1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/CodeGen/ValueTypes.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/KnownBits.h" 61 #include "llvm/Support/ManagedStatic.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/Mutex.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 93 DEBUG( 94 dbgs() << Msg; 95 V.getNode()->dump(G); 96 ); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // ConstantFPSDNode Class 101 //===----------------------------------------------------------------------===// 102 103 /// isExactlyValue - We don't rely on operator== working on double values, as 104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 105 /// As such, this method can be used to do an exact bit-for-bit comparison of 106 /// two floating point values. 107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 108 return getValueAPF().bitwiseIsEqual(V); 109 } 110 111 bool ConstantFPSDNode::isValueValidForType(EVT VT, 112 const APFloat& Val) { 113 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 114 115 // convert modifies in place, so make a copy. 116 APFloat Val2 = APFloat(Val); 117 bool losesInfo; 118 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 119 APFloat::rmNearestTiesToEven, 120 &losesInfo); 121 return !losesInfo; 122 } 123 124 //===----------------------------------------------------------------------===// 125 // ISD Namespace 126 //===----------------------------------------------------------------------===// 127 128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 129 auto *BV = dyn_cast<BuildVectorSDNode>(N); 130 if (!BV) 131 return false; 132 133 APInt SplatUndef; 134 unsigned SplatBitSize; 135 bool HasUndefs; 136 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 137 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 138 EltSize) && 139 EltSize == SplatBitSize; 140 } 141 142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 143 // specializations of the more general isConstantSplatVector()? 144 145 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 146 // Look through a bit convert. 147 while (N->getOpcode() == ISD::BITCAST) 148 N = N->getOperand(0).getNode(); 149 150 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 151 152 unsigned i = 0, e = N->getNumOperands(); 153 154 // Skip over all of the undef values. 155 while (i != e && N->getOperand(i).isUndef()) 156 ++i; 157 158 // Do not accept an all-undef vector. 159 if (i == e) return false; 160 161 // Do not accept build_vectors that aren't all constants or which have non-~0 162 // elements. We have to be a bit careful here, as the type of the constant 163 // may not be the same as the type of the vector elements due to type 164 // legalization (the elements are promoted to a legal type for the target and 165 // a vector of a type may be legal when the base element type is not). 166 // We only want to check enough bits to cover the vector elements, because 167 // we care if the resultant vector is all ones, not whether the individual 168 // constants are. 169 SDValue NotZero = N->getOperand(i); 170 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 171 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 172 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 173 return false; 174 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 175 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 176 return false; 177 } else 178 return false; 179 180 // Okay, we have at least one ~0 value, check to see if the rest match or are 181 // undefs. Even with the above element type twiddling, this should be OK, as 182 // the same type legalization should have applied to all the elements. 183 for (++i; i != e; ++i) 184 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 185 return false; 186 return true; 187 } 188 189 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 190 // Look through a bit convert. 191 while (N->getOpcode() == ISD::BITCAST) 192 N = N->getOperand(0).getNode(); 193 194 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 195 196 bool IsAllUndef = true; 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 IsAllUndef = false; 201 // Do not accept build_vectors that aren't all constants or which have non-0 202 // elements. We have to be a bit careful here, as the type of the constant 203 // may not be the same as the type of the vector elements due to type 204 // legalization (the elements are promoted to a legal type for the target 205 // and a vector of a type may be legal when the base element type is not). 206 // We only want to check enough bits to cover the vector elements, because 207 // we care if the resultant vector is all zeros, not whether the individual 208 // constants are. 209 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 210 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 211 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 212 return false; 213 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 214 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 215 return false; 216 } else 217 return false; 218 } 219 220 // Do not accept an all-undef vector. 221 if (IsAllUndef) 222 return false; 223 return true; 224 } 225 226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 227 if (N->getOpcode() != ISD::BUILD_VECTOR) 228 return false; 229 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 if (!isa<ConstantSDNode>(Op)) 234 return false; 235 } 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantFPSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::allOperandsUndef(const SDNode *N) { 253 // Return false if the node has no operands. 254 // This is "logically inconsistent" with the definition of "all" but 255 // is probably the desired behavior. 256 if (N->getNumOperands() == 0) 257 return false; 258 259 for (const SDValue &Op : N->op_values()) 260 if (!Op.isUndef()) 261 return false; 262 263 return true; 264 } 265 266 bool ISD::matchUnaryPredicate(SDValue Op, 267 std::function<bool(ConstantSDNode *)> Match) { 268 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 269 return Match(Cst); 270 271 if (ISD::BUILD_VECTOR != Op.getOpcode()) 272 return false; 273 274 EVT SVT = Op.getValueType().getScalarType(); 275 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 276 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 277 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 278 return false; 279 } 280 return true; 281 } 282 283 bool ISD::matchBinaryPredicate( 284 SDValue LHS, SDValue RHS, 285 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) { 286 if (LHS.getValueType() != RHS.getValueType()) 287 return false; 288 289 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 290 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 291 return Match(LHSCst, RHSCst); 292 293 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 294 ISD::BUILD_VECTOR != RHS.getOpcode()) 295 return false; 296 297 EVT SVT = LHS.getValueType().getScalarType(); 298 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 299 auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i)); 300 auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i)); 301 if (!LHSCst || !RHSCst) 302 return false; 303 if (LHSCst->getValueType(0) != SVT || 304 LHSCst->getValueType(0) != RHSCst->getValueType(0)) 305 return false; 306 if (!Match(LHSCst, RHSCst)) 307 return false; 308 } 309 return true; 310 } 311 312 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 313 switch (ExtType) { 314 case ISD::EXTLOAD: 315 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 316 case ISD::SEXTLOAD: 317 return ISD::SIGN_EXTEND; 318 case ISD::ZEXTLOAD: 319 return ISD::ZERO_EXTEND; 320 default: 321 break; 322 } 323 324 llvm_unreachable("Invalid LoadExtType"); 325 } 326 327 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 328 // To perform this operation, we just need to swap the L and G bits of the 329 // operation. 330 unsigned OldL = (Operation >> 2) & 1; 331 unsigned OldG = (Operation >> 1) & 1; 332 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 333 (OldL << 1) | // New G bit 334 (OldG << 2)); // New L bit. 335 } 336 337 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 338 unsigned Operation = Op; 339 if (isInteger) 340 Operation ^= 7; // Flip L, G, E bits, but not U. 341 else 342 Operation ^= 15; // Flip all of the condition bits. 343 344 if (Operation > ISD::SETTRUE2) 345 Operation &= ~8; // Don't let N and U bits get set. 346 347 return ISD::CondCode(Operation); 348 } 349 350 /// For an integer comparison, return 1 if the comparison is a signed operation 351 /// and 2 if the result is an unsigned comparison. Return zero if the operation 352 /// does not depend on the sign of the input (setne and seteq). 353 static int isSignedOp(ISD::CondCode Opcode) { 354 switch (Opcode) { 355 default: llvm_unreachable("Illegal integer setcc operation!"); 356 case ISD::SETEQ: 357 case ISD::SETNE: return 0; 358 case ISD::SETLT: 359 case ISD::SETLE: 360 case ISD::SETGT: 361 case ISD::SETGE: return 1; 362 case ISD::SETULT: 363 case ISD::SETULE: 364 case ISD::SETUGT: 365 case ISD::SETUGE: return 2; 366 } 367 } 368 369 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 370 bool IsInteger) { 371 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 372 // Cannot fold a signed integer setcc with an unsigned integer setcc. 373 return ISD::SETCC_INVALID; 374 375 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 376 377 // If the N and U bits get set, then the resultant comparison DOES suddenly 378 // care about orderedness, and it is true when ordered. 379 if (Op > ISD::SETTRUE2) 380 Op &= ~16; // Clear the U bit if the N bit is set. 381 382 // Canonicalize illegal integer setcc's. 383 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 384 Op = ISD::SETNE; 385 386 return ISD::CondCode(Op); 387 } 388 389 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 390 bool IsInteger) { 391 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 392 // Cannot fold a signed setcc with an unsigned setcc. 393 return ISD::SETCC_INVALID; 394 395 // Combine all of the condition bits. 396 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 397 398 // Canonicalize illegal integer setcc's. 399 if (IsInteger) { 400 switch (Result) { 401 default: break; 402 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 403 case ISD::SETOEQ: // SETEQ & SETU[LG]E 404 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 405 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 406 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 407 } 408 } 409 410 return Result; 411 } 412 413 //===----------------------------------------------------------------------===// 414 // SDNode Profile Support 415 //===----------------------------------------------------------------------===// 416 417 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 418 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 419 ID.AddInteger(OpC); 420 } 421 422 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 423 /// solely with their pointer. 424 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 425 ID.AddPointer(VTList.VTs); 426 } 427 428 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 429 static void AddNodeIDOperands(FoldingSetNodeID &ID, 430 ArrayRef<SDValue> Ops) { 431 for (auto& Op : Ops) { 432 ID.AddPointer(Op.getNode()); 433 ID.AddInteger(Op.getResNo()); 434 } 435 } 436 437 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 438 static void AddNodeIDOperands(FoldingSetNodeID &ID, 439 ArrayRef<SDUse> Ops) { 440 for (auto& Op : Ops) { 441 ID.AddPointer(Op.getNode()); 442 ID.AddInteger(Op.getResNo()); 443 } 444 } 445 446 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 447 SDVTList VTList, ArrayRef<SDValue> OpList) { 448 AddNodeIDOpcode(ID, OpC); 449 AddNodeIDValueTypes(ID, VTList); 450 AddNodeIDOperands(ID, OpList); 451 } 452 453 /// If this is an SDNode with special info, add this info to the NodeID data. 454 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 455 switch (N->getOpcode()) { 456 case ISD::TargetExternalSymbol: 457 case ISD::ExternalSymbol: 458 case ISD::MCSymbol: 459 llvm_unreachable("Should only be used on nodes with operands"); 460 default: break; // Normal nodes don't need extra info. 461 case ISD::TargetConstant: 462 case ISD::Constant: { 463 const ConstantSDNode *C = cast<ConstantSDNode>(N); 464 ID.AddPointer(C->getConstantIntValue()); 465 ID.AddBoolean(C->isOpaque()); 466 break; 467 } 468 case ISD::TargetConstantFP: 469 case ISD::ConstantFP: 470 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 471 break; 472 case ISD::TargetGlobalAddress: 473 case ISD::GlobalAddress: 474 case ISD::TargetGlobalTLSAddress: 475 case ISD::GlobalTLSAddress: { 476 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 477 ID.AddPointer(GA->getGlobal()); 478 ID.AddInteger(GA->getOffset()); 479 ID.AddInteger(GA->getTargetFlags()); 480 break; 481 } 482 case ISD::BasicBlock: 483 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 484 break; 485 case ISD::Register: 486 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 487 break; 488 case ISD::RegisterMask: 489 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 490 break; 491 case ISD::SRCVALUE: 492 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 493 break; 494 case ISD::FrameIndex: 495 case ISD::TargetFrameIndex: 496 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 497 break; 498 case ISD::JumpTable: 499 case ISD::TargetJumpTable: 500 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 501 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 502 break; 503 case ISD::ConstantPool: 504 case ISD::TargetConstantPool: { 505 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 506 ID.AddInteger(CP->getAlignment()); 507 ID.AddInteger(CP->getOffset()); 508 if (CP->isMachineConstantPoolEntry()) 509 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 510 else 511 ID.AddPointer(CP->getConstVal()); 512 ID.AddInteger(CP->getTargetFlags()); 513 break; 514 } 515 case ISD::TargetIndex: { 516 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 517 ID.AddInteger(TI->getIndex()); 518 ID.AddInteger(TI->getOffset()); 519 ID.AddInteger(TI->getTargetFlags()); 520 break; 521 } 522 case ISD::LOAD: { 523 const LoadSDNode *LD = cast<LoadSDNode>(N); 524 ID.AddInteger(LD->getMemoryVT().getRawBits()); 525 ID.AddInteger(LD->getRawSubclassData()); 526 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 527 break; 528 } 529 case ISD::STORE: { 530 const StoreSDNode *ST = cast<StoreSDNode>(N); 531 ID.AddInteger(ST->getMemoryVT().getRawBits()); 532 ID.AddInteger(ST->getRawSubclassData()); 533 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 534 break; 535 } 536 case ISD::ATOMIC_CMP_SWAP: 537 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 538 case ISD::ATOMIC_SWAP: 539 case ISD::ATOMIC_LOAD_ADD: 540 case ISD::ATOMIC_LOAD_SUB: 541 case ISD::ATOMIC_LOAD_AND: 542 case ISD::ATOMIC_LOAD_CLR: 543 case ISD::ATOMIC_LOAD_OR: 544 case ISD::ATOMIC_LOAD_XOR: 545 case ISD::ATOMIC_LOAD_NAND: 546 case ISD::ATOMIC_LOAD_MIN: 547 case ISD::ATOMIC_LOAD_MAX: 548 case ISD::ATOMIC_LOAD_UMIN: 549 case ISD::ATOMIC_LOAD_UMAX: 550 case ISD::ATOMIC_LOAD: 551 case ISD::ATOMIC_STORE: { 552 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 553 ID.AddInteger(AT->getMemoryVT().getRawBits()); 554 ID.AddInteger(AT->getRawSubclassData()); 555 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 556 break; 557 } 558 case ISD::PREFETCH: { 559 const MemSDNode *PF = cast<MemSDNode>(N); 560 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 561 break; 562 } 563 case ISD::VECTOR_SHUFFLE: { 564 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 565 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 566 i != e; ++i) 567 ID.AddInteger(SVN->getMaskElt(i)); 568 break; 569 } 570 case ISD::TargetBlockAddress: 571 case ISD::BlockAddress: { 572 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 573 ID.AddPointer(BA->getBlockAddress()); 574 ID.AddInteger(BA->getOffset()); 575 ID.AddInteger(BA->getTargetFlags()); 576 break; 577 } 578 } // end switch (N->getOpcode()) 579 580 // Target specific memory nodes could also have address spaces to check. 581 if (N->isTargetMemoryOpcode()) 582 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 583 } 584 585 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 586 /// data. 587 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 588 AddNodeIDOpcode(ID, N->getOpcode()); 589 // Add the return value info. 590 AddNodeIDValueTypes(ID, N->getVTList()); 591 // Add the operand info. 592 AddNodeIDOperands(ID, N->ops()); 593 594 // Handle SDNode leafs with special info. 595 AddNodeIDCustom(ID, N); 596 } 597 598 //===----------------------------------------------------------------------===// 599 // SelectionDAG Class 600 //===----------------------------------------------------------------------===// 601 602 /// doNotCSE - Return true if CSE should not be performed for this node. 603 static bool doNotCSE(SDNode *N) { 604 if (N->getValueType(0) == MVT::Glue) 605 return true; // Never CSE anything that produces a flag. 606 607 switch (N->getOpcode()) { 608 default: break; 609 case ISD::HANDLENODE: 610 case ISD::EH_LABEL: 611 return true; // Never CSE these nodes. 612 } 613 614 // Check that remaining values produced are not flags. 615 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 616 if (N->getValueType(i) == MVT::Glue) 617 return true; // Never CSE anything that produces a flag. 618 619 return false; 620 } 621 622 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 623 /// SelectionDAG. 624 void SelectionDAG::RemoveDeadNodes() { 625 // Create a dummy node (which is not added to allnodes), that adds a reference 626 // to the root node, preventing it from being deleted. 627 HandleSDNode Dummy(getRoot()); 628 629 SmallVector<SDNode*, 128> DeadNodes; 630 631 // Add all obviously-dead nodes to the DeadNodes worklist. 632 for (SDNode &Node : allnodes()) 633 if (Node.use_empty()) 634 DeadNodes.push_back(&Node); 635 636 RemoveDeadNodes(DeadNodes); 637 638 // If the root changed (e.g. it was a dead load, update the root). 639 setRoot(Dummy.getValue()); 640 } 641 642 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 643 /// given list, and any nodes that become unreachable as a result. 644 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 645 646 // Process the worklist, deleting the nodes and adding their uses to the 647 // worklist. 648 while (!DeadNodes.empty()) { 649 SDNode *N = DeadNodes.pop_back_val(); 650 // Skip to next node if we've already managed to delete the node. This could 651 // happen if replacing a node causes a node previously added to the node to 652 // be deleted. 653 if (N->getOpcode() == ISD::DELETED_NODE) 654 continue; 655 656 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 657 DUL->NodeDeleted(N, nullptr); 658 659 // Take the node out of the appropriate CSE map. 660 RemoveNodeFromCSEMaps(N); 661 662 // Next, brutally remove the operand list. This is safe to do, as there are 663 // no cycles in the graph. 664 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 665 SDUse &Use = *I++; 666 SDNode *Operand = Use.getNode(); 667 Use.set(SDValue()); 668 669 // Now that we removed this operand, see if there are no uses of it left. 670 if (Operand->use_empty()) 671 DeadNodes.push_back(Operand); 672 } 673 674 DeallocateNode(N); 675 } 676 } 677 678 void SelectionDAG::RemoveDeadNode(SDNode *N){ 679 SmallVector<SDNode*, 16> DeadNodes(1, N); 680 681 // Create a dummy node that adds a reference to the root node, preventing 682 // it from being deleted. (This matters if the root is an operand of the 683 // dead node.) 684 HandleSDNode Dummy(getRoot()); 685 686 RemoveDeadNodes(DeadNodes); 687 } 688 689 void SelectionDAG::DeleteNode(SDNode *N) { 690 // First take this out of the appropriate CSE map. 691 RemoveNodeFromCSEMaps(N); 692 693 // Finally, remove uses due to operands of this node, remove from the 694 // AllNodes list, and delete the node. 695 DeleteNodeNotInCSEMaps(N); 696 } 697 698 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 699 assert(N->getIterator() != AllNodes.begin() && 700 "Cannot delete the entry node!"); 701 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 702 703 // Drop all of the operands and decrement used node's use counts. 704 N->DropOperands(); 705 706 DeallocateNode(N); 707 } 708 709 void SDDbgInfo::erase(const SDNode *Node) { 710 DbgValMapType::iterator I = DbgValMap.find(Node); 711 if (I == DbgValMap.end()) 712 return; 713 for (auto &Val: I->second) 714 Val->setIsInvalidated(); 715 DbgValMap.erase(I); 716 } 717 718 void SelectionDAG::DeallocateNode(SDNode *N) { 719 // If we have operands, deallocate them. 720 removeOperands(N); 721 722 NodeAllocator.Deallocate(AllNodes.remove(N)); 723 724 // Set the opcode to DELETED_NODE to help catch bugs when node 725 // memory is reallocated. 726 // FIXME: There are places in SDag that have grown a dependency on the opcode 727 // value in the released node. 728 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 729 N->NodeType = ISD::DELETED_NODE; 730 731 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 732 // them and forget about that node. 733 DbgInfo->erase(N); 734 } 735 736 #ifndef NDEBUG 737 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 738 static void VerifySDNode(SDNode *N) { 739 switch (N->getOpcode()) { 740 default: 741 break; 742 case ISD::BUILD_PAIR: { 743 EVT VT = N->getValueType(0); 744 assert(N->getNumValues() == 1 && "Too many results!"); 745 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 746 "Wrong return type!"); 747 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 748 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 749 "Mismatched operand types!"); 750 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 751 "Wrong operand type!"); 752 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 753 "Wrong return type size"); 754 break; 755 } 756 case ISD::BUILD_VECTOR: { 757 assert(N->getNumValues() == 1 && "Too many results!"); 758 assert(N->getValueType(0).isVector() && "Wrong return type!"); 759 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 760 "Wrong number of operands!"); 761 EVT EltVT = N->getValueType(0).getVectorElementType(); 762 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 763 assert((I->getValueType() == EltVT || 764 (EltVT.isInteger() && I->getValueType().isInteger() && 765 EltVT.bitsLE(I->getValueType()))) && 766 "Wrong operand type!"); 767 assert(I->getValueType() == N->getOperand(0).getValueType() && 768 "Operands must all have the same type"); 769 } 770 break; 771 } 772 } 773 } 774 #endif // NDEBUG 775 776 /// \brief Insert a newly allocated node into the DAG. 777 /// 778 /// Handles insertion into the all nodes list and CSE map, as well as 779 /// verification and other common operations when a new node is allocated. 780 void SelectionDAG::InsertNode(SDNode *N) { 781 AllNodes.push_back(N); 782 #ifndef NDEBUG 783 N->PersistentId = NextPersistentId++; 784 VerifySDNode(N); 785 #endif 786 } 787 788 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 789 /// correspond to it. This is useful when we're about to delete or repurpose 790 /// the node. We don't want future request for structurally identical nodes 791 /// to return N anymore. 792 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 793 bool Erased = false; 794 switch (N->getOpcode()) { 795 case ISD::HANDLENODE: return false; // noop. 796 case ISD::CONDCODE: 797 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 798 "Cond code doesn't exist!"); 799 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 800 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 801 break; 802 case ISD::ExternalSymbol: 803 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 804 break; 805 case ISD::TargetExternalSymbol: { 806 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 807 Erased = TargetExternalSymbols.erase( 808 std::pair<std::string,unsigned char>(ESN->getSymbol(), 809 ESN->getTargetFlags())); 810 break; 811 } 812 case ISD::MCSymbol: { 813 auto *MCSN = cast<MCSymbolSDNode>(N); 814 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 815 break; 816 } 817 case ISD::VALUETYPE: { 818 EVT VT = cast<VTSDNode>(N)->getVT(); 819 if (VT.isExtended()) { 820 Erased = ExtendedValueTypeNodes.erase(VT); 821 } else { 822 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 823 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 824 } 825 break; 826 } 827 default: 828 // Remove it from the CSE Map. 829 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 830 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 831 Erased = CSEMap.RemoveNode(N); 832 break; 833 } 834 #ifndef NDEBUG 835 // Verify that the node was actually in one of the CSE maps, unless it has a 836 // flag result (which cannot be CSE'd) or is one of the special cases that are 837 // not subject to CSE. 838 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 839 !N->isMachineOpcode() && !doNotCSE(N)) { 840 N->dump(this); 841 dbgs() << "\n"; 842 llvm_unreachable("Node is not in map!"); 843 } 844 #endif 845 return Erased; 846 } 847 848 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 849 /// maps and modified in place. Add it back to the CSE maps, unless an identical 850 /// node already exists, in which case transfer all its users to the existing 851 /// node. This transfer can potentially trigger recursive merging. 852 void 853 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 854 // For node types that aren't CSE'd, just act as if no identical node 855 // already exists. 856 if (!doNotCSE(N)) { 857 SDNode *Existing = CSEMap.GetOrInsertNode(N); 858 if (Existing != N) { 859 // If there was already an existing matching node, use ReplaceAllUsesWith 860 // to replace the dead one with the existing one. This can cause 861 // recursive merging of other unrelated nodes down the line. 862 ReplaceAllUsesWith(N, Existing); 863 864 // N is now dead. Inform the listeners and delete it. 865 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 866 DUL->NodeDeleted(N, Existing); 867 DeleteNodeNotInCSEMaps(N); 868 return; 869 } 870 } 871 872 // If the node doesn't already exist, we updated it. Inform listeners. 873 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 874 DUL->NodeUpdated(N); 875 } 876 877 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 878 /// were replaced with those specified. If this node is never memoized, 879 /// return null, otherwise return a pointer to the slot it would take. If a 880 /// node already exists with these operands, the slot will be non-null. 881 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 882 void *&InsertPos) { 883 if (doNotCSE(N)) 884 return nullptr; 885 886 SDValue Ops[] = { Op }; 887 FoldingSetNodeID ID; 888 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 889 AddNodeIDCustom(ID, N); 890 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 891 if (Node) 892 Node->intersectFlagsWith(N->getFlags()); 893 return Node; 894 } 895 896 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 897 /// were replaced with those specified. If this node is never memoized, 898 /// return null, otherwise return a pointer to the slot it would take. If a 899 /// node already exists with these operands, the slot will be non-null. 900 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 901 SDValue Op1, SDValue Op2, 902 void *&InsertPos) { 903 if (doNotCSE(N)) 904 return nullptr; 905 906 SDValue Ops[] = { Op1, Op2 }; 907 FoldingSetNodeID ID; 908 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 909 AddNodeIDCustom(ID, N); 910 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 911 if (Node) 912 Node->intersectFlagsWith(N->getFlags()); 913 return Node; 914 } 915 916 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 917 /// were replaced with those specified. If this node is never memoized, 918 /// return null, otherwise return a pointer to the slot it would take. If a 919 /// node already exists with these operands, the slot will be non-null. 920 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 921 void *&InsertPos) { 922 if (doNotCSE(N)) 923 return nullptr; 924 925 FoldingSetNodeID ID; 926 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 927 AddNodeIDCustom(ID, N); 928 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 929 if (Node) 930 Node->intersectFlagsWith(N->getFlags()); 931 return Node; 932 } 933 934 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 935 Type *Ty = VT == MVT::iPTR ? 936 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 937 VT.getTypeForEVT(*getContext()); 938 939 return getDataLayout().getABITypeAlignment(Ty); 940 } 941 942 // EntryNode could meaningfully have debug info if we can find it... 943 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 944 : TM(tm), OptLevel(OL), 945 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 946 Root(getEntryNode()) { 947 InsertNode(&EntryNode); 948 DbgInfo = new SDDbgInfo(); 949 } 950 951 void SelectionDAG::init(MachineFunction &NewMF, 952 OptimizationRemarkEmitter &NewORE, 953 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 954 DivergenceAnalysis * Divergence) { 955 MF = &NewMF; 956 SDAGISelPass = PassPtr; 957 ORE = &NewORE; 958 TLI = getSubtarget().getTargetLowering(); 959 TSI = getSubtarget().getSelectionDAGInfo(); 960 LibInfo = LibraryInfo; 961 Context = &MF->getFunction().getContext(); 962 DA = Divergence; 963 } 964 965 SelectionDAG::~SelectionDAG() { 966 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 967 allnodes_clear(); 968 OperandRecycler.clear(OperandAllocator); 969 delete DbgInfo; 970 } 971 972 void SelectionDAG::allnodes_clear() { 973 assert(&*AllNodes.begin() == &EntryNode); 974 AllNodes.remove(AllNodes.begin()); 975 while (!AllNodes.empty()) 976 DeallocateNode(&AllNodes.front()); 977 #ifndef NDEBUG 978 NextPersistentId = 0; 979 #endif 980 } 981 982 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 983 void *&InsertPos) { 984 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 985 if (N) { 986 switch (N->getOpcode()) { 987 default: break; 988 case ISD::Constant: 989 case ISD::ConstantFP: 990 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 991 "debug location. Use another overload."); 992 } 993 } 994 return N; 995 } 996 997 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 998 const SDLoc &DL, void *&InsertPos) { 999 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1000 if (N) { 1001 switch (N->getOpcode()) { 1002 case ISD::Constant: 1003 case ISD::ConstantFP: 1004 // Erase debug location from the node if the node is used at several 1005 // different places. Do not propagate one location to all uses as it 1006 // will cause a worse single stepping debugging experience. 1007 if (N->getDebugLoc() != DL.getDebugLoc()) 1008 N->setDebugLoc(DebugLoc()); 1009 break; 1010 default: 1011 // When the node's point of use is located earlier in the instruction 1012 // sequence than its prior point of use, update its debug info to the 1013 // earlier location. 1014 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1015 N->setDebugLoc(DL.getDebugLoc()); 1016 break; 1017 } 1018 } 1019 return N; 1020 } 1021 1022 void SelectionDAG::clear() { 1023 allnodes_clear(); 1024 OperandRecycler.clear(OperandAllocator); 1025 OperandAllocator.Reset(); 1026 CSEMap.clear(); 1027 1028 ExtendedValueTypeNodes.clear(); 1029 ExternalSymbols.clear(); 1030 TargetExternalSymbols.clear(); 1031 MCSymbols.clear(); 1032 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1033 static_cast<CondCodeSDNode*>(nullptr)); 1034 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1035 static_cast<SDNode*>(nullptr)); 1036 1037 EntryNode.UseList = nullptr; 1038 InsertNode(&EntryNode); 1039 Root = getEntryNode(); 1040 DbgInfo->clear(); 1041 } 1042 1043 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1044 return VT.bitsGT(Op.getValueType()) 1045 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1046 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1047 } 1048 1049 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1050 return VT.bitsGT(Op.getValueType()) ? 1051 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1052 getNode(ISD::TRUNCATE, DL, VT, Op); 1053 } 1054 1055 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1056 return VT.bitsGT(Op.getValueType()) ? 1057 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1058 getNode(ISD::TRUNCATE, DL, VT, Op); 1059 } 1060 1061 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1062 return VT.bitsGT(Op.getValueType()) ? 1063 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1064 getNode(ISD::TRUNCATE, DL, VT, Op); 1065 } 1066 1067 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1068 EVT OpVT) { 1069 if (VT.bitsLE(Op.getValueType())) 1070 return getNode(ISD::TRUNCATE, SL, VT, Op); 1071 1072 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1073 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1074 } 1075 1076 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1077 assert(!VT.isVector() && 1078 "getZeroExtendInReg should use the vector element type instead of " 1079 "the vector type!"); 1080 if (Op.getValueType().getScalarType() == VT) return Op; 1081 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1082 APInt Imm = APInt::getLowBitsSet(BitWidth, 1083 VT.getSizeInBits()); 1084 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1085 getConstant(Imm, DL, Op.getValueType())); 1086 } 1087 1088 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1089 EVT VT) { 1090 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1091 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1092 "The sizes of the input and result must match in order to perform the " 1093 "extend in-register."); 1094 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1095 "The destination vector type must have fewer lanes than the input."); 1096 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1097 } 1098 1099 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1100 EVT VT) { 1101 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1102 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1103 "The sizes of the input and result must match in order to perform the " 1104 "extend in-register."); 1105 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1106 "The destination vector type must have fewer lanes than the input."); 1107 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1108 } 1109 1110 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1111 EVT VT) { 1112 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1113 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1114 "The sizes of the input and result must match in order to perform the " 1115 "extend in-register."); 1116 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1117 "The destination vector type must have fewer lanes than the input."); 1118 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1119 } 1120 1121 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1122 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1123 EVT EltVT = VT.getScalarType(); 1124 SDValue NegOne = 1125 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1126 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1127 } 1128 1129 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1130 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1131 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1132 } 1133 1134 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1135 EVT OpVT) { 1136 if (!V) 1137 return getConstant(0, DL, VT); 1138 1139 switch (TLI->getBooleanContents(OpVT)) { 1140 case TargetLowering::ZeroOrOneBooleanContent: 1141 case TargetLowering::UndefinedBooleanContent: 1142 return getConstant(1, DL, VT); 1143 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1144 return getAllOnesConstant(DL, VT); 1145 } 1146 llvm_unreachable("Unexpected boolean content enum!"); 1147 } 1148 1149 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1150 bool isT, bool isO) { 1151 EVT EltVT = VT.getScalarType(); 1152 assert((EltVT.getSizeInBits() >= 64 || 1153 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1154 "getConstant with a uint64_t value that doesn't fit in the type!"); 1155 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1156 } 1157 1158 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1159 bool isT, bool isO) { 1160 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1161 } 1162 1163 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1164 EVT VT, bool isT, bool isO) { 1165 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1166 1167 EVT EltVT = VT.getScalarType(); 1168 const ConstantInt *Elt = &Val; 1169 1170 // In some cases the vector type is legal but the element type is illegal and 1171 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1172 // inserted value (the type does not need to match the vector element type). 1173 // Any extra bits introduced will be truncated away. 1174 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1175 TargetLowering::TypePromoteInteger) { 1176 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1177 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1178 Elt = ConstantInt::get(*getContext(), NewVal); 1179 } 1180 // In other cases the element type is illegal and needs to be expanded, for 1181 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1182 // the value into n parts and use a vector type with n-times the elements. 1183 // Then bitcast to the type requested. 1184 // Legalizing constants too early makes the DAGCombiner's job harder so we 1185 // only legalize if the DAG tells us we must produce legal types. 1186 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1187 TLI->getTypeAction(*getContext(), EltVT) == 1188 TargetLowering::TypeExpandInteger) { 1189 const APInt &NewVal = Elt->getValue(); 1190 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1191 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1192 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1193 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1194 1195 // Check the temporary vector is the correct size. If this fails then 1196 // getTypeToTransformTo() probably returned a type whose size (in bits) 1197 // isn't a power-of-2 factor of the requested type size. 1198 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1199 1200 SmallVector<SDValue, 2> EltParts; 1201 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1202 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1203 .zextOrTrunc(ViaEltSizeInBits), DL, 1204 ViaEltVT, isT, isO)); 1205 } 1206 1207 // EltParts is currently in little endian order. If we actually want 1208 // big-endian order then reverse it now. 1209 if (getDataLayout().isBigEndian()) 1210 std::reverse(EltParts.begin(), EltParts.end()); 1211 1212 // The elements must be reversed when the element order is different 1213 // to the endianness of the elements (because the BITCAST is itself a 1214 // vector shuffle in this situation). However, we do not need any code to 1215 // perform this reversal because getConstant() is producing a vector 1216 // splat. 1217 // This situation occurs in MIPS MSA. 1218 1219 SmallVector<SDValue, 8> Ops; 1220 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1221 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1222 1223 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1224 return V; 1225 } 1226 1227 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1228 "APInt size does not match type size!"); 1229 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1230 FoldingSetNodeID ID; 1231 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1232 ID.AddPointer(Elt); 1233 ID.AddBoolean(isO); 1234 void *IP = nullptr; 1235 SDNode *N = nullptr; 1236 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1237 if (!VT.isVector()) 1238 return SDValue(N, 0); 1239 1240 if (!N) { 1241 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1242 CSEMap.InsertNode(N, IP); 1243 InsertNode(N); 1244 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1245 } 1246 1247 SDValue Result(N, 0); 1248 if (VT.isVector()) 1249 Result = getSplatBuildVector(VT, DL, Result); 1250 1251 return Result; 1252 } 1253 1254 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1255 bool isTarget) { 1256 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1257 } 1258 1259 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1260 bool isTarget) { 1261 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1262 } 1263 1264 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1265 EVT VT, bool isTarget) { 1266 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1267 1268 EVT EltVT = VT.getScalarType(); 1269 1270 // Do the map lookup using the actual bit pattern for the floating point 1271 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1272 // we don't have issues with SNANs. 1273 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1274 FoldingSetNodeID ID; 1275 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1276 ID.AddPointer(&V); 1277 void *IP = nullptr; 1278 SDNode *N = nullptr; 1279 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1280 if (!VT.isVector()) 1281 return SDValue(N, 0); 1282 1283 if (!N) { 1284 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1285 CSEMap.InsertNode(N, IP); 1286 InsertNode(N); 1287 } 1288 1289 SDValue Result(N, 0); 1290 if (VT.isVector()) 1291 Result = getSplatBuildVector(VT, DL, Result); 1292 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1293 return Result; 1294 } 1295 1296 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1297 bool isTarget) { 1298 EVT EltVT = VT.getScalarType(); 1299 if (EltVT == MVT::f32) 1300 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1301 else if (EltVT == MVT::f64) 1302 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1303 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1304 EltVT == MVT::f16) { 1305 bool Ignored; 1306 APFloat APF = APFloat(Val); 1307 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1308 &Ignored); 1309 return getConstantFP(APF, DL, VT, isTarget); 1310 } else 1311 llvm_unreachable("Unsupported type in getConstantFP"); 1312 } 1313 1314 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1315 EVT VT, int64_t Offset, bool isTargetGA, 1316 unsigned char TargetFlags) { 1317 assert((TargetFlags == 0 || isTargetGA) && 1318 "Cannot set target flags on target-independent globals"); 1319 1320 // Truncate (with sign-extension) the offset value to the pointer size. 1321 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1322 if (BitWidth < 64) 1323 Offset = SignExtend64(Offset, BitWidth); 1324 1325 unsigned Opc; 1326 if (GV->isThreadLocal()) 1327 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1328 else 1329 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1330 1331 FoldingSetNodeID ID; 1332 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1333 ID.AddPointer(GV); 1334 ID.AddInteger(Offset); 1335 ID.AddInteger(TargetFlags); 1336 void *IP = nullptr; 1337 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1338 return SDValue(E, 0); 1339 1340 auto *N = newSDNode<GlobalAddressSDNode>( 1341 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1342 CSEMap.InsertNode(N, IP); 1343 InsertNode(N); 1344 return SDValue(N, 0); 1345 } 1346 1347 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1348 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1349 FoldingSetNodeID ID; 1350 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1351 ID.AddInteger(FI); 1352 void *IP = nullptr; 1353 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1354 return SDValue(E, 0); 1355 1356 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1357 CSEMap.InsertNode(N, IP); 1358 InsertNode(N); 1359 return SDValue(N, 0); 1360 } 1361 1362 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1363 unsigned char TargetFlags) { 1364 assert((TargetFlags == 0 || isTarget) && 1365 "Cannot set target flags on target-independent jump tables"); 1366 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1367 FoldingSetNodeID ID; 1368 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1369 ID.AddInteger(JTI); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1376 CSEMap.InsertNode(N, IP); 1377 InsertNode(N); 1378 return SDValue(N, 0); 1379 } 1380 1381 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1382 unsigned Alignment, int Offset, 1383 bool isTarget, 1384 unsigned char TargetFlags) { 1385 assert((TargetFlags == 0 || isTarget) && 1386 "Cannot set target flags on target-independent globals"); 1387 if (Alignment == 0) 1388 Alignment = MF->getFunction().optForSize() 1389 ? getDataLayout().getABITypeAlignment(C->getType()) 1390 : getDataLayout().getPrefTypeAlignment(C->getType()); 1391 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1392 FoldingSetNodeID ID; 1393 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1394 ID.AddInteger(Alignment); 1395 ID.AddInteger(Offset); 1396 ID.AddPointer(C); 1397 ID.AddInteger(TargetFlags); 1398 void *IP = nullptr; 1399 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1400 return SDValue(E, 0); 1401 1402 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1403 TargetFlags); 1404 CSEMap.InsertNode(N, IP); 1405 InsertNode(N); 1406 return SDValue(N, 0); 1407 } 1408 1409 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1410 unsigned Alignment, int Offset, 1411 bool isTarget, 1412 unsigned char TargetFlags) { 1413 assert((TargetFlags == 0 || isTarget) && 1414 "Cannot set target flags on target-independent globals"); 1415 if (Alignment == 0) 1416 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1417 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1418 FoldingSetNodeID ID; 1419 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1420 ID.AddInteger(Alignment); 1421 ID.AddInteger(Offset); 1422 C->addSelectionDAGCSEId(ID); 1423 ID.AddInteger(TargetFlags); 1424 void *IP = nullptr; 1425 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1426 return SDValue(E, 0); 1427 1428 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1429 TargetFlags); 1430 CSEMap.InsertNode(N, IP); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1436 unsigned char TargetFlags) { 1437 FoldingSetNodeID ID; 1438 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1439 ID.AddInteger(Index); 1440 ID.AddInteger(Offset); 1441 ID.AddInteger(TargetFlags); 1442 void *IP = nullptr; 1443 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1444 return SDValue(E, 0); 1445 1446 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1447 CSEMap.InsertNode(N, IP); 1448 InsertNode(N); 1449 return SDValue(N, 0); 1450 } 1451 1452 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1453 FoldingSetNodeID ID; 1454 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1455 ID.AddPointer(MBB); 1456 void *IP = nullptr; 1457 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1458 return SDValue(E, 0); 1459 1460 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1461 CSEMap.InsertNode(N, IP); 1462 InsertNode(N); 1463 return SDValue(N, 0); 1464 } 1465 1466 SDValue SelectionDAG::getValueType(EVT VT) { 1467 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1468 ValueTypeNodes.size()) 1469 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1470 1471 SDNode *&N = VT.isExtended() ? 1472 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1473 1474 if (N) return SDValue(N, 0); 1475 N = newSDNode<VTSDNode>(VT); 1476 InsertNode(N); 1477 return SDValue(N, 0); 1478 } 1479 1480 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1481 SDNode *&N = ExternalSymbols[Sym]; 1482 if (N) return SDValue(N, 0); 1483 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1484 InsertNode(N); 1485 return SDValue(N, 0); 1486 } 1487 1488 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1489 SDNode *&N = MCSymbols[Sym]; 1490 if (N) 1491 return SDValue(N, 0); 1492 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1493 InsertNode(N); 1494 return SDValue(N, 0); 1495 } 1496 1497 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1498 unsigned char TargetFlags) { 1499 SDNode *&N = 1500 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1501 TargetFlags)]; 1502 if (N) return SDValue(N, 0); 1503 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1504 InsertNode(N); 1505 return SDValue(N, 0); 1506 } 1507 1508 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1509 if ((unsigned)Cond >= CondCodeNodes.size()) 1510 CondCodeNodes.resize(Cond+1); 1511 1512 if (!CondCodeNodes[Cond]) { 1513 auto *N = newSDNode<CondCodeSDNode>(Cond); 1514 CondCodeNodes[Cond] = N; 1515 InsertNode(N); 1516 } 1517 1518 return SDValue(CondCodeNodes[Cond], 0); 1519 } 1520 1521 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1522 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1523 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1524 std::swap(N1, N2); 1525 ShuffleVectorSDNode::commuteMask(M); 1526 } 1527 1528 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1529 SDValue N2, ArrayRef<int> Mask) { 1530 assert(VT.getVectorNumElements() == Mask.size() && 1531 "Must have the same number of vector elements as mask elements!"); 1532 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1533 "Invalid VECTOR_SHUFFLE"); 1534 1535 // Canonicalize shuffle undef, undef -> undef 1536 if (N1.isUndef() && N2.isUndef()) 1537 return getUNDEF(VT); 1538 1539 // Validate that all indices in Mask are within the range of the elements 1540 // input to the shuffle. 1541 int NElts = Mask.size(); 1542 assert(llvm::all_of(Mask, 1543 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1544 "Index out of range"); 1545 1546 // Copy the mask so we can do any needed cleanup. 1547 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1548 1549 // Canonicalize shuffle v, v -> v, undef 1550 if (N1 == N2) { 1551 N2 = getUNDEF(VT); 1552 for (int i = 0; i != NElts; ++i) 1553 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1554 } 1555 1556 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1557 if (N1.isUndef()) 1558 commuteShuffle(N1, N2, MaskVec); 1559 1560 // If shuffling a splat, try to blend the splat instead. We do this here so 1561 // that even when this arises during lowering we don't have to re-handle it. 1562 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1563 BitVector UndefElements; 1564 SDValue Splat = BV->getSplatValue(&UndefElements); 1565 if (!Splat) 1566 return; 1567 1568 for (int i = 0; i < NElts; ++i) { 1569 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1570 continue; 1571 1572 // If this input comes from undef, mark it as such. 1573 if (UndefElements[MaskVec[i] - Offset]) { 1574 MaskVec[i] = -1; 1575 continue; 1576 } 1577 1578 // If we can blend a non-undef lane, use that instead. 1579 if (!UndefElements[i]) 1580 MaskVec[i] = i + Offset; 1581 } 1582 }; 1583 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1584 BlendSplat(N1BV, 0); 1585 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1586 BlendSplat(N2BV, NElts); 1587 1588 // Canonicalize all index into lhs, -> shuffle lhs, undef 1589 // Canonicalize all index into rhs, -> shuffle rhs, undef 1590 bool AllLHS = true, AllRHS = true; 1591 bool N2Undef = N2.isUndef(); 1592 for (int i = 0; i != NElts; ++i) { 1593 if (MaskVec[i] >= NElts) { 1594 if (N2Undef) 1595 MaskVec[i] = -1; 1596 else 1597 AllLHS = false; 1598 } else if (MaskVec[i] >= 0) { 1599 AllRHS = false; 1600 } 1601 } 1602 if (AllLHS && AllRHS) 1603 return getUNDEF(VT); 1604 if (AllLHS && !N2Undef) 1605 N2 = getUNDEF(VT); 1606 if (AllRHS) { 1607 N1 = getUNDEF(VT); 1608 commuteShuffle(N1, N2, MaskVec); 1609 } 1610 // Reset our undef status after accounting for the mask. 1611 N2Undef = N2.isUndef(); 1612 // Re-check whether both sides ended up undef. 1613 if (N1.isUndef() && N2Undef) 1614 return getUNDEF(VT); 1615 1616 // If Identity shuffle return that node. 1617 bool Identity = true, AllSame = true; 1618 for (int i = 0; i != NElts; ++i) { 1619 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1620 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1621 } 1622 if (Identity && NElts) 1623 return N1; 1624 1625 // Shuffling a constant splat doesn't change the result. 1626 if (N2Undef) { 1627 SDValue V = N1; 1628 1629 // Look through any bitcasts. We check that these don't change the number 1630 // (and size) of elements and just changes their types. 1631 while (V.getOpcode() == ISD::BITCAST) 1632 V = V->getOperand(0); 1633 1634 // A splat should always show up as a build vector node. 1635 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1636 BitVector UndefElements; 1637 SDValue Splat = BV->getSplatValue(&UndefElements); 1638 // If this is a splat of an undef, shuffling it is also undef. 1639 if (Splat && Splat.isUndef()) 1640 return getUNDEF(VT); 1641 1642 bool SameNumElts = 1643 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1644 1645 // We only have a splat which can skip shuffles if there is a splatted 1646 // value and no undef lanes rearranged by the shuffle. 1647 if (Splat && UndefElements.none()) { 1648 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1649 // number of elements match or the value splatted is a zero constant. 1650 if (SameNumElts) 1651 return N1; 1652 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1653 if (C->isNullValue()) 1654 return N1; 1655 } 1656 1657 // If the shuffle itself creates a splat, build the vector directly. 1658 if (AllSame && SameNumElts) { 1659 EVT BuildVT = BV->getValueType(0); 1660 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1661 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1662 1663 // We may have jumped through bitcasts, so the type of the 1664 // BUILD_VECTOR may not match the type of the shuffle. 1665 if (BuildVT != VT) 1666 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1667 return NewBV; 1668 } 1669 } 1670 } 1671 1672 FoldingSetNodeID ID; 1673 SDValue Ops[2] = { N1, N2 }; 1674 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1675 for (int i = 0; i != NElts; ++i) 1676 ID.AddInteger(MaskVec[i]); 1677 1678 void* IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1680 return SDValue(E, 0); 1681 1682 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1683 // SDNode doesn't have access to it. This memory will be "leaked" when 1684 // the node is deallocated, but recovered when the NodeAllocator is released. 1685 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1686 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1687 1688 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1689 dl.getDebugLoc(), MaskAlloc); 1690 createOperands(N, Ops); 1691 1692 CSEMap.InsertNode(N, IP); 1693 InsertNode(N); 1694 SDValue V = SDValue(N, 0); 1695 NewSDValueDbgMsg(V, "Creating new node: ", this); 1696 return V; 1697 } 1698 1699 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1700 EVT VT = SV.getValueType(0); 1701 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1702 ShuffleVectorSDNode::commuteMask(MaskVec); 1703 1704 SDValue Op0 = SV.getOperand(0); 1705 SDValue Op1 = SV.getOperand(1); 1706 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1707 } 1708 1709 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1710 FoldingSetNodeID ID; 1711 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1712 ID.AddInteger(RegNo); 1713 void *IP = nullptr; 1714 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1715 return SDValue(E, 0); 1716 1717 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1718 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1719 CSEMap.InsertNode(N, IP); 1720 InsertNode(N); 1721 return SDValue(N, 0); 1722 } 1723 1724 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1725 FoldingSetNodeID ID; 1726 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1727 ID.AddPointer(RegMask); 1728 void *IP = nullptr; 1729 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1730 return SDValue(E, 0); 1731 1732 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1733 CSEMap.InsertNode(N, IP); 1734 InsertNode(N); 1735 return SDValue(N, 0); 1736 } 1737 1738 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1739 MCSymbol *Label) { 1740 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1741 } 1742 1743 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1744 SDValue Root, MCSymbol *Label) { 1745 FoldingSetNodeID ID; 1746 SDValue Ops[] = { Root }; 1747 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1748 ID.AddPointer(Label); 1749 void *IP = nullptr; 1750 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1751 return SDValue(E, 0); 1752 1753 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1754 createOperands(N, Ops); 1755 1756 CSEMap.InsertNode(N, IP); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1762 int64_t Offset, 1763 bool isTarget, 1764 unsigned char TargetFlags) { 1765 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1766 1767 FoldingSetNodeID ID; 1768 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1769 ID.AddPointer(BA); 1770 ID.AddInteger(Offset); 1771 ID.AddInteger(TargetFlags); 1772 void *IP = nullptr; 1773 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1774 return SDValue(E, 0); 1775 1776 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1777 CSEMap.InsertNode(N, IP); 1778 InsertNode(N); 1779 return SDValue(N, 0); 1780 } 1781 1782 SDValue SelectionDAG::getSrcValue(const Value *V) { 1783 assert((!V || V->getType()->isPointerTy()) && 1784 "SrcValue is not a pointer?"); 1785 1786 FoldingSetNodeID ID; 1787 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1788 ID.AddPointer(V); 1789 1790 void *IP = nullptr; 1791 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1792 return SDValue(E, 0); 1793 1794 auto *N = newSDNode<SrcValueSDNode>(V); 1795 CSEMap.InsertNode(N, IP); 1796 InsertNode(N); 1797 return SDValue(N, 0); 1798 } 1799 1800 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1801 FoldingSetNodeID ID; 1802 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1803 ID.AddPointer(MD); 1804 1805 void *IP = nullptr; 1806 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1807 return SDValue(E, 0); 1808 1809 auto *N = newSDNode<MDNodeSDNode>(MD); 1810 CSEMap.InsertNode(N, IP); 1811 InsertNode(N); 1812 return SDValue(N, 0); 1813 } 1814 1815 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1816 if (VT == V.getValueType()) 1817 return V; 1818 1819 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1820 } 1821 1822 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1823 unsigned SrcAS, unsigned DestAS) { 1824 SDValue Ops[] = {Ptr}; 1825 FoldingSetNodeID ID; 1826 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1827 ID.AddInteger(SrcAS); 1828 ID.AddInteger(DestAS); 1829 1830 void *IP = nullptr; 1831 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1832 return SDValue(E, 0); 1833 1834 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1835 VT, SrcAS, DestAS); 1836 createOperands(N, Ops); 1837 1838 CSEMap.InsertNode(N, IP); 1839 InsertNode(N); 1840 return SDValue(N, 0); 1841 } 1842 1843 /// getShiftAmountOperand - Return the specified value casted to 1844 /// the target's desired shift amount type. 1845 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1846 EVT OpTy = Op.getValueType(); 1847 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1848 if (OpTy == ShTy || OpTy.isVector()) return Op; 1849 1850 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1851 } 1852 1853 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1854 SDLoc dl(Node); 1855 const TargetLowering &TLI = getTargetLoweringInfo(); 1856 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1857 EVT VT = Node->getValueType(0); 1858 SDValue Tmp1 = Node->getOperand(0); 1859 SDValue Tmp2 = Node->getOperand(1); 1860 unsigned Align = Node->getConstantOperandVal(3); 1861 1862 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1863 Tmp2, MachinePointerInfo(V)); 1864 SDValue VAList = VAListLoad; 1865 1866 if (Align > TLI.getMinStackArgumentAlignment()) { 1867 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1868 1869 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1870 getConstant(Align - 1, dl, VAList.getValueType())); 1871 1872 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1873 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1874 } 1875 1876 // Increment the pointer, VAList, to the next vaarg 1877 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1878 getConstant(getDataLayout().getTypeAllocSize( 1879 VT.getTypeForEVT(*getContext())), 1880 dl, VAList.getValueType())); 1881 // Store the incremented VAList to the legalized pointer 1882 Tmp1 = 1883 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1884 // Load the actual argument out of the pointer VAList 1885 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1886 } 1887 1888 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1889 SDLoc dl(Node); 1890 const TargetLowering &TLI = getTargetLoweringInfo(); 1891 // This defaults to loading a pointer from the input and storing it to the 1892 // output, returning the chain. 1893 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1894 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1895 SDValue Tmp1 = 1896 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1897 Node->getOperand(2), MachinePointerInfo(VS)); 1898 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1899 MachinePointerInfo(VD)); 1900 } 1901 1902 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1903 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1904 unsigned ByteSize = VT.getStoreSize(); 1905 Type *Ty = VT.getTypeForEVT(*getContext()); 1906 unsigned StackAlign = 1907 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1908 1909 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1910 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1911 } 1912 1913 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1914 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1915 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1916 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1917 const DataLayout &DL = getDataLayout(); 1918 unsigned Align = 1919 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1920 1921 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1922 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1923 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1924 } 1925 1926 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1927 ISD::CondCode Cond, const SDLoc &dl) { 1928 EVT OpVT = N1.getValueType(); 1929 1930 // These setcc operations always fold. 1931 switch (Cond) { 1932 default: break; 1933 case ISD::SETFALSE: 1934 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1935 case ISD::SETTRUE: 1936 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1937 1938 case ISD::SETOEQ: 1939 case ISD::SETOGT: 1940 case ISD::SETOGE: 1941 case ISD::SETOLT: 1942 case ISD::SETOLE: 1943 case ISD::SETONE: 1944 case ISD::SETO: 1945 case ISD::SETUO: 1946 case ISD::SETUEQ: 1947 case ISD::SETUNE: 1948 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1949 break; 1950 } 1951 1952 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1953 const APInt &C2 = N2C->getAPIntValue(); 1954 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1955 const APInt &C1 = N1C->getAPIntValue(); 1956 1957 switch (Cond) { 1958 default: llvm_unreachable("Unknown integer setcc!"); 1959 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 1960 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 1961 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 1962 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 1963 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 1964 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 1965 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 1966 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 1967 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 1968 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 1969 } 1970 } 1971 } 1972 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1973 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1974 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1975 switch (Cond) { 1976 default: break; 1977 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1978 return getUNDEF(VT); 1979 LLVM_FALLTHROUGH; 1980 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 1981 OpVT); 1982 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1983 return getUNDEF(VT); 1984 LLVM_FALLTHROUGH; 1985 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 1986 R==APFloat::cmpLessThan, dl, VT, 1987 OpVT); 1988 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1989 return getUNDEF(VT); 1990 LLVM_FALLTHROUGH; 1991 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 1992 OpVT); 1993 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1994 return getUNDEF(VT); 1995 LLVM_FALLTHROUGH; 1996 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 1997 VT, OpVT); 1998 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1999 return getUNDEF(VT); 2000 LLVM_FALLTHROUGH; 2001 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2002 R==APFloat::cmpEqual, dl, VT, 2003 OpVT); 2004 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2005 return getUNDEF(VT); 2006 LLVM_FALLTHROUGH; 2007 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2008 R==APFloat::cmpEqual, dl, VT, OpVT); 2009 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2010 OpVT); 2011 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2012 OpVT); 2013 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2014 R==APFloat::cmpEqual, dl, VT, 2015 OpVT); 2016 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2017 OpVT); 2018 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2019 R==APFloat::cmpLessThan, dl, VT, 2020 OpVT); 2021 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2022 R==APFloat::cmpUnordered, dl, VT, 2023 OpVT); 2024 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2025 VT, OpVT); 2026 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2027 OpVT); 2028 } 2029 } else { 2030 // Ensure that the constant occurs on the RHS. 2031 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2032 MVT CompVT = N1.getValueType().getSimpleVT(); 2033 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 2034 return SDValue(); 2035 2036 return getSetCC(dl, VT, N2, N1, SwappedCond); 2037 } 2038 } 2039 2040 // Could not fold it. 2041 return SDValue(); 2042 } 2043 2044 /// See if the specified operand can be simplified with the knowledge that only 2045 /// the bits specified by Mask are used. 2046 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 2047 switch (V.getOpcode()) { 2048 default: 2049 break; 2050 case ISD::Constant: { 2051 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 2052 assert(CV && "Const value should be ConstSDNode."); 2053 const APInt &CVal = CV->getAPIntValue(); 2054 APInt NewVal = CVal & Mask; 2055 if (NewVal != CVal) 2056 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2057 break; 2058 } 2059 case ISD::OR: 2060 case ISD::XOR: 2061 // If the LHS or RHS don't contribute bits to the or, drop them. 2062 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2063 return V.getOperand(1); 2064 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2065 return V.getOperand(0); 2066 break; 2067 case ISD::SRL: 2068 // Only look at single-use SRLs. 2069 if (!V.getNode()->hasOneUse()) 2070 break; 2071 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2072 // See if we can recursively simplify the LHS. 2073 unsigned Amt = RHSC->getZExtValue(); 2074 2075 // Watch out for shift count overflow though. 2076 if (Amt >= Mask.getBitWidth()) 2077 break; 2078 APInt NewMask = Mask << Amt; 2079 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2080 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2081 V.getOperand(1)); 2082 } 2083 break; 2084 case ISD::AND: { 2085 // X & -1 -> X (ignoring bits which aren't demanded). 2086 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2087 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2088 return V.getOperand(0); 2089 break; 2090 } 2091 case ISD::ANY_EXTEND: { 2092 SDValue Src = V.getOperand(0); 2093 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2094 // Being conservative here - only peek through if we only demand bits in the 2095 // non-extended source (even though the extended bits are technically undef). 2096 if (Mask.getActiveBits() > SrcBitWidth) 2097 break; 2098 APInt SrcMask = Mask.trunc(SrcBitWidth); 2099 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2100 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2101 break; 2102 } 2103 } 2104 return SDValue(); 2105 } 2106 2107 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2108 /// use this predicate to simplify operations downstream. 2109 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2110 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2111 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2112 } 2113 2114 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2115 /// this predicate to simplify operations downstream. Mask is known to be zero 2116 /// for bits that V cannot have. 2117 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2118 unsigned Depth) const { 2119 KnownBits Known; 2120 computeKnownBits(Op, Known, Depth); 2121 return Mask.isSubsetOf(Known.Zero); 2122 } 2123 2124 /// Helper function that checks to see if a node is a constant or a 2125 /// build vector of splat constants at least within the demanded elts. 2126 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, 2127 const APInt &DemandedElts) { 2128 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 2129 return CN; 2130 if (N.getOpcode() != ISD::BUILD_VECTOR) 2131 return nullptr; 2132 EVT VT = N.getValueType(); 2133 ConstantSDNode *Cst = nullptr; 2134 unsigned NumElts = VT.getVectorNumElements(); 2135 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); 2136 for (unsigned i = 0; i != NumElts; ++i) { 2137 if (!DemandedElts[i]) 2138 continue; 2139 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); 2140 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || 2141 C->getValueType(0) != VT.getScalarType()) 2142 return nullptr; 2143 Cst = C; 2144 } 2145 return Cst; 2146 } 2147 2148 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2149 /// is less than the element bit-width of the shift node, return it. 2150 static const APInt *getValidShiftAmountConstant(SDValue V) { 2151 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2152 // Shifting more than the bitwidth is not valid. 2153 const APInt &ShAmt = SA->getAPIntValue(); 2154 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2155 return &ShAmt; 2156 } 2157 return nullptr; 2158 } 2159 2160 /// Determine which bits of Op are known to be either zero or one and return 2161 /// them in Known. For vectors, the known bits are those that are shared by 2162 /// every vector element. 2163 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2164 unsigned Depth) const { 2165 EVT VT = Op.getValueType(); 2166 APInt DemandedElts = VT.isVector() 2167 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2168 : APInt(1, 1); 2169 computeKnownBits(Op, Known, DemandedElts, Depth); 2170 } 2171 2172 /// Determine which bits of Op are known to be either zero or one and return 2173 /// them in Known. The DemandedElts argument allows us to only collect the known 2174 /// bits that are shared by the requested vector elements. 2175 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2176 const APInt &DemandedElts, 2177 unsigned Depth) const { 2178 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2179 2180 Known = KnownBits(BitWidth); // Don't know anything. 2181 2182 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2183 // We know all of the bits for a constant! 2184 Known.One = C->getAPIntValue(); 2185 Known.Zero = ~Known.One; 2186 return; 2187 } 2188 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2189 // We know all of the bits for a constant fp! 2190 Known.One = C->getValueAPF().bitcastToAPInt(); 2191 Known.Zero = ~Known.One; 2192 return; 2193 } 2194 2195 if (Depth == 6) 2196 return; // Limit search depth. 2197 2198 KnownBits Known2; 2199 unsigned NumElts = DemandedElts.getBitWidth(); 2200 2201 if (!DemandedElts) 2202 return; // No demanded elts, better to assume we don't know anything. 2203 2204 unsigned Opcode = Op.getOpcode(); 2205 switch (Opcode) { 2206 case ISD::BUILD_VECTOR: 2207 // Collect the known bits that are shared by every demanded vector element. 2208 assert(NumElts == Op.getValueType().getVectorNumElements() && 2209 "Unexpected vector size"); 2210 Known.Zero.setAllBits(); Known.One.setAllBits(); 2211 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2212 if (!DemandedElts[i]) 2213 continue; 2214 2215 SDValue SrcOp = Op.getOperand(i); 2216 computeKnownBits(SrcOp, Known2, Depth + 1); 2217 2218 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2219 if (SrcOp.getValueSizeInBits() != BitWidth) { 2220 assert(SrcOp.getValueSizeInBits() > BitWidth && 2221 "Expected BUILD_VECTOR implicit truncation"); 2222 Known2 = Known2.trunc(BitWidth); 2223 } 2224 2225 // Known bits are the values that are shared by every demanded element. 2226 Known.One &= Known2.One; 2227 Known.Zero &= Known2.Zero; 2228 2229 // If we don't know any bits, early out. 2230 if (Known.isUnknown()) 2231 break; 2232 } 2233 break; 2234 case ISD::VECTOR_SHUFFLE: { 2235 // Collect the known bits that are shared by every vector element referenced 2236 // by the shuffle. 2237 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2238 Known.Zero.setAllBits(); Known.One.setAllBits(); 2239 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2240 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2241 for (unsigned i = 0; i != NumElts; ++i) { 2242 if (!DemandedElts[i]) 2243 continue; 2244 2245 int M = SVN->getMaskElt(i); 2246 if (M < 0) { 2247 // For UNDEF elements, we don't know anything about the common state of 2248 // the shuffle result. 2249 Known.resetAll(); 2250 DemandedLHS.clearAllBits(); 2251 DemandedRHS.clearAllBits(); 2252 break; 2253 } 2254 2255 if ((unsigned)M < NumElts) 2256 DemandedLHS.setBit((unsigned)M % NumElts); 2257 else 2258 DemandedRHS.setBit((unsigned)M % NumElts); 2259 } 2260 // Known bits are the values that are shared by every demanded element. 2261 if (!!DemandedLHS) { 2262 SDValue LHS = Op.getOperand(0); 2263 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); 2264 Known.One &= Known2.One; 2265 Known.Zero &= Known2.Zero; 2266 } 2267 // If we don't know any bits, early out. 2268 if (Known.isUnknown()) 2269 break; 2270 if (!!DemandedRHS) { 2271 SDValue RHS = Op.getOperand(1); 2272 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); 2273 Known.One &= Known2.One; 2274 Known.Zero &= Known2.Zero; 2275 } 2276 break; 2277 } 2278 case ISD::CONCAT_VECTORS: { 2279 // Split DemandedElts and test each of the demanded subvectors. 2280 Known.Zero.setAllBits(); Known.One.setAllBits(); 2281 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2282 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2283 unsigned NumSubVectors = Op.getNumOperands(); 2284 for (unsigned i = 0; i != NumSubVectors; ++i) { 2285 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2286 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2287 if (!!DemandedSub) { 2288 SDValue Sub = Op.getOperand(i); 2289 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); 2290 Known.One &= Known2.One; 2291 Known.Zero &= Known2.Zero; 2292 } 2293 // If we don't know any bits, early out. 2294 if (Known.isUnknown()) 2295 break; 2296 } 2297 break; 2298 } 2299 case ISD::INSERT_SUBVECTOR: { 2300 // If we know the element index, demand any elements from the subvector and 2301 // the remainder from the src its inserted into, otherwise demand them all. 2302 SDValue Src = Op.getOperand(0); 2303 SDValue Sub = Op.getOperand(1); 2304 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2305 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2306 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2307 Known.One.setAllBits(); 2308 Known.Zero.setAllBits(); 2309 uint64_t Idx = SubIdx->getZExtValue(); 2310 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2311 if (!!DemandedSubElts) { 2312 computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1); 2313 if (Known.isUnknown()) 2314 break; // early-out. 2315 } 2316 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2317 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2318 if (!!DemandedSrcElts) { 2319 computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1); 2320 Known.One &= Known2.One; 2321 Known.Zero &= Known2.Zero; 2322 } 2323 } else { 2324 computeKnownBits(Sub, Known, Depth + 1); 2325 if (Known.isUnknown()) 2326 break; // early-out. 2327 computeKnownBits(Src, Known2, Depth + 1); 2328 Known.One &= Known2.One; 2329 Known.Zero &= Known2.Zero; 2330 } 2331 break; 2332 } 2333 case ISD::EXTRACT_SUBVECTOR: { 2334 // If we know the element index, just demand that subvector elements, 2335 // otherwise demand them all. 2336 SDValue Src = Op.getOperand(0); 2337 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2338 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2339 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2340 // Offset the demanded elts by the subvector index. 2341 uint64_t Idx = SubIdx->getZExtValue(); 2342 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2343 computeKnownBits(Src, Known, DemandedSrc, Depth + 1); 2344 } else { 2345 computeKnownBits(Src, Known, Depth + 1); 2346 } 2347 break; 2348 } 2349 case ISD::BITCAST: { 2350 SDValue N0 = Op.getOperand(0); 2351 EVT SubVT = N0.getValueType(); 2352 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2353 2354 // Ignore bitcasts from unsupported types. 2355 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2356 break; 2357 2358 // Fast handling of 'identity' bitcasts. 2359 if (BitWidth == SubBitWidth) { 2360 computeKnownBits(N0, Known, DemandedElts, Depth + 1); 2361 break; 2362 } 2363 2364 // Support big-endian targets when it becomes useful. 2365 bool IsLE = getDataLayout().isLittleEndian(); 2366 if (!IsLE) 2367 break; 2368 2369 // Bitcast 'small element' vector to 'large element' scalar/vector. 2370 if ((BitWidth % SubBitWidth) == 0) { 2371 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2372 2373 // Collect known bits for the (larger) output by collecting the known 2374 // bits from each set of sub elements and shift these into place. 2375 // We need to separately call computeKnownBits for each set of 2376 // sub elements as the knownbits for each is likely to be different. 2377 unsigned SubScale = BitWidth / SubBitWidth; 2378 APInt SubDemandedElts(NumElts * SubScale, 0); 2379 for (unsigned i = 0; i != NumElts; ++i) 2380 if (DemandedElts[i]) 2381 SubDemandedElts.setBit(i * SubScale); 2382 2383 for (unsigned i = 0; i != SubScale; ++i) { 2384 computeKnownBits(N0, Known2, SubDemandedElts.shl(i), 2385 Depth + 1); 2386 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); 2387 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); 2388 } 2389 } 2390 2391 // Bitcast 'large element' scalar/vector to 'small element' vector. 2392 if ((SubBitWidth % BitWidth) == 0) { 2393 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2394 2395 // Collect known bits for the (smaller) output by collecting the known 2396 // bits from the overlapping larger input elements and extracting the 2397 // sub sections we actually care about. 2398 unsigned SubScale = SubBitWidth / BitWidth; 2399 APInt SubDemandedElts(NumElts / SubScale, 0); 2400 for (unsigned i = 0; i != NumElts; ++i) 2401 if (DemandedElts[i]) 2402 SubDemandedElts.setBit(i / SubScale); 2403 2404 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); 2405 2406 Known.Zero.setAllBits(); Known.One.setAllBits(); 2407 for (unsigned i = 0; i != NumElts; ++i) 2408 if (DemandedElts[i]) { 2409 unsigned Offset = (i % SubScale) * BitWidth; 2410 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2411 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2412 // If we don't know any bits, early out. 2413 if (Known.isUnknown()) 2414 break; 2415 } 2416 } 2417 break; 2418 } 2419 case ISD::AND: 2420 // If either the LHS or the RHS are Zero, the result is zero. 2421 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2422 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2423 2424 // Output known-1 bits are only known if set in both the LHS & RHS. 2425 Known.One &= Known2.One; 2426 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2427 Known.Zero |= Known2.Zero; 2428 break; 2429 case ISD::OR: 2430 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2431 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2432 2433 // Output known-0 bits are only known if clear in both the LHS & RHS. 2434 Known.Zero &= Known2.Zero; 2435 // Output known-1 are known to be set if set in either the LHS | RHS. 2436 Known.One |= Known2.One; 2437 break; 2438 case ISD::XOR: { 2439 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2440 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2441 2442 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2443 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2444 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2445 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2446 Known.Zero = KnownZeroOut; 2447 break; 2448 } 2449 case ISD::MUL: { 2450 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2451 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2452 2453 // If low bits are zero in either operand, output low known-0 bits. 2454 // Also compute a conservative estimate for high known-0 bits. 2455 // More trickiness is possible, but this is sufficient for the 2456 // interesting case of alignment computation. 2457 unsigned TrailZ = Known.countMinTrailingZeros() + 2458 Known2.countMinTrailingZeros(); 2459 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2460 Known2.countMinLeadingZeros(), 2461 BitWidth) - BitWidth; 2462 2463 Known.resetAll(); 2464 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2465 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2466 break; 2467 } 2468 case ISD::UDIV: { 2469 // For the purposes of computing leading zeros we can conservatively 2470 // treat a udiv as a logical right shift by the power of 2 known to 2471 // be less than the denominator. 2472 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2473 unsigned LeadZ = Known2.countMinLeadingZeros(); 2474 2475 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2476 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2477 if (RHSMaxLeadingZeros != BitWidth) 2478 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2479 2480 Known.Zero.setHighBits(LeadZ); 2481 break; 2482 } 2483 case ISD::SELECT: 2484 case ISD::VSELECT: 2485 computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1); 2486 // If we don't know any bits, early out. 2487 if (Known.isUnknown()) 2488 break; 2489 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1); 2490 2491 // Only known if known in both the LHS and RHS. 2492 Known.One &= Known2.One; 2493 Known.Zero &= Known2.Zero; 2494 break; 2495 case ISD::SELECT_CC: 2496 computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1); 2497 // If we don't know any bits, early out. 2498 if (Known.isUnknown()) 2499 break; 2500 computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1); 2501 2502 // Only known if known in both the LHS and RHS. 2503 Known.One &= Known2.One; 2504 Known.Zero &= Known2.Zero; 2505 break; 2506 case ISD::SMULO: 2507 case ISD::UMULO: 2508 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2509 if (Op.getResNo() != 1) 2510 break; 2511 // The boolean result conforms to getBooleanContents. 2512 // If we know the result of a setcc has the top bits zero, use this info. 2513 // We know that we have an integer-based boolean since these operations 2514 // are only available for integer. 2515 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2516 TargetLowering::ZeroOrOneBooleanContent && 2517 BitWidth > 1) 2518 Known.Zero.setBitsFrom(1); 2519 break; 2520 case ISD::SETCC: 2521 // If we know the result of a setcc has the top bits zero, use this info. 2522 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2523 TargetLowering::ZeroOrOneBooleanContent && 2524 BitWidth > 1) 2525 Known.Zero.setBitsFrom(1); 2526 break; 2527 case ISD::SHL: 2528 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2529 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2530 unsigned Shift = ShAmt->getZExtValue(); 2531 Known.Zero <<= Shift; 2532 Known.One <<= Shift; 2533 // Low bits are known zero. 2534 Known.Zero.setLowBits(Shift); 2535 } 2536 break; 2537 case ISD::SRL: 2538 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2539 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2540 unsigned Shift = ShAmt->getZExtValue(); 2541 Known.Zero.lshrInPlace(Shift); 2542 Known.One.lshrInPlace(Shift); 2543 // High bits are known zero. 2544 Known.Zero.setHighBits(Shift); 2545 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2546 // If the shift amount is a vector of constants see if we can bound 2547 // the number of upper zero bits. 2548 unsigned ShiftAmountMin = BitWidth; 2549 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2550 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2551 const APInt &ShAmt = C->getAPIntValue(); 2552 if (ShAmt.ult(BitWidth)) { 2553 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2554 ShAmt.getZExtValue()); 2555 continue; 2556 } 2557 } 2558 // Don't know anything. 2559 ShiftAmountMin = 0; 2560 break; 2561 } 2562 2563 Known.Zero.setHighBits(ShiftAmountMin); 2564 } 2565 break; 2566 case ISD::SRA: 2567 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2568 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2569 unsigned Shift = ShAmt->getZExtValue(); 2570 // Sign extend known zero/one bit (else is unknown). 2571 Known.Zero.ashrInPlace(Shift); 2572 Known.One.ashrInPlace(Shift); 2573 } 2574 break; 2575 case ISD::SIGN_EXTEND_INREG: { 2576 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2577 unsigned EBits = EVT.getScalarSizeInBits(); 2578 2579 // Sign extension. Compute the demanded bits in the result that are not 2580 // present in the input. 2581 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2582 2583 APInt InSignMask = APInt::getSignMask(EBits); 2584 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2585 2586 // If the sign extended bits are demanded, we know that the sign 2587 // bit is demanded. 2588 InSignMask = InSignMask.zext(BitWidth); 2589 if (NewBits.getBoolValue()) 2590 InputDemandedBits |= InSignMask; 2591 2592 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2593 Known.One &= InputDemandedBits; 2594 Known.Zero &= InputDemandedBits; 2595 2596 // If the sign bit of the input is known set or clear, then we know the 2597 // top bits of the result. 2598 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2599 Known.Zero |= NewBits; 2600 Known.One &= ~NewBits; 2601 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2602 Known.One |= NewBits; 2603 Known.Zero &= ~NewBits; 2604 } else { // Input sign bit unknown 2605 Known.Zero &= ~NewBits; 2606 Known.One &= ~NewBits; 2607 } 2608 break; 2609 } 2610 case ISD::CTTZ: 2611 case ISD::CTTZ_ZERO_UNDEF: { 2612 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2613 // If we have a known 1, its position is our upper bound. 2614 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2615 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2616 Known.Zero.setBitsFrom(LowBits); 2617 break; 2618 } 2619 case ISD::CTLZ: 2620 case ISD::CTLZ_ZERO_UNDEF: { 2621 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2622 // If we have a known 1, its position is our upper bound. 2623 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2624 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2625 Known.Zero.setBitsFrom(LowBits); 2626 break; 2627 } 2628 case ISD::CTPOP: { 2629 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2630 // If we know some of the bits are zero, they can't be one. 2631 unsigned PossibleOnes = Known2.countMaxPopulation(); 2632 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2633 break; 2634 } 2635 case ISD::LOAD: { 2636 LoadSDNode *LD = cast<LoadSDNode>(Op); 2637 // If this is a ZEXTLoad and we are looking at the loaded value. 2638 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2639 EVT VT = LD->getMemoryVT(); 2640 unsigned MemBits = VT.getScalarSizeInBits(); 2641 Known.Zero.setBitsFrom(MemBits); 2642 } else if (const MDNode *Ranges = LD->getRanges()) { 2643 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2644 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2645 } 2646 break; 2647 } 2648 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2649 EVT InVT = Op.getOperand(0).getValueType(); 2650 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 2651 computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1); 2652 Known = Known.zext(BitWidth); 2653 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2654 break; 2655 } 2656 case ISD::ZERO_EXTEND: { 2657 EVT InVT = Op.getOperand(0).getValueType(); 2658 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2659 Known = Known.zext(BitWidth); 2660 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2661 break; 2662 } 2663 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2664 case ISD::SIGN_EXTEND: { 2665 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2666 // If the sign bit is known to be zero or one, then sext will extend 2667 // it to the top bits, else it will just zext. 2668 Known = Known.sext(BitWidth); 2669 break; 2670 } 2671 case ISD::ANY_EXTEND: { 2672 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2673 Known = Known.zext(BitWidth); 2674 break; 2675 } 2676 case ISD::TRUNCATE: { 2677 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2678 Known = Known.trunc(BitWidth); 2679 break; 2680 } 2681 case ISD::AssertZext: { 2682 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2683 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2684 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2685 Known.Zero |= (~InMask); 2686 Known.One &= (~Known.Zero); 2687 break; 2688 } 2689 case ISD::FGETSIGN: 2690 // All bits are zero except the low bit. 2691 Known.Zero.setBitsFrom(1); 2692 break; 2693 case ISD::USUBO: 2694 case ISD::SSUBO: 2695 if (Op.getResNo() == 1) { 2696 // If we know the result of a setcc has the top bits zero, use this info. 2697 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2698 TargetLowering::ZeroOrOneBooleanContent && 2699 BitWidth > 1) 2700 Known.Zero.setBitsFrom(1); 2701 break; 2702 } 2703 LLVM_FALLTHROUGH; 2704 case ISD::SUB: 2705 case ISD::SUBC: { 2706 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2707 // We know that the top bits of C-X are clear if X contains less bits 2708 // than C (i.e. no wrap-around can happen). For example, 20-X is 2709 // positive if we can prove that X is >= 0 and < 16. 2710 if (CLHS->getAPIntValue().isNonNegative()) { 2711 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2712 // NLZ can't be BitWidth with no sign bit 2713 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2714 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2715 Depth + 1); 2716 2717 // If all of the MaskV bits are known to be zero, then we know the 2718 // output top bits are zero, because we now know that the output is 2719 // from [0-C]. 2720 if ((Known2.Zero & MaskV) == MaskV) { 2721 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2722 // Top bits known zero. 2723 Known.Zero.setHighBits(NLZ2); 2724 } 2725 } 2726 } 2727 2728 // If low bits are know to be zero in both operands, then we know they are 2729 // going to be 0 in the result. Both addition and complement operations 2730 // preserve the low zero bits. 2731 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2732 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2733 if (KnownZeroLow == 0) 2734 break; 2735 2736 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2737 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2738 Known.Zero.setLowBits(KnownZeroLow); 2739 break; 2740 } 2741 case ISD::UADDO: 2742 case ISD::SADDO: 2743 case ISD::ADDCARRY: 2744 if (Op.getResNo() == 1) { 2745 // If we know the result of a setcc has the top bits zero, use this info. 2746 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2747 TargetLowering::ZeroOrOneBooleanContent && 2748 BitWidth > 1) 2749 Known.Zero.setBitsFrom(1); 2750 break; 2751 } 2752 LLVM_FALLTHROUGH; 2753 case ISD::ADD: 2754 case ISD::ADDC: 2755 case ISD::ADDE: { 2756 // Output known-0 bits are known if clear or set in both the low clear bits 2757 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2758 // low 3 bits clear. 2759 // Output known-0 bits are also known if the top bits of each input are 2760 // known to be clear. For example, if one input has the top 10 bits clear 2761 // and the other has the top 8 bits clear, we know the top 7 bits of the 2762 // output must be clear. 2763 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2764 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2765 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2766 2767 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2768 Depth + 1); 2769 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2770 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2771 2772 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2773 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2774 // use this information if we know (at least) that the low two bits are 2775 // clear. We then return to the caller that the low bit is unknown but 2776 // that other bits are known zero. 2777 if (KnownZeroLow >= 2) 2778 Known.Zero.setBits(1, KnownZeroLow); 2779 break; 2780 } 2781 2782 Known.Zero.setLowBits(KnownZeroLow); 2783 if (KnownZeroHigh > 1) 2784 Known.Zero.setHighBits(KnownZeroHigh - 1); 2785 break; 2786 } 2787 case ISD::SREM: 2788 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2789 const APInt &RA = Rem->getAPIntValue().abs(); 2790 if (RA.isPowerOf2()) { 2791 APInt LowBits = RA - 1; 2792 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2793 2794 // The low bits of the first operand are unchanged by the srem. 2795 Known.Zero = Known2.Zero & LowBits; 2796 Known.One = Known2.One & LowBits; 2797 2798 // If the first operand is non-negative or has all low bits zero, then 2799 // the upper bits are all zero. 2800 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2801 Known.Zero |= ~LowBits; 2802 2803 // If the first operand is negative and not all low bits are zero, then 2804 // the upper bits are all one. 2805 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2806 Known.One |= ~LowBits; 2807 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2808 } 2809 } 2810 break; 2811 case ISD::UREM: { 2812 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2813 const APInt &RA = Rem->getAPIntValue(); 2814 if (RA.isPowerOf2()) { 2815 APInt LowBits = (RA - 1); 2816 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2817 2818 // The upper bits are all zero, the lower ones are unchanged. 2819 Known.Zero = Known2.Zero | ~LowBits; 2820 Known.One = Known2.One & LowBits; 2821 break; 2822 } 2823 } 2824 2825 // Since the result is less than or equal to either operand, any leading 2826 // zero bits in either operand must also exist in the result. 2827 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2828 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2829 2830 uint32_t Leaders = 2831 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2832 Known.resetAll(); 2833 Known.Zero.setHighBits(Leaders); 2834 break; 2835 } 2836 case ISD::EXTRACT_ELEMENT: { 2837 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2838 const unsigned Index = Op.getConstantOperandVal(1); 2839 const unsigned BitWidth = Op.getValueSizeInBits(); 2840 2841 // Remove low part of known bits mask 2842 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2843 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2844 2845 // Remove high part of known bit mask 2846 Known = Known.trunc(BitWidth); 2847 break; 2848 } 2849 case ISD::EXTRACT_VECTOR_ELT: { 2850 SDValue InVec = Op.getOperand(0); 2851 SDValue EltNo = Op.getOperand(1); 2852 EVT VecVT = InVec.getValueType(); 2853 const unsigned BitWidth = Op.getValueSizeInBits(); 2854 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2855 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2856 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2857 // anything about the extended bits. 2858 if (BitWidth > EltBitWidth) 2859 Known = Known.trunc(EltBitWidth); 2860 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2861 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2862 // If we know the element index, just demand that vector element. 2863 unsigned Idx = ConstEltNo->getZExtValue(); 2864 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2865 computeKnownBits(InVec, Known, DemandedElt, Depth + 1); 2866 } else { 2867 // Unknown element index, so ignore DemandedElts and demand them all. 2868 computeKnownBits(InVec, Known, Depth + 1); 2869 } 2870 if (BitWidth > EltBitWidth) 2871 Known = Known.zext(BitWidth); 2872 break; 2873 } 2874 case ISD::INSERT_VECTOR_ELT: { 2875 SDValue InVec = Op.getOperand(0); 2876 SDValue InVal = Op.getOperand(1); 2877 SDValue EltNo = Op.getOperand(2); 2878 2879 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2880 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2881 // If we know the element index, split the demand between the 2882 // source vector and the inserted element. 2883 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2884 unsigned EltIdx = CEltNo->getZExtValue(); 2885 2886 // If we demand the inserted element then add its common known bits. 2887 if (DemandedElts[EltIdx]) { 2888 computeKnownBits(InVal, Known2, Depth + 1); 2889 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2890 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2891 } 2892 2893 // If we demand the source vector then add its common known bits, ensuring 2894 // that we don't demand the inserted element. 2895 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2896 if (!!VectorElts) { 2897 computeKnownBits(InVec, Known2, VectorElts, Depth + 1); 2898 Known.One &= Known2.One; 2899 Known.Zero &= Known2.Zero; 2900 } 2901 } else { 2902 // Unknown element index, so ignore DemandedElts and demand them all. 2903 computeKnownBits(InVec, Known, Depth + 1); 2904 computeKnownBits(InVal, Known2, Depth + 1); 2905 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2906 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2907 } 2908 break; 2909 } 2910 case ISD::BITREVERSE: { 2911 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2912 Known.Zero = Known2.Zero.reverseBits(); 2913 Known.One = Known2.One.reverseBits(); 2914 break; 2915 } 2916 case ISD::BSWAP: { 2917 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2918 Known.Zero = Known2.Zero.byteSwap(); 2919 Known.One = Known2.One.byteSwap(); 2920 break; 2921 } 2922 case ISD::ABS: { 2923 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2924 2925 // If the source's MSB is zero then we know the rest of the bits already. 2926 if (Known2.isNonNegative()) { 2927 Known.Zero = Known2.Zero; 2928 Known.One = Known2.One; 2929 break; 2930 } 2931 2932 // We only know that the absolute values's MSB will be zero iff there is 2933 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2934 Known2.One.clearSignBit(); 2935 if (Known2.One.getBoolValue()) { 2936 Known.Zero = APInt::getSignMask(BitWidth); 2937 break; 2938 } 2939 break; 2940 } 2941 case ISD::UMIN: { 2942 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2943 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2944 2945 // UMIN - we know that the result will have the maximum of the 2946 // known zero leading bits of the inputs. 2947 unsigned LeadZero = Known.countMinLeadingZeros(); 2948 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2949 2950 Known.Zero &= Known2.Zero; 2951 Known.One &= Known2.One; 2952 Known.Zero.setHighBits(LeadZero); 2953 break; 2954 } 2955 case ISD::UMAX: { 2956 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2957 Depth + 1); 2958 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2959 2960 // UMAX - we know that the result will have the maximum of the 2961 // known one leading bits of the inputs. 2962 unsigned LeadOne = Known.countMinLeadingOnes(); 2963 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2964 2965 Known.Zero &= Known2.Zero; 2966 Known.One &= Known2.One; 2967 Known.One.setHighBits(LeadOne); 2968 break; 2969 } 2970 case ISD::SMIN: 2971 case ISD::SMAX: { 2972 // If we have a clamp pattern, we know that the number of sign bits will be 2973 // the minimum of the clamp min/max range. 2974 bool IsMax = (Opcode == ISD::SMAX); 2975 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 2976 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) 2977 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 2978 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), 2979 DemandedElts); 2980 if (CstLow && CstHigh) { 2981 if (!IsMax) 2982 std::swap(CstLow, CstHigh); 2983 2984 const APInt &ValueLow = CstLow->getAPIntValue(); 2985 const APInt &ValueHigh = CstHigh->getAPIntValue(); 2986 if (ValueLow.sle(ValueHigh)) { 2987 unsigned LowSignBits = ValueLow.getNumSignBits(); 2988 unsigned HighSignBits = ValueHigh.getNumSignBits(); 2989 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 2990 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 2991 Known.One.setHighBits(MinSignBits); 2992 break; 2993 } 2994 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 2995 Known.Zero.setHighBits(MinSignBits); 2996 break; 2997 } 2998 } 2999 } 3000 3001 // Fallback - just get the shared known bits of the operands. 3002 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 3003 if (Known.isUnknown()) break; // Early-out 3004 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 3005 Known.Zero &= Known2.Zero; 3006 Known.One &= Known2.One; 3007 break; 3008 } 3009 case ISD::FrameIndex: 3010 case ISD::TargetFrameIndex: 3011 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3012 break; 3013 3014 default: 3015 if (Opcode < ISD::BUILTIN_OP_END) 3016 break; 3017 LLVM_FALLTHROUGH; 3018 case ISD::INTRINSIC_WO_CHAIN: 3019 case ISD::INTRINSIC_W_CHAIN: 3020 case ISD::INTRINSIC_VOID: 3021 // Allow the target to implement this method for its nodes. 3022 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3023 break; 3024 } 3025 3026 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3027 } 3028 3029 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3030 SDValue N1) const { 3031 // X + 0 never overflow 3032 if (isNullConstant(N1)) 3033 return OFK_Never; 3034 3035 KnownBits N1Known; 3036 computeKnownBits(N1, N1Known); 3037 if (N1Known.Zero.getBoolValue()) { 3038 KnownBits N0Known; 3039 computeKnownBits(N0, N0Known); 3040 3041 bool overflow; 3042 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3043 if (!overflow) 3044 return OFK_Never; 3045 } 3046 3047 // mulhi + 1 never overflow 3048 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3049 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3050 return OFK_Never; 3051 3052 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3053 KnownBits N0Known; 3054 computeKnownBits(N0, N0Known); 3055 3056 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3057 return OFK_Never; 3058 } 3059 3060 return OFK_Sometime; 3061 } 3062 3063 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3064 EVT OpVT = Val.getValueType(); 3065 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3066 3067 // Is the constant a known power of 2? 3068 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3069 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3070 3071 // A left-shift of a constant one will have exactly one bit set because 3072 // shifting the bit off the end is undefined. 3073 if (Val.getOpcode() == ISD::SHL) { 3074 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3075 if (C && C->getAPIntValue() == 1) 3076 return true; 3077 } 3078 3079 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3080 // one bit set. 3081 if (Val.getOpcode() == ISD::SRL) { 3082 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3083 if (C && C->getAPIntValue().isSignMask()) 3084 return true; 3085 } 3086 3087 // Are all operands of a build vector constant powers of two? 3088 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3089 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3090 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3091 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3092 return false; 3093 })) 3094 return true; 3095 3096 // More could be done here, though the above checks are enough 3097 // to handle some common cases. 3098 3099 // Fall back to computeKnownBits to catch other known cases. 3100 KnownBits Known; 3101 computeKnownBits(Val, Known); 3102 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3103 } 3104 3105 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3106 EVT VT = Op.getValueType(); 3107 APInt DemandedElts = VT.isVector() 3108 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3109 : APInt(1, 1); 3110 return ComputeNumSignBits(Op, DemandedElts, Depth); 3111 } 3112 3113 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3114 unsigned Depth) const { 3115 EVT VT = Op.getValueType(); 3116 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3117 unsigned VTBits = VT.getScalarSizeInBits(); 3118 unsigned NumElts = DemandedElts.getBitWidth(); 3119 unsigned Tmp, Tmp2; 3120 unsigned FirstAnswer = 1; 3121 3122 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3123 const APInt &Val = C->getAPIntValue(); 3124 return Val.getNumSignBits(); 3125 } 3126 3127 if (Depth == 6) 3128 return 1; // Limit search depth. 3129 3130 if (!DemandedElts) 3131 return 1; // No demanded elts, better to assume we don't know anything. 3132 3133 unsigned Opcode = Op.getOpcode(); 3134 switch (Opcode) { 3135 default: break; 3136 case ISD::AssertSext: 3137 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3138 return VTBits-Tmp+1; 3139 case ISD::AssertZext: 3140 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3141 return VTBits-Tmp; 3142 3143 case ISD::BUILD_VECTOR: 3144 Tmp = VTBits; 3145 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3146 if (!DemandedElts[i]) 3147 continue; 3148 3149 SDValue SrcOp = Op.getOperand(i); 3150 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3151 3152 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3153 if (SrcOp.getValueSizeInBits() != VTBits) { 3154 assert(SrcOp.getValueSizeInBits() > VTBits && 3155 "Expected BUILD_VECTOR implicit truncation"); 3156 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3157 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3158 } 3159 Tmp = std::min(Tmp, Tmp2); 3160 } 3161 return Tmp; 3162 3163 case ISD::VECTOR_SHUFFLE: { 3164 // Collect the minimum number of sign bits that are shared by every vector 3165 // element referenced by the shuffle. 3166 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3167 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3168 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3169 for (unsigned i = 0; i != NumElts; ++i) { 3170 int M = SVN->getMaskElt(i); 3171 if (!DemandedElts[i]) 3172 continue; 3173 // For UNDEF elements, we don't know anything about the common state of 3174 // the shuffle result. 3175 if (M < 0) 3176 return 1; 3177 if ((unsigned)M < NumElts) 3178 DemandedLHS.setBit((unsigned)M % NumElts); 3179 else 3180 DemandedRHS.setBit((unsigned)M % NumElts); 3181 } 3182 Tmp = std::numeric_limits<unsigned>::max(); 3183 if (!!DemandedLHS) 3184 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3185 if (!!DemandedRHS) { 3186 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3187 Tmp = std::min(Tmp, Tmp2); 3188 } 3189 // If we don't know anything, early out and try computeKnownBits fall-back. 3190 if (Tmp == 1) 3191 break; 3192 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3193 return Tmp; 3194 } 3195 3196 case ISD::BITCAST: { 3197 SDValue N0 = Op.getOperand(0); 3198 EVT SrcVT = N0.getValueType(); 3199 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3200 3201 // Ignore bitcasts from unsupported types.. 3202 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3203 break; 3204 3205 // Fast handling of 'identity' bitcasts. 3206 if (VTBits == SrcBits) 3207 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3208 3209 // Bitcast 'large element' scalar/vector to 'small element' vector. 3210 // TODO: Handle cases other than 'sign splat' when we have a use case. 3211 // Requires handling of DemandedElts and Endianness. 3212 if ((SrcBits % VTBits) == 0) { 3213 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3214 Tmp = ComputeNumSignBits(N0, Depth + 1); 3215 if (Tmp == SrcBits) 3216 return VTBits; 3217 } 3218 break; 3219 } 3220 3221 case ISD::SIGN_EXTEND: 3222 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3223 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3224 case ISD::SIGN_EXTEND_INREG: 3225 // Max of the input and what this extends. 3226 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3227 Tmp = VTBits-Tmp+1; 3228 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3229 return std::max(Tmp, Tmp2); 3230 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3231 SDValue Src = Op.getOperand(0); 3232 EVT SrcVT = Src.getValueType(); 3233 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 3234 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3235 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3236 } 3237 3238 case ISD::SRA: 3239 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3240 // SRA X, C -> adds C sign bits. 3241 if (ConstantSDNode *C = 3242 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3243 APInt ShiftVal = C->getAPIntValue(); 3244 ShiftVal += Tmp; 3245 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3246 } 3247 return Tmp; 3248 case ISD::SHL: 3249 if (ConstantSDNode *C = 3250 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3251 // shl destroys sign bits. 3252 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3253 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3254 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3255 return Tmp - C->getZExtValue(); 3256 } 3257 break; 3258 case ISD::AND: 3259 case ISD::OR: 3260 case ISD::XOR: // NOT is handled here. 3261 // Logical binary ops preserve the number of sign bits at the worst. 3262 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3263 if (Tmp != 1) { 3264 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3265 FirstAnswer = std::min(Tmp, Tmp2); 3266 // We computed what we know about the sign bits as our first 3267 // answer. Now proceed to the generic code that uses 3268 // computeKnownBits, and pick whichever answer is better. 3269 } 3270 break; 3271 3272 case ISD::SELECT: 3273 case ISD::VSELECT: 3274 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3275 if (Tmp == 1) return 1; // Early out. 3276 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3277 return std::min(Tmp, Tmp2); 3278 case ISD::SELECT_CC: 3279 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3280 if (Tmp == 1) return 1; // Early out. 3281 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3282 return std::min(Tmp, Tmp2); 3283 3284 case ISD::SMIN: 3285 case ISD::SMAX: { 3286 // If we have a clamp pattern, we know that the number of sign bits will be 3287 // the minimum of the clamp min/max range. 3288 bool IsMax = (Opcode == ISD::SMAX); 3289 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3290 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) 3291 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3292 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), 3293 DemandedElts); 3294 if (CstLow && CstHigh) { 3295 if (!IsMax) 3296 std::swap(CstLow, CstHigh); 3297 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3298 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3299 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3300 return std::min(Tmp, Tmp2); 3301 } 3302 } 3303 3304 // Fallback - just get the minimum number of sign bits of the operands. 3305 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3306 if (Tmp == 1) 3307 return 1; // Early out. 3308 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3309 return std::min(Tmp, Tmp2); 3310 } 3311 case ISD::UMIN: 3312 case ISD::UMAX: 3313 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3314 if (Tmp == 1) 3315 return 1; // Early out. 3316 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3317 return std::min(Tmp, Tmp2); 3318 case ISD::SADDO: 3319 case ISD::UADDO: 3320 case ISD::SSUBO: 3321 case ISD::USUBO: 3322 case ISD::SMULO: 3323 case ISD::UMULO: 3324 if (Op.getResNo() != 1) 3325 break; 3326 // The boolean result conforms to getBooleanContents. Fall through. 3327 // If setcc returns 0/-1, all bits are sign bits. 3328 // We know that we have an integer-based boolean since these operations 3329 // are only available for integer. 3330 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3331 TargetLowering::ZeroOrNegativeOneBooleanContent) 3332 return VTBits; 3333 break; 3334 case ISD::SETCC: 3335 // If setcc returns 0/-1, all bits are sign bits. 3336 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3337 TargetLowering::ZeroOrNegativeOneBooleanContent) 3338 return VTBits; 3339 break; 3340 case ISD::ROTL: 3341 case ISD::ROTR: 3342 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3343 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3344 3345 // Handle rotate right by N like a rotate left by 32-N. 3346 if (Opcode == ISD::ROTR) 3347 RotAmt = (VTBits - RotAmt) % VTBits; 3348 3349 // If we aren't rotating out all of the known-in sign bits, return the 3350 // number that are left. This handles rotl(sext(x), 1) for example. 3351 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3352 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3353 } 3354 break; 3355 case ISD::ADD: 3356 case ISD::ADDC: 3357 // Add can have at most one carry bit. Thus we know that the output 3358 // is, at worst, one more bit than the inputs. 3359 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3360 if (Tmp == 1) return 1; // Early out. 3361 3362 // Special case decrementing a value (ADD X, -1): 3363 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3364 if (CRHS->isAllOnesValue()) { 3365 KnownBits Known; 3366 computeKnownBits(Op.getOperand(0), Known, Depth+1); 3367 3368 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3369 // sign bits set. 3370 if ((Known.Zero | 1).isAllOnesValue()) 3371 return VTBits; 3372 3373 // If we are subtracting one from a positive number, there is no carry 3374 // out of the result. 3375 if (Known.isNonNegative()) 3376 return Tmp; 3377 } 3378 3379 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3380 if (Tmp2 == 1) return 1; 3381 return std::min(Tmp, Tmp2)-1; 3382 3383 case ISD::SUB: 3384 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3385 if (Tmp2 == 1) return 1; 3386 3387 // Handle NEG. 3388 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3389 if (CLHS->isNullValue()) { 3390 KnownBits Known; 3391 computeKnownBits(Op.getOperand(1), Known, Depth+1); 3392 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3393 // sign bits set. 3394 if ((Known.Zero | 1).isAllOnesValue()) 3395 return VTBits; 3396 3397 // If the input is known to be positive (the sign bit is known clear), 3398 // the output of the NEG has the same number of sign bits as the input. 3399 if (Known.isNonNegative()) 3400 return Tmp2; 3401 3402 // Otherwise, we treat this like a SUB. 3403 } 3404 3405 // Sub can have at most one carry bit. Thus we know that the output 3406 // is, at worst, one more bit than the inputs. 3407 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3408 if (Tmp == 1) return 1; // Early out. 3409 return std::min(Tmp, Tmp2)-1; 3410 case ISD::TRUNCATE: { 3411 // Check if the sign bits of source go down as far as the truncated value. 3412 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3413 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3414 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3415 return NumSrcSignBits - (NumSrcBits - VTBits); 3416 break; 3417 } 3418 case ISD::EXTRACT_ELEMENT: { 3419 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3420 const int BitWidth = Op.getValueSizeInBits(); 3421 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3422 3423 // Get reverse index (starting from 1), Op1 value indexes elements from 3424 // little end. Sign starts at big end. 3425 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3426 3427 // If the sign portion ends in our element the subtraction gives correct 3428 // result. Otherwise it gives either negative or > bitwidth result 3429 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3430 } 3431 case ISD::INSERT_VECTOR_ELT: { 3432 SDValue InVec = Op.getOperand(0); 3433 SDValue InVal = Op.getOperand(1); 3434 SDValue EltNo = Op.getOperand(2); 3435 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3436 3437 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3438 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3439 // If we know the element index, split the demand between the 3440 // source vector and the inserted element. 3441 unsigned EltIdx = CEltNo->getZExtValue(); 3442 3443 // If we demand the inserted element then get its sign bits. 3444 Tmp = std::numeric_limits<unsigned>::max(); 3445 if (DemandedElts[EltIdx]) { 3446 // TODO - handle implicit truncation of inserted elements. 3447 if (InVal.getScalarValueSizeInBits() != VTBits) 3448 break; 3449 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3450 } 3451 3452 // If we demand the source vector then get its sign bits, and determine 3453 // the minimum. 3454 APInt VectorElts = DemandedElts; 3455 VectorElts.clearBit(EltIdx); 3456 if (!!VectorElts) { 3457 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3458 Tmp = std::min(Tmp, Tmp2); 3459 } 3460 } else { 3461 // Unknown element index, so ignore DemandedElts and demand them all. 3462 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3463 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3464 Tmp = std::min(Tmp, Tmp2); 3465 } 3466 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3467 return Tmp; 3468 } 3469 case ISD::EXTRACT_VECTOR_ELT: { 3470 SDValue InVec = Op.getOperand(0); 3471 SDValue EltNo = Op.getOperand(1); 3472 EVT VecVT = InVec.getValueType(); 3473 const unsigned BitWidth = Op.getValueSizeInBits(); 3474 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3475 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3476 3477 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3478 // anything about sign bits. But if the sizes match we can derive knowledge 3479 // about sign bits from the vector operand. 3480 if (BitWidth != EltBitWidth) 3481 break; 3482 3483 // If we know the element index, just demand that vector element, else for 3484 // an unknown element index, ignore DemandedElts and demand them all. 3485 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3486 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3487 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3488 DemandedSrcElts = 3489 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3490 3491 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3492 } 3493 case ISD::EXTRACT_SUBVECTOR: { 3494 // If we know the element index, just demand that subvector elements, 3495 // otherwise demand them all. 3496 SDValue Src = Op.getOperand(0); 3497 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3498 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3499 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3500 // Offset the demanded elts by the subvector index. 3501 uint64_t Idx = SubIdx->getZExtValue(); 3502 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 3503 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3504 } 3505 return ComputeNumSignBits(Src, Depth + 1); 3506 } 3507 case ISD::CONCAT_VECTORS: 3508 // Determine the minimum number of sign bits across all demanded 3509 // elts of the input vectors. Early out if the result is already 1. 3510 Tmp = std::numeric_limits<unsigned>::max(); 3511 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3512 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3513 unsigned NumSubVectors = Op.getNumOperands(); 3514 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3515 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3516 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3517 if (!DemandedSub) 3518 continue; 3519 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3520 Tmp = std::min(Tmp, Tmp2); 3521 } 3522 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3523 return Tmp; 3524 } 3525 3526 // If we are looking at the loaded value of the SDNode. 3527 if (Op.getResNo() == 0) { 3528 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3529 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3530 unsigned ExtType = LD->getExtensionType(); 3531 switch (ExtType) { 3532 default: break; 3533 case ISD::SEXTLOAD: // '17' bits known 3534 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3535 return VTBits-Tmp+1; 3536 case ISD::ZEXTLOAD: // '16' bits known 3537 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3538 return VTBits-Tmp; 3539 } 3540 } 3541 } 3542 3543 // Allow the target to implement this method for its nodes. 3544 if (Opcode >= ISD::BUILTIN_OP_END || 3545 Opcode == ISD::INTRINSIC_WO_CHAIN || 3546 Opcode == ISD::INTRINSIC_W_CHAIN || 3547 Opcode == ISD::INTRINSIC_VOID) { 3548 unsigned NumBits = 3549 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3550 if (NumBits > 1) 3551 FirstAnswer = std::max(FirstAnswer, NumBits); 3552 } 3553 3554 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3555 // use this information. 3556 KnownBits Known; 3557 computeKnownBits(Op, Known, DemandedElts, Depth); 3558 3559 APInt Mask; 3560 if (Known.isNonNegative()) { // sign bit is 0 3561 Mask = Known.Zero; 3562 } else if (Known.isNegative()) { // sign bit is 1; 3563 Mask = Known.One; 3564 } else { 3565 // Nothing known. 3566 return FirstAnswer; 3567 } 3568 3569 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3570 // the number of identical bits in the top of the input value. 3571 Mask = ~Mask; 3572 Mask <<= Mask.getBitWidth()-VTBits; 3573 // Return # leading zeros. We use 'min' here in case Val was zero before 3574 // shifting. We don't want to return '64' as for an i32 "0". 3575 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3576 } 3577 3578 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3579 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3580 !isa<ConstantSDNode>(Op.getOperand(1))) 3581 return false; 3582 3583 if (Op.getOpcode() == ISD::OR && 3584 !MaskedValueIsZero(Op.getOperand(0), 3585 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3586 return false; 3587 3588 return true; 3589 } 3590 3591 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3592 // If we're told that NaNs won't happen, assume they won't. 3593 if (getTarget().Options.NoNaNsFPMath) 3594 return true; 3595 3596 if (Op->getFlags().hasNoNaNs()) 3597 return true; 3598 3599 // If the value is a constant, we can obviously see if it is a NaN or not. 3600 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3601 return !C->getValueAPF().isNaN(); 3602 3603 // TODO: Recognize more cases here. 3604 3605 return false; 3606 } 3607 3608 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3609 // If the value is a constant, we can obviously see if it is a zero or not. 3610 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3611 return !C->isZero(); 3612 3613 // TODO: Recognize more cases here. 3614 switch (Op.getOpcode()) { 3615 default: break; 3616 case ISD::OR: 3617 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3618 return !C->isNullValue(); 3619 break; 3620 } 3621 3622 return false; 3623 } 3624 3625 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3626 // Check the obvious case. 3627 if (A == B) return true; 3628 3629 // For for negative and positive zero. 3630 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3631 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3632 if (CA->isZero() && CB->isZero()) return true; 3633 3634 // Otherwise they may not be equal. 3635 return false; 3636 } 3637 3638 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3639 assert(A.getValueType() == B.getValueType() && 3640 "Values must have the same type"); 3641 KnownBits AKnown, BKnown; 3642 computeKnownBits(A, AKnown); 3643 computeKnownBits(B, BKnown); 3644 return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); 3645 } 3646 3647 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3648 ArrayRef<SDValue> Ops, 3649 SelectionDAG &DAG) { 3650 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3651 assert(llvm::all_of(Ops, 3652 [Ops](SDValue Op) { 3653 return Ops[0].getValueType() == Op.getValueType(); 3654 }) && 3655 "Concatenation of vectors with inconsistent value types!"); 3656 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3657 VT.getVectorNumElements() && 3658 "Incorrect element count in vector concatenation!"); 3659 3660 if (Ops.size() == 1) 3661 return Ops[0]; 3662 3663 // Concat of UNDEFs is UNDEF. 3664 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3665 return DAG.getUNDEF(VT); 3666 3667 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3668 // simplified to one big BUILD_VECTOR. 3669 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3670 EVT SVT = VT.getScalarType(); 3671 SmallVector<SDValue, 16> Elts; 3672 for (SDValue Op : Ops) { 3673 EVT OpVT = Op.getValueType(); 3674 if (Op.isUndef()) 3675 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3676 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3677 Elts.append(Op->op_begin(), Op->op_end()); 3678 else 3679 return SDValue(); 3680 } 3681 3682 // BUILD_VECTOR requires all inputs to be of the same type, find the 3683 // maximum type and extend them all. 3684 for (SDValue Op : Elts) 3685 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3686 3687 if (SVT.bitsGT(VT.getScalarType())) 3688 for (SDValue &Op : Elts) 3689 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3690 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3691 : DAG.getSExtOrTrunc(Op, DL, SVT); 3692 3693 SDValue V = DAG.getBuildVector(VT, DL, Elts); 3694 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 3695 return V; 3696 } 3697 3698 /// Gets or creates the specified node. 3699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3700 FoldingSetNodeID ID; 3701 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3702 void *IP = nullptr; 3703 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3704 return SDValue(E, 0); 3705 3706 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3707 getVTList(VT)); 3708 CSEMap.InsertNode(N, IP); 3709 3710 InsertNode(N); 3711 SDValue V = SDValue(N, 0); 3712 NewSDValueDbgMsg(V, "Creating new node: ", this); 3713 return V; 3714 } 3715 3716 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3717 SDValue Operand, const SDNodeFlags Flags) { 3718 // Constant fold unary operations with an integer constant operand. Even 3719 // opaque constant will be folded, because the folding of unary operations 3720 // doesn't create new constants with different values. Nevertheless, the 3721 // opaque flag is preserved during folding to prevent future folding with 3722 // other constants. 3723 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3724 const APInt &Val = C->getAPIntValue(); 3725 switch (Opcode) { 3726 default: break; 3727 case ISD::SIGN_EXTEND: 3728 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3729 C->isTargetOpcode(), C->isOpaque()); 3730 case ISD::ANY_EXTEND: 3731 case ISD::ZERO_EXTEND: 3732 case ISD::TRUNCATE: 3733 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3734 C->isTargetOpcode(), C->isOpaque()); 3735 case ISD::UINT_TO_FP: 3736 case ISD::SINT_TO_FP: { 3737 APFloat apf(EVTToAPFloatSemantics(VT), 3738 APInt::getNullValue(VT.getSizeInBits())); 3739 (void)apf.convertFromAPInt(Val, 3740 Opcode==ISD::SINT_TO_FP, 3741 APFloat::rmNearestTiesToEven); 3742 return getConstantFP(apf, DL, VT); 3743 } 3744 case ISD::BITCAST: 3745 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3746 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3747 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3748 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3749 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3750 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3751 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3752 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3753 break; 3754 case ISD::ABS: 3755 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3756 C->isOpaque()); 3757 case ISD::BITREVERSE: 3758 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3759 C->isOpaque()); 3760 case ISD::BSWAP: 3761 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3762 C->isOpaque()); 3763 case ISD::CTPOP: 3764 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3765 C->isOpaque()); 3766 case ISD::CTLZ: 3767 case ISD::CTLZ_ZERO_UNDEF: 3768 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3769 C->isOpaque()); 3770 case ISD::CTTZ: 3771 case ISD::CTTZ_ZERO_UNDEF: 3772 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3773 C->isOpaque()); 3774 case ISD::FP16_TO_FP: { 3775 bool Ignored; 3776 APFloat FPV(APFloat::IEEEhalf(), 3777 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3778 3779 // This can return overflow, underflow, or inexact; we don't care. 3780 // FIXME need to be more flexible about rounding mode. 3781 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3782 APFloat::rmNearestTiesToEven, &Ignored); 3783 return getConstantFP(FPV, DL, VT); 3784 } 3785 } 3786 } 3787 3788 // Constant fold unary operations with a floating point constant operand. 3789 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3790 APFloat V = C->getValueAPF(); // make copy 3791 switch (Opcode) { 3792 case ISD::FNEG: 3793 V.changeSign(); 3794 return getConstantFP(V, DL, VT); 3795 case ISD::FABS: 3796 V.clearSign(); 3797 return getConstantFP(V, DL, VT); 3798 case ISD::FCEIL: { 3799 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3800 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3801 return getConstantFP(V, DL, VT); 3802 break; 3803 } 3804 case ISD::FTRUNC: { 3805 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3806 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3807 return getConstantFP(V, DL, VT); 3808 break; 3809 } 3810 case ISD::FFLOOR: { 3811 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3812 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3813 return getConstantFP(V, DL, VT); 3814 break; 3815 } 3816 case ISD::FP_EXTEND: { 3817 bool ignored; 3818 // This can return overflow, underflow, or inexact; we don't care. 3819 // FIXME need to be more flexible about rounding mode. 3820 (void)V.convert(EVTToAPFloatSemantics(VT), 3821 APFloat::rmNearestTiesToEven, &ignored); 3822 return getConstantFP(V, DL, VT); 3823 } 3824 case ISD::FP_TO_SINT: 3825 case ISD::FP_TO_UINT: { 3826 bool ignored; 3827 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3828 // FIXME need to be more flexible about rounding mode. 3829 APFloat::opStatus s = 3830 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3831 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3832 break; 3833 return getConstant(IntVal, DL, VT); 3834 } 3835 case ISD::BITCAST: 3836 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3837 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3838 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3839 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3840 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3841 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3842 break; 3843 case ISD::FP_TO_FP16: { 3844 bool Ignored; 3845 // This can return overflow, underflow, or inexact; we don't care. 3846 // FIXME need to be more flexible about rounding mode. 3847 (void)V.convert(APFloat::IEEEhalf(), 3848 APFloat::rmNearestTiesToEven, &Ignored); 3849 return getConstant(V.bitcastToAPInt(), DL, VT); 3850 } 3851 } 3852 } 3853 3854 // Constant fold unary operations with a vector integer or float operand. 3855 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3856 if (BV->isConstant()) { 3857 switch (Opcode) { 3858 default: 3859 // FIXME: Entirely reasonable to perform folding of other unary 3860 // operations here as the need arises. 3861 break; 3862 case ISD::FNEG: 3863 case ISD::FABS: 3864 case ISD::FCEIL: 3865 case ISD::FTRUNC: 3866 case ISD::FFLOOR: 3867 case ISD::FP_EXTEND: 3868 case ISD::FP_TO_SINT: 3869 case ISD::FP_TO_UINT: 3870 case ISD::TRUNCATE: 3871 case ISD::ANY_EXTEND: 3872 case ISD::ZERO_EXTEND: 3873 case ISD::SIGN_EXTEND: 3874 case ISD::UINT_TO_FP: 3875 case ISD::SINT_TO_FP: 3876 case ISD::ABS: 3877 case ISD::BITREVERSE: 3878 case ISD::BSWAP: 3879 case ISD::CTLZ: 3880 case ISD::CTLZ_ZERO_UNDEF: 3881 case ISD::CTTZ: 3882 case ISD::CTTZ_ZERO_UNDEF: 3883 case ISD::CTPOP: { 3884 SDValue Ops = { Operand }; 3885 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3886 return Fold; 3887 } 3888 } 3889 } 3890 } 3891 3892 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3893 switch (Opcode) { 3894 case ISD::TokenFactor: 3895 case ISD::MERGE_VALUES: 3896 case ISD::CONCAT_VECTORS: 3897 return Operand; // Factor, merge or concat of one node? No need. 3898 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3899 case ISD::FP_EXTEND: 3900 assert(VT.isFloatingPoint() && 3901 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3902 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3903 assert((!VT.isVector() || 3904 VT.getVectorNumElements() == 3905 Operand.getValueType().getVectorNumElements()) && 3906 "Vector element count mismatch!"); 3907 assert(Operand.getValueType().bitsLT(VT) && 3908 "Invalid fpext node, dst < src!"); 3909 if (Operand.isUndef()) 3910 return getUNDEF(VT); 3911 break; 3912 case ISD::SIGN_EXTEND: 3913 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3914 "Invalid SIGN_EXTEND!"); 3915 if (Operand.getValueType() == VT) return Operand; // noop extension 3916 assert((!VT.isVector() || 3917 VT.getVectorNumElements() == 3918 Operand.getValueType().getVectorNumElements()) && 3919 "Vector element count mismatch!"); 3920 assert(Operand.getValueType().bitsLT(VT) && 3921 "Invalid sext node, dst < src!"); 3922 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3923 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3924 else if (OpOpcode == ISD::UNDEF) 3925 // sext(undef) = 0, because the top bits will all be the same. 3926 return getConstant(0, DL, VT); 3927 break; 3928 case ISD::ZERO_EXTEND: 3929 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3930 "Invalid ZERO_EXTEND!"); 3931 if (Operand.getValueType() == VT) return Operand; // noop extension 3932 assert((!VT.isVector() || 3933 VT.getVectorNumElements() == 3934 Operand.getValueType().getVectorNumElements()) && 3935 "Vector element count mismatch!"); 3936 assert(Operand.getValueType().bitsLT(VT) && 3937 "Invalid zext node, dst < src!"); 3938 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3939 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 3940 else if (OpOpcode == ISD::UNDEF) 3941 // zext(undef) = 0, because the top bits will be zero. 3942 return getConstant(0, DL, VT); 3943 break; 3944 case ISD::ANY_EXTEND: 3945 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3946 "Invalid ANY_EXTEND!"); 3947 if (Operand.getValueType() == VT) return Operand; // noop extension 3948 assert((!VT.isVector() || 3949 VT.getVectorNumElements() == 3950 Operand.getValueType().getVectorNumElements()) && 3951 "Vector element count mismatch!"); 3952 assert(Operand.getValueType().bitsLT(VT) && 3953 "Invalid anyext node, dst < src!"); 3954 3955 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3956 OpOpcode == ISD::ANY_EXTEND) 3957 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3958 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3959 else if (OpOpcode == ISD::UNDEF) 3960 return getUNDEF(VT); 3961 3962 // (ext (trunx x)) -> x 3963 if (OpOpcode == ISD::TRUNCATE) { 3964 SDValue OpOp = Operand.getOperand(0); 3965 if (OpOp.getValueType() == VT) 3966 return OpOp; 3967 } 3968 break; 3969 case ISD::TRUNCATE: 3970 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3971 "Invalid TRUNCATE!"); 3972 if (Operand.getValueType() == VT) return Operand; // noop truncate 3973 assert((!VT.isVector() || 3974 VT.getVectorNumElements() == 3975 Operand.getValueType().getVectorNumElements()) && 3976 "Vector element count mismatch!"); 3977 assert(Operand.getValueType().bitsGT(VT) && 3978 "Invalid truncate node, src < dst!"); 3979 if (OpOpcode == ISD::TRUNCATE) 3980 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3981 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3982 OpOpcode == ISD::ANY_EXTEND) { 3983 // If the source is smaller than the dest, we still need an extend. 3984 if (Operand.getOperand(0).getValueType().getScalarType() 3985 .bitsLT(VT.getScalarType())) 3986 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3987 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 3988 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3989 return Operand.getOperand(0); 3990 } 3991 if (OpOpcode == ISD::UNDEF) 3992 return getUNDEF(VT); 3993 break; 3994 case ISD::ABS: 3995 assert(VT.isInteger() && VT == Operand.getValueType() && 3996 "Invalid ABS!"); 3997 if (OpOpcode == ISD::UNDEF) 3998 return getUNDEF(VT); 3999 break; 4000 case ISD::BSWAP: 4001 assert(VT.isInteger() && VT == Operand.getValueType() && 4002 "Invalid BSWAP!"); 4003 assert((VT.getScalarSizeInBits() % 16 == 0) && 4004 "BSWAP types must be a multiple of 16 bits!"); 4005 if (OpOpcode == ISD::UNDEF) 4006 return getUNDEF(VT); 4007 break; 4008 case ISD::BITREVERSE: 4009 assert(VT.isInteger() && VT == Operand.getValueType() && 4010 "Invalid BITREVERSE!"); 4011 if (OpOpcode == ISD::UNDEF) 4012 return getUNDEF(VT); 4013 break; 4014 case ISD::BITCAST: 4015 // Basic sanity checking. 4016 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4017 "Cannot BITCAST between types of different sizes!"); 4018 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4019 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4020 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4021 if (OpOpcode == ISD::UNDEF) 4022 return getUNDEF(VT); 4023 break; 4024 case ISD::SCALAR_TO_VECTOR: 4025 assert(VT.isVector() && !Operand.getValueType().isVector() && 4026 (VT.getVectorElementType() == Operand.getValueType() || 4027 (VT.getVectorElementType().isInteger() && 4028 Operand.getValueType().isInteger() && 4029 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4030 "Illegal SCALAR_TO_VECTOR node!"); 4031 if (OpOpcode == ISD::UNDEF) 4032 return getUNDEF(VT); 4033 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4034 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4035 isa<ConstantSDNode>(Operand.getOperand(1)) && 4036 Operand.getConstantOperandVal(1) == 0 && 4037 Operand.getOperand(0).getValueType() == VT) 4038 return Operand.getOperand(0); 4039 break; 4040 case ISD::FNEG: 4041 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4042 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 4043 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 4044 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4045 Operand.getOperand(0), Operand.getNode()->getFlags()); 4046 if (OpOpcode == ISD::FNEG) // --X -> X 4047 return Operand.getOperand(0); 4048 break; 4049 case ISD::FABS: 4050 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4051 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4052 break; 4053 } 4054 4055 SDNode *N; 4056 SDVTList VTs = getVTList(VT); 4057 SDValue Ops[] = {Operand}; 4058 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4059 FoldingSetNodeID ID; 4060 AddNodeIDNode(ID, Opcode, VTs, Ops); 4061 void *IP = nullptr; 4062 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4063 E->intersectFlagsWith(Flags); 4064 return SDValue(E, 0); 4065 } 4066 4067 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4068 N->setFlags(Flags); 4069 createOperands(N, Ops); 4070 CSEMap.InsertNode(N, IP); 4071 } else { 4072 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4073 createOperands(N, Ops); 4074 } 4075 4076 InsertNode(N); 4077 SDValue V = SDValue(N, 0); 4078 NewSDValueDbgMsg(V, "Creating new node: ", this); 4079 return V; 4080 } 4081 4082 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4083 const APInt &C2) { 4084 switch (Opcode) { 4085 case ISD::ADD: return std::make_pair(C1 + C2, true); 4086 case ISD::SUB: return std::make_pair(C1 - C2, true); 4087 case ISD::MUL: return std::make_pair(C1 * C2, true); 4088 case ISD::AND: return std::make_pair(C1 & C2, true); 4089 case ISD::OR: return std::make_pair(C1 | C2, true); 4090 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4091 case ISD::SHL: return std::make_pair(C1 << C2, true); 4092 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4093 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4094 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4095 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4096 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4097 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4098 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4099 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4100 case ISD::UDIV: 4101 if (!C2.getBoolValue()) 4102 break; 4103 return std::make_pair(C1.udiv(C2), true); 4104 case ISD::UREM: 4105 if (!C2.getBoolValue()) 4106 break; 4107 return std::make_pair(C1.urem(C2), true); 4108 case ISD::SDIV: 4109 if (!C2.getBoolValue()) 4110 break; 4111 return std::make_pair(C1.sdiv(C2), true); 4112 case ISD::SREM: 4113 if (!C2.getBoolValue()) 4114 break; 4115 return std::make_pair(C1.srem(C2), true); 4116 } 4117 return std::make_pair(APInt(1, 0), false); 4118 } 4119 4120 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4121 EVT VT, const ConstantSDNode *Cst1, 4122 const ConstantSDNode *Cst2) { 4123 if (Cst1->isOpaque() || Cst2->isOpaque()) 4124 return SDValue(); 4125 4126 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 4127 Cst2->getAPIntValue()); 4128 if (!Folded.second) 4129 return SDValue(); 4130 return getConstant(Folded.first, DL, VT); 4131 } 4132 4133 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4134 const GlobalAddressSDNode *GA, 4135 const SDNode *N2) { 4136 if (GA->getOpcode() != ISD::GlobalAddress) 4137 return SDValue(); 4138 if (!TLI->isOffsetFoldingLegal(GA)) 4139 return SDValue(); 4140 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 4141 if (!Cst2) 4142 return SDValue(); 4143 int64_t Offset = Cst2->getSExtValue(); 4144 switch (Opcode) { 4145 case ISD::ADD: break; 4146 case ISD::SUB: Offset = -uint64_t(Offset); break; 4147 default: return SDValue(); 4148 } 4149 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 4150 GA->getOffset() + uint64_t(Offset)); 4151 } 4152 4153 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4154 switch (Opcode) { 4155 case ISD::SDIV: 4156 case ISD::UDIV: 4157 case ISD::SREM: 4158 case ISD::UREM: { 4159 // If a divisor is zero/undef or any element of a divisor vector is 4160 // zero/undef, the whole op is undef. 4161 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4162 SDValue Divisor = Ops[1]; 4163 if (Divisor.isUndef() || isNullConstant(Divisor)) 4164 return true; 4165 4166 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4167 llvm::any_of(Divisor->op_values(), 4168 [](SDValue V) { return V.isUndef() || 4169 isNullConstant(V); }); 4170 // TODO: Handle signed overflow. 4171 } 4172 // TODO: Handle oversized shifts. 4173 default: 4174 return false; 4175 } 4176 } 4177 4178 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4179 EVT VT, SDNode *Cst1, 4180 SDNode *Cst2) { 4181 // If the opcode is a target-specific ISD node, there's nothing we can 4182 // do here and the operand rules may not line up with the below, so 4183 // bail early. 4184 if (Opcode >= ISD::BUILTIN_OP_END) 4185 return SDValue(); 4186 4187 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 4188 return getUNDEF(VT); 4189 4190 // Handle the case of two scalars. 4191 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 4192 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 4193 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 4194 assert((!Folded || !VT.isVector()) && 4195 "Can't fold vectors ops with scalar operands"); 4196 return Folded; 4197 } 4198 } 4199 4200 // fold (add Sym, c) -> Sym+c 4201 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 4202 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 4203 if (TLI->isCommutativeBinOp(Opcode)) 4204 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 4205 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 4206 4207 // For vectors extract each constant element into Inputs so we can constant 4208 // fold them individually. 4209 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 4210 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 4211 if (!BV1 || !BV2) 4212 return SDValue(); 4213 4214 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 4215 4216 EVT SVT = VT.getScalarType(); 4217 EVT LegalSVT = SVT; 4218 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4219 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4220 if (LegalSVT.bitsLT(SVT)) 4221 return SDValue(); 4222 } 4223 SmallVector<SDValue, 4> Outputs; 4224 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 4225 SDValue V1 = BV1->getOperand(I); 4226 SDValue V2 = BV2->getOperand(I); 4227 4228 if (SVT.isInteger()) { 4229 if (V1->getValueType(0).bitsGT(SVT)) 4230 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4231 if (V2->getValueType(0).bitsGT(SVT)) 4232 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4233 } 4234 4235 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4236 return SDValue(); 4237 4238 // Fold one vector element. 4239 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4240 if (LegalSVT != SVT) 4241 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4242 4243 // Scalar folding only succeeded if the result is a constant or UNDEF. 4244 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4245 ScalarResult.getOpcode() != ISD::ConstantFP) 4246 return SDValue(); 4247 Outputs.push_back(ScalarResult); 4248 } 4249 4250 assert(VT.getVectorNumElements() == Outputs.size() && 4251 "Vector size mismatch!"); 4252 4253 // We may have a vector type but a scalar result. Create a splat. 4254 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4255 4256 // Build a big vector out of the scalar elements we generated. 4257 return getBuildVector(VT, SDLoc(), Outputs); 4258 } 4259 4260 // TODO: Merge with FoldConstantArithmetic 4261 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4262 const SDLoc &DL, EVT VT, 4263 ArrayRef<SDValue> Ops, 4264 const SDNodeFlags Flags) { 4265 // If the opcode is a target-specific ISD node, there's nothing we can 4266 // do here and the operand rules may not line up with the below, so 4267 // bail early. 4268 if (Opcode >= ISD::BUILTIN_OP_END) 4269 return SDValue(); 4270 4271 if (isUndef(Opcode, Ops)) 4272 return getUNDEF(VT); 4273 4274 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4275 if (!VT.isVector()) 4276 return SDValue(); 4277 4278 unsigned NumElts = VT.getVectorNumElements(); 4279 4280 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4281 return !Op.getValueType().isVector() || 4282 Op.getValueType().getVectorNumElements() == NumElts; 4283 }; 4284 4285 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4286 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4287 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4288 (BV && BV->isConstant()); 4289 }; 4290 4291 // All operands must be vector types with the same number of elements as 4292 // the result type and must be either UNDEF or a build vector of constant 4293 // or UNDEF scalars. 4294 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4295 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4296 return SDValue(); 4297 4298 // If we are comparing vectors, then the result needs to be a i1 boolean 4299 // that is then sign-extended back to the legal result type. 4300 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4301 4302 // Find legal integer scalar type for constant promotion and 4303 // ensure that its scalar size is at least as large as source. 4304 EVT LegalSVT = VT.getScalarType(); 4305 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4306 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4307 if (LegalSVT.bitsLT(VT.getScalarType())) 4308 return SDValue(); 4309 } 4310 4311 // Constant fold each scalar lane separately. 4312 SmallVector<SDValue, 4> ScalarResults; 4313 for (unsigned i = 0; i != NumElts; i++) { 4314 SmallVector<SDValue, 4> ScalarOps; 4315 for (SDValue Op : Ops) { 4316 EVT InSVT = Op.getValueType().getScalarType(); 4317 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4318 if (!InBV) { 4319 // We've checked that this is UNDEF or a constant of some kind. 4320 if (Op.isUndef()) 4321 ScalarOps.push_back(getUNDEF(InSVT)); 4322 else 4323 ScalarOps.push_back(Op); 4324 continue; 4325 } 4326 4327 SDValue ScalarOp = InBV->getOperand(i); 4328 EVT ScalarVT = ScalarOp.getValueType(); 4329 4330 // Build vector (integer) scalar operands may need implicit 4331 // truncation - do this before constant folding. 4332 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4333 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4334 4335 ScalarOps.push_back(ScalarOp); 4336 } 4337 4338 // Constant fold the scalar operands. 4339 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4340 4341 // Legalize the (integer) scalar constant if necessary. 4342 if (LegalSVT != SVT) 4343 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4344 4345 // Scalar folding only succeeded if the result is a constant or UNDEF. 4346 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4347 ScalarResult.getOpcode() != ISD::ConstantFP) 4348 return SDValue(); 4349 ScalarResults.push_back(ScalarResult); 4350 } 4351 4352 SDValue V = getBuildVector(VT, DL, ScalarResults); 4353 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4354 return V; 4355 } 4356 4357 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4358 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4359 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4360 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4361 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4362 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4363 4364 // Canonicalize constant to RHS if commutative. 4365 if (TLI->isCommutativeBinOp(Opcode)) { 4366 if (N1C && !N2C) { 4367 std::swap(N1C, N2C); 4368 std::swap(N1, N2); 4369 } else if (N1CFP && !N2CFP) { 4370 std::swap(N1CFP, N2CFP); 4371 std::swap(N1, N2); 4372 } 4373 } 4374 4375 switch (Opcode) { 4376 default: break; 4377 case ISD::TokenFactor: 4378 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4379 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4380 // Fold trivial token factors. 4381 if (N1.getOpcode() == ISD::EntryToken) return N2; 4382 if (N2.getOpcode() == ISD::EntryToken) return N1; 4383 if (N1 == N2) return N1; 4384 break; 4385 case ISD::CONCAT_VECTORS: { 4386 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4387 SDValue Ops[] = {N1, N2}; 4388 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4389 return V; 4390 break; 4391 } 4392 case ISD::AND: 4393 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4394 assert(N1.getValueType() == N2.getValueType() && 4395 N1.getValueType() == VT && "Binary operator types must match!"); 4396 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4397 // worth handling here. 4398 if (N2C && N2C->isNullValue()) 4399 return N2; 4400 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4401 return N1; 4402 break; 4403 case ISD::OR: 4404 case ISD::XOR: 4405 case ISD::ADD: 4406 case ISD::SUB: 4407 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4408 assert(N1.getValueType() == N2.getValueType() && 4409 N1.getValueType() == VT && "Binary operator types must match!"); 4410 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4411 // it's worth handling here. 4412 if (N2C && N2C->isNullValue()) 4413 return N1; 4414 break; 4415 case ISD::UDIV: 4416 case ISD::UREM: 4417 case ISD::MULHU: 4418 case ISD::MULHS: 4419 case ISD::MUL: 4420 case ISD::SDIV: 4421 case ISD::SREM: 4422 case ISD::SMIN: 4423 case ISD::SMAX: 4424 case ISD::UMIN: 4425 case ISD::UMAX: 4426 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4427 assert(N1.getValueType() == N2.getValueType() && 4428 N1.getValueType() == VT && "Binary operator types must match!"); 4429 break; 4430 case ISD::FADD: 4431 case ISD::FSUB: 4432 case ISD::FMUL: 4433 case ISD::FDIV: 4434 case ISD::FREM: 4435 if (getTarget().Options.UnsafeFPMath) { 4436 if (Opcode == ISD::FADD) { 4437 // x+0 --> x 4438 if (N2CFP && N2CFP->getValueAPF().isZero()) 4439 return N1; 4440 } else if (Opcode == ISD::FSUB) { 4441 // x-0 --> x 4442 if (N2CFP && N2CFP->getValueAPF().isZero()) 4443 return N1; 4444 } else if (Opcode == ISD::FMUL) { 4445 // x*0 --> 0 4446 if (N2CFP && N2CFP->isZero()) 4447 return N2; 4448 // x*1 --> x 4449 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4450 return N1; 4451 } 4452 } 4453 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4454 assert(N1.getValueType() == N2.getValueType() && 4455 N1.getValueType() == VT && "Binary operator types must match!"); 4456 break; 4457 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4458 assert(N1.getValueType() == VT && 4459 N1.getValueType().isFloatingPoint() && 4460 N2.getValueType().isFloatingPoint() && 4461 "Invalid FCOPYSIGN!"); 4462 break; 4463 case ISD::SHL: 4464 case ISD::SRA: 4465 case ISD::SRL: 4466 case ISD::ROTL: 4467 case ISD::ROTR: 4468 assert(VT == N1.getValueType() && 4469 "Shift operators return type must be the same as their first arg"); 4470 assert(VT.isInteger() && N2.getValueType().isInteger() && 4471 "Shifts only work on integers"); 4472 assert((!VT.isVector() || VT == N2.getValueType()) && 4473 "Vector shift amounts must be in the same as their first arg"); 4474 // Verify that the shift amount VT is bit enough to hold valid shift 4475 // amounts. This catches things like trying to shift an i1024 value by an 4476 // i8, which is easy to fall into in generic code that uses 4477 // TLI.getShiftAmount(). 4478 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4479 "Invalid use of small shift amount with oversized value!"); 4480 4481 // Always fold shifts of i1 values so the code generator doesn't need to 4482 // handle them. Since we know the size of the shift has to be less than the 4483 // size of the value, the shift/rotate count is guaranteed to be zero. 4484 if (VT == MVT::i1) 4485 return N1; 4486 if (N2C && N2C->isNullValue()) 4487 return N1; 4488 break; 4489 case ISD::FP_ROUND_INREG: { 4490 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4491 assert(VT == N1.getValueType() && "Not an inreg round!"); 4492 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4493 "Cannot FP_ROUND_INREG integer types"); 4494 assert(EVT.isVector() == VT.isVector() && 4495 "FP_ROUND_INREG type should be vector iff the operand " 4496 "type is vector!"); 4497 assert((!EVT.isVector() || 4498 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4499 "Vector element counts must match in FP_ROUND_INREG"); 4500 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4501 (void)EVT; 4502 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4503 break; 4504 } 4505 case ISD::FP_ROUND: 4506 assert(VT.isFloatingPoint() && 4507 N1.getValueType().isFloatingPoint() && 4508 VT.bitsLE(N1.getValueType()) && 4509 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4510 "Invalid FP_ROUND!"); 4511 if (N1.getValueType() == VT) return N1; // noop conversion. 4512 break; 4513 case ISD::AssertSext: 4514 case ISD::AssertZext: { 4515 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4516 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4517 assert(VT.isInteger() && EVT.isInteger() && 4518 "Cannot *_EXTEND_INREG FP types"); 4519 assert(!EVT.isVector() && 4520 "AssertSExt/AssertZExt type should be the vector element type " 4521 "rather than the vector type!"); 4522 assert(EVT.bitsLE(VT) && "Not extending!"); 4523 if (VT == EVT) return N1; // noop assertion. 4524 break; 4525 } 4526 case ISD::SIGN_EXTEND_INREG: { 4527 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4528 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4529 assert(VT.isInteger() && EVT.isInteger() && 4530 "Cannot *_EXTEND_INREG FP types"); 4531 assert(EVT.isVector() == VT.isVector() && 4532 "SIGN_EXTEND_INREG type should be vector iff the operand " 4533 "type is vector!"); 4534 assert((!EVT.isVector() || 4535 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4536 "Vector element counts must match in SIGN_EXTEND_INREG"); 4537 assert(EVT.bitsLE(VT) && "Not extending!"); 4538 if (EVT == VT) return N1; // Not actually extending 4539 4540 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4541 unsigned FromBits = EVT.getScalarSizeInBits(); 4542 Val <<= Val.getBitWidth() - FromBits; 4543 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4544 return getConstant(Val, DL, ConstantVT); 4545 }; 4546 4547 if (N1C) { 4548 const APInt &Val = N1C->getAPIntValue(); 4549 return SignExtendInReg(Val, VT); 4550 } 4551 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4552 SmallVector<SDValue, 8> Ops; 4553 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4554 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4555 SDValue Op = N1.getOperand(i); 4556 if (Op.isUndef()) { 4557 Ops.push_back(getUNDEF(OpVT)); 4558 continue; 4559 } 4560 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4561 APInt Val = C->getAPIntValue(); 4562 Ops.push_back(SignExtendInReg(Val, OpVT)); 4563 } 4564 return getBuildVector(VT, DL, Ops); 4565 } 4566 break; 4567 } 4568 case ISD::EXTRACT_VECTOR_ELT: 4569 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 4570 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 4571 element type of the vector."); 4572 4573 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4574 if (N1.isUndef()) 4575 return getUNDEF(VT); 4576 4577 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4578 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 4579 return getUNDEF(VT); 4580 4581 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4582 // expanding copies of large vectors from registers. 4583 if (N2C && 4584 N1.getOpcode() == ISD::CONCAT_VECTORS && 4585 N1.getNumOperands() > 0) { 4586 unsigned Factor = 4587 N1.getOperand(0).getValueType().getVectorNumElements(); 4588 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4589 N1.getOperand(N2C->getZExtValue() / Factor), 4590 getConstant(N2C->getZExtValue() % Factor, DL, 4591 N2.getValueType())); 4592 } 4593 4594 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4595 // expanding large vector constants. 4596 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4597 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4598 4599 if (VT != Elt.getValueType()) 4600 // If the vector element type is not legal, the BUILD_VECTOR operands 4601 // are promoted and implicitly truncated, and the result implicitly 4602 // extended. Make that explicit here. 4603 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4604 4605 return Elt; 4606 } 4607 4608 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4609 // operations are lowered to scalars. 4610 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4611 // If the indices are the same, return the inserted element else 4612 // if the indices are known different, extract the element from 4613 // the original vector. 4614 SDValue N1Op2 = N1.getOperand(2); 4615 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4616 4617 if (N1Op2C && N2C) { 4618 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4619 if (VT == N1.getOperand(1).getValueType()) 4620 return N1.getOperand(1); 4621 else 4622 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4623 } 4624 4625 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4626 } 4627 } 4628 4629 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4630 // when vector types are scalarized and v1iX is legal. 4631 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4632 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4633 N1.getValueType().getVectorNumElements() == 1) { 4634 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4635 N1.getOperand(1)); 4636 } 4637 break; 4638 case ISD::EXTRACT_ELEMENT: 4639 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4640 assert(!N1.getValueType().isVector() && !VT.isVector() && 4641 (N1.getValueType().isInteger() == VT.isInteger()) && 4642 N1.getValueType() != VT && 4643 "Wrong types for EXTRACT_ELEMENT!"); 4644 4645 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4646 // 64-bit integers into 32-bit parts. Instead of building the extract of 4647 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4648 if (N1.getOpcode() == ISD::BUILD_PAIR) 4649 return N1.getOperand(N2C->getZExtValue()); 4650 4651 // EXTRACT_ELEMENT of a constant int is also very common. 4652 if (N1C) { 4653 unsigned ElementSize = VT.getSizeInBits(); 4654 unsigned Shift = ElementSize * N2C->getZExtValue(); 4655 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4656 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4657 } 4658 break; 4659 case ISD::EXTRACT_SUBVECTOR: 4660 if (VT.isSimple() && N1.getValueType().isSimple()) { 4661 assert(VT.isVector() && N1.getValueType().isVector() && 4662 "Extract subvector VTs must be a vectors!"); 4663 assert(VT.getVectorElementType() == 4664 N1.getValueType().getVectorElementType() && 4665 "Extract subvector VTs must have the same element type!"); 4666 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4667 "Extract subvector must be from larger vector to smaller vector!"); 4668 4669 if (N2C) { 4670 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4671 <= N1.getValueType().getVectorNumElements()) 4672 && "Extract subvector overflow!"); 4673 } 4674 4675 // Trivial extraction. 4676 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4677 return N1; 4678 4679 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4680 if (N1.isUndef()) 4681 return getUNDEF(VT); 4682 4683 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4684 // the concat have the same type as the extract. 4685 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4686 N1.getNumOperands() > 0 && 4687 VT == N1.getOperand(0).getValueType()) { 4688 unsigned Factor = VT.getVectorNumElements(); 4689 return N1.getOperand(N2C->getZExtValue() / Factor); 4690 } 4691 4692 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4693 // during shuffle legalization. 4694 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4695 VT == N1.getOperand(1).getValueType()) 4696 return N1.getOperand(1); 4697 } 4698 break; 4699 } 4700 4701 // Perform trivial constant folding. 4702 if (SDValue SV = 4703 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4704 return SV; 4705 4706 // Constant fold FP operations. 4707 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4708 if (N1CFP) { 4709 if (N2CFP) { 4710 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4711 APFloat::opStatus s; 4712 switch (Opcode) { 4713 case ISD::FADD: 4714 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4715 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4716 return getConstantFP(V1, DL, VT); 4717 break; 4718 case ISD::FSUB: 4719 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4720 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4721 return getConstantFP(V1, DL, VT); 4722 break; 4723 case ISD::FMUL: 4724 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4725 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4726 return getConstantFP(V1, DL, VT); 4727 break; 4728 case ISD::FDIV: 4729 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4730 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4731 s!=APFloat::opDivByZero)) { 4732 return getConstantFP(V1, DL, VT); 4733 } 4734 break; 4735 case ISD::FREM : 4736 s = V1.mod(V2); 4737 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4738 s!=APFloat::opDivByZero)) { 4739 return getConstantFP(V1, DL, VT); 4740 } 4741 break; 4742 case ISD::FCOPYSIGN: 4743 V1.copySign(V2); 4744 return getConstantFP(V1, DL, VT); 4745 default: break; 4746 } 4747 } 4748 4749 if (Opcode == ISD::FP_ROUND) { 4750 APFloat V = N1CFP->getValueAPF(); // make copy 4751 bool ignored; 4752 // This can return overflow, underflow, or inexact; we don't care. 4753 // FIXME need to be more flexible about rounding mode. 4754 (void)V.convert(EVTToAPFloatSemantics(VT), 4755 APFloat::rmNearestTiesToEven, &ignored); 4756 return getConstantFP(V, DL, VT); 4757 } 4758 } 4759 4760 // Canonicalize an UNDEF to the RHS, even over a constant. 4761 if (N1.isUndef()) { 4762 if (TLI->isCommutativeBinOp(Opcode)) { 4763 std::swap(N1, N2); 4764 } else { 4765 switch (Opcode) { 4766 case ISD::FP_ROUND_INREG: 4767 case ISD::SIGN_EXTEND_INREG: 4768 case ISD::SUB: 4769 case ISD::FSUB: 4770 case ISD::FDIV: 4771 case ISD::FREM: 4772 return getUNDEF(VT); // fold op(undef, arg2) -> undef 4773 case ISD::UDIV: 4774 case ISD::SDIV: 4775 case ISD::UREM: 4776 case ISD::SREM: 4777 case ISD::SRA: 4778 case ISD::SRL: 4779 case ISD::SHL: 4780 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4781 } 4782 } 4783 } 4784 4785 // Fold a bunch of operators when the RHS is undef. 4786 if (N2.isUndef()) { 4787 switch (Opcode) { 4788 case ISD::XOR: 4789 if (N1.isUndef()) 4790 // Handle undef ^ undef -> 0 special case. This is a common 4791 // idiom (misuse). 4792 return getConstant(0, DL, VT); 4793 LLVM_FALLTHROUGH; 4794 case ISD::ADD: 4795 case ISD::ADDC: 4796 case ISD::ADDE: 4797 case ISD::SUB: 4798 case ISD::UDIV: 4799 case ISD::SDIV: 4800 case ISD::UREM: 4801 case ISD::SREM: 4802 case ISD::SRA: 4803 case ISD::SRL: 4804 case ISD::SHL: 4805 return getUNDEF(VT); // fold op(arg1, undef) -> undef 4806 case ISD::FADD: 4807 case ISD::FSUB: 4808 case ISD::FMUL: 4809 case ISD::FDIV: 4810 case ISD::FREM: 4811 if (getTarget().Options.UnsafeFPMath) 4812 return N2; 4813 break; 4814 case ISD::MUL: 4815 case ISD::AND: 4816 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4817 case ISD::OR: 4818 return getAllOnesConstant(DL, VT); 4819 } 4820 } 4821 4822 // Memoize this node if possible. 4823 SDNode *N; 4824 SDVTList VTs = getVTList(VT); 4825 SDValue Ops[] = {N1, N2}; 4826 if (VT != MVT::Glue) { 4827 FoldingSetNodeID ID; 4828 AddNodeIDNode(ID, Opcode, VTs, Ops); 4829 void *IP = nullptr; 4830 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4831 E->intersectFlagsWith(Flags); 4832 return SDValue(E, 0); 4833 } 4834 4835 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4836 N->setFlags(Flags); 4837 createOperands(N, Ops); 4838 CSEMap.InsertNode(N, IP); 4839 } else { 4840 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4841 createOperands(N, Ops); 4842 } 4843 4844 InsertNode(N); 4845 SDValue V = SDValue(N, 0); 4846 NewSDValueDbgMsg(V, "Creating new node: ", this); 4847 return V; 4848 } 4849 4850 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4851 SDValue N1, SDValue N2, SDValue N3) { 4852 // Perform various simplifications. 4853 switch (Opcode) { 4854 case ISD::FMA: { 4855 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4856 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4857 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4858 if (N1CFP && N2CFP && N3CFP) { 4859 APFloat V1 = N1CFP->getValueAPF(); 4860 const APFloat &V2 = N2CFP->getValueAPF(); 4861 const APFloat &V3 = N3CFP->getValueAPF(); 4862 APFloat::opStatus s = 4863 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4864 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4865 return getConstantFP(V1, DL, VT); 4866 } 4867 break; 4868 } 4869 case ISD::CONCAT_VECTORS: { 4870 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4871 SDValue Ops[] = {N1, N2, N3}; 4872 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4873 return V; 4874 break; 4875 } 4876 case ISD::SETCC: { 4877 // Use FoldSetCC to simplify SETCC's. 4878 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4879 return V; 4880 // Vector constant folding. 4881 SDValue Ops[] = {N1, N2, N3}; 4882 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 4883 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 4884 return V; 4885 } 4886 break; 4887 } 4888 case ISD::SELECT: 4889 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4890 if (N1C->getZExtValue()) 4891 return N2; // select true, X, Y -> X 4892 return N3; // select false, X, Y -> Y 4893 } 4894 4895 if (N2 == N3) return N2; // select C, X, X -> X 4896 break; 4897 case ISD::VECTOR_SHUFFLE: 4898 llvm_unreachable("should use getVectorShuffle constructor!"); 4899 case ISD::INSERT_VECTOR_ELT: { 4900 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4901 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4902 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4903 return getUNDEF(VT); 4904 break; 4905 } 4906 case ISD::INSERT_SUBVECTOR: { 4907 SDValue Index = N3; 4908 if (VT.isSimple() && N1.getValueType().isSimple() 4909 && N2.getValueType().isSimple()) { 4910 assert(VT.isVector() && N1.getValueType().isVector() && 4911 N2.getValueType().isVector() && 4912 "Insert subvector VTs must be a vectors"); 4913 assert(VT == N1.getValueType() && 4914 "Dest and insert subvector source types must match!"); 4915 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4916 "Insert subvector must be from smaller vector to larger vector!"); 4917 if (isa<ConstantSDNode>(Index)) { 4918 assert((N2.getValueType().getVectorNumElements() + 4919 cast<ConstantSDNode>(Index)->getZExtValue() 4920 <= VT.getVectorNumElements()) 4921 && "Insert subvector overflow!"); 4922 } 4923 4924 // Trivial insertion. 4925 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4926 return N2; 4927 } 4928 break; 4929 } 4930 case ISD::BITCAST: 4931 // Fold bit_convert nodes from a type to themselves. 4932 if (N1.getValueType() == VT) 4933 return N1; 4934 break; 4935 } 4936 4937 // Memoize node if it doesn't produce a flag. 4938 SDNode *N; 4939 SDVTList VTs = getVTList(VT); 4940 SDValue Ops[] = {N1, N2, N3}; 4941 if (VT != MVT::Glue) { 4942 FoldingSetNodeID ID; 4943 AddNodeIDNode(ID, Opcode, VTs, Ops); 4944 void *IP = nullptr; 4945 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4946 return SDValue(E, 0); 4947 4948 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4949 createOperands(N, Ops); 4950 CSEMap.InsertNode(N, IP); 4951 } else { 4952 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4953 createOperands(N, Ops); 4954 } 4955 4956 InsertNode(N); 4957 SDValue V = SDValue(N, 0); 4958 NewSDValueDbgMsg(V, "Creating new node: ", this); 4959 return V; 4960 } 4961 4962 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4963 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4964 SDValue Ops[] = { N1, N2, N3, N4 }; 4965 return getNode(Opcode, DL, VT, Ops); 4966 } 4967 4968 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4969 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4970 SDValue N5) { 4971 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4972 return getNode(Opcode, DL, VT, Ops); 4973 } 4974 4975 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4976 /// the incoming stack arguments to be loaded from the stack. 4977 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4978 SmallVector<SDValue, 8> ArgChains; 4979 4980 // Include the original chain at the beginning of the list. When this is 4981 // used by target LowerCall hooks, this helps legalize find the 4982 // CALLSEQ_BEGIN node. 4983 ArgChains.push_back(Chain); 4984 4985 // Add a chain value for each stack argument. 4986 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4987 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4988 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4989 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4990 if (FI->getIndex() < 0) 4991 ArgChains.push_back(SDValue(L, 1)); 4992 4993 // Build a tokenfactor for all the chains. 4994 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4995 } 4996 4997 /// getMemsetValue - Vectorized representation of the memset value 4998 /// operand. 4999 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5000 const SDLoc &dl) { 5001 assert(!Value.isUndef()); 5002 5003 unsigned NumBits = VT.getScalarSizeInBits(); 5004 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5005 assert(C->getAPIntValue().getBitWidth() == 8); 5006 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5007 if (VT.isInteger()) 5008 return DAG.getConstant(Val, dl, VT); 5009 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5010 VT); 5011 } 5012 5013 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5014 EVT IntVT = VT.getScalarType(); 5015 if (!IntVT.isInteger()) 5016 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5017 5018 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5019 if (NumBits > 8) { 5020 // Use a multiplication with 0x010101... to extend the input to the 5021 // required length. 5022 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5023 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5024 DAG.getConstant(Magic, dl, IntVT)); 5025 } 5026 5027 if (VT != Value.getValueType() && !VT.isInteger()) 5028 Value = DAG.getBitcast(VT.getScalarType(), Value); 5029 if (VT != Value.getValueType()) 5030 Value = DAG.getSplatBuildVector(VT, dl, Value); 5031 5032 return Value; 5033 } 5034 5035 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5036 /// used when a memcpy is turned into a memset when the source is a constant 5037 /// string ptr. 5038 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5039 const TargetLowering &TLI, 5040 const ConstantDataArraySlice &Slice) { 5041 // Handle vector with all elements zero. 5042 if (Slice.Array == nullptr) { 5043 if (VT.isInteger()) 5044 return DAG.getConstant(0, dl, VT); 5045 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5046 return DAG.getConstantFP(0.0, dl, VT); 5047 else if (VT.isVector()) { 5048 unsigned NumElts = VT.getVectorNumElements(); 5049 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5050 return DAG.getNode(ISD::BITCAST, dl, VT, 5051 DAG.getConstant(0, dl, 5052 EVT::getVectorVT(*DAG.getContext(), 5053 EltVT, NumElts))); 5054 } else 5055 llvm_unreachable("Expected type!"); 5056 } 5057 5058 assert(!VT.isVector() && "Can't handle vector type here!"); 5059 unsigned NumVTBits = VT.getSizeInBits(); 5060 unsigned NumVTBytes = NumVTBits / 8; 5061 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5062 5063 APInt Val(NumVTBits, 0); 5064 if (DAG.getDataLayout().isLittleEndian()) { 5065 for (unsigned i = 0; i != NumBytes; ++i) 5066 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5067 } else { 5068 for (unsigned i = 0; i != NumBytes; ++i) 5069 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5070 } 5071 5072 // If the "cost" of materializing the integer immediate is less than the cost 5073 // of a load, then it is cost effective to turn the load into the immediate. 5074 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5075 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5076 return DAG.getConstant(Val, dl, VT); 5077 return SDValue(nullptr, 0); 5078 } 5079 5080 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5081 const SDLoc &DL) { 5082 EVT VT = Base.getValueType(); 5083 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5084 } 5085 5086 /// Returns true if memcpy source is constant data. 5087 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5088 uint64_t SrcDelta = 0; 5089 GlobalAddressSDNode *G = nullptr; 5090 if (Src.getOpcode() == ISD::GlobalAddress) 5091 G = cast<GlobalAddressSDNode>(Src); 5092 else if (Src.getOpcode() == ISD::ADD && 5093 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5094 Src.getOperand(1).getOpcode() == ISD::Constant) { 5095 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5096 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5097 } 5098 if (!G) 5099 return false; 5100 5101 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5102 SrcDelta + G->getOffset()); 5103 } 5104 5105 /// Determines the optimal series of memory ops to replace the memset / memcpy. 5106 /// Return true if the number of memory ops is below the threshold (Limit). 5107 /// It returns the types of the sequence of memory ops to perform 5108 /// memset / memcpy by reference. 5109 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 5110 unsigned Limit, uint64_t Size, 5111 unsigned DstAlign, unsigned SrcAlign, 5112 bool IsMemset, 5113 bool ZeroMemset, 5114 bool MemcpyStrSrc, 5115 bool AllowOverlap, 5116 unsigned DstAS, unsigned SrcAS, 5117 SelectionDAG &DAG, 5118 const TargetLowering &TLI) { 5119 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 5120 "Expecting memcpy / memset source to meet alignment requirement!"); 5121 // If 'SrcAlign' is zero, that means the memory operation does not need to 5122 // load the value, i.e. memset or memcpy from constant string. Otherwise, 5123 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 5124 // is the specified alignment of the memory operation. If it is zero, that 5125 // means it's possible to change the alignment of the destination. 5126 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 5127 // not need to be loaded. 5128 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 5129 IsMemset, ZeroMemset, MemcpyStrSrc, 5130 DAG.getMachineFunction()); 5131 5132 if (VT == MVT::Other) { 5133 // Use the largest integer type whose alignment constraints are satisfied. 5134 // We only need to check DstAlign here as SrcAlign is always greater or 5135 // equal to DstAlign (or zero). 5136 VT = MVT::i64; 5137 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5138 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5139 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5140 assert(VT.isInteger()); 5141 5142 // Find the largest legal integer type. 5143 MVT LVT = MVT::i64; 5144 while (!TLI.isTypeLegal(LVT)) 5145 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5146 assert(LVT.isInteger()); 5147 5148 // If the type we've chosen is larger than the largest legal integer type 5149 // then use that instead. 5150 if (VT.bitsGT(LVT)) 5151 VT = LVT; 5152 } 5153 5154 unsigned NumMemOps = 0; 5155 while (Size != 0) { 5156 unsigned VTSize = VT.getSizeInBits() / 8; 5157 while (VTSize > Size) { 5158 // For now, only use non-vector load / store's for the left-over pieces. 5159 EVT NewVT = VT; 5160 unsigned NewVTSize; 5161 5162 bool Found = false; 5163 if (VT.isVector() || VT.isFloatingPoint()) { 5164 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5165 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5166 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5167 Found = true; 5168 else if (NewVT == MVT::i64 && 5169 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5170 TLI.isSafeMemOpType(MVT::f64)) { 5171 // i64 is usually not legal on 32-bit targets, but f64 may be. 5172 NewVT = MVT::f64; 5173 Found = true; 5174 } 5175 } 5176 5177 if (!Found) { 5178 do { 5179 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5180 if (NewVT == MVT::i8) 5181 break; 5182 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5183 } 5184 NewVTSize = NewVT.getSizeInBits() / 8; 5185 5186 // If the new VT cannot cover all of the remaining bits, then consider 5187 // issuing a (or a pair of) unaligned and overlapping load / store. 5188 // FIXME: Only does this for 64-bit or more since we don't have proper 5189 // cost model for unaligned load / store. 5190 bool Fast; 5191 if (NumMemOps && AllowOverlap && 5192 VTSize >= 8 && NewVTSize < Size && 5193 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 5194 VTSize = Size; 5195 else { 5196 VT = NewVT; 5197 VTSize = NewVTSize; 5198 } 5199 } 5200 5201 if (++NumMemOps > Limit) 5202 return false; 5203 5204 MemOps.push_back(VT); 5205 Size -= VTSize; 5206 } 5207 5208 return true; 5209 } 5210 5211 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5212 // On Darwin, -Os means optimize for size without hurting performance, so 5213 // only really optimize for size when -Oz (MinSize) is used. 5214 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5215 return MF.getFunction().optForMinSize(); 5216 return MF.getFunction().optForSize(); 5217 } 5218 5219 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5220 SDValue Chain, SDValue Dst, SDValue Src, 5221 uint64_t Size, unsigned Align, 5222 bool isVol, bool AlwaysInline, 5223 MachinePointerInfo DstPtrInfo, 5224 MachinePointerInfo SrcPtrInfo) { 5225 // Turn a memcpy of undef to nop. 5226 if (Src.isUndef()) 5227 return Chain; 5228 5229 // Expand memcpy to a series of load and store ops if the size operand falls 5230 // below a certain threshold. 5231 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5232 // rather than maybe a humongous number of loads and stores. 5233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5234 const DataLayout &DL = DAG.getDataLayout(); 5235 LLVMContext &C = *DAG.getContext(); 5236 std::vector<EVT> MemOps; 5237 bool DstAlignCanChange = false; 5238 MachineFunction &MF = DAG.getMachineFunction(); 5239 MachineFrameInfo &MFI = MF.getFrameInfo(); 5240 bool OptSize = shouldLowerMemFuncForSize(MF); 5241 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5242 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5243 DstAlignCanChange = true; 5244 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5245 if (Align > SrcAlign) 5246 SrcAlign = Align; 5247 ConstantDataArraySlice Slice; 5248 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5249 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5250 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5251 5252 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5253 (DstAlignCanChange ? 0 : Align), 5254 (isZeroConstant ? 0 : SrcAlign), 5255 false, false, CopyFromConstant, true, 5256 DstPtrInfo.getAddrSpace(), 5257 SrcPtrInfo.getAddrSpace(), 5258 DAG, TLI)) 5259 return SDValue(); 5260 5261 if (DstAlignCanChange) { 5262 Type *Ty = MemOps[0].getTypeForEVT(C); 5263 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5264 5265 // Don't promote to an alignment that would require dynamic stack 5266 // realignment. 5267 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5268 if (!TRI->needsStackRealignment(MF)) 5269 while (NewAlign > Align && 5270 DL.exceedsNaturalStackAlignment(NewAlign)) 5271 NewAlign /= 2; 5272 5273 if (NewAlign > Align) { 5274 // Give the stack frame object a larger alignment if needed. 5275 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5276 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5277 Align = NewAlign; 5278 } 5279 } 5280 5281 MachineMemOperand::Flags MMOFlags = 5282 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5283 SmallVector<SDValue, 8> OutChains; 5284 unsigned NumMemOps = MemOps.size(); 5285 uint64_t SrcOff = 0, DstOff = 0; 5286 for (unsigned i = 0; i != NumMemOps; ++i) { 5287 EVT VT = MemOps[i]; 5288 unsigned VTSize = VT.getSizeInBits() / 8; 5289 SDValue Value, Store; 5290 5291 if (VTSize > Size) { 5292 // Issuing an unaligned load / store pair that overlaps with the previous 5293 // pair. Adjust the offset accordingly. 5294 assert(i == NumMemOps-1 && i != 0); 5295 SrcOff -= VTSize - Size; 5296 DstOff -= VTSize - Size; 5297 } 5298 5299 if (CopyFromConstant && 5300 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5301 // It's unlikely a store of a vector immediate can be done in a single 5302 // instruction. It would require a load from a constantpool first. 5303 // We only handle zero vectors here. 5304 // FIXME: Handle other cases where store of vector immediate is done in 5305 // a single instruction. 5306 ConstantDataArraySlice SubSlice; 5307 if (SrcOff < Slice.Length) { 5308 SubSlice = Slice; 5309 SubSlice.move(SrcOff); 5310 } else { 5311 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5312 SubSlice.Array = nullptr; 5313 SubSlice.Offset = 0; 5314 SubSlice.Length = VTSize; 5315 } 5316 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5317 if (Value.getNode()) 5318 Store = DAG.getStore(Chain, dl, Value, 5319 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5320 DstPtrInfo.getWithOffset(DstOff), Align, 5321 MMOFlags); 5322 } 5323 5324 if (!Store.getNode()) { 5325 // The type might not be legal for the target. This should only happen 5326 // if the type is smaller than a legal type, as on PPC, so the right 5327 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5328 // to Load/Store if NVT==VT. 5329 // FIXME does the case above also need this? 5330 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5331 assert(NVT.bitsGE(VT)); 5332 5333 bool isDereferenceable = 5334 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5335 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5336 if (isDereferenceable) 5337 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5338 5339 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5340 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5341 SrcPtrInfo.getWithOffset(SrcOff), VT, 5342 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5343 OutChains.push_back(Value.getValue(1)); 5344 Store = DAG.getTruncStore( 5345 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5346 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5347 } 5348 OutChains.push_back(Store); 5349 SrcOff += VTSize; 5350 DstOff += VTSize; 5351 Size -= VTSize; 5352 } 5353 5354 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5355 } 5356 5357 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5358 SDValue Chain, SDValue Dst, SDValue Src, 5359 uint64_t Size, unsigned Align, 5360 bool isVol, bool AlwaysInline, 5361 MachinePointerInfo DstPtrInfo, 5362 MachinePointerInfo SrcPtrInfo) { 5363 // Turn a memmove of undef to nop. 5364 if (Src.isUndef()) 5365 return Chain; 5366 5367 // Expand memmove to a series of load and store ops if the size operand falls 5368 // below a certain threshold. 5369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5370 const DataLayout &DL = DAG.getDataLayout(); 5371 LLVMContext &C = *DAG.getContext(); 5372 std::vector<EVT> MemOps; 5373 bool DstAlignCanChange = false; 5374 MachineFunction &MF = DAG.getMachineFunction(); 5375 MachineFrameInfo &MFI = MF.getFrameInfo(); 5376 bool OptSize = shouldLowerMemFuncForSize(MF); 5377 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5378 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5379 DstAlignCanChange = true; 5380 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5381 if (Align > SrcAlign) 5382 SrcAlign = Align; 5383 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5384 5385 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5386 (DstAlignCanChange ? 0 : Align), SrcAlign, 5387 false, false, false, false, 5388 DstPtrInfo.getAddrSpace(), 5389 SrcPtrInfo.getAddrSpace(), 5390 DAG, TLI)) 5391 return SDValue(); 5392 5393 if (DstAlignCanChange) { 5394 Type *Ty = MemOps[0].getTypeForEVT(C); 5395 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5396 if (NewAlign > Align) { 5397 // Give the stack frame object a larger alignment if needed. 5398 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5399 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5400 Align = NewAlign; 5401 } 5402 } 5403 5404 MachineMemOperand::Flags MMOFlags = 5405 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5406 uint64_t SrcOff = 0, DstOff = 0; 5407 SmallVector<SDValue, 8> LoadValues; 5408 SmallVector<SDValue, 8> LoadChains; 5409 SmallVector<SDValue, 8> OutChains; 5410 unsigned NumMemOps = MemOps.size(); 5411 for (unsigned i = 0; i < NumMemOps; i++) { 5412 EVT VT = MemOps[i]; 5413 unsigned VTSize = VT.getSizeInBits() / 8; 5414 SDValue Value; 5415 5416 bool isDereferenceable = 5417 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5418 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5419 if (isDereferenceable) 5420 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5421 5422 Value = 5423 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5424 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5425 LoadValues.push_back(Value); 5426 LoadChains.push_back(Value.getValue(1)); 5427 SrcOff += VTSize; 5428 } 5429 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5430 OutChains.clear(); 5431 for (unsigned i = 0; i < NumMemOps; i++) { 5432 EVT VT = MemOps[i]; 5433 unsigned VTSize = VT.getSizeInBits() / 8; 5434 SDValue Store; 5435 5436 Store = DAG.getStore(Chain, dl, LoadValues[i], 5437 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5438 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5439 OutChains.push_back(Store); 5440 DstOff += VTSize; 5441 } 5442 5443 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5444 } 5445 5446 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5447 /// operations. 5448 /// 5449 /// \param DAG Selection DAG where lowered code is placed. 5450 /// \param dl Link to corresponding IR location. 5451 /// \param Chain Control flow dependency. 5452 /// \param Dst Pointer to destination memory location. 5453 /// \param Src Value of byte to write into the memory. 5454 /// \param Size Number of bytes to write. 5455 /// \param Align Alignment of the destination in bytes. 5456 /// \param isVol True if destination is volatile. 5457 /// \param DstPtrInfo IR information on the memory pointer. 5458 /// \returns New head in the control flow, if lowering was successful, empty 5459 /// SDValue otherwise. 5460 /// 5461 /// The function tries to replace 'llvm.memset' intrinsic with several store 5462 /// operations and value calculation code. This is usually profitable for small 5463 /// memory size. 5464 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5465 SDValue Chain, SDValue Dst, SDValue Src, 5466 uint64_t Size, unsigned Align, bool isVol, 5467 MachinePointerInfo DstPtrInfo) { 5468 // Turn a memset of undef to nop. 5469 if (Src.isUndef()) 5470 return Chain; 5471 5472 // Expand memset to a series of load/store ops if the size operand 5473 // falls below a certain threshold. 5474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5475 std::vector<EVT> MemOps; 5476 bool DstAlignCanChange = false; 5477 MachineFunction &MF = DAG.getMachineFunction(); 5478 MachineFrameInfo &MFI = MF.getFrameInfo(); 5479 bool OptSize = shouldLowerMemFuncForSize(MF); 5480 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5481 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5482 DstAlignCanChange = true; 5483 bool IsZeroVal = 5484 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5485 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5486 Size, (DstAlignCanChange ? 0 : Align), 0, 5487 true, IsZeroVal, false, true, 5488 DstPtrInfo.getAddrSpace(), ~0u, 5489 DAG, TLI)) 5490 return SDValue(); 5491 5492 if (DstAlignCanChange) { 5493 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5494 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5495 if (NewAlign > Align) { 5496 // Give the stack frame object a larger alignment if needed. 5497 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5498 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5499 Align = NewAlign; 5500 } 5501 } 5502 5503 SmallVector<SDValue, 8> OutChains; 5504 uint64_t DstOff = 0; 5505 unsigned NumMemOps = MemOps.size(); 5506 5507 // Find the largest store and generate the bit pattern for it. 5508 EVT LargestVT = MemOps[0]; 5509 for (unsigned i = 1; i < NumMemOps; i++) 5510 if (MemOps[i].bitsGT(LargestVT)) 5511 LargestVT = MemOps[i]; 5512 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5513 5514 for (unsigned i = 0; i < NumMemOps; i++) { 5515 EVT VT = MemOps[i]; 5516 unsigned VTSize = VT.getSizeInBits() / 8; 5517 if (VTSize > Size) { 5518 // Issuing an unaligned load / store pair that overlaps with the previous 5519 // pair. Adjust the offset accordingly. 5520 assert(i == NumMemOps-1 && i != 0); 5521 DstOff -= VTSize - Size; 5522 } 5523 5524 // If this store is smaller than the largest store see whether we can get 5525 // the smaller value for free with a truncate. 5526 SDValue Value = MemSetValue; 5527 if (VT.bitsLT(LargestVT)) { 5528 if (!LargestVT.isVector() && !VT.isVector() && 5529 TLI.isTruncateFree(LargestVT, VT)) 5530 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5531 else 5532 Value = getMemsetValue(Src, VT, DAG, dl); 5533 } 5534 assert(Value.getValueType() == VT && "Value with wrong type."); 5535 SDValue Store = DAG.getStore( 5536 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5537 DstPtrInfo.getWithOffset(DstOff), Align, 5538 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5539 OutChains.push_back(Store); 5540 DstOff += VT.getSizeInBits() / 8; 5541 Size -= VTSize; 5542 } 5543 5544 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5545 } 5546 5547 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5548 unsigned AS) { 5549 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5550 // pointer operands can be losslessly bitcasted to pointers of address space 0 5551 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5552 report_fatal_error("cannot lower memory intrinsic in address space " + 5553 Twine(AS)); 5554 } 5555 } 5556 5557 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5558 SDValue Src, SDValue Size, unsigned Align, 5559 bool isVol, bool AlwaysInline, bool isTailCall, 5560 MachinePointerInfo DstPtrInfo, 5561 MachinePointerInfo SrcPtrInfo) { 5562 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5563 5564 // Check to see if we should lower the memcpy to loads and stores first. 5565 // For cases within the target-specified limits, this is the best choice. 5566 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5567 if (ConstantSize) { 5568 // Memcpy with size zero? Just return the original chain. 5569 if (ConstantSize->isNullValue()) 5570 return Chain; 5571 5572 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5573 ConstantSize->getZExtValue(),Align, 5574 isVol, false, DstPtrInfo, SrcPtrInfo); 5575 if (Result.getNode()) 5576 return Result; 5577 } 5578 5579 // Then check to see if we should lower the memcpy with target-specific 5580 // code. If the target chooses to do this, this is the next best. 5581 if (TSI) { 5582 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5583 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5584 DstPtrInfo, SrcPtrInfo); 5585 if (Result.getNode()) 5586 return Result; 5587 } 5588 5589 // If we really need inline code and the target declined to provide it, 5590 // use a (potentially long) sequence of loads and stores. 5591 if (AlwaysInline) { 5592 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5593 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5594 ConstantSize->getZExtValue(), Align, isVol, 5595 true, DstPtrInfo, SrcPtrInfo); 5596 } 5597 5598 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5599 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5600 5601 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5602 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5603 // respect volatile, so they may do things like read or write memory 5604 // beyond the given memory regions. But fixing this isn't easy, and most 5605 // people don't care. 5606 5607 // Emit a library call. 5608 TargetLowering::ArgListTy Args; 5609 TargetLowering::ArgListEntry Entry; 5610 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5611 Entry.Node = Dst; Args.push_back(Entry); 5612 Entry.Node = Src; Args.push_back(Entry); 5613 Entry.Node = Size; Args.push_back(Entry); 5614 // FIXME: pass in SDLoc 5615 TargetLowering::CallLoweringInfo CLI(*this); 5616 CLI.setDebugLoc(dl) 5617 .setChain(Chain) 5618 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5619 Dst.getValueType().getTypeForEVT(*getContext()), 5620 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5621 TLI->getPointerTy(getDataLayout())), 5622 std::move(Args)) 5623 .setDiscardResult() 5624 .setTailCall(isTailCall); 5625 5626 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5627 return CallResult.second; 5628 } 5629 5630 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5631 SDValue Src, SDValue Size, unsigned Align, 5632 bool isVol, bool isTailCall, 5633 MachinePointerInfo DstPtrInfo, 5634 MachinePointerInfo SrcPtrInfo) { 5635 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5636 5637 // Check to see if we should lower the memmove to loads and stores first. 5638 // For cases within the target-specified limits, this is the best choice. 5639 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5640 if (ConstantSize) { 5641 // Memmove with size zero? Just return the original chain. 5642 if (ConstantSize->isNullValue()) 5643 return Chain; 5644 5645 SDValue Result = 5646 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5647 ConstantSize->getZExtValue(), Align, isVol, 5648 false, DstPtrInfo, SrcPtrInfo); 5649 if (Result.getNode()) 5650 return Result; 5651 } 5652 5653 // Then check to see if we should lower the memmove with target-specific 5654 // code. If the target chooses to do this, this is the next best. 5655 if (TSI) { 5656 SDValue Result = TSI->EmitTargetCodeForMemmove( 5657 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5658 if (Result.getNode()) 5659 return Result; 5660 } 5661 5662 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5663 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5664 5665 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5666 // not be safe. See memcpy above for more details. 5667 5668 // Emit a library call. 5669 TargetLowering::ArgListTy Args; 5670 TargetLowering::ArgListEntry Entry; 5671 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5672 Entry.Node = Dst; Args.push_back(Entry); 5673 Entry.Node = Src; Args.push_back(Entry); 5674 Entry.Node = Size; Args.push_back(Entry); 5675 // FIXME: pass in SDLoc 5676 TargetLowering::CallLoweringInfo CLI(*this); 5677 CLI.setDebugLoc(dl) 5678 .setChain(Chain) 5679 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5680 Dst.getValueType().getTypeForEVT(*getContext()), 5681 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5682 TLI->getPointerTy(getDataLayout())), 5683 std::move(Args)) 5684 .setDiscardResult() 5685 .setTailCall(isTailCall); 5686 5687 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5688 return CallResult.second; 5689 } 5690 5691 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5692 SDValue Src, SDValue Size, unsigned Align, 5693 bool isVol, bool isTailCall, 5694 MachinePointerInfo DstPtrInfo) { 5695 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5696 5697 // Check to see if we should lower the memset to stores first. 5698 // For cases within the target-specified limits, this is the best choice. 5699 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5700 if (ConstantSize) { 5701 // Memset with size zero? Just return the original chain. 5702 if (ConstantSize->isNullValue()) 5703 return Chain; 5704 5705 SDValue Result = 5706 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5707 Align, isVol, DstPtrInfo); 5708 5709 if (Result.getNode()) 5710 return Result; 5711 } 5712 5713 // Then check to see if we should lower the memset with target-specific 5714 // code. If the target chooses to do this, this is the next best. 5715 if (TSI) { 5716 SDValue Result = TSI->EmitTargetCodeForMemset( 5717 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5718 if (Result.getNode()) 5719 return Result; 5720 } 5721 5722 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5723 5724 // Emit a library call. 5725 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5726 TargetLowering::ArgListTy Args; 5727 TargetLowering::ArgListEntry Entry; 5728 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5729 Args.push_back(Entry); 5730 Entry.Node = Src; 5731 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5732 Args.push_back(Entry); 5733 Entry.Node = Size; 5734 Entry.Ty = IntPtrTy; 5735 Args.push_back(Entry); 5736 5737 // FIXME: pass in SDLoc 5738 TargetLowering::CallLoweringInfo CLI(*this); 5739 CLI.setDebugLoc(dl) 5740 .setChain(Chain) 5741 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5742 Dst.getValueType().getTypeForEVT(*getContext()), 5743 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5744 TLI->getPointerTy(getDataLayout())), 5745 std::move(Args)) 5746 .setDiscardResult() 5747 .setTailCall(isTailCall); 5748 5749 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5750 return CallResult.second; 5751 } 5752 5753 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5754 SDVTList VTList, ArrayRef<SDValue> Ops, 5755 MachineMemOperand *MMO) { 5756 FoldingSetNodeID ID; 5757 ID.AddInteger(MemVT.getRawBits()); 5758 AddNodeIDNode(ID, Opcode, VTList, Ops); 5759 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5760 void* IP = nullptr; 5761 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5762 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5763 return SDValue(E, 0); 5764 } 5765 5766 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5767 VTList, MemVT, MMO); 5768 createOperands(N, Ops); 5769 5770 CSEMap.InsertNode(N, IP); 5771 InsertNode(N); 5772 return SDValue(N, 0); 5773 } 5774 5775 SDValue SelectionDAG::getAtomicCmpSwap( 5776 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5777 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5778 unsigned Alignment, AtomicOrdering SuccessOrdering, 5779 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 5780 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5781 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5782 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5783 5784 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5785 Alignment = getEVTAlignment(MemVT); 5786 5787 MachineFunction &MF = getMachineFunction(); 5788 5789 // FIXME: Volatile isn't really correct; we should keep track of atomic 5790 // orderings in the memoperand. 5791 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5792 MachineMemOperand::MOStore; 5793 MachineMemOperand *MMO = 5794 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5795 AAMDNodes(), nullptr, SSID, SuccessOrdering, 5796 FailureOrdering); 5797 5798 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5799 } 5800 5801 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5802 EVT MemVT, SDVTList VTs, SDValue Chain, 5803 SDValue Ptr, SDValue Cmp, SDValue Swp, 5804 MachineMemOperand *MMO) { 5805 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5806 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5807 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5808 5809 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5810 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5811 } 5812 5813 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5814 SDValue Chain, SDValue Ptr, SDValue Val, 5815 const Value *PtrVal, unsigned Alignment, 5816 AtomicOrdering Ordering, 5817 SyncScope::ID SSID) { 5818 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5819 Alignment = getEVTAlignment(MemVT); 5820 5821 MachineFunction &MF = getMachineFunction(); 5822 // An atomic store does not load. An atomic load does not store. 5823 // (An atomicrmw obviously both loads and stores.) 5824 // For now, atomics are considered to be volatile always, and they are 5825 // chained as such. 5826 // FIXME: Volatile isn't really correct; we should keep track of atomic 5827 // orderings in the memoperand. 5828 auto Flags = MachineMemOperand::MOVolatile; 5829 if (Opcode != ISD::ATOMIC_STORE) 5830 Flags |= MachineMemOperand::MOLoad; 5831 if (Opcode != ISD::ATOMIC_LOAD) 5832 Flags |= MachineMemOperand::MOStore; 5833 5834 MachineMemOperand *MMO = 5835 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5836 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5837 nullptr, SSID, Ordering); 5838 5839 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5840 } 5841 5842 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5843 SDValue Chain, SDValue Ptr, SDValue Val, 5844 MachineMemOperand *MMO) { 5845 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5846 Opcode == ISD::ATOMIC_LOAD_SUB || 5847 Opcode == ISD::ATOMIC_LOAD_AND || 5848 Opcode == ISD::ATOMIC_LOAD_CLR || 5849 Opcode == ISD::ATOMIC_LOAD_OR || 5850 Opcode == ISD::ATOMIC_LOAD_XOR || 5851 Opcode == ISD::ATOMIC_LOAD_NAND || 5852 Opcode == ISD::ATOMIC_LOAD_MIN || 5853 Opcode == ISD::ATOMIC_LOAD_MAX || 5854 Opcode == ISD::ATOMIC_LOAD_UMIN || 5855 Opcode == ISD::ATOMIC_LOAD_UMAX || 5856 Opcode == ISD::ATOMIC_SWAP || 5857 Opcode == ISD::ATOMIC_STORE) && 5858 "Invalid Atomic Op"); 5859 5860 EVT VT = Val.getValueType(); 5861 5862 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5863 getVTList(VT, MVT::Other); 5864 SDValue Ops[] = {Chain, Ptr, Val}; 5865 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5866 } 5867 5868 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5869 EVT VT, SDValue Chain, SDValue Ptr, 5870 MachineMemOperand *MMO) { 5871 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5872 5873 SDVTList VTs = getVTList(VT, MVT::Other); 5874 SDValue Ops[] = {Chain, Ptr}; 5875 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5876 } 5877 5878 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5879 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5880 if (Ops.size() == 1) 5881 return Ops[0]; 5882 5883 SmallVector<EVT, 4> VTs; 5884 VTs.reserve(Ops.size()); 5885 for (unsigned i = 0; i < Ops.size(); ++i) 5886 VTs.push_back(Ops[i].getValueType()); 5887 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5888 } 5889 5890 SDValue SelectionDAG::getMemIntrinsicNode( 5891 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5892 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 5893 MachineMemOperand::Flags Flags, unsigned Size) { 5894 if (Align == 0) // Ensure that codegen never sees alignment 0 5895 Align = getEVTAlignment(MemVT); 5896 5897 if (!Size) 5898 Size = MemVT.getStoreSize(); 5899 5900 MachineFunction &MF = getMachineFunction(); 5901 MachineMemOperand *MMO = 5902 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5903 5904 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5905 } 5906 5907 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5908 SDVTList VTList, 5909 ArrayRef<SDValue> Ops, EVT MemVT, 5910 MachineMemOperand *MMO) { 5911 assert((Opcode == ISD::INTRINSIC_VOID || 5912 Opcode == ISD::INTRINSIC_W_CHAIN || 5913 Opcode == ISD::PREFETCH || 5914 Opcode == ISD::LIFETIME_START || 5915 Opcode == ISD::LIFETIME_END || 5916 ((int)Opcode <= std::numeric_limits<int>::max() && 5917 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5918 "Opcode is not a memory-accessing opcode!"); 5919 5920 // Memoize the node unless it returns a flag. 5921 MemIntrinsicSDNode *N; 5922 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5923 FoldingSetNodeID ID; 5924 AddNodeIDNode(ID, Opcode, VTList, Ops); 5925 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 5926 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 5927 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5928 void *IP = nullptr; 5929 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5930 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5931 return SDValue(E, 0); 5932 } 5933 5934 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5935 VTList, MemVT, MMO); 5936 createOperands(N, Ops); 5937 5938 CSEMap.InsertNode(N, IP); 5939 } else { 5940 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5941 VTList, MemVT, MMO); 5942 createOperands(N, Ops); 5943 } 5944 InsertNode(N); 5945 return SDValue(N, 0); 5946 } 5947 5948 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5949 /// MachinePointerInfo record from it. This is particularly useful because the 5950 /// code generator has many cases where it doesn't bother passing in a 5951 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5952 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5953 SelectionDAG &DAG, SDValue Ptr, 5954 int64_t Offset = 0) { 5955 // If this is FI+Offset, we can model it. 5956 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5957 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5958 FI->getIndex(), Offset); 5959 5960 // If this is (FI+Offset1)+Offset2, we can model it. 5961 if (Ptr.getOpcode() != ISD::ADD || 5962 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5963 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5964 return Info; 5965 5966 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5967 return MachinePointerInfo::getFixedStack( 5968 DAG.getMachineFunction(), FI, 5969 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5970 } 5971 5972 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5973 /// MachinePointerInfo record from it. This is particularly useful because the 5974 /// code generator has many cases where it doesn't bother passing in a 5975 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5976 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5977 SelectionDAG &DAG, SDValue Ptr, 5978 SDValue OffsetOp) { 5979 // If the 'Offset' value isn't a constant, we can't handle this. 5980 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5981 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 5982 if (OffsetOp.isUndef()) 5983 return InferPointerInfo(Info, DAG, Ptr); 5984 return Info; 5985 } 5986 5987 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5988 EVT VT, const SDLoc &dl, SDValue Chain, 5989 SDValue Ptr, SDValue Offset, 5990 MachinePointerInfo PtrInfo, EVT MemVT, 5991 unsigned Alignment, 5992 MachineMemOperand::Flags MMOFlags, 5993 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5994 assert(Chain.getValueType() == MVT::Other && 5995 "Invalid chain type"); 5996 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5997 Alignment = getEVTAlignment(MemVT); 5998 5999 MMOFlags |= MachineMemOperand::MOLoad; 6000 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6001 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6002 // clients. 6003 if (PtrInfo.V.isNull()) 6004 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6005 6006 MachineFunction &MF = getMachineFunction(); 6007 MachineMemOperand *MMO = MF.getMachineMemOperand( 6008 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6009 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6010 } 6011 6012 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6013 EVT VT, const SDLoc &dl, SDValue Chain, 6014 SDValue Ptr, SDValue Offset, EVT MemVT, 6015 MachineMemOperand *MMO) { 6016 if (VT == MemVT) { 6017 ExtType = ISD::NON_EXTLOAD; 6018 } else if (ExtType == ISD::NON_EXTLOAD) { 6019 assert(VT == MemVT && "Non-extending load from different memory type!"); 6020 } else { 6021 // Extending load. 6022 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6023 "Should only be an extending load, not truncating!"); 6024 assert(VT.isInteger() == MemVT.isInteger() && 6025 "Cannot convert from FP to Int or Int -> FP!"); 6026 assert(VT.isVector() == MemVT.isVector() && 6027 "Cannot use an ext load to convert to or from a vector!"); 6028 assert((!VT.isVector() || 6029 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6030 "Cannot use an ext load to change the number of vector elements!"); 6031 } 6032 6033 bool Indexed = AM != ISD::UNINDEXED; 6034 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6035 6036 SDVTList VTs = Indexed ? 6037 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6038 SDValue Ops[] = { Chain, Ptr, Offset }; 6039 FoldingSetNodeID ID; 6040 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6041 ID.AddInteger(MemVT.getRawBits()); 6042 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6043 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6044 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6045 void *IP = nullptr; 6046 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6047 cast<LoadSDNode>(E)->refineAlignment(MMO); 6048 return SDValue(E, 0); 6049 } 6050 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6051 ExtType, MemVT, MMO); 6052 createOperands(N, Ops); 6053 6054 CSEMap.InsertNode(N, IP); 6055 InsertNode(N); 6056 SDValue V(N, 0); 6057 NewSDValueDbgMsg(V, "Creating new node: ", this); 6058 return V; 6059 } 6060 6061 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6062 SDValue Ptr, MachinePointerInfo PtrInfo, 6063 unsigned Alignment, 6064 MachineMemOperand::Flags MMOFlags, 6065 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6066 SDValue Undef = getUNDEF(Ptr.getValueType()); 6067 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6068 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6069 } 6070 6071 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6072 SDValue Ptr, MachineMemOperand *MMO) { 6073 SDValue Undef = getUNDEF(Ptr.getValueType()); 6074 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6075 VT, MMO); 6076 } 6077 6078 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6079 EVT VT, SDValue Chain, SDValue Ptr, 6080 MachinePointerInfo PtrInfo, EVT MemVT, 6081 unsigned Alignment, 6082 MachineMemOperand::Flags MMOFlags, 6083 const AAMDNodes &AAInfo) { 6084 SDValue Undef = getUNDEF(Ptr.getValueType()); 6085 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6086 MemVT, Alignment, MMOFlags, AAInfo); 6087 } 6088 6089 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6090 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6091 MachineMemOperand *MMO) { 6092 SDValue Undef = getUNDEF(Ptr.getValueType()); 6093 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6094 MemVT, MMO); 6095 } 6096 6097 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6098 SDValue Base, SDValue Offset, 6099 ISD::MemIndexedMode AM) { 6100 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6101 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6102 // Don't propagate the invariant or dereferenceable flags. 6103 auto MMOFlags = 6104 LD->getMemOperand()->getFlags() & 6105 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6106 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6107 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6108 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6109 LD->getAAInfo()); 6110 } 6111 6112 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6113 SDValue Ptr, MachinePointerInfo PtrInfo, 6114 unsigned Alignment, 6115 MachineMemOperand::Flags MMOFlags, 6116 const AAMDNodes &AAInfo) { 6117 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6118 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6119 Alignment = getEVTAlignment(Val.getValueType()); 6120 6121 MMOFlags |= MachineMemOperand::MOStore; 6122 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6123 6124 if (PtrInfo.V.isNull()) 6125 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6126 6127 MachineFunction &MF = getMachineFunction(); 6128 MachineMemOperand *MMO = MF.getMachineMemOperand( 6129 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6130 return getStore(Chain, dl, Val, Ptr, MMO); 6131 } 6132 6133 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6134 SDValue Ptr, MachineMemOperand *MMO) { 6135 assert(Chain.getValueType() == MVT::Other && 6136 "Invalid chain type"); 6137 EVT VT = Val.getValueType(); 6138 SDVTList VTs = getVTList(MVT::Other); 6139 SDValue Undef = getUNDEF(Ptr.getValueType()); 6140 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6141 FoldingSetNodeID ID; 6142 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6143 ID.AddInteger(VT.getRawBits()); 6144 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6145 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6146 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6147 void *IP = nullptr; 6148 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6149 cast<StoreSDNode>(E)->refineAlignment(MMO); 6150 return SDValue(E, 0); 6151 } 6152 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6153 ISD::UNINDEXED, false, VT, MMO); 6154 createOperands(N, Ops); 6155 6156 CSEMap.InsertNode(N, IP); 6157 InsertNode(N); 6158 SDValue V(N, 0); 6159 NewSDValueDbgMsg(V, "Creating new node: ", this); 6160 return V; 6161 } 6162 6163 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6164 SDValue Ptr, MachinePointerInfo PtrInfo, 6165 EVT SVT, unsigned Alignment, 6166 MachineMemOperand::Flags MMOFlags, 6167 const AAMDNodes &AAInfo) { 6168 assert(Chain.getValueType() == MVT::Other && 6169 "Invalid chain type"); 6170 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6171 Alignment = getEVTAlignment(SVT); 6172 6173 MMOFlags |= MachineMemOperand::MOStore; 6174 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6175 6176 if (PtrInfo.V.isNull()) 6177 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6178 6179 MachineFunction &MF = getMachineFunction(); 6180 MachineMemOperand *MMO = MF.getMachineMemOperand( 6181 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6182 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6183 } 6184 6185 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6186 SDValue Ptr, EVT SVT, 6187 MachineMemOperand *MMO) { 6188 EVT VT = Val.getValueType(); 6189 6190 assert(Chain.getValueType() == MVT::Other && 6191 "Invalid chain type"); 6192 if (VT == SVT) 6193 return getStore(Chain, dl, Val, Ptr, MMO); 6194 6195 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6196 "Should only be a truncating store, not extending!"); 6197 assert(VT.isInteger() == SVT.isInteger() && 6198 "Can't do FP-INT conversion!"); 6199 assert(VT.isVector() == SVT.isVector() && 6200 "Cannot use trunc store to convert to or from a vector!"); 6201 assert((!VT.isVector() || 6202 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6203 "Cannot use trunc store to change the number of vector elements!"); 6204 6205 SDVTList VTs = getVTList(MVT::Other); 6206 SDValue Undef = getUNDEF(Ptr.getValueType()); 6207 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6208 FoldingSetNodeID ID; 6209 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6210 ID.AddInteger(SVT.getRawBits()); 6211 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6212 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6213 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6214 void *IP = nullptr; 6215 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6216 cast<StoreSDNode>(E)->refineAlignment(MMO); 6217 return SDValue(E, 0); 6218 } 6219 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6220 ISD::UNINDEXED, true, SVT, MMO); 6221 createOperands(N, Ops); 6222 6223 CSEMap.InsertNode(N, IP); 6224 InsertNode(N); 6225 SDValue V(N, 0); 6226 NewSDValueDbgMsg(V, "Creating new node: ", this); 6227 return V; 6228 } 6229 6230 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6231 SDValue Base, SDValue Offset, 6232 ISD::MemIndexedMode AM) { 6233 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6234 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6235 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6236 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6237 FoldingSetNodeID ID; 6238 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6239 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6240 ID.AddInteger(ST->getRawSubclassData()); 6241 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6242 void *IP = nullptr; 6243 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6244 return SDValue(E, 0); 6245 6246 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6247 ST->isTruncatingStore(), ST->getMemoryVT(), 6248 ST->getMemOperand()); 6249 createOperands(N, Ops); 6250 6251 CSEMap.InsertNode(N, IP); 6252 InsertNode(N); 6253 SDValue V(N, 0); 6254 NewSDValueDbgMsg(V, "Creating new node: ", this); 6255 return V; 6256 } 6257 6258 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6259 SDValue Ptr, SDValue Mask, SDValue Src0, 6260 EVT MemVT, MachineMemOperand *MMO, 6261 ISD::LoadExtType ExtTy, bool isExpanding) { 6262 SDVTList VTs = getVTList(VT, MVT::Other); 6263 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 6264 FoldingSetNodeID ID; 6265 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6266 ID.AddInteger(VT.getRawBits()); 6267 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6268 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6269 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6270 void *IP = nullptr; 6271 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6272 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6273 return SDValue(E, 0); 6274 } 6275 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6276 ExtTy, isExpanding, MemVT, MMO); 6277 createOperands(N, Ops); 6278 6279 CSEMap.InsertNode(N, IP); 6280 InsertNode(N); 6281 SDValue V(N, 0); 6282 NewSDValueDbgMsg(V, "Creating new node: ", this); 6283 return V; 6284 } 6285 6286 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6287 SDValue Val, SDValue Ptr, SDValue Mask, 6288 EVT MemVT, MachineMemOperand *MMO, 6289 bool IsTruncating, bool IsCompressing) { 6290 assert(Chain.getValueType() == MVT::Other && 6291 "Invalid chain type"); 6292 EVT VT = Val.getValueType(); 6293 SDVTList VTs = getVTList(MVT::Other); 6294 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 6295 FoldingSetNodeID ID; 6296 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6297 ID.AddInteger(VT.getRawBits()); 6298 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6299 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6300 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6301 void *IP = nullptr; 6302 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6303 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6304 return SDValue(E, 0); 6305 } 6306 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6307 IsTruncating, IsCompressing, MemVT, MMO); 6308 createOperands(N, Ops); 6309 6310 CSEMap.InsertNode(N, IP); 6311 InsertNode(N); 6312 SDValue V(N, 0); 6313 NewSDValueDbgMsg(V, "Creating new node: ", this); 6314 return V; 6315 } 6316 6317 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6318 ArrayRef<SDValue> Ops, 6319 MachineMemOperand *MMO) { 6320 assert(Ops.size() == 6 && "Incompatible number of operands"); 6321 6322 FoldingSetNodeID ID; 6323 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6324 ID.AddInteger(VT.getRawBits()); 6325 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6326 dl.getIROrder(), VTs, VT, MMO)); 6327 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6328 void *IP = nullptr; 6329 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6330 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6331 return SDValue(E, 0); 6332 } 6333 6334 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6335 VTs, VT, MMO); 6336 createOperands(N, Ops); 6337 6338 assert(N->getValue().getValueType() == N->getValueType(0) && 6339 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6340 assert(N->getMask().getValueType().getVectorNumElements() == 6341 N->getValueType(0).getVectorNumElements() && 6342 "Vector width mismatch between mask and data"); 6343 assert(N->getIndex().getValueType().getVectorNumElements() == 6344 N->getValueType(0).getVectorNumElements() && 6345 "Vector width mismatch between index and data"); 6346 assert(isa<ConstantSDNode>(N->getScale()) && 6347 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6348 "Scale should be a constant power of 2"); 6349 6350 CSEMap.InsertNode(N, IP); 6351 InsertNode(N); 6352 SDValue V(N, 0); 6353 NewSDValueDbgMsg(V, "Creating new node: ", this); 6354 return V; 6355 } 6356 6357 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6358 ArrayRef<SDValue> Ops, 6359 MachineMemOperand *MMO) { 6360 assert(Ops.size() == 6 && "Incompatible number of operands"); 6361 6362 FoldingSetNodeID ID; 6363 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6364 ID.AddInteger(VT.getRawBits()); 6365 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6366 dl.getIROrder(), VTs, VT, MMO)); 6367 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6368 void *IP = nullptr; 6369 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6370 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6371 return SDValue(E, 0); 6372 } 6373 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6374 VTs, VT, MMO); 6375 createOperands(N, Ops); 6376 6377 assert(N->getMask().getValueType().getVectorNumElements() == 6378 N->getValue().getValueType().getVectorNumElements() && 6379 "Vector width mismatch between mask and data"); 6380 assert(N->getIndex().getValueType().getVectorNumElements() == 6381 N->getValue().getValueType().getVectorNumElements() && 6382 "Vector width mismatch between index and data"); 6383 assert(isa<ConstantSDNode>(N->getScale()) && 6384 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6385 "Scale should be a constant power of 2"); 6386 6387 CSEMap.InsertNode(N, IP); 6388 InsertNode(N); 6389 SDValue V(N, 0); 6390 NewSDValueDbgMsg(V, "Creating new node: ", this); 6391 return V; 6392 } 6393 6394 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6395 SDValue Ptr, SDValue SV, unsigned Align) { 6396 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6397 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6398 } 6399 6400 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6401 ArrayRef<SDUse> Ops) { 6402 switch (Ops.size()) { 6403 case 0: return getNode(Opcode, DL, VT); 6404 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6405 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6406 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6407 default: break; 6408 } 6409 6410 // Copy from an SDUse array into an SDValue array for use with 6411 // the regular getNode logic. 6412 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6413 return getNode(Opcode, DL, VT, NewOps); 6414 } 6415 6416 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6417 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6418 unsigned NumOps = Ops.size(); 6419 switch (NumOps) { 6420 case 0: return getNode(Opcode, DL, VT); 6421 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6422 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6423 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6424 default: break; 6425 } 6426 6427 switch (Opcode) { 6428 default: break; 6429 case ISD::CONCAT_VECTORS: 6430 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6431 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6432 return V; 6433 break; 6434 case ISD::SELECT_CC: 6435 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6436 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6437 "LHS and RHS of condition must have same type!"); 6438 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6439 "True and False arms of SelectCC must have same type!"); 6440 assert(Ops[2].getValueType() == VT && 6441 "select_cc node must be of same type as true and false value!"); 6442 break; 6443 case ISD::BR_CC: 6444 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6445 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6446 "LHS/RHS of comparison should match types!"); 6447 break; 6448 } 6449 6450 // Memoize nodes. 6451 SDNode *N; 6452 SDVTList VTs = getVTList(VT); 6453 6454 if (VT != MVT::Glue) { 6455 FoldingSetNodeID ID; 6456 AddNodeIDNode(ID, Opcode, VTs, Ops); 6457 void *IP = nullptr; 6458 6459 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6460 return SDValue(E, 0); 6461 6462 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6463 createOperands(N, Ops); 6464 6465 CSEMap.InsertNode(N, IP); 6466 } else { 6467 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6468 createOperands(N, Ops); 6469 } 6470 6471 InsertNode(N); 6472 SDValue V(N, 0); 6473 NewSDValueDbgMsg(V, "Creating new node: ", this); 6474 return V; 6475 } 6476 6477 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6478 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6479 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6480 } 6481 6482 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6483 ArrayRef<SDValue> Ops) { 6484 if (VTList.NumVTs == 1) 6485 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6486 6487 #if 0 6488 switch (Opcode) { 6489 // FIXME: figure out how to safely handle things like 6490 // int foo(int x) { return 1 << (x & 255); } 6491 // int bar() { return foo(256); } 6492 case ISD::SRA_PARTS: 6493 case ISD::SRL_PARTS: 6494 case ISD::SHL_PARTS: 6495 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6496 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6497 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6498 else if (N3.getOpcode() == ISD::AND) 6499 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6500 // If the and is only masking out bits that cannot effect the shift, 6501 // eliminate the and. 6502 unsigned NumBits = VT.getScalarSizeInBits()*2; 6503 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6504 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6505 } 6506 break; 6507 } 6508 #endif 6509 6510 // Memoize the node unless it returns a flag. 6511 SDNode *N; 6512 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6513 FoldingSetNodeID ID; 6514 AddNodeIDNode(ID, Opcode, VTList, Ops); 6515 void *IP = nullptr; 6516 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6517 return SDValue(E, 0); 6518 6519 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6520 createOperands(N, Ops); 6521 CSEMap.InsertNode(N, IP); 6522 } else { 6523 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6524 createOperands(N, Ops); 6525 } 6526 InsertNode(N); 6527 SDValue V(N, 0); 6528 NewSDValueDbgMsg(V, "Creating new node: ", this); 6529 return V; 6530 } 6531 6532 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6533 SDVTList VTList) { 6534 return getNode(Opcode, DL, VTList, None); 6535 } 6536 6537 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6538 SDValue N1) { 6539 SDValue Ops[] = { N1 }; 6540 return getNode(Opcode, DL, VTList, Ops); 6541 } 6542 6543 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6544 SDValue N1, SDValue N2) { 6545 SDValue Ops[] = { N1, N2 }; 6546 return getNode(Opcode, DL, VTList, Ops); 6547 } 6548 6549 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6550 SDValue N1, SDValue N2, SDValue N3) { 6551 SDValue Ops[] = { N1, N2, N3 }; 6552 return getNode(Opcode, DL, VTList, Ops); 6553 } 6554 6555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6556 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6557 SDValue Ops[] = { N1, N2, N3, N4 }; 6558 return getNode(Opcode, DL, VTList, Ops); 6559 } 6560 6561 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6562 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6563 SDValue N5) { 6564 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6565 return getNode(Opcode, DL, VTList, Ops); 6566 } 6567 6568 SDVTList SelectionDAG::getVTList(EVT VT) { 6569 return makeVTList(SDNode::getValueTypeList(VT), 1); 6570 } 6571 6572 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6573 FoldingSetNodeID ID; 6574 ID.AddInteger(2U); 6575 ID.AddInteger(VT1.getRawBits()); 6576 ID.AddInteger(VT2.getRawBits()); 6577 6578 void *IP = nullptr; 6579 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6580 if (!Result) { 6581 EVT *Array = Allocator.Allocate<EVT>(2); 6582 Array[0] = VT1; 6583 Array[1] = VT2; 6584 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6585 VTListMap.InsertNode(Result, IP); 6586 } 6587 return Result->getSDVTList(); 6588 } 6589 6590 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6591 FoldingSetNodeID ID; 6592 ID.AddInteger(3U); 6593 ID.AddInteger(VT1.getRawBits()); 6594 ID.AddInteger(VT2.getRawBits()); 6595 ID.AddInteger(VT3.getRawBits()); 6596 6597 void *IP = nullptr; 6598 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6599 if (!Result) { 6600 EVT *Array = Allocator.Allocate<EVT>(3); 6601 Array[0] = VT1; 6602 Array[1] = VT2; 6603 Array[2] = VT3; 6604 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6605 VTListMap.InsertNode(Result, IP); 6606 } 6607 return Result->getSDVTList(); 6608 } 6609 6610 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6611 FoldingSetNodeID ID; 6612 ID.AddInteger(4U); 6613 ID.AddInteger(VT1.getRawBits()); 6614 ID.AddInteger(VT2.getRawBits()); 6615 ID.AddInteger(VT3.getRawBits()); 6616 ID.AddInteger(VT4.getRawBits()); 6617 6618 void *IP = nullptr; 6619 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6620 if (!Result) { 6621 EVT *Array = Allocator.Allocate<EVT>(4); 6622 Array[0] = VT1; 6623 Array[1] = VT2; 6624 Array[2] = VT3; 6625 Array[3] = VT4; 6626 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6627 VTListMap.InsertNode(Result, IP); 6628 } 6629 return Result->getSDVTList(); 6630 } 6631 6632 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6633 unsigned NumVTs = VTs.size(); 6634 FoldingSetNodeID ID; 6635 ID.AddInteger(NumVTs); 6636 for (unsigned index = 0; index < NumVTs; index++) { 6637 ID.AddInteger(VTs[index].getRawBits()); 6638 } 6639 6640 void *IP = nullptr; 6641 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6642 if (!Result) { 6643 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6644 std::copy(VTs.begin(), VTs.end(), Array); 6645 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6646 VTListMap.InsertNode(Result, IP); 6647 } 6648 return Result->getSDVTList(); 6649 } 6650 6651 6652 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6653 /// specified operands. If the resultant node already exists in the DAG, 6654 /// this does not modify the specified node, instead it returns the node that 6655 /// already exists. If the resultant node does not exist in the DAG, the 6656 /// input node is returned. As a degenerate case, if you specify the same 6657 /// input operands as the node already has, the input node is returned. 6658 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6659 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6660 6661 // Check to see if there is no change. 6662 if (Op == N->getOperand(0)) return N; 6663 6664 // See if the modified node already exists. 6665 void *InsertPos = nullptr; 6666 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6667 return Existing; 6668 6669 // Nope it doesn't. Remove the node from its current place in the maps. 6670 if (InsertPos) 6671 if (!RemoveNodeFromCSEMaps(N)) 6672 InsertPos = nullptr; 6673 6674 // Now we update the operands. 6675 N->OperandList[0].set(Op); 6676 6677 // If this gets put into a CSE map, add it. 6678 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6679 return N; 6680 } 6681 6682 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6683 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6684 6685 // Check to see if there is no change. 6686 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6687 return N; // No operands changed, just return the input node. 6688 6689 // See if the modified node already exists. 6690 void *InsertPos = nullptr; 6691 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6692 return Existing; 6693 6694 // Nope it doesn't. Remove the node from its current place in the maps. 6695 if (InsertPos) 6696 if (!RemoveNodeFromCSEMaps(N)) 6697 InsertPos = nullptr; 6698 6699 // Now we update the operands. 6700 if (N->OperandList[0] != Op1) 6701 N->OperandList[0].set(Op1); 6702 if (N->OperandList[1] != Op2) 6703 N->OperandList[1].set(Op2); 6704 6705 updateDivergence(N); 6706 // If this gets put into a CSE map, add it. 6707 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6708 return N; 6709 } 6710 6711 SDNode *SelectionDAG:: 6712 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6713 SDValue Ops[] = { Op1, Op2, Op3 }; 6714 return UpdateNodeOperands(N, Ops); 6715 } 6716 6717 SDNode *SelectionDAG:: 6718 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6719 SDValue Op3, SDValue Op4) { 6720 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6721 return UpdateNodeOperands(N, Ops); 6722 } 6723 6724 SDNode *SelectionDAG:: 6725 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6726 SDValue Op3, SDValue Op4, SDValue Op5) { 6727 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6728 return UpdateNodeOperands(N, Ops); 6729 } 6730 6731 SDNode *SelectionDAG:: 6732 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6733 unsigned NumOps = Ops.size(); 6734 assert(N->getNumOperands() == NumOps && 6735 "Update with wrong number of operands"); 6736 6737 // If no operands changed just return the input node. 6738 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6739 return N; 6740 6741 // See if the modified node already exists. 6742 void *InsertPos = nullptr; 6743 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6744 return Existing; 6745 6746 // Nope it doesn't. Remove the node from its current place in the maps. 6747 if (InsertPos) 6748 if (!RemoveNodeFromCSEMaps(N)) 6749 InsertPos = nullptr; 6750 6751 // Now we update the operands. 6752 for (unsigned i = 0; i != NumOps; ++i) 6753 if (N->OperandList[i] != Ops[i]) 6754 N->OperandList[i].set(Ops[i]); 6755 6756 // If this gets put into a CSE map, add it. 6757 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6758 return N; 6759 } 6760 6761 /// DropOperands - Release the operands and set this node to have 6762 /// zero operands. 6763 void SDNode::DropOperands() { 6764 // Unlike the code in MorphNodeTo that does this, we don't need to 6765 // watch for dead nodes here. 6766 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6767 SDUse &Use = *I++; 6768 Use.set(SDValue()); 6769 } 6770 } 6771 6772 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6773 /// machine opcode. 6774 /// 6775 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6776 EVT VT) { 6777 SDVTList VTs = getVTList(VT); 6778 return SelectNodeTo(N, MachineOpc, VTs, None); 6779 } 6780 6781 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6782 EVT VT, SDValue Op1) { 6783 SDVTList VTs = getVTList(VT); 6784 SDValue Ops[] = { Op1 }; 6785 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6786 } 6787 6788 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6789 EVT VT, SDValue Op1, 6790 SDValue Op2) { 6791 SDVTList VTs = getVTList(VT); 6792 SDValue Ops[] = { Op1, Op2 }; 6793 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6794 } 6795 6796 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6797 EVT VT, SDValue Op1, 6798 SDValue Op2, SDValue Op3) { 6799 SDVTList VTs = getVTList(VT); 6800 SDValue Ops[] = { Op1, Op2, Op3 }; 6801 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6802 } 6803 6804 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6805 EVT VT, ArrayRef<SDValue> Ops) { 6806 SDVTList VTs = getVTList(VT); 6807 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6808 } 6809 6810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6811 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6812 SDVTList VTs = getVTList(VT1, VT2); 6813 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6814 } 6815 6816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6817 EVT VT1, EVT VT2) { 6818 SDVTList VTs = getVTList(VT1, VT2); 6819 return SelectNodeTo(N, MachineOpc, VTs, None); 6820 } 6821 6822 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6823 EVT VT1, EVT VT2, EVT VT3, 6824 ArrayRef<SDValue> Ops) { 6825 SDVTList VTs = getVTList(VT1, VT2, VT3); 6826 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6827 } 6828 6829 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6830 EVT VT1, EVT VT2, 6831 SDValue Op1, SDValue Op2) { 6832 SDVTList VTs = getVTList(VT1, VT2); 6833 SDValue Ops[] = { Op1, Op2 }; 6834 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6835 } 6836 6837 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6838 SDVTList VTs,ArrayRef<SDValue> Ops) { 6839 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6840 // Reset the NodeID to -1. 6841 New->setNodeId(-1); 6842 if (New != N) { 6843 ReplaceAllUsesWith(N, New); 6844 RemoveDeadNode(N); 6845 } 6846 return New; 6847 } 6848 6849 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6850 /// the line number information on the merged node since it is not possible to 6851 /// preserve the information that operation is associated with multiple lines. 6852 /// This will make the debugger working better at -O0, were there is a higher 6853 /// probability having other instructions associated with that line. 6854 /// 6855 /// For IROrder, we keep the smaller of the two 6856 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6857 DebugLoc NLoc = N->getDebugLoc(); 6858 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6859 N->setDebugLoc(DebugLoc()); 6860 } 6861 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6862 N->setIROrder(Order); 6863 return N; 6864 } 6865 6866 /// MorphNodeTo - This *mutates* the specified node to have the specified 6867 /// return type, opcode, and operands. 6868 /// 6869 /// Note that MorphNodeTo returns the resultant node. If there is already a 6870 /// node of the specified opcode and operands, it returns that node instead of 6871 /// the current one. Note that the SDLoc need not be the same. 6872 /// 6873 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6874 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6875 /// node, and because it doesn't require CSE recalculation for any of 6876 /// the node's users. 6877 /// 6878 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6879 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6880 /// the legalizer which maintain worklists that would need to be updated when 6881 /// deleting things. 6882 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6883 SDVTList VTs, ArrayRef<SDValue> Ops) { 6884 // If an identical node already exists, use it. 6885 void *IP = nullptr; 6886 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6887 FoldingSetNodeID ID; 6888 AddNodeIDNode(ID, Opc, VTs, Ops); 6889 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6890 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6891 } 6892 6893 if (!RemoveNodeFromCSEMaps(N)) 6894 IP = nullptr; 6895 6896 // Start the morphing. 6897 N->NodeType = Opc; 6898 N->ValueList = VTs.VTs; 6899 N->NumValues = VTs.NumVTs; 6900 6901 // Clear the operands list, updating used nodes to remove this from their 6902 // use list. Keep track of any operands that become dead as a result. 6903 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6904 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6905 SDUse &Use = *I++; 6906 SDNode *Used = Use.getNode(); 6907 Use.set(SDValue()); 6908 if (Used->use_empty()) 6909 DeadNodeSet.insert(Used); 6910 } 6911 6912 // For MachineNode, initialize the memory references information. 6913 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6914 MN->setMemRefs(nullptr, nullptr); 6915 6916 // Swap for an appropriately sized array from the recycler. 6917 removeOperands(N); 6918 createOperands(N, Ops); 6919 6920 // Delete any nodes that are still dead after adding the uses for the 6921 // new operands. 6922 if (!DeadNodeSet.empty()) { 6923 SmallVector<SDNode *, 16> DeadNodes; 6924 for (SDNode *N : DeadNodeSet) 6925 if (N->use_empty()) 6926 DeadNodes.push_back(N); 6927 RemoveDeadNodes(DeadNodes); 6928 } 6929 6930 if (IP) 6931 CSEMap.InsertNode(N, IP); // Memoize the new node. 6932 return N; 6933 } 6934 6935 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 6936 unsigned OrigOpc = Node->getOpcode(); 6937 unsigned NewOpc; 6938 bool IsUnary = false; 6939 bool IsTernary = false; 6940 switch (OrigOpc) { 6941 default: 6942 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 6943 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 6944 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 6945 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 6946 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 6947 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 6948 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 6949 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 6950 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 6951 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 6952 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 6953 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 6954 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 6955 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 6956 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 6957 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 6958 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 6959 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 6960 case ISD::STRICT_FNEARBYINT: 6961 NewOpc = ISD::FNEARBYINT; 6962 IsUnary = true; 6963 break; 6964 } 6965 6966 // We're taking this node out of the chain, so we need to re-link things. 6967 SDValue InputChain = Node->getOperand(0); 6968 SDValue OutputChain = SDValue(Node, 1); 6969 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 6970 6971 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 6972 SDNode *Res = nullptr; 6973 if (IsUnary) 6974 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 6975 else if (IsTernary) 6976 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6977 Node->getOperand(2), 6978 Node->getOperand(3)}); 6979 else 6980 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6981 Node->getOperand(2) }); 6982 6983 // MorphNodeTo can operate in two ways: if an existing node with the 6984 // specified operands exists, it can just return it. Otherwise, it 6985 // updates the node in place to have the requested operands. 6986 if (Res == Node) { 6987 // If we updated the node in place, reset the node ID. To the isel, 6988 // this should be just like a newly allocated machine node. 6989 Res->setNodeId(-1); 6990 } else { 6991 ReplaceAllUsesWith(Node, Res); 6992 RemoveDeadNode(Node); 6993 } 6994 6995 return Res; 6996 } 6997 6998 /// getMachineNode - These are used for target selectors to create a new node 6999 /// with specified return type(s), MachineInstr opcode, and operands. 7000 /// 7001 /// Note that getMachineNode returns the resultant node. If there is already a 7002 /// node of the specified opcode and operands, it returns that node instead of 7003 /// the current one. 7004 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7005 EVT VT) { 7006 SDVTList VTs = getVTList(VT); 7007 return getMachineNode(Opcode, dl, VTs, None); 7008 } 7009 7010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7011 EVT VT, SDValue Op1) { 7012 SDVTList VTs = getVTList(VT); 7013 SDValue Ops[] = { Op1 }; 7014 return getMachineNode(Opcode, dl, VTs, Ops); 7015 } 7016 7017 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7018 EVT VT, SDValue Op1, SDValue Op2) { 7019 SDVTList VTs = getVTList(VT); 7020 SDValue Ops[] = { Op1, Op2 }; 7021 return getMachineNode(Opcode, dl, VTs, Ops); 7022 } 7023 7024 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7025 EVT VT, SDValue Op1, SDValue Op2, 7026 SDValue Op3) { 7027 SDVTList VTs = getVTList(VT); 7028 SDValue Ops[] = { Op1, Op2, Op3 }; 7029 return getMachineNode(Opcode, dl, VTs, Ops); 7030 } 7031 7032 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7033 EVT VT, ArrayRef<SDValue> Ops) { 7034 SDVTList VTs = getVTList(VT); 7035 return getMachineNode(Opcode, dl, VTs, Ops); 7036 } 7037 7038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7039 EVT VT1, EVT VT2, SDValue Op1, 7040 SDValue Op2) { 7041 SDVTList VTs = getVTList(VT1, VT2); 7042 SDValue Ops[] = { Op1, Op2 }; 7043 return getMachineNode(Opcode, dl, VTs, Ops); 7044 } 7045 7046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7047 EVT VT1, EVT VT2, SDValue Op1, 7048 SDValue Op2, SDValue Op3) { 7049 SDVTList VTs = getVTList(VT1, VT2); 7050 SDValue Ops[] = { Op1, Op2, Op3 }; 7051 return getMachineNode(Opcode, dl, VTs, Ops); 7052 } 7053 7054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7055 EVT VT1, EVT VT2, 7056 ArrayRef<SDValue> Ops) { 7057 SDVTList VTs = getVTList(VT1, VT2); 7058 return getMachineNode(Opcode, dl, VTs, Ops); 7059 } 7060 7061 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7062 EVT VT1, EVT VT2, EVT VT3, 7063 SDValue Op1, SDValue Op2) { 7064 SDVTList VTs = getVTList(VT1, VT2, VT3); 7065 SDValue Ops[] = { Op1, Op2 }; 7066 return getMachineNode(Opcode, dl, VTs, Ops); 7067 } 7068 7069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7070 EVT VT1, EVT VT2, EVT VT3, 7071 SDValue Op1, SDValue Op2, 7072 SDValue Op3) { 7073 SDVTList VTs = getVTList(VT1, VT2, VT3); 7074 SDValue Ops[] = { Op1, Op2, Op3 }; 7075 return getMachineNode(Opcode, dl, VTs, Ops); 7076 } 7077 7078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7079 EVT VT1, EVT VT2, EVT VT3, 7080 ArrayRef<SDValue> Ops) { 7081 SDVTList VTs = getVTList(VT1, VT2, VT3); 7082 return getMachineNode(Opcode, dl, VTs, Ops); 7083 } 7084 7085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7086 ArrayRef<EVT> ResultTys, 7087 ArrayRef<SDValue> Ops) { 7088 SDVTList VTs = getVTList(ResultTys); 7089 return getMachineNode(Opcode, dl, VTs, Ops); 7090 } 7091 7092 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7093 SDVTList VTs, 7094 ArrayRef<SDValue> Ops) { 7095 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7096 MachineSDNode *N; 7097 void *IP = nullptr; 7098 7099 if (DoCSE) { 7100 FoldingSetNodeID ID; 7101 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7102 IP = nullptr; 7103 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7104 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7105 } 7106 } 7107 7108 // Allocate a new MachineSDNode. 7109 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7110 createOperands(N, Ops); 7111 7112 if (DoCSE) 7113 CSEMap.InsertNode(N, IP); 7114 7115 InsertNode(N); 7116 return N; 7117 } 7118 7119 /// getTargetExtractSubreg - A convenience function for creating 7120 /// TargetOpcode::EXTRACT_SUBREG nodes. 7121 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7122 SDValue Operand) { 7123 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7124 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7125 VT, Operand, SRIdxVal); 7126 return SDValue(Subreg, 0); 7127 } 7128 7129 /// getTargetInsertSubreg - A convenience function for creating 7130 /// TargetOpcode::INSERT_SUBREG nodes. 7131 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7132 SDValue Operand, SDValue Subreg) { 7133 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7134 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7135 VT, Operand, Subreg, SRIdxVal); 7136 return SDValue(Result, 0); 7137 } 7138 7139 /// getNodeIfExists - Get the specified node if it's already available, or 7140 /// else return NULL. 7141 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7142 ArrayRef<SDValue> Ops, 7143 const SDNodeFlags Flags) { 7144 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7145 FoldingSetNodeID ID; 7146 AddNodeIDNode(ID, Opcode, VTList, Ops); 7147 void *IP = nullptr; 7148 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7149 E->intersectFlagsWith(Flags); 7150 return E; 7151 } 7152 } 7153 return nullptr; 7154 } 7155 7156 /// getDbgValue - Creates a SDDbgValue node. 7157 /// 7158 /// SDNode 7159 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7160 SDNode *N, unsigned R, bool IsIndirect, 7161 const DebugLoc &DL, unsigned O) { 7162 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7163 "Expected inlined-at fields to agree"); 7164 return new (DbgInfo->getAlloc()) 7165 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7166 } 7167 7168 /// Constant 7169 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7170 DIExpression *Expr, 7171 const Value *C, 7172 const DebugLoc &DL, unsigned O) { 7173 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7174 "Expected inlined-at fields to agree"); 7175 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7176 } 7177 7178 /// FrameIndex 7179 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7180 DIExpression *Expr, unsigned FI, 7181 const DebugLoc &DL, 7182 unsigned O) { 7183 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7184 "Expected inlined-at fields to agree"); 7185 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O); 7186 } 7187 7188 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7189 unsigned OffsetInBits, unsigned SizeInBits, 7190 bool InvalidateDbg) { 7191 SDNode *FromNode = From.getNode(); 7192 SDNode *ToNode = To.getNode(); 7193 assert(FromNode && ToNode && "Can't modify dbg values"); 7194 7195 // PR35338 7196 // TODO: assert(From != To && "Redundant dbg value transfer"); 7197 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7198 if (From == To || FromNode == ToNode) 7199 return; 7200 7201 if (!FromNode->getHasDebugValue()) 7202 return; 7203 7204 SmallVector<SDDbgValue *, 2> ClonedDVs; 7205 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7206 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7207 continue; 7208 7209 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7210 7211 // Just transfer the dbg value attached to From. 7212 if (Dbg->getResNo() != From.getResNo()) 7213 continue; 7214 7215 DIVariable *Var = Dbg->getVariable(); 7216 auto *Expr = Dbg->getExpression(); 7217 // If a fragment is requested, update the expression. 7218 if (SizeInBits) { 7219 // When splitting a larger (e.g., sign-extended) value whose 7220 // lower bits are described with an SDDbgValue, do not attempt 7221 // to transfer the SDDbgValue to the upper bits. 7222 if (auto FI = Expr->getFragmentInfo()) 7223 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7224 continue; 7225 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7226 SizeInBits); 7227 if (!Fragment) 7228 continue; 7229 Expr = *Fragment; 7230 } 7231 // Clone the SDDbgValue and move it to To. 7232 SDDbgValue *Clone = 7233 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7234 Dbg->getDebugLoc(), Dbg->getOrder()); 7235 ClonedDVs.push_back(Clone); 7236 7237 if (InvalidateDbg) 7238 Dbg->setIsInvalidated(); 7239 } 7240 7241 for (SDDbgValue *Dbg : ClonedDVs) 7242 AddDbgValue(Dbg, ToNode, false); 7243 } 7244 7245 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7246 if (!N.getHasDebugValue()) 7247 return; 7248 7249 SmallVector<SDDbgValue *, 2> ClonedDVs; 7250 for (auto DV : GetDbgValues(&N)) { 7251 if (DV->isInvalidated()) 7252 continue; 7253 switch (N.getOpcode()) { 7254 default: 7255 break; 7256 case ISD::ADD: 7257 SDValue N0 = N.getOperand(0); 7258 SDValue N1 = N.getOperand(1); 7259 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7260 isConstantIntBuildVectorOrConstantInt(N1)) { 7261 uint64_t Offset = N.getConstantOperandVal(1); 7262 // Rewrite an ADD constant node into a DIExpression. Since we are 7263 // performing arithmetic to compute the variable's *value* in the 7264 // DIExpression, we need to mark the expression with a 7265 // DW_OP_stack_value. 7266 auto *DIExpr = DV->getExpression(); 7267 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7268 DIExpression::NoDeref, 7269 DIExpression::WithStackValue); 7270 SDDbgValue *Clone = 7271 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7272 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7273 ClonedDVs.push_back(Clone); 7274 DV->setIsInvalidated(); 7275 DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this); 7276 dbgs() << " into " << *DIExpr << '\n'); 7277 } 7278 } 7279 } 7280 7281 for (SDDbgValue *Dbg : ClonedDVs) 7282 AddDbgValue(Dbg, Dbg->getSDNode(), false); 7283 } 7284 7285 namespace { 7286 7287 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7288 /// pointed to by a use iterator is deleted, increment the use iterator 7289 /// so that it doesn't dangle. 7290 /// 7291 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7292 SDNode::use_iterator &UI; 7293 SDNode::use_iterator &UE; 7294 7295 void NodeDeleted(SDNode *N, SDNode *E) override { 7296 // Increment the iterator as needed. 7297 while (UI != UE && N == *UI) 7298 ++UI; 7299 } 7300 7301 public: 7302 RAUWUpdateListener(SelectionDAG &d, 7303 SDNode::use_iterator &ui, 7304 SDNode::use_iterator &ue) 7305 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7306 }; 7307 7308 } // end anonymous namespace 7309 7310 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7311 /// This can cause recursive merging of nodes in the DAG. 7312 /// 7313 /// This version assumes From has a single result value. 7314 /// 7315 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7316 SDNode *From = FromN.getNode(); 7317 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7318 "Cannot replace with this method!"); 7319 assert(From != To.getNode() && "Cannot replace uses of with self"); 7320 7321 // Preserve Debug Values 7322 transferDbgValues(FromN, To); 7323 7324 // Iterate over all the existing uses of From. New uses will be added 7325 // to the beginning of the use list, which we avoid visiting. 7326 // This specifically avoids visiting uses of From that arise while the 7327 // replacement is happening, because any such uses would be the result 7328 // of CSE: If an existing node looks like From after one of its operands 7329 // is replaced by To, we don't want to replace of all its users with To 7330 // too. See PR3018 for more info. 7331 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7332 RAUWUpdateListener Listener(*this, UI, UE); 7333 while (UI != UE) { 7334 SDNode *User = *UI; 7335 7336 // This node is about to morph, remove its old self from the CSE maps. 7337 RemoveNodeFromCSEMaps(User); 7338 7339 // A user can appear in a use list multiple times, and when this 7340 // happens the uses are usually next to each other in the list. 7341 // To help reduce the number of CSE recomputations, process all 7342 // the uses of this user that we can find this way. 7343 do { 7344 SDUse &Use = UI.getUse(); 7345 ++UI; 7346 Use.set(To); 7347 if (To->isDivergent() != From->isDivergent()) 7348 updateDivergence(User); 7349 } while (UI != UE && *UI == User); 7350 // Now that we have modified User, add it back to the CSE maps. If it 7351 // already exists there, recursively merge the results together. 7352 AddModifiedNodeToCSEMaps(User); 7353 } 7354 7355 // If we just RAUW'd the root, take note. 7356 if (FromN == getRoot()) 7357 setRoot(To); 7358 } 7359 7360 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7361 /// This can cause recursive merging of nodes in the DAG. 7362 /// 7363 /// This version assumes that for each value of From, there is a 7364 /// corresponding value in To in the same position with the same type. 7365 /// 7366 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 7367 #ifndef NDEBUG 7368 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7369 assert((!From->hasAnyUseOfValue(i) || 7370 From->getValueType(i) == To->getValueType(i)) && 7371 "Cannot use this version of ReplaceAllUsesWith!"); 7372 #endif 7373 7374 // Handle the trivial case. 7375 if (From == To) 7376 return; 7377 7378 // Preserve Debug Info. Only do this if there's a use. 7379 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7380 if (From->hasAnyUseOfValue(i)) { 7381 assert((i < To->getNumValues()) && "Invalid To location"); 7382 transferDbgValues(SDValue(From, i), SDValue(To, i)); 7383 } 7384 7385 // Iterate over just the existing users of From. See the comments in 7386 // the ReplaceAllUsesWith above. 7387 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7388 RAUWUpdateListener Listener(*this, UI, UE); 7389 while (UI != UE) { 7390 SDNode *User = *UI; 7391 7392 // This node is about to morph, remove its old self from the CSE maps. 7393 RemoveNodeFromCSEMaps(User); 7394 7395 // A user can appear in a use list multiple times, and when this 7396 // happens the uses are usually next to each other in the list. 7397 // To help reduce the number of CSE recomputations, process all 7398 // the uses of this user that we can find this way. 7399 do { 7400 SDUse &Use = UI.getUse(); 7401 ++UI; 7402 Use.setNode(To); 7403 if (To->isDivergent() != From->isDivergent()) 7404 updateDivergence(User); 7405 } while (UI != UE && *UI == User); 7406 7407 // Now that we have modified User, add it back to the CSE maps. If it 7408 // already exists there, recursively merge the results together. 7409 AddModifiedNodeToCSEMaps(User); 7410 } 7411 7412 // If we just RAUW'd the root, take note. 7413 if (From == getRoot().getNode()) 7414 setRoot(SDValue(To, getRoot().getResNo())); 7415 } 7416 7417 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7418 /// This can cause recursive merging of nodes in the DAG. 7419 /// 7420 /// This version can replace From with any result values. To must match the 7421 /// number and types of values returned by From. 7422 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7423 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7424 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7425 7426 // Preserve Debug Info. 7427 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7428 transferDbgValues(SDValue(From, i), *To); 7429 7430 // Iterate over just the existing users of From. See the comments in 7431 // the ReplaceAllUsesWith above. 7432 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7433 RAUWUpdateListener Listener(*this, UI, UE); 7434 while (UI != UE) { 7435 SDNode *User = *UI; 7436 7437 // This node is about to morph, remove its old self from the CSE maps. 7438 RemoveNodeFromCSEMaps(User); 7439 7440 // A user can appear in a use list multiple times, and when this 7441 // happens the uses are usually next to each other in the list. 7442 // To help reduce the number of CSE recomputations, process all 7443 // the uses of this user that we can find this way. 7444 do { 7445 SDUse &Use = UI.getUse(); 7446 const SDValue &ToOp = To[Use.getResNo()]; 7447 ++UI; 7448 Use.set(ToOp); 7449 if (To->getNode()->isDivergent() != From->isDivergent()) 7450 updateDivergence(User); 7451 } while (UI != UE && *UI == User); 7452 // Now that we have modified User, add it back to the CSE maps. If it 7453 // already exists there, recursively merge the results together. 7454 AddModifiedNodeToCSEMaps(User); 7455 } 7456 7457 // If we just RAUW'd the root, take note. 7458 if (From == getRoot().getNode()) 7459 setRoot(SDValue(To[getRoot().getResNo()])); 7460 } 7461 7462 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7463 /// uses of other values produced by From.getNode() alone. The Deleted 7464 /// vector is handled the same way as for ReplaceAllUsesWith. 7465 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7466 // Handle the really simple, really trivial case efficiently. 7467 if (From == To) return; 7468 7469 // Handle the simple, trivial, case efficiently. 7470 if (From.getNode()->getNumValues() == 1) { 7471 ReplaceAllUsesWith(From, To); 7472 return; 7473 } 7474 7475 // Preserve Debug Info. 7476 transferDbgValues(From, To); 7477 7478 // Iterate over just the existing users of From. See the comments in 7479 // the ReplaceAllUsesWith above. 7480 SDNode::use_iterator UI = From.getNode()->use_begin(), 7481 UE = From.getNode()->use_end(); 7482 RAUWUpdateListener Listener(*this, UI, UE); 7483 while (UI != UE) { 7484 SDNode *User = *UI; 7485 bool UserRemovedFromCSEMaps = false; 7486 7487 // A user can appear in a use list multiple times, and when this 7488 // happens the uses are usually next to each other in the list. 7489 // To help reduce the number of CSE recomputations, process all 7490 // the uses of this user that we can find this way. 7491 do { 7492 SDUse &Use = UI.getUse(); 7493 7494 // Skip uses of different values from the same node. 7495 if (Use.getResNo() != From.getResNo()) { 7496 ++UI; 7497 continue; 7498 } 7499 7500 // If this node hasn't been modified yet, it's still in the CSE maps, 7501 // so remove its old self from the CSE maps. 7502 if (!UserRemovedFromCSEMaps) { 7503 RemoveNodeFromCSEMaps(User); 7504 UserRemovedFromCSEMaps = true; 7505 } 7506 7507 ++UI; 7508 Use.set(To); 7509 if (To->isDivergent() != From->isDivergent()) 7510 updateDivergence(User); 7511 } while (UI != UE && *UI == User); 7512 // We are iterating over all uses of the From node, so if a use 7513 // doesn't use the specific value, no changes are made. 7514 if (!UserRemovedFromCSEMaps) 7515 continue; 7516 7517 // Now that we have modified User, add it back to the CSE maps. If it 7518 // already exists there, recursively merge the results together. 7519 AddModifiedNodeToCSEMaps(User); 7520 } 7521 7522 // If we just RAUW'd the root, take note. 7523 if (From == getRoot()) 7524 setRoot(To); 7525 } 7526 7527 namespace { 7528 7529 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7530 /// to record information about a use. 7531 struct UseMemo { 7532 SDNode *User; 7533 unsigned Index; 7534 SDUse *Use; 7535 }; 7536 7537 /// operator< - Sort Memos by User. 7538 bool operator<(const UseMemo &L, const UseMemo &R) { 7539 return (intptr_t)L.User < (intptr_t)R.User; 7540 } 7541 7542 } // end anonymous namespace 7543 7544 void SelectionDAG::updateDivergence(SDNode * N) 7545 { 7546 if (TLI->isSDNodeAlwaysUniform(N)) 7547 return; 7548 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 7549 for (auto &Op : N->ops()) { 7550 if (Op.Val.getValueType() != MVT::Other) 7551 IsDivergent |= Op.getNode()->isDivergent(); 7552 } 7553 if (N->SDNodeBits.IsDivergent != IsDivergent) { 7554 N->SDNodeBits.IsDivergent = IsDivergent; 7555 for (auto U : N->uses()) { 7556 updateDivergence(U); 7557 } 7558 } 7559 } 7560 7561 7562 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) { 7563 DenseMap<SDNode *, unsigned> Degree; 7564 Order.reserve(AllNodes.size()); 7565 for (auto & N : allnodes()) { 7566 unsigned NOps = N.getNumOperands(); 7567 Degree[&N] = NOps; 7568 if (0 == NOps) 7569 Order.push_back(&N); 7570 } 7571 for (std::vector<SDNode *>::iterator I = Order.begin(); 7572 I!=Order.end();++I) { 7573 SDNode * N = *I; 7574 for (auto U : N->uses()) { 7575 unsigned &UnsortedOps = Degree[U]; 7576 if (0 == --UnsortedOps) 7577 Order.push_back(U); 7578 } 7579 } 7580 } 7581 7582 void SelectionDAG::VerifyDAGDiverence() 7583 { 7584 std::vector<SDNode*> TopoOrder; 7585 CreateTopologicalOrder(TopoOrder); 7586 const TargetLowering &TLI = getTargetLoweringInfo(); 7587 DenseMap<const SDNode *, bool> DivergenceMap; 7588 for (auto &N : allnodes()) { 7589 DivergenceMap[&N] = false; 7590 } 7591 for (auto N : TopoOrder) { 7592 bool IsDivergent = DivergenceMap[N]; 7593 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 7594 for (auto &Op : N->ops()) { 7595 if (Op.Val.getValueType() != MVT::Other) 7596 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 7597 } 7598 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 7599 DivergenceMap[N] = true; 7600 } 7601 } 7602 for (auto &N : allnodes()) { 7603 (void)N; 7604 assert(DivergenceMap[&N] == N.isDivergent() && 7605 "Divergence bit inconsistency detected\n"); 7606 } 7607 } 7608 7609 7610 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7611 /// uses of other values produced by From.getNode() alone. The same value 7612 /// may appear in both the From and To list. The Deleted vector is 7613 /// handled the same way as for ReplaceAllUsesWith. 7614 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7615 const SDValue *To, 7616 unsigned Num){ 7617 // Handle the simple, trivial case efficiently. 7618 if (Num == 1) 7619 return ReplaceAllUsesOfValueWith(*From, *To); 7620 7621 transferDbgValues(*From, *To); 7622 7623 // Read up all the uses and make records of them. This helps 7624 // processing new uses that are introduced during the 7625 // replacement process. 7626 SmallVector<UseMemo, 4> Uses; 7627 for (unsigned i = 0; i != Num; ++i) { 7628 unsigned FromResNo = From[i].getResNo(); 7629 SDNode *FromNode = From[i].getNode(); 7630 for (SDNode::use_iterator UI = FromNode->use_begin(), 7631 E = FromNode->use_end(); UI != E; ++UI) { 7632 SDUse &Use = UI.getUse(); 7633 if (Use.getResNo() == FromResNo) { 7634 UseMemo Memo = { *UI, i, &Use }; 7635 Uses.push_back(Memo); 7636 } 7637 } 7638 } 7639 7640 // Sort the uses, so that all the uses from a given User are together. 7641 std::sort(Uses.begin(), Uses.end()); 7642 7643 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 7644 UseIndex != UseIndexEnd; ) { 7645 // We know that this user uses some value of From. If it is the right 7646 // value, update it. 7647 SDNode *User = Uses[UseIndex].User; 7648 7649 // This node is about to morph, remove its old self from the CSE maps. 7650 RemoveNodeFromCSEMaps(User); 7651 7652 // The Uses array is sorted, so all the uses for a given User 7653 // are next to each other in the list. 7654 // To help reduce the number of CSE recomputations, process all 7655 // the uses of this user that we can find this way. 7656 do { 7657 unsigned i = Uses[UseIndex].Index; 7658 SDUse &Use = *Uses[UseIndex].Use; 7659 ++UseIndex; 7660 7661 Use.set(To[i]); 7662 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 7663 7664 // Now that we have modified User, add it back to the CSE maps. If it 7665 // already exists there, recursively merge the results together. 7666 AddModifiedNodeToCSEMaps(User); 7667 } 7668 } 7669 7670 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 7671 /// based on their topological order. It returns the maximum id and a vector 7672 /// of the SDNodes* in assigned order by reference. 7673 unsigned SelectionDAG::AssignTopologicalOrder() { 7674 unsigned DAGSize = 0; 7675 7676 // SortedPos tracks the progress of the algorithm. Nodes before it are 7677 // sorted, nodes after it are unsorted. When the algorithm completes 7678 // it is at the end of the list. 7679 allnodes_iterator SortedPos = allnodes_begin(); 7680 7681 // Visit all the nodes. Move nodes with no operands to the front of 7682 // the list immediately. Annotate nodes that do have operands with their 7683 // operand count. Before we do this, the Node Id fields of the nodes 7684 // may contain arbitrary values. After, the Node Id fields for nodes 7685 // before SortedPos will contain the topological sort index, and the 7686 // Node Id fields for nodes At SortedPos and after will contain the 7687 // count of outstanding operands. 7688 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 7689 SDNode *N = &*I++; 7690 checkForCycles(N, this); 7691 unsigned Degree = N->getNumOperands(); 7692 if (Degree == 0) { 7693 // A node with no uses, add it to the result array immediately. 7694 N->setNodeId(DAGSize++); 7695 allnodes_iterator Q(N); 7696 if (Q != SortedPos) 7697 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7698 assert(SortedPos != AllNodes.end() && "Overran node list"); 7699 ++SortedPos; 7700 } else { 7701 // Temporarily use the Node Id as scratch space for the degree count. 7702 N->setNodeId(Degree); 7703 } 7704 } 7705 7706 // Visit all the nodes. As we iterate, move nodes into sorted order, 7707 // such that by the time the end is reached all nodes will be sorted. 7708 for (SDNode &Node : allnodes()) { 7709 SDNode *N = &Node; 7710 checkForCycles(N, this); 7711 // N is in sorted position, so all its uses have one less operand 7712 // that needs to be sorted. 7713 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7714 UI != UE; ++UI) { 7715 SDNode *P = *UI; 7716 unsigned Degree = P->getNodeId(); 7717 assert(Degree != 0 && "Invalid node degree"); 7718 --Degree; 7719 if (Degree == 0) { 7720 // All of P's operands are sorted, so P may sorted now. 7721 P->setNodeId(DAGSize++); 7722 if (P->getIterator() != SortedPos) 7723 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7724 assert(SortedPos != AllNodes.end() && "Overran node list"); 7725 ++SortedPos; 7726 } else { 7727 // Update P's outstanding operand count. 7728 P->setNodeId(Degree); 7729 } 7730 } 7731 if (Node.getIterator() == SortedPos) { 7732 #ifndef NDEBUG 7733 allnodes_iterator I(N); 7734 SDNode *S = &*++I; 7735 dbgs() << "Overran sorted position:\n"; 7736 S->dumprFull(this); dbgs() << "\n"; 7737 dbgs() << "Checking if this is due to cycles\n"; 7738 checkForCycles(this, true); 7739 #endif 7740 llvm_unreachable(nullptr); 7741 } 7742 } 7743 7744 assert(SortedPos == AllNodes.end() && 7745 "Topological sort incomplete!"); 7746 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7747 "First node in topological sort is not the entry token!"); 7748 assert(AllNodes.front().getNodeId() == 0 && 7749 "First node in topological sort has non-zero id!"); 7750 assert(AllNodes.front().getNumOperands() == 0 && 7751 "First node in topological sort has operands!"); 7752 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7753 "Last node in topologic sort has unexpected id!"); 7754 assert(AllNodes.back().use_empty() && 7755 "Last node in topologic sort has users!"); 7756 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7757 return DAGSize; 7758 } 7759 7760 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7761 /// value is produced by SD. 7762 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7763 if (SD) { 7764 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7765 SD->setHasDebugValue(true); 7766 } 7767 DbgInfo->add(DB, SD, isParameter); 7768 } 7769 7770 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 7771 SDValue NewMemOp) { 7772 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 7773 // The new memory operation must have the same position as the old load in 7774 // terms of memory dependency. Create a TokenFactor for the old load and new 7775 // memory operation and update uses of the old load's output chain to use that 7776 // TokenFactor. 7777 SDValue OldChain = SDValue(OldLoad, 1); 7778 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 7779 if (!OldLoad->hasAnyUseOfValue(1)) 7780 return NewChain; 7781 7782 SDValue TokenFactor = 7783 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 7784 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 7785 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 7786 return TokenFactor; 7787 } 7788 7789 //===----------------------------------------------------------------------===// 7790 // SDNode Class 7791 //===----------------------------------------------------------------------===// 7792 7793 bool llvm::isNullConstant(SDValue V) { 7794 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7795 return Const != nullptr && Const->isNullValue(); 7796 } 7797 7798 bool llvm::isNullFPConstant(SDValue V) { 7799 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7800 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7801 } 7802 7803 bool llvm::isAllOnesConstant(SDValue V) { 7804 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7805 return Const != nullptr && Const->isAllOnesValue(); 7806 } 7807 7808 bool llvm::isOneConstant(SDValue V) { 7809 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7810 return Const != nullptr && Const->isOne(); 7811 } 7812 7813 bool llvm::isBitwiseNot(SDValue V) { 7814 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7815 } 7816 7817 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7818 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7819 return CN; 7820 7821 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7822 BitVector UndefElements; 7823 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7824 7825 // BuildVectors can truncate their operands. Ignore that case here. 7826 // FIXME: We blindly ignore splats which include undef which is overly 7827 // pessimistic. 7828 if (CN && UndefElements.none() && 7829 CN->getValueType(0) == N.getValueType().getScalarType()) 7830 return CN; 7831 } 7832 7833 return nullptr; 7834 } 7835 7836 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7837 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7838 return CN; 7839 7840 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7841 BitVector UndefElements; 7842 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7843 7844 if (CN && UndefElements.none()) 7845 return CN; 7846 } 7847 7848 return nullptr; 7849 } 7850 7851 HandleSDNode::~HandleSDNode() { 7852 DropOperands(); 7853 } 7854 7855 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7856 const DebugLoc &DL, 7857 const GlobalValue *GA, EVT VT, 7858 int64_t o, unsigned char TF) 7859 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7860 TheGlobal = GA; 7861 } 7862 7863 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7864 EVT VT, unsigned SrcAS, 7865 unsigned DestAS) 7866 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7867 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7868 7869 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7870 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7871 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7872 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7873 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7874 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7875 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7876 7877 // We check here that the size of the memory operand fits within the size of 7878 // the MMO. This is because the MMO might indicate only a possible address 7879 // range instead of specifying the affected memory addresses precisely. 7880 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7881 } 7882 7883 /// Profile - Gather unique data for the node. 7884 /// 7885 void SDNode::Profile(FoldingSetNodeID &ID) const { 7886 AddNodeIDNode(ID, this); 7887 } 7888 7889 namespace { 7890 7891 struct EVTArray { 7892 std::vector<EVT> VTs; 7893 7894 EVTArray() { 7895 VTs.reserve(MVT::LAST_VALUETYPE); 7896 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7897 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7898 } 7899 }; 7900 7901 } // end anonymous namespace 7902 7903 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 7904 static ManagedStatic<EVTArray> SimpleVTArray; 7905 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 7906 7907 /// getValueTypeList - Return a pointer to the specified value type. 7908 /// 7909 const EVT *SDNode::getValueTypeList(EVT VT) { 7910 if (VT.isExtended()) { 7911 sys::SmartScopedLock<true> Lock(*VTMutex); 7912 return &(*EVTs->insert(VT).first); 7913 } else { 7914 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7915 "Value type out of range!"); 7916 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7917 } 7918 } 7919 7920 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7921 /// indicated value. This method ignores uses of other values defined by this 7922 /// operation. 7923 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7924 assert(Value < getNumValues() && "Bad value!"); 7925 7926 // TODO: Only iterate over uses of a given value of the node 7927 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7928 if (UI.getUse().getResNo() == Value) { 7929 if (NUses == 0) 7930 return false; 7931 --NUses; 7932 } 7933 } 7934 7935 // Found exactly the right number of uses? 7936 return NUses == 0; 7937 } 7938 7939 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7940 /// value. This method ignores uses of other values defined by this operation. 7941 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7942 assert(Value < getNumValues() && "Bad value!"); 7943 7944 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7945 if (UI.getUse().getResNo() == Value) 7946 return true; 7947 7948 return false; 7949 } 7950 7951 /// isOnlyUserOf - Return true if this node is the only use of N. 7952 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7953 bool Seen = false; 7954 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7955 SDNode *User = *I; 7956 if (User == this) 7957 Seen = true; 7958 else 7959 return false; 7960 } 7961 7962 return Seen; 7963 } 7964 7965 /// Return true if the only users of N are contained in Nodes. 7966 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7967 bool Seen = false; 7968 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7969 SDNode *User = *I; 7970 if (llvm::any_of(Nodes, 7971 [&User](const SDNode *Node) { return User == Node; })) 7972 Seen = true; 7973 else 7974 return false; 7975 } 7976 7977 return Seen; 7978 } 7979 7980 /// isOperand - Return true if this node is an operand of N. 7981 bool SDValue::isOperandOf(const SDNode *N) const { 7982 for (const SDValue &Op : N->op_values()) 7983 if (*this == Op) 7984 return true; 7985 return false; 7986 } 7987 7988 bool SDNode::isOperandOf(const SDNode *N) const { 7989 for (const SDValue &Op : N->op_values()) 7990 if (this == Op.getNode()) 7991 return true; 7992 return false; 7993 } 7994 7995 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7996 /// be a chain) reaches the specified operand without crossing any 7997 /// side-effecting instructions on any chain path. In practice, this looks 7998 /// through token factors and non-volatile loads. In order to remain efficient, 7999 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8000 /// 8001 /// Note that we only need to examine chains when we're searching for 8002 /// side-effects; SelectionDAG requires that all side-effects are represented 8003 /// by chains, even if another operand would force a specific ordering. This 8004 /// constraint is necessary to allow transformations like splitting loads. 8005 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8006 unsigned Depth) const { 8007 if (*this == Dest) return true; 8008 8009 // Don't search too deeply, we just want to be able to see through 8010 // TokenFactor's etc. 8011 if (Depth == 0) return false; 8012 8013 // If this is a token factor, all inputs to the TF happen in parallel. 8014 if (getOpcode() == ISD::TokenFactor) { 8015 // First, try a shallow search. 8016 if (is_contained((*this)->ops(), Dest)) { 8017 // We found the chain we want as an operand of this TokenFactor. 8018 // Essentially, we reach the chain without side-effects if we could 8019 // serialize the TokenFactor into a simple chain of operations with 8020 // Dest as the last operation. This is automatically true if the 8021 // chain has one use: there are no other ordering constraints. 8022 // If the chain has more than one use, we give up: some other 8023 // use of Dest might force a side-effect between Dest and the current 8024 // node. 8025 if (Dest.hasOneUse()) 8026 return true; 8027 } 8028 // Next, try a deep search: check whether every operand of the TokenFactor 8029 // reaches Dest. 8030 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8031 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8032 }); 8033 } 8034 8035 // Loads don't have side effects, look through them. 8036 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8037 if (!Ld->isVolatile()) 8038 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8039 } 8040 return false; 8041 } 8042 8043 bool SDNode::hasPredecessor(const SDNode *N) const { 8044 SmallPtrSet<const SDNode *, 32> Visited; 8045 SmallVector<const SDNode *, 16> Worklist; 8046 Worklist.push_back(this); 8047 return hasPredecessorHelper(N, Visited, Worklist); 8048 } 8049 8050 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8051 this->Flags.intersectWith(Flags); 8052 } 8053 8054 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 8055 assert(N->getNumValues() == 1 && 8056 "Can't unroll a vector with multiple results!"); 8057 8058 EVT VT = N->getValueType(0); 8059 unsigned NE = VT.getVectorNumElements(); 8060 EVT EltVT = VT.getVectorElementType(); 8061 SDLoc dl(N); 8062 8063 SmallVector<SDValue, 8> Scalars; 8064 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 8065 8066 // If ResNE is 0, fully unroll the vector op. 8067 if (ResNE == 0) 8068 ResNE = NE; 8069 else if (NE > ResNE) 8070 NE = ResNE; 8071 8072 unsigned i; 8073 for (i= 0; i != NE; ++i) { 8074 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 8075 SDValue Operand = N->getOperand(j); 8076 EVT OperandVT = Operand.getValueType(); 8077 if (OperandVT.isVector()) { 8078 // A vector operand; extract a single element. 8079 EVT OperandEltVT = OperandVT.getVectorElementType(); 8080 Operands[j] = 8081 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 8082 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 8083 } else { 8084 // A scalar operand; just use it as is. 8085 Operands[j] = Operand; 8086 } 8087 } 8088 8089 switch (N->getOpcode()) { 8090 default: { 8091 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 8092 N->getFlags())); 8093 break; 8094 } 8095 case ISD::VSELECT: 8096 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 8097 break; 8098 case ISD::SHL: 8099 case ISD::SRA: 8100 case ISD::SRL: 8101 case ISD::ROTL: 8102 case ISD::ROTR: 8103 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 8104 getShiftAmountOperand(Operands[0].getValueType(), 8105 Operands[1]))); 8106 break; 8107 case ISD::SIGN_EXTEND_INREG: 8108 case ISD::FP_ROUND_INREG: { 8109 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 8110 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 8111 Operands[0], 8112 getValueType(ExtVT))); 8113 } 8114 } 8115 } 8116 8117 for (; i < ResNE; ++i) 8118 Scalars.push_back(getUNDEF(EltVT)); 8119 8120 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 8121 return getBuildVector(VecVT, dl, Scalars); 8122 } 8123 8124 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 8125 LoadSDNode *Base, 8126 unsigned Bytes, 8127 int Dist) const { 8128 if (LD->isVolatile() || Base->isVolatile()) 8129 return false; 8130 if (LD->isIndexed() || Base->isIndexed()) 8131 return false; 8132 if (LD->getChain() != Base->getChain()) 8133 return false; 8134 EVT VT = LD->getValueType(0); 8135 if (VT.getSizeInBits() / 8 != Bytes) 8136 return false; 8137 8138 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 8139 auto LocDecomp = BaseIndexOffset::match(LD, *this); 8140 8141 int64_t Offset = 0; 8142 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 8143 return (Dist * Bytes == Offset); 8144 return false; 8145 } 8146 8147 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 8148 /// it cannot be inferred. 8149 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 8150 // If this is a GlobalAddress + cst, return the alignment. 8151 const GlobalValue *GV; 8152 int64_t GVOffset = 0; 8153 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 8154 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 8155 KnownBits Known(IdxWidth); 8156 llvm::computeKnownBits(GV, Known, getDataLayout()); 8157 unsigned AlignBits = Known.countMinTrailingZeros(); 8158 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 8159 if (Align) 8160 return MinAlign(Align, GVOffset); 8161 } 8162 8163 // If this is a direct reference to a stack slot, use information about the 8164 // stack slot's alignment. 8165 int FrameIdx = 1 << 31; 8166 int64_t FrameOffset = 0; 8167 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 8168 FrameIdx = FI->getIndex(); 8169 } else if (isBaseWithConstantOffset(Ptr) && 8170 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 8171 // Handle FI+Cst 8172 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 8173 FrameOffset = Ptr.getConstantOperandVal(1); 8174 } 8175 8176 if (FrameIdx != (1 << 31)) { 8177 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 8178 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 8179 FrameOffset); 8180 return FIInfoAlign; 8181 } 8182 8183 return 0; 8184 } 8185 8186 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 8187 /// which is split (or expanded) into two not necessarily identical pieces. 8188 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 8189 // Currently all types are split in half. 8190 EVT LoVT, HiVT; 8191 if (!VT.isVector()) 8192 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 8193 else 8194 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 8195 8196 return std::make_pair(LoVT, HiVT); 8197 } 8198 8199 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 8200 /// low/high part. 8201 std::pair<SDValue, SDValue> 8202 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 8203 const EVT &HiVT) { 8204 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 8205 N.getValueType().getVectorNumElements() && 8206 "More vector elements requested than available!"); 8207 SDValue Lo, Hi; 8208 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 8209 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 8210 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 8211 getConstant(LoVT.getVectorNumElements(), DL, 8212 TLI->getVectorIdxTy(getDataLayout()))); 8213 return std::make_pair(Lo, Hi); 8214 } 8215 8216 void SelectionDAG::ExtractVectorElements(SDValue Op, 8217 SmallVectorImpl<SDValue> &Args, 8218 unsigned Start, unsigned Count) { 8219 EVT VT = Op.getValueType(); 8220 if (Count == 0) 8221 Count = VT.getVectorNumElements(); 8222 8223 EVT EltVT = VT.getVectorElementType(); 8224 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 8225 SDLoc SL(Op); 8226 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 8227 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8228 Op, getConstant(i, SL, IdxTy))); 8229 } 8230 } 8231 8232 // getAddressSpace - Return the address space this GlobalAddress belongs to. 8233 unsigned GlobalAddressSDNode::getAddressSpace() const { 8234 return getGlobal()->getType()->getAddressSpace(); 8235 } 8236 8237 Type *ConstantPoolSDNode::getType() const { 8238 if (isMachineConstantPoolEntry()) 8239 return Val.MachineCPVal->getType(); 8240 return Val.ConstVal->getType(); 8241 } 8242 8243 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 8244 unsigned &SplatBitSize, 8245 bool &HasAnyUndefs, 8246 unsigned MinSplatBits, 8247 bool IsBigEndian) const { 8248 EVT VT = getValueType(0); 8249 assert(VT.isVector() && "Expected a vector type"); 8250 unsigned VecWidth = VT.getSizeInBits(); 8251 if (MinSplatBits > VecWidth) 8252 return false; 8253 8254 // FIXME: The widths are based on this node's type, but build vectors can 8255 // truncate their operands. 8256 SplatValue = APInt(VecWidth, 0); 8257 SplatUndef = APInt(VecWidth, 0); 8258 8259 // Get the bits. Bits with undefined values (when the corresponding element 8260 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 8261 // in SplatValue. If any of the values are not constant, give up and return 8262 // false. 8263 unsigned int NumOps = getNumOperands(); 8264 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 8265 unsigned EltWidth = VT.getScalarSizeInBits(); 8266 8267 for (unsigned j = 0; j < NumOps; ++j) { 8268 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 8269 SDValue OpVal = getOperand(i); 8270 unsigned BitPos = j * EltWidth; 8271 8272 if (OpVal.isUndef()) 8273 SplatUndef.setBits(BitPos, BitPos + EltWidth); 8274 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 8275 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 8276 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 8277 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 8278 else 8279 return false; 8280 } 8281 8282 // The build_vector is all constants or undefs. Find the smallest element 8283 // size that splats the vector. 8284 HasAnyUndefs = (SplatUndef != 0); 8285 8286 // FIXME: This does not work for vectors with elements less than 8 bits. 8287 while (VecWidth > 8) { 8288 unsigned HalfSize = VecWidth / 2; 8289 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 8290 APInt LowValue = SplatValue.trunc(HalfSize); 8291 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 8292 APInt LowUndef = SplatUndef.trunc(HalfSize); 8293 8294 // If the two halves do not match (ignoring undef bits), stop here. 8295 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 8296 MinSplatBits > HalfSize) 8297 break; 8298 8299 SplatValue = HighValue | LowValue; 8300 SplatUndef = HighUndef & LowUndef; 8301 8302 VecWidth = HalfSize; 8303 } 8304 8305 SplatBitSize = VecWidth; 8306 return true; 8307 } 8308 8309 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 8310 if (UndefElements) { 8311 UndefElements->clear(); 8312 UndefElements->resize(getNumOperands()); 8313 } 8314 SDValue Splatted; 8315 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 8316 SDValue Op = getOperand(i); 8317 if (Op.isUndef()) { 8318 if (UndefElements) 8319 (*UndefElements)[i] = true; 8320 } else if (!Splatted) { 8321 Splatted = Op; 8322 } else if (Splatted != Op) { 8323 return SDValue(); 8324 } 8325 } 8326 8327 if (!Splatted) { 8328 assert(getOperand(0).isUndef() && 8329 "Can only have a splat without a constant for all undefs."); 8330 return getOperand(0); 8331 } 8332 8333 return Splatted; 8334 } 8335 8336 ConstantSDNode * 8337 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 8338 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 8339 } 8340 8341 ConstantFPSDNode * 8342 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 8343 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 8344 } 8345 8346 int32_t 8347 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 8348 uint32_t BitWidth) const { 8349 if (ConstantFPSDNode *CN = 8350 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 8351 bool IsExact; 8352 APSInt IntVal(BitWidth); 8353 const APFloat &APF = CN->getValueAPF(); 8354 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 8355 APFloat::opOK || 8356 !IsExact) 8357 return -1; 8358 8359 return IntVal.exactLogBase2(); 8360 } 8361 return -1; 8362 } 8363 8364 bool BuildVectorSDNode::isConstant() const { 8365 for (const SDValue &Op : op_values()) { 8366 unsigned Opc = Op.getOpcode(); 8367 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 8368 return false; 8369 } 8370 return true; 8371 } 8372 8373 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 8374 // Find the first non-undef value in the shuffle mask. 8375 unsigned i, e; 8376 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 8377 /* search */; 8378 8379 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 8380 8381 // Make sure all remaining elements are either undef or the same as the first 8382 // non-undef value. 8383 for (int Idx = Mask[i]; i != e; ++i) 8384 if (Mask[i] >= 0 && Mask[i] != Idx) 8385 return false; 8386 return true; 8387 } 8388 8389 // \brief Returns the SDNode if it is a constant integer BuildVector 8390 // or constant integer. 8391 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 8392 if (isa<ConstantSDNode>(N)) 8393 return N.getNode(); 8394 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 8395 return N.getNode(); 8396 // Treat a GlobalAddress supporting constant offset folding as a 8397 // constant integer. 8398 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 8399 if (GA->getOpcode() == ISD::GlobalAddress && 8400 TLI->isOffsetFoldingLegal(GA)) 8401 return GA; 8402 return nullptr; 8403 } 8404 8405 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 8406 if (isa<ConstantFPSDNode>(N)) 8407 return N.getNode(); 8408 8409 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 8410 return N.getNode(); 8411 8412 return nullptr; 8413 } 8414 8415 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 8416 assert(!Node->OperandList && "Node already has operands"); 8417 SDUse *Ops = OperandRecycler.allocate( 8418 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 8419 8420 bool IsDivergent = false; 8421 for (unsigned I = 0; I != Vals.size(); ++I) { 8422 Ops[I].setUser(Node); 8423 Ops[I].setInitial(Vals[I]); 8424 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 8425 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 8426 } 8427 Node->NumOperands = Vals.size(); 8428 Node->OperandList = Ops; 8429 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 8430 if (!TLI->isSDNodeAlwaysUniform(Node)) 8431 Node->SDNodeBits.IsDivergent = IsDivergent; 8432 checkForCycles(Node); 8433 } 8434 8435 #ifndef NDEBUG 8436 static void checkForCyclesHelper(const SDNode *N, 8437 SmallPtrSetImpl<const SDNode*> &Visited, 8438 SmallPtrSetImpl<const SDNode*> &Checked, 8439 const llvm::SelectionDAG *DAG) { 8440 // If this node has already been checked, don't check it again. 8441 if (Checked.count(N)) 8442 return; 8443 8444 // If a node has already been visited on this depth-first walk, reject it as 8445 // a cycle. 8446 if (!Visited.insert(N).second) { 8447 errs() << "Detected cycle in SelectionDAG\n"; 8448 dbgs() << "Offending node:\n"; 8449 N->dumprFull(DAG); dbgs() << "\n"; 8450 abort(); 8451 } 8452 8453 for (const SDValue &Op : N->op_values()) 8454 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 8455 8456 Checked.insert(N); 8457 Visited.erase(N); 8458 } 8459 #endif 8460 8461 void llvm::checkForCycles(const llvm::SDNode *N, 8462 const llvm::SelectionDAG *DAG, 8463 bool force) { 8464 #ifndef NDEBUG 8465 bool check = force; 8466 #ifdef EXPENSIVE_CHECKS 8467 check = true; 8468 #endif // EXPENSIVE_CHECKS 8469 if (check) { 8470 assert(N && "Checking nonexistent SDNode"); 8471 SmallPtrSet<const SDNode*, 32> visited; 8472 SmallPtrSet<const SDNode*, 32> checked; 8473 checkForCyclesHelper(N, visited, checked, DAG); 8474 } 8475 #endif // !NDEBUG 8476 } 8477 8478 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8479 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8480 } 8481