336 ArrayRef<SDValue> Ops, 4337 SelectionDAG &DAG) { 4338 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4339 assert(llvm::all_of(Ops, 4340 [Ops](SDValue Op) { 4341 return Ops[0].getValueType() == Op.getValueType(); 4342 }) && 4343 "Concatenation of vectors with inconsistent value types!"); 4344 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4345 VT.getVectorElementCount() && 4346 "Incorrect element count in vector concatenation!"); 4347 4348 if (Ops.size() == 1) 4349 return Ops[0]; 4350 4351 // Concat of UNDEFs is UNDEF. 4352 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4353 return DAG.getUNDEF(VT); 4354 4355 // Scan the operands and look for extract operations from a single source 4356 // that correspond to insertion at the same location via this concatenation: 4357 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4358 SDValue IdentitySrc; 4359 bool IsIdentity = true; 4360 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4361 SDValue Op = Ops[i]; 4362 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4363 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4364 Op.getOperand(0).getValueType() != VT || 4365 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4366 Op.getConstantOperandVal(1) != IdentityIndex) { 4367 IsIdentity = false; 4368 break; 4369 } 4370 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4371 "Unexpected identity source vector for concat of extracts"); 4372 IdentitySrc = Op.getOperand(0); 4373 } 4374 if (IsIdentity) { 4375 assert(IdentitySrc && "Failed to set source vector of extracts"); 4376 return IdentitySrc; 4377 } 4378 4379 // The code below this point is only designed to work for fixed width 4380 // vectors, so we bail out for now. 4381 if (VT.isScalableVector()) 4382 return SDValue(); 4383 4384 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4385 // simplified to one big BUILD_VECTOR. 4386 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4387 EVT SVT = VT.getScalarType(); 4388 SmallVector<SDValue, 16> Elts; 4389 for (SDValue Op : Ops) { 4390 EVT OpVT = Op.getValueType(); 4391 if (Op.isUndef()) 4392 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4393 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4394 Elts.append(Op->op_begin(), Op->op_end()); 4395 else 4396 return SDValue(); 4397 } 4398 4399 // BUILD_VECTOR requires all inputs to be of the same type, find the 4400 // maximum type and extend them all. 4401 for (SDValue Op : Elts) 4402 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4403 4404 if (SVT.bitsGT(VT.getScalarType())) 4405 for (SDValue &Op : Elts) 4406 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4407 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4408 : DAG.getSExtOrTrunc(Op, DL, SVT); 4409 4410 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4411 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4412 return V; 4413 } 4414 4415 /// Gets or creates the specified node. 4416 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4417 FoldingSetNodeID ID; 4418 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4419 void *IP = nullptr; 4420 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4421 return SDValue(E, 0); 4422 4423 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4424 getVTList(VT)); 4425 CSEMap.InsertNode(N, IP); 4426 4427 InsertNode(N); 4428 SDValue V = SDValue(N, 0); 4429 NewSDValueDbgMsg(V, "Creating new node: ", this); 4430 return V; 4431 } 4432 4433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4434 SDValue Operand, const SDNodeFlags Flags) { 4435 // Constant fold unary operations with an integer constant operand. Even 4436 // opaque constant will be folded, because the folding of unary operations 4437 // doesn't create new constants with different values. Nevertheless, the 4438 // opaque flag is preserved during folding to prevent future folding with 4439 // other constants. 4440 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4441 const APInt &Val = C->getAPIntValue(); 4442 switch (Opcode) { 4443 default: break; 4444 case ISD::SIGN_EXTEND: 4445 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4446 C->isTargetOpcode(), C->isOpaque()); 4447 case ISD::TRUNCATE: 4448 if (C->isOpaque()) 4449 break; 4450 LLVM_FALLTHROUGH; 4451 case ISD::ANY_EXTEND: 4452 case ISD::ZERO_EXTEND: 4453 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4454 C->isTargetOpcode(), C->isOpaque()); 4455 case ISD::UINT_TO_FP: 4456 case ISD::SINT_TO_FP: { 4457 APFloat apf(EVTToAPFloatSemantics(VT), 4458 APInt::getNullValue(VT.getSizeInBits())); 4459 (void)apf.convertFromAPInt(Val, 4460 Opcode==ISD::SINT_TO_FP, 4461 APFloat::rmNearestTiesToEven); 4462 return getConstantFP(apf, DL, VT); 4463 } 4464 case ISD::BITCAST: 4465 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4466 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4467 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4468 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4469 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4470 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4471 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4472 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4473 break; 4474 case ISD::ABS: 4475 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4476 C->isOpaque()); 4477 case ISD::BITREVERSE: 4478 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4479 C->isOpaque()); 4480 case ISD::BSWAP: 4481 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4482 C->isOpaque()); 4483 case ISD::CTPOP: 4484 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4485 C->isOpaque()); 4486 case ISD::CTLZ: 4487 case ISD::CTLZ_ZERO_UNDEF: 4488 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4489 C->isOpaque()); 4490 case ISD::CTTZ: 4491 case ISD::CTTZ_ZERO_UNDEF: 4492 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4493 C->isOpaque()); 4494 case ISD::FP16_TO_FP: { 4495 bool Ignored; 4496 APFloat FPV(APFloat::IEEEhalf(), 4497 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4498 4499 // This can return overflow, underflow, or inexact; we don't care. 4500 // FIXME need to be more flexible about rounding mode. 4501 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4502 APFloat::rmNearestTiesToEven, &Ignored); 4503 return getConstantFP(FPV, DL, VT); 4504 } 4505 } 4506 } 4507 4508 // Constant fold unary operations with a floating point constant operand. 4509 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4510 APFloat V = C->getValueAPF(); // make copy 4511 switch (Opcode) { 4512 case ISD::FNEG: 4513 V.changeSign(); 4514 return getConstantFP(V, DL, VT); 4515 case ISD::FABS: 4516 V.clearSign(); 4517 return getConstantFP(V, DL, VT); 4518 case ISD::FCEIL: { 4519 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4520 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4521 return getConstantFP(V, DL, VT); 4522 break; 4523 } 4524 case ISD::FTRUNC: { 4525 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4526 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4527 return getConstantFP(V, DL, VT); 4528 break; 4529 } 4530 case ISD::FFLOOR: { 4531 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4532 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4533 return getConstantFP(V, DL, VT); 4534 break; 4535 } 4536 case ISD::FP_EXTEND: { 4537 bool ignored; 4538 // This can return overflow, underflow, or inexact; we don't care. 4539 // FIXME need to be more flexible about rounding mode. 4540 (void)V.convert(EVTToAPFloatSemantics(VT), 4541 APFloat::rmNearestTiesToEven, &ignored); 4542 return getConstantFP(V, DL, VT); 4543 } 4544 case ISD::FP_TO_SINT: 4545 case ISD::FP_TO_UINT: { 4546 bool ignored; 4547 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4548 // FIXME need to be more flexible about rounding mode. 4549 APFloat::opStatus s = 4550 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4551 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4552 break; 4553 return getConstant(IntVal, DL, VT); 4554 } 4555 case ISD::BITCAST: 4556 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4557 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4558 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4559 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4560 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4561 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4562 break; 4563 case ISD::FP_TO_FP16: { 4564 bool Ignored; 4565 // This can return overflow, underflow, or inexact; we don't care. 4566 // FIXME need to be more flexible about rounding mode. 4567 (void)V.convert(APFloat::IEEEhalf(), 4568 APFloat::rmNearestTiesToEven, &Ignored); 4569 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4570 } 4571 } 4572 } 4573 4574 // Constant fold unary operations with a vector integer or float operand. 4575 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4576 if (BV->isConstant()) { 4577 switch (Opcode) { 4578 default: 4579 // FIXME: Entirely reasonable to perform folding of other unary 4580 // operations here as the need arises. 4581 break; 4582 case ISD::FNEG: 4583 case ISD::FABS: 4584 case ISD::FCEIL: 4585 case ISD::FTRUNC: 4586 case ISD::FFLOOR: 4587 case ISD::FP_EXTEND: 4588 case ISD::FP_TO_SINT: 4589 case ISD::FP_TO_UINT: 4590 case ISD::TRUNCATE: 4591 case ISD::ANY_EXTEND: 4592 case ISD::ZERO_EXTEND: 4593 case ISD::SIGN_EXTEND: 4594 case ISD::UINT_TO_FP: 4595 case ISD::SINT_TO_FP: 4596 case ISD::ABS: 4597 case ISD::BITREVERSE: 4598 case ISD::BSWAP: 4599 case ISD::CTLZ: 4600 case ISD::CTLZ_ZERO_UNDEF: 4601 case ISD::CTTZ: 4602 case ISD::CTTZ_ZERO_UNDEF: 4603 case ISD::CTPOP: { 4604 SDValue Ops = { Operand }; 4605 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4606 return Fold; 4607 } 4608 } 4609 } 4610 } 4611 4612 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4613 switch (Opcode) { 4614 case ISD::FREEZE: 4615 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4616 break; 4617 case ISD::TokenFactor: 4618 case ISD::MERGE_VALUES: 4619 case ISD::CONCAT_VECTORS: 4620 return Operand; // Factor, merge or concat of one node? No need. 4621 case ISD::BUILD_VECTOR: { 4622 // Attempt to simplify BUILD_VECTOR. 4623 SDValue Ops[] = {Operand}; 4624 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4625 return V; 4626 break; 4627 } 4628 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4629 case ISD::FP_EXTEND: 4630 assert(VT.isFloatingPoint() && 4631 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4632 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4633 assert((!VT.isVector() || 4634 VT.getVectorNumElements() == 4635 Operand.getValueType().getVectorNumElements()) && 4636 "Vector element count mismatch!"); 4637 assert(Operand.getValueType().bitsLT(VT) && 4638 "Invalid fpext node, dst < src!"); 4639 if (Operand.isUndef()) 4640 return getUNDEF(VT); 4641 break; 4642 case ISD::FP_TO_SINT: 4643 case ISD::FP_TO_UINT: 4644 if (Operand.isUndef()) 4645 return getUNDEF(VT); 4646 break; 4647 case ISD::SINT_TO_FP: 4648 case ISD::UINT_TO_FP: 4649 // [us]itofp(undef) = 0, because the result value is bounded. 4650 if (Operand.isUndef()) 4651 return getConstantFP(0.0, DL, VT); 4652 break; 4653 case ISD::SIGN_EXTEND: 4654 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4655 "Invalid SIGN_EXTEND!"); 4656 assert(VT.isVector() == Operand.getValueType().isVector() && 4657 "SIGN_EXTEND result type type should be vector iff the operand " 4658 "type is vector!"); 4659 if (Operand.getValueType() == VT) return Operand; // noop extension 4660 assert((!VT.isVector() || 4661 VT.getVectorElementCount() == 4662 Operand.getValueType().getVectorElementCount()) && 4663 "Vector element count mismatch!"); 4664 assert(Operand.getValueType().bitsLT(VT) && 4665 "Invalid sext node, dst < src!"); 4666 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4667 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4668 else if (OpOpcode == ISD::UNDEF) 4669 // sext(undef) = 0, because the top bits will all be the same. 4670 return getConstant(0, DL, VT); 4671 break; 4672 case ISD::ZERO_EXTEND: 4673 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4674 "Invalid ZERO_EXTEND!"); 4675 assert(VT.isVector() == Operand.getValueType().isVector() && 4676 "ZERO_EXTEND result type type should be vector iff the operand " 4677 "type is vector!"); 4678 if (Operand.getValueType() == VT) return Operand; // noop extension 4679 assert((!VT.isVector() || 4680 VT.getVectorElementCount() == 4681 Operand.getValueType().getVectorElementCount()) && 4682 "Vector element count mismatch!"); 4683 assert(Operand.getValueType().bitsLT(VT) && 4684 "Invalid zext node, dst < src!"); 4685 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4686 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4687 else if (OpOpcode == ISD::UNDEF) 4688 // zext(undef) = 0, because the top bits will be zero. 4689 return getConstant(0, DL, VT); 4690 break; 4691 case ISD::ANY_EXTEND: 4692 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4693 "Invalid ANY_EXTEND!"); 4694 assert(VT.isVector() == Operand.getValueType().isVector() && 4695 "ANY_EXTEND result type type should be vector iff the operand " 4696 "type is vector!"); 4697 if (Operand.getValueType() == VT) return Operand; // noop extension 4698 assert((!VT.isVector() || 4699 VT.getVectorElementCount() == 4700 Operand.getValueType().getVectorElementCount()) && 4701 "Vector element count mismatch!"); 4702 assert(Operand.getValueType().bitsLT(VT) && 4703 "Invalid anyext node, dst < src!"); 4704 4705 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4706 OpOpcode == ISD::ANY_EXTEND) 4707 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4708 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4709 else if (OpOpcode == ISD::UNDEF) 4710 return getUNDEF(VT); 4711 4712 // (ext (trunc x)) -> x 4713 if (OpOpcode == ISD::TRUNCATE) { 4714 SDValue OpOp = Operand.getOperand(0); 4715 if (OpOp.getValueType() == VT) { 4716 transferDbgValues(Operand, OpOp); 4717 return OpOp; 4718 } 4719 } 4720 break; 4721 case ISD::TRUNCATE: 4722 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4723 "Invalid TRUNCATE!"); 4724 assert(VT.isVector() == Operand.getValueType().isVector() && 4725 "TRUNCATE result type type should be vector iff the operand " 4726 "type is vector!"); 4727 if (Operand.getValueType() == VT) return Operand; // noop truncate 4728 assert((!VT.isVector() || 4729 VT.getVectorElementCount() == 4730 Operand.getValueType().getVectorElementCount()) && 4731 "Vector element count mismatch!"); 4732 assert(Operand.getValueType().bitsGT(VT) && 4733 "Invalid truncate node, src < dst!"); 4734 if (OpOpcode == ISD::TRUNCATE) 4735 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4736 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4737 OpOpcode == ISD::ANY_EXTEND) { 4738 // If the source is smaller than the dest, we still need an extend. 4739 if (Operand.getOperand(0).getValueType().getScalarType() 4740 .bitsLT(VT.getScalarType())) 4741 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4742 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4743 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4744 return Operand.getOperand(0); 4745 } 4746 if (OpOpcode == ISD::UNDEF) 4747 return getUNDEF(VT); 4748 break; 4749 case ISD::ANY_EXTEND_VECTOR_INREG: 4750 case ISD::ZERO_EXTEND_VECTOR_INREG: 4751 case ISD::SIGN_EXTEND_VECTOR_INREG: 4752 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4753 assert(Operand.getValueType().bitsLE(VT) && 4754 "The input must be the same size or smaller than the result."); 4755 assert(VT.getVectorNumElements() < 4756 Operand.getValueType().getVectorNumElements() && 4757 "The destination vector type must have fewer lanes than the input."); 4758 break; 4759 case ISD::ABS: 4760 assert(VT.isInteger() && VT == Operand.getValueType() && 4761 "Invalid ABS!"); 4762 if (OpOpcode == ISD::UNDEF) 4763 return getUNDEF(VT); 4764 break; 4765 case ISD::BSWAP: 4766 assert(VT.isInteger() && VT == Operand.getValueType() && 4767 "Invalid BSWAP!"); 4768 assert((VT.getScalarSizeInBits() % 16 == 0) && 4769 "BSWAP types must be a multiple of 16 bits!"); 4770 if (OpOpcode == ISD::UNDEF) 4771 return getUNDEF(VT); 4772 break; 4773 case ISD::BITREVERSE: 4774 assert(VT.isInteger() && VT == Operand.getValueType() && 4775 "Invalid BITREVERSE!"); 4776 if (OpOpcode == ISD::UNDEF) 4777 return getUNDEF(VT); 4778 break; 4779 case ISD::BITCAST: 4780 // Basic sanity checking. 4781 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4782 "Cannot BITCAST between types of different sizes!"); 4783 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4784 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4785 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4786 if (OpOpcode == ISD::UNDEF) 4787 return getUNDEF(VT); 4788 break; 4789 case ISD::SCALAR_TO_VECTOR: 4790 assert(VT.isVector() && !Operand.getValueType().isVector() && 4791 (VT.getVectorElementType() == Operand.getValueType() || 4792 (VT.getVectorElementType().isInteger() && 4793 Operand.getValueType().isInteger() && 4794 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4795 "Illegal SCALAR_TO_VECTOR node!"); 4796 if (OpOpcode == ISD::UNDEF) 4797 return getUNDEF(VT); 4798 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4799 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4800 isa<ConstantSDNode>(Operand.getOperand(1)) && 4801 Operand.getConstantOperandVal(1) == 0 && 4802 Operand.getOperand(0).getValueType() == VT) 4803 return Operand.getOperand(0); 4804 break; 4805 case ISD::FNEG: 4806 // Negation of an unknown bag of bits is still completely undefined. 4807 if (OpOpcode == ISD::UNDEF) 4808 return getUNDEF(VT); 4809 4810 if (OpOpcode == ISD::FNEG) // --X -> X 4811 return Operand.getOperand(0); 4812 break; 4813 case ISD::FABS: 4814 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4815 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4816 break; 4817 case ISD::VSCALE: 4818 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4819 break; 4820 } 4821 4822 SDNode *N; 4823 SDVTList VTs = getVTList(VT); 4824 SDValue Ops[] = {Operand}; 4825 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4826 FoldingSetNodeID ID; 4827 AddNodeIDNode(ID, Opcode, VTs, Ops); 4828 void *IP = nullptr; 4829 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4830 E->intersectFlagsWith(Flags); 4831 return SDValue(E, 0); 4832 } 4833 4834 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4835 N->setFlags(Flags); 4836 createOperands(N, Ops); 4837 CSEMap.InsertNode(N, IP); 4838 } else { 4839 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4840 createOperands(N, Ops); 4841 } 4842 4843 InsertNode(N); 4844 SDValue V = SDValue(N, 0); 4845 NewSDValueDbgMsg(V, "Creating new node: ", this); 4846 return V; 4847 } 4848 4849 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4850 const APInt &C2) { 4851 switch (Opcode) { 4852 case ISD::ADD: return C1 + C2; 4853 case ISD::SUB: return C1 - C2; 4854 case ISD::MUL: return C1 * C2; 4855 case ISD::AND: return C1 & C2; 4856 case ISD::OR: return C1 | C2; 4857 case ISD::XOR: return C1 ^ C2; 4858 case ISD::SHL: return C1 << C2; 4859 case ISD::SRL: return C1.lshr(C2); 4860 case ISD::SRA: return C1.ashr(C2); 4861 case ISD::ROTL: return C1.rotl(C2); 4862 case ISD::ROTR: return C1.rotr(C2); 4863 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4864 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4865 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4866 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4867 case ISD::SADDSAT: return C1.sadd_sat(C2); 4868 case ISD::UADDSAT: return C1.uadd_sat(C2); 4869 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4870 case ISD::USUBSAT: return C1.usub_sat(C2); 4871 case ISD::UDIV: 4872 if (!C2.getBoolValue()) 4873 break; 4874 return C1.udiv(C2); 4875 case ISD::UREM: 4876 if (!C2.getBoolValue()) 4877 break; 4878 return C1.urem(C2); 4879 case ISD::SDIV: 4880 if (!C2.getBoolValue()) 4881 break; 4882 return C1.sdiv(C2); 4883 case ISD::SREM: 4884 if (!C2.getBoolValue()) 4885 break; 4886 return C1.srem(C2); 4887 } 4888 return llvm::None; 4889 } 4890 4891 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4892 const GlobalAddressSDNode *GA, 4893 const SDNode *N2) { 4894 if (GA->getOpcode() != ISD::GlobalAddress) 4895 return SDValue(); 4896 if (!TLI->isOffsetFoldingLegal(GA)) 4897 return SDValue(); 4898 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4899 if (!C2) 4900 return SDValue(); 4901 int64_t Offset = C2->getSExtValue(); 4902 switch (Opcode) { 4903 case ISD::ADD: break; 4904 case ISD::SUB: Offset = -uint64_t(Offset); break; 4905 default: return SDValue(); 4906 } 4907 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4908 GA->getOffset() + uint64_t(Offset)); 4909 } 4910 4911 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4912 switch (Opcode) { 4913 case ISD::SDIV: 4914 case ISD::UDIV: 4915 case ISD::SREM: 4916 case ISD::UREM: { 4917 // If a divisor is zero/undef or any element of a divisor vector is 4918 // zero/undef, the whole op is undef. 4919 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4920 SDValue Divisor = Ops[1]; 4921 if (Divisor.isUndef() || isNullConstant(Divisor)) 4922 return true; 4923 4924 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4925 llvm::any_of(Divisor->op_values(), 4926 [](SDValue V) { return V.isUndef() || 4927 isNullConstant(V); }); 4928 // TODO: Handle signed overflow. 4929 } 4930 // TODO: Handle oversized shifts. 4931 default: 4932 return false; 4933 } 4934 } 4935 4936 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4937 EVT VT, ArrayRef<SDValue> Ops) { 4938 // If the opcode is a target-specific ISD node, there's nothing we can 4939 // do here and the operand rules may not line up with the below, so 4940 // bail early. 4941 if (Opcode >= ISD::BUILTIN_OP_END) 4942 return SDValue(); 4943 4944 // For now, the array Ops should only contain two values. 4945 // This enforcement will be removed once this function is merged with 4946 // FoldConstantVectorArithmetic 4947 if (Ops.size() != 2) 4948 return SDValue(); 4949 4950 if (isUndef(Opcode, Ops)) 4951 return getUNDEF(VT); 4952 4953 SDNode *N1 = Ops[0].getNode(); 4954 SDNode *N2 = Ops[1].getNode(); 4955 4956 // Handle the case of two scalars. 4957 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4958 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4959 if (C1->isOpaque() || C2->isOpaque()) 4960 return SDValue(); 4961 4962 Optional<APInt> FoldAttempt = 4963 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4964 if (!FoldAttempt) 4965 return SDValue(); 4966 4967 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4968 assert((!Folded || !VT.isVector()) && 4969 "Can't fold vectors ops with scalar operands"); 4970 return Folded; 4971 } 4972 } 4973 4974 // fold (add Sym, c) -> Sym+c 4975 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4976 return FoldSymbolOffset(Opcode, VT, GA, N2); 4977 if (TLI->isCommutativeBinOp(Opcode)) 4978 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4979 return FoldSymbolOffset(Opcode, VT, GA, N1); 4980 4981 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4982 // vector width, however we should be able to do constant folds involving 4983 // splat vector nodes too. 4984 if (VT.isScalableVector()) 4985 return SDValue(); 4986 4987 // For fixed width vectors, extract each constant element and fold them 4988 // individually. Either input may be an undef value. 4989 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4990 if (!BV1 && !N1->isUndef()) 4991 return SDValue(); 4992 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4993 if (!BV2 && !N2->isUndef()) 4994 return SDValue(); 4995 // If both operands are undef, that's handled the same way as scalars. 4996 if (!BV1 && !BV2) 4997 return SDValue(); 4998 4999 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 5000 "Vector binop with different number of elements in operands?"); 5001 5002 EVT SVT = VT.getScalarType(); 5003 EVT LegalSVT = SVT; 5004 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5005 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5006 if (LegalSVT.bitsLT(SVT)) 5007 return SDValue(); 5008 } 5009 SmallVector<SDValue, 4> Outputs; 5010 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5011 for (unsigned I = 0; I != NumOps; ++I) { 5012 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5013 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5014 if (SVT.isInteger()) { 5015 if (V1->getValueType(0).bitsGT(SVT)) 5016 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5017 if (V2->getValueType(0).bitsGT(SVT)) 5018 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5019 } 5020 5021 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5022 return SDValue(); 5023 5024 // Fold one vector element. 5025 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5026 if (LegalSVT != SVT) 5027 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5028 5029 // Scalar folding only succeeded if the result is a constant or UNDEF. 5030 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5031 ScalarResult.getOpcode() != ISD::ConstantFP) 5032 return SDValue(); 5033 Outputs.push_back(ScalarResult); 5034 } 5035 5036 assert(VT.getVectorNumElements() == Outputs.size() && 5037 "Vector size mismatch!"); 5038 5039 // We may have a vector type but a scalar result. Create a splat. 5040 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5041 5042 // Build a big vector out of the scalar elements we generated. 5043 return getBuildVector(VT, SDLoc(), Outputs); 5044 } 5045 5046 // TODO: Merge with FoldConstantArithmetic 5047 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5048 const SDLoc &DL, EVT VT, 5049 ArrayRef<SDValue> Ops, 5050 const SDNodeFlags Flags) { 5051 // If the opcode is a target-specific ISD node, there's nothing we can 5052 // do here and the operand rules may not line up with the below, so 5053 // bail early. 5054 if (Opcode >= ISD::BUILTIN_OP_END) 5055 return SDValue(); 5056 5057 if (isUndef(Opcode, Ops)) 5058 return getUNDEF(VT); 5059 5060 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5061 if (!VT.isVector()) 5062 return SDValue(); 5063 5064 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5065 // vector width, however we should be able to do constant folds involving 5066 // splat vector nodes too. 5067 if (VT.isScalableVector()) 5068 return SDValue(); 5069 5070 // From this point onwards all vectors are assumed to be fixed width. 5071 unsigned NumElts = VT.getVectorNumElements(); 5072 5073 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5074 return !Op.getValueType().isVector() || 5075 Op.getValueType().getVectorNumElements() == NumElts; 5076 }; 5077 5078 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5079 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5080 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5081 (BV && BV->isConstant()); 5082 }; 5083 5084 // All operands must be vector types with the same number of elements as 5085 // the result type and must be either UNDEF or a build vector of constant 5086 // or UNDEF scalars. 5087 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5088 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5089 return SDValue(); 5090 5091 // If we are comparing vectors, then the result needs to be a i1 boolean 5092 // that is then sign-extended back to the legal result type. 5093 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5094 5095 // Find legal integer scalar type for constant promotion and 5096 // ensure that its scalar size is at least as large as source. 5097 EVT LegalSVT = VT.getScalarType(); 5098 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5099 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5100 if (LegalSVT.bitsLT(VT.getScalarType())) 5101 return SDValue(); 5102 } 5103 5104 // Constant fold each scalar lane separately. 5105 SmallVector<SDValue, 4> ScalarResults; 5106 for (unsigned i = 0; i != NumElts; i++) { 5107 SmallVector<SDValue, 4> ScalarOps; 5108 for (SDValue Op : Ops) { 5109 EVT InSVT = Op.getValueType().getScalarType(); 5110 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5111 if (!InBV) { 5112 // We've checked that this is UNDEF or a constant of some kind. 5113 if (Op.isUndef()) 5114 ScalarOps.push_back(getUNDEF(InSVT)); 5115 else 5116 ScalarOps.push_back(Op); 5117 continue; 5118 } 5119 5120 SDValue ScalarOp = InBV->getOperand(i); 5121 EVT ScalarVT = ScalarOp.getValueType(); 5122 5123 // Build vector (integer) scalar operands may need implicit 5124 // truncation - do this before constant folding. 5125 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5126 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5127 5128 ScalarOps.push_back(ScalarOp); 5129 } 5130 5131 // Constant fold the scalar operands. 5132 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5133 5134 // Legalize the (integer) scalar constant if necessary. 5135 if (LegalSVT != SVT) 5136 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5137 5138 // Scalar folding only succeeded if the result is a constant or UNDEF. 5139 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5140 ScalarResult.getOpcode() != ISD::ConstantFP) 5141 return SDValue(); 5142 ScalarResults.push_back(ScalarResult); 5143 } 5144 5145 SDValue V = getBuildVector(VT, DL, ScalarResults); 5146 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5147 return V; 5148 } 5149 5150 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5151 EVT VT, SDValue N1, SDValue N2) { 5152 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5153 // should. That will require dealing with a potentially non-default 5154 // rounding mode, checking the "opStatus" return value from the APFloat 5155 // math calculations, and possibly other variations. 5156 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5157 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5158 if (N1CFP && N2CFP) { 5159 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5160 switch (Opcode) { 5161 case ISD::FADD: 5162 C1.add(C2, APFloat::rmNearestTiesToEven); 5163 return getConstantFP(C1, DL, VT); 5164 case ISD::FSUB: 5165 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5166 return getConstantFP(C1, DL, VT); 5167 case ISD::FMUL: 5168 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5169 return getConstantFP(C1, DL, VT); 5170 case ISD::FDIV: 5171 C1.divide(C2, APFloat::rmNearestTiesToEven); 5172 return getConstantFP(C1, DL, VT); 5173 case ISD::FREM: 5174 C1.mod(C2); 5175 return getConstantFP(C1, DL, VT); 5176 case ISD::FCOPYSIGN: 5177 C1.copySign(C2); 5178 return getConstantFP(C1, DL, VT); 5179 default: break; 5180 } 5181 } 5182 if (N1CFP && Opcode == ISD::FP_ROUND) { 5183 APFloat C1 = N1CFP->getValueAPF(); // make copy 5184 bool Unused; 5185 // This can return overflow, underflow, or inexact; we don't care. 5186 // FIXME need to be more flexible about rounding mode. 5187 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5188 &Unused); 5189 return getConstantFP(C1, DL, VT); 5190 } 5191 5192 switch (Opcode) { 5193 case ISD::FSUB: 5194 // -0.0 - undef --> undef (consistent with "fneg undef") 5195 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5196 return getUNDEF(VT); 5197 LLVM_FALLTHROUGH; 5198 5199 case ISD::FADD: 5200 case ISD::FMUL: 5201 case ISD::FDIV: 5202 case ISD::FREM: 5203 // If both operands are undef, the result is undef. If 1 operand is undef, 5204 // the result is NaN. This should match the behavior of the IR optimizer. 5205 if (N1.isUndef() && N2.isUndef()) 5206 return getUNDEF(VT); 5207 if (N1.isUndef() || N2.isUndef()) 5208 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5209 } 5210 return SDValue(); 5211 } 5212 5213 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5214 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5215 5216 // There's no need to assert on a byte-aligned pointer. All pointers are at 5217 // least byte aligned. 5218 if (A == Align(1)) 5219 return Val; 5220 5221 FoldingSetNodeID ID; 5222 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5223 ID.AddInteger(A.value()); 5224 5225 void *IP = nullptr; 5226 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5227 return SDValue(E, 0); 5228 5229 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5230 Val.getValueType(), A); 5231 createOperands(N, {Val}); 5232 5233 CSEMap.InsertNode(N, IP); 5234 InsertNode(N); 5235 5236 SDValue V(N, 0); 5237 NewSDValueDbgMsg(V, "Creating new node: ", this); 5238 return V; 5239 } 5240 5241 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5242 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5243 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5244 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5245 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5246 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5247 5248 // Canonicalize constant to RHS if commutative. 5249 if (TLI->isCommutativeBinOp(Opcode)) { 5250 if (N1C && !N2C) { 5251 std::swap(N1C, N2C); 5252 std::swap(N1, N2); 5253 } else if (N1CFP && !N2CFP) { 5254 std::swap(N1CFP, N2CFP); 5255 std::swap(N1, N2); 5256 } 5257 } 5258 5259 switch (Opcode) { 5260 default: break; 5261 case ISD::TokenFactor: 5262 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5263 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5264 // Fold trivial token factors. 5265 if (N1.getOpcode() == ISD::EntryToken) return N2; 5266 if (N2.getOpcode() == ISD::EntryToken) return N1; 5267 if (N1 == N2) return N1; 5268 break; 5269 case ISD::BUILD_VECTOR: { 5270 // Attempt to simplify BUILD_VECTOR. 5271 SDValue Ops[] = {N1, N2}; 5272 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5273 return V; 5274 break; 5275 } 5276 case ISD::CONCAT_VECTORS: { 5277 SDValue Ops[] = {N1, N2}; 5278 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5279 return V; 5280 break; 5281 } 5282 case ISD::AND: 5283 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5284 assert(N1.getValueType() == N2.getValueType() && 5285 N1.getValueType() == VT && "Binary operator types must match!"); 5286 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5287 // worth handling here. 5288 if (N2C && N2C->isNullValue()) 5289 return N2; 5290 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5291 return N1; 5292 break; 5293 case ISD::OR: 5294 case ISD::XOR: 5295 case ISD::ADD: 5296 case ISD::SUB: 5297 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5298 assert(N1.getValueType() == N2.getValueType() && 5299 N1.getValueType() == VT && "Binary operator types must match!"); 5300 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5301 // it's worth handling here. 5302 if (N2C && N2C->isNullValue()) 5303 return N1; 5304 break; 5305 case ISD::MUL: 5306 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5307 assert(N1.getValueType() == N2.getValueType() && 5308 N1.getValueType() == VT && "Binary operator types must match!"); 5309 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5310 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5311 APInt N2CImm = N2C->getAPIntValue(); 5312 return getVScale(DL, VT, MulImm * N2CImm); 5313 } 5314 break; 5315 case ISD::UDIV: 5316 case ISD::UREM: 5317 case ISD::MULHU: 5318 case ISD::MULHS: 5319 case ISD::SDIV: 5320 case ISD::SREM: 5321 case ISD::SMIN: 5322 case ISD::SMAX: 5323 case ISD::UMIN: 5324 case ISD::UMAX: 5325 case ISD::SADDSAT: 5326 case ISD::SSUBSAT: 5327 case ISD::UADDSAT: 5328 case ISD::USUBSAT: 5329 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5330 assert(N1.getValueType() == N2.getValueType() && 5331 N1.getValueType() == VT && "Binary operator types must match!"); 5332 break; 5333 case ISD::FADD: 5334 case ISD::FSUB: 5335 case ISD::FMUL: 5336 case ISD::FDIV: 5337 case ISD::FREM: 5338 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5339 assert(N1.getValueType() == N2.getValueType() && 5340 N1.getValueType() == VT && "Binary operator types must match!"); 5341 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5342 return V; 5343 break; 5344 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5345 assert(N1.getValueType() == VT && 5346 N1.getValueType().isFloatingPoint() && 5347 N2.getValueType().isFloatingPoint() && 5348 "Invalid FCOPYSIGN!"); 5349 break; 5350 case ISD::SHL: 5351 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5352 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5353 APInt ShiftImm = N2C->getAPIntValue(); 5354 return getVScale(DL, VT, MulImm << ShiftImm); 5355 } 5356 LLVM_FALLTHROUGH; 5357 case ISD::SRA: 5358 case ISD::SRL: 5359 if (SDValue V = simplifyShift(N1, N2)) 5360 return V; 5361 LLVM_FALLTHROUGH; 5362 case ISD::ROTL: 5363 case ISD::ROTR: 5364 assert(VT == N1.getValueType() && 5365 "Shift operators return type must be the same as their first arg"); 5366 assert(VT.isInteger() && N2.getValueType().isInteger() && 5367 "Shifts only work on integers"); 5368 assert((!VT.isVector() || VT == N2.getValueType()) && 5369 "Vector shift amounts must be in the same as their first arg"); 5370 // Verify that the shift amount VT is big enough to hold valid shift 5371 // amounts. This catches things like trying to shift an i1024 value by an 5372 // i8, which is easy to fall into in generic code that uses 5373 // TLI.getShiftAmount(). 5374 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5375 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5376 "Invalid use of small shift amount with oversized value!"); 5377 5378 // Always fold shifts of i1 values so the code generator doesn't need to 5379 // handle them. Since we know the size of the shift has to be less than the 5380 // size of the value, the shift/rotate count is guaranteed to be zero. 5381 if (VT == MVT::i1) 5382 return N1; 5383 if (N2C && N2C->isNullValue()) 5384 return N1; 5385 break; 5386 case ISD::FP_ROUND: 5387 assert(VT.isFloatingPoint() && 5388 N1.getValueType().isFloatingPoint() && 5389 VT.bitsLE(N1.getValueType()) && 5390 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5391 "Invalid FP_ROUND!"); 5392 if (N1.getValueType() == VT) return N1; // noop conversion. 5393 break; 5394 case ISD::AssertSext: 5395 case ISD::AssertZext: { 5396 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5397 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5398 assert(VT.isInteger() && EVT.isInteger() && 5399 "Cannot *_EXTEND_INREG FP types"); 5400 assert(!EVT.isVector() && 5401 "AssertSExt/AssertZExt type should be the vector element type " 5402 "rather than the vector type!"); 5403 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5404 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5405 break; 5406 } 5407 case ISD::SIGN_EXTEND_INREG: { 5408 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5409 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5410 assert(VT.isInteger() && EVT.isInteger() && 5411 "Cannot *_EXTEND_INREG FP types"); 5412 assert(EVT.isVector() == VT.isVector() && 5413 "SIGN_EXTEND_INREG type should be vector iff the operand " 5414 "type is vector!"); 5415 assert((!EVT.isVector() || 5416 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5417 "Vector element counts must match in SIGN_EXTEND_INREG"); 5418 assert(EVT.bitsLE(VT) && "Not extending!"); 5419 if (EVT == VT) return N1; // Not actually extending 5420 5421 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5422 unsigned FromBits = EVT.getScalarSizeInBits(); 5423 Val <<= Val.getBitWidth() - FromBits; 5424 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5425 return getConstant(Val, DL, ConstantVT); 5426 }; 5427 5428 if (N1C) { 5429 const APInt &Val = N1C->getAPIntValue(); 5430 return SignExtendInReg(Val, VT); 5431 } 5432 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5433 SmallVector<SDValue, 8> Ops; 5434 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5435 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5436 SDValue Op = N1.getOperand(i); 5437 if (Op.isUndef()) { 5438 Ops.push_back(getUNDEF(OpVT)); 5439 continue; 5440 } 5441 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5442 APInt Val = C->getAPIntValue(); 5443 Ops.push_back(SignExtendInReg(Val, OpVT)); 5444 } 5445 return getBuildVector(VT, DL, Ops); 5446 } 5447 break; 5448 } 5449 case ISD::EXTRACT_VECTOR_ELT: 5450 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5451 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5452 element type of the vector."); 5453 5454 // Extract from an undefined value or using an undefined index is undefined. 5455 if (N1.isUndef() || N2.isUndef()) 5456 return getUNDEF(VT); 5457 5458 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5459 // vectors. For scalable vectors we will provide appropriate support for 5460 // dealing with arbitrary indices. 5461 if (N2C && N1.getValueType().isFixedLengthVector() && 5462 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5463 return getUNDEF(VT); 5464 5465 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5466 // expanding copies of large vectors from registers. This only works for 5467 // fixed length vectors, since we need to know the exact number of 5468 // elements. 5469 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5470 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5471 unsigned Factor = 5472 N1.getOperand(0).getValueType().getVectorNumElements(); 5473 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5474 N1.getOperand(N2C->getZExtValue() / Factor), 5475 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5476 } 5477 5478 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5479 // lowering is expanding large vector constants. 5480 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5481 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5482 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5483 N1.getValueType().isFixedLengthVector()) && 5484 "BUILD_VECTOR used for scalable vectors"); 5485 unsigned Index = 5486 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5487 SDValue Elt = N1.getOperand(Index); 5488 5489 if (VT != Elt.getValueType()) 5490 // If the vector element type is not legal, the BUILD_VECTOR operands 5491 // are promoted and implicitly truncated, and the result implicitly 5492 // extended. Make that explicit here. 5493 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5494 5495 return Elt; 5496 } 5497 5498 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5499 // operations are lowered to scalars. 5500 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5501 // If the indices are the same, return the inserted element else 5502 // if the indices are known different, extract the element from 5503 // the original vector. 5504 SDValue N1Op2 = N1.getOperand(2); 5505 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5506 5507 if (N1Op2C && N2C) { 5508 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5509 if (VT == N1.getOperand(1).getValueType()) 5510 return N1.getOperand(1); 5511 else 5512 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5513 } 5514 5515 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5516 } 5517 } 5518 5519 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5520 // when vector types are scalarized and v1iX is legal. 5521 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5522 // Here we are completely ignoring the extract element index (N2), 5523 // which is fine for fixed width vectors, since any index other than 0 5524 // is undefined anyway. However, this cannot be ignored for scalable 5525 // vectors - in theory we could support this, but we don't want to do this 5526 // without a profitability check. 5527 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5528 N1.getValueType().isFixedLengthVector() && 5529 N1.getValueType().getVectorNumElements() == 1) { 5530 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5531 N1.getOperand(1)); 5532 } 5533 break; 5534 case ISD::EXTRACT_ELEMENT: 5535 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5536 assert(!N1.getValueType().isVector() && !VT.isVector() && 5537 (N1.getValueType().isInteger() == VT.isInteger()) && 5538 N1.getValueType() != VT && 5539 "Wrong types for EXTRACT_ELEMENT!"); 5540 5541 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5542 // 64-bit integers into 32-bit parts. Instead of building the extract of 5543 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5544 if (N1.getOpcode() == ISD::BUILD_PAIR) 5545 return N1.getOperand(N2C->getZExtValue()); 5546 5547 // EXTRACT_ELEMENT of a constant int is also very common. 5548 if (N1C) { 5549 unsigned ElementSize = VT.getSizeInBits(); 5550 unsigned Shift = ElementSize * N2C->getZExtValue(); 5551 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5552 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5553 } 5554 break; 5555 case ISD::EXTRACT_SUBVECTOR: 5556 EVT N1VT = N1.getValueType(); 5557 assert(VT.isVector() && N1VT.isVector() && 5558 "Extract subvector VTs must be vectors!"); 5559 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5560 "Extract subvector VTs must have the same element type!"); 5561 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5562 "Cannot extract a scalable vector from a fixed length vector!"); 5563 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5564 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5565 "Extract subvector must be from larger vector to smaller vector!"); 5566 assert(N2C && "Extract subvector index must be a constant"); 5567 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5568 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5569 N1VT.getVectorMinNumElements()) && 5570 "Extract subvector overflow!"); 5571 5572 // Trivial extraction. 5573 if (VT == N1VT) 5574 return N1; 5575 5576 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5577 if (N1.isUndef()) 5578 return getUNDEF(VT); 5579 5580 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5581 // the concat have the same type as the extract. 5582 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5583 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5584 unsigned Factor = VT.getVectorMinNumElements(); 5585 return N1.getOperand(N2C->getZExtValue() / Factor); 5586 } 5587 5588 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5589 // during shuffle legalization. 5590 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5591 VT == N1.getOperand(1).getValueType()) 5592 return N1.getOperand(1); 5593 break; 5594 } 5595 5596 // Perform trivial constant folding. 5597 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5598 return SV; 5599 5600 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5601 return V; 5602 5603 // Canonicalize an UNDEF to the RHS, even over a constant. 5604 if (N1.isUndef()) { 5605 if (TLI->isCommutativeBinOp(Opcode)) { 5606 std::swap(N1, N2); 5607 } else { 5608 switch (Opcode) { 5609 case ISD::SIGN_EXTEND_INREG: 5610 case ISD::SUB: 5611 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5612 case ISD::UDIV: 5613 case ISD::SDIV: 5614 case ISD::UREM: 5615 case ISD::SREM: 5616 case ISD::SSUBSAT: 5617 case ISD::USUBSAT: 5618 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5619 } 5620 } 5621 } 5622 5623 // Fold a bunch of operators when the RHS is undef. 5624 if (N2.isUndef()) { 5625 switch (Opcode) { 5626 case ISD::XOR: 5627 if (N1.isUndef()) 5628 // Handle undef ^ undef -> 0 special case. This is a common 5629 // idiom (misuse). 5630 return getConstant(0, DL, VT); 5631 LLVM_FALLTHROUGH; 5632 case ISD::ADD: 5633 case ISD::SUB: 5634 case ISD::UDIV: 5635 case ISD::SDIV: 5636 case ISD::UREM: 5637 case ISD::SREM: 5638 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5639 case ISD::MUL: 5640 case ISD::AND: 5641 case ISD::SSUBSAT: 5642 case ISD::USUBSAT: 5643 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5644 case ISD::OR: 5645 case ISD::SADDSAT: 5646 case ISD::UADDSAT: 5647 return getAllOnesConstant(DL, VT); 5648 } 5649 } 5650 5651 // Memoize this node if possible. 5652 SDNode *N; 5653 SDVTList VTs = getVTList(VT); 5654 SDValue Ops[] = {N1, N2}; 5655 if (VT != MVT::Glue) { 5656 FoldingSetNodeID ID; 5657 AddNodeIDNode(ID, Opcode, VTs, Ops); 5658 void *IP = nullptr; 5659 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5660 E->intersectFlagsWith(Flags); 5661 return SDValue(E, 0); 5662 } 5663 5664 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5665 N->setFlags(Flags); 5666 createOperands(N, Ops); 5667 CSEMap.InsertNode(N, IP); 5668 } else { 5669 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5670 createOperands(N, Ops); 5671 } 5672 5673 InsertNode(N); 5674 SDValue V = SDValue(N, 0); 5675 NewSDValueDbgMsg(V, "Creating new node: ", this); 5676 return V; 5677 } 5678 5679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5680 SDValue N1, SDValue N2, SDValue N3, 5681 const SDNodeFlags Flags) { 5682 // Perform various simplifications. 5683 switch (Opcode) { 5684 case ISD::FMA: { 5685 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5686 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5687 N3.getValueType() == VT && "FMA types must match!"); 5688 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5689 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5690 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5691 if (N1CFP && N2CFP && N3CFP) { 5692 APFloat V1 = N1CFP->getValueAPF(); 5693 const APFloat &V2 = N2CFP->getValueAPF(); 5694 const APFloat &V3 = N3CFP->getValueAPF(); 5695 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5696 return getConstantFP(V1, DL, VT); 5697 } 5698 break; 5699 } 5700 case ISD::BUILD_VECTOR: { 5701 // Attempt to simplify BUILD_VECTOR. 5702 SDValue Ops[] = {N1, N2, N3}; 5703 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5704 return V; 5705 break; 5706 } 5707 case ISD::CONCAT_VECTORS: { 5708 SDValue Ops[] = {N1, N2, N3}; 5709 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5710 return V; 5711 break; 5712 } 5713 case ISD::SETCC: { 5714 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5715 assert(N1.getValueType() == N2.getValueType() && 5716 "SETCC operands must have the same type!"); 5717 assert(VT.isVector() == N1.getValueType().isVector() && 5718 "SETCC type should be vector iff the operand type is vector!"); 5719 assert((!VT.isVector() || VT.getVectorElementCount() == 5720 N1.getValueType().getVectorElementCount()) && 5721 "SETCC vector element counts must match!"); 5722 // Use FoldSetCC to simplify SETCC's. 5723 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5724 return V; 5725 // Vector constant folding. 5726 SDValue Ops[] = {N1, N2, N3}; 5727 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5728 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5729 return V; 5730 } 5731 break; 5732 } 5733 case ISD::SELECT: 5734 case ISD::VSELECT: 5735 if (SDValue V = simplifySelect(N1, N2, N3)) 5736 return V; 5737 break; 5738 case ISD::VECTOR_SHUFFLE: 5739 llvm_unreachable("should use getVectorShuffle constructor!"); 5740 case ISD::INSERT_VECTOR_ELT: { 5741 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5742 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5743 // for scalable vectors where we will generate appropriate code to 5744 // deal with out-of-bounds cases correctly. 5745 if (N3C && N1.getValueType().isFixedLengthVector() && 5746 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5747 return getUNDEF(VT); 5748 5749 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5750 if (N3.isUndef()) 5751 return getUNDEF(VT); 5752 5753 // If the inserted element is an UNDEF, just use the input vector. 5754 if (N2.isUndef()) 5755 return N1; 5756 5757 break; 5758 } 5759 case ISD::INSERT_SUBVECTOR: { 5760 // Inserting undef into undef is still undef. 5761 if (N1.isUndef() && N2.isUndef()) 5762 return getUNDEF(VT); 5763 5764 EVT N2VT = N2.getValueType(); 5765 assert(VT == N1.getValueType() && 5766 "Dest and insert subvector source types must match!"); 5767 assert(VT.isVector() && N2VT.isVector() && 5768 "Insert subvector VTs must be vectors!"); 5769 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5770 "Cannot insert a scalable vector into a fixed length vector!"); 5771 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5772 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5773 "Insert subvector must be from smaller vector to larger vector!"); 5774 assert(isa<ConstantSDNode>(N3) && 5775 "Insert subvector index must be constant"); 5776 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5777 (N2VT.getVectorMinNumElements() + 5778 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5779 VT.getVectorMinNumElements()) && 5780 "Insert subvector overflow!"); 5781 5782 // Trivial insertion. 5783 if (VT == N2VT) 5784 return N2; 5785 5786 // If this is an insert of an extracted vector into an undef vector, we 5787 // can just use the input to the extract. 5788 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5789 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5790 return N2.getOperand(0); 5791 break; 5792 } 5793 case ISD::BITCAST: 5794 // Fold bit_convert nodes from a type to themselves. 5795 if (N1.getValueType() == VT) 5796 return N1; 5797 break; 5798 } 5799 5800 // Memoize node if it doesn't produce a flag. 5801 SDNode *N; 5802 SDVTList VTs = getVTList(VT); 5803 SDValue Ops[] = {N1, N2, N3}; 5804 if (VT != MVT::Glue) { 5805 FoldingSetNodeID ID; 5806 AddNodeIDNode(ID, Opcode, VTs, Ops); 5807 void *IP = nullptr; 5808 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5809 E->intersectFlagsWith(Flags); 5810 return SDValue(E, 0); 5811 } 5812 5813 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5814 N->setFlags(Flags); 5815 createOperands(N, Ops); 5816 CSEMap.InsertNode(N, IP); 5817 } else { 5818 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5819 createOperands(N, Ops); 5820 } 5821 5822 InsertNode(N); 5823 SDValue V = SDValue(N, 0); 5824 NewSDValueDbgMsg(V, "Creating new node: ", this); 5825 return V; 5826 } 5827 5828 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5829 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5830 SDValue Ops[] = { N1, N2, N3, N4 }; 5831 return getNode(Opcode, DL, VT, Ops); 5832 } 5833 5834 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5835 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5836 SDValue N5) { 5837 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5838 return getNode(Opcode, DL, VT, Ops); 5839 } 5840 5841 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5842 /// the incoming stack arguments to be loaded from the stack. 5843 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5844 SmallVector<SDValue, 8> ArgChains; 5845 5846 // Include the original chain at the beginning of the list. When this is 5847 // used by target LowerCall hooks, this helps legalize find the 5848 // CALLSEQ_BEGIN node. 5849 ArgChains.push_back(Chain); 5850 5851 // Add a chain value for each stack argument. 5852 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5853 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5854 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5855 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5856 if (FI->getIndex() < 0) 5857 ArgChains.push_back(SDValue(L, 1)); 5858 5859 // Build a tokenfactor for all the chains. 5860 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5861 } 5862 5863 /// getMemsetValue - Vectorized representation of the memset value 5864 /// operand. 5865 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5866 const SDLoc &dl) { 5867 assert(!Value.isUndef()); 5868 5869 unsigned NumBits = VT.getScalarSizeInBits(); 5870 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5871 assert(C->getAPIntValue().getBitWidth() == 8); 5872 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5873 if (VT.isInteger()) { 5874 bool IsOpaque = VT.getSizeInBits() > 64 || 5875 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5876 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5877 } 5878 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5879 VT); 5880 } 5881 5882 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5883 EVT IntVT = VT.getScalarType(); 5884 if (!IntVT.isInteger()) 5885 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5886 5887 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5888 if (NumBits > 8) { 5889 // Use a multiplication with 0x010101... to extend the input to the 5890 // required length. 5891 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5892 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5893 DAG.getConstant(Magic, dl, IntVT)); 5894 } 5895 5896 if (VT != Value.getValueType() && !VT.isInteger()) 5897 Value = DAG.getBitcast(VT.getScalarType(), Value); 5898 if (VT != Value.getValueType()) 5899 Value = DAG.getSplatBuildVector(VT, dl, Value); 5900 5901 return Value; 5902 } 5903 5904 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5905 /// used when a memcpy is turned into a memset when the source is a constant 5906 /// string ptr. 5907 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5908 const TargetLowering &TLI, 5909 const ConstantDataArraySlice &Slice) { 5910 // Handle vector with all elements zero. 5911 if (Slice.Array == nullptr) { 5912 if (VT.isInteger()) 5913 return DAG.getConstant(0, dl, VT); 5914 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5915 return DAG.getConstantFP(0.0, dl, VT); 5916 else if (VT.isVector()) { 5917 unsigned NumElts = VT.getVectorNumElements(); 5918 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5919 return DAG.getNode(ISD::BITCAST, dl, VT, 5920 DAG.getConstant(0, dl, 5921 EVT::getVectorVT(*DAG.getContext(), 5922 EltVT, NumElts))); 5923 } else 5924 llvm_unreachable("Expected type!"); 5925 } 5926 5927 assert(!VT.isVector() && "Can't handle vector type here!"); 5928 unsigned NumVTBits = VT.getSizeInBits(); 5929 unsigned NumVTBytes = NumVTBits / 8; 5930 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5931 5932 APInt Val(NumVTBits, 0); 5933 if (DAG.getDataLayout().isLittleEndian()) { 5934 for (unsigned i = 0; i != NumBytes; ++i) 5935 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5936 } else { 5937 for (unsigned i = 0; i != NumBytes; ++i) 5938 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5939 } 5940 5941 // If the "cost" of materializing the integer immediate is less than the cost 5942 // of a load, then it is cost effective to turn the load into the immediate. 5943 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5944 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5945 return DAG.getConstant(Val, dl, VT); 5946 return SDValue(nullptr, 0); 5947 } 5948 5949 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5950 const SDLoc &DL, 5951 const SDNodeFlags Flags) { 5952 EVT VT = Base.getValueType(); 5953 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5954 } 5955 5956 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5957 const SDLoc &DL, 5958 const SDNodeFlags Flags) { 5959 assert(Offset.getValueType().isInteger()); 5960 EVT BasePtrVT = Ptr.getValueType(); 5961 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5962 } 5963 5964 /// Returns true if memcpy source is constant data. 5965 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5966 uint64_t SrcDelta = 0; 5967 GlobalAddressSDNode *G = nullptr; 5968 if (Src.getOpcode() == ISD::GlobalAddress) 5969 G = cast<GlobalAddressSDNode>(Src); 5970 else if (Src.getOpcode() == ISD::ADD && 5971 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5972 Src.getOperand(1).getOpcode() == ISD::Constant) { 5973 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5974 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5975 } 5976 if (!G) 5977 return false; 5978 5979 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5980 SrcDelta + G->getOffset()); 5981 } 5982 5983 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5984 SelectionDAG &DAG) { 5985 // On Darwin, -Os means optimize for size without hurting performance, so 5986 // only really optimize for size when -Oz (MinSize) is used. 5987 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5988 return MF.getFunction().hasMinSize(); 5989 return DAG.shouldOptForSize(); 5990 } 5991 5992 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5993 SmallVector<SDValue, 32> &OutChains, unsigned From, 5994 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5995 SmallVector<SDValue, 16> &OutStoreChains) { 5996 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5997 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5998 SmallVector<SDValue, 16> GluedLoadChains; 5999 for (unsigned i = From; i < To; ++i) { 6000 OutChains.push_back(OutLoadChains[i]); 6001 GluedLoadChains.push_back(OutLoadChains[i]); 6002 } 6003 6004 // Chain for all loads. 6005 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6006 GluedLoadChains); 6007 6008 for (unsigned i = From; i < To; ++i) { 6009 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6010 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6011 ST->getBasePtr(), ST->getMemoryVT(), 6012 ST->getMemOperand()); 6013 OutChains.push_back(NewStore); 6014 } 6015 } 6016 6017 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6018 SDValue Chain, SDValue Dst, SDValue Src, 6019 uint64_t Size, Align Alignment, 6020 bool isVol, bool AlwaysInline, 6021 MachinePointerInfo DstPtrInfo, 6022 MachinePointerInfo SrcPtrInfo) { 6023 // Turn a memcpy of undef to nop. 6024 // FIXME: We need to honor volatile even is Src is undef. 6025 if (Src.isUndef()) 6026 return Chain; 6027 6028 // Expand memcpy to a series of load and store ops if the size operand falls 6029 // below a certain threshold. 6030 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6031 // rather than maybe a humongous number of loads and stores. 6032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6033 const DataLayout &DL = DAG.getDataLayout(); 6034 LLVMContext &C = *DAG.getContext(); 6035 std::vector<EVT> MemOps; 6036 bool DstAlignCanChange = false; 6037 MachineFunction &MF = DAG.getMachineFunction(); 6038 MachineFrameInfo &MFI = MF.getFrameInfo(); 6039 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6040 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6041 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6042 DstAlignCanChange = true; 6043 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6044 if (!SrcAlign || Alignment > *SrcAlign) 6045 SrcAlign = Alignment; 6046 assert(SrcAlign && "SrcAlign must be set"); 6047 ConstantDataArraySlice Slice; 6048 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 6049 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6050 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6051 const MemOp Op = isZeroConstant 6052 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6053 /*IsZeroMemset*/ true, isVol) 6054 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6055 *SrcAlign, isVol, CopyFromConstant); 6056 if (!TLI.findOptimalMemOpLowering( 6057 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6058 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6059 return SDValue(); 6060 6061 if (DstAlignCanChange) { 6062 Type *Ty = MemOps[0].getTypeForEVT(C); 6063 Align NewAlign = DL.getABITypeAlign(Ty); 6064 6065 // Don't promote to an alignment that would require dynamic stack 6066 // realignment. 6067 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6068 if (!TRI->needsStackRealignment(MF)) 6069 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6070 NewAlign = NewAlign / 2; 6071 6072 if (NewAlign > Alignment) { 6073 // Give the stack frame object a larger alignment if needed. 6074 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6075 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6076 Alignment = NewAlign; 6077 } 6078 } 6079 6080 MachineMemOperand::Flags MMOFlags = 6081 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6082 SmallVector<SDValue, 16> OutLoadChains; 6083 SmallVector<SDValue, 16> OutStoreChains; 6084 SmallVector<SDValue, 32> OutChains; 6085 unsigned NumMemOps = MemOps.size(); 6086 uint64_t SrcOff = 0, DstOff = 0; 6087 for (unsigned i = 0; i != NumMemOps; ++i) { 6088 EVT VT = MemOps[i]; 6089 unsigned VTSize = VT.getSizeInBits() / 8; 6090 SDValue Value, Store; 6091 6092 if (VTSize > Size) { 6093 // Issuing an unaligned load / store pair that overlaps with the previous 6094 // pair. Adjust the offset accordingly. 6095 assert(i == NumMemOps-1 && i != 0); 6096 SrcOff -= VTSize - Size; 6097 DstOff -= VTSize - Size; 6098 } 6099 6100 if (CopyFromConstant && 6101 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6102 // It's unlikely a store of a vector immediate can be done in a single 6103 // instruction. It would require a load from a constantpool first. 6104 // We only handle zero vectors here. 6105 // FIXME: Handle other cases where store of vector immediate is done in 6106 // a single instruction. 6107 ConstantDataArraySlice SubSlice; 6108 if (SrcOff < Slice.Length) { 6109 SubSlice = Slice; 6110 SubSlice.move(SrcOff); 6111 } else { 6112 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6113 SubSlice.Array = nullptr; 6114 SubSlice.Offset = 0; 6115 SubSlice.Length = VTSize; 6116 } 6117 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6118 if (Value.getNode()) { 6119 Store = DAG.getStore( 6120 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6121 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6122 OutChains.push_back(Store); 6123 } 6124 } 6125 6126 if (!Store.getNode()) { 6127 // The type might not be legal for the target. This should only happen 6128 // if the type is smaller than a legal type, as on PPC, so the right 6129 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6130 // to Load/Store if NVT==VT. 6131 // FIXME does the case above also need this? 6132 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6133 assert(NVT.bitsGE(VT)); 6134 6135 bool isDereferenceable = 6136 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6137 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6138 if (isDereferenceable) 6139 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6140 6141 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6142 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6143 SrcPtrInfo.getWithOffset(SrcOff), VT, 6144 commonAlignment(*SrcAlign, SrcOff).value(), 6145 SrcMMOFlags); 6146 OutLoadChains.push_back(Value.getValue(1)); 6147 6148 Store = DAG.getTruncStore( 6149 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6150 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6151 OutStoreChains.push_back(Store); 6152 } 6153 SrcOff += VTSize; 6154 DstOff += VTSize; 6155 Size -= VTSize; 6156 } 6157 6158 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6159 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6160 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6161 6162 if (NumLdStInMemcpy) { 6163 // It may be that memcpy might be converted to memset if it's memcpy 6164 // of constants. In such a case, we won't have loads and stores, but 6165 // just stores. In the absence of loads, there is nothing to gang up. 6166 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6167 // If target does not care, just leave as it. 6168 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6169 OutChains.push_back(OutLoadChains[i]); 6170 OutChains.push_back(OutStoreChains[i]); 6171 } 6172 } else { 6173 // Ld/St less than/equal limit set by target. 6174 if (NumLdStInMemcpy <= GluedLdStLimit) { 6175 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6176 NumLdStInMemcpy, OutLoadChains, 6177 OutStoreChains); 6178 } else { 6179 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6180 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6181 unsigned GlueIter = 0; 6182 6183 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6184 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6185 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6186 6187 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6188 OutLoadChains, OutStoreChains); 6189 GlueIter += GluedLdStLimit; 6190 } 6191 6192 // Residual ld/st. 6193 if (RemainingLdStInMemcpy) { 6194 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6195 RemainingLdStInMemcpy, OutLoadChains, 6196 OutStoreChains); 6197 } 6198 } 6199 } 6200 } 6201 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6202 } 6203 6204 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6205 SDValue Chain, SDValue Dst, SDValue Src, 6206 uint64_t Size, Align Alignment, 6207 bool isVol, bool AlwaysInline, 6208 MachinePointerInfo DstPtrInfo, 6209 MachinePointerInfo SrcPtrInfo) { 6210 // Turn a memmove of undef to nop. 6211 // FIXME: We need to honor volatile even is Src is undef. 6212 if (Src.isUndef()) 6213 return Chain; 6214 6215 // Expand memmove to a series of load and store ops if the size operand falls 6216 // below a certain threshold. 6217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6218 const DataLayout &DL = DAG.getDataLayout(); 6219 LLVMContext &C = *DAG.getContext(); 6220 std::vector<EVT> MemOps; 6221 bool DstAlignCanChange = false; 6222 MachineFunction &MF = DAG.getMachineFunction(); 6223 MachineFrameInfo &MFI = MF.getFrameInfo(); 6224 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6225 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6226 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6227 DstAlignCanChange = true; 6228 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6229 if (!SrcAlign || Alignment > *SrcAlign) 6230 SrcAlign = Alignment; 6231 assert(SrcAlign && "SrcAlign must be set"); 6232 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6233 if (!TLI.findOptimalMemOpLowering( 6234 MemOps, Limit, 6235 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6236 /*IsVolatile*/ true), 6237 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6238 MF.getFunction().getAttributes())) 6239 return SDValue(); 6240 6241 if (DstAlignCanChange) { 6242 Type *Ty = MemOps[0].getTypeForEVT(C); 6243 Align NewAlign = DL.getABITypeAlign(Ty); 6244 if (NewAlign > Alignment) { 6245 // Give the stack frame object a larger alignment if needed. 6246 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6247 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6248 Alignment = NewAlign; 6249 } 6250 } 6251 6252 MachineMemOperand::Flags MMOFlags = 6253 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6254 uint64_t SrcOff = 0, DstOff = 0; 6255 SmallVector<SDValue, 8> LoadValues; 6256 SmallVector<SDValue, 8> LoadChains; 6257 SmallVector<SDValue, 8> OutChains; 6258 unsigned NumMemOps = MemOps.size(); 6259 for (unsigned i = 0; i < NumMemOps; i++) { 6260 EVT VT = MemOps[i]; 6261 unsigned VTSize = VT.getSizeInBits() / 8; 6262 SDValue Value; 6263 6264 bool isDereferenceable = 6265 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6266 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6267 if (isDereferenceable) 6268 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6269 6270 Value = DAG.getLoad( 6271 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6272 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6273 LoadValues.push_back(Value); 6274 LoadChains.push_back(Value.getValue(1)); 6275 SrcOff += VTSize; 6276 } 6277 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6278 OutChains.clear(); 6279 for (unsigned i = 0; i < NumMemOps; i++) { 6280 EVT VT = MemOps[i]; 6281 unsigned VTSize = VT.getSizeInBits() / 8; 6282 SDValue Store; 6283 6284 Store = DAG.getStore( 6285 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6286 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6287 OutChains.push_back(Store); 6288 DstOff += VTSize; 6289 } 6290 6291 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6292 } 6293 6294 /// Lower the call to 'memset' intrinsic function into a series of store 6295 /// operations. 6296 /// 6297 /// \param DAG Selection DAG where lowered code is placed. 6298 /// \param dl Link to corresponding IR location. 6299 /// \param Chain Control flow dependency. 6300 /// \param Dst Pointer to destination memory location. 6301 /// \param Src Value of byte to write into the memory. 6302 /// \param Size Number of bytes to write. 6303 /// \param Alignment Alignment of the destination in bytes. 6304 /// \param isVol True if destination is volatile. 6305 /// \param DstPtrInfo IR information on the memory pointer. 6306 /// \returns New head in the control flow, if lowering was successful, empty 6307 /// SDValue otherwise. 6308 /// 6309 /// The function tries to replace 'llvm.memset' intrinsic with several store 6310 /// operations and value calculation code. This is usually profitable for small 6311 /// memory size. 6312 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6313 SDValue Chain, SDValue Dst, SDValue Src, 6314 uint64_t Size, Align Alignment, bool isVol, 6315 MachinePointerInfo DstPtrInfo) { 6316 // Turn a memset of undef to nop. 6317 // FIXME: We need to honor volatile even is Src is undef. 6318 if (Src.isUndef()) 6319 return Chain; 6320 6321 // Expand memset to a series of load/store ops if the size operand 6322 // falls below a certain threshold. 6323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6324 std::vector<EVT> MemOps; 6325 bool DstAlignCanChange = false; 6326 MachineFunction &MF = DAG.getMachineFunction(); 6327 MachineFrameInfo &MFI = MF.getFrameInfo(); 6328 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6329 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6330 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6331 DstAlignCanChange = true; 6332 bool IsZeroVal = 6333 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6334 if (!TLI.findOptimalMemOpLowering( 6335 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6336 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6337 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6338 return SDValue(); 6339 6340 if (DstAlignCanChange) { 6341 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6342 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6343 if (NewAlign > Alignment) { 6344 // Give the stack frame object a larger alignment if needed. 6345 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6346 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6347 Alignment = NewAlign; 6348 } 6349 } 6350 6351 SmallVector<SDValue, 8> OutChains; 6352 uint64_t DstOff = 0; 6353 unsigned NumMemOps = MemOps.size(); 6354 6355 // Find the largest store and generate the bit pattern for it. 6356 EVT LargestVT = MemOps[0]; 6357 for (unsigned i = 1; i < NumMemOps; i++) 6358 if (MemOps[i].bitsGT(LargestVT)) 6359 LargestVT = MemOps[i]; 6360 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6361 6362 for (unsigned i = 0; i < NumMemOps; i++) { 6363 EVT VT = MemOps[i]; 6364 unsigned VTSize = VT.getSizeInBits() / 8; 6365 if (VTSize > Size) { 6366 // Issuing an unaligned load / store pair that overlaps with the previous 6367 // pair. Adjust the offset accordingly. 6368 assert(i == NumMemOps-1 && i != 0); 6369 DstOff -= VTSize - Size; 6370 } 6371 6372 // If this store is smaller than the largest store see whether we can get 6373 // the smaller value for free with a truncate. 6374 SDValue Value = MemSetValue; 6375 if (VT.bitsLT(LargestVT)) { 6376 if (!LargestVT.isVector() && !VT.isVector() && 6377 TLI.isTruncateFree(LargestVT, VT)) 6378 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6379 else 6380 Value = getMemsetValue(Src, VT, DAG, dl); 6381 } 6382 assert(Value.getValueType() == VT && "Value with wrong type."); 6383 SDValue Store = DAG.getStore( 6384 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6385 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6386 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6387 OutChains.push_back(Store); 6388 DstOff += VT.getSizeInBits() / 8; 6389 Size -= VTSize; 6390 } 6391 6392 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6393 } 6394 6395 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6396 unsigned AS) { 6397 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6398 // pointer operands can be losslessly bitcasted to pointers of address space 0 6399 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6400 report_fatal_error("cannot lower memory intrinsic in address space " + 6401 Twine(AS)); 6402 } 6403 } 6404 6405 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6406 SDValue Src, SDValue Size, Align Alignment, 6407 bool isVol, bool AlwaysInline, bool isTailCall, 6408 MachinePointerInfo DstPtrInfo, 6409 MachinePointerInfo SrcPtrInfo) { 6410 // Check to see if we should lower the memcpy to loads and stores first. 6411 // For cases within the target-specified limits, this is the best choice. 6412 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6413 if (ConstantSize) { 6414 // Memcpy with size zero? Just return the original chain. 6415 if (ConstantSize->isNullValue()) 6416 return Chain; 6417 6418 SDValue Result = getMemcpyLoadsAndStores( 6419 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6420 isVol, false, DstPtrInfo, SrcPtrInfo); 6421 if (Result.getNode()) 6422 return Result; 6423 } 6424 6425 // Then check to see if we should lower the memcpy with target-specific 6426 // code. If the target chooses to do this, this is the next best. 6427 if (TSI) { 6428 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6429 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6430 DstPtrInfo, SrcPtrInfo); 6431 if (Result.getNode()) 6432 return Result; 6433 } 6434 6435 // If we really need inline code and the target declined to provide it, 6436 // use a (potentially long) sequence of loads and stores. 6437 if (AlwaysInline) { 6438 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6439 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6440 ConstantSize->getZExtValue(), Alignment, 6441 isVol, true, DstPtrInfo, SrcPtrInfo); 6442 } 6443 6444 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6445 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6446 6447 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6448 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6449 // respect volatile, so they may do things like read or write memory 6450 // beyond the given memory regions. But fixing this isn't easy, and most 6451 // people don't care. 6452 6453 // Emit a library call. 6454 TargetLowering::ArgListTy Args; 6455 TargetLowering::ArgListEntry Entry; 6456 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6457 Entry.Node = Dst; Args.push_back(Entry); 6458 Entry.Node = Src; Args.push_back(Entry); 6459 6460 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6461 Entry.Node = Size; Args.push_back(Entry); 6462 // FIXME: pass in SDLoc 6463 TargetLowering::CallLoweringInfo CLI(*this); 6464 CLI.setDebugLoc(dl) 6465 .setChain(Chain) 6466 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6467 Dst.getValueType().getTypeForEVT(*getContext()), 6468 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6469 TLI->getPointerTy(getDataLayout())), 6470 std::move(Args)) 6471 .setDiscardResult() 6472 .setTailCall(isTailCall); 6473 6474 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6475 return CallResult.second; 6476 } 6477 6478 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6479 SDValue Dst, unsigned DstAlign, 6480 SDValue Src, unsigned SrcAlign, 6481 SDValue Size, Type *SizeTy, 6482 unsigned ElemSz, bool isTailCall, 6483 MachinePointerInfo DstPtrInfo, 6484 MachinePointerInfo SrcPtrInfo) { 6485 // Emit a library call. 6486 TargetLowering::ArgListTy Args; 6487 TargetLowering::ArgListEntry Entry; 6488 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6489 Entry.Node = Dst; 6490 Args.push_back(Entry); 6491 6492 Entry.Node = Src; 6493 Args.push_back(Entry); 6494 6495 Entry.Ty = SizeTy; 6496 Entry.Node = Size; 6497 Args.push_back(Entry); 6498 6499 RTLIB::Libcall LibraryCall = 6500 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6501 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6502 report_fatal_error("Unsupported element size"); 6503 6504 TargetLowering::CallLoweringInfo CLI(*this); 6505 CLI.setDebugLoc(dl) 6506 .setChain(Chain) 6507 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6508 Type::getVoidTy(*getContext()), 6509 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6510 TLI->getPointerTy(getDataLayout())), 6511 std::move(Args)) 6512 .setDiscardResult() 6513 .setTailCall(isTailCall); 6514 6515 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6516 return CallResult.second; 6517 } 6518 6519 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6520 SDValue Src, SDValue Size, Align Alignment, 6521 bool isVol, bool isTailCall, 6522 MachinePointerInfo DstPtrInfo, 6523 MachinePointerInfo SrcPtrInfo) { 6524 // Check to see if we should lower the memmove to loads and stores first. 6525 // For cases within the target-specified limits, this is the best choice. 6526 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6527 if (ConstantSize) { 6528 // Memmove with size zero? Just return the original chain. 6529 if (ConstantSize->isNullValue()) 6530 return Chain; 6531 6532 SDValue Result = getMemmoveLoadsAndStores( 6533 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6534 isVol, false, DstPtrInfo, SrcPtrInfo); 6535 if (Result.getNode()) 6536 return Result; 6537 } 6538 6539 // Then check to see if we should lower the memmove with target-specific 6540 // code. If the target chooses to do this, this is the next best. 6541 if (TSI) { 6542 SDValue Result = 6543 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6544 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6545 if (Result.getNode()) 6546 return Result; 6547 } 6548 6549 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6550 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6551 6552 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6553 // not be safe. See memcpy above for more details. 6554 6555 // Emit a library call. 6556 TargetLowering::ArgListTy Args; 6557 TargetLowering::ArgListEntry Entry; 6558 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6559 Entry.Node = Dst; Args.push_back(Entry); 6560 Entry.Node = Src; Args.push_back(Entry); 6561 6562 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6563 Entry.Node = Size; Args.push_back(Entry); 6564 // FIXME: pass in SDLoc 6565 TargetLowering::CallLoweringInfo CLI(*this); 6566 CLI.setDebugLoc(dl) 6567 .setChain(Chain) 6568 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6569 Dst.getValueType().getTypeForEVT(*getContext()), 6570 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6571 TLI->getPointerTy(getDataLayout())), 6572 std::move(Args)) 6573 .setDiscardResult() 6574 .setTailCall(isTailCall); 6575 6576 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6577 return CallResult.second; 6578 } 6579 6580 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6581 SDValue Dst, unsigned DstAlign, 6582 SDValue Src, unsigned SrcAlign, 6583 SDValue Size, Type *SizeTy, 6584 unsigned ElemSz, bool isTailCall, 6585 MachinePointerInfo DstPtrInfo, 6586 MachinePointerInfo SrcPtrInfo) { 6587 // Emit a library call. 6588 TargetLowering::ArgListTy Args; 6589 TargetLowering::ArgListEntry Entry; 6590 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6591 Entry.Node = Dst; 6592 Args.push_back(Entry); 6593 6594 Entry.Node = Src; 6595 Args.push_back(Entry); 6596 6597 Entry.Ty = SizeTy; 6598 Entry.Node = Size; 6599 Args.push_back(Entry); 6600 6601 RTLIB::Libcall LibraryCall = 6602 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6603 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6604 report_fatal_error("Unsupported element size"); 6605 6606 TargetLowering::CallLoweringInfo CLI(*this); 6607 CLI.setDebugLoc(dl) 6608 .setChain(Chain) 6609 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6610 Type::getVoidTy(*getContext()), 6611 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6612 TLI->getPointerTy(getDataLayout())), 6613 std::move(Args)) 6614 .setDiscardResult() 6615 .setTailCall(isTailCall); 6616 6617 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6618 return CallResult.second; 6619 } 6620 6621 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6622 SDValue Src, SDValue Size, Align Alignment, 6623 bool isVol, bool isTailCall, 6624 MachinePointerInfo DstPtrInfo) { 6625 // Check to see if we should lower the memset to stores first. 6626 // For cases within the target-specified limits, this is the best choice. 6627 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6628 if (ConstantSize) { 6629 // Memset with size zero? Just return the original chain. 6630 if (ConstantSize->isNullValue()) 6631 return Chain; 6632 6633 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6634 ConstantSize->getZExtValue(), Alignment, 6635 isVol, DstPtrInfo); 6636 6637 if (Result.getNode()) 6638 return Result; 6639 } 6640 6641 // Then check to see if we should lower the memset with target-specific 6642 // code. If the target chooses to do this, this is the next best. 6643 if (TSI) { 6644 SDValue Result = TSI->EmitTargetCodeForMemset( 6645 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6646 if (Result.getNode()) 6647 return Result; 6648 } 6649 6650 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6651 6652 // Emit a library call. 6653 TargetLowering::ArgListTy Args; 6654 TargetLowering::ArgListEntry Entry; 6655 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6656 Args.push_back(Entry); 6657 Entry.Node = Src; 6658 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6659 Args.push_back(Entry); 6660 Entry.Node = Size; 6661 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6662 Args.push_back(Entry); 6663 6664 // FIXME: pass in SDLoc 6665 TargetLowering::CallLoweringInfo CLI(*this); 6666 CLI.setDebugLoc(dl) 6667 .setChain(Chain) 6668 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6669 Dst.getValueType().getTypeForEVT(*getContext()), 6670 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6671 TLI->getPointerTy(getDataLayout())), 6672 std::move(Args)) 6673 .setDiscardResult() 6674 .setTailCall(isTailCall); 6675 6676 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6677 return CallResult.second; 6678 } 6679 6680 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6681 SDValue Dst, unsigned DstAlign, 6682 SDValue Value, SDValue Size, Type *SizeTy, 6683 unsigned ElemSz, bool isTailCall, 6684 MachinePointerInfo DstPtrInfo) { 6685 // Emit a library call. 6686 TargetLowering::ArgListTy Args; 6687 TargetLowering::ArgListEntry Entry; 6688 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6689 Entry.Node = Dst; 6690 Args.push_back(Entry); 6691 6692 Entry.Ty = Type::getInt8Ty(*getContext()); 6693 Entry.Node = Value; 6694 Args.push_back(Entry); 6695 6696 Entry.Ty = SizeTy; 6697 Entry.Node = Size; 6698 Args.push_back(Entry); 6699 6700 RTLIB::Libcall LibraryCall = 6701 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6702 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6703 report_fatal_error("Unsupported element size"); 6704 6705 TargetLowering::CallLoweringInfo CLI(*this); 6706 CLI.setDebugLoc(dl) 6707 .setChain(Chain) 6708 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6709 Type::getVoidTy(*getContext()), 6710 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6711 TLI->getPointerTy(getDataLayout())), 6712 std::move(Args)) 6713 .setDiscardResult() 6714 .setTailCall(isTailCall); 6715 6716 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6717 return CallResult.second; 6718 } 6719 6720 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6721 SDVTList VTList, ArrayRef<SDValue> Ops, 6722 MachineMemOperand *MMO) { 6723 FoldingSetNodeID ID; 6724 ID.AddInteger(MemVT.getRawBits()); 6725 AddNodeIDNode(ID, Opcode, VTList, Ops); 6726 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6727 void* IP = nullptr; 6728 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6729 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6730 return SDValue(E, 0); 6731 } 6732 6733 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6734 VTList, MemVT, MMO); 6735 createOperands(N, Ops); 6736 6737 CSEMap.InsertNode(N, IP); 6738 InsertNode(N); 6739 return SDValue(N, 0); 6740 } 6741 6742 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6743 EVT MemVT, SDVTList VTs, SDValue Chain, 6744 SDValue Ptr, SDValue Cmp, SDValue Swp, 6745 MachineMemOperand *MMO) { 6746 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6747 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6748 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6749 6750 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6751 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6752 } 6753 6754 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6755 SDValue Chain, SDValue Ptr, SDValue Val, 6756 MachineMemOperand *MMO) { 6757 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6758 Opcode == ISD::ATOMIC_LOAD_SUB || 6759 Opcode == ISD::ATOMIC_LOAD_AND || 6760 Opcode == ISD::ATOMIC_LOAD_CLR || 6761 Opcode == ISD::ATOMIC_LOAD_OR || 6762 Opcode == ISD::ATOMIC_LOAD_XOR || 6763 Opcode == ISD::ATOMIC_LOAD_NAND || 6764 Opcode == ISD::ATOMIC_LOAD_MIN || 6765 Opcode == ISD::ATOMIC_LOAD_MAX || 6766 Opcode == ISD::ATOMIC_LOAD_UMIN || 6767 Opcode == ISD::ATOMIC_LOAD_UMAX || 6768 Opcode == ISD::ATOMIC_LOAD_FADD || 6769 Opcode == ISD::ATOMIC_LOAD_FSUB || 6770 Opcode == ISD::ATOMIC_SWAP || 6771 Opcode == ISD::ATOMIC_STORE) && 6772 "Invalid Atomic Op"); 6773 6774 EVT VT = Val.getValueType(); 6775 6776 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6777 getVTList(VT, MVT::Other); 6778 SDValue Ops[] = {Chain, Ptr, Val}; 6779 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6780 } 6781 6782 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6783 EVT VT, SDValue Chain, SDValue Ptr, 6784 MachineMemOperand *MMO) { 6785 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6786 6787 SDVTList VTs = getVTList(VT, MVT::Other); 6788 SDValue Ops[] = {Chain, Ptr}; 6789 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6790 } 6791 6792 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6793 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6794 if (Ops.size() == 1) 6795 return Ops[0]; 6796 6797 SmallVector<EVT, 4> VTs; 6798 VTs.reserve(Ops.size()); 6799 for (unsigned i = 0; i < Ops.size(); ++i) 6800 VTs.push_back(Ops[i].getValueType()); 6801 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6802 } 6803 6804 SDValue SelectionDAG::getMemIntrinsicNode( 6805 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6806 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6807 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6808 if (!Size && MemVT.isScalableVector()) 6809 Size = MemoryLocation::UnknownSize; 6810 else if (!Size) 6811 Size = MemVT.getStoreSize(); 6812 6813 MachineFunction &MF = getMachineFunction(); 6814 MachineMemOperand *MMO = 6815 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6816 6817 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6818 } 6819 6820 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6821 SDVTList VTList, 6822 ArrayRef<SDValue> Ops, EVT MemVT, 6823 MachineMemOperand *MMO) { 6824 assert((Opcode == ISD::INTRINSIC_VOID || 6825 Opcode == ISD::INTRINSIC_W_CHAIN || 6826 Opcode == ISD::PREFETCH || 6827 ((int)Opcode <= std::numeric_limits<int>::max() && 6828 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6829 "Opcode is not a memory-accessing opcode!"); 6830 6831 // Memoize the node unless it returns a flag. 6832 MemIntrinsicSDNode *N; 6833 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6834 FoldingSetNodeID ID; 6835 AddNodeIDNode(ID, Opcode, VTList, Ops); 6836 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6837 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6838 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6839 void *IP = nullptr; 6840 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6841 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6842 return SDValue(E, 0); 6843 } 6844 6845 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6846 VTList, MemVT, MMO); 6847 createOperands(N, Ops); 6848 6849 CSEMap.InsertNode(N, IP); 6850 } else { 6851 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6852 VTList, MemVT, MMO); 6853 createOperands(N, Ops); 6854 } 6855 InsertNode(N); 6856 SDValue V(N, 0); 6857 NewSDValueDbgMsg(V, "Creating new node: ", this); 6858 return V; 6859 } 6860 6861 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6862 SDValue Chain, int FrameIndex, 6863 int64_t Size, int64_t Offset) { 6864 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6865 const auto VTs = getVTList(MVT::Other); 6866 SDValue Ops[2] = { 6867 Chain, 6868 getFrameIndex(FrameIndex, 6869 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6870 true)}; 6871 6872 FoldingSetNodeID ID; 6873 AddNodeIDNode(ID, Opcode, VTs, Ops); 6874 ID.AddInteger(FrameIndex); 6875 ID.AddInteger(Size); 6876 ID.AddInteger(Offset); 6877 void *IP = nullptr; 6878 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6879 return SDValue(E, 0); 6880 6881 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6882 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6883 createOperands(N, Ops); 6884 CSEMap.InsertNode(N, IP); 6885 InsertNode(N); 6886 SDValue V(N, 0); 6887 NewSDValueDbgMsg(V, "Creating new node: ", this); 6888 return V; 6889 } 6890 6891 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6892 /// MachinePointerInfo record from it. This is particularly useful because the 6893 /// code generator has many cases where it doesn't bother passing in a 6894 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6895 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6896 SelectionDAG &DAG, SDValue Ptr, 6897 int64_t Offset = 0) { 6898 // If this is FI+Offset, we can model it. 6899 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6900 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6901 FI->getIndex(), Offset); 6902 6903 // If this is (FI+Offset1)+Offset2, we can model it. 6904 if (Ptr.getOpcode() != ISD::ADD || 6905 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6906 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6907 return Info; 6908 6909 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6910 return MachinePointerInfo::getFixedStack( 6911 DAG.getMachineFunction(), FI, 6912 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6913 } 6914 6915 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6916 /// MachinePointerInfo record from it. This is particularly useful because the 6917 /// code generator has many cases where it doesn't bother passing in a 6918 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6919 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6920 SelectionDAG &DAG, SDValue Ptr, 6921 SDValue OffsetOp) { 6922 // If the 'Offset' value isn't a constant, we can't handle this. 6923 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6924 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6925 if (OffsetOp.isUndef()) 6926 return InferPointerInfo(Info, DAG, Ptr); 6927 return Info; 6928 } 6929 6930 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6931 EVT VT, const SDLoc &dl, SDValue Chain, 6932 SDValue Ptr, SDValue Offset, 6933 MachinePointerInfo PtrInfo, EVT MemVT, 6934 Align Alignment, 6935 MachineMemOperand::Flags MMOFlags, 6936 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6937 assert(Chain.getValueType() == MVT::Other && 6938 "Invalid chain type"); 6939 6940 MMOFlags |= MachineMemOperand::MOLoad; 6941 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6942 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6943 // clients. 6944 if (PtrInfo.V.isNull()) 6945 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6946 6947 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6948 MachineFunction &MF = getMachineFunction(); 6949 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6950 Alignment, AAInfo, Ranges); 6951 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6952 } 6953 6954 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6955 EVT VT, const SDLoc &dl, SDValue Chain, 6956 SDValue Ptr, SDValue Offset, EVT MemVT, 6957 MachineMemOperand *MMO) { 6958 if (VT == MemVT) { 6959 ExtType = ISD::NON_EXTLOAD; 6960 } else if (ExtType == ISD::NON_EXTLOAD) { 6961 assert(VT == MemVT && "Non-extending load from different memory type!"); 6962 } else { 6963 // Extending load. 6964 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6965 "Should only be an extending load, not truncating!"); 6966 assert(VT.isInteger() == MemVT.isInteger() && 6967 "Cannot convert from FP to Int or Int -> FP!"); 6968 assert(VT.isVector() == MemVT.isVector() && 6969 "Cannot use an ext load to convert to or from a vector!"); 6970 assert((!VT.isVector() || 6971 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6972 "Cannot use an ext load to change the number of vector elements!"); 6973 } 6974 6975 bool Indexed = AM != ISD::UNINDEXED; 6976 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6977 6978 SDVTList VTs = Indexed ? 6979 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6980 SDValue Ops[] = { Chain, Ptr, Offset }; 6981 FoldingSetNodeID ID; 6982 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6983 ID.AddInteger(MemVT.getRawBits()); 6984 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6985 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6986 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6987 void *IP = nullptr; 6988 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6989 cast<LoadSDNode>(E)->refineAlignment(MMO); 6990 return SDValue(E, 0); 6991 } 6992 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6993 ExtType, MemVT, MMO); 6994 createOperands(N, Ops); 6995 6996 CSEMap.InsertNode(N, IP); 6997 InsertNode(N); 6998 SDValue V(N, 0); 6999 NewSDValueDbgMsg(V, "Creating new node: ", this); 7000 return V; 7001 } 7002 7003 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7004 SDValue Ptr, MachinePointerInfo PtrInfo, 7005 MaybeAlign Alignment, 7006 MachineMemOperand::Flags MMOFlags, 7007 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7008 SDValue Undef = getUNDEF(Ptr.getValueType()); 7009 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7010 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7011 } 7012 7013 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7014 SDValue Ptr, MachineMemOperand *MMO) { 7015 SDValue Undef = getUNDEF(Ptr.getValueType()); 7016 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7017 VT, MMO); 7018 } 7019 7020 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7021 EVT VT, SDValue Chain, SDValue Ptr, 7022 MachinePointerInfo PtrInfo, EVT MemVT, 7023 MaybeAlign Alignment, 7024 MachineMemOperand::Flags MMOFlags, 7025 const AAMDNodes &AAInfo) { 7026 SDValue Undef = getUNDEF(Ptr.getValueType()); 7027 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7028 MemVT, Alignment, MMOFlags, AAInfo); 7029 } 7030 7031 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7032 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7033 MachineMemOperand *MMO) { 7034 SDValue Undef = getUNDEF(Ptr.getValueType()); 7035 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7036 MemVT, MMO); 7037 } 7038 7039 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7040 SDValue Base, SDValue Offset, 7041 ISD::MemIndexedMode AM) { 7042 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7043 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7044 // Don't propagate the invariant or dereferenceable flags. 7045 auto MMOFlags = 7046 LD->getMemOperand()->getFlags() & 7047 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7048 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7049 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7050 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 7051 LD->getAAInfo()); 7052 } 7053 7054 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7055 SDValue Ptr, MachinePointerInfo PtrInfo, 7056 Align Alignment, 7057 MachineMemOperand::Flags MMOFlags, 7058 const AAMDNodes &AAInfo) { 7059 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7060 7061 MMOFlags |= MachineMemOperand::MOStore; 7062 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7063 7064 if (PtrInfo.V.isNull()) 7065 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7066 7067 MachineFunction &MF = getMachineFunction(); 7068 uint64_t Size = 7069 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7070 MachineMemOperand *MMO = 7071 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7072 return getStore(Chain, dl, Val, Ptr, MMO); 7073 } 7074 7075 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7076 SDValue Ptr, MachineMemOperand *MMO) { 7077 assert(Chain.getValueType() == MVT::Other && 7078 "Invalid chain type"); 7079 EVT VT = Val.getValueType(); 7080 SDVTList VTs = getVTList(MVT::Other); 7081 SDValue Undef = getUNDEF(Ptr.getValueType()); 7082 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7083 FoldingSetNodeID ID; 7084 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7085 ID.AddInteger(VT.getRawBits()); 7086 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7087 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7088 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7089 void *IP = nullptr; 7090 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7091 cast<StoreSDNode>(E)->refineAlignment(MMO); 7092 return SDValue(E, 0); 7093 } 7094 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7095 ISD::UNINDEXED, false, VT, MMO); 7096 createOperands(N, Ops); 7097 7098 CSEMap.InsertNode(N, IP); 7099 InsertNode(N); 7100 SDValue V(N, 0); 7101 NewSDValueDbgMsg(V, "Creating new node: ", this); 7102 return V; 7103 } 7104 7105 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7106 SDValue Ptr, MachinePointerInfo PtrInfo, 7107 EVT SVT, Align Alignment, 7108 MachineMemOperand::Flags MMOFlags, 7109 const AAMDNodes &AAInfo) { 7110 assert(Chain.getValueType() == MVT::Other && 7111 "Invalid chain type"); 7112 7113 MMOFlags |= MachineMemOperand::MOStore; 7114 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7115 7116 if (PtrInfo.V.isNull()) 7117 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7118 7119 MachineFunction &MF = getMachineFunction(); 7120 MachineMemOperand *MMO = MF.getMachineMemOperand( 7121 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7122 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7123 } 7124 7125 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7126 SDValue Ptr, EVT SVT, 7127 MachineMemOperand *MMO) { 7128 EVT VT = Val.getValueType(); 7129 7130 assert(Chain.getValueType() == MVT::Other && 7131 "Invalid chain type"); 7132 if (VT == SVT) 7133 return getStore(Chain, dl, Val, Ptr, MMO); 7134 7135 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7136 "Should only be a truncating store, not extending!"); 7137 assert(VT.isInteger() == SVT.isInteger() && 7138 "Can't do FP-INT conversion!"); 7139 assert(VT.isVector() == SVT.isVector() && 7140 "Cannot use trunc store to convert to or from a vector!"); 7141 assert((!VT.isVector() || 7142 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7143 "Cannot use trunc store to change the number of vector elements!"); 7144 7145 SDVTList VTs = getVTList(MVT::Other); 7146 SDValue Undef = getUNDEF(Ptr.getValueType()); 7147 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7148 FoldingSetNodeID ID; 7149 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7150 ID.AddInteger(SVT.getRawBits()); 7151 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7152 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7153 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7154 void *IP = nullptr; 7155 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7156 cast<StoreSDNode>(E)->refineAlignment(MMO); 7157 return SDValue(E, 0); 7158 } 7159 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7160 ISD::UNINDEXED, true, SVT, MMO); 7161 createOperands(N, Ops); 7162 7163 CSEMap.InsertNode(N, IP); 7164 InsertNode(N); 7165 SDValue V(N, 0); 7166 NewSDValueDbgMsg(V, "Creating new node: ", this); 7167 return V; 7168 } 7169 7170 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7171 SDValue Base, SDValue Offset, 7172 ISD::MemIndexedMode AM) { 7173 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7174 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7175 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7176 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7177 FoldingSetNodeID ID; 7178 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7179 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7180 ID.AddInteger(ST->getRawSubclassData()); 7181 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7182 void *IP = nullptr; 7183 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7184 return SDValue(E, 0); 7185 7186 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7187 ST->isTruncatingStore(), ST->getMemoryVT(), 7188 ST->getMemOperand()); 7189 createOperands(N, Ops); 7190 7191 CSEMap.InsertNode(N, IP); 7192 InsertNode(N); 7193 SDValue V(N, 0); 7194 NewSDValueDbgMsg(V, "Creating new node: ", this); 7195 return V; 7196 } 7197 7198 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7199 SDValue Base, SDValue Offset, SDValue Mask, 7200 SDValue PassThru, EVT MemVT, 7201 MachineMemOperand *MMO, 7202 ISD::MemIndexedMode AM, 7203 ISD::LoadExtType ExtTy, bool isExpanding) { 7204 bool Indexed = AM != ISD::UNINDEXED; 7205 assert((Indexed || Offset.isUndef()) && 7206 "Unindexed masked load with an offset!"); 7207 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7208 : getVTList(VT, MVT::Other); 7209 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7210 FoldingSetNodeID ID; 7211 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7212 ID.AddInteger(MemVT.getRawBits()); 7213 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7214 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7215 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7216 void *IP = nullptr; 7217 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7218 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7219 return SDValue(E, 0); 7220 } 7221 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7222 AM, ExtTy, isExpanding, MemVT, MMO); 7223 createOperands(N, Ops); 7224 7225 CSEMap.InsertNode(N, IP); 7226 InsertNode(N); 7227 SDValue V(N, 0); 7228 NewSDValueDbgMsg(V, "Creating new node: ", this); 7229 return V; 7230 } 7231 7232 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7233 SDValue Base, SDValue Offset, 7234 ISD::MemIndexedMode AM) { 7235 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7236 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7237 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7238 Offset, LD->getMask(), LD->getPassThru(), 7239 LD->getMemoryVT(), LD->getMemOperand(), AM, 7240 LD->getExtensionType(), LD->isExpandingLoad()); 7241 } 7242 7243 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7244 SDValue Val, SDValue Base, SDValue Offset, 7245 SDValue Mask, EVT MemVT, 7246 MachineMemOperand *MMO, 7247 ISD::MemIndexedMode AM, bool IsTruncating, 7248 bool IsCompressing) { 7249 assert(Chain.getValueType() == MVT::Other && 7250 "Invalid chain type"); 7251 bool Indexed = AM != ISD::UNINDEXED; 7252 assert((Indexed || Offset.isUndef()) && 7253 "Unindexed masked store with an offset!"); 7254 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7255 : getVTList(MVT::Other); 7256 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7257 FoldingSetNodeID ID; 7258 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7259 ID.AddInteger(MemVT.getRawBits()); 7260 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7261 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7262 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7263 void *IP = nullptr; 7264 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7265 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7266 return SDValue(E, 0); 7267 } 7268 auto *N = 7269 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7270 IsTruncating, IsCompressing, MemVT, MMO); 7271 createOperands(N, Ops); 7272 7273 CSEMap.InsertNode(N, IP); 7274 InsertNode(N); 7275 SDValue V(N, 0); 7276 NewSDValueDbgMsg(V, "Creating new node: ", this); 7277 return V; 7278 } 7279 7280 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7281 SDValue Base, SDValue Offset, 7282 ISD::MemIndexedMode AM) { 7283 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7284 assert(ST->getOffset().isUndef() && 7285 "Masked store is already a indexed store!"); 7286 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7287 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7288 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7289 } 7290 7291 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7292 ArrayRef<SDValue> Ops, 7293 MachineMemOperand *MMO, 7294 ISD::MemIndexType IndexType) { 7295 assert(Ops.size() == 6 && "Incompatible number of operands"); 7296 7297 FoldingSetNodeID ID; 7298 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7299 ID.AddInteger(VT.getRawBits()); 7300 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7301 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7302 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7303 void *IP = nullptr; 7304 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7305 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7306 return SDValue(E, 0); 7307 } 7308 7309 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7310 VTs, VT, MMO, IndexType); 7311 createOperands(N, Ops); 7312 7313 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7314 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7315 assert(N->getMask().getValueType().getVectorNumElements() == 7316 N->getValueType(0).getVectorNumElements() && 7317 "Vector width mismatch between mask and data"); 7318 assert(N->getIndex().getValueType().getVectorNumElements() >= 7319 N->getValueType(0).getVectorNumElements() && 7320 "Vector width mismatch between index and data"); 7321 assert(isa<ConstantSDNode>(N->getScale()) && 7322 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7323 "Scale should be a constant power of 2"); 7324 7325 CSEMap.InsertNode(N, IP); 7326 InsertNode(N); 7327 SDValue V(N, 0); 7328 NewSDValueDbgMsg(V, "Creating new node: ", this); 7329 return V; 7330 } 7331 7332 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7333 ArrayRef<SDValue> Ops, 7334 MachineMemOperand *MMO, 7335 ISD::MemIndexType IndexType) { 7336 assert(Ops.size() == 6 && "Incompatible number of operands"); 7337 7338 FoldingSetNodeID ID; 7339 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7340 ID.AddInteger(VT.getRawBits()); 7341 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7342 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7343 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7344 void *IP = nullptr; 7345 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7346 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7347 return SDValue(E, 0); 7348 } 7349 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7350 VTs, VT, MMO, IndexType); 7351 createOperands(N, Ops); 7352 7353 assert(N->getMask().getValueType().getVectorNumElements() == 7354 N->getValue().getValueType().getVectorNumElements() && 7355 "Vector width mismatch between mask and data"); 7356 assert(N->getIndex().getValueType().getVectorNumElements() >= 7357 N->getValue().getValueType().getVectorNumElements() && 7358 "Vector width mismatch between index and data"); 7359 assert(isa<ConstantSDNode>(N->getScale()) && 7360 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7361 "Scale should be a constant power of 2"); 7362 7363 CSEMap.InsertNode(N, IP); 7364 InsertNode(N); 7365 SDValue V(N, 0); 7366 NewSDValueDbgMsg(V, "Creating new node: ", this); 7367 return V; 7368 } 7369 7370 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7371 // select undef, T, F --> T (if T is a constant), otherwise F 7372 // select, ?, undef, F --> F 7373 // select, ?, T, undef --> T 7374 if (Cond.isUndef()) 7375 return isConstantValueOfAnyType(T) ? T : F; 7376 if (T.isUndef()) 7377 return F; 7378 if (F.isUndef()) 7379 return T; 7380 7381 // select true, T, F --> T 7382 // select false, T, F --> F 7383 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7384 return CondC->isNullValue() ? F : T; 7385 7386 // TODO: This should simplify VSELECT with constant condition using something 7387 // like this (but check boolean contents to be complete?): 7388 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7389 // return T; 7390 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7391 // return F; 7392 7393 // select ?, T, T --> T 7394 if (T == F) 7395 return T; 7396 7397 return SDValue(); 7398 } 7399 7400 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7401 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7402 if (X.isUndef()) 7403 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7404 // shift X, undef --> undef (because it may shift by the bitwidth) 7405 if (Y.isUndef()) 7406 return getUNDEF(X.getValueType()); 7407 7408 // shift 0, Y --> 0 7409 // shift X, 0 --> X 7410 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7411 return X; 7412 7413 // shift X, C >= bitwidth(X) --> undef 7414 // All vector elements must be too big (or undef) to avoid partial undefs. 7415 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7416 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7417 }; 7418 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7419 return getUNDEF(X.getValueType()); 7420 7421 return SDValue(); 7422 } 7423 7424 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7425 SDNodeFlags Flags) { 7426 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7427 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7428 // operation is poison. That result can be relaxed to undef. 7429 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7430 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7431 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7432 (YC && YC->getValueAPF().isNaN()); 7433 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7434 (YC && YC->getValueAPF().isInfinity()); 7435 7436 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7437 return getUNDEF(X.getValueType()); 7438 7439 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7440 return getUNDEF(X.getValueType()); 7441 7442 if (!YC) 7443 return SDValue(); 7444 7445 // X + -0.0 --> X 7446 if (Opcode == ISD::FADD) 7447 if (YC->getValueAPF().isNegZero()) 7448 return X; 7449 7450 // X - +0.0 --> X 7451 if (Opcode == ISD::FSUB) 7452 if (YC->getValueAPF().isPosZero()) 7453 return X; 7454 7455 // X * 1.0 --> X 7456 // X / 1.0 --> X 7457 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7458 if (YC->getValueAPF().isExactlyValue(1.0)) 7459 return X; 7460 7461 return SDValue(); 7462 } 7463 7464 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7465 SDValue Ptr, SDValue SV, unsigned Align) { 7466 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7467 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7468 } 7469 7470 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7471 ArrayRef<SDUse> Ops) { 7472 switch (Ops.size()) { 7473 case 0: return getNode(Opcode, DL, VT); 7474 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7475 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7476 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7477 default: break; 7478 } 7479 7480 // Copy from an SDUse array into an SDValue array for use with 7481 // the regular getNode logic. 7482 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7483 return getNode(Opcode, DL, VT, NewOps); 7484 } 7485 7486 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7487 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7488 unsigned NumOps = Ops.size(); 7489 switch (NumOps) { 7490 case 0: return getNode(Opcode, DL, VT); 7491 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7492 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7493 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7494 default: break; 7495 } 7496 7497 switch (Opcode) { 7498 default: break; 7499 case ISD::BUILD_VECTOR: 7500 // Attempt to simplify BUILD_VECTOR. 7501 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7502 return V; 7503 break; 7504 case ISD::CONCAT_VECTORS: 7505 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7506 return V; 7507 break; 7508 case ISD::SELECT_CC: 7509 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7510 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7511 "LHS and RHS of condition must have same type!"); 7512 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7513 "True and False arms of SelectCC must have same type!"); 7514 assert(Ops[2].getValueType() == VT && 7515 "select_cc node must be of same type as true and false value!"); 7516 break; 7517 case ISD::BR_CC: 7518 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7519 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7520 "LHS/RHS of comparison should match types!"); 7521 break; 7522 } 7523 7524 // Memoize nodes. 7525 SDNode *N; 7526 SDVTList VTs = getVTList(VT); 7527 7528 if (VT != MVT::Glue) { 7529 FoldingSetNodeID ID; 7530 AddNodeIDNode(ID, Opcode, VTs, Ops); 7531 void *IP = nullptr; 7532 7533 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7534 return SDValue(E, 0); 7535 7536 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7537 createOperands(N, Ops); 7538 7539 CSEMap.InsertNode(N, IP); 7540 } else { 7541 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7542 createOperands(N, Ops); 7543 } 7544 7545 N->setFlags(Flags); 7546 InsertNode(N); 7547 SDValue V(N, 0); 7548 NewSDValueDbgMsg(V, "Creating new node: ", this); 7549 return V; 7550 } 7551 7552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7553 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7554 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7555 } 7556 7557 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7558 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7559 if (VTList.NumVTs == 1) 7560 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7561 7562 switch (Opcode) { 7563 case ISD::STRICT_FP_EXTEND: 7564 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7565 "Invalid STRICT_FP_EXTEND!"); 7566 assert(VTList.VTs[0].isFloatingPoint() && 7567 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7568 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7569 "STRICT_FP_EXTEND result type should be vector iff the operand " 7570 "type is vector!"); 7571 assert((!VTList.VTs[0].isVector() || 7572 VTList.VTs[0].getVectorNumElements() == 7573 Ops[1].getValueType().getVectorNumElements()) && 7574 "Vector element count mismatch!"); 7575 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7576 "Invalid fpext node, dst <= src!"); 7577 break; 7578 case ISD::STRICT_FP_ROUND: 7579 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7580 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7581 "STRICT_FP_ROUND result type should be vector iff the operand " 7582 "type is vector!"); 7583 assert((!VTList.VTs[0].isVector() || 7584 VTList.VTs[0].getVectorNumElements() == 7585 Ops[1].getValueType().getVectorNumElements()) && 7586 "Vector element count mismatch!"); 7587 assert(VTList.VTs[0].isFloatingPoint() && 7588 Ops[1].getValueType().isFloatingPoint() && 7589 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7590 isa<ConstantSDNode>(Ops[2]) && 7591 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7592 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7593 "Invalid STRICT_FP_ROUND!"); 7594 break; 7595 #if 0 7596 // FIXME: figure out how to safely handle things like 7597 // int foo(int x) { return 1 << (x & 255); } 7598 // int bar() { return foo(256); } 7599 case ISD::SRA_PARTS: 7600 case ISD::SRL_PARTS: 7601 case ISD::SHL_PARTS: 7602 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7603 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7604 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7605 else if (N3.getOpcode() == ISD::AND) 7606 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7607 // If the and is only masking out bits that cannot effect the shift, 7608 // eliminate the and. 7609 unsigned NumBits = VT.getScalarSizeInBits()*2; 7610 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7611 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7612 } 7613 break; 7614 #endif 7615 } 7616 7617 // Memoize the node unless it returns a flag. 7618 SDNode *N; 7619 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7620 FoldingSetNodeID ID; 7621 AddNodeIDNode(ID, Opcode, VTList, Ops); 7622 void *IP = nullptr; 7623 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7624 return SDValue(E, 0); 7625 7626 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7627 createOperands(N, Ops); 7628 CSEMap.InsertNode(N, IP); 7629 } else { 7630 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7631 createOperands(N, Ops); 7632 } 7633 7634 N->setFlags(Flags); 7635 InsertNode(N); 7636 SDValue V(N, 0); 7637 NewSDValueDbgMsg(V, "Creating new node: ", this); 7638 return V; 7639 } 7640 7641 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7642 SDVTList VTList) { 7643 return getNode(Opcode, DL, VTList, None); 7644 } 7645 7646 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7647 SDValue N1) { 7648 SDValue Ops[] = { N1 }; 7649 return getNode(Opcode, DL, VTList, Ops); 7650 } 7651 7652 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7653 SDValue N1, SDValue N2) { 7654 SDValue Ops[] = { N1, N2 }; 7655 return getNode(Opcode, DL, VTList, Ops); 7656 } 7657 7658 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7659 SDValue N1, SDValue N2, SDValue N3) { 7660 SDValue Ops[] = { N1, N2, N3 }; 7661 return getNode(Opcode, DL, VTList, Ops); 7662 } 7663 7664 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7665 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7666 SDValue Ops[] = { N1, N2, N3, N4 }; 7667 return getNode(Opcode, DL, VTList, Ops); 7668 } 7669 7670 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7671 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7672 SDValue N5) { 7673 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7674 return getNode(Opcode, DL, VTList, Ops); 7675 } 7676 7677 SDVTList SelectionDAG::getVTList(EVT VT) { 7678 return makeVTList(SDNode::getValueTypeList(VT), 1); 7679 } 7680 7681 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7682 FoldingSetNodeID ID; 7683 ID.AddInteger(2U); 7684 ID.AddInteger(VT1.getRawBits()); 7685 ID.AddInteger(VT2.getRawBits()); 7686 7687 void *IP = nullptr; 7688 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7689 if (!Result) { 7690 EVT *Array = Allocator.Allocate<EVT>(2); 7691 Array[0] = VT1; 7692 Array[1] = VT2; 7693 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7694 VTListMap.InsertNode(Result, IP); 7695 } 7696 return Result->getSDVTList(); 7697 } 7698 7699 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7700 FoldingSetNodeID ID; 7701 ID.AddInteger(3U); 7702 ID.AddInteger(VT1.getRawBits()); 7703 ID.AddInteger(VT2.getRawBits()); 7704 ID.AddInteger(VT3.getRawBits()); 7705 7706 void *IP = nullptr; 7707 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7708 if (!Result) { 7709 EVT *Array = Allocator.Allocate<EVT>(3); 7710 Array[0] = VT1; 7711 Array[1] = VT2; 7712 Array[2] = VT3; 7713 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7714 VTListMap.InsertNode(Result, IP); 7715 } 7716 return Result->getSDVTList(); 7717 } 7718 7719 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7720 FoldingSetNodeID ID; 7721 ID.AddInteger(4U); 7722 ID.AddInteger(VT1.getRawBits()); 7723 ID.AddInteger(VT2.getRawBits()); 7724 ID.AddInteger(VT3.getRawBits()); 7725 ID.AddInteger(VT4.getRawBits()); 7726 7727 void *IP = nullptr; 7728 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7729 if (!Result) { 7730 EVT *Array = Allocator.Allocate<EVT>(4); 7731 Array[0] = VT1; 7732 Array[1] = VT2; 7733 Array[2] = VT3; 7734 Array[3] = VT4; 7735 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7736 VTListMap.InsertNode(Result, IP); 7737 } 7738 return Result->getSDVTList(); 7739 } 7740 7741 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7742 unsigned NumVTs = VTs.size(); 7743 FoldingSetNodeID ID; 7744 ID.AddInteger(NumVTs); 7745 for (unsigned index = 0; index < NumVTs; index++) { 7746 ID.AddInteger(VTs[index].getRawBits()); 7747 } 7748 7749 void *IP = nullptr; 7750 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7751 if (!Result) { 7752 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7753 llvm::copy(VTs, Array); 7754 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7755 VTListMap.InsertNode(Result, IP); 7756 } 7757 return Result->getSDVTList(); 7758 } 7759 7760 7761 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7762 /// specified operands. If the resultant node already exists in the DAG, 7763 /// this does not modify the specified node, instead it returns the node that 7764 /// already exists. If the resultant node does not exist in the DAG, the 7765 /// input node is returned. As a degenerate case, if you specify the same 7766 /// input operands as the node already has, the input node is returned. 7767 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7768 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7769 7770 // Check to see if there is no change. 7771 if (Op == N->getOperand(0)) return N; 7772 7773 // See if the modified node already exists. 7774 void *InsertPos = nullptr; 7775 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7776 return Existing; 7777 7778 // Nope it doesn't. Remove the node from its current place in the maps. 7779 if (InsertPos) 7780 if (!RemoveNodeFromCSEMaps(N)) 7781 InsertPos = nullptr; 7782 7783 // Now we update the operands. 7784 N->OperandList[0].set(Op); 7785 7786 updateDivergence(N); 7787 // If this gets put into a CSE map, add it. 7788 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7789 return N; 7790 } 7791 7792 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7793 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7794 7795 // Check to see if there is no change. 7796 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7797 return N; // No operands changed, just return the input node. 7798 7799 // See if the modified node already exists. 7800 void *InsertPos = nullptr; 7801 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7802 return Existing; 7803 7804 // Nope it doesn't. Remove the node from its current place in the maps. 7805 if (InsertPos) 7806 if (!RemoveNodeFromCSEMaps(N)) 7807 InsertPos = nullptr; 7808 7809 // Now we update the operands. 7810 if (N->OperandList[0] != Op1) 7811 N->OperandList[0].set(Op1); 7812 if (N->OperandList[1] != Op2) 7813 N->OperandList[1].set(Op2); 7814 7815 updateDivergence(N); 7816 // If this gets put into a CSE map, add it. 7817 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7818 return N; 7819 } 7820 7821 SDNode *SelectionDAG:: 7822 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7823 SDValue Ops[] = { Op1, Op2, Op3 }; 7824 return UpdateNodeOperands(N, Ops); 7825 } 7826 7827 SDNode *SelectionDAG:: 7828 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7829 SDValue Op3, SDValue Op4) { 7830 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7831 return UpdateNodeOperands(N, Ops); 7832 } 7833 7834 SDNode *SelectionDAG:: 7835 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7836 SDValue Op3, SDValue Op4, SDValue Op5) { 7837 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7838 return UpdateNodeOperands(N, Ops); 7839 } 7840 7841 SDNode *SelectionDAG:: 7842 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7843 unsigned NumOps = Ops.size(); 7844 assert(N->getNumOperands() == NumOps && 7845 "Update with wrong number of operands"); 7846 7847 // If no operands changed just return the input node. 7848 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7849 return N; 7850 7851 // See if the modified node already exists. 7852 void *InsertPos = nullptr; 7853 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7854 return Existing; 7855 7856 // Nope it doesn't. Remove the node from its current place in the maps. 7857 if (InsertPos) 7858 if (!RemoveNodeFromCSEMaps(N)) 7859 InsertPos = nullptr; 7860 7861 // Now we update the operands. 7862 for (unsigned i = 0; i != NumOps; ++i) 7863 if (N->OperandList[i] != Ops[i]) 7864 N->OperandList[i].set(Ops[i]); 7865 7866 updateDivergence(N); 7867 // If this gets put into a CSE map, add it. 7868 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7869 return N; 7870 } 7871 7872 /// DropOperands - Release the operands and set this node to have 7873 /// zero operands. 7874 void SDNode::DropOperands() { 7875 // Unlike the code in MorphNodeTo that does this, we don't need to 7876 // watch for dead nodes here. 7877 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7878 SDUse &Use = *I++; 7879 Use.set(SDValue()); 7880 } 7881 } 7882 7883 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7884 ArrayRef<MachineMemOperand *> NewMemRefs) { 7885 if (NewMemRefs.empty()) { 7886 N->clearMemRefs(); 7887 return; 7888 } 7889 7890 // Check if we can avoid allocating by storing a single reference directly. 7891 if (NewMemRefs.size() == 1) { 7892 N->MemRefs = NewMemRefs[0]; 7893 N->NumMemRefs = 1; 7894 return; 7895 } 7896 7897 MachineMemOperand **MemRefsBuffer = 7898 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7899 llvm::copy(NewMemRefs, MemRefsBuffer); 7900 N->MemRefs = MemRefsBuffer; 7901 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7902 } 7903 7904 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7905 /// machine opcode. 7906 /// 7907 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7908 EVT VT) { 7909 SDVTList VTs = getVTList(VT); 7910 return SelectNodeTo(N, MachineOpc, VTs, None); 7911 } 7912 7913 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7914 EVT VT, SDValue Op1) { 7915 SDVTList VTs = getVTList(VT); 7916 SDValue Ops[] = { Op1 }; 7917 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7918 } 7919 7920 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7921 EVT VT, SDValue Op1, 7922 SDValue Op2) { 7923 SDVTList VTs = getVTList(VT); 7924 SDValue Ops[] = { Op1, Op2 }; 7925 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7926 } 7927 7928 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7929 EVT VT, SDValue Op1, 7930 SDValue Op2, SDValue Op3) { 7931 SDVTList VTs = getVTList(VT); 7932 SDValue Ops[] = { Op1, Op2, Op3 }; 7933 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7934 } 7935 7936 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7937 EVT VT, ArrayRef<SDValue> Ops) { 7938 SDVTList VTs = getVTList(VT); 7939 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7940 } 7941 7942 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7943 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7944 SDVTList VTs = getVTList(VT1, VT2); 7945 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7946 } 7947 7948 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7949 EVT VT1, EVT VT2) { 7950 SDVTList VTs = getVTList(VT1, VT2); 7951 return SelectNodeTo(N, MachineOpc, VTs, None); 7952 } 7953 7954 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7955 EVT VT1, EVT VT2, EVT VT3, 7956 ArrayRef<SDValue> Ops) { 7957 SDVTList VTs = getVTList(VT1, VT2, VT3); 7958 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7959 } 7960 7961 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7962 EVT VT1, EVT VT2, 7963 SDValue Op1, SDValue Op2) { 7964 SDVTList VTs = getVTList(VT1, VT2); 7965 SDValue Ops[] = { Op1, Op2 }; 7966 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7967 } 7968 7969 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7970 SDVTList VTs,ArrayRef<SDValue> Ops) { 7971 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7972 // Reset the NodeID to -1. 7973 New->setNodeId(-1); 7974 if (New != N) { 7975 ReplaceAllUsesWith(N, New); 7976 RemoveDeadNode(N); 7977 } 7978 return New; 7979 } 7980 7981 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7982 /// the line number information on the merged node since it is not possible to 7983 /// preserve the information that operation is associated with multiple lines. 7984 /// This will make the debugger working better at -O0, were there is a higher 7985 /// probability having other instructions associated with that line. 7986 /// 7987 /// For IROrder, we keep the smaller of the two 7988 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7989 DebugLoc NLoc = N->getDebugLoc(); 7990 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7991 N->setDebugLoc(DebugLoc()); 7992 } 7993 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7994 N->setIROrder(Order); 7995 return N; 7996 } 7997 7998 /// MorphNodeTo - This *mutates* the specified node to have the specified 7999 /// return type, opcode, and operands. 8000 /// 8001 /// Note that MorphNodeTo returns the resultant node. If there is already a 8002 /// node of the specified opcode and operands, it returns that node instead of 8003 /// the current one. Note that the SDLoc need not be the same. 8004 /// 8005 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8006 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8007 /// node, and because it doesn't require CSE recalculation for any of 8008 /// the node's users. 8009 /// 8010 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8011 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8012 /// the legalizer which maintain worklists that would need to be updated when 8013 /// deleting things. 8014 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8015 SDVTList VTs, ArrayRef<SDValue> Ops) { 8016 // If an identical node already exists, use it. 8017 void *IP = nullptr; 8018 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8019 FoldingSetNodeID ID; 8020 AddNodeIDNode(ID, Opc, VTs, Ops); 8021 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8022 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8023 } 8024 8025 if (!RemoveNodeFromCSEMaps(N)) 8026 IP = nullptr; 8027 8028 // Start the morphing. 8029 N->NodeType = Opc; 8030 N->ValueList = VTs.VTs; 8031 N->NumValues = VTs.NumVTs; 8032 8033 // Clear the operands list, updating used nodes to remove this from their 8034 // use list. Keep track of any operands that become dead as a result. 8035 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8036 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8037 SDUse &Use = *I++; 8038 SDNode *Used = Use.getNode(); 8039 Use.set(SDValue()); 8040 if (Used->use_empty()) 8041 DeadNodeSet.insert(Used); 8042 } 8043 8044 // For MachineNode, initialize the memory references information. 8045 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8046 MN->clearMemRefs(); 8047 8048 // Swap for an appropriately sized array from the recycler. 8049 removeOperands(N); 8050 createOperands(N, Ops); 8051 8052 // Delete any nodes that are still dead after adding the uses for the 8053 // new operands. 8054 if (!DeadNodeSet.empty()) { 8055 SmallVector<SDNode *, 16> DeadNodes; 8056 for (SDNode *N : DeadNodeSet) 8057 if (N->use_empty()) 8058 DeadNodes.push_back(N); 8059 RemoveDeadNodes(DeadNodes); 8060 } 8061 8062 if (IP) 8063 CSEMap.InsertNode(N, IP); // Memoize the new node. 8064 return N; 8065 } 8066 8067 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8068 unsigned OrigOpc = Node->getOpcode(); 8069 unsigned NewOpc; 8070 switch (OrigOpc) { 8071 default: 8072 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8073 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8074 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8075 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8076 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8077 #include "llvm/IR/ConstrainedOps.def" 8078 } 8079 8080 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8081 8082 // We're taking this node out of the chain, so we need to re-link things. 8083 SDValue InputChain = Node->getOperand(0); 8084 SDValue OutputChain = SDValue(Node, 1); 8085 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8086 8087 SmallVector<SDValue, 3> Ops; 8088 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8089 Ops.push_back(Node->getOperand(i)); 8090 8091 SDVTList VTs = getVTList(Node->getValueType(0)); 8092 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8093 8094 // MorphNodeTo can operate in two ways: if an existing node with the 8095 // specified operands exists, it can just return it. Otherwise, it 8096 // updates the node in place to have the requested operands. 8097 if (Res == Node) { 8098 // If we updated the node in place, reset the node ID. To the isel, 8099 // this should be just like a newly allocated machine node. 8100 Res->setNodeId(-1); 8101 } else { 8102 ReplaceAllUsesWith(Node, Res); 8103 RemoveDeadNode(Node); 8104 } 8105 8106 return Res; 8107 } 8108 8109 /// getMachineNode - These are used for target selectors to create a new node 8110 /// with specified return type(s), MachineInstr opcode, and operands. 8111 /// 8112 /// Note that getMachineNode returns the resultant node. If there is already a 8113 /// node of the specified opcode and operands, it returns that node instead of 8114 /// the current one. 8115 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8116 EVT VT) { 8117 SDVTList VTs = getVTList(VT); 8118 return getMachineNode(Opcode, dl, VTs, None); 8119 } 8120 8121 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8122 EVT VT, SDValue Op1) { 8123 SDVTList VTs = getVTList(VT); 8124 SDValue Ops[] = { Op1 }; 8125 return getMachineNode(Opcode, dl, VTs, Ops); 8126 } 8127 8128 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8129 EVT VT, SDValue Op1, SDValue Op2) { 8130 SDVTList VTs = getVTList(VT); 8131 SDValue Ops[] = { Op1, Op2 }; 8132 return getMachineNode(Opcode, dl, VTs, Ops); 8133 } 8134 8135 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8136 EVT VT, SDValue Op1, SDValue Op2, 8137 SDValue Op3) { 8138 SDVTList VTs = getVTList(VT); 8139 SDValue Ops[] = { Op1, Op2, Op3 }; 8140 return getMachineNode(Opcode, dl, VTs, Ops); 8141 } 8142 8143 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8144 EVT VT, ArrayRef<SDValue> Ops) { 8145 SDVTList VTs = getVTList(VT); 8146 return getMachineNode(Opcode, dl, VTs, Ops); 8147 } 8148 8149 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8150 EVT VT1, EVT VT2, SDValue Op1, 8151 SDValue Op2) { 8152 SDVTList VTs = getVTList(VT1, VT2); 8153 SDValue Ops[] = { Op1, Op2 }; 8154 return getMachineNode(Opcode, dl, VTs, Ops); 8155 } 8156 8157 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8158 EVT VT1, EVT VT2, SDValue Op1, 8159 SDValue Op2, SDValue Op3) { 8160 SDVTList VTs = getVTList(VT1, VT2); 8161 SDValue Ops[] = { Op1, Op2, Op3 }; 8162 return getMachineNode(Opcode, dl, VTs, Ops); 8163 } 8164 8165 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8166 EVT VT1, EVT VT2, 8167 ArrayRef<SDValue> Ops) { 8168 SDVTList VTs = getVTList(VT1, VT2); 8169 return getMachineNode(Opcode, dl, VTs, Ops); 8170 } 8171 8172 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8173 EVT VT1, EVT VT2, EVT VT3, 8174 SDValue Op1, SDValue Op2) { 8175 SDVTList VTs = getVTList(VT1, VT2, VT3); 8176 SDValue Ops[] = { Op1, Op2 }; 8177 return getMachineNode(Opcode, dl, VTs, Ops); 8178 } 8179 8180 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8181 EVT VT1, EVT VT2, EVT VT3, 8182 SDValue Op1, SDValue Op2, 8183 SDValue Op3) { 8184 SDVTList VTs = getVTList(VT1, VT2, VT3); 8185 SDValue Ops[] = { Op1, Op2, Op3 }; 8186 return getMachineNode(Opcode, dl, VTs, Ops); 8187 } 8188 8189 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8190 EVT VT1, EVT VT2, EVT VT3, 8191 ArrayRef<SDValue> Ops) { 8192 SDVTList VTs = getVTList(VT1, VT2, VT3); 8193 return getMachineNode(Opcode, dl, VTs, Ops); 8194 } 8195 8196 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8197 ArrayRef<EVT> ResultTys, 8198 ArrayRef<SDValue> Ops) { 8199 SDVTList VTs = getVTList(ResultTys); 8200 return getMachineNode(Opcode, dl, VTs, Ops); 8201 } 8202 8203 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8204 SDVTList VTs, 8205 ArrayRef<SDValue> Ops) { 8206 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8207 MachineSDNode *N; 8208 void *IP = nullptr; 8209 8210 if (DoCSE) { 8211 FoldingSetNodeID ID; 8212 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8213 IP = nullptr; 8214 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8215 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8216 } 8217 } 8218 8219 // Allocate a new MachineSDNode. 8220 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8221 createOperands(N, Ops); 8222 8223 if (DoCSE) 8224 CSEMap.InsertNode(N, IP); 8225 8226 InsertNode(N); 8227 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8228 return N; 8229 } 8230 8231 /// getTargetExtractSubreg - A convenience function for creating 8232 /// TargetOpcode::EXTRACT_SUBREG nodes. 8233 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8234 SDValue Operand) { 8235 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8236 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8237 VT, Operand, SRIdxVal); 8238 return SDValue(Subreg, 0); 8239 } 8240 8241 /// getTargetInsertSubreg - A convenience function for creating 8242 /// TargetOpcode::INSERT_SUBREG nodes. 8243 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8244 SDValue Operand, SDValue Subreg) { 8245 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8246 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8247 VT, Operand, Subreg, SRIdxVal); 8248 return SDValue(Result, 0); 8249 } 8250 8251 /// getNodeIfExists - Get the specified node if it's already available, or 8252 /// else return NULL. 8253 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8254 ArrayRef<SDValue> Ops, 8255 const SDNodeFlags Flags) { 8256 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8257 FoldingSetNodeID ID; 8258 AddNodeIDNode(ID, Opcode, VTList, Ops); 8259 void *IP = nullptr; 8260 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8261 E->intersectFlagsWith(Flags); 8262 return E; 8263 } 8264 } 8265 return nullptr; 8266 } 8267 8268 /// getDbgValue - Creates a SDDbgValue node. 8269 /// 8270 /// SDNode 8271 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8272 SDNode *N, unsigned R, bool IsIndirect, 8273 const DebugLoc &DL, unsigned O) { 8274 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8275 "Expected inlined-at fields to agree"); 8276 return new (DbgInfo->getAlloc()) 8277 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8278 } 8279 8280 /// Constant 8281 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8282 DIExpression *Expr, 8283 const Value *C, 8284 const DebugLoc &DL, unsigned O) { 8285 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8286 "Expected inlined-at fields to agree"); 8287 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8288 } 8289 8290 /// FrameIndex 8291 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8292 DIExpression *Expr, unsigned FI, 8293 bool IsIndirect, 8294 const DebugLoc &DL, 8295 unsigned O) { 8296 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8297 "Expected inlined-at fields to agree"); 8298 return new (DbgInfo->getAlloc()) 8299 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8300 } 8301 8302 /// VReg 8303 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8304 DIExpression *Expr, 8305 unsigned VReg, bool IsIndirect, 8306 const DebugLoc &DL, unsigned O) { 8307 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8308 "Expected inlined-at fields to agree"); 8309 return new (DbgInfo->getAlloc()) 8310 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8311 } 8312 8313 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8314 unsigned OffsetInBits, unsigned SizeInBits, 8315 bool InvalidateDbg) { 8316 SDNode *FromNode = From.getNode(); 8317 SDNode *ToNode = To.getNode(); 8318 assert(FromNode && ToNode && "Can't modify dbg values"); 8319 8320 // PR35338 8321 // TODO: assert(From != To && "Redundant dbg value transfer"); 8322 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8323 if (From == To || FromNode == ToNode) 8324 return; 8325 8326 if (!FromNode->getHasDebugValue()) 8327 return; 8328 8329 SmallVector<SDDbgValue *, 2> ClonedDVs; 8330 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8331 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8332 continue; 8333 8334 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8335 8336 // Just transfer the dbg value attached to From. 8337 if (Dbg->getResNo() != From.getResNo()) 8338 continue; 8339 8340 DIVariable *Var = Dbg->getVariable(); 8341 auto *Expr = Dbg->getExpression(); 8342 // If a fragment is requested, update the expression. 8343 if (SizeInBits) { 8344 // When splitting a larger (e.g., sign-extended) value whose 8345 // lower bits are described with an SDDbgValue, do not attempt 8346 // to transfer the SDDbgValue to the upper bits. 8347 if (auto FI = Expr->getFragmentInfo()) 8348 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8349 continue; 8350 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8351 SizeInBits); 8352 if (!Fragment) 8353 continue; 8354 Expr = *Fragment; 8355 } 8356 // Clone the SDDbgValue and move it to To. 8357 SDDbgValue *Clone = getDbgValue( 8358 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8359 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8360 ClonedDVs.push_back(Clone); 8361 8362 if (InvalidateDbg) { 8363 // Invalidate value and indicate the SDDbgValue should not be emitted. 8364 Dbg->setIsInvalidated(); 8365 Dbg->setIsEmitted(); 8366 } 8367 } 8368 8369 for (SDDbgValue *Dbg : ClonedDVs) 8370 AddDbgValue(Dbg, ToNode, false); 8371 } 8372 8373 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8374 if (!N.getHasDebugValue()) 8375 return; 8376 8377 SmallVector<SDDbgValue *, 2> ClonedDVs; 8378 for (auto DV : GetDbgValues(&N)) { 8379 if (DV->isInvalidated()) 8380 continue; 8381 switch (N.getOpcode()) { 8382 default: 8383 break; 8384 case ISD::ADD: 8385 SDValue N0 = N.getOperand(0); 8386 SDValue N1 = N.getOperand(1); 8387 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8388 isConstantIntBuildVectorOrConstantInt(N1)) { 8389 uint64_t Offset = N.getConstantOperandVal(1); 8390 // Rewrite an ADD constant node into a DIExpression. Since we are 8391 // performing arithmetic to compute the variable's *value* in the 8392 // DIExpression, we need to mark the expression with a 8393 // DW_OP_stack_value. 8394 auto *DIExpr = DV->getExpression(); 8395 DIExpr = 8396 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8397 SDDbgValue *Clone = 8398 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8399 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8400 ClonedDVs.push_back(Clone); 8401 DV->setIsInvalidated(); 8402 DV->setIsEmitted(); 8403 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8404 N0.getNode()->dumprFull(this); 8405 dbgs() << " into " << *DIExpr << '\n'); 8406 } 8407 } 8408 } 8409 8410 for (SDDbgValue *Dbg : ClonedDVs) 8411 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8412 } 8413 8414 /// Creates a SDDbgLabel node. 8415 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8416 const DebugLoc &DL, unsigned O) { 8417 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8418 "Expected inlined-at fields to agree"); 8419 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8420 } 8421 8422 namespace { 8423 8424 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8425 /// pointed to by a use iterator is deleted, increment the use iterator 8426 /// so that it doesn't dangle. 8427 /// 8428 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8429 SDNode::use_iterator &UI; 8430 SDNode::use_iterator &UE; 8431 8432 void NodeDeleted(SDNode *N, SDNode *E) override { 8433 // Increment the iterator as needed. 8434 while (UI != UE && N == *UI) 8435 ++UI; 8436 } 8437 8438 public: 8439 RAUWUpdateListener(SelectionDAG &d, 8440 SDNode::use_iterator &ui, 8441 SDNode::use_iterator &ue) 8442 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8443 }; 8444 8445 } // end anonymous namespace 8446 8447 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8448 /// This can cause recursive merging of nodes in the DAG. 8449 /// 8450 /// This version assumes From has a single result value. 8451 /// 8452 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8453 SDNode *From = FromN.getNode(); 8454 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8455 "Cannot replace with this method!"); 8456 assert(From != To.getNode() && "Cannot replace uses of with self"); 8457 8458 // Preserve Debug Values 8459 transferDbgValues(FromN, To); 8460 8461 // Iterate over all the existing uses of From. New uses will be added 8462 // to the beginning of the use list, which we avoid visiting. 8463 // This specifically avoids visiting uses of From that arise while the 8464 // replacement is happening, because any such uses would be the result 8465 // of CSE: If an existing node looks like From after one of its operands 8466 // is replaced by To, we don't want to replace of all its users with To 8467 // too. See PR3018 for more info. 8468 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8469 RAUWUpdateListener Listener(*this, UI, UE); 8470 while (UI != UE) { 8471 SDNode *User = *UI; 8472 8473 // This node is about to morph, remove its old self from the CSE maps. 8474 RemoveNodeFromCSEMaps(User); 8475 8476 // A user can appear in a use list multiple times, and when this 8477 // happens the uses are usually next to each other in the list. 8478 // To help reduce the number of CSE recomputations, process all 8479 // the uses of this user that we can find this way. 8480 do { 8481 SDUse &Use = UI.getUse(); 8482 ++UI; 8483 Use.set(To); 8484 if (To->isDivergent() != From->isDivergent()) 8485 updateDivergence(User); 8486 } while (UI != UE && *UI == User); 8487 // Now that we have modified User, add it back to the CSE maps. If it 8488 // already exists there, recursively merge the results together. 8489 AddModifiedNodeToCSEMaps(User); 8490 } 8491 8492 // If we just RAUW'd the root, take note. 8493 if (FromN == getRoot()) 8494 setRoot(To); 8495 } 8496 8497 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8498 /// This can cause recursive merging of nodes in the DAG. 8499 /// 8500 /// This version assumes that for each value of From, there is a 8501 /// corresponding value in To in the same position with the same type. 8502 /// 8503 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8504 #ifndef NDEBUG 8505 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8506 assert((!From->hasAnyUseOfValue(i) || 8507 From->getValueType(i) == To->getValueType(i)) && 8508 "Cannot use this version of ReplaceAllUsesWith!"); 8509 #endif 8510 8511 // Handle the trivial case. 8512 if (From == To) 8513 return; 8514 8515 // Preserve Debug Info. Only do this if there's a use. 8516 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8517 if (From->hasAnyUseOfValue(i)) { 8518 assert((i < To->getNumValues()) && "Invalid To location"); 8519 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8520 } 8521 8522 // Iterate over just the existing users of From. See the comments in 8523 // the ReplaceAllUsesWith above. 8524 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8525 RAUWUpdateListener Listener(*this, UI, UE); 8526 while (UI != UE) { 8527 SDNode *User = *UI; 8528 8529 // This node is about to morph, remove its old self from the CSE maps. 8530 RemoveNodeFromCSEMaps(User); 8531 8532 // A user can appear in a use list multiple times, and when this 8533 // happens the uses are usually next to each other in the list. 8534 // To help reduce the number of CSE recomputations, process all 8535 // the uses of this user that we can find this way. 8536 do { 8537 SDUse &Use = UI.getUse(); 8538 ++UI; 8539 Use.setNode(To); 8540 if (To->isDivergent() != From->isDivergent()) 8541 updateDivergence(User); 8542 } while (UI != UE && *UI == User); 8543 8544 // Now that we have modified User, add it back to the CSE maps. If it 8545 // already exists there, recursively merge the results together. 8546 AddModifiedNodeToCSEMaps(User); 8547 } 8548 8549 // If we just RAUW'd the root, take note. 8550 if (From == getRoot().getNode()) 8551 setRoot(SDValue(To, getRoot().getResNo())); 8552 } 8553 8554 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8555 /// This can cause recursive merging of nodes in the DAG. 8556 /// 8557 /// This version can replace From with any result values. To must match the 8558 /// number and types of values returned by From. 8559 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8560 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8561 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8562 8563 // Preserve Debug Info. 8564 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8565 transferDbgValues(SDValue(From, i), To[i]); 8566 8567 // Iterate over just the existing users of From. See the comments in 8568 // the ReplaceAllUsesWith above. 8569 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8570 RAUWUpdateListener Listener(*this, UI, UE); 8571 while (UI != UE) { 8572 SDNode *User = *UI; 8573 8574 // This node is about to morph, remove its old self from the CSE maps. 8575 RemoveNodeFromCSEMaps(User); 8576 8577 // A user can appear in a use list multiple times, and when this happens the 8578 // uses are usually next to each other in the list. To help reduce the 8579 // number of CSE and divergence recomputations, process all the uses of this 8580 // user that we can find this way. 8581 bool To_IsDivergent = false; 8582 do { 8583 SDUse &Use = UI.getUse(); 8584 const SDValue &ToOp = To[Use.getResNo()]; 8585 ++UI; 8586 Use.set(ToOp); 8587 To_IsDivergent |= ToOp->isDivergent(); 8588 } while (UI != UE && *UI == User); 8589 8590 if (To_IsDivergent != From->isDivergent()) 8591 updateDivergence(User); 8592 8593 // Now that we have modified User, add it back to the CSE maps. If it 8594 // already exists there, recursively merge the results together. 8595 AddModifiedNodeToCSEMaps(User); 8596 } 8597 8598 // If we just RAUW'd the root, take note. 8599 if (From == getRoot().getNode()) 8600 setRoot(SDValue(To[getRoot().getResNo()])); 8601 } 8602 8603 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8604 /// uses of other values produced by From.getNode() alone. The Deleted 8605 /// vector is handled the same way as for ReplaceAllUsesWith. 8606 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8607 // Handle the really simple, really trivial case efficiently. 8608 if (From == To) return; 8609 8610 // Handle the simple, trivial, case efficiently. 8611 if (From.getNode()->getNumValues() == 1) { 8612 ReplaceAllUsesWith(From, To); 8613 return; 8614 } 8615 8616 // Preserve Debug Info. 8617 transferDbgValues(From, To); 8618 8619 // Iterate over just the existing users of From. See the comments in 8620 // the ReplaceAllUsesWith above. 8621 SDNode::use_iterator UI = From.getNode()->use_begin(), 8622 UE = From.getNode()->use_end(); 8623 RAUWUpdateListener Listener(*this, UI, UE); 8624 while (UI != UE) { 8625 SDNode *User = *UI; 8626 bool UserRemovedFromCSEMaps = false; 8627 8628 // A user can appear in a use list multiple times, and when this 8629 // happens the uses are usually next to each other in the list. 8630 // To help reduce the number of CSE recomputations, process all 8631 // the uses of this user that we can find this way. 8632 do { 8633 SDUse &Use = UI.getUse(); 8634 8635 // Skip uses of different values from the same node. 8636 if (Use.getResNo() != From.getResNo()) { 8637 ++UI; 8638 continue; 8639 } 8640 8641 // If this node hasn't been modified yet, it's still in the CSE maps, 8642 // so remove its old self from the CSE maps. 8643 if (!UserRemovedFromCSEMaps) { 8644 RemoveNodeFromCSEMaps(User); 8645 UserRemovedFromCSEMaps = true; 8646 } 8647 8648 ++UI; 8649 Use.set(To); 8650 if (To->isDivergent() != From->isDivergent()) 8651 updateDivergence(User); 8652 } while (UI != UE && *UI == User); 8653 // We are iterating over all uses of the From node, so if a use 8654 // doesn't use the specific value, no changes are made. 8655 if (!UserRemovedFromCSEMaps) 8656 continue; 8657 8658 // Now that we have modified User, add it back to the CSE maps. If it 8659 // already exists there, recursively merge the results together. 8660 AddModifiedNodeToCSEMaps(User); 8661 } 8662 8663 // If we just RAUW'd the root, take note. 8664 if (From == getRoot()) 8665 setRoot(To); 8666 } 8667 8668 namespace { 8669 8670 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8671 /// to record information about a use. 8672 struct UseMemo { 8673 SDNode *User; 8674 unsigned Index; 8675 SDUse *Use; 8676 }; 8677 8678 /// operator< - Sort Memos by User. 8679 bool operator<(const UseMemo &L, const UseMemo &R) { 8680 return (intptr_t)L.User < (intptr_t)R.User; 8681 } 8682 8683 } // end anonymous namespace 8684 8685 void SelectionDAG::updateDivergence(SDNode * N) 8686 { 8687 if (TLI->isSDNodeAlwaysUniform(N)) 8688 return; 8689 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8690 for (auto &Op : N->ops()) { 8691 if (Op.Val.getValueType() != MVT::Other) 8692 IsDivergent |= Op.getNode()->isDivergent(); 8693 } 8694 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8695 N->SDNodeBits.IsDivergent = IsDivergent; 8696 for (auto U : N->uses()) { 8697 updateDivergence(U); 8698 } 8699 } 8700 } 8701 8702 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8703 DenseMap<SDNode *, unsigned> Degree; 8704 Order.reserve(AllNodes.size()); 8705 for (auto &N : allnodes()) { 8706 unsigned NOps = N.getNumOperands(); 8707 Degree[&N] = NOps; 8708 if (0 == NOps) 8709 Order.push_back(&N); 8710 } 8711 for (size_t I = 0; I != Order.size(); ++I) { 8712 SDNode *N = Order[I]; 8713 for (auto U : N->uses()) { 8714 unsigned &UnsortedOps = Degree[U]; 8715 if (0 == --UnsortedOps) 8716 Order.push_back(U); 8717 } 8718 } 8719 } 8720 8721 #ifndef NDEBUG 8722 void SelectionDAG::VerifyDAGDiverence() { 8723 std::vector<SDNode *> TopoOrder; 8724 CreateTopologicalOrder(TopoOrder); 8725 const TargetLowering &TLI = getTargetLoweringInfo(); 8726 DenseMap<const SDNode *, bool> DivergenceMap; 8727 for (auto &N : allnodes()) { 8728 DivergenceMap[&N] = false; 8729 } 8730 for (auto N : TopoOrder) { 8731 bool IsDivergent = DivergenceMap[N]; 8732 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8733 for (auto &Op : N->ops()) { 8734 if (Op.Val.getValueType() != MVT::Other) 8735 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8736 } 8737 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8738 DivergenceMap[N] = true; 8739 } 8740 } 8741 for (auto &N : allnodes()) { 8742 (void)N; 8743 assert(DivergenceMap[&N] == N.isDivergent() && 8744 "Divergence bit inconsistency detected\n"); 8745 } 8746 } 8747 #endif 8748 8749 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8750 /// uses of other values produced by From.getNode() alone. The same value 8751 /// may appear in both the From and To list. The Deleted vector is 8752 /// handled the same way as for ReplaceAllUsesWith. 8753 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8754 const SDValue *To, 8755 unsigned Num){ 8756 // Handle the simple, trivial case efficiently. 8757 if (Num == 1) 8758 return ReplaceAllUsesOfValueWith(*From, *To); 8759 8760 transferDbgValues(*From, *To); 8761 8762 // Read up all the uses and make records of them. This helps 8763 // processing new uses that are introduced during the 8764 // replacement process. 8765 SmallVector<UseMemo, 4> Uses; 8766 for (unsigned i = 0; i != Num; ++i) { 8767 unsigned FromResNo = From[i].getResNo(); 8768 SDNode *FromNode = From[i].getNode(); 8769 for (SDNode::use_iterator UI = FromNode->use_begin(), 8770 E = FromNode->use_end(); UI != E; ++UI) { 8771 SDUse &Use = UI.getUse(); 8772 if (Use.getResNo() == FromResNo) { 8773 UseMemo Memo = { *UI, i, &Use }; 8774 Uses.push_back(Memo); 8775 } 8776 } 8777 } 8778 8779 // Sort the uses, so that all the uses from a given User are together. 8780 llvm::sort(Uses); 8781 8782 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8783 UseIndex != UseIndexEnd; ) { 8784 // We know that this user uses some value of From. If it is the right 8785 // value, update it. 8786 SDNode *User = Uses[UseIndex].User; 8787 8788 // This node is about to morph, remove its old self from the CSE maps. 8789 RemoveNodeFromCSEMaps(User); 8790 8791 // The Uses array is sorted, so all the uses for a given User 8792 // are next to each other in the list. 8793 // To help reduce the number of CSE recomputations, process all 8794 // the uses of this user that we can find this way. 8795 do { 8796 unsigned i = Uses[UseIndex].Index; 8797 SDUse &Use = *Uses[UseIndex].Use; 8798 ++UseIndex; 8799 8800 Use.set(To[i]); 8801 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8802 8803 // Now that we have modified User, add it back to the CSE maps. If it 8804 // already exists there, recursively merge the results together. 8805 AddModifiedNodeToCSEMaps(User); 8806 } 8807 } 8808 8809 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8810 /// based on their topological order. It returns the maximum id and a vector 8811 /// of the SDNodes* in assigned order by reference. 8812 unsigned SelectionDAG::AssignTopologicalOrder() { 8813 unsigned DAGSize = 0; 8814 8815 // SortedPos tracks the progress of the algorithm. Nodes before it are 8816 // sorted, nodes after it are unsorted. When the algorithm completes 8817 // it is at the end of the list. 8818 allnodes_iterator SortedPos = allnodes_begin(); 8819 8820 // Visit all the nodes. Move nodes with no operands to the front of 8821 // the list immediately. Annotate nodes that do have operands with their 8822 // operand count. Before we do this, the Node Id fields of the nodes 8823 // may contain arbitrary values. After, the Node Id fields for nodes 8824 // before SortedPos will contain the topological sort index, and the 8825 // Node Id fields for nodes At SortedPos and after will contain the 8826 // count of outstanding operands. 8827 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8828 SDNode *N = &*I++; 8829 checkForCycles(N, this); 8830 unsigned Degree = N->getNumOperands(); 8831 if (Degree == 0) { 8832 // A node with no uses, add it to the result array immediately. 8833 N->setNodeId(DAGSize++); 8834 allnodes_iterator Q(N); 8835 if (Q != SortedPos) 8836 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8837 assert(SortedPos != AllNodes.end() && "Overran node list"); 8838 ++SortedPos; 8839 } else { 8840 // Temporarily use the Node Id as scratch space for the degree count. 8841 N->setNodeId(Degree); 8842 } 8843 } 8844 8845 // Visit all the nodes. As we iterate, move nodes into sorted order, 8846 // such that by the time the end is reached all nodes will be sorted. 8847 for (SDNode &Node : allnodes()) { 8848 SDNode *N = &Node; 8849 checkForCycles(N, this); 8850 // N is in sorted position, so all its uses have one less operand 8851 // that needs to be sorted. 8852 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8853 UI != UE; ++UI) { 8854 SDNode *P = *UI; 8855 unsigned Degree = P->getNodeId(); 8856 assert(Degree != 0 && "Invalid node degree"); 8857 --Degree; 8858 if (Degree == 0) { 8859 // All of P's operands are sorted, so P may sorted now. 8860 P->setNodeId(DAGSize++); 8861 if (P->getIterator() != SortedPos) 8862 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8863 assert(SortedPos != AllNodes.end() && "Overran node list"); 8864 ++SortedPos; 8865 } else { 8866 // Update P's outstanding operand count. 8867 P->setNodeId(Degree); 8868 } 8869 } 8870 if (Node.getIterator() == SortedPos) { 8871 #ifndef NDEBUG 8872 allnodes_iterator I(N); 8873 SDNode *S = &*++I; 8874 dbgs() << "Overran sorted position:\n"; 8875 S->dumprFull(this); dbgs() << "\n"; 8876 dbgs() << "Checking if this is due to cycles\n"; 8877 checkForCycles(this, true); 8878 #endif 8879 llvm_unreachable(nullptr); 8880 } 8881 } 8882 8883 assert(SortedPos == AllNodes.end() && 8884 "Topological sort incomplete!"); 8885 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8886 "First node in topological sort is not the entry token!"); 8887 assert(AllNodes.front().getNodeId() == 0 && 8888 "First node in topological sort has non-zero id!"); 8889 assert(AllNodes.front().getNumOperands() == 0 && 8890 "First node in topological sort has operands!"); 8891 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8892 "Last node in topologic sort has unexpected id!"); 8893 assert(AllNodes.back().use_empty() && 8894 "Last node in topologic sort has users!"); 8895 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8896 return DAGSize; 8897 } 8898 8899 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8900 /// value is produced by SD. 8901 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8902 if (SD) { 8903 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8904 SD->setHasDebugValue(true); 8905 } 8906 DbgInfo->add(DB, SD, isParameter); 8907 } 8908 8909 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8910 DbgInfo->add(DB); 8911 } 8912 8913 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8914 SDValue NewMemOp) { 8915 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8916 // The new memory operation must have the same position as the old load in 8917 // terms of memory dependency. Create a TokenFactor for the old load and new 8918 // memory operation and update uses of the old load's output chain to use that 8919 // TokenFactor. 8920 SDValue OldChain = SDValue(OldLoad, 1); 8921 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8922 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8923 return NewChain; 8924 8925 SDValue TokenFactor = 8926 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8927 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8928 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8929 return TokenFactor; 8930 } 8931 8932 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8933 Function **OutFunction) { 8934 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8935 8936 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8937 auto *Module = MF->getFunction().getParent(); 8938 auto *Function = Module->getFunction(Symbol); 8939 8940 if (OutFunction != nullptr) 8941 *OutFunction = Function; 8942 8943 if (Function != nullptr) { 8944 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8945 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8946 } 8947 8948 std::string ErrorStr; 8949 raw_string_ostream ErrorFormatter(ErrorStr); 8950 8951 ErrorFormatter << "Undefined external symbol "; 8952 ErrorFormatter << '"' << Symbol << '"'; 8953 ErrorFormatter.flush(); 8954 8955 report_fatal_error(ErrorStr); 8956 } 8957 8958 //===----------------------------------------------------------------------===// 8959 // SDNode Class 8960 //===----------------------------------------------------------------------===// 8961 8962 bool llvm::isNullConstant(SDValue V) { 8963 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8964 return Const != nullptr && Const->isNullValue(); 8965 } 8966 8967 bool llvm::isNullFPConstant(SDValue V) { 8968 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8969 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8970 } 8971 8972 bool llvm::isAllOnesConstant(SDValue V) { 8973 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8974 return Const != nullptr && Const->isAllOnesValue(); 8975 } 8976 8977 bool llvm::isOneConstant(SDValue V) { 8978 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8979 return Const != nullptr && Const->isOne(); 8980 } 8981 8982 SDValue llvm::peekThroughBitcasts(SDValue V) { 8983 while (V.getOpcode() == ISD::BITCAST) 8984 V = V.getOperand(0); 8985 return V; 8986 } 8987 8988 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8989 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8990 V = V.getOperand(0); 8991 return V; 8992 } 8993 8994 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8995 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8996 V = V.getOperand(0); 8997 return V; 8998 } 8999 9000 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9001 if (V.getOpcode() != ISD::XOR) 9002 return false; 9003 V = peekThroughBitcasts(V.getOperand(1)); 9004 unsigned NumBits = V.getScalarValueSizeInBits(); 9005 ConstantSDNode *C = 9006 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9007 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9008 } 9009 9010 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9011 bool AllowTruncation) { 9012 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9013 return CN; 9014 9015 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9016 BitVector UndefElements; 9017 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9018 9019 // BuildVectors can truncate their operands. Ignore that case here unless 9020 // AllowTruncation is set. 9021 if (CN && (UndefElements.none() || AllowUndefs)) { 9022 EVT CVT = CN->getValueType(0); 9023 EVT NSVT = N.getValueType().getScalarType(); 9024 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9025 if (AllowTruncation || (CVT == NSVT)) 9026 return CN; 9027 } 9028 } 9029 9030 return nullptr; 9031 } 9032 9033 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9034 bool AllowUndefs, 9035 bool AllowTruncation) { 9036 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9037 return CN; 9038 9039 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9040 BitVector UndefElements; 9041 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9042 9043 // BuildVectors can truncate their operands. Ignore that case here unless 9044 // AllowTruncation is set. 9045 if (CN && (UndefElements.none() || AllowUndefs)) { 9046 EVT CVT = CN->getValueType(0); 9047 EVT NSVT = N.getValueType().getScalarType(); 9048 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9049 if (AllowTruncation || (CVT == NSVT)) 9050 return CN; 9051 } 9052 } 9053 9054 return nullptr; 9055 } 9056 9057 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9058 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9059 return CN; 9060 9061 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9062 BitVector UndefElements; 9063 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9064 if (CN && (UndefElements.none() || AllowUndefs)) 9065 return CN; 9066 } 9067 9068 return nullptr; 9069 } 9070 9071 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9072 const APInt &DemandedElts, 9073 bool AllowUndefs) { 9074 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9075 return CN; 9076 9077 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9078 BitVector UndefElements; 9079 ConstantFPSDNode *CN = 9080 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9081 if (CN && (UndefElements.none() || AllowUndefs)) 9082 return CN; 9083 } 9084 9085 return nullptr; 9086 } 9087 9088 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9089 // TODO: may want to use peekThroughBitcast() here. 9090 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9091 return C && C->isNullValue(); 9092 } 9093 9094 bool llvm::isOneOrOneSplat(SDValue N) { 9095 // TODO: may want to use peekThroughBitcast() here. 9096 unsigned BitWidth = N.getScalarValueSizeInBits(); 9097 ConstantSDNode *C = isConstOrConstSplat(N); 9098 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9099 } 9100 9101 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9102 N = peekThroughBitcasts(N); 9103 unsigned BitWidth = N.getScalarValueSizeInBits(); 9104 ConstantSDNode *C = isConstOrConstSplat(N); 9105 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9106 } 9107 9108 HandleSDNode::~HandleSDNode() { 9109 DropOperands(); 9110 } 9111 9112 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9113 const DebugLoc &DL, 9114 const GlobalValue *GA, EVT VT, 9115 int64_t o, unsigned TF) 9116 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9117 TheGlobal = GA; 9118 } 9119 9120 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9121 EVT VT, unsigned SrcAS, 9122 unsigned DestAS) 9123 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9124 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9125 9126 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9127 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9128 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9129 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9130 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9131 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9132 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9133 9134 // We check here that the size of the memory operand fits within the size of 9135 // the MMO. This is because the MMO might indicate only a possible address 9136 // range instead of specifying the affected memory addresses precisely. 9137 // TODO: Make MachineMemOperands aware of scalable vectors. 9138 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9139 "Size mismatch!"); 9140 } 9141 9142 /// Profile - Gather unique data for the node. 9143 /// 9144 void SDNode::Profile(FoldingSetNodeID &ID) const { 9145 AddNodeIDNode(ID, this); 9146 } 9147 9148 namespace { 9149 9150 struct EVTArray { 9151 std::vector<EVT> VTs; 9152 9153 EVTArray() { 9154 VTs.reserve(MVT::LAST_VALUETYPE); 9155 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9156 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9157 } 9158 }; 9159 9160 } // end anonymous namespace 9161 9162 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9163 static ManagedStatic<EVTArray> SimpleVTArray; 9164 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9165 9166 /// getValueTypeList - Return a pointer to the specified value type. 9167 /// 9168 const EVT *SDNode::getValueTypeList(EVT VT) { 9169 if (VT.isExtended()) { 9170 sys::SmartScopedLock<true> Lock(*VTMutex); 9171 return &(*EVTs->insert(VT).first); 9172 } else { 9173 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9174 "Value type out of range!"); 9175 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9176 } 9177 } 9178 9179 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9180 /// indicated value. This method ignores uses of other values defined by this 9181 /// operation. 9182 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9183 assert(Value < getNumValues() && "Bad value!"); 9184 9185 // TODO: Only iterate over uses of a given value of the node 9186 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9187 if (UI.getUse().getResNo() == Value) { 9188 if (NUses == 0) 9189 return false; 9190 --NUses; 9191 } 9192 } 9193 9194 // Found exactly the right number of uses? 9195 return NUses == 0; 9196 } 9197 9198 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9199 /// value. This method ignores uses of other values defined by this operation. 9200 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9201 assert(Value < getNumValues() && "Bad value!"); 9202 9203 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9204 if (UI.getUse().getResNo() == Value) 9205 return true; 9206 9207 return false; 9208 } 9209 9210 /// isOnlyUserOf - Return true if this node is the only use of N. 9211 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9212 bool Seen = false; 9213 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9214 SDNode *User = *I; 9215 if (User == this) 9216 Seen = true; 9217 else 9218 return false; 9219 } 9220 9221 return Seen; 9222 } 9223 9224 /// Return true if the only users of N are contained in Nodes. 9225 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9226 bool Seen = false; 9227 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9228 SDNode *User = *I; 9229 if (llvm::any_of(Nodes, 9230 [&User](const SDNode *Node) { return User == Node; })) 9231 Seen = true; 9232 else 9233 return false; 9234 } 9235 9236 return Seen; 9237 } 9238 9239 /// isOperand - Return true if this node is an operand of N. 9240 bool SDValue::isOperandOf(const SDNode *N) const { 9241 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9242 } 9243 9244 bool SDNode::isOperandOf(const SDNode *N) const { 9245 return any_of(N->op_values(), 9246 [this](SDValue Op) { return this == Op.getNode(); }); 9247 } 9248 9249 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9250 /// be a chain) reaches the specified operand without crossing any 9251 /// side-effecting instructions on any chain path. In practice, this looks 9252 /// through token factors and non-volatile loads. In order to remain efficient, 9253 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9254 /// 9255 /// Note that we only need to examine chains when we're searching for 9256 /// side-effects; SelectionDAG requires that all side-effects are represented 9257 /// by chains, even if another operand would force a specific ordering. This 9258 /// constraint is necessary to allow transformations like splitting loads. 9259 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9260 unsigned Depth) const { 9261 if (*this == Dest) return true; 9262 9263 // Don't search too deeply, we just want to be able to see through 9264 // TokenFactor's etc. 9265 if (Depth == 0) return false; 9266 9267 // If this is a token factor, all inputs to the TF happen in parallel. 9268 if (getOpcode() == ISD::TokenFactor) { 9269 // First, try a shallow search. 9270 if (is_contained((*this)->ops(), Dest)) { 9271 // We found the chain we want as an operand of this TokenFactor. 9272 // Essentially, we reach the chain without side-effects if we could 9273 // serialize the TokenFactor into a simple chain of operations with 9274 // Dest as the last operation. This is automatically true if the 9275 // chain has one use: there are no other ordering constraints. 9276 // If the chain has more than one use, we give up: some other 9277 // use of Dest might force a side-effect between Dest and the current 9278 // node. 9279 if (Dest.hasOneUse()) 9280 return true; 9281 } 9282 // Next, try a deep search: check whether every operand of the TokenFactor 9283 // reaches Dest. 9284 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9285 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9286 }); 9287 } 9288 9289 // Loads don't have side effects, look through them. 9290 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9291 if (Ld->isUnordered()) 9292 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9293 } 9294 return false; 9295 } 9296 9297 bool SDNode::hasPredecessor(const SDNode *N) const { 9298 SmallPtrSet<const SDNode *, 32> Visited; 9299 SmallVector<const SDNode *, 16> Worklist; 9300 Worklist.push_back(this); 9301 return hasPredecessorHelper(N, Visited, Worklist); 9302 } 9303 9304 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9305 this->Flags.intersectWith(Flags); 9306 } 9307 9308 SDValue 9309 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9310 ArrayRef<ISD::NodeType> CandidateBinOps, 9311 bool AllowPartials) { 9312 // The pattern must end in an extract from index 0. 9313 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9314 !isNullConstant(Extract->getOperand(1))) 9315 return SDValue(); 9316 9317 // Match against one of the candidate binary ops. 9318 SDValue Op = Extract->getOperand(0); 9319 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9320 return Op.getOpcode() == unsigned(BinOp); 9321 })) 9322 return SDValue(); 9323 9324 // Floating-point reductions may require relaxed constraints on the final step 9325 // of the reduction because they may reorder intermediate operations. 9326 unsigned CandidateBinOp = Op.getOpcode(); 9327 if (Op.getValueType().isFloatingPoint()) { 9328 SDNodeFlags Flags = Op->getFlags(); 9329 switch (CandidateBinOp) { 9330 case ISD::FADD: 9331 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9332 return SDValue(); 9333 break; 9334 default: 9335 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9336 } 9337 } 9338 9339 // Matching failed - attempt to see if we did enough stages that a partial 9340 // reduction from a subvector is possible. 9341 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9342 if (!AllowPartials || !Op) 9343 return SDValue(); 9344 EVT OpVT = Op.getValueType(); 9345 EVT OpSVT = OpVT.getScalarType(); 9346 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9347 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9348 return SDValue(); 9349 BinOp = (ISD::NodeType)CandidateBinOp; 9350 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9351 getVectorIdxConstant(0, SDLoc(Op))); 9352 }; 9353 9354 // At each stage, we're looking for something that looks like: 9355 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9356 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9357 // i32 undef, i32 undef, i32 undef, i32 undef> 9358 // %a = binop <8 x i32> %op, %s 9359 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9360 // we expect something like: 9361 // <4,5,6,7,u,u,u,u> 9362 // <2,3,u,u,u,u,u,u> 9363 // <1,u,u,u,u,u,u,u> 9364 // While a partial reduction match would be: 9365 // <2,3,u,u,u,u,u,u> 9366 // <1,u,u,u,u,u,u,u> 9367 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9368 SDValue PrevOp; 9369 for (unsigned i = 0; i < Stages; ++i) { 9370 unsigned MaskEnd = (1 << i); 9371 9372 if (Op.getOpcode() != CandidateBinOp) 9373 return PartialReduction(PrevOp, MaskEnd); 9374 9375 SDValue Op0 = Op.getOperand(0); 9376 SDValue Op1 = Op.getOperand(1); 9377 9378 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9379 if (Shuffle) { 9380 Op = Op1; 9381 } else { 9382 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9383 Op = Op0; 9384 } 9385 9386 // The first operand of the shuffle should be the same as the other operand 9387 // of the binop. 9388 if (!Shuffle || Shuffle->getOperand(0) != Op) 9389 return PartialReduction(PrevOp, MaskEnd); 9390 9391 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9392 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9393 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9394 return PartialReduction(PrevOp, MaskEnd); 9395 9396 PrevOp = Op; 9397 } 9398 9399 // Handle subvector reductions, which tend to appear after the shuffle 9400 // reduction stages. 9401 while (Op.getOpcode() == CandidateBinOp) { 9402 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9403 SDValue Op0 = Op.getOperand(0); 9404 SDValue Op1 = Op.getOperand(1); 9405 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9406 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9407 Op0.getOperand(0) != Op1.getOperand(0)) 9408 break; 9409 SDValue Src = Op0.getOperand(0); 9410 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9411 if (NumSrcElts != (2 * NumElts)) 9412 break; 9413 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9414 Op1.getConstantOperandAPInt(1) == NumElts) && 9415 !(Op1.getConstantOperandAPInt(1) == 0 && 9416 Op0.getConstantOperandAPInt(1) == NumElts)) 9417 break; 9418 Op = Src; 9419 } 9420 9421 BinOp = (ISD::NodeType)CandidateBinOp; 9422 return Op; 9423 } 9424 9425 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9426 assert(N->getNumValues() == 1 && 9427 "Can't unroll a vector with multiple results!"); 9428 9429 EVT VT = N->getValueType(0); 9430 unsigned NE = VT.getVectorNumElements(); 9431 EVT EltVT = VT.getVectorElementType(); 9432 SDLoc dl(N); 9433 9434 SmallVector<SDValue, 8> Scalars; 9435 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9436 9437 // If ResNE is 0, fully unroll the vector op. 9438 if (ResNE == 0) 9439 ResNE = NE; 9440 else if (NE > ResNE) 9441 NE = ResNE; 9442 9443 unsigned i; 9444 for (i= 0; i != NE; ++i) { 9445 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9446 SDValue Operand = N->getOperand(j); 9447 EVT OperandVT = Operand.getValueType(); 9448 if (OperandVT.isVector()) { 9449 // A vector operand; extract a single element. 9450 EVT OperandEltVT = OperandVT.getVectorElementType(); 9451 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9452 Operand, getVectorIdxConstant(i, dl)); 9453 } else { 9454 // A scalar operand; just use it as is. 9455 Operands[j] = Operand; 9456 } 9457 } 9458 9459 switch (N->getOpcode()) { 9460 default: { 9461 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9462 N->getFlags())); 9463 break; 9464 } 9465 case ISD::VSELECT: 9466 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9467 break; 9468 case ISD::SHL: 9469 case ISD::SRA: 9470 case ISD::SRL: 9471 case ISD::ROTL: 9472 case ISD::ROTR: 9473 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9474 getShiftAmountOperand(Operands[0].getValueType(), 9475 Operands[1]))); 9476 break; 9477 case ISD::SIGN_EXTEND_INREG: { 9478 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9479 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9480 Operands[0], 9481 getValueType(ExtVT))); 9482 } 9483 } 9484 } 9485 9486 for (; i < ResNE; ++i) 9487 Scalars.push_back(getUNDEF(EltVT)); 9488 9489 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9490 return getBuildVector(VecVT, dl, Scalars); 9491 } 9492 9493 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9494 SDNode *N, unsigned ResNE) { 9495 unsigned Opcode = N->getOpcode(); 9496 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9497 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9498 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9499 "Expected an overflow opcode"); 9500 9501 EVT ResVT = N->getValueType(0); 9502 EVT OvVT = N->getValueType(1); 9503 EVT ResEltVT = ResVT.getVectorElementType(); 9504 EVT OvEltVT = OvVT.getVectorElementType(); 9505 SDLoc dl(N); 9506 9507 // If ResNE is 0, fully unroll the vector op. 9508 unsigned NE = ResVT.getVectorNumElements(); 9509 if (ResNE == 0) 9510 ResNE = NE; 9511 else if (NE > ResNE) 9512 NE = ResNE; 9513 9514 SmallVector<SDValue, 8> LHSScalars; 9515 SmallVector<SDValue, 8> RHSScalars; 9516 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9517 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9518 9519 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9520 SDVTList VTs = getVTList(ResEltVT, SVT); 9521 SmallVector<SDValue, 8> ResScalars; 9522 SmallVector<SDValue, 8> OvScalars; 9523 for (unsigned i = 0; i < NE; ++i) { 9524 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9525 SDValue Ov = 9526 getSelect(dl, OvEltVT, Res.getValue(1), 9527 getBoolConstant(true, dl, OvEltVT, ResVT), 9528 getConstant(0, dl, OvEltVT)); 9529 9530 ResScalars.push_back(Res); 9531 OvScalars.push_back(Ov); 9532 } 9533 9534 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9535 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9536 9537 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9538 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9539 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9540 getBuildVector(NewOvVT, dl, OvScalars)); 9541 } 9542 9543 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9544 LoadSDNode *Base, 9545 unsigned Bytes, 9546 int Dist) const { 9547 if (LD->isVolatile() || Base->isVolatile()) 9548 return false; 9549 // TODO: probably too restrictive for atomics, revisit 9550 if (!LD->isSimple()) 9551 return false; 9552 if (LD->isIndexed() || Base->isIndexed()) 9553 return false; 9554 if (LD->getChain() != Base->getChain()) 9555 return false; 9556 EVT VT = LD->getValueType(0); 9557 if (VT.getSizeInBits() / 8 != Bytes) 9558 return false; 9559 9560 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9561 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9562 9563 int64_t Offset = 0; 9564 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9565 return (Dist * Bytes == Offset); 9566 return false; 9567 } 9568 9569 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9570 /// if it cannot be inferred. 9571 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9572 // If this is a GlobalAddress + cst, return the alignment. 9573 const GlobalValue *GV = nullptr; 9574 int64_t GVOffset = 0; 9575 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9576 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9577 KnownBits Known(PtrWidth); 9578 llvm::computeKnownBits(GV, Known, getDataLayout()); 9579 unsigned AlignBits = Known.countMinTrailingZeros(); 9580 if (AlignBits) 9581 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9582 } 9583 9584 // If this is a direct reference to a stack slot, use information about the 9585 // stack slot's alignment. 9586 int FrameIdx = INT_MIN; 9587 int64_t FrameOffset = 0; 9588 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9589 FrameIdx = FI->getIndex(); 9590 } else if (isBaseWithConstantOffset(Ptr) && 9591 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9592 // Handle FI+Cst 9593 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9594 FrameOffset = Ptr.getConstantOperandVal(1); 9595 } 9596 9597 if (FrameIdx != INT_MIN) { 9598 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9599 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9600 } 9601 9602 return None; 9603 } 9604 9605 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9606 /// which is split (or expanded) into two not necessarily identical pieces. 9607 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9608 // Currently all types are split in half. 9609 EVT LoVT, HiVT; 9610 if (!VT.isVector()) 9611 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9612 else 9613 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9614 9615 return std::make_pair(LoVT, HiVT); 9616 } 9617 9618 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9619 /// type, dependent on an enveloping VT that has been split into two identical 9620 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9621 std::pair<EVT, EVT> 9622 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9623 bool *HiIsEmpty) const { 9624 EVT EltTp = VT.getVectorElementType(); 9625 bool IsScalable = VT.isScalableVector(); 9626 // Examples: 9627 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9628 // custom VL=9 with enveloping VL=8/8 yields 8/1 9629 // custom VL=10 with enveloping VL=8/8 yields 8/2 9630 // etc. 9631 unsigned VTNumElts = VT.getVectorNumElements(); 9632 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9633 EVT LoVT, HiVT; 9634 if (VTNumElts > EnvNumElts) { 9635 LoVT = EnvVT; 9636 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9637 IsScalable); 9638 *HiIsEmpty = false; 9639 } else { 9640 // Flag that hi type has zero storage size, but return split envelop type 9641 // (this would be easier if vector types with zero elements were allowed). 9642 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9643 HiVT = EnvVT; 9644 *HiIsEmpty = true; 9645 } 9646 return std::make_pair(LoVT, HiVT); 9647 } 9648 9649 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9650 /// low/high part. 9651 std::pair<SDValue, SDValue> 9652 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9653 const EVT &HiVT) { 9654 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9655 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9656 "Splitting vector with an invalid mixture of fixed and scalable " 9657 "vector types"); 9658 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9659 N.getValueType().getVectorMinNumElements() && 9660 "More vector elements requested than available!"); 9661 SDValue Lo, Hi; 9662 Lo = 9663 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9664 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9665 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9666 // IDX with the runtime scaling factor of the result vector type. For 9667 // fixed-width result vectors, that runtime scaling factor is 1. 9668 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9669 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9670 return std::make_pair(Lo, Hi); 9671 } 9672 9673 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9674 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9675 EVT VT = N.getValueType(); 9676 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9677 NextPowerOf2(VT.getVectorNumElements())); 9678 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9679 getVectorIdxConstant(0, DL)); 9680 } 9681 9682 void SelectionDAG::ExtractVectorElements(SDValue Op, 9683 SmallVectorImpl<SDValue> &Args, 9684 unsigned Start, unsigned Count, 9685 EVT EltVT) { 9686 EVT VT = Op.getValueType(); 9687 if (Count == 0) 9688 Count = VT.getVectorNumElements(); 9689 if (EltVT == EVT()) 9690 EltVT = VT.getVectorElementType(); 9691 SDLoc SL(Op); 9692 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9693 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9694 getVectorIdxConstant(i, SL))); 9695 } 9696 } 9697 9698 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9699 unsigned GlobalAddressSDNode::getAddressSpace() const { 9700 return getGlobal()->getType()->getAddressSpace(); 9701 } 9702 9703 Type *ConstantPoolSDNode::getType() const { 9704 if (isMachineConstantPoolEntry()) 9705 return Val.MachineCPVal->getType(); 9706 return Val.ConstVal->getType(); 9707 } 9708 9709 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9710 unsigned &SplatBitSize, 9711 bool &HasAnyUndefs, 9712 unsigned MinSplatBits, 9713 bool IsBigEndian) const { 9714 EVT VT = getValueType(0); 9715 assert(VT.isVector() && "Expected a vector type"); 9716 unsigned VecWidth = VT.getSizeInBits(); 9717 if (MinSplatBits > VecWidth) 9718 return false; 9719 9720 // FIXME: The widths are based on this node's type, but build vectors can 9721 // truncate their operands. 9722 SplatValue = APInt(VecWidth, 0); 9723 SplatUndef = APInt(VecWidth, 0); 9724 9725 // Get the bits. Bits with undefined values (when the corresponding element 9726 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9727 // in SplatValue. If any of the values are not constant, give up and return 9728 // false. 9729 unsigned int NumOps = getNumOperands(); 9730 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9731 unsigned EltWidth = VT.getScalarSizeInBits(); 9732 9733 for (unsigned j = 0; j < NumOps; ++j) { 9734 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9735 SDValue OpVal = getOperand(i); 9736 unsigned BitPos = j * EltWidth; 9737 9738 if (OpVal.isUndef()) 9739 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9740 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9741 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9742 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9743 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9744 else 9745 return false; 9746 } 9747 9748 // The build_vector is all constants or undefs. Find the smallest element 9749 // size that splats the vector. 9750 HasAnyUndefs = (SplatUndef != 0); 9751 9752 // FIXME: This does not work for vectors with elements less than 8 bits. 9753 while (VecWidth > 8) { 9754 unsigned HalfSize = VecWidth / 2; 9755 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9756 APInt LowValue = SplatValue.trunc(HalfSize); 9757 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9758 APInt LowUndef = SplatUndef.trunc(HalfSize); 9759 9760 // If the two halves do not match (ignoring undef bits), stop here. 9761 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9762 MinSplatBits > HalfSize) 9763 break; 9764 9765 SplatValue = HighValue | LowValue; 9766 SplatUndef = HighUndef & LowUndef; 9767 9768 VecWidth = HalfSize; 9769 } 9770 9771 SplatBitSize = VecWidth; 9772 return true; 9773 } 9774 9775 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9776 BitVector *UndefElements) const { 9777 if (UndefElements) { 9778 UndefElements->clear(); 9779 UndefElements->resize(getNumOperands()); 9780 } 9781 assert(getNumOperands() == DemandedElts.getBitWidth() && 9782 "Unexpected vector size"); 9783 if (!DemandedElts) 9784 return SDValue(); 9785 SDValue Splatted; 9786 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9787 if (!DemandedElts[i]) 9788 continue; 9789 SDValue Op = getOperand(i); 9790 if (Op.isUndef()) { 9791 if (UndefElements) 9792 (*UndefElements)[i] = true; 9793 } else if (!Splatted) { 9794 Splatted = Op; 9795 } else if (Splatted != Op) { 9796 return SDValue(); 9797 } 9798 } 9799 9800 if (!Splatted) { 9801 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9802 assert(getOperand(FirstDemandedIdx).isUndef() && 9803 "Can only have a splat without a constant for all undefs."); 9804 return getOperand(FirstDemandedIdx); 9805 } 9806 9807 return Splatted; 9808 } 9809 9810 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9811 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9812 return getSplatValue(DemandedElts, UndefElements); 9813 } 9814 9815 ConstantSDNode * 9816 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9817 BitVector *UndefElements) const { 9818 return dyn_cast_or_null<ConstantSDNode>( 9819 getSplatValue(DemandedElts, UndefElements)); 9820 } 9821 9822 ConstantSDNode * 9823 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9824 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9825 } 9826 9827 ConstantFPSDNode * 9828 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9829 BitVector *UndefElements) const { 9830 return dyn_cast_or_null<ConstantFPSDNode>( 9831 getSplatValue(DemandedElts, UndefElements)); 9832 } 9833 9834 ConstantFPSDNode * 9835 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9836 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9837 } 9838 9839 int32_t 9840 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9841 uint32_t BitWidth) const { 9842 if (ConstantFPSDNode *CN = 9843 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9844 bool IsExact; 9845 APSInt IntVal(BitWidth); 9846 const APFloat &APF = CN->getValueAPF(); 9847 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9848 APFloat::opOK || 9849 !IsExact) 9850 return -1; 9851 9852 return IntVal.exactLogBase2(); 9853 } 9854 return -1; 9855 } 9856 9857 bool BuildVectorSDNode::isConstant() const { 9858 for (const SDValue &Op : op_values()) { 9859 unsigned Opc = Op.getOpcode(); 9860 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9861 return false; 9862 } 9863 return true; 9864 } 9865 9866 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9867 // Find the first non-undef value in the shuffle mask. 9868 unsigned i, e; 9869 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9870 /* search */; 9871 9872 // If all elements are undefined, this shuffle can be considered a splat 9873 // (although it should eventually get simplified away completely). 9874 if (i == e) 9875 return true; 9876 9877 // Make sure all remaining elements are either undef or the same as the first 9878 // non-undef value. 9879 for (int Idx = Mask[i]; i != e; ++i) 9880 if (Mask[i] >= 0 && Mask[i] != Idx) 9881 return false; 9882 return true; 9883 } 9884 9885 // Returns the SDNode if it is a constant integer BuildVector 9886 // or constant integer. 9887 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9888 if (isa<ConstantSDNode>(N)) 9889 return N.getNode(); 9890 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9891 return N.getNode(); 9892 // Treat a GlobalAddress supporting constant offset folding as a 9893 // constant integer. 9894 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9895 if (GA->getOpcode() == ISD::GlobalAddress && 9896 TLI->isOffsetFoldingLegal(GA)) 9897 return GA; 9898 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 9899 isa<ConstantSDNode>(N.getOperand(0))) 9900 return N.getNode(); 9901 return nullptr; 9902 } 9903 9904 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9905 if (isa<ConstantFPSDNode>(N)) 9906 return N.getNode(); 9907 9908 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9909 return N.getNode(); 9910 9911 return nullptr; 9912 } 9913 9914 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9915 assert(!Node->OperandList && "Node already has operands"); 9916 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9917 "too many operands to fit into SDNode"); 9918 SDUse *Ops = OperandRecycler.allocate( 9919 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9920 9921 bool IsDivergent = false; 9922 for (unsigned I = 0; I != Vals.size(); ++I) { 9923 Ops[I].setUser(Node); 9924 Ops[I].setInitial(Vals[I]); 9925 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9926 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9927 } 9928 Node->NumOperands = Vals.size(); 9929 Node->OperandList = Ops; 9930 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9931 if (!TLI->isSDNodeAlwaysUniform(Node)) 9932 Node->SDNodeBits.IsDivergent = IsDivergent; 9933 checkForCycles(Node); 9934 } 9935 9936 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9937 SmallVectorImpl<SDValue> &Vals) { 9938 size_t Limit = SDNode::getMaxNumOperands(); 9939 while (Vals.size() > Limit) { 9940 unsigned SliceIdx = Vals.size() - Limit; 9941 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9942 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9943 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9944 Vals.emplace_back(NewTF); 9945 } 9946 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9947 } 9948 9949 #ifndef NDEBUG 9950 static void checkForCyclesHelper(const SDNode *N, 9951 SmallPtrSetImpl<const SDNode*> &Visited, 9952 SmallPtrSetImpl<const SDNode*> &Checked, 9953 const llvm::SelectionDAG *DAG) { 9954 // If this node has already been checked, don't check it again. 9955 if (Checked.count(N)) 9956 return; 9957 9958 // If a node has already been visited on this depth-first walk, reject it as 9959 // a cycle. 9960 if (!Visited.insert(N).second) { 9961 errs() << "Detected cycle in SelectionDAG\n"; 9962 dbgs() << "Offending node:\n"; 9963 N->dumprFull(DAG); dbgs() << "\n"; 9964 abort(); 9965 } 9966 9967 for (const SDValue &Op : N->op_values()) 9968 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9969 9970 Checked.insert(N); 9971 Visited.erase(N); 9972 } 9973 #endif 9974 9975 void llvm::checkForCycles(const llvm::SDNode *N, 9976 const llvm::SelectionDAG *DAG, 9977 bool force) { 9978 #ifndef NDEBUG 9979 bool check = force; 9980 #ifdef EXPENSIVE_CHECKS 9981 check = true; 9982 #endif // EXPENSIVE_CHECKS 9983 if (check) { 9984 assert(N && "Checking nonexistent SDNode"); 9985 SmallPtrSet<const SDNode*, 32> visited; 9986 SmallPtrSet<const SDNode*, 32> checked; 9987 checkForCyclesHelper(N, visited, checked, DAG); 9988 } 9989 #endif // !NDEBUG 9990 } 9991 9992 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9993 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9994 } 9995